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Zusammenfassung

Diese Arbeit widmet sich dem Studium des nicht-newtonschen rheolo-
gischen Verhaltens von polymeren Flüssigkeiten. Ein besonderes Augen-
merk liegt dabei auf der Messung der Normalkraft/ -spannung oder
-druck (der Kraft oder des Drucks senkrecht zur Fließrichtung) einer po-
lymeren Flüssigkeit unter definierten Strömungsbedingungen.
Diese definierten Strömungsbedingungen werden mit Laborrheometern
erzeugt, z.B. die Torsions-Scherströmung eines Rotationsrheometer, die la-
minare Rohrströmung in einem rechteckigen Kanal eines Kapillarrheome-
ters und eines Extruders und die uniaxiale Dehnströmung eines CaBERs
(Capillary Break-up Extensional Rheometers). Um eine Messung der Nor-
malkraft oder -druck an diesen Geräten zu ermöglichen, werden vorhan-
dene Rheometer mit eigenen Konstruktionen erweitert. Die erreichte Sen-
sitivität der Normalkraftmessungen liegt bei ca. 5 · 10−5 N und bei der
Messung von Normaldrücken bei ca. 10−5 bar. Diese Sensitivität wird u.a.
dadurch erreicht, dass bei der hochfrequenten Datenerfassung (> 100 kHz)
die Oversamplingmethode angewendet wird. Die entsprechenden Erwei-
terungen der Rheometer werden im Detail dargestellt. Zu den konstruk-
tiven Maßnahmen zur Messung der Normalkraft oder -spannung wer-
den auch fortgeschrittene Methoden zur Datenanalyse, z.B. die Fourier-
Transformation oder die Autokorrelationsfunktion, angewendet.
Anhand von Messungen von verschiedenen Polystyrol- und Polyethylen-
proben mit verschiedener molekularer Architektur wird durch Anwen-
dung der Fourier-Transformation auf die Daten der Normalkräfte bei os-
zillatorischer Scherung am Rotationsrheometer gezeigt, dass bei stark
nichtlinearer Beanspruchung höhere gerade harmonische Frequenzantei-
le im Amplitudenspektrum der Normalkräfte auftreten. Zur Auswertung
der Spektren der Normalkräfte wird ein nichtlinearer Parameter QNF ein-
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Zusammenfassung

geführt, in Analogie zum nichtlinearen Parameter Q aus den Schubspan-
nungspektren. Die Resultate der scheramplitudenabhängigen nichtlinea-
ren Parameter QNF (γ0) und Q (γ0) werden verglichen. Dabei zeigen sich
Unterschiede zwischen linearen Polymerketten und verzweigten Polymer-
ketten abhängig vom Polymer entweder bei QNF (γ0) oder bei Q (γ0).
Für Messungen am Kapillarrheometer und Extruder wird anhand von ver-
schiedenen Polyethylenproben gezeigt, dass beim Auftreten von Schmel-
zinstabilitäten charakteristische Frequenzanteile in den Fourierspektren
der zeitabhängigen Normalspannungen in der Düse zu beobachten sind.
Diese charakteristischen Frequenzanteile werden mit den Frequenzen
verglichen, die durch eine neu angewandte Fourier-Transformations-Ana-
lyse der Bilder der Extrudatproben bestimmt werden. Des Weiteren wird
am Extruder untersucht, ob sich die Detektion der Schmelzinstabilitäten
mit Hilfe der Messung der Normalspannung und deren Fourieranalyse
dafür eignet eine automatisierte Regelung der Verarbeitungsbedingungen
des Extruders zur Herstellung von Extrudaten ohne Schmelzinstabilitäten
zu gewährleisten. Zusätzlich zur Fourier-Transformation wird auch die
Autokorrelationsfunktion verwendet, um Informationen über die Beschaf-
fenheit der Schmelze am Extruder zu bekommen.
Anhand von dehnrheologischen Messungen am CaBER mit einer Polysty-
rollösung wird gezeigt, dass die neue Messung der Normalkraft während
des CaBER Experimentes eine Bestimmung der Dehnviskosität ermöglicht.
Dafür wird die Massenbilanz neu formuliert und die Kräftebilanz wird
um einen zusätzlichen Kräfteterm erweitert. Außerdem wird mit der neu-
en Normalkraftmessung am CaBER gezeigt, dass schon während der Fa-
denziehphase wichtige Informationen über die Probe gewonnen werden
können. Dies wird verdeutlicht an Experimenten mit zwei verschiedenen
Weißleimproben (auf Basis von Polymeren). Dabei wird untersucht in wie-
weit sich die Härtezeit auf die gemessene Kraft auswirkt. Dazu wird ei-
ne neue Größe die Separationsenergie eingeführt. Diese Experimente am
CaBER stehen im engen Zusammenhang mit den sogenannten Tack-Mes-
sungen bei denen eine Ablöseenergie bestimmt wird.
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Abstract

This work concerns the studies of the non-Newtonian rheological beha-
viour of polymeric liquids. Special attention is drawn to the measurement
of the normal force or normal pressure (the force or pressure perpendicular
to the direction of flow) of a polymeric liquid with defined flow conditions.

These defined flow conditions are obtained with rheometric devices, i.e.
the torsion-shear flow of a rotary rheometer, laminar pipe flow in a rectan-
gular channel of a capillary rheometer and an extruder, and the uniaxial
elongational flow of a CaBER (Capillary Break-up Extensional Rheome-
ter). To enable the measurement of the normal force or normal pressure
with these devices, the existing rheometers are improved with new con-
structions. Thus, the sensitivity of the measurement is about 5 · 10−5 N for
the normal force and about 10−5 bar for the normal pressure. This level
of sensitivity is obtained amongst others by the application of the over-
sampling method on a high frequency data acquisition (> 100 kHz). The
related extensions of the rheometers are presented in detail. Additionally
to the constructive changes for the measurement of the normal force or
normal pressure, advanced methods of data analysis are applied, e.g. the
Fourier transform or the autocorrelation function.

By means of the measurements with different polystyrene and polyethy-
lene samples, which have a different molecular architecture, it is shown
that with the use of the Fourier transform on the data of the normal force
obtained from oscillatory shear experiments the higher even harmonic
contributions appear in the amplitude spectrum. A new non-linear param-
eter QNF (γ0) is introduced for the evaluation of the spectra of the normal
forces. This is analogically done to the non-linear parameter of the spec-
tra of the shear amplitude Q (γ0). QNF (γ0) and Q (γ0) show differences
between linear and branched polymeric chains for the different polymers.
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Abstract

By using different polyethylene samples in the capillary rheometer and the
extruder, it is shown that together with the appearance of melt flow insta-
bilities (MFI) appear characteristic frequency contributions in the spectra
of the time-dependent normal pressure inside the die. These characteristic
frequency contributions are compared with the frequencies which are ob-
tained from the newly applied Fourier analysis of the images of the related
extrudate samples. Furthermore, it is investigated whether the detection
of the melt flow instabilities using the measurement of the normal pres-
sure and the following Fourier analysis is suitable for an automatic control
of the extrusion parameters in order to produce an extrudate without melt
flow instabilities. Additionally to the Fourier transform, the autocorrela-
tion function is utilized to gain information about the constitution of the
melt at the extruder.
On the basis of extensional measurements with the CaBER using a polysty-
rene solution it is shown, that the measurement of the normal force during
the CaBER experiment allows the calculation of the elongational viscosity.
Therefore, a new balance of mass is formulated and an additional force
term is added to the balance of forces. Additionally, it is shown on the
CaBER with the new measurement of the normal force, that it is already
possible during the filament stretch phase to obtain important informa-
tion about the sample. This is illustrated by performing experiments with
two different wood glues (on polymeric basis). Thus, the influence of the
curing time on the measured force is studied. Therefore, a new property,
the separation energy, is introduced. These experiments on the CaBER are
closely related to the so called tack measurements, which determine the
energy of detachment.
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Nomenclature

In this thesis the following conventions have been observed where pos-
sible: Bold faced letters (e.g. A, B) stand for tensors of second order and
matrices. Tensors of first order (vectors) are indicated by an arrow, e.g.
~u. Fraktur letters (e.g. C) are used for constants and fitting parameters, if
the parameters have no predefined meaning. Capital letters as e.g. E, V

are used to describe mathematical sets and spaces. Script capital letters
(e.g. E ) define point spaces. Lower case Roman letters stand for variables,
e.g. t the time or r the radial coordinate. Capital Roman letters stand for
parameters, e.g. T the time interval, and set geometrical values, e.g. D0

the initial diameter. Combined with a frequency dependency, a capital Ro-
man letter indicates the Fourier-transform of a time-dependent function,
e.g. F (ω) is the Fourier-transform of f (t). This rule is sometimes broken
in this thesis due to commonly used other definitions , e.g. F the mechan-
ical force or W the mechanical work. Greek letters are applied as they are
commonly used in the literature, e.g. the stress σ or the strain γ. Indices
are used for two purposes. Once to indicate a speciality of the value, e.g.
Tmeas indicates a time interval of a measurement and νextr a frequency re-
lated to an extrudate, and once to count elements, e.g. xi (x1, x2, x3, . . .) or
σij (σ11, σ12, σ13, σ21, . . .). In the second case the indices i, j, k, l, m, n, o, p, q, r
and s are used, and the indices represent natural numbers.
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Nomenclature

Capital Letters

A0,An,Bn, a.u. Fourier coefficients
A, B a.u. tensor of second order
A m2 surface area
AP m2 perimeter area
AC m2 cross-sectional area
A (x, t) m2 cross-sectional area of the filament
Areservoir m2 cross-sectional area of the reservoir of a capillary

rheometer
B m width/ broadness
C Pa integration constant
C1,C2,C3,C4 a.u. coefficients of fitting functions
C1 − first constant for the WLF equation
C2 K second constant for the WLF equation
Cijkl Pa material stiffness tensor
D a.u. symmetric tensor of second order
D m diameter
D0 m diameter of a plate geometry
DB m barrel/reservoir diameter
Dpiezo m diameter of sensor area of a piezoelectric transducer
E Pa Young’s modulus
E − strain tensor
Ea J/mol activation energy
F N force
Fcontact N contact force
F (t) N time-dependent force
F (ω) a.u. Fourier transform of f (t)
Fk a.u. discrete Fourier transform of fk

Fz N axial force
Fcap N capillary force
G Pas shear modulus
G′p Pas plateau modulus
H m height
I − identity tensor
I1, I2, I3, . . . a.u. first, second, third, . . . higher harmonic in the FT-

magnitude spectrum of the stress
I (A) a.u. first invariant of the tensor A
I I (A) a.u. second invariant of the tensor A
I I I (A) a.u. third invariant of the tensor A
J − functional determinate ∂xi

∂ξ j
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L m length
L0 m initial gap
Lstrike (t) m final position, sample displacement
Lx m length in x-direction
Ly m length in y-direction
M kg/mol molecular weight
Mi kg weight of a single fraction
Mn kg/mol number averaged molar mass
Mw kg/mol weight averaged molar mass
N − length of discrete data set N ∈N

N (t) N time-dependent normal force
N (ν) N frequency-dependent normal force
N1, N2, N3, . . . a.u. first, second, third, . . . higher harmonic in the FT-

magnitude spectrum of the normal force
N4/2 − ratio of the fourth and the second higher harmonic of the

magnitude spectrum of the normal force
NL − Loschmidt number
N1 (t) Pa first normal stress difference
P Pa frictional pressure tensor
Pij Pa components of the frictional pressure tensor
PDI − polydispersity index
Q a.u. orthogonal tensor of second order
Q − intrinsic non-linearity, Q-parameter
QNF − Q-parameter of the normal force spectrum
R0 m radius of a geometry
R m outer radius of a geometry
Rm J/molK universal gas constant
RP/Ci − ratio of perimeter and cross-section area
SNR − signal-to-noise ratio
S1, S2, − slope of the first (1) and the second (2) region of I3/I1

SQ1, SQ2, − slope of the first (1) and the second (2) region of Q
SN1, SN2, − slope of the first (1) and the second (2) region of N4/2

SQN1, SQN2, − slope of the first (1) and the second (2) region of QNF

S Pa stress tensor
Tz Nm torque around the z-axis
T s time interval
T a.u. tensor of second order
T2 s time constant
Tdeta s detachment/ separation time
U V voltage
Umeas − measurement uncertainty
V m3 volume

xv



Nomenclature

W a.u. antisymmetric tensor of second order
Wadh J/m2 detachment work per unit area
WS J surface energy
Wsep (t) J/m2 time-dependent separation energy per unit area
WV J volume energy
W (ω) , W (ν) − Fourier transform of w (t)

Small Letters

aT − TTS shift factor
a0, an, bn, a.u. Fourier coefficients
c f f ,k − discrete autocovariancy function of f
d (x, t) m time- and axial position-dependent diameter
f (t) , f1 (t) , f2 (t) a.u. time-dependent function
fg m3 fractional free volume
fk a.u. discrete function
fV m3 free volume
i − imaginary unit i =

√
−1

kw m−1 spatial angular frequency
m kg mass
n − integer number n ∈N

npl − flow index (power law fluid)
nrot 1/min screw rotations of the extruder
p Pa pressure
p̄ Pa hydrostatic pressure
p̌ Pa drift-reduced time-dependent pressure fluctuations
q − number of waves
r m radial coordinate
r2

COD a.u. coefficient of determination
r f f (τ) − autocorrelation function of the function f
r f f ,k − discrete autocorrelation function
s (t) a.u. time-dependent signal
t s time variable
t0 s starting time of the filament stretching
t1 s ending time of filament stretching
t2 s time of filament break up
tbreak s time to filament break-up
tcontact s contact time
tcure s curing time
u m/s axial velocity
v (t) m/s separation rate, separation velocity
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vstrike (t) m/s strike time
vpiston mm/s piston velocity of the capillary rheometer
w (t) − time-dependent window function
wi − weight fraction
x m axial position
xi 1/mol mole fraction of Mi

ẍ m/s2 acceleration in x−direction

Greek Letters

α rad cone angle
αF m3/K thermal expansion coefficient of the free volume
Γ Nm surface tension
γ − shear strain
γ0 − strain amplitude
γ̇ s−1 shear/strain rate
γ̇H s−1 strain rate of a Hookean element
γ̇N s−1 strain rate of a Newtonian element
δ rad phase angle
δij − Kronecker delta/ symbol
∆Sexit m distance to the exit of a die
∆x m elongation
ε − elongational strain
εij = γij − components of the strain tensor
εnew − elongational strain based on the chap. I
εijk − alternator, alternating symbol
ϕ rad FT-phase angle
ϕ rad angular coordinate
η Pas shear viscosity
ηE Pas elongational viscosity
ηE,N Pas elongational viscosity of a Newtonian fluid
ηE,B Pas elongational viscosity of a Bingham fluid
ηE,Pl Pas elongational viscosity of a power law fluid
λ s relaxation time
λ a.u. eigenvalue (only used in chap. A)
λLame Pas first Lamé constant
λw mm wavelength
ν0 Hz excitation frequency
νDAQ Hz sampling rate
νl Hz lower end of a frequency interval
νNyquist Hz Nyquist frequency
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Nomenclature

νh Hz higher end of a frequency interval
νPoisson − Poisson number
ρ kg/m3 density
σ Pa stress
σΓ Pa stress of to the surface tension
σij = τij Pa components of the stress tensor
σnoise a.u. standard deviation of the noise
σstd (γ̇) bar standard deviation of p̀ (t) as function of γ̇

σstd,E (γ̇) bar standard deviation of the elongational viscosity
σyield Pa yield stress
τ s correlation time
τH Pa stress in a Hooke element
τN Pa stress in a Newton element
τ0 Pa stress amplitude
θ °or rad angle between two vectors
ϑ °C or K temperature
ϑ0 °C ambient temperature
ϑg °C or K glass transition temperature
ϑm °C melting point
ϑVF °C or K Vogel-Fulcher temperature
Ω0 Hz frequency interval
ω rad/s variable angular frequency
ω0 rad/s excitation angular frequency

Operators and Special Notations

∆ 〈•〉 − difference of two states of 〈•〉
δ (〈•〉) − infinitesimal small value of 〈•〉

`〈•〉 − fluctuation part of 〈•〉
〈•〉′ − real part of 〈•〉
〈•〉′′ − imaginary part of 〈•〉
〈•〉∗ − 〈•〉 is a complex number/function
〈̂•〉 − value of 〈•〉 will be redefined in the equation
〈•〉 − mean value of 〈•〉
〈̃•〉 − spatial origin of 〈•〉
〈•〉e − ensemble average of 〈•〉

˙〈•〉 − first order time derivative of 〈•〉
¨〈•〉 − second order time derivative of 〈•〉
~〈•〉 − 〈•〉 is a cartesian vector
〈•〉| f − function 〈•〉 for a constant value of f
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Mathematical Spaces and Sets

{x, y, z} − cartesian coordinate system
{r, ϕ, z} − cylindrical coordinate system
~ei − covariant vector basis
~e i − contravariant vector basis
C − set of complex numbers
E − Euclidian vector space
I − interval used for the DACF
N − set of integer numbers
R − set of real numbers
K, L, M, V − special defined sets of numbers
E ,M,L − point spaces

Indices

〈•〉i,j,k,l,m,n,o,p,q,r,s − counting indices for 〈•〉
〈•〉0 − initially set value of 〈•〉
〈•〉app − apparent value of 〈•〉
〈•〉char − characteristic value of 〈•〉
〈•〉contact − the value of 〈•〉 refers to a contact area
〈•〉cross − crossover value of 〈•〉
〈•〉die − value of 〈•〉 concerns a die of an extruder or a capillary

rheometer
〈•〉error − error term of 〈•〉
〈•〉extr − the value 〈•〉 refers to extrudate
〈•〉 f it − the value 〈•〉 refers to a fit function
〈•〉image − the value 〈•〉 results from an image
〈•〉inst − the value 〈•〉 refers to a melt flow instability
〈•〉local − locally determined value of 〈•〉
〈•〉max − maximum value of 〈•〉
〈•〉min − minimum value of 〈•〉
〈•〉re f − reference value of 〈•〉
〈•〉strike − value of 〈•〉 during the filament stretch phase
〈•〉true − true value of 〈•〉
〈•〉F,n − 〈•〉 is the Fourier coefficient with the number n
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Chapter 1

Introduction

The term rheology was coined in the early 20th century. Its linguistic origin
lies in the ancient Greek words ρεω meaning ’flow’ and λογος meaning
’word’ or ’science’. Rheology, the science of flows, was introduced as an
own branch of science in 1929 by E.C. Bingham* and M. Reiner†.3, 4

Rheology studies the flow behaviour and the deformation behaviour of
physical matter. It is closely related to mechanics and fluid dynamics.
Most of the problems in classical fluid mechanics can be analysed with the
Navier‡-Stokes§ equations. The Navier-Stokes equations are only valid
for the flow of viscous and not shear rate dependent (Newtonian) flu-
ids¶. Thus, the Navier-Stokes equations are useful for low molecular flu-
ids, i.e. water, alcohol, mineral oils, etc.. For more advanced applications,
e.g. in chemical engineering, the flows of more complex materials (non-
Newtonian) are of interest. One of the best known non-Newtonian effect

* Eugene Cook Bingham (b8. December 1878 in Cornwall, USA; d6. November 1945,
USA) was an American scientist and a founder member of the society of rheology
(SOR) in 1929. See vol. 1 iss. 1 of the J. Rheol. in 1929 p.93-95.2

† Markus Reiner (b5. January 1886 in Czernowitz, Austrio-Hungarian Empire;
d25. April 1976 in Isreal) was an Israeli engineer and rheologist. He was a founder
member of the society of rheology (SOR) in 1929.3

‡ Claude-Louis Marie Henrie Navier (b10. February 1785 in Dijon, France; d21. Au-
gust 1836 in Paris, France) was a French engineer and physicist.5

§ Sir George Gabriel Stokes (b13. August 1819 in Skreen, Ireland; d1. February 1903
in Cambridge, England) was an English mathematician and physicist.5

¶ The term Newtonian fluid is explained in chap. 2.3.1.

1



1. Introduction

is the Weissenberg||-effect, also called rod climbing of a viscoelastic fluid.

Example 1. The Weissenberg effect
A non-Newtonian (viscoelastic) fluid (thin dough) is filled in a beaker and steered
with a rod, as seen in fig. 1.1c. It can be observed that the viscoelastic fluid moves
upwards on the rod while it is steered, see fig. 1.1a. This is in contrast to the
observation made for a Newtonian fluid, see fig. 1.1b, which has a concave surface
shape when steered strongly (see fig. 1.1d).

�

The example showed that the flow behaviour of complex materials can
be completely different than that of Newtonian fluids. Thus, the com-
plex fluids are insufficiently described by the theory of Newtonian fluids.
Many different fluids show non-Newtonian fluid behaviour, e.g. poly-
meric* liquids (polymer solutions and polymer melts), adhesives, syn-
thetic oils, slurry, dough, molten metals and often some multi-phase flows
(e.g. emulsion, dispersions).
In fig. 1.2 different types of flow behaviour are shown. The viscous fluid is
represented by the flow curve† of the Newtonian fluid (fig. 1.2e). The flow
curves of fig. 1.2a - d represent non-Newtonian flow behaviour, i.e. dila-
tant materials (fig. 1.2c), pseudoplastic materials (fig. 1.2c), ideal-plastic
materials (fig. 1.2d) or the Bingham fluids (fig. 1.2a). The mathemati-
cal description of the non-Newtonian fluids needs appropriate equations.
One aspect of rheology is to determine these equations supported by the
rheometry. Rheometry delivers the experimental data to set up and to
validate different non-Newtonian rheological models. Since M. Couette‡

many different instruments for measuring the non-Newtonian flow be-
haviour of complex materials have been invented, i.e. the cone-plate rheo-
meter by Mooney,9 the Weissenberg Rheogoniometer,10 the sliding plate

|| Karl Weissenberg (b11. June 1893 in Vienna, Austria; d6. April 1976 in Den Haag,
Netherlands) was an Austrian physicist and rheologist.6

* The word polymer is composed by the two ancient Greek words πολυ meaning
’much’ or ’a lot’ and μεροςmeaning ’part’. Therefore, a polymer is something made
out of many parts. Polymers are macromolecules (large molecules).

† The graphical representation of the shear rate γ̇xy dependent shear stress τxy
(
γ̇xy
)

for a fluid is called the flow curve.
‡ Maurice Marie Alfred Couette (b9. January 1858 in Tours, France; d18. August 1943

in Angers, France) was a French physicist and rheologist. He invented the Couette
viscosimeter.7, 8
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(a) (b)

(c) (d)

Figure 1.1. – Comparison of the rod climbing behaviour of (a) a
non-Newtonian fluid (dough) and (b) a Newtonian fluid (dispersion
colour). A drop of dark ink was added to colour the sample at the rim
of the beaker for a better visualization. In (c) the principle of the rod
climbing of a viscoelastic fluid is shown and in (d) the principle of the
Newtonian fluid is shown.

3



1. Introduction

Figure 1.2. – Characteristic flow curves τxy
(
γ̇xy
)

for different materi-
als: (a) a Bingham fluid, (b) a pseudoplastic fluid, (c) a dilatant fluid,
(d) an ideal plastic body and (e) a Newtonian fluid.

rheometer,11, 12 to name just a few. The fundamental demand on such ex-
perimental devices is that the kinematic flow inside the instrument is well
defined and that this flow is as simple as possible. The latter demand is
the reason why some old devices are still widely in use (like the Couette
viscosimeter), whereas some others vanished quickly or never made it to
a broad use (like the sliding plate rheometer).
Coming back to the topic of complex fluids, especially the field of poly-
meric liquids (e.g. polymer melts) is of large economical interest. The
annual production of polymers has been increasing nearly continuously
since 1950.13, 14 In 2010, about 250 · 106 t of polymer were produced.* The
reason for this lies in the partly excellent material properties of polymers.
They typically have a low density (ρ ≈ 1 g/cm3), while at the same time
their mechanical properties, e.g. their stiffness, are sufficiently large. Thus,
they can be used instead of classical materials, e.g. wood or steel. Another
big advantage of polymers is their easy processibility in comparison to
the classical materials which they replace. Polymers† can easily be shaped

* Source: www.plasticseurope.org
† In this introduction polyethylene (PE) and polypropylene (PP) as known from daily

life (e.g. plastic bags) are used as an object of illustration. More information about
polymers is given in chap. 2.4.

4



by melt flow injection or extrusion. The temperature at which most poly-
mers become liquid or liquid-like is low; about 100 - 280 °C. Thus, the
amount of energy needed for the production is reduced in comparison to
e.g. steel. Additionally, the energy demand to recycle thermoplastic* poly-
mers is much lower than that for metals.14

For the processing methods mentioned above, e.g. melt flow injection, the
polymer melt is processed at high shear rates, at which the non-Newtonian
flow behaviour of polymer melts becomes evident (e.g. see chap. 4.2).
Nevertheless, the flow behaviour of polymeric liquids has to be under-
stood in order to optimize the fabrication of the products and to avoid
inefficient and wasteful† processes. For this, the common rheometric in-
struments have to be improved to further enlarge the knowledge about
polymeric flows.
The scope of this thesis is to improve the measuring capabilities of three
different rheometric devices. Furthermore, additional information is ob-
tained about the non-Newtonian properties of the samples.

* Explained in chap. 2.4.
† In this context, wasteful means both physical waste by polymer products with poor

quality and waste of electrical and thermal energy.
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1. Introduction

1.1 Thesis Outline

This thesis contains four main chapters with fundamentals and applica-
tions of the rheometric methods and a supplementary appendix with ad-
ditional information. Different text objects, for i.e. definitions, algorithms,
assumptions and examples, are used to structure the text clearly and to
highlight paragraphs which are not part of the main text of a chapter.
Chap. 2 provides the theoretical background which is needed in all three
subsequent chapters. It begins in chap. 2.1 with an introduction to the
mathematical methods used for the analysis of the data, namely the de-
tailed description of the Fourier-analysis and the correlation functions.
This is followed by a part about data acquisition systems in chap. 2.2. The
fundamentals of the mechanical description of materials is provided by
chap. 2.3. It introduces the fundamental models of rheology which de-
scribe the flow of different materials. The last section in chap. 2, chap. 2.4,
is specifically dedicated to polymeric materials. This part contains infor-
mation about molecular structure and general physical properties of com-
mon polymers.
The three chapters chap. 3 - chap. 5 are dedicated to the actual work of
research within this thesis. Each of those chapters focuses on a specific
type of rheometric experiment, see fig. 1.3. These three different types are:

• The oscillatory shear flow (with the rotational shear rheometer);
chap. 3

• The high shear rate steady state flow (with the extruder and the cap-
illary rheometer); chap. 4

• The elongational flow (with the extensional rheometer); chap. 5

Each of the following three chapters contains an introduction, the respec-
tive theory, the results and the conclusion for the actual field of investiga-
tion.
Chap. 3 shows the work concerning the application of a highly sensitive
measurement of normal forces in the plate - plate rotational rheometer.
Already Weissenberg15 worked in this field of rheology, but as shown in
the introduction to chap. 3.1, there are still open questions. The theory
of oscillatory experiments is introduced in chap. 3.2. To complete the in-
troduction of oscillatory shear experiments, chap. 3.3 gives an overview

6



1.1 Thesis Outline

Figure 1.3. – Fields of application for this thesis. With the improved
rheometric instruments and a specially implemented data analysis
polymers of different topology can be studied.

of the FT-Rheology (FT-R), which was introduced by Wilhelm.16 The ex-
perimental set-up and the newly applied changes on the set-up are de-
scribed in chap. 3.4 - chap. 3.5. In chap. 3.6 the state-of-the-art analysis of
the data is improved by the application of a non-linear parameter for the
measurement of the normal force. The experimental set-up is validated
in chap. 3.7. The application of the new set-up to polymers of different
topologies is shown in chap. 3.9. The progress made in this part is sum-
marized in chap. 3.10.

The second part of this thesis concerns the topic of polymer extrusion and
melt flow instabilities. The chapter begins with an introduction and a def-
inition of the aim in chap. 4.1. In chap. 4.2 melt flow instabilities are de-
fined. The aim of this work is to transfer the sharkskin die technology
from the capillary rheometer to an extruder. The set-up of the capillary
rheometer is shown in chap. 4.3. The subsequent section chap. 4.4 con-
tains the information of the construction of the new dies for the extruder
and the description of the extruder set-up. For the analysis of the pressure
fluctuations measured on the extruder mathematical specialities have to
be considered. These are explained in chap. 4.4.4. The set-up to optically
study the melt flow instabilities is introduced and validated in chap. 4.4.6.
A survey of the experimental settings follows in chap. 4.4.7. The three con-
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1. Introduction

secutive sections will discuss the experimental results achieved with the
new dies; see chap. 4.5. These sections provide a validation of the capabil-
ities of the sharkskin dies, chap. 4.5.1, and a comparison between optical
methods and sharkskin die, chap. 4.5.4. The findings of the extruder set-up
and the related analysis are concluded in chap. 4.6.
The last experimental chapter is towards the improvement of the capil-
lary break-up extensional rheometer (CaBER) with an axial force measure-
ment, as explained in chap. 5.1. Chap. 5.1.1 introduces the principle of the
basic CaBER experiment. The improvement of the CaBER with an axial
force measurement requires an adaption of the related theory. Chap. 5.2 -
chap. 5.2.3 describe the extension of the related theory of the CaBER. These
sections are followed by a description of the state-of-the-art experimental
set-up, chap. 5.3 and chap. 5.3.1, and a description of the improvements
applied in this work in chap. 5.3.2 - chap. 5.4. The experimental results are
divided into two parts (sections). The first part validates the application of
the improved CaBER, chap. 5.5.1, and the second part, chap. 5.5.3, presents
a new field of application, the observation of the curing behaviour of ad-
hesives. These measurements are similar to tack measurements. Finally,
the results and achievements of the improvement of the CaBER are sum-
marized in chap. 5.6.
Conclusions of the whole thesis and prospects for the work are given in
chap. 6.

8



Chapter 2

Data Acquisition, Data Analysis and
Material Properties

This chapter summarizes the basic concepts of

• the applied mathematical data analysis (chap. 2.1),

• the description of measurement systems (fig. 2.2),

• the mechanical properties (chap. 2.3) of materials and

• the chemical properties (chap. 2.4) of the investigated materials.

2.1 Mathematical Methods for Data
Analysis

One part of this thesis is to implement data analysis algorithms for the
data, i.e. the time-dependent pressure, the time-dependent shear stress,
the time-dependent normal force and digital images, obtained by the dif-
ferent mechanical experiments. The simplest method to analyse data is to
calculate statistical moments of different order, e.g. the mean value or the
standard deviation. Statistical moments are a basic mathematical tool and
details can be found in the book of e.g. Bendat et al.17 More advanced
methods of data analysis that include implicitly the time-dependence, i.e.
the autocorrelation function (ACF) and the Fourier transform (FT), are in-
troduced in this section. Furthermore, the FT and the ACF are additionally
presented in terms of discrete sets of data.
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2. Data Acquisition, Data Analysis and Material Properties

2.1.1 Fourier Series

The Fourier series18–21 is used to express infinite functions and signals as
a superposition of periodic trigonometric functions. In case of a finite sig-
nal the signal will be periodically continued. This means that the longest
period is given by the complete length of the finite time series Tmax. This
defines also the spectral resolution (see chap. 2.1.3).
Every periodic signal can be approximated via the superposition of ba-
sic trigonometric functions (i.e. sine, cosine). The resulting time series is
named after J. Fourier*, the Fourier series.

f (t) = ∑+∞
n=−∞ (aF,n cos (ω0nt) + bF,n sin (ω0nt)) , ∀n ∈N. (2.1)

Eq. 2.1 uses the angular frequency as given by

ω0 := 2πν0 :=
2π

T
. (2.2)

In eq. 2.1 the so-called Fourier coefficients aF,n and bF,n appear. They are
defined by the following three equations21

aF,0 =
2
T

T∫
0

f (t) dt for n = 0, (2.3)

aF,n =
2
T

T∫
0

f (t) cos (nt) dt for n > 0 and (2.4)

bF,n =
2
T

T∫
0

f (t) sin (nt) dt. (2.5)

Due to the symmetry of the trigonometric functions† the Fourier series is
reduced to

f (t) =
AF,0

2
+

+∞

∑
n=1

(AF,n cos (ω0nt) +BF,n sin (ω0nt)) . (2.6)

* Jean Baptiste Joseph Fourier, (b21. March 1768 by Auxerre, France; d16. May 1830
in Paris, France) was a French mathematician and physicist.5

† Symmetry properties of the trigonometric functions:

odd:
even:

sin (t)
cos (t)

=

=

− sin (−t) and
cos (−t) .
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2.1 Mathematical Methods for Data Analysis

In eq. 2.6, the Fourier coefficients are given by

AF,n = aF,n + aF,−n and

BF,n = bF,n − bF,−n. (2.7)

The Fourier series, as a sum of sine and cosine terms, can be easily brought
into a complex form as

f (t) =
+∞

∑
n=1

CF,neiω0nt (2.8)

with the complex Fourier coefficients

CF,n =
2
T

T∫
0

f (t) e−iω0ntdt. (2.9)

Example 2. Fourier series of the rectangular function
For the rectangular function with a period of T = 4π the Fourier series of different
orders n is shown in fig. 2.1a - fig. 2.1d. It is obvious from the plots in fig. 2.1
that the Fourier series approximates better the original function with increasing
order n. Attention should be paid to the overshoots of the Fourier series which are
visible for all orders n. This phenomenon is called the Gibbs* phenomenon and is
typical for the Fourier series.

2.1.2 Fourier Transform

The representation via discrete frequencies is sufficient for a periodic func-
tion with a period of T < ∞. However, in the case of T → ∞ (aperiodic
limit) the summation is transformed into an integration and the discrete
set of frequencies is transformed into a continuous spectrum of frequen-
cies. This representation via an integration is called the Fourier transform
or Fourier integral of a function f (t) and is given by18, 22

F (ω) =

+∞∫
−∞

f (t) e−iωtdt. (2.10)

* Josiah Willard Gibbs, (b11. February 1839 in New Haven, USA; d28. April 1903 in
New Haven, USA) was an American theoretical physicist, chemist and mathemati-
cian.5
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2. Data Acquisition, Data Analysis and Material Properties

(a) (b)

(c) (d)

Figure 2.1. – Fourier series of a rectangular or square function. The
Fourier series is calculated with different orders (a) n = 1, (b) n = 5,
(c) n = 11 and (d) n = 20. The black line in each diagram indicates
the rectangular function and the grey line the according Fourier series
of order n.

The symmetry properties of the f (t) are also valid for its Fourier transform
F (ω). The Fourier transform is a completely invertible transformation, so
the inverse transformation from the frequency domain back into the time
domain is analogously defined as

f (t) =
1

2π

+∞∫
−∞

F (ω) e+iωtdω. (2.11)

A short summary of the properties of the Fourier transform can be found
in chap. B.
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2.1 Mathematical Methods for Data Analysis

2.1.3 Discrete Fourier Transform

For the application in signal processing the integral formalism of the FT is
not useful. While measuring a discrete set of data points, fk is achieved
and this set is a finite one (with N data points) and not infinite. Due to this
point, it is necessary to introduce a discrete version of the Fourier Trans-
form,23 further referred to as the discrete Fourier transform (DFT),

Fj =
1
N

N−1

∑
k=0

fke−
i2π
N kj ∀ k, j ∈M = {x |x ∈N0, x ≤ N } . (2.12)

The backward transformation (DFT−1) is obtained via,

fk =
N−1

∑
j=0

Fje
i2π
N kj ∀ k, j ∈M = {x |x ∈N0, x ≤ N } . (2.13)

The definition used in eq. 2.13 lacks the prefactor 1
N ; other definitions of

the prefactors are possible (e.g. 1/
√

N). The eq. 2.12 and eq. 2.13 are writ-
ten in terms of discrete data points. The index k indicates the data points in
the time domain and j indicates the data points in the frequency domain.
The transformation law between the discrete point space and the variable
time t is given by t = k · T/N. A similar transformation law holds for the
frequency domain ω = j · π · νNyquist/N.*

Example 3. Application of the DFT
Fig. 2.2 plots the DFT of the discrete data set of the function f (t) = 3 cos (2πt)+
sin (4πt).† The Nyquist‡ frequency is defined by the parameters used in the pro-
gram to νNyquist = 50 Hz. In fig. 2.2 the observation is made that the amplitudes
of the peaks in the FT spectrum are only of half the size (i.e. F = 1.5 and F = 0.5)
than the prefactors from the original equation (i.e. F = 3 and F = 1). The

* νNyquist is the Nyquist frequency.17, 24 It is the highest frequency which can be mea-
sured and is explained in chap. 2.2.

† This calculation used a self-written program using the MATLAB software. MAT-
LAB is a programming environment system for numerical calculations.25 Espe-
cially, this program made use of the function fft(), which is based on the FFTW
(Fastest Fourier Transform of the West) algorithm.26 This algorithm is widely used
for the computation of the FFT. It optimizes the FFT algorithm according to the data
set and the used computer hardware.

‡ Harry Nyquist (b7. February 1889 in Nilsby, Sweden; d4. April 1976 in Harlingen;
USA) was an American electrical engineer and physicist.27
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2. Data Acquisition, Data Analysis and Material Properties

(a)

(b)

Figure 2.2. – DFT of a data set obtained from the function f (t) =

3 cos (2πt) + sin (4πt). (a) the time-dependent function and (b) the
frequency-dependent spectrum.

FT spectrum of a function or signal contains usually both positive and negative
frequencies. The axis of ordinate is a mirror axis and the spectrum at negative fre-
quencies and the axis at positive frequencies have got peaks at the same absolute
value of the frequency. Both peaks have the same amplitude, the half amplitude of
the one in the according original function or data. Thus, if the amplitude of both
peaks is summed up it will be the value of the original function or data.
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2.1 Mathematical Methods for Data Analysis

2.1.4 Window Functions

The FT requires that the function f (t) can be proceeded continuously. In
the application of the data acquisition (DAQ) all sets of time-dependent
data are finite. Thus, a direct FT of these data can be problematic, as fig. 2.3
shows. Whereas, the function of fig. 2.3a can be continuously proceeded,
the function in fig. 2.3c cannot be continuously proceed. Therefore, the
FT of fig. 2.3a, shown in fig. 2.3b, shows very sharp peaks. Whereas, the
FT of fig. 2.3c, shown in fig. 2.3d, shows broad peaks with reduced am-
plitude. This phenomenon is called leakage. The intensity of the sharp
(single point) peak is distributed to several points.
One possible way to avoid or reduce the leakage is to use window func-
tions23, 28, 29 w (t). Window functions are special mathematical function,
e.g. a Gaussian* function or a von-Hann† window, see tab. 2.1 and fig. 2.4,
which are multiplied with the function in the time domain in order to force
the function to be continuously proceeded. The multiplication in the time
domain represents a convolution in the frequency domain,22 see chap. B.
The general properties of window functions are:

1. They are always even functions.

2. Their FT does not have an imaginary part.

The quality of a window function can be quantified e.g. by the intensity of
the central peak and by the 3-dB bandwidth. The intensity of the central
peak in the frequency domain should be as large as possible. This causes
the side-loops to be as small as possible.
The application of a window function demands the choice of one or more
parameters which are used in the chosen window function, as seen in

* Carl Friedrich Gauß (b30. April 1777 in Brunswick, Germany; d23. February 1855
in Göttingen; Germany) was a German mathematician and physicist. Due to his
maxim ”Pauca, sed matura.” (Few, but mature) he published only a small part of
his work during his lifetime.5

† Julius Ferdinand von Hann (b23. March 1839 by Linz, Austria; d1. October 1921 in
Vienna; Austria) was an Austrian meteorologist. He influenced largely the modern
meteorology.5

‡ Hendrik Anton Lorentz (b18. July 1853 in Arnhem, Netherland; d4. February 1928
in Harlem, Netherlands) was a Dutch theoretical physicist. He obtained the Nobel
prize in physics in 1902 ”in recognition of the extraordinary service they rendered
by their researches into the influence of magnetism upon radiation phenomena”.5
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Table 2.1. – Examples of frequently used window functions in the
time domain. Their representation in the frequency domain is given
in tab. 2.2.23

window function in the time domain (t)

rectangular w (t) =

{
1,
0
− T

2 ≤ t ≤ T
2

else

von Hann w (t) =

{
cos2 πt

T ,
0,
− T

2 ≤ t ≤ T
2

else

Hamming w (t) =

{
C+ (1− C) cos2 πt

T ,
0,

− T
2 ≤ t ≤ T

2
else

Gauß w (t) = e−
Ct2

2

exponential
decay w (t) = e−C|t|

Table 2.2. – Examples of the representation in the frequency domain
of the frequently used window functions of tab. 2.1.23

window Fourier transform in the frequency domain (ω)

rectangular |W (ω)|2 =

(
sin(ω T

2 )
ω T

2

)2
=
∣∣∣sinc

(
ω T

2

)∣∣∣2
von Hann W (ω) = T

4 sin
(

ωT
2

(
1

π−ω T
2
+ 2

ω T
2
− 1

π+ω T
2

))
Hamming W (ω) = T

4 sin
(

ωT
2

(
1−C

π−ω T
2
+ 2(1+C)

ω T
2
− 1−C

π+ω T
2

))
Gauß W (ω) = 1√

C
e−

ω2
2C

exponential
decay W (ω) = 1√

2
π

C
ω2+C2 (Lorentzian‡ function)

tab. 2.1. The choice of the parameters for the window function defines the
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2.1 Mathematical Methods for Data Analysis

(a) (b)

(c) (d)

Figure 2.3. – Influence of leakage on the FT spectrum. The time-
dependent function is f (t) = sin (0.5πt) + 0.25 sin (2πt). (a) shows a
data set which can be continuously proceeded. (b) shows the FT of the
data from (a) with the magnitude of the sharp peaks of F (ω = 0.25) =
0.5 and F (ω = 1) = 0.125. (c) shows a data set which cannot be con-
tinuously proceeded. (d) shows the FT of the data from (c) with the
reduced magnitude of the broad peaks of F (ω = 0.25) = 0.46 and
F (ω = 1) = 0.11.

size of the window function. The parameters can be adjusted empirically
or by use of reference values from literature.23
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4. – Window functions in the time domain and in the fre-
quency space: (a) rectangular function in the time domain, (b) rect-
angular function in the frequency space, (c) von-Hann window in the
time domain, (d) von-Hann window in the frequency space, (e) Ham-
ming window in the time domain, and (f) Hamming window in the
frequency space.
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2.1 Mathematical Methods for Data Analysis

2.1.5 Autocorrelation Function

The autocorrelation function (ACF)17, 30 of a continuous signal or function
f (t) is defined as

r f f (τ) =

∞∫
0

f (t) · f (t + τ) dt. (2.14)

Eq. 2.14 represents a comparison of values of the continuous signal or func-
tion. Thus, the ACF reveals the memory of the function using the correla-
tion time τ as its variable of choice. The definition of the correlation time
is the distance in time between two points of a function.

Figure 2.5. – The ACF is obtained by correlating all points f (t) with
its neighbours f (t + τ) at the temporal distance τ.

Example 4. Illustration of the ACF-algorithm
Fig. 2.5 shows the basic algorithm for the determination of the ACF. If assuming
a fixed temporal distance of exact τ, every function value f (t) will be correlated
to the function value which is at t + τ, namely f (t + τ). These values will be
summed up to r f f (τ). This is done for all times t and for variable correlation
times τ. This way, the continuous autocorrelation function r f f (τ) is obtained.
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2.1.6 Discrete Autocorrelation Function

The ACF is only defined for continuous functions, e.g. f (t). This is prob-
lematic for discrete experimental data fk which depends on discrete data
points k ∈ M = {x |x ∈N0, 0 ≤ x ≤ N }. Therefore, it is necessary to de-
fine a discrete autocorrelation function (DACF). For stationary processes,
it is valid to assume that they are ergodic*. For an ergodic process the
time average† for every particle/point can be replaced by an ensemble av-
erage‡ over all particles.33, 34 By introducing these assumptions into the
definition of the autocorrelation function, eq. 2.14 results in the discrete
autocorrelation function (DACF)

r f f ,k =
1
N

N−1−k

∑
j=0

f j f j+k. (2.15)

Example 5. The DACF-algorithm
Fig. 2.7 shows the first two steps of the calculation algorithm of the DACF for a

given equidistantly scanned signal as in fig. 2.6. At first (fig. 2.7a), every point is
multiplied with its own value. This represents the evaluation of eq. 2.15 for j = 0.
Then, all the values of these multiplications are summed up to a single value rep-
resenting the autocorrelation function at τ = 0. In the next step (fig. 2.7b), the
values of every point are multiplied with the value of its right-handed neighbour-
ing point (at t + j · ∆t with j = 1) and afterwards the values of these multipli-
cations are summed up to gain the second point of the autocorrelation function.
This procedure is done for all j ∈M = {x |x ∈N0, 0 ≤ x ≤ N − 1}.

As the summation succeeds for j → N, the number of summands de-
creases until at last, j = N − 1, only one multiplication is left. Because of
this, the coefficient 1

N of the summation does not any longer represent the
used amount of function values. Therefore, this coefficient is replaced by

1
N−k . This provides an unbiased value. The technical term for 1

N−k is a

* Ergodic Hypothesis:23, 31, 32

f̄ → f e, if T → ∞

† time average: f̄ = lim
T→∞

1
T

t0+T∫
t0

f (~x, t) dt

‡ Ensemble average: f e = lim
N→∞

1
N

N
∑

n=1
fn (~x)
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2.1 Mathematical Methods for Data Analysis

Figure 2.6. – Example function. The stroked line (- -) describes the
continuous physical signal f (t) and the points (•) are the discrete,
but not quantized, measurement points fk.

window function (weight function). The unbiased DACF is given by

r f f ,k =
1

N − k

N−1−k

∑
j=0

f j f j+k. (2.16)

The values of the time-dependent function can be arbitrarily large or small
and for this reason, the values of the ACF and the DACF as defined right
now can also be arbitrarily large. To obtain a better and general compara-
bility of the DACF their values are normalized to the value of the DACF at
k = 0 (or τ = 0). Thus, the unbiased normalized DACF is expressed by

r f f ,k =
1

N − k

N−1−k

∑
j=0

f j f j+k

f j f j
. (2.17)

This normalization of the values of r f f ,k maps the values of the DACF to
the interval I = [−1,+1] and the values of this interval have the following
meaning

r f f ,k =


+1,
0,
−1,

total correlation
no correlation

total anti-correlation
(2.18)

At last it is possible to subtract the expectation value f̄ of the time-depen-
dent data from the time-dependent data. If the DACF is calculated in this
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(a) (b)

Figure 2.7. – The first two steps of the calculation of the DACF for
the signal in fig. 2.6. The cross (×) symbolizes the multiplication of
the representative values. (a) illustrates the first summation for k = 0,
which represents the τ = 0. (b) illustrates the second summation for
k = 1, which represents the τ = 0 + 1 · ∆t.

way it is called discrete autocovariancy function (DACVF)

c f f ,k =
1

N − k

N−1−k

∑
j=0

(
f j − f̄

) (
f j+k − f̄

)
(

f j − f̄
) (

f j − f̄
) . (2.19)

In case of a function or data set with the expectation value of zero, the
DACF and the DACVF are identical.

2.2 Introduction to Data Acquisition

This chapter gives an introduction into the basic terms of data acquisition
(DAQ) in experiments. More details about DAQ can be found in the book
of Doeblin,35 Tropea28 or Holler.36 Experiments have to be conducted in
order to obtain an insight into the physical or chemical processes. In exper-
iments sensors are used to record data of the observed variables. This data
is mostly analogously measured. Thus, an analogue signal is transferred
from the sensor/ transducer to an amplifying device. This amplifying de-
vice usually scales its analogue input to an analogue voltage signal of a
defined range. This electrical signal is transferred to a computer with an
analogue/digital converter board (ADC board) which transforms the ana-
logue signal into a digital signal. The whole chain starting from the sensor
to the ADC board is called the DAQ system.
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2.2 Introduction to Data Acquisition

Depending on the ADC board of the DAQ system the physical signal is
discretised both on its time axis and in its amplitude. The discretisation
on the time axis is called sampling and depends on the sampling rate of
the ADC board. The discretisation in the amplitude is called quantisation*

and depends on the resolution of the ADC board.17, 23 Both quantities de-
fine how well the signal can be measured. An example of sampling and
quantization is shown in fig. 2.8. If the values of these quantities are badly

(a) (b)

(c) (d)

Figure 2.8. – Influence of sampling and quantization on the data. The
single plots show examples of:
(a) a continuous analogue data (black line).
(b) the continuous analogue data after sampling (with a constant sam-
pling rate) (black squares).
(c) the quantization of the analogue data (black line).
(d) the sampled and quantized analogue data (black squares).
In (b) - (d) the grey line is the original analogue data.

* The term quantisation is related to the quantum mechanics. Where the particle can
only access defined (quantized) energy levels.
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chosen the data can be corrupted by system-dependent artefacts. One of
the best known phenomena is the aliasing which appears if the sampling
rate is badly chosen.

Example 6. Aliasing
If two periodic signals f1 (t) = 2 sin (9πt) and f2 (t) = 2 sin (1πt), as shown in
fig. 2.9, are sampled in such a way that all sampled points (the circles in fig. 2.9)
lie on both curves. Then, both curves cannot be differentiated from their sampled
data. This effect is called aliasing. In case of a Fourier transform (see chap. 2.1.2),
the signal with the higher frequency (4.5 Hz) would only have a peak at the lower
frequency (0.5 Hz).

Figure 2.9. – An example of aliasing. The black line shows the func-
tion f1 (t) = 2 sin (9πt) and the grey dashed line shows the function
f2 (t) = 2 sin (1πt). The circles represent a sampling with 4 Hz.24

In order to avoid aliasing the Nyquist–Shannon* sampling theorem17 has
to be obeyed. The sampling theorem states that for a measured discrete

* Claude Elwood Shannon (b30. April 1916 in Petoskey, USA; d24. February 2001 in
Medford; USA) was an American electrical engineer and physicist.37, 38
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signal there exists a maximum frequency which can be detected. This fre-
quency is called the Nyquist frequency17 νNyquist and is given by the rela-
tion

νNyquist =
1

2∆t
with ∆t =

T
N

. (2.20)

The Nyquist frequency is related to the time step ∆t of the data acquisition.
The next example will illustrate the relationship between the parameters
of the DAQ set-up and the Nyquist frequency.

Example 7. Determination of the Nyquist frequency
Assuming an arbitrary measurement of a time-dependent value f (t) with the
duration time of the measurement T = 10 s. The sampling rate of the ADC was
set to be νDAQ = 500 pts/s. This constraints gives a total amount of measured
data of N = T · νDAQ = 5000 pts. The time step ∆t = T/N = 0.002 s. With
eq. 2.20 the Nyquist frequency of this measurement is determined to be νNyquist =

250 Hz. This means that any frequency higher than 250 Hz (e.g. 300 Hz) can not
be detected by a measurement with the above given sampling rate.
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2.3 Mechanical Models for Ideal Materials

Materials have specific properties, e.g. optical, electrical, chemical etc..
Those properties have to be characterized to optimize their use. For a
technological application, the mechanical properties of a material are of-
ten of great importance. For example objects in daily life are characterized
by their stiffness (e.g. plastic containers), flexibility (e.g. rubber tires, ny-
lon stockings), flow behaviour (e.g. ketchup, toothpaste) and many more.
Chap. 2.3.1 presents widely known concepts of mechanical relationships
of basic variables, i.e. the stress or the viscosity. A variety of books about
engineering mechanics4, 39 describe them. In chap. 2.3.2 a more advanced
description of mechanical variables is given. In addition the stress ten-
sor is introduced. The chap. A gives an introduction into tensor calcu-
lus. The tensor calculus is further used to explain the improved descrip-
tion of material behaviour in chap. 2.3.3. More advanced literature refer-
ences are found for general non-linear flows in text books e.g. Böhme,40

whereas the behaviour of polymers is discussed in detail in the books of
Larson,41 Dealy,42 Schwarzl14 or Lovell.43 The three sections, chap. 3.2.1 -
chap. 3.2.3, focus on the special case of polymer melts41, 43 under oscilla-
tory shear.44–47 Chap. 3.2.3 - chap. 3.3 explain the experimental set-up and
the procedure for the oscillatory shear experiment.* In the chap. 2.3 the
mechanical bodies will be always treated as a continuum. This means that
every point of the mechanical body posses an according mass.49

2.3.1 Basic Ideas About Mechanical Bodies

It is observed that every real and physical body deforms under an applied
stress, or vice versa a mechanical body responds with a certain force to an
applied strain (e.g. see Gross4). The mechanical response of the body is
dependent on its material properties.

For an ideal elastic body, like a spring (see fig. 2.10a), the mechanical prop-
erties of a material are defined by the ratio of the stress σxx and the strain
εxx (both in x-direction and normal to the y - z plane, chap. 2.3.2). In the

* Generally, the lecture notes of Prof. Wilhelm48 (KIT) provides a good overview of
the rheology of polymers.
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most common case the Hooke’s law*51 for tension is used

σxx = Eεxx. (2.21)

The strain is defined as the ratio between deformation ∆x and a character-
istic length scale Lx,

εxx :=
∆x
Lx

. (2.22)

In eq. 2.21 E is called the Young’s† modulus and in the most simple case
it is a material-dependent constant. The main assumptions for eq. 2.21 are
that the material is isotropic‡, simple§, and that the deformation is directed
only in one direction (uniaxial).
An second fundamental equation exists which relates the shear stress to
the shear strain. If a shear strain

γxy :=
∆x
Ly

(2.23)

is applied on a body, as shown in fig. 2.10c, the Hooke’s law for shear is
used

τxy = Gγxy. (2.24)

In eq. 2.24 τxy ≡ σxy is the shear stress and G is the shear modulus.
Both cases of the Hooke’s law exhibit a proportional relationship between
the stress and the strain. However, they are only valid for simple materials
under uniaxial stress or shear. And they can only be applied on materials
which show a finite deformation under load.
In contrast to the ideal elastic bodies, an ideal fluid shows an infinite de-
formation under the load in form of a force. For an ideal viscous fluid, the

* Robert Hooke (b28. June 1635 in Freshwater, England; d14. March 1703 in London,
England) was an English scientist. Hooke’s law was first published in an encoded
version in ”A description of helioscopes and some other instruments”50 in 1676.5

† Thomas Young (b13. June 1773 in Milverton, England; d10. May 1829 in London,
England) was an English physicist.5

‡ Isotropic means that the behaviour of a simple material is independent of the direc-
tion of the load. If the assumption of a simple material is dropped than the isotropy
of a material can be function of the investigated scale.

§ In this context the term simple material stands for an incompressible, homogeneous
and frictionless material.

27



2. Data Acquisition, Data Analysis and Material Properties

(a) (b)

(c) (d)

Figure 2.10. – Mechanical models as representation of the eq. 2.21,
eq. 2.24 and eq. 2.25. (a) an ideal spring, (b) an ideal damper, (c) an
elastic body under shear and (d) a Newtonian fluid under shear (with
lamellar flow).

governing equation, the Newton’s* law for liquids is

τxy = ηγ̇xy. (2.25)

Eq. 2.25 equals the shear stress τxy in a liquid to the product of the material
property, the shear viscosity η and the kinematic value of the shear strain
rate

γ̇xy = dγxy/dt = v (y) /Ly. (2.26)

The Newton’s law is used for simple shear flows, as in fig. 2.10d. In the
mechanical modelling it is formally represented by a dash pot element, as
seen in fig. 2.10b.

* Isaac Newton (b4. January 1643 in Lincolnshire, England; d31. March 1727 in Kens-
ington, England) was an English physicist and mathematician. His most famous
work is the ”Philosophiae Naturalis Principia Mathematica”,52 in which he states his
three fundamental laws of mechanics.5
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2.3.2 The Stress Tensor

Chap. 2.3.1 showed for the case of one dimensional problems, that stress
and strain are connected via a material-dependent constant. For an in-
vestigation of the material behaviour, a definition of the stress is required.
The stress σ is defined as the force* Fx applied normal to the surface Ax of
a body. Thus,

σxx := lim
Ax→0

Fx

Ax
=

δ (Fx)

δ (Ax)
. (2.27)

For simple materials and uniaxial tension or deformation, the equations
from chap. 2.3.1 are sufficient for calculations. For the description of more
dimensional load states or complex materials, e.g. anisotropic materials †

the eq. 2.21 or eq. 2.24 must be written in tensor notation,‡

σij = Cijklεkl . (2.28)

The stress tensor S can be separated in a hydrostatic pressure p§ and the
frictional pressure P with the components Pij

σij = pδij + Pij. (2.29)

The average normal pressure is expressed through the elements of the
main diagonal by using the Einstein¶ notation,53, 54 as

p̄ =
1
3

σii. (2.30)

* There are two ways to apply a force to a body. The first is via force fields and the
resulting forces are called body forces. The second is via surface interactions by
which the force is transmitted between atomic or molecular bonds. Those forces are
called surface forces or contact forces.49

† Materials which have an orientation, e.g. compound materials, block copolymers,
liquid crystals, glass fibre improved materials, etc.. Depending on the orientation
of the mechanical load the material will respond differently.

‡ See chap. A
§ p is a scalar.
¶ Albert Einstein (b14. March 1873 in Ulm, Germany; d18. April 1955 in Princeton,

USA) was a theoretical physicist. In 1921 he was rewarded with the Nobel prize in
physics ”for his services to Theoretical Physics, and especially for his discovery of
the law of the photoelectric effect”.5
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The nine components σij of the stress tensor S, in eq. 2.28, have the form of

S = σij~e i ⊗~e j =

 σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 (2.31)

and the components of the strain are

E = εij~e i ⊗~e j =

 εxx γxy γxz

γyx εyy γyz

γzx γzy εzz

 . (2.32)

The elements of the main diagonal of the stress tensor S are the normal-

Figure 2.11. – Direction of the different stress components σij on a
quadratic mechanical body. The first index i names the normal direc-
tion of the surface to which the stress or strain is applied. The second
index j names the direction in which the stress or strain is directed.

stresses σii.
They represent the stresses in the normal directions on a plane (see
fig. 2.11). The elements on the secondary diagonals are the shear stresses
which are frequently written as τij instead of σij. They are the stresses in
the plane of a body (see fig. 2.11). Because of the invariance of the angular
momentum,39 the stress tensor is symmetric,

τij = τji. (2.33)
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With eq. 2.33 the number of independent components of σij is reduced
from nine to six. Similar statements are used for the strain tensors. The
elements on the principal diagonal are the strains ε, while the components
of the secondary diagonals are the shear strains γ. The strain tensor is also
symmetric.
The components Cijkl of C are in the simplest case constants. However,
these components can generally be functions of e.g. temperature ϑ, defor-
mation history ť, shear rate γ̇, angular frequency ω etc..

Cijkl = Ĉijkl
(
ϑ, ť, γ̇, ω, ...

)
. (2.34)

Next, three examples of typical materials are shown, as well as their math-
ematical description with the stress tensor.

Example 8. The ideal elastic body55

The stress tensor of an ideal elastic material only has deformation dependent ele-
ments, like

S =

 λLame I (E) + 2Gεxx Gγxy Gγxz

Gγyx λLame I (E) + 2Gεyy Gγyz

Gγzx Gγzy λLame I (E) + 2Gεzz

 .

(2.35)

If the shear stresses are negligible, τij = 0 and if σxx = σyy = σzz, S is isotropic
and is called the hydrostatic stress tensor. I (E) = tr (E) = εii is the first invari-
ant of the strain tensor*. λLame is called the Lamé† constant. The Lamé constant
is related to the Poisson‡ ratio νPoisson by λLame =

νPoisson E
(1+νPoisson)(1−2νPoisson)

.

Example 9. The ideal viscous body
The stress tensor of an ideal viscous material only has components in the sec-
ondary diagonals, like

S =

 0 ηγ̇xy ηγ̇xz

ηγ̇yx 0 ηγ̇yz

ηγ̇zx ηγ̇zy 0

 . (2.36)

* The definition of the second and the third invariant of the stress tensor is given in
chap. A eq. A.112 and eq. A.113

† Gabriel Lamé (b22. July 1795 in Tours, France; d1. May 1870 in Paris, France) was a
French mathematician who contributed to the field of differential geometry.5

‡ Siméon-Denis Poisson (b21. June 1781 by Loiret, France; d25. April 1840 in Paris,
France) was a French mathematician and physicist.5
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Because of the symmetry, the extra stress tensor has only three independent com-
ponents (τxy, τxz and τyz). If a shear stress in the upper x− y-plane is applied in
y-direction, a small element of a viscous body deforms as fig. 2.12 shows.

Figure 2.12. – An infinitesimal small volume element of an ideal
viscous material of infinite expansion under shear. The light grey
body represents the volume element in its initial state; no load, while
the dark grey body represents the deformed volume element. The
σxz = τxy and the σyz = τyz components of σij are identical to zero.

Example 10. The viscoelastic body
The stress tensor of an ideal viscoelastic material has in principal all components
in the matrix. For most shear experiments, e.g. oscillatory shear, only the shear
stress components in one plane (e.g. x - y - plane) are observed. Therefore, the
viscoelastic stress tensor takes the form of

S =

 σxx τxy 0
τyx σyy 0
0 0 σzz

 . (2.37)

The elements on the main diagonal are non-zero and do not have to be equal. The
viscoelastic body is further discussed in chap. 2.3.3.

2.3.3 Rheological Models

In chap. 2.3.1 two of the basic models of material behaviour were dis-
cussed, the Hookean body in eq. 2.24 and the Newtonian body in eq. 2.25.
In the engineering mechanics simple elements such as springs, dash pots
and their combinations are used to model the behaviour of different types
of materials (as seen in fig. 2.10).
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The serial connection of a Hookean body and a Newtonian body is called
a Maxwell* element (see fig. 2.13a). This model describes the behaviour of
viscoelastic bodies, like polymer melts, if they are in the linear regime (see
chap. 3.2.3 fig. 3.5).

By using several Maxwell models in a parallel array (see fig. 2.13b), the
response of more complex viscoelastic bodies can be predicted. This en-
semble of Maxwell elements is called a multi mode Maxwell element or a
multi mode Maxwell model.

(a)

(b)

Figure 2.13. – (a) the single Maxwell model and (b) the multi-mode
Maxwell model.

Example 11. The Maxwell model
For a Maxwell element the stress in both of its components, dash pot (Newtonian

* James Clerk Maxwell (b13. June 1831 in Edinburgh, Scotland; d5. November 1879
in Cambridge, England) was a Scottish physicist. He is best known for his works
on electrodynamics,5 but also his work on the kinetic theory of gases is acknowl-
edged.56
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body) and spring (Hookean body), are the same‡

τH = τN . (2.38)

Whereas, the strain γ and the strain rate γ̇ is the sum of the strain or strain rate
of both components

γ = γH + γN , (2.39)

γ̇ :=
dγ

dt
(2.40)

= γ̇H + γ̇N . (2.41)

The differential equation for Maxwell element is deduced from eq. 2.41

γ̇ =
τ̇

G
+

τ

η
,

ηγ̇ = λτ̇ + τ. (2.42)

In the second line of eq. 2.42, the relaxation time λ is introduced with the relation

λ =
η

G
. (2.43)

From eq. 2.42 a relaxation function G (t) can be derived by assuming a step-strain
experiment*, see fig. 2.14, which defines an initial strain

γ = γ0 (2.44)

and a strain rate

γ̇ = 0, ∀ t > 0. (2.45)

With eq. 2.45 the differential equation eq. 2.42 simplifies to

0 = λτ̇ + τ. (2.46)

‡ This examples bases on fig. 2.13a which is a one dimensional model. Thus, stress
and strain can only work in one direction. Therefore, the notation can be simplified
by dropping the indices for the coordinates (xy).

* Step-strain experiment:44 An investigated sample is deformed instantaneously by a
constant strain γ0 at the time t = 0. The deformation lasts as long as the experiment
itself (ideal case t→ ∞). The stress as a function of time is measured.
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(a) (b)

Figure 2.14. – (a) shows the applied step strain and (b) shows the
viscoelastic stress response.

This is an ordinary differential equation (ODE) of the first order and can be solved
via an exponential ansatz for the stress

τ (t) = C0 · e−
t
λ . (2.47)

The constant C0 in the ansatz function eq. 2.47 can be determined by using the
initial condition given in eq. 2.44.

In the first instant (t = 0), only the Hookean element (see eq. 2.24) is responsible
for the response. Thus,

C0 = Gγ0. (2.48)

With eq. 2.46 and the value for C0 from eq. 2.48 the relaxation function

G (t) =
τ (t)
γ0

= G · e
−t
λ . (2.49)

By using the spring and the damper element, it is possible to model the
mechanical behaviour of many different materials just by combining the
basic elements in different orders and numbers.4 Generally, the long-time
behaviour of solid bodies is ruled by elastic elements. Whereas, the long-
time behaviour of viscous bodies is ruled by damper elements.
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2.4 Polymers

This chapter gives a summary of the possible structural properties of poly-
mers (chap. 2.4.1) as found in many textbooks about polymer science, e.g.
Lechner,57 Lovell,43 Osswald55 or Schwarzl.14 The second part of this
chapter (chap. 2.4.2) presents the polymeric materials which have been
used in this thesis.

2.4.1 Introduction to the Structure of Polymeric
Materials

Polymers or macromolecules*, as already introduced in chap. 1, are mole-
cules built up from smaller molecule units (repeat units) covalently bound
to each other. A definition is found in the book of Schwarzl:14

”Macromolecular materials (polymers) are materials which are built up
from large molecules 103 g/mol < M < 107 g/mol.”†

A polymer built from just one type of repeat unit is called homopoly-
mer. The choice of the repeat unit defines the properties of the polymer.

* The term macromolecules, meaning large molecules, was introduced by
H. Staudinger†.

† Herman Staudinger (b23. March 1881 in Worms, Germany; d8. September 1965 in
Freiburg, Germany) was a German organic and macromolecular chemist. He re-
ceived the Nobel prize in 1953 ”for his discoveries in the field of macromolecular
chemistry”.5

† M is the molecular weight, which is a function of the Avogadro‡ number NL =

6.0225 · 1023 mol−1 and the mass of one molecule m in g.14

M = NLm. (2.50)

‡ Lorenzo Romano Amedio Carlo Avogadro (b9. August 1776 in Turin, Italy; d9. July
1856 in Turin, Italy) was an Italian physicist. He only proposed that a defined vol-
ume of all gases under the same condition contains the same amount of molecules
(Avogadro’s law). In German speaking countries the Avogadro number is called
Loschmidt§ number.5, 58

§ Johann Joseph Loschmidt (b15. March 1821 by Carlsbad, Bohemia; d8. July 1895 in
Vienna, Austria) was an Austrian physical chemist. He calculated the number of
molecules in a gas per cm3.5, 58
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Fig. 2.15 gives examples of different common homopolymers and their re-
peat units.43, 59

It is also possible to use more than one repeat unit in the synthesis of a
polymer.* Thus, copolymers are obtained.43 The chain structure is then
defined by the arrangement of the single repeat units. The types of copoly-
mers are:43, 59

Statistical copolymers consist of statistically† alternating repeat units, as
shown in fig. 2.16a.

Alternating copolymers consist of strictly alternating repeat units, as pre-
sented in fig. 2.16b.

Block-copolymers are created by long sequences of each repeat unit. In
fig. 2.16c a di-block-copolymer is shown. It consists of one sequence
of each of the two repeat units.

Grafted copolymers are formed by a linear chain made of one repeat unit
(called backbone) and blocks made of the other repeat unit (side
arms, branches) which are grafted onto the backbone (seen in
fig. 2.16d).

As seen in fig. 2.16d, polymers do not only exist as strictly linear topolo-
gies (see fig. 2.17a), but also as branched molecules. The type of branching
defines the mechanical properties of the polymers. Typical branched struc-
tures are:43, 59

Short chain branched (SCB): Short chains made of a few repeat units are
grafted onto a linear backbone (see fig. 2.17b).

Long chain branched (LCB): Long chains are grafted onto a linear back-
bone (see fig. 2.17c). This side branches are physical entangled and
consist typically of e.g. more than 300 carbons.

* The term repeat unit includes the term monomer. However, when used for
copolymers it is referred to larger molecules built up from monomers and not only
to different monomers used, this would be the case also for e.g. polyethylene-
terephthalate (PET) which is built up from a repeat unit composed from ethylene
glycol and terephthalic acid. PET is considered as a homopolymer.

† Statistically means following a statistical law18 (e.g. Markovian‡).43 A special case
of this would be the random copolymer with a truly random arrangement of the
repeat units.

‡ Andrej Andrejewitsch Markov (b2. June 1856 in Rjasa, Russia; d20. June 1922 in
Petrograd, Russia) was a Russian mathematician.5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.15. – Examples of different repeat units (monomers) and
their homopolymers: (a) ethylene, (b) polyethylene (PE), (c) styrene,
(d) polystyrene (PS), (e) tetrafluoroethylene, (f) polytetrafluoroethy-
lene (PTFE), (g) propylene and (h) polypropylene (PP).
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(a) (b)

(c) (d)

Figure 2.16. – Typical structures of copolymers, as (a) statistical
copolymer, (b) alternating copolymer, (c) block copolymer (diblock)
and (d) graft copolymer. The one repeat unit is symbolized by the
black circles and the other repeat unit is symbolized by the grey
squares.

Pom-pom-like: Pom-pom shaped polymers have a linear backbone with
their side chains connected the both ends of the backbone. Pom-
pom-like polymers are of special interest because there is an ad-
vanced constitutive model60 which connects the molecular topol-
ogy* with the rheology of those materials (see fig. 2.17d).

Star like: Several long chains are connected in one point (see fig. 2.17e).

Network polymers: Polymers can also form three dimensional networks
with crosslinks (see fig. 2.17f).

Polymeric materials are divided in three mayor groups describing their
properties:43, 59

Thermoplasts are polymers which can be melted and thus shaped. Exam-
ples are PE or PP.

Thermosets (Duromers) are highly crosslinked polymers, which are typ-
ically rigid. Once formed they can not be melted again. Examples
are polyurethane (PUR and PU) or epoxy resins.

Elastomers are elastic and rubber-like networks. The network has a low
crosslinking density. Examples are natural rubber or nitrile rubber
(NBR).

* The parameters are the length of the backbone and the number of side chains and
the length of the side chains.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.17. – Typical chain topologies of polymers are (a) linear
chain, (b) short chain branched chain, (c) long chain branched chain,
(d) pom-pom shaped chain (with q = 4 side branches on each side),
(e) star branched chain and (f) network polymer.
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Additionally to the characteristics described above, polymers are defined
by their molar mass. Depending on the strategy of the synthesis of the
polymer, the length of the polymer chains and thus also the molar mass
can differ in one batch. There are two main definitions of the molar mass
of a macromolecule. One is the number-averaged molar mass Mn which
is defined as given by Lovell:43

”The sum of the products of the molar mass of each fraction multiplied
by its mole fraction.”

This citation is transformed into an equation by eq. 2.51.

Mn =
N

∑
i=1

xi Mi. (2.51)

In eq. 2.51, xi is the mole fraction and Mi is the mass of the single fraction.
The second definition for the molar mass is the weight-averaged molar
mass Mw which is defined as given by Lovell:43

”The sum of the products of the molar mass of each fraction multiplied
by its weight fraction.”

This citation is transformed into an equation by eq. 2.52.

Mw =
N

∑
i=1

wi Mi. (2.52)

In eq. 2.52, wi is the weight fraction.
The ratio of the number-averaged molar mass and the weight-averaged
molar mass defines the polydispersity which is also called the polydisper-
sity index PDI:

PDI =
Mw

Mn
. (2.53)

For a homopolymer, a polydispersity of 1 means that the polymer is mono-
disperse.* The composition of a polymer sample by fractions with different
molar masses is represented by the molar mass distribution.†

* It consists of chains with identical chain length.
† The full molar mass distribution is measured e.g. by size exclusion chromatogra-

phy (SEC). More information about this can be found in Schwarzl14 or Lechner.57
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2.4.2 Materials of Investigation

For the research conducted in this work and presented in the next three
chapters, different polymeric materials have been used.
In order to study the behaviour of the flows of polymer melts of indus-
trial importance, commercial PE samples of different molecular structures
were used as listed in tab. 2.3 for the experiments which are presented in
this work. The individual samples of the PE represent different molecular
topologies. The LDPE is a low density PE with long chain branching and
the MDPE is a medium density PE with a more linear topology. Both sam-
ples have a broad polydispersity and are obtained from LyondellBasell.
The LLDPE is a linear low density PE from Exxon Mobil and has a lin-
ear molecular structure.61 The samples named PE-SCB07* and PE-SCB13†

are ethylene/1-octene copolymeres from DOW Chemicals. Due to their
comonomer content, both samples have short chain branches along their
backbone. The HDPE is PE with a high density obtained from Borealis. It
has a linear molecular topology with very rare side branches.

Table 2.3. – Material and molecular properties of the used PE.

Sample ρ20°C Mw Mn PDI ϑm estimated
topology

g
cm3

kg
mol

kg
mol - °C

LDPE 0.92 186 16 11.7 114 LCB
MDPE 0.94 193 20 9.6 128 linear

LLDPE61 0.93 148 35.2 4.2 125 linear
PE-SCB07 0.9 100 45 2.2 100 SCB
PE-SCB13 0.87 85 37 2.3 64 SCB

HDPE 0.93 110 23.4 4.7 131 linear

In the part concerned with the determination of the normal forces under
oscillatory shear, different samples of PE have been compared with sam-
ples of PS. Whereas, the PE samples have a broad molecular mass distri-
bution as well as the type of branching and the amount of branching is not

* 7% mol SCB caused by the copolymerization of octene.62

† 13% mol SCB caused by the copolymerization of octene.62
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Table 2.4. – Molecular properties of the anionically synthesized PS.

Sample Mw PDI Remarks
kg/mol - -

PS-L 261 1.18 commercial
PS-Comb 765 1.07 synthesised by Kempf64

Table 2.5. – Material properties of the polymeric liquids.

Sample ρ Γ ηE

g/cm3 mN/m Pas

PDMS 0.95 21.5 291
PS-DOP 0.9 30.05 85

exactly defined, the PS have a well defined molecular structure, as shown
in tab. 2.4. The PS-Comb has a well defined branching structure due to the
special synthesis introduced by Kempf.63 The PS-Comb has in average 14
side branches of a molar mass of 42.000 which are statistically distributed
along the backbone.
For the experiments with the CaBER, two groups of lower viscous poly-
meric liquids have been used:

1. Commercial silicon oil and a lab made polymer solution (for
chap. 5.5)

2. Commercial wood glues (for chap. 5.5.3)

The silicone oil (Rhodorsil 47V300000)* was produced from the company
Rhodia. The polymer solution was a lab made sample donated by
Dr. Klein65 which is similar to the sample studied by Hilliou et al.66 It
is polystyrene (PS) solved in dioctylphthalate (DOP). In the following this
sample will be called PS-DOP. The relevant material properties of these
samples are summarized in tab. 2.5. The wood glues samples are obtained
from the Henkel company. Both samples are commercial products and are
commonly used in daily life. One glue is a Ponal-Classic and the other is a

* Silicone oils are polydimethylsiloxanes (PDMS). These are polymers built from Si
(silicon) atoms.
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Ponal Express-glue (further referred to as Ponal-Express). Wood glues are
known to be based on an atactic polyvinylacetate (PVAc).
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Chapter 3

Rotational Rheology

In our daily life shear flows of fluids are omnipresent, e.g. the Hagen*68-
Poiseuille†70 flow inside the water tubes, the blood flow in veins, the re-
filling of traditional cars with gasoline and many more. Shear flows are
not only omnipresent, they are also of great importance for the industry.
In many processing operations the fluids have to be pumped to their place
of action in order to get a customers product or the fluids have to flow
in order to gain a desired effect, e.g. power generation in hydro-power
plants.
Other examples of the importance of industrial flows, which are more up
to the scope of this work, are the polymer extrusion and the melt flow in-
jection. In both cases, the fluid is a molten polymer which is driven by
pressure in a special die or form in order to obtain one of the many plas-
tic products. The polymer flows under non-linear conditions. However,
this industrial process still has to guarantee the final product quality, the
design life of the machine and the safety of the operators. These demands
depend highly on the right choice of flow conditions for the polymeric
working fluid. The flow of a polymer melt is not as easily controllable as a
Newtonian fluid, because it is a complex viscoelastic fluid. This viscoelas-
tic behaviour is fundamentally caused by the molecular topology of the
polymer chain and is explained in chap. 2.3.3. It is usually complicated to

* Gotthilf Heinrich Ludwig Hagen (b3. March 1797 in Königsberg, Germany;
d3. February 1884 in Berlin, Germany) was a German hydraulic engineer.67

† Jean Louis Leonard Marie Poiseuille (b22. April 1797 in Paris, France; d26. Decem-
ber 1869 in Paris, France) was a French physiologist and physicist.69

45



3. Rotational Rheology

access the knowledge of all topological parameters and also the ultimate
relations between topology and mechanical forces are not known. It is
desirable to obtain a certain estimate of the molecular parameters via the
mechanical properties as those obtained via the shear rheology. E.g. the
content of the long chain branches in a polymer melt can be estimated via
the elongational behaviour of a sample.71–75

As an indicator for the elasticity of a melt the normal forces are essential.
This has been proved by basic studies in the linear regime.76–78 Gleißle
built a rheometer which was able to measure the normal forces and the
radial distribution of the normal force under steady shear.76–78 His set-up
had the mayor drawback of pressure holes in the surface of the geometries.
For low viscous fluids this might be of low impact on the measurements
but for high viscous polymer melts the disturbances caused by these phys-
ical holes can be of undefined influence.

In 2003 Baek et al.79 introduced a new geometry for measuring the nor-
mal forces. With their set-up they were able to overcome the drawback of
Gleißle. Instead of using pressure holes they used a monolithic plate ge-
ometry. The sensors are capacitive membrane sensors. They are directly
put on the backside of the geometry plate by etching processes and by
deposition of a metal layer. Thus, very small (diameter ≈ 1 mm) and
radial distributed transducers are applied. The etching process reduces
the thickness of the geometry locally to several µm. The sensitivity of the
transducer was in the best case of about 2× 10−4 N. However, the studies
of Baek et al. have been limited to the steady shear rate experiments.

Studies have been conducted by Schweizer (2002 - 2006)80, 81 for differ-
ent polymer melts (different PS) with steady state experiments and step
shear experiments with commercial rheometers and plate-plate geometry,
as well as cone-plate geometry. An additional focus in his works lay on
the compliance of the rheometer frames.81

Nam et al.82 simulated the shear stress and normal force response of a
fluid modelled with the Giesekus model for LAOS (large amplitude os-
cillatory shear, chap. 3.2.1) experiments and obtained FT-spectra for the
normal forces with even higher harmonics from those (see chap. 3.3 for
details on the FT-rheology).
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3.1 Detection of Normal Forces under
Oscillatory Shear

The works of Nam et al.82 are the starting point of the present work. The
aim of this study is to measure the normal forces in LAOS experiments in
the non-linear regime. According to the theoretical studies of Nam82 the
normal forces per area of the polymer melts are expected to be small in
comparison to the shear stresses. For this reason a highly sensitive tool is
needed for the rheometric measurement of the normal forces.
For the investigations an ARES rheometer from TA-Instruments was used.
This rheometer is a high performance rheometer and in combination with
the FT-Rheology (FT-R, see chap. 3.3) of Wilhelm et al.83 its sensitivity*

concerning the torque is further improved. Nevertheless, it has a limited
sensitivity when it is about to measure the normal forces†. In addition
to the poor sensitivity it lacks the capacity to measure normal forces in
oscillatory measurement. With its software it is only possible to measure
normal forces under steady shear.
Thus, two approaches are possible to obtain the normal forces under oscil-
latory shear with the ARES rheometer:

Improving the FT-R set-up: The set-up from the FT-R, as published by
Wilhelm et al.,16, 84, 85 is extended to additionally measure the nor-
mal force. This is achieved by connecting the PC directly to the
hardware of the ARES and using the special LabVIEW software of
the Wilhelm group.65 Thus, the normal force data can be obtained
but it is still limited to the given sensitivity of the force transducer
installed in the ARES.

Designing a new geometry: A new geometry is designed for the ARES
with a highly sensitive force measurement. This could improve the
sensitivity of the first approach. A special set-up which contains a
highly sensitive piezoelectric force transducer was designed in this
thesis and this set-up was installed and tested in the ARES. With this

* Torque sensitivity as specified by the manufacturer: 0.002 - 200 mNm.
† Between 0.02 - 20 N, as specified by the manufacturer. Other rheometer, e.g. the

MCR502 from Anton Paar can detect normal forces in the range of 0.005 - 50 N.
Nevertheless, it is still not sufficient for this work. An estimated value is < 10−3 N.
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set-up the normal forces can be measured under oscillatory shear.

The results of both of these approaches are compared with the results ob-
tained from the new generation (since 2009) of the high performance shear
rheometer the ARES G2*. The ARES G2 is the successor of the ARES and
initially has the capabilities to measure the normal forces under oscilla-
tory shear, however only with a stated sensitivity of 10−3 N. This means
that, the sensitivity of the transducer of the ARES G2 is improved by one
decade in comparison to the transducer installed in the ARES.

3.2 The Rotational Shear Rheometer

For shear strain experiments in rotational shear rheometers, a sample disc
is placed between the two geometries.
There are two types of basic plate geometries for the rotational rheometers

• plate-plate (fig. 3.1a) or

• cone-plate (fig. 3.1b).

The lower geometry applies the deformation (γ) on the sample, while the
upper geometry keeps its position and thus the response of the sample
(torque Tz) is measured. The advantage of a cone-plate geometry is the
homogeneous flow field and the lower amount of needed sample. The
advantage of a plate-plate geometry is its easy sample preparation and the
easy construction of the geometries.
The loading of the sample is of main importance for the reproducibil-
ity of the measurements.45 For best results the free boundary has to be
straight or slightly convexly curved, as seen in fig. 3.2a, and never con-
cavely curved as fig. 3.2b shows. The measurement uncertainty Umeas

taken into account by an incorrect loading can be estimated as45

Umeas =
∆η

ηtrue
=

ηtrue − ηapp

ηtrue
= 1− (R− ∆r)4

R4 . (3.1)

The true viscosity is ηtrue and the apparent viscosity is ηapp. The geomet-
rical parameters are explained in fig. 3.2. The difference between true and

* Torque sensitivity as specified by the manufacturer: 0.05 µNm - 200 mNm. Normal
force sensitivity as specified by the manufacturer: 0.001 N - 20 N.
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(a) (b)

Figure 3.1. – (a) Plate-plate geometry, as it is used in rheometers. Be-
tween the plates (1), there is the sample disc (2), which has to be in-
vestigated. (b) Cone-plate geometry, as it is used in rheometers. The
sample disc (2) is placed between the plate (3) and the truncated cone
(1). The typical cone angle α lies between 0.02 and 0.1 rad.

(a) (b)

Figure 3.2. – Loading of a sample disc in a rotational rheometer. (a)
correct loading and (b) wrong loading.
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apparent viscosity is ∆η. With the viscosity difference eq. 3.1 written as

∆η = Umeas · ηtrue. (3.2)

Example 12. Measurement uncertainty
For a sample with the radius of R = 10 mm, a cavity of ∆r = 0.1 mm is assumed.
This results in a measurement uncertainty of Umeas = 0.04, about 4%. For the
same sample size a cavity of ∆r = 1 mm is assumed, which gives a measurement
uncertainty of Umeas = 0.34.

3.2.1 Oscillatory Shear

One important experiment in rheology is the oscillatory shear experiment.
A disc of a sample is placed between two geometries, e.g. two plates. One
plate is oscillated with an amplitude γ0 and a defined angular frequency
ω0 = 2πν0, while the other plate is connected to a torque transducer and
measures the response of the sample. Usually the excitation amplitudes
are small, so the experiments are called small amplitude oscillatory shear
(SAOS) experiments. The small amplitude of strain should allow measure-
ments in the linear regime (see chap. 3.2.3). The oscillating excitation strain
is given by

γ (t) = γ0 sin (ω0t) . (3.3)

The stress * τ of the system is the response of the deformation and is mea-
sured. For the linear regime the stress response has the same frequency as
the strain, but τ follows the strain excitation with a phase shift δ, so

τ (t) = τ0 sin (ω0t + δ) . (3.4)

The stress can be decomposed in an in-phase τ′ and out-of-phase τ′′ part.
Defining τ0 as the amplitude of the stress oscillations, the stress can be
stated as

τ (t) = τ′ (t) + iτ′′ (t)

= τ′0 sin (ω0t) + iτ′′0 cos (ω0t) . (3.5)

The decomposition of the stress is shown in fig. 3.3.

* In this chapter the indices of the stress tensor and the strain tensor are dropped.
From the settings of the oscillatory shear experiment it is obvious that the only shear
strain present lies in the r− ϕ-plane (see fig. 3.1a), and so does the shear stress. The
measured normal force is perpendicular to this plane.
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Figure 3.3. – Decomposition of the stress (dash-dotted line) into the
in-phase (dashed line) and out-of-phase part (dotted line).

Besides Newton’s law from eq. 2.25 and the shear rate from eq. 2.40, an-
other important rheological measure is the loss angle δ, or the tan δ. It is
obtained from the basic definition of the stress in eq. 3.4 and its decompo-
sition in eq. 3.5. With the angle sum formula* for the sine eq. 3.4 is written
as,

τ (t) = τ0 cos δ︸ ︷︷ ︸
=const.=τ′0

sin ω0t + τ0 sin δ︸ ︷︷ ︸
=const.=τ′′0

cos ω0t. (3.6)

Using eq. 3.6, tan δ is given by the ratio of τ′′0 and τ′0. Thus,

τ′′0
τ′0

=
τ0 sin δ

τ0 cos δ

= tan δ. (3.7)

The stress-strain relation induces the dynamic moduli G′ and G′′ via
eq. 2.24. G′ = τ′0

γ0
is the elastic or storage modulus and G′′ = τ′′0

γ0
is the

viscous or loss modulus. With the dynamic moduli, the eq. 3.7 can be

* See mathematical text books:18, 86 sin (x± y) = sin x cos y± cos x sin y
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written in its most frequently used form

tan δ =
G′′

G′
. (3.8)

The advantage of eq. 3.8 is that the value of tan δ is less sensitive concern-
ing the errors of G′ and G′′ than the dynamic moduli. This is caused by
the fact that each component is affected by the errors of the measurement
∆G′ and ∆G′′ in a similar way (see example).

Example 13. The error of measurement for G′ and G′′

The elastic modulus and the loss modulus are both affected by the error of mea-
surement. Thus, the true values of the moduli G′true and G′′true are corrupted by
the error of the measurement as

G′ = G′true + ∆G′ and (3.9)

G′′ = G′′true + ∆G′′. (3.10)

The error of measurement is given by a percentage value of the true values of the
moduli by

∆G′ = n · G′true with 0 ≤ n < 1 and (3.11)

∆G′′ = n · G′′true with 0 ≤ n < 1. (3.12)

In eq. 3.11 and eq. 3.12 it was assumed that both moduli are similarly erroneous
and for this have the same value of n. Using eq. 3.11 and eq. 3.12 in eq. 3.9 and
eq. 3.10, eq. 3.8 can be written as

tan δ =
G′′true + n · G′′true
G′true + n · G′true

=
G′′true (1 + n)
G′true (1 + n)

=
G′′true
G′true

. (3.13)

Therefore, eq. 3.13 proves that the tan δ is not affected by the error of measurement.

Another important quantity for fluids is the viscosity. In case of the os-
cillatory shear experiment a complex viscosity* is given by the use of the

* The concept of a complex viscosity is based on the works of A. Gemant†.87, 88

† Andrew Gemant (b27. July 1895 in Nagyvarad, Hungary; dFebruar 1983 in Detroit,
USA) was a Hungarian physicist.89
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complex shear stress τ∗ and the complex strain rate γ̇∗ :

η∗ =
τ∗

γ̇∗
= η′ − iη′′. (3.14)

In eq. 3.14 the complex viscosity is decomposed into the dynamic viscosity

η′ =
τ′′0
γ̇0

=
G′′

ω
(3.15)

and an elastic part

η′′ =
τ′0
γ̇0

=
G′

ω
. (3.16)

In eq. 3.15 and eq. 3.16 γ̇0 is the amplitude of the oscillatory strain rate.
For a time-dependent strain, the strain rate γ̇ (t) is simply the time deriva-
tive of the strain (see eq. 2.40). Thus, for an oscillatory excitation,

γ̇ (t) = γ0ω︸︷︷︸
=γ̇0

cos ω0t. (3.17)

In fig. 3.4 the oscillating strain, the resulting stress and strain rate are plot-
ted.

Example 14. The Maxwell element under oscillatory shear
A Maxwell body, as described by eq. 3.3, is excited by an oscillatory deformation.
The mechanical values of the strain amplitude, the strain rate and the shear stress
are given in complex notation (see chap. C). Thus, the eq. 3.3, eq. 3.4 and eq. 3.17
are restated to eq. C.1, eq. C.2 and eq. C.3. With further operations as in detail
described in chap. C and the definition of the complex modulus

G∗ :=
τ∗ (t)
γ∗ (t)

, (3.18)

a complex formula for the behaviour of a Maxwell body under oscillatory shear is
found to be

G∗ (ω) = G · iλω + λ2ω2

1 + λ2ω2 . (3.19)

The complex modulus, as every complex number, can be split in the real part
G′ (ω) = Re {G (ω)} and the imaginary part G′′ (ω) = Im {G (ω)}.

G∗ (ω) = G · λ2ω2

1 + λ2ω2︸ ︷︷ ︸
=G′(ω)

+ iG · λω

1 + λ2ω2︸ ︷︷ ︸
=G′′(ω)

. (3.20)
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Figure 3.4. – Sinusoidal oscillating shear strain (full line), the result-
ing shear stress (dashed line) and the shear rate (dotted line) for a
viscoelastic material.

The Maxwell model is a good approximation of the viscoelastic behaviour in the
linear regime. By eq. 3.20 the crossover frequency ωcross at which G′ (ω) =

G′′ (ω) can be determined from G′ (ω) and G′′ (ω).

3.2.2 Time-Temperature-Superposition (TTS)

Standard rheological instruments typically have a frequency range of 3 to
4 decades. For a complete characterization of the material behaviour of
polymer melts, a frequency range of about 10 decades is often needed.
This frequency range cannot be measured in one single measurement, but
it is possible to shift the results of several measurements at different tem-
peratures to gain a master-curve, which shows the characteristic behaviour
of a polymer melt at a certain reference temperature for a wider frequency
range. To obtain a master curve, the data at different temperatures is mul-
tiplied with specific shift factors aT , which can be calculated via the WLF-
equation (Williams-Landel-Ferry).90

The WLF-equation can be derived from the basic expression for the tem-
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perature dependence of the viscosity of a liquid,43

η (ϑ) = η0e
Ea

Rm(ϑ−ϑVF) . (3.21)

ϑ is the variable temperature, Ea is the activation energy, Rm is the uni-
versal gas constant and ϑVF is the Vogel-Fulcher91 temperature. With the
Newton’s law from eq. 2.25 and the strain rate from eq. 3.17 the stress is a
function of strain and frequency τ0 = ηγ̇0 ⇒ τ0 = ηγ0ω. For two mea-
surements at different temperatures ϑ1 and ϑ2 a ratio of the viscosity is
defined by

η1 (ϑ1)

η2 (ϑ2)
:=

η1
η2

=
ω2
ω1

. (3.22)

Further it is assumed that the viscosity ratio in eq. 3.22 is described by

η1
η2

= fV · η1 (ϑ1) (3.23)

with the free volume fV .* The eq. 3.21 and eq. 3.22 are inserted in eq. 3.23
to derive

ω2
ω1

= fV · η0e
Ea

Rm(ϑ−ϑVF) . (3.24)

The form of the WLF-equation is obtained by taking the common loga-
rithm of the expression from eq. 3.24

log
ω2
ω1

= log ( fVη0) +
Ea

Rm (ϑ− ϑVF)
log e. (3.25)

Three definitions are further introduced

C1 · C2 :=
Ea

Rm
log e, (3.26)

ϑ2 − C2 := ϑVF and (3.27)

C1 := log ( fVη0) . (3.28)

C1 and C2 are constants which depend on the choice of ϑ2. If ϑ2 = ϑg then
typical values are C1 = 17.4 and C2 = 51.6 K. These values are called uni-
versal values and give in the most cases a good prediction of the behaviour

* The free volume fV represents the space of a liquid or solid which is not occupied
by a polymer molecule.43 The free volume is given by fV = fg

(
ϑ− ϑg

)
αF , with the

thermal expansion coefficient of the free volume αF , the glass transition temperature
ϑg and the fractional free volume fg.
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of the studied polymer melt. Thus, the WLF-equation is finally derived in
form of

log
ω2
ω1

= log aT =
−C1 (ϑ1 − ϑ2)

C2 + (ϑ1 − ϑ2)
. (3.29)

For generating a master-curve via the WLF-equation it is important that all
of the relaxation processes of the polymer melt have the same temperature
dependence.
The generalized Maxwell-model (compare fig. 2.13b) implies the influence
of temperature on the dynamic moduli and introduces the relaxation times
λi. A change in temperature will affect the coefficient ρRmϑ/Me* and the
molecular relaxation time λi. The storage modulus is described for ϑ1 and
ϑ2 by

G′ (ω)1 =
ρ1Rmϑ1

Me
∑ gi

ω2λ2
i (ϑ1)

1 + ω2λ2
1 (ϑ1)

, (3.30)

G′ (ω)2 =
ρ2Rmϑ2

Me
∑ gi

ω2λ2
i (ϑ2)

1 + ω2λ2
2 (ϑ1)

. (3.31)

If comparing relaxation functions at different temperatures the coefficients
have to be equal. For this purpose one temperature (e.g. ϑ2) is chosen as
the reference temperature. With eq. 3.30 and eq. 3.31 it is obtained that

G′ (ω)re f = G′ (ω)2
ρ1ϑ1
ρ2ϑ2

∑ gi
ω2λ2

i (ϑ2)

1 + ω2λ2
1 (ϑ2)

. (3.32)

Therefore, the shift factor can be described by the relaxation time λ as

aT =
λ (ϑ2)

λ (ϑ1)
. (3.33)

3.2.3 Polymer Melts under Oscillatory Shear

Fig. 3.5 shows a qualitative example of a master-curve of a mono-disperse
linear homopolymer melt. The curves of the frequency dependent moduli
can be divided in four regions which show different characteristic material
behaviour. Region one is called the linear regime and it is mathematically
described by the Maxwell-model (eq. 3.20). For small frequencies ω the
storage modulus G′ (ω) is proportional to ω2 and the loss modulus G′′ (ω)

* Me is the entanglement molecular weight.
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3.2 The Rotational Shear Rheometer

Figure 3.5. – Typical shape for G′ (ω) (dashed line) and G′′ (ω) (full
line) for a mono-disperse linear homo-polymer melt. The regions of
different rheological behaviour are separated by the doted lines. The
dash doted line shows the tan δ in region II.

is proportional to ω. This can be seen in eq. 3.20. For values of ω · λ < 1,
G′ (ω) ∝ ω2 and G′′ (ω) ∝ ω. The elastic and the viscous module cross
each other at a value of ω ·λ = 1. This is the upper limit for the first region.
In the second region the response is dominated by the elastic part G′ (ω).
Additionally, the tan δ has its minimum. This corresponds to a first plateau
reached by G′. This plateau is called rubber plateau G′p. The entanglement
molecular weight Me can be calculated with G′p via

Me =
ρRmϑ

G′p
. (3.34)

As de Gennes* (1971)94 showed, the plateau viscosity η0
† for a linear amor-

phous and mono-disperse physical entangled homopolymer is propor-
tional to the third power of the molecular weight Mn

η0 ∝ M3
n. (3.35)

* Pierre-Gilles de Gennes (b24. October 1932 in Paris; France; d18. May 2007 in Ver-
saille, France) was a French physicist. He received the Nobelprize in 1991 ”for dis-
covering that methods developed for studying order phenomena in simple systems
can be generalized to more complex forms of matter, in particular to liquid crystals
and polymers”.92, 93

† For low shear rates the plot of the viscosity against the shear rate has a plateau. The
value of this plateau is called the plateau viscosity or the zero shear viscosity η0.
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From eq. 2.43 it is evident that also the relaxation time at low frequencies
is proportional to the molecular weight, λ ∝ M3

n, because G′ 6= Ĝ′ (Mn).
In experiments it was found that η varies typically with η ∝ M3.4

n .

Thus, a shift in the molecular weight will shift the plateau, but it will not
affect its value G′p.

In the third region, the influence of the viscous modulus G′′ (ω) on the
mechanical response begins to be dominating. Both G′ (ω) and G′′ (ω)

have a strong increase. This region is mainly a transition region to the
glass plateau.

The glass plateau forms region four and it is difficult to obtain it in mea-
surements, because it lies in the range of high frequencies.

3.3 Fourier Transform Rheology (FT-R)

The original idea of the oscillatory shear experiment was to study the ma-
terial behaviour in the linear regime. In the linear regime, the rheological
behaviour of most materials is easily described by the previously given
equations. However, it is also limited in terms of application to real life
process (e.g. to processing operations, which are mostly in the non-linear
regime) or limited in terms of the sensitivity to certain topological parame-
ters (e.g. the branching amount of polymeric materials or polydispersity).
Therefore, the SAOS (small amplitude oscillatory shear) experiments are
not sufficient to obtain this information about the materials.

The LAOS (large amplitude oscillatory shear) experiment can provide in-
formation about the non-linear behaviour. Nevertheless, interpreting the
results of the LAOS experiments is not easy. First approaches by Tee and
Dealy95 used phase plots96 by which the Lissajous* figures were obtained.
In rheology, the Lissajous figures are plots of the shear stress against the
shear strain. For the oscillatory experiments of any viscoelastic material in
the linear regime, the curves will have the shape of ellipsoids, due to the
linear display of the both axes. If the experiments are executed in the non-
linear regime, then the Lissajous figures will be deformed into box-like
shapes. The sensitivity of those plots is not high.

* Jules Antoine Lissajous (b4. March 1822 in Versailles, France; d24. June 1880 in
Plompiere, France) was a French physicist.5
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3.3 Fourier Transform Rheology (FT-R)

Another approach for obtaining precise information from the LAOS ex-
periments is the Fourier transform-rheology (FT-R). This approach was
already made in the the late 1960s by e.g. Onogi et al.,97–99 Dogde100 or
Philippoff.101 All their studies were limited by the low computational
power available and by the less sensitive rheological instruments. It took
until 1998 when Wilhelm successfully launched the FT-R.16, 83, 84 Since then,
the FT-R has been widely used and by the year 2010 has become a state
of art method in oscillatory rheology.* The FT-Rheology as founded by
Wilhelm16, 83 has its basis in the Taylor† expansion of the viscosity.‡ By
Substituting the viscosity η in the Newtonian law, eq. 2.25 via eq. D.2 and
replacing γ̇ with help of eq. D.4, the shear stress is given by

τ = iω0γ0η0︸ ︷︷ ︸
=I1

eiω0t − iω3
0γ3

0a︸ ︷︷ ︸
=I3

ei·3ω0t + iω5
0γ5

0a︸ ︷︷ ︸
=I5

ei·5ω0t + ... . (3.36)

Comparing the coefficients I1, I3, I5, ... of eq. 3.36 with the coefficients of a
complex Fourier series19, 22, 127 it is obvious, that I1, I3, I5, ... are the values
or intensities. The frequencies are well defined by the excitation frequency
ω0 and its odd multiples ωn = n ·ω with n =

{
x
∣∣x, k ∈N+, x = 2k− 1

}
.

Eq. 3.36 gives the explanation why only the odd harmonics can be ob-
served in the FT magnitude spectra of LAOS experiments.§ The presence
of odd higher harmonics directly indicates the appearance of non-linear
phenomena in the flow and by forming certain ratios of the amplitude of
the higher harmonics, i.e. I3/I1 or I5/I3

¶, a new method for classifying

* It was first commercialised with the ARES G2 from TA-instruments. Research
groups in the whole world, in both academia and industry make use of it.64, 102–125

A simple search in Web of science for Fourier-Transform Rheology resulted in 26
hits only for 2011 and 144 at all.

† Brook Taylor (b18. August 1685 in Edmonton, England; d29. December 1731 in
London, England) was an English mathematician. His main work is the ”metho-
dus incrementorum directa et inversa”126 from 1717 in which among others the Taylor
expansion is introduced.5

‡ Details are given in chap. D.
§ In real experiments it is sometimes possible to observe the even harmonics addi-

tionally. The origin of the even harmonics is not completely understood yet. How-
ever, the common agreement is that they are caused by the sample-rheometer inter-
action, i.e. slip or shear bands.65, 128–132

¶ The ratio of the higher harmonics is especially interesting for studies on emulsions,
as Reinheimer et al.115 showed for the determination of the size distribution of
emulsions.
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materials is given.
Based on the FT-R, Hyun et al.105, 106, 133 introduced a new non-linear pa-
rameter Q to optimize the characterisation via FT-R. Hyun et al. found
that the non-linearity is strain independent, if the ratio of I3/I1 and γ2

0 is
taken, so

Q :=
I3

I1 · γ2
0

. (3.37)

For γ0 → 0 the non-linearity of eq. 3.37 does not vanish but results in a
limiting value, like

lim
γ0→0

Q := Q0. (3.38)

This limit is called the intrinsic non-linearity Q0.
Another experimental way to study the LAOS behaviour of materials is
to use the sliding plate rheometer. This was mainly used by Giacomin et
al.12, 134–137 This set-up was never commercialized. This might have been
caused by the problems which rise from flow inhomogeneities.*

3.4 An Improved Normal Force Geometry

For a highly sensitive measurement of the axial normal force Fz (t) in oscil-
latory shear experiments, e.g. LAOS, in the ARES it was necessary to de-
sign a new upper geometry. This new normal force geometry (NoForGe),
shown in fig. 3.6, contains a highly sensitive force transducer (from Kistler
company) with a sensitivity of 5 · 10−5 N. The maximum force which can
be measured is 20 N. The NoForGe was designed to work with different
plate and cone geometries, so the geometry part (fig. 3.6.1) is easy to ex-
change. The results presented in this work are obtained with a plate of a
8 mm diameter.
Constraints for the design of the NoForGe were given by the geometry
of the ARES, ARES G2 and the ovens of both rheometers. Further practi-
cal features such as easy installation and axial and radial alignment were
included.

* A review of the FT-R, the Q-parameter approach and the other non-linear methods
is given by Hyun et al.106
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The inclusion of the commercial piezoelectric force transducer demanded
a multi-part assembly of the NoForGe. The transducer (fig. 3.6.2) is screwed
from below in the upper flange (fig. 3.6.3). The transducer is fixed inside
the flange with three M3 fixing screws. Thus, even a very strong torsion
cannot loosen the transducer and downgrade the data. The upper flange
is fixed with four screws* in the hollow lower shaft (fig. 3.6.6). The outer
diameter of the shaft has to be smaller than the opening holes of the oven,
which can be installed on the ARES and ARES G2. Through this shaft the
cable is laid to connect the transducer and the charge amplifier (Kistler
type 5015). At its bottom, the shaft has a slot which allows the cable to
exit. The shaft is connected to the ARES with the adapter piece (fig. 3.6.7).
The shaft can be radially adjusted on the adapter piece with three fixing
screws. This is how the set-up is aligned. This assembly is both built in
stainless steel (316L) and in alumina.

3.4.1 Data Acquisition for the Rotational Rheometer

The piezoelectric transducer sends a low voltage signal to a charge am-
plifier (from Kistler company), which amplifies the analogue signal to a
maximum of±10V. The signal is then acquired by a ADC board (PCI-MIO-
16XE-10 from National Instruments) which has a data acquisition rate of
100 kHz and the ability of multiplexing up to 16 channels. The data ac-
quisition on the PC is conducted with the LabVIEW software, as already
used for the FT-R.83, 138, 139 In order to reduce the amount of data points
and for improving the signal-to-noise ratio, the oversampling method, as
described by Dusschoten (2001),138 was used within this LabVIEW pro-
gram.

3.5 Experimental Set-up for the Oscillatory
Shear Experiments

The oscillatory shear experiments were performed in two different high
performance rheometers. Once in the ARES and once in the ARES G2.

* In a second design the amount of screws was reduced to three to reduce weight
and reduce assembly work.
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(a) (b)

Figure 3.6. – Assembly sketch and image of the NoForGe. (a) Sketch
of the NoForGe and (b) image of the built NoForGe with (1) replace-
able geometry (e.g. plate Ø8 mm), (2) force transducer, (3) upper
flange (4) 4×screw M4, (5) 3×fixing screw M3, (6) geometry lower shaft
and (7) ARES adapter.

Both are fabricated from TA Instruments. In the ARES two possibilities
were used to study the normal forces under oscillatory shear. One was
to use the new normal force geometry (NoForGe), see chap. 3.4, to ob-
tain the normal force data from the piezoelectric transducer and the other
way was to use the direct voltage output of the normal force transducer of
the ARES. This was necessary, because the ARES software is not capable
of measuring normal forces in the oscillatory shear experiment. The new
ARES G2 is able to measure normal forces under oscillatory shear. The re-
sults of the three set-ups are compared in order to determine how different
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3.5 Experimental Set-up for the Oscillatory Shear Experiments

the sensitivity of the three methods are.

First the linear shear rheological experiments were conducted and com-
pared. The experimental boundary conditions and the investigated flow
field should be similar for the three set-ups. A sketch of the principle and
the geometric parameters for the oscillatory shear experiment is given in
fig. 3.7.

Figure 3.7. – Sketch of a plate-plate geometry for oscillatory shear
experiments and the measurement of the axial normal force Fz. The
geometry plates (1) and the sample disc (2) have a diameter D = 2R.
The gap size equals the plate to plate distance H. The gap size H was
set identically to be 1 mm for all experiments. The radial coordinate
is given by r, the angular coordinate is ϕ and the axial coordinate is z.

The experiments were performed under similar conditions, i.e. in an oven
under nitrogen atmosphere to prevent the sample from degradation. The
temperature was chosen to be far above the melting point (e.g. ϑ = ϑm +

50 °C; thus, 50 °C above the melting point). At first the strain amplitude de-
pendent moduli were measured with a low frequency oscillation, as seen
in fig. 3.8. From this measurement the linear region and the onset of the
non-linear region could be estimated. This was important in order to de-
termine the right settings for the later following studies of the non-linear
parameters. Fig. 3.8 also indicates how the three set-ups are matching, es-
pecially in the linear regime. The results of the NoForGe and the ARES G2
are matching within 3 %. The matching between the results of the ARES
and the both other set-ups is smaller; 7.5 % for the matching with the No-
ForGe and 11 % for the matching with the ARES G2.

Next, the frequency-dependent moduli were recorded. This measurement
of the the frequency-dependent moduli was conducted with low shear
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Figure 3.8. – Elastic modulus and viscous modulus as a function
of strain for the MDPE sample (tab. 2.3) at 180 °C and a frequency
ν0 = 0.1 Hz. The full symbols represent the data from the ARES
G2, the open symbols indicate the data from the ARES with installed
NoForGe and the semi-filled symbols are the results from the ARES.
From these plots the linear regime can be determined.

amplitude (γ0 = 1 %), to obtain the elastic modulus G′ (ν) and the vis-
cous modulus G′′ (ν) as functions of the excitation frequency ν0 (fig. 3.9).
From the plots of G′ (ν) and G′′ (ν) the crossover point was determined.
As for the measurement of the strain-dependent moduli, also the mea-
surement of the frequency-dependent moduli of all three set-ups matched
within less than 10 %.* Further, the crossover frequency was determined
for the three set-ups. The crossover frequencies matched within 2 % (ARES
νcross = 1.09 Hz, ARES G2 νcross = 1.10 Hz and NoForGe νcross = 1.11 Hz).
Resulting from this, it is assumed that each set-up represents similar flow
conditions, when used with the same parameters. Therefore, they can be
called to be equal in terms of linear rheology.
The experiments in this work are set up to study the non-linear behaviour

* The matching between NoForGe and ARES G2 was within 3 % while the matching
of both with the ARES was within 8 %.
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of polymer melts. For this purpose, for the next sequence of experiments,
an excitation frequency was chosen which is larger than the crossover fre-
quency.

Figure 3.9. – Elastic modulus and viscous modulus as a function
of frequency for the MDPE sample (tab. 2.3) at 180 °C and a strain
γ0 = 1 %. The full symbols represent the data from the ARES G2,
while the open symbols indicate the data from the ARES with in-
stalled NoForGe and the semi-filled symbols are the results from the
ARES. From these plots, the crossover point could be determined.

For measuring the non-linear parameters, the time-dependent behaviour
of the material is measured.* This type of experiments is used for the FT-R
and other non-linear rheological measurements.83–85, 140, 141 With the mea-
surement of the time-dependent properties, data is acquired in form of
the time-dependent shear stress τ (t) and the time-dependent axial normal
force Fz (t). All parameters were set to be constant, i.e. ν0 = const., ϑ =

const. and γ0 = const.. The applied shear amplitude γ0 was varied be-
tween 2 % and 150 % in different measurements of the time-dependent
properties. The rheometer hardware would allow higher shear ampli-

* The obtained quantities of the measurement of the time-dependent behaviour are
e.g. moduli, viscosity or torque.
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tudes. However, as the shear amplitude gets large, the probability in-
creases strongly that edge fracture of the sample or wall slip of the sample
appears. Thus, measuring at higher shear amplitudes than γ0 = 150 %
gave no reliable results for the chosen samples.
The frequency of the experiments was chosen in such a way that already
the first measurement of the time-dependent properties would be in the
region of non-linear behaviour.

3.6 Analysing the Data from the
Oscillatory Shear Experiments

The data obtained from the measurement of the time-dependent proper-
ties was a signal proportional to the time-dependent shear stress and a
signal proportional to the time-dependent axial force.* The treatment of
the signal of the shear stress is in complete accordance to the one used
in the literature on the FT-Rheology, e.g. Hyun et al.105 The algorithm is
briefly sketched:

Algorithm 1. FT-Rheology algorithm for the oscillatory shear stress data

1. The data is acquired with a high sampling rate ADC board .

2. The data is boxcar averaged† (over e.g. 100 - 1000 data points).

3. The data is Fourier transformed and the magnitude spectrum is calculated.

4. From the magnitude spectrum, the peak values of the fundamental fre-
quency I1 and the odd higher harmonics I3, I5, . . . are determined.

5. The Q-parameter is determined and plotted as function of the strain.

The data analysed as shear stress is actually the voltage output of the
torque transducer of the rheometer. This voltage is proportional to the
shear stress and if only the ratio of the peaks is studied there is no need to
calibrate these values.83

* In the following the term time-dependent shear stress is shortened to shear stress,
because no other dependence is studied in this chapter. A similar abbreviation is
used for the time-dependent normal force.

† This is known under the term of oversampling and is a crucial tool to significantly
improve the signal to noise ratio.
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A similar algorithm is used for the normal force data. However, in order
to obtain the quantitative values for the axial force as well, a calibration of
the signal has to be made.

Algorithm 2. FT-Rheology algorithm for the oscillatory normal force data

1. The data is acquired with a high sampling rate ADC board.

2. The data is boxcar averaged (over e.g. 100 - 1000 data points).

3. The data is multiplied with the calibration factor.

4. The data is Fourier transformed and the magnitude spectrum is calculated.

5. From the magnitude spectrum, the peak values of the fundamental fre-
quency I1 and the even higher harmonics I2, I4, . . . are determined.

6. A new non-linear parameter for the normal forces QNF is determined and
plotted as function of the strain.*

For the measurement at the ARES, either with NoForGe or by direct read
out of the ARES own normal force transducer, the signal had to be cali-
brated to obtain quantitative values of the normal forces. For the piezo-
electric transducer used in the NoForGe, the calibration was done by the
manufacturing company; in this case the company Kistler. The calibration
values were taken from the calibration certificate of each transducer and
could be directly used in the algorithm above.
The voltage signal of the normal force transducer of the ARES had to be
calibrated in house. This was done by attaching several defined weights
(10 g, 20 g, 100 g, 200 g, 500 g) to the ARES rheometer. The plot of the
measured voltage signal against the applied weight follows a linear rela-
tion. Via a linear regression curve the relation between voltage output and
gravitational force, see fig. 3.10, was determined. The proportionality fac-
tor obtained from the linear regression was used for the calibration of the
normal force data.
As known from the FT-R, the non-linear behaviour of a material is visi-
ble via its FT-spectrum, especially via the higher harmonics of the excita-
tion frequency ν0.† A similar information can be expected from the FT-

* The definition of QNF will be given later in this chapter (chap. 3.8).
† The excitation frequency is identical with the frequency of the first harmonic,

ν0 ≡ ν1. in the following equations and data analysis the angular frequency ω is
substituted by ν/2π, because ν uses the units of 1/s instead of rad/s.
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Figure 3.10. – Data points from defined weights (symbols) and the
linear regression of the data points (line). The coefficient of determi-
nation (COD)142–144 r2

COD = 0.9999.

spectrum of the axial normal force. The FT of the axial normal force Fz (t)
is defined in eq. 3.39.

N (ν) =
1
T

+∞∫
0

Fz (t) e−i2πνtdt. (3.39)

The spectra is scanned for the appearance of higher harmonics of the exci-
tation frequency ω1 = 2πν1. From these spectra, the values

Nn = N (n · 2πν1) (3.40)

with n ∈N+ are taken.
Further, the sensitivity is compared of the three set-ups. For this purpose,
the signal-to-noise ratio (SNR) is determined as defined in eq. 3.41.

SNR =
max (Nn (ν))

σnoise
. (3.41)

Within eq. 3.41 σnoise is the standard deviation of a closed set, which repre-
sents the lowest level of noise, in the spectra, as seen in the inset of fig. 3.11.
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This set of data is taken off the minimum signal, νl ≤ ν ≤ νh. The length
of this set is given by of Ω = νh − νl . This is illustrated in fig. 3.11 and
defined in eq. 3.42 with the help of the local mean value Nlocal as defined
in eq. 3.43.

Figure 3.11. – Example of a FT-spectrum with indication of the exci-
tation frequency ν0 ≡ ν1 = 4 Hz and the maximum value max (Nn).
The inset plot shows the region from which the data was taken to cal-
culate the sensitivity limit. This region is limited by the frequency
values of νl and νh.

σ2
noise =

1
Ω

νh∫
νl

(
N (ν)2 − N2

local

)
dν with (3.42)

Nlocal =
1
Ω

νh∫
νl

N (ν) dν. (3.43)

The information gained by the normal force spectra is condensed to the
strain-dependent normalized characteristic normal force amplitude ratio
N4/2 (γ) (see eq. 3.46). Each single measurement, defined as a measure-
ment of the time-dependent properties, creates a data set of the time-depen-
dent normal force Fz (t). Nevertheless, these measurements are also de-
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pendent on the choice of the temperature ϑ, the excitation frequency ν0

and the excitation amplitude γ0. That is why the normal force is a func-
tion, as

Fz (t) = F̂z (ϑ, ν0, γ0; t) . (3.44)

In the first step of data analysis the dependence on the time is changed
using the Fourier transform to a dependence on the frequency ν, as

N (ν) = N̂ (ϑ, ν0, γ0; ν) . (3.45)

Furthermore, the influence of the excitation deformation amplitude or the
excitation strain amplitude γ0 on the normal force spectra is studied. For
this purpose the ratio of the fourth higher harmonic of the normal force
spectra N4 := N (4ν0) and the second normal force higher harmonic of the
normal force spectra N2 := N (2ν0) is plotted as a function of the excitation
strain amplitude under a constant excitation frequency ν0 and at a constant
temperature. Thus, N4/2 is defined as

N4/2 (γ) :=
N4 (γ0)

N2 (γ0)
= N̂4/2 (ν, ϑ; γ) . (3.46)

3.7 Validation of the Normal Force
Geometry

The data of the measurements of the axial force under oscillatory shear
performed with the three different set-ups was further analysed with the
Fourier transform (FT). From these the FT magnitude spectra (see chap. B)
were calculated. Those spectra were obtained for each measurement of the
time-dependent properties. Similar measurements of the time-dependent
properties were performed in all three set-ups and the spectra of those
similar experiments can be compared as fig. 3.12 indicates. As fig. 3.12
reveals, all three methods give in principle similar results. A remarkable
observation is that the high performance ARES G2 is also able to measure
the normal force down to 10−5 N.* However, at the same time it is also re-
markable that the frequencies of the harmonics are significantly lower than
expected. The excitation frequency in the presented data of fig. 3.12 was

* The manufacturer (TA-Instruments) only claims a sensitivity of 10−3 N.
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5 Hz. Because of this, the higher harmonics should appear at 10 Hz, 15 Hz,
20 Hz etc.. All small deviations, in terms of a few data points (meaning less
than 0.005 Hz), can be caused by the leakage effect22 (see chap. 2.1.4) of
the FT. Nevertheless, for the results of the ARES G2 the deviation from the
fundamental frequency is larger than 0.1 Hz. This deviation was found in
the FT-spectra of the shear stress and in the FT-spectra of the normal force.
The absolute values of the intensities of the peaks in the spectra of fig. 3.12
are in the range of N =

[
10−4, 1

]
N. An overview for the absolute values

of the intensities of the peaks in the spectra of fig. 3.12 is given in tab. 3.1.

(a) (b)

(c) (d)

Figure 3.12. – Comparison of the FT spectra of the axial force mea-
surement with the ARES (black line), NoForGe (grey line) and ARES
G2 (light grey line) with a D = 8 mm plate-plate geometry. Each plot
represents the FT spectra for the measurement of the time-dependent
properties with the same parameters, as ϑ = 180 °C , ν0 = 5 Hz and
γ0, for the same MDPE sample, for the three different set-ups. Be-
tween the different plots the shear amplitude γ0 has been altered, as
(a) γ0 = 10 %, (b) γ0 = 30 %, (c) γ0 = 70 % and (d) γ0 = 150 %.
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Table 3.1. – Comparison of absolute values of the intensities of the
peaks in the spectra of fig. 3.12 of the NoForGe set-up for the mea-
surement of the normal forces with a D = 8 mm plate-plate geometry;
using a MDPE sample (tab. 2.3) at ϑ = 180 °C and ν0 = 5 Hz.

γ0 N2 N4 N6 N8

% N N N N

10 0.02 3 · 10−4 - -
30 0.11 0.022 0.003 -
70 0.17 0.05 0.009 0.005

150 0.62 0.045 0.005 0.002

By determining the standard deviation of the noise in the spectra (as de-
fined in chap. 3.6) and the maximum peak in the signal, a signal-to-noise
ratio could be found for the three set-ups, see tab. 3.2.

As tab. 3.2 shows, best SNR is obtained by the NoForGe. In combination
with the observation that the frequency of the higher harmonics is shifted
for the ARES G2. Thus, it can be stated that the NoForGe performed best
and will be the method of choice for the further investigation about the
non-linear material behaviour of polymers in this work.

Table 3.2. – Comparison of the signal to noise ratio (SNR) of the three
different set-ups for the measurement of the normal forces with a D =

8 mm plate-plate geometry; using a MDPE sample at ϑ = 180 °C and
ν0 = 5 Hz. From the γ0 dependent measurements always the max-
imum SNR was taken. In the case of the ARES and the ARES G2
γ0 = 70 % and in case of the NoForGe γ0 = 100 %.

set-up ARES NoForGE ARES G2

SNR 7,000:1 16,000:1 9,000:1
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3.8 Non-linear Parameters from the FT-Measurement

3.8 Non-linear Parameters from the
FT-Measurement

Using the algorithm for the FT-rheology, as described in chap. 3.6, each
measurement of the time-dependent properties provides time-dependent
oscillatory stress τ data (e.g. in fig. 3.13a) and time-dependent data of the
normalforce Fz (t) (e.g. in fig. 3.13b).

(a) (b)

(c) (d)

Figure 3.13. – Example of the FT-rheology, time-dependent data and
the FT analysis of LDPE (tab. 2.3) at 180 °C oscillated with ν0 = 1 Hz
and γ0 = 70 % in an D = 8 mm plate-plate geometry. (a) The time-
dependent shear stress τ (t), (b) the time-dependent normal force
Fz (t), (c) the FT In (ν) of the time-dependent shear stress τ (t) and
(d) the FT Nn (ν) of the time-dependent normal force Fz (t). In (a)
and (b), only a small part of the whole dataset is shown; for better
visualisation. The length of the whole dataset used for the FT has
N ≈ 52000 pts and/or Tmeas ≈ 260 s; with νNyquist = 100 Hz.
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3. Rotational Rheology

For the spectra of the shear stress the ratio of the third harmonic normal-
ized to the intensity of the fundamental peak I3/I1 can be plotted as a
function of the strain amplitude at a constant temperature, e.g. as seen
in fig. 3.14a for a LDPE sample at 180 °C. The curve of I3/I1 shown in
fig. 3.14a can be quantified by the slope of the decreasing region S1 (at low
strains) and by the slope of the subsequent region S2.

By further normalizing I3
I1

to the applied strain γ the Q-parameter is found
(see chap. 3.3).106 As an example, the data is used from fig. 3.14a of a LDPE
sample at 180 °C. The plot of Q versus the strain γ can also be quantified
by two slopes named SQ1 and SQ2 and indicated in fig. 3.14b.

(a) (b)

Figure 3.14. – Example of the results from the FT analysis and exam-
ple of the determination of Q (γ) of LDPE (tab. 2.3) at 180 °C in an
8 mm plate-plate geometry. (a) The strain dependent normalized 3rd
harmonic as a function of strain and (b) the non-linear parameter of
Q (γ) of LDPE as a function of strain. The black squares � represent
the experimental data. Whereas, the grey dash-dotted line indicates
the linear inclination of the experimental data.

A similar analysis as for the shear stress can also be applied on the normal
force data, as shown in fig. 3.15. For the normal force data, the fourth
harmonic is normalized to the second harmonic N4/N2, as given in eq. 3.46
of chap. 3.6. N4/N2 is plotted as a function of the strain amplitude γ at
a constant temperature, e.g. as seen in fig. 3.15a for a LDPE sample at
180 °C. As for the I3/I1 from the shear stress, the curve of fig. 3.15a has two
regions which can be quantified by their slopes SN1 and SN2, as indicated
in fig. 3.15a.
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3.8 Non-linear Parameters from the FT-Measurement

Similar to the Q- parameter a normalisation of N4/N2 to γ2 can be con-
ducted. From this a new non-linear parameter for the axial normal force
QNF is defined as a counter part to the Q-parameter.

Definition 1. Non-linear parameter for the axial normal force QNF

In style of the definition of the Q-parameter for the non-linearity of a material in
relation to its shear stress response in LAOS, a parameter for non-linearity of the
axial normal force can be defined from the FT-spectra of the normal force response
of a material under LAOS. A FT-spectrum of the axial normal force in LAOS will
include peaks at the even higher harmonic N2, N4, N6. These peaks are scaling
with the applied strain γ0 like Nn

γn
0

. Accordingly, the QNF-parameter is defined as
the ratio of the fourth harmonic and the second harmonic including the according
scaling of γ0.

QNF :=
N4

N2 · γ2
0

. (3.47)

An example of QNF from the N4/N2 curve in fig. 3.15a is shown in
fig. 3.15b. Also this curve is quantified by two slopes, as indicated, SQN1

and SQN2.

With the definition in eq. 3.47 the QNF-parameter can be calculated from
fig. 3.15a and is shown in fig. 3.15b.

The second region of the curves related to the spectra of the normal force
are not developed, as fig. 3.15 shows. A linear regression could not be
applied, as for the first region of these curves and for both regions in the
curves related to the spectra of the shear stress, see fig. 3.14. However, in
fig. 3.15 the slopes of the second region are indicated just as a figure of
illustration. Because the results presented in chap. 3.9 make use of this
quantification values.
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(a) (b)

Figure 3.15. – Example of the results from the FT analysis and exam-
ple of the determination of QNF (γ) of LDPE at 180 °C in an 8 mm
plate-plate geometry. (a) The strain dependent normalized 4th har-
monic of the normal force Fz (ν) as a function of strain and (b) the
non-linear parameter of QNF (γ) of LDPE as a function of strain. The
black squares � represent the experimental data. Whereas, the grey
dash-dotted line indicates the linear inclination of the experimental
data.

3.9 Comparison of the Results of the
Non-linear Behaviour of PS and PE

Samples

In this chapter the results from the non-linear quantities as described in
chap. 3.8 are shown. The first results shown in this chapter were ob-
tained from measurements of PE samples. The non-linear values of a
LDPE was already given as an exemplification in chap. 3.8. As introduced
in
chap. 2.4.2, the LDPE contains longchain branching which influence the
rheological behaviour of the melt flow.145, 145, 146 The results of the LLDPE
are presented in fig. 3.16.
Both types of plots, Q (γ) and QNF (γ), show qualitatively a characteristic
behaviour which all* polymers exhibit. At low shear amplitudes, meaning
a first region, the curves are decreasing with the slope S1 until they reach a

* Referring to all polymers which have been studied in this work.
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(a) (b)

Figure 3.16. – Non-linear values for the LLDPE sample. The plots
show (a) the Q-parameter for the LLDPE and (b) the QNF-parameter
for the LLDPE. For measurements at ϑ = 180 °C and ν0 = 1 Hz.

local minimum. After passing this point the curves enter a second region,
in which the curves start to increase with the slope S2 together with the
shear amplitude. The slopes of the two regions and for both types of plots
are calculated via a linear regression142, 147 and the values are summarized
in tab. 3.3. In addition the values of this table are graphically shown in
fig. 3.18 and fig. 3.19. Thus, it can be seen that the slope of region one
SQN1 in the QNF (γ) plots is different for different types of polymers, e.g.
the values of both PE samples are smaller than those of both PS samples.

The slope of region two SQ2 in the Q (γ) plots stays similar for the branched
PS (comb-PS) and the linear PE (LDPE) (both samples contain long chain
branches). The slope SQ2 for the comb-PS and the LDPE are small in com-
parison to the SQ2 for the PS-L, which has the largest observed value, and
the SQ2 of the LLDPE, which is still about a factor of 2.0 lager than the one
of the branched samples.

The absolute slope values of the QNF-parameter are also affected by the
polymer topology in case of the PS samples and even stronger for the PE
samples. For the PE samples, the slope values of the normal force SQN2 are
largely changing, i.e. the SQN2 value of the LLDPE is about a factor of 10
larger than the one of the LDPE. For the PS samples, between the comb-PS
and the PS-L is a factor of 1.5.

The bar plots from fig. 3.18 and fig. 3.19 are in absolute values which al-
lows the gathering of all values in one plot. This is also justified by com-
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(a) (b)

(c) (d)

Figure 3.17. – Non-linear values for a PS-L and a comb-PS sample.
The plots show (a) the Q-parameter for a PS-L, (b) the Q-parameter
for a comb-PS, (c) the QNF-parameter of a PS-L and (d) the QNF-
parameter of a comb-PS. For measurements at ϑ = 170 °C and
ν0 = 1 Hz.

parison to tab. 3.3, where it can be seen that for one parameter the sign
is the identical for all polymer samples. This is valid for all values except
for the slope SQN2 of the normalforce. It appears that the PS-L sample has
a negative value for the slope SQN2 of the normal force whereas all other
samples have a positive value for the slope SQN2 of the normal force. Thus,
a strong difference can also be found between the linear and the branched
PS, however in an inverse proportion as for the PE samples. This means
that the PS-L has got smaller (negative) values of SQN2 and the comb-PS
has got positive values of SQN2. In case of the PE, the LLDPE has got lager
values of SQN2 than the LDPE.

The slopes of I3/I1 show qualitatively a similar behaviour as the slopes
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obtained from the Q-parameter. However, the quantitative differences are
stronger for the slopes of the Q-parameter. Thus, the values of the slopes
of I3/I1 are shown in fig. 3.18 and fig. 3.19. Though, they are not indepen-
dently discussed as their discussion does not provide new information. A
similar reasoning is valid for the analysis of the slopes obtained from the
spectra related to the normal force, i.e. N4/N2 and QNF. Thus, the dis-
cussion of the slopes SQN1 and SQN2 contains similar information as the
slopes SN1 and SN2, but more pronounced.

Concluding this section, the slope SQ1 differentiates between the different
polymer types (PS and PE). The values of SQN1 have been larger for the PS
sample. This means that the non-linearity Q of the shear stress are decreas-
ing strongly for increasing shear strains at low shear strains. The slope
SQ2 differentiates between the different branching types for both types of
polymer (PS and PE). Thus, the content of long chain branches have an
influence on the rheology for high shear strains. The increase of the non-
linearity Q of the shear stress is higher for the linear chains. Thus, long
side chains are reducing the non-linearity.

Table 3.3. – Comparison of the non-linear parameters for the four
different polymers.

Polymer S1 S2 SN1 SN2

Comb-PS -0.0709 0.0300 -0.0824 0.0359
PS-L -0.1238 0.0461 -0.1025 0.0087
LLDPE -0.0577 0.0419 -0.054 0.041
LDPE -0.0654 0.0231 -0.0675 0.0148

Polymer SQ1 SQ2 SQN1 SQN2

Comb-PS -0.1560 0.0167 -0.1852 0.0176
PS-L -0.1905 0.3008 -0.2726 -0.0166
LLDPE -0.1472 0.0398 -0.1308 0.0180
LDPE -0.1505 0.0157 -0.1446 0.0029
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Figure 3.18. – The non-dimensional absolute values of the slopes from
tab. 3.3 for the four investigated polymers, sorted according to the
polymer.

Figure 3.19. – The absolute values of the slopes from tab. 3.3 for the
four investigated polymers, sorted according to the parameter.
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3.10 Summary and Conclusions for the
NoForGe

Comparing the requirement specifications which had been set in the be-
ginning of this chapter with the results, that have been achieved, it can be
concluded that:

• The set-up of the FT-R has been modified to measure the normal
force directly via the ARES-normal force-transducer.

• A new geometry for measuring the axial normal force under oscil-
latory shear was designed, installed and tested; (the NoForGe).

• The reproducibility of the new installed geometry has been tested
and also compared to different other set-ups.

• The signal of the axial normal force has been calibrated and there-
after this signal has been Fourier-transformed.

• Definitions of the sensitivity of the FT have been applied to the spec-
tra of the axial normal force.

• Further, the measurement of the normal forces has been done with
one truly commercial set-up, the ARES G2, one modified commer-
cial set-up, the ARES with improved DAQ, and the new designed
normal force geometry (NoForGe) installed in an ARES. All three
set-ups had been able to measure non-linearities in the normal forces
with similar results. The new normal force geometry (NoForGe)
performed best (SNR = 16000 : 1). However, only a factor of three
is between the NoForGe and the worst performing instrument the
ARES. Thus, all three instruments are fulfilling the requirements for
a highly sensitive normal force measurement.* It should be men-
tioned at this point that the new normal force geometry (NoForGe)
technology still has the advantage of being transferable to other
rheometers than the ARES. Even very basic rheometers could that
way be upgraded into a high performance tool for non-linear rheol-
ogy.

* Although, the ARES G2 shows a significant shift of the frequency of the harmonics
of the FT-spectra.
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• A new non-linear parameter (QNF) was introduced for the analysis
of the FT-spectra of the axial normal force.

• The measurements of different polymers with different topologies
illustrated that with the help of the non-linear measurements differ-
ences could be found for branched and linear polymer samples in
the slope values of the Q-parameter and the QNF-parameter. The Q-
parameter showed its sensitivity on the branching type in the range
of high strains. In case of PS samples the stress spectra gave the best
indication while for the PE samples the normal force spectra were
indicating large differences between linear and branched samples.
Further, the QNF-parameter showed differences in its slope SQN1

for PS and PE at low strains.
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Chapter 4

Detection of Mechanical Instabilities in the
Capillary Rheometer and the Extruder

During the extrusion of polyethylene (PE) and other polymer melts, visible
surface distortions* of the extrudate appear at increasing shear rates. At a
defined range of shear rates the surface distortions show a characteristic
behaviour and are classified as e.g. shark-skin, stick-slip or melt-fracture.
During the extrusion occur pressure fluctuations inside the die; prelimi-
nary studies62, 146, 148–150 showed that those fluctuations seem to correlate
with the mechanical instabilities.

For the efficient processing of polymer melts these mechanical instabilities
must be known for the polymer under processing in order to optimize the
extrusion while simultaneously guaranteeing the quality of the product. In
this thesis, the relationship between pressure fluctuations and mechanical
instabilities was first investigated for PE melts via a commercial capillary
rheometer with a unique die set-up and an advanced data analysis.146, 148

With this laboratory set-up† it is possible to qualify and quantify the me-
chanical instabilities via advanced mathematical tools such as the Fourier
transform and correlation functions.

This laboratory set-up shows promising characteristics which could be
used for the extrusion processing. In the subsequent section (chap. 4.1),
the general aims of this chapter are defined. Thereafter, the term mechan-

* Also called melt flow instabilities or mechanical instabilities.
† The Göttfert GmbH recently commercialized this special die in cooperation with

our group.
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ical instabilities or melt flow instabilities (MFI) are explained including an
abbreviated version of the research in this field. Subsequently, the special
experimental set-ups used in this thesis are presented, for the capillary
rheometer in chap. 4.3 and for the extruder in chap. 4.4. In particular the
section about the extruder contains a detailed technical description of the
newly designed dies for measuring the time-dependent pressure inside
the die. For the analysis of the time-dependent pressure data the Fourier
transform is not sufficient. Because of this a special pre-processing of the
raw data is necessary148, 151 which is illustrated in chap. 4.4.4.
The chap. 4.4.6 contains the description of the experimental set-up and the
results of the optical set-ups which have been used to study the mechanical
instabilities on the cold samples of the extrudate.
After the introduction of the optical analysis, the experiments on the ex-
truder (chap. 4.4.7) and the results from those experiments are presented
and discussed in chap. 4.5. This chapter begins with a basic definition
about the contribution of the mechanical extruder-system, the contribu-
tion of the material to the pressure signal and the advanced analysis of
the pressure signal. This sections are followed by chap. 4.5.4 in which the
development of mechanical instabilities in the extruder die is illustrated.
Chap. 4.6 provides a summary of the chap. 4.

4.1 Detection of Melt Flow Instabilities on
the Extruder

The work presented in this chapter has the task of transferring and adapt-
ing the set-up which had been used on a capillary rheometer62, 146, 148 to a
lab size extruder, in order to prove whether an application in real process
applications is feasible. In detail this task includes the following steps:

1. Transferring the technology from the die of the capillary rheometer
to the die of the lab extruder (see chap. 4.4).

2. Defining the conditions under which melt flow instabilities (MFI)
for certain polymers can be optically observed.

3. Adapting and using advanced mathematical tools for the analysis
of the time-dependent pressure data obtained from the special die
for the lab extruder.
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4. Identifying the characteristic patterns of the instabilities in the re-
sults of the data analysis.

5. Comparing the results from the optical analysis with the results from
the analysis of the time-dependent pressure.

6. Concluding whether the set-up has the potential to be developed
further into a self controlled process device (the ”smart-extruder”).

4.2 Melt Flow Instabilities

Melt flow instabilities (MFI) are a topic of research since the early
1960s.152–155 From the beginning a large amount of research has been un-
dertaken by academic groups world wide.156–166 The temporal process
has been documented in reviews e.g. by Larson167 or by Denn.168

The melt flow instabilities of polymer melts can be qualitatively split in at
least three basic categories:164

1. sharkskin

2. stick-slip

3. gross melt fracture

The three types of melt flow instabilities have different origins. The next
paragraphs provide a summary of the research in the field of the melt flow
instabilities.164

At low shear rates sharkskin is the first mechanical instability which can be
observed if the shear rate is continuously increased. Only some polymers
exhibit sharkskin, i.e. linear low density polyethylene (LLDPE), polypro-
pylene (PP) or polydimethylsiloxane (PDMS). In the literature, a surface
instability is called sharkskin if it appears only as a distortion of the surface
on the polymer extrudate. Its origin is still unknown and scientific debates
about the mechanism of the origin are ongoing (e.g. between Cogswell
and Wang169). Cogswell et al. assume that the rupture mechanics at the
die exit control the sharkskin instability.170–174 Migler175, 176 relates the
sharkskin instability to rupture caused by elongational stress at the die
exit. The group of Prof. Münstedt basically supports this theory with their
studies of the velocity fields inside and outside the die with different PE
samples.61 Another theory of the origin of the sharkskin melt flow insta-
bility is given by Wang et al.177–180 To explain the sharkskin instability
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(a) (b) (c)

(d) (e) (f)

Figure 4.1. – Examples of observable melt flow instabilities for PE-
SCB07 (the height of each image, except of (f), is 3.75 mm) at ϑ =

180 °C and at different apparent shear rates: (a) γ̇app = 8 s−1, (b)
γ̇app = 39 s−1, (c) γ̇app = 79 s−1, (d) γ̇app = 129 s−1, (e) γ̇app =

157 s−1 and (f) γ̇app = 196 s−1, the height of of this image is 7.5 mm.
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they introduce a slippage at the wall caused by molecular entanglement
and disentanglement.
In addition to the understanding of the origin of sharkskin it is of practical
interest how the onset of sharkskin can be shifted to higher shear rates.
Different researchers participated in this field, e.g. Piau et al. focused on
slippery surfaces.181, 182 Miller and Rothstein studied the influence of the
temperature gradients along the die wall on the sharkskin instability.156, 183

Arda and Mackley observed how the sharkskin instability changes under
several geometrical and material-dependant factors184 and also under the
application of gas-assisted extrusion.185

A further increase of the shear rate the extrudate leads to the stick-slip in-
stability. Already early studies152, 154, 186 revealed that the stick-slip insta-
bility is related to flow mechanisms inside the barrel of a capillary rheome-
ter and also to the elongational properties of the fluid in the region of the
die entrance.164 Later, Wang et al.177, 187–190 studied the molecular origin
of the stick-slip instability. The group of Münstedt studied the phenomena
of the melt flow instabilities as well. They used the advanced set-up of a
LASER-Doppler-Velocimetry (LDV)*192, 193 which allowed the determina-
tion of the velocity fields of an investigated flow. The spatial resolution in
three dimensions reached down to approximately 24× 10−6 m but with a
minimum distance to the wall of 30× 10−6 m.194, 195 The time resolution
of this set-up is about 5× 10−6 s. According to this, the slip velocities at
the surface of the wall can be determined via extrapolation, even though a
direct measurement at the die wall is not possible.†

At high shear rates the extrudate shows strong volume distortions called
gross melt fracture (GMF), as defined below. The term GMF includes flow

* LDV is also known as LASER Doppler Anemometry (LDA) and was already ap-
plied to flows in capillary rheometers by Ramamurthy et al.191 However, their stud-
ies were limited to the velocity fields at the entrance of the die.

† Another possible explanation for the origin of the stick-slip instability is given in
a work by Molenaar et al.196, 197 who postulates a basic set of equations of conser-
vation for the flow inside the barrel. By introducing the compressibility of the fluid
the solution for the equations of conservation results in pressure fluctuation as qual-
itatively observed in the experiments on the capillary rheometer at the exit of the
barrel. Quantitative results are difficult to obtain by this method. The compressibil-
ity is also included in the model of Adewale et al.198 Their model includes further
factors such as hardening effects and the stick-slip boundary condition inside the
die.
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phenomena with different origin. One is the spurt instability which is re-
lated to the compressibility of the melt in the reservoir and to the non-
Newtonian behaviour inside a capillary die, which is caused by the slip at
the die wall.164, 199, 200 Another form of GMF is the helicoidal instability. It
appears as a clearly visible spiral flow (helix) on the extrudate and is influ-
enced and determined by the die entrance, as Piau et al. showed.164, 201

Finally, the real GMF is found to be basically of a completely irregular
structure. Bagley et al.154 found that this is caused by the chaotic flow
conditions at the die entrance. This is confirmed by Kim et al.202, 203 by
using carbon black tracer particles to visualize the flow. Kim added that
the true rupture of the melt is an additional mechanism of the origin of
GMF. Meller et al.204, 205 supported this observation by using a converg-
ing flow in which the severity of the instability could be decreased with
increasing convergence. Already in 1968 Giesekus206 studied the influence
of different die entrance geometries on the development of the flow and
the development of the melt flow instabilities. Object of his studies were
polymeric solutions. However, he expected polymer melts to behave in a
similar way. In his opinion the melt flow instabilities are caused by hydro-
dynamic instabilities for which he introduced the term of a rheodynamic
stability problem.*

From the processing point of view GMF is of low importance, because it
only appears at high shear rates. Nevertheless Lee et al.207 tried to figure
out which factors influence the GMF. Kulikov and Hornung208–210 studied
the melt flow instabilities in order to find a practical solution to suppress
the melt flow instabilities. Related to this, the studies of Larrazabal et al.
showed how the onset of instabilities is influenced by the choice of mate-
rial of the die (e.g. brass, steel, nickel-plated steel, Teflon coating).211

Each of these basic categories of melt flow instabilities has its own char-
acteristics by which it can be classified. In addition to the description of
the mechanical instabilities summarized above, the following three defini-
tions† of the classification of the mechanical instabilities are used to discuss
the research presented in this chapter.

* This term includes the equations of hydrodynamic stability and the rheological
information of the material.

† The aim of these definitions is to give the interested practitioner an easily applica-
ble vocabulary for the phenomena of melt flow instabilities which they might have
observed.
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Definition 2. Sharkskin
A melt flow instability can be classified as sharkskin, if it meets the following
constraints:*

1. The instability can be classified as approximately periodic.

2. Starting at low shear rates and with increasing shear rate, the sharkskin
instability is the first instability which appears on the originally smooth
extrudate.

3. The amplitude Hinst of the instability is small in comparison to the thick-
ness of the extrudate Hextr, so Hinst

Hextr
< 1.

4. The instability appears at low shear rates.†

Definition 3. Stick-slip
A melt flow instability can be classified as stick-slip, if it meets the following
constraints:

1. The extrudate shows approximately periodically alternating regions of
smooth (or at least less rough areas) and rough extrudate, which have rela-
tively large spatial expansions, Linst

Dextr
> 1.

2. The pressure signal in the reservoir shows large oscillations of the pressure
which qualitatively continue in the die.

Definition 4. Gross melt fracture (GMF)
A melt flow instability can be classified as gross melt fracture (GMF), if it meets
the following constraints:

1. The amplitude Hinst of the instability is large in comparison to the thick-
ness of the extrudate Hextr, so Hinst

Hextr
> 1.

2. The instability does not necessarily show an obvious periodic pattern.

3. The instability appears at high shear rates.

The appearance of the different melt flow instabilities can largely vary de-
pending on parameters, like molecular composition, additives, blend com-
position, temperature, shear rate, and die geometry. In some cases it is

* Other authors take the probable origin of the instability as basis of the definition,
i.e. Wang et al.. They demand that an instability may only be called sharkskin if
the instability disappears when the experiment is performed a second time with the
same parameters, but with the die exit region coated with e.g. fluoropolymer.177, 190

† However, the shear rates are higher than those of the smooth extrudate.
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obvious that a melt-flow instability is present, e.g. see fig. 4.1f. In other
cases, as e.g. in fig. 4.1c, the instability is not as obviously visible. For
defining this observation the terms strong melt flow instabilities and weak
melt flow instabilities are introduced as defined below.

Definition 5. Strong melt flow instability
A melt flow instability is called a strong melt flow instability, if its effect on the
surface of the extrudate is easily visible; even to the naked eye, e.g. as seen in
fig. 4.1a.

Definition 6. Weak melt flow instability
A melt flow instability is called a weak melt flow instability, if its effect on the
surface of the extrudate is barely visible; even to the naked eye (see fig. 4.1c).
However, it is still detectable with special devices, e.g. microscopes, electron mi-
croscopes, surface roughness testers.

4.3 Experimental Set-up for the Capillary
Rheometer

A capillary rheometer is basically a testing device for high shear rate flows
in capillary tube flows.44, 45 Its origin bases on the work of Poiseuille69, 70

and Hagen.68 However, their basic law for flows in pipes is only valid for
Newtonian fluids. For viscoelastic fluids the basic law has to be improved
by several corrections* as summarized by Philippoff et al.214 Typically,
a sample fluid is located inside the reservoir of the capillary rheometer.
After obtaining the chosen initial conditions, e.g. temperature, the fluid is
forced through a capillary die by the movement of a piston, by rotating the
screw of a feeding extruder or by gas pressure. By measuring the pressure
in the reservoir right above the die entrance and knowing the environmen-
tal pressure (1 bar) the pressure difference along the die can be calculated
and with this the material properties, as the shear rate dependent viscosity
can be calculated.44

The experiments in the present work were performed in a Göttfert Rheo-
tester 2000. This capillary rheometer uses a constant piston velocity. The

* I.e. the Weissenberg-Rabinowitch correction for the wall shear rate212 or the Bagley
correction213 taking the geometrical length of the die into account.
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reservoir is replaceable; therefore, it is possible to alter the reservoir diam-
eter. Reservoirs with the diameter DB = [9.5, 15, 20] mm were used for the
experiments. Fig. 4.2 shows a sketch of the used capillary rheometer and
the data acquisition set-up.

Figure 4.2. – The principle of a capillary rheometer as used in the ex-
periments. The elements P1 - P3 are the high sensitive piezoelectric
pressure transducers which have been introduced in the work of Fil-
ipe et al.146 The sample fluid is placed inside the barrel (reservoir);
then the piston moves down with a defined velocity and pushes the
material through the slit die. The conventional pressure transducer
(strain gauge) records the pressure inside the barrel (less than 8 data
points per second) and from these data, properties like the shear rate
dependent viscosity are calculated. The high sensitive pressure trans-
ducers (P1-P3) record the time-dependent pressure inside the slit die.

For all experiments, a specially designed slit die (30 mm×3 mm×0.3 mm),
developed and described by Filipe et al.,146 was used. It includes three
high sensitive piezoelectric pressure transducers (Kistler 6182A) with a
sensitivity of about 2.5 pC/bar, see fig. 4.3 and a diameter of the measure-
ment surface of Dpiezo = 2.5 mm. The electrical signal of the piezoelectric
transducers was amplified via a Kistler charge amplifier (5015A) and then
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digitalized with a 16-bit NI-PCI-MIO-16XE ADC board from National In-
struments with a sampling rate of 100 kHz. Each pressure channel was
scanned with up to 33 kHz. To reduce the amount of data points and to
increase the signal-to-noise ratio oversampling138 was used. Typically, 100
to 500 raw data points were averaged in the oversampling algorithm. Af-
ter oversampling, the pressure data of the three piezoelectric sensors* was
used for further mathematical analysis of the pressure fluctuations.

Figure 4.3. – Capillary rheometer with a data acquisition system at-
tached. (1) Göttfert Rheotester 2000, (2) piston, (3) data acquisition
PC with Labview, (4) charge amplifier (Kistler 5015), (5) sharkskin
die (SSD) with piezoelectric transducer, (6) barrel/ reservoir and (7)
Rheometer control PC.

Historically, two predecessors have to be mentioned who worked in a

* Piezoelectric sensors are well known not only for their high sensitivity but as well
for their drift of the signal in long time measurement applications. Their main field
of application lies in the area of highly dynamic measurements.
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similar direction as the group of Prof. Wilhelm.62, 146, 149, 150, 215, 216 The
first ones are Atwood et al.217 who used high sensitive hot-film probe in-
side the die of a capillary rheometer with an advanced data analysis via
Fourier-transform and autocorrelation function. They already found char-
acteristic peaks for the instabilities in the FT-spectra.* Unfortunately, the
probes seemed to be difficult to install and to calibrate. Additionally, the
hot-film probes had the problem of viscose heating which influenced the
results. Also the sensitivity of those measurements was limited to a signal-
to noise ratio (SNR) of 100. Another previous work in the field of the high
frequency detection of melt flow instabilities was done by den Doelder
et al.197 They installed a high sensitive piezoelectric pressure transducer
inside the barrel of a capillary rheometer. Thus, they were able to observe
stick-slip instabilities and gross-melt fracture inside the die. They used the
Fourier-transform to extract the time periods of these instabilities. Their
results, as published,197 showed only for high shear rates (γ̇ > 400 s−1)
a characteristic peak in the FT-power spectrum (see chap. B). An informa-
tion of the signal-to-noise ratio (SNR) is missing and due to the linear axis
of the FT an estimation of the sensitivity is difficult. However, den Doelder
et al. did not use oversampling to improve the sensitivity of their set-up.

4.4 Experimental Set-up for the Extrusion

In this work the principle of the sharkskin die was transferred to lab-size
extruder for studying the melt flow instabilities under processing-like con-
ditions. For this purpose, a Brabender single-screw extruder 19/25D (with
a screw diameter of D = 19 mm and a length of the screw of 25 × D) driven
by a Brabender Labstation was used to melt and feed the polymer gran-
ulate. For the highly sensitive pressure measurement, as it has been used
on the capillary rheometer and explained in chap. 4.3, two special slit dies
(SSD) (see fig. 4.4 and fig. 4.7) were built for the extruder.

1. First, a flat slit die was built with a length of 100 mm, a slit cross sec-

* Related to the measurement principle only the information about the frequency
could be drawn from the FT-spectra, while the y-axis contained no information.
This is in strong contrast to the works of Filipe et al. and Palza et al.,62, 149 where
the y-axis of the FT-spectra contains the information about the amplitude of the
pressure fluctuations.
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tional area of 20 mm × 0.8 mm and a biconical die entrance region;
further to be called sharkskin die-1.

2. Later on, it was convenient to built a further slit die with a length of
80 mm, a slit cross sectional area of 10 mm × 1 mm and a 180° die
entrance angle; further referred to as sharkskin die-2.

4.4.1 The First Generation Sharkskin Die (SSD-1)

The sharkskin die-1 was designed to be able to reach high shear rates
due to its flat shape. It was built at the Brabender GmbH. The sharkskin
die-1 was built with a biconical die entrance region, which was necessary
to homogeneously feed the broad slit (B = 20 mm), if compared to the feed
hole of D = 8 mm, with polymer melt. The very first version is shown in
fig. 4.4a. It revealed the problem of polymer leakage along the sides of
the die. This problem could be fixed by drastically reducing the contact
area of both the halves of the die, thus increasing the contact pressure on
the contact surface.* By this modification the leakage of polymer melt was
stopped. In the first series of measurements it was observed that due to a
maximum pressure limitation of the extruder of around 600 bar at the die
entrance and the maximum temperature of 200 °C which could be used,
the shear rates were limited to very low values, below 20 s−1. Thus, no
strong melt flow instability could be observed.
The task was to reach higher shear rates at which the melt flow would
show strong melt flow instabilities. In order to achieve this, the cross-
sectional shape of the slit was changed in such a way that the ratio of
perimeter area to cross-sectional area, RP/C,i (see eq. 4.1), would be de-
creased.

RP/C,i :=
AP,i
AC,i

. (4.1)

In eq. 4.1 AP,i is the reduced perimeter area† of the slit die as defined in

* The contact area Acontact,1 for the first version of the sharkskin die, shown in
fig. 4.4a, is Acontact,1 ≈ 90 cm2. The contact area Acontact,2 for the second ver-
sion of sharkskin die in fig. 4.4b Acontact,1 ≈ 36 cm2, see fig. 4.4b. The contact
pressure is force per area pcontact = F/Acontact. For a constant applied force F
the contact pressure increases from the first version to the second version like,
pcontact,2 = Acontact,1/Acontact,2 · pcontact,1 = 2.5 · pcontact,1.

† The perimeter area is normalized to a unit length (circumference).
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(a) (b)

(c) (d)

Figure 4.4. – Improvement of the sharkskin die-1. (a) shows the initial
sharkskin die-1 where polymer melt leakage was possible. (A1) cen-
tring region for the flange connection to the extruder, (A2) 8 × M12
screws for fixing upper and lower half of the die, (A3) biconical die
entrance region, (A4) centring bolts and (A5) slit 20 mm × 0.8 mm. (b)
the improved version of the sharkskin die-1. (B1) marks the region,
on one side, where material of a 2 mm height was milled away. (c)
shows the front view of the initial sharkskin die-1. (d) shows the front
view of the improved sharkskin die-1.
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eq. 4.2 and AC,i is the cross sectional area of the slit die as given by eq. 4.3.
The different slit die versions are indexed with i, and their properties are
listed in tab. 4.1.

(a) (b)

Figure 4.5. – Visualization of the change in cross section from shark-
skin die-1 to sharkskin die-2. (1) indicates the boundary surface and
(2) indicates the cross-section area. (a) shows the cross-section of
sharkskin die-1 and (b) shows the cross-section of sharkskin die-2 or
sharkskin die-1 with the inlay (see tab. 4.1).

AP,i = (2× Bi + 2× Hi) , (4.2)

AC,i = Bi × Hi. (4.3)

Table 4.1. – Comparison of the geometrical properties of the sharkskin
die-1 and sharkskin die-1 with brass inlay (see fig. 4.6).

Die B H AP,i AC,i RP/C,i γ̇app

mm mm mm mm - s−1

1 20 0.8 41.6 16 2.6 22
1 with inlay 10 2 24 20 1.2 260

For varying the cross-section of sharkskin die-1 special die inlays have
been constructed, i.e. for a cross-section of 10 mm × 2 mm, see fig. 4.6. The
die inlays were made of brass to guarantee an optimum sealing of the die
channel due to the larger heat expansion coefficient. Additionally, a cop-
per disk was placed between the die and the connection to the extruder to
prevent leakage at this position. Using the sharkskin die-1 with the brass
inlay allowed to reach higher volume flows of polymer melt which meant
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higher shear rates. Accordingly, strong melt flow instabilities appeared.
Thus, decreasing the RB/C value was successful.
Even though the brass inlay served its purpose quite well and was manu-

(a)

(b)

Figure 4.6. – Brass inlay for the sharkskin die-1, applied on the shark-
skin die-1. (a) brass inlay inserted in the opened die. (b) front view of
the closed sharkskin die-1 with brass inlay with a slit cross-section of
10 mm × 2 mm.

factured and installed rather easily and fast, it got one major disadvantage.
When the extruder was used at high pressure, p > 500 bar, and for a longer
period of time, T > 30 min, and for materials with a relatively low viscos-
ity, leakage appeared between the brass inlay and the die at the position
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where the biconical die entrance geometry is placed. Consequently, a com-
pletely new die was built, the sharkskin die-2, to overcome this drawback.
The values of tab. 4.1 for the sharkskin die-1 with the brass inlay are also
valid for the sharkskin die-2.
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4.4.2 The Second Generation Sharkskin Die (SSD-2)

As seen in the previous section, the sharkskin die-1 showed only strong
melt flow instabilities when used with a brass inlay which decreased its
RP/C value. As shown in fig. 4.7, the sharkskin die-2 was built to simplify
the set-up, to reduce the amount of parts, and to avoid leakage. The shark-
skin die-2 was initially designed with a 10 mm × 2 mm slit, for obtaining
the range of shear rate of strong melt flow instabilities. Additionally, the
biconical die entrance was set aside and a 180° die entrance was applied
instead. This would later allow, if required, to use brass inlays with best
sealing properties. The homogeneous feeding of the slit was guaranteed
by the slimness of the slit (B = 10 mm) in comparison to the feed hole of
D = 8 mm. Because of this, the length of the slit could also be reduced
(to L = 75 mm), since the amount of die entrance eddies* and turbulences
would be of much smaller length scales.† As a further change in function-
ality, the position of the pressure transducer at the die exit was placed as
close to the exit as possible (∆Sexit = 2.0 mm).

Figure 4.7. – Technical scheme of the sharkskin die-2. (P1), (P2) and
(P3) are indicating the position of the piezoelectric pressure trans-
ducer. The distance between the center of (P3) and the die exit is
2 mm.

* An eddy is a vortex-like area in a liquid flow.
† Meant are here the phenomena which appear in the entrance region of the die and

not those outside the die in the barrel.
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4.4.3 Data Acquisition

Both types of sharkskin die used similar piezoelectric pressure transducers
and the same data acquisition set-up. Along the die, three high sensitive
piezoelectric pressure transducers (Kistler 6182A) have been set, similar to
the special die of the capillary rheometer. Furthermore, a similar data ac-
quisition set-up as for the capillary rheometer set-up has been used. This is
shown in fig. 4.8 and includes high resistive charge amplifiers from Kistler
(5015A) and a data acquisition board, i.e. E3026 or a NI-PCI-MIO-16XE
from TA-Instruments. The data acquisition boards are capable of measur-
ing at least 100,000 data points per second. The maximum temperature
which should be applied on the piezoelectric transducers is about 230 °C.*

Figure 4.8. – Scheme of the extrusion set-up with the Brabender ex-
truder. (1) Kistler charge amplifier (3 × 5015A), (2) special slit die,
i.e. sharkskin die-1, (3) Brabender extruder 19/25D, (4) desktop com-
puter for data acquisition (E3026, TA-Instruments) and extruder con-
trol (CAN-BUS) and (5) Brabender Labstation.

* This temperature should only be applied for a short time. For a long longer period
of time 200 °C should be the limit.
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4.4.4 Mathematical Treatment of the Pressure Raw
Data

This chapter provides an overview of the necessary pre-treatment of the
pressure data obtained from the measurements with a sharkskin die either
on the capillary rheometer or on the extruder.
The time-dependent pressure data pi (t) was acquired by the measure-
ments of the high sensitive piezoelectric pressure transducers inside of the
die. The time-dependent pressure pi (t) can be decomposed into a con-
stant mean pressure p̄, a time-dependent pressure fluctuation term p̀i (t)
and a systematic error term perror (t), i.e.

pi (t) = p̄i + p̀i (t) + perror (t) . (4.4)

The inherent drift of the piezoelectric pressure transducer is part of the
error term perror (t). For the further mathematical analysis of the data,
perror (t) had to be determined or approximated and then subtracted from
pi (t) of eq. 4.4. A quadratic fit functions (polynomial approximation of
the second order)*, i.e.

f1 (t) = C1 + C2 × t + C3 × t2, (4.5)

were calculated of pi (t) and afterwards the time-dependent terms of eq. 4.5
were subtracted from pi (t). By doing so, the drift-reduced time-dependent
pressure

p̌i (t) = p̄i + p̀i (t) + perror (t)−
(
C2 × t + C3 × t2

)
= p̄i + p̀i (t) (4.6)

is introduced.
With the statistical analysis the mean value p̄i and the standard deviation
σi of the pressure pi (t) were obtained. The standard deviation is a measure
of p̀i (t).
In order to gain characteristic mathematical measures for the melt flow
instabilities the drift-reduced pressure p̌i (t) (eq. 4.6) was analysed via sta-
tistical moment analysis, Fourier transform (FT), autocorrelation function
(ACF) and cross correlation function (CCF).

* Basically, the drift was found to be nearly a linear function. The coefficient C3 of
the second order term was almost negligibly small C3 � 10−4.
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By computing the Fourier transform, the pressure data (e.g. p̌i (t)) is trans-
formed into frequency (ν) space. All experiments related to periodical me-
chanical instabilities have characteristic peaks at frequencies higher than
the zero frequency (ν = 0 Hz) in the spectra of the FT of the pressure data
Pi (ν). Each Fourier spectrum, obtained by using p̌i (t) or pi (t), includes a
peak at the zero frequency (ν = 0 Hz) which represents the mean pressure
p̄ of the time domain data pi (t).
The autocorrelation function (ACF) r f f ,i (τ) of the pressure data p̌i (t) re-
sults in a nearly constant ACF value of one, as seen in fig. 4.9, for nearly all
measurements independent of whether a MFI was present or not. This is
related to the strong influence of a large mean value of a signal on its ACF.
By this no characteristic measure of the MFI could be determined.
For solving this problem, the ACF was not obtained by using the drift-
reduced time-dependent pressure p̌i (t), but by using the time-dependent
pressure fluctuations p̀i (t)*, which are obtained when from p̌i (t) in eq. 4.6
the mean value p̄i is subtracted.
When only the time dependent pressure fluctuations p̀i (t) are used for cal-
culating the ACF the plot of the ACF changes completely, as seen in fig. 4.9.
With this improvement it is possible to determine characteristic correlation
times τchar,i of the pressure signal and the melt flow instabilities.

* The time-dependent pressure fluctuations p̀i (t) are also referred as the drift-
reduced time-dependent pressure fluctuations to point out that the pressure fluc-
tuations are not affected by the systematic errors.
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(a)

(b)

Figure 4.9. – ACF r22 (τ) of the MDPE sample (tab. 2.3) at ϑ =

180 °C measured in the sharkskin die of the capillary rheometer
(30 mm × 3 mm × 0.3 mm). Once the ACF was calculated out of
p2 (t) (grey curve) and once calculated out of p̀2 (t) (black curve). The
extrudate showed for (a) a smooth surface (γ̇app = 78.5 s−1) and for
(b) melt fracture (γ̇app = 3534.3 s−1). If r f f (τ) is calculated from a
set of data with a non-zero mean value, then the ACF has a nearly
constant value close to 1. This is shown in both examples, the grey
curve in fig. 4.9a and fig. 4.9b. However, by using the time-dependent
pressure fluctuations, the ACF r f f (τ) gives a detailed view of the be-
haviour of the pressure in the time domain. Please be aware of the
different scaling of the correlation time τ axis.
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4.4.5 Analysing the Pressure Fluctuations of Melt
Flow Instabilities with the Sharkskin Die

This section introduces the algorithm of the analysis of melt flow insta-
bilities with a sharkskin die in general. This algorithm can be applied to
pressure data obtained with the extruder or the capillary rheometer.
The sharkskin die was introduced in chap. 4.3. It has been developed in
the group of Prof. Wilhelm62, 146, 149 and allows an advanced analysis of
the melt flow instabilities (e.g. in fig. 4.10). The main improvements of the
sharkskin die are:

• The use of a fast and highly sensitive piezoelectric pressure trans-
ducer* inside the die.

• The use of the oversampling method, see Dusschoten.138 Thus, the
quality of the data (i.e. the signal-to-noise ratio) is improved.

• The application of advanced mathematical analysis. This allows the
determination of characteristic measures of the instabilities.

(a) (b)

Figure 4.10. – Images of melt flow instabilities on extrudates of HDPE
(tab. 2.3). The experiments were conducted in the capillary rheometer
with the sharkskin die. The sample was HDPE at ϑ = 190 °C and the
apparent shear rates of (a) γ̇app = 50 s−1 and (b) γ̇app = 1500 s−1

were applied. The width of each image is 7.5 mm.

The algorithm of the data acquisition and the data analysis is given by:

* They have a large dynamic range (about 6 decades in pressure).
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Algorithm 3. Algorithm for the analysis of the time-dependent pressure
of the sharkskin die

1. The raw data s (t) is acquired with a high sampling rate ADC board.

2. The raw data is boxcar averaged.36

3. The averaged data s̄ (t) is multiplied with a predetermined calibration fac-
tor. Thus, the time-dependent pressure p (t) is obtained.

4. According to chap. 4.4.4, corrections for the drift and the mean value are
applied.

5. The time-dependent drift-reduced pressure fluctuations p′i (t) are Fourier
transformed, the ACF and the CCF is calculated.

6. From the magnitude spectrum of the FT, the frequency values of the first
characteristic peak of the melt flow instabilities νinst are determined.
Whereas, the ACF gives the zero correlation time* τinst .

7. νinst and τinst are plotted as functions of the apparent shear rate γ̇app.

The results of this algorithm can be plotted as the three dimensional in-
stability function finst = f̂inst

(
νinst, τinst, γ̇app

)
. With this algorithm it is

possible to study melt flow instabilities in both the frequency domain and
in the domain of the correlation time. Therefore, new measures for the
melt flow instabilities are accessible, as νinst and τinst (see fig. 4.16). With
these measures a new insight for the behaviour and the dynamics of the
melt flow instabilities and their transition can be gained.62, 146, 216† The fol-
lowing example shows the application of the above given algorithm on
two sets of the time-dependent pressure of an HDPE.

Example 15. HDPE studied with the sharkskin die
The HDPE (tab. 2.3) was measured with the sharkskin die at a constant temper-
ature (i.e. ϑ = 190 °C) but at varying apparent shear rates‡ in the capillary
rheometer. As a figure of illustration, the data and the results of two of those
measurements is given, i.e. γ̇app = 50 s−1 and γ̇app = 1500 s−1.

* The zero correlation time in this thesis is defined as the time when the ACF first
crosses the line r f f (τ) = 0.

† E.g. Filipe et al.146 used the frequency of the melt flow instabilities νinst to study
the influences of the molecular weight Mw and the topology (linear, SCB or LCB )
for different PE samples.

‡ In this example called shear rate.
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The time-dependent pressure fluctuations* indicates that the extrudate looks dif-
ferent, see fig. 4.11. p̀i (t) for the low shear rate shows a very small fluctuation of
less than 1 bar. This is in strong contrast to the pressure fluctuations of the data
from the high shear rate which exhibits large (up to 50 bar) and periodic oscilla-
tions. According to the work of Palza et al.,62, 149 the low shear seems to produce
a smooth extrudate, whereas the large shear rate produces a stick-slip instability
on the extrudate. Applying statistical methods†17, 30 on the pressure fluctuations,

(a) (b)

Figure 4.11. – The time-dependent pressure fluctuations p̀i (t) for the
advanced data analysis. The experiments were conducted in the cap-
illary rheometer with the sharkskin die. The HDPE sample was mea-
sured at ϑ = 190 °C and an apparent shear rate of (a) γ̇app = 50 s−1

and (b) γ̇app = 1500 s−1 was applied. The three curves of each plot
are representing the three different piezoelectric pressure transducers:
black line for P1, grey line for P2 and light grey line for P3 (at the die
exit).

the standard deviation σstd (γ̇) as a function of the shear rate, see fig. 4.12, gives
the first information of the appearance of the melt flow instabilities. The curve
of the standard deviation starts at low values (ca. 1 bar) for low shear rates and
has a strong and steep increase between 200 s−1 and 300 s−1. For higher shear
rates the standard deviation stays at high values of ca. 10 bar.‡ Therefore, it can
be concluded from the standard deviation that a smooth extrudate appears for low
shear rates and an unstable extrudate (probably stick-slip) appears for higher shear

* In this example called pressure fluctuations.
† Calculation of e.g. the mean value, the standard deviation or higher statistical

moments.
‡ The maximum applied shear rate in these experiments was 1500 s−1.
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rates. The smooth and the stick-slip region are separated by the transition region
between 200 s−1 and 300 s−1.

Figure 4.12. – The standard deviation σstd,i of the time-dependent
pressure fluctuations as a function of the apparent shear rate. The ex-
periments were conducted in the capillary rheometer with the shark-
skin die. The sample was HDPE at ϑ = 190 °C and was measured
at different apparent shear rates γ̇app. The three curves of each plot
are representing the three different piezoelectric pressure transduc-
ers: black squares for P1, grey dots for P2 and light grey triangles for
P3 (at the die exit).

The conclusions drawn from the standard deviation are partly supported by the
results of the ACF, see fig. 4.13. The measurement for low shear rates shows a slow
and smooth decay with a correlation time τinst ≈ 26 s. According to Naue148 this
can be a sign for a smooth extrudate. Whereas, the measurement at the high shear
rate (e.g. in fig. 4.13b γ̇app = 1500 s−1) gives a very fast drop (τinst ≈ 1 s) of
the ACF curve with a small decaying oscillation. This is known to be caused by
strongly unstable extrudates, i.e. GMF.

The FT characterizes the instability. The FT-magnitude spectrum of the measure-
ment at the low shear rate contains the typical peaks of the electric current (50 Hz),
see fig. 4.14a. However, the spectra of the first two transducer show a character-
istic peak at about νinst = 8.4 Hz of low amplitude but with a narrow shape. The
magnitude of the peak becomes smaller for increasing transducer position, e.g. the
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(a) (b)

Figure 4.13. – The ACF from the data analysis of the time-dependent
pressure fluctuations. The experiments were conducted in the capil-
lary rheometer with the sharkskin die. The HDPE sample was mea-
sured at ϑ = 190 °C and it was applied an apparent shear rate of (a)
γ̇app = 50 s−1 and (b) γ̇app = 1500 s−1. The three curves of each plot
are representing the three different piezoelectric pressure transducers:
black line for P1, grey line for P2 and light grey line for P3 (at the die
exit).

signal of transducer P1 is lager than the one of transducer P2. In the spectrum
of transducer P3 the peak is vanished. Nevertheless, the image of the extrudate
indicates a weak melt flow instability, see fig. 4.10a. The spectrum of the high
shear rate measurement contains a significant frequency contribution at a low fre-
quency (< 1 Hz), fig. 4.14b. This verifies the assumption that it is a stick-slip
instability which is clearly visible on the extrudate. Nevertheless, the spectrum
also contains characteristic frequency contributions at higher frequencies, e.g. at
νinst,2 = 8.4 Hz, seen in fig. 4.15. This is a sign of a further high frequency
distortion of the extrudate on top of the stick-slip instability, see fig. 4.10b.
Combining the characteristic measures of the melt flow instabilities, the 3-D plot
of fig. 4.16 is obtained. Its projection on the τinst-γ̇-plane shows that with in-
creasing shear rate the correlation time of the pressure fluctuations decays, with a
sudden drop at 200 s−1. This means the flow is getting with increasing shear rate
more chaotic. The projection on the νinst-γ̇-plane shows a curve which starts at
frequencies around 1 Hz. With the extrudate showing a sharkskin-like instability.
At γ̇ = 100 s−1, νinst drops to values which are more than one decade lower.
After a minimum value at γ̇ = 300 s−1, νinst increases again. However, the val-
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(a) (b)

Figure 4.14. – The FT from the data analysis of the time-dependent
pressure fluctuations. The experiments were conducted in the cap-
illary rheometer with the sharkskin die. The sample was HDPE at
ϑ = 190 °C and an apparent shear rate of (a) γ̇app = 50 s−1 and (b)
γ̇app = 1500 s−1 was applied. The three curves of each plot represent
the three different piezoelectric pressure transducers: black line for
P1, grey line for P2 and light grey line for P3 (at the die exit).

ues of νinst stay smaller than 1 Hz; for measurements up to γ̇ = 1500 s−1. The
frequencies below 0.1 Hz are indicating stick-slip instabilities. With increasing
shear rate the frequency of the stick-slip instabilities is getting higher.

Summarizing the both projections discussed above, the flow gets more chaotic with
increasing shear rate. However, the flow exhibits a more complex behaviour in the
frequency domain. This results in a bifurcated curve in the νinst-τinst-plane. For
low correlation times τinst < 1 s, νinst is decreasing with increasing νinst. This
means, that the more chaotic flow* show high frequency instabilities. Whereas, for
high correlation times τinst the curve bifurcates and both low frequencies νinst are
observable (e.g. for stick-slip instability) and high frequencies νinst are observable
(e.g. for sharkskin like instabilities). Thus, the correlation time of the instability
gives a measure of how chaotic the flow is and the frequency of the instability
indicates which type of instability is present.

* This flows have short correlation times.
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Figure 4.15. – The whole spectrum of the FT of the data analysis of the
time-dependent pressure fluctuations. A higher frequency shoulder is
observable for the three sensor positions at νinst ≈ 10 Hz. The spec-
tra for the sensor positions P1 and P2 contain an additional broader
shoulder at high frequencies (νinst ≈ 150 Hz). The experiment was
conducted in the capillary rheometer with the sharkskin die. The
HDPE sample was measured at ϑ = 190 °C and it was applied an
apparent shear rate of γ̇app = 1500 s−1. The three curves of each plot
are representing the three different piezoelectric pressure transducers:
black line for P1, grey line for P2 and light grey line for P3 (at the die
exit).
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Figure 4.16. – νinst and τinst plotted as functions of the apparent
shear rate γ̇app. The experiments were conducted in the capillary
rheometer with the sharkskin die. The HDPE sample was measured
at ϑ = 190 °C and it was measured at different apparent shear rates
γ̇app. The black curve with the filled circles represents the three-
dimensional instability curve finst. The curves with the open symbols
represent the projection of finst on one plane, i.e. the open triangles
are finst (νinst, τinst)|γ̇app

, the open circles are finst
(
τinst, γ̇app

)∣∣
νinst

and
the open squares are finst

(
νinst, γ̇app

)∣∣
τinst

.
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4.4.6 Optical Analysis of the Extrudate

Each extrudate sample was photographed in order to assign each sample
to smooth, sharkskin, stick-slip or gross melt fracture. This set of mechan-
ical instabilities was later correlated with the results from the advanced
data analysis. During a measurement at the capillary rheometer or at the
extruder, samples of the extrudate were collected by manually cutting out
a small piece of the solidified extrudate. The extrudate samples were only
taken after the pressure inside the barrel and inside the die reached a quasi
static state. The extrudate pieces were afterwards taped either to a mi-
croscopy slide or to a black cardboard. In either case it was then labelled
with the name of the sample and the processing conditions.

Later this collection of extrudate pieces was digitalized using a microscope
set-up. Two different optical set-ups were used for the digitalization of the
extrudate samples:

1. A Zeiss Axiophot microscope with Panasonic CCD*-camera
(≈ 0.5 MP (Megapixel)) (see fig. 4.17a) and an image acquisition soft-
ware.

2. A Bresser stereo-microscope with an additional third optical tube,
which allows the use with a Nikon D90 (CMOS sensor and
≈ 12.3 MP) (see fig. 4.17b) and a Nikon camera control software.

The Zeiss microscope has the clear advantage of being a high performance
optical tool that enables the user to use high magnifications (greater than
×100). This is very helpful in case of very weak melt flow instabilities
(MFI). Problems appear when high magnifications are used. The area on
which can be focused is very small in comparison to the image size; there-
fore, an analysis of the image would be quite inaccurate. This problem
with the focus plane happens if e.g. the sample is not flat at all, as for
nearly all samples which were obtained from the extruder experiments.
Another problem was the resolution of the attached camera with an image

* W. S. Boyle‡ and G. E. Smith§ were rewarded in 2009 with the Nobel prize for the
invention of the charged coupled devise (CCD).36, 218

‡ Willard Sterling Boyle (b19. August 1924 in Amherst, Canada; d7. May 2011 in Hal-
ifax; Canada) was a Canadian physicist.219

§ George Elwood Smith (b10. May 1930 in White Plains, USA) is an American physi-
cist.
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size of 768 × 636 pixels. For these reasons the Bresser stereo-microscope
was the method of choice for most of the measurements.

(a) (b)

Figure 4.17. – Optical set-ups used for the digitalization of the
extrudates: (a) Zeiss Axiophot microscope and (b) Bresser stereo-
microscope with Nikon D90 attached.

The images of the extrudate can be analysed manually by simply counting
the lines in a certain length of sample. However, this method involves the
error source of human judgement on what is an instability line and what is
not. Besides, it is a time-demanding task to do this for all samples and the
use of a lens or a microscope is necessary in most of the cases. To simplify
the counting of lines and to reach a higher reproducibility of the results, the
extrudate samples were photographed and the FT of the light intensities
was used on the images to determine the number of fracture lines in an
image.* In order to do this a self-developed image analysis software has
been implemented using the functions of MATLAB.221

Generally the melt flow instabilities appear as more or less periodic pat-

* The theory of the advanced analysis can be found e.g. in the book of Bracewell.220
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terns of parallel lines in the images. If the images are adjusted so that the
lines are vertical, the FT can be used for the analysis. For this purpose a FT
of each row of the image gives an average number of lines found in this
specific row. An average of all rows gives a good estimate of the average
number of lines (instabilities) in one image. The self developed software
used the following algorithm for the processing of the images.

Algorithm 4. Algorithm for the FT-analysis of the images

1. Transferring the values of the light intensity of the image with its original
size in a M0 × N0 matrix (see fig. 4.18a).

2. Asking the user for input how much the image should be rotated, so the
lines of the instabilities would be vertically aligned. This can result in a
new image size of M× N (see fig. 4.18b).

3. Computing for each row i via the FFT the intensity spectrum Iimage,i (q)
with i = [1, M] and i ∈N for all rows (M) of the image (see fig. 4.18c).

4. Calculating the average of all FFT spectra,

Īimage (q) =
1
M

M

∑
i=1

Iimage,i (q). (4.7)

5. By the means of point 4 an average spectrum of the image is obtained and
the according data is saved and plotted (see fig. 4.18d).

This algorithm is illustrated in fig. 4.18.

Artificial images were created for testing the functionality of the self-deve-
loped software and verifying the interpretation of the results. The artificial
images were created using a self-written MATLAB code. The basic idea of
these test images was to generate clear and well-defined images, which are
not possible to obtain experimentally, to simulate the melt flow instabili-
ties. The melt flow instabilities appear in their simplest form as a nearly
periodic pattern of surface cracks. As test image it should be sufficient
to create a sine wave with values between 0 and 255* and 1001 points for
one row of the image. This row was further copied into the further 499
rows of the artificial image. Thus, every row contained the function in x-
direction and the same value in y-direction. The sine wave was chosen to

* This will represent the intensity values of a grey scale picture.
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(a) (b)

(c) (d)

Figure 4.18. – Illustration of the algorithm of the software for the im-
age analysis. (a) basic image with horizontal lines (height M0 = 1001
and width N0 = 500), (b) basic image rotated by 90° (height M = 500
and width N = 1001), (c) 3-D plot of the intensity spectra of all rows
i, and (d) the spectrum of the image averaged over the index i.

have 10 complete waves in the data set. Therefore, the created image had
a height (y-direction) of M0 = 500 pixel and a width of N0 = 1001 pixel
(x-direction), which is shown in fig. 4.19a. This data represents a perfectly
homogeneous instability in y-direction with a perfect optical illumination.

Above all, the illumination of the sample could strongly affect the images.
Therefore, two further manipulations were applied on the initial artificial
image (fig. 4.19a). The artificial data was multiplied with

1. a Gaussian function, to simulate a center based illumination (see
fig. 4.19d).
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2. an exponential function, to simulate an illumination shifted to one
side (see fig. 4.19c).

A fourth image was generated containing just binary data (with values of
0 and 1). This results in a strong contrasted image without any smooth
transitions and can be seen in fig. 4.19b. This image contains 10 white
lines with a broadness of 1 pixel and an equidistant spacing between them.
Thus, the image is basically a rectangular function as shown in chap. 2.1.1.

The spectra of the FT analysis (see fig. 4.20) of all the analysed images
shown in fig. 4.19 contain the basic information of the number of the waves
(lines) in the image. Fig. 4.20a of the initial artificial data contains a large
peak at the fundamental frequency (10 image−1). Three decades lower
appear peaks which are narrow and most of them are located at multiples
of the fundamental frequency. It is interesting to observe that the odd
harmonics have the doubled intensity (e.g. Īimage,3 = 7 · 10−4) of the even
harmonics (e.g. Īimage,2 = 3.4 · 10−4). This is related to the fact that there
are exactly ten black and ten white lines in the grey scale image, whereas
the next shade of grey already can be found 20 times.

The spectra resulting from the manipulated initial artificial image include
the characteristic peak of the fundamental frequency, however the higher
harmonics are vanished. The spectra shown in fig. 4.19c and
fig. 4.19d show a strong rise in the noise level. Thus, their signal-to-noise
ratio is reduced and the peaks get broader. For the spectra of fig. 4.19c
which was a convolution of the original artificial image of fig. 4.19a and an
exponential function the noise level is increased by two decades. Whereas
the spectra of fig. 4.19d which was a convolution of the original artificial
image of fig. 4.19a and a Gaussian function the noise level is increased by
only half a decade. The spectrum of the binary image shows the clear-
est peaks with a very large signal-to-noise ratio and with peaks only at
the fundamental frequency and its higher harmonics. This could be ex-
pected, because the binary image is basically made by an array of rectan-
gular functions, which can be decomposed in a discrete set of frequencies
which are all multiples of the fundamental frequency via the Fourier series
(see chap. 2.1.1). The values of the comparison of the artificial images and
the spectra are tabulated in tab. 4.2.

The analysis of the artificial images showed that periodic arrangements
of lines can be successfully detected. However, it is important that an ex-
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(a) (b)

(c) (d)

Figure 4.19. – Artificial test data for the image analyser. Each image
has a width of 1001 pixel and a height of 500 pixel. (a) sinusoidal
generated grey scale data, (b) a binary image (having just values of 0
or 1) with 10 white lines of 1 pixel broadness, (c) data from fig. 4.19a
multiplied with an exponential decay, and (d) data shown in fig. 4.19a
multiplied with a Gaussian function. (Note: Images have been rotated
by 90° to fit on the manuscript format.)
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(a) (b)

(c) (d)

Figure 4.20. – FT-spectra of the artificial test data from fig. 4.19.
(a) spectrum of the sinusoidal generated grey scale data shown in
fig. 4.19a, (b) spectrum of the binary data, (c) spectrum of the data
from fig. 4.19c, and (d) spectrum of the data shown in fig. 4.19d.

perimental convolution with a exponential function is avoided. Whereas,
an experimental convolution with a Gaussian function is acceptable. The
convolution with either an exponential or a Gaussian function can happen
while acquiring the image of a melt flow instability with a CCD camera.
The reason for this convolution lies in the direction of the light source. A
light source which is directed to one edge of the image causes a exponen-
tial function. Whereas, a light source which points at the middle of the
image causes a Gaussian function.

Before processing the images of real melt flow instabilities, the images of
physical gratings and physical meshes were analysed. These gratings and
meshes have a precisely predefined line distances or mesh size. The im-
ages were made using the Zeiss microscope set-up. In the spectra which
were obtained by using the self-developed image analyser software, the
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(a) (b)

(c) (d)

Figure 4.21. – Microscope images of the physical gratings with a im-
age size of 768 pixel (width) × 636 pixel (height). (a) physical grat-
ing with 8 lines/mm using a 2.5 × objective (image width 2500 µm),
(b) physical grating with 140 lines/mm using a 10 × objective (im-
age width 650 µm), (c) physical grating with 140 lines/mm using a
20 × objective (image width 325 µm) and (d) physical grating with
600 lines/mm using a 40 × objective (image width 170 µm). (Note:
Images have been rotated by 90° to fit on the manuscript format.)
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Table 4.2. – Comparison of the number of lines found in the images
and in the spectra of the artificial test data and comparison of the in-
tensity values of the fundamental peak at 10 image−1.

Property sine binary sine × sine ×
exponential Gaussian

nimage 10 10 10 10
qimage,spec,01 10 10 10 10
Īimage (10) 0.5 1 0.53 0.5

number of lines per image can be found by locating the first peak.
The comparison of the number of waves (lines) in the images nimage and
the x-axis value of the first peak qimage,1 in the respective FT-spectrum is
presented in tab. 4.3. In most of the spectra peaks at higher frequencies
appear additionally, the next highest to qimage,1 are included in tab. 4.3 and
named qimage,2. As it can be seen in tab. 4.3 the values of the images and
the spectra coincide; in numbers this means that a deviation of ∆n = ±3
is sufficient.

Table 4.3. – Comparison of the number of lines* found in the images
and in the spectra of the physical gratings.

Property 2.5× 10× 20× 40×

nimage 20 91 45 102
qimage,01 20 92 44 99
qimage,02 40 183 89 198

To verify the analysis of the images, a copper mesh, as used for the electron
microscopy, was used as a target of study. The images were again taken on
the Zeiss microscope set-up. The FT-analysis of the images from fig. 4.23
gives the spectra of fig. 4.24. As for the physical gratings in tab. 4.3, the
comparison between the images and the spectra was done. The same com-
parison method as before was applied to the data from the copper mesh
resulting in fig. 4.23, resulting in nimage, and fig. 4.24, resulting in qimage,i.

* A detailed explanation of the use and the units of qimage can be found in chap. E.
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(a) (b)

(c) (d)

Figure 4.22. – FT-spectra of the microscope images of the physical
gratings. (a) physical grating with 8 lines/mm using a 2.5× objective,
(b) physical grating with 140 lines/mm using a 10 × objective, (c)
physical grating with 140 lines/mm using a 20 × objective and (d)
physical grating with 600 lines/mm using a 40 × objective.

The values of nimage, qimage,01 and nlines,spec,02 are shown in tab. 4.4 and they
agree with each other. The results for the artificial data presented above, as

Table 4.4. – Comparison of the number of lines found in the images
and in the spectra of the images of the copper mesh.

Property 2.5 × 10 × 20 ×

nimage 20 6 3
qimage,01 20 5 3
qimage,02 40 11 (5)

well as the results for the physical gratings and the results for the copper
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(a) (b)

(c)

Figure 4.23. – Microscope images of the copper mesh with a mesh size
of 90 µm. The image has a width of 768 pixel and a height of 636 pixel.
(Note: Images have been rotated by 90° to fit on the manuscript for-
mat.) (a) copper mesh using a 2.5 × objective (image width 2500 µm),
(b) copper mesh using a 10 × objective (image width 650 µm) and (c)
copper mesh using a 20 × objective (image width 325 µm).
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(a) (b)

(c)

Figure 4.24. – FT-spectra of the microscope images of the copper mesh
with a mesh size of 90 µm. (a) copper mesh using a 2.5 × objective,
(b) copper mesh using a 10 × objective and (c) copper mesh using a
20 × objective.

mesh show that the optical set-up is suitable for analysing the melt flow
instabilities. The extrudate samples obtained from the sharkskin die of the
capillary rheometer were therefore investigated with this optical analysis.
The used polymer was a LLDPE (tab. 2.3) and the images were taken with
the Zeiss microscope set-up. The FT-analysis of the images of the real ex-
trudates shows a slightly different behaviour than the test images. Due
to the curvature of the surface and the quasi-periodicity of the melt flow
instabilities, the peaks in the spectra of the images, seen in fig. 4.25, are
much smaller than expected, see fig. 4.26.

The extrudate presented in fig. 4.25a shows a nearly smooth surface of
the extrudate. This observation is also made in the FT-spectrum shown
in fig. 4.26a. The only peak which appears is at 336 image−1. This peak
is observed in all measurements done with the Panasonic CCD camera

123



4. Detection of Mechanical Instabilities in the Capillary Rheometer and the Extruder

(a) (b)

(c) (d)

Figure 4.25. – Microscope images of the LLDPE extrudate with an
image size of 768 pixel (width) × 636 pixel (height). The objective
lense for all images in this figure had a 2.5 × magnification giving a
width of the images of 2500 µm. The images were made at the Zeiss
microscope. The LLDPE sample was heated at 180 °C and extrudated
at the capillary rheometer with the SSD at different apparent shear
rates (a) γ̇app = 10 s−1, (b) γ̇app = 30 s−1, (c) γ̇app = 300 s−1 and (d)
γ̇app = 790 s−1. (Note: Images have been rotated by 90° to fit better
on the page.)
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and can be identified as an artefact created by the camera or the cam-
era control software itself. At increased shear rates the LLDPE extrudate

(a) (b)

(c) (d)

Figure 4.26. – FT-spectra of the microscopic images of the LLDPE
extrudate, shown in fig. 4.25. The LLDPE sample was heated at 180 °C
and extrudated at the capillary rheometer with the SSD at different
apparent shear rates (a) γ̇app = 10 s−1, (b) γ̇app = 30 s−1, (c) γ̇app =

300 s−1 and (d) γ̇app = 790 s−1.

turns from stable (smooth) to unstable (rough). This can be best seen in
fig. 4.25d where the melt was extrudated at a relative high shear rate of
790 s−1. The extrudate is obviously effected by a strong melt flow instabil-
ity, which can also be found in the FT-spectrum of fig. 4.26d at a value of
qimage = 7 image−1. This peak is on top of a broad peak which starts from
0 and lasts up to 200 image−1. According to the more irregular structure
of the melt flow instabilities in comparison to the artificial and test data,
the evaluation of the image without the FT is quite difficult and contains
more errors than before and therefore should be avoided.
The extrudate of a measurement at a much lower shear rate (of 300 s−1)
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contains a smaller melt flow instabilities. However, fig. 4.25c displays a
strong instability (e.g. gross melt fracture). The FT-spectrum of this image
indicates a peak at a value of qimage = 9 image−1 which is again on top of
a broad peak which starts from 0 and lasts up to 200 image−1.

At a low shear rate of 30 s−1 only a very fine (small amplitude) instability
can be observed (fig. 4.25b). This instability is a weak melt flow insta-
bilities. In the FT-spectrum, see fig. 4.26b, it is nearly invisible, only the
comparison to the spectrum of the smooth extrudate, see fig. 4.26a, shows
that a broad peak appears at values between 0 and 200 image−1, which is
a sign for an irregular instability with a broad distribution of frequencies.
The results and parameters of the analysis of the images of the LLDPE
extrudates are summarized in tab. 4.5.

Table 4.5. – Flow parameters and results from the analysis of the
LLDPE (tab. 2.3) sample. The according extrudates are shown in
fig. 4.25 and the spectra of the image analysis, from which qimage is
taken are shown in fig. 4.26. The qimage of the extrudate at γ̇app =

30 s−1 is the maximum of the very broad frequency peak (fig. 4.26b).
The classification of the extrudate to an instability type was done via
the images of fig. 4.25.

γ̇app vpiston vextr** timage
†† qimage instability

s−1 mm/s mm/s s/image waves/image -

10 0.006 0.45 5.30 - (smooth)
30 0.019 1.5 1.67 (≈40) sharkskin
300 0.19 15 0.17 9 GMF
790 0.5 39.4 0.06 7 GMF

** The velocity of the extrudate when passing the die exit vextr can be approximated
by using the equation of continuity and the assumption of a plug flow.39

vextr =
Adie

Areservoir
vpiston. (4.8)

Adie is the cross-sectional area of the die, Areservoir is the cross-sectional area of the
reservoir and vpiston is the piston velocity of the capillary rheometer (fig. 4.2).44

†† timage is the time which is needed to obtain an extrudate sample of the length
Limage = 2.5 mm, as represented by the images of fig. 4.25. By using eq. 4.8, timage
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4.4.6.1 Comparison of the Optical Analysis of the Extrudate
and the Analysis of the Time-dependent Pressure

Fluctuations

As in shown by Palza et al.62, 149 and summarized in chap. 4.4.5, the melt
flow instabilities of a polymer extrudate are correlated to peaks in the FT-
spectrum of the time-dependent pressure fluctuations p̀ (t). In chap. 4.4.6
it was shown, that the melt flow instabilities can be also analysed via the
FT of the grey-scale intensities of the images of the extrudate. In the fol-
lowing, the results of both methods are compared. As a measure of the
both approaches, the detected characteristic frequency of the instabilities
νinst,image for the optical analysis and νinst,extr for the analysis of the pres-
sure fluctuations, are compared (tab. 4.6). The characteristic frequency of
the melt flow instabilities for the optical analysis νinst,image are obtained by
using the number of waves qimage in an image of the length Limage (tab. 4.5).
With these values the wavelength λw can be determined as

λw =
Limage

qimage
. (4.10)

With the extrudate velocity, eq. 4.8, the frequency
[
νinst,image

]
= Hz is

obtained from the image analysis,

νinst,image =
vextr
λw

. (4.11)

The characteristic frequency of the melt flow instabilities for the analy-
sis of the pressure fluctuations νinst,extr is found in the FT-spectra of the
time-dependent pressure fluctuations. Two examples of those spectra are
shown in fig. 4.27. In fig. 4.27a the spectrum of a sharkskin extrudate
(fig. 4.25b) is shown. It contains a characteristic peak a νinst,extr = 7.3 Hz
(tab. 4.6). The spectrum of fig. 4.27b represents a GMF instability (fig. 4.25d).
The spectrum contains two characteristic peaks. One broad peak with a
maxmimum at νinst,extr = 166.4 Hz (tab. 4.6) and one narrower peak at
νinst,extr = 2.4 Hz. The low frequency peaks has also higher harmonics.

can be calculated from vextr , as

timage =
Limage

vextr
. (4.9)
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(a) (b)

Figure 4.27. – Spectra of the FT analysis of the time-dependent pres-
sure fluctuations of the LLDPE extrudate, shown in fig. 4.25. The
LLDPE sample was heated at 180 °C and extrudated at different ap-
parent shear rates (a) γ̇app = 30 s−1 and (b) γ̇app = 790 s−1. The
3 mm ×0.3 mm slit die was used on the capillary rheometer.

Table 4.6. – Comparisson of the frequency of the melt flow instabil-
ity obtained from the optical analysis νinst,image and the frequency of
the melt flow instability obtained from the FT of the time-dependent
pressure fluctuations νinst,extr. The values in brackets are by the author
estimated values. The according spectrum did not show a significant
characteristic peak.

γ̇app λw νinst,image νinst,extr
νinst,image
νinst,extr

s−1 mm/wave Hz Hz -

10 - - - -
30 (0.063) (≈24) 7.3 3.29

300 0.28 53 27 - 36 1.96 - 1.47
790 0.36 109 166.4 0.66
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As tab. 4.6 implies, the optical analysis of melt flow instabilities is limited
to strong melt flow instabilities as e.g. the GMF of fig. 4.25c and fig. 4.25d.
For the GMF instabilities the frequencies of the image analysis and the
analysis of the time-dependent pressure fluctuations are in the same range
(a factor of 1.4 - 2 lies between both frequencies). An exact match is not
expected, due to following reasons:

1. The calculation of the extrudate velocity is made using the assump-
tion of plug flows inside the capillary rheometer.

2. The extrudate samples represent rather short times, see tab. 4.5,
tmax,image = 5.3 s. Whereas, the spectra of the FT of the time-depen-
dent pressure fluctuations are based on time data longer than 60 s.

3. The lengths are obtained from the solidified extrudate after the ex-
periment. Thus, the effect from the volume contraction is not taken
into account.

4. The changes of volume related to die swell31 are not not taken into
account.

The analysis of the time-dependent pressure fluctuations is still capable
to detect some weak melt flow instabilities, e.g. the sharkskin of fig. 4.25b.
By the optical analysis it is not possible to obtain a characteristic frequency
from the spectrum alone. Only, when the spectrum of the sharkskin extru-
date, fig. 4.26b, is compared with the spectrum from the smooth extrudate,
fig. 4.26a a large bump with a maximum at 40 Hz can be identified. How-
ever, to verify the presence of a melt flow instability the image of the ex-
trudate has to be sighted. Whereas, this melt flow instability can be clearly
detected by the FT of the time-dependent pressure fluctuations through a
characteristic peak at 7.3 Hz, fig. 4.27a and tab. 4.6.

4.4.7 Experimental Conditions for the Experiments
with the Extruder

After choosing a die geometry, the typical experiments included two pa-
rameters, the temperature ϑext and the rotational speed of the screw nrot.
The measurements were conducted as a series of stepwise changed rota-
tion rates of the extruder screw nrot at a constant temperature ϑextr. After
these measurements of nrot, the temperature could be changed and a sim-
ilar experiment could be started after the altered temperature ϑextr was
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stable. The temperature was varied between 100 °C and 200 °C. The min-
imum temperature which was used depends on the melting point of the
used polymer. To ensure that the polymer is molten and can flow inside
the extruder the minimum temperature used was about 20 °C above the
melting temperature. The rotational speed of the screw was altered be-
tween 5 min−1 up to 250 min−1. The second number represents the max-
imum rotational speed of the extruder in combination with the sharkskin
die-2. The rotational speeds which could be obtained with the sharkskin
die-1 were between 5 min−1 and 30 min−1. At each nrot the extruder the
time-dependent pressure was recorded for 10 - 20 min and only after the
extruder reached a constant mean pressure in front of the die entrance.

4.5 Pressure Fluctuations Determined
during the Extrusion of Polymer Melts

This section shows how the requirements which were described in the in-
troduction of this chapter (chap. 4.1) can be achieved with the experimen-
tal set-ups introduced in chap. 4.4. An example of a typical measurement
of a polymer melt is given in fig. 4.28.

Example 16. Example for data and data analysis of melt flow instabili-
ties
Fig. 4.28a obviously shows a strong melt flow instability. However, the pressure
recording of pressure transducer 3, fig. 4.28b, does not give an obvious hint of
a strong melt flow instability and neither does this the autocorrelation function
(ACF) r33 (τ) of p̀3 (t), see fig. 4.28c. However, in the Fourier transform (FT)
P3 (ν) a significant peak appears at 63 Hz (fig. 4.28d), which is related to the in-
stability. This is an example for the possibilities and problems for the technology
transfer to the extruder. First it is possible to create melt flow instabilities with
the sharkskin die on the extruder and then to determine them. The time-dependent
pressure does not show a characteristic pattern of the melt flow instabilities. How-
ever, the FT is capable of detecting certain characteristic peaks even though they
are included in a complex spectrum. The ACF can not be used to characterize melt
flow instabilities for the data obtained from the extruder. The reasons for this are
discussed in chap. 4.5.1.
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(a) (b)

(c) (d)

Figure 4.28. – An example for the data analysis of the time-dependent
pressure measured on the extruder with the sharkskin die-1 with
brass inlay. (a) PE-SCB07 (tab. 2.3) at ϑ = 130 °C and nrot = 80 min−1

(the width of this image is 7.5 mm), (b) p̀ (t), (c) ACF and (d) FT.

At first in this section (chap. 4.5.1) it is deduced that the melt flow insta-
bilities are related to characteristic peaks in the FT spectra and that other
peaks are caused by different but defined means. This verifies the adapt-
ability of the sharkskin die to an extruder.
Subsequently, chap. 4.5.2 deals with a study of the development of the
melt flow instabilities for different shear rates. This provides an answer to
the question whether it is possible to detect and control the melt flow in-
stabilities via online monitoring. Before a summary of the findings of this
chapter is given in chap. 4.6, chap. 4.5.4 presents a study on the correlation
between optically detected melt flow instabilities and melt flow instabili-
ties detected by the FT. Fig. 4.29 shows that with the use of the sharkskin
die-2 it is possible to obtain strong melt flow instabilities, which can later
analysed via the FT of the time-dependent pressure fluctuations.
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(a) (b)

(c) (d)

Figure 4.29. – Examples of observable melt flow instabilities for PE-
SCB07 (the width of each image is 7.5 mm), (a) at ϑ = 130 °C and
nrot = 80 min−1, (b) at ϑ = 130 °C and nrot = 140 min−1, (c) at
ϑ = 140 °C and nrot = 30 min−1, and (d) at ϑ = 140 °C and nrot = 45
min−1.

4.5.1 Identification of the Melt Flow Instabilities
Inside the Extruder Die

The FT-spectra of the time-dependent pressure from the extruder experi-
ment shows a much more complex behaviour than the spectra obtained at
the capillary rheometer.62, 146, 150, 216 The spectra of the capillary rheome-
ter are simpler, as they show just the frequencies of the instabilities and
sometimes, additionally, the frequencies related to the electric current.148

In contrast, the spectra obtained by the extruder are rather complex. First
of all, a stronger decay of the spectra can be observed even for melt flows
at low rotation rates in the range of frequencies up to ν = 20− 40 Hz (see
fig. 4.30a). Peaks appear on top of this decay at low frequencies, which can
be clearly identified as the frequencies of the screw rotation of the extruder
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and their higher harmonics.

Example 17. Correlation between the low frequency peaks and the rota-
tion of the screw
In fig. 4.30a and b the extruder runs at nrot = 140 rot

min . This corresponds to a
frequency ν1 ≈ 2.33 Hz and peaks appear in the spectrum at this frequency at
2.33 Hz and at higher multiples i.e. ν2 = 4.66 Hz and so on.

Similar to the observations made on the capillary rheometer, there are
peaks corresponding to the electric current; i.e. for Germany 50, 100, 150
and 200 Hz.* Furthermore, there are peaks which could not be directly
identified, i.e. the peak at 57 Hz in fig. 4.30.
The spectra in fig. 4.30a shows all these characteristics which have been
described in the paragraph above. However, additionally a broad peak is
detected. This peak has its maximum between 60 and 70 Hz and has a total
broadness of about ∆ν ≈ 25 Hz, but the maximum amplitude is relatively
small with 10−4 bar. Still, this peak seems to be a material dependent peak,
which is related to the visible melt flow instabilities seen in fig. 4.29b. As
a proof of this the same experiment was performed again, but without
polymer inside the extruder. The spectrum from the FT should show all
spectral parts as described before except the material contribution. In case
of fig. 4.30a this would be the broad peak at 60 - 70 Hz. The spectrum from
this empty extruder experiment is shown in fig. 4.30b; it is clearly visible
that the broad peak disappeared. Therefore, it can be concluded that this
peak is dependent on the material. Nevertheless, the extruder set-up de-
pendent peaks remain, for instance the peaks at 2.33 and 4.66 Hz or the
electric-current related peaks at 50 and 100 Hz. However, a small reduc-
tion in their amplitude can be observed. The decay at low frequencies is
also part of this spectrum.
Another experiment was performed to learn more about the properties of
the extruder set-up in the frequency space. In this experiment the extruder
was set at the same constant temperature, but the screw was stopped
(nrot = 0 min−1). The spectral contributions of the mechanical system of
the extruder should disappear in the spectrum of this experiment.
Fig. 4.30c indicates that this statement is true. The peaks at low frequen-
cies, which could be clearly correlated by numbers to the screw rotation,

* In countries which have electric current system based on 60 Hz, this frequencies
appear additionally.
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vanish and so does the decay at low frequencies. From this, it can be de-
duced that both spectral contributions are induced by mechanical vibra-
tions of the extruder engine. Still, the peaks at 50 and 100 Hz remain in the
spectra as well as some others e.g. at 57 Hz.

As a concluding experiment in this series the whole extruder was
switched off to avoid any interaction between the electrical system of the
extruder, i.e. inductive currents from the heating belts and others, and
the data acquisition system. The spectrum of this experiment is shown
in fig. 4.30d. When comparing this spectrum with the previous one no
changes can be seen. From the previously stated, it follows that the peaks
from the electrical-current and the not identified peak at 57 Hz are related
to the data acquisition system itself. These peaks remain stable at their
frequencies, which makes them easy to identify.

4.5.2 Observing the Development of the Melt Flow
Instabilities in the Extruder

In the previous section it was shown that melt flow instabilities can be
detected on the extruder with a sharkskin die, but the spectra are not as
trivial as in the capillary rheometer.

To continue with the idea of a self-controlling smart-extruder, the next ex-
periments are performed in a way which simulates a control loop. The
extruder was set at a defined temperature, in this case 130 °C. The rota-
tional rate of the screw nrot, was stepwise lowered starting at 170 min−1

and followed by 140, 80 and 50 min−1. Thus, the development of the melt
flow instabilities could be observed optically and by the time-dependent
pressure fluctuations. The time-dependent pressure inside the sharksin
die of the extruder was recorded for 10 - 20 min at each nrot and only after
the extruder reached a constant mean pressure in front of the die entrance.
The resulting spectra are shown in fig. 4.31.

At the first measurement with nrot = 170 min−1, see fig. 4.31d, a broad
peak was identified at νinst ' 95 Hz. This peak had a broadness ∆νinst ≈
7 Hz and an amplitude of P3,inst = 2× 10−5 bar. At the next step of ro-
tational velocity nrot = 140 min−1 the peak was shifted to a lower fre-
quency, νinst ' 78 Hz, still having a similar shape (fig. 4.31c). The broad-
ness changed to ∆νinst ≈ 10 Hz and the amplitude increased slightly to
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(a) (b)

(c) (d)

Figure 4.30. – Identifying the material dependent pattern via com-
parison measurements. (a) PE-SCB07 at ϑ = 130 °C and nrot = 140
min−1, (b) empty extruder ϑ = 130 °C and nrot = 140 min−1, (c)
empty extruder ϑ = 130 °C and nrot = 0 min−1, and (d) empty ex-
truder ϑ = 20 °C and nrot = 0 min−1.

P3,inst = 3 × 10−5 bar. At nrot = 80 min−1 the peak was shifted again
to a lower frequency (fig. 4.31b), νinst ≈ 63 Hz. The peak became much
broader, ∆νinst ≈ 25 Hz, and its amplitude increased strongly to P3,inst =

8× 10−4 bar. As a nrot = 45 min−1 was set the broad peak vanished from
the spectrum and instead of it a much narrower, ∆νinst ≈ 1 Hz, peak at
νinst ≈ 54 Hz appeared, as can be seen in fig. 4.31a. In all cases of the
experiment a melt flow instability was detected on the surface of the ex-
trudate and in the FT-spectra of the related time dependent pressure.

The observations of this experiment can be summarized as the following:

1. The melt flow instability are characterized by a broad peak. This
melt flow instability could be followed over a broad range of rota-
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(a) (b)

(c) (d)

Figure 4.31. – Observing the development of characteristic peaks for
PE-SCB07 (tab. 2.3) at ϑ = 130 °C and at (a) nrot = 50 min−1, (b)
nrot = 80 min−1, (c) nrot = 140 min−1, and (d) nrot = 170 min−1.

tional velocities of the screw.

2. An unsteady transition in the shape of the characteristic peak was
observed. This could be related to a transition in the mechanism of
the origin of the melt flow instability.

4.5.3 Using the ACF to Analyse the Time-dependent
Pressure Fluctuations from the Sharkskin Die

on the Extruder

Chap. 4.4.5 showed how useful the ACF can be in combination with the FT
for data obtained in the capillary rheometer. This capability is lost when
the ACF is used for data measured in the extruder. This is illustrated in
fig. 4.32. Both figures, fig. 4.32a and fig. 4.32b, show strong oscillations
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with nearly no decay in amplitude. According to Naue (2007),148 this
would be an obvious sign for a stick-slip instability. However, this con-
clusion is only true for the capillary rheometer. In the extruder the signal
is strongly affected by the rotations of the screw. These cause the large os-
cillation in the ACF of fig. 4.32. This is easily validated just by counting the
amount of cycles found in each plot. For fig. 4.32a the number is 5 cycles
per 60 seconds and this number coincides with the applied rotations of the
screw nrot = 5 min−1. Similar results are found in fig. 4.32b, the number
of cycles is 80 cycles per 60 seconds, and this number coincides with the
applied rotations of the screw nrot = 80 min−1. This is the reason why the
ACF is not used for the analysis of the time-dependent pressure obtained
from the extruder.

4.5.4 Comparison Between Optical Analysis and
Pressure Based Analysis of the Melt Flow

Instabilities

The images seen in fig. 4.33 were FT-analysed via the algorithm introduced
in chap. 4.4.6. Examples of the resulting spectra are shown in fig. 4.34.
All the spectra of the images of the PE-SCB13 (tab. 2.3) show significant
peaks. The spatial frequencies and the normalized intensity of the peaks
are summarized in tab. 4.7 and are graphically shown in fig. 4.35.
With a known mass flow rate ṁ (see fig. 4.36) for the single experiments
it is also possible to calculate a time based frequency of the instabilities,
shown in fig. 4.37, from the spatial frequency which was obtained from
the image analysis. The mass flow rate shown in fig. 4.36 is, as expected, a
linear function of the set screw rotation.* This was also observed for other
polymers. The plot of the mass flow contains data from three different
polymers a LDPE, PE-SCB13 and a HDPE. The data was also fitted with
a linear function to demonstrate how small the deviation from a linear
relation is. In case of the LDPE and the HDPE the data was further linearly
extrapolated up to nrot = 80 min−1.
The time-dependent pressure (at sensor position 3) was analysed using the
FT in order to correlate the optical analysis to the analysis of the pressure

* This means also that the mass flow rate is linear dependent on the apparent shear
rate γ̇app. Because for low values of nrot, it follows that nrot ∝ γ̇app.
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(a)

(b)

Figure 4.32. – The ACF from the data analysis of the time-dependent
pressure fluctuations. The experiments were conducted in the ex-
truder with the sharkskin die-2. The sample was PE-SCB13 (tab. 2.3) at
ϑ = 90 °C and a number of rotations of the screw of (a) nrot = 5 min−1

and (b) nrot = 80 min−1 was applied. The raw data was measured
with the pressure transducer P3 (at the die exit).
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(a) (b)

(c) (d)

Figure 4.33. – Examples of observable melt flow instabilities for PE-
SCB13 at ϑ = 90 °C and a number of rotations of the screw of (a)
nrot = 5 min−1, (b) nrot = 15 min−1, (c) nrot = 40 min−1, and (d)
nrot = 80 min−1. (Each image has a width of 7 mm.)
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(a) (b)

(c) (d)

Figure 4.34. – Examples of the spectra of the images of the observable
MFI for PE-SCB13 at ϑ = 90 °C and a number of rotations of the screw
of (a) nrot = 5 min−1, (b) and nrot = 15 min−1, (c) nrot = 40 min−1,
and (d) and nrot = 80 min−1.
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Table 4.7. – Comparison of the peaks found in the spectra of the im-
ages from fig. 4.33 and comparison of the intensity values of the first
peaks. (a) shows the values of the first and the second peak and (b)
shows the values for the third and fourth peak. The sample was PE-
SCB13 (tab. 2.3) at ϑ = 90 °C.

nrot ṁ = dm/dt qimage,1 Īimage,1 qimage,2 Īimage,2

min−1 g/s image−1 - image−1 -

5 0.04 22 0.046 38 0.046
10 0.07 17 0.059 34 0.049
15 0.11 13 0.093 27 0.053
20 0.14 11 0.091 21 0.055
40 0.26 10 0.087 20 0.060
60 0.39 10 0.080 19 0.059
80 0.51 8 0.088 15 0.065

(a)

nrot ṁ = dm/dt qimage,3 Īimage,3 qimage,4 Īimage,4

min−1 g/s image−1 - image−1 -

5 0.04 - - - -
10 0.07 50 0.048 - -
15 0.11 38 0.054 51 0.056
20 0.14 32 0.055 41 0.055
40 0.26 29 0.062 39 0.058
60 0.39 29 0.063 38 0.062
80 0.51 22 0.065 28 0.059

(b)
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(a)

(b)

Figure 4.35. – Plots of the values of the spatial frequency and the
intensity of tab. 4.7. The sample was PE-SCB13 (tab. 2.3) at ϑ = 90 °C.
(a) The spatial frequency of the first peaks which could be indicated
in the FT-spectra of the images, and (b) normalized intensity values of
the peaks shown in fig. 4.33.
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Figure 4.36. – Mass flow ṁ = dm/dt of different polymers in the
extruder experiments. The symbols indicate the data from measure-
ments, the continuous lines indicate the results from a linear fit of each
data set and the dashed lines are indicating the linear extrapolation of
the two data sets with less data.

Figure 4.37. – The frequency of the melt flow instabilities calculated
out of the spatial frequency from the image analysis. Examples of the
spectra are show in fig. 4.34. The frequency of the melt flow instabil-
ities is given as a function of applied rotational speed; the index i in-
dexes the order of the harmonic. (The sample was PE-SCB13 (tab. 2.3)
at ϑ = 90 °C.)
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readings of the high sensitive piezoelectric transducers.
Examples of the FT-analysis at the die exit are shown in fig. 4.38. In each
of the spectra it is possible to find at least one characteristic peak from the
material. This has been validated by performing measurements without
sample (see fig. 4.39), where no characteristic peaks were found. Thus, the
material-dependent peaks could be found. The values of the characteris-
tic frequencies of the peaks are summarized in tab. 4.8 and are plotted in
fig. 4.40. In fig. 4.40 the results from the image analysis have been added.
This way, a comparison of both methods can be easily done. The first dif-
ference between both methods is that the analysis of the image produces
in this case spectra with very sharp peaks and the higher harmonics ap-
pear. However, the SNR values are small. The FT spectra from the time-
dependent pressure include typically only one peak and most of the time
this peak is broad. Nevertheless, the SNR values are significantly higher.
To include the broadness of the peaks in the comparison between the anal-
ysis of the images and the FT-analysis of the time-dependent pressure, the
frequency values at the begin of the broad peak and at its end were taken,
as seen in tab. 4.8. Thus, it appears in fig. 4.40 that the curve of the char-
acteristic frequency of the spectra of the pressure bifurcates. The upper
branch stays in close proximity to the results of the analysis of the image,
while the lower branch stays approximately constant. Actually, the peaks
of the spectra of the pressure are not only represented by both branches,
but by the whole area between them. Comparison measurements were
performed without sample, see fig. 4.39. These measurements verify the
interpretation of the material-dependent peaks.
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(a) (b)

(c) (d)

Figure 4.38. – Examples of FT-spectra of melt flow instabilities for
PE-SCB13 at ϑ = 90 °C. (a) nrot = 5 min−1, (b) nrot = 15 min−1,
(c) nrot = 40 min−1, and (d) nrot = 80 min−1. The grey curves are the
raw FT-spectra and the black curves are the smoothed FT-spectra. The
according extrudates are shown in fig. 4.33.
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(a)

(b)

Figure 4.39. – Examples of FT-spectra of the extruder running without
sample at ϑ = 90 °C. (a) nrot = 0 min−1 and (b) nrot = 5 min−1.
The grey curves are the raw FT-spectra and the black curves are the
smoothed FT-spectra.
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Table 4.8. – Summary of the characteristic frequencies of the first sig-
nificant peak in the FT spectra of the time-dependent pressure fluctu-
ations of PE-SCB13 in the extruder.

nrot ṁ = dm/dt νextr,1,min νextr,1,max

min−1 g/s Hz Hz

5 0.04 - 5.2
10 0.07 - 10.4
15 0.11 - 15.8
20 0.14 11 18
40 0.25 8.6 21.3
60 0.39 8.7 31.2
80 0.51 10 32

Figure 4.40. – The observed characteristic frequencies of the spectra of
the time-dependent pressure fluctuations νextr,i and characteristic fre-
quencies of the spectra of the FT-image analysis νimage as a function of
the applied rotational frequency. The sample was PE-SCB13 (tab. 2.3)
at ϑ = 90 °C.
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4.5.5 Noise Reduction for Automated Detection of
the Melt Flow Instabilities

The results of chap. 4.5.4 and chap. 4.5.1 can be summarized as follows:
The sharkskin die in combination with the extruder is capable to detect
the melt flow instabilities. A drawback in comparison to the sharkskin
die on the capillary rheometer is the more complex FT-spectrum which is
obtained. In the spectrum, the frequency contributions of the instabilities
can be seen as well as the system-dependent contributions. These appear
in the same order of magnitude as in the melt flow instabilities. This causes
problems with the automation of the detection of the melt flow instabili-
ties. Basically, the presence of many peaks which are not caused by the
melt flow instabilities make the use of a computer algorithm for the analy-
sis and reduction of the melt flow instabilities during the extrusion process
difficult.

To solve this problem, measurements without samples were performed as
already explained in chap. 4.5.1. The FT-spectra of this material-indepen-
dent measurements (see e.g. fig. 4.41) were then compared to measure-
ments with sample. Both types of spectra were normalized to the peak
at 50 Hz which is present in all spectra, has similar intensities and is ob-
viously not material-dependent. The normalized spectra from the mea-
surements without sample were afterwards subtracted from the original
spectrum. In this way, the contributions caused by the system-dependent
peaks should be completely eliminated.

The FT-spectrum of a measurement of PE-SCB13 in the capillary rheome-
ter with the sharkskin die (SSD) is shown in fig. 4.41. The corresponding
measurement of the empty channel is added in this plot. It is evident
that the subtraction of the empty channel spectrum from the measure-
ment with polymer reduces the system-dependent contributions in the fre-
quency spectrum about one decade. Nevertheless, it does not completely
eliminate these system-dependent peaks. Therefore, it can improve the
signal-to-noise ratio, but still does not enable the easy use of an algorithm
for the control of the melt flow instabilities.

A similar finding can be seen in fig. 4.42 in a comparison of the empty
channel experiments. All spectra were normalized to the intensity of the
50 Hz peak. Still, all the peaks other than 50 Hz have different intensities
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Figure 4.41. – The spectra of measurements with the empty extruder.
The spectra are composed only by noise and are normalized to the in-
tensity at 50 Hz for different numbers of screw rotations at ϑ = 90 °C.

for the different runs. Therefore, it can be stated that the system-dependent
contributions to the frequency spectrum vary with the rate of rotation.

4.6 Summary and Conclusions for the
Extruder

At the end of this chapter the requirement specifications stated in
chap. 4.1 could be fulfilled.
At first it was required that the functioning of the commercialized shark-
skin die of the capillary rheometer should be transferred to a lab size ex-
truder. This transfer was explained in chap. 4.4. The transfer of the tech-
nology led to two different sharkskin dies (SSD): the first one with a shal-
low slit geometry, which was not able to produce strong melt flow insta-
bilities. The second die had a higher slit geometry, which generated strong
melt flow instabilities. The strong melt flow instabilities were necessary in
order to obtain peaks which have an amplitude which is large enough to

149



4. Detection of Mechanical Instabilities in the Capillary Rheometer and the Extruder

Figure 4.42. – Influence of normalization of known noise effects on the
spectra of pressure fluctuations on the extruder. Each spectrum is nor-
malized to its intensity at 50 Hz for measurements; without sample
(grey curve) and for measurements with polymer (PE-SCB13) sam-
ple (black curve). Both measurements used the same parameters; a
number of rotation of the screw of 20 rot/min and a temperature of
ϑ = 90 °C.

be detected in the FT spectrum. This was essential for the validation of the
function of the new set-up.

With the sharkskin die-02 (2 mm × 10 mm slit geometry) it was possible
to satisfy the second requirement and the range of measurement could be
easily chosen due to the appearance of strong melt flow instabilities al-
ready at low shear rates. For this purpose the melt flow instabilities were
studied with optical methods, see chap. 4.4.6. That way, it was possible to
fulfil the third requirement by applying the tools of FT-analysis (chap. 4.5)
and ACF (chap. 4.4.4) to the measured time-dependent pressure fluctua-
tions. Thus, it was found that it was not possible to find characteristic
patterns of the melt flow instabilities in the ACF on the extruder. This was
caused by the large contribution of the extruder engine to the pressure
signal.
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The FT-analysis proved to be useful for finding the characteristic contri-
butions of the melt flow instabilities in the frequency domain spectra (see
chap. 4.5.1). As shown in chap. 4.5.1, the characteristic peaks can clearly
be differentiated from the contributions of the mechanical extruder sys-
tem. Thus, the fourth requirement is satisfied.
The final requirement states that the sharkskin die on the extruder
should be able to monitor the melt flow instabilities during the reduction
of the extrusion rate. This was studied in chap. 4.5.4 and in chap. 4.5.5.
The essence of these studies is, that it is possible to monitor the melt flow
instabilities in the extruder. However, for the automation there are still
some obstacles to overcome, namely:

• A method has to be found in order to automatically differentiate
between material-dependent contributions to the spectrum and the
mechanical system-dependent contributions.

• The transition from one type of melt flow instabilities to another
(see fig. 4.31a and fig. 4.31b) might cause unstable states of control.

At the end it is promising that an automated control of the extrusion pro-
cess can be conducted via the measurement of the pressure fluctuations
inside the die. However, this requires a more detailed study of the signal
analysis of the sharkskin die on the extruder.
Additionally, a comparison between the optical analysis and the pressure
analysis both done in the frequency domain was presented in
chap. 4.5.4. This showed that in the case of strong melt flow instabilities
both methods lead to similar results with slightly different additional in-
formation, as for instance the optical analysis typically contains narrow
peaks and higher harmonics whereas the pressure data results in broader
peaks. As a characteristic difference it was found that weak melt flow in-
stabilities are hardly detected with the used optical methods, whereas the
analysis of the pressure data still finds characteristic contributions to the
frequency spectrum, chap. 4.4.6.1. This underlines the value of the pres-
sure readings for the automated control of the extrusion process, because
at the point of transition between smooth and melt flow instabilities the
extrudate will most probably show a weak melt flow instability.
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Chapter 5

Improving the CaBER with a Measurement
of the Axial Force

The CaBER (Capillary Break-up Extensional Rheometer)222–224 is a rather
new* and rather simple rheological device. Its intentional use is to charac-
terize uniaxial elongational flows of low viscous (< 103 mPas) fluids. The
functionality of the CaBER will be explained in detail in chap. 5.1.1.
However, the principle can be summarized that a sample of a liquid is
brought between two plates. During the experiment, one plate stays sta-
tionary while the other moves upwards to its defined end position with a
defined velocity. By this upward movement, the liquid will be stretched
to form a cylindrical filament. After the stretching is finished the CaBER
measures the diameter at the middle of this filament as a function of time
and from this measurement the elongational viscosity is calculated.

5.1 Introduction and Task

The elongational viscosity is important in many applications, e.g. in the
packaging industry for the filling of daycare products or in coating appli-
cations. Obtaining the elongational viscosity is a difficult task, as Plog225

summarizes. Three fundamental types of state-of-art of measuring devices
exists for measuring the elongational viscosity for high viscous fluids. One
is the Münstedt extensional rheometer for polymer melts74 another is the

* patent G. H. McKinley et.al. 2004
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Meißner extensional rheometer226 and the third one is the SER (Sentmanat
Extensional Rheometer) device from Sentmanat.227 However, all three
methods are only applicable on high viscous liquids (η > 104 Pas).

Several set-ups have been suggested for low viscosity liquids like the pres-
sure drop method228 or the opposing-jet method,229 to name just two of
them.225 A large effort has been made to study the elongational flow of
fluids with a low viscosity.230 However, the experimental correlation be-
tween the results of the different methods revealed poor results for the
opposing-jet method, as Dontula et al.231 showed. Starting by 1990, Srid-
har et al.230, 232 used a filament stretching devices to obtain the elonga-
tional viscosity of a low viscous fluid in a well defined uniaxial flow. These
filament stretching rheometers are measuring the force and the shape of a
sample of a liquid while it is stretched.

This apparatus is unfortunately not commercialised. Even though a large
research effort has been undertaken.233–237 Nevertheless, the filament
stretching rheometer is not easily manageable. In 1997 Bazilevsky238 and
Entov239 found that the uniaxial deformation of a liquid filament, which
is governed by the surface tension, can be used to determine the elonga-
tional viscosity. This idea was later improved by the works of Kolte240 and
McKinley et al.234, 241 to be commercialised as the CaBER by the company
Thermo Fisher Scientific.

The great advantage of the CaBER is its easy method for determining the
elongational viscosity with just the knowledge of one material property
(the surface tension) and the measurement of the filament diameter.

Thus, the CaBER seems to be a promising method to obtain the elonga-
tional viscosity for low viscous fluids. Nevertheless, the simplicity con-
tains the major draw back of the CaBER experiment. Only one geometri-
cal value, the diameter d (0, t) (see fig. 5.1), is measured. For the correct
interpretation of the results of the CaBER experiment it is important that
the sample satisfies all the assumptions made in the theory. To further
improve the CaBER and to develop a better insight into the sample be-
haviour the group of Prof. Willenbacher applied a high-speed optical sys-
tem on the CaBER. This was done and published by Niedzwiedz242 and
Arnolds.243, 244 A high-speed camera recorded the very fast dynamics of
the formation and break of the filament formation. Afterwards, a complex
analysis of the curvature of the filament was applied. The mechanism of
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break up, for instance the droplet formation or the simple rupture, can be
studied with this set-up. This optical tool could justify most of the geomet-
rical assumptions made for the CaBER (see chap. 5.2), but the assumption
about the negligible axial force is still not validated.
A task of this thesis was to extend the capabilities of the CaBER by adapt-
ing an axial force measurement.245, 246 The limited size of the sample vol-
ume of about 30 mm3 required a very sensitive force transducer (F ≈
1 mN). The general constraints of this task were that the additional mea-
surement of the axial force:

• Is installed directly at a commercial CaBER without manipulations
involving permanent changes on the CaBER. Thus, it will be easily
accessible for other researchers.

• Allows the same measurements as before, but with an additional
axial force measurement.

• Can measure down to several mN.

With this new measurement option, it is possible to measure the time-
dependent axial force F (t) to validate the model equations of the CaBER
theory. This is shown in chap. 5.5. The objects of study are a viscoelas-
tic polystyrene (PS) solution and viscous silicone oils (PDMS). All of those
samples can be used to perform CaBER experiments. Additionally, the
balance equations of the theory of the CaBER244, 246 are critically analysed
and further developed.
The knowledge of the time-dependent axial force F (t) makes it possible to
observe the curing behaviour of various liquids, e.g. glues. While a glue
cures, it changes its material properties. First the glue will behave like a
viscous liquid. With increasing curing time it gets more rigid and it re-
sponds to the applied deformation with a larger force. Results of the mea-
surement of two different glues are presented in chap. 5.5.3. In this section
also a term similar to the tack247–251 value* is introduced to describe the
stickiness of the glues as a function of curing time.

5.1.1 The Principle of the CaBER Experiment

The aim of the CaBER experiment is the determination of the elongational
viscosity by optically observing the breakup of a filament of a fluid.

* The tack value describes the tackiness of a material (chap. F).

155



5. Improving the CaBER with a Measurement of the Axial Force

The experimental procedure of a measurement with the CaBER can be di-
vided into three main phases (fig. 5.1):

1. Sample loading phase.

2. Filament stretching phase.

3. CaBER experiment.

The experimental procedure starts with the sample loading phase.

Definition 7. Sample loading phase
In this phase the sample is placed between both plates with the same diameter
D0. The initial distance of both plates L0 defines the sample volume. The sample
should be placed between the plates without any material attached to the outer
sides of the plates.

After the loading of the sample the experimental procedure continues with
the filament stretching phase.

Definition 8. Filament stretching phase
The filament stretching phase is initiated at the time t0. The upper plate moves
upwards with a predefined velocity vstrike (t) until the upper plate reaches its final
position Lstrike at t = t1. The velocity can e.g. be chosen to be constant as

vstrike = Lstrike/tstrike (5.1)

or exponentially decaying as

vstrike = C1e−t/C2 (5.2)

The duration of this phase is defined by the operator by the strike time tstrike. This
phase is not part of the actual CaBER experiment and for this reason its defined,
that

t0 := −tstrike and (5.3)

t1 := 0. (5.4)

Assumption 1. Negligible axial stress
After the filament was stretched, it is assumed that the filament nearly rests in
axial direction. Thus, it is assumed that no axial forces are present and from this it
is further assumed that the stress component in x-direction, σ11 is negligible.
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According to this assumption the filament stretching phase and the follow-
ing CaBER experiment are clearly separated on the time axis. Starting at t0

the CaBER already measures the diameter of the filament with a laser mi-
crometer. However, the position of the laser micrometer is fixed at x = 0
(see fig. 5.1). The diameter measured in the filament stretching phase is
the diameter of the upper geometry and of parts of the upper half of the
developing filament.

Definition 9. CaBER experiment
The actual CaBER experiment begins at the time t = t1. From t1 on the upper
geometry is stationary and the liquid has formed during the filament stretching
phase a cylindrical filament between the plates. The diameter d (x, t) of this fila-
ment starts to shrink. The laser micrometer observes the change of the diameter of
the middle of the filament d (0, t). The experiment lasts until the filament breaks-
up at t = t2. The extensional rate and the elongational viscosity can be calculated
with the measurement of d (0, t).223, 252

For the calculation of the extensional rate ε̇,

ε̇ = − 2
d (0, t)

Dd (0, t)
Dt

, (5.5)

the measured time-dependent diameter d (0, t) is fitted with an exponen-
tial function (see Anna et al.223, 252) like

d (0, t) = C1 − C2t + C3e−C4t. (5.6)

With eq. 5.6 the extensional rate of eq. 5.5 is given by

ε̇ =
2
(
C2 + C3C4e−C4t)

C1 − C2t + C3e−C4t . (5.7)

Eq. 5.7 can now be used in a material law to determine the extensional
viscosity ηE. Several material laws (constitutive models49, 253) exist which
describe the behaviour of different materials. Examples for these constitu-
tive models are the Newtonian model, the power law model or the upper
convected Maxwell model.240
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Figure 5.1. – The three steps of the CaBER experiment. (1) The sam-
ple loading phase: The sample liquid is brought between both plates
(diameter D0) and the distance of both plates is L0. This defines the

initial sample volume V0 = π
(

D0
2

)2
L0. (2) The filament stretching

phase: Starting at t = t0 := −tstrike and lasting until t = t1 := 0 the
upper plate moves upward until it reaches the final height Lstrike. (3)
The CaBER experiment: This phase lasts until the filament breaks at
t = t2. Meanwhile, the diameter d (0, t) is measured at x = 0.

5.2 Theoretical Description of the CaBER
Experiment

The flow which develops during the CaBER experiment (meaning for t >
0 in accordance to fig. 5.1) can be quiet complex. Especially, if the fluid
sample is of higher viscosity or has special properties, i.e. time-dependence
of the viscosity. However, for a large amount of fluids the following named
assumptions are reasonable:

Assumption 2. No-gravity
The influence of gravity on the filament can be neglected. This is a sufficient
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condition for viscose and unfilled fluids in a vertical set-up.*

Assumption 3. Symmetry
The filament shows two types of symmetry. First, the filament is symmetric to
the r-ϕ-plane† located in x = 0‡. By this A (+x, t) = A (−x, t) and so the first
derivatives with respect to x have a local extremum at the point x = 0. This is
expressed by ∂(... )

∂x

∣∣∣
x=0

= 0. Second, the filament is rotational symmetric to the

x-axis. By this, the flow is independent of ϕ and ∂(... )
∂ϕ = 0.

Assumption 4. Slenderness
The filament is slender. Geometrically this demands that l � d.

Assumption 5. Cylindrical
The filament is strictly cylindrical. This leads to dA (x, t) /dx � 1. This allows
the flow to be described by an one dimensional model which just depends on r (t).

Assumption 6. No-inertia
The inertial forces are negligible. This means that the shrinkage of the filament is
slowly. This results in ẍi ≈ 0.

Assumption 7. Incompressibility
The fluid is incompressible, ρ (t) = const. and the density is homogeneously
distributed ρ (x) = const.

With these assumptions the uniaxial extensional flow of the CaBER can be
described with a set of equations obtained from the law of the conservation
of mass and from the force balances of the filament. The derivation of these
equations is shown in the next sections (chap. 5.2.1 and chap. 5.2.2).

5.2.1 Conservation of Mass and Volume

As all physical flows the uniaxial extensional flow of the CaBER experi-
ment has to obey the law of conservation of mass, which is detailed illus-
trated in chap. G. With the rules for the material derivative (chap. H) and

* Arnolds et al.244 rotated the CaBER about 90° into a horizontal position in order to
obtain a gravity induced bending of the filament. By applying bending theory they
were able to calculate the axial force.

† A scheme of the whole problem is shown in fig. 5.3.
‡ The coordinate system is directly located in the middle of the filament (see fig. 5.2).
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the transformations shown in chap. G the general law for the conservation
of mass can be transferred into an equation for the conservation of volume.
In the case of the CaBER experiment this equation is further transformed
into an equation for the time-dependent evolution of the cross-sectional
area A (x, t):

∂A (x, t)
∂t

+ u (x, t)
∂A (x, t)

∂x
+ A (x, t)

∂u (x, t)
∂x

= 0. (5.8)

In eq. 5.8 appears only the the cross-sectional area A (x, t) and the axial ve-
locity u (x, t). Thus, an expression for the elongational rate ε̇ is found based
on the conservation of mass and as commonly used in literature.244, 246, 252

Furthermore, the filament is assumed to be symmetric to the r-ϕ-plane at

Figure 5.2. – Sketch of the filament during the CaBER experiment
with all relevant physical parameters.

x = 0. This requires that the derivative of A (x, t) in x-direction vanishes
at the middle (x = 0) of the filament, so

∂A (0, t)
∂x

= 0. (5.9)

This represents the local extremum of the function A (x, t). Eq. 5.9 can be
used in eq. 5.8 for a further simplification

∂A (0, t)
∂t

+ A (0, t)
∂u (x, t)

∂x
= 0. (5.10)
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The eq. 5.10 can be used to determine the extensional rate ε̇ = ∂u/∂x of
the experiment by

ε̇ = − ∂A (0, t) /∂t
A (0, t)

. (5.11)

This equation is dependent on the radius r (t), like

ε̇ (t) = −2ṙ (t)
r (t)

. (5.12)

This equation contains simplifications as explained in detail in chap. I. The
eq. 5.12 is compared to eq. I.11, which has the form ε̇new (t) = −5 ṙ(t)

r(t) .*

Eq. I.11 is the result of the considerations made in this thesis. In the next
section (chap. 5.2.2) additionally to the work of McKinley et al.224 or
Klein246, a further version of the force balance is postulated. For this new
force balance the elongational rate obtained from eq. I.11 is used. While
for the older force balances the according elongational rate which is deter-
mined by eq. 5.12 is used.

5.2.2 The Force Balances of the Filament

In the beginning of this section (chap. 5.2) two types of symmetry have
been postulated for the CaBER experiment. From those the rotational sym-
metry to the x-axis reduces the dimensionality of the problem from a 3-
dimensional one to a 2-dimensional problem. The filament is by this just
studied in the x-r-plane.
Using the assumption of negligible inertial forces simplifies the problem
from a dynamic problem with two second order differential equations to
two simple force balances. These force balances are quasi static and con-
tain the time-dependence only through the time-dependent variables as
the axial force F (t) and the time-dependent cross-sectional area A (x, t).
The force balances are stated once in x-direction on a plane parallel to the
r-ϕ-plane, shown in fig. 5.3a, and once in r-direction on a x-r-plane (see
fig. 5.3b).
From fig. 5.3a the force balance in x-direction is written in form of

σ11 A (x, t)− 2
√

πA (x, t)Γ = F (t) . (5.13)

* The difference results in a factor of 5/2. However, this creates a significant change
of the calculated values of the elongational viscosity (as seen in fig. 5.11).
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(a) (b)

Figure 5.3. – Clearance cutting through the filament with the accord-
ing forces. (a) cut through a plane parallel to the r-ϕ-plane and (b) cut
through a x-r-plane with arbitrary ϕ.

Similar, a force balance in r-direction, shown in fig. 5.3b, can be obtained
as

σ22 A (x, t)−
√

πA (x, t)Γ = 0. (5.14)

Eq. 5.13 and eq. 5.14 are making use of the term for the surface tension* Γ
and the principal diagonal elements of the stress tensor σii.† By subtracting
eq. 5.14 from eq. 5.13 both equations can be merged to an expression for
the first normal stress difference N1 := σ11 − σ22, as

N1 A (x, t)−
√

πA (x, t)Γ = F (t) . (5.15)

5.2.3 Material Laws

In the previous sections a set of two equations is obtained, which describes
the flow in the CaBER experiment. By now, an expression for the exten-
sional rate of the experiment as a function of A (x, t) is given by eq. 5.12 or

* For further details on the surface tension see chap. J and chap. K.
† Details can be found in chap. 2.3.2 and chap. A.
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eq. I.11 and an expression for the first normal stress difference as a function
of A (x, t) and F (t), as given by eq. 5.15. This leads to a determined prob-
lem with two equations and two variables. Solely, a detailed description
of the material (the sample fluid) still has to enter these equations.
For this a constitutive equation/law* has to be postulated in order to de-
scribe different classes of materials. For a uniaxial extensional flow with
no memory the easiest and most used material law is that of a Newtonian
fluid:

N1 = ηE,N (ε̇) ε̇. (5.16)

Eq. 5.16 is a relation between the first normal stress difference and the
extensional rate via the extensional rate dependent extensional Newtonian
viscosity ηE,N (ε̇). With this relation the eq. 5.15 is written as

ηE,N (ε̇) =
F (t) + Γ

√
πA (0, t)

A (0, t) ε̇ (x, t)
. (5.17)

Other models for non-Newtonian materials can be e.g.

• the Bingham fluid256 or

• the power law (Ostwald-de Waele) fluid.257

For the Bingham fluid the material law is

ε̇ =

{
0 for σ < σyield,

1
ηE,B

(
σ− σyield

)
for σ > σyield

. (5.18)

The constitutive equation for the Bingham fluid describes the elongational
strain rate with the extensional viscosity for a Bingham fluid ηE,B and the
yield stress σyield. For a stress smaller than the yield stress the fluid shows
no motion.
The formulation for the power law fluid is given by

N1 = ηE,PL ε̇nPl . (5.19)

The constitutive equation for the power law fluid describes the first normal
stress difference with the extensional viscosity for a power law fluid† ηE,PL

* Constitutive laws are equations which describe for a certain class of materials the
relationship of several physical properties of a material. Details found in textbooks
as i.e. Truesdell254 or Ogden.255

† Note that ηE,PL has the units of Pa·snPl .
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and the flow index* nPl .

ηE,Pl (ε̇) =
1

ε̇ (x, t)
nPl

√
F (t) + Γ

√
πA (x, t)

A (x, t)
. (5.20)

5.3 Experimental Set-up of the CaBER

For measuring the axial force in a commercially available CaBER a special
geometry has to be designed, which can be installed into the CaBER. In
the next section (chap. 5.3.1) the commercial CaBER is introduced and ex-
plained. Subsequently, in section chap. 5.3.2 the newly designed set-up for
measuring the axial forces is explained in detail. This section will contain
a sketch of the data acquisition (DAQ) hardware and the DAQ-software.

5.3.1 Description of the CaBER Apparatus

The starting point of the work presented in this chapter (chap. 5) is a com-
mercially available HAAKE CaBER 1 from Thermo Scientific. The scheme
of the CaBER instrument is shown in fig. 5.4. The experimental core of the
CaBER consists of two parallel plates. The upper plate can move upwards
along the x-direction (see fig. 5.4 the white arrow) controlled by a linear
stepper motor. The time tstrike

† for the elevating motion of the upper ge-
ometry can be adjusted from 20 ms to several seconds for a final length of
stretch of Lend,max = 20 mm. Different stretch profiles are available, (e.g.,
linear and exponential, among others). The lower plate is positioned by a
micrometer screw that allows defining the symmetric end distance Lstrike

of the two plates at the end of the filament stretching phase.

In the experiments, the linear stretching profile was used with strike times
between 20 ms and 1000 ms. A linear stretching profile means a constant
velocity for the movement of the upper geometry for the whole stretching
process (shown in eq. 5.1 or eq. 5.2).

* For 0 < nPl < 1 the material behaviour is pseudo-plastic, for nPl = 1 the material
behaviour is Newtonian and for nPl > 1 the material behaviour is dilatant.

† Also called strike time.
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Figure 5.4. – Scheme of the commercial CaBER. The white arrow on
the top of the CaBER indicates the direction of movement of the up-
per plate (8). The naming of the single parts: (1) Stepper motor, (2)
LASER, (3) lower geometry, (4) micrometer screw, (5) optical sensor,
(6) CaBER control unit, (7) PC, and (8) upper geometry.

5.3.2 Newly Designed Measurement Device for the
Axial Forces in the CaBER

The commercial CaBER apparatus has been modified as illustrated in
fig. 5.5. The major change of this set-up is the exchange of the lower plate
by a new constructed shaft and plate (see fig. 5.7). The new shaft (fig. 5.7
part (2) and (3)) is hollow. Inside this shaft and at its top is the highly sensi-
tive piezoelectric force sensor (fig. 5.7 part (6)) fixed in fig. 5.7 part (4). The
cable of the force transducer exits the shaft at the bottom (see fig. 5.7 part
(2)). The whole shaft is connected to the micrometer screw of the CaBER
by (fig. 5.7 part (1)) the use of three stud screws (M3). The piezoelectric
force sensor (type 9215) and the charge meter (type 5015) were purchased
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Figure 5.5. – Scheme of the CaBER with added axial force measure-
ment. The naming of the single parts: (1) Stepper motor, (2) LASER,
(3) lower geometry with piezoelectric force transducer, (4) microme-
ter screw, (5) optical sensor, (6) CaBER control unit, (7) PC, (8) upper
geometry, and (9) charge amplifier.

from Kistler.
A PC controls the CaBER via a RS232 serial connection. The acquisition of
the time-dependent diameter and the time-dependent force is integrated
in the CaBER software.* The DAQ-board used in the PC is a PCI 6024-
E from National Instruments. The signals of the laser micrometer and the

* The DAQ with the CaBER software is right now state of the art. It is part of the
new commercially available supplement for the CaBER. However, at the beginning
of this project, as documented by Klein et. al.,246 the measurement of the time-
dependent force was conducted with a second computer, equipped with a data ac-
quisition (DAQ)-board (PCI-MIO-16XE-10 from National Instruments) and with a
home-written LabVIEW DAQ-software.138, 139 The only disadvantage of this set-up
was the lack of a temporal trigger between the start of the force measurement and
the start and measurement of the CaBER experiment.
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Figure 5.6. – The newly designed axial force measurement device for
the CaBER with a sample loaded. The plates have a diameter of 6 mm.
The lower plate geometry is directly screwed into the force transducer
and fixed with a counter nut.

piezoelectric force transducer are measured simultaneously by the CaBER.
The signal of the laser micrometer is directly send to the DAQ-board in the
computer. Whereas, the signal transmitted by the piezoelectric force trans-
ducer, which is fixed at the lower plate, is first amplified by the charge
meter (also called charge amplifier). Afterwards, the signal is transformed
into a voltage U ∈ [−10, 10] V. This time-dependent electric-potential is
transmitted to the computer and digitized via an DAQ-board. The maxi-
mum sampling rate of the PCI 6024-E ADC-board is 200 kHz with a 12-bit
resolution.

Both DAQ softwares, the initial home-written one and the proceeding
commercial one are using the oversampling principle, as used by Duss-
choten138 and Neidhöfer.139 Typically about 20 time-dependent raw data
points have been boxcar averaged in accordance to reduce the amount of
data points which have to be stored on the hard disc and in accordance to
increase the signal-to-noise ratio.
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(a)

(b)

Figure 5.7. – Technical details of the newly designed measurement
geometry for the axial force device for the CaBER with (1) adapter for
the micrometer screw positioning system, (2) lower shaft part with
slit opening for the cables, (3) upper shaft, (4) head of the shaft for
installing the force transducer, (5) exchangeable geometry (e.g. diam-
eter 6 mm), and (6) the piezoelectric force transducer. (a) technical
drawing and (b) real geometry.
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5.4 Calibration and Determination of the
Force Sensitivity of the CaBER

The calibration of the commercially available piezoelectric transducer is al-
ready done by the manufacturing company Kistler. The transducer comes
along with a calibration certificates. In order to verify the accuracy of those
given values and to determine the sensitivity limits an in house calibra-
tion of the transducer was realized.246 For the calibration the set-up was
switched on for two hours to ensure that the electronics were warmed up
to increase the electrical stability of the DAQ-devices (especially the charge
meter). A calibration set of weights (10, 20, 100, 200, 500 g) was used for the
calibration. For each weight an individual measurement was performed.
In the beginning the weight was placed on top of the force sensor. Then
the measurement was started. After several seconds of the measurement
the weight was quickly and manually removed. The measured change in
the electric potential is linearly correlated to the applied weight. A linear
regression revealed the linear dependency of the force on the weight and a
calibration factor close to the one written in the calibration certificate was
obtained. The lower limit of the sensitivity was determined by measur-
ing the unloaded signal of the sensor for a few seconds. The amplitude of
the noise in the data represents the physical limits of the sensitivity of the
measurement. A linear regression was done on the noisy data to account
for the drift. This drift of the sensor was subtracted and afterwards the
standard deviation was used to determine the limiting sensitivity of the
set-up (see fig. 5.8) to be 0.05 mN with a time resolution of 0.2 ms. Forces
can be measured in the range from 5× 10−5 N to 2× 102 N. After over-
sampling the dynamic range exceeds six decades. The part containing the
sensor is not moving, therefore the forces due to the acceleration are omit-
ted. When the experiment is performed the weight from the samples is
decreased and therefore the measured force is negative. The forces mea-
sured have negative values due to the fact that the sensor is at the lower
geometry.
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Figure 5.8. – Determination of the standard deviation of the calibra-
tion measurements for the piezoelectric force transducer installed in
the CaBER. The symbols (circles) are indicating the measurement with
the force transducer without load and by this they represent the noise.
The black line indicates the linear regression of the data and the error
bars are the standard deviation of the noisy data.

5.5 Measuring Axial Forces with the
CaBER

In this chapter the results of different measurements and series of mea-
surements performed on the CaBER are presented and discussed. The
experiments were conducted under similar conditions. Typically, those
included,

• a constant plate diameter of D0 = 6 mm,

• a defined and constant final length of Lstrike = 10 mm,

• an initial gap size of L0 = 1 mm and

• a similar environmental temperature of ϑ0 = 20°C.
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Only the strike time tstrike was varied. For the silicon oil and the PS-DOP
sample (tab. 2.5) this was tstrike = [20, 40, 60, 80, 100, 300, 500] ms. For the
wood glue samples was tstrike = [100, 500, 1000] ms. In order to study the
curing behaviour of the glues, each glue sample was additionally mea-
sured at least at three different curing times. This means the sample was
placed on the plate in the initial gap and left there until the curing time has
passed. Then the experiment was started.
Each experiment was done at least three times for each strike time and
curing time.

5.5.1 Comparing the Diameter-based Analysis with
the New Axial Force-based Analysis

The CaBER instrument is meant to determine the elongational viscosity
ηE of a liquid by means of the measurement of the time-dependent di-
ameter d (0, t) of a thin filament. In this section, the results of the CaBER
experiment on a PS-DOP sample and a silicon oil sample are shown and
discussed. The focus lies on the comparison between the results obtained
by solely measuring the time-dependent diameter d (0, t) and the results
from simultaneously measuring the time-dependent axial force F (t) and
the time-dependent diameter.
Fig. 5.9 shows two examples of the time-dependent diameter as measured
with the CaBER for the PS-DOP sample (see tab. 2.5). The experiments
were conducted under similar conditions, but with different strike times.
Both sets of data are influenced by physical noise* and digital noise†.
Whereas, the diameter of the filament is still large‡ the data is mainly
effected by physical noise. When reaching smaller diameters, the signal
is obviously affected by the limited resolution of the optical sensor of the
CaBER. This results in a visible quantization of the data and by this leading
to digital noise (see the visible steps in the plots of fig. 5.9). The presence
of noise in the data causes problems in calculating the first derivative of
the time-dependent diameter. However, this is needed for the determina-

* The term physical noise means in this context noise which is caused by other rea-
sons than the digitalization.

† The term digital noise refers to noise caused by insufficient quantization of the data
during the digitalization.

‡ This means in this case d (0, t) > 10−4 m.
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(a)

(b)

Figure 5.9. – The time-dependent diameter of the CaBER experiment
for the PS-DOP sample (tab. 2.5) at different strike times. The ex-
periments were performed at room temperature ϑ0 = 20 °C, an ini-
tial gap of 1 mm, a final gap size of 10 mm and a strike time of (a)
tstrike = 0.02 s and (b) tstrike = 0.5 s. The black symbols indicate the
measurements and the grey symbols indicate the results of the diam-
eter fit function.
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tion of the elongation rate ε̇ (t) in eq. 5.12. Mathematically, the presence
of a significant noise level on a signal causes the derivative of the signal
to include large values which will largely fluctuate. To avoid these fluctu-
ations the data has either to be adequately smoothed or described by an
continuous function.
The presented results of the time-dependent diameter were empirically
described by an analytical function as given by Anna and McKinley.223

The data was fitted with an exponential function of the type:

d f it (t) = C1 − C2 · t + C3e−t·C4 . (5.21)

The fit function can easily be numerically or analytically* differentiated
and thus be used for the calculation of the elongational rate, as i.e. shown
in fig. 5.10b. With the time-dependent diameter, the elongational rate and
the constant value for the surface tension of the liquid, the elongational
viscosity derived from eq. 5.14 could be determined. The elongational
viscosity is in a similar way derived by the software of the CaBER itself,
because the software does not include the axial force. The elongational
viscosity ηE,2

† was derived under the assumption that σ11 = 0. The vali-
dation of this assumption is presented at the end of this section.
The measured time-dependent diameter as well as the signal of the mea-
sured axial force includes noise. Thus, it is fitted with an exponential decay
function as:

Ff it (t) = C1 + C2e−(t−C3)/C4 . (5.23)

The fit function obtained for the axial force is of acceptable coincidence
with the data and can thus be used for the determination of the elonga-
tional viscosity according to eq. 5.13. Examples of the calculated functions
of the elongational viscosity ηE,1 and ηE,2 are shown for different strike
times tstrike in fig. 5.11. All plots of fig. 5.11 show two similar features. The
first feature is that ηE,2 is nearly constant in the range of 0 ≤ t ≤ 1 s and

* Time-derivative of d f it (t):

ḋ f it (0, t) = −C2 − C3 · C4e−t·C4 . (5.22)

† The number in the index indicates not a tensorial origin but that this viscosity
was obtained by using the second equation of force balance (in r-direction). The
x-direction is defined as indexed by the number 1.
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(a)

(b)

Figure 5.10. – The time-dependent force and the calculated elongation
rate ε̇ = dε/dt of the CaBER experiment for the PS-DOP sample. The
experiments were performed at room temperature ϑ0 = 20 °C, an
initial gap of 1 mm, a final gap size of 10 mm and strike time of tstrike =

0.02 s. (a) the time-dependent force measured with the newly installed
high sensitive piezoelectric pressure transducer. The black symbols
indicate the measurement and the grey line indicates the results of
the force fit function. (b) the elongation rate calculated from the fitted
diameter is shown in fig. 5.9a.

174



5.5 Measuring Axial Forces with the CaBER

is always smaller than ηE,1. The second obvious observation is, that for
strike times tstrike < 0.5 s ηE,1 is not as constant as ηE,2. It starts at small
values and strongly increases (this region will be further called increasing
region) until it enters a region were it reaches a slow increase (this region
will be further called final region). The behaviour of ηE,1 for both regions
can be explained as it follows.

Increasing region: After the sample has been stretched in the filament
stretching phase it is not yet at the stable initial conditions. Further-
more, the shrinking of the filament which is driven by the capillary
forces is superposed by a post stretching flow.

Final region: The elongational flow entered stable flow conditions and
by this reaches approximately a constant value. The superimposed
slow increase is caused by the linear drift of the piezoelectric trans-
ducers.

These explanations are also supported by the observations made in
fig. 5.11d. For experiments with at least this strike time the increasing
region is missing. This is caused by the much longer strike time, which al-
lows the flowing sample to reach the stable initial conditions for the CaBER
experiment already at t = 0 s.
The mean value η̄E,1 and the standard deviation σstd,E,1 has been calcu-
lated for the final region ηE,1. The same was done for ηE,2 and thus η̄E,2

and σstd,E,2 were gained. In order to obtain statistic values each CaBER
experiment was performed for each strike time at least three times. The
results for the η̄E,i and σstd,E,i (for i = [1, 2] and i ∈ N) were averaged to
obtain an average mean elongational viscosity σ̄std,E,i and an average stan-
dard deviation of the elongational viscosity σ̄std,E,i. The averaged proper-
ties are summarized in tab. 5.1 and graphically shown in fig. 5.12. When
the results of ηE,i,mean are compared with the expected values obtained via
the by Trouton258 found relationship (between shear viscosity ηS and elon-
gational viscosity)

ηE = 3ηS, (5.24)

it is obvious that ηE,2,mean is always at least by a factor of 2 smaller than
the expected value of ηE,theor. = 255 Pas.* While, for very small strike

* This value can be found in the work of Hilliou66 or Klein.246
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(a) (b)

(c) (d)

Figure 5.11. – The time-dependent elongational viscosity ηE,1 and ηE,2

of the CaBER experiment for the PS-DOP sample at different strike
times. The experiments were performed at room temperature ϑ0 =

20 °C, an initial gap of 1 mm, a final gap size of 10 mm and strike
time of (a) tstrike = 0.02 s, (b) tstrike = 0.06 s, (c) tstrike = 0.1 s, and
(d) tstrike = 0.5 s. The black symbols indicate the time-dependent
elongational viscosity ηE,1 which is calculated under respect of the
axial force term (see eq. 5.13) and the grey symbols indicate the results
of the time-dependent elongational viscosity ηE,2 which is calculated
only using the capillary force term (see eq. 5.14).
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times ηE,1,mean is directly in the range of the expected value. However, for
increasing values of tstrike the elongational viscosity ηE,i,mean overestimates
the elongational viscosity ηE,theor. by a factor of nearly 1.9.

Table 5.1. – Comparisson of the average mean values and the stan-
dard deviation of the elongational viscosities (shown in fig. 5.11) of
the CaBER experiments for the PS-DOP sample. The statistics (stan-
dard deviation of the elongational viscosity σ̄std,E,i) take at least three
original mean values of the elongational viscosities into account.

tstrike ηE,1,mean σ̄std,E,2 ηE,2,mean σ̄std,E,2

ms Pas Pas Pas Pas

20 265.2 27.6 105.4 ∼ 10−7

40 350.7 53.1 103.3 ∼ 10−7

60 326.4 43.7 105.6 ∼ 10−7

100 301.5 43.5 106.9 ∼ 10−7

500 464.6 95.6 140.4 ∼ 10−7

As a final point of this study of the PS-DOP sample with the help of the ax-
ial force measurement, the first normal stress is directly calculated from the
CaBER experiment and approximated for the filament stretching phase.
For the CaBER experiment the calculation of the first normal stress σ11 (t)
is simple because both the cross-section of the filament and the axial force
are known. An example of σ11 calculated is given in fig. 5.13 for t ≥ 0 s.
In the filament stretching phase the smallest cross-section of the filament*

is unknown. In order to obtain an approximated value for the stress in
the material the diameter in the middle of the filament is assumed to stay
approximately constant during the filament stretching phase and by this
can be approximated by the first diameter measured in the CaBER exper-
iment d (0, 0). The results of this are added to fig. 5.13 at t < 0 s. As
expected the stress is during the stretching of the filament much larger
than in the CaBER experiment, but during the CaBER experiment the first
normal stress is still not negligible.

* It is assumed due to symmetry reasons that the smallest diameter is in the middle
of the filament.
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Figure 5.12. – Comparisson of the average mean value of the elon-
gational viscosities of the CaBER experiment for the PS-DOP sam-
ple ploted against the strike times tstrike. The experiments were per-
formed at room temperature ϑ0 = 20 °C, an initial gap of 1 mm, a final
gap size of 10 mm.
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(a)

(b)

Figure 5.13. – The time-dependent stress of the CaBER experiment is
plotted for the PS-DOP sample (tab. 2.5) at two different strike times.
The experiments were performed at room temperature ϑ0 = 20 °C, an
initial gap of 1 mm, and a final gap size of 10 mm and a strike time of
(a) tstrike = 0.02 s and (b) tstrike = 0.5 s. The values at negative times
t < 0 are calculated with the measured axial force and the assumption
that the smallest diameter of the filament during the filament stretch-
ing phase can be approximated via the measured diameter d (0, 0) for
t = 0 s. The values for t ≥ 0 s are calculated by using both the mea-
sured force and the measured diameter of the filament.

179



5. Improving the CaBER with a Measurement of the Axial Force

5.5.2 Results of the PDMS

Chap. 5.5.1 has shown that the elongational viscosity of a polymer solu-
tion can be determined with the new axial force measurement by using
the improved theory. However, the application of this set-up and theory
on arbitrary samples seems not possible. As an example, the calculation
of the elongational viscosity of the PDMS samples (silicon oils, tab. 2.5)
was not possible. The measurement of the axial force is shown in fig. 5.14a
and the according measurement of the diameter is shown in fig. 5.14b.
The maximum absolute force is at least ten times larger than those values
obtained for the polymer solution (i.e. PS-DOP). Nevertheless, the force
decreases very fast. It reaches zero nearly in the strike time, so before the
CaBER experiment starts. Caused by the much stronger initial forces the
digital resolution of the data acquisition (DAQ) system is reduced (an ex-
ample is given below). Therefore, it is not possible to calculate trustworthy
values of the elongational viscosity from the axial force measurement for
this sample. This is caused by

(a) (b)

Figure 5.14. – (a) the time-dependent force and (b) the time-
dependent diameter of the CaBER experiment for the PDMS sample
at a strike time of tstrike = 0.1 s. The experiments were performed at
room temperature ϑ0 = 20 °C, an initial gap of 1 mm, a final gap size
of 10 mm. (b) the grey symbols indicate the measurements and the
black line indicates the results of the diameter fit function.

1. the low quantization of the signal which is caused by the strong
force the PDMS builds up directly when drawn apart and
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2. the low quantization of the ADC used with the CaBER (12bit).

These reasons affect the measurement in the following way: The signal
transmitted from the piezoelectric transducer to the charge amplifier has
to be adjusted to a certain signal range in order to be correctly transformed
into a voltage which is usable for the ADC board. Thus, the initial signal is
always mapped into the same range of output (e.g. ±10 V). This amplified
output is then digitized by the ADC board. For this operation the prede-
fined range of output is mapped onto a given set of possible values.* The
following examples illustrates this.

Example 18. DAQ with charge amplifier and ADC board
Two time-dependent signals sA (t) and sB (t) are measured. The signal sA (t) ∈
M with M = {x |x ∈ R and 0 ≤ x ≤ 10}. sB (t) reaches values twice as large
as those of the signal sA (t). Thus, max sB (t) = 2 ·max sA (t). Therefore, signal
sB (t) ∈ N with N = {x |x ∈ R and 0 ≤ x ≤ 20}. These signals are amplified
with a charge meter. This instrument has to be set for a pre-set range L of the
expected input values, e.g. L = {x |x ∈ R and 0 ≤ x ≤ 50}. Subsequently,
the input values are mapped into a standard range of signal V which can be inter-
preted by the ADC board, e.g. V = [−10;+10] V or V = [−5;+5] V. Therefore,
V can be digitized by the ADC-board. This process maps the analogue signal V

into a discrete set of n points. The size of n is given by the ADC board and is
generally constant.
If n = 100 the resolution of this DAQ system would be ∆s = max L/n, i.e.
∆s = 0.5. This is independent of the range of sA (t) and sB (t). If it were possible
to dynamically adjust the range of L to the range of the signal M or N, the
resolution of the system would be increased, e.g. ∆sA = 0.1 for sA (t) and ∆sB =

0.2 for sB (t).

5.5.2.1 Conclusions for Application of the Measurement of the
Axial Force in the CaBER Experiment

Concluding the observations for the investigated PS-DOP sample, it can
be stated that at least for small strike times the axial force and by this the
first normal stress σ11 (t) is not negligible in the CaBER flow. By this thesis
the usually used force balance equations for the CaBER experiment are ex-
tended by an axial force term and include an elongation in the axial direc-

* Defined as the resolution of the ADC board.
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tion. The calculated elongational viscosity is much closer to the value pre-
dicted by the theory. In this work, the applied force measurement reached
its limits in terms of sensitivity and dynamical range. Additionally to the
PS-DOP sample, several silicon oil samples (tab. 2.5) were studied. The
PDMS samples are Newtonian fluids and show a formation of a stable fil-
ament. For those samples the sensitivity of the force measurement was
not high enough to apply the stated equations for the elongational viscos-
ity. For further investigations to determine the elongational viscosity with
the CaBER, it is recommended to check whether there are more sensitive
force transducers available.

5.5.3 The Curing Behaviour of Commercial Glue
Studied in the CaBER with the Normal Force

Measurement

With the newly added measurement of the axial forces at the CaBER, it
is possible to determine the adhesive energy of glue or similar materials.
This is close related to the term tack*, see e.g. Zosel.247–251 For measuring
the tack of a material a commercial apparatus exists the TA.XTplus from
the company stable micro systems. This instrument has the possibility
to measure tack with different force transducers. The sensitivity of the
force detection is about 10−3 N. Whereas, the largest measurable forces
are about 500 N (with the largest force transducer). The force measurement
which has been presented in this work has a sensitivity of about 5 · 10−5 N,
a time resolution of 10−3 s and a maximum force of 200 N.

5.5.3.1 The Adhesive Energy, Separation Energy and Tack

Adhesive materials are well spread in our daily life starting from simple
glues and glue-sticks over to Post-it’s, stickers or Scotch tape. All these
materials show a different adhesive behaviour in accordance to their use.
Some need a strong adhesion like stickers, which are meant to stay for
longer time at one place. Others have weaker adhesion like Post-it’s, which

* Zosel (1985):247 ”The adhesive failure energy of adhesive joints formed with low
contact pressure during a short contact time is called ”tack”.”
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are meant to be easily attached to a surface but also easily removed from
the surface.
To classify the stickiness of those materials the adhesive failure energy or
the strength of the adhesive joint is used. For testing the adhesive failure
energy, an adhesive material is brought into contact with a surface. After
applying a certain force for a certain time the adhesive material is sepa-
rated from the surface. For this process, a certain energy is need, which
defines the adhesive failure energy, the strength of the adhesive joint or
the work of detachment. The physical definition of the work of detach-
ment per unit area Wadh is formulated by Zosel247 as:

Definition 10. Work of detachment
Wadh is the integral over the detachment time Tdeta of the product of the force F (t)
and the separation rate v (t) = dy

dt .

Wadh :=
1
A

∫
Tdeta

F (t) · v (t) dt. (5.25)

Wadh is normalized to the surface area A and depends on the contact time tcontact*.
The separation rate v (t), can be a function of the separation time t, depending on
the experimental conditions (similar to eq. 5.1 and eq. 5.2).

If the experiments are performed as follows the adhesive failure energy
Wadh is related to the tack index† of adhesive materials.
For measuring the tack of a material a sample of the adhesive material is
brought onto a small plate geometry (i.e. d = 6 mm). Then this plate is
pressed with a constant contact force Fcontact against a similar plate with-
out sample material for a certain contact time tcontact. Afterwards both
plates are separated with the rate‡ v and the time-dependent force F (t) is
measured. With eq. 5.25 the adhesive failure energy Wadh is determined.
This experiment can similarly be conducted with the within this thesis
modified* CaBER; except that it is not possible to apply a defined con-

* The contact time is not included in eq. 5.25, but is an important parameter of the
experiments.

† As defined in the standard: ASTM D(1978)-61T.
‡ In the case of the CaBER set-up the separation rate is given by

v =
Lstrike
tstrike

. (5.26)

* With integrated measurements of the axial force as described in chap. 5.3.2.
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tact force on the lower plate before the separation.† For this reason not the
tack values will be studied in this work but the newly introduced quantity
called the separation energy.

Definition 11. Separation energy
Similar to the adhesive failure energy Wadh of an adhesive material the separation
energy Wsep (t) of a sticky liquid is defined as the time-dependent integral of the
time-dependent force F (t) and the separation rate v per unit area A, so

Wsep (t) :=
1
A

t∫
t0

F
(
t̂
)
· v
(
t̂
)

dt̂. (5.27)

Wsep (t) does not dependent on the contact force, because the samples are assumed
to be liquid and thus can not be set under a initial force. Additionally, Wsep (t) is
influenced by additional forces due to fluid flow during the filament stretching of
the liquid.

The separation energy depends on the same parameters and variables as
the adhesive failure energy except for the dependence on the contact force.

5.5.3.2 Separation Energy of Different Glues

With the measurement of the axial force it is now possible to determine the
separation energy as a new physical property of the sample system.
Two different wood glues were studied in the experiments of this thesis.
One called Ponal-Classic glue from Henkel and the Ponal-Express glue
from Henkel. The intention of the experiments is to study the separation
energy Wsep of the samples as a function of the curing time tcure. For this
the glue sample is brought between the CaBER geometries and kept there
for the times listed in tab. 5.2. Then the CaBER experiment was executed
with the measurement of the time-dependent diameter and the measure-
ment of the time-dependent axial force. With this the separation energy
Wsep (tcure) as a function of curing time could be identified. The results
of the experiments of the Ponal-Classic samples, conducted with the pa-
rameters given in tab. 5.2, show in general reproducibility in both time-
dependent diameter and the time-dependent axial force, see fig. 5.15.

† This is a solvable software problem.
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Table 5.2. – Experimental conditions for the determination of
Wsep (tcure) for the Ponal-Classic and the Ponal-Express.

Sample tcure Lstrike tstrike

Ponal-Classic 0 min, 2 min, 10 mm 100 s,
5 min 1000 s

Ponal-Express 0 min, 1 min, 10 mm 100 s,
2 min, (4 min) 1000 s

Figure 5.15. – Reproducibility of the measurement of the time-
dependent force† and the time-dependent diameter on the CaBER
for the Ponal-Classic at room temperature ϑ = 20 °C. The strike
time was set to be tstrike = 1 s and the final gap size was set to be
Lstrike = 10 mm. The measurements were started directly after the
sample was filled (tcure = 0 min), so no curing of the Ponal-Classic
took place. The closed symbols are representing the time-dependent
diameter, while the open symbols are indicating the time-dependent
force. The fit parameters are C3 = 43.5 and C4 = −1.19; r2

COD = 0.83.
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It is obvious in fig. 5.15 that the filament of the Ponal-Classic breaks be-
fore the actual CaBER experiment starts. Due to this the normal analysis
of the CaBER experiment is not accessible for this sample. Furthermore,
fig. 5.15 shows that a significant axial force is already measured during
the filament stretching phase and the largest values are reached in this
phase. This observation justifies the calculation of the separation energy
from the axial force data. For the data of fig. 5.15 the time-dependent sep-
aration energy is shown in fig. 5.16. In this figure the absolute value of
the time-dependent force is plotted. The separation energy shows good
reproducibility in their maximum value (here about 380 Jm−2). The whole
integral shape of the time-dependent separation energy shows no good re-
producibility for times past the maximum. This is caused by the stability
properties of the piezoelectric transducers. As long as a strong signal* is
measured and this for short times the signal of the piezoelectric transducer
can be safely assumed to be free of system own error (i.e. drift of the trans-
ducer signal or loss of charges). As the measurement times gets larger
and/or the signal gets into the range of the noise, the signal is strongly
affected by errors due to the physical properties of the transducers.

Fig. 5.15 and fig. 5.16 showed that the separation energy and the axial force
itself can be used to describe the change of the mechanical properties dur-
ing the stretching phase of the liquid Ponal-Classic. The next step is to ap-
ply this method to the cured samples, with the curing parameters stated
in tab. 5.2. The results of the measurements for a fast filament stretch are
given in fig. 5.17a and the results of the slow filament stretch of the Ponal-
Classic are plotted in fig. 5.17b. Both figures yield to the observation that
the separation energy increases with curing time. It can be estimated that
with curing times of about 4 minutes the separation energy already in-
creases by three decades.

Similar to the Ponal-Classic sample also the Ponal-Express was first

† Additionally, the absolute force is fitted with a sigmoid function of the type

F (t) =
C1 − C2(

1 + eC3(t−C4)
) . (5.28)

C1 and C2 are the asymptotes of F (t) which can be neglected (the lower does not
exist and the upper should be 0). C3 indicates a growth rate and C4 represents the
maximum growth.

* The signal has to be much large than the noise level.
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Figure 5.16. – Reproducibility and comparison of the absolute time-
dependent force and the time-dependent separation energy of the
measurements shown in fig. 5.15. (Ponal-Classic sample)

checked for its reproducibility properties in the experiment. Fig. 5.18
shows the results of the time-dependent force and the time-dependent di-
ameter for different runs of the not cured Ponal-Express under the same
experimental parameters. The results are reproducible, but especially the
time-dependent diameter shows slightly larger deviations for each exper-
imental run. This might be caused by the much faster curing behaviour of
the Ponal-Express which leads to a stronger influence of small changes in
the sample loading time. The time-dependent axial force has a mean value
of F̄ = 0.044 N and a standard deviation of σstd = 0.018 N for the three
curves in fig. 5.18. In comparison to the Ponal-Classic, the Ponal-Express
shows a longer stability of the filament which breaks-up during the CaBER
experimental phase. Whereas, the filament of the Ponal-Classic breaks-up
during the filament stretching phase. This means that the CaBER experi-
ment could be conducted with the Ponal-Express sample.*

The separation energy calculated from the data shown in fig. 5.18 shows

* The results of the CaBER experiment of the Ponal-Express are not shown, because
there are no corresponding results for the Ponal-Classic.
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(a)

(b)

Figure 5.17. – Influence of the curing time (0 min, 2 min and 4 min or
5 min) on the values of the separation energy and the maximum force
for the Ponal-Classic, at room temperature ϑ = 20 °C and a final gap
size of 10 mm. The strike time was set to be (a) 0.1 s and (b) 1 s.
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Figure 5.18. – Reproducibility of the measurements of the time-
dependent force and the time-dependent diameter on the CaBER for
the Ponal-Express at room temperature ϑ = 20 °C. The strike time
was set to be tstrike = 1 s and the final gap size was set to be
Lstrike = 10 mm. The measurements were started directly after the
sample was filled (tcure = 0 min), so no curing of the Ponal-Express
took place. The closed symbols are representing the time-dependent
diameter, while the open symbols are indicating the time-dependent
force. The fit parameters (see eq. 5.28) are C3 = 15.4 and C4 = −1.46;
r2

COD = 0.91.
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a good reproducibility for each run (see fig. 5.19). Also the integral shape
stays much more similar between the different runs than the Ponal-Classic
sample. This might be caused by a stabilizing effect of the faster curing
kinetic of the Ponal-Express. During the curing of the Ponal-Express the
liquid strongly increases its mechanical strength. The maximum separa-
tion energy lies around 740 Jm−2 and is a factor of two larger than the
Ponal-Classic.

Figure 5.19. – Reproducibility and comparison of the absolute time-
dependent force and the time-dependent separation energy of the
measurements shown in fig. 5.18. (Ponal-Express sample)

Similar to the Ponal-Classic, the Ponal-Express shows an increase of the
maximum separation energy for increasing curing times. The range of
the separation energy is two decades and therefore smaller than the value
of the Ponal-Classic. This value is obtained in only the half of the time
(about 2 min). In contrast to the Ponal-Classic sample it was not always
possible to measure the Ponal-Express for longer curing times than two
minutes. The Ponal-Express showed for fast separation rates rupture. This
is caused by the very fast curing of the Ponal-Express. The fast curing
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results faster in a larger adhesive forces. Only for slow separation rates,
i.e. tstrike = 1000 ms, it was feasible to measure the separation energy at a
curing time of 4 minutes (fig. 5.20b) without rupture of the sample.
A major aim of this part of this thesis is to compare the curing behaviour of
Ponal-Classic and Ponal-Express. The maximum separation energy
Wsep,max and the maximum absolute force Fmax are taken from the pre-
vious plot and are graphically summarized in fig. 5.21a. According to the
original CaBER analysis only the time to break up of the filament is ac-
cessible for both types of sample and plotted in fig. 5.21b. The numerical
values in tab. 5.3 and tab. 5.4 are taken from the plots in fig. 5.21. Tab. 5.3
shows the data for the fast filament stretch (tstrike = 100 ms) and tab. 5.4
shows the data for the slow filament stretch (tstrike = 1000 ms).
The comparison of the maximum separation energy indicates that the
Ponal-Express has larger values of the separation energy. This is most sig-
nificant for small curing times (up to two minutes) while at larger curing
times the values will be much closer to the Ponal-Classic. A similar be-
haviour is observed for the maximum absolute force.
For the time to break* up (see fig. 5.21b) it can be observed that the fila-
ments break faster for faster stretching. The faster curing kinetics of the
Ponal-Express has the same effect as the longer curing time of the Ponal-
Classic. Independent of the stretch rate, the Ponal-Express has a longer
lasting filament for the not cured sample. Whereas, for the cured sam-
ples only the Ponal-Express at small stretch rates stays larger than the
corresponding Ponal-Classic sample. The cured and fast stretched Ponal-
Express reveals the smallest times to break up.

5.5.3.3 Conclusions for Measurement of the Axial Forces in the
CaBER for Commercial Glues

Concluding this chapter, the axial force measurement in the CaBER device
was used to introduce and to quantify the separation energy. The com-
parison of a classical wood glue (Ponal-Classic) and an express wood glue
(Ponal-Express) showed how this new observable (axial force) can be used.
The analysis of the separation energy showed that the Ponal-Express cures
much faster than the Ponal-Classic and the Ponal-Express reaches during

* tbreak is measured from the beginning of the filament stretching phase on and has
by this definition only positive values.
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(a)

(b)

Figure 5.20. – Influence of the curing time on the values of the
separation energy and the maximum force for the Ponal-Express, at
room temperature ϑ = 20 °C and a final gap size of 10 mm. The
strike time was set to be (a) 0.1 s (tcure = {0; 1; 2} min) and (b) 1 s
(tcure = {0; 1; 2; 4}min).
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(a)

(b)

Figure 5.21. – Comparison of the maximum separation energy, the
maximum force and the time to break as a function of the curing time
of the Ponal-Classic and the Ponal-Express. Experiments at room tem-
perature ϑ = 20 °C and a final gap size of 10 mm. The strike time was
set to be 0.1 s or 1 s. (a) comparison of the maximum separation en-
ergy and the maximum force as a function of the curing time and (b)
comparison of the time to break as a function of the curing time.
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Table 5.3. – Comparison of the values for the separation energy
Wsep (tcure), the maximum force and the time to break for the Ponal-
Classic (PCL) and the Ponal-Express (PEX) sample for tstrike = 100 ms.

tcure Wsep Wsep Fmax Fmax tbreak tbreak

min Jm−2 Jm−2 N N s s
PCL PEX PCL PEX PCL PEX

0 1205 2114 0.013 0.022 0.48 0.91
1 – 10516 – 0.24 – 0.25
2 1252 146750 0.015 0.33 0.45 0.107
5 67536 – 0.55 – 0.17 –

Table 5.4. – Comparison of the values for the separation energy
Wsep (tcure), the maximum force and the time to break for the Ponal-
Classic (PCL) and the Ponal-Express (PEX) sample for tstrike =

1000 ms.

tcure Wsep Wsep Fmax Fmax tbreak tbreak

min Jm−2 Jm−2 N N s s
PCL PEX PCL PEX PCL PEX

0 409 547 0.03 0.03 0.88 1.46
1 – 1500 – 0.18 – 0.81
2 6043 20042 0.455 1 1.04 1.21
4 – 62110 – 2.5 – 1.01
5 24220 – 1.08 – 0.89 –
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the curing process also much higher (up to two decades) values of the sep-
aration energy. The Ponal-Express cured faster and stronger (during the
experimental time).
However, the axial force measurement in the CaBER represents a new tool
to quantitatively determine the complete time dependence of the separa-
tion process, e.g. to characterize the behaviour of adhesive materials and
this also for materials with low adhesive strength.*

5.6 Conclusions and Prospects for the
Modification of the CaBER

The work presented in this chapter (chap. 5) achieved the following new
developments:

• A new geometry has been designed for the CaBER which measures
the axial force.

• The new geometry has been installed and tested.

• Experiments were conducted to study the improvements reached
with the new geometry. These results extended the analysis so far
available for the CaBER apparatus.

• The mass and the force balance have been restated.

• As extension to the work of detachment, a new term called sepa-
ration energy was introduced, in order to quantify the stickiness of
still liquid samples, e.g. glues.

• Experiments with glues have been conducted to obtain values for
the separation energy and to show the new possibilities of the im-
proved CaBER.

With the measurement of the axial forces in a CaBER, new properties of
materials can be studied, e.g. the time-dependent force can be observed
while the filament is stretched. This gives insight in the time dependence
of the stress during the filament stretching phase. This time dependence
can affect the filament development during the CaBER experiment. From
this various other possibilities are accessible, e.g. the quantification of the

* This is possible due to the high sensitivity of the used piezoelectric force transducer.
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5. Improving the CaBER with a Measurement of the Axial Force

time-dependent stress whereas the filament is stretched or the determina-
tion of the separation energy.
Furthermore, the restated balance equations have the potential to improve
the determination of the elongational viscosity. The assumption of negli-
gible axial stress was dropped and by this a new force balance was gained.
The expected values for the elongational viscosity, as given by the Trouton
relation,258 could be received with this new description. However, this is
limited to a special set of samples or needs a further improvement of the
sensitivity of the force transducer (below 10−5 N).
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Chapter 6

Conclusions and Outlook

Within this thesis, different rheometrical set-ups have been improved to
study the non-Newtonian flow behaviour of polymeric liquids. One
method to study polymer melts under shear is the rotational rheometer.
Due to similar effects as the Weissenberg effect, chap. 1, non-Newtonian
fluids, e.g. polymer melts, exhibit, when strongly sheared, normal forces
perpendicular to the motion. To measure this effect under oscillatory shear,
especially under LAOS, a special geometry was designed within this the-
sis for the ARES rheometer, chap. 3.4. This new geometry contained a high
sensitive piezoelectric force transducer with a sensitivity of about 0.05 mN.
The special set-up for the data acquisition and the methods for improving
the data quality were explained in chap. 3.4.1. For example the methods
used by Dusschoten and Wilhelm138 for the FT-rheology, e.g. the oversam-
pling, have been applied also on the measurement of the normal force. The
typical time resolution laid in the range of 1 ms. The calibration of the ge-
ometry inside the ARES was shown in chap. 3.7. In chap. 3.7, FT-spectra of
the normal force obtained with the new geometry (NoForGe) were com-
pared with the commercial ARES and the ARES G2. For the investigated
sample (MDPE tab. 2.3), the NoForGe performed best in terms of signal-
to-noise ratio. A factor of 1.8 lies between the ARES G2 (second place) and
the NoForGe.

With the new measurement of the normal force under oscillatory shear it
is possible to obtain simultaneously FT-spectra of the normal force and of
the shear stress under LAOS. The evaluation of those spectra can be im-
proved by using the from Hyun et al.105 introduced Q-parameter for the
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6. Conclusions and Outlook

higher harmonics of the shear stress, chap. 3.6. In analogy to Q a non-
linear parameter for the normal force spectra QNF has been defined in this
thesis, chap. 3.8. With the use of Q and QNF both as functions of the strain
amplitude γ0 polymer samples with different molecular architecture were
studied. The plot of Q (γ0) and QNF (γ0) are composed from a decreasing
part at low strain amplitudes and an increasing part at high strain ampli-
tudes, e.g. fig. 3.16. By comparing the different slopes it was found, that
the decreasing first slope of QNF can be used to differentiate the polymer
type, e.g. fig. 3.19. Larger values mean a more viscose dominated material.
The slope of the second region of Q differentiates between the topology of
the polymer, e.g. tab. 3.3.

The new normal force geometry (NoForGe) technology has the advantage
of being transferable to other rheometers than the ARES. Thus, even very
basic rheometers could be upgraded into a high performance tool for non-
linear rheology.

In chap. 4 the melt flow instabilities in the extrusion of polymer melts were
studied. Therefore, a basic terminology was given in chap. 4.2. This basic
terminology included practical approaches for the definition of the three
main types of melt flow instabilities (i.e sharkskin, stick-slip and GMF)
and introduced the terms weak melt flow instability and strong melt flow
instability. The flow behaviour of different polyethylene melts was stud-
ied with special home made slit dies, named sharkskin dies, chap. 4.3 and
chap. 4.4. This slit dies were either attached to a capillary rheometer or to
an extruder. Along the channel of the slit dies, three high sensitive pres-
sure transducer were placed, which allowed a high sensitive measurement
of the time-dependent pressure fluctuations. Depending on the flow con-
ditions, it was possible to reach a sensitivity of 10−5 bar in the slit die at
a mean pressure in front of the die of about 250 bar. This high sensitivity
of a mechanical device was obtained by using high sensitive transducer
and special data acquisition algorithms, e.g. the oversampling method.138

The used time resolution was in the range of 10−3 s. The principle of
the sharkskin die for the capillary extruder, which was constructed by Fil-
ipe,146 was transferred to the extruder. This changed dramatically the ob-
tained FT-spectra. Whereas, the spectra obtained on the capillary rheome-
ter, chap. 4.4.5, were nearly free of foreign contribution and thus the melt
flow instabilities could be easily identified by the appearance of character-
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istic peaks in the spectra. The spectra obtained from the sharkskin die on
the extruder contained large amounts of foreign contributions (e.g. the
frequency of the extruder screw rotations, the electrical net frequency),
chap. 4.5 and chap. 4.5.1. In chap. 4.5.1, the origin of this contribution
was investigated and it was found that the material dependent contribu-
tions and the system dependent distributions can be distinguished. After
knowing that the melt flow instabilities can be detected with the sharkskin
die on the extruder and by using the FT, it was studied how the appear-
ance of the melt flow instabilities changes under changed extrusion rates,
chap. 4.5.2. For the investigated PE sample (PE-SCB13) and for high extru-
sion rates, a large GMF like instability was observed. This instability could
be observed for a broad range of extrusion rates from an upper limit of
nrot = 170 min−1 down to nrot = 20 min−1. Whereas, the optical appear-
ance of the instability changed slightly, fig. 4.33, the FT-spectra changed
completely. For high extrusion rates a broad peak (e.g. nrot = 170 min−1

with νinst = 95 Hz) was found which shifted to lower frequencies for re-
duced extrusion rates (e.g. nrot = 80 min−1 with νinst = 63 Hz). At a
extrusion rate with about nrot = 45 min−1 the broad peak disappeared
and a narrow peak at a slightly lower frequency (νinst = 54 Hz) appeared.
This can be interpreted as a sign that the mechanism of the origin of the
melt flow instability changed. However, this has to be studied in further
investigations. The second output of chap. 4.5.2 is that the idea of a self
controlled extruder, which can control the extrudate appearance by means
of the FT-spectra of the time-dependent pressure, needs further work on
the background of control system theory. The approach conducted in this
thesis by finding characteristic peaks in the FT-spectra and regulate the
extrusion rate down until they disappear fails in case of the found tran-
sition of the shape of the peak. Thus, a computer algorithm could not
detect this and would assume that the melt flow instability has vanished.
In chap. 4.5.5, it was studied whether the system dependent contributions
to the FT-spectra could be automatically calculated out off the spectra by
normalizing the spectra to characteristic peaks of the system dependent
contributions, e.g. the peak at 50 Hz and afterwards subtracting a nor-
malized spectra with only system dependent contributions. Thus, it was
possible to reduce the system dependent contributions by a factor of 2-
3. However, the system dependent contributions stay in the same order
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of magnitude as the material dependent contributions to the FT-spectra.
A further approach can be to use the integral value of the spectra. Spectra
with material dependent contributions, which have normally substantially
broader peaks than the system dependent contributions which have rather
narrow peaks, could have lager integral values than spectra without ma-
terial dependent peaks.

A second method of mathematical analysis for the melt flow instabilities
is the ACF. The ACF was successfully used in combination with the shark-
skin die and the capillary rheometer. In combination with the sharkskin
die and the extruder it was found, chap. 4.5.3, that the rotation of the ex-
truder screw and other vibrations are much stronger pronounced in the
ACF. Thereby, the ACF could not provide any information about the melt
flow instabilities.

Additionally to the FT-Analysis of the time-dependent pressure fluctu-
ation, the FT-analysis was used on grey scale images of the extrudates.
Thereof, it was possible to determine characteristic frequencies, which are
spatial based, out off the images. This new field of application of the FT-
analysis was first applied on artificially made images and on image of de-
fined optical gratings and meshes which have well defined and regular
mesh sizes. Hence, it was observed that the peaks of the FT-analysis of
those images were at values of qimage which are identical with the num-
ber of lines which could be counted on the image. Thus, this method was
applicable to determine the amount of instabilities in the images of extru-
dates. This was both done for extrudate samples obtained on the capil-
lary rheometer, chap. 4.4.6.1, and for samples obtained on the extruder,
chap. 4.5.4. The results were in both case compared with the characteristic
frequencies obtained from the FT-analysis of the time-dependent pressure
fluctuations. For strong melt flow instabilities both method found sim-
ilar characteristic frequencies, fig. 4.40. Whereas, only the FT-spectra of
the time-dependent pressure fluctuations contained characteristic peaks
for weak melt flow instabilities, tab. 4.6. This concludes the improvements
for the shear flows of polymer melts.

The last chapter of this thesis, chap. 5, describes the improvement of the
commercial CaBER with an axial force measurement. The design of the
new and improved geometry for the CaBER is shown in chap. 5.3.2. In
this chapter, the complete experimental set-up with the new data acquisi-
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tion is explained. The installation of the new geometry on the CaBER is
completed by calibrating the high sensitive transducer while installed in
the CaBER, chap. 5.4. Thus, a sensitivity of the sensor of about 0.05 mN
was determined. This sensitivity was achieved by using the oversampling
method. The temporal resolution of the experiments were typically in the
range of 0.2 ms.

The theory of the CaBER experiment, chap. 5.2, assumes negligible axial
forces during the CaBER experiment, chap. 5.1.1. That this assumption is
only valid for some materials is shown in chap. 5.5.1. Therefore, the theory
of the CaBER has to be improved. In chap. I the mass balance is formu-
lated in cylindrical coordinates, which is the appropriate way to tread the
CaBER experiment, chap. 5.1.1. Another improvement of the CaBER the-
ory is done via introducing an additional force term in the Young-Laplace
equation and to state the Young-Laplace equation for a cylindrical body,
as shown in chap. K. The resulting force balance is used in chap. 5.2.2.
With this new set of equations it was possible, chap. 5.5.1, to calculated the
elongational viscosity for the PS-DOP sample during the CaBER experi-
ment, ηE = 265 Pas for small strike times tstrike = 40 ms. The predicted
value from the Trouton ration of the elongational viscosity is very close,
ηE,theory = 255 Pas. In this case, the axial stress is not negligible.

In chap. 5.5.3 a new type of measurement on the CaBER is presented. With
the additional force measurement the CaBER can be used to measure tack
values, as it is done with the probe test apparatus of e.g. Zosel.247 In
comparison to the probe tack test apparatus the CaBER is not capable to
apply a defined pre-pressure on a sample. To compensate this and to avoid
confusion in the terminology the property of a separation energy Wsep is
defined. In comparison to the energy of detachment247, 259 Wadh Wsep has
no pre-pressure history and it includes strong effects of the elongational
flow while the sticky liquid is drawn. Thus, Wadh and Wsep are similar,
but not the same. With the help of Wsep the curing behaviour of two dif-
ferent wood-glue sample is examined. The slowly curing Ponal-Classic
sample showed lower values of Wsep when compared at the same cur-
ing time tcure with the Ponal-Express sample, e.g. tcure = 2 min Wsep =

8 kJ/m2 compared to Wsep = 15 kJ/m2 (tab. 5.3). The results from the
new separation energy Wsep are compared to the values of the time to fil-
ament break-up tbreak which is accessible with the CaBER without a force
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measurement. The filaments of the Ponal-Express glue were significantly
longer lasting when slowly drawn (tstrike = 1 s), typically about a factor
of 1.4 (fig. 5.21 and tab. 5.4), as the filaments of the Ponal-Classic sam-
ple. For the fast drawn filaments (tstrike = 0.1 s) the filaments of cured
Ponal-Express tended to break faster than the filaments of the cured Ponal-
Classic, fig. 5.21 and tab. 5.3.
As prospects for further works with the improved CaBER, the potential
application for measuring the surface tension is feasible. For this only the
zero shear viscosity η0 has to been known. For all samples which are used
in the CaBER this is easily done with a rotational shear rheometer. With η0

and the know Trouton relation258, 260 the extensional viscosity is known.
By this and with a reordering of eq. 5.15 the surface tension could be de-
termined without needing to have a second device in the lab.



Appendix A

Short Introduction to Tensor Calculus

The following subsections present the basics of tensor calculus in a very
condensed form. This is added for readers who want to have a deeper
understanding of the equations which govern the fluid mechanical prob-
lems presented in this work. Most books about continuum mechanics or
fluid mechanics include at least a small chapter about tensor calculus, e.g.
the book of Chadwick261 or Ogden.255 The book of Klingbeil54 or Schade
et al.262 are recommended for German readers. The following chapter
about tensor calculus is based on the above mentioned books.54, 255, 261, 262

A.1 Vector Space

A vector space V has the following properties for the vector ~u +~v ∈ V.
∀ ~u,~v, ~w ∈ V it is valid, that

~u +~v = ~v + ~u, (A.1)

~u + (~v + ~w) = (~u +~v) + ~w. (A.2)

∃~0 ∈ V with the property

~u +~0 = ~u. (A.3)

∀ ~u ∈ V. From eq. A.3 the existence of an inverse element can also be
deduced, as

~u + (−~u) =~0 (A.4)
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The multiplication with a scalar α as α~u ∈ V should have the following
properties

1~u = ~u, (A.5)

α (β~u) = (αβ)~u, (A.6)

(α + β)~u = α~u + β~u, (A.7)

α (~u +~v) = α~u + α~v, (A.8)

∀ α, β ∈ R and ∀ ~u,~v ∈ V and 1 = unity.

A.2 Euclidean Vector Space

A vector space V is called an Euclidean vector space E if there exists the
scalar product, as defined by eq. A.9 - eq. A.13, for all vectors ~u,~v ∈ V. All
vectors of E are Euclidean vectors.

~u ·~v = ~v · ~u, (A.9)

~u · ~u ≥ 0. (A.10)

In eq. A.10 equality holds only for ~u = ~0. The scalar product is bilinear,
meaning linear in each element of the product, so

(α~u) ·~v = ~u · (α~v) (A.11)

~u · (~v + ~w) = ~u ·~v + ~u · ~w (A.12)

(α~u + β~v) · ~w = α (~u · ~w) + β (~v · ~w) (A.13)

is valid ∀ α, β ∈ R and ∀ ~u,~v, ~w ∈ E.

A.2.1 Magnitude of a Vector

The magnitude |~u| of a vector ~u is defined as the positive square root of
the scalar product of the vector with himself, as

|~u|2 = ~u · ~u or (A.14)

|~u| = (~u · ~u)1/2 (A.15)

In case of |~u| = 1 the vector ~u is a unit vector. If the scalar product of
two different vector equals to zero, as ~u ·~v = 0 then the both vectors are
perpendicular to each other; ~u⊥~v meaning they are orthogonal.
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A.2.2 Vector Product

The definition of vector product demands the following properties:

~u×~v = −~v× ~u, (A.16)

(~u×~v) · (~u×~v) = (~u · ~u) (~v ·~v)− (~u ·~v)2 , (A.17)

~u · (~u×~v) = 0, (A.18)

(α~u + β~v)× ~w = α (~u× ~w) + β (~v× ~w) . (A.19)

The vector product of a vector with himself is always zero.

~u× ~u = 0 (A.20)

∀ ~u ∈ E. Assuming two arbitrary vectors of the magnitude 1,

|~u| = |~v| = 1. (A.21)

Then the following relation is valid

|~u×~v|2 + (~u ·~v) = 1 (A.22)

The the geometrical interpretation of the scalar product and the vector
product is

~u ·~v = |~u| |~v| cos θ, (A.23)

~u×~v = |~u| |~v| sin θ~n (A.24)

for
∣∣∣~k∣∣∣ = 1 and~n||~u×~v.

A.2.3 Orthonormal Basis and Kronecker Symbol

The basis of the vector space E is formed by three linear independent vec-
tors. An orthonormal basis is composed by three linear independent vec-
tors which obey the rule,

~ei ·~ej = δij =

{
1, i = j
0, i 6= j

. (A.25)

The symbol δij is called the Kronecker* symbol or Kronecker delta. With
this it is possible write the arbitrary vector ~u in terms of the basis,

~u = uj~ej = u1~e1 + u2~e2 + u3~e3. (A.26)

* Leopold Kronecker (b7. December 1823 in Liegnitz, Germany; d29. December 1891
in Berlin; Germany) was a German mathematician.5
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With this background it is convenient to introduce the index notation.
Thus, the scalar product is rewritten as

~u ·~v = uivi. (A.27)

The index notation makes use of the Einstein notation53 which defines that
the sum has to been taken over the same indices and that in one summand
it is not allowed to have the same index more than twice. The magnitude
will be written as

|~u|2 = u2
i . (A.28)

A.2.4 Alternating Symbol

For a right handed triad of basis vectors, it follows

~e2 × ~e3 = ~e1,

~e3 × ~e1 = ~e2, (A.29)

~e1 × ~e2 = ~e3.

The eq. A.29 leads to the definition of the alternating symbol* εijk, as

~ei ×~ej = εijk~ek. (A.30)

The epsilon symbol is defined as

εijk =


1, cyclic permutations of ijk
−1, anti-cyclic permutations of ijk
0, else

. (A.31)

The alternating symbol has the following properties

εijk = εkij = εjki, (A.32)

εijk = −εikj = −εkji = −εjik. (A.33)

Instead of using the basis vectors in eq. A.30 the same form can be applied
on arbitrary vectors, as

~u×~v = εijkuivj~ek. (A.34)

* Also called alternator.
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A.3 Change of Basis

The triple scalar product* it can be written with the use of the alternating
symbol,

(~u×~v) · ~w = εijkuivjwk =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ . (A.35)

If ~u,~v, ~w are linearly independent then eq. A.35 will equal zero,

(~u×~v) · ~w = 0. (A.36)

In eq. A.35 the determinant is used, so it is possible to write the determi-
nant of a matrix or tensor as

det A = εijk Ai1 Aj2 Ak3. (A.37)

With eq. A.37 the following transformations are possible

εijk Aip Ajq Akr = (det A) εpqr, (A.38)

det A =
1
6

εijkεpqr Aip Ajq Akr, (A.39)

det AB = det A det B. (A.40)

The triple vector product can be expressed by

~u× (~v× ~w) = εkpqεkrsvpwqus~er

= (~u · ~w)~v− (~u ·~v) ~w. (A.41)

A.3 Change of Basis

Taking two right orthonormal bases {~ei} and
{
~ei
′}, the rule for transform-

ing one basis into the other is

~ei
′ = Qip~ei, (A.42)

Qij = ~ei
′ ·~ei. (A.43)

With eq. A.43 it follows for orthonormal systems, that

δij = ~ei
′ ·~ej

′

= QikQjk. (A.44)

* The triple scalar product describes the signed volume of a parallelepiped.
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A matrix Q is called to be an orthogonal matrix, if it fulfils the relation

QQT = 1 = QTQ, (A.45)

QikQjk = δij = QkiQkj. (A.46)

If det Q = +1 then this proves the right handedness of the basis vectors
and the matrix Q is called to be proper orthogonal. If det Q = −1 then this
proves the not right handedness of the basis vectors and the matrix Q is
called to be improper matrix. Like for the basis vectors the transformation
matrix Qij can be similarly applied to an arbitrary vector, like

v′ij = Qij, (A.47)

vj = Qijv′i . (A.48)

A.3.1 Euclidean Point Space

The Euclidean point space represents the Cartesian coordinates x, y. Let E
be a set of elements (points) that for each (x, y) of E ∃~v (x, y) ∈ E with the
following properties

~v (x, y) = ~v (x, z) +~v (z, y) , ∀ y, x, z ∈ E , (A.49)

~v (x, y) = ~v (x, z) , only if y = z. (A.50)

However, it has to be noted that E , the Euclidean point space, is not a
vector space. Defining a reference point O, ~x (O) is the position vector.
Thus, it can be written

~y = ~x (O)−~y (O) (A.51)

where ~x (y) is independent of the choice of O. The distance between two
points is

d (x, y) = |~x−~y| = {(~x−~y) · (~x−~y)}
1
2 . (A.52)

A bilinear mapping E × E to R is metric

d (x, y) = d (y, x) , (A.53)

d (x, y) ≤= d (x, z) + d (z, y) , (A.54)

d (x, y) ≥= 0, equals only if x = y ∀ x, y, z ∈ E. (A.55)
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E is a metric space. The angle θ between ~x,~y is given by

cos θ =
~x ·~y
|~x| · |~y| . (A.56)

Components are given by xi = ~x ·~ei. For the transformation between dif-
ferent systems the known rules can be applied,

x′i = Qij

(
xj − cj

)
and (A.57)

xi = Qji

(
x′j − c′j

)
. (A.58)

In this case the matrix Qij is called the Jacobian* matrix and defined as

Qij =
∂x′i
∂xj

=
∂xj

∂x′i
. (A.59)

A.4 Tensors

The matrix T with the components Tij, with n = 2 indices, to the regular
Cartesian basis {~ei} is called a tensor of order 2, if it transforms according
to the following rules

T′ij = QipQjqTpq, (A.60)

T′ = QTQT , (A.61)

T = QTT′Q. (A.62)

As a short introduction the transformation of a tensor, the known stress
tensor† is sketched. The stress vector~t normal to a surface ds is

~t (~n) = T~n. (A.63)

With the index notation the components of the stress tensor T are given by
Tij. Further the identity mapping on E is identified with the matrix I.

ti = Tijnj, (A.64)

t′i = T′ipn′p. (A.65)

* Carl Gustav Jacob Jacobi (b10. December 1804 in Potsdam, Germany; d18. February
1851 in Berlin; Germany) was a German mathematician.5

† The word tensor originates form the Latin word tenderer meaning ”to stretch”. The
term was first applied to describe the stress and was later generalised for similar
mathematical constructs. Thus, the term stress tensors is actually a pleonasm.54, 262
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The stress tensor transforms according to eq. A.60 - eq. A.62. General, a
tensor of second order is a mapping of E to itself

T : E→ E⇒ L (E, E) . (A.66)

This definition can be extended to Cartesian tensors of order n. The matrix
T with the components Tijk..., with n ∈ N indices, to the regular Cartesian
basis {~ei} is called a tensor of order n, if it obeys the transformation rule

T′ijk... = QipQjqQkr...Tpqr.... (A.67)

Example 19. Tensors of different order

• A vector is a tensor of the order 1.

• A scalar is a tensor of order 0.

• The Kronecker delta is a tensor of the order 2.

A.4.1 Tensor Product/ Dyadic Product

The following rules are valid for the dyadic product

u′iv
′
j = QipQjqupvq, (A.68)

(~u⊗~v) ~w = (~v · ~w)~u, (A.69)(
ui~ei ⊗ vj~ej

)
wk~ek = vjwjui~ei, (A.70)(

~ei ⊗~ej

)
~n = nj~ei, (A.71)(

Tij~ei ⊗~ej

)
~n = Tijnj~ei. (A.72)

Writing the tensor T in index notation results in

T = Tij~ei ⊗~ej. (A.73)

Eq. A.73 can also be applied on the identity matrix

I = δij~ei ⊗~ej = ~ei ⊗~ei. (A.74)

The tensor product can be continuously applied

T = Ti1i2i3...in~ei1 ⊗~ei2 ⊗~ei3 ⊗ ...⊗~ein . (A.75)
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A.5 Tensor Algebra

A.4.2 Contraction of a Tensor

Setting the indices of a tensor the same is called a contraction.

Tii = δpqTpq = Tpp. (A.76)

The result of eq. A.76 is also called the trace of T, also written as

Tii = trT. (A.77)

The trace has got the following properties when applied to the contraction
of two tensor of second order

tr (ST) = SijTji = tr (TS) , (A.78)

tr (ST) = tr
(

STTT
)

, (A.79)

tr
(

STT
)

= tr
(

STT
)

. (A.80)

A.4.3 Isotropic Tensors

A tensor is called isotropic, if its components stays unchanged if trans-
formed.

Example 20. Isotropic tensors

• A tensor of order 0 is always isotropic.

• A tensor of order 1 is never isotropic.

• All scalar multiples of I are the only tensors of order 2 which are isotropic.

A.5 Tensor Algebra

The tensor T is called linear, if

T (α~u + β~v) = αT~u + βT~v, (A.81)

Tij

(
αuj + βvj

)
= αTijuj + βTijvj, (A.82)

(αS + βT)~u = α (S~u) + β (T~v) . (A.83)

(A.84)
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A. Short Introduction to Tensor Calculus

The inner product has to be defined

(ST)~u = S (T~u) . (A.85)

SikTkj means the contraction of the tensor product T⊗ S. Finally, it exists
a zero tensor 0, that maps every vector to the zero vector~0, as

0~u =~0 (A.86)

and the identity tensor maps every vector to itself

I~u = ~u. (A.87)

A set of bilinear functions over E⊗E for the vector space R is denoted as

L (E⊗E, R) ≈ L (E, E) . (A.88)

In this context one speaks of isomorphism.(
~ei ⊗~ej

)
(~u,~v) = uivj, (A.89)

T (~u,~v) = uiTijvj, (A.90)

~v ·
(

TT~u
)
= ~u · (T~v) ⇔ TT (~v,~u) = T (~u,~v) , (A.91)(

Tij

)T
= Tji, (A.92)(

TT
)T

= T, (A.93)

(αS + βT)T = αST + βTT , (A.94)

(ST)T = STTT . (A.95)

A tensor is called symmetric, if

TT = T, (A.96)

Tij = Tji. (A.97)

A tensor is called skew symmetric or antisymmetric, if

TT = −T, (A.98)

Tij = −Tji. (A.99)

A symmetric tensor of second order has got six independent components
and a skew symmetric tensor of second order has got three independent
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components. A second order tensor can be uniquely decomposed in a
symmetric part and an antisymmetric part, as

T =
1
2

(
T + TT

)
︸ ︷︷ ︸

D: symmetric

+
1
2

(
T− TT

)
.︸ ︷︷ ︸

W: skew-symmetric

(A.100)

The trace of the tensor T can be defined to a orthonormal basis {~ei}, as

trT = Tii = ~ei · (T~ei) = T (~ei,~ei) . (A.101)

If the determinant of a matrix exists, det T 6= 0 then a unique inverse tensor
T−1 exists with the properties

TT−1 = I = T−1T, (A.102)

det T−1 = det T−1, (A.103)

(ST)−1 = T−1S−1. (A.104)

The adjugated tensor of T is denoted as adjT and is defined as

adj
(

TT
)

:= (det T)T−1, (A.105)

det (adjT) = (det T)2 . (A.106)

A.6 Eigenvalues and Eigenvectors

The vector~v is called an eigenvector of the tensor T, if a scalar λ exists that
the relation is satisfied

T~v = λ~v. (A.107)

The scalar λ in eq. A.107 is named the eigenvalue of T. There exists only a
non trivial solution if

det (T− λI) = 0, (A.108)

det
(

Tij − λδij

)
= 0. (A.109)

The solution of the eq. A.108 and eq. A.109 is the characteristic equation of
T, given by

λ3 − I1 (T) λ2 + I2 (T) λ− I3 (T) = 0. (A.110)
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A. Short Introduction to Tensor Calculus

In eq. A.110 the three principal invariants I1, I2, I3 of T were introduced.

I1 (T) = trT, (A.111)

I2 (T) =
1
2

{
(trT)2 − trT2

}
, (A.112)

I3 (T) = det T =
1
6

{
(trT)3 − 3 (trT) trT2 + 2trT3

}
. (A.113)

Tr~v = λr~v. (A.114)

The Cayley* -Hamilton† theorem states that a tensor satisfies its own char-
acteristic equation

0 = det
(

T−1 − λ−1I
)

= T3 − I1T2 + I2T− I3. (A.115)

A.6.1 Symmetric Tensors of Second Order

The eigenvalue problem is solved for the symmetric tensors as it follows

D = DI =
(

D~v(i)
)
⊗~v(i)

=
3

∑
i=1

λ~v(i) ⊗~v(i). (A.116)

The i-th eigenvector is called ~v(i) and represents the principal axes, from
this the spectral representation is gained,

I1 (D) = λ1 + λ2 + λ3, (A.117)

I2 (D) = λ2λ3 + λ3λ1 + λ1λ2, (A.118)

I3 (D) = λ1λ2λ3, (A.119)

Two tensors of second order are coaxial, this means their principal axes
coincide, only if

SD = DS. (A.120)

* Arthur Cayley (b16. August 1821 in Richmond, England; d26. January 1895 in Cam-
bridge, England) was an English mathematician.5

† Sir William Rowan Hamilton (b4. August 1805 in Dublin, Ireland; d2. September
1865 by Dublin, Ireland) was an Irish mathematician and physicist.5, 58
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The matrix D is positive definite if

~v · (D~v) > 0 ∀~v 6= 0 in E. (A.121)

The matrix D is positive semi-definite if

~v · (D~v) ≥ 0. (A.122)

If a matrix is positive definite and symmetric it follows that all λi > 0. If a
matrix is positive semi-definite and symmetric it follows that the eigenval-
ues λi ≥ 0 with at least one eigenvalues equals zero. The positive square
root is uniquely defined by

D
1
2 :=

3

∑
i=1

λ
1
2
i ~v

(i) ⊗~v(i). (A.123)

If λ > 0 then exists the inverse matrix T−1 and is uniquely defined as

D−1 :=
3

∑
i=1

λ−1
i ~v(i) ⊗~v(i). (A.124)

A.6.2 Antisymmetric Tensors of Second Order

Antisymmetric tensors are defined as

WT = −W (A.125)

and the three invariants are given by

I1 (W) = 0, (A.126)

I2 (W) = W2
23 + W2

31 + W2
12, (A.127)

I3 (W) = 0, (A.128)

By the use of eq. A.126 - eq. A.128 the characteristic equation is reduced to

λ3 + I2 (W) λ = 0. (A.129)

If W is not identical with the zero matrix 0 then I2 > 0 and only one real
eigenvalue λ = 0 exists .

W~w = 0. (A.130)
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In eq. A.130 ~w is the eigenvector of the skew symmetric matrix. This eigen-
vector has the properties

W~a = ~w~a, (A.131)

W = (W~u)⊗ ~u− ~u⊗ (W~u) . (A.132)

A.7 Orthogonal Tensors of Second Order

The scalar product ~u ·~v is not preserved by linear mapping

(T~u) · (T~v) = ~v ·
(

TTT~u
)

. (A.133)

Therefore

QQT = I = QTQ. (A.134)

Thus, Q is an orthogonal tensor. If

det Q = ±1, (A.135)

then Q is called a proper or improper tensor.

A.7.1 Mapping from one Euclidean Space to
Another

The relation between the matrix Q and the components Qij is that the later
contains the direction cosines, which in an orthogonal transformation ro-
tates all vectors bases {~ei} to

{
~ei
′} (see fig. A.1).

QT (Q− I) = − (Q− I) . (A.136)

The determinant of eq. A.136 is given by

det Q− I = 0. (A.137)

Therefore, the eigenvalues of Q are λ = 1 and from this the eigenvectors
are found to be

Q~u = ~u. (A.138)
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Figure A.1. – Rotation of the basis~ei of a vector ~x.

~u,~v, ~w are an orthonormal basis, so

0 = ~v · ~u = ~v ·
(

QTQ~u
)

,

= (Q~v) · (Q~u) = (Q~v) · ~u, (A.139)

Q = ~u⊗~v + (~v⊗~v + ~w⊗ ~w) cos θ

+ (~w⊗~v−~v⊗ ~w) sin θ, (A.140)

Q~a = ~a cos θ + (~a · ~u)~u (1− cos θ) + ~u×~a sin θ. (A.141)

For the invariants of Q it is valid, that

I1 (Q) = I2 (Q) = 1 + 2 cos θ, (A.142)

I3 (Q) = 1. (A.143)

A.8 Reciprocal Basis: Contravariance and
Covariance Basis

Is {~ei} an arbitrary basis of E then ~e1,~e2,~e3 are neither unit vectors nor
mutually orthogonal, so

~u = uk~ek. (A.144)

In eq. A.144 uk are the contravariance components to the basis {~ei}. The
reciprocal basis to {~ei} is denoted as

{
~e i
}

, with

~e i ·~ei = δi
j =

{
1, i = 1
0, i 6= j

. (A.145)
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Orthonormal bases are self-reciprocal.

~u = uk~e
k. (A.146)

In eq. A.146 uk are the covariance components to the basis
{
~e i
}

. The com-
ponents of the identity mapping are

Iik = ~ei ·~ek = Iki, (A.147)

Iik = ~e i ·~e k = Iki, (A.148)

Iij I jk = δ k
i , (A.149)

I = Iij~ei ⊗~ej,

= Iij~e i ⊗~e j,

= I j
i~e

i ⊗~ej,

= Ii
j~ei ⊗~e j. (A.150)

The scalar product can be written, as

~u ·~v = u ivj = uiv j = Iiju iv j = Iijuivj. (A.151)

For the components of a matrix its found, that

T = Tij~ei ⊗~ej = Ti
j~ei ⊗~e j

= T j
i ~e

i ⊗~ej = Tij~e i ⊗~e j. (A.152)

In eq. A.152 Ti
j are the right covariant mixed components and T j

i are the
left covariant mixed components of the tensor T.
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Appendix B

Properties of the Fourier Transform

In the following the commonly used basic properties of the Fourier trans-
form will be summarized as found in many textbooks.19, 20, 22, 263 For this
the following nomenclature is introduced*

f (t) ↔ F (ω) ,

g (t) ↔ G (ω) and

a, b ∈ R.

Linearity

a · f (t) + b · g (t)↔ a · F (ω) + b · G (ω) . (B.1)

Translation A translation in the time domain will result in a modula-
tion in the frequency domain,

f (a− t)↔ F (ω) e−iωa. (B.2)

Modulation A modulation in time will cause a translation in the fre-
quency,

f (t) e−iω0t ↔ F (ω−ω0) . (B.3)

* <time domain property>↔ <frequency domain equivalent>
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B. Properties of the Fourier Transform

Scaling From a compression or stretching of the time axis it can be de-
duced, that

f (at)↔ 1
|a| F

(ω

a

)
. (B.4)

Parseval’s theorem
+∞∫
−∞

f1 (t) · f ∗2 (t) dt =
+∞∫
−∞

F1 (ω) · F∗2 (ω) dω. (B.5)

The symbol ∗ indicates the conjugated element of a complex variable. A
special case of the Parseval’s† theorem, which is important for the appli-
cation, is the case f1 (t) ≡ f2 (t) = f (t). Thus,

+∞∫
−∞

| f (t)|2 dt =
+∞∫
−∞

|F (ω)|2 dω. (B.6)

FT of a derivative For the temporal derivative of a function f (t) the
FT leads to

FT
(

f ′ (t)
)
↔ iωF (ω) . (B.7)

Amplitude spectrum and the phase spectrum For the analysis or
visualization of the amplitude spectrum, also called the modular trans-
form or magnitude spectrum, and the phase spectrum are commonly used
in literature. The amplitude is defined as

A (ω) = |F (ω)| =
√

Re {F (ω)}2 + Im {F (ω)}2 (B.8)

and is also called the frequency response. Related to the amplitude is the
power spectrum, as defined as

P (ω) = |F (ω)|2 . (B.9)

The phase spectrum is given by

ϕ (ω) = arctan
(

Im {F (ω)}
Re {F (ω)}

)
(B.10)

and is also called phase response.

† Marc-Antoine Parseval de Chênes (b27. April 1755 in Rosières-aux-Salines, France;
d16. August 1836 in Paris, France) was a French mathematician.5
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Appendix C

The Maxwell Model under Oscillatory Shear

In chap. 3.2.1 the basic equation, eq. 3.20, is given for the linear rheologi-
cal behaviour of a Maxwell body. In the following, the derivation of this
equation from the basic model equation, eq. 2.42, will be shown.

First, the model equation has to be written in form of complex variables.
For this the shear amplitude, the shear rate and the shear stress are given
by eq. 3.3, eq. 3.4 and eq. 3.17 are restated to

γ (t) = γ0 · eiωt, (C.1)

τ (t) = τ0 · ei(ωt+δ), (C.2)

γ̇ (t) = γ0iω · eiωt. (C.3)

Substituting the strain rate and the stress in eq. 2.42 by eq. C.3 and eq. C.2
results in

iωηγ0eiωt = iωλτ0ei(ωt+δ) + τ0eiωt+δ. (C.4)

Eq. C.4 can be stepwise modified as

iωηγ0eiωt = τ0ei(ωt+δ) (iωλ + 1)
∣∣∣÷ τ0

iωη
γ0
τ0

eiωt = ei(ωt+δ) (iωλ + 1)
∣∣∣ · e−iωt. (C.5)

With eq. 2.24, γ0/τ0 = 1/G, eq. C.5 becomes,

iω
η

G
= eiδ (iωλ + 1) . (C.6)
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C. The Maxwell Model under Oscillatory Shear

With eq. 2.43 the ration of the shear viscosity and the shear modulus equals
the relaxation time, thus

iωλ = eiδ (iωλ + 1) . (C.7)

Reordering eq. C.7 results in

eiδ =
iωλ

(iωλ + 1)
. (C.8)

Multiplying eq. C.8 with the complex conjugate gives

eiδ =

(
ω2λ2 + iωλ

)
ω2λ2 + 1

. (C.9)

In eq. 3.18 the complex modulus is defined. In this formula the complex
formulation of the shear amplitude and the shear stress have to be used,
as given in eq. C.1 and eq. C.2.

G∗ (ω) =
τ0 · ei(ωt+δ)

γ0 · eiωt

= Geiδ. (C.10)

The term eiδ of eq. C.10 can be substitute by the result from the Maxwell
model in eq. C.9. Doing so, eq. 3.20 is obtained.
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Appendix D

Derivation of the Fundamental Equation of
the FT-Rheology

As described in chap. 3.3 the FT-spectra of oscillatory shear experiments
have only odd multiples of the fundamental (excitation) frequency ω0. The
explanation for this is given by Wilhelm et al.83, 105 and is in detail shown
in the following.
The flow of a viscous fluid is sufficiently described with the Newtonian
law for shear eq. 2.25

σ (γ̇) = ηγ̇. (D.1)

To apply eq. D.1 also to viscoelastic fluids the viscosity is expanded via a
Taylor18, 126 expansion

η (γ̇) = η0 + a · γ̇2 + b · γ̇4 + ... . (D.2)

For the oscillatory shear experiment the excitation of the sample is given
by the time-dependent strain

γ (t) = γ0 · eiω0t. (D.3)

Eq. D.3 uses the Euler*-relation,† instead of the usual notation using trigono-
metric functions. The time derivative of eq. D.3 determines the applied

* Leonard Euler (b15. April 1707 in Basel, Swiss; d18. September 1783 in St. Peters-
burg, Russia) was a Swiss mathematician.5

† Euler-relation:18 eiy = cos (y) + i sin (y).
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D. Derivation of the Fundamental Equation of the FT-Rheology

shear rate

γ̇ (t) = iγ0ω0 · eiω0t. (D.4)

Using eq. D.2 in eq. D.1 the shear stress σ is given as a function of the shear
rate γ̇,

σ (γ̇) =
(

η0 + aγ̇2 + bγ̇4 + ...
)
· γ̇. (D.5)

Substituting γ̇ from eq. D.4 in eq. D.5 results in a the time-dependent shear
stress,

σ (t) =
(

η0 + a · i2γ2
0ω2

0 · ei·2ω0t

+ b · i4γ4
0ω4

0 · ei·4ω0t + ...
)
· iγ0ω0 · eiω0t

= η0 · iγ0ω0 · eiω0t − a · iγ3
0ω3

0 · ei·3ω0t + b · iγ5
0ω5

0 · ei·5ω0t + ...
= I1eiω0t − I3ei·3ω0t + I5ei·5ω0t + ... . (D.6)

The similarity of eq. D.6 with the complex form of the Fouries series, as
described in chap. 2.1.1, is obvious. Thus, eq. 2.8 is used, like

f (t) = CF,1eiω0t + CF,2ei·2ω0t + CF,3ei·3ω0t

+ CF,4ei·4ω0t + CF,5ei·5ω0t + ... . (D.7)

By comparing the coefficients of the ei·nω0t from eq. D.6 and eq. D.7 it fol-
lows that all even CF,n are zero, like

CF,2 = CF,4 = CF,n = 0, ∀n =
{

x
∣∣x, k ∈N+, x = 2k

}
. (D.8)

The odd coefficients of eq. D.7 are directly related to the In values of eq. D.6,

CF,1 = I1 = η0 · iγ0ω0

CF,3 = I3 = a · iγ3
0ω3

0
CF,5 = I5 = b · iγ5

0ω5
0

CF,n = In, ∀n =
{

x
∣∣x, k ∈N+, x = 2k− 1

}
. (D.9)

Eq. D.9 shows that the amplitudes or intensities of the decomposition of
the stress are given by the In values and that only odd frequencies ωn are
needed for the decomposition of the stress.
From this deduction the stress can be decomposed into a discrete spectrum
of the odd multiples of the excitation frequency ω0,

σ =
N

∑
n=1

Inei·nω0t, ∀n =
{

x
∣∣x, k ∈N+, x = 2k− 1

}
. (D.10)
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Appendix E

Special Units for the Spatial Frequency

In this chapter the units of the optical analysis of the melt flow instabili-
ties are explained. First the relations for the wavenumber kw, wavelength
λw and the spatial frequency ν̃ are given, as found in e.g. Hecht264 or
Wedler,265

ν̃ =
2π

kw
=

1
λw

=
q
l

. (E.1)

Eq. E.1 uses q, the number of waves within the total length l. In chap. 4.4.6
the melt flow instabilities are characterized via two methods:

1. Manual read out: The operator is manually counting the number of
waves which he sees in an image.

2. FT-image analysis: The images are analysed via a FT-algorithm by a
computer resulting in a peak in the magnitude spectrum which in-
dicates the number of lines in the image.

By both methods, a quantity with the units of waves per image is obtained.
For the comparison of both methods for analysing the images of the melt
flow instabilities neither the wavenumber kw nor the wavelength λw nor
the spatial frequency ν̃ are of primary interest.

The melt flow instabilities are characterized via a digital spatial frequency

ν̃image =
qimage

Nimage
. (E.2)
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E. Special Units for the Spatial Frequency

In eq. E.2 qimage is the number of waves found in Nimage images*. Thus, the

unit of
[
ν̃image

]
= waves

image .† Eq. E.2 and eq. E.1 are related via

ν̃
L
M

= ν̃image. (E.3)

Eq. E.3 can be proofed as follows:

Proof 1. Relation between length space and pixel space
Starting with eq. E.1 a relation has to be found between the length scales and the
pixel scales (fig. E.1). Thus, the length l is related to the pixel ratio m/M of the

Figure E.1. – Relation between the length scale and the pixel scale of
a digital image.

actual amount of pixels m relative to the total amount of pixels M in a row and
the representative width L of the image in mm, as

l =
m
M

L. (E.4)

Substituting l in eq. E.1 by eq. E.4 results in

ν̃ =
q

mL
M. (E.5)

By multiplying eq. E.5 with L/M,

ν̃
L
M

=
q
m

. (E.6)

* Usually Nimage = 1.
† The unit waves

image is abbreviated to image−1.
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The right side of eq. E.6 is related to the right side of eq. E.2 as follows. If l equals
L, which is the width of the whole image of the size of M pixels, then q ≡ qimage.
Thus, m = M. Using this, the right side of eq. E.6 is

q
m

=
qimage

M
. (E.7)

By allowing K images to be used for one analysis,

Nimage = K ·M. (E.8)

With rearranging eq. E.8 and using it to substitute M in eq. E.7 it follows, that

q
m

=
qimage

Nimage
. (E.9)

The right side of eq. E.9 is identical with the right side of eq. E.2. Thus, it has been
proven that

ν̃
L
M

= ν̃image. (E.10)
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Appendix F

Tack: An Adhesive Material Property

A definition of tack is given by the ASTM as:

” Tack is the property of a material which enables it to form a physical
bond of a measurable strength upon contact with another surface.”266

(ASTM D 1878-61T)

In daily life tack is known as stickiness, e.g. of adhesive tapes, adhesive
notes etc., and is measured by the thumb test*.267, 268 The adhesive bond-
ing is dependent on the combination of adhesive (e.g. glue) and adherent
(e.g. substrate material).269 The strength of the adhesive bonding can be
measured either as the peak force or as the work of detachment, which is
needed to remove the adhesive from the substrate, fig. F.1.247, 259 For mea-
suring the adhesive strength different devices have been established,266

e.g.:

1. The rolling ball tack test

2. The loop tack test

3. The peeling tack test

4. The probe tack test

The rolling ball tack test is used since the 1950’s in industry.267 A metal ball
rolls down an inclined plane at the end of the inclined plane the adhesive
material (mostly adhesive tapes) is put on a horizontal plane, see fig. F.2.

* The thumb is pressed against the adhesive surface and then retracted. Thus, the
adhesive force is felt.
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F. Tack: An Adhesive Material Property

Figure F.1. – Peak force F1 and work of detachment Wadh of tack ex-
periments.

The distance which the ball can travel on the adhesive gives a measure of
the strength of the adhesive bonding.

Figure F.2. – Rolling ball tack test. (1) substrate, (2) adhesive and (3)
metal ball.

For the loop test, a loop is formed out of an adhesive tape, fig. F.3a. The
loop is brought into contact with a defined surface for a defined time, but
without any force, fig. F.3b. Then the loop is removed from the surface
with a defined rate and the force is measured, fig. F.3c.
The peeling test270, 271 is similar to the loop test. A adhesive tape is brought
into contact with surface. After a defined time the tape is peeled of the
surface under a defined angle α, fig. F.4.
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(a) (b) (c)

Figure F.3. – Loop tack test. (1) substrate, (2) adhesive and (3) tape.
(a) a loop of an adhesive tape is brought into contact with the sub-
strate. (b) the loop is kept for a time t in contact with the substrate. (c)
afterwards it is removed with a defined rate.

Figure F.4. – Peel tack test. (1) substrate and (2) adhesive tape.
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F. Tack: An Adhesive Material Property

For the probe tack test the adhesive is applied on a substrate plate, fig. F.5a.
A cylindrical or spherical geometry is press on the adhesive for a defined
time and with a defined force, fig. F.5b. Then the geometry and the adhe-
sive are separated with a defined rate and the force is measured, fig. F.5a.
While the probe moves upwards from the adhesive layer the formation of
fibrils can be observed.250 The formation of fibrils influence the strength
of the adhesive. The success of the probe tack technique is based on the
works of Zosel.247, 272

(a) (b) (c)

Figure F.5. – Probe tack test. (1) substrate, (2) adhesive, (3) probe
geometry and (4) fibrils. (a) probe geometry is brought into contact
with the adhesive. (b) the probe is kept for a time t with a force F in
contact with the adhesive. (c) the probe is removed with a defined
velocity v.
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Appendix G

Mass and Conservation of Mass

The following summary of the deduction of the balance of mass equation
can be found in a similar form in the textbook of e.g. Spurk,39 to name
only one of many.
The mass m of a mechanical body can be defined as the integral of all
infinite small elements dm of a setM of material points:

m =
∫
M

dm (G.1)

The conservation of mass of a system is given by the following definition

Definition 12. Conservation of mass
The mass of a closed physical system will be for all times a constant and thus has
a vanishing time derivative,

Dm
Dt

= 0. (G.2)

The definition of the conservation of mass uses the material derivative
D/Dt as explained in chap. H. In eq. G.1 the mass is substituted by the
continuous density function ρ (xi, t) by using

dm = ρ (xi, t) dV. (G.3)

With eq. G.3 the eq. G.1 changes to

m =
∫∫∫
V(t)

ρ (xi, t) dV. (G.4)
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G. Mass and Conservation of Mass

Similar statements can be made for an arbitrary continuous function f (xi, t).∫
M

f (xi, t) dm =
∫∫∫
V(t)

f (xi, t) ρ (xi, t) dV. (G.5)

The material time derivative of eq. G.5 becomes

D
Dt

∫
M

f (xi, t) dm =
D
Dt

∫∫∫
V(t)

f (xi, t) ρ (xi, t) dV. (G.6)

For a continuous function the material derivative can be taken into the
integral, as shown for the right side of eq. G.6

D
Dt

∫∫∫
V(t)

f (xi, t) ρ (xi, t) dV =
∫∫∫
V(t)

D
Dt

f (xi, t) ρ (xi, t) dV. (G.7)

For the problems which are discussed in this work the assumption is rea-
sonable that the density is homogeneously distributed over the whole body
and is not a function of time, so

ρ 6= ρ̂ (xi, t) and ρ = const. (G.8)

Using eq. G.8 in eq. G.7, the integrand on the right side of eq. G.7 is
changed to∫∫∫

V(t)

D
Dt

f (xi, t) ρdV =
∫∫∫

V

D f (xi, t) ρ

Dt
dV +

∫∫∫
V

f (xi, t) ρ
DdV
Dt

. (G.9)

The right side of eq. G.9 posses only integrals over fixed volumes. The fur-
ther deductions are applied on a constant reference volume V0, for which
it is valid that

dV = JdV0 (G.10)

and the material time-derivative will be
DdV
Dt

=
DJ
Dt

dV0. (G.11)

In both equations (eq. G.10 and eq. G.11) appears the functional determi-
nate J = ∂xi

∂ξ j
. Introducing eq. G.10 and eq. G.11 into eq. G.9 leads to∫∫∫

V(t)

D
Dt

f (xi, t) ρdV =
∫∫∫

V

D f (xi, t) ρ

Dt
JdV0 +

∫∫∫
V

f (xi, t) ρ
DJ
Dt

dV0

=
∫∫∫

V

(
D f (xi, t) ρ

Dt
+ f (xi, t) ρ

∂ui
∂xi

)
dV. (G.12)
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The right side of eq. G.12 has to be equal to zero, according to eq. G.2. Fur-
ther we are interested in the mass flow through a certain surface f (xi, t) =
A (xi, t) and the density ρ can be taken in front of the integral in eq. G.12
and the whole equation can be divided by ρ, leaving

0 =
∫∫∫

x

(
DA (xi, t) ρ

Dt
+ A (xi, t) ρ

∂ui
∂xi

)
dx

=
∫∫∫

x

(
∂A (xi, t) ρ

∂t
+

∂A (xi, t) ρ

∂xi
ui + A (xi, t) ρ

∂ui
∂xi

)
dx.(G.13)

or in the differential version of eq. G.13

0 =
∂A (xi, t) ρ

∂t
+

∂A (xi, t) ρ

∂xi
ui + A (xi, t) ρ

∂ui
∂xi

. (G.14)
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Appendix H

Material Derivative

The following relation can be found in books about fluid mechanics, i.e.
the book of Hutter49 or Spurk.39 The material derivative is symbolically
given by

D ( f (xi, t))
Dt

(H.1)

and represents the time derivative of a flow property f (xi, t) in the mate-
rial coordinates ξi (xi, t). For the most fluid mechanical studies it is more
convenient to use the field coordinates xi (t). With the field coordinates
the material derivative is written as

D ( f )
Dt

=
∂ f (xi, t)

∂t
+

∂ f (xi, t)
∂xi

ui. (H.2)
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Appendix I

Improved Mass Balance

In the following section the newly stated mass balance is deduced.
Starting with eq. G.14 under the assumption of the incompressibility (stated
in chap. 5.2) eq. G.14 can divided by the density ρ, thus

0 =
∂A (xi, t)

∂t
+

∂A (xi, t)
∂xi

ui + A (xi, t)
∂ui
∂xi

. (I.1)

The next step is to describe the flow in the CaBER experiment in cylindrical
coordinates xi = [x, r, ϕ], so eq. I.1 is rewritten into

0 =
∂A (xi, t)

∂t
+ u

∂A (xi, t)
∂x

+ ṙ
∂A (xi, t)

∂r
+

1
r

∂A (xi, t)
∂ϕ

+ A (xi, t)
1
r

(
∂ (ur)

∂x
+

∂ϕ̇

∂ϕ
+

∂ (ṙr)
∂r

)
. (I.2)

As postulated in the assumption of the symmetry and assumption of the
cylindrical shape in chap. 5.2, the filament should be strictly cylindrical.
This assumption further reduces eq. I.2 to

0 =
∂A (xi, t)

∂t
+ u

∂A (xi, t)
∂x

+ ṙ
∂A (xi, t)

∂r
+

+ A (xi, t)
1
r

(
∂ (ur)

∂x
+

∂ (ṙr)
∂r

)
. (I.3)

Further the previous cited assumptions also require that the cylinder is not
only rotational symmetric to the x-axis but also symmetric to the r − ϕ-
plane in x = 0. This assumption reduces eq. I.3 to

0 =
∂A (xi, t)

∂t
+ ṙ

∂A (xi, t)
∂r

+ A (xi, t)
1
r

(
∂ (ṙr)

∂r

)
. (I.4)
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I. Improved Mass Balance

The last term of eq. I.4 is analysed by using the rules for partial differentia-
tion and the equation for the cross-section area A (xi, t) and its derivative*:

∂ (ṙr)
∂r

=
∂ṙ
∂r

r +
∂r
∂r︸︷︷︸
=1

ṙ

=
∂ṙ
∂r︸︷︷︸
=ε̇2

r + ṙ. (I.7)

Using eq. I.7, eq. I.6 and eq. I.5 in eq. I.4 it is obtained, that

0 =
∂A (xi, t)

∂t
+ 2πrṙ + πr (rε̇2 + ṙ) . (I.8)

As a final step to the solution of the eq. I.8 the focus lies on the time-
derivative of A (xi, t) which can be written as

∂A (xi, t)
∂t

=
∂πr2

∂t
= 2πrṙ. (I.9)

Substituting the first term on the right side of eq. I.8 by eq. I.9 leads to

0 = 2πrṙ + 2πrṙ + πr (rε̇2 + ṙ)

= 5πrṙ + πr2 ε̇2. (I.10)

In eq. I.10 only the elongation rate in r−direction ε̇2 is unknown, because
the radius r (t) is accessible via measurements and therefore its time-deriva-
tive ṙ is calculable. Based on this, a new equation is found determine ε̇2,
as

ε̇2 = −5
ṙ
r

. (I.11)

In chap. 5 ε̇2 is named ε̇new, in order to avoid confusion with the index
for the coordinate direction and in order to highlight its new derivation
within this thesis.

* The cross-section area of a cylinder is found to be

A (xi , t) = πr2, (I.5)

∂A (xi , t)
∂r

= 2πr. (I.6)
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Appendix J

Surface Tension

This section handles the definition of the surface tension in a similar way,
as found in many textbooks.39, 265, 273, 274 One property of liquids is the
possibility to form a free surface and in combination with this they exhibit
the phenomenon of surface tension. From an atomistic point of view the

(a) (b)

Figure J.1. – Intermolecular interaction of molecules of a liquid. If the
molecule M is (a) in the bulk of the liquid and (b) if the molecule M is
on the surface of the liquid.

creation of a free surface with an respective surface tension is based on
intermolecular interactions. A single molecule, called M, located in the
middle of a liquid is surrounded all around by similar neighbours N (see
fig. J.1a). Thus, M has the same attracting forces F from all sides. If the
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J. Surface Tension

same molecule M is located on the surface of the liquid (see fig. J.1b) the
interaction of forces is different, because towards the surface there are no
molecules which can interact with M. Thus, M has a force which pulls it
back to the bulk of the liquid. This introverted force is the reason why
liquids tend to minimize their surface in order to minimize the amount of
force.
In a macroscopic view the vector of surface tension σΓ,i can be described
as the factor of proportionality between the capillary force Fcap,i and the
according line element ∆l,

Fcap,i = σΓ,i∆l. (J.1)

The vector of surface tension σΓ,i is defined by the capillary constant* Γ
which depends on the pair of the two fluids and the normal vector ni of
the line segment on the surface plane.

σΓ,i = Γni. (J.2)

If the surface is stationary then the tangential component is zero.

* Also named surface tension.
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Appendix K

The Young-Laplace Equation and its
Application on a Cylindrical Body

Young and Laplace independently derived an equation for the balance be-
tween the surface tension and the inner stresses of a fluid droplet. This is
in accordance to the surface tension which was explained in the previous
chapter (chap. J).

For an ideal spherical droplet with the radius r, Young275 and Laplace*

found that the inner stress σ11 is in balance with the surface tension Γ, as
postulated via

σ11 =
2Γ
r

. (K.1)

This eq. K.1 is derived by balancing the energy which is needed to change
the volume of the droplet dWV and with the energy which is needed to
change the surface dWS. Both changes in energy are given by

dWS = ΓdA and (K.2)

dWV = σ11dV. (K.3)

* Pierre Simon Marquis de Laplace (b23. March 1749 in Beaumont-en-Auge, France;
d5. March 1827 in Paris, France) was a French physicist and mathematician.5
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K. The Young-Laplace Equation and its Application on a Cylindrical Body

The changes in surface and volume of a sphere is geometrically* given by

dA = 8πrdr and (K.6)

dV = 4πr2dr. (K.7)

By using eq. K.6 and eq. K.7 in eq. K.2 and eq. K.3 the Young-Laplace equa-
tion of eq. K.1 is obtained.

K.1 Application of the Young-Laplace
Equation on a Cylindrical Body

Chap. 5 explains the importance of the balance between inner stresses and
the surface stresses during the CaBER experiment. An equation as formu-
lated by Young and Laplace is needed. Only the constraints of the CaBER
experiment have to be obeyed. This means that instead of an ideal spher-
ical drop of a fluid, there is now a slender cylinder of a fluid under inves-
tigation.† In the following the complete derivation of the Young-Laplace
equation for a cylindrical body‡, in the further called cylindrical Young-
Laplace equation, is given. As for the ordinary Young-Laplace equation
(eq. K.1) the energy of change of the surface WS,c and the energy of change
of the volume WV,c have to be balanced.

For this the incremental change of the surface dAc,i and the incremental
change of the volume dVc,i are used. To obtain the equations for the incre-
mental changes the surface Ac and the volume Vc of the cylinder as given
by eq. K.8 and eq. K.9, have to be differentiated in terms of all important

* Formulate the derivatives of A and V of a sphere with respect to r.

A = 4πr2 and (K.4)

V =
4
3

πr3. (K.5)

† To the author is no literature source known which states the Young-Laplace equa-
tion for a cylindrical body. However, by means of its simplicity there surely should
be one.

‡ An additional index c is added to the physical quantities, e.g. WV ⇒WV,c
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K.1 Application of the Young-Laplace Equation on a Cylindrical Body

coordinates i = [r, z].*

Ac = 2πr2 + 2πrh and (K.8)

Vc = πr2h. (K.9)

The incremental changes in r-direction are given by

dAc,r = 4πrdr + 2πhdr and (K.10)

dVc,r = 2πrhdr. (K.11)

With the eq. K.10 and eq. K.11 the energies of change for the r-coordinate
are given by

dWS,r = ΓdA

= Γ (4πrdr + 2πhdr) and (K.12)

dWV,r = σ22dV

= σ222πrhdr. (K.13)

By setting eq. K.12 equal to eq. K.13 the first of the two equations of the
balance of the forces for this problem is obtained

dWS,r = dWV,r

Γ (4πrdr + 2πhdr) = σ112πrhdr

Γ
(

2
A
h
+ πr

)
= σ22 A. (K.14)

In eq. K.14 the cross-sectional area A = πr2 is used. Further simplifications
of eq. K.14 are possible if the assumed slenderness of the cylinder, meaning
r � h, is taken into account:

Γ (πr) = σ22 A. (K.15)

The second equation of the balance of the forces is derived by studying the
changes in z-direction. The incremental changes in z-direction are given by

dAc,z = 2πrdz and (K.16)

dVc,z = πr2dz. (K.17)

* The angular coordinate ϕ can be neglected due to the rotational symmetry of the
problem.
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With the eq. K.16 and eq. K.17 the energies of change for the z-coordinate
are given by

dWS,z = ΓdA

= Γ2πrdz and (K.18)

dWV,z = σ11dV

= σ11πr2dz. (K.19)

By setting eq. K.18 equal to eq. K.19 the second of the two equations of
balance for this problem is obtained

dWS,z = dWV,z

Γ2πrdz = σ11πr2dz

Γ2πr = σ11 A. (K.20)

For the CaBER experiment with the added measurement of the axial force
F the eq. K.20 has to be extended by an additional term. This is conducted
by assuming that external axial force F is balanced by the inner stress and
the surface tension, like

σ11 A− Γ2πr = F. (K.21)
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Appendix L

Technical Drawings

In this part the technical drawings which have been used to built the new
experimental device are shown. Fig. L.2 shows the drawings for the parts
of the NoForGE as used in chap. 3.

Figure L.1. – Technical drawing of the exchangeable geometry of the
CaBER, fig. 5.7.

Fig. L.3 shows the drawings for the parts of the sharkskin die-2 as used in
chap. 4. Fig. L.4 and fig. L.1 are showing the drawings for the parts of the
normal force geometry for the CaBER as used in chap. 5.
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L. Technical Drawings

(a) (b)

(c) (d)

Figure L.2. – Technical drawings of the parts of the NoForGe, fig. 3.6.
(a) replaceble geometries, (b) upper flange, (c) geometry lower shaft
and (d) ARES adapter.
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(a) (b)

(c)

Figure L.3. – Technical drawings of the parts of the sharkskin die-2,
fig. 4.7. (a) upper half die, (b) plug box plate and (c) lower half die.
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L. Technical Drawings

(a) (b)

(c) (d)

Figure L.4. – Technical drawings of the parts of the CaBER, fig. 5.7.
(a) adapter, (b) lower shaft, (c) upper shaft and (d) head of the shaft.
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Appendix M

A Short Genealogical Tree of this Work

The science named rheology and the knowledge about polymers are rather
young (less than 100 years), as written in chap. 1 and chap. 2.4. However,
the fundamentals needed for the understanding of the rheology of poly-
mer melts reach back to the 17th century, fig. M.1.
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M. A Short Genealogical Tree of this Work

Figure M.1. – Time-line of famous scientist. The grey bars are indi-
cating the lifetime of each scientist. The dashed line marks the year in
which the Society of Rheology was founded (1929).
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