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Abstract

Many-core systems integrate a growing number of cores on a single chip
and are expected to integrate hundreds of cores soon, while thousand-core
systems are on the horizon. Despite their massive processing power, it is
crucial to employ their parallel resources efficiently to benefit greatly from
parallel processing. This is largely determined by resource allocation, i.e. by
how applications are allocated to the cores.

Efficiently using massively parallel resources demands for applications with
a high degree of parallelism, such as software pipelines. Software pipelines
are well-suited for many-core systems as they do not require globally shared
memory and they are applicable to a large class of applications, such as
complex stream-processing and multi-media applications.

However, efficiently employing many-core systems is challenging as their per-
formance is affected by many factors, e.g. by inter-task communication and
by the balance of computational load among cores. A further great chal-
lenge is posed by the saturation of memory controllers that may result from
unfavorably allocating memory-intensive tasks, and by unreliable hardware.
Additionally, the large number of cores and their great computational power
now permit highly complex application scenarios that may result in signifi-
cantly varying resource requirements at runtime. In such scenarios, adapt-
ing resource allocations can be necessary to maintain a high performance.
However, the state-of-the-art methods for multi-core systems cannot suffi-
ciently address these challenges for several reasons. These reasons include
a large algorithmic complexity that can lead to scalability issues for large
systems, as well as architectural assumptions (e.g. globally shared memory).
As a consequence, it is of crucial importance to develop novel methods for
resource allocation that are well-suited for large many-core systems.

This thesis addresses these challenges by proposing novel concepts, methods

xxvii
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and mechanisms for resource allocation in many-core systems. Based on
a model of the throughput of software-pipelined applications, resources are
allocated and re-allocated at runtime based on the observed system state and
on the observed resource requirements of tasks. To achieve this, a number of
algorithms have been developed and implemented that address the following
issues:

• Calculation of optimal resource allocations at runtime.

• Scalability for very large system sizes by trading the optimum.

• Joint optimization for the computational requirements of tasks, for
inter-task communication, and for avoiding the saturation of memory
controllers.

• Resilience of the resource allocation method against unreliable cores.

• Efficient task migration to re-allocate resources at runtime.

This thesis divides the problem of resource allocation into sub-problems
that can be solved separately. The proposed methods build upon a novel
algorithm for optimally fusing pipeline stages, i.e. reducing the degree of
parallelism of an application so that it runs on a given number of cores. A
centralized, optimal method is proposed to allocate cores to applications,
and is extended in a distributed, hierarchical manner to trade the optimum
for a high level of scalability. Then, it is shown how the saturation of mem-
ory controllers can be avoided whenever possible, or minimized otherwise.
Furthermore, this thesis proposes to alternatively allocate resources in a
self-organizing way. Self-organization can be used to increase the resilience
of the resource allocation methods against unreliable hardware.

The proposed mechanism for task migration builds upon an analysis of
the memory access behavior of stream-processing application and employs
runtime-adaptive migration policies. Furthermore, it exploits the tempo-
ral pattern of software pipelines to reduce the performance overhead of task
migration so that frequent re-allocations of resources are feasible at runtime.

The resulting system has been implemented on Intel’s 48-core Single-Chip
Cloud Computer (SCC) and in a high-level many-core system simulator
that allows to simulate arbitrary system sizes. Multiple complex real-world
applications such as a H.264 video encoder and an embedded application
for stereo vision-based object tracking have been parallelized to form soft-
ware pipelines. In extensive experiments, significant improvements of the
proposed methods upon the state of the art can be observed.



Zusammenfassung und
Übersicht der Arbeit

Many-Core Systeme integrieren eine Vielzahl von Rechenkernen auf einem
Chip, um Geschwindigkeitsvorteile durch die parallele Ausführung von Be-
rechnungen zu erzielen. Solche Systeme werden als vielversprechende Mög-
lichkeit erachtet, die Rechenleistung entsprechend dem Moore‘schen Gesetzt
über die physikalischen und ökonomischen Grenzen von Ein- und Multi-Core
Systemen hinaus weiter zu steigern. Es wird erwartet, dass Many-Core Syste-
me bald hunderte bis tausende von Kernen integrieren. Es ist von entschei-
dender Wichtigkeit, diese parallelen Rechenressourcen effizient zu nutzen,
damit Many-core Systeme erfolgreich eingesetzt werden können.

Um in solchen Systemen die parallelen Rechenressourcen auslasten zu kön-
nen, müssen die eingesetzten Anwendungen einen hohen Grad an Paralle-
lität aufweisen. Eine wichtige Klasse solch paralleler Anwendungen stellen
sogenannte Software Pipelines dar. Software Pipelines bestehen aus meh-
reren Stufen, die wiederholt komplexe Berechnungen auf einem Strom von
Eingabedaten ausführen, wobei die Ausgabedaten einer Stufe die Eingabe-
daten ihres direkten Nachfolgers darstellen. Dieses Paradigma erlaubt es,
jede Stufe einem einzelnen Kern zuzuordnen, somit also einen hohen Grad
an Parallelität zu erreichen. Zudem können Software Pipelines durch die ex-
plizite Kommunikation in Systemen ohne gemeinsamen Speicher und ohne
Cache-Kohärenz verwendet werden, was der Abkehr von diesen Konzepten
aus Skalierbarkeitsgründen entgegen kommt. Software Pipelines sind insbe-
sondere für viele Multimediaanwendungen geeignet.

Für die effiziente Auslastung der Rechenressourcen von Many-Core Syste-
men ist es jedoch von entscheidender Wichtigkeit, dass die parallelen An-
wendungen auf eine Weise den Kernen zugeordnet werden, die den Durch-

xxix
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satz des Systems maximiert. Allerdings sind herkömmliche Konzepte zur
Ablaufplanung (Scheduling) nicht geeignet um die effiziente Zuordnung von
Anwendungen zu Kernen zu erzielen (im Folgenden schlicht “Zuordnung” ge-
nannt). Ein Hauptgrund hierfür ist, die Frage, welche Anwendung welchen
Kernen zuzuordnen ist, häufig nicht zentraler Gegenstand von Ablaufpla-
nung in Multi-Core Systemen ist. Der Stand der Kunst, eine solche Zuord-
nung für Multi-Core Systeme zu erreichen, setzt meist kohärente Caches und
gemeinsamen Speicher voraus und/oder ist aufgrund hoher Rechenkomple-
xität nicht für Systeme mit hunderten Kernen geeignet. Infolgedessen ist es
von großer Wichtigkeit, neue Konzepte zu entwickeln, die eine solche Zuord-
nung und somit eine effiziente Nutzung der Kerne in Many-Core Systemen
gewährleistet.

Die Schwierigkeiten und Hürden für solche neuen Konzepte sind allerdings
vielfältig. Einerseits ist es in Many-Core Systemen, in denen viele Anwen-
dungen gleichzeitig ausgeführt werden, häufig der Fall, dass sich der Ressour-
cenbedarf der Anwendungen während der Laufzeit ändert. Solche Änderungen
werden beispielsweise durch Benutzereingaben oder durch Änderungen in
den Eingabedaten hervorgerufen und sind oft nicht vorhersehbar. Deshalb
muss die Zuordnung von Anwendungen zu Kernen gegebenenfalls zur Lauf-
zeit geändert (und daher neu berechnet) werden. Zudem stellt die Änderung
von Zuordnungen zur Laufzeit entsprechende Anforderungen an die maxi-
male Rechenkomplexität und an die Menge der zur Berechnung benötigten
Informationen.

Eine weitere Herausforderung stellt der mögliche Ausfall von Kernen dar, da
es bei einer sehr großen Zahl von Kernen in Zukunft nicht mehr sinnvoll ist,
die Stabilität aller Kerne zu jeder Zeit zu garantieren. Falls auf ausfallen-
den Kernen Instanzen des Verwaltungssystems ausgeführt werden, kann der
Durchsatz des Gesamtsystems erheblich beeinträchtigt werden. Um die be-
schriebenen Probleme zu lösen, stellt diese Arbeit Methoden, Konzepte und
Implementierungen vor, die es erlauben, effektive Zuordnungen in Many-
Core Systemen effizient zu erreichen. Die Grundlage bildet die Modellierung
zur Berechnung und Vorhersage des Durchsatzes von Software-Pipelines. Um
ihre Zuordnungen zur Laufzeit zu berechnen und anzupassen werden mehre-
re Algorithmen entworfen und implementiert, die folgende Fragestellungen
beantworten:

• Migration von Anwendungen zwischen Kernen, damit Zuordnungen
zur Laufzeit geändert werden können.

• Berechnung optimaler Zuordnungen zur Laufzeit.
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• Skalierbarkeit für beliebige Systemgrößen unter Abwägung der Opti-
malität der Lösung.

• Gleichzeitige Berücksichtigung von Rechenbedarf, Kommunikations-
volumen und der Auslastung gemeinsam genutzter Speichercontroller.

• Robustheit des Gesamtsystems gegen den unvorhersehbaren Ausfall
von Kernen zur Laufzeit.

Das resultierende Gesamtsystem wurde auf dem Intel Single-Chip Cloud
Computer, einem 48-Kern System, und in einem Simulator implementiert,
der beliebige Systemgrößen simuliert. Hierfür wurden mehrere komplexe An-
wendungen wie unter anderem ein H.264 Video Encoder und eine Anwen-
dung zur sichtbasierten Objektverfolgung zu Software Pipelines paralleli-
siert.

Im Vergleich zum Stand der Kunst können deutliche Leistungsgewinne er-
zielt werden, wobei der Durchsatz des Gesamtsystems deutlich gesteigert
werden kann. Zudem sind die in dieser Dissertation vorgestellten Metho-
den und Algorithmen auch für große Systemgrössen bis über 1.000 Kernen
effektiv und effizient einsetzbar.
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Chapter 1

Introduction

Many-core systems comprise hundreds of cores on a single chip to bene-
fit from the parallel execution of tasks, and systems that contain a thou-
sand cores are on the horizon [17]. Their massively parallel computational
resources are widely regarded as a powerful means to increase the perfor-
mance of computing systems through parallel processing. In the wake of
their great capabilities, highly complex and computationally demanding ap-
plications, such as real-time video encoding, live object- and face recogni-
tion, on-demand data encryption, and many more, are now possible and
increasingly common even in embedded systems [104].

This high degree of parallelism has emerged to overcome the limited perfor-
mance of single- and multi-core systems. Due to their high levels of power
consumption and greatly increasing design and verification complexity, a
further scaling of core frequencies, integration sizes, and core complexity
has hit its limits [17, 116]. As these are the main drivers that allowed to im-
prove the computational power of single- and multi-core systems in line with
Moore’s law for multiple decades, significant improvements in the future are
unlikely in many scenarios [16, 116].

A viable solution to increase the performance of a system beyond these
limits within a reasonable power envelope is to integrate a growing number
of simple cores on a single chip, paving the way for current and future many-
core systems.

1
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1.1 Many-core Systems: Status Quo and Trends

Many-core systems and multi-core systems are fundamentally different as
large numbers of cores necessitate a departure from established paradigms,
e.g. regarding the on-chip communication infrastructure and memories. This
section highlights some of the most prominent architectural differences and
provides a demarcation of many- and multi-core systems before giving an
overview of existing many-core systems and the most important trends.

State-of-the-art many-core systems often deploy a Network-on-Chip (NoC)
to enable the transfer of data between their individual cores, as NoCs pro-
vide a scalable and fast communication infrastructure. Network-on-Chips
replace the bus-based interconnects that are predominantly found in single-
and multi-core systems because NoCs can avoid congestion when multiple
cores communicate concurrently [32], which occurs commonly in many-core
systems due to their large number of cores. Furthermore, NoCs do not suffer
from the excessive area overhead of global wiring.

In systems that contain off-chip memory, the Network-on-Chip may also
connect the cores to one or more memory controllers that provide access
to off-chip memory. As the performance of off-chip memory is often much
lower than the performance of the cores, single-/multi-core as well as many-
core systems often employ caches to bridge this gap. In multi-core systems,
all caches are commonly coherent, i.e. all caches provide an identical view
on the data at any time. However, as the overhead of cache coherence
protocols grows with a growing number of cores, it is likely that many-
core systems depart from cache coherence and, as a consequence, from the
concept of sharing memory globally among all cores. As an example, Intel’s
Single-Chip Cloud Computer (SCC) does not employ any form of hardware
cache coherence [43] and sharing memory among cores requires to disable

Many-core Systems Multi-core Systems
Number of cores > 32 2,4,6,8,12,...
Communication Network-on-Chip Bus-based (and exten-

sions, e.g. Intel QPI, Hy-
perTransport)

Memory Private Shared
Cache Not coherent Coherent

Table 1.1: Demarcation: typical properties of many- and multi-core systems
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caching [78]. Future systems may also follow this paradigm as the number of
cores that can be integrated on a single chip is predicted to double roughly
each 18 months [47], following Moore’s law of transistor count doubling in
each generation of processors [84].

Table 1.1 summarizes the typical architectural properties of many- and
multi-core systems. While there exists no common demarcation for many-
and multi-core systems, this thesis considers systems with more than 32
cores, private memories, and incoherent caches as many-core systems. In
contrast, a system with less cores, shared memories, and coherent caches is
considered a multi-core system. In the scope of this thesis, Graphics Pro-
cessing Units (GPUs) are not considered a many-core system, even though
they share many characteristics. However, GPUs are commonly employed to
accelerate a specific class of applications and face different challenges than
the many-core systems that this thesis focuses on.

Various many-core systems have been released in the recent past, and it is
predicted that the trend to integrate more and more cores on a single chip
continues [17, 47, 114]. Figure 1.1 shows the core counts of some systems.
Following the curve of the International Technology Roadmap for Semicon-
ductors (ITRS) prediction of core count doubling each 18 months, chips with
hundreds and even with a thousand cores are to be expected soon.

The many-core systems that are available today include Intel’s 80-core Tera-
scale Research Chip (also known as Polaris) [114], and the Intel Single-Chip
Cloud Computer (SCC) [43]. The purpose of the Tera-scale Research Chip is
to achieve high computational power to prove the effectiveness of the many-
core system paradigm by achieving 1.27 TFLOP/s (Tera Floating Point
Operations per second) [114]. The focus of its successor, the SCC, is on
the Network-on-Chip interconnection between the individual cores rather
than on computing power [78]. It entirely departs from cache coherence
and shared off-chip memory can only be used without data caching. In-
tel’s Xeon Phi [31], which was released commercially in 2013, integrates 61
cores on a single chip. Tilera’s TILE-Gx systems comprise up to 72 cores
at 1.2 GHz. For embedded streaming multimedia applications, Toshiba’s
single-chip many-core system with 64 cores aims at high performance and
low power consumption to allow 1080p 30fps H.264 decoding with a power
consumption of approx. 400mW [82]. All of these many-core systems use
a Network-on-Chip for on-chip communication. Figure 1.1 illustrates the
numbers of cores of these and some other systems, as well as the year of
their release.
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Figure 1.1: Comparison of the number of cores of selected systems and
the trend in growing core counts predicted by the International Technology
Roadmap for Semiconductors (ITRS) [47].
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1.2 Key Challenges

The architectural differences of many-core- and single-/multi-core systems
lead to a multitude of research challenges in order to efficiently employ the
available computational resources. This section discusses the research chal-
lenges that are most important to successfully deploy many-core systems.

Applications should exhibit a high degree of parallelism so that a large num-
ber of cores can be used. In systems where cores may not share their mem-
ory, parallel applications must communicate shared data explicitly between
their individual tasks so that many cores can be used. This is challenging as
many established parallel programming concepts, e.g. OpenMP [92], POSIX
Threads, and Fork/Join parallelism (see Sections 2.4.6 and 2.4.7), assume
that memory is shared among all tasks and do not require the programmer to
explicitly identify data that may be shared among tasks. The explicit com-
munication of shared data that is required in distributed-memory systems
can hardly be performed automatically as identifying such data is NP-hard
or even undecidable in many cases [42, 67]. Furthermore, as data communi-
cation induces a performance overhead, the granularity of parallelism must
be sufficiently coarse so that the communication overhead does not exceed
the performance gains of parallel processing.

A parallel programming concept that is well-suited for many-core systems
is software pipelining. A software pipeline is a parallel application that per-
forms complex operations on a stream of input data. It comprises stages
that form its individual tasks, and the output of one stage is the input of its
direct successor (see Section 2.4.8 for a definition of software pipelines). The
granularity of parallelism of software pipelines is coarse compared to fine-
grain shared-memory parallel programming concepts such as OpenMP [92].
Software pipelines can be deployed for a wide range of applications, most
prominently for complex multimedia and stream-processing applications. In
the following, this thesis focuses on many-core systems that exclusively de-
ploy software-pipelined applications.

A key challenge to efficiently employ the cores of a many-core system is the
allocation of resources, i.e. the allocation of tasks to cores. Efficient resource
allocation is challenging because the performance of a system is largely de-
termined by multiple inter-dependent factors, such as the computational
load of cores and on-chip communication. The impact of these factors on
the system performance depends on the individual resource allocation.
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The great computational power of many-cores empowers highly complex
applications, such as real-time object recognition, on-the-fly video encod-
ing, etc., and application scenarios where multiple such applications may
run concurrently. This leads to dynamic scenarios where applications may
be started, stopped, or may change their resource requirements (i.e. their
computational requirements, their communication volumes, or their mem-
ory access behavior) at any time. Unpredictable resource requirements may
necessitate the adaptation of resource allocations at runtime as otherwise,
severe performance degradation could be the result. However, resource re-
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Figure 1.2: A comparison of 1,000,000 system throughputs that result from
random resource allocations of the 48 cores of Intel’s Single-Chip Cloud
Computer (SCC) [43]. The application scenario comprises 100 communicat-
ing tasks. As less than 1% of the allocations achieve a system throughput
of more than 50% (28.68 1/s) as compared to the highest system throughput
observed in this experiment (57.36 1/s), this experiment illustrates the great
importance of careful resource allocation.
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allocation (i.e. adapting the allocation of tasks to cores at runtime) induces
the overhead of task migration, i.e. transferring the execution of a task be-
tween cores. In many-core systems, task migration may involve to transfer
the data of a task between the private memories of the corresponding cores,
which can lead to a severe performance overhead.

A significant hurdle for efficient resource allocation is posed by the recent
advancements towards compilers, frameworks and tools that semi-automati-
cally aid programmers at increasing the degree of parallelism of applications,
e.g. [25, 30, 95, 112, 117]. This suggests that the degree of parallelism, hence
the number of tasks, may grow significantly in the future. This is challenging
as the overhead of resource allocation, which depends both on the number
of cores as well as on the number of tasks in a system, must remain in
reasonable bounds.

Figure 1.2 illustrates the crucial importance of careful resource allocation
for a high performance. The figure shows the observed system throughput
when allocating 100 stages to 48 identical cores1. The throughput is an im-
portant metric to quantify the performance of a system. The throughput of
an application is denoted by the number of data items (e.g. video frames,
audio samples, etc.) that are processed per second. Its unit is hence 1/s. The
system throughput expresses the average throughput of all running applica-
tions. This thesis prefers throughput over metrics such as makespan, i.e. the
time an applications consumes to complete its processing, because software
pipelines often run perpetually. For a set of 1,000,000 different randomly
chosen resource allocations, the maximum system throughput that can be
observed in this experiment is 57.36 1/s, the minimum is 0.07 1/s, and more
than 99.2% of the random allocations result in a system throughput of less
than half of the maximum. This finding strongly highlights that resource
allocation is a key challenge for the success of current and future many-core
systems and must be performed very carefully. In line with these observa-
tions, resource allocation is widely regarded as one of the most important
issues for many-core systems [76, 77, 106].

However, resource allocation for many-core systems faces numerous chal-
lenging hurdles:

• Dynamism: Unpredictable dynamism (i.e. variations in the resource
requirements of tasks and the unpredictable starting/stopping of appli-
cations) can require frequent adaptions of resource allocations. Conse-

1This experiment uses the P54C cores of Intel’s Single-Chip Cloud Computer (SCC).
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quently, a system must be able to compute resource allocations quickly
and it must be able to adapt allocations with minimum overhead.

• Scalability: The time consumed by calculating resource allocations
(computational overhead) and for observing the relevant information
(communication overhead) should be insignificant even for large sys-
tems and a multitude of applications.

• Unreliable hardware: The reliability of cores can decrease due to
the continued shrinking of integration sizes beyond 22nm. This shrink-
ing causes high power densities [86] and an increasing impact of process
variations [15]. High power densities may lead to thermal problems
that can cause temporary or permanent failures of cores [18, 86]. Due
to process variations, manufacturing many-core systems for a guaran-
teed reliability may lead to low yields. Both effects suggest that in the
future, systems may need to be able to operate on unreliable cores [15].
Unreliable cores can jeopardize the effectiveness of resource allocation
and can thus decrease the system throughput significantly.

• Saturation of memory controllers: Following the rapidly increas-
ing number of cores, bandwidth limitations of memory controllers
(i.e. the controllers located on-chip that enable access to off-chip mem-
ory) may have a significant impact on the system throughput when
running memory-intensive tasks [1]. This limitation is mostly due to
the fact that both the number of pins to connect the chip with off-chip
memory as well as the bandwidth of each individual pin is limited [61].
Hence, the number of memory controllers that can be integrated as well
as their individual bandwidth are also limited.

As an example, Intel’s newest Xeon Phi™5110P integrates 16 memory
controllers for 61 cores and each memory controller serves the accesses
of approx. 4 cores [31]. However, assuming that the number of mem-
ory controllers can hardly be increased significantly due to pin count
constraints [1], each memory controller may need to serve the accesses
of 64 cores in a system with 1024 cores. Thus, it has to serve 16 times
the requests.

In case one memory controller serves many memory-intensive tasks, it
may operate in saturation, i.e. it may be requested to access more data
per second than it can provide [1]. This reduces the bandwidth that
is available for the individual tasks, which may lead to a degraded
throughput. Such a saturation of memory controllers has recently
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been identified as the major cause for deteriorated throughput [61].
Furthermore, when tasks communicate and they are allocated to cores
that are assigned to different memory controllers, the corresponding
data have to be copied from one memory controller to the other, which
induces a performance penalty.

Consequently, resource allocation must account for the memory in-
tensity of tasks so that the saturation of memory controllers can be
minimized or avoided.

• Inter-task communication: When tasks communicate intensively,
as it is the case for many complex multi-media applications, their
communication overhead can be significant and may diminish the per-
formance gains achieved through parallel processing. However, the
performance penalty of inter-task communication is affected by the
allocation of resources. Consequently, resource allocation should be
performed in a way that optimizes for inter-task communication.

To summarize, an efficient method for resource allocation must take vari-
ous resource requirements of tasks into account, it must be able to respond
to their unpredictable changes in dynamic scenarios, and it should perform
task migration efficiently so that a good performance can be achieved. Fur-
thermore, it should be scalable, resilient to unreliable hardware, and should
avoid the saturation of memory controllers whenever possible.

1.3 Thesis Contribution

The goal of this thesis is to achieve a high performance of many-core sys-
tems by efficiently employing their resources despite complex, unpredictable
scenarios. This thesis presents novel resource allocation methods to jointly
incorporate the computation, communication, and the memory access be-
havior of the individual tasks. By allocating resources at runtime in a highly
scalable manner, allocations can be adapted quickly and thus, a high sys-
tem throughput can be maintained when application scenarios or the com-
putational requirements of the individual tasks change unpredictably. This
thesis presents a cross-layer contribution and targets all aspects of resource
(re-)allocation including a task migration mechanism, methods for resource
allocation, and an application-level concept for software pipelines.

In particular, the novel contributions of this thesis are:
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• The novel task migration mechanism CARAT: This runtime
adaptive mechanism allows to reduce the performance penalty of task
migrations which can be severe when migrations are performed fre-
quently. CARAT aims at reducing the time consumed by task mi-
grations by adapting the policies of transferring task data based on
runtime observations. This way, tasks can be migrated quickly and
with a low impact to the system throughput.

• The novel methods for allocating resources to software pipe-
lines CeRA, DiRA and MOMA: Based on a model for software-
pipelined applications, resources are allocated to multiple software
pipelines in a way that optimizes the system throughput. This ad-
dresses two problems: Firstly, this addresses the problem of optimally
allocating the available cores to a number of software-pipelined appli-
cations with different priorities that run concurrently. Secondly, the
stages of each application are combined in a way that optimizes the
throughput of each application, given the cores that are allocated to
this application. We show how our CeRA resource allocation method
can allocate resources in a globally optimal manner even when the
number of stages largely exceeds the number of available cores. Fur-
thermore, we show how our DiRA resource allocation method trades
the optimum for a high degree of scalability by distributing its compu-
tations in a hierarchical manner. This way, a near-optimal throughput
can be achieved for very large system sizes and numbers of tasks. As
a next step, we show how our MOMA resource allocation method can
jointly account for the computation of stages, their communication,
and the load of memory controllers in systems with multiple memory
controllers. This way, the saturation of memory controllers can be
avoided whenever possible and minimized otherwise.

• The novel concept of Pipelets: Our Pipelets are self-organizing
stages of software pipelines that interact so that resource allocations
can be adapted at runtime without a controlling instance. This fully-
distributed method of resource allocation allows to shift the responsi-
bility of observing the relevant system state to the application level,
which reduces the associated overhead. Additionally, self-organization
allows to achieve resilient resource allocation despite unreliable hard-
ware. Furthermore, our self-organizing software pipelines can help to
restore a high system throughput when cores fail.

This thesis presents detailed analysis and descriptions of the implementa-
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tions and experiments on Intel’s Single-Chip Cloud Computer (SCC) [43]
and in a high-level many-core system simulator. It uses complex, real-world
applications including H.264 de-/encoding and stereo-vision based object
recognition. The algorithms, methods and mechanisms proposed in this
thesis allow to improve upon the state-of-the-art methods by modeling the
throughput of software-pipelined applications and by exploiting a combi-
nation of runtime observations about the resource requirements of tasks,
compile-time generated performance profiles, and application knowledge on
communication patterns. This way, resources can be allocated and re-
allocated at runtime in an effective and efficient manner. As a consequence,
complex application scenarios can be successfully deployed to current and
future many-core systems.

1.4 Outline

Before the contribution of this thesis is described in detail, Chapter 2 gives
a broad overview of the background of many-core systems and Chapter 3
discusses the state-of-the-art methods for allocating their resources.

Chapter 4 presents the application model and hardware model used in this
thesis and defines the problem of allocating resources. It divides the prob-
lem of resource allocation into allocating the cores to the applications (Sec-
tion 4.3.1) and into allocating the cores of an application to its individual
tasks (Section 4.3.2).

Chapter 5 presents our methods for allocating resources in a system-con-
trolled way, i.e. by deploying controlling instances that are responsible for
allocating the resources. Starting from our centralized, optimal CeRA re-
source allocation method (Section 5.2), we propose a distributed, hierarchi-
cal method DiRA that trades the optimum for a high degree of scalability
(Section 5.3). Based on this, we propose MOMA to jointly optimize resource
allocation for computation, inter-core communication, and for balancing the
load of memory controllers in systems with multiple memory controllers
(Section 5.4).

Chapter 6 proposes our concept of Pipelets for self-organizing resource al-
location. The stages of our self-organizing software pipelines interact in
order to allocate resources without any controlling instances (Section 6.2.1).
In a next step, we show how self-organization can be combined with the
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system-controlled DiRA method for resource allocation in order to combine
the benefits of both approaches (Section 6.3).

Chapter 7 proposes a task migration mechanism that allows to re-allocate
resources at runtime, e.g. to account for unpredictably changing applica-
tion scenarios or for varying resource requirements of tasks. Based on a
memory access behavior analysis (Section 7.1, this thesis proposes a novel
policy for migrating tasks in Section 7.3 and introduces runtime-adaptive
task migration in Section 7.2 in order to account for the behavior of tasks
at runtime.

Chapter 8 details the experiments and evaluations to compare the methods
proposed in this thesis to the state-of-the-art methods for resource alloca-
tion. After detailing the experimental setup (Section 8.1) and the imple-
mentation on Intel’s Single-Chip Cloud Computer (SCC) [43] (Section 8.2),
Section 8.3 describes the many-core system simulator used for some experi-
ments. The individual benchmark applications are described in Section 8.4
and the benchmark scenario used for our experiments is explained in Sec-
tion 8.5. Section 8.6 explains how the state-of-the-art methods for resource
allocations have been adapted for a fair comparison. Section 8.7 compares
the system throughput that results from using the methods proposed in this
thesis to the state-of-the-art resource allocation methods, while the compu-
tational overhead and the communication overhead of the proposed methods
is analyzed and discussed in Sections 8.8 and 8.9, respectively.

Finally, Chapter 9 concludes this thesis and gives an outlook.



Chapter 2

Background

Many-core systems empower highly complex applications ranging from ob-
ject-, face-, pattern-, and speech recognition to on-the-fly data encryption,
compression, and video encoding. Furthermore, they enable novel use-cases
where such tasks can be performed in real-time, and application scenarios
where a multitude of such applications can run concurrently. Most impor-
tantly, they combine unprecedented computational capability with reason-
able design and verification complexity and a feasible power envelope. This
thesis envisions many-core systems that employ their resources efficiently by
allocating and re-allocating them at runtime in a response to changing ap-
plications scenarios and changing resource requirements. Despite the focus
of this thesis on resource allocation, this chapter presents a short overview of
state-of-the-art many-core system architectures, memory models, and par-
allel programming concepts in order to provide a general background.

2.1 Many-core System Architectures

Many-core systems employ a large number of cores on a single chip to reap
benefits from parallel processing. When all cores are identical, i.e. they have
identical instruction sets, address width, etc., a system is commonly referred
to as a homogeneous system. In contrast to this, systems that contain cores
that are not identical are commonly referred to as heterogeneous systems.

13
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2.1.1 Homogeneous Architectures

Homogeneous many-core system architectures integrate a number of identi-
cal cores. In a homogeneous many-core system, each task may be allocated
to any core. Prominent homogeneous many-core systems include Intel’s
80-core Tera-scale Research Chip (also known as Polaris) [114], and the
Single-Chip Cloud Computer (SCC) [43], as well as Intel’s Xeon Phi [31].
The methods for resource allocation proposed in this thesis assume homo-
geneous system architectures.

2.1.2 Heterogeneous Architectures

Heterogeneous systems may comprise cores with different instruction sets,
hardware extensions, or power/performance characteristics, as well as spe-
cialized DSP processors or vector units. This accounts for diverging require-
ments of tasks: while some applications benefit greatly when data-level par-
allelism is exploited e.g. by SIMD (Single Instruction, Multiple Data) and
MIMD (Multiple Instructions, Multiple Data) units, other applications may
benefit from hardware support for video encoding, data compression, or
cryptography. As a result, heterogeneous systems may deliver a higher per-
formance and/or a lower energy consumption than homogeneous architec-
tures [65]. However, heterogeneous system architectures are a great hurdle
for efficient resource allocation as in many cases, a binary translation of
program executables or retargetable code is necessary when allocating tasks
to different types of cores.

As a result, the re-allocation of tasks would either be restricted by a limited
set of cores to which a task can be allocated, or it could require binary trans-
lation at runtime. Both cases may induce a significant performance overhead
or lead to inefficient resource allocation. Hence, the methods for resource
allocation proposed by this thesis target heterogeneous system architectures.

2.1.3 Network-on-Chip (NoC)

A Network-on-Chip is an on-chip communication infrastructure that aims
overcoming scalability issues by providing modular, structured, point-to-
point communication [32]. In contrast to bus-based architectures or ar-
chitectures where communicating components are connected via dedicated
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wiring, Network-on-Chips perform packet-based communication, where mes-
sages are split into flits. Routers transfer flits based on a routing protocol
and connect the on-chip components to the Network-on-Chip. Network-on-
Chips typically require a modest amount of chip area (approx. 6-7%) [32].
As they are widely regarded as a solution to the scalability issues of e.g. bus-
based on-chip communication, Network-on-Chip are regarded as the com-
mon communication infrastructure for many-core systems.

2.1.4 Memory Controllers

In a many-core system, memory controllers can enable access to large off-chip
memory that complements fast but small on-chip memory, such as caches
or scratchpad memories. Chips are often connected to the power supply,
ground, as well as to their peripherals and off-chip memory via a number of
metal pins. However, this connection faces physical limitations: The total
number of pins is constrained by the size of the chip packaging and the size
of the individual pins. Furthermore, the data transfer bandwidth of the indi-
vidual pins is constrained physically [1]. Hence, the total number of memory
controllers as well as their individual bandwidth is also constrained [1].

As a result to these limitations, access to off-chip memory is often much
slower than access to on-chip memory, and the access to off-chip memory
via memory controllers may have a significant impact on the performance
of a system [61]. To address these issues, memory controllers can optimize
the memory requests by grouping them in a way that increases the through-
put [61]. Furthermore, the placement of the individual memory controllers
can have a significant impact on the throughput [1].

2.2 Memory Models

Multi- and many-core systems can be broadly grouped into shared-memory
systems and into distributed-memory systems. In shared-memory systems,
all cores share a globally accessible address space and thus, each core can
access all data at any time. In contrast to this, distributed-memory systems
employ a distributed-memory model where this is not the case.
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2.2.1 Shared-memory Systems

In a shared-memory system, all cores share a globally accessible address
space. Hence, tasks that are allocated to different cores may access the same
data concurrently. Many paradigms for parallel programming, such as e.g.
OpenMP, POSIX Threads and Fork/Join Parallelism (see Sections 2.4.2-
2.4.7) require a shared-memory model.

The major drawback of shared-memory models is that concurrent access
to one memory region may result in a bottleneck. Furthermore, they re-
quire the coherence of on-chip caches among cores. However, despite the
fact that cache coherence can achieve good performance in many cases e.g.
by deploying dedicated wiring [74] and by using a combination of software
and hardware coherency [3], cache coherence protocols induce a significant
communication overhead that commonly increases with the number of cores.
Hence, many projections assume that a departure from shared-memory mod-
els is required in order to integrate hundreds or even thousands of cores on
a single chip. As a result, this thesis assumes that many-core systems have
distributed memories.

2.2.2 Distributed-memory Systems

As a contrast to shared-memory systems, a distributed-memory system does
not allow global access to the entire address space for all cores. This ranges
from cases where each core should only use private memory, as it is the case
in Intel’s Single-Chip Cloud Computer (SCC) [43]1, to cases where memory
can be accessed in a shared manner only inside a memory island.

As a result, widely established concepts and paradigms for parallel program-
ming, such as OpenMP, POSIX Threads and Fork/Join Parallelism (see
Sections 2.4.2-2.4.7), may not be deployed in distributed-memory systems or
face significant problems. Programming paradigms that are well-suited for
distributed-memory systems include Synchronous Data Flow (SDF), Kahn
Process Networks (KPN), and software pipelines.

In order to communicate data between cores, it may be necessary to transfer
memory contents from the memory of the source core to the memory of
the destination core. When tasks communicate extensively, this overhead

1On the SCC, access to shared memory requires to disable caching for all shared data,
or to deploy a software-level coherence protocol.
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can significantly impair the performance of a system. As this overhead
depends on resource allocation, inter-core communication must be accounted
for when allocating resources in such cases so that a high performance can
be achieved.

2.3 Software-level On-chip Communication

In many cases, tasks need to communicate. This section discusses estab-
lished concepts for application-level inter-task communication in systems
with shared and distributed memories: Inter-Process Communication (IPC),
Message Passing Interface (MPI), and Berkeley Sockets.

2.3.1 Shared-memory Inter-Process Communication

In a shared-memory system, two tasks can communicate efficiently using
shared-memory Inter-Process Communication (IPC). This section discusses
methods and mechanisms for shared-memory IPC in multitasking and multi-
threading operating systems that support virtual memory, such as Windows
NT and many Linux and Unix-based operating systems.

The virtual address space of each task is private. Consequently, when dif-
ferent tasks need to communicate via shared-memory IPC, they must first
gain access to a region of memory that is shared among their tasks. There
are the following means to achieve this:

Named Pipes A named pipe is a persistent object that acts as a First-In,
First-Out (FIFO). Usually, named pipes connect two counterparties,
a producer that writes to the named pipe, and a consumer that reads
from it. Due to the nature of FIFOs, named pipes are usually employed
for one-way communication.

Memory-mapped Files Memory-mapped files allow two tasks to share
memory. Any number of tasks can access one memory-mapped file ob-
ject (e.g. by calling CreateFileMapping/CreateFileMappingNuma),
which is identified by its name. Memory-mapped files may be used
to communicate or store data that is larger than the virtual address
space of the system permits. This can be achieved by mapping only
portions of the file object into the virtual address space that do not
exceed this limit (e.g. MapViewOfFileEx).



18 CHAPTER 2. BACKGROUND

Remote Memory Access Another way to achieve IPC via shared mem-
ory is when one task allocates memory within the virtual address space
of another task, and passes the handle to this memory location. In
Windows NT-based operating systems, VirtualAllocEx allows to al-
locate memory remotely in the virtual address space of another task.
However, to initially establish an IPC connection, the handle to this
memory must be passed via other IPC mechanisms.

2.3.2 Message Passing

Message passing is a paradigm for inter-task communication in shared- and
in distributed-memory systems. Generally speaking, message passing allows
for point-to-point (producer/consumer) communication and collective com-
munication (e.g. multicast and broadcast). A producer is required to explic-
itly send the data for communication to its consumer(s). A well-established,
standardized implementation of this paradigm is the Message Passing In-
terface (MPI), implementations include e.g. OpenMPI [94]. MPI supports
various integral as well as user-specified data types, and abstracts specifics
of the communication infrastructure.

Message passing is well-suited for distributed computing systems and many-
core systems without shared memory and cache coherence.

2.3.3 Berkeley Sockets

Berkeley sockets (the “BSD socket API”) provide an Application Program-
ming Interface (API) for Inter-Process Communication (IPC), most com-
monly across computer networks. Berkeley sockets originated in 1983 as a
C language API and have emerged as a de-facto standard for socket com-
munication based on the Internet Protocol (IP) standard. Many modern
operating systems, including Linux, UNIX-based Systems, and Windows
(through WinSock) provide implementations of Berkeley sockets.

Berkeley sockets can be used for inter-task communication in shared- and
in distributed-memory systems. Table 2.1 summarizes the most important
functions of the API (Source: [33]).
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Function Description

socket Creates a new socket with a specified type and reserves
system resources for it.

bind Server-side function to associate a socket with a given
socket address structure to specify e.g. the local port
and address.

listen Changes a given socket so that incoming TCP connec-
tion requests will be processed and queued for accep-
tance.

connect Client function to establish a connection and to assign
a free local port to a given socket.

accept Dequeues the next connection. If the queue is empty,
accept blocks until the next connection request arrives.

send, sendto Sends data to a remote socket.

recv, recvfrom Receives data from a remote socket.

close Closes a socket and frees reserved system resources.

gethostbyname Allows to resolve a host name.

gethostbyaddr Allows to resolve a host addresses.

select Used to wait for a set of sockets to be ready for read-
ing/writing.

poll Checks the state of a set of sockets and can be used
to determine if any socket can be written to or read
from.

setsockopt Used to set the value of a particular socket option.

getsockopt Used to retrieve the value of a particular socket option.

Table 2.1: Summary of the most important functions of the Berkeley socket
API. Similar implementations are found on many common operating systems
such as Linux, Unix, and Windows. Source: [33]
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2.4 Parallel Programming Concepts

In order to exploit the resources of a parallel system, applications must
depart from the paradigm of sequential processing and provide parallelism
on software level. This section discusses the most established state-of-the-art
parallel programming concepts.

2.4.1 Terms and Definitions

The following terms will be used in the context of parallel programming.

Address Space In the context of this thesis, the address space of a task
refers to the memory that it is assigned by the operating system. Usu-
ally, in systems that support the concept of virtual memory, the ad-
dress space is private to its task.

Program A program is an abstract, passive construct characterized by a
set of instructions formulated by a programmer. When executed, one
or more tasks are the actual active instance of the program.

Task A task is an operating system construct that characterizes the execut-
ing instance of a program, containing its loaded program code. Each
task contains one or more threads that execute concurrently. In sys-
tems that support the concept of virtual memory, each task is usually
assigned a private memory region, i.e. its address space.

Thread In the context of this thesis, a thread is an operating-system con-
struct that describes a sequence of program instructions that may be
managed independently by the operating system scheduler. Each task
consists of one or more threads. When a program is executed, a task
and a master thread is created. This master thread may create multi-
ple subsequent threads. All threads inside one task share its address
space and thus, locking mechanisms must be employed in most in-
stances to synchronize the access to shared memory regions.

Multithreading Multithreading is an operating system concept that al-
lows to run multiple threads to run concurrently, and it allows each
task to create more than one thread. The operating system scheduler
may use techniques to time-multiplex processor resources, such as pre-
emptive multithreading where each thread is assigned a time slice and
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is interrupted after this time slice has been exhausted. Then, another
thread is assigned a time slice, and so on.

2.4.2 OpenMP

OpenMP is an Application Programming Interface (API) for shared-memory
parallel programming in C/C++ and Fortran programs. It is available on
many major architectures, including Unix, Linux, and Windows NT. Its Ar-
chitecture Review Board members include among others AMD, Cray, HP,
IBM, Intel, NEC, NVIDIA, and Texas Instruments [93]. OpenMP is charac-
terized by a set of compiler directives and environment variables that guide
the compiler to create parallel code. OpenMP achieves multithreading by
distributing work to a number of concurrently operating threads that are
created by the OpenMP runtime library.

In an OpenMP program, the actions taken by the compiler and by the run-
time system to achieve parallelism are entirely specified by the programmer.
Consequently, no data dependency analysis has to be performed by the
compiler.

OpenMP supports Single Instruction, Multiple Data (SIMD) parallelism,
work sharing (omp parallel for), and thread-level parallelism (omp parallel).
It also provides constructs for attributing data sharing, synchronization,
scheduling control, and conditional statements.

However, as OpenMP focuses on shared-memory systems, parallel OpenMP
programs are not suitable for systems without shared memory and cache
coherence.

2.4.3 OpenCL

The Open Computing Language (OpenCL) is an API with the main purpose
of providing a unified computational abstraction framework to employ both
CPUs and GPUs [60, 111]. OpenCL implements kernels in a language similar
to C99, but disallows function pointers, recursions, bit fields, and arrays
of variable length. However, it supports vector operations and, similar to
OpenMP, it provides synchronization primitives and qualifiers to attribute
the sharing of data.

OpenCL aims at a high degree of portability across platforms and thus
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provides an abstracted memory concept and hides specific GPU features.
The memory abstraction model tightly couples data memory with its kernel,
and sharing of memory is only possible via explicit data transfer. This way,
OpenCL programs can be run on many-core systems without globally shared
memory and cache coherence [71].

2.4.4 CUDA

The Compute Unified Device Architecture (CUDA) is an API and program-
ming framework for parallel processing on GPUs. Similarly to OpenCL, it
supports a recursion-free subset of C++ and memory spaces are private for
its threads. Due to its focus to a specific set of GPUs, CUDA programs
cannot run on other many-core systems.

2.4.5 Intel Threading Building Blocks

Intel Threading Building Blocks (TBB) is a library for parallel programming.
It abstracts threads to computational objects which can be allocated to cores
dynamically [46]. It focuses on task graphs that are modeled by the pro-
grammer, where each computational entity is executed with respect to graph
dependencies. A TBB scheduler uses a task stealing concept to balance the
load among the cores of a system. Additionally, TBB provides a collection of
parallel programming constructs, including parallel for, reduce, and scan
primitives, as well as primitives for mutual exclusion and atomic operations.
To allow concurrent access to shared data, TBB provides data structures
for queues, vectors, and maps.

2.4.6 Threads / POSIX Threads

Running multiple threads (in the sense of Section 2.4.1) concurrently for one
task is a concept commonly used to achieve parallelism in shared-memory
systems. Multiple threads commonly share the resources (including the
virtual address space) of its task but execute independently. Due to this
sharing, running multiple threads generally requires shared memory and
cache coherence. Extensive support for multithreading can be found in
many established operating systems including Microsoft Windows and many
Linux distributions. Typically, the computational resources of the cores are
multiplexed by the operating system scheduler, e.g. through time-slicing.
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Application k

Task 1

Thread 1 Thread 2 . . . Thread N
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Figure 2.1: Example of multithreading: Each application contains multiple
parallel task that may contain one or more concurrent threads. Each task
may be allocated to a separate core, while all threads of a task must be
allocated to the same core.

Such multiplexing is of vital importance when the total number of threads
in a system may exceed the number of cores, which is a common scenario.
Figure 2.1 shows an example where some tasks comprise multiple threads.

Threads are typically independent of each other. In order to prevent races
for shared resources between threads (race conditions) or to synchronize
behavior, the operating system must provide corresponding functions. As an
example, Table 2.2 shows the thread control functions provided by Windows
NT-based operating systems.

2.4.7 Fork/Join Parallelism

Fork/Join is a parallel programming concept where, at a given point of exe-
cution, a thread is split into a number N of concurrent sub-threads (forked).
The forked sub-threads may be synchronized with a barrier (joined) to col-
lect their results. Upper and lower bounds on the mean response time of the
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Thread Function Description

CreateRemoteThread Creates a thread within another task.

CreateThread Creates a new thread.

GetCurrentThread Retrieves a handle of the current thread.

GetCurrentThreadId Retrieves the id of the current thread.

GetExitCodeThread Retrieves the exit code of a thread. Used
to determine if a thread has finished.

GetThreadId Get the id of a thread.

GetThreadPriority Get the priority of a thread.

OpenThread Opens a thread, identified by its id.

ResumeThread Resumes a suspended thread.

SetThreadPriority Sets the priority of a thread.

SetThreadStackGuarantee Sets the minimum size of the stack of a
thread.

SuspendThread Suspends a thread.

SwitchToThread Yields execution of the calling thread and
gives up its remaining time slice.

Thread32First Used to enumerate the running threads.

Thread32Next Used to enumerate the running threads.

Table 2.2: Overview of the thread control functions of Windows NT.
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sub-threads can be derived that grow proportionally with N [88]. Fork/Join
parallelism is a common means to parallelize applications on Linux and
Unix-based operating systems and provides an abstraction over threads.

2.4.8 Software Pipelines

In the context of this thesis, a software pipelines is a parallel program that
performs complex operations a stream of input data. Its operations are
divided into a set of tasks that run concurrently, i.e. into its stages. Each
stage is a task that performs computations on a data item, e.g. on a video
frame or audio sample. Each stage can be allocated (and re-allocated) to a
core individually. The output data of one stage forms the input data of its
direct successor. Parallelism is achieved by overlapping the execution of the
stages, which corresponds to overlapping the processing of consecutive data
items. Hence, the throughput of the application is limited by its slowest
stage. Figure 2.2 illustrates a software-pipelined application that processes
video frames.

Software pipelines are regarded as an effective and efficient means for par-
allelizing complex stream-processing applications [70, 97]. Their concept of

S1 S2 S3 . . . SN

Input
data

S1 → S2 S2 → S3 S3 → S4 SN−1 → SN
Output
data

Frame 1Frame N-2Frame N-1Frame N

Figure 2.2: Illustration of a video-processing software pipeline with N stages
and the N data items (frames 1 to N-1) that are processed in parallel. After
a stage Si finishes processing data item j, it sends its output to stage Si+1,
receives data from Si−1, and continues with processing data item j+1. Stage
Si+1 continues the processing of data item j.
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overlapping the processing of different data items assumes that a program
processes a large number of data items. Due to their execution model, they
are inherently dead-lock free and functional determinism can be verified
formally [34].

Software-pipelined programs can be created manually by the programmer,
by using programming languages to explicitly express pipelined parallelism
such as Brook [19], TStreams [63], Rapidmind [83], PeakStream [96], or
StreamIt [115], or by using parallelizing compilers, e.g. [25, 30, 97].

2.4.9 Kahn Process Network (KPN) and Synchronous Data
Flow (SDF)

Kahn Process Networks (KPN) are a model to describe parallel programs,
where the individual tasks communicate via unbounded FIFO channels. Par-
allel programs formulated as KPNs are deterministic (i.e. given identical
input, they produce the same output). Furthermore KPNs are monotonic,
which means that partial output data can be derived from partial input
data [58].

Synchronous Data Flows (SDF) [69] are a model for stream-processing ap-
plications similar to KPNs. SDFs are commonly used for the synthesis of
sequential signal processing applications and for obtaining predictable per-
formance, e.g. for embedded system-on-chips [37]. They form a restriction
of Kahn Process Networks because their nodes produce (and consume) a
fixed number of tokens (i.e. atomic data items that characterize the commu-
nication of two tasks for one firing) per firing.

2.4.10 Synchronization

When multiple threads access objects and resources (such as memory) that
are shared among them, accesses must be synchronized to avoid concurrent
access that may result in undefined behavior. The most prominent concepts
that facilitate such synchronization are described in Table 2.3.
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Mechanism Description

Barrier A barrier for a group of threads implies that all
threads must wait at this point until all other threads
reach this barrier. Examples of functions that im-
plement this behavior are WaitForSingleObject and
WaitForMultipleObjects.

Critical Section A critical section defines a region that may be
accessed exclusively by a single thread. Each thread
that tries to enter a critical section must wait until
another thread that already entered this critical
section leaves it. Examples of functions that imple-
ment this behavior include EnterCriticalSection,
LeaveCriticalSection, TryEnterCriticalSection,
CreateCriticalSection, and
DestroyCriticalSection.

Event An event is an object that can be waited for by any
number of threads. When an event is fired, all threads
that wait for it are resumed. While waiting for an
event, a thread is usually not scheduled for execu-
tion. Examples of functions that implement this be-
havior include CreateEvent, OpenEvent, SetEvent,
and ResetEvent.

Lock
(Semaphore)

A lock / semaphore is similar to a critical section.
Their behavior differs with respect to the number of
concurrent accesses: within a critical section, at most
one thread may execute. For a lock, a maximum num-
ber l ≥ 1 of concurrent lock owners may be specified.

Monitor A monitor is an object that protects its functionality
from being executed concurrently by multiple threads
using critical sections. Programming is simplified by
shifting the responsibility for synchronization to the
synchronized object.

Mutex See critical section.

Table 2.3: Common concepts to synchronize the execution of parallel appli-
cations.
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2.5 Summary

In the domain of many-core systems, a variety of system architectures, mem-
ory models, communication paradigms and parallel programming concepts
exists. However, this thesis focuses on homogeneous many-core systems
with distributed memories, message passing inter-task communication, that
exclusively deploy software-pipelined applications for the following reasons:

System Architecture Heterogeneous many-core systems significantly in-
crease the complexity of resource allocation and may severely constrain
the re-allocation of tasks to cores in many cases. Hence, this thesis
focuses on homogeneous system architectures.

Memory Model As shared memory may potentially become a bottleneck
and because they require cache coherence, future systems that inte-
grate hundreds or even thousands of cores may potentially depart from
globally shared memory in favor of distributed memories.

Inter-task Communication Message passing provides a well-established
concept for on-chip communication in distributed-memory systems.

Parallel Programming Concept This thesis focuses on software-pipe-
lined applications as they allow to parallelize a large class of com-
plex, real-world applications, e.g. many stream-processing applica-
tions. Furthermore, their reduced expressiveness as compared to Kahn
Process Network (KPN) and Synchronous Data Flow (SDF) allows for
modeling the throughput of systems that run complex application sce-
narios.



Chapter 3

Related Work

The performance of embedded many-core systems is one of the most impor-
tant concerns and has attracted a significant body of research in the recent
past. This chapter discusses the state-of-the-art methods, mechanisms and
strategies in this domain. It starts with an overview of important state-of-
the-art methods in increasing the performance of many-core systems before
detailing the state-of-the-art in resource allocation. Since adapting resource
allocations at runtime may require to migrate tasks and as this implies
a performance overhead that may be significant, Section 3.3 discusses the
state-of-the-art mechanisms for efficient task migration.

3.1 High-performance Many-core Systems

Diverse methods exist to increase the performance of embedded many-core
systems. This section highlights the most important state-of-the-art meth-
ods on architecture level, system level, and on application level.

3.1.1 Architecture-level Methods

On architecture level, domain-specific methods can significantly increase the
performance of embedded many-core systems.

It was shown by [68] that the performance of stream-processing embedded
Multi-processor System-on-Chips (MPSoCs) can be increased by an auto-

29
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Figure 3.1: Schematic overview of [68] to increase the throughput of embed-
ded stream-processing processors by automatically synthesizing the memory
architecture.

matic synthesis of the memory architecture. This method is illustrated in
Figure 3.1: based on a specification of the executable and on a definition
of performance, power, and area constraints, a system-level architecture is
synthesized automatically. This automatic synthesis chooses the memory
elements as well as NoC routers and network interfaces in a way that the
performance and area constraints are satisfied, while the power consumption
of the system is minimized.

Similarly, the software-hardware codesign method that is presented by [87]
for FPGAs can significantly improve the performance of embedded machine-
vision and object recognition applications. This method extracts domain-
specific hardware accelerators automatically from an application description.
It targets applications that are based on the HMAX model [105], which is
a brain-inspired hierarchical model to abstract the representation of visual
perception.

Furthermore, the method presented by [35] increases the performance of a
system by improving the throughput of the network links that connect an
embedded many-core system with 3D-stacked DRAM. This work accounts
for application demands by choosing the buffer sizes of Network-on-Chip
routers using a static analysis at design-time. This way, congestion in the
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Figure 3.2: Two control-theory based methods to adjust system properties
at runtime [11, 40].

most-used network links can be alleviated.

The authors of [81] have shown that the performance of many-core systems
can be increased by employing multiple separate, heterogeneous Network-
on-Chips on a single chip. This method exploits application knowledge as it
analyzes the behavior of applications at runtime. Applications are classified
into groups, e.g. into a group of applications that are more sensitive to
network latency, or into a group of applications that are more sensitive to
network bandwidth. Based on this classification, the data of each application
is routed via one of the NoCs. This way, the performance of the system can
be increased and its energy consumption can be reduced.

3.1.2 System-level Methods

A common method to achieve a high performance on system level is to
employ control-theory-based methods. This way, the goal of a high perfor-
mance can be combined with multiple other, possibly conflicting objectives,
such as e.g. a low energy consumption. Figure 3.2 (a) illustrates the control
loop used by [40]. This method proves the effectiveness of using machine
learning for adjusting multiple system configuration parameters at runtime.
It requires applications to specify their goals individually and it allows to
react to unpredictable changes in the workload and to unpredictably chang-
ing applications scenarios. Based on these goals, the impact of changing the
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voltage/frequency level of cores and of changing the policy of data caches
are estimated at runtime and the performance of a system can be increased
by selecting the most effective configurations.

Furthermore, systems can increase their performance through a control-
theory-based method to account for so-called service-level objectives (SLOs),
which correspond to goals such as a low energy consumption or a maximum
core temperature threshold. The work of [11] shows that autonomous mon-
itoring and adaption policies can be employed effectively in a control loop
as illustrated in Figure 3.2 (b).

For embedded many-core systems that combine non-volatile memories and
SRAMS, runtime memory virtualization can increase the performance by
adjusting memory allocation policies [12]. The authors analyze the volatility
of the memory access behavior of applications in order to decide upon the
physical location of data when it is allocated. It chooses from memory
allocation policies that have been customized at compile time using a best-
effort approach.

3.1.3 Application-level Methods

On application level, the performance of embedded many-core systems can
be increased by a compiler that helps programmers in unifying the use of
otherwise isolated parallel programming concepts such as OpenMP [92],
OpenCL [111], etc. [5]. This way, applications can be compiled for general-
purpose cores, for Graphics Processing Units (GPU), and for Field-Program-
mable Gate Arrays (FPGAs) without requiring to implement algorithms for
each target core. Such an approach can increase the performance of a system
and helps to efficiently employ heterogeneous many-core systems.

Furthermore, parallel applications may expose adjustable parameters to an
application-level controller that does not require knowledge about the se-
mantics of such parameters. Instead, a so-called auto-tuner can employ
evolutionary search strategies to find good configurations of all parameters
at runtime and this way, the performance of a multi-core system can be
increased significantly [119].

Adjusting workloads at runtime to increase the throughput of an application
while providing design-time analyzability to allow design-time performance
tuning and verification can be achieved by parameterized polyhedral pro-
cess networks [118]. This model of computation extends the Kahn Process
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Network (KPN) model to generate different executions of each task while
allowing to verify the application for deadlocks at design-time.

3.1.4 Summary of High-performance Many-core Systems

To summarize, diverse methods, mechanisms and strategies exist to in-
crease the performance of embedded multi- and many-core systems on the
architecture-, system-, and on the application level. However, the methods
discussed in this section do not answer the question how parallel applications
may be allocated to the cores of a system. In the following, the state-of-the-
art methods for resource allocation are discussed.

3.2 Resource Allocation

Resource allocation is of paramount importance for achieving a high perfor-
mance of many-core systems by efficiently employing their parallel resources.
The growing computational power of many-core systems exacerbates this
challenge of efficiently allocating resources as it allows more complex appli-
cations and application scenarios, which may lead to unpredictable resource
requirements at runtime. This thesis envisions highly parallel many-core sys-
tems that allocate their resources efficiently through exploiting application
knowledge. Such systems should adapt resource allocations when the appli-
cation scenario or the resource requirements of the individual applications
change unpredictably. This way, such systems can achieve and maintain a
high performance at runtime.

To give a comprehensive overview, this section discusses purely design-time
methods for resource allocation (i.e. once resources are allocated, no changes
are made), and runtime resource allocation methods that may adapt alloca-
tions at runtime. Due to the widely acknowledged importance of resource
allocation, significant work has been done in this domain. Similarly to the
taxonomy presented by [106], we group the state-of-the-art resource alloca-
tion methods into design-time and runtime methods. We then further group
the resource allocation methods into methods for software pipelines and par-
allel applications that follow a similar parallel programming paradigm, such
as Synchronous Data Flow (SDF) and Kahn Process Network (KPN), and
into methods for general parallel applications. As many established runtime
resource allocation methods for general parallel applications assume shared
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Figure 3.3: A taxonomy to group the state-of-the-art methods for allocating
resources.

memory, we group them into methods for systems with shared- and with
distributed memory. This taxonomy is illustrated in Figure 3.3.

3.2.1 Design-time Methods

Software Pipelines, KPN, and SDF

A scenario-based approach for resource allocations for Kahn Process Net-
work (KPN) is proposed by [104]. At design-time, resource allocations are
calculated for each possible set of concurrently running applications. At
runtime, resources are allocated based on the current scenario, while the
transition between scenarios is triggered by observations of the system state.

For application scenarios that consist of a single application, multiple re-
source allocation methods have been proposed recently. Stream-processing
applications modeled as Synchronous Data Flow (SDF) can be allocated
to multi-core processors using design-time adjustments of the granularity
of parallelism through loop unrolling [23]. This approach employs com-
piler techniques that aim at maximizing the use of on-chip scratchpad mem-
ory and combines this with compiler-instrumented data buffering and back-
ground data prefetching. Similarly, SDF-based applications can be allocated
to SPM-based multi-/many-cores based on an evolutionary algorithm-based
technique as proposed by [26]. This method generates a static schedule at
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design-time, which includes a schedule for prefetching data from off-chip
DRAM to on-chip scratchpads using hardware DMA units.

In order to guarantee a minimum throughput, [14] proposes a Constraint
Programming-based approach to address both problems of resource alloca-
tion and scheduling simultaneously. This method calculates optimal sched-
ules and relies on an aggressive pruning strategy to reduce its computational
overhead by reducing the search-space of possible resource allocations.

For hard-real-time tasks, [9] proposes to decompose cyclo-static SDF graphs
into asynchronous sets of periodic tasks with implicit deadlines. Under
some conditions, this allows to achieve the maximum throughput. In order
to achieve this, the authors propose to allocate resources to task subsets and
focus on finding good task set representations.

In order to jointly optimize resource allocation for computation and com-
munication, [22] proposes a heuristic design-time resource allocation phase
following a phase of application synthesis of Kahn Process Networks (KPN).
However, a large runtime results due to the large complexity that arises from
the expressiveness of KPNs.

Task
Graph

Task
Scheduling

Processor
Mapping

Data
Mapping

Packet
Routing

Data
Accesss
Table

Figure 3.4: High-level overview of [24]. The rectangular boxes “Task Graph”
and “Data Access Table” represent the input data, while rounded-corner
boxes illustrate the phases of the approach. Task scheduling is performed
independently, while scheduled tasks are later allocated to cores. In a next
step, data is mapped into memories based on this processor map, and then a
packet routing schedule is generated that aims at improving the performance
and at reducing the energy consumption.
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General Parallel Applications

A compiler-based resource allocation method to jointly optimize for com-
munication and computation is presented by [24]. A high-level overview is
illustrated in Figure 3.4. It explores the search space of resource allocations
given an assumption on the communication volumes on compile time.

Similarly, [51] proposes to take into account the Network-on-Chip topol-
ogy in order to reduce on-chip communication volumes. The authors focus
on many-core systems with heterogeneous cores and an irregular, custom
Network-on-Chip topology. To achieve a high performance, the approach
formulates an exact mixed-integer quadratic programming, which has been
proven to be NP-hard by [101], and then employ a genetic algorithm, a
heuristic, and a successive relaxation of constraints to calculate resource
allocations.

With the assumption that the number of tasks matches the number of
cores, [102] uses a swarm-optimization based algorithm to minimize the on-
chip communication volume by reducing hop counts between communicating
tasks at design time.

A statistical approach based on extreme value theory is presented in [98].
The authors propose to generate a large random set of resource allocations
and choose the best instance from this set. However, its calculations have a
runtime of 25 minutes to 2 hours even for medium problem sizes.

Optimizing the allocation of resources for the memory requirements of tasks
has been shown to reduce the energy consumption of a many-core sys-
tem [57]. This method refines resource allocations iteratively using evolu-
tionary algorithms at design time for satisfying a multi-objective optimiza-
tion problem.

Limitations of design-time resource allocation methods

Design-time resource allocation methods aim at scenarios where the set of
running applications, the resource requirements of the individual tasks, as
well as their communication behavior is highly predictable at design time.
However, when these assumptions are violated and unpredictable runtime
scenarios do occur, design-time resource allocation methods may not be
able to achieve a high system throughput. Consequently, they can hardly
be applied to dynamic scenarios.
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Furthermore, some design-time methods incur a high computational over-
head (e.g. [98, 102]) and hence, they may not be able to deliver acceptable
runtime for large-scale problems [106]. These drawbacks can be overcome
by runtime resource allocation methods.

3.2.2 Runtime Methods

In dynamic scenarios, key properties of the runtime scenario are deemed
unpredictable at design time. Such dynamic scenarios are increasingly com-
mon as state-of-the-art embedded many-core systems offer computational
power that allows to run multiple highly complex parallel applications si-
multaneously. Runtime resource allocation methods can allocate the tasks
to the cores of a system based on observations on the resource availability, on
the set of concurrently running applications, and on the individual resource
requirements of tasks. Hence, they may be able to achieve a higher per-
formance in dynamic scenarios as compared to design-time methods. How-
ever, the computational overhead for calculating resource allocations as well
as the communication overhead required for observing the system state of
runtime methods is crucial as it can negatively affect the throughput of a
system [106].

Consequently, it is key to allocate resources in an efficient and effective way.
In the following, the state-of-the-art runtime resource allocation methods
for dynamic scenarios are discussed.

Software Pipelines, KPN, and SDF

The authors of [70] propose a two-step approach, where software pipelines
are compiled into retargetable executable code as illustrated in Figure 3.5.
The compile-time step involves to generate a compile-time application pro-
file. Based on this profile, the second step is a dynamic runtime scheduler
which allocates the application to the cores. Its objective is to maximize the
performance of the application and it considers the properties of heteroge-
neous cores and scratchpad memories. However, the authors assume that the
resource requirements and the set of running applications does not change
at runtime and thus, their approach does not adapt resource allocations at
runtime. Hence, dynamic scenarios can lead to situations of significantly
impaired throughput as compared to resource allocation methods that do
adapt resource allocations at runtime.
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Figure 3.5: Flow of the resource allocation method proposed in [70]. At
compile time, an application profile is generated and retargetable code is
created. At runtime, the application is optimized (e.g. loops are unrolled)
and allocated to the resources.

A cooperative software-hardware framework to identify and accelerate tasks
that limit the performance of a parallel application is presented by [56].
This approach focuses on software pipelines for shared-memory multi-core
systems and shows that using hardware support, the stage that limits the
throughput of a software-pipelined application can be improved by preemp-
tively suspending others. The required hardware support for this approach
includes a hardware buffer to store information about a runtime analysis of
the running stages that includes their performance and measured waiting
times, and a mechanism to transfer the cache state of stages that are accel-
erated by adapting their allocation to a faster core. As it requires shared
memory, this method is not applicable to many-core systems.

The authors of [28] show that many state-of-the-art runtime resource alloca-
tion methods fail at achieving efficient allocations for scenarios that include
a large number of cores for scalability reasons. Hence, the authors propose a
functional performance model to estimates the performance of an application
for a given problem size (input data). The focus of this work is not directly
on software pipelines, but it focuses on data-intensive iterative parallel ap-
plications that follow a computational model which shares properties with
software pipelines. However, this work focuses on providing a functional
performance model, which is a sub-problem of resource allocation, and does
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not propose a concrete allocation method.

For smaller multi-core systems, [8] proposes a runtime resource allocation
method for stream-processing applications that utilizes a compile-time step
and a runtime dynamic resource allocator. At compile time, profiling in-
formation about the application is obtained and nodes are replicated and
ordered. Their approach allows for dynamically changing the degree of par-
allelism of the application at runtime in order to achieve a broad applicability
for different systems. However, this approach requires shared memory and
is hence not applicable to many-core systems.

General Parallel Applications, Distributed Memories

Runtime resource allocation for homogeneous systems with multiple voltage
levels is presented by [27]. The authors propose a two-phase method for
iteratively allocating resources: in the first phase, a region of the chip that is
suitable to run a newly created application is determined. In a second step, a
heuristic allocation method allocates tasks to cores in this region to minimize
the energy consumption that arises from inter-task communication. A major
focus is put on scalability for many-core systems with a large number of
cores. In contrast to the resource allocation methods proposed in this thesis,
this approach assumes that there cannot be more tasks than cores in a
system, which is a fundamentally different assumption which implies that
resource allocation has only marginal impact on the performance of a system.
Furthermore, this approach does assumes that the resource requirements of
the individual tasks remain static at runtime and thus, this approach is not
suitable for dynamic scenarios where this assumption is violated.

The authors of [7] present a heuristic runtime load balancing method for
asynchronous, iterative algorithms (AIAC) in grid computing systems. It
aims at balancing the computational load among cores by exchanging work-
load when imbalances are detected. To achieve this, this method repeatedly
observes the workloads of all cores and performs distributed interactions
among them. Workload is exchanged by transferring an application’s indi-
vidual work items, e.g. video frames, between neighboring cores. Due to its
focus, it does not take inter-task communication into account. It therefore
may achieve inferior performance when tasks communicate heavily, as it is
the case for many complex, real-world applications.

In [64], DistRM, a distributed heuristic for resource allocation is presented
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that uses interacting software agents. Based on runtime observations and on
offline profiles, agents possess local information and interact to allocate or
re-allocate resources when applications are started, stopped, or when their
computational requirements vary significantly. However, their approach for
achieving a scalable solution for up to 4096 cores limits their decisions to
local regions, which can potentially result in a low throughput of the system.

As AIAC [7] and DistRM [64] are most similar to the methods for resource
allocation presented in this thesis, Section 8 compares them to the proposed
methods.

General Parallel Applications, Shared Memories

A large and diverse set of methods exist for allocating resources in shared-
memory systems. As an example, [21, 62, 66, 72, 75, 89, 90, 99, 110] propose
adaptive resource allocation methods that aim at balancing the computa-
tional load at runtime. The authors of [108] propose to derive co-schedules
of the individual tasks based on offline profiles, with an extension to sup-
port different priority levels [109]. However, the focus of these methods is
on architectures with few cores and they require a shared address space and
assume a small number of cores. Hence, they cannot be compared directly
to the methods for resource allocation proposed in this thesis.

3.2.3 Summary of Resource Allocation Methods

To summarize, the state-of-the-art resource allocation methods that focus on
design-time methods assume that all properties of a system and its running
applications that are relevant to resource allocation are predictable at de-
sign time. As a consequence, it is likely that these methods cannot achieve
good results in dynamic scenarios where the set of concurrently running
applications, the resource requirements of the individual tasks, or the com-
munication volume between them is unpredictable at design time. However,
such scenarios are increasingly common in many instances.

To overcome these deficiencies, runtime resource allocation aims at allocat-
ing tasks based on runtime observations on the system state.

The existing methods that target dynamic scenarios, e.g. DistRM [64] and
AIAC [7], do not take inter-task communication into account (AIAC [7])
or limit their decisions to local regions (DistRM [64]). Furthermore, both
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methods does not consider scenarios where memory-intensive applications
may cause memory controllers to operate in saturation, which may have sig-
nificant negative effects on the performance of a system. As this has recently
shown to be a major issue in many-core systems [1], such scenarios must be
taken into account. Hence, this thesis shows that significant improvements
can be achieved upon these methods by jointly taking computation, com-
munication, and the memory access behavior of applications into account
and presents novel resource allocation methods to achieve this.

The other state-of-the-art methods which may be applicable to many-core
systems target scenarios where applications may be started or stopped un-
predictably but assume that the resource requirements of individual tasks
remain static at runtime ([27, 70]). However, this is not true in many
cases. Most methods for resource allocation, however, require shared mem-
ory ([8, 21, 56, 62, 66, 72, 75, 89, 90, 99, 110]) and are thus not applicable to
many-core systems. Hence, the state-of-the-art methods for resource alloca-
tion do not sufficiently address dynamic scenarios in many-core systems.

3.3 Task Migration Mechanisms

Re-allocating resources at runtime may require task migration, i.e. the trans-
fer of the execution of a task from a source core to a destination core at a
given point of time. This usually happens after the task has already per-
formed some computation on the source core. In the context of this thesis,
task migration refers to the concrete mechanism to transfers the execution
between two cores and does not include the decision process of determining
the destination core or the point of time when a migration is performed.

Task migration involves transferring the task context, i.e. the data that char-
acterizes the state of a task, from the source to the destination core. When
source and destination cores share memory, the task context that must be
transferred is limited to the processor registers. However, when the cores
do not share memory, the task context must also include the task’s heap,
stack, and program code, and must be transferred from the memory that is
associated with the source core to the memory that is associated with the
destination core. As this thesis considers many-core systems to depart from
the paradigm of sharing memory among cores globally, this section focuses
on task migration for cores that do not share memory.

Task migration induces potentially significant overhead and, when involved
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frequently, may severely degrade the throughput of a system [4, 100, 107].
In order to minimize the overhead of task migrations, the policy how to
transfer the task context is of crucial importance. Furthermore, if invoked
frequently, task migration may contribute significantly to on-chip traffic and
can thus impair the throughput of other tasks that communicate heavily.
Hence, a task migration mechanism should allow a system to balance the
required time versus the increased bandwidth requirements adaptively based
on runtime observations.

The following discusses the state-of-the-art task migration mechanisms and
discusses the particular benefits and drawbacks. Task migration may be
implemented on application level and on system level.

3.3.1 Application-level Mechanisms

Task migration can be implemented through application-level checkpoint-
ing [80, 90] and application-level save-restore mechanisms [20], which is not
transparent to the application. Checkpointing-based task migration allows
to migrate tasks when their context can be accurately captured by the soft-
ware: At predefined points of times (checkpoints), the application polls a
controlling instance whether it should migrate to a destination core [2, 13].
In this case, the application is responsible to identify, collect, and transfer
the relevant context required to continue the execution on the destination
core. However, these approaches require an individual implementation for
each application.

For applications that follow a message-based producer/consumer program-
ming model, [90] presents a task migration mechanism where tasks are re-
quested to empty their work queue. After this work queue is emptied, they
can be restarted at a destination without migrating context information.
Another approach is to enforce an application-level context save-restore
mechanisms that shifts the responsibility of migrating the memory contents
to the application, as proposed by [20]. This approach, however, requires a
careful individual implementation for each application.

Both the message- and checkpoint-based mechanisms suffer from an unpre-
dictable and potentially very long time between initiating and finishing a
task migration. This could limit the frequency of task migrations, which
is undesirable for the efficient re-allocation of resources at runtime. Fur-
thermore, application-level mechanisms require an individual implementa-
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tion which is error-prone and time consuming. Hence, system-level task
migration mechanisms have been proposed which shift the responsibility of
capturing and transferring the context of an application to the operating
system.

3.3.2 System-level Mechanisms

System-level task migration mechanisms do not require application-level
support.

In [4], a task migration mechanism for distributed operating systems is pre-
sented. It transfers the entire task context to the memory associated with
the destination core. For multi-threaded tasks, all threads of a tasks are
transferred at once. A system of marshalling and demarshalling of data is
used and requires an establishment phase where pointers to memory and to
kernel data structures are translated accordingly.

The mechanisms that are employed are as follows: The eager-copy task
migration mechanism first pauses the task on the source core. Then, it sends
the entire program context to the destination core and resumes the task
there once this has completed. A bandwidth-reduction lazy-copy mechanism
initially only transfers the minimum task context (program code, stack and
registers) and sends missing pages when the resumed task on the destination
core tries to read them. A latency-optimized pre-copy mechanism transfers
the entire program context while the task runs on the source and re-sends
pages modified after their transfer while the task is paused.

The authors of [10] propose task migration for distributed operating systems
using so-called deputy and remote tasks. When a task is migrated, a deputy
task is created at the destination core and the original task becomes a remote
task. All system calls and memory accesses of the deputy task are then
transferred (via network sockets) to the remote task. This way, the task
context need not be transferred. However, as each access to the task context
needs to be transferred, the overhead of this approach can be very large.

In [100], a task migration mechanism is proposed that allows task migration
with significantly reduced overhead. It introduces a post-copy mechanism
that transfers only part of the task context while the task’s execution is
paused, and sends other data once the task has been resumed at the desti-
nation core. The post-copy mechanism uses a page fault mechanism where,
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whenever a page is accessed that has not yet been transferred, the operating
system initiates the transfer of this page.

Task migration in many-core systems, however, has fundamentally different
requirements as in distributed systems. In many-core systems, task migra-
tion may be invoked frequently e.g. for achieving load balancing. Hence, the
performance overhead is of crucial importance. Aspects of data consistency
and security have only marginal impact as the data is not transferred over
unreliable and untrustworthy networks. To achieve this, [73] proposes archi-
tectural support for task migration and requires at least one core to be idle
at any time. This approach focuses on reducing the overhead of task migra-
tions in systems with shared memory. Thus, this mechanism is not suitable
for systems with distributed memory, as task migration in shared-memory
systems does not require to migrate the task context between cores.

3.3.3 Summary of Task Migration Mechanisms

To summarize, the state-of-the-art task migration mechanisms do not suffi-
ciently address the needs of many-core systems that may potentially adapt
the resource allocations frequently at runtime. State-of-the-art application-
level methods require an individual implementation of task migration for
each application. Specifically, they require applications to identify, collect,
and transfer the relevant task context. This can hinder the parallelization
of applications significantly. Hence, such approaches conflict with the de-
sire for a high degree of parallelism in many-core systems. State-of-the-art
system-level task migration mechanisms, however, do not sufficiently tar-
get scenarios where applications may be migrated frequently, as the latency
induced by task migration may be high in many cases.

To account for these different requirements, this thesis proposes a novel,
context-aware runtime adaptive task migration mechanism, CARAT. The
proposed mechanism adapts the page migration concepts from [100, 107] by
incorporating a thorough memory access behavior analysis for the state-of-
the-art applications. This way, a many-core system is able to adapt resource
allocations at runtime.
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3.4 Summary

Efficient resource allocation is key for a high performance in many-core
systems. In dynamic scenarios, resource allocation must be able to calculate
and adapt allocations at runtime with a minimum performance overhead.

However, the state-of-the-art resource allocation methods either require shared
memory, do not sufficiently address dynamic scenarios, or do not take all im-
portant factors into account. Furthermore, the state-of-the-art mechanisms
for task migration may induce a significant overhead when migrating tasks
frequently.

This leaves a need for novel resource allocation methods that build on top of
a task migration mechanism which is suitable for adapting resource alloca-
tions at runtime. The rest of this thesis proposes methods and mechanisms
to overcome these deficiencies of the state-of-the-art.



46 CHAPTER 3. RELATED WORK



Chapter 4

Models and Problem
Definition

4.1 Application Model

The resource allocation methods that are proposed in this thesis are based
on an application model. In the following, this model for software-pipelined
applications is detailed.

Each application k forms a pipeline Pk with Nk stages. Every stage Sj
is characterized by cj , ej and oj that denote the time consumed for the
computation required to process a data item, for receiving the input data
from its direct predecessor, and for transferring the output data to its direct
successor. Figure 4.1 illustrates this model.

In order to decide about the allocation of resources to applications, it is
important to model their throughput for a given allocation. To achieve this,
we require that each core belongs to at most one application (i.e. cores may
not be shared among applications). Their maximum throughput is limited
by their slowest stage. The maximal response time Rk for pipeline Pk can
be defined consequently:

Rk = max
1≤j≤Nk

{ej + cj + oj}. (4.1)

Therefore, the maximum throughput of pipeline Pk is defined as 1s
Rk

.

47
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c1
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Iter. 1:

Iter. 2:

e2

S2
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oN

Iter. N:

c1 c2 cN

c1 c2 cN

o1 e2 o2e1 eN oN

o1 e2 o2e1 eN oN

Figure 4.1: Application model for software pipelines. Each stage Sj is char-
acterized by the time consumed by its computation cj , by receiving its input
data ej , and by sending the output data to its direct successor oj . The execu-
tion of the different stages of application k overlap, and different applications
execute independently.

In order to change the degree of parallelism of an application at runtime, we
define the basic operation fusion (and the inverse operation fission), in which
multiple consecutive pipeline stages are combined, similar to fusing filters
in StreamIt [115]. A fusion of stages replaces the fused stages with a new
stage which combines the computational requirements of the original stages
but does not require communication between them, as shown in Figure 4.2.

This way, fusing stages may reduce the maximal response time Rk of a
pipeline even in cases when the total number of stages of all applications
does not exceed the number of cores. Additionally, fusing stages reduces the
number of stages from Nk to N ′k (N ′k ≤ Nk), and thus it reduces the degree
of parallelism of the application, which then runs on a smaller number of
cores.

c1
o1e1

c4
e4 o4

c5
e5 o5

c1 c4 c5

e2 o2 e3 o3

c2+c3

c2 c3

o1e1 e2 e4 o4 e5 o5o3

Figure 4.2: Fusion of pipeline stages. Stages can be fused at runtime. When
stages are fused, they are executed on the same core and thus, no inter-core
communication between fused stages is necessary.
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4.1.1 Extension for Multiple Memory Islands

In order to extend this application model for systems with multiple mem-
ory islands, let us consider the following: After fusing the Nk stages of an
application k, N ′k ≤ Nk stages remain. Per processed data item, each stage
Ski has a computational requirement of ck,i (unit: time) and a bandwidth re-
quirement of bk,i (unit: MB/s). This bandwidth requirement expresses the
accesses of a stage to off-chip memory.

When stage Ski−1 is allocated to the same memory island as Ski , it takes ein
k,i

time for stage Ski to receive the data from stage Ski−1. In contrary, when
stage Ski−1 is allocated to a different memory island than Ski , it takes eout

k,i

time for stage Ski to receive the input data from stage Ski−1. Similarly, oin
k,i

represents the time to send the output data to stage Ski+1 when both stages
are allocated to the same memory island, and oout

k,i corresponds to the time
required for sending the output data when Ski and Ski+1 are allocated to
different memory islands. Figure 4.3 illustrates the model.

Such a model is based on the assumption that oin
k,i−1 and ein

k,i correspond to
exchanging pointers, given that memory can be accessed in a shared manner
within a memory island. Likewise, when Ski−1 and Ski communicate across
memory islands, oout

k,i−1 and eout
k,i correspond to transferring the data between

memory controllers, which requires considerably more time.

ck,1
bk,1

ck,2
bk,2

· · · · · ·
ck,N ′

k

bk,N ′
k

eout
k,1

oin
k,1 ein

k,2

oout
k,1 eout

k,2

oin
k,2

oout
k,2

ein
k,N ′

k

eout
k,N ′

k

oout
k,N ′

k

Figure 4.3: The model of software pipelines. When inter-core communica-
tion contains data that is stored in off-chip memory (which can be assumed
to be true in many cases), the required time for the data transfer differs be-
tween communicating within one memory island and when communicating
across memory islands. Inside a memory island, cores may share memory
and can thus communicate data by exchanging pointers. When cores that
belong to different memory islands communicate data, they have to transfer
the data between memories.
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4.2 Hardware Model

The hardware model used in this thesis is defined as follows: in a system,
there are V memory controllers M = {M1,M2, . . . ,MV }, and each con-
troller serves the Q cores of the corresponding memory island Ii ∈ I =
{I1, I2, . . . , IV }, such that there are Q · V cores in total. Every core Ci,j
is identified by a tuple (i, j), where i = 1, 2, . . . , V represents the memory
islands to which it belongs, and j = 1, 2, . . . , Q the index of the core inside
its memory island. Figure 4.4 shows an example of the architecture.

We consider that each memory controller Mi has a bandwidth constraint of
Bi and a remaining bandwidth constraint of B′i, such that when no stages are
allocated then B′i = Bi holds. When allocating stage Skh from pipeline Pk to

M1 M2

M3 M4

C1,1 C1,2 C1,3

C1,4 C1,5 C1,6

C2,1 C2,2 C2,3

C2,4 C2,5 C2,6

C3,1 C3,2 C3,3

C3,4 C3,5 C3,6

C4,1 C4,2 C4,3

C4,4 C4,5 C4,6

Figure 4.4: Example of a target architecture showing four memory islands.
Each island Ii contains 6 cores Ci,j and one memory controller Mi. All cores
are connected via a network-on-chip.
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memory island Ii, the value of B′i is updated by subtracting the bandwidth
requirement bk,h.

Similarly to B′i, Q′i denotes the number of free cores (i.e. cores where no
pipeline stage has been allocated to) of memory island Ii. When n stages of
a pipeline are allocated to island Ii, then n is subtracted from Q′i. Obviously,
Q′i ≥ 0 holds, because only up to Q fused stages can be allocated to an
island.

4.3 Problem Definition

Let us define the problem of allocating resources to software pipelines. We
divide the problem into:

1. How to assign the stages of an application to a given number of cores
(Section 4.3.2), thus providing the fusions of the pipeline stages (Sub-
Problem).

2. How to distribute the cores of a system among the applications (Sec-
tion 4.3.1) so that the overall system throughput is maximized (Global
Problem).

4.3.1 Optimizing System Throughput

Given a set of K weighted applications P = {P1, P2, . . . , PK} where the
weights W = {w1, w2, . . . , wK} express priority levels, each application Pk
uses up to Mk cores and has a maximal response time Rk. The objective is
to maximize the overall weighted system throughput by finding an
optimal distribution of (up to) M available cores to the individual applica-
tions.

Maximize
{

K∑
k=1

wk
Rk

}
| such that

K∑
k=1

Mk ≤M (4.2)

In a system with Q memory islands, Equation 4.2 is formulated as

Maximize
{

K∑
k=1

wk
Rk

}
| such that

K∑
k=1

Nk ≤ Q · V (4.3)
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The stages allocated to the cores of a memory island Ii may suffer from de-
graded performance when the corresponding memory controller operates in
saturation, which means that the remaining bandwidth capacity B′i becomes
negative, i.e. B′i < 0. Consequently, in addition to finding a solution for the
goal and constraint of Equation (4.3), the goal is to avoid such a satura-
tion by balancing the load among memory controllers. Finding a balanced
memory bandwidth assignment is a NP-complete problem in a strong sense,
which can be easily reduced from the 3-PARTITION problem [36].

Alternative definition: The definition of the Global Problem (Equa-
tions 4.2 and 4.3) aims at maximizing the overall weighted throughput.
However, this implies that applications with low weights may suffer from
very low throughputs in favor of the throughput of applications with high
weights. This may be unacceptable in scenarios where a guaranteed mini-
mum throughput for each application is required.

In order to achieve this, the Global Problem can be formulated alternatively:

Maximize
{

min
1≤k≤K

{
wk
Rk

}}
| such that

K∑
k=1

Mk ≤M (4.4)

This ensures a minimum target performance for each application.

To solve the Global Problem, we present a centralized, optimal method
in Section 5.2 and a highly scalable, distributed method in Section 5.3.
However, the sub-problem of fusing pipeline stages needs to be solved first:

4.3.2 Fusion of Pipeline Stages

The throughput of an application is affected by how the stages are fused.
Thus, we define a sub-problem for the fusions of each application k ∈ K to
minimize the maximal response time Rk.

For this, for each application k, we define a set of Fk fusions:

{F1(1, j1), F2(j1 + 1, j2), . . . , FFk
(jFk−1 + 1, Nk)} | such that Fk ≤Mk

so that each application k uses not more than Mk cores. Furthermore,
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according to Section 4.1, we define

Fi(l, j) = el + oj +
j∑
h=l

ch

1 ≤ l ≤ Nk,

l ≤ j ≤ Nk

and thus, we define the sub-problem to

Minimize

{
max

1≤f≤Fk

{Ff}
}
| ∀k ∈ K (4.5)

We present an algorithm to solve this problem in Section 5.1.

4.4 Summary of Models and Problem Definition

To summarize, allocating resources requires to allocate the cores of a system
to the applications (Equations 4.2, 4.3, and 4.4), and to fuse the stages of
each application so that Fk ≤ Mk (Equation 4.5). Chapters 5 and 6 detail
how this can be achieved.

Some terms and definitions were introduced in this chapter and will be used
extensively in the rest of this thesis. For a quick reference, these terms are:

1. The time required for the computations of processing a data item is
denoted by ci and is referred to as the computational requirements of a
stage i, assuming the responsible memory controller is not saturated.

2. The bandwidth requirements bi of a stage i denote the amount of off-
chip memory that it accesses, in MB/s, assuming that its throughput
is not limited by the bandwidth constraints of its memory controller.
The memory requirements of a stage denote this per data item, in MB.

3. The throughput of a software pipeline denotes the number of data items
the pipeline finishes per second. The system throughput is the average
throughput of all applications.

4. Fusing consecutive stages replaces them with a new stage that com-
bines their computational requirements, similar to fusing filters in
StreamIt [115]. This reduces the degree of parallelism of the pipeline
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and the number of cores it uses. No on-chip communication between
fused stages is necessary. Stages can be fused (and fused stages can
be split) at runtime.

5. A memory island consists of one memory controller and a number of
cores. All memory accesses of the cores of one memory island are
served by the same memory controller. The tasks that are allocated
to one memory island can share memory and may pass pointers to
data, while tasks allocated to different memory islands transfer data
via message passing (MPI, e.g. [94]).

6. The load of a memory controller denotes the accesses it serves per
second, in MB/s.

7. The bandwidth constraint of a memory controller expresses the maxi-
mum load, in MB/s.



Chapter 5

System-controlled Resource
Allocation

System-controlled methods employ one (centralized methods) or more (dis-
tributed methods) controlling instances. In the following, the system-con-
trolled methods for resource allocation CeRA (5.2), DiRA (5.3) and MOMA
(5.4) are proposed that have been published in [54] and [55]. These meth-
ods build on our proposed algorithm for optimally fusing the stages of a
software-pipelined application for a given number of cores (5.1).

5.1 Fusing Pipeline Stages

To find an optimal solution to the sub-problem of fusing pipeline stages, all
possible combinations of fusions have to be taken into consideration. An ex-
haustive search would lead to an exponential time complexity, which may be
unacceptable especially for adapting the allocation of resources at runtime.
Hence, an algorithm based on dynamic programming is proposed in the fol-
lowing. The proposed algorithm derives optimal solutions for minimizing
the maximal response time of each pipeline Pk using m = Mk cores.

Let Pk,j be a sub-pipeline of Pk that is formed by the stages S1 to Sj of
pipeline Pk. The dynamic programming is then defined as a recursive func-
tion Rk(j,m) that stores the optimal configurations for minimizing the max-
imal response time of Pk,j with at most m = Mk cores. That is, let Rk(j,m)
be the minimum maximal response time for executing Pk,j onm cores. More-

55
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over, a table Fk(`, j) is constructed for all `, j such that 1 < ` ≤ j ≤ Nk, in
which

Fk (`, j) = e` + oj +
j∑
h=`

ch. (5.1)

Then, the initial boundary conditions for Rk(j, 0) and Rk(j, 1) are:

Rk (j, 0) =∞ ∀j = 1 . . . Nk

Rk (j, 1) = Fk (1, j) ∀j = 1 . . . Nk
(5.2)

Furthermore, we define function minmaxRFk(j,m) as:

minmaxRFk (j,m) = min
m−1≤`<j

{max {Rk (`,m− 1) , Fk (`+ 1, j)}}. (5.3)

The recursive function for Rk(j,m) with m ≥ 2 is defined as:

Rk (j,m) =
{
Rk (j,m− 1) j < m

min {Rk (j,m− 1) ,minmaxRFk (j,m)} j ≥ m
(5.4)

The proposed algorithm starts by computing the resulting maximal response
times utilizing only one core for the first j = 1 . . . Nk stages. Then, the
maximal response times for the first j = 1 . . . Nk stages on up to two cores
is computed. Since the maximal response times of using only one core for
the first j stages has already been computed and is stored in Fk, it can
be decided whether to use one or two cores (in one of the possible fusion
combinations) for the same j stages without recomputing previous results
recursively.

The process is repeated for three and up toM cores. As the table Fk contains
the information whether it is optimal to use one or two cores for the first
j stages, only the previous result must be compared with any new possible
fusion for the same j stages on up to three cores. Thus, iteratively, an
optimal solution is computed because all combinations of stages and cores
are considered, but the complexity is reduced since optimal solutions are
stored in tables and do not need to be recomputed.

The space/time complexity is O(N2
k ) for building the table Fk. The time

complexity for building an entry Rk(j,m) is O(j) = O(Nk). The size of
the table Rk(j,m) is O(MkNk). Therefore, the total time complexity is
O(MkN

2
k ). The maximal response time by using at most Mk cores for
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Algorithm 1: Minimizing the Maximal Response Time

Input: The computational requirements e, c and o for the Nk stages
of pipeline Pk, and the maximum Mk cores available;

Result: The minimal maximal computational requirements using at
most Mk cores;

Initialize table Fk(`, j) according to Equation (5.1),
∀ (`, j) such that 1 ≤ ` ≤ j ≤ Nk;
for m = 0 to Mk do

for j = 1 to Nk do
if m ≤ 1 then

Build Rk(j,m) according to Equation (5.2);
else

Build Rk(j,m) according to Equation (5.4);
end

end
end

return Rk(Nk,Mk);

pipeline Pk is stored in Rk(Nk,Mk). Algorithm 1 shows the pseudo-code
for this dynamic programming.

The actual fusions that lead to the optimal result can be derived by back-
tracking table Fk or by using an additional tracking table TRk(Nk,Mk) of
size O(MkNk). TRk(j,m) can be defined so that each cell holds the j∗ value
of the sub-solution that makes the programming optimal.

For the initial condition m = 1, TRk(j,m) is set to zero. When j < m, or
when j ≥ m and Rk(j,m−1) turned out to be minimal, then TRk(j,m) = j.
In the case where an additional core provides improvement, TRk(j,m) will
be set to the index ` from Equation 5.3 that made this improvement possible
and therefore TRk(j,m) 6= j.

The fusions that give an optimal maximal response time can be derived
from table TRk(Nk,Mk) as follows: starting from cell (j,m) = (Nk,Mk),
the table is traversed in the direction (TRk(j,m),m− 1).

If TRk(j,m) = j, this means that it is not possible to allocate more cores to
the pipeline since no finer granularity can be achieved or that no additional
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core may improve the throughput and the sub-solution that uses one less
core was already optimal.

If TRk(j,m) 6= j, an additional core provides improvement, so if TRk(j,m)+
1 = j then stage Sj is allocated to one core and if TRk(j,m) + 1 < j all
stages between TRk(j,m) + 1 and j (both inclusive) should be fused.

Example Given the pipeline k which is illustrated in Figure 5.1 with Nk =
4 stages and having available up to Mk = 4 cores, table Fk(l, j) is built
according to Equation (5.1), as stated in Algorithm 1:

Fk(1, 1) = 60 Fk(2, 2) = 110 Fk(3, 3) = 110
Fk(1, 2) = 150 Fk(2, 3) = 60 Fk(3, 4) = 140
Fk(1, 3) = 100 Fk(2, 4) = 90
Fk(1, 4) = 130 Fk(4, 4) = 70

500 10 2010 80 1080 20 5020 0

500 10 3010 20 5020 0

Figure 5.1: Example of fusing pipeline stages: The computational require-
ments of the fused stages are summed. No more inter-core communication
between stages is necessary as both stages are allocated to the same core.

As a next step, the initial conditions for Rk(j,m) are computed according to
Equation (5.2). This means to compute the response time for a sub-pipeline
with j stages using up to m cores. Since these are initial conditions, the
tracking table TRk(j,m) for m = 0, 1 has no previous value for j∗, and is
therefore filled with zeros.

From now on, since m ≥ 2, the table Rk(j,m) is built according to Equation
(5.4). In this particular example, when m = 2 the solution for every sub-
pipeline chooses to use the result from Rk(1, 1) and to fuse the rest of the
stages, thus, the tracking table TRk(j, 2) will be filled with j∗ = 1 for any
j.

The results are shown in Table 5.1. The optimal solution can be derived
from table TRk(j,m) by starting from cell (j,m) = (4, 4) and traversing the
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Rk(4, 4): Response time

j

m
1

1

2

2

3

3

4

4

60 150 100 130

60 110 60 90

60 110 60 70

60 110 60 7070

TRk(4, 4): Tracking

j

m
1

1

2

2

3

3

4

4

0 0 0 0

1 1 1 1

1 2 3 3

1 2 3 44

3

1

0

Table 5.1: Example Rk and TRk tables as used in Algorithm 1. Rk stores the
minimal achievable response time for all possible fusions using m = 1 . . . Nk

cores considering the first j = 1 . . . Nk stages. Table TRk allows to track
the optimal fusions that lead to the corresponding result in Rk.

table in the direction (j∗,m − 1): the optimal solution will fuse stages S2
and S3, and leave stages S1 and S4 as they are.

5.2 CeRA: Centralized Resource Allocation

With the algorithm for fusing pipeline stages of Section 5.1, the overall
weighted system throughput can be maximized in a centralized manner.
Suppose that Rk(Nk,m) for m = 1, 2, . . . ,min{Nk,M} has been built. For
notational brevity, if Nk < M , we define Rk(Nk,m) = Rk(Nk, Nk) for any
m ≥ Nk. Let G(k,m) be the minimal weighted system response time (and
consequently, 1

G(k,m) denotes the maximal weighted system throughput) for
the first k pipelines based on any arbitrary order of pipelines on at most m
cores. Moreover, when there is no feasible solution, i.e. k > m, G(k,m) is
defined as −∞. Then, the initial (boundary) condition for G(1,m) is:

G(1,m) = w1
R1 (N1,m) ∀m = 1, 2, . . . ,M (5.5)

The recursive function for G(k,m) with k ≥ 2 is expressed in Equation (5.6).
The time complexity, provided that Rk(Nk,m) is known, is O(KM2). Note
that the last column of Rk, i.e. Rk(Nk,m) ∀m = 1, 2, . . . ,M , contains the
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Algorithm 2: Maximizing Overall Weighted System Throughput

Input: The maximum number of available M cores. For every
pipeline Pk, the weights wk and tables Rk(Nk,m) for
m = 1, 2, . . . ,M ;

Result: Maximum overall weighted system throughput for K
pipelines, using at most M cores;

for k = 1 to K do
for m = 1 to M do

if k = 1 then
Build G(k,m) according to Equation (5.5);

else
Build G(k,m) according to Equation (5.6);

end
end

end

return 1/G(K,M);

application’s weighted throughput when m cores are available. Algorithm 2
shows a pseudo-code for this dynamic programming.

G (k,m) =

−∞ k>m

max
k−1≤m′<m

{
G (k − 1,m′) + wk

Rk(Nk,m−m′)

}
k≤m

(5.6)

An additional tracking table TG(K,M) of size O(KM) allows for deriv-
ing how many cores should be allocated to each pipeline. When building
TG(k,m), each cell holds the m∗ value of the sub-solution that makes the
solution optimal. For the initial condition k = 1, TG (k,m) is set to zero.
When k > m, then TG (k,m) = −1. In the case were k ≤ m, TG (k,m)
will be set to the value of m′ from Equation 5.6 that made this sub-solution
optimal.

Once table TG(K,M) has been built, the number of cores for each pipeline
can be derived from it: Starting from the final cell (k,m) = (K,M), the
table is traversed in the direction (k − 1, TG (k,m)). If TG (k,m) = −1,
then there is no feasible solution for this set of values. In any other case,
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cores between TG (k,m) + 1 and m (both inclusive) should be allocated to
application k.

R1(3, 6)

m

1

2

3

4

5

6

R1(3,m)

130

90

70

70

70

70

R2(5, 6)

m

1

2

3

4

5

6

R2(5,m)

120

110

100

90

80

80

R3(4, 6)

m

1

2

3

4

5

6

R3(4,m)

300

300

80

40

40

40

Table 5.2: Example of Rk tables of three different pipelines P1...3 for up to
6 cores. P1 comprises 3 stages, P2 comprises 5 stages, and P3 comprises 4
stages. This example also illustrates that allocating m > Nk cores to Pk
will result in the same response time (and hence, in the same throughput)
as allocating Nk cores.

5.2.1 Example

Given the pipelines R1, R2 and R3 shown in Table 5.2, with weights w1 =
w2 = w3 = 10000 and having up to M = 6 available in the system, in
order to find the maximal overall system throughput requires to compute
the initial conditions for G(k,m) according to Equation (5.5). Since this
are initial conditions, the tracking table TG(k,m) for k = 1 has no previous
value for m∗, and is therefore filled with zeros.

From now on, since k ≥ 2, G(k,m) is built according to Equation (5.6).

The results are shown in Table 5.3. Looking at table TG(k,m), starting
from cell (k,m) = (3, 6) and traversing the table in the direction (k−1,m∗),
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G(3, 6): Weighted System Response Time

k
m 1 2 3

1

2

3

4

5

6

76.92 −∞ −∞

111.11 160.26 −∞

142.86 194.44 193.59

142.86 226.19 227.78

142.86 233.76 285.26

142.86 242.86 410.25

TG(3, 6): Tracking

k
m 1 2 3

1

2

3

4

5

6

0 -1 -1

0 1 -1

0 2 2

0 3 3

0 3 2

0 3 22

1

0

Table 5.3: Example G and TG tables from Algorithm 2. G stores the
minimal achievable overall weighted response time (i.e. the weighted average
of the response time of all applications). Table TG contains the tracking
information that allows to derive how to allocate the cores to the applications
so that this response time can be achieved.

one can derive that the optimal solution will allocate one core to pipeline
R1, one core to pipeline R2 and four cores to pipeline R3.

5.3 DiRA: Distributed Resource Allocation

The CeRA method presented in Section 5.2 is designed in a centralized man-
ner. This requires global system knowledge and allocates the resources to
all running applications en bloc. This leads to a quadratic time complexity
(with the number of cores), which may be infeasible for large many-core
systems. To achieve a highly scalable solution (i.e. its overhead should not
grow significantly with a growing number of cores or applications), this
section proposes a distributed, hierarchical method for which the pipelines
are grouped into several independent clusters. Clusters are grouped hier-
archically into larger clusters and so on, therefore constructing a tree, as
illustrated by Figure 5.2.

There are K0 pipelines P1, P2, . . . , PK0 on level 0, and they form nodes are
the leaves of the tree. The rest of the nodes are clusters and are expressed
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Figure 5.2: Hierarchy of our distributed DiRA resource allocation method.
The applications P1 . . . PK0 form the leaves of the hierarchical tree structure
and are clustered on levels 1 . . . L. The depth of the tree depends on the
maximum number of children of each cluster (a design-time parameter).

as C`i , where indexes ` and i represent the level of the cluster in the tree
and the index of the cluster in the level, respectively. All clusters in level 1
(` = 1) are the adjacent parents of the pipelines. There are L levels in the
tree, where level L is the root of the tree, and each level ` holds K` nodes.

With this distributed model, the solution from Section 5.1 is utilized to build
the tables Rk(Nk,M) for every pipeline Pk, where M continues to be the
total amount of cores available in the system.

Each cluster C1
i (level 1) contains the information of the weights wk and

Nk columns of tables Rk, namely Rk(Nk,M) of its children (pipelines)
and utilizes the solutions of Sections 5.2 to build the corresponding tables
G(K∗,M), where K∗ is the number of child nodes of the cluster. This table
contains the best configuration for cluster C1

i by allocating m = 1, 2, . . . ,M
cores to its children pipelines, independently of the other clusters of the
same level.

Similarly, the clusters C2
i (level 2) contain the information of tableG(K∗,M)

of its child clusters C1
i (level 1). This applies likewise to all upper levels.

In this way, each level allocates cores among its children based solely on
this (limited) information. Consequently, the computational requirement is
distributed hierarchically among the system.

G`i (k,m) denotes the table for the modified version of the dynamic pro-
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gramming in Section 5.2. Considering that w∗1, R∗1, N∗1 are the parameters
of the first child (pipeline) of node C1

i , node C`−1
1∗ is the first child of node

C`i , value K∗`−1 is the number of children of node C`i , and value K∗`−2 is the
number of children of node C`−1

1∗ and node C`−1
k , then the initial conditions

of G`i (1,m) are:

G`i (1,m) = w∗1
R∗1(N∗1 ,m) ∀m = 1, 2, . . . ,M when ` = 1

G`i (1,m) = G`−1
1∗ (K∗`−2,m) ∀m = 1, 2, . . . ,M when ` ≥ 2,

(5.7)

the value of G`i (k,m) is set to −∞ whenever k > m, the recursive function
when ` = 1 and k ≤ m is:

G`i (k,m) = max
k−1≤m′<m

{
G`i (k − 1,m′) + wk

Rk(Nk,m−m′)

}
, (5.8)

the recursive function when ` ≥ 2 and k ≤ m is:

G`i (k,m) = max
k−1≤m′<m

{
G`i (k − 1,m′) +G`−1

k

(
K∗`−2,m−m′

)}
, (5.9)

and finally, the result is found in cell G`i
(
K∗`−1,M

)
.

It is important to note that even though the root node makes decisions that
affect every pipeline, this is still a distributed and scalable method, since
every node only contains the partial information of its children.

5.4 MOMA: Allocation for Multiple Memory Is-
lands

The proposed centralized resource allocation method CeRA (Section 5.2)
and its distributed, hierarchical extension DiRA (Section 5.3) as well as
many state-of-the-art methods for resource allocation aim at balancing the
computational load among cores jointly with inter-task communication (see
[21, 62, 70]). Due to the rapidly increasing number of cores, the bandwidth
limitations of memory controllers (i.e. controllers located on-chip that enable
access to off-chip memory) may have a significant impact on the system
throughput when running memory-intensive tasks [1].

This limitation results mainly from the limited number of pins to connect the
chip with off-chip memory as well as from the constrained bandwidth of each
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Figure 5.3: A system with two memory islands and four cores. For this
example, the bandwidth constraint of each memory controller is 128 MB/s.
Allocating resources to balance the computational requirements (a) forces
the memory controller M1 to operate in saturation, which results in a sig-
nificantly reduced throughput (bound by memory bandwidth) as compared
to (b) (bound by computation).

individual pin [61]. As a consequence, the number of memory controllers and
their individual bandwidth are also limited. In systems with a large number
of cores, each memory controller has to serve (too) many requests [1]. As an
example, Intel’s newest Xeon Phi™5110P integrates 16 memory controllers
for 61 cores and there, each memory controller serves the accesses of approx.
4 cores [31]. However, as the number of memory controllers is limited by
the pin count constraints [1], each memory controller may need to serve the
accesses of 64 cores in a system with 1024 cores. Thus, it has to serve 16
times the requests.

In case one memory controller serves many memory-intensive tasks, it may
operate in saturation, i.e. it may be requested to access more data than it
can provide. This reduces the bandwidth that is available for the individual
tasks, and hence their throughput will degrade. Such a saturation of memory
controllers has recently been identified as a major cause for deteriorated
throughput [61]. Furthermore, when tasks communicate that are allocated
to cores which belong to different memory islands, the corresponding data
have to be copied from one memory controller to the other. Such data
transfer can be significant and may lead to severe performance penalties.

As an example of resource allocation (for the purpose of balancing computa-
tions among cores) that puts the memory controllers in saturated operation
and causes a severe throughput degradation, let us consider a system with
two memory islands of 2 cores each, and each memory controller with band-
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width constraint of 128 MB/s1. We allocate a software-pipelined application
(“Object Tracking”) with 8 stages. Table 5.4 lists their computational re-
quirements and memory requirements.

Stage

Computational requirements [ms]

Memory requirements [MB]

0 1 2 3 4 5 6 7

24.3 11.7 13.2 22.9 26.2 23.8 26.9 49.3

0.18 0.23 0.46 5.43 5.65 0.17 0.17 0.02

Table 5.4: Computational demands and memory requirements of the 8 stages
of a software-pipelined “Object Tracking” application.

To balance the computational requirements, one may allocate Stages 0 to 2
to Core 0, stages 3-4 to Core 1, stages 5-6 to Core 2, and stage 7 to Core
3. If the memory controllers of both memory islands were not saturated, a
throughput of 20.04 1/s could be achieved. However, the resource allocation
results in a load of 11.95 MB/dataitem and 0.36 MB/dataitem for the memory
controllers, respectively. Due to their bandwidth constraint of 128 MB/s,
one memory controller is saturated at approx. 10.71 1/s, which limits the
application’s throughput to this level. In order to account for the bandwidth
constraint of memory controllers, Stages 0 to 2 may be allocated to Core 0,
3 and 5 to Core 1, 4 and 6 to Core 2, and stage 7 to Core 3, which results
in a total memory requirement of 6.78 MB/dataitem and 6.12 MB/dataitem for
the memory controllers, respectively. This resource allocation results in a
throughput of approx. 19.1 1/s (limited by the computational load on Core 2),
which causes a load of 72.65 MB/s and 65.56 MB/s for the memory controllers,
which is below their bandwidth constraint and thus, they are not operating
in saturation. This corresponds to an increased throughput by approx. 76%.
Figure 5.3 shows these resource allocations and the resulting throughputs.

Consequently, it is crucial that resource allocation jointly balances the com-
putational requirements and the load of memory controllers. Otherwise, a
saturation of memory controllers and a significantly reduced throughput can
be the result. This problem worsens with a growing number of cores per
memory island.

However, it is challenging to allocate resources to memory-intensive tasks
1We chose a low bandwidth constraint for this example to illustrate the problem in a

simplified way with four cores. However, the problem arises equally in systems with fast
memory controllers where each memory controller has to serve a multitude of cores.
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Algorithm 3: MOMA Algorithm

Input: The information of the system and the pipelines to allocate;
Result: A allocation to maximize the overall system performance;

Execute Phase 1;
repeat

Execute Phase 2;
Execute Phase 3;

until All stages of all pipelines are allocated to cores;

return The allocation of all stages from all pipelines;

jointly based on computation, communication, and off-chip memory accesses
because the throughput depends on the saturation of memory controllers,
and vice versa.

To address this issue, MOMA is proposed as an extension to CeRA that
allocates resources for memory-intensive software-pipelined applications.

5.4.1 Load Balancing of Memory Controllers

This section describes our three-phase heuristic, MOMA, presented in Al-
gorithm 3, that finds a solution for Equation (4.3), i.e., it solves the defined
problem. As an overview of MOMA, an initial solution is derived (Phase 1),
and all stages have been allocated with the objective of minimizing a satu-
ration of memory controllers (Phase 2), and minimizing the degradation of
throughput that results from allocating communicating stages to multiple
memory islands while not saturating the controllers (Phase 3).

5.4.2 Obtaining an Initial Solution (Phase 1)

In this phase, an initial solution based on CeRA (Section 5.2) is obtained,
which solves two problems: (a) it allocates the cores to the applications,
and then, given the number of cores for each application, (b) it fuses their
stages so that their throughput is maximized. The initial solution neglects
the bandwidth constraint of the memory controllers and the overhead when
stages communicate that are allocated to different memory islands. It should
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be noted that our approach is not tied to this algorithm; other algorithms
to obtain these initial fusions could be used as well.

The objective of this phase is to consider the fusion of the stages individually
for all pipelines, which will not be modified from this point on. Thus, for
the rest of this section, each pipeline Pk will consist of N ′k fused stages, and
the constraint ∑K

k=1N
′
k ≤ Q ·V is satisfied. Given that the optimal solution

that considers all constraints might result in different fusions and cores per
application, no further modifications to these fusions implies that no optimal
solution is achievable, but the complexity of the problem is considerably
reduced. Phase 1 thus gives a starting point for phases 2 and 3, namely
the fusions and number of cores for each application. Then, as explained in
Section 4.1.1, the upper bound for the bandwidth requirements bk,i for all
stages can be computed based on the memory requirements for each stage
and the maximal response time of each pipeline.

Before proceeding to phase 2, three ordered tables are built to be used in
phases 2 and 3.

Memory Controller Information (MCI) table Each row in this table
holds the memory island identifier Ii, the number of free cores Q′i of each
memory island Ii and the remaining memory bandwidth constraint B′i of
the corresponding memory controller Mi, for all i = 1, 2, . . . , V . The table
is ordered in a decreasing manner with respect to B′i. As explained in
Section 4.2, the values of B′i and Q′i are updated when stages are allocated
to Ii, after which the corresponding row is reordered (the entire table does
not need to be re-sorted, because only this row changes). When memory
island Ii has no more free cores, i.e. Q′i = 0, the memory controller Mi is
removed from the table. An example for this table is presented in Table 5.5.

Remaining Bandwidth (RB) requirement per pipeline table) Each
row of RB contains the summed bandwidth requirements of the non-alloca-
ted stages of each pipeline Pk, for all k = 1, 2, . . . ,K. The table is sorted with
respect to the summed bandwidth requirements in a decreasing order. When
a stage is allocated to a core, its bandwidth requirements are subtracted from
the corresponding row in the table, and this row is reordered (the table does
not need to be re-sorted, because only this row changes). When all stages
of pipeline Pk have been allocated, the corresponding row is removed from
the table. An example for this table is presented in Table 5.6.
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I B′ Q′

I1 B′1 Q′1

I2 B′2 Q′2

I3 B′3 Q′3

...
...

...

IV B′V Q′V

Table 5.5: Example of Table MCI (with B′1 ≥ B′2 ≥ · · · ≥ B′V )

Single Stage Bandwidth Requirements (SSB) table This table con-
tains the memory bandwidth requirements of every non-allocated stage of
each pipeline Pk, for all k = 1, 2, . . . ,K. The table is ordered in a decreas-
ing order with respect to the bandwidth requirement of each stage. When
a stage is allocated to a core, the corresponding row is removed from the
table. No reordering is necessary. An example for this table is presented in
Table 5.7.

Phases 2 and 3 mostly focus on the first rows of each table, hence, for
simplicity in presentation, the parameters that represent the first row of
each table are denoted as Mfirst

MCI, B′
first
MCI, Q′

first
MCI, P first

RB , ∑ bfirst
RB , P first

SSB , Sfirst
SSB

and bfirst
SSB.

5.4.3 Limiting Bandwidth Excess (Phase 2)

For the fusions of Phase 1, there may be stages whose bandwidth require-
ments exceed the maximum remaining bandwidth constraint among all mem-
ory controllers, i.e., ∃bk,h > B′i for all i = 1, 2, . . . , V , k = 1, 2, . . . ,K and
h = 1, 2, . . . , N ′k. This means that allocating such stages to any memory
island will saturate its memory controller as there will be at least one con-
troller with B′i < 0.

The objective of this phase is to balance the saturation caused by such stages
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P
∑

b

P1
∑N1
i=1 b1,i

P2
∑N2
i=1 b2,i

P3
∑N3
i=1 b3,i

...
...

PK
∑N ′k
i=1 bK,i

Table 5.6: Example of Table RB (before Phase 2, and ∑N1
i=1 b1,i ≥∑N2

i=1 b2,i ≥ · · · ≥
∑N ′k
i=1 bK,i)

P S b

P1 S1
1 b1,1

P1 S1
2 b1,2

P2 S2
1 b2,1

...
...

...

PK SKN ′
k

bK,N ′
k

Table 5.7: Example of Table SSB (with N1 = 2 and b1,1 ≥ b1,2 ≥ b2,1 ≥
· · · ≥ bK,N ′

k
).
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Algorithm 4: MOMA: Phase 2

Input: Tables MCI, RB and SSB;
Result: Allocation of current high bandwidth requirement stages;

while bfirst
SSB > B′first

MCI do
Allocate single stage Sfirst

SSB to the island of controller Mfirst
MCI;

Update and re-order table MCI ;
Update and re-order table RB;
Remove first row of table SSB;
Update parameters that represent the first row of each table;

end

return Information about the allocated stages;

among all memory controllers by using a “largest bandwidth requirements
first” strategy in order to minimize the impact of the saturation of memory
controllers. Otherwise, −B′i may be unnecessarily high, which could lead to
a severely degraded throughput for all stages allocated to the corresponding
memory island Ii.

Therefore, this phase starts by checking if the stage with the highest band-
width requirement exceeds the remaining bandwidth of the memory con-
troller with the highest remaining bandwidth, i.e., whether the value of bfirst

SSB
is larger than the value of B′first

MCI (given that both tables are ordered, it is
not necessary to check for all i, k and h). If this condition holds, this stage
is allocated to the corresponding memory island, i.e., stage Sfirst

SSB is allocated
to Ifirst

MCI.

Once the stage is allocated, the value of bfirst
SSB is subtracted from B′first

MCI and
Q′first

MCI is decreased by 1. Next, the first row of table MCI is reordered.
Similarly, bfirst

SSB is subtracted from ∑
bfirst
RB and the first row of table RB is

reordered. Finally, the first row of table SSB is removed, and all parameters
that represent the first row of each table are updated.

If there are no more stages in table SSB, the allocation is completed. If there
are still stages in table SSB, the process is repeated until bfirst

SSB is smaller than
B′first

MCI, and then proceed to Phase 3. A pseudo-code for Phase 2 is presented
in Algorithm 4.
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5.4.4 Allocation for Maximizing Througput (Phase 3)

The objective of this phase is to allocate consecutive stages of a pipeline to
a memory island, such that the used bandwidth of its memory controllers
is maximized without exceeding the bandwidth constraint. Stages are al-
located considering both bandwidth requirements and the communication
latency when communicating between memory islands.

This phase focuses on the pipeline with the highest bandwidth requirement
for non-allocated stages and the highest remaining bandwidth constraint,
i.e., pipeline P first

RB and controller Mfirst
MCI, respectively. For simplicity in pre-

sentation, we consider Pj = P first
RB and denote Nnon-allocated

j as the number of
non-allocated (fused) stages of pipeline Pj .

Next, all combinations of allocating 1, 2, . . . ,min
{
Nnon-allocated
j , Q′first

MCI

}
con-

secutive stages of pipeline Pj to the memory island of controller Mfirst
MCI are

evaluated. After Phase 2, at least one combination that requires less band-
width than B′first

MCI exists, e.g., any single stage bj,h for a 1 ≤ j ≤ K and
h = 1, 2, . . . , Nnon-allocated

j . Furthermore, only the combinations of consecu-
tive stages of pipeline Pj are considered that have less or equal bandwidth
requirements than B′first

MCI. Therefore, when checking the combinations of
allocating stages Sjh to Sj` , if ∑`

n=h bj,n > B′first
MCI, there is no need in consid-

ering the rest of the combinations that start on Sjh.

In order to consider B′i as well as eoutj,s and ooutj,s when allocating stages
to memory controllers, a window that contains different possible combi-
nations with similar bandwidth requirements is introduced. The combi-
nation that results in the highest throughput for its application is chosen
(affected by eoutj,s and ooutj,s ). For all possible combinations in the window[
B′first

MCI −
B′first

MCI
Y , B′first

MCI

]
, where Y is any integer (a design parameter) larger

or equal than 1 that sets the size of the window. In other words, e.g., with
Y = 5, only the combinations that require a bandwidth between 80% and
100% of B′first

MCI are considered. If there is no combination inside this win-
dow, the window is moved to

[
B′first

MCI − 2B
′first
MCI
Y , B′first

MCI −
B′first

MCI
Y

]
, e.g., 60%

and 80% of B′first
MCI with Y = 5. This is repeated up to Y times until at least

one combination inside the window is found. Among all combinations inside
the evaluated window, the one with the minimum partial maximum response
time for consecutive stages Sjh to Sj` is chosen according to Equation (5.10).
Then, these stages are allocated to the memory island of controller Mfirst

MCI.
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T ′k (h, `) =



eout
k,h + ck,h + oout

k,h if h = `

max


eout
k,h + ck,h + oin

k,h,

max
h<n<`

{
eink,n+ck,n+oin

k,n

}
,

ein
k,` + ck,` + oout

k,`

 if h < `
(5.10)

Once stages Skh to Sk` are allocated, table MCI is updated by subtracting∑`
n=h bk,n from B′first

MCI and reorder the first row. For updating tables RB
and SSB, some further considerations need to be taken. In case that h = 1
or k = Nnon-allocated

k , Phase 3 proceeds in a similar fashion as done for Phase
2: ∑`

n=h bk,n is subtracted from ∑
bfirst
RB , and the first row of the table RB

is reordered; and all the rows that correspond to the allocated stages from
table SSB are removed.

However, when h > 1 and k < Nnon-allocated
k , it implies that some stages

are allocated to the memory island of controller Mfirst
MCI, while both their

preceding stages as well as their succeeding stages are allocated to different
islands. When this happens, in order to correctly compute the minimum
partial maximum response time for Phase 3, pipeline Pk needs to be split into
two sub-pipelines, one with stages Sk1 to Skh−1 and another with stages Sk`+1
to SkN ′

k
. Failing to do this would give incorrect results for Equation (5.10)

for Phase 3. With the sub-pipelines, table RB is updated by removing the
old pipeline and inserting the new sub-pipelines in the corresponding order.
Similarly, all stages from the previous pipeline are removed from table SSB
and the stages of the sub-pipelines are inserted, also in the corresponding
order.

Once all three tables are updated, all parameters that represent the first
row of each table are updated as well. If there are no more stages in table
SSB, the allocation is completed. If there are still stages in table SSB, the
algorithm continues to execute by returning to Phase 2, since after updating
B′first

MCI, now there may exist a single stage with a bfirst
SSB value larger than

B′first
MCI. A pseudo-code for Phase 3 is presented in Algorithm 5.

5.4.5 Algorithmic Complexity

For notational simplicity, Nmax = max
1≤j≤K

Nj . The time complexity for Phase
1 is for computing the initial solution using the CeRA method described in
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Algorithm 5: MOMA: Phase 3

Input: Tables MCI, RB and SSB;
Result: Allocation of stages for highest bandwidth pipeline;

Pk ← P first
RB ;

for h = 1, 2, . . . ,max
{
Nnon-allocated
k , Q′first

MCI

}
do

for ` = h, h+ 1, . . . ,max
{
Nnon-allocated
k , Q′first

MCI

}
do

if
∑`
n=h bk,n ≤ B′

first
MCI then

for y = 1, 2, . . . Y do

if 1− y
Y ≤

∑`

n=h
bk,n

B′first
MCI

≤ 1− y−1
Y then

Window[y] ← Append combination
[
Skh, S

k
`

]
;

end
end

end
end

end

for each y = 1, 2, . . . Y do
if Window[y] is not empty then

for each element in Window[y] do
Compute T ′k (h, `) according to Equation (5.10);

end[
Skh, S

k
`

]
← Element with minimum T ′k (h, `);

Allocate stages
[
Skh, S

k
`

]
into controller Mfirst

MCI;
Update and re-order table MCI ;
Update and re-order table RB;
Remove rows of allocated stages from table SSB;
Update parameters that represent the first row of each table;

return Information about the allocated stages;
end

end
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Chapter 5.2 and amounts to

O
(
max

{
QVN2

max, Q
2V 2K

})
.

The time complexity of Phase 2 is O (NmaxK) and the time complexity of
Phase 3 is O

(
max

{
N2

max, Q
2}). Given that Phase 2 and 3 can be executed

up to NmaxK times, the total time complexity for MOMA is

O
(
max

{
QVN2

max, Q
2V 2K,N3

maxK,NmaxQ
2K
})

.

5.5 Summary of System-controlled Resource Al-
location

To summarize, centralized and distributed resource allocation methods have
been proposed in this chapter. Starting from the optimal CeRA method
(Section 5.2), the distributed, hierarchical DiRA method (Section 5.3) shows
how the optimum can be traded for a high degree of scalability. As a next
step, MOMA (Section 5.4) extends the CeRA method heuristically to avoid
a saturation of memory controllers whenever possible, and to minimize it in
other cases. This is important in many-core systems with multiple memory
islands when many memory-intensive applications are running concurrently.

These methods allocate resources in a system-controlled manner as they
employ a single (CeRA, MOMA) or multiple (DiRA) controlling instances.
This allows them to utilize global DiRA departs from centralized concepts
and trades the optimum for a high degree of scalability. In the next chapter,
methods for self-organizing software pipelines are proposed that completely
avoid any controlling instances.
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Chapter 6

Self-organizing Resource
Allocation

6.1 Properties and Benefits of Self-organization

Self-organization is an approach to cope with the growing complexity of a
system and is an aspect of autonomous computing [59]. In a self-organizing
system, the entities that it comprises are responsible to self-optimize, self-
configure, self-manage, or self-heal [41]. These properties are commonly
referred to as the so-called self-x properties and form a key concept of Or-
ganic Computing [85, 103].

Self-organizing systems hence prefer distributed control that is based on
social interaction over controlling instances. Their entities are responsible
to observe the properties of their environment that are relevant to them
and to communicate and interact with their peers in order to achieve their
goals [45]. Following their reference model proposed by IBM, self-organizing
entities operate in a control loop of monitoring, analyzing, planning and
execution (MAPE) [41].

Key benefits of self-organizing systems include that they are highly scalable,
resilient, and adaptive to changes [45]. The concept of self-organization is
successfully employed in many instances. The authors of [44] present a
comprehensive survey.

In the following, two concepts for self-organizing software pipelines are pro-
posed to transfer those benefits to resource allocation in many-core systems.

77
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First, the novel concept of Pipelets is introduced in Section 6.2. Pipelets
allow software pipelines to optimize their resource allocations at runtime
based on observations and interactions with other Pipelets. This way, they
use local interactions to improve the system throughput.

In a second step, Section 6.3 applies the self-organizing resource allocation
introduced by Pipelets to the DiRA method (Section 5.3). This way, the
benefits of system-controlled resource allocation can be combined with the
benefits of self-organization. We show how multiple hierarchical controlling
instances (i.e. clusters) can act autonomously to increase resilience against
unreliable hardware.

6.2 Pipelets

This section shows how self-organization can be used to adapt resource allo-
cations at runtime based on local observations and interactions. To achieve
this, Pipelets are proposed as self-organizing stages of software pipelines.
They adapt resource allocations at runtime by migrating among cores in
order to increase the performance of a system by balancing its load. The
concept of Pipelets has been published in [52].

6.2.1 Definition of Pipelets

A Pipelet is a task forming one stage of a software pipeline (see Figure 6.1)
with the following properties:

• It can adapt resource allocations by migrating between cores at run-
time.

• It interacts with other Pipelets.

• Pipelets aim at optimizing their application’s performance when an
established resource allocation becomes inefficient.

In the following, the term bottleneck will be used to express the slowest stage
of a software pipeline. Such a bottleneck limits its applications performance.
Pipelets detect bottlenecks and take action to resolve them when possible
using the means described in the following section.
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6.2.2 Actions and Phases

The means of self-organization are:

• Bottleneck Relief to improve the throughput when a bottleneck is de-
tected, and

• Contraction to reduce the communication distance (i.e. number of
hops) between them to reduce the bandwidth requirements.

As Pipelets do not dispose of information about the global system state, they
interact (Section 6.2.3). In the following, we detail how Pipelets achieve self-
organization and how they interact.

Pipelets exploit properties of software pipelines to achieve self-organization.
To achieve self-organization, a Pipelet must be able to (a) find out if it
limits the throughput of the application it belongs to, and to (b) adapt

Application

S1 S2 S3 . . . SN

Input
data

S1 → S2 S2 → S3 S3 → S4 SN−1 → SN
Output
data

Pipelet Pipelet Pipelet Pipelet

Software Pipeline

Stage

Core Core Core Core

Core Core Core Core

Each Pipelet contains
one stage of a software
pipeline and forms a
task that can be allo-
cated to a core individ-
ually.
Multiple Pipelets may
be allocated to a core
at any time.

Figure 6.1: Relationship of Pipelets to Applications, Tasks and Stages
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resource allocation by migrating to another core in a way that improves the
throughput by balancing the load.

Therefore, a Pipelet must be able to estimate the impact of adapting re-
source allocations so it can choose one that improves the throughput of its
application without impairing the throughput of other applications. Both
(a) and (b) can be accomplished when Pipelets exploit the following prop-

Pipelet: Process a Data Item

Wait for input data. (Time consumed: TWR)

Receive input data. (Time consumed: TRecv)

Computation. (Time consumed: TC)

Wait for successor. (Time consumed: TWS)

Send to successor. (Time consumed: TSend)

Bottleneck

Bottleneck Relief

Migrate competing Pipelets

Success

If possible, migrate no neighboring*,
more powerful core

Contraction

Estimate effect of contraction

Choose best target core

Forward estimated improvement to successor

Runtime
Estimation

Finished

no
yes

no

yes

Start

Figure 6.2: Overview of Pipelet self-organization
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erties of software pipelines:

(1) Each stage repeatedly processes data items in the following steps: first,
it waits for and receives input data, followed by computation, and then
it passes the output to its successor as soon as this is ready to receive
it.

(2) The slowest stage of a pipeline limits its throughput (i.e. it causes a
bottleneck).

(3) Preceding and succeeding stages of a software pipeline communicate
once after a data item is processed, passing the output data from the
predecessor as the input data of its direct successor. There is no other
communication.

(4) The peak memory requirement of pipeline stages is often during com-
putation because many buffers are freed after passing the output to the
successor.

Pipelets exploit these properties in the following way: The strict temporal
execution pattern of (1) enables Pipelets to measure the different time phases
(by repeatedly querying the system time) that are consumed for processing
each data item: Figure 6.2 illustrates how TWR and TRecv denote the time
required for waiting for and receiving the input data, while TC denotes the
time consumed by computation. Likewise, TWS and TSend denote the times
for waiting for the successor and sending data to it. Algorithm 6 illustrates
the main loop (including measurements of its time phases) of a Pipelet.

As the slowest stage of an application limits its throughput (2), other stages
need to wait. Consequently, for an application k where Pk denotes the set
of its Pipelets, we define λk as the time consumed for processing each data
item:

∀p, q ∈ Pk : T pWR + T pRecv + T pC + T pWS + T pSend =
T qWR + T qRecv + T qC + T qWS + T qSend = λk (6.1)

The one-to-one communication restriction of (3) reduces the potential im-
pact that migrating a Pipelet can have to the throughput of other Pipelets.
Only Pipelets that are allocated to the target core may be impacted.

Additionally, we define the slack of a Pipelet p as the time it needs to wait
for its predecessor and successor:

slackp = T pWR + T pWS (6.2)
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The Pipelet that causes a bottleneck has a slack of 0. The throughput Fk
of an application k is defined as:

Fk = 1
λk

(6.3)

To increase Fk, the Pipelet bk causing the bottleneck of k tries to reduce
T bRecv, T bC , or T bSend to decrease λk. The rest of this section details in which
way this can be achieved.

The property (4) of software pipelines implies that the size of the task con-
text (program code, stack, registers and heap) of a Pipelet is minimal di-
rectly after processing a data item (as it may deallocate any temporary
buffers required for computation). To achieve a low task migration over-
head, Pipelets migrate after processing a data item is completed. Figure 6.2
shows how Pipelets perform their main loop, i.e. a data item is processed,
and the steps required for self-organization: After the output data has been
sent to the successor, a Pipelet evaluates its slack to see if it causes a bot-
tleneck. If so, it tries to resolve it as detailed in Section 6.2.2.

Bottleneck Relief

If a Pipelet p of application k causes a bottleneck, it may increase the
throughput Fk by decreasing TRecv, TC or TSend, thus decreasing λk for
all Pipelets p ∈ Pk. Therefore, it asks other Pipelets that are allocated to
its core to migrate in order to free resources. These Pipelets are in turn
responsible to find possible target cores. If migrating other Pipelets would
decrease (any of) their application’s throughputs beyond the gain for k,
this option is discarded and b itself tries to migrate to a different core in
its neighborhood, which is a set of cores physically closest to it (the size of
the neighborhood is a design parameter). Small neighborhood sizes might
increase the number of task migrations (because it limits the search space
for each decision), while large neighborhoods increase the overhead. In our
experiments, we find a neighborhood size of 12 cores provides good results.
If a Pipelet is not responsible for a bottleneck, it tries to contract.

Contraction

Pipelets which do not cause a bottleneck contract, i.e. they try to migrate
to the spatial proximity of their predecessor if this does not impair through-
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put. The goal of contraction is to reduce communication volumes. This
is desirable because it may potentially increase the performance of other
Pipelets that require higher bandwidths. Contraction is performed as fol-
lows: each time a data item has been processed, each Pipelet pi evaluates
Dpi = Dpi,pi−1 + Dpi,pi+1 , which denotes the sum of the distance (e.g. the
hop count, i.e. the number of hops between two cores.) to its predecessor
and to its successor.

Algorithm 6: Pipelet main loop with time measurements

while application running do
// The first Pipelet has no predecessor
if Have Predecessor then

t0 = GetTime();
WaitForData( Predecessor );
t1 = GetTime();
TWR = t1 - t0;
inputData = ReceiveData( Predecessor );
TRecv = GetTime() - t1;

end

t2 = GetTime();
// Compute performs the computation of the Pipelet
outputData = Compute( inputData );
TC = GetTime() - t2;

// the last Pipelet has no successor
if Has Successor then

t3 = GetTime();
WaitForRecipient( Successor );
t4 = GetTime();
TWS = t4 - t3;
SendData( Successor, outputData );
t5 = GetTime();
TSend = t5 - t4;

end

Interact with other Pipelets (Section 6.2.3);
end
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It receives Ip∗ that denotes the improvement (reduction) in D for one of
its predecessors p∗ (the first stage does not receive a value), and estimates
the impact on its throughput for every possible migration to a core in its
neighborhood that would decrease Dp without impacting any application’s
throughput. If it finds that its decrease in Dp exceeds Ip∗, it updates this
value and sets p∗ to p. Next, it forwards Ip∗ to its successor. The Pipelet
without a successor informs the Pipelet p∗ with the largest positive improve-
ment Ip∗ > 0 to perform the corresponding task migration. No contraction
is carried out while a Pipelet adapts resource allocations to relieve a bottle-
neck.

6.2.3 Interactions

Pipelets interact to achieve self-organization. Figure 6.3 shows a sequence
diagram of the interactions for a Pipelet pi (pi+1 is its successor, while
o, r, and s are other Pipelets that may but need not belong to the same
application).

Pipelets interact in three cases: 1) pi interacts with pi+1 to send the output
data. Secondly, if pi is not causing a bottleneck, it interacts with other
Pipelets in its neighborhood (in this example o, r and s) to perform con-
traction. Therefore, it requests runtime estimates for possible contractions
as described in Section 6.2.2. Thirdly, if pi causes a bottleneck, it interacts
with the other Pipelets in its neighborhood to estimate which of the possible
migrations to relieve the bottleneck (as described in Section 6.2.2) offers the
best improvement.

Pipelets interact with so-called core guards. Core guards are helper tasks
that run on every core. They are responsible for (a) virtualizing com-
munication between Pipelets to allow MPI communication orthogonal to
their physical location, (b) replying to their status requests (CPU type and
load, bandwidth usage, and a list of allocated Pipelets), and for (c) helping
Pipelets migrate to its core. Figure 6.4 shows how Pipelets communicate
via core guards. Pipelets receive status information such as the CPU load,
the NoC bandwidth usage, and the list of Pipelets allocated to this core.

As a consequence, Pipelets interact in spatial (i.e. neighborhood) and tem-
poral (i.e. predecessor/successor relationship) proximity. These limitations
induce local, sub-optimal decisions, which trades scalability for a loss of
optimality. However, their self-organizing behavior limits their overhead,
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which does not depend on the number of cores. Hence, Pipelets are scalable
for very large systems.
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Pipelet o
migrated
to core B

(a) Pipelet pi is not responsible for the bottleneck of its application and performs contraction

(b) Pipelet pi is responsible for the bottleneck of its application and tries to resolve it

T
im

e

Core A Core B

Figure 6.3: An example of the interaction between Pipelets in several sce-
narios. At the top, a data item is processed by Pipelet pi. In the middle, (a)
shows the interactions that take place when Pipelet pi is not responsible for
a bottleneck. After another data item is received, (b) shows the interactions
that pi initiates when it is responsible for a bottleneck. Ultimately, another
Pipelet o is migrated from core A to core B, which relieves the bottleneck
of Pipelet pi on core A.
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Pipelet 1 Pipelet 2 Pipelet 3

Core Guard Core Guard

Communication Library Communication Library

Core A Core B

User-level: Pipelets are
user-level tasks that com-
municate via core guards
regardless their location

Kernel-level: Core
guards maintain know-
ledge of allocations and
establish network con-
nections if required.

Intra-core communication
of Pipelet 1 to Pipelet 2

Inter-core communication
of Pipelet 2 to Pipelet 3

Figure 6.4: Pipelets communicate via so-called core guards

6.2.4 Runtime Estimation

Algorithm 7 shows how the runtime estimator of each Pipelet calculates the
impact of a potential migration on TC , TRecv, and TSend: The input param-
eters are the requirements of the Pipelet and the direction of the migration
(i.e. either migrating to or away from the core, i.e. requiring or giving up
resources). Timing estimations are defined as the product of the measured
timings (TC , TRecv and TSend) and the percental changes in resource avail-
ability (as required or given up by the Pipelet that is potentially migrated).
When TRecv or TC increase, the slack decreases until it reaches 0.

6.3 Self-organizing Software Pipelines

The previous section has shown how self-organization can effectively and
efficiently adapt resource allocations at runtime. This way, a system can
respond adaptively to unpredictably starting or stopping of applications
and even to drastic changes in the resource requirements of running tasks
without controlling instances. However, while self-organization allows for
distributed, robust methods, a limitation to local observations can lead to
sub-optimal results as compared to system-controlled methods. In the fol-
lowing, we show how the concept of self-organizing Pipelets can be combined
with the system-controlled DiRA method of Section 5.3 to combine the ben-
efits of both approaches. This way, self-organizing software pipelines can
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Algorithm 7: Runtime estimation

Input:
Dir : boolean Direction: migrating to or away from core
CPU,BWin, BWout Resource requirements (delta)

Definitions:
tnew Type of new (evaluated) core
told Type of old (current) core

Result:
Ip Performance improvement for p (can be negative)

if Dir == away from core then
// Invert requirements (free resources)
{CPU,BWin, BWout} = −1 ∗ {CPU,BWin, BWout};

end

T̃C = TC ∗ (1 + CPU);
T̃Recv = TRecv ∗ (1 +BWin);

T̃Send = TSend ∗ (1 +BWout);

return Ip = TRecv − T̃Recv + TC − T̃C + TSend − T̃Send;

allocate resources in a way that is resilient to unreliable hardware, while
near-optimal allocations can be achieved.

When the reliability of a system cannot be guaranteed and cores may mal-
function (i.e. they stop to work correctly temporarily or permanently), the
tasks allocated to them are interrupted. In the following, we illustrate how
the problems caused by unpredictably malfunctioning cores can lead to a
significantly decreased system throughput and how the resilience of our dis-
tributed method can be increased. For simplicity, we use the term cluster
in the following to express the task that implements the functionality of a
cluster of the proposed DiRA method of Section 5.3.

When a cluster is allocated to a malfunctioning core, the integrity of the
hierarchical tree structure of clusters of Section 5.3 is corrupted. Figure 6.5
shows an example how interrupting a cluster corrupts the integrity of their
hierarchical structure (a), and how this leads to disconnected sub-trees, as
shown in (b).
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Cl

Cl+1 Cl+1

Cl+2 Cl+2 Cl+2

Cl+3 Cl+3

(a) The hierarchical tree of DiRA. When
a core malfunctions and a cluster is allo-
cated to this core, its task is interrupted
and the tree is disconnected.

Cl

Cl+1

Cl+2 Cl+2 Cl+2

Cl+3 Cl+3

Cl+1 Cl+1

(b) The DiRA resource allocation can
adapt allocations for the disconnected
sub-trees, but it cannot re-allocate re-
sources between applications that be-
long to different sub-trees.

Figure 6.5: Effect of malfunctioning cores that corrupt the integrity of the
hierarchical tree structure of our DiRA resource allocation method: a mal-
functioning core “removes” a cluster and thus the remaining sub-trees are
disconnected. Consequently, resources be re-allocated among them (i.e. no
“exchange” of resources is possible between sub-trees).

As a result, our distributed method is still able to (re-)allocate cores in the
remaining sub-trees. However, there is no exchange of cores among sub-
trees. To illustrate how this may lead to a significantly decreased system
throughput, let us consider a case of two disconnected sub-trees A and B,
and each sub-tree contains only one application, a in A and b in B. When
the resource requirements of a increase and the requirements of b remain
the same (or decrease), giving cores from B to A would increase the system
throughput. However, as A and B are disconnected, this is not possible.
This is also the case for more than one application per sub-tree, and for
more than two sub-trees. Thus, disconnected sub-trees may lead to core
distributions that result in a decreased throughput. Simulations of a 1024-
core system where cores malfunction randomly during a 300-second interval
show that interrupting clusters can result in significantly reduced system
throughputs of 17%, 29% and 50% for a malfunctioning of 5%, 10% and
25% of the cores, respectively, as shown in Figure 6.6. To address this
problem, we propose to employ self-organization to restore the integrity of
the hierarchical structure of clusters even when cores malfunction. This
self-organization of clusters is characterized as follows:

• A cluster detects when their parent cluster interrupted (e.g. when it
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does not respond).

• When its parent was interrupted, a cluster searches for another cluster
(that is not among its children) by sending a connection request to
randomly selected cores.

• Once such a cluster is found, both clusters join their sub-trees.

• This way, the integrity of the hierarchical tree is restored.

Algorithm 8 shows how this can be achieved. When a cluster h finds that
its parent was interrupted, it starts to resolve this in parallel to its duties of
allocating cores among its children. Until all cores have been searched or a
new parent is found, the cluster tries to establish a connection to a random
core. If a cluster h′ is allocated to this core and h′ is not among its children,
it joins h′, i.e. h′ lists h among its children, and h sets h′ as its new parent.
When this is achieved, it stops searching for a new parent. A handshake
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Figure 6.6: Effect when 5%, 10%, and 25% of cores malfunction over a
period of 300 seconds in a 1024-core system running 275 applications. It can
be observed that the resulting disconnected sub-trees lead to significantly
decreasing throughput.
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Algorithm 8: Self-Organization to Restore the Integrity of the Hier-
archical Structure of Clusters

Input: Cluster h with malfunctioning parent
Result: Restored hierarchical tree

for each core c do
c = Random core;
if a cluster h′ is allocated to c then

if h′ does not contain h among its children then
set h′ as new parent;

end
end

end

protocol prevents corner-cases of two sub-trees that both search for a new
parent to join each other.

This way, the integrity of the hierarchical structure of clusters our dis-
tributed method can be restored.

6.4 Summary of Self-organization

To summarize, self-organization can be employed for resource allocation so
that a high degree of scalability and an increased resilience against failing
cores can be achieved. When a self-organizing method does not employ con-
trolling instances, local observations, interactions, and runtime estimations
can guide the decisions to adapt resource allocations at runtime. Local deci-
sions can lead to suboptimal results and hence, optimal solutions may hardly
be achieved. While our Pipelets cannot provide globally optimal resource
allocation, the experimental results show that deploying Pipelets results in
a high system throughput without controlling instances.



Chapter 7

Task Migration

Re-allocating resources at runtime may require to migrate tasks between
cores and hence, task migration is an important cornerstone for the re-
source allocation methods proposed in this thesis. As the overhead of task
migration can be significant, an efficient task migration mechanism is key to
quickly and successfully re-allocate resources at runtime with minimal over-
head. However, the state-of-the-art task migration mechanisms do not suf-
ficiently address the requirements of adapting resource allocations in many-
core systems: Application-level task migration mechanisms require careful
implementation in a way that is specific to each application [2, 13, 20, 80, 90].
The resulting development effort may be large, time-consuming, and error
prone and hence, such strategies are hardly applicable for the large vari-
ety of complex, user-centric applications found in state-of-the-art embedded
many-core systems. System-level migration mechanisms focus on unreliable
and potentially insecure networks when transferring tasks, require binary
translation of data, or induce significant overhead which is not suitable for
migrating tasks frequently [4, 10, 100].

To overcome these drawbacks, this thesis proposes a novel system-level
mechanism for task migration, CARAT [53]. CARAT migrates tasks trans-
parently and exploits the behavior of tasks in order to minimize the per-
formance overhead of task migrations. Furthermore, CARAT adapts its
transfer policy at runtime based on the observed behavior of the task. This
allows frequent migrations with a low impact on system performance.

Migrating a task between cores that do not share their memory requires to
transfer the task context, i.e. its entire data. Table 7.1 shows how the task

91
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context consists of the program code, stack and register contents, and the
heap memory of a task. Typically, the program code is placed in read-only
memory and does not change once a task has been started. Thus, it can be
transferred before the task is stopped on the source core. However, stack
and register contents as well as the heap memory may change frequently at
runtime. Heap memory may be large and hence, its transfer may consume
considerable time. When CARAT and many other state-of-the-art task mi-
gration mechanisms migrate a task, the task may be resumed on the desti-
nation core after its program code, stack, and register contents have been
transferred but before its heap memory has been transferred completely.
Heap memory is commonly transferred on the granularity of memory pages.
When the task tries to access data that has not been transferred, a so-called
page fault exception is raised and the task execution is paused until the sys-
tem finds that it can be resumed. After the missing page of this data has
be transferred, the task can thus be resumed.

The performance overhead of a task migration is largely driven by this wait-
ing time for pages of heap memory that are accessed on the destination but
have not yet been transferred. Thus, achieving a low performance overhead
requires to carefully choose the order in which to transfer the memory pages.
This order should match the order of the accesses on the destination core as
closely as possible.

Type
Change
Frequency

Typical
Size Description

Program
Code

rarely few MB
Contains the executable processor
instructions that form a program

Stack
Memory

very fre-
quently

up to 1
MB

Stores local variables, function ar-
guments, and return addresses

Registers very fre-
quently few KB

Stores the operands and results of
processor instructions

Heap
Memory frequently KB to

GB
Stores the working data of a task

Table 7.1: Description of the data that form a task context.
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The state-of-the-art task migration mechanisms propose different policies to
transfer the task context [4, 100]: Most importantly, the lazy-copy policy
transfers pages only when they are accessed and a page fault occurs. The
pre-copy policy transfers the entire context once a task is still running at the
source core and monitors changes to data that has already been transferred.
Hence, some pages have to re-sent once the task is stopped on the source
core. The post-copy policy only transfers program code and the contents of
the stack and registers before the task is resumed on the destination core
and sends the heap memory in parallel to the continued execution on the
destination core.
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Figure 7.1: Latency, duration and delay of task migration

To analyze the different properties of a task migration mechanism, the time
consumed by task migration can be divided into multiple phases.

• The latency denotes the timespan between initiating task migration
and stopping it on the source core.

• The delay denotes the time while the task is paused. This consists of
the time between stopping the task on the source core and resuming
the task on the destination and the time consumed by page faults.

• The duration of a migration denotes the time from initiating the task
migration to the last page fault that occurs on the destination core.

The relation of latency, duration, and delay is depicted in Figure 7.1. The
total amount of data (in MB) that is transferred for migrating a task con-
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stitutes the communication overhead.

The performance penalty of migrating tasks for (re-)allocating resources cor-
responds to the migration delay. Hence, a migration mechanism should aim
at reducing this delay as much as possible. In order to derive a policy, the
memory access behavior of diverse applications is analyzed in the following
section.

7.1 Memory Access Behavior Analysis

The transfer policy which guides the sequence in which memory pages are
transferred should match the memory access behavior of the task closely.
Mismatches between predicted and actual behavior can result in page faults,
which contribute to the delay. Furthermore, the transfer of data that is no
longer used by the application unnecessarily increases the bandwidth re-
quirements. To derive a good transfer policy, a complex, state-of-the-art
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85 MB binary file). To enhance the visibility, only the first accesses to each
memory page are shown.
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multimedia application “x264 encoder”, the 7Zip LZMA implementation
“7Zip encoder” and a state-of-the-art embedded systems “robotic applica-
tion” that performs pipelined stereo vision, feature extraction and stereo
matching are analyzed in the following. Figure 7.2, 7.3, and 7.4 show the
memory access behavior for these applications, respectively, after a ran-
domly triggered task migration. The figures show only accesses to pages
that have been allocated prior to the task migration as other pages are al-
located on the destination core. More specifically, the figures show the first
time a memory page is accessed after the task migration has been initiated.
The reason for showing only the first accesses is that after the first access,
the corresponding memory page must be available on the destination as
otherwise, the task could not have been resumed.

A first observation shows that these applications have a very different mem-
ory access behavior, ranging from a linear behavior of the “7Zip encoder”
application to a very random, irregular memory access of the “x264 encoder”.

From these observations, we gain the following insights: (a) Not all pages
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Figure 7.3: Memory access pattern of the “x264 encoder” application (input:
96 MB YUV movie in CIF resolution). To enhance the visibility, only the
first accesses to each memory page are shown.
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are required at the same time, and (b) when a page is accessed, it is likely
that succeeding pages will be accessed soon. (c) Applications might sepa-
rate read- and write buffers and thus, buffers that have predominantly been
written to are unlikely to be accessed with heavy read accesses in the near
future. (d) Some applications use small buffers to store frequently used
operands, such as filter kernels, that may be accessed excessively. (e) Mem-
ory blocks are mostly accessed from front to back, not in reverse order.
(f) Memory access behavior differs largely across applications and thus, a
task migration mechanism should not suffer from unexpected accesses be-
yond the performance of the existing mechanisms and should not be tied to
a specific application if a broad applicability is desired.

As the memory access behaviors of tasks may differ significantly, runtime
adaptivity is needed.
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Figure 7.4: Memory access pattern of the “robotic” application (input:
640x480 stereo camera video sequence at 25 frames/second). To enhance
the visibility, only the first accesses to each memory page are shown.
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7.2 Runtime Adaptivity

CARAT achieves runtime adaptivity in two ways:

Runtime monitoring: CARAT monitors accesses to unavailable memory
in a so-called Page Fault Queue (PFQ) as a basis to prioritize page transfer.
The PFQ tracks the number of page faults that have occurred for each
memory block. A memory block is a region of memory that consists of one
or more consecutive pages that have been allocated at once. Prioritizing the
transfer of frequently-used memory blocks exploits data locality and aims
at avoiding future page faults. A state diagram for the transfer policy of
CARAT is shown in Figure 7.5.

Tradeoff parameter α: A tradeoff parameter α ∈ [0, 1]. α balances be-
tween a low latency or low bandwidth requirements. For α = 1, CARAT
tries to reduce the latency as much as possible, while smaller values steadily
increase the latency but decrease the involved bandwidth requirements.
CARAT converges to the lazy-copy mechanism for α = 0 as no pages are
transferred without being requested through a page fault. To achieve this
behavior, each page transfer that is not a response to a page fault is scaled
(multiplied) by α, while the small buffer advance transfers in the adapted
pre-copy phase are scaled with

√
α because small buffer transfers cause rela-

tively low communication traffic while delivering a high probability of reduc-
ing page faults. However, α = 1 does not imply excessive bandwidth require-
ments; they are typically smaller than those of the pre-copy and post-copy
mechanisms while delivering a significantly reduced latency.

7.3 Migration Policies

Based on the memory access behavior analysis and on the runtime adaptiv-
ity, the CARAT mechanism policies have been derived. CARAT combines
a pre-copy and a post-copy phase, where selected memory pages are sent
in parallel to the execution of the task on the source core. This contin-
ues until all selected pages have been transferred or until the maximum
task migration latency is reached (latency threshold), or until a maximum
amount of pages is transferred (bandwidth threshold). These thresholds are
design-time parameters N , SMax, and TTh:
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Algorithm 9: CARAT Transfer Algorithm: Phases 0 & 1

Input:
α Latency/bandwidth tradeoff parameter
SMax Maximum number of pages in pre-copy phase
ThDelay Maximum delay threshold

Definitions:
T Current time / cycle counter
#S Number of transferred pages
SB Pages to transfer from block B
Block(X) Block containing page X
ΓB Largest page address of block B
PFB Page fault counter for block B
PFQ Page-fault queue
Next(X) Next page to send for page fault at X
N1, N2, N3 Design-time parameters (page-buffer size)

Phase 0: Initialization
Transfer program code;

Phase 1: Adaptive pre-copy phase
while T < ThDelay AND #S < SMax do

X ←Choose next pageα;
Transfer X, break if X = ∅;
#S ← #S + 1;

end

Phase 2: Switch execution
Pause task;
Transfer register contents and program stack;
Mark transferred but overwritten pages as missing;
// (Hardware support in the MMU is required)
Continue task execution on destination core;
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Algorithm 10: CARAT Transfer Algorithm: Phase 3
Phase 3: Post-copy / page fault handler phase
while Task running do

if Page fault occurred at X then
// Page fault handler
Cancel current transfer;
PFQ← X ∪ PFQ;
PFBlock(X) ← PFBlock(X) + 1;
Next(X)← X;
if PFBlock(X) = {1, 2, 3, > 3} then

SX ← {X +N1, X +N2, X +N3,ΓBlock(X)};
end
//Scale upper transfer boundary with α
SX ←MAX(1, SX × α);

end

for each Y ∈ PFQ do
// Serve page fault queue (1-3 pages)
// Interrupt if another page fault occurs
for n = 0 to MIN(3, PFBlock(Y )) do

if Next(Y ) > SY then
PFQ← PFQ ∩ Y ;
Exit For Loop;

else
Transfer Next(Y );
Next(Y )← Next(Y ) + 1;

end
end

end
for each α× Single-page blocks not yet sent do

// Send remaining single-page blocks
Send next single-page block α;

end
end
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N denotes the maximum number of pages that should be transferred from
the blocks that have been read from most recently at the time of
initiating the task migration. This exploits the assumption that the
block that has most recently been read from is likely to be used again
soon.

SMax denotes the maximum number of pages to be transferred in the pre-
copy phase. This limits the maximum amount of data that is trans-
ferred prior to migrating the task, and hence limits the latency of task
migration.

TTh denotes the maximum latency of task migration.

For the design parameters N and B, we have chosen the values 8 and 4
arbitrarily. Optimal parameter values needs to be derived through design-
space exploration, which is beyond the scope of this thesis.

Algorithms 9 and 10 show the pseudo-code for the three-phase policy:

Phase 1: Until the specified maximum migration delay is reached, do the
following: First, send the N × α pages that succeed the most recently ac-
cessed page of the B most recently read blocks. Second, send small buffers
that have been read frequently, where the total number of buffers to transfer
is multiplied by

√
α. Third, send α (meaning α × 100%) of the remaining

pages that have not yet been accessed for read access in blocks where other
pages have recently been read. Fourth, send α of the blocks that have been
predominantly read after having been written.

Phase 2 pauses the task on the source core and transfers the stack and
register contents. When this has been completed, the task is resumed on
the destination core.

In Phase 3, the adaptive post-copy and page fault handler transfers selected
pages in parallel to the resumed execution and handles page faults as de-
scribed in the following: As the memory access behavior analysis shows that
a fair fraction of allocated memory might not be used anymore (other than
being freed) after the task migration, the adapted post-copy send handler
does not send the entire memory of a task. This allows to reduce the to-
tal amount of bandwidth requirements. The unified post-copy / page fault
handler transfers as follows: When a page fault occurs, the current transfer
is canceled and the missing page is sent instantaneously. For the first page
fault for this block, the missing page and the succeeding N1 × α pages are
sent. For the second page fault, the succeeding N2 × α pages are sent and
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for the third fault, the succeeding N3 × α pages are sent. From the fourth
page fault in a block, the entire block is transferred.
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Figure 7.5: Schematic view of the CARAT algorithm. N , SMax, and TTh
are design parameters.
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When this prioritized transfer of missing pages is not yet completed before
another page fault occurs in a different block, each new request is added to
a queue which is served in a round-robin fashion, weighted with the number
of page faults in each block to time-multiplex the communication with a per-
page granularity. When the prioritized transfer has completed, single-page
blocks are transferred. This accounts for the observation that applications
may use a fair number of small blocks, which could increase the page fault
count as the block-wise sending described in the page fault handler would
fail to predict accesses to them.

A state diagram that illustrates these phases is depicted in Figure 7.5.

7.4 Exploiting Temporal Patterns

CARAT migrates task transparently, i.e. no support on application level is
required. However, software-pipelined applications repeatedly process data
items. While a data item is being processed, a stage may allocate buffers
to store intermediate and output data, and may free these buffers once the
data item has been processed. Figure 7.6 illustrates this pattern, where the
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Figure 7.6: Size of the heap memory of a stage of a software pipeline. The
stage processes three data items, while its heap memory size ranges from
approx. 60 KB to approx. 840 KB. When CARAT migrates the task directly
after a data item has been processed, the amount of heap memory that must
be transferred can be reduced by approx. 93%.
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heap memory size of a task ranges between approx. 60 and 840 KB. This
temporal behavior of software pipelines can be exploited when adapting
resource allocations by migrating tasks once a data item has been processed.
To achieve this, the resource allocation methods proposed in this thesis
expose an API to the tasks to notify the system-level resource allocator
when a data item has been processed by a stage.

7.5 Summary of Task Migration

Based on a runtime-adaptive migration policy, the performance overhead of
task migration can be greatly reduced. By combining transparent, system-
level task migration with an application interface that allows to exploit
the temporal behavior of software pipelines, frequent task migrations be-
come feasible so that resources can be allocated and re-allocated at runtime.
Hence, CARAT builds an efficient foundation for runtime resource allocation
in many-core systems.
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Chapter 8

Experiments and Evaluations

This chapter details the experiments conducted to evaluate the effectiveness
of the methods proposed in this thesis and is organized as follows:

After discussing the experimental setup in Section 8.1, Section 8.2 explains
the implementation of our methods on Intel’s Single-Chip Cloud Computer
(SCC) [43]. Section 8.3 explains the many-core system simulator used in
the experiments. The benchmark applications that have been used for the
experiments as well as their application scenario are detailed in Sections 8.4
and 8.5, respectively. To achieve a fair comparison, the state-of-the-art
resource allocation baselines were adapted as described in Section 8.6. The
performance of our methods is analyzed and compared to the state-of-the-
art in Section 8.7, while their computational and communication overheads
are discussed in Sections 8.8 and 8.9, respectively. Finally, Section 8.11
concludes this chapter.

8.1 Setup

Our experiments have been conducted on Intel’s Single-Chip Cloud Com-
puter (SCC) [43] and using a high-level many core simulator.

The SCC contains 48 cores which are connected with a Network-on-Chip
(NoC). Its architecture is described in detail in Section 8.2.

Our high-level many core simulator executes task traces collected on the
SCC and simulates the network-on-chip interconnect. The simulator delivers

105
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accurate information on the application- and system throughputs as well
as on the communication volumes and overheads (algorithm runtimes have
been collected on the SCC). It runs on a six-core AMD Opteron™8431 CPU
(2.4 GHz) with 64 GB DDR3 RAM. The implementation of our simulator
is described in Section 8.3.

The SCC allows measuring the computational overhead of our methods ac-
curately, but as it integrates 48 cores, we cannot analyze the system through-
puts and the communication overhead for larger systems. However, we mea-
sured the computational overhead on the SCC even for (virtually) large sys-
tems because these computations do not demand to dispose of the cores
physically.

The following experiments have been conducted on the SCC:

• Computational overhead for up to 1024 cores.

• Throughput of the methods for up to 48 cores.

• Fusion/fission overheads.

The experiments conducted using our simulator include:

• Communication overhead.

• Throughput of our methods for systems with 128, 512 and 1024 cores.

8.2 Implementation on the SCC

Intel’s Single-Chip Cloud Computer (SCC) integrates 48 x86 cores on a
single chip [43] (45nm process, 1.3 billion transistors). The chip contains
24 tiles in 6 columns and 4 rows. Each tile contains two P54C cores, a
network interface, a router, 16 KB Message Passing Buffer (MPB), two 256
KB L2 caches, and two cache controllers (CC), as shown in Figure 8.1. The
Thermal Design Power (TDP) is 125W at 1 GHz (Mesh at 2 GHz). Access
to off-chip DRAM (up to 32 GB) is facilitated via four off-chip memory
controllers. Each core has a private address space of 1 GB, and memory
access is maintained by an address Look Up Table (LUT). The virtual
address space of each core is paged into 256 pages of 16 MB, and the LUT
provides address translation and routing information. These LUTs can be
programmed dynamically. There is no hardware support for cache coherence
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on the SCC. A configuration of the virtual address space of a core is shown
in Figure 8.2.

A Network-on-Chip (NoC) connects the tiles with a 2D-mesh topology. The
data links are 16 Bytes wide (plus a 2 Byte wide sideband channel) with a
frequency of up to 2 GHz. The latency between hops is 4 cycles (2ns), and
the bisection bandwidth of the NoC is 2 TB/s.

Message passing is facilitated via the Message Passing Buffers (MPB) on
each tile. The size of the MPB coincides with the size of the L1 caches.
Thus, MPB form a coherent, shared memory space that totals 384 KB for
the entire chip.

The Single-Chip Cloud Computer runs a customized single-core Ubuntu-
based Linux for the 48 individual cores. To boot a core, an image of the
operating system is loaded into its virtual address space and then, registers
are reset and execution starts at a defined address.

The Single-Chip Cloud Computer supports inter-core communication using
sockets and via a proprietary communication infrastructure, RCCE.

To communicate via sockets, a (virtual) ethernet adapter (RCKMB) is exposed
to the operating system. Libraries such as MPI build on top of this (virtual)
ethernet adapter. This way, traditional communication protocols (such as
TCP/IP) can be used for communication between cores.

RCCE is Intel’s message passing Application Programming Interface (API)
for the Single-Chip Cloud Computer and can be used with and without an
operating system [113]. It uses the shared Message Passing Buffers (MPB)
for communication. Accesses to the MPB are cached in L1 but bypass L2
caches. RCCE’s programming model is a producer/consumer based, while a
consumer has to poll the corresponding MPB for new data to arrive. RCCE
was designed for use without operating systems and thus, its polling commu-
nication mechanisms can severely degrade the performance of multithreading
operating systems.

8.3 Many-core System Simulator

Experiments for systems with a large number of cores are conducted using a
high-level many-core system simulator. This simulator executes application
traces that have been collected on Intel’s Single-Chip Cloud Computer [43].
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Figure 8.2: Address space layout of each core of the SCC. The “Boot”
memory region as well as the 1 GB private memory map to the corresponding
memory controller MCn, while the shared memory region maps to the VRC
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110 CHAPTER 8. EXPERIMENTS AND EVALUATIONS

The architecture that is simulated corresponds to Intel’s Single-Chip Cloud
Computer [43]: P54C cores connected via a 2D-mesh Network-on-Chip with
X-Y routing and a link speed of 25 GiB/s with 2 cycles latency per hop. A
more detailed description of this simulator can be found in Appendix A.

8.4 Benchmark Applications

For the experiments, a set of complex parallel real-world applications is used
which is shown in Table 8.1.

The application “automotive” is a vision-based application that finds, tracks
and highlights objects visually in a stream of stereo video data. It per-
forms image enhancements and rectification followed by Harris Corner De-
tection and Scale-Invariant Feature Transform (SIFT). Isopolar-geometry-
based stereo matching is used to calculate the depth information of inter-
esting points, while a pattern matching algorithm allows to recognize and
track objects and to highlight them visually. The algorithms have been
taken from [6].

“h264ref” is the reference encoder implementation of the video standard
H.264. H.264 is well-established standard for encoding videos. It performs
macroblock-based motion estimation and -compensation. The “h264ref” ref-

Name Stages Source

“automotive” 21 see Section 8.4

“h264ref” 4 SPEC CPU 2006 [39]

“lame” 4 MiBench [38]

“PGP” 5 MiBench [38]

“Sphinx 3” 22 SPEC CPU 2006 [39]

Table 8.1: Overview of the benchmark applications which are used for the
experiments.
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erence implementation is part of the SPEC CPU 2006 benchmark suite [39]
and has been parallelized into a software pipeline manually.

The audio encoder “lame”, which is part of the MiBench benchmark suite [38],
is a free software encoder for converting uncompressed waveform data into
MP3 audio. MP3 (MPEG-2 Audio Layer III) is a lossy audio encoding stan-
dard that uses a psychoacoustic model to discard information that is less
likely to be noticed by humans. The application was parallelized manually
to form a software pipeline which comprises 5 stages.

“PGP” is a data de-/encryption application (“Pretty Good Privacy”) based
on the OpenPGP standard which has been published as RFC 4880 [29].
“PGP” performs data hashing and compression followed by symmetric-key
and public-key cryptography. The implementation is part of the MiBench
benchmark suite [38]. The parallel, software-pipelined version that was used
for our experiments contains 5 stages.

“Sphinx 3”, which is part of the SPEC CPU 2006 benchmark suite [39], is
a speech recognition application based on hidden markov models (HMM).
We parallelized it manually to form a software pipeline that comprises 22
stages.

These applications have been selected because they perform complex com-
putation on a continuous stream of input data. Furthermore, they represent
a wide variety of applications from embedded object tracking over video-,
audio-, and voice processing to data security. Additionally, the selected
applications can be easily parallelized to form software pipelines.

8.5 Application Scenario

For the experiments, multiple instances of the benchmark applications are
created so that the total number of stages exceeds the number of cores by
at least a factor of 3 (this number was chosen arbitrarily to establish a
considerable system load).

For systems that comprise 128, 512, and 1024 cores, this corresponds to 35,
138, and 275 concurrently running applications, respectively.

Each instance of a benchmark application is associated with a set of input
data. For the automotive application, three different input video sequences
of pre-captured color stereo video with a resolution of 640x480 pixels at 30
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frames per second are used. The input video sequences correspond to high,
medium, or low computational requirements of the application because the
scene-inherent complexity differs largely among them. The impact of the
different input scenes on the computational requirements of each stage is
shown in Figure 8.3.
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(d) The computational requirements of the pipeline stages that result from the
three different input scenes.

Figure 8.3: (a)-(c) show still images from three different input scenes (a
color video sequence with a resolution of 640x480 in YUV format) for the
“automotive” application. The computational complexity that is caused
by these input scenes can be classified into high computational complex-
ity (a), medium computational complexity (b), and into low computational
complexity (c). The resulting computational requirements of the individual
stages are shown in (d).



8.6. STATE-OF-THE-ART BASELINES 113

The input video sequences of the “h264ref” application are in the YUV
format and include a popular reference video sequence, “Foreman” (QCIF
resolution) and scenes from a movie published under the Creative Commons
Attribution 3.0 license, “Big Buck Bunny” [91] in 1920x1080, 1280x720, and
854x840 resolution.

For “lame”, “PGP”, and “Sphinx 3”, the data that is included in the corre-
sponding benchmark suites, the MiBench benchmark suite [38] and SPEC
CPU 2006 [39], are used.

8.6 State-of-the-art Baselines

The resource allocation methods proposed in this thesis are compared to two
state-of-the-art resource allocation methods, AIAC [7] and DistRM [64].
AIAC balances the computational load among cores by exchanging work
items based on a distributed heuristic. DistRM shifts the responsibility
to balance load among cores to the individual applications. It relies on
the applications to supply a function that calculates their throughput for
any given set of cores that it could be allocated. It then decides upon an
allocation of cores to the applications, and the applications are responsible
to allocate these cores to their individual tasks.

The rest of this section details how these methods for runtime resource
allocation can be adapted to achieve a fair comparison with the methods
proposed in this dissertation.

AIAC [7] This method for balancing computational load exchanges work-
load between physically neighboring cores to balance the computational load
evenly. To adapt this method for software-pipelined applications in many
core systems, workload is exchanged by migrating pipeline stages when the
computational load is not balanced. This is achieved by comparing the load
of adjacent cores and migrating a pipeline stage i when the difference of
the summed computational requirements among all stages on each core ex-
ceeds ci. To achieve a fair comparison, the assumption that only consecutive
stages may be allocated to the same core is relaxed. For the adapted imple-
mentation of AIAC, a core may execute any stage from any application.
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DistRM [64] This distributed resource management method distributes
cores among applications, but relies on the applications to themselves decide
how to distribute their tasks accordingly. Therefore, the optimal fusion al-
gorithm proposed in Section 5.1 to achieve a fair comparison. Consequently,
only the number of cores assigned to each application differs between Dis-
tRM and our methods, while the fusions of pipeline stages are carried out
identically.

DistRM is adapted by using the tables according to Section 5.1. As DistRM
remains in local optima if the speed-up of an application does not increase
with another core (even if this was the case for a larger number of additional
cores), marginal improvements are reported to the DistRM algorithm (an
ε = 5 ∗ 10−4 is chosen arbitrarily) as long as the number of cores does not
exceed the number of stages of the corresponding application. Using the
described adaptions, fair comparison to DistRM can be achieved.

8.7 Comparison to the State-of-the-art

In the following, the system throughput that results from using the methods
for resource allocation that are presented in this thesis is compared to the
state-of-the-art methods of AIAC [7] and DistRM [64]. This section focuses
on two major scenarios: the first scenario allows to analyze how the resource
allocation methods adapt to changing application scenarios. The second
scenario allows to analyze the saturation of memory controllers when using
the different methods, and the throughput that results from them.

Scenario: Adapting to unpredictable changes

In complex dynamic scenarios, applications may be started or stopped un-
predictably and the resource requirements of their individual tasks may vary
significantly. To compare the methods proposed in this thesis to the state-of-
the-art methods AIAC [7] and DistRM [64], the resulting system throughput
is compared for following scenario: during runtime, the input data for the
applications is switched repeatedly, which results in changing resource re-
quirements of the individual tasks. After 10 seconds, 9 out of 35 running
applications (approx. 25%) are stopped. This scenario assumes a system
with 128 cores where the memory controllers cannot be saturated. This is
important to analyze the adaptivity of the methods in isolation, i.e. without
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Figure 8.4: Comparison of the system throughput that results from using
the resource allocation method proposed by this dissertation, AIAC [7], and
DistRM [64]. For a scenario of a 128-core many-core system where the appli-
cation scenario changes unpredictably after 10 seconds (25% of the 35 run-
ning applications are stopped), both the centralized method of Section 5.2
as well as the highly scalable, distributed method of Section 5.3 can achieve
a significant improvement over the state-of-the-art methods AIAC [7] and
DistRM [64].
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effects from saturated memory controllers. Figure 8.4 shows the resulting
system throughput when CeRA (Section 5.2) is used for allocating resources,
when using DiRA (Section 5.3), AIAC [7], and when DistRM [64] allocate
resources. As DiRA reduces the overhead by trading the optimum for a high
degree of scalability, it results in a slightly reduced throughput as compared
to the centralized method CeRA (Section 5.2).

Mainly due to its obliviousness to inter-task communication, AIAC [7] re-
sults in a much lower system throughput throughout the experiment. It
does adapt the resource allocation when applications stop, but this adaption
takes a considerable amount of time (approx. 3 seconds), and the maximum
throughput amounts to only approx. 73% of the throughput that results
when employing our centralized method. As DistRM [64] has been adapted
in a way that fuses stages considering both computation and inter-task com-
munication so that the throughput of an application is optimal given its
set of cores, it significantly improves upon AIAC [7]. It results in a sys-
tem throughput of approx. 82%-85% as compared to the centralized CeRA
method, and approx. 91% compared to the distributed DiRA method.

Scenario: Comparing self-organization to system-controlled re-
source allocation

Self-organizing resource management uses local observations and actions to
achieve global optimization without controlling instances. In the follow-
ing, we compare our self-organizing Pipelets (Section 6.2) to our system-
controlled CeRA method (Section 5.2) and to the system-controlled state-of-
the-art DistRM [64] and AIAC [7] resource allocation methods. As AIAC [7]
does not employ controlling instances and relies solely on local information,
it can be regarded as a self-organizing method. For a system with 1024 cores,
Figure 8.5 compares the throughput that results from using these methods.
These results can be interpreted to quantify the performance loss of self-
organizing approaches. It can be observed that the Pipelets significantly
improve the throughput over the state-of-the-art AIAC [7] method by ap-
prox. 143%. In this experiment, the Pipelets result in a system throughput
of approx. 63.1% of the throughput that results from the centralized CeRA
method, which can be attributed to its lack of global information. Further-
more, the Pipelets result in a throughput of approx. 95.5% of the system-
controlled, distributed DistRM [64] method. While they cannot achieve a
system throughput that can be compared to methods that exploit global
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Figure 8.5: Comparison of self-organization to system-controlled resource
allocation. The self-organizing Pipelets of Section 6.2 are compared to the
centralized method of Section 5.2 as well as to the state-of-the-art resource
allocation methods AIAC [7] and DistRM [64]. In this experiment of a
system with 1024 cores, the Pipelets result in a throughput of approx. 64% of
the centralized, system-controlled CeRA method. The distributed, system-
controlled DistRM [64] method results in approx. 68% of the throughput of
CeRA. The distributed AIAC [7] method results in a throughput of approx.
37% of CeRA.
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information, Pipelets can be regarded as an effective method for allocating
the resources of a many-core system in a self-organizing way.
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Figure 8.6: Comparison of the system throughput when balancing the load
of the memory controllers in a system with 1024 cores. In this experiment,
each memory island contains 64 cores. MOMA improves the throughput by
1.29x over CeRA, by 1.61x over DistRM [64], and by 3.95x over AIAC [7].

Scenario: Saturated memory controllers

When multiple memory-intensive applications run concurrently, memory
controllers may operate in saturation. This may occur especially in sys-



8.7. COMPARISON TO THE STATE-OF-THE-ART 119

tems that comprise a large number of cores and thus, when the cores that
belong to each memory island may require more memory bandwidth than
the memory controller can deliver. In the following, the MOMA method
proposed in Section 5.4 to jointly optimize for computation, communication
and memory bandwidth is compared to CeRA, DeRA and to the state-of-
the-art methods AIAC [7] and DistRM [64]. This experiment is performed
for systems with 1024, 512, and 128 cores.
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Figure 8.7: Comparison of the system throughput when balancing the load
of the memory controllers in a system with 512 cores. In this experiment,
each memory island contains 32 cores. MOMA improves the throughput by
1.09x over CeRA, by 1.35x over DistRM [64], and by 4.11x over AIAC [7].
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Figure 8.6 compares the system throughput of the resource allocation meth-
ods proposed in this thesis to the state-of-the-art for a system with 1024
cores and 16 memory islands. Each memory islands contains 64 cores and
when resource allocation does not take the bandwidth capacity of mem-
ory controllers into account, memory controllers may operate in saturation.
This can severely degrade the throughput of the system. In this experi-
ment, the heuristic proposed in Section 5.4 improves the system throughput
by 1.29x over the CeRA resource allocation of Section 5.2, by 1.61x over
DistRM [64] and by 3.95x over AIAC [7], respectively. Thus, a significant
improvement can be observed.

Figure 8.7 shows the system throughput that can be observed in an exper-
iment for a system that comprises 512 cores and 16 memory islands (each
memory island contains 32 cores). The improvement in system throughput
that results from balancing the memory requirements of the individual stages
among the memory islands amounts to 1.09x as compared to the CeRA re-
source allocation method of Section 5.2, 1.35x as compared to DistRM [64],
and 4.11x as compared to AIAC [7].

For a system that comprises 128 cores, however, the 8 cores that form a
memory island cannot force their memory controller to operate in satura-
tion. As a result, heuristically balancing the memory requirements of the
individual stages among the memory islands results in a degradation of ap-
prox. 5% over the CeRA resource allocation method of Section 5.2. An
improvement of 2.13x and 1.12x can be observed over AIAC [7] and Dis-
tRM [64], respectively.

Figures 8.9, 8.10, and 8.11 show the average variance of the load of all
memory controllers over time, which serves as an indicator for their load
balance, in order to explain the improved system throughput that can be
observed. In a system that comprises 1024 cores, the variance of the load
of memory controllers is significantly reduced as compared to the CeRA
resource allocation method of Section 5.2 and DistRM [64]. The average
variance of the load of the memory that results from employing AIAC [7] is
lower because AIAC [7] results in a low throughput of the applications and
thus, their memory requirement is lower.

As shown in Figure 8.10, the gap between the variances is smaller in systems
that comprise 512 cores. In this experiment, the memory-aware resource
allocation of Section 5.4 and the CeRA resource allocation method of Sec-
tion 5.2 achieve a very low variance and thus a good load balance among
the memory controllers.
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8.8 Computational Overhead

This section assesses the computational overhead of the methods proposed
in this thesis.
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Figure 8.8: Comparison of the system throughput when balancing the load of
the memory controllers in a system with 128 cores. In this experiment, each
memory island contains 16 cores. As the memory controllers never operate
in saturation, MOMA decreases the system throughput by 0.95x over CeRA.
Over DistRM [64] and AIAC [7], MOMA improves the throughput by 1.12x
and 2.13x, respectively.



122 CHAPTER 8. EXPERIMENTS AND EVALUATIONS

Figure 8.12 compares the computational overhead of the CeRA resource
allocation method of Section 5.2, to the computational overhead of the dis-
tributed DiRA resource allocation method of Section 5.3. The computa-
tional overhead of CeRA grows to approx. 37 seconds for allocating the
resources of a system with 1024 cores and 128 applications. This high
computational requirement results from the computational complexity of
O(K,M2) where K is the number of applications and M is the number of
cores. Table 8.2 contains measured values for this experiment. Infeasible
combinations, i.e. combinations where the number of applications exceeds
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Figure 8.9: Comparison of the variance between the load of the memory
controllers in a system with 1024 cores.
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the number of cores, which violates the assumption of K ≤M , are in paren-
theses.

8.9 Communication Overhead

The communication overhead of using the proposed CeRA (Section 5.2) and
DiRA (Section 5.3) methods is shown in Figure 8.13. The proposed MOMA
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Figure 8.10: Comparison of the variance between the load of the memory
controllers in a system with 512 cores.
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0.18

0.30

0.55

0.44

0.64

0.57

0.82

(b) Runtime of the
proposed DiRA method
(Section 5.3) [ms] for all
numbers of applications

Table 8.2: The measured computational overhead of the proposed CeRA
method of Section 5.2 in seconds and of the distributed, hierarchical DiRA
method of Section 5.3 in milliseconds. The runtime of the DiRA method
does not depend on the number of applications. Infeasible combinations
(i.e. more applications than cores) are denoted by a dash.
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method to account for the bandwidth capacity of memory controllers (Sec-
tion 5.4) does not introduce additional overhead and thus, its overhead is
identical to the overhead of CeRA.

The communication overhead of CeRA and DiRA reach approx. 0.25‰ and
approx. 0.1‰, respectively, of the total communication volume (i.e. all com-
munication that is observed in the system, which includes the overhead of
the resource allocation methods as well as the inter-core communication of
the running applications). This corresponds to approx. 365 KB/s and 138
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Figure 8.11: Comparison of the variance between the load of the memory
controllers in a system with 128 cores.
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KB/s of communication volume for the methods, respectively, as compared
to the total communication volume of approx. 1455 MB/s for a system that
comprises 1024 cores and 275 concurrently running applications with a total
of 3080 stages.

8.10 Task Migration

The CARAT task migration mechanism proposed in Chapter 7 forms a
foundation for adapting resource allocations at runtime. The measured over-
heads for adapting resource allocations, which corresponds to the overhead
of fusions and fissions of stages, are shown in Table 8.4.

The column “Carried State” contains the size of data, in KB, that must be
transferred between cores when a task is migrated. This includes the size of
the stack and registers and the heap memory that is transferred by CARAT,
but excludes the size of the executable file. The transfer of the executable
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Figure 8.13: A comparison of the communication overhead of the proposed
CeRA (Section 5.2) and DiRA (Section 5.4) methods for resource allocation,
expressed as a percentage of the total communication volume of the system.
Table 8.3 contains the measured values.
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# Cores 16 32 64 128 256 512 1024

Applications

Stages

App. Comm [MB/s]

CeRA (Section 5.2) [KB/s]

DiRA (Section 5.4) [KB/s]

5

56

28.3

0.64

0.69

10

112

56.6

2.27

1.58

20

224

98.9

5.53

3.34

35

392

198.1

15.2

6.79

70

784

367.3

39.2

19.0

140

1568

792.4

178.5

54.2

275

3080

1455.0

365.0

138.0

Table 8.3: Communication overhead [KB/s] of our CeRA (Section 5.2) and
DiRA (Section 5.4) methods for resource allocation and the total communi-
cation volume of the running applications [MB/s] for systems with 16, 32,
64, 128, 256, 512 and 1024 cores.

file is excluded because in many cases, this executable is already loaded on
the destination core.

This is the case for fusion operations and for fissions in case any stage of the
application is already allocated to the destination core. This is expressed
by the columns “Old Core” and “New Core”, where “New Core” means that
the executable file must be loaded and started, and “Old Core” expresses
otherwise.

8.11 Summary of Experiments and Evaluations

In this chapter, the experiments that have been conducted to compare the
contributions of this thesis to the state of the art have been illustrated and
discussed. The experimental evidence shows that the proposed methods
can significantly improve upon existing methods in many scenarios. Fur-
thermore, they show that this can be achieved with a very low runtime
overhead, both in terms of computation as well as in terms of communica-
tion. Complex, real-world applications have been used for all evaluations so
that reliable evidence was obtained.
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Carried State [KB] Overhead [ms]

Application

“automotive”

“h264ref” [39]

“lame” [38]

“PGP” [38]

“Sphinx 3” [39]

Min Max Avg σ Old Core New Core

1

13

9

1

12

32

53

10

27

22

19

27

9

12

17

15.21

22.73

1.32

9.11

4.21

0.63

1.07

0.18

0.30

0.51

22

76

19

66

44

Table 8.4: Size of the state, in KB, that is carried among processing multiple
data items and the resulting overhead of fusing stages. When a core is
allocated to the application, it may have been allocated to the application
before (“Old Core”) or not (“New Core”). In the latter case, the overhead
is significantly larger as the executable file needs to be started on this core.

8.12 Critical Discussion and Limitations

Main Advantages The methods and algorithms proposed in this the-
sis compose a system that allows to effectively and efficiently allocate the
resources of many-core systems. It addresses complex software-pipelined,
memory-intensive applications even in dynamic scenarios. As a result, this
system leads to optimal or near-optimal throughput in many cases. Signif-
icant improvements over the state-of-the-art can be observed as the meth-
ods and algorithms proposed in this thesis optimize jointly for computation
and communication while accounting for the limited bandwidth of multiple
memory controllers. A specific focus is put on distributed, robust resource
allocation in a way that is resilient to malfunctioning cores.

Furthermore, this thesis shows how resource allocation can adapt to drastic
changes in the resource requirements of applications at runtime. This adap-
tivity addresses scenarios where applications may be started or stopped and
may change their resource requirements drastically and unpredictably at
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any time. This thesis shows how complex scenarios that consist of multiple
parallel, complex, memory-intensive applications can be addressed. These
advantages have been extensively described, argued and verified experimen-
tally in this thesis.

Limitations Despite these important advantages, the methods and algo-
rithms proposed in this thesis face some limitations in their applicability.
Firstly, this thesis assumes that all applications form software pipelines. A
linear execution model is assumed where each stage has at most one prede-
cessor and one successor. This limitation is mainly induced by the applica-
tion model of Section 4.1. This model allows to calculate the throughput of
each application for all possible fusions of stages. In order to alleviate this
limitation, future work should focus on extending this model. Ultimately,
when applications could calculate their throughput and the allocation of
their tasks to a given number of cores, the applicability of the methods and
algorithms proposed in this thesis could be greatly extended for a broader
spectrum of applications beyond software pipelines.

Another limitation is posed by the focus on the performance of a system.
This thesis regards performance as a central optimization criterion and does
not address concerns such as thermal management or power consumption.
While performance is often a key factor, both concerns are of considerable
importance in some systems. In such cases, this thesis relies on other, orthog-
onal means to address these concerns, e.g. Dynamic Voltage and Frequency
Scaling (DVFS) and sufficient external cooling.

Furthermore, the algorithms and methods proposed in this thesis inherently
operate on a temporal granularity, i.e. the minimum time between adapt-
ing resource allocations. As such, the algorithms observe the system state
and potentially adapt resource allocations each time a data item has been
processed by a stage. Hence, this implicitly assumes a considerable through-
put. In scenarios where all running applications have very low throughputs,
resource allocation can only be adapted infrequently.

Lessons Learned From a careful examination of the advantages and lim-
itations of the methods and algorithms proposed in this thesis, a number of
lessons can be learned. Most importantly, this thesis shows that resource
allocation plays a key role for the performance of many-core systems. As
such, it is of crucial importance for the success of many systems, including
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but not limited to embedded many-core systems.

The role of resource allocation becomes even more important when future
systems integrate a growing number of cores, when applications become
more and more complex and memory-intensive, and when hardware becomes
unreliable.

Furthermore, this thesis strongly supports the finding that the computa-
tional requirements of tasks, their communication behavior, as well as their
bandwidth requirements need to be accounted for jointly.

Despite the contributions of this thesis, important challenges remain for
applications that cannot be modeled efficiently as software pipelines, and
for systems where the performance is not the most important objective.
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Chapter 9

Conclusion

This thesis presents novel concepts, methods, and mechanisms for efficiently
allocating the resources of many-core systems. The contribution of this
thesis improves upon the state of the art by exploiting properties of software
pipelines for resource allocation.

Specifically, the centralized CeRA method and its distributed, hierarchical
extension DiRA are proposed to allocate resources. Recent research along
with this thesis identifies a possible saturation of memory controllers as a
major issue for the performance of large many-core systems. Hence, this
thesis addresses this challenge by proposing the MOMA method. MOMA
allows to optimize resource allocation jointly for computation, communica-
tion, and for avoiding the saturation of memory controllers in systems with
multiple memory islands.

Additionally to these system-controlled methods, self-organizing methods for
resource allocation are proposed. Self-organization is a powerful paradigm
to manage complex systems. To exploit the benefits of self-organization,
this thesis proposes Pipelets as self-organizing stages of software pipelines.
Pipelets allocate system resources at runtime through local observations and
limited interactions. As a next step, self-organizing software pipelines are
proposed to combine the benefits of system-controlled and self-organizing
methods. They form an extension to the DiRA method and employ self-
organization to increase the resilience of resource allocation against unreli-
able hardware. This way, ad-hoc interaction which is limited to spatial and
temporal proximity can alleviate the problems that arise from unreliable
cores, while experiments substantiate near-optimal performance.
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In order to accurately model and to efficiently estimate the throughput
of a system for a given resource allocation, the contributions of this thesis
exploit properties of software pipelines. The most important properties that
are exploited are the linear execution pattern of software pipelines as well
as the fact that the slowest stage of a pipeline limits its throughput.

The proposed methods are able to respond to changing resource require-
ments of tasks and to changing application scenarios by adapting resource
allocations at runtime. Such an adaption of resource allocation necessitates
efficient task migration. To address this issue, a novel mechanism for task
migration, CARAT, is presented that allows to frequently adapt resource
allocations at runtime.

The experiments show that the proposed methods allow to significantly in-
crease the performance of a many-core system over the state of the art.
Furthermore, very low overhead both in terms of computation and commu-
nication can be observed, which strongly supports the formal complexity
analysis of the proposed algorithms. Hence, efficient resource allocation can
be performed even for systems with more than thousand cores.

This dissertation allows to draw the following conclusions:

• Resource allocation can benefit greatly from exploiting properties of
software pipelines.

• It is crucial to jointly optimize for computation, communication, as
well as for the saturation of memory controllers in order to efficiently
employ many-core systems.

• For large systems, optimal resource allocations are hardly possible.
However, near-optimal resource allocations can be achieved with low
overheads.



Appendix A

Many-core System Simulator

In this thesis, a behavioral high-level many-core system simulator is used
for many experiments. It is written in C++ and executes application traces
that contain traces of computation, communication, and memory accesses.

The computation and communication traces have been obtained on the In-
tel Single-Chip Cloud Computer, while memory traces have been obtained
as detailed in Appendix B. It simulates Intel P54C cores that are inter-
connected with a 2D mesh Network-on-Chip (NoC). The parameters for
the link width (16 Bytes), router latency (2 hops) and frequency (1.6 GHz)
correspond to the properties of the Intel Single-Chip Cloud Computer. Fur-
thermore, it simulates 16 equally-sized memory islands, where each memory
controller has a bandwidth constraint of 128 GiB/s, similar to the band-
width constraint of many state-of-the-art GDDR5 controllers. Similar to
Intel’s Single-Chip Cloud Computer [43], the comparably slow individual
cores cannot saturate the fast memory controllers in systems with 128 cores
and less (8 cores per memory island) [79].

Inside this simulator, the proposed resource allocation methods CeRA (Sec-
tion 5.2), DiRA (Section 5.3), MOMA (Section 5.4), as well as the state-
of-the-art methods DistRM [64] and AIAC [7] have been implemented. To
migrate tasks between cores, data with the size of the task context is sent
over the NoC. Each application periodically reports its throughput.
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Figure A.1: Screenshot of the high-level many-core system simulator



Appendix B

Sampling of Memory
Accesses

B.1 Trace File Formats

B.1.1 Memory Traces

Memory traces are binary files. The data structure used for storing the
entries is shown in Listing B.1: The first field, cType, contains a 1 if the
entry corresponds to an allocation, a 2 for a free, a 3 for a read and a 4
for a write access. The field cThreadID contains the ID of the thread that
allocated/freed/accessed the memory. This is relevant for multi-threaded
programs only. The uTimestamp is a 64-bit unsigned integer that contains
the number of clock cycles elapsed since starting the application. pAddr
contains the address of the memory that is allocated/freed/accessed, and
pCodeAddr contains the address of the corresponding executable instruc-
tion. pCoreAddr can be used to find the position in the source code that is
responsible for the memory access or allocation/free. The last field of the
structure is a union that contains either the base address (pBaseAddr) of
the accessed memory block, or its size (uSize), depending on the value of
cType. For cType ∈ {1, 2}, uSize is valid. Otherwise, pBaseAddr is valid.

Using the file format described above, accurate memory traces can be stored
easily. The constant size of the memory structure allows to pre-allocate
a buffer without requiring dynamic memory allocation at runtime, which
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significantly simplifies the collection of memory traces.

Listing B.1 The data structure used for storing memory traces
1: typedef struct {
2: unsigned char cType; // access type
3: unsigned char cThreadID; // thread ID
4: unsigned __int64 uTimestamp; // time stamp
5: void *pAddr; // memory location
6: void *pCodeAddr; // code address
7: union {
8: void *pBaseAddr; // base address
9: unsigned int uSize; // size of the block

10: };
11: } MEMLOG, *LPMEMLOG;

B.1.2 Execution Traces

Execution traces of applications are stored in text files. Each file contains a
header, followed by a collection of stage information structures. The struc-
ture of the file header is shown in Listing B.2: the number of stages of the
software-pipelined application is denoted by NUM STAGES, the PROGRAM PATH
contains the absolute path of the executable. Furthermore, COMMAND LINE
contains the command line used for collecting the execution trace. DATE
contains the ISO 8601-formatted date string of the collection.

Listing B.2 Execution trace file header
1: NUM_STAGES = integer // number of stages
2: PROGRAM_PATH = string // executable path
3: COMMAND_LINE = string // command line
4: DATE = string // date [ISO 8601]

Similarly to the file header, each stage is described by an information struc-
ture shown in Listing B.3. Each stage information structure starts with a
string, [STAGE], followed by fields that characterize the stage: INPUT SIZE
contains the number of bytes that are received from the direct predecessor,
if applicable, for processing a data item. COMPUTE TIME contains the number
of milliseconds required for the computation of the stage. OUTPUT SIZE con-
tains the number of bytes that are sent to the direct successor, if applicable,
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for each data item that has been processed. In order to allow a co-simulation
of execution and memory traces, MEM TRACE FILE contains the path to the
corresponding memory trace.

Listing B.3 Execution trace stage structure
1: [STAGE]
2: INPUT_SIZE = integer // input size [bytes]
3: COMPUTE_TIME = double // time [ms]
4: OUTPUT_SIZE = double // output size [bytes]
5: MEM_TRACE_FILE = string // path to memory trace
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Alex Pajuelo, Francisco J. Cazorla, Mario Nemirovsky, and Mateo
Valero. Optimal Task Assignment in Multithreaded Processors: A

http://bigbuckbunny.org
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://openmp.org/wp/about-openmp/
http://www.open-mpi.org/software/ompi/v1.6/
http://www.open-mpi.org/software/ompi/v1.6/


152 BIBLIOGRAPHY

Statistical Approach. In Proceedings of the ACM International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 235–248, 2012.

[99] Mohan Rajagopalan, Brian T. Lewis, and Todd A. Anderson. Thread
Scheduling for Multi-Core Platforms. In USENIX HotOS, 2007.

[100] Michael Richmond and Michael Hitchens. A new process migration
algorithm. SIGOPS Operating Systems Review, 31(1):31–42, 1997.

[101] Sartaj Sahni and Teofilo Gonzalez. P-complete approximation prob-
lems. Journal of the ACM, 23(3):555–565, July 1976.

[102] Pardip Kumar Sahu, Putta Venkatesh, Sunilraju Gollapalli, and San-
tanu Chattopadhyay. Application Mapping onto Mesh Structured
Network-on-Chip using Particle Swarm Optimization. In Proceedings
of the IEEE Computer Society Annual Symposium on VLSI, pages
335–336, 2011.

[103] Hartmut Schmeck. Organic Computing - A New Vision for Distributed
Embedded Systems. In Proceedings of the IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing (ISORC),
pages 201–203, 2005.

[104] Lars Schor, Iuliana Bacivarov, Devendra Rai, Hoeseok Yang, Shin
haeng Kang, and Lothar Thiele. Scenario-based design flow for map-
ping streaming applications onto on-chip many-core systems. In Pro-
ceedings of the IEEE/ACM International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems (CASES), pages
71–80, 2012.

[105] Thomas Serre and Maximilian Riesenhuber. Realistic Modeling of
Simple and Complex Cell Tuning in the HMAX Model, and Implica-
tions for Invariant Object Recognition in Cortex. Technical report,
Massachusetts Institute of Technology, July 2004.

[106] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg
Henkel. Mapping on Multi/Many-core Systems: Survey of Current
and Emerging Trends. In Proceedings of the IEEE/ACM Design Au-
tomation Conference (DAC), 2013.

[107] Jonathan M. Smith. A Survey of Process Migration Mechanisms.
SIGOPS Operating Systems Review, 22(3):28–40, 1988.



153

[108] Allan Snavely and Dean Tullsen. Symbiotic Jobscheduling for a Si-
multaneous Multithreading Processor. In Proceedings of the ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 234–244, 2000.

[109] Allan Snavely, Dean M. Tullsen, and Geoff Voelker. Symbiotic job-
scheduling with priorities for a simultaneous multithreading processor.
In Proceedings of the ACM Special Interest Group for the Computer
Systems Performance Evaluation Community (SIGMETRICS), pages
66–76, 2002.

[110] Jan Stender, Silvan Kaiser, and Sahin Albayrak. Mobility-based run-
time load balancing in multi-agent systems. In Proceedings of the
International Conference on Software Engineering and Knowledge En-
gineering (SEKE), pages 688–693, 2006.

[111] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems. IEEE
Transactions on Computing in Science and Engineering, 12(3):66–73,
2010.

[112] William Thies, Vikram Chandrasekhar, and Saman Amarasinghe. A
Practical Approach to Exploiting Coarse-Grained Pipeline Parallelism
in C Programs. In Proceedings of the IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 356–369, 2007.

[113] Rob F. van der Wijngaart, Timothy G. Mattson, and Werner Haas.
Light-weight Communications on Intel’s Single-Chip Cloud Computer
Processor. ACM SIGOPS Operating Systems Review, 45(1):73–83,
February 2011.

[114] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Fi-
nan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote,
and N. Borkar. An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS. In Proceedings of the IEEE International Solid-State Circuits
Conference (ISSCC), pages 98–589, 2007.

[115] William Thies and others. StreamIt: A Language for Streaming Ap-
plications. In Proceedings of the International Conference on Compiler
Construction (CC), pages 179–196, 2001.

[116] Dong Hyuk Woo and H.-H.S. Lee. Extending amdahl’s law for energy-
efficient computing in the many-core era. IEEE Computer, 41(12):24–
31, 2008.



154 BIBLIOGRAPHY

[117] Yedlapalli, Praveen and Kultursay, Emre and Kandemir, Mahmut T.
Cooperative Parallelization. In Proceedings of the IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), pages
134–141, 2011.

[118] Jiali Teddy Zhai, Hristo Nikolov, and Todor Stefanov. Modeling Adap-
tive Streaming Applications with Parameterized Polyhedral Process
Networks. In Proceedings of the IEEE/ACM Design Automation Con-
ference (DAC), pages 116–121, 2011.

[119] Andreas Zwinkau and Victor Pankratius. Autotunium: An evolution-
ary tuner for general-purpose multicore applications. In Proceedings
of the IEEE International Conference on Parallel and Distributed Sys-
tems (ICPADS), pages 392–399, 2012.


	Acknowledgements
	List of Figures
	List of Tables
	List of Code Listings
	List of Abbreviations
	List of own publications included in this thesis
	Abstract
	Zusammenfassung und Übersicht der Arbeit
	Introduction
	Many-core Systems: Status Quo and Trends
	Key Challenges
	Thesis Contribution
	Outline

	Background
	Many-core System Architectures
	Homogeneous Architectures
	Heterogeneous Architectures
	Network-on-Chip (NoC)
	Memory Controllers

	Memory Models
	Shared-memory Systems
	Distributed-memory Systems

	Software-level On-chip Communication
	Shared-memory Inter-Process Communication
	Message Passing
	Berkeley Sockets

	Parallel Programming Concepts
	Terms and Definitions
	OpenMP
	OpenCL
	CUDA
	Intel Threading Building Blocks
	Threads / POSIX Threads
	Fork/Join Parallelism
	Software Pipelines
	Kahn Process Network (KPN) and Synchronous Data Flow (SDF)
	Synchronization

	Summary

	Related Work
	High-performance Many-core Systems
	Architecture-level Methods
	System-level Methods
	Application-level Methods
	Summary of High-performance Many-core Systems

	Resource Allocation
	Design-time Methods
	Runtime Methods
	Summary of Resource Allocation Methods

	Task Migration Mechanisms
	Application-level Mechanisms
	System-level Mechanisms 
	Summary of Task Migration Mechanisms

	Summary

	Models and Problem Definition
	Application Model
	Extension for Multiple Memory Islands

	Hardware Model
	Problem Definition
	Optimizing System Throughput
	Fusion of Pipeline Stages

	Summary of Models and Problem Definition

	System-controlled Resource Allocation
	Fusing Pipeline Stages
	CeRA: Centralized Resource Allocation
	Example

	DiRA: Distributed Resource Allocation
	MOMA: Allocation for Multiple Memory Islands
	Load Balancing of Memory Controllers
	Obtaining an Initial Solution (Phase 1)
	Limiting Bandwidth Excess (Phase 2)
	Allocation for Maximizing Througput (Phase 3)
	Algorithmic Complexity

	Summary of System-controlled Resource Allocation

	Self-organizing Resource Allocation
	Properties and Benefits of Self-organization
	Pipelets
	Definition of Pipelets
	Actions and Phases
	Interactions
	Runtime Estimation

	Self-organizing Software Pipelines
	Summary of Self-organization

	Task Migration
	Memory Access Behavior Analysis
	Runtime Adaptivity
	Migration Policies
	Exploiting Temporal Patterns
	Summary of Task Migration

	Experiments and Evaluations
	Setup
	Implementation on the SCC
	Many-core System Simulator
	Benchmark Applications
	Application Scenario
	State-of-the-art Baselines
	Comparison to the State-of-the-art
	Computational Overhead
	Communication Overhead
	Task Migration
	Summary of Experiments and Evaluations
	Critical Discussion and Limitations

	Conclusion
	Appendix Many-core System Simulator
	Appendix Sampling of Memory Accesses
	Trace File Formats
	Memory Traces
	Execution Traces


	Bibliography



