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Abstract

One goal of ubiquitous and pervasive computing is to enable devices to adapt
to the contexts and activities of the individuals interacting with them through a
process called context or activity recognition. However, humans are social and
spend most of their time in groups, and the behavior of the group is fundamentally
different than the behavior of each individual in it, referred to as “emergent
behavior” in social psychology. As the number of devices and users increases,
using infrastructure and server-side processing for recognition becomes infeasible
due to state space explosion and the “curse of dimensionality.” As a result, peer-
to-peer (P2P) methods for detecting this behavior within the network of sensing
devices are needed.

Machine learning and classification are demonstrably effective for recognizing
the behavior of individuals based on wearable sensing devices, especially accele-
rometers. However, systems which recognize contexts and activities of groups of
individuals are required in order to support the needs of the group. The mobile
devices we carry present an optimal platform, but aggregating data from the mul-
titude of embedded sensors which observe behavior can congest networks. P2P
approaches are attractive but challenging, since the behavior of the group cannot
be observed at any single location. The challenges are (1) to understand the data
which is required for recognition, (2) to detect different groups who may be in
the same environment, and (3) to recognize the physical behavior or activities of
the group, all in a P2P fashion. Furthermore, all of this must be done while (4)
respecting the limited resources and primary functions of the sensing devices, e.g.
mobile phones.

The contribution of this dissertation consists of the following:

• A formal definition of group activity recognition and differentiation from
multi-user activity recognition.

• Methods for using vibration sensors to reduce the power consumption of
physical activity sensing.

• Methods for reducing the consumption of the recognition toolchain using
prediction for dynamic sensor selection.

• An analysis of different abstraction levels for sensor observations with respect
to group activity recognition.

• Algorithms for detection group affiliation in P2P networks of mobile, wearable
devices.



• Algorithms for inferring emergent group behavior in P2P networks of mobile,
wearable devices.

This dissertation presents novel methods for reducing the power consumption of
the machine learning tool-chain for recognition of human behavior in distributed
systems. First a vibrational sensor is investigated with respect to its potential for
activity recognition. The sensor proves useful for recognizing activities with high-
frequency vibrational components such as riding a bicycle, as well as activities with
impacts or concussions, such as walking or jogging. The approach consumes 50
times less than an accelerometer and samples high motion frequency information
(3− 8 kHz) which the accelerometer can not. Methods for online sensor selection
using the predictability of human behavior are explored, which can greatly reduce
the energy footprint of activity sensing without sacrificing the accuracy of recogni-
tion. By predicting likely and unlikely activities for the immediate future, sensors
required to differentiate unlikely activities can be turned off to conserve energy.
Thereby energy savings of around 85% - 90% where achieved in turn for a loss of
1.5 - 3 percentage points of recognition accuracy

To approach the problem of distributed recognition of emergent group activities,
the level of abstraction at which to fuse individual behavior information into group
information is evaluated. Here power consumption and accuracy of inference is
explored for using local features, local behavior classes, as well as unsupervised soft
and hard clustering as the basis for inference of group activities. Using single-user
activities saves 40% of power consumed by communication, but causes a 47% loss
in recognition effectiveness due to technical issues Unsupervised clustering has
a high potential, reducing energy consumption by 36%, while only causing 2.8%
reduction in recognition rates. The unsupervised clustering abstraction level is
therefore used as the abstraction level of choice for this dissertation.

Using unsupervised clustering of behavioral observations, statements can be
made about the behavior of a group, based on distributed observations of individual
constituents. A method using the Jeffrey’s divergence of behavioral clusters and P2P
communication called divergence-based affiliation detection (DBAD) is introduced,
whereby group affiliations can be detected in multi group environments. When
compared to a centralized approach, the DBAD reduces power consumption by up
to 43% while maintaining affiliation detection rates and at the same eliminating
the need for centralized resources. A method for using distributed probabilistic
inference with loopy belief propagation (DPI-LBP) is presented which allows
emergent group behavior to be recognized by the distributed network, further
reducing energy consumption without the need for infrastructure. Again it is
shown that performance is comparable to monolithic approaches, while reducing
overall impact on the power consumption of the devices by up to a factor of 40.
Local processing and memory usage increase slightly, but are well within tolerable
boundaries.
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The combined contribution is a methodology for practical recognition of groups
and their emergent behavior in a P2P network of mobile phones. Applications are
foreseen in adaptive intelligent environments, social networking, crowd monitoring
and possibly even crowd management in emergency situations.
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Deutsche Zusammenfassung

Eines der Ziele von Pervasive-Computing ist es, anhand mobiler und tragbarer
Geräte, die Kontexte und Aktivitäten individueller Nutzer und Träger, zu verstehen.
Dieses Ziel wird durch den Prozesses der so genannten Kontext- oder Aktivitäts-
erkennung erreicht. Das Problem hierbei ist, dass das Verhalten eines Menschen
in einer Gruppe ein grundlegend anderes ist, als das Verhalten der Gruppe selbst
-auch „emergentes“ Verhalten“ genannt. Mit der stetig wachsenden Anzahl von
Geräten und Nutzern steigen auch die zur Erkennung benötigten Ressourcen ex-
ponential, verursacht durch die Zustandsexplosion und dem sogenannten „Curse
of Dimensionality”. Dies führt dazu dass es fast unmöglich sein wird, diese Daten-
menge an einem Ort zu verarbeiten. Aus diesem Grund werden Peer-to-Peer (P2P)
Ansätze benötigt, da diese das Verhalten innerhalb des Netzwerks von mobilen
und tragbaren Sensorgeräten erkennen können.

Maschinelles Lernen und Klassifikation, auf Basis von Sensoren in tragbaren
Geräten- insbesondere durch den Einsatz des Accelerometer, haben sich als effek-
tive Werkzeuge zur Verhaltenserkennung einzelner Personen erwiesen. Um die
Wünsche und Bedürfnisse einer Gruppe zu erfüllen, müssen die Kontexte und
Aktivitäten der Gruppe erkannt werden, was durch die Erweiterung dieser Ansätze
möglich wird. Für diesen Zweck stellen mobile und tragbare Geräte eine optimale
Plattform dar. Die Aggregation dieser Daten jedoch, kann zu Überlastung der
Infrastruktur führen. P2P-Ansätze sind attraktiv aber herausfordernd. Denn es
ist nicht möglich, durch die Beobachtung der einzelnen Menschen unabhängig
voneinander, auf das Verhalten der Gesamtheit zu schließen. Die Schwierigkeit
ist es (1) mit einem P2P-System zu verstehen, welche Daten benötigt werden um
Gruppenaktivitäten im Allgemeinen zu erkennen, (2) verschiedene Gruppen und
Gruppenzugehörigkeit zu identifizieren welche sich ggf. in derselben Umgebung
aufhalten sowie (3) das Verhalten und die Aktivitäten der Gruppen zu verstehen.
Dies alles muss unter Beachtung der (4) begrenzten Ressourcen und primären
Funktionalität der mobilen Geräte, beispielsweise Mobiltelefone, realisiert werden.

Der Beitrag dieser Dissertation besteht aus:

• Einer formalen Definition der Gruppenaktivitätserkennung und einer Unter-
scheidung zwischen dieser und einer Mehrbenutzeraktivitätserkennung.

• Methoden zur Verwendung von Vibrationssensoren mit dem Ziel, den Strom-
verbrauch der physikalischen Aktivitätsabtastung zu verringern.

• Methoden zur Verbesserung der dynamischen Sensorselektion durch Aktivi-
tätsprädiktion um den Stromverbrauch der gesamten Aktivitätserkennungs-
werkzeugkette zu verringern.



• Einer Nützlichkeitsanalyse der verschiedenen Sensordatenabstraktionsebenen
zur Gruppenaktivitätserkennung.

• Einem Algorithmus zur Gruppenzugehörigkeitserkennung in P2P-Netzwerken
mit mobilen und tragbaren Geräten.

• Einem Algorithmus zur Gruppenaktivitätserkennung in P2P-Netzwerken mit
mobilen und tragbaren Geräten.

In dieser Dissertation werden neuartige Methoden vorgestellt, welche den Ener-
gieverbrauch der Werkzeugkette zur Erkennung menschlichen Verhaltens reduzie-
ren. Zuerst wird das Potential eines Vibrationssensors zur Aktivitätserkennung
untersucht. Dieser Sensor erweist sich als nützlich zur Erkennung von Aktivitäten
hochfrequenter Bewegungskomponenten wie z.B. Fahrradfahren oder Aktivitäten
mit Aufprall wie Joggen oder Gehen. Dieser Ansatz verbraucht 50-mal weniger
Energie als ein Accelerometer und tastet hochfrequente Bewegungsinformation
(3− 8 kHz), welche außerhalb des Messbereichs eines Accelerometers liegen ab.
Es werden Methoden zur Sensorselektion in Echtzeit vorgestellt, welche die Vor-
hersagbarkeit menschlichen Verhaltens zur Reduzierung des Energieverbrauchs
nutzen ohne auf Genauigkeit der Erkennung zu verzichten. Dies geschieht indem
wahrscheinliche und unwahrscheinliche Aktivitäten in naher Zukunft vorhergesagt
werden. Sensoren welche nicht benötigt werden, schalten sich aus, wodurch der
Energieverbrauch um 85% - 90% verringert wird, bei einem geringen Genauigkeits-
verlust von nur 1,5 - 2 Prozentpunkten.

Als nächstes wird untersucht welche Abstraktionsebene von Sensordaten die
von einzelnen Gruppenmitgliedern erzeugt werden, sich am besten zur Erkennung
von Gruppenaktivitäten eignet. Hier liegt der Fokus auf der Austauschbeziehung
zwischen Energieverbrauch und Genauigkeit der Gruppenaktivitätserkennung,
auf Basis von lokalen Signalmerkmalen, Einzelaktivitätsinformationen und nicht-
überwachtem Hard- und Softclustering auf verschiedene Abstraktionsebenen. Die
Verwendung der Aktivitäten von einzelnen Gruppenmitgliedern spart 40% der
Energie durch weniger Datenverkehr ein, reduziert aber die Erkennung um 47%
aus technischen und praktischen Gründen. Nichtüberwachtes Clustering weist ein
hohes Potential auf, in dem 36% der Energie eingespart wird mit nur 2,8% Erken-
nungsverlust. Aus diesen Gründen wird in dieser Dissertation das nichtüberwachte
Clustering als Abstraktionsebene verwendet.

Durch Clustering der verteilten Verhaltensbeobachtungen der einzelnen Grup-
penmitglieder, können Aussagen über das gesamte Gruppenverhalten getroffen
werden. Hierzu wird eine Methode vorgestellt, genannt „Divergence-Based Af-
filiation Detection” (DBAD), welche Verhaltenscluster und P2P-Kommunikation
benutzt um Gruppenzugehörigkeit zu identifizieren. Verglichen mit zentralisier-
ten Instanzen, verringert DBAD den Stromverbrauch um bis zu 43% ohne die
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Erkennungsraten großartig zu verändern, eliminiert dabei aber die Notwendigkeit
eines zentralen Systems. Anschließend wird eine Methode zur Erkennung der
Gruppenaktivität der detektierten Gruppen in einem System vorgestellt, anhand
verteilter probabilistischer Inferenz mit „Loopy Belief Propagation“ (DPI-LBP). Es
wird erneut gezeigt, dass die Erkennungsperformanz vergleichbar ist mit einem
zentralisierten monolithischen Ansatz, der den Energieverbrauch auf den Geräten
verringert, diesmal um den Faktor bis 40, und es keine Notwendigkeit mehr für
zentrale Instanzen und Infrastrukturen gibt. Lokale Berechnungen und Memory-
Verbrauch steigen geringfügig, liegen aber für moderne Geräte immer noch im
Toleranzbereich.

Der Gesamtbeitrag dieser Dissertation ist ein ganzheitlicher Ansatz um auf prak-
tische Art und Weise die Erkennung von Gruppen und deren emergentes Verhalten
in P2P-Netzwerken durchzuführen mit Hilfe von mobilen und tragbaren Geräten.
Die Anwendung dieser Methode ist vorgesehen in adaptiv intelligenten Umgebun-
gen, sozialen Netzwerken, Beobachtungen von Menschenmengen und eventuell
auch Management von Menschenmengen und Menschenmassen in Notsituationen.
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introduction

The number of devices with which we interact on a daily basis is constantly
increasing. So too is the complexity and utility of each device. However, their
combined impact is leading to cognitive overload and interruptions [29], rather
than the sum of the utility of each device. This overload is partially due to the fact
that these devices require explicit input from us in order to behave as we want
them to.

Automating this process presents a challenge because what we want from the
device, i.e. the correct device behavior, is dependent on our current situation. For
example, whether a mobile phone should ring or not is dependent on whether
the situation we are in allows it or not, for example when having lunch vs. in
a meeting [2]. Devices must therefore be aware of our situations and contexts
(context aware or context sensitive) in order to be able to behave correctly without
requiring explicit input from the user [17]. To become context aware, devices must
perform context recognition, which is the process of discerning different situations
from each other, based on available sensor input.

This thesis concerns itself with a subset of the field of context recognition called
activity recognition. Although this is a well established field, definitions of what
constitutes an activity are inconsistent and conflicting in the literature. Here an
activity is defined as the following:

Activity: a human situation (context) with physical motion characteris-
tics.

Activity recognition is then defined as:

Activity Recognition: the process through which a device can discern
different activities based on sensor observations.

1.1 group activity recognition

As the amount of instrumentation in our environments increases, devices no longer
deal with a single user, but interact with multiple users at once. As such, technology
must now be able recognize the activities and contexts of groups of individuals, as
well of single subjects. One good example is the field of intelligent environments,
where ambient appliances such as projectors, HVAC and lighting are shared by all
users, and interactive surfaces such as whiteboards and table tops where multiple
users use the same device at once. Multi-user, multi-device interaction calls for
devices to be aware of the context and activity of the group, rather than just the
individual. A group can simply be defined as the following:

Group: two or more individuals connected to one another by social
relationships [10].
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1.2 the thesis of the dissertation

70% of all people in public spaces are there as part of a group [22]. Moreover
“virtually all the activities of our lives [...] occur in groups rather than isolated
from others” [10]. Recognizing these group affiliations would allow applications
to provide automated support, such as sharing or tagging. However, the privacy
preferences of the group are highly affected by the context and activity of the
group [37]. Here group activity recognition can allow applications to assess the
group activity and context information, permitting estimation of other conditional
parameters.

Since mobile devices, specifically smart phones, are becoming ubiquitous, they
represent an intriguing platform for detecting the group activities. These devices
accompany many individuals at all times and contain many sensors, as well as
communication, processing and memory capabilities. Furthermore they are devices
with which we interact often. However, mobile devices serve a different primary
purpose, whose functionality must be preserved.

1.2 the thesis of the dissertation

On one hand, a group is simply a collection of individuals in spatial and temporal
proximity, bound together either by physical boundaries as is the case in smart
spaces, or by social ties or common goals [10]. The collective behavior of the
group is not just the sum of the behavior of each individual, but rather is emergent
behavior [3] as a function of the actions, interactions, and internal states of each
individual [20]. I define emergent behavior following Kurt Lewin’s field theory as
the following:

Emergent Behavior: the properties of the behavior of the group are dif-
ferent (but not necessarily greater) than the properties of the individual
behavior of the group members, or the sum of that behavior [20]

In animals, this is called swarm behavior, where simple rules which homogeneously
govern the behavior of each individual can lead to complex emergent behavior of
the group [31]. In humans however, individual reactions, interactions and mental
states are not homogeneous across all group members, further increasing system
complexity.

J. H. Steward states that “systems of the higher level do not consist merely of
more numerous and diversified parts,” and that it is therefore “methodologically
incorrect to treat each part as though it were an independent whole in itself” [30].
The implication is that the distributed system of mobile devices must collabora-
tively estimate group behavior by incorporating and fusing observations of many
participants of the group. This is further complicated by the vast differences be-
tween group members. Also, group members may come and go at any time, taking
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introduction

with them both their influence on the group behavior, as well as the computation,
sensing and memory of their mobile devices.

The general approach to activity recognition is conducted as follows. Distributed
sensors are used to monitor certain parameters of the physical world which are
affected by the activity, such as on-body accelerometers, or situated motion sensors
[26]. Characteristics called features which are pertinent to these activities are
extracted from those sensor using signal processing techniques. Using either
classification or clustering algorithms, these features are fused into an indicator of
the activity or behavior being conducted [33].

Client-server architectures have been shown to have many advantages for con-
ducting activity recognition using a web-service based approach [2]. The advan-
tages come through being able to offload processing and optimization from mobile,
battery-powered devices to remote server locations. The remote location also
has access to data from multiple users, sensors or observations, giving it a better
vantage point and allowing for cross-user optimization and crowdsourcing [2].
However, there are some situations in which a client-server system architecture for
activity recognition is not advantageous.

These situations can be described in terms of their circumstances which fall into
three categories [14]. The first is when the bandwidth required to communicate
behavior observations to a server is expensive, where the cost associated can be
monetary, energy, or simply bitrate saturation. The second is when connectivity
between mobile sensing devices and server infrastructure is intermittent, meaning
data cannot always be delivered to the recognition apparatus. Thirdly, systems
which are designed for offline deployment also cannot rely on remote servers. These
conditions will be discussed further in the requirements analysis for distributed
GAR in Chap. 4.

The thesis of this dissertation is to explore the practicality of recognizing emer-
gent group behavior (physical activities) using mobile devices. The goal is to
use the mobile devices as a distributed system for sensing, processing and memory.
Each device is capable of monitoring one subject within the group using its local
sensors. Collaboratively, the distributed platform must be sentient of the emergent
activities of the group of human individuals wearing the devices.

1.3 challenges for gar

I can now define group activity recognition as a combination of the socio-psychological
aspects, human activity recognition and the conditions under which it must occur:

Wearable Group Activity Recognition: an estimation of the emergent
group behavior generated by the states and interactions of individual
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1.3 challenges for gar

Figure 1.: Group activity recognition using peer-to-peer, ad-hoc, mobile, wearable
devices

members obtained through sparse wearable sensor observations of the
distributed states and environments of the individual members.

This definition will be further explored in Chap. 3 with respect to the consequences
for algorithmic approaches. The thesis of this dissertation now becomes clearer
in terms of how to perform GAR under these conditions, while also observing
the restrictions of mobile devices. Based on the conditions under which GAR
must be performed and the requirements for operation on mobile phones, a set of
challenges emerges. These questions are addressed in this dissertation, although
not exhaustively as the field of wearable GAR is introduced here, but in no way
concluded.

Challenge 1 - Low Power: Under normal circumstances, GAR is not the primary
function of the user’s device [11, 12], although it could become primary in an
emergency situation [37]. If the battery is dead the device will be of no use, and if
it has negative effects on the usability of the device by drastically reducing battery
life it will be rejected by the user and also be of no help. The challenge is to perform
GAR, while reducing the incurred power consumption as much as possible.

Challenge 2 - Data Abstraction Level: Group activity information is extracted
from sensor signals at distributed locations, therefore information will have to be
communicated and fused across multiple devices [13]. The more processing occurs
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introduction

before communication, the higher the abstraction level of the data [28]. A higher
abstraction level means the data has a more symbolic nature and is smaller in
size, as opposed to a numerical nature for lower abstraction levels. Processing to a
higher level of abstraction reduces the volume of the data and therefore the cost of
communicating it, but also discards information which may be of value for group
activity recognition [13]. How much abstraction is appropriate before fusion for
GAR must be evaluated.

Challenge 3 - P2P Group Affiliation Detection: When attempting to recognize
group activities, the individual constituents of the group must first be defined
[15]. In intelligent environment scenarios this may simply be the set of subjects
interacting with, or contained within, the instrumented environment. However
if two groups are within the same environment, or if a crowd contains multiple
groups, the affiliation of individuals must be identified [25]. While group affiliation
detection (GAD) is a different task than GAR, it is also subject to similar constraints
and must therefore be addressed.

Challenge 4 - P2P Group Activity Recognition: Due to the nature of human
groups, devices may fail, users come and go, connectivity may not be reliable,
and bandwidth restrictions can prove critical. Connectivity to a server cannot be
guaranteed, and neither can the extraction of sensor observations from the users to
a remote location in a reasonable period of time [19]. Therefore, the system must
be able to process distributed sensor observations to recognize group activities
without relying on external resources, nor assume that any task will be performed
reliably by a different entity [14]. In other words, the process of GAR must be
conducted in an ad-hoc, P2P fashion by the mobile, wearable devices themselves.
An analysis of the technical requirements for this challenge will be further explored
in Chal. 4.

1.4 the contribution

The contribution of this dissertation is the methods, algorithms and documented
experience to address these 4 challenges for achieving GAR using mobile devices.
The use of a new type of sensor for observing physical behavior is introduced.
Using the sensor for activity recognition requires new data processing methods
which are presented and the advantages and limitations of the technology are
shown. Each sensor can sense different behavioral parameters with varying costs
in terms of energy. Methods for reducing consumption by taking advantage of
the inherent predictability in most scenarios are presented. These methods are
evaluated with single-user applications, but are also applicable for GAR.

Single-user activities are evaluated as a component of GAR, and the optimal
abstraction level for GAR is explored. The energy and accuracy tradeoff for GAR
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1.5 application areas

in distributed systems is evaluated using sensor features, single-user activities and
unsupervised single-user activity clusters as the data basis. Features are expensive
to communicate, but provide optimal recognition accuracy. Using single-user
activities recognized with supervised learning techniques can theoretically also
produce high recognition for GAR levels with low energy cost. However, selecting
the correct activities requires behavioral experts and labeling of both group and
single-user activities in parallel, which is a complex and high-effort task. Using
unsupervised clustering provides high recognition levels, relatively low power
consumption, and eliminates the need for experts and doubly labeling.

Using the unsupervised clustering abstraction level, a method for evaluating
group affiliations of multiple subjects in a P2P network is presented. Looking at
the divergence of instantaneous distributions over features between two subjects
provides an indicator of “social proximity” between group members. To calculate
this divergence, only cluster parameters must be exchanged between P2P nodes.
A method for filtering this proximity over time is presented which results in an
indicator of group affiliation which can then be classified to detect groups. Once
group members have been identified, methods for inferring the group activity in a
P2P network are presented. By iteratively propagating beliefs through the network,
nodes converge to the correct decision over time. Beliefs can be learned at training,
either using linear regression over posterior distributions of clusters between nodes,
or expectation using the most likely cluster at a given time.

1.5 application areas

Emergent and swarm behavior has long been studied in the animal kingdom. Many
different animals display emergent behavior [31, 24] such as flocking in schools
of fish or flocks of birds, or complex emergent intelligence among insect hives
[8]. Monitoring of emergent herd or flocking behavior, for example migrant bird
flocks, can be crucial for understanding these populations, and therefore also for
their preservation [9]. However restricting their operation to instrumented areas
is not an option, making connectivity a luxury which is often not available, or
very limited by the technology [6]. In-network recognition of emergent flocking
behavior could therefore alleviate the need for remote connectivity by reducing the
amount of information which must be communicated, or allowing this estimation
to be carried out autonomously.

Intelligent environments are instrumented spaces in which human beings work
and interact, containing “myriad devices that work together to provide users access
to information and services” [7]. The goal is to assist the users as much as possible
in accomplishing their tasks and goals. Through the fundamental concept of
ubiquitous computing, this goal can be best accomplished by allowing the devices
themselves to blend into the background of the environment, and allowing users
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introduction

to intuitively and implicitly interact them [34]. Execution of this goal can only be
carried out implicitly through context and activity recognition [27].

As people almost always carry out their business in groups [10], and the group
behavior and context is fundamentally different from the contexts of the individuals
[20], it follows that these environments must also be aware of group contexts
and activities [5]. However as the number of devices involved in this process
grows as predicted [34], the amount of data to be processed also explodes, a
phenomena called “the curse of dimensionality” [23]. In-network processing of
context information to a higher, more abstract level can reduce the volume and
dimensionality of this data [28], therefore promising the potential to alleviate these
problems.

Recently research into life-logging applications has resulted in the “quantified
self” movement [32]. Applications are now available for individuals to track their
own movements, activities and activity levels. Approaches must respect privacy
to maintain clientele who will not surrender such personal information without
trusting the service provider. But, since most time is spent in groups, observing
only the device’s user will inevitably not contain the full emergent picture. The
contribution here allows social groups to be detected and then using a P2P network
of group devices, log the emergent activity as well without behavioral information
leaving the group. For individuals interested in sharing information over social
networks, automated sharing would also be possible. Here a single user can share
the emergent group activity without disclosing the identity of other members if
wished, and even without knowing or requiring their identity at all.

Groups of people can scale to crowds, where understanding crowd behavior can
be critical for both safety and security reasons. Smaller groups within the crowd
represent social structures [1], and members will maintain proximity to each other
during emergency situations [21]. This information is vital when trying to avert
human tragedy, as any solution which requires the cooperation of the individuals
in the crowd must maintain these structures [36]. Otherwise, instructions will be
either partially or entirely ignored, or even disobeyed. Intuitively, understanding
the situation and activity of the group is also necessary. Depending on the situation,
certain instructions may be more or less likely to be followed [25].

Research has shown that emergency situations coincide with the worst possible
conditions for infrastructure of all kinds [4]. Cloud and server-based solutions are
inherently dependent on a communication infrastructure and therefore cannot be
relied upon for the prevention or mitigation of dangerous situations. However,
emergencies are situations in which knowledge of group activity in realtime can
indeed be useful and has the potential to avert or ameliorate tragedy [16, 18, 35].
Recognition of emergent crowd and subgroup behaviors within the network of
their sensing devices can provide a method for reducing the strain on infrastructure
of these processes.

8



1.6 dissertation structure

While crowd safety and security is a compelling application area, that research
requires special experimental approaches to collect crowd data which are outside
the scope of this dissertation. The exploratory research and methods presented
here are designed to be scalable, theoretically to perform under crowd conditions,
but an explicit evaluation of scalability or crowd activity recognition is not part of
this work.

1.6 dissertation structure

The composition and structure of the content of this dissertation can be seen in
Fig. 2. I begin by giving a formal definition of GAR, and differentiate between
multi-user activity recognition (MAR) and single-user activity recognition (SAR)
in Chap. 3. In this chapter it is also reasoned why it is not logical or plausible to
give a definition of “group activities” as such, but rather only what is necessary to
recognize a given behavior (SAR, MAR or GAR).

Chap. 2 gives an overview of the work done in the new field of GAR using
wearable sensors. Here the areas of research on which GAR builds are described,
such as MAR and SAR techniques. Also research from other disciplines into group
behavior and theory as well as other recognition techniques using different sensor
modalities are discussed.

Chap. 4 presents a requirements analysis for how to tackle Challenge 4 (P2P
Group Activity Recognition), looking at problems that have to be addressed. Here
focus is on algorithmic properties, as well as upper and lower bounds for processor
load and memory distribution, as well as communication volumes.

Chap. 5 looks at reducing the power consumption footprint of activity sensing.
A novel vibration sensor is introduced, as well as methods for integrating that
sensor into activity recognition. Energy savings can be achieved from using the
new sensor due to its low consumption, and the novel sampling method allows the
processing framework to be duty cycled, working towards addressing Challenge
1 (Low Power). That challenge is further addressed in Chap. 6 which researches
reducing the energy consumption of local acquisition of activity information.
Future activities are predicted, allowing sensors which are not likely to be required
to be turned off, saving energy without reducing the accuracy of local single-user
recognition. This reduction allows the fusion to global group activity recognition
to be conducted at a lower cost by reducing the cost of the information input into
the process. While Chaps. 5 and 6 are evaluated for SAR, the results can also be
applied to MAR and GAR as well.

Using single-user activities as recognized using SAR is also investigated as input
for GAR inference. The trade-off between power consumption and communication
volumes is further explored in Chap. 7. There Challenge 2 (Data Abstraction
Level) is addressed by exploring GAR accuracy for different degrees of data
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abstraction produced by mobile devices. The fact that the abstraction question
is researched in an energy-aware fashion also addresses Challenge 1 indirectly
as well. This GAR system and experiment is conducted using a distributed, P2P
recognition system of mobile devices, addressing Challenge 4 (P2P Group Activity
Recognition). However, the system presented in Chap. 7 does not completely fulfill
the requirements put forth in Chap. 4and is only a research tool.

Challenge 3 (P2P Group Affiliation Detection) is addressed in Chap. 8, where a
novel method is presented for detecting group affiliation using P2P wearable mobile
technology. The method models local data from each user, allowing neighboring
nodes to compare models with each other and assess similarity using those models.
This method also addresses Challenge 1 by reducing the volume of data which must
be communicated for affiliation detection, and thereby the power consumption of
the detection process as well.

In Chap. 9, Challenge 4 (P2P Group Activity Recognition) is addressed by a
method for inferring group behavior using mobile P2P devices. This method uses
the optimal abstraction layer obtained in Chap. 7 from each node within the group.
These nodes can be selected using the group affiliation information ascertained in
Chap. 8. The method uses locally abstracted information to infer group behavior
while meeting the requirements set forth in Chap. 4.

The cumulative contribution of this dissertation is the definition and introduction
of a new field of research, namely group activity recognition (GAR) for emergent
group activities using wearable sensors. The main challenges of the field are
defined, and initial research into the requirements and nature of these challenges
is presented, indicating that a viable approach must be implemented in a peer-
to-peer fashion without using infrastructure or relying on external resources.
The challenges are addressed step by step in such a way as to enable the goal
of GAR using P2P wearable mobile devices. While the research contribution
does not exhaust the solution space to these challenges, nor does it guarantee
an optimal result, it defines and introduces the research are of wearable GAR
and provides a road-map for continued research towards practical solutions in
emergency situations.
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2.1 human activity recognition as a field of computer science

Early approaches to activity recognition appeared in the 1980’s, where early de-
scriptions used the term plan recognition [32] or action recognition [59] in the fields of
knowledge discovery, artificial intelligence, computer vision and robotics. Portable
accelerometers had already been developed and were being used in the medical
community to quantify energy expenditure [57]. Later on it was also shown to be
an effective tool compared to standard approaches for quantifying expenditure
[11].

Early publications on recognizing context in the field of mobile and ubiquitous
computing sensed user location to recognize context [54, 5]. However it quickly
became apparent that more information is required about a user than simply their
location to infer context [46]. The usage of low level sensors for context interaction
and activity recognition was proposed, and personal digital assistant (PDA) was
used to implement context-sensitive interaction [45].

Using machine learning to model and recognize physical activities opened the
field of activity recognition in computer science [3]. Wireless sensor nodes were
used initially for recognition [47], where extremely limited resources are the main
limiting factor and low-power methods gain importance [6]. As smart phones with
embedded sensors become ubiquitous, focus shifts towards using these devices as
the sensing platform [23]. The issue is to conduct the process of activity recognition
accurately without affecting the primary functions of the mobile device [34]. Often,
remote server-side resources are used to lighten the resource load for mobile
devices by offloading training and optimization [8].

A recent tutorial on human activity recognition describes the problems which are
being addressed [13]. From a machine learning standpoint, the common challenges
are intra-class variability, inter-class similarity, and dealing with segments which are
not one of the classes to be recognized, called the NULL class problem. They state
the specific challenges for creating an activity recognition system as defining the
diverse activities which should be recognized, handling the problems created when
certain activities are performed more often then others, and collecting correctly
labeled data for training. A solid description of the activity recognition toolchain,
a survey of recognition methods and scenarios, and sensor positioning as well as
rates achieved is also presented [13]. Of the surveyed works, recognition rates
varied between 68.5% and 99.7%.

A recent publication with the goal of surveying the field of wearable activity
recognition has also been presented [35]. Here the challenges for application
design issues have been expanded on. Sensor selection is a main challenge, where
activities have physical attributes, and selecting sensors which can observe those
attributes is crucial for accurate recognition. The survey focuses on environmental
sensors, acceleration sensors and location sensors as possible solutions. Other
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important issues are obtrusiveness, where the system should not require the subject
to change their behavior, closely coupled with the data collection methodology
and classifier training. Achieving high accuracy is also important as it defines
how useful an activity recognition system can be, but the system must also remain
flexible to changes in a subject’s life, and to applications involving new subjects
as well. Finally, the processing paradigm is also a question, either locally on the
phone or elsewhere, which has implications for the final challenge, namely the
energy consumption of the mobile app.

2.2 group dynamics: the psychology and sociology of groups

Donelson R. Forsyth states that “virtually all the activities of our lives — working,
learning, worshiping, relaxing, playing, and even sleeping — occur in groups rather
than isolated from others” his work on Group Dynamics [21] which serves as the
basis for this section. For example, 70% of the time we spend in public places is
spent inside of a group structure [40]. Both privately and in the workplace, we
spend large amounts of time in groups, which help us accomplish tasks, achieve
goals, and satiate the social aspects of our human nature. Here we define a
group following Forsyth as “two or more individuals who are connected to one
another by social relationships,” although admittedly there are numerous other
but similar definitions [21]. When observing these groups throughout the private
and professional lives of individuals, the average size is usually between 2 and 3
individuals [30]. These groups have a natural tendency to gravitate towards smaller
sizes, down to the minimum of two individuals [24]. These groups can be social
groups, committees, chat partners, or any host of congregations where members
identify with each other and share social connections.

Groups have certain characterizations and properties which can be observed.
Since the definition of a group is based on social connections, it is clear that there
will be a certain level of social interaction between group members along these
connections. Bales [1, 2] proposes that these interactions fall into two categories.
The first is task interaction where members interact based on topics of group
projects, tasks and goals in order to accomplish these. The second is socieoemotional
interaction, which is not focused on practical aspects, but rather on strengthening
the group’s social connections, bonds and norms. This later type of interaction
creates an interdependence of group members on each other in terms of their
emotions, task and goal outcomes, and even survival [52].

Each group also has a certain structure which emerges from individual interac-
tions. This structure is made up of roles which are described as “a coherent set
of behaviors expected of people who occupy specific positions within a group”
[21]. These roles can be characterizations of functional tasks or position behavior
such as ’follower‘ and ’leader‘, and also social roles such as ‘encourager’ and
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‘compromiser’ [7]. The behavior expected of each role and member of the group
emerges with the structure in the form of emergent norms which define correct and
incorrect behavior for group members. The individual behavior of group members
conforms to meet these emergent norms, a phenomena which was demonstrated
using groups of children [9, 10]. This information proves insightful later on for the
purposes of detecting groups and affiliations, as will be shown in Chap. 8.

Groups perform better than individuals at accomplishing goals which is why
“much of the world’s work is done by groups rather than individuals.” Having
common goals is therefore also a group characteristic. One of the reasons for this
are the bonds between individuals of the group. The stronger these pairwise bonds
are, the higher the cohesiveness of the group becomes. If the bonds are weaker,
the group as a system begins to disassociate and approach a natural entropy state
of smaller group size or dissolve completely [17]. However, the cohesiveness of the
group is stronger than the strength of the individual bonds, due to psychological
effects such as feelings of belonging or unity [25]. During times of panic, these
bonds are maintained and it has been shown that groups display affiliative behavior
under stressed conditions [39].

Tuckman [50, 51] proposes to view the life-cycle of groups as that of an organism
and presents 5 discrete stages. The first is forming where members of a group
come together and begin to interact, followed by storming which is a phase of
conflict where members vie for power within the group. the third stage is norming
where conflict subsides and behavior norms and roles emerge and are established.
A role is a “coherent set of behaviors expected of people who occupy specific
positions within a group” [21]. the definitions of role behavior is also an emergent
process, where the roles are generated by the group during the norming process
[7]. In social psychology, the role descriptions or labels are very abstract and do not
pertain to physical behavior, such “encourager,” “compromiser,” or “harmonizer.”

Next the next stage in the group life-cycle is the performing stage where the now
structured and normed group sets about reaching goals and completing tasks, after
which in the adjourning stage the group dissipates when it is no longer required.
In the context of this dissertation it would appear that each stage exhibits different
behavior and must therefore be modeled separately. However, this thesis focuses on
the ‘performance’ stage to narrow the scope, as here the applications for assistance
are easier to identify and assistive systems focus on supporting productivity here.

This view of a group as an organism is validated by the fact that groups display
emergent characteristics. Inevitably, observing only the individuals in the group
without a holistic view of the group, results in loss of information [21]. Indeed,
even human perception of group behavior, or entitativity, the basis for all research in
Group Dynamics, follows the Gestalt laws, indicating that the entity is indeed not
just the sum of its parts. The concept of emergent group behavior was formalized
by Kurt Lewin who proposed that the behavior of a group is a function of the
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individuals and their interactions with each other and their surroundings in his
field theory of group dynamics [36]. He proposes the principle of interactionism which
assumes that:

B = f (P, E) (1)

where group behavior B is a function of the personal characteristics P of the group
members and social environmental parameters E. “According to Lewin, whenever
a group comes into existence, it becomes a unified system with emergent properties
that cannot be fully understood by piecemeal examination” [21].

Lewin states his holistic view of groups along the lines of Gestalt theory “that
a dynamic whole has properties which are different from the properties of their
parts or from the sum of their parts,” also emphasizing that “the whole is not
‘more’ than the sum of its parts, but it has different properties” [36]. This serves as
the basis for the definition of emergent group behavior introduced previously in
Chap. 1, where the resulting behavior of the group, produced through the personal
characteristics of individuals and their interaction with their social environment,
has different characteristics than the ‘sum’ of the individual behaviors.

J. H. Steward continues further stating that “systems of the higher level do not
consist merely of more numerous and diversified parts,” and that it is therefore
“methodologically incorrect to treat each part as though it were an independent
whole in itself” [48]. Lewin also draws a similar conclusion that observation of
individuals to obtain information of the group is not the best procedure. However,
he surmises that perfectly detailed observations of all aspects of individual behavior
of all group members would allow emergent properties of group behavior to be
reconstructed [36]. The implications is that the group must be observed as an
entity and organism in an of itself, in addition to observations of individual group
members. In this thesis I explore creating a distributed discrete estimator of
physical group behavior based on incomplete observations of the physical behavior
of individual group constituents.

2.3 modeling emergent behavior

Complex behavior of swarms of animals and insects is generated by simple interac-
tions between the agents within the swarms [43, 19, 33]. within computer science, a
great deal of research has been conducted on how to generate this emergent behav-
ior using multi-agent systems [19, 33], as well as more recently how to discover the
simple social rules based on complex group behavior [22, 31, 37, 20]. These areas
of research are focused on observing swarm behavior, either to evaluate correctness
or effectiveness of modeling systems [27], or as input for deducing governance
rules to model the individual agents in the swarm [22, 31, 37, 20].
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Emergent swarm behavior is also present in groups of human beings [49] and
is generated as a result of social rules and individual interactions within the
group. The difference being, however, the level of complexity governing the social
interactions between humans [12], as opposed to swarms of ants or fish [27] for
instance. A further difference, is that the humans (or their devices) within the
swarm or group may themselves be interested in observing the swarm or group
behavior which is being generated through emergent processes.

Here the research direction is to infer the resulting emergent group behavior
generated by complex social interactions of the group members. This differs
fundamentally from other forms of research into emergent swarm behavior, which
is either simulates/generates swarm behavior given rules which govern individuals,
or tries to infer individual rules given emergent swarm behavior. The current
hypothesis is to infer or estimate discrete classes of emergent swarm behavior
based on observations of individual behavior of group or swarm members. The
approach which will be followed is to explore HAR techniques with respect to
applicability to GAR problems as these have proven successful for recognizing
activities [3, 53] and interactions [4] of individuals in the past.

2.4 recognition of emergent group behavior

Video systems have been shown to perform well for recognizing emergent behavior
of groups [38]. Environments are instrumented with video cameras and use
communication infrastructure to monitor human subjects. The cameras provide
information on both the individuals, their interactions, and the resulting emergent
group behavior which is useful for both detecting groups and recognizing their
behavior [14]. However, environmental instrumentation as well as the reliance on
infrastructure presents a disadvantage under some conditions as will be discussed
in Chap. 4.

A similar advantage of sensing both individuals and the emergent group behavior
simultaneously can be obtained using microphones [26]. Monitoring individuals’
verbal interactions has been shown to pick up small cues in conversations indicative
of the type of interaction [16] as well as the role of the actors within the group [18].
Using both role and interaction information, different types group properties can
be inferred such as the result of conversations or the amount of inter-departmental
communication within an organization [42]. Environmental microphones for audio
monitoring can break down as the number of individuals or groups in the same
environment increases and the research there is focused on diads and triad-sized
groups where the emergent result of binary interactions are easier to model [58].

Wearable motion sensors on the other hand have higher user-fidelity, independent
of the size of the group, even up to the crowd level [44]. The first wearable
application sensing group behavior was documented in 1992 where a system was
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used to identify only the presence of groups from office behavior and interactions
[54]. For organizational analysis, wearable systems can be used to analyze these
structures and extract both individual characteristics such as personality traits
[41], finding behavior differences and outliers [28], as well giving insight into the
organizational structure as a whole [15]. Wearable systems have been shown to be
useful in identifying group characteristics such as group affiliation [55] and crowd
conditions such as pressure and density [56]. The aforementioned approaches
are focused on centralized infrastructures for extraction of information, which
under some circumstances can lead to technical difficulties or even failure [29].
While wearable systems have been used to recognize crowd and group properties,
and individual properties as affected by group interactions, appropriate methods
for identifying emergent group behavior from observations have not yet been
introduced and are presented in this thesis. In Chap. 4 a requirements analysis
finds that in order to be applicable to real-world situations, such an approach
would have to be P2P in nature. Therefore the research in this dissertation follows
that course as well.
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defining group activity recognition

3.1 abstract and context

In this chapter the definition of single user, multi-user and group activity recogni-
tion is presented and formally defined. The distinction is also made between be-
tween cooperative recognition, where remote observations can be used to improve
recognition accuracy, and collaborative recognition, where remote observations are
required for differentiation. The distinction between collaborative and cooperative
recognition presented here is only a necessary one when addressing the distributed
recognition or modeling of behavior. Since this is a new new field, it is not defined
by related work, but is the contribution of this chapter and is used throughout
the dissertation. Recognition of emergent group behavior is shown by definition a
collaborative GAR problem, where information from multiple nodes must be fused
for accurate recognition. The content of this chapter is based on an invited article
in the Journal of Mobile Networks and Applications [7].
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3.2 single-user , multi-user and group activities

In this work we differentiate between single-user activity recognition (SAR), multi-
user activity recognition (MAR) and group activity recognition (GAR), which are
all forms of human activity recognition (HAR). The research here is focused on
wearable systems, but results should be generalizable to other approaches such
as video or audio recognition systems. These terms, specifically MAR and GAR,
have been multiply defined across related work, sometimes synonymously [13]
while other times defined in a contradictory manner by different works (compare
[8] and [10]). Here a new definition of MAR and GAR is presented with a further
classification into collaborative or cooperative recognition.

For all types of HAR, labels from the label space are usually assigned to areas
of the activity space in such a way as to make the activities for all labels mutually
exclusive. Although this does not have to be the case, overlapping activities create
a different kind of recognition problem which must be addressed.

The spaces for activities and for labels are infinite, and the mapping between
them is subjective [11]. For example, when observing Fig. 3a, one person may
consider it “chopping” and another considers it “cooking”, and two people may
describe the activity “making coffee” very differently. Therefore defining single-
user, multi-user and group activities by making distinctions using labels or activity
names is not a valid approach. We can, however, differentiate between these
concepts by examining what is necessary in order to infer labels based on the
physical characteristics of the behavior. In other words, there is no fundamental
difference between single-user, multi-user and group activity labels per se, but
rather the difference arises only when attempting to distinguish activities from
each other in the process of recognition (SAR, MAR and GAR).

3.3 sar, mar and gar problems

Single-user activity recognition (SAR) is the problem of recognizing what a user is
doing based on sensor measurements taken from that user’s body, possessions or
environment [8]. This can be seen on the left side of Fig. 3a, where the activities of
the single user (subject 1 is “chopping” vegetables) are being monitored. Here, SAR
is only concerned with monitoring environmental parameters directly influenced
by that subject, e.g. body-worn sensors or utensils which they are using.

Multi-user activity recognition (MAR) is the recognition of separate activities
of multiple users in parallel, where two or more users are involved [8]. This is
demonstrated in Fig. 3b, where the system recognizes several activities, one for
each subject.

Group activity recognition (GAR) is the process of recognizing activities of
multiple users, where a single group activity is a (complex) function of the behavior
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3.4 cooperative and collaborative recognition

of each and every user within the group [9, 4]. The activity of the group (crowd)
can be observed as spontanious emergent behavior, generated from the activities
and interactions of the individuals within it [3, 12, 14]. Fig. 3c shows this where
without knowledge of all of the users, it is improbable that the system will infer
the correct activity, as the activities of each user are ambiguous with respect to
the group activities (e.g. “chopping” could be preparation of any meal). Only the
3-equation-problem given by observing all subjects provides enough evidence for
accurate inference.

In the same way that multiple sensors placed on the human body, each sensing
only “arm”, “leg” or “hip” parameters can be used to infer the activity of the entire
person (SAR) [1, 2], we propose that sensing of the actors within the group can be
used to infer the emergent activity of the group as a whole [5, 6]. This is analogous
to treating the group of individuals as an organism in and of itself, rather than the
sum of its parts. Although group activities are to the individuals in the group as
single-user activities to the limbs of the user, the same methods can not necessarily
be applied for distributed approaches. Interactions between humans are far more
complex than those between e.g. “knee” and “hip,” and therefore their relationship
to the behavior generated is far more complex as well. Further research is required
to understand what can and can not be used from SAR for GAR.

3.4 cooperative and collaborative recognition

For MAR and GAR problems we define two distinct classes: cooperative recognition
problems and collaborative recognition problems. Cooperative and collaborative
here do not refer to the type of human interactions occurring between the the users,
but rather the type of interaction required between the subject activity models in
order to recognize behavior.

Cooperative recognition problems are those in which only sensors local to a
single individual are required to infer the activity. Based on these sensors, a
model can be constructed in order to recognize behavior based on readings. This
can be conducted independently of other individuals in the environment. The
activity models, however, may be imperfect which can cause errors in recognition.
Using information about neighboring individuals’s activity (e.g. if one subject is
“chopping” then other subjects may be more likely to be “cooking”) can help to
correct these errors, therefore the cooperative nature of the recognition approach.

Collaborative recognition problems are those in which recognition of the activ-
ity being performed is fundamentally dependent on information from multiple
subjects. This class of problems requires that data from multiple individuals be
fused in order to infer their activity, while not restricting whether or not it is one
activity per user (MAR) or one activity per group (GAR). Since recognition is not
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possible without fusion, meaning activities cannot be modeled without observing
multiple users, this class is referred as “collaborative.”

3.4.1 An Example:

Imagine an indoor track and field area in which we are monitoring activities. Now
imagine a single subject using that track whose activity we are monitoring, and
let’s say he or she can only perform one of three things: “run,” “walk” and take a
“break”. This is a SAR problem since we are monitoring a single subject (see Fig.
3a) and cooperative problem, since sensor information from that user is used to
infer their activity. If they were to be wearing multiple sensing devices, where each
device is not capable of inferring activity on its own, we could then refer to this as
being collaborative SAR problem.

Now imagine the same situation but one more subject enters the track, where the
two do not know each other, are of different skill levels, etc., so that they are not in
any way interacting. This is now a MAR problem (see Fig. 3b) and a cooperative
problem since we are recognizing individual activities for multiple subjects, where
the dependence of each recognition problem is only on the sensors of that subject.

Going one step further, imagine the same situation, except where the two are
now acquaintances and take a “break” together at some point, during which we
don’t know what they do, but only that they do it together. Now the system must
recognize “run,” “walk” and “break” for both subjects (MAR), but because we
cannot be sure if they are taking a break we must now observe both subjects in
order to find out, making this a collaborative MAR problem. Notice how two of the
activities “run” and “walk” do not change, but depending on what you are trying
to distinguish them from, it is either a collaborative or a cooperative problem.

Now imagine the same situation with more users (no effect with respect to
MAR/GAR, cooperative/collaborative), where they are all members of a team,
meaning all individuals perform one of the activities in unison. Combining all
activities together where when every one is walking the single group activity is
“walk” converts a MAR problem in a GAR problem due to the fact that we are
recognizing a single activity for the group, even though the label has not changed
(see Fig. 3c). Similarly, the group activity could be obtained by observing only one
subject, since what he or she is doing is also what the group is doing, therefore it
is a cooperative GAR problem.

Finally, observe the last example where a team performs the activities “run,”
“walk” and “break.” By changing it such that the team takes breaks together but
each individual has a varying skill level such that the activity “walk and run” is
possible, we can fundamentally change the nature of the recognition problem. Now,
all members of the group must be observed since it cannot be assumed that if one
subject is walking then the group is walking and so on. By adding one activity, the
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problem becomes one of collaborative GAR. Once again notice that the difference
between cooperative and collaborative problems is not an intrinsic property of the
activities, but rather of the recognition problem.

In reality, natural group behavior is more complex than the constrained example
would suggest. The labels of interest are those where the behavior is not con-
strained, but rather emergent from the personal characteristics of the individuals
and the group dynamic [4]. By definition, recognition of emergent group behavior
is then a collaborative GAR problem, where only non-emergent behavior can be
recognized cooperatively. The intricacies of collaboratively recognizing physical
group behavior in a distributed system are discussed further in Chap. 9.

3.5 formalization

When observing the definition of MAR vs. GAR and cooperative vs. collaborative
from a Bayesian probabilistic viewpoint, we can now formalize it using the prior
and belief networks. Fig. 4a) shows the factor graph for SAR, where the hidden
variables (activity states) for subject 1 Bs1 ∈ B (shown only as B1 for legibility)
and group behaviors BG are governed by a prior Pr(B). The symbol B is used
to describe the behavior in general, where here the physical properties of that
behavior are of interest for activity recognition. The hidden variables are connected
to the observable variables (sensors) Xs1 ∈ X (again shown as X1 for simplicity) by
the belief Be(X|B). Here X is the set of all observations for all subjects and Xs ∈ X
are the observations for a single subject. Similarly, Fig. 4b) shows the factor graph
for the prior and belief function for collaborative MAR, showing the conditional
independence of both belief functions and priors between hidden and observable
variables. Fig 4c) shows the belief and priors for collaborative MAR, where subject
activities are dependent on information of other subjects.

Fig 4d) shows the factor graph for cooperative GAR. The grayed relationships
indicate a “one-of-each” relationship between the hidden variable and the observ-
able variables, meaning that the posterior p(B|Xs) can be evaluated given any Xs.
Collaborative GAR is shown in Fig. 4e), where the hidden variables are dependent
on all observable variables.

We define B̂ as an estimator over the discrete states of B, or B̂(X), which can be
thought of as the posterior p(B|X) from a probabilistic standpoint. The error for
estimator B̂ given a set of observational data X is defined as the following:

Err.(B̂(X)) =
1
N

N

∑
x=1

bx 6= argmax
b∈B

b̂(x) (2)
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3.6 discussion

Here b ∈ B indicates the individual activity classes, and bx represents the label or
ground truth activity class for a specific observation x. We can now define R or
accuracy of an estimator over a data set R(B̂(X)) as the following:

R(B̂(X)) = 1− Err.(B̂(X)) (3)

We can now define a term ε which describes the degree to which the behavior
recognition rate differs between using local and global evidence: For MAR, this is
using individual behaviors Bs where |S| is the cardinality of s ∈ S:

εMAR =
∑s∈SR(B̂s(Xs))

|S| − R(B̂s(X)) (4)

In other words if the difference between average recognition of all users given the
observations of that user alone and the recognition of all users’ behavior given all
observation data. Similarly for GAR:

εGAR =
∑s∈SR(B̂G(Xs))

|S| − R(B̂G(X)) (5)

Using these tools, we can now formalize the mechanism for differentiating
collaborative from cooperative classification problems. By setting a threshold
θ, we can classify problems with large ε values as collaborative and otherwise
cooperative.

Problem Type =

{
Collaborative, if ε > θ.

Cooperative, otherwise.
(6)

In short, if each node can estimate hidden states “well” based only on local
observations (low ε) the problem is cooperative. If observations from all individuals
are required for estimation, it is a collaborative problem. For defining the difference,
some subjective threshold θ must be set by the observer. Recognition of emergent
group behavior is therefore by definition a collaborative recognition problem,
although not all GAR problems are collaborative. For this reason, ε is also referred
to as the “degree of emergence” of a specific problem, and is used later on again
in Chap. 9. Since a hard categorization into either collaborative or cooperative
problems requires a subjective threshold, and there seems to be no literature
dictating a hard value for this threshold, using “degree” in a fuzzy sense appears
to be a prudent course of action.

3.6 discussion

This begs the question, why are these distinctions necessary? Usually, they are
not of importance to the system used to recognize these activities, as posteriors
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for hidden variables are inferred using priors, belief functions and observed states
of all observable variables. These dependencies can also be modeled explicitly in
order to improve system performance [13].

In this work we address approaching this problem from a distributed point
of view, where the distributed wireless sensing network is also the platform
conducting recognition. Each dependency requires communication between nodes,
as they would otherwise not have access to the states of remote variables for
inference. Interdependency between users for inference must be explicitly modeled
and accounted for, and a distinction between which types of problems require this
communication and which types do not must be made.

Since group activities and multi-user activities can be semantically distinct, there
is no reason why one system would not be able to recognize a mixture of single-
user, multi-user and group activities [13]. Also, there can be certain semantic
overlaps between multi-user and group activities, as some activity labels can be
attributed to the group as an organism, as well as multiple, and individual users,
such as “jogging” for example. Since, however, there are many cases where the
emergent group behavior can not be easily deduced from the single and multi-user
activities, we argue that GAR is a distinct field from both MAR and SAR [5].

A caveat to this distinction is that the difference between cooperative and collabo-
rative problems is in the amount of recognition power gained through the exchange
of information, or lost when information is not exchanged. This is subjective in
that a boundary must be set defining which is which, and is also different from
application to application, as different applications can suffer different losses in
recognition. For now, identifying if a problem is a GAR or MAR problem re-
quires either an expert who can construct a factor graph, or modeling how much
recognition is lost when between the cooperative and collaborative models.

3.7 conclusion

In this chapter the fields of single-user (SAR), mutli-user (MAR) and group activity
recognition (GAR) were defined and differentiated. The goal of MAR is to obtain
the activities of multiple individuals in parallel, where GAR is used to recognize
the activity of a group as an organism, often where the activity of the group is
not directly evident when observing the activity of the individuals independently.
This is given by the definitions of group behavior in social psychology, where the
properties of the group behavior cannot be obtained by a piecemeal examination
of the constituents: emergent behavior [9, 4]. It was also demonstrated that the
differentiation between MAR and GAR cannot be carried out based on the labels
used. The problem is that both the semantic meaning of labels, and the assignment
of labels to activities are subjective and vary from observer to observer.
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3.7 conclusion

Both MAR and GAR can either be cooperative or collaborative, depending on
the activities recognized. For cooperative problems, knowledge of other subjects
can help to reduce error caused by model error or simplicity. Collaborative issues,
however, require exchange of information about other group members in order to
model the activities. However the distinction is still somewhat subjective in that a
threshold is needed to define if information is crucial for recognition or not. The
caveat here is that the difference between collaborative and cooperative is defined
either by an expert, or by the application. Later on in Chap. 9 ε will be used again
to examine the “degree of emergence” of a recognition problem, as emergent group
activities are by definition collaborative recognition problems.
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a requirements analysis for group activity recognition

4.1 abstract and context

In Chap. 1, 4 challenges were presented for achieving P2P GAR using mobile
devices. In this chapter I expand on Challenge 4 (P2P Group Activity Recognition)
and extract technical requirements for conquering this challenge. First, 3 conditions
are described for mobile ad-hoc networking (MANET) scenarios in which P2P GAR
would be advantageous. This occurs when (a) communication with the outside
world is expensive, (b) intermittent, or (c) nonexistent. In this chapter I use example
P2P GAR scenarios under the aforementioned conditions to extract requirements.
The emergent nature of group behavior [13] results in the following requirements
for P2P GAR. The P2P recognition within the MANET must be able to (1) survive
node failures, and (2) recover from rolling failures as well. The algorithm must also
be able to (3) approximate the mapping function for estimation of the emergent
activity, while at the same time (4) preserving the primary function of the device.
It is also demonstrated that failure to observe the individuality or role of the group
constituents will result in an inability to recognize emergent group behavior. Of
these requirements, (1), (3) and (4) are met by the approach presented in Chap.
9, where requirement (2) is left or future work and avenues of investigation are
presented in Chap. 10. The content of this chapter is heavily based on a paper
published in at CONTEXT 2011 [10].
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4.2 introduction and motivation

4.2 introduction and motivation

One of the advantages of P2P-MANETS [19] over structured client-server network
architectures is their ability to adapt to new situations and account for mobility
without drastically increasing complexity. The concepts of situational, context and
activity recognition have been expanded to include ad-hoc mobile networks, such
as wireless sensor nodes and cellular phones. In the ad-hoc network and embedded
systems fields, these approaches have been focused on devices which are capable
of recognizing their local situations and activities of the user. This information can
then be used for local decision making or it can be communicated to a centralized
back-end system with various degrees of preprocessing, compression and data
fusion.

Local context recognition paradigms while being very useful for many appli-
cations [9], stand in contrast to the concept of P2P-MANETs which are used to
monitor distributed systems. In the case of group activity recognition, activities
and contexts can often be emergent in nature [13], meaning a correct decision can-
not be made based on any single measurement within the network. Recognizing
such situations is function of all distributed observations and can therefore not
be factored to independent local decisions [12]. In distributed sensing systems,
transmission of local situational information to a central location allows the system
to recognize global situations and reduces the volume of communication when
compared to forwarding unprocessed data [11].

For fully distributed ad-hoc wireless systems such as P2P-MANETs however,
there is no theoretical, algorithmic or practical support available for global recogni-
tion of emergent activities in related work, which builds part of the contribution of
this dissertation (see Chap. 9). This chapter will begin by identifying environments
and example scenarios for global recognition in P2P-MANETS, extracting a list of
requirements based on those scenarios and examining related work for applicable
methods.

4.3 application scenario

Local activities refer to physical situations occurring in the immediate environment
of a network node, or subset of nodes, which can sense parameters of those
situations. For example the activity of a single subject is local to the device or
devices which they carry on their person. Global activities on the other hand,
occur over the domain of the entire MANET and are not directly measurable at
any one position, but are rather deducible only when confronted with distributed
observations from multiple nodes within the network. Such situations are those
which are emergent in nature, where the global activity differs fundamentally
from local behavior and observations. Cloud or server systems are optimal for the
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recognition, as they can aggregate distributed observations of behavior to create
an observational representation of the emergent group behavior [12]. However,
the necessity to recognize global situations within the P2P network as opposed to
using centralized instances arises under the following circumstances:

sporadic global connectivity These circumstances occur when a dis-
tributed MANET is used for sensing global behavior but the connectivity state
to back-end resources is only intermittently available. A typical application for
this kind of setting is an application called “Landmarke” which provides support
for firefighter teams using P2P-MANETS [20]. This network is deployed in an
environment with unstable communication channel characteristics [22]. However,
despite a connection loss to the central uplink, the individual firefighter should
still be informed about the situation of the entire team, where the meaning of each
activity can only be interpreted in the context of the while.

expensive global connectivity Often the MANET has access to back-end
resources but at an exorbitant price in terms of energy consumption, bandwidth,
delay, etc. In intelligent environments, understanding a group’s behavior can allow
the system to proactively support that group in achieving its goals [11]. As interest
in wearable devices grows, so too does the number of devices carried per person.
The number of sensing modalities on each device is increasing as well, which
combined with the sample rate for each sensor works as a further multiplier for
the amount of data generated per person. This leads to exponential growth in
the amount of data which needs to be processed in realtime known as the “curse
of dimensionality” [2], creating a bandwidth bottleneck where high demand and
low supply increases the cost. Uploading only emergent situations and activities
acquired in the network would greatly reduce the bandwidth consumed [11].

no global connectivity These conditions occur when a network without
uplink must be aware of global situations and act on that information locally
without access to centralized instances. In emergency situations, crowd manage-
ment systems have the potential to avoid human tragedy and reduce the risk to
individuals from both the cause of the emergency, and the resulting behavior of
the crowd [24]. In order to conduct management effectively, such a system must
be aware of the context of the crowd and subgroups within it [18]. However,
infrastructure is often the first casualty of emergencies [3], meaning understanding
group contexts must be conducted completely offline. This also has implications
for the systems managing the emergency, since they must act autonomously to
manage the emergency locally, but require global information for decision making
processes. Automated infrastructure-less crowd management systems must still be
investigated and are the subject of ongoing research [1].
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a requirements analysis for group activity recognition

4.4 requirements analysis

Based on the application scenarios, it is possible to highlight the requirements
which a distributed classification algorithm must fulfill:

Requirement 1 - Survival of Node Failures: In all three scenarios it is clear that
nodes may drop out of the network without warning due to connectivity issues
or node failures. This can also occur without a technical cause, for example when
individuals leave the group. The global classifier algorithm must be able to continue
functioning, even if in an impaired fashion. If there is any single point within the
network whose local failure would also cause the global failure of the network,
then this requirement has not been met.

Requirement 2 - Recovery from Node Failures: Not only must the algorithm be
able to survive failures, it is also crucial that it can recover from these failures,
meaning that successive node replacements do not lead to long term degradation
of the algorithm. This can occur when individuals continually leave the group and
other individuals join, where the group remains constant but the members change
over time. Without this capability the performance of the classification algorithm
would slowly degrade over time as each individual which leaves the group causes
the irreparable loss of a certain amount of functionality.

Requirement 3 - Ability to Approximate the Mapping Function: Each of the
three scenarios represents a different mapping function from the input signals to
the contextual ground truth. Moreover, for different scenarios, the actual contexts
which the system should recognize varies. As a result of this, an algorithm which
would be able to accomplish these tasks must be able to effectively model the
activities (accurate recognition). Due to the emergent nature of group activities,
the model is necessarily a function of observations at multiple devices.

Requirement 4 - Preservation of the Primary Function of the Device: The de-
vices which present themselves for use in global emergent group context or activity
recognition often have a primary function other than GAR. Smart-phones are pri-
marily communication and media devices. Therefore any process which conducts
global context recognition must not severely impact these functions. This refers not
only to the primary concern of power consumption as was already mentioned in
Challenge 1, but also processing time, local memory, communication bandwidth,
and all other aspects which affect the interaction between the user and their device.

4.5 related work

In parallel computing multiple nodes work simultaneously to reduce processing
time compared to a sequential approach. Parallel computing system may be cate-
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4.5 related work

gorized regarding coupling of processing elements (shared vs private memory),
topology (bus, network, etc.), node type (heterogeneous vs homogeneous, process-
ing elements vs autonomous computing entities). Following a categorization of
parallel computing, the proposed distributed MANET classifier is a computing sys-
tem with loosly coupled, network connected self-contained nodes. A brief review
of algorithms from this field showed that these either rely on a central coordinator
[5], [21] or are managed by dedicated scheduling instances [16], failing to fulfill
Requirement 1 (Survival of Node Failures) or building on different conditions and
cost models than MANETs.

Collaborative models and in-network data fusion are one of the most straight-
forward methods for P2P based classification. Therein each node contributes
to a global consensus based on locally recognized situations. However, while
approaches [25, 15] from this field employ different strategies to reach a global
consensus, they are limited in the complexity of the mapping from local input to the
global decision. These approaches observe the state of each of the nodes, and make
a decision about the global situation based on these states, but without observing
the identity or functionality of each node (voting). The global context algorithm
is then only a function quantities of local contexts, in violation of Requirement
3 (Ability to Approximate the Mapping Function) as it can only map a subset of
classification functions (see Sec. 4.6 for a discussion). Since group contexts are
decidedly emergent in nature, their properties are therefore different than those of
each node, or of any abstract sum of node properties [13] (see Def. 1.2). Recently
[23] and [14] presented novel methods of processing context data within the nodes
of a wireless network. However, there the classification is carried out by a single
node, violating Requirement 1 (Survival of Node Failures) and Requirement 2
(Recovery from Node Failures).

In Organic Computing, approaches such as swarm intelligence are distributed
paradigms for solving optimization problems inspired by the biological processes
of swarming, flocking and herding. Various authors from this field, e.g. [6],
[4] present algorithms for the distributed detection and global classification of
situations. However, these algorithms conduct this in a collaborative fashion which
does not support Requirement 3 (Ability to Approximate the Mapping Function),
or use a central unit to perform recognition over a feature map generated in a
distributed fashion which is not reconcilable with Requirement 1 (Survival of
Node Failures). In short, distributed classification approaches from the area of
Organic Computing cannot be directly applied to global situational recognition in
P2P-MANETs.
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4.6 analysis and discussion

Social Role. As individuals come and go, the population of the group changes over
time. Eventually it is possible that a large portion or all of the current members
were not present when the classification algorithms where trained. One way to
account for this is to simply input the data from the current set of individuals
into the existing model for classification. From a practical standpoint, this would
involve appending observational data from each member to build a global vector,
where a new member simply replaces an old member at that location in the global
vector (see Figure 5). However the implicit assumption is that behavior of two
individuals is identical for the same global group activity, which we know is not
the case. Each member has a different role in personal interactions and in the
group dynamic [7] which is dependent on their personal characteristics and those
of the group. The result is then degradation over time of the performance of
the classification approach, which violates Requirement 2 (Recovery from Node
Failures). This leads to the following conclusion:

Lemma 4.6.1 A system which is individual and role agnostic can be modeled by randomly
assigning individual-generated data to classifier inputs at each classification phase.

A possible way to combat this effect would be to train the classifier using random
positions for each partial vector (the data generated by each node) from each object
in the total feature vector. This assumes de facto homogeneity among individuals
as the information gathered from a certain individual can be input at any location
on the feature vector without affecting the output of the classifier. Since the role of
a single individual cannot be modeled, the only functions which can be mapped
by the classifier at learning time are quantity-based functions (e.g. if the majority
is sleeping then the group is sleeping), rather than inferences based on the roles of
certain individuals as to the situation of the whole (e.g. inferences based on the
dominant roles of certain individuals). This yields the following:

Lemma 4.6.2 A classifier with randomized individual-to-input assignments can only learn
mapping functions over input variables which are symmetric such as sums, products or
averages of individual node behaviors.

Unfortunately, functions over the quantities of objects reduces the system to
majority and voting-based collaborative systems [25]. However we know that
group behavior is emergent behavior, where Lewin specifically states that its
properties cannot be observed through piecemeal observation of the individual
members, and that “a dynamic whole has properties which are different from the
properties of [its] parts or from the sum of [its] parts” [13]. Standard classifiers
implicitly learn object roles in the learning process based on the behavior generated
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4.6 analysis and discussion

from a persons characteristics and their role in the specific dynamic. A system in
which these positions are not constant must therefore explicitly account for these
fluctuations. All together, the implication is the following:

Theorem 4.6.3 A global classifier which does not observe the individuality or role of each
of the objects being monitored is only capable of mapping symmetric mapping functions.

The implication is that ignoring individuality and/or role excludes the possibility
of mapping emergent functions, which are a-symmetric according to definition.

4.6.1 Finding the Boundaries

In this section we examine two hypothetical approaches. The examination gives
insight into some of the limits for resource consumption of different distributed
approaches.

Brute Force Method. The simplest solution to the global classifier problem in
terms of complexity is the brute force approach. Each node transmits all locally
generated data required for global context classification to every other node in the
network, and then each node locally classifies the global situation using identical
models. Theoretically, if the classifier is identical on each node, and the data vector
is also identical, each node should locally classify the identical global situation.

The disadvantages include the amount of memory required by each node to
store the entire classifier, the number of transmissions required to transmit all
data generated to every other node, as well as energy consumption due to the
redundancy. On the other hand, the network is extremely stable as failed nodes
do not adversely affect the classification of the rest of the network, as long as the
classifier used can accommodate the variable feature vector length (see [8]). Also,
new nodes which are added to the network must only receive the parameters for
the classifier and be added to the global list of data publishers and subscribers in
order to become functioning members of the new system.

A Connectionist Approach Connectionist methods, (e.g. neural network, multi-
agent system, spatial reasoning, etc.) which involve processors (neurons) and
connections between these processors. This would reduce processor load and
memory required when compared to the brute force approach, though it is initially
unclear what affect this would have on communication between nodes. Such
a method requires time synchronization which is indeed costly in ad-hoc P2P
networks, though it would overcome the convergence issues of [17], and increased
communication could possibly be combated by P2P self-organization. An example
of such a connectionist method for exactly this purpose is presented and evaluated
in Chap. 9.

Another approach would be to distribute the data instead of the execution. This
could be accomplished by adapting instance-based learning methods such as k-
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Table 1.: Resource consumption analysis over the number of nodes (N) for messages
passed, total classifier processing (P) and total memory (M) with memory
for global (SG) local (SL) sensor features

Messages Processing / Memory /
Algorithm Passed Node Node

Worst Cast N(N − 1) P M + SG

Connectionist 2N P/N M/N + SL

Best Case N P/N M/N + SL

Nearest-Neighbors or Self Organizing Maps to be distributed over multiple nodes
along the principle that vectors which are close to each other are also close to each
other in terms of hops. Once again, self-organization could be employed to account
for varying network structure and mobility, but the amount of communication
incurred and the advantages over brute force must be studied.

Resource Consumption Analysis Assuming N peer-to-peer nodes and objects
in the network, and a distributable global classification algorithm with memory
consumption M and processing load P. The brute force approach incurs the full
memory consumption of M and processing load P locally at each node, as the
classifier is redundantly stored and executed. The number of messages which have
to be passed between nodes is N − 1, as each node needs to communicate local
features to every other node in order to build the global feature vector, or N(N− 1)
messages in total. The memory consumption is thereby increased to (M + Sg),
where Sg is the size (length) of the global feature vector.

For a distributed connectionist reasoning approach, assuming each node is an
input, output and hidden processor (e.g. neuron), then each node will have to pass
2 messages. Each processor requires input and generates output, where the input
for the input processors is generated locally, and the output processor is output
locally. In other words, per classification phase 2N messages must be passed by the
system. Local memory consumption is now that incurred by 3 of 3N processors,
where 3N processors can be held in M memory, or M

N , plus the length of the local
feature vector, giving M

N + Sl . Each node must execute 3 of 3N processors, where
the total processing load is P, yielding a load of P

N per node. This indicates that this
approach would reduce memory consumption by M(N−1)

N + (Sg − Sl), processing
load by P(N−1)

N and the number of messages passed by N(N − 3). A comparison
of this information is presented in Tab. 1.

Taking this one step further, we can hypothesize about the lower bounds for
resource consumption in P2P-MANETs. In an optimal situation, each node sends
local information to the exact logical location where it is needed (1 hop), and
the system has no redundancy, indicating that each node transmits 1 message
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per classification phase, for a total of N messages. Also, optimally the system
would distribute the memory consumption M and processor load incurred P
equally across all nodes, yielding M

N and P
N respectively. This indicates that while

being optimal in terms of memory and processor requirements, the connectionist
reasoning approach would still be sub-optimal in terms of message passing by a
factor of 2.

4.7 conclusion

This work began by identifying the need for peer-to-peer classification of global
situations in MANETs such as emergent group activities. The need occurs when
either there is no communication with the outside world, that communication is
very expensive, or a link is only available from time to time. These situations were
elaborated on using group activity recognition in different applications. These
scenarios were then analyzed in order to extract requirements for a peer-to-peer
classification algorithm in wireless ad-hoc networks. The requirements identified
were the ability to survive and recover from node failures, the ability to accurately
map the complex classification function, and the need to respect the primary
function of the device by reducing resource consumption with special emphasis on
conservation of energy. This analysis indicated a further requirement of respecting
heterogeneity of the different objects being monitored as well as the limited power
supply and primary functions of these devices. Hypothetical upper and lower
bounds for processing load, memory usage and communication volumes were
elaborated, and a brute force (upper bound) and neural network (close to lower
bound) approach were examined.

In this dissertation, Chaps. 5 and 6 address reducing the energy consumption
footprint of activity sensing and local processing of individual behavior data,
addressing Requirement 4 (Preservation of the Primary Function of the Device).
Chap. 7 investigates the mapping function and its ability at different abstraction
levels, addressing Requirement 3 (Ability to Approximate the Mapping Function).
The distribution of the recognition algorithm in a fully decentralized manner is
researched in Chap. 9 addressing Requirement 1 (Survival of Node Failures).
However, Requirement 2 (Recovery from Node Failures), or the ability to recover
from node failures and the integration of new group members requires further
research and is beyond the scope of this dissertation. Possible approaches for
accomplishing this are discussed the future work section of Chap. 10.
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5.1 abstract and context

In this chapter the problem of reducing the power consumption footprint of activ-
ity sensing in general is addressed in accordance with Challenge 1 (Low Power).
This research can be applied for all types of activity recognition, SAR, MAR or
GAR, since the sensing aspect of all approaches is identical. In all cases the goal
is to sense the inter and intra-activity differences in the physical behavior, such
that activities can be differentiated from each either through recognition. At the
same time it is important to reduce power consumption in order to address the
challenge of respecting the primary function of the device as detailed previously in
Chap. 4. Here an analysis of the applicability of a novel sensor for the purpose of
activity recognition is presented. The sensor measures vibration and is compared
to the accelerometer which is the standard sensor for activity recognition. The
results indicate that while the novel sensor consumes vastly less than a standard
accelerometer (around 50 times less), it does not sense as much behavior-relevant in-
formation. However, the vibration sensor can sense information about concussions
and impacts which the accelerometer cannot, improving recognition of activities
with these components. These results are generated using SAR experiments but
are none the less applicable for MAR and GAR as well [8, 15]. The content of this
chapter is based on a publication at ISWC 2010, which was nominated for the Best
Paper award that year [4].
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5.2 introduction and related work

Intelligent devices are increasingly expected to recognize their environment and
situations. The most common method of fulfilling these expectations is by using
acceleration sensors which are rapidly becoming ubiquitous in modern day tech-
nology. They are embedded in devices from cell phones and laptops, to every-day
items such as tennis shoes and TV remote controls [3]. Their effects range from
smart phones which are capable of adjusting themselves based on their orientation
to devices that can recognize individual users and situations [3][11][19].

Several applications have already been developed using multiple acceleration sen-
sors worn at different body locations to recognize different activities [2][9][17][18].
Other examples use one single sensor location but multiple sensor modalities to
recognize a variety of activities such as daily routines [19], or a broad spectrum
of activities [3][11][20]. The resulting systems can automatically recognize and
adjust to certain situations and activities without the user having to explicitly input
anything after a training phase. These applications are usually wearable or mobile
and must therefore be energy aware in order to avoid maintenance activity such as
battery replacement or charging.

In this chapter, a new approach to sensory feature creation for activity recognition
in wearable computing is presented. This approach is based on a novel, low-
power vibration sensor system which is used to recognize certain activities and
situations while consuming significantly less power than an acceleration sensor.
Other novel sensors have also been introduced to the activity recognition and
wearable community in much the same way [12, 13, 18]. Here a novel ball switch
is presented as a tool for context recognition. Along with a method for feature
generation and information extraction specifically designed for this type of ball
switch, the strengths and weaknesses of the ball switch in the context of wearable
activity recognition will also be presented.

The vibration sensor is a miniaturized ball switch (Fig. 6), referred to as a
micro-vibrational sensor (MVS) by the manufacturer, available as a commercial,
off-the-shelf device (COTS). A conductive sphere rolls between two charged plates,
closing the circuit in a certain position. With a diameter of 800 µm, the sphere’s
physical properties are different than those in traditional ball switches, especially in
terms of sensitivity even to extremely low-intensity vibrations, as well as sensitivity
in all three dimensions [16].

Initial work done with this sensor indicated that some types of activities generate
vibrations on the human body, and that the novel sensor is especially useful for
detecting these vibrations [7]. This motivated the hypothesis that the better time
resolution of the vibration sensor (over 8000 MVS measurement events per second
have been registered) may outweigh the better data resolution of acceleration
sensors (3 analog acceleration vs. 1 binary vibration value) in some situations.
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Figure 6.: The MVS [16] and schematic

We also hypothesize that maybe useful for detecting impacts and concussions
within some types of activities. The intention of this work is to gain a deeper
understanding of the characteristics of the sensor and its suitability for specific
types of activity recognition.

Traditional ball or tilt switch sensors have been used before to successfully
classify activities [18, 19] based on the evaluation of snapshots from multiple
ball switches (tilt switches) to infer limb position and attitude. An approach
similar to the one presented here was attempted with multiple switch inputs to
a spiking neural network with mixed results [18]. In contrast to the above work,
the system presented here uses a single but more sensitive sensor to recognize
activity information directly extracted from sensing the vibrations on the body of the
subject wearing the sensor. The approach in [18] effectively discards information
generated by the ball switch between snapshots (samples). The novel methods for
feature generation and information extraction presented in this chapter allow us
to perform continuous recognition with high resolution but with very low power
consumption. In this way the dynamics in vibrations can be taken into account
over a period of time with a very fine resolution even at low sampling rates, rather
than relying on snapshots of the system state to recognize activities.

5.3 data analysis and feature generation

In order to evaluate the new activity recognition techniques using the vibration
sensor, sampling hardware was used which simultaneously gathered sensory
data from the MVS and an accelerometer. The experiment utilizes the Akiba
wireless sensor node which conducted measurements using an on-board MVS
micro-vibration sensor (MVS) from Sensolute [16] and an external ADXL335 3D
accelerometer (referred to as the ADXL) board from Analog Devices [1]. Each
axis of the ADXL is directly connected to one of the 10bit-wide A/D ports of the
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Figure 7.: The MVS preprocessing algorithm

processor (Microchip PIC18F14K22 [10]), and the MVS output is connected to the
16bit timer1 input as seen in Fig. 6.

This constellation allows A/D conversion and counting to run independently
of the processing tasks. The sensor node conducted readings from both A/D
(ADXL) and timer1 (MVS) registers at a frequency of 60 Hz and outputted the
measurements to an external memory management unit which logged the data on
a microSD card for further analysis. An in-depth analysis of the sensory device and
memory management unit in terms of energy consumption and sampling methods
can be found in a previous publication [7].

Unlike the signal produced by the analog acceleration sensor, the output of the
MVS is an asynchronous, digital, binary vector as shown in Fig. 7(1). The relevant
information in these signals are the unary transitions between the two states of
the signal. The vibrational data is a time-series of sequential events whose only
important unit is their time stamp, or position on the time line. These events are
signaled by a voltage change on the output pin of the vibration sensor, from zero
to a logical one or one to zero.

In order to be able to recognize a specific pattern within this system, namely a
pattern generated by a certain activity, this signal must be converted into a form
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which can be analyzed using pattern matching and recognition algorithms. To
create such a signal from the time-series, a cumulation method was developed
which creates a wave form from the individual events. This function uses a history
window to construct a wave based on the number of events in that window. The
window is passed over the time line creating a new signal as depicted in Fig.
7(2). This wave, although discrete in nature, can now be treated as a digital
representation of an analog signal, namely the vibration levels measured by the
MVS. In Fig. 7(3), this wave is cut into separate samples to be classified by the
recognition algorithm as to the activity being performed.

5.4 sensor hardware comparison

As mentioned in the introduction, the goal is embedded activity and context
recognition in an ultra-low power wireless sensor node based on the MVS. For
this reason the following power consumption analysis was conducted using the
PIC18F14K22 [10] microprocessor from Microchip R© based on the circuit in Fig. 6.

5.4.1 Power consumption

The ADXL335 3D acceleration sensor was chosen because of its ease of use as well
as its typical power consumption signature. In the data sheet the current drawn
by the sensor is indicated to be close to 425 µA at an operating voltage of 3.3 V.
At that voltage the rate of consumption of the ADXL is PADXL = 1.4 mW. The
schematic for the integration of the MVS 0608.02 shown in figure 6 implements a
3.3 MΩ pull-down resistor and therefore pulls a total current of 1 µA at 3.3 V. This
yields a calculated consumption of PMVS−calc = 3.3 µW.

The MVS has two states as with any switch: ON and OFF. In the ON state
the consumption is PMVS−calc = 3.3 µW, but in the OFF state the consumption
is zero, since no current flows over the sensor. Due to the construction of the
MVS, the sensor is in either state at any given time with a probability of 50%,
meaning that the actual consumption is only half of the calculated consumption, or
PMVS = PMVS−calc/2 = 1.65 µW. This is approximately one full order of magnitude
less than that of the acceleration sensor.

3 ADC operations are necessary to convert the measured acceleration for each
ADXL axis represented in voltage to a digital value, each costing 1.2 ms giving a
total of 3.6 ms when the PIC18LF14K22 is in low power mode, e.g. is clocked at
31.25 kHz. Each ADC read requires 2 MOV commands to transfer the 10 bit values
from the SFR to memory, each costing 1 processor cycle, yields 12 processor cycles.
Each processor cycle requires 4 clock cycles yields a total 1.536 ms per ADC read.
Together, converting an analog value to a digital one and transferring it to specific
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location costs TADXL = 1.536 ms + 3, 6 ms = 4.368 ms. Vibration readings and
cumulation are directly carried out by a hardware component of the processor, the
timer/counter. This is a low power module which operates independently from the
rest of the embedded processor [10]. Reading this value, checking and accounting
for overflow and subtracting the previously read value incurs on average 64 clock
cycles which requires TMVS = 8, 192 ms at 31.25 kHz.

As the processor pulls 15.5 µA, its power consumption is Pproc = 51.15 µW at
3.3 V. One accelerometer measurement lasts TADXL = 4.368 ms with a consumption
rate of Pproc + PADXL = 1.45115 mW. For the vibration sensor, one reading uses
a total of Pproc + PMVS = 54.45 µW. This indicates that the energy required to
sample the MVS is approximately 14 times less than that necessary to sample the
acceleration sensor. The validity of these calculations will be confirmed later in
section 5.5.4.

It is important to note that these values will not scale indefinitely for higher
clock rates of the processor, as there is a ceiling on minimum A/D conversion
time due to capacitor load time, where the MVS wave construction only consists of
processor register operations. This implies that for higher clock rates the ratio of
power consumption between the two sensors will tip even farther in favor of the
MVS, though overall system consumption will increase.

5.4.2 Size and Cost

The physical size of both sensors is also comparable; the MVS has a footprint
of 2.45 mm x 2.85 mm where the ADXL sensor is significantly larger at 4 mm x
4 mm. Both sensors require external circuitry in order to operate properly; the MVS
requires one resister where the ADXL requires 4 capacitors, one for each axis and
one for power stabilization.

The ADXL335 is one of the more costly acceleration sensors at about 5.50 USD
with other comparable models priced as low as 3.00 USD. The MVS on the other
hand is a far simpler sensor and is therefore less expensive. The current cost of
an MVS (version MVS0608.02) sensor is approximately 1.75 USD, so the sensor is
quite competitive, even at the lower end of the acceleration sensor pricing. The
costs of the MVS can also be expected to fall as it is a relatively new device and
increased production run length and volume would further reduce costs. On a side
note, the MVS requires a counter input pin from the processor while the ADXL
uses 3 A/D processor inputs.
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Figure 8.: Subject wearing the Akiba node (top), memory extension and ADXL335
board

5.5 evaluation and results

In order to evaluate the MVS as an activity recognition tool, a case study was
performed involving 8 different everyday activities. The data which was gathered
during the course of the case study and was used for this evaluation are available
on the Internet [6].

5.5.1 Experimental Settings and Parameters

The measurement and logging device described in [7] was used to gather the data
for this case study along with an external acceleration sensor. The measurement
logging device was powered by a plastic battery pack containing two AAA batteries.
The device itself was fixed at the subject’s hip between the belt and the subject’s
pants and the belt was fastened firmly to hold the sensor in place (see Fig. 8).

In total, 5 subjects were used to create a basis for the evaluation. 8 activities were
selected consisting of riding the bus, riding a bike, walking, jogging, riding the
elevator (lift), typing while seated, climbing the stairs and standing at rest. The
subjects performed the selected activities, switching the device on to record and
using a button to delimit activities if necessary, creating a method for annotation
after the fact. During periods where no relevant activity was being performed the
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device was turned off, effectively limiting the data the selected activities. Three
acceleration axes, the ball switch counter, as well as light and temperature sensors
were all sampled synchronously.

The subjects were computer science undergraduate students with technical
backgrounds although not extensively in the field of activity recognition. Each user
performed all activities sequentially, and data collection was conducted one subject
at a time. In total, 142 minutes of data was collected on a university campus from
5 subjects over the course of one week for the evaluative case study.

5.5.2 Activity recognition

The WEKA data mining toolkit [21] was selected for activity recognition for its
simplification of the pattern-matching algorithms as well as its acceptance in
the community [2][3][11][13][14][17]. Specifically, the C4.5 decision tree [14] was
used due to its prevalence in the activity recognition literature using acceleration
sensors [2][11][17] and its suitability for the intended extremely resource-restricted
sensor node platform. Additionally, the IBk k-nearest neighbors and Naive Bayes
classification algorithms were also evaluated in order to provide a comparison
between standard recognition algorithms [5][12].

Using the samples generated by the algorithm in fig. 7(3), a set of features is
generated for each sample which is used to identify the activity. The features used
are identical for both the MVS and ADXL, except for the fact that the acceleration
data generates 3 sets of features, one per acceleration axis. The other features
generated are mean, standard deviation, entropy, area under the curve and FFT-
peaks, since these were often cited as being the most decisive [2][9][11][17][20]. The
three selected classification algorithms were trained by the WEKA toolkit using the
activity feature sets for the vibration data on the one side and the acceleration data
on the other. A sample window size of approximately 1 second with 50% overlap
was selected for the case study and is constant over all classifications.

In order to evaluate the case study, 3 different classification phases were con-
ducted. In the first phase, the classifiers were trained and tested on the data
gathered from all subjects using a 5-fold approach (80% of the data is used for
training and 20% for testing). The intention is to analyze how the classifiers per-
formed if data from all subjects was present at training time. In the second phase,
data collected from 4 subjects was used to train the classifiers, and the data from
the remaining subject was used for testing to provide an indicator of interpersonal
variances in the MVS and ADXL output respectively.

In the final phase, the effect of the MVS as a post-hoc addition to a pre-existing
activity recognition system was evaluated. To show this, a classifier was trained us-
ing the acceleration, light and temperature data of all subjects 5-fold. The C4.5/J48
classifier was selected for this task because of the advantageous property of not
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Table 2.: Results of the evaluation of 8 activities in percent
Phase Type IBk J48 Bayes Average

No. 1
Personalized MVS 46.2 49.2 34.1 43.2
Personalized ADXL 91.9 96.6 65.6 84.7

No. 2
Generalized MVS 36.1 34.0 21.4 30.5
Generalized ADXL 23.0 34.1 53.4 36.8

No. 3
ADXL, Light, Temp. 92.8
ADXL, Light, Temp., MVS 96.6

being affected by junk features, meaning that redundant and useless information is
automatically discarded at training time [14][21]. Then, the same procedure was
conducted again with the addition of the MVS data. The goal of this phase is to
assess how much novel information is delivered to a system when the MVS is
integrated post-hoc, which would not be otherwise available using conventional
sensors.

5.5.3 Classifier performance

The results of the three separate classification phases can be seen in Table 2.
The acceleration sensor performed far better than the vibration sensor in the
personalized classification phase no. 1, with an average classification rate over the
3 algorithms of 84.7% as compared to slightly more than half that value for the
vibration sensor. The results of phase no. 2 indicate that the ADXL only slightly
outperformed the MVS in this phase with a classification rate of 30.5% on average.
In general, the k-nearest neighbors classifier is par with the decision tree, where the
Naive Bayes classifier performed poorly compared to the other classifiers. Phase no.
3 indicates a 4% increase in overall system classification rates from 92.8% to 96.6%
when the ball switch features were included. An activity per activity comparison
between the classification rates of the ADXL and the MVS has been omitted here as
the rates for the ADXL were relatively even across all activities and outperformed
the MVS.

5.5.4 Power measurements

In order to confirm the calculations done in section 5.4, measurements were con-
ducted using a BBC Goerz Metrawatt measurement device in a laboratory setting.
These measurements were performed without the data logging unit. Each sensor
was connected and sampled individually in an endless loop under heavy agitation
to mimic activity, and current flow was measured to quantify power consumption.
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Processor activities performed for the ADXL and MVS were conducted as described
in sections 5.3 and 5.4. In one cycle (sensor measurement, subsequent processing),
an average current flow of 630 µA for the ADXL, and 12.8 µA for the vibration
sensor was measured. At 3.3 V this yields power consumption rates of ca. 2.08 mW
for the ADXL (172.8 J/day) and 42.24 µW for the MVS (3.5 J/day). The lifetime
with a watch-type coin cell (CR1620, 1kJ) would equate to 6 days using the ADXL
and 285 days using the MVS in worst case when assuming 24/7 activity of the user.
These results show that the MVS would reduce the total measured consumption
of the sensor node system by a factor of almost 50 when compared to the ADXL.
The difference between the calculated and measured values (MVS: 2.08 mW vs.
1.45 mW and ADXL: 0.04 mW vs. 0.054 mW) is due to the difference between the
consumption rates of the processor, A/D and timer unit in the preliminary data
sheet and that which was measured. This disparity can either be attributed to
measurement device calibration or a documentation error.

5.6 discussion

5.6.1 Ramifications for activity recognition

The hypothesis made is that the MVS sensor is effective for recognizing high-
frequency events which occur within activities. This is confirmed by Table 3 which
contains the confusion matrix from a personalized classification using the C4.5
(J48) decision tree classifier over the vibration data. The activity jogging contains a
series of periodic concussions (footfalls) which stimulate the MVS. For this reason
jogging was recognized by the system 79.1% of the time, walking 57.6% of the
time and climbing the stairs 47.1%. Another example is the activity of riding a
bike, which when conducted outdoors on an uneven surface (as was the case)
consists of a series of impacts or free vibrations as the wheels encounter obstacles
on the ground, combined with periodic, forced vibrations from peddling. The high
frequency vibrations allow bike riding to be classified over the ball switch feature
generation, yielding a recognition rate of 49.2%.

The results also indicate that the ball switch is not suitable for tasks such as
gesture recognition, which often rely on the relatively low frequencies [13]. This is
especially true when these gesture do not involve impulses, impacts or collisions,
but are rather rounded motions such as waving or swiping. This is evident in the
classification rates for activities which generate low-frequency vibrations such as
standing (6.7%), riding the elevator (26%) and riding the bus (27.1%).

An interesting phenomenon is noticeable when observing the activity of typing,
where a recognition rate of over 90% was achieved. This would appear to indicate
that the sensor is well suited to recognize typing as an activity, when actually this
is not the case. Indeed, what occurred is that when subjects were typing, often
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Table 3.: Confusion matrix in percent from phase no. 1 for the MVS
a b c d e f g h

Bus Bike Walk Jog Lift Type Stair Stand

27.1 6.5 3.7 0.4 10.1 40.9 4.5 6.7 a
9.1 49.2 12.5 0.9 5.5 2.5 17.2 3.0 b
2.1 4.7 57.6 8.4 5.9 0.3 20.8 0.2 c
0.6 0.9 9.9 79.1 1.8 0.2 7.3 0.3 d
7.2 3.6 11.3 1.5 26.0 35.6 10.8 4.0 e
2.6 1.5 0.8 0.4 1.4 90.9 0.8 1.5 f
3.5 7.6 21.9 9.8 9.0 0.6 47.1 0.6 g
5.8 2.0 1.0 0.5 5.2 77.8 1.1 6.7 h

no or very few events were generated by the MVS at all, causing an activity to be
classified as typing during periods of no activity. This is evident when examining
which other activities were confused with typing: standing (77.8%), riding the bus
(40.9%) and riding the elevator (35.6%).

This is due to the fact that these activities generate low-frequency vibrations
which often produce little or no activity from the MVS. As typing is an activity
which consistently produces almost no output, all of the sample features which
do not contain any ball switch events are classified as typing, explaining the high
confusion rates. The implication is that an activity recognition system which is
based on the MVS would benefit by having a “Zero" class into which all sample
windows are classified which do not contain any, or only very few events. This
would differentiate between activity samples which have been classified and those
which simply did not generate enough vibrations to be classified. A possible
method for handling such cases would be to increase the sample and cumulation
window lengths, which under certain conditions would reduce the number of
samples with 0 events, though at the cost of reduced reaction time.

The results of the three-phase classification study demonstrate that the accelera-
tion sensor is capable of delivering quantitatively more information of relevance
for activity recognition when compared to the ball switch. This can be seen clearly
when observing phase no. 1 of the case study where personalized classification
using the ADXL was significantly more successful than the MVS for the same
activities (84.7% compared to 43.2%).

Phase no. 2 on the other hand, indicates that much of this data is largely subject
dependent, making it less useful for a generic monolithic approach to context
recognition. In this phase the performance of the classifiers dropped for both the
vibration and acceleration data, whereby the reduction in recognition rates on
average for the vibration data is significantly less than the acceleration data (29.4%
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Table 4.: The combined insight of this paper
Acceleration Vibration (MVS)

Power 2 mW 42 uW
consumption1

Resolution 3D 10 bit2 1 bit
Size 16 sq. mm 7 sq. mm
Suggested use low-mid. freq. activities high frequency activities

personalized detection unpersonalized detection

1 at 3.3V
2 for most small microprocessors
3 due to slow A/D in small microprocessors. Sensor max is 1.6kHz

for the MVS versus 56.6% for the ADXL). This would indicate that although the
vibration sensor delivers less data than the acceleration sensor, the data is more
generic per activity across multiple subjects.

The results from phase no. 3 show an improvement of over 4% in a 3 sensor
activity recognition system when the MVS is introduced into the system. This
strengthens the assumption that the MVS and the ADXL have complimentary
sensitivity ranges in terms of frequency bands and therefore provide activity data
which is also complimentary in nature with some overlap.

Lastly, the vibrations which are being measured using the MVS are not usually
being generated at that location, but rather these signals must propagate through
the human body before arriving at the sensor. This would indicate that sensor
location is a crucial aspect when using the MVS for activity recognition as each
activity would create a different vibration pattern at a different location, depending
on what types of tissue the vibration propagates through. This would suggest that
classification rates are only valid for the location where the data was sampled, e.g.
are highly location dependent.

5.7 conclusion

This chapter showed the potential of a novel vibration sensor as a tool for contin-
uous, low-power, wearable activity recognition. Table 4 gives an overview of the
characteristics of the vibration sensor system and its use in activity recognition,
and presents a comparison with activity recognition based on a 3D acceleration
sensor.

The MVS is capable of sensing activity data pertinent to standard recognition
algorithms. On the one side, the MVS does not deliver as much information as the
ADXL acceleration sensor. The MVS can be used well to recognize activities which
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contain concussions and impacts such as jogging, riding a bike on uneven ground,
or presumably tapping on a hard surface. Furthermore, the results indicate that
the MVS can generate sensory information which can be better generalized over
multiple subjects using a generic monolithic classifier approach.

Finally, the MVS was evaluated as an addition to existing activity recognition
systems based on standard sensors including acceleration. The results indicate
that the MVS can improve recognition rates while costing one third as much as an
ADXL acceleration sensor, taking up one half the size, and consuming 50 times
less power, addressing Challenge 1 (Low Power). All of this makes the MVS a
resource-effective, simpler alternative to, or extension of, acceleration sensors for
low-power, low-cost wearable activity recognition systems for researchers and
developers. As the acceleration and MVS based recognition performs significantly
better than just acceleration based recognition, there is strong evidence that high-
frequency vibrational signals generated by everyday activities is very useful for
activity recognition, and that the MVS is capable of sampling that information.
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6.1 abstract and context

This chapter concerns itself with Challenge 1 (Low Power) by reducing the energy
cost of embedded, online classification of local, single-user activities. While the
approach itself is monolithic, it is distributed in that it is designed for embedded
recognition and does not require a server. The results reveal that leveraging human
predictability can yield great energy savings while only sacrificing small amounts of
recognition accuracy. On the two data sets evaluated, energy savings of around 85%
- 90% where achieved in turn for a loss of 1.5 - 3 percentage points of recognition
accuracy.

Chap. 7 evaluates the usefulness of these activities for recognizing group activity
compared to features and unsupervised clustering. There clustering is shown to
be advantageous for GAR in some cases, as it avoids the complexity of having to
label both single-user and group activities in parallel, therefore clustering is used
for the GAR approach in Chap. 9. However, the continuing research proposed in
Chap. 9 indicates that the potential applications of SAR methods combined with
GAR could enable inference of the role of an individual in the group dynamic.
It is therefore important to address SAR in the context of GAR to enable further
research, and reducing the power consumption of the SAR process addresses
the power consumption requirement for GAR in Chap. 4. Since SAR can be a
component of GAR, the challenge of respecting the primary function of the device
in Chap. 1 is also addressed.

This chapter is based on a publication at ISWC 2012 [13] which received an
Honorable Mention and was nominated for the Best Paper award. The content
presented here is an extension of that paper which was invited to a special issue in
the Journal of Personal and Ubiquitous Computing [16]. An initial research expose
was presented in the Work in Progress track at PERCOM 2011 [12].
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6.2 introduction

As concepts from pervasive and mobile computing become more mainstream,
the community seeks practical approaches for realizing pervasive technology.
Situation, context or activity recognition techniques provide a method for machines
to recognize human and social situations, allowing them to act proactively without
contradicting or offending their users. Modern devices such as smart phones or
wireless sensor nodes are now able to support these algorithms [29] as processing
power and memory improve over time according to Moore’s Law.

Energy storage in such devices is not subject to the same doubling effects and
is quickly becoming the limiting factor in pervasive technology. This can be seen
clearly when reviewing the battery lifetimes for mobile phones over the past 10
years. The cost of communication in terms of energy consumption is another
factor which does not scale according to Moore’s Law, indicating that for intelligent
wearable applications to be practical, methods for low power situational recognition
must be embedded in mobile devices.

Embedded classification for mobile devices is not a new concept and goes as far
back as 1997 [8], where Bouten el al. used simple signal processing techniques to
measure activity levels of users wearing a mobile device. Several methods for low
power embedded context classification have been introduced in the activity and
context recognition community. Cacmakci et al. [9] and Stäger et al. [28] introduce
straight-forward approaches to low power recognition of contexts and activities in
embedded systems using inertial or audio sensors respectively. Krause et al. [18]
propose to dynamically reduce sensor sampling rates to conserve energy, thereby
greatly increasing battery lifetime. A similar approach was presented by Sun et
al. [30] where coarse-grained activity levels were locally recognized to adjust the
sensor sample rate. Benbasat et al. [2] introduce a method for conserving energy in
a system with redundant sensors which are switched on and off dynamically based
on the level of activity currently measured. Roy et al. [26] use sensor configurations
which are selected for specific activities based on the minimum requirements of an
application. The result of the research mentioned is that there is always a trade off
between how well activities can be recognized, and how much energy it costs to
do it [29, 4].

We conducted a survey of work done in this field (see Sec. 6.3) revealing that
focus is mostly on motion-based sensors, with the accelerometer being the most
popular sensing modality. The survey also shows that initially, research was
focused on custom hardware and sensor network platforms, but recently it has
shifted towards mobile phones. Early methods for low-power recognition began
with systems engineering, but more recently dynamic sensor selection and sample
rate reduction have been the tools of choice. These dynamic approaches often
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use the current activity or activity level as an indicator of the optimal current
configuration, or wake system states hierarchically to conserve energy.

We present a different, novel method for using context (or activity) prediction
to further conserve energy. Many things we do have a certain repetitiveness or
periodicity about them [32], and are therefore predictable to a certain extent. This
information can be used to improve recognition abilities [23]. Context prediction is
the process of using a context history to predict contexts, situations or activities
which will occur in the future [21]. This can be done at several different abstraction
levels [27], ranging from extrapolating raw sensor data into the future, to predicting
abstract concepts such as activities. We propose that it can also be used to reduce
the power consumption of the recognizing device as well.

The idea is simple. Traditionally, all sensors are used constantly even though
certain sensors may only be necessary to detect specific activities. As a result,
energy may be wasted when sensors are enabled which are not necessary to detect
the current activities. Given a scenario where activities are performed in a manner
which is predictable, probable future activities can be forecast. Sensors which are
not needed to decipher probable activities from each other can be turned off (or
the sample rate reduced), conserving energy without greatly impacting recognition
rates. The risk, is that incorrect predictions cause sub-optimal sensor configurations,
further leading to incorrect recognition and prediction.

In this work we propose that by leveraging the predictability of human actions,
it is possible to tip the balance of the energy/recognition trade off to conserve
energy resources without sacrificing recognition rates. We proposed this concept
in a poster [12] and evaluated it initially on a single data set [13]. Since the
initial publication, other research in the field has emerged [34], but an exhaustive
evaluation of system behavior as presented here has not yet been conducted.

The performance is simulated using two preexisting activity recognition data
sets [11, 25], where artificial data sets are generated from these sets in order to
evaluate different scenario parameters. We evaluated the algorithms in terms of
activity recognition rates, energy savings achieved, and the prediction accuracy
with respect to system parameters. The results indicate that the novel approach
allows for application and scenario-specific selection of the recognition/energy
trade off, producing large energy savings, even for small recognition losses (e.g.
recognition losses of 1.5 pp with 84.8% energy savings for first [11], and 2.8 pp and
89.9% for the second data set [25]).

This chapter is structure as follows. A survey of research conducted towards
reducing the energy costs of embedded recognition is presented in Sec. 6.3. In Sec.
6.4 the proposed method and algorithm is presented, including the context recog-
nition, prediction and sensor selection processes. The experiment implementation
and simulation environment is presented in Sec. 6.5, along with a description
of the data sets used and their preparation. Sec. 6.6 contains the results of the
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simulation with respect to energy consumption, classification and prediction values,
the implications of which are discuss in Sec. 6.7. Finally the chapter is concluded
in Sec. 6.8.

6.3 a survey of energy-efficient recognition

For embedded and mobile systems, power consumption is one of the most critical
attributes [18]. We surveyed system approaches for reducing the power consump-
tion footprint of online, embedded activity recognition in order to generate on
overview of this field. To our knowledge, no such survey of applications and
attributes has yet been conducted making this a novel contribution of this work.

The survey was conducted based on following parameters which where deemed
to be of importance for understanding the breadth of the research. Motivation for
these parameters is taken from related work, although the parameters do not cover
the entire design space for such systems.

• Platform: This parameter describes the hardware platform used for recogni-
tion. This information is of importance as it gives the reader an indication of
the amount of resources which are available for embedded recognition. For
example, embedded recognition on a mobile smart phone [3] probably has an
order of magnitude more processing power and memory than an embedded
wrist watch platform [18].

• Sensing Modality: The sensors used for an application give an indicator
of the order of the problem. Sensors have different properties, for exam-
ple an embedded accelerometer has a far shorter startup time and power
consumption [35] compared to a GPS receiver [22].

• Conservation approach: There are several different approaches to the prob-
lem of energy conservation with different affects on other components of the
system. In some of the approaches taken to reducing power consumption,
design choices are empirically explored to find systems which consume less
energy. Other approaches involve designing dynamic systems which adjust
themselves based on the current situation to minimize energy consumption
without violating some quality criteria.

• Control method: of the aforementioned conservation approaches, several
of them dynamically optimize certain parameters, e.g. sensor sample rate,
sensor selection, or execution mode. In order to perform these operations,
the decision process requires some type of input in order to close the control
loop. Here the type of input used to control the conservation approach is
surveyed.
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• Recognition Algorithm: different algorithms are equipped to specific de-
grees for certain problems, therefore posing advantages in certain situations.
Each algorithm is in itself a trade-off between accuracy and processing power.
Certain types can handle missing features and sensors intrinsically such
as nearest neighbors approaches and Bayesian inference [13] while others
such as neural network approaches and decision trees must be specifically
adapted for such issues [3, 30]. The selection of a classifier algorithm therefore
provides insight into the energy/recognition trade-off conducted in the work.

• Application: which contexts or activities are recognized greatly changes the
applicability and general usefulness of the approach. Algorithmic evaluations
are also quite specific to the application domain. It is therefore important
to note in which domain the research was conducted in order to be able to
estimate usefulness in other areas.

• Reproducibility: one of the major issues which we see in this field is the
reproducibility of results. While methodologies and algorithms may be well
defined and formalized, re-implementation is time consuming and effort
intensive. A system is considered reproducible if either 1) the hardware
platform is available for purchase and the code basis is published, or 2) the
data set on which the evaluation was conducted is publicly available.

6.3.1 Physical Attributes

In Tab. 5 the surveyed works are listed with respect to their technical details. As
indicated there, earlier platforms were often custom built proprietary sensor nodes
specially designed for the recognition operation [8, 9, 5, 6, 29], probably due to
the unavailability of standardized sensing devices. Although some more recent
research projects also incorporated some custom hardware [31, 24, 20, 34], a trend
can be seen towards the use of mobile phones [3, 22, 30, 35, 33, 10]. Combinations
of devices have also been used, where mobile phones are selected along with
customized hardware for the recognition task [31, 24, 20, 12, 10].

When observing the different sensing modalities surveyed, it quickly becomes
apparent that the accelerometer is the most popular sensor used. This is not
surprising as embedded activity recognition has a large overlap with the wearable
sensing community, where sensing motion provides great insight [3]. Often the
accelerometer was used alone [8, 9, 3, 35, 33, 1, 12, 10] to recognize physical
activities (see Tab. 6). Other times it was combined with other modalities to better
capture physical signals [5, 6, 18, 2, 29, 31, 24, 26, 30, 13]. Accelerometers are also
used to incorporate physical sensing modalities into other types of recognition
systems, for example video [34] or location systems [22]. The sensors used are
dependent on the application, i.e. the activities or contexts which were recognized,
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in-situ recognition of single-user activities

where the effectiveness of the sensing modality is given by the influence of the
activity on that sensor.

6.3.2 Recognition Attributes

Early systems where exploratory in nature and investigated the performance of
recognition under constrained resources. Here, the focus was on system design,
where the hardware/software architecture was constructed in such a way as to
maintain low consumption using standard algorithms with little or no adaptation
at run time [8, 9, 5, 6, 29].

The effects of reducing sensor sample rate to a reduced but constant value
throughout operation with respect to energy consumption and recognition loss
indicate that for certain applications it can be advantageous [18]. A further improve-
ment can be achieved by adapting the sample rate of the sensors which reduces
their consumption. Adaptive sampling, however, requires a control parameter to
set the sample rate correctly so as not to cause deterioration in recognition rates.
In the surveyed work, this has been done using using some indicator of the current
system state, such as an activity level indicator [2, 30], or an actual recognized
activity [18, 31, 22, 35, 33] or location [19], or a combination of those [22]. This
method is dependent on the sensor modalities (see Tab. 5) with respect to the
warm up times and power consumptions for effectiveness.

A second method for reducing energy is to dynamically select sensors to be
activated or deactivated during a certain period of time [1]. Here again, a method
for selecting sensors for each classification is needed, where Au et al. propose
using the last recognized activity to conduct this. Theoretically, once the sensors
have been activated, there is no reason why methods of adaptive sampling cannot
be applied, although this has not been evaluated in the work surveyed.

Another method for conserving energy is to break the recognition process down
into a hierarchical pipeline, where each level activates higher-order processes under
certain conditions, thus avoiding superfluous operations if lower levels deem them
unnecessary. These methods can range from activating the system based on activity
indicators, i.e. activity level for waking up activity recognition [2, 24], modular
classification systems [3], movement detection for activation of more expensive
location sensors [22], or sensing the presence of voices for speaker identification
[20].

In Tab. 5, some instances employ wireless sensors which seems to indicate a
distributed approach as apposed to an embedded one [31, 12, 1]. In these works the
authors observed the systems as being closed, i.e. the energy consumption of both
classification and sensor usage was investigated, and are therefore relevant to this
survey. The methods then used for energy consumption optimization must account
for the same problems as embedded systems and therefore employ the same
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Low-Power 
Recognition Systems

Static System 
Control

Dynamic System
Control

Sample Rate 
Adjustment

Sensor Duty 
Cycling

Hierarchical 
Wake-up

Activity Level 
Indicator

Recognized 
Current Activity

Predicted Future 
Activity

Figure 9.: A taxonomy for low-power, embedded activity recognition

techniques, e.g. adaptive sample rates [31] or sensor selection [1]. One difference is
that the volume of sensor data has a great affect on system consumption, which
can be addressed using preprocessing [14, 15, 10].

6.3.3 Summary of the Survey

To summarize the survey, when designing low-power embedded recognition appli-
cations, the system should be designed to reduce overall consumption by using low
power components and algorithms. Once this has been accomplished, further sav-
ings can be achieved by making the system dynamic in nature to adapt to changing
requirements. Here there are 3 methods for energy conservation which have been
used. First, the sample rates of the sensors can be dynamically adapted to current
requirements, where reducing the sample rate also reduces energy consumption.
Second, the designer can opt to turn off sensors entirely for a sample period, further
reducing energy consumption but risking deterioration of recognition values if not
done correctly.

Third, a method for structuring recognition components can be implemented
in a hierarchical way, such that low power components wake those with higher
consumption only when they are needed. Often times the third method benefits
from dedicated hardware components which conduct low-power listening for
activity cues. These three methods can also be combined with each other to further
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improve consumption rates. Each of these methods has different advantages and
disadvantages under different conditions and scenarios. Unfortunately, based on
previous publications it is not possible to make comparative statements about the
energy consumption and recognition rates for these methods.

Once these design choices have been made, a method for controlling the dynamic
conservation approach can be selected. The first method is to use a general indicator
of the activity level to control the conservation approach. An activity indicator
is especially effective when combined with a hierarchical wake-up pipeline due
to the low computational complexity of these indicators [20]. Another method is
to use the current activity which has been recognized to adapt the system to the
requirements of recognizing that activity. Here the risk is that since an activity must
first be detected before adaptation, the system has issues with detecting activity
transitions. This design decision structure can be represented as a taxonomy of
approaches to embedded recognition which is show in Fig. 9. The static system
control mode has been deprecated to indicate that it is not the focus of this survey
and is therefore not exhaustive.

In this work, we examine a new method for controlling the energy conserving
mechanism. The method is not specific to the energy conservation approach and
can be combined with adaptive sampling, sensor selection, or a pipelined activity
recognition chain [12, 13, 34], but is evaluated here with a sensor selection approach.
Using context prediction, a future probability distribution can be generated which
allows the system to be proactive in nature [27], instead of only reacting to the
current system state. Using future activities eliminates the lag incurred by having
to recognize the current activity state or level [27] before being able to react to
it. This can improve the power consumption footprint and the correctness of
the recognition during the lag, or activity transition period. However, incorrect
predictions may lead to mis-configurations, a research question which is evaluated
in the rest of this work.

6.4 proposed algorithmic approach

The standard process for activity recognition using machine learning algorithms
is straightforward. Sensors are sampled in parallel at an arbitrary but constant
rate for a period of time. The data is then saved as a discrete multidimensional
vector, referred to as a sample window. This window is processed using different
algorithms to generate signal features, e.g. standard deviation, average, FFT or
cepstral coefficients. Which features are used depends on the application (i.e.
which activities we want to recognize), and the type of sensors being used, and are
referred to all together as a feature vector. A machine learning algorithm is given
the task of recognizing which activity was occurring during the sample window,
based on its feature vector.

90



6.4 proposed algorithmic approach

We propose integrating prediction into the process to improve energy consump-
tion as demonstrated in Fig. 10. First, activated sensors are sampled to generate
a sample window. The sample window is then processed into a feature vector,
and classified as to which activity is being performed. Based on the classification
history, future activities which are likely to occur are predicted. An appropriate
sensor configuration is then activated to distinguish only the likely activities, and
the process repeats itself.

During the course of this research, we identified three parameters which affect
the trade off between energy and recognition. The first is the predictability κ of
the sequence of activities, or the inherent predictability of the scenario itself. A low
value for κ indicates that prediction results are little better than random, where
a κ = 1 indicates a 100% prediction accuracy. In real world scenarios, κ simply
equates to the prediction rate for a given predictor and scenario. This parameter
cannot be influenced by the designer, and can only be quantified by analyzing the
scenario and predictor beforehand. The second parameter affecting performance is
ρ, the number of classes which are predicted at each time step. The more classes
which are predicted, the better the chance that the next class is actually among
the predicted classes (correct prediction), but the lower the savings will be as the
system accounts for more possible activities. Therefore ρ specifies the level of risk,
which allows the designer to tip the odds towards recognition or energy as will be
seen later. The third parameter is application specific, and is referred to as the loss
parameter λ, which specifies the amount of recognition which can be sacrificed in
order to conserve energy without breaking the application’s requirements. A λ

value of 0 indicates that optimizations causing any loss at all, however minimal,
are not acceptable, and λ = 1 means energy savings are of the utmost priority, and
recognition rates are of no importance.

A useful analogy at each prediction/classification step is that of a wager. Here
κ, the predictability of the scenario, can be thought of as the probable outcome of
the bet based on previous experience (prior distribution). The number of classes
predicted, ρ, allows ρ different outcomes to be bet on at once: the higher ρ is, the
better the chances of a correct bet, but the lower the payout in terms of energy
saved. In this case, the wager λ is a specified amount of the total recognition rate,
and the payout is in energy savings. Losing a bet (meaning a false prediction) is
detrimental to classification lowering overall recognition rates.

6.4.1 Weighting Sensors to Activities

Here we will present the method for selecting which sensors to activate based on
predicted activities. When observing the chain of events in the context classification
process, each feature in the set of features used f ∈ F is implicitly mapped onto
a single sensor in the set of sensors s ∈ S. That sensor generates the data for this
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Figure 10.: The novel algorithm (\) and simulation environment (/)

feature, producing the surjective mapping a of features onto sensors a : F → S.
Reversely, each sensor si is then “responsible” for a subset of features F̃si ∈ F,
meaning the features in F̃si are generated over data stream from sensor si.

Mapping activity classes onto the sensors over the features is not as simple.
This mapping cannot be carried out independent of the classifying algorithm,
as each algorithm has a different method of measuring the distance between
two vectors. For example, nearest-neighbors algorithms use a multi-dimensional
distance measurement, often euclidean distance, between two vectors to separate
them, probability-based models calculate where a vector lies in the probability
distribution for a specific class, and decision trees often use entropy as an indicator
of distance [7]. An overview of selecting features which best suite an embedded
application is presented by Könönen et al. [17], providing a sensor to application
mapping. While these algorithms potentially improve the quality of classification
and reduce the computational load, they do not provide a mapping of features
to classes by relevance or importance. A method for generating a sensor to class
(activity) mapping by relevance or importance was proposed by Roy et al. [26],
which they referred to as quality-of-inference (QoINF). As will be discussed later,
this method is not effective for the approach and data set presented here.

Turning sensors on and off will result in a dynamic feature vector length, and for
this reason we will consider standard classifiers which can natively support this.
Specifically, nearest-neighbor classifiers are well suited to this task as omitting a
feature represents a dimensional reduction of the labeled training vector space, and
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Figure 11.: Features (F) from sensors (S) s1 and s3 have value (Q) qc2S̃1,3
for class

(C) c2

the missing features are simply excluded from the distance calculation. Probabilistic
models are also well suited as the observational distributions for missing variables
can be ignored when calculating the probabilities of the hidden states. Both
examples lose only the information that would have been gained from the missing
features, but are not negatively affected further [7].

In order to generate the weighted mapping Q (the weight is the dependency of
activities on sensors), training data is gathered for each class. Weight calculation
was done by testing the trained classifier against all training vectors for each class
and simulating different feature combinations. Selected features were turned off
and the dependency of each class on those features was evaluated. The degree of
dependency is the drop in accuracy compared to the full feature vector: a large
drop in recognition indicates a high dependency, a small drop, a low dependency.

Initially the intent was to only evaluate the weight for each feature individually.
The cost/dependency weights for a sensor could then be calculated by summation
of the weights of its features, assuming qc fi + qc f j ≈ qc fij as indicated by Roy et
al. [26], and the cost of turning off two sensors, is the cost of the one plus the
cost of the other. This however proved to be too inaccurate to be useful due to
the conditional dependence of features and sensors, making qc fi + qc f j ≤ qc fij [17].
Therefor, Q values were calculated for each class against all possible sensor subsets
directly, instead of by summing single feature or sensor values.
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In order to correctly estimate the optimal sensor subset S̃ for a sensing and
classification step, the matrix Q must be calculated only once at training time. The
resulting mappings can be seen in Fig. 11, showing one mapping of class c2 ∈ C

onto sensors S̃1,3 ∈ S over features generated from S̃1,3. Each mapping in b : C
Q−→ F

represents one element in the Q matrix, in this case qc2S̃1,3
∈ Q. The Q matrix is

indexed by the power set of S without the empty set, or S̃ ∈ ℘(S)\{}, and the
classes c ∈ C, resulting in a |C| × (2|S| − 1) matrix. The value at each point i, j
indexed by ci and S̃j is the recognition loss when classifying ci using sensor subset
S̃j compared to using all sensors S over a set of evaluation data samples. Now, for
each class ci ∈ C̃t+1 where C̃t+1 is the set of activities predicted to occur at the next
time step, a set of sensors S̃t+1 can be identified which is optimal with respect to λ.
This is accomplished by selecting the sensor subset S̃ for the next period t + 1 such
that it fulfills Eq. (7).

S̃t+1 = arg min
En(S̃)

, ∀c∈C̃t+1
qS̃,c ≤ λ (7)

Where En(S̃) is the combined energy consumption of all sensors in S̃. Simply
put, in order to distinguish the classes predicted to occur C̃t+1 from each other,
the sensor configuration S̃ is selected which saves the most energy En(S̃) without
violating the acceptable loss parameter qS̃,c ≤ λ for any of the predicted activities
c ∈ C̃t+1. This selects the sensor configuration with the lowest energy consumption
that is still capable of recognizing the predicted classes with acceptable recognition
rates. The next section will analyze the use of context prediction to generate a set
of classes which are likely to appear in the next sample window (C̃t+1).

6.4.2 Context Prediction

Context prediction is used to estimate a subset of all contexts or activities C̃t+1 ∈ C
which are most likely to occur at the next time step t + 1. The cardinality of
|C̃t+1| = ρ is a parameter which can be adjusted, and allows the designer to select
the recognition accuracy risk against the energy reward as will be shown in Sec.
6.6. This approach is independent of the algorithm or abstraction level used for
prediction. Important is only the quantification of the predictability parameter
κ which is simply an indicator of how well the predictor is able to forecast the
given scenario (predictor accuracy). The results presented here should therefore
still apply for all scenarios and prediction algorithms.

As indicated by Fig. 10, high-level context information at the activity or context
abstraction level is used for prediction. Using low-level, sensory or feature data is
also an option, but high-level prediction reduces complexity in terms of training
and execution [27]. The algorithm used for prediction is a first-order Markov chain
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consisting of states c ∈ C. At each time step, the probability P(ci,t+1|ct) for each
ci ∈ C is calculated, and the ρ states with the highest probabilities are output as
predictions.

6.5 implementation and simulation

This section presents the algorithmic implementation and the simulation environ-
ment. Both were programmed using the Python programming language.

6.5.1 Simulation Environment

The main concept is to leverage the predictability of human actions in order
to conserve a large amount of energy while only sacrificing a small amount of
recognition capabilities. The simulation environment was designed to evaluate the
method for various degrees of predictability κ. Two published data sets which are
publicly available where used in this evaluation.

The data sets where selected because both of them are publicly available sets
of numerical data gathered from wearable sensing modalities, making the results
presented here easier to reproduce. The MVS data set contains a relatively large
number of activities (8), but relatively few sensor modalities. The OPP data set
contains relatively few locomotion activities, but with a large number of sensing
modalities and locations. The goal was to select data sets which complement each
other so as to demonstrate different performance aspects of the proposed approach
under different conditions.

micro-vibration sensor data set (mvs): The first data set used for eval-
uation [11] contains 142 minutes of data from 4 sensors (see Tab. 7), sampled from
5 subjects performing 8 activities (taking a bus, riding a bike, walking, jogging,
taking the elevator, typing at a desk, going up/down stairs, and standing).

the opportunity data set (opp): The second data set used for the evalu-
ation [25] contains information from 72 sensors over 12 subjects, yielding 25 hours
of data. In order to reduce complexity of the simulation a subset of the sensors
was used. The sensors used where the following: acceleration on the hip, right
knee, back, right hand and left hand; gyroscope and magnetic field sensors on the
back. The data set contains a myriad of labels, including locomotion modes, object
interactions, interaction types, and which hand was used. For this evaluation the
locomotion mode labels where used, consisting of 4 activities (walk, stand, lie and
sit). The system was simulated as a single device connected to all sensors. While
the capability of an embedded processor to handle this number of input streams
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or data is questionable, this does not affect the results of the evaluation as the
processor is modeled as being always on with constant consumption. The energy
consumption values where taken from a standard microprocessor and sensors,
identical to that of the MVS data set (see Tab. 7). Actual device specifications and
consumption values are not included in the OPP data set.

Both data sets where evaluated using the same preprocessing framework. The
system simulates real time through a replay mechanism using the recorded data.
The respective data set is cut up into one second windows without overlap, over
which features are generated. The resulting feature vectors are then fed to the novel
algorithms as if they were being generated in real time. The sensor configurations
are simulated, where for a specific sensor configuration S̃, the features F̃S̃ are
present in the feature vector and all others are omitted. Once a sensor configuration
S̃ has been selected, the features F̃S̃ are calculated. Per sensor, the following features
are calculated [11]: average, standard deviation, area under the curve, min-max
difference, Shannon entropy, and FFT peak.

The energy consumed by the device En(S̃) is recorded for the time step. The
total consumption consists of the consumption of each sensor, as well as the
energy consumption of the microprocessor during the course of the sample win-
dow, or one second. The energy model is simplistic, ramp-up and ramp-down
times/consumptions of the sensors are not modeled, and the processor consump-
tion is modeled as being constant regardless of load. This approximation does
not account for the added load of prediction, but the method used here has a
computational complexity of only O (|C|) [12]. The energy consumption rates for
each device simulated can be found in Tab. 7. At each time step, a new S̃t is
provided by the algorithm, which results in a different feature vector consisting of
features F̃S̃, and a different energy cost. The amount of energy consumed can then
be compared with the amount consumed for the reference case when S̃ = S, i.e.
when all sensors remain on, for comparison.

As with energy consumption, the simulation environment also records classifi-
cation results, both for the novel algorithm and for the reference case. For each
time step, the algorithm classifies F̃S̃ and the result of the classification is recorded,
along with the energy consumption. At the same time, the complete feature vector
FS, consisting of the entire feature set F is also classified and the result is stored for
comparison with the reference system. In total, the simulator records the energy
consumption and classification results for both the novel prediction-based activity
recognition algorithm, as well as the reference case when all sensors remain on for
both data sets.
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Figure 12.: Generative model for constructing an artificial data set with 3 classes
(c ∈ C), emissions (e ∈ E) and predictability κ

6.5.2 Artificial Data Set Generation

In order to evaluate the behavior of the system for different degrees of predictability
(κ), artificial data sets are generated using the original data set and a generative
probabilistic model shown in Fig. 12. The goal is to generate a data set which
is predictable to a specified degree by the predicting algorithm, meaning that it
results in a certain prediction accuracy. A Markov chain assumes that the process
being modeled holds with the Markov property. It follows that by changing how
pronounced the Markov property is in the data, the accuracy of the predictor can
be set. The predictability is defined as κ ∈ [ 1

|C| , 1] where a value of 1 indicates that

∀i∃j|P(ct+1 = cj|ct = ci) = 1

and a value of 1
|C| indicates that

∀i, j|P(ct+1 = cj|ct = ci) =
1
|C|

or that all transitions are equally likely. Setting κ = 1
|C| is the lower bound for

predictability, as there are |C| transitions leaving each state, and the probabilities of
all exit transitions sum to one. Assigning κ a lower value than this means at least
one exit transition must have a probability higher than 1

|C| , increasing predictability.
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Using κ, we can generate a HMM (not to be confused with the HMM used for
recognition) by ordering states such that each state has 1 and only transition to a
different state with probability κ, and only 1 transition from a different state to
itself with probability κ. All other transitions have probability κ̄ = 1−κ

|C|−1 . Simply
put, as κ approaches 1, the state following the current state becomes more and
more certain, and therefore easier to predict. As κ approaches the lower bound of
κ = 1

|C| , the next state becomes more random, and harder to predict.

Once this model is created, traversing it generates emissions which are sample
windows from the original data set for the given activity. This is demonstrated in
Fig. 12 for an example 3-class dataset. Although this artificial data set does not
represent a realistic pattern of the human activities in the data set, it does create
a data set which is predictable to a specified degree. As will be shown later, the
results are only dependent on the prediction accuracy, meaning that for real-world
scenarios with identical prediction rates, the results should still hold.

6.5.3 Experimental Process

The algorithm presented here is not application specific. It is meant to reduce
the cost of embedded activity and context recognition in scenarios with repetitive
temporal patterns. Each application is different in terms of the optimal trade
off between energy consumption and accuracy [29]. The following evaluation is
conducted without a specific cost model, but allows the reader to evaluate the
effectiveness for their application scenario at hand.

The classifiers used are the Hidden Markov Model [23] (HMM), and the k-
Nearest-Neighbors (kNN) [7] algorithms, as they are both easily adapted to a
variable feature vector length. The algorithm requires two separate sets of training
data, one to train the classifier and predictor, and a separate one to populate the Q
matrix using the trained classifier. A third data set is required for evaluation.

training phase Each artificial data set is partitioned into 3 sections. The data
used to train the classifier and predictor D̃Train makes up 60% of the original data
set D. Another 20% D̃Q is used to calculate the Q matrix, as using D̃Train for this
purpose results in overfitting, and therefore distorted loss values in Q. Finally, the
last 20% D̃Eval is used to evaluate the performance of the whole system, and in this
experiment contains 3595 sample windows in total.

In the first step, D̃Train is used to train the classifier, either HMM or kNN, as
well as the Markov chain used for prediction. In this phase sensor selection is
not conducted and both of the classifier instances and the predictor are trained
on all features f ∈ F. In the second training step, D̃Q is used to populate the Q
matrix by evaluating the recognition rate of every class ci with every permutation

99



in-situ recognition of single-user activities

of S̃. Therefore, every combination in C × ℘(S)\{} is evaluated in a separate
classification phase, using all vectors for activities of the current subset.

testing phase In the testing or evaluation phase, the classifier algorithms are
run on D̃Eval in parallel. At each classification time step, the S̃t resulting from
the previous time step is used to generate a new feature vector F̃t. This vector
is then classified, either by the HMM or kNN classification algorithm. Based on
this classification, the algorithm predicts ρ probable classes C̃t+1 for the next time
step. Next, the sensor subset S̃t+1 is selected such that it fulfills Eq. (7). At the
end of each step the simulation environment records the classification result using
F, F̃t, the ground truth for that sample window, the sensor subset S̃, the energy
consumed En(S̃t) and the predictions C̃t+1 for the next time step.

6.6 evaluation

The evaluation presented here covers several months of simulation time run on a
quad-core desktop computer. For each different degree of scenario predictability κ

(MVS: from 0.125 to 0.875 step 0.125, OPP: from 0.25 to 0.875 step 0.125), a different
artificial data set was generated. The number of predicted states ρ (MVS: from 1
to 8 step 1, OPP: from 1 to 4 step 1), the acceptable loss parameter λ (from 0 to
1 step 0.1) and the classifier (MVS: HMM and kNN, OPP: kNN) were permuted
to evaluate the output parameters over each data set. The OPP data set was only
evaluated using the one kNN classifier to maintain brevity, and as it suffices to
validate the conclusions drawn from the MVS results. These results are multi-
dimensional, consisting of dimensions ρ, λ and κ, the classifier, data set, recognition
rates and energy consumption. It is impossible to impart this information in its
entirety here, therefor we will detail and demonstrate major insights with graphical
excerpts.

6.6.1 Results of the MVS Data Set

MVS: Recognition Loss

We define recognition loss as the difference in percentage points (pp) between the
reference recognition rate (in percent) with all sensors on, and the recognition rate
for the novel algorithm for a given set of parameters. For a given loss parameter
λ, in can be observed that loss of recognition decreases monotonically (meaning
recognition increases) for an increasing ρ (number of states predicted). For the
MVS data set, this is demonstrated by Fig. 13 for a κ of 0.125, and again in Fig. 14
for a κ of 0.875 for both the HMM and kNN classifiers. This is again evident in
Fig. 15, where for a given λ, increasing ρ either reduces or leaves recognition loss
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Figure 13.: Recognition loss and energy savings for the MVS data set and the HMM
(a) and kNN (b), κ=0.125
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Figure 14.: Recognition loss and energy savings for the MVS data set and the HMM
(a) and kNN (b), κ=0.875
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Figure 15.: Recognition loss and energy savings for the MVS data set and the HMM
(a) and kNN (b), κ=0.125

unchanged. In other words, for a specific number of classes predicted at each step
(ρ), if the parameter λ which identifies how much loss is acceptable for a specific
application is increased, the loss in recognition does indeed increase.

The same also applies to the acceptable loss λ, where for a given classifier and
ρ, loss in recognition and energy savings increase monotonically with λ. The
implication is that the acceptable loss parameter λ does indeed function as an
indicator for how much loss can be sacrificed as proposed. The monotonic behavior
of recognition loss implies that for a given predictability κ, the lowest recognition
loss (best recognition) is obtained by ρ = |C| and λ = 0, and the highest loss (worst
recognition) when ρ = 1 and λ = 1.

Observing accuracy loss over κ for fixed values of λ and ρ is not as clear cut. In
Fig. 16, varying κ affects recognition for ρ = 4 using the HMM, where the trend in
recognition loss is decreasing as κ increases, although not monotonically (compare
κ = 0.125 with κ = 0.875 for λ = 0.8). For the kNN classifier, the effects of κ are
minimal when compared to the HMM as seen in Figs. 13 and 15.

102



6.6 evaluation

a)

0 20 40 60 80 100
−20

−10

0

10

20

30

40

50

Loss Param. λ

R
ec

. L
os

s 
(p

p)

0 20 40 60 80 100
−20

0

20

40

60

80

100

Loss Param. λ

E
ne

rg
y 

S
av

in
gs

 (
%

)

 

 

κ=12.5

κ=25

κ=37.5

κ=50

κ=62.5

κ=75

κ=87.5

b)

0 20 40 60 80 100
−20

−10

0

10

20

30

40

50

Loss Param. λ

R
ec

. L
os

s 
(p

p)

0 20 40 60 80 100
−20

0

20

40

60

80

100

Loss Param. λ

E
ne

rg
y 

S
av

in
gs

 (
%

)

Figure 16.: Recognition loss and energy savings for the MVS data set and the HMM
(a) and kNN (b), ρ=4

MVS: Energy Consumption Rates

The energy savings is defined as the relative decrease in energy consumed over
the evaluation of D̃Eval between the reference classifier with all sensors on and the
novel algorithm. When observing Fig. 13 and Fig. 14, the acceptable loss parameter
λ has a far greater influence on energy savings than either ρ or κ. Fig. 16 and Fig.
15 demonstrate this by showing very little differentiation in energy savings for
either κ or ρ respectively. In all cases, a relatively small values of λ (≈ 0.1) suffice
for large energy savings (>80%).

All of the images displaying the results clearly show a rapid increase in energy
savings for even small acceptable loss values. This increase is caused by the light
sensor, which consumes an order of magnitude (5, 500 times) more energy than the
vibration sensor for example (see Tab. 7). The upper bound for energy savings,
as well as for recognition loss, is given by using the sensor with the lowest power
consumption only, namely the MVS vibration sensor [11]. The light sensor is the
first to be shut off, creating the steep climb over low values of λ seen clearly in Figs.
13 and 14. Another slight increase can be seen around λ = 0.5 corresponding to
the acceleration sensor. Shutting off this sensor however, causes large increases in
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Figure 17.: Recognition loss and energy savings for the MVS data set and the HMM
(a) and kNN (b), λ=0.8

recognition loss. In other words, the algorithm filters out those sensors first which
contribute little, but cost a lot.

MVS: Classifier Comparison

The kNN classifier performance for the reference case (all sensors on) remained
stable across κ with recognition rates between 79.6 - 80.1%. On the other hand,
reference recognition rates for the HMM varied in performance from 70.5% for
κ = 0.125 to 81.6% for κ = 0.875, indicating that the recognition rates of the HMM
are quite dependent on the predictability of the scenario. This can be seen again in
Fig. 16, where recognition losses vary little for all values of κ for the kNN classifier,
but are further spread out for the HMM classifier. However, the recognition loss for
the HMM is consistently higher than for the kNN classifier for the same parameters.
This can be seen when comparing the top left and bottom left images in Figs. 13
and 14.

On the other hand, the kNN classifier appears to be consistently better at con-
serving energy than the HMM classifier, as seen in Fig. 15 when comparing energy
savings of the HMM and kNN classifiers for λ = 0.1 or λ = 0.6 for example. Fig.
14 demonstrates that this is also evident for other values of κ. Both Fig. 13 and
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Fig. 14 indicate that the energy consumption of the kNN classifier is also less for
higher values of ρ, staying constant where the HMM energy savings fall off. Fig. 17
confirms this (noisily) by indicating higher savings for the kNN classifier compared
to the HMM, and less variance over κ for higher values of ρ.

MVS: Prediction Rates

One potential issue which was mentioned earlier is that incorrect predictions can
lead to incorrect sensor configurations and incorrect classifications. The apparent
problem is that this can then again lead to another incorrect prediction, fueling the
cycle. To evaluate the effects of this phenomena, the prediction rates of the system
where also evaluated with respect to κ, ρ and λ.

Fig. 18 shows the prediction accuracy with respect to ρ and λ for the a) HMM
and b) kNN classifiers with a predictability of κ=0.125. On the left hand side, the
prediction accuracy with respect to the ground truth is shown, while on the right
the accuracy with respect to system classifications is displayed. The latter indicates
the correctness of prediction as seen from the subjective point of view of the
algorithm’s own classifications. When observing these graphs, the first thing which
is clear is that the prediction accuracy is heavily dependent on ρ, or the number
of states predicted. The linear relation between ρ and prediction accuracy is to be
expected. For λ = 0, the ratio of correct to incorrect predictions should range from
κ for ρ = 1, to 1 for ρ = |C|, where since all classes are predicted, the prediction is
always correct. This is evident in Fig. 18, where the deviance in prediction accuracy
with respect to the expected value of κ is due to misclassification. For comparison,
Fig. 18 displays the same information for κ = 0.875, where the linear behavior is
still evident but with an increased offset for λ = 0. Theoretically, this offset should
be proportional to κ, or 87.5, where the difference is due to recognition errors.

For lower values of κ, the acceptable loss parameter λ has little effect on the
accuracy of the prediction algorithm. This is due to the fact that as κ approaches

1
|C| , predictions approach random, therefore errors caused by increasing loss in
recognition do not affect the randomness of the prediction. As κ increases, the
effects of λ also increase, as can be seen when comparing the left column of Fig. 18
with the left column of Fig. 19. Furthermore, these effects are stronger for the kNN
classifier as opposed to the HMM classifier, as the later has an internal Markov
chain which stabilizes the prediction.

Comparing the left columns of Figs. 18 and 19 with their respective right columns,
it is evident that the system’s subjective evaluation in terms of its own prediction
performance increases with respect to its actual performance. This indicates that
because the algorithm is expecting to see certain activities, these activities are
recognitized on occasion even if they do not occur. Only for high values of λ is

105



in-situ recognition of single-user activities

a)

0
50

100 2
4

6
80

50

100

ρλ

P
re

d.
 (

G
T

) 
%

0
50

100 2
4

6
80

50

100

ρλ

P
re

d.
 (

S
ub

j.)
 %

b)

0
50

100 2
4

6
80

50

100

ρλ

P
re

d.
 (

G
T

) 
%

0
50

100 2
4

6
80

50

100

ρλ

P
re

d.
 (

S
ub

j.)
 %

Figure 18.: Prediction against ground truth and classification for the MVS data set
and the HMM (a) and kNN (b), κ=0.125

there a noticeable discrepancy, where the discrepancy increases as the predictability
κ increases.

6.6.2 Results of the OPP Data Set

The activity recognition data set from the OPPORTUNITY project [25] was also
evaluated using the prediction based method to confirm initial results from the
MVS data set [13]. For this purpose the results of the kNN classifier alone are
sufficient, and therefore the HMM results have been omitted for brevity.

OPP: Recognition Loss

The behavior of the recognition loss for the OPP data set with a predictability of
κ = 0.25 is displayed in Fig. 20. Remember, for this data set, this value indicates
random ordering as there are only 4 activity classes, as opposed to 8 classes in
the MVS data set. Here, a plateau in recognition loss can be clearly seen at 12.2
pp for all values of the loss parameter λ ≥ 0.2. This same plateau can be seen for
κ = 0.875 in Fig. 21 as well.

This plateau behavior is generated by the cheapest sensor in terms of energy cost,
in this case the magnetic field sensor (see Tab. 7). As opposed to the MVS data
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Figure 19.: Prediction against ground truth and classification for the MVS data set
and the HMM (a) and kNN (b), κ=0.875

set, this sensor alone provides relatively high accuracy, indicating that increasing
λ quickly leads the system to select that sensor alone as the lowest energy sensor
configuration for achieving the required recognition.

OPP: Energy Savings

Similar to recognition loss, energy savings also plateaus at 94.8% for values of
λ ≥ 0.2, which is also the optimum for energy savings. This can be seen for both
κ = 0.25 in Fig. 20, and for κ = 0.875 in Fig. 21. Again, this is caused by the loss
parameter quickly dropping below the rates achievable using the single cheapest
sensor, yielding an optimal configuration of only that sensor.

OPP: Prediction Rates

Fig. 22 displays the prediction rates for the OPP data set with a kNN classifier
against ground truth (left) and system classifications (right) of human activities
for κ = 0.25. This is the case where the prior distribution for future activities is
completely uniform and random, where all 4 activities are equally likely to occur
at the next time step. For ρ = 1, prediction is steady at approximately 38%, above
the expected 25% given by the generated data set. This is caused by recognition
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Figure 20.: Recognition loss and energy savings for the OPP data set and kNN with

κ=0.025
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Figure 21.: Recognition loss and energy savings for the OPP data set and kNN with
κ=0.875

error which may have a different predictability inside of a single class due to the
generation process.

The same information is presented in Fig. 23 for κ = 0.875. For ρ = 1, prediction
values begin at around 78% for λ = 0, but drop off to around 68% once the sensor
set is reduced to the gyroscope alone for values of λ ≥ 0.2. Again, the values
increase linearly from that point to 100% as ρ increases towards the maximum
value of 4.

In both Fig. 22 and Fig. 23 it can be seen that the subjective evaluation of the
prediction value for the system is fairly accurate. Here, an increased effect for
lower values of λ can be seen, as well as a reduction in prediction values. This
reduction is around 10 to 15 pp for ρ = 1 and κ = 0.875, which falls off to 0 for
ρ = |C|. Intuitively, this can be interpreted as the system correctly predicting the
next activity, but judging this as a false positive due to misclassification.
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Figure 22.: Prediction against ground truth and Classification for the OPP data set
and kNN classifier with κ=0.25
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Figure 23.: Prediction against ground truth and Classification for the OPP data set
and kNN classifier with κ=0.875

109



in-situ recognition of single-user activities

6.7 discussion and insight

In Figs. 13 and 14, non-zero energy savings are present, even when λ = 0.
Intuitively, setting λ = 0 means that any loss in recognition is unacceptable. For
certain classes, some sensors are so insignificant that shutting them off results in an
error increase so small that it is approximated to 0. Here the expensive light sensor
is useless for most classes, and can be shut off with no loss as long as none of
the classes requiring it is predicted. As more states are predicted however, classes
requiring that sensor are more frequently predicted, regardless of their occurrence
rate, increasing consumption with no effect on recognition.

The situation when ρ = 1 is extremely volatile, since only the single most likely
future class is predicted. Fig. 13 and Fig. 14 show that ρ = 1 has significant
negative effects for all non-zero values of λ. False classifications result in false
predictions, resulting in false classification again. Introducing a confidence value
at this point may allow the system to recognize error occurrence and correct by
switching sensors back on when confidence or probabilities for all classes are
low. The low recognition rates for ρ = 1 indicate that for all real scenarios ρ = 1
should probably not be considered. For higher values of κ such as 0.875 in Fig. 14,
predicting as few as two states at each step can be sufficient.

The kNN classifier was more resistant to unpredictability within the data set. As
κ decreases, Fig. 16 indicates that for a fixed loss parameter λ, the recognition loss
expands faster for the HMM than for the kNN. In Fig. 17, the energy consumption
for a fixed ρ grows faster and becomes more erratic for the HMM when compared
to the kNN. The HMM algorithm models the activities as a Markov process
[23], meaning that unpredictable feature vectors not only affect prediction, but
classification as well. The kNN algorithm is only affected by κ through incorrect
sensor activations which reduce recognition.

Both classification algorithms are influenced by lower values of κ due to sub-
optimal sensor activations. The effect can be counteracted by increasing the number
of classes predicted ρ, improving recognition accuracy but reducing the gain in
energy. The parameter ρ controls the balance between risk and reward. High
values of ρ mean less risk but a smaller payoff, and lower values increase the win
in energy at the cost of recognition. The predictability of a scenario can be easily
obtained for real scenarios by taking the accuracy of the prediction algorithm over
the training data. Once κ is known, ρ can be configured to counteract it and select
an appropriate risk level using Fig. 17 as a heuristic.

Once the risk and reward trade off between ρ and κ has been found, the loss
parameter λ can be assigned to optimize the amount by which recognition may
be reduced, and thereby the amount of energy which is conserved. For example,
assuming a κ value of 0.5, ρ = 3 to counteract and a loss parameter of λ = 0.2, a
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HMM incurs a loss of less than 1.2 pp in recognition but saves up to 84.11% of
energy consumed without optimization.

One caveat is that due to the nature of prediction-based optimization, the system
may perform badly for recognition of important but rare and unpredictable events
or activities. This will arise if those activities require special sensors to distinguish
them from other activities. Since the events cannot be easily predicted, the impor-
tant sensors will not be correctly activated. A possible solution to this could be
to exclude the required sensors from the set of sensors which can be deactivated,
leaving them on at all times. Also one could use expert knowledge to hard-code
the circumstances under which the events occur into the system if possible. If some
activities are more important than others in general, investigating the integration
of activity importance weights into the the activity-sensor weights in the Q matrix
could provide an interesting avenue of research.

Another interesting aspect which has not been addressed here, is that often
times the sensors of the mobile device are also used for purposes other than
activity recognition alone, such as is the case with mobile phones. Under these
circumstances, it is not advisable to switch these sensors off using an algorithm
which does not take user preferences into account. In theory, the algorithm could
be easily adapted to account for sensors which are in use by a user application S̃app.
At each prediction step, Eq. (7) can be adapted to only search the Q matrix for
sensor configurations which are a superset of S̃app. In this way the optimal sensor
subset can be selected given that the subset S̃app is activated.

Here we have evaluated the performance of the algorithm for a specified and
fixed λ during runtime. Practically speaking, there is no reason why the acceptable
loss cannot be changed dynamically during operation. This could have advantages
for applications with mobile phones, where requirements on the energy source are
also dynamic in nature. For example, when the phone is connected to a power
supply, λ can be set to 0 as the power source is effectively unlimited. However
as the battery level approaches a critical level, λ can be increased to extend the
battery life as long as possible. Alternatively, devices could also try and recognize
patterns in the daily lives of users [32], and set λ to appropriately account for the
time until the device will probably be recharged.

One issue which has not been addressed is that although λ is proportional to
how much recognition will be sacrificed, it does not provide an exact amount. The
actual loss is a function of λ, the predictability κ, the number of predicted class
ρ, and the number of total classes |C|, as well as the reference recognition rate
when all sensors are on. The implication is that at training time, actual losses in
recognition are unknown, as these are not only dependent on system parameters
but also on the reference recognition rate for the given activities. One solution is
that when gathering training data a small amount can be set aside for parameter
tuning before the system is put online.
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6.8 conclusion

We proposed a novel method for saving energy while recognizing human activities
using embedded and wearable sensing systems. We conducted a survey of existing
techniques which revealed a taxonomy of approaches to this problem. Based
on that taxonomy, we introduced the novel method for sensor system control
which uses prediction to further conserve energy. Human beings are repetitive
and periodic creatures, therefore what we do can be predicted to a certain extent.
Sensors which are not needed to decipher probable activities from each other can
be turned off, conserving energy without greatly impacting recognition rates. The
algorithms are simulated using preexisting data sets [11, 25], which are used to
generate artificial scenarios with specific degrees of predictability. The standard
classification (Hidden Markov Model and k-Nearest Neighbors) and prediction
(Markov Chain) algorithms where used for the evaluation so as to make the effects
of the novel methods more pronounced.

The results indicate that for highly predictable scenarios, significant savings are
possible with little loss in recognition. For less predictable scenarios losses are
higher, but the predictability can be increased by predicting more than one state per
iteration. This however reduces the savings in energy achievable, but limits the loss
due to missed predictions. The Hidden Markov Model which takes state transitions
into account performed better the kNN which does not, although low predictability
has a greater effect on recognition. Finally, energy savings and recognition loss
are greatly dependent on the activities being recognized and the sensors being
used. The limit is given by the recognition rate using only the cheapest sensor
with respect to energy consumption, and the recognition and energy consumption
converge to the values given by using only that sensor as the system is granted
increasing freedom to optimize at the cost of recognition.

Although this evaluation showed that energy savings are possible for small
amounts of recognition loss, there are still some drawbacks to this approach.
Applications which attempt to recognize important but unusual events could suffer
greatly. This could come about if the important events require special sensors but
their occurrence cannot be predicted, where the prediction error would lead to
those sensors not being activated in the time of need. Counteracting this effect
requires further research where several approaches have been proposed.

The results are also independent of the specific recognition and prediction
algorithms used, depending only on the prediction and recognition rates achieved.
The condition is that the classifier used can perform unimpared using the variable
feature length, i.e. performance with missing features is not less that performance
when having been trained without those features entirely. The simulation results
can therefore be applied to a new scenario once the predictability (prediction
accuracy) has been found. Although the acceptable loss parameter does indeed
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control how much loss is incurred, the function for this dependence is not straight
forward and some training data should be used for parameter fitting. In this way
the system designer can ensure that the actual loss in recognition incurred meets
application requirements. For a scenario with predictability of 0.5 and 3 classes
predicted at each time step, a loss parameter of 0.2 with the kNN classifier would
incur a recognition loss of less than 1.5 pp but save 84.8% of energy consumed for
the MVS data set and 2.8 pp and 89.9 % for the OPP data set.

These results demonstrate this approach to be an affective method for reducing
power consumption of the activity recognition toolchain, thereby addressing Chal-
lenge 1 (Low Power). The next chapter evaluates SAR as an integral part of GAR,
where using the methods presented in this chapter would greatly reduce the energy
footprint of a GAR approach which fuses output from SAR. Furthermore, although
not directly evaluated, these methods should be applicable to GAR approaches as
well to reduce general GAR power consumption due to sensing. There one would
predict likely and unlikely future group activities, and select sensors accordingly.
Selecting appropriate sensor sets for different individuals at the same point in
time poses and interesting research problem, however how the methods can be
distributed in a P2P fashion remains to be seen.

An avenue of further research would be to integrate a reliability measure into
the classification and prediction processes. Using such a method could allow the
system to identify system configurations which do not allow reliable classification
of activities, i.e. when necessary sensors are not active due to incorrect prediction,
and take necessary measures. Another open research question is how the system
would perform using low-level prediction based on the sensor data streams as
opposed to an activity history. This would further decouple the performance of
the recognition and prediction processes, and could prevent the negative effects of
incorrect classifications on predictions, and then again on the next classifications
and predictions, which occurred in some extreme situations. Finally, although the
experiment was carefully designed to simulate real conditions, the work presented
here would benefit from online experiments, e.g. with a mobile phone, to verify
these results in live scenarios.
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7.1 abstract and context

This chapter researches the optimal data basis for GAR, looking at signal features,
behavioral clusters, or individual activity classes in order to address Challenge 2
(Data Abstraction Level). A system is presented using only distributed, mobile
devices, with a P2P client-server architecture used to investigate the abstraction
level. In this sense it does not fulfill the requirements in Chap. 4 and is only
used for exploratory purposes. The results presented in this chapter indicate
that optimal GAR results at 96% accuracy are obtained using low-level activity
information such as sensor values or features. Recognizing single-user activities
using supervised learning before fusing individual behavior into group activity
information can potentially be a good avenue of approach. By doing so, the volume
of information which must be communicated drops, reducing power consumption
by 40%. However, this experiment demonstrates several technical and practical
difficulties which must be addressed for acquiring and working with data at this
abstraction level. Specifically, training single-user and group classifiers in parallel
requires doubly-labeling those activities, which is effort intensive, and an approach
to avoid this problem lead to a drop in accuracy of 47%.

The approach of using cluster information from individuals generated by unsu-
pervised learning is shown to be a good trade-off between recognition accuracy
and power consumption and has many advantages GAR. A method using soft
probabilistic clustering is shown to reduce power consumption by 36%, while incur-
ring a loss in recognition of only 2.8%. At the same time it circumnavigates several
of the practical difficulties incurred by the use of individual activities acquired
using supervised learning. Soft clustering is used as the abstraction level of choice
in Chap. 8 and in Chap. 9 for fully distributed recognition of group affiliation and
emergent group activities. The content of this chapter is based mainly on a portion
of a publication in the journal of Mobile Networks and Applications [16], which
was preceded by contributions at CONTEXT’11 [13] and MobiQuitous’11 [14].
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7.2 introduction

Context and activity recognition provide intelligent devices in the environment
with the ability to act proactively in the interest of users [25]. Many of us now carry
around one or more intelligent devices constantly, and the number of intelligent
systems in our environment such as entertainment systems, vending machines and
informational displays is steadily increasing [2, 30]. Implicit pro-active interaction
based on situational awareness is increasingly more important in order to prevent
us from entering a state of permanent distraction and informational overload
[12]. This state is a result of constantly having to administrate and respond to the
myriad of intelligent devices in our immediate environment [3]. One vision within
pervasive and ubiquitous computing sees environments progressing from single-
user, private devices to include multi-user devices running private applications for
those users who are present. A challenge then becomes not only recognizing the
context of the single user interacting with the device as with mobile phones [3],
but now attempting to recognize the activity of a group of individuals interacting
with the system or the environment [14].

In this work we defined multi-user activity recognition (MAR) as the recognition
of distinct activities of multiple users over a period of time. Group activity
recognition (GAR) is the recognition of a single activity for an entity consisting
of multiple individuals (see Chap. 3). The group activity is not necessarily the
same as the sum of the activities of the individuals in it [17], and is often emergent
behavior which is a function of the personal characteristics and behavior of all
individuals in the group, as well as the group dynamic [21, 10].

Wearable technology has been proven to be effective for human activity recog-
nition (HAR) [3, 1, 17], and is an attractive platform for MAR and GAR as it is
already ubiquitous in the form of smart phones, tablets and other accessories.
Using a distributed wearable platform for both the sensing and processing aspects
of activity recognition is advantageous in that it allows the system to operate
independently of existing infrastructure and therefore widens the field of applica-
tions [15]. Furthermore, in times of emergency, when GAR may be needed most,
the conditions of infrastructure are at their worst [6]. In order to both combat
the scalability challenges, and to be robust to infrastructure collapses or partial
breakdowns, methods for recognizing group activities using the devices of the
individuals within those groups are advantageous. These devices are intrinsically
wearable, therefore motivating the field of GAR using mobile devices with wearable
sensing modalities.

When using wearable technology such as badges [30], mobile phones [3], coffee
cups [2, 14], etc. for group activity or context recognition, it is inherently a
hierarchical problem, where data from wearable sensors on multiple users must
be aggregated in order to infer the group context [17]. This poses a problem for
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such systems, as energy storage is a very limiting factor and reducing energy
is a main priority [28] (see Chap. 4). Activity recognition approaches must
therefore also be acutely aware of this issue and make every effort to reduce their
energy consumption footprint on the system as a whole [12]. Preprocessing data
locally reduces its volume and therewith the energy required for transmitting
that data, but at the same time this process discards information which may be
vital for classification [24, 27]. Transmitting unprocessed, raw data guarantees
that the maximum amount of information is available for GAR, but the cost of
communication is high. The low-power requirements of mobile devices must
now be reconciled with the hierarchical nature of GAR, where again a tradeoff
between recognition rates and energy consumption is evident. Here this tradeoff is
evaluated for GAR in order to find out if an optimal amount of abstraction exists,
and where that abstraction level is.

A system for recognizing group activities using only a distributed network of
sensor nodes and mobile phones is introduced. A mobile phone is used as a central
node for GAR, and wireless sensor nodes are attached to coffee mugs (Smart Mugs)
to monitor the activities of the individual subjects. The Smart Mugs can process
measured sensor data locally to different abstraction levels before forwarding
that data to the mobile phone for GAR. The capability of the system to handle
real-world MAR and GAR problems is, however, not evaluated here.

An experiment was designed to create a simple collaborative GAR problem of
emergent behavior as it poses issues where nodes must exchange information in
order to infer group activities (see Chap. 3). In this chapter the emergent behavior
is generated by the construction of the experiment which may or may not be in
a natural form. Recognition of naturally emergent behavior is evaluated later on
in Chap. 9. The experiment is used to evaluate different levels of abstraction at
which the information exchange occurs in terms of its effects on the distributed
sensing (energy consumption), information exchange (communication volumes)
and recognition (recognition rates) systems. The goal is to identify which abstrac-
tion level is optimal for collaborative GAR in terms of the energy savings and loss
of recognition values.

Different levels of data processing result in different levels of abstraction [27],
from low-level raw sensor data to high-level single-user activity information pro-
cessed using single-user activity recognition (SAR) techniques. The later approach
introduces the problem of having to doubly-label training data in terms of single-
user and group activities in order to train both local SAR classifiers on the Smart
Mugs and global GAR classifiers on the mobile phone. The term ‘local’ is used to
refer to processes which occur at a single node, while global refers to processes
which occur on the mobile phone which has a global view of the network, sen-
sor data, and activities. Two methods for avoiding the doubly-labeling problem
are presented and evaluated here: separate training sessions for local and global
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activities, and using unsupervised clustering techniques. These different modes
of operation are evaluated in terms of distributed energy consumption and GAR
rates in experiments with multiple subjects.

Furthermore, we present a more advantageous unsupervised learning approach,
which solves one of the main problems of GAR using single-user activity informa-
tion: the doubly-labeling issue. Finally, the data set gathered during the course of
these experiments is published (see Section 7.6) to enhance reproducibility and to
make this information available for future work within the community.

The results indicate that for the given set of activities, the optimal recognition
was achieved using locally extracted features, saving energy without sacrificing
recognition. Using locally classified activities presents several issues, and did
not perform well under the given circumstances. The use of clustering however
shows potential, saving 36 % of energy consumed for communication while only
sacrificing 2.8 % of recognition.

7.3 related work

The majority of all context and activity recognition work is focused on human
subjects and concentrates on single-user activity and context recognition. Tradition-
ally, this is conducted using body-worn acceleration sensors [1, 12] which forward
sampled data to a central server for classification. Other approaches range from
embedded recognition [28, 12], where emphasis is on the tradeoff between energy
expenditure and recognition quality, to server based approaches which optimize
classification results using crowd-sourcing [3].

First simple attempts at recognizing the activity of a group as a whole were
pioneered with the Active Badge [30] and MediaCup [2] projects, where the status
of a user (including meetings or gatherings) was updated based on their location
and the location of others. These approaches where not learning-based, but rather
static code which recognized activities mostly based on location, proximity, and
some sensor measurements.

Other approaches use audio classification to recognize multi-user group activities,
such as concurrent chatting activities [19], or for classifying roles of individuals
in conversations [8]. These methods have proven effective, but rely heavily on
infrastructure for recognition. Theoretically, embedded GAR approaches using
audio sensors would be possible [28], but the authors are unaware of research in
this direction.

Camera-based systems are well suited to collecting information about multiple
individuals within the field of vision. This advantage has been put to use for
the purpose of group activity recognition, for example for monitoring activities
of groups of individuals in a prison yard [7] or cargo and logistics activities
[11, 23]. Another great example of uniquely group-related activities, is recognition
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of American Football plays based on TV feeds [22]. There, Li et al. track individual
trajectories and activities of single users, and then use this information to recognize
which play is being orchestrated. The large drawbacks of video-based systems is
that they require pre-instrumentation of recognition environments, and commonly
require infrastructure to connect sensors and processing architectures.

Research into MAR and GAR using wearable sensors has only recently been
introduced to the scientific community, an overview of which can be found in
Tab. 8. Gu et al. [17, 29] combine patterns of individual activities to recognize
concurrent multi-user activities using probabilistic methods. Here the activities
which are recognized range from single-user activities as well as concurrent and
conflicting multi-user activities, making this approach collaborative in nature.

Wirz et al. approach recognition of cluster formations and flow patterns in
groups of pedestrians [31]. The work presented here expands on that work, as
well as its extension done by Roggen et al. [24], where the concept of “behavioral
primitives” are introduced as single-user activities. Here, group membership for
each subject is monitored (MAR), but also crowd behavior is addressed (GAR),
both of which can only be evaluated with knowledge of other group members
(collaborative). Similarly Hwang et al. track behavioral singularities in children on
field trips, where the behavioral singularity is tracked for each child (MAR), but
can only be calculated in comparison with other subjects (collaborative).

Sigg et al. [27] researched the optimal context abstraction level for prediction of
future contexts. This was also evaluated for a different application, namely sensor
control for embedded SAR using prediction [12]. Since GAR using wearable sensors
is inherently a hierarchical problem, these same issues are also present here as well,
but with focus on GAR instead of context prediction. A case study on GAR to
evaluate the optimal context abstraction level for GAR using sensors from wearable
devices was presented in a preliminary poster abstract [13]. A requirements
analysis for distributed recognition in peer-to-peer networks of mobile devices was
also presented [15]. Preliminary results provided insight into the power-accuracy
trade-off for GAR, and uncovered several novel research questions [14].

7.4 system design

The system used here was made up of a wireless sensor network and a mobile
phone. Wireless sensor nodes equipped with 3D acceleration sensors were attached
to coffee mugs in a university/office setting. The nodes sampled activity and
context data at the mugs, processed this data to a specified local abstraction level,
and then forwarded it to the smart phone for further classification to the group
activity as shown in Fig. 24.

The smart phone was tasked with recognizing group activities based on the
data sampled by the wireless nodes on the coffee mugs. These nodes forwarded
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7.4 system design

either raw sensor measurements, extracted sensor signal features, local clustering
information, or locally recognized single-user activities to the smart phone. The
different modes were evaluated in terms of power consumption and recognition
accuracy. The classifiers used in this paper are the k-Nearest-Neighbors (kNN)
(k=10, Euclidean distance, no feature weighting), Decision Tree (DT) (C4.5), and
Naive Bayes (nB) (no kernel estimation, single Gaussian, no covariance modeling)
algorithms, selected for their simplicity for embedded purposes.

A hard K-Means clustering algorithm was used which outputs a single cluster
candidate (top-1) for each vector, and uses subtractive clustering to identify the
number of clusters present [14]. Each node outputs the index of the cluster which
is identified given the k-Means clustering algorithm. These values are then fused
by the mobile phone into a single group activity using trained classifiers. Since
clustering algorithms do not require labels for training, local labels are not required
for GAR, making these approaches advantageous.

Here a second method for evaluating the potential of unsupervised clustering
as a method of skirting the doubly-labeling issue was investigated. Expectation
maximization (EM) for Gaussian mixture models (GMM) [4] was used to cluster
the data and a soft clustering approach was used as it has been shown to be
advantageous for other approaches [5]. The Gaussian mixture is given by:

p(x) =
K

∑
k=1

πkP(x|µk, Σk), where
K

∑
k=1

πk = 1 (8)

For each Gaussian component of the GMM, the probability that the vector was
generated by that component is calculated. This probability is then normalized
and output as the feature indexed by that component. For example, if training of
one node yields a 3-component GMM, the output vector is then of length 3, where
the kth feature is the posterior for the kth component of the GMM given the feature
vector x, or p(µk, Σk|x).

The wireless sensor nodes used were jenParts [26] from the open-source Jen-
nisense Project1. The nodes are based on the JENNIC JN5139 wireless micropro-
cessor, the ConTiki operating system [9], a battery and an analog 3D acceleration
sensor2. The nodes sample the sensors at a rate of 33 Hz and segment the sample
data into windows (1 window = 16 samples ≈ 250ms with 50% overlap). Based
on the operational mode, the windows are then processed and forwarded to the
Neo: either the raw sensor data is forwarded (Raw Data mode, low-level data
[27]), or the sensor signal features mean and variance are forwarded (Feature and
Training mode), or single-user activity information from a classifier or clusterer is
forwarded (Classification mode, high-level data [27]).

1 The Jennisense Project: https://github.com/teco-kit/Jennisense/wiki
2 ADXL335 3-Dimensional Acceleration Sensor: http://www.analog.com
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Figure 25.: State charts for the three different system modes for GAR with associ-
ated approximate communication volumes

A Neo Freerunner3 was connected to a jenPart bridge in USB host mode for
communication with the Smart Mugs. The Neo serves as a mobile platform for
classifying the group activity based on the data aggregated from all nodes in
the WSN. This involves a training mode and a classification mode for the global
classifier. At training time, a vector consisting of data from the local nodes (either
raw, features, clusters or classes) and a global group activity label is input into
the global classifier. In classification mode, an unlabeled data vector consisting of
the local data from the distributed nodes is input into the classifier, which then
outputs the classification, or group activity estimation for that vector.

The Neo also serves as a classifier training platform for the mugs in the WSN.
Following the approach presented by Berchtold et al. [3], after being set in training
mode by the Neo, each mug gathers data and forwards it to the Neo along with a
local annotation indicated by segmenting activities using the button on the jenParts.
Once this process is complete, the Neo trains the selected classifier, segments the
trained classifier into packet-sized chunks, and sends these chunks sequentially
to the nodes in a JSON format. The Mugs are equipped with a JSON interpreter
which then reconstructs the classifiers locally and places them in memory so that
they can be executed as a module.

For all wireless communication tasks, the data is vital at the receiver. Wireless
communication must either be designed in a reliable fashion, or measures must be
taken to reconstitute missing data, although these questions are outside the scope
of this work. For this experiment the system was designed such that packet loss
was not an issue under the controlled conditions of usage, but in a real deployment
this must be addressed (see Figs. 24 and 25).

3 http://www.openmoko.org/
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7.5 experiment

This experiment was designed to evaluate different levels of data abstraction carried
out by the mugs in terms of energy consumption, communication volumes and
GAR rates. To this end the experiment represents a collaborative GAR problem
where single-user activities map to group activities in such a way as to be ambigu-
ous for individual subjects, but explicit when observing all subjects (see Chap. 3)
Processing data to the activity abstraction level [27] poses the problem of having
to doubly-label the training data in terms of local, single-user activity labels and
global, group activity labels. This must either be done using video recordings and
offline annotation (time consuming) or multiple annotators in real time, both of
which are too elaborate to allow easy deployment in new scenarios.

To counteract this, two methods of skirting the doubly-labeling issue are em-
ployed and evaluated. First, local classifiers and global classifiers are trained in
two sessions where each session must only be labeled with local or global activi-
ties respectively. Second, local activity classifiers are replaced with a hard, top-1,
unsupervised k-means clustering, and soft, probabilistic clustering [5], which does
not require local activity labels, and can therefore be trained on the same data
basis as the group activity classifier. Although the system was implemented on
the distributed heterogeneous platform, the classification results were generated
offline using the WEKA toolkit [18] for analytical purposes but were cross-checked
with online results.

7.5.1 Activity Recognition Experiment

During the course of this experiment, 3 subjects performed 7 different activities, 3
of which were group activities and 4 of which were single-user activities involving
the Smart Mugs. The activities performed will be detailed in the following subsec-
tions. In total, over 45 minutes of data were collected, making over 22,700 sample
windows, although some data was discarded at random to ensure that experimen-
tal data was independently and identically distributed (i.i.d.). The experiments
were conducted in a meeting room in a university setting over the course of a
single day. In the first phase, local classifiers were trained and evaluated, followed
by the global classifiers in the second.

Phase 1: Local Single-User Classifiers

In the first phase of the evaluation, each user performed a set of activities, each
one for a duration from approximately 2 - 15 minutes with the mug in training
mode, meaning features and labels were extracted locally and uploaded to the Neo.
The activities were local to the mugs, and were not performed as part of group
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activities, as doubly labeling local and group activities in real time is impractical.
The local single-user activities were as follows: the subject has placed the mug
on the table (or other surface), the subject is holding the mug in their hand, the
subject is drinking from the mug, and the subject is gesticulating.

After each activity was performed for the specified period of time, a button
press on the node updated the label on the feature vector sent to the Neo and the
next activity was performed. The first half of the data generated in this phase
was used to train the local classifiers, and the second half was used to evaluate
their performance. After all local activities were performed, the local classifiers
were trained and communicated to the Smart Mug using JSON packets. The
procedure of the process conducted in phase 1 is displayed in the upper portion of
the sequence diagram in Fig. 26.

Phase 2: Global Group Training and Evaluation

The evaluation of the global classifier was conducted offline using the data gen-
erated in this phase, where again half of the data was used for training and the
other for performance evaluation. The subjects conducted the following activities
together for 4 - 5 minutes each using the same mugs they trained in the previous
phase: Meeting, Presentation (users 1, 2 and 3) and Coffee break. The mappings
of group to single-user activities are as follows: meeting consists of all subjects
either setting their mugs on the table, holding them in their hand or drinking. In a
presentation one subject will be gesticulating or holding their mug while others are
either holding, drinking from, or have set the mugs down, and in a coffee break all
are either holding, gesticulating with, or drinking from their mugs.

During this period, the nodes transmitted the full locally extracted feature vector,
as well as the local classifications of the single-user activities listed previously.
The raw sensor data was ignored for reasons which will be explained later. The
process flow for phase two is shown in the lower portion of Fig. 26 where feature
vectors and local activity classifications are transmitted simultaneously to train
global classifiers for each data type respectively.

7.5.2 Power Measurements

The power consumption of each device was measured by placing the node in
serial with a low error tolerance resistor and measuring the drop in voltage across
the resistor. For each of the modes (raw sensor data, extracted feature data and
classifier/cluster data) the average rate of consumption and the amount of energy
consumed was calculated. The amount of energy consumed over the period of
time beginning at t0 and ending at t1 is then given by

∫ t1
t0

Vsupply × Isupply dt =∫ t1
t0

Vsupply × Vmeas
Rmeas

dt where Vsupply is the supply voltage, Isupply is the current drawn

130



7.5 experiment

Sm
ar

t 
M

u
g 1

 
N

e
o

 F
re

e
ru

n
n

e
r 

Ex
p

e
ri

m
e

n
ta

l 
P

h
as

e
 

Tr
ai

n
in

g 

m
u

g 1
 F

ea
tu

re
 {

1
,…

,i}
 

Lo
ca

l  
C

la
ss

if
ie

r 
Tr

ai
n

in
g 

C
la

ss
if

ie
r 1

 P
ar

t 
 {

1
,…

,j}
  

m
u

g 1
 A

ct
iv

it
y  {1

,…
,i}

 
Lo

ca
l A

R
 

G
lo

b
al

 C
la

ss
if

ie
r 

 
Tr

ai
n

in
g 

P
h

as
e

 1
: 

Lo
ca

l  
A

ct
iv

it
y 

R
e

co
gn

it
io

n
 

P
h

as
e

 2
: 

G
ro

u
p

  
A

ct
iv

it
y 

R
e

co
gn

it
io

n
 

Ev
al

u
at

io
n

 

Lo
ca

l A
R

 /
 

C
lu

st
er

in
g 

Tr
ai

n
in

g 
Ev

al
u

at
io

n
 

m
u

g 2
,3

 F
ea

tu
re

 {
1

,…
,j}

 

C
la

ss
if

ie
r 2

,3
 P

ar
t 

 {
1

,…
,i}

  

m
u

g 2
,3

 A
ct

iv
it

y  {1
,…

,i}
 

m
u

g 1
 F

ea
tu

re
/A

ct
iv

it
y 

{1
,…

,i}
 

m
u

g 2
,3

 F
ea

tu
re

/A
ct

iv
it

y 
{1

,…
,i}

 

Lo
ca

l A
R

/ 
C

lu
st

er
in

g 

m
u

g 1
 F

ea
tu

re
/A

ct
iv

it
y 

{1
,…

,i}
 

m
u

g 2
,3

 F
ea

tu
re

/A
ct

iv
it

y 
{1

,…
,i}

 

Lo
ca

l  
C

la
ss

if
ie

r 
Ev

al
u

at
io

n
 

G
lo

b
al

 C
la

ss
if

ie
r 

Ev
al

u
at

io
n

 

Se
n

so
r 

Sa
m

p
lin

g 
Fe

at
u

re
 E

xt
ra

ct
io

n
 

JS
O

N
 C

la
ss

if
ie

r 
R

ec
o

n
st

ru
ct

io
n

 

Fi
gu

re
26

.:
Se

qu
en

ce
di

ag
ra

m
fo

r
th

e
tw

o-
ph

as
e

gr
ou

p
ac

ti
vi

ty
re

co
gn

it
io

n
ex

pe
ri

m
en

t.

131
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by the node, which is given by the voltage drop (Vmeas) over the measurement
resistor with resistance Rmeas.

7.5.3 Raw Data Issues

Since the features calculated by the mobile phone and the distributed nodes
are identical, the recognition rates for both modes would be identical as well.
Theoretically, the Neo is capable of calculating far more complex and extensive
feature sets than the sensor nodes, meaning that recognition rates for the raw data
phase could be higher than for locally extracted features. That certain features
provide better or worse recognition values is however a known fact [12], and the
field of feature selection is a different area of research, making this comparison
out-of-scope in the context of this work. For this reason, the raw data phase was
only used to evaluate data volumes and energy consumption rates, and not to
compare classification values.

7.6 the data set

One of the most difficult and time consuming steps in HAR research is the col-
lection of a data set for evaluating hypotheses and algorithms. Publishing these
experimental data sets is a great step towards increasing reproducibility within
the research field of activity recognition. Without this, progress in the field is
slowed as scientist must redundantly record private data sets independent of each
other, and the effort required for reproducing published results is prohibitive. For
these reasons, part of the contribution of this publication is the data set used for
evaluating this work.

The data set has been made available online 4. All data has been published
in the .ARFF file format for compatibility with the WEKA toolkit [18]. The files
contain features generated over the sensor data streams for the two phases of the
experiment. The raw sensor data was not transmitted in order to reduce the volume
of communication on the wireless channel, avoiding collisions (causing possible
loss of data) and freeing up bandwidth. The root folder contains two folders
/local/ and /global/, which correspond to Phase 1 and Phase 2 respectively.

7.6.1 Data Set from Phase 1

In the folder /local/, there are two files for each user, one containing training
data and one containing testing data. Each file contains a set of vectors of length 7,
each containing the average and variance for each axis of the accelerometer, and an

4 http://www.teco.edu/~gordon/GAR/data_set.zip
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activity label. The activities in these files are the local single-user activity labels
from Phase 1.

7.6.2 Data Set from Phase 2

Folder /global/ contains the data from Phase 2 of the experiment. In the folder
/global/single vectors/, the files features_train.arff and *_test.arff
contain the combined data for all three subjects in one single vector. These vectors
have a length 19, with 18 features (6 from each subject) and activity label. The
labels here are Phase 2 activities, i.e. group activities.

Files hard_cluster_train.arff and *_test.arff contain the vectors re-
sulting from the hard clustering experiment. Here, each vector is of length 3 where
each feature represents the closest cluster for that subject. The labels in this file are
group activities.

Files soft_cluster_train.arff and *_test.arff contain the vectors re-
sulting from the soft clustering experiment. Here, the length of the vectors is
dependent on the number of clusters discovered for each subject. Each feature
represents the likelihood of a given cluster. The labels in this file are group
activities.

Local single-user classification vectors from Phase 2 are stored in six files in
the folder /multiple vectors/. The file names begin with the classifier name
(j48, knn, nb) followed by _train.arff or _test.arff. Each dimension
in the vector represents the activity of the subject indexed by that dimension.
These are generated by classifying each vector of the global feature data with the
classifiers trained using the data from Phase 1. The value of each position is a
Phase 1 single-user activity, where the labels in this file are group activities. Since
no doubly-labeling was done, information about the exact correctness of these
classifications is not known.

The data set presented here has been normalized using a min-max normalization.
The minimum and maximum cannot be taken from the training set. The testing
data is used to simulate and evaluate online operation of the system. This data
would therefore not be available at the point where the min and max values have
to be fixed for the system. In order to correctly model this, the minimum and
maximum values for normalization where acquired from the training data only,
and used to normalize the entire data set.

7.7 results

The results are two fold, first the classification rates for local and group activities
are presented, followed by the evaluation of the communication load and power
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consumption of the nodes. The implications of these results and the insights they
provide into the field of collaborative GAR will be discussed in Sec. 7.8.

7.7.1 Classification Results

The classification results will be presented in two parts. First the local single-user
classification rates achieved by the mugs themselves of their local activities are
presented, followed by the recognition rates of the global classifier for GAR based
on local features and local activities will be presented.

Phase 1: Local Classification

In phase 1 the mugs were trained using the following four classes: subject has
set the mug down, subject is holding the mug, subject is drinking and subject is
gesticulating. Tab. 9 displays the results of the evaluation of the local classifiers
trained in phase 1 of the experiment. The accuracy, precision, recall and F-measure
of each mug, as well as the average over the 3 mugs is displayed. All classifiers
for local, single-user activities performed at around 95%, where minimal variance
across mugs, activities and classifiers was observed.

Phase 2: Global Classification

Similar to phase 1, the global GAR classifier used half of the data generated in
phase 2 for training and the other half for classifier evaluation. Tab. 10 displays the
results of the evaluation of the global GAR classifiers from phase 2. Each row of
the table represents a different data abstraction level of the mugs: either feature
transmission, transmission of local activities (the local classifier algorithm is always
the same as the global one, e.g. the first column is local single-user DT, with a
global GAR DT), or transmission of local clustering results, either soft or hard. In
total 12 global GAR classifiers were trained and tested, 3 classifiers (DT, kNN, nB)
for each type of local data abstraction.

Tab. 10 indicates that local single-user classification provided poor results with a
accuracies of 51% (DT), 49% (nB) and 42% (kNN). Local hard clustering provided
better GAR results, with accuracies of 77% (DT, kNN) and 71% (nB). Local soft
clustering resulted in a variance across different classifiers, achieving recognition
rates of 94% and 91% for the DT and kNN classifiers respectively, but only 57%
for the nB classifier (see Sec. 7.8 for a details). The best results were achieved
using local features and a DT classifier (96%), where the kNN algorithm achieved
relatively high recognition rates (89%), while the nB classifier was only able to
achieve GAR with an accuracy of 56% (compare with 33% at random).
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7.7.2 Data Transmission and Energy Consumption

In order to analyze the requirements of the three different system modes in terms of
resource consumption the nodes were monitored over different modes of operation.
The effects of each mode was analyzed in terms of communication time and volume
as well as energy consumption. Tab. 11 displays the amount of time required
for communication per second (Ttx) and the amount of data communicated per
second for each node. The results indicate a drop in data volume of 73.5% between
transmitting raw data and features, 88.5% between features and classes/hard
clusters, and a 96.9% drop in the amount of data communicated from raw data
mode to local context classification mode. Values for soft clustering are approximate
as they vary across nodes depending on the number of Gaussian components in
the GMM. The values shown in Tab. 11 are achieved using linear approximation
based on the average data volume per node.

During the course of these experiments, the energy consumption rates of the
different devices were also monitored. Tab. 11 displays the results for the energy
measurements for both the mug hardware and the Neo mobile phone as they
carried out the necessary operations. The results indicate a decrease in average
energy consumption (Avg(P)) at the mugs of 1.4% from raw data to feature modes,
a decrease of 4.5% from feature mode to classification mode, and a total drop of
5.8% from raw data to classification mode. For the Neo, a drop of 2.7% in average
energy consumption was registered from raw data to features, a drop of 1.33%
from features to classes, and a total drop of 4.0% from raw data to classification
mode.

Due to the difference in the ratio of operational to transmission power consump-
tion between the 2 device types, the energy consumption due to transmission
could only be directly measured accurately at the mugs, but not at the Neo. The
right-most column in Tab. 11 indicates the amount of energy consumed by a node
for the purpose of wireless communication each second (ETx). This indicates a
10.17% drop in energy consumed when transmitting features compared to raw
data, and a decrease of 33.44% from features to classes, with a total decrease of
40.22% from raw data to classes.

7.8 analysis and discussion

7.8.1 Using Single-User Activities for GAR:

One of the most important issues is selecting local activities relevant to discrim-
ination between the global group activities. Here the experiment was designed
to avoid this problem by engineering a collaborative GAR problem which can be
directly mapped onto the single-user activities in order to evaluate the effects of
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the abstraction level, rather than the scenario. For real scenarios, either intuitive
or experimental knowledge of the relationship between group and individual
activities is required for activity selection, otherwise global recognition rates will
deteriorate.

In this experiment, global classifiers were trained using the output of the local
classifiers in the local classification mode, meaning that local classifier error was
present in the training data for global classifiers. Alternatively, doubly-labeling
activities would have allowed for training local and global classifiers on the ground
truth labels simultaneously. The effects on global rates is unknown; using local
labels could allow for the global classifier to account for and correct local errors,
though it may also worsen results by distorting global classifier mappings. Fur-
thermore, in this experiment a great deal of the GAR error when using locally
classified activities was due to the fact that the data generated in Phase 1 of the
experiment differed greatly from the data generated in Phase 2. Although subjects
were instructed to conduct local activities as they would in a meeting, they were
incapable of reproducing their own behavior under the group activity conditions.
This becomes apparent when comparing the averaged maximum feature values
for signal average (812 local vs. 1324 global) and variance (6621 local vs. 148271
global) of the two datasets. Eliminating this discrepancy would involve labeling
local activities during group activities which would greatly increase labeling effort.

Tab. 11 indicates that the energy consumed by the nodes for the purpose of
transmission dropped by 33% when the nodes only transmit a locally classified
situation instead of locally generated features. When compared with Tab. 10, it
becomes clear that these values come at a high price in terms of the recognition
rates for global classification.

In the previous section, the nB classifier performed badly as a global classifier.
Both the nB and DT classifiers performed comparably locally, but there is a disparity
of up to almost 50% for global group activities based on local features. This
indicates that GAR presents problems which are not present for single-user AR,
and that not every classifier algorithm used for single-user HAR is appropriate for
multi-user GAR. Data analysis indicates that often times group activities create
multiple clusters in the multi-dimensional feature (18 dimensions) and activity (3
dimensions) space, for instance group activity ”Presentation” consists of 3 clusters,
one for the “flavor” of the activity when each different user presents. The nB
classifier used here uses a single Gaussian to model each activity without kernel
estimation. For GAR, the poor results imply that a probabilistic approach must
be combined with clustering and covariance modeling in order to model multiple
clusters and dependencies, as the naive Bayes assumption can be detrimental.
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7.8.2 The Energy-Recognition Tradeoff

The ratio of how much of the total energy consumption is used for communication
can be seen in Tab. 11, and is very much system and implementation dependent,
where the volume of data falls by 75%, meaning that a large portion of the energy
consumed for communication is in overhead.

Also currently, Tab. 11 indicates that the energy used for transmitting data is
only around 4% of the total amount of energy consumed by the node, which is due
to this fact. The short sample window length (500 ms) means each communication
contains only half of one second’s worth of data. Increasing the length of this
window would increase the amount of data per packet and reduce the packet
overhead ratio. These values are heavily system and scenario dependent, where
factors such as number of sensors and features, as well as window length and
sample rate play a large role.

Changing these parameters could tip the energy and GAR rate trade-off and
would require a new evaluation. In this system, only two features are calculated,
whereas in the literature, activity recognition systems often implement multiple
features in the time and frequency domains [1, 3, 12, 27, 28, 31]. Increasing the
number of features calculated would further tip this ratio in favor of local classifi-
cation and clustering, also increasing the overall effect of the energy consumed for
communication on the total energy consumed by the system.

7.8.3 Using Clustering for GAR

Although the results of GAR using local hard clustering were significantly lower
than using local features ( 77 % as opposed to 96 %, 20% drop), clustering is
quite promising. Clustering does not require a separate phase for local training
as local labels are not required (unsupervised learning), and reduces the energy
consumption due to transmission by 33%. The 20% drop in GAR rates is prohibitive
for most applications.

Soft probabilistic clustering, which showed significant promise for other applica-
tions [5], proved to be an effective tool here. The GAR rates in Tab. 10 indicates
an accuracy of 94% for soft clustering, compared to the maximum of 96% when
using features. This indicates a loss of recognition accuracy of 2.8% from GAR
using features to GAR using soft clustering, while maintaining energy savings at
approximately 29 %. The implications of these results are two-fold. Depending
on the number of clusters identified, a parameter which can be controlled by the
system designer, the resulting impact on energy reserves can be varied as well.
The amount of data communicated is proportionate to the number of Gaussian
components, therefore less clusters means lower consumptions.
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Conversely, it stands to reason that increasing the number of clusters increases
the quality of the information transferred, thereby increasing recognition rates. In
this specific instance, between 1 and 3 clusters were detected per node, with a total
of 6 clusters. This configuration generated power consumption values only slightly
greater than hard clustering (double the data volume), but already produced high
recognition values. Soft clustering allows the application designer to tune the
tradeoff between energy consumption and recognition by increasing or decreasing
the number of clusters. The range for tuning is given by the recognition rate using
raw data (features, in this case 96%) which is the maximum, with the minimum
being the values for hard clustering (here 77% accuracy).

Using local activities reduces cost, but also reduces GAR accuracy by an unac-
ceptable 47%. Hard clustering maintained the cost reductions but with an accuracy
loss of 20%, the advantage being that unsupervised learning does not require
single-user labels. Soft clustering enables high recognition rates without requiring
local labels, representing a real and viable solution to the doubly labeling prob-
lem. In this instance a loss of only 3% of recongition could be achieved without
requireing local labels.

7.8.4 Generalization of Results

As a strong caveat, the absolute values for GAR rates and energy consumptions
cannot be assumed for other collaborative GAR problems. The activities here were
designed to present a collaborative GAR problem for experimentation, and to
be fairly straight-forward to recognize. Results for different scenarios, as is also
the case with SAR and MAR, would depend on a multitude of factors such as
sensing modalities, type and number of activities, amount of training data, etc..
What can be generalized, however, are the relative rates for energy consumption,
communication volumes and recognition rates with respect to the abstraction levels
under similar conditions.

7.9 conclusion

This paper introduced a system for group activity recognition using only wearable
and mobile devices for both sensing and recognition purposes. The problems of
multi-user (MAR) and group activity recognition (GAR) where defined and further
classified into cooperative and collaborative problems, where information exchange
between nodes was analyzed. An experiment was designed to investigate the
effects of the abstraction level for information exchange on energy consumption
and recognition rates.
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The experiment was conducted in an office scenario where nodes attached to
mugs were used to monitor user’s activities and perform collaborative group
activity recognition on a mobile phone. Different levels of context preprocessing
at the mugs were examined and evaluated in terms of power consumption and
activity recognition rates. Specifically, using raw data, signal features, locally
classified single-user activities and local clustering were examined as the basis for
GAR and evaluated in terms of the cost of transmission incurred as well as GAR
rates. The dataset was presented as part of the scientific contribution of this work.

Results indicate that for the given set of activities, the optimal recognition was
achieved using locally extracted features, with GAR accuracy of 96 % and a 10 %
drop in the amount of energy consumed for the purpose of wireless communication.
Locally classifying activities and using these to classify the global group activity
reduced power consumption by a further 33 % to 40 % total, but incurred a 47
% drop in global multi-user GAR rates due to subjects’ inability to recreate their
own behavior under different conditions. Using local hard clustering showed
potential by maintaining the reduced power consumption at 40 %, but still incurred
a recognition drop of 20 %.

The investigations presented here into soft clustering for GAR showed two
major insights. First, probabilistic soft clustering using Gaussian mixtures can
be used to tweak the tradeoff between accuracy and power consumption of the
GAR application. Second, by reducing power consumption (here only twice the
communication volume compared to local activities, saving approximately 36
%) and maintaining high GAR accuracy (only a loss of 2.8 %), probabilistic soft
clustering represents a method for tackling the doubly-labeling issue which is
intrinsic in GAR.

140



Bibliography

[1] Ling Bao and Stephen S. Intille. Activity recognition from user-annotated
acceleration data. In Pervasive, pages 1–17, 2004.

[2] Michael Beigl, Hans-W. Gellersen, and Albrecht Schmidt. Mediacups: experi-
ence with design and use of computer-augmented everyday artefacts. Comput.
Netw., 35:401–409, March 2001. ISSN 1389-1286.

[3] Martin Berchtold, Matthias Budde, Dawud Gordon, Hedda Schmidtke, and
Michael Beigl. ActiServ: Activity recognition service for mobile phones. In
ISWC’10: Proceedings of the Fourteenth International Symposium on Wearable
Computers, pages 83–90, Seoul, S. Korea, 2010. IEEE Computer Society.

[4] Christopher M Bishop. Pattern Recognition and Machine Learning, volume 4 of
Information science and statistics. Springer, 2006. ISBN 9780387310732.

[5] Ulf Blanke and Bernt Schiele. Daily routine recognition through activity
spotting. In Proceedings of the 4th International Symposium on Location and Context
Awareness, LoCA ’09, pages 192–206, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-01720-9.

[6] Arjen Boin and Allan McConnell. Preparing for Critical Infrastructure Break-
downs: The Limits of Crisis Management and the Need for Resilience. Journal
of Contingencies and Crisis Management, 15(1):50–59, March 2007. ISSN 1468-
5973.

[7] Ming-Ching Chang, Nils Krahnstoever, Sernam Lim, and Ting Yu. Group level
activity recognition in crowded environments across multiple cameras. In
Advanced Video and Signal Based Surveillance, IEEE Conference on, Los Alamitos,
CA, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4264-5.

[8] Wen Dong, Bruno Lepri, Alessandro Cappelletti, Alex Sandy Pentland, Fabio
Pianesi, and Massimo Zancanaro. Using the influence model to recognize
functional roles in meetings. In Proceedings of the 9th international conference
on Multimodal interfaces, ICMI ’07, pages 271–278, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-817-6.

[9] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. Contiki - a lightweight
and flexible operating system for tiny networked sensors. In Proceedings of the
First IEEE Workshop on Embedded Networked Sensors (Emnets-I), Tampa, Florida,
USA, November 2004.

141



Bibliography

[10] D.R. Forsyth. Group Dynamics. International student edition. Thom-
son/Wadsworth, 4th edition, 2006. ISBN 9780534368227.

[11] Shaogang Gong and Tao Xiang. Recognition of group activities using dynamic
probabilistic networks. In Proceedings of the Ninth IEEE International Conference
on Computer Vision - Volume 2, ICCV ’03, pages 742–, Washington, DC, USA,
2003. IEEE Computer Society. ISBN 0-7695-1950-4.

[12] D. Gordon, J. Czerny, T. Miyaki, and M. Beigl. Energy-efficient activity recog-
nition using prediction. In Wearable Computers (ISWC), 2012 16th International
Symposium on, pages 29 –36, june 2012.

[13] Dawud Gordon, Jan-Hendrik Hanne, Martin Berchtold, Takashi Miyaki, and
Michael Beigl. An experiment in hierarchical recognition of group activities
using wearable sensors. In Proceedings of the 7th conference on Modeling and
using context (CONTEXT), pages 108–114. Springer, 2011.

[14] Dawud Gordon, Jan-Hendrik Hanne, Martin Berchtold, Takashi Miyaki, and
Michael Beigl. Recognizing group activities using wearable sensors. In Mobile
and Ubiquitous Systems: Networking Services, MobiQuitous, 2011. MobiQuitous
’11. 8th Annual International, dec 2011.

[15] Dawud Gordon, Markus Scholz, Yong Ding, and Michael Beigl. Global peer-
to-peer classification in mobile ad-hoc networks: a requirements analysis. In
Proceedings of the 7th conference on Modeling and using context (CONTEXT), pages
108–114. Springer, 2011. ISBN 978-3-642-24278-6.

[16] Dawud Gordon, Jan-Hendrik Hanne, Martin Berchtold, Ali Asghar Nazari
Shirehjini, and Michael Beigl. Towards collaborative group activity recognition
using mobile devices. Mobile Networks and Applications, pages 1–15, 2012. ISSN
1383-469X.

[17] Tao Gu, Zhanqing Wu, Liang Wang, Xianping Tao, and Jian Lu. Mining
emerging patterns for recognizing activities of multiple users in pervasive
computing. In The Sixth Annual International Conference on Mobile and Ubiquitous
Systems, pages 1 –10, july 2009.

[18] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: an update. SIGKDD
Explor. Newsl., 11:10–18, November 2009. ISSN 1931-0145.

[19] Jane Yung-Jen Hsu, Chia-Chun Lian, and Wan-Rong Jih. Probabilistic models
for concurrent chatting activity recognition. ACM Trans. Intell. Syst. Technol., 2:
4:1–4:20, January 2011. ISSN 2157-6904.

142



Bibliography

[20] Inseok Hwang, Hyukjae Jang, Taiwoo Park, Aram Choi, Youngki Lee, Chanyou
Hwang, Yanggui Choi, Lama Nachman, and Junehwa Song. Leveraging chil-
dren’s behavioral distribution and singularities in new interactive environ-
ments: Study in kindergarten field trips. In Tenth International Conference on
Pervasive Computing, 2012.

[21] K. Lewin. Field theory in social science: selected theoretical papers. Social science
paperbacks. Harper, New York, 1951.

[22] Ruonan Li, R. Chellappa, and S.K. Zhou. Learning multi-modal densities on
discriminative temporal interaction manifold for group activity recognition.
In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on, pages 2450 –2457, june 2009.

[23] Chen Change Loy, Tao Xiang, and Shaogang Gong. Time-delayed correlation
analysis for multi-camera activity understanding. Int. J. Comput. Vision, 90(1):
106–129, October 2010. ISSN 0920-5691.

[24] Daniel Roggen, Martin Wirz, Gerhard Tröster, and Dirk Helbing. Recognition
of Crowd Behavior from Mobile Sensors with Pattern Analysis and Graph
Clustering Methods. Networks, 00(0):1–24, 2011.

[25] Albrecht Schmidt. Ubiquitous Computing - Computing in Context. PhD thesis,
Lancaster University, November 2002.

[26] Philipp M. Scholl, Kristof Van Laerhoven, Dawud Gordon, Markus Scholz, and
Matthias Berning. jnode: A sensor network platform that supports distributed
inertial kinematic monitoring. In Ninth International Conference on Networked
Sensing Systems (INSS), june 2012.

[27] S. Sigg, D. Gordon, G. Zengen, M. Beigl, S. Haseloff, and K. David. Investi-
gation of context prediction accuracy for different context abstraction levels.
Mobile Computing, IEEE Transactions on, PP(99):1, 2012. ISSN 1536-1233.

[28] Mathias Stäger, Paul Lukowicz, and Gerhard Tröster. Power and accuracy
trade-offs in sound-based context recognition systems. Pervasive and Mobile
Computing, 3:300 – 327, 2007.

[29] Liang Wang, Tao Gu, Xianping Tao, Hanhua Chen, and Jian Lu. Recognizing
multi-user activities using wearable sensors in a smart home. Pervasive Mob.
Comput., 7(3):287–298, June 2011. ISSN 1574-1192.

[30] Roy Want, Andy Hopper, Veronica Falcão, and Jonathan Gibbons. The active
badge location system. ACM Trans. Inf. Syst., 10(1):91–102, January 1992. ISSN
1046-8188.

143



Bibliography

[31] M. Wirz, D. Roggen, and G. Troster. Decentralized Detection of Group For-
mations from Wearable Acceleration Sensors. In Computational Science and
Engineering, 2009. CSE ’09. International Conference on, volume 4, pages 952–959.
Ieee, 2009. ISBN 978-1-4244-5334-4.

144



8 Distributed Group Affiliation
Detection

145



distributed group affiliation detection

8.1 abstract and context

Chap. 7 demonstrated the potential of using unsupervised learning to characterize
individual behavior within the group. In this chapter the use of similar methods
for P2P detection of affinity and affiliation between individuals is investigated to
address Challenge 3 (P2P Group Affiliation Detection). By modeling individuals’
behavior independently using the unsupervised model fitting approach presented
in Chap. 7, similarity between subjects can be judged based on the similarity of
the models. The results presented here demonstrate that the novel methods work
optimally over shorter windows of time (around 5 seconds), but that this optimum
is fairly poor compared to a standard centralized approach. Taking affiliation
values generated from these short windows and filtering them over longer periods
of time (1 - 2 minutes) can however generate comparable results to algorithms
from centralized related work. This chapter thereby addresses the Challenge 3 of
recognizing group affiliations in a P2P network of sensing devices. Once affiliations
between subjects has been detected, a P2P recognition of the emergent group
activity can be carried out over members of the same group, where a method for
this purpose is presented in Chap. 9. The work in this chapter has been accepted
for publication at ISWC 2014 [12]. The work is the result of a 3 month stay as a
Visiting Researcher at the ETH Zürich in the Wearable Computing Lab1 under the
supervision of Prof. Gerhard Tröster.

1 http://www.wearable.ethz.ch/

146



8.2 introduction and motivation

8.2 introduction and motivation

Around 70% of the time we spend in public areas is done together with other
people [17]. In general we are social creatures and spend a great deal of our time
in groups of one form or another [9]. This social behavior is also useful, as it has
been shown that groups are better than individuals at accomplishing tasks, which
is often why they are formed in the first place [9]. Understanding group behavior
and context is then crucial for systems which are trying to assist these groups in
some fashion. Before an understanding of the group’s context can be reached,
group and individual affiliations must be identified through the precess of group
affiliation detection (GAD). Often times several groups can occupy the same space
at once [17], making it important to detect non-affiliation as well as affiliation.

A group are two or more individuals who are connected to each other by social
relationships [9]. Humans have an innate ability to visually recognize these groups
quickly [17], using unconscious processes which can be described using the Gestalt
Laws [9]. Our minds automatically observe and group objects together based on
proximity, similarity and interaction: objects which are similar or near each other
belong together. It is this perception process of detecting groups and affiliations
which GAD proposes to emulate[18]. Since human-like perception is the goal, we
are therefore bound to that perception as it defines correct and incorrect affiliation
decisions. The problem is then to differentiate inter-group similarity from intra-
group similarity.

Individuals who are within the same group at the same location will often
behave similarly to each other, e.g. walking in the same direction, at the same
speed, or conducting activities at the same time [18]. The behavior of group
members is similar as members adapt their behavior to the group in a process
called norming [9], as well as the “Chameleon Effect” where individuals mimic
each other’s physical behavior [7]. The principles of homophily and similarity also
state that individuals who are already similar will also tend to to form groups
with each other [9]. However the type of similarity differs from group to group
based on the type social relationship which defines that group. A sensor which
can measure and provide an indicator of “social proximity” between individuals
for a given group can therefore be used to detect group affiliation. For example in
groups performing similar physical activities, wearable sensor signals from group
members can be used to estimate group affiliation [18], and recognize affiliative
behavior.

Such methods aggregate data from distributed sensors and sensing modalities
[15] and then analyze the emergent result [18]. However, there are conditions
where centralized aggregation cannot be achieved [11]. This can occur in non-
instrumented environments where a centralized resources is not reachable, or
when the bandwidth is too expensive either in terms cost to the user device or to
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the infrastructure provider. Finally, under some circumstances access is simply
not available, such as during emergencies where infrastructure is usually the first
casualty [4]. For these conditions, new methods for evaluating group affiliation
using P2P analysis systems must be explored.

By changing the angle of approach from centralized to P2P, the definition of the
problem also changes. The point of view which we wish to imitate changes from
that of the observer of the emergent behavior to the point of view of the individual
in the P2P network. The problem now becomes assessing individual-to-individual
affiliation across neighboring individuals and nodes. Complexity moves from the
method for clustering groups, to the method for evaluating social proximity in a
distributed fashion.

We present a method for assessing P2P affinity by modeling the data as a distri-
bution and then calculating the disparity (or similarity) as the Jeffrey’s divergence
between models from different individuals. We call this method divergence-based
affiliation detection (DBAD). We compare DBAD with centralized and distributed
approaches using signal correlation which is the basis for previous approaches
[18]. Such approaches require sensor data exchanges between nodes in order to
perform time-series analysis (TSA). The DBAD approach is sensor-independent,
requiring only a sensor which measures personal characteristics which are in some
way indicative of inter and intra-group social proximity and can be modeled as dis-
tributions, e.g. BlueTooth fingerprints, GPS locations, physical proximity sensors,
etc. Furthermore DBAD has the potential to use multiple modalities for a single
pair-wise affinity analysis which would solve several existing issues [15], although
this is beyond the scope here. The contribution of this work is the following:

• A method for detecting P2P social proximity by exchanging only model
parameters of mobile sensor data instead of exchanging sensor data itself for
TSA.

• A method for filtering social proximity over time to indicate group affiliation
between individuals.

We present 2 methods for accomplishing GAD, one where nodes exchange
Gaussian probability density functions (DBAD-P) of sensor data, and another where
they exchange histograms of observations (DBAD-H). We evaluate these methods
with an experiment involving 10 individuals with varying group numbers, sizes
and affiliations conducting a homogenous activity: a scenario with high difficulty.
The resulting data set is also published as part of the contribution of this work (see
Sec. 8.5). We evaluate the methods using two different types of sensor data each
with different types of distributions; accelerometers and magenetometers, modeled
as normal and Von Mises distributions respectively. The DBAD methods perform
significantly worse in terms of identifying inter and intra-group similarities at
any given instant with a maximum of 63% compared to a 74% for centralized
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correlation. However, filtering similarity values over time improves recognition
to 93%. The reduced P2P communication range limits the number of inter-group
neighbors increasing accuracy to 80% even without filtering.

For a single classification, a centralized correlation approach requires only under
2kB and 13.6 mJ, and the total response time for each node is low as processing
is offloaded. Distributed applications of correlation algorithms are however are
not viable due to the time and energy required for communicating sensor data.
The DBAD-H requires around 2.1kB of memory, and decreases response time and
totally energy consumed by 8% and 24% respectively compared to the centralized
approach due to reduced communication. DBAD-P has a higher response time
due to local processing and requires double the memory, but the total energy
expenditure is less than both centralized correlation and DBAD-H by 43% and 24%
respectively due to reduced communication.

8.3 related work

The behavior of groups or crowds is emergent behavior resulting from individual
members’ actions, their interactions with each other and the environment, as
well as their initial states and predispositions [9]. In animals, individual behavior,
interactions and states can be quite simple yet still generate complex group behavior
[19], allowing straightforward modeling. For humans, modeling such systems is a
very difficult problem due to the complexity and cardinality of variables.

GAD differs from behavioral modeling in that we are not interested in un-
derstanding the behavior, but rather in assessing if the behaviors are affiliated,
regardless of the form of the behaviors themselves. Marin-Perianu et al. [16]
proposed detecting groups of smart goods in the supply chain using the degree of
correlation between the sensor signals. This approach was later applied to human
beings, where the correlation of acceleration signal variance was used to iden-
tify group affiliation [18]. This was conducted with heterogeneous behavior over
groups (e.g. walking, climbing stairs, etc.) and homogeneous behavior between
individuals within the group.

First behavior-relevant information is extracted from sensor signals (signal fea-
tures) and a correlation analysis is conducted to generate a pair-wise disparity (or
similarity) matrix. The relational graph represented by the disparity matrix can
then be clustered in order to obtain a fairly accurate group affiliation label for all
individuals [18]. For multi-modal sensing systems, the clusters generated from
each sensing modality can be fused in order to combine information from both
multiple modalities [15]. Here the focus is now on trying to create methods which
achieve the same goals, but without requiring centralized resources.

Brdiczka et al. [5] recognized changes in group configurations by calculating the
Jeffrey’s divergence over histograms of multi-modal sensor data. There, divergences
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have been shown to indicate changes in the group dynamic based on the emergent
image of sensor data. Here we we investigate if these methods can also be an
indicator of one to one group affinity. Since probability density functions over
human trajectories characterize them well [6], it follows that these models could be
useful for detecting similarities in that behavior.

BlueTooth has also been used as a sensing modality to recognize device proximity
[8], as have microphone sensors [20]. In both cases fingerprinting methods were
used to compare individuals to each other. However the principle is the same.
At any given time, similarity metrics can give us an indication of “proximity”
between individuals, often corresponding to physical proximity. However it is the
similarity in these proximities over time which indicate group affiliation, requiring
exchanging time-lines of measurements or features. We present a method to
avoid exchanging observations, using model parameters instead, and a method for
filtering these similarities over time to create an indicator of group affiliation.

8.4 divergence-based affiliation detection

The previous work on centralized approaches [18] describes GAD as following.
Sensor data streams from devices monitoring potential group members are ana-
lyzed and behavior-relevant information is extracted, e.g. acceleration variance,
as indicators of individual activity cues [18]. A cross-correlation ρ analysis of a
given time window of these extracted signals is conducted in a pair-wise fashion,
resulting in a disparity matrixM in which index i, j indicates the strength of the
correlation between the observational data X of subject i and subject j over a period
of time t.

Mt
ij = ρ(Xt

i , Xt
j) =

γ(Xt
i , Xt

j)

σ(Xt
i )σ(Xt

j)
(9)

where Xi represents observational sensor data from subject i over the time period t,
γ is the covariance and σ the variance over the windows. The multi-dimensional
similarity graph represented byM can then be clustered using semi-supervised
clustering algorithms, resulting in an assignment of group affiliation.

The problem with this approach is that in order to evaluate the similarity between
two subjects the data streams from both subjects are required. This is due to the
cross-correlation algorithm γ in the numerator of Eq. (9), which requires calculation
of a function of the point-wise multiplication of both signals. In order to avoid
communicating raw sensor data, new methods of analysis which do not rely on
time-based signal analysis are required.

We present a model-based approach to this problem called divergence-based
affiliation detection (DBAD). The approach works for any sensing modality which
delivers similar values for similar inter-individual behavior and can be expressed
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distributed group affiliation detection

as a histogram over a window. Theoretically it can also be used to combine several
modalities into one similarity measurement although we have not yet evaluated
this aspect. Each device computes a model of local data based on the sensor
signals it has collected over a specified time window. Here the specific modeling
approach taken is to use probability density functions (PDF) for modeling windows
of local data. Once these models have been fitted, devices exchange parameters
of these models with their neighbors. Each device calculates similarity to its
neighbors using its own data and the models from its neighbors by calculating
the divergence of the PDFs using an extension of the Kullback-Leibler divergence.
Based on this information, neighboring devices then collaboratively decide if they
are affiliated with each other or not. Depending on the model, this should reduce
communication volume and hopefully maintain affiliation detection accuracy with
respect to related work. As we will show in Sec. 8.6, this is indeed the case with a
few caveats.

The volume of raw data communication is dependent on the sensor sample
and re-sample rate and is therefore not fair to directly compare these rates. One
approach to reducing this communication load without sacrificing recognition
would be to compress the data losslessly before transmission, thereby reducing the
amount of information which must be transmitted. We therefore evaluated how
lossless compression would affect communication volumes by compressing the
data using a two-step differential encoding followed by the DEFLATE2 algorithm.
Initially lossless audio compression algorithms where tried as these outperform
DEFLATE for audio data which is of a somewhat similar nature to the sensor data
used here, but these performed poorly.

8.4.1 Distributed Modeling

DBAD is then as follows. For each sample window, nodes extract relevant activity
cues from the sensors. In this work, we monitored the acceleration and orientation
of the subjects, using accelerometers and magnetometers respectively. For the
acceleration we used the variance of signal magnitude, indicative of walking speed
[18]. For orientation the circular mean of the azimuth, indicative of the direction of
walking heading. The circular mean of a vector of angles θ̄ consisting of N angles
θ is given by [2]:

µ(θ̄) = atan2
(

imag(r̄)
real(r̄)

)
, where r̄ =

1
N

N

∑
j

eiθj (10)

These signals build the basis for the comparative analysis of individuals. Based
on these signals each node fits a mixture model of distributions to the window,

2 https://tools.ietf.org/html/rfc1951
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8.4 divergence-based affiliation detection

where the type of distribution used is based on the type of sensor used. For the
acceleration signal, this is then modeled using a mixture of Gaussians. For the
orientation sensor, the data is modeled using a mixture of von Mises distributions
[3] due to the circular nature of the data [6], given by:

vonMises(θ|µ, m) =
1

2π I0(m)
em cos(θ−µ) (11)

where the circular variance σ is given by σ(θ̄) = 1− r̄ and I0(m) is a normalization
coefficient, given the zeroth-order modified Bessel function of the first kind:

I0(m) =
1

2π

2π∫
0

em cos(θ)dθ (12)

For both models, the number of components is identified using subtractive clus-
tering, with expectation maximization for parameter fitting [3, 6]. The results is a
mixture model consisting of K Gaussian components:

P(x) =
K

∑
k=1

πkDistrk(X) (13)

where the type of distribution Distrk(X) used depends on the data being modeled,
using standard Gaussians N (x|µk, σk) for acceleration, or vonMises(θ|µk, mk) for
orientation data.

8.4.2 Distributed Affinity Analysis

Once these mixture models haven been built, nodes (belonging to individuals)
exchange these models with their single-hop neighbors. Each node ni in the set of
all nodes with dimension N can now calculate their disparity to neighboring nodes
based on the Jeffrey’s divergence of these two nodes. The Jeffrey’s divergence is
an extension of the Kullback-Leibler divergence, selected because it is numerically
stable and symmetric. The Jeffrey’s divergence Dj between two distributions P and
Q is given by:

DJ(P||Q) =
∫
(P(x)−Q(x)) ln

(
P(x)
Q(x)

)
dx (14)

Each node calculates its pairwise disparity to all other nodes within its single-hop
communication neighborhood V t at time t. Which nodes are in this neighborhood
is dependent on the range of communication ψ (complexities in wireless communi-
cation are ignored here), and the physical Euclidean distance between two nodes
at the time:

V t = {[ni, nj]}|distt(ni, nj) ≤ ψ (15)
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The behavioral distance between neighboring nodes can then be acquired as the
value of the Jefferey’s divergence between distributions of the sensor data of the
two nodes.

∀[ni ,nj]∈V t |Mt
ij = DJ(Dist(Xt

i )||Dist(Xt
j)) (16)

In this way the DJ is commutative and both nodes will conclude the same similarity
based on the same models. In the centralized approach, the results of the complete
pairwise metrics are centrally calculated, yielding a complete similarity matrix for
all nodes as shown Fig. 27. Clustering this matrix to find affinity is a relatively
straight-forward task, requiring only parameter fitting for clustering thresholds
[18]. In a distributed approach this is not the case.

Each mobile device can only communicate with other nodes within reach of local
p2p communication, which has 2 important repercussions. First, the similarity
matrix is distributed across the complete set of user devices and is not available
to any single device. Since the assumption is that global communication is either
unavailable, intermittently unavailable, or cannot be used for cost reasons (i.e.
bandwidth), it also implies that this distributed data entity cannot be fully queried
by any single device. Second, its distributed nature also means that the disparity
matrix is incomplete or sparse, as disparity is not measured between devices which
are not within communication range. This presents a challenge of evaluating
a distributed, sparse disparity matrix across multiple devices. The result is a
distributed, sparse disparity matrix as shown in the bottom portion of Fig. 27,
where each row of the disparity matrix is located on a different device, and several
positions contain no data (when [ni, nj] /∈ V). Since individuals are mobile over
time, the vacancy of a position in the disparity matrixMt

ij at time t also varies over
time as well.

The output of the distributed similarity analysis may fluctuate from window to
window, therefore a moving average of the disparity matrices is used as a low-pass
filter to smooth the output. A fifo buffer of length b is taken, where the length
of the buffer represents how many disparity matrices where used in the average
process. This buffer forms the basis for the low-pass moving average filter, where
at any point in time t the smoothed disparity matrix M̃t is given by point-wise
average of the disparity matrices in the buffer:

M̃t
ij =

1
b

b−1

∑
τ=0
Mt−τ

ij (17)

For example, a buffer length of one is the same as using no buffer, where a buffer of
length 3 means that two previous matrices as well as the current one are averaged
together before clustering.
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8.5 group behavior experiment

Distributed Threshold-based Clustering

Once distributed disparity has been assessed, nodes must then convert this into
affiliation information. A threshold-based approach was followed where each
device makes a decision based on locally observed disparity values and a prede-
fined threshold φ. For each node ni, the clustering is conducted using only the
information inMt

ij where [ni, nj] ∈ V t, or the information local to the node at time
t. The result is a subset V t

affili
∈ V of nodes which are affiliated withe node ni at

time t, based on their disparity:

V t
affili := [ni, nj] ∈ V t|(Mt

ij ≤ φ) (18)

Where the converse is true for local non-affiliation decision:

V t
non-affili := [ni, nj] ∈ V t|(Mt

ij > φ) (19)

From a global point of view one can ignore the pairwise neighborhood member-
ships and cluster the full disparity matrix using the threshold value φ, ignoring
V t. However, in real situations, this information is not available, therefore making
local decisions based on local information necessary. The optimal value used for φ

is dependent on the physical activity of the subject, as well as the sensors used to
monitor that behavior. For practical purposes, the threshold can be experimentally
obtained by maximizing the accuracy.

8.5 group behavior experiment

Previous experiments with centralized group behavior detection [18] were con-
ducted with groups performing various heterogeneous activities and acceleration
sensors. This configuration presents a large difference between inter and intra-
group similarities. However inter-group behavioral differences may not occur in
this fashion. It is quite possible that the activity performed by all participants is
homogeneous, e.g. walking, queuing in crowds [14]. To evaluate performance
under these more difficult conditions, an experiment and data set was created
using homogeneous activity behavior, namely walking, of several individuals in
different group configurations.

The experiment was conducted in a large open room in a university setting. 12
subjects walked through the room in various group configurations while being
monitored by wearable android mobile sensing devices attached to the hip of each
subject as shown in Fig. 29. The devices monitored a single subject each using
3D accelerometers and magnetic field sensors, as well as ambient audio. For each
subject, the data set contains 51 minutes of data, although 2 devices contained
faulty motion sensors, leaving 10 usable subjects.
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1 2

3
4

12m

Figure 28.: A still image from the experiment video showing a four group configu-
ration, with annotated group affiliating and heading

The experiment was recorded using a wide-angle lens on the ceiling of the
room, and each subject was given head-gear of a different color to enable offline
individual identification as shown in Fig. 28. 12 labeled posts where set up in
a circle with a diameter of 12 meters inside of a large room, where each post
displayed a unique number clearly on a sign in clock-wise order. A single member
from each group was given a list of numbers, and each group then followed that
member from post to post in the randomly assigned order on the list. Between
experiments, group affiliations where reassigned and the experiment was repeated
in the following configurations: one group (all together), 2 groups, 3 groups, 4
groups, no groups (each subject was given a separate list). Before each group
experiment, subjects hopped in unison 3 times which was used to synchronize data
by aligning the periods of free-fall (zero acceleration) across subjects.

Location data for each subject was annotated after the fact using a mixture of
manual and automated color tracking software. For this purpose the video of the
experiment was taken and the pixel coordinates of the subject’s hat was tracked
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Power

Switch

Calibration 

Button

Charging and

Programming

44mm

25mm

17mm

5mm

Figure 29.: The Android devices used for subject monitoring (left) and the on-body
position of the devices (right)

throughout the experiments. The location is given in pixel coordinates from the top
left of the video. We converted these coordinates into meters using the diameter
of the circle (12 meters = 430 pixels) as a reference. These coordinates contain the
elliptical distortion of the wide-angle lens, but can theoretically be transposed into
spacial coordinates using the known dimensions of the room and the location of
the camera. We argue that for the purpose of this research, this approximation
suffices.

The performance of both centralized and the DBAD algorithms was implemented
in MATLAB and then simulated using this data set. The simulation was performed
on both the accelerometer and orientation data respectively to evaluate new and
previous methods for the emergency situation scenario. For this purpose, the data
from the experiments was cut up into windows whose length was varied. The
variance of the acceleration data was calculated over a 15 second moving window,
as this was shown to be effective for centralized forms of group affiliation detection
in other scenarios [18]. For the orientation data, the azimuth was taken around the
vertical axis of the subject, and a moving average of one second was used as an
indicator of walking direction.

GAD was then performed using the centralized approach based on the signal
cross-correlation, as well as the DBAD algorithms. Numerical integration of a
PDF is carried out by estimating a histogram of the PDF. In order to evaluate the
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effect of modeling error on performance, the same process was also conducting
using histograms of the individual sample windows constructed using the data
windows directly as well. The resulting sparse, distributed similarity matrices
(see Fig. 27 where then clustered for both the PDF-based and histogram-based
data, and the results where evaluated in terms of correct and incorrect pairwise
affiliation detections.

Pairwise affiliations are binary in nature, either indicating affiliation or non-
affiliation of two subjects. However for a given group configuration, the distribution
of affiliation and non-affiliation is not independent and identical. Given N subjects
divided into M groups, with size(mi) subjects in each group mi ∈ M, the total
number of pairwise comparisons is:

|S× S|total =
(N)(N − 1)

2
(20)

The number of subject affiliations is given by:

|S× S|affil =
M

∑
i

size(mi)(size(mi)− 1)
2

(21)

The number of non-affiliations is given by:

|S× S|non-affil =
M

∏
i

size(mi) = Xtotal − Xaffil (22)

The accuracy for recognition is then defined as the fraction of pairwise affiliations
correctly estimated by the system. A true positive is an affiliation which is judged
as an affiliation, as true negative is for non-affiliations. False positive is a non-
affiliation judged to be an affiliation, and false negative when affiliated subjects
are judged non affiliated. In experiments where there is either only one group, or
experiments where everyone acts independently, a row of the confusion matrix is
then empty or zero. It is important to note that standard evaluation metrics such
as precision, recall and f-measure are then undefined in these cases due to division
by zero.

8.6 evaluation

Before evaluating communication range, all algorithms where evaluated using a
sliding window whose length was varied between 1 to 60s. The results of this
simulation are shown in Fig. 30. For all algorithms, results using the acceleration
sensor are shown to be independent of window length and remain constant at
around 63.5%. This value represents the noise level, defined as the performance
of a classifier guessing at random, meaning that for these groups acceleration
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Figure 30.: Performance for cross-correlation (corr.) and DBAD over orientation
(or.) and acceleration (acc.) signals

does not represent proximity. The reason the value is above 50% is the imbalance
between the number of affiliative and non-affiliative links as was mention in Sec.
8.5. The centralized approach performed best of the three algorithms and improves
monotonically with the length of the window, achieving just under 74% for a
window length of 60 seconds. Using DBAD-H on the histograms and clustering
the resulting complete similarity matrices yields an optimum of around 66.2% at
5 seconds, indicating weak representation of social proximity. Further increasing
the sample window reduces the accuracy of the algorithm, as it asymptotically
approaches the noise level at 60 seconds. DBAD-P performs only slightly worse
than using a histogram, behaving similarly with an optimum of 66.0% at a window
length of 5 seconds which then drops off into noise.

While not necessarily a negative result, the recognition rates achieved are not
high enough to be useful in such situations. On further inspection of performance,
we identified that individual affiliation values extracted from sample windows
where noisy from frame to frame. A simulation was conducted using a low
pass filter, in this case a sliding window moving average, in order to assess the
informational content provided by the distributed methods. For this purpose the
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Figure 31.: Performance for cross-correlation (corr.) and DBAD over orientation
(or.) and acceleration (acc.) signals filtering over a 5s window

optimum window length for the distributed algorithms of 5 seconds was used, as
well as the filter in Eq. (17).

The results of this evaluation are shown in Fig. 31. Here the accuracy using the
acceleration sensor remains almost constant showing only slight increases with
filtering, indicating that noisy data is not causing the low values. Using orientation
data however, it can be clearly seen that the centralized approach as well as both
distributed approaches benefit from filtering, eventually all converging at values of
around 93.3%. Optimum values are reached after about 250 seconds of monitoring,
or a filter of length 50 classifications over 5 second windows.

One of the goals of the proposed methods is to reduce communication volumes,
thereby alleviating stress on the network and reducing battery life of the individual
devices. We monitored the rate of exchange of data during the course of the
simulations for the different algorithms, the results of which can be seen in Fig.
32. The centralized approach requires each node to exchange the entire sample
window’s worth of sensor data, in this case sampled at 50 Hz. Regardless of
window length, 50 Hz of sensor data must be transferred per second, requiring 4
bytes of data per measurement, or 200 B/s.

160



8.6 evaluation

0 10 20 30 40 50 6010−2

10−1

100

101

102

103

Window Length (s)

C
om

m
un

ic
at

io
n

Vo
lu

m
e

(B
/s

)

Acc. corr.
Acc. comp.
Acc. DBAD-H
Acc. DBAD-P
Or. corr.
Or. comp.
Or. DBAD-H
Or. DBAD-P

Figure 32.: Communication volumes for cross-correlation (corr.), cross-correlation
using compressed values (comp.) and DBAD over orientation (or.) and
acceleration (acc.) signals

For smaller window sizes, the compression overhead reduces the advantages of
compression (orientation) or even makes it counter-productive (acceleration), where
as window size increases the savings become more pronounced, at about 175 B/s
for acceleration and 150 B/s for orientation, being able to save around 12.5% and
25% respectively. The distributed algorithms however greatly outperform the cen-
tralized approaches. At their optimal window length of 5 seconds, communicating
histograms between nodes (in this case 20 buckets) requires only 8 Bytes/second
of communication, and communicating models a factor of 10 less. Concretely these
are either π, µ and σ values for acceleration data, π, θ and m values for orientation
data respectively), as shown in Eq. (13). This is 94.7% and 99.5% reduction when
compared even to the centralized approach with lossless data compression for the
histogram and model-based distributed methods respectively.

One major difference between the distributed approaches and the centralized
approach is the use of P2P communication which has a limited communication
range. We evaluated the effect of this by varying the effective communication range
of individual nodes using the location information annotated from the video. For
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Figure 33.: Performance over communication range for cross-correlation (corr.) and
DBAD over orientation (or.) and acceleration (acc.) signals for a 5s
window

a given range, nodes are able to only communicate with other nodes which are
within a circle with radius equal to the range.

Fig. 33 shows the accuracy results when the communication range of the devices
is limited in simulation. At maximum range all nodes can communicate with each
other across all experiments. As the range is decreased, the accuracy of the all
methods increases to an optimum at 4.5m of 83.1% for the centralized approach,
79.6% for the histogram-based approach, and 81.2% for the approach using model
divergence. Decreasing the communication range further incurs a sharp drop,
with accuracy eventually dropping off to noise as the distance approaches 0. The
optimum of 4.5m is there length where affiliated links are maximized and non
affiliated links are minimized within the neighborhood of each node.

The results are demonstrated in Fig. 34, where similarity matrices are displayed
instead of disparity for visibility reasons. Each row and column are subjects from 1
to 10, and index i, j is the similarity between subject i and j. In Fig. 34a) a typical
clustering of a 5 second window by DBAD-P algorithm is shown for two groups.
The difference in the similarity between subjects can be seen, but two groups can
be identified, one in the upper left and one on the lower right. This also leads to
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noise in the identification of group affiliation in the same column of Tab. 12. In
Fig. 34b) both are in different locations but the heading is similar, as is the case
with groups 2 and 4 in Fig. 28. This leads to a drop in precision in Tab. 12 for that
window. In Fig. 34c), a communication range of 5m greatly increases precision as
most inter-group links are removed, but recall lags, as intra-group similarity fails
to correlate group affinity. Filtering over the entire experiment Fig. 34d) improves
all values, but errors are still caused by intra-group similarity values. The problem
with intra-group similarities is demonstrated by Fig. 28(1), where the heading of
the individuals in the group differs dramatically. Note that here we use precision
and recall for demonstration purposes, but for experiments where with 1 or no
groups, F-score and either one or the other of these metrics is undefined.

Finally, we ran a simulation to compare the local resource footprints of the
various approaches. The values presented in Tab.13 are simplified approximations,
calculated from the bitrate and power consumption of different communication
technologies [1]3, and processing times and consumptions. This is modeled on
an Android Nexus 4 device where processing occurs on a single core which has
a consumption of 0.5W. Detecting affiliation using distributed cross-correlation is
impractical due to the high response time and total energy cost of classification.
The costs are due to the high communication volumes and consumptions caused
by communicating raw sensor data over P2P channels. The centralized approach
however has an expensive communicator, but the high bandwidth means low
communication times. Processing is also offloaded, therefore processing time is
low, and total energy is low as well.

DBAD-H has low processing time because model fitting is avoided, and P2P
communication reduces the cost of communication even with the reduced bitrate.
The total cost of energy of DBAD-H is therefore 24% lower than for centralized
cross-correlation. DBAD-P has a more processing for model fitting and analysis
than DBAD-P, and therefore increased response time as well, but the total energy
required drops due to reduced communication. Nonetheless, DBAD-P reduces
total energy consumption with respect to DBAD-H by a further 24% or by 43%
compared to centralized cross-correlation.

8.7 discussion

Due to the nature of the problem, subjects who are in the same group generate
similar sensor patterns for reasons discussed in Sec. 8.2. However, subjects
in different groups may appear to be similar for periods of time, e.g. when
both groups walk in the same direction, as is the case with groups 2 and 4 in
Fig. 28. By observing subjects for a long enough period (extending window

3 http://www.csr.com/sites/default/files/white-papers/comparisons_between_
low_power_wireless_technologies.pdf
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distributed group affiliation detection

size), the centralized approach can make these temporary phenomena irrelevant
as demonstrated in Sec. 8.6. For the distribution-based approaches however,
extending the window size reduces effectiveness as the characteristics of the signal
disappear into a flat distribution after enough directional changes [13]. This effect
is also compounded by a weakness in the distributed methods themselves, as PDFs
and histograms both ignore the time component of the signals.

Take for example two individuals who walk in opposite directions for a period
of time, then turn around 180 degrees and walk back the way they came for the
same period. In this scenario, although the individuals exhibited very different
behavior, the distribution over orientation for that period would appear identical.
For this same reason, intra-group affiliations are difficult to correctly recognize,
as heading varies over members depending on their location. This is a sensor
issue, which indicates that the heading feature is not a perfect fit for intra-group
affiliation. However, correlation does not use the absolute value of the signal but
rather analyzes covariance over time. The distributed method is therefore slightly
worse, even with filtering, compared to the correlation approach which is more
robust in this respect. The indication is that the P2P DBAD methods are weak
against variance from sensors with respect to intra-group affiliation.

The fact that the distribution-based approaches bring with them this inherent
weakness also explains why the low-pass filter is so effective. The filter allows the
p2p methods to deal with short-term similarity between non-affiliated subjects by
extending the observation range for any given affiliation decision. Reducing com-
munication range however can remove these ambiguities entirely, as the members
of different two groups are often not compared with each other if they are outside
the communication range ψ (again observe groups 2 and 4 in Fig. 28).

One application is for support of social network applications by allowing auto-
mated sharing or tag recommendation based on user affiliations. Other applications
include life-logging systems which could document who we spent time with. The
DBAD approach can also be used to support P2P group activity recognition [10]
by allowing group constituents to be identified. The novel algorithms presented
here have not been evaluated in large groups or crowds, however the evaluation
gives some insight into the uses there. The P2P methods only use neighboring
nodes, meaning that the effort required by each device is dependent on the density
of the crowd and not the size as a whole. The complexity of DBAD-P for each
node at each iteration therefore scales with O(K|V|), where K is the number of
modalities in the behavior of the individual and |V| is the number of immediate
neighbors, where DBAD-H scales with O(|V|). In emergency situations, prevention
or management systems must be aware of group affiliations in order to manage
groups of individuals as whole. Contradictory instructions to different individuals
of the same social group will cause confusion and may be partially or fully ig-
nored or disobeyed. Using these methods, management systems could disseminate
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messages to different individuals, and then allow these messages to disseminate
along P2P links classified as intra-group affiliation. Furthermore a combination
of in-network similarity assessment and server-side clustering approaches would
alleviate bandwidth consumption caused by GAD in crowds while enabling a full
emergent group analysis.

8.8 conclusion

Humans often build groups for social reasons, and because groups can be better at
reaching goals than the individuals separately [9]. However, often several different
groups have different goals and occupy the same space, and must therefore be
differentiated. Current differentiation methods consist of centrally aggregating
sensor information and then clustering the emergent sensor image. However this
approach is not feasible when network communication is too expensive, either due
to the scale or the environment.

In response to the Challenge 3 (P2P Group Affiliation Detection) in Chap. 1,
a method for distributed, P2P recognition of group affiliations was presented in
this chapter, using the divergence of sensor data distributions as an indicator of
similarity (DBAD). When addressing the problem from a P2P standpoint, the
challenge changes slightly from recognizing group boundaries from the observers
point of view, to recognizing subjective affiliations to local neighbors from the point
of view of each group member. Divergences can either be calculated using models
of individual behavior (DBAD-P) or using histograms of sensor data (DBAD-H).
The requirement is that the sensor used is an indicator of social proximity for the
kinds of social connections which define the particular group. The results show
that the output of the proposed method fluctuates with instantaneous recognition
rates only slightly over random. However group affiliations can still be detected
93% of the time by applying a low-pass filter to that output signal.

We show that only having a limited range of communication actually improves
system performance, by allowing the devices to implicitly use location information
without requiring a further sensor. Analysis of resource consumption indicates
that time-series analysis approaches in the network are infeasible due to time
and energy required for communication. DBAD-H and DBAD-P reduce energy
consumption by 24% and 43% respectively, where DBAD-H reduces response time
by 7%, but DBAD-P doubles it, indicating there is a trade-off between energy
consumption and response time. Both distributed methods increase the amount
of memory used well, although usage remains under 4.5 kB. None the less, both
methods are independent of centralized resources and can be applied in distributed
P2P systems. DBAD therefore addresses the challenge of P2P GAR while respecting
the challenge of preserving the primary function of the devices.
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9.1 abstract and context

In Chap. 4 requirements were presented which distributed GAR approaches should
fulfill:

• Requirement 1 (Survival of Node Failures)

• Requirement 2 (Recovery from Node Failures)

• Requirement 3 (Ability to Approximate the Mapping Function)

• Requirement 4 (Preservation of the Primary Function of the Device)

Chap. 7 demonstrated the potential of unsupervised clustering to characterize
individual behavior within a group. Chap. 8 used the clustering abstraction level
to identify affiliation between individuals. In this chapter I present a method
for conducting GAR in a fully distributed manner using the abstraction level of
unsupervised individual behavior clustering, combined with a supervised learning
approach. The novel method is evaluated as to how well this approach fulfills
the requirements 1, 3 and 4 set forth in Chap 4. Requirement 2, namely that the
method be able to recover from failures by incorporating new members into the
group, is left for future work (see Sec. 10.4). Some approaches and a plan for
continuing research in this direction is presented in Chap. 10. In total, this chapter
here addresses Challenge 4 (P2P Group Activity Recognition), namely the ability
to infer emergent group behavior in a P2P network. The content of this chapter
has been accepted for publication at ISWC 2014 [10].
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9.2 introduction

Human beings are social creatures, and as such we spend most of our time in groups
[18]. It has been shown that groups are better than individuals at accomplishing
tasks, which is often why they are formed in the first place [7]. Understanding
group behavior and context is then crucial for intelligent environments. The process
of understanding what a group is doing, or the physical attributes of the group
behavior, is called group activity recognition (GAR) [9].

The behavior of the group is emergent behavior, emerging from the personal
characteristics of the individual members and the group dynamic [15, 7]. Human
perception of group behavior can be explained by Gestalt Theory, where only when
observing the complete whole can its properties be described (see Fig. 35) [15, 7].
Recognition of that behavior is irrefutably bound to human perception, as it is the
human who labels a group activity based on his/her perception. Kurt Lewin, a
pioneer of modern social psychology, uses the term “emergence” to signify that
the properties of the behavior of the group are fundamentally different than the
properties of the behavior of the individuals, or of the “sum” of those behaviors
[15], a definition which we follow. This is a generalization of many definitions of
the term emergence [5], where all agree that emergence is a difference between
(human) observations of micro and macro properties.

Mobile devices such as Smart Phones present an attractive platform both for
human activity recognition (HAR) and the recognition of emergent group activities.
Sensor information from these devices is used by a recognition algorithm to learn
the ability to make the same observations as a human would. This paper shows that
a global observer - a centralized detection algorithm - having the complete picture
can perform detection of emergent group actives. It then analyzes if a local observer
- a decentralized algorithm running on individual devices - having limited peer-
to-peer communication with other peers can also deliver such observations and
studies how well such local detection performs in comparison with a centralized
approach. It also studies the communication range required to detect the emergent
behavior with respect to the spatial size of the group, and if sparse communication
can still reach acceptable detection rates compared to a global observer. We also
study how much energy can be saved using the decentralized approach and how
much energy needs to be invested for local processing instead.

We present novel methods for distributed GAR using distributed probabilistic
inference (DPI) combined with loopy belief propagation (LBP) [19]. For each group
activity, the behavior is broken down into individual clusters using unsupervised
methods. Each node then estimates its belief over its local clusters for all group
activities given current sensor observations, and then communicates this informa-
tion to its neighbors. All nodes then iteratively update and re-communicate their
beliefs based on their local sensory evidence, the belief estimates received, and a
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a) b)

c) d)

Figure 35.: Following Gestalt theory, an image of a cube emerges from distinct
objects (a). An incomplete set obscures the emergent properties (b). The
same is valid for group activities where from a complete image a sport
can be identified from context (c). A partial view of player’s physical
behavior without context makes identification difficult (d).

model of individual-to-individual group dynamics. The network then iterates and
converges towards a response prediction. We present two methods for LBP, one
linear regression over soft posterior probabilities over user behaviors (SLBP) and
one using expectations based on hard classifications (HLBP).

The novel algorithms are evaluated using an experiment in team sports. 10 sub-
jects play 6 different sports and are monitored using Android phones as wearable
sensors. The experiment naturally creates emergent group behavior where the
algorithms are then evaluated in terms of their effectiveness at recognizing that
behavior. The evaluation is in terms of performance with respect to the number
of iterations required for convergence. The effects of P2P communication range
are also evaluated by simulating local links using the devices’ GPS locations. The
results are then compared with centralized inference of group behavior, where the
complete set of sensor data provides the complete picture of the emergent behavior.

The results show that centralized inference of emergent group behavior when
presented with the complete set of group sensor data is relatively straight-forward,
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approaching an F-score of 0.81 for a window length of 2 seconds and 0.96 for 10
seconds. However inference using solely the data of each subject individually is
poor at around 0.55 for the same window. The novel DPI-SLBP approach begins at
iteration 0 at the same value as with individual subject inference, but then rapidly
improves with each iteration, surpassing the centralized naive Bayes approach after
three iterations and converging to an F-score of 0.84 after about 10 iterations. This
method incurs an increase in the amount of local memory consumed and processing
required, but reduces the amount of energy required overall for classification factor
of almost 7.

The simplified DPI-HLBP algorithm performs similarly but converges to a lower
value of 0.81, just under the centralized approach. However compared to DPI-SLBP,
memory consumption energy required for classification drop by a factor of more
than 6, which is 40 times less than that required by the centralized approach.

9.3 related work

Recognizing emergent behavior has historically been a topic in HAR for quite
some time, although it has not been named as such directly. Human perception
of other human activities is also governed by Gestalt Theory in that we observe a
single individual instead of a collection of limbs, therefore inferring behavior of a
single individual from the distributed behavior of their body is emergent [2]. The
problem is however simpler, as limbs don’t change roles, and there interactions
with each other are mechanical in nature.

Multi-user activity recognition (MAR) is the process of recognizing the activities
of multiple individuals in parallel [9]. Wearable sensing approaches leverage
centralized inference structures to infer multiple activities in parallel. Subjects may
be interacting with each other or may even be in the same group, but the problem
presented is of a different nature, recognizing distinct activities for different subjects
[12], as opposed to emergent group activities. However often these approaches gray
the boundaries between MAR and GAR, where some of the activities recognized
are group labels of emergent activities, where behavior of multiple subjects is
necessary to infer certain activities, and others are single-user activities [23].

Approaches have also been presented to distributing the recognition process for
contexts and activities across the network of sensing nodes [25]. Distributed meth-
ods leverage knowledge about the conditions which govern distributed sensing to
fuse information into recognition, e.g. someone climbing a fence will create similar
disturbances at multiple measurement locations [25]. However these approaches
are not focused on emergent behavior. One approach which was inspirational
for our research here is a method of distributed probabilistic inference for sensor
calibration [21]. The approach uses the assumption that the distance between the
measurement locations of nodes will provide temperature measurements which
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are correlated with each other, over which a potential function can be built. The
approach is however fundamentally different from emergent GAR, as it does not
address the human factor, where this factor is the main cause of complexity in
HAR as a field in general. It is more akin to MAR, where each node must esti-
mate its own bias under the assumption that measurements are correlated. For
that application, loopy belief propagation does not converge, requiring a complex
networking architecture for clique structuring and belief propagation [20].

Other sensing modalities have also been used for recognizing group activities.
Video systems present an advantage as they are able to view local individual
behavior and the resulting emergent group behavior simultaneously [4], and are
also able to scale to larger groups. They are also able to measure certain properties
of individual roles, for example a player’s position in an American Football team
[16]. However such approaches are accompanied with infrastructure requirements
for communicating and processing the constant flow of video data, and therefore
can only be applied in instrumented environments. Many human interactions
are verbal, and monitoring these conversations using microphones also provides
insight into the group activity [13]. An understanding of the audio situation can
even allow extraction of certain types of role information present in the group
behavior [6]. However for activity recognition, microphones are an orthogonal
sensing approach as they do not sense the physical parameters of the behavior
directly, and extracting this information from audio data is a different branch of
research with its own set of challenges.

Monitoring location has also been shown to give insight into emergent properties
of larger groups or crowds [24]. Here emergent spacial properties can be computed
as a function of the location of multiple individuals and the properties of the space
in which they are located. Adding motion sensors also allows properties such as
affiliation of users to each other and to groups, building subgroups within a larger
group or crowd [22]. Emergent behavior has also been addressed in the separate
but related field of swarm intelligence, usually addressing this behavior in animals
and insects [11]. Here the problems addressed usually have one of three different
goals, either looking to simulate the emergent group behavior based on models
of individuals (generation) [14], discover the rules governing individuals based
on the emergent behavior produced (discovery) [17], or evaluate the correctness
of assumptions about the relationship between local agents and emergent group
behavior (evaluation) [14]. Our approach here differs from this field because we
wish to predict the emergent group behavior based on observations of agents
(humans) who are admittedly far too complex to model using expert knowledge.
We therefore approach the problem from a machine learning standpoint in order
to discover and model pertinent characteristics of agents in an automatic fashion,
using only the sensing devices.
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9.4 concepts and approach

In this section we present the concepts and theories which motivate the design
decisions made. We begin with the fundamental principles which govern group
behavior from the field of group dynamics and social psychology. Inspired by
these abstract models and theories, we construct concrete models and methods for
modeling and classifying group behavior in a probabilistic fashion. The goal of this
section is to create models for centralized and distributed recognition of emergent
group behavior, methods for evaluating them independently, and a metric for
judging the degree of emergence of a recognition problem given specific models.

9.4.1 From Field Theory to Probability Theory

Kurt Lewin’s “Field Theory” [15] states that the individual behavior Bind. of mem-
bers of a group is a function of their individual attributes and characteristics c and
the social environment of the group E. He quantified this as “interactionism” in
Eq. (23).

Bind. = f (c, E) (23)

He stated that the resulting group behavior is “a dynamic whole [that] has prop-
erties which are different from the properties of [its] parts or from the sum of
[its] parts” [15]. “According to Lewin, whenever a group comes into existence, it
becomes a unified system with emergent properties that cannot be fully understood
by piecemeal examination” [7]. However, the behavior of an individual is not only
governed by their individual attributes, but also their role in the group dynamic [3].
These roles, as with group behavior, are generated as emergent norms when the
group is formed, and members adapt their behavior to fit the norms for different
roles [7]. As a result we can update Lewin’s equation to account for emergent roles
ρ ∈ R: Bind. = f (c, ρ, E).

From a probabilistic standpoint, we can model the probability p of all group
behaviors p(B) as the joint probability of all individuals. We know that this is the
joint distribution of C, R and E which symbolizes the social dynamic:

p(B) = p(Bind.
s1

, Bind.
s2

, . . . , Bind.
sn

) = p(C, R, E) (24)

where C is the set of characteristics of all group members c ∈ C. When Lewin used
this term, he was referring to all possible relevant characteristics of the individual,
psychological, sociological, physiological, metaphysical, etc., meaning the state
space of C approaches infinite. However, for activity recognition we focus on
the physical characteristics of contexts, activities and behaviors. These physical
properties can be observed and differentiated using sensors (the premise for HAR),
therefore we make the assumption that we can replace the infinite state-space of C
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with our observations of the physical properties of C, referred to as X. Here we
use the notation xτ

s to indicate a single observation, or observations over a window,
for subject s at time τ. Xs refers to all observations for subject s, Xb refers to the
evidence of all subjects for a single group activity, and X is the complete set of
observations for all subjects and activities. We now have the following equation
for the joint probabilities of group activities: p(B) = p(Bind.

s1
, Bind.

s2
, . . . , Bind.

sn
) =

p(X, R, E). We can break down the right hand side to approach the problem of
differentiating b ∈ B given observations and models as the following:

p(B|X, R, E) = ∏
si∈G

p(B|Xsi , ρsi , E) (25)

However, we still have the role of each user in the equation. Identification and
annotation of roles and individual-to-role affiliation requires behavioral experts,
meaning this approach lacks versatility and requires a great deal of preparation.
Also, the double annotation of group activity, and role greatly increases the effort
required for training. To circumnavigate this issue, we make a key assumption. The
evidence X is conditionally dependent on both the individuals characteristics, and
the role of the individual in the group [7]. We can therefore use this conditional
dependence to gain the pertinent information about the observations and roles.
This is done by combining the evidence in its conditionally dependent form using
a transformation into a different space:

K = f (X⊗ R) = ∀b∈B∀s∈GClust.(Xs|b) (26)

We cluster the evidence into clusters κ ∈ K, where κb
s is a cluster from subject s

generated by group behavior b and their role ρb
s in that behavior. To be clear, we

are not making the assumption that these clusters equate semantically to the role
of the individual in the activity. Our assumption is that the clusters contain a
factorization of the conditional dependencies between the evidence, the roles and
the group behavior, or p(K|B) = p(X, R|B). For example, assuming experts in the
sport soccer inform us that one of the roles is goal-tender, no single cluster would
equate to this role for a specific subject. The assumption is that the role goal-tender
for a specific subject will however generate one or several clusters in which the
different modalities in which this user behaves in this role are quantified. It is also
possible that a similar behavior from the same or different subject in the same or
different group activity could generate a cluster of the same dimensions.

9.4.2 Modeling and Classifying Group Activities

The clustering approach used is a probabilistic clustering using Expectation Max-
imization. For each group activity and subject, X is separated into Xb

s and then
clustered, yielding clusters Kb

s . The probability density function (PDF, or P) of the
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clusters for a subject and group activity is given by a Gaussian mixture model
(GMM) [7]:

P(Xb
s |Ks) = ∑

κb
s∈Kb

s

πκb
s
N (Xs|µκb

s
, Σκb

s
) (27)

Each node s has clusters Ks where each cluster κs is generated by a certain group
behavior b, giving a subset of clusters for each group activity κb

s ∈ Kb
s . These

clusters now build the evidence function for inference of group activities. The
posterior probability distribution p(K|X) can be obtained using Bayesian inference,
where each posterior is normalized using the following equation:

p(κb
s |xτ

s ) = Post.(κb
s |xτ

s )︸ ︷︷ ︸
GMM posterior

Like.(Kb
s |xτ

s )

∑b′∈B Like.(Kb′
s |xτ

s )︸ ︷︷ ︸
GMM likelihoods normalization

(28)

Here posteriors are generated over the Gaussian mixtures for each class Kb
s given

an observation xτ
s , after which the posterior distribution is normalized by the

likelihood of all activity cluster models for that subject. Both the likelihood of a
GMM and the posterior of a cluster given an observation are obtained by applying
Bayesian inference and the Law of Total Probability [19]. It is important to note
that due to the normalization in Eq. (28), the resulting probability distribution
over all clusters for all activities for each subject (Ks) sums to 1. As will be
explained later on, this step is necessary in order for nodes to be able to learn
relative probability distributions of neighboring nodes based on histories of these
distributions generated by observations. Classification of the current group activity
at any point in time for a single subject is achieved by Eq. (29).

p(B = b|Ksi , xτ
si
) = ∑

κb
si
∈Kb

si

p(κb
si
|xτ

si
) (29)

The classification approach of evaluating local posteriors using local evidence (Eq.
(28)) can be used to evaluate the ability of a single node to infer the group activity
based on local observations alone, which we call the independent local inference
(ILI) method.

Returning to the original problem of inferring group behavior, we have now
combined the user’s role with the evidence in clusters. We now have the following
equation: p(B) = p(K, E). The term E – the social environment – is problematic,
since it is difficult to quantify. We know, however, that group behavior can be
observed by applying Gestalt Theory, meaning that observation of the whole allows
it to appear in its emergent form, rather than as a sum of unrelated aspects. The
indication is that for complete set of K, the effects of E are already present with
respect to the interpretation of the group behavior B. The same concept can be
seen in Fig.35, where presented presented with the complete image, a cube appears
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through the Gestalt principles in 35a. This is the emergent whole with properties
different than the sum of the individual circles, which are actually not circles,
but appear as such on the right in in 35b. Therefore observing all distributed
observations in a single location should allow a complete view of the emergent
group behavior. To examine this hypothesis, we used two methods of central
inference.

The first is Bayesian inference using the complete probability distributions of K.
For this purpose, ξ is constructed such that:

ξ
τ

:= ∀
Ks∈K

append(p(Ks|xτ
s )) (30)

For each time-step τ, ξ
τ

is then a vector of the complete normalized posters across
K. Using this set as observations, a naive Bayesian classifier is constructed to model
P(ξ|B) and then to infer p(B|ξτ

) for each time-step τ. This method is referred to
as centralized cluster-based inference (CCI). A more concrete description of the
training process will be explained in Sec. 9.5. The second centralized method a
more traditional naive Bayesian inference method using the observations directly.
Here P(X|B) is modeled as a GMM using the Expectation Maximization (EM)
algorithm [7], and p(B|X) can then be inferred, referred to hereon as centralized
naive Bayes (CnB).

Our goal is to recognize emergent group behavior using distributed mobile
phones, where E can no longer be ignored. We propose to approach this problem
using DPI with LBP. The missing information sampled by other nodes which
is necessary in order to infer the emergent behavior is propagated through the
network in the form of beliefs from other nodes. The equation for exact inference is
shown in Eq. (31) where each node calculates its own belief based on its evidence,
as well as its belief of other nodes states based on its own local evidence. Evidence
is propagated through the network in the form of posteriors known as beliefs

p(K|X) = ∏
si∈G

p(Ksi |Xsi)︸ ︷︷ ︸
local evidence

∏
sj 6=i∈G

p(Ksi |Xsj)︸ ︷︷ ︸
distributed belief

(31)

This method has the advantage of being exact, meaning the accuracy achieve is
equal to that of a centralized system [19]. However, the state space of all random
variables must be modeled redundantly at every node at process at each iteration
step. More attractive are methods of approximate inference where each node
propagates beliefs for other nodes based on its internal beliefs and a model for
relations between its random variables and those of other nodes [19].

For standard DPI problems, clique graphs can be built to factor priors using some
form of expert knowledge or assumptions about conditional independence between
nodes [21]. These clique graphs are structured as directed a-cyclical graphs (DAG)
and then traversed for belief propagation, guaranteeing that loops do not occur.

180



9.4 concepts and approach

Ks1

Xs1

Ks2

Xs2

Ksn

Xsn

B

ψ ψ

Evidence ...

Potential ψ

Classification

Observations X

Role-Behavior 

Clusters K

Group 

Behaviors

Figure 36.: Factor graph for DPI-LBP with evidence p(K, X), potential ψ(Ksi , Ksj)

(for All i, j, some are omitted), and classification p(B, K)

Constructing a recognition system in this manner is guaranteed to converge to the
optimal solution with respect to a centralized system with a full sensory image of
the emergent behavior. For group activity recognition this is not the case, as all
variables within are influenced by the group dynamic E, making the entire group a
single clique graph.

One approach which may or may not work in such situations is loopy belief
propagation (LBP) where cyclical belief propagation paths are allowed. However
several problems may occur depending on the inference problem. Several types of
inference problems do not converge to single solution, and it is unclear which types
of problems do and do not converge [19]. Also, the convergence rate, meaning how
many iterations of belief propagation are required for convergence, are unknown.
Luckily for emergent GAR, the system does converge in relatively few iterations
with a resulting high accuracy, as we will see in Sec. 9.6. The equation for loopy
and non-loopy belief propagation is given in Eq. (32).

p(K|X) = ∏
si∈G

p(Ksi |Xsi)︸ ︷︷ ︸
local evidence

∏
sj 6=i∈G

ψi,j(Ksi , Ksj)︸ ︷︷ ︸
potential function

(32)

The potential function ψ can be any positive function which defines the rela-
tionship between the variables at subject si and sj [7]. For this function we used
linear regression [19] to model the relationship between the variables of each pair
of subjects, or Ksi and Ksj . As stated before, the evidence function is trained using
EM for unsupervised clustering of each subjects data for each group activity. Each
potential function is trained using linear regression from the variables Ksj of other
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subjects to each cluster κsi separately. The resulting linear mapping takes the form:

ψi,j = ∀
κsi∈Ksi

∀
sj 6=i∈G

α + [β1, β2, . . . , βn]× [p(Ksj)] (33)

Where [p(Ksj)] is a column vector of all cluster posteriors κsj ∈ Ksj . This method
we call DPI with soft LBP (DPI-SLBP) due to the “soft” posterior probability
distributions which are mapped.

Each iteration consists of a local inference step followed by several update
and classification steps. In the inference step, each node si generates a posterior
distribution over its clusters using its local evidence function from Eq. (32), creating
an initial estimate of the group activity based only on local estimates. In the first
update step, this information is propagated to all neighboring nodes sj, i.e. all
nodes within range of one-hop communication. These nodes then convert this
estimation of the posterior probability distribution over Ksi to a belief over Ksj

using the mappings generated from Eq. 33. These beliefs are then combined with
the current beliefs of node sj over Ksj and the resulting classification of the group
behavior is reevaluated using Eq. (29) in the classification step. The update and
classification steps then repeated until the network is satisfied that convergence
has been reached, where we will empirically evaluate how man update steps are
required in Sec. 9.6.

We also present a simplified version of the aforementioned DPI with LBP ap-
proach. That method requires each node to broadcast its posterior p(Ks|Xs) to all
neighboring nodes. Probabilistic classification works on the assumption that the
most likely model given specific evidence is the correct model for a given instance.
Based on this assumption, the most valuable information p(Ks|Xs) is the most
likely cluster in the most likely activity, namely argmaxkb

sj
p(kb

sj
). We present a

simplified method where beliefs are calculated using only this information, instead
of the full cluster posteriors p(Ks|Xs). This simplified method takes the same form
as Eq. (32) with a modified potential function presented in Eq. (34).

ψ
simp.
ij = p(Ksi | argmax

kb
sj

p(kb
sj
)) (34)

Training for the simplified potential model is done by calculating the expectation
E instead of the method using regression previously introduced. Training ψ

simp.
ij

for node si to sj for argmaxkb
sj

∑kb
sj
∈Kb

sj
p(kb

sj
) = κb

sj
is done by creating a posterior

probability for p(Ksj) given the posteriors of instances of training data data where
the most like behavior for node si is κb

sj
. Intuitively, we model a belief for the

behavior of node j at times when node i is behaving in a specific manner. For
example, if node i is behaving as a goal keeper in a soccer game, the belief that
node j is playing soccer as a midfielder would (assumedly) be higher than than the
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belief that node j is serving a volleyball. The equation for computation of ψ
simp.
ij is

the following. First we define κsi to be the most probable role-behavior cluster for
si:

κsi = argmax
kb

si
∈Kb

si

p(kb
si
|xt

si
) (35)

Then, for each cluster κsi the expectation is calculated given Ksi and xτ
si

:

ψ
simp.
ij (κsi) = ∀

τ|κsj=κb
sj

E(κsj |Ksi , xτ
si
) (36)

where the probability of Ksi , xτ
si

is given by Eq. (28). We refer to this method as
DPI with hard LBP (DPI-HLBP) due to the hard role-behavior classification in
the potential function. Lewin’s definition of emergence in group behavior as the
whole having properties different than the parts or the “sum” of those parts [15],
and emergence is a function of observational difference between the micro and the
macro [5]. We define a metric for evaluating this disparity. For a physical activity
recognition system, trained to recognize a set of group activities identified by
human observations, we define the “degree of emergence” ε as the proportional
information gain, quantified using the F-score, of activity recognition with the
complete picture, to the mean of activity recognition of all nodes using their local
observations.

ε(B|X) =
F-score(p(B|X))− ∑s∈G F-score(p(Bs|Xs))

|G|
F-score(p(B|X))

(37)

This measure is dependent on and specific to the models used, the subjective
observations (labels), and only for the behavior recognition problem, and does not
necessarily be generalized over these parameters, other definitions of emergence,
or other recognition problems.

9.5 experiment and procedure

To evaluate the approach detailed in the preceding section we constructed an
experiment with emergent group activities. The activities performed were team
sports, where the emergent behavior is the sport being played itself, based on the
observations of the physical behavior of the individuals.

The devices used LG Nexus 4 Android devices with a custom application. The
software sampled the accelerometer, magnetometer and gyroscope, each a 3 axis
vector value, with the maximum sampling rate. The accelerometer measures
on-body acceleration, the magnetometer delivers orientation and heading infor-
mation relative to the local ambient magnetic field, and the gyroscope samples
rotation information. Effectively a sample rate of about 50 Hz was delivered for
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Figure 37.: The team sports group activity experiment (top) with on-body device
placement (bottom left) and relative subject locations on the field (bot-
tom right)

the accelerometer and gyroscope, while the orientation sensor only delivered an
approximate sample rate of 20 Hz. In addition to the behavioral sensing, the
devices sampled their absolute location using the GPS sensor. The location infor-
mation was not used for group activity recognition, but was used for simulation of
performance of a the P2P recognition system.

The devices where attached at the right side of the hip, as the hip has been shown
to be the most beneficial single location for activity sensing [2]. This was done
using an elastic sports belt for the device, where the phones where inserted into the
belt with the face outwards and the top of the phone forward as shown in Fig. 37.
6 different team sports where performed by all subjects: volleyball, badminton,
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9.5 experiment and procedure

football (soccer), ultimate Frisbee, touch rugby, and flunky-ball. Each sport was
performed for 10 minutes, with a break between each type of sport. The experiment
was conducted outdoors in an open field with a natural turf of dimensions 15m
by 20m, and a video recording was made from an elevated standpoint of the
experiment. The day was sunny with high temperatures around 29◦C, making
breaks between activities necessary. The subjects were made up of 7 males and 3
females. On a scale of 0 (no experience in any of the sport) to 10 (very experienced
in all of the sports) over all sport types, the average experience was 4.5 with a
variance of 3.5.

The data recorded was synchronized and input into an offline sensor replay
mechanism in a MATLAB simulation environment, where the algorithms are
implemented. 50% of the data is used to train the algorithms, and the other 50%
for evaluating algorithmic performance. All sensor measurements where then hold-
resampled to 50 Hz to provide equidistant measurements for feature calculation.
GPS location annotations where also resampled and smoothed to account for
asynchronous updates. This sensor data was cut into windows of lengths from 1
to 10 seconds, where the window is advanced by 0.5 seconds each iteration over
which features where calculated. The features used were the mean and variance of
the total acceleration signal, the mean and variance of the azimuth orientation with
respect to the subject’s body, and the mean and variance of the rotation around
the X and Z axes (see Fig. 37 for orientation). These features calculated for subject
s then represent the observations Xs of the subject, where τ is the last timestamp
of a sensor data window. For each window length, all models are retrained and
reevaluated using the features generated over the windows.

Based on these locations we simulated performance under different communica-
tion capabilities. We then simulated performance for a communication range φ of
5m, 10m, 15m, and 20m sequentially, compared to the diagonal of the field of 25m
which is also a good approximation of the radius of the group. We used the relative
Euclidean distance between two subjects dist(si, sj) based on their GPS coordinates,
and judged them to be able to communicate if dist(si, sj) ≤ φ. The timestamp
used to evaluate dist(si, sj) is the final timestamp of the window τ, as this is the
point where the network is able to evaluate the distributed evidence functions and
communicate beliefs. we simulated performance with full inter-connectivity of all
nodes in the network, meaning the range local P2P communication was greater
than the maximum distance between any two subjects during the course of the
experiment, or φ = ∞. No multi-hop communication is implemented, simulated
or required for the methods presented here. The results are generated using only
loopy belief propagation and the models previously trained for this window length.

During the course of the simulation we evaluate the F-score of the described
algorithms by constructing confusion matrices over the output of the algorithm for
each node. How the output is determined based on a node’s belief is described in
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Figure 38.: Performance for centralized algorithms, distributed independent classi-
fication and the resulting degree of emergence

Eq. (29). This is monitored for each node, at each iteration of the belief propagation
algorithm. We also monitored the processor time required for each operation and
iteration, as well as the memory required to store and process information.

9.6 evaluation

The goal of the algorithms presented in Sec. 9.4 is to allow distributed mobile
devices sensing the physical activities of individuals to be able to recognize the
activity of the group. Since group behavior is emergent, the correct response is
not dependent on any single node, but the combine implications of all distributed
measurements. The presented DPI with LBP methods may be a solution, but
there are open questions in the literature about their performance under GAR
circumstances. For one, it is unclear if the algorithms will converge to response. If
they do, it is unclear what the accuracy of that response will be, or how long it will
take to converge.
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9.6.1 Centralized Recognition of Emergent Group Behavior

To analyze performance of centralized inference of emergent group behavior using
the complete picture of sampled sensor data, we looked at 3 different approaches
which where explained in Sec. 9.4, namely CnB, CCI, ILI and the degree of
emergence ε of this specific problem.

The results of the centralized analysis are presented in Fig. 38 where performance
is shown in the form of the F-measure over varying lengths of the feature analysis
window. The CnB algorithm performs the best, with F-measures of 0.71 for a
window of 1 second, increasing up to a recognition rate of 0.96 for a window of
10 seconds. The implications are that for the given scenario and set of conditions,
the emergent group behavior can be recognized using relatively straight forward
methods, if observations of all members of the group are present. Admittedly,
there are many other issues in GAR which are not present in this experiment, such
as variance of group members and the number of group members over time, device
location, etc. [8], however these problems are outside the scope of this work.

The CCI approach yields an F-score of 0.52 for an observation window length of
1 second, with an optimum of 0.70 for a window length of 3 seconds, after which it
subsides towards random classifications with an F-score of 0.31 at 10 seconds. This
would appear to indicate that posteriors over role-behavior clusters do not contain
the pertinent information required to infer group behavior. However, as we will
see later, the is not the case. The implication is therefore only that naive Bayesian
inference is not the correct method for inference using these posteriors. This is due
to the fact that Bayesian inference using GMMs separates the data probabilistically
using EM for clustering, but the posteriors themselves do not separate well into
such clusters.

The evaluation of the accuracy of the ILI method provides insight into the nature
of the experiment. For a window size of 1 second, the mean F-measure of all
nodes across all experiments was 0.48, with a variance of 0.05. For 10 seconds, the
mean increases to 0.82 and variance drops slightly to 0.03. The longer the time-line
of data used to classify the group activity, the better the group activity can be
recognized, both for the centralized as distributed evidence functions. Also the
quantified emergence of the group activity shrinks with the size of the window
from 0.34 for 1 second to 0.16 for 10 seconds.

Sports activities in general are very dynamic in nature, where players change
roles rapidly. For a longer observation time, a single player may change roles
enough, allowing a classifier to observe the majority of role-behaviors from a single
subject in that time, and therefore improve classification of the emergent behavior.
This effect cannot be generalized to other forms of group activities such as social
gatherings or meetings and is specific to the experiment conducted here. For
the remaining evaluation of the novel distributed algorithms, a window size of 2
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Figure 39.: DPI-SLBP for a window of 2 seconds and full inter-connectivity (φ = ∞)

seconds has been selected, as it represents a a good level of emergence, and none
of the algorithms in Fig. 38 have saturated or reached their peak results, allowing
us to compare relative values.

9.6.2 DPI with LBP

The results of DPI with LBP for a window size of 2 seconds and a communication
range of φ = ∞ are displayed in Fig. 39. The shape of the curve presented
demonstrates clearly that the distributed algorithm does indeed converge to a
solution. This solution is reached after 15 iterations at an F-measure of 0.86.
At iteration 0, the lower bound is given by the evaluation of the local evidence
functions of each node separately, and corresponds to the value for a window size
of 2s in Fig. 38. This value even exceeds the centralized approach at 0.81 after
3 iterations where 95% of convergence, a value of 0.84 is already reached after 6
iterations. It must be noted here that the indication is not distributed inference
performs better, but that the potential performance using posteriors over K is
higher than the performance of a nB classifier over X. The standard deviation
across nodes is 0.045 for iteration 0, but drops to 0.027 already after one iteration
and then converges to a value of 0.021.
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Figure 40.: DPI-HLBP for a window of 2 seconds and full inter-connectivity (φ = ∞)

The results of DPI with LBP with the same parameters (φ = ∞, ws = 2) but with
the simplified potential function ψsimp. is shown in Fig. 40. Iteration 0 also begins
at the same lower bound as in Fig. 39. A similar convergence is also clearly visible,
but convergence occurs at 0.80, as compared to a value of 0.86 for the full potential
method. The standard deviation also drops dramatically after one iteration from
0.045 to 0.037, and then iteratively converges to 0.031. This value is however greater
than the standard deviation of 0.021 for the regression-based potential function.
Here again, 95% of convergence is reached fairly quickly after 5 iterations.

The effects of the simplified potential function are clear. Convergence occurs
slightly faster (1 iteration less for 95%), but converges to an optimum 7% less than
when using a full regression-based potential function, and the standard deviation
across nodes also increases by 68%. As we will see later, the reduced F-measure
and increased standard deviation come with reductions in resource consumption,
where the performance trade-off can be advantageous for certain applications.

9.6.3 Effects of P2P Communication

The two novel distributed methods where also simulated for various communi-
cation ranges. The range φ was simulated for 5m, 10m, 15m, 20m, and ∞, or full
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Figure 41.: Convergence curves for DPI-SLBP for varying ranges φ

connectivity. The mean F-measure results for regression-based potential function
are displayed in Fig. 41. There the man value for φ = ∞ corresponds to the
same mean in Fig. 40. Mean values for 20m and 15m perform similarly to full
connectivity, converging at an almost identical rate to a value of 0.85 and 0.84
respectively, compared to 0.86 for full connectivity. Reducing communication to
10m however incurred larger losses, converging to a value of 0.80, although with
an identical rate of convergence as well. At 5m, convergence only achieved and
F-measure of 0.68, although the rate of convergence remained constant.

Similar behavior was also observed for performance using the simplified potential
function for the same simulated communication distances in Fig. 42. Communica-
tion ranges of 20m and 15m iteratively incur a loss of less than one F-measure point,
although 95% of convergence requires one further iteration, namely 6 iterations.
At 10m, convergence occurred at an F-measure of 0.76 with 95% reached after 8
iterations. Reducing communication further to 5m also required 8 iterations and
converged to an F-measure of 0.65.

A survey of convergence values for both algorithms after 5 iterations can be seen
in Tab. 14, where the coverage is simply the ratio of the of φ to the diameter of
the group, assumed to be the diagonal of the field 25m. From full connectivity to
15m range there is little effect on the convergence times, although the using the
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Figure 42.: Convergence curves for DPI-HLBP for varying ranges φ

simplified potential function incurred a greater reduction of 4.9 percentage points
(pp) as apposed to 2.4 pp for regression-based potentials. This effect is due to the
speed of belief propagation for the two algorithms. For ψsimpl. the propagation
takes more “effort” as a node must receive enough belief contrary to its current state
before its internal belief about its must probable cluster changes. For the regression-
based approach, this occurs more quickly as beliefs are integrated and propagated
in a continuous manner. For these communication ranges, the large majority of
nodes are in the same network with occasional disconnection of individuals as
they leave the group, e.g. to collect the ball. Hence, only the small changes in
recognition rates over these ranges as belief propagates over intermediary nodes
throughout the network.

For a communication distance of 10m, both algorithms propagate information at
the same speed as before, but the network breaks apart into disjoint sub-networks
as groups of nodes and individuals are out of range of each other. This is also
the cause of the reduced recognition rates in Figs. 41 and 42 for a range of 10m,
where necessary information cannot propagate to all nodes due to the lack of a
link between nodes in different sub-networks. For a range of 5m the problem
is exacerbated as the network breaks up into many different subgroups, and
nodes only have one or two other nodes in their neighborhoods, many disjunct
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Table 14.: Convergence in % after 5 iterations
Range Coverage (%) Convergence SLBP (%) Convergence HLBP (%)

∞ 100 91.2 94.6
20m 80 89.6 91.5
15m 60 88.8 89.7
10m 40 86.5 86.5
5m 20 91.1 91.7

neighborhoods appear. The results can be seen clearly in the low convergence
rates in Figs. 41 and 42. However, convergence occurs quickly, as beliefs are only
propagated to small subgroups of G.

9.6.4 Resource Consumption Analysis

The resource consumption is only for recognition, where training would incur
higher costs and is more efficient when conducted in a centralized manner. The
values presented here are simplified approximations, calculated from the bitrate
and power consumption of different communication technologies [1]1. The model
assumes an Android Nexus 4 Device with processing on a single core with a con-
sumption of 0.5W for that core. The results of the embedded resource consumption
analysis for the different approaches are presented inn Tab. 15. For the CCI and
CnB algorithms, we simulated communication of local information to a centralized
instance using 3G networks. For the DPI algorithms, 10 iterations are assumed
which is well over the amount required for 95% convergence presented in Tab.
14. Here DPI-SLBP reduced power consumption due to communication by 84%
compared to CnB, and DPI-HLBP presents a reduction of 97.5%. In terms of time
required for a classification, DPI-SLBP increases response time by a factor of 2.5,
although server-side calculations for CnB are not taken into account [9]. DPI-HLBP
however reduces the reaction time of the system by 51% with respect to CnB, which
is around 5.5 times less then the reaction time of DPI-SLBP. It is important to note
than the necessity to communicate with a server or centralized instance is removed
for DPI-LBP algorithms.

The memory required to perform CnB is only the amount of memory required
to store 1 window of sensory data. For DPI-SLBP, around 30 times more storage is
required or almost 100 kB. DPI-HLBP only requires around 5 times more memory
than CnB, representing a reduction of over 83% compared to DPI-SLBP due to

1 http://www.csr.com/sites/default/files/white-papers/comparisons_between_
low_power_wireless_technologies.pdf
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the reduced size of the expectation look-up table compared to linear regression
mappings.

9.7 discussion

The large reductions in resource consumption and low convergence time make
DPI-HLBP an attractive approach. However for many applications there are some
drawbacks. The effect of reducing simulated communication range was more
pronounced than with DPI-SLBP. For both algorithms, conversion time increases
as the group grows proportional to the communication range (see Tab. 14), but it
grows slower for DPI-SLBP then for DPI-HLBP. For applications where the surface
area of the group is large proportional to the communication range of the group,
e.g. groups or crowds in public areas, propagation rates for DPI-SLBP could be
greatly affected. For such applications the indications are that DPI-SLBT is the best
approach to take, although performance and scalability to large groups was not
evaluated here. However through the use of LBP, each node is only dependent
on neighboring nodes, meaning the approach is very scalable, where the limiting
factor is the time required for information to propagate over the group. For small
groups such as the one analyzed here, this time is negligible. However if the
required response time of the system drops below the processing time required, the
number of iterations possible becomes limited and may not suffice for convergence.

For both algorithms however, it is important that the communication range
be proportional to the surface area of the group such that the vast majority of
group members are connected to at least one other member by one link, and to all
members by at least one multi-hop path so that belief may propagate. In the case
of sport activities, this requirement is fulfilled by a range of around 12.5m-15m,
or 50% of the surface area of the group. For each iteration, the computational
complexity at each node scales with the number of neighboring nodes and the
number internal behavioral modalities. For DPI-SLBP, complexity scales with
the number of neighboring nodes and the number of role-behavior clusters of
the local node and each neighbor, or O(NK2), where N is the size of the 1-hop
neighborhood, and K2 is due to the Ki × Kj multivariate regression. For DPI-HLBP,
this is reduced to O(NK) since only the the expectation given the most like k ∈ Ki
is computed. Although complexity scales with the number of neighbors only
(group density, and not group size), the number of iterations required is still a
function of group size and the communication range.

For the presented experiment, it is conceivable that distributed majority voting
techniques could achieve high GAR rates. However, in general for GAR, this will
not be applicable. For problems with a higher degree of divergence ε, majority
voting will inevitably degrade into noise by the definition of majority voting and
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ε. For this reason an analysis and comparison of such methods has been omitted
here.

In the field of group activity recognition there are other aspects which are
not addressed here [8]. Group members can come and go over time, leading to
changing group sizes and changes in individual and group behavior characteristics.
These aspects are outside the scope of this work and must still be researched,
for GAR in general and for GAR using DPI-LBP. Integration of explicit roles into
the approaches presented here, along with generalized models for each role and
automatic role detection is a path for future research which we will follow, and
which could potentially further address these open issues in the field of GAR.

9.8 conclusion

Group activities are emergent from the individual characteristics of group members,
their roles in the group, and the group dynamic [7]. The group behavior therefore
has properties which are different from the properties of the behavior of the
individuals, as well as the “sum” of those individual properties [15]. Recognition
of these activities is the process of inferring the properties of the whole, based on
the properties of the individual behaviors.

We have shown that the emergent behavior of the group can be inferred using
centralized inference methods where the distributed observations of all members
are present with F-scores upwards of 95% possible. We use clustering to address the
problem of inference without explicitly requiring role. We presented two methods
of inferring emergent behavior in a distributed fashion, based local estimations
(distributed probabilistic inference DPI) and exchange of belief estimates (loopy
belief propagation LPB). The first (DPI-SLBP) propagates beliefs based on linear po-
tentials over posteriors from subject to subject. The second (DPI-HLBP) propagates
beliefs as expectation based on the most likely behavior of an individual.

DPI-SLBP and DPI-HLBP converged to relatively high rates of recognition, with
F-scores of 0.84 and 0.80 respectively compared to a centralized inference of
0.81 for the same parameters. The comparatively high recognition rates for the
DPI approaches also demonstrates fulfillment of the requirement to be able to
accurately model behavior with a mapping function from Chap. 4. Reducing the
the communication range to 50% of the diameter of the group only marginally
affected the value which the distributed algorithms converged to, as long as the
range did not create disjunct networks out of the single group. However it did
affect convergence time, where the effect on DPI-HLBP was greater, increasing
the number of iterations needed. Further reductions of the communication range
with respect to the group area incurred loss, but the reduced rates scale with the
number of nodes lost, fulfilling the requirement for surviving node failures.
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For larger groups such as crowds where local communication range is small in
proportion to the surface area of the group, DPI-SLBP is then preferable. However,
DPI-HLBP greatly reduces local resource consumption compared to DPI-SLBP, mak-
ing it attractive for small group applications. In total, the distributed approaches
allow inference of emergent group behavior using only local observations and
classification from the mobile devices themselves, without the need for a central-
ized instance or infrastructure. They also reduce local energy consumption of the
nodes themselves by a factor of 7 to 40, although for both algorithms the memory
required locally increases, although still remaining under 100 kB. Response time
also increases slightly for DPI-SLBP, although DPI-HLBP reduces response time
against a cloud or server based centralized system. The relatively low energy,
memory and computational footprint of the approaches when compared to the
resources of modern smart phones [1] fulfills the requirement for a from Chap.4.

In Chap. 1, 4 challenges where presented. By fulfilling the technical requirements
for P2P GAR in Chap. 4, the DPI-LBP also addressed the challenge of P2P GAR.
By reducing the resource consumption footprint, this work also addressed the
challenge of respecting the primary function of the devices. One requirement for
P2P GAR is however not addressed here, namely the ability to recover from node
failures by incorporating new group members and devices into the recognition
approach. This is left for future work, and a road-map for future research in this
direction is presented in Chap. 10.
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Human activity recognition (HAR) is the process of recognizing the physical
behavior of individuals by sensor-generated observations. Wearable sensing has
great potential for HAR because wearable sensors are embedded in ubiquitous
smart phones. Machine learning is used to interpret these signals to extract the
activity being performed. However, wearable sensors can only sense a single indi-
vidual with high fidelity. Recognizing the complex behavior of groups using this
technology requires fusing observations of group members into group information.
The algorithms and experience to practically achieve this is the contribution of this
dissertation.

10.1 identifying the problem

In Chap. 1 an activity is defined as a human context with a physical motion
characteristic. Activity recognition is the process through which a device can
understand the activity of the person using that device. We spend most of our
time in groups, where a group is simply a set of individuals connected by social
interactions. By taking a look at social psychology it quickly becomes clear that the
relationship between the behavior of the grou and of the individual group members
is not straightforward. Group behavior is emergent from the characteristics of the
individuals within the group and the group dynamic. Emergence signifies that
the group behavior is fundamentally different than the behavior of the individuals
within it, and cannot be observed by a piecemeal examination of those individuals.
It is therefore necessary to understand group activities as well as activities of single
users in order to fully comprehend the human situation.

One way to recognize emergent behavior is to aggregate distributed observations
(sensor measurements) together to be able to identify the group behavior based on
a sensory picture of the emergent phenomena. From an algorithmic standpoint,
observing all the combined behavioral measurements from all members together
allows recognition of the emergent group behavior. However there are situations in
which aggregation in a single location is not possible, such as when infrastructure
and connectivity is sporadic, expensive or missing completely (see Chap. 4). In
these cases it can still be advantageous to be able to recognize the emergent
behavior, even without global network connectivity and access to remote resources:
peer-to-peer (P2P) approaches. The challenges which must be overcome in order to
accomplish this were stated in Chap. 1:

• Challenge 1 – the amount power (and other resources) consumed for rec-
ognizing the group activity must not have a significant negative affect the
primary function of the device.

• Challenge 2 – the trade-off between power consumption and recognition
accuracy must be evaluated in order to find the optimal point for GAR.
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• Challenge 3 – individuals who are affiliated with each other must be rec-
ognized as such based on sensory information in a P2P fashion to establish
group membership.

• Challenge 4 – given a group, the emergent activity must be recognized in a
distributed fashion based on distributed observations of the group members.

An exploration of related work in Chap. 2 reveals research in different fields with
similar goals. HAR for a single person using distributed measurements of the same
body is also an emergent problem. However approaches use centralized resources
which aggregate distributed measurements to recognize that behavior. The field of
social psychology has a very detailed understanding of the intricacies of group and
individual behavior, but is not focused on practical solutions to recognize it. There
are however researchers who focus on modeling emergent behavior. Approaches
are either bottom-up simulation, where rules governing individuals are used to
simulate generation of the emergent properties, or top-down exploration of the
individual rules based on observations of group or swarm properties. There are no
approaches found which look to estimate or approximate emergent group behavior
based on observations of individuals.

There is however some research into recognition of group activities available.
In Chap. 3 the definition of single-user activity recognition (SAR), multi-user
activity recognition (MAR) and GAR is created and explored. I defined MAR as
the recognition of multiple activities for multiple users, and differentiated it from
GAR which recognized a single activity for an “organism” consisting of group of
individuals. It is also shown that the distinction between GAR and MAR cannot
be made based on the labels used as these are subjective interpretation of the
underlying phenomena.

In Chap. 4, the hurdles for achieving Challenge 4 (P2P Group Activity Recog-
nition) are explored to create formal requirements for distributed GAR. There 4
requirements emerged. First, the approach must be able to survive node failures
(such as hardware/software failures or individuals leaving) without suffering
catastrophic loss of recognition capabilities. Second, the algorithm must be able
to approximate the mapping function, evaluated in the form of recognition rates
for GAR. Third, the algorithm must preserve the primary function of the mobile
devices with respect to resource consumption. The fourth requirement is that the
approach be able to recover from node failures, meaning integrate new nodes or
even individuals into the recognition approach at training. This requirement is not
addressed in this dissertation and is left for future work. In order to fulfill this
final requirement, significant investigation is required, a road-map for which is
given in future work in Chap. 10.4. Although not a requirement, it was also stated
that a recognition algorithm which does not take the individuality or role of group
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members into account will not be able to recognize the emergent behavior of the
group.

10.2 addressing the challenges

The first challenge I address is Challenge 1 (Low Power). In Chap 5 the use of a
highly sensitive vibration sensor is introduced for activity recognition called the
micro-vibration sensor (MVS). The sensor can be used for sensing and discrimi-
nating activities which have a high-frequency component. The optimal vibrational
frequency range for the sensor is between 3 kHz and 8 kHz, a range where most
mobile accelerometers can not sense. The sensor is useful for recognizing activities
with impacts such as walking, jogging or riding a bike, while slower movements
such as gestures can not be easily discriminated. While it cannot replace a more
energy-hungry accelerometer for many activities, it can sense useful information
which the accelerometer can’t. The 50x reduction of power consumption creates
new opportunities for low-power recognition such low-power activity listening
and machine monitoring.

Challenge 1 is further addressed in Chap. 6 where a method for reducing
power consumption for embedded SAR is introduced. The predictability of human
subjects is used to turn off unnecessary sensors when they are not needed. The
decision is made based on predicted future activities and the dependence of the
recognition rate for each activity on each sensor. The method is evaluated using
two data sets, on of which is uses the MVS sensor from the previous section. The
result is that for a small loss in recognition accuracy of 1.5 pp - 2.8 pp 84 % to 89 %
of energy consumption can be saved. The implications for GAR are 1) a low-power
approach for acquiring single-user activity information for fusion, and 2) a method
for performing sensor selection based on prediction for GAR as well.

The next challenge which is addressed is Challenge 2 (Data Abstraction Level)
for performing GAR in Chap. 7. The abstraction levels from the previous two
chapters, namely sensor data, features, and single-user activities are compared, as
well as using unsupervised clustering of single-user sensor data. Each of these
represents a different level of abstraction, either low abstraction for features, mid
for clusters, or high for single-user activities. Each has a different computational
effort, communication volume, and GAR accuracies associated with it, where the
tradeoff is investigated. The different abstraction levels are tested on 3 subjects in
3 different group activities, representing a simple scenario designed to naturally
generate emergent group behavior.

Sensor data or features from all individuals allows group activities to be rec-
ognized 0.96% of the time for the scenario, but are expensive at 0.91 mJ per
classification due to the cost of transmitting data. For single-user activities, the
cost drops significantly to 0.61 mJ per classification due to the low data volume
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(high abstraction level) but recognition rates are inconclusive. Only 0.63 percent
of activities could be recognized. However, this was due to behavioral differences
in individuals during SAR classifier training and group activities. This result
highlights the issue of having to doubly label group and single-user activities in
parallel to train GAR algorithms. The cluster abstraction level avoids this issue
by allow unsupervised single-user clusters and supervised GAR classifiers to be
trained in parallel, costing approximately the same as SAR at 0.61 mJ but achieving
recognition rates almost equal to features at 0.93%. The potential of clusters is
therefore shown for GAR and this abstraction level is used in the following chapters
for both recognizing affiliations and activities in the group.

Chap. 8 addresses Challenge 3 (P2P Group Affiliation Detection). The problem is
to detect similarity – of any kind – between different members of a group without
exchanging the sensor data between subjects as would be the case for contemporary
centralized time-series analysis approaches. The abstraction level of clustering
from the previous chapter is selected, where clusters from different individuals
are compared with each other over a given window. For this purpose only the
parameters of the clusters must be transmitted, and the Jeffrey’s divergence over
these parameters is used as an indicator of social proximity. I call this method
divergence-based affiliation detection (DBAD). DBAD can be conducted using
probability density functions (DBAD-P) or histograms of sensor data (DBAD-H).
Using the resulting divergence as an indicator of social proximity, a method for
filtering this proximity into an indicator of affiliation is presented.

Both methods with filtering have the potential to reach a GAD rates of 93% which
is comparable to time-series analysis methods, however the resource consumption
differs. DBAD-H and DBAD-P reduce energy consumption by 24% and 43%
respectively, where DBAD-H reduces response time by 7%, but DBAD-P doubles
it, indicating there is a trade-off between energy consumption and response time.
Both distributed methods increase the amount of memory used, although usage
remains under 4.5 kB. The analysis shows that distributing contemporary time-
series analysis approaches by communicating data is prohibitively expensive in
terms of time and energy required. However, both DBAD methods are independent
of centralized resources and can be applied in a practical way with respect to device
resources in distributed, P2P systems.

The final challenge addressed in this dissertation is Challenge 4 (P2P Group
Activity Recognition). In Chap. 9, I introduce a method for recognizing group
activities using distributed probabilistic inference with loopy belief propagation
(DPI-LBP). The clustering abstraction level is again used from Chap. 7, where
DPI-LBP is used to infer group activities on top of individual behavioral clusters in
a distributed fashion. Individual devices exchange probabilities with each other
in order to converge together to a decision on the most probable emergent group
behavior given all sensor measurements in the network.
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Two methods for propagating beliefs through the network were presented and
evaluated, one using hard classifications (HLBP) and one using soft probability
distributions (SLBP). HLBP performed slightly worse than SLBP, converging to F-
scores of 0.84 and 0.80 respectively compared to centralized inference of 0.81. These
values remain relatively stable as long as group members are within communication
distance. HLBP converges faster than SLBP, but the negative affects of multiple
hops for belief are greater for HLBP, indicating that SLBP is perhaps the better
choice for groups which are large with respect to the communication range of each
device (crowds). SLBP and HLBP both reduce energy consumption greatly by a
factor of 7 or 40 respectively, although memory consumption increases to up to 100
kB and 17 kB respectively. It is also demonstrated that this approach meets 3 of 4
requirements put forth in Chap. 4, while the ability to incorporate new individuals
into existing groups is not explored.

10.3 summary and applications

GAR in P2P mobile devices is a challenging problem due to the conceptual disparity
between the emergent nature of group behavior, and the local scope of observations
of mobile devices. At the beginning of this dissertation I identified the challenges
which must be addressed in order to accomplish these tasks. Each challenge was
investigated and approaches, algorithms and methods for addressing them where
introduced and evaluated. The evaluations of the proposed approaches demon-
strated positive results, indicating a set of solutions to the individual challenges.
The combined contribution however is an understanding of GAR in P2P mobile
devices, and a methodology for achieving that goal.

This technological advance promises improvement in current applications as well
as opening new application areas. Detecting emergent group behavior can allow
intelligent environments to improve their understanding of the groups working
within them, without having to understand the individuals themselves. The mobile
devices of the individuals collaboratively work to understand the behavior of the
group, enabling proactive environmental support without incurring load on the
network infrastructure. Furthermore, because the algorithms are P2Pin nature
and work on an abstract but unlabeled data basis, they also reduce the amount
of privacy which must be sacrificed for GAR. Similar approaches could be used
to monitor social animals in the wild with small P2P devices for monitoring
individuals, providing a time-line of emergent behavior. For example, the social
behavior of livestock, migratory birds and endangered species with social aspects
(wolves, primates, whales, etc.) could be monitored outside of the confines of
instrumented areas.

For individuals looking to use machine learning approaches to better understand
and document themselves, the contribution of this dissertation allows them to
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improve the view of the device. I have shown that the behavior of the group
can be recognized collaboratively by devices, but observing the behavior of the
individual alone does not provide the full picture. These methods would allow
devices to log the emergent group behavior as well, putting the individual behavior
in context, without sacrificing the privacy of each individual. This emergent picture
of behavior can then be used quantify the life of a user for their own purposes, or
to allow them to share the full picture with friends across social networks without
sacrificing the privacy of other group constituents.

As small groups coalesce into larger crowds, these P2P approaches can be used to
recognize subgroups within the crowd and infer their behavior without requiring
or overloading infrastructure. The scalable design of the novel methods may even
allow inference of emergent crowd behavior as a whole, thereby having applications
for crowd management and possibly even emergency and catastrophe management
systems.

10.4 further work

One requirement for P2P GAR which was not evaluated in Chap. 9 was the
requirement from Chap. 4 to be able to incorporate new members into the group
who either join or replace existing members over time. I believe however that the
tools required to accomplish this have already been presented here, but not yet
evaluated.

My avenue of approach would be to combine methods from DBAD and DPI-LBP.
When a new member arrives, an affinity analysis could indicate similarities in
individual behavior. I would like to investigate how by selecting the individual
with the greatest similarity using DBAD, and then adopting their models to the
new user would perform. I would also look at adapting the models from the most
similar member based on the disparity given by DBAD could improve model fit.
Alternatively, one could look at transfer learning approaches, where a new subject
learns from existing members at classification time. The classified emergent group
activity would then be used as a label to train the device of the new member
to participate in future iterations. It would also be interesting to evaluate this
approach with a combined DBAD-DPI method.

Another point of interest would be to explicitly include the role of users into
the classification process. In this dissertation the cluster-based approach from
Chap. 7 was used because it eliminates the need for specific subject activity,
subject role, and group activity labels in parallel. For accurate role descriptions,
behavior experts and social psychologists are required to correct labels. With this
information however, DPI-LBP could be adapted to better infer group behavior
given the roles of the constituents, or to infer the role given a known behavior. If
the role of members is known and the group behavior is classified, it may even be
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possible to explore inference of more subtle psychological attributes of members,
such as personality type or mood, moving further towards computational social
psychology.

Finally, these approaches have been designed to be P2P and hopefully inherently
scalable due to dependency only on neighboring nodes. The implication is that the
computational complexity is not dependent on the size of the group, but on the
number of neighbors. Here scalability was not explicitly evaluated, but for crowds
this implication means that complexity is dependent on crowd density rather than
size, although for DPI-LBP propagation of beliefs through the crowd could create
issues. Experiments using large groups or crowds would provide insight into
the applicability of these approaches for crowd emergencies, or indicate if further
research is required.
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a.2 list of publications

This work is based on and composed of the content of several peer-reviewed journal
articles, conference proceedings and workshop contributions which I have authored
along with my colleagues and students. A proposal abstract of this dissertation
was presented at the Pervasive doctoral consortium in 2012 [10]. I contributed the
majority of the content and work to the following publications.

a.3 publications used in this dissertation

Using a novel micro-vibration sensor for activity recognition and a method for pro-
cessing the sensor output were published at ISWC 2010 [6] which was nominated
for the Best Paper Award. This was preceded by an exploratory study on the use
of this sensor at the workshop PervaSense 2010 [15]. A general methodology for
introducing and evaluating novel sensors in terms of their usefulness for activity
recognition was published at the Workshop on How To Do Good Research in
Activity Recognition [14] which was held in conjunction Pervasive 2010.

The concept of predicting human behavior to allow for better sensor selection was
first published in the Work in Progress track at PERCOM 2011 [7]. This contribution
was later expended on at ISWC 2012 [9] where it received an Honorable Mention
Award and a nomination for the Best Paper Award. An expanded evaluation was
invited to the Journal of Personal and Ubiquitous Computing (PUC) in 2013 [21].

The requirements analysis for performing GAR using only distributed wearable
sensing devices was published in the proceedings CONTEXT 2011 [19]. The
experiment concept for assessing the correct abstraction level for GAR was first
proposed in a short paper and poster contribution in the proceedings of CONTEXT
2011 as well [16]. The results of this experiment where published at MobiQuitous
2011 [17]. An extended version of these proceedings was published in the Journal
of Mobile Networks and Applications (MONET) as an invited submission in 2012
[20]. The work on group affiliation detection [24], and the work on distributed
probabilistic inference for GAR [23] have both been accepted in parallel to ISWC
2014. The dependencies of the individual chapters of this dissertation on specific
publications is listed in the introduction section of each chapter.

a.4 contributions to supporting publications

I have also made smaller contributions to works which are not directly used in
this dissertation but which have a supporting role. Sigg et al. [27] researched the
effects of different extraction layers on context prediction, a work which inspired
similar questions for the task of GAR researched here Chap. 7. Berchtold et al. [2]
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A.5 publications and contributions not used in this dissertation

researched the use of an activity recognition service for offloading of processor load
for both training and activity recognition phases, as well as for cross-individual
optimization and crowd-sourcing. I was also involved with other researchers in
developing the JNode wireless sensor network (WSN) platform for conducting
activity recognition [25].

a.5 publications and contributions not used in this dissertation

In the past I have researched various other aspects of wireless sensor networks.
Focus here was on the development of novel WSN technology to improve usability
and expand the application and user space [11, 5, 28, 25, 26]. Here I developed a
new method to approach WSN application-building problems by embedding the
IDE and all required resources into the nodes themselves [12, 13, 4]. A demonstra-
tion of this technology was nominated for Best Demo at Pervasive 2011 [18]. I also
contributed to work on collaborative transmission and reception in wireless sensor
networks [1].

One contribution in this area is WoR-MAC, a media access control (MAC) proto-
col for low-power wireless communication in sensor networks [8]. This protocol
utilizes low-power listening, either native or with dedicated hardware, to reduce
consumption for intermittent wireless communication. The reduction is achieved
by allowing nodes to duty-cycle transceivers, thereby reducing overall consump-
tion of communication. WoR-MAC was designed with ad-hoc, p2p recognition of
emergent group behavior as a target application and would theoretically reduce
the energy footprint caused by increased communication [8]. However, I view
this work to be slightly outside the scope of this dissertation and have opted not
to include it for brevity. This work inspired the research on the MVS sensor in
Chap. 5, as a form of low-power listening for activities where the channel is human
behavior.

Within the field of activity recognition I have also looked at uses for various
purposes. Recently, I worked on using activity recognition to create caching
recommendations for mobile applications by predicting disconnection events [22]
which won the Best Paper award at MobiCASE’13. I also contributed to work
investigating activity recognition algorithms as a tool for transferring skills between
individuals [3].
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List of Symbols and
Abbreviations

A

A Ampere, also a mapping from features onto the sensors used to gener-
ate them.

Acc. Acceleration, also accuracy.

A/D Analog to digital converter.

ADXL ADXL 335 3D accelerometer from Analog Devices.

AF Affinity.

AR Activity Recognition.

B

B Behavior of an individual or group.

b A weighted mapping from classes onto features.

Be. Belief function.

C

C The set of all activity, context or behavioral classes c ∈ C, also personal
characteristics c ∈ C.

C4.5 C4.5 decision tree datamining algorithm.

CCI Centralized cluster-based inference.

Cent. Centralized.

Chal. Challenge.

Chap. Chapter.

CL “Classified as”.

Clust. Clustering.
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LIST OF SYMBOLS AND ABBREVIATIONS

CnB Centralized naïve Bayes.

Comm. Communication.

Comp. Compressed.

Corr. Correlation.

COTS Commercial, off of the shelf.

D

D A set of data used for a experiment.

D Divergence.

DBAD Divergence-based affiliation detection.

DBAD-H Divergence-based affiliation detection using histograms.

DBAD-P Divergence-based affiliation detection using probability density func-
tions.

dist A distance metric, usually Euclidean.

Distr A distribution of any kind.

DJ Jeffrey’s divergence.

DPI Distributed probabilistic inference.

DPI-HLBP Distributed probabilistic inference with hard loopy belief propagation.

DPI-SLBP Distributed probabilistic inference with soft loopy belief propagation.

DT Decision tree.

E

E Social environment or “field”, also: emissions of a generative proba-
bilistic model e ∈ E, and energy.

ECG Electrocardiography.

EM Expectation maximization.

En Energy.
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LIST OF SYMBOLS AND ABBREVIATIONS

F

F A set of sensor signal features f ∈ F.

FFT Fast Fourier transformation.

G

G A group of individuals.

GAD Group affiliation detection.

GAR Group activity recognition.

GMM Gaussian mixture model.

GND Ground.

GPS Global positioning system.

GT Ground truth.

Gyro Gyroscope.

H

HAR Human activity recognition.

HMM Hidden Markov model, a datamining algorithm.

HVAC Heating, ventilation, and air conditioning.

Hz Herz.

I

I Current.

IBK A k-nearest neighbors datamining algorithm implementation.

IC Integrated circuit.

i.i.d. Independently and identically distributed.

ILI Independen local inference.

Ind. Individual.
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LIST OF SYMBOLS AND ABBREVIATIONS

J

J Joule.

J48 A java implementation of the C4.5 algorithm.

K

K Set of all clusters κinK.

kNN k-nearest neighbors machine learning algorithm.

L

LBP Loopy belief propagation.

Like. Likelihood.

M

M Memory consumption.

MANET Mobile, ad-hoc network.

MAR Multi-user activity recognition.

MVS Micro-vibration sensor.

N

N The number of users, subjects or devices.

NAF Non-affinity.

nB Naïve Bayes datamining algorithm.

O

OPP The OPPORTUNITY project and data set.

Or. Orientation.

OS Operating system.
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LIST OF SYMBOLS AND ABBREVIATIONS

P

P Personal characteristics of an individual, also power consumption.

p Probability, also processing load.

P2P Peer-to-peer.

PDA Personal digital assistant.

PDF Probability density function.

PIC PIC microcontroller from Microchip.

Post. Posterior probability.

pp Percentage points.

Pr. Prior distribution.

Prec. Precision.

Proc. Processor, processing.

Q

Q A set of weights for the mapping b which indicate the importance of
features for recognizing classes q ∈ Q.

R

R Accuracy or recognition rate, also resistance and the set of all individual
roles in the group ρ ∈ R.

Rec. Recall.

Req. Requirement.

S

S Set of all subjects, also used for sensors.

s One single subject, also used for one single sensor.

SAR Single-user activity recognition.

Sec. Section.
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LIST OF SYMBOLS AND ABBREVIATIONS

T

t Current time or timestamp.

T Measurement of time.

Tab. Table.

TSA Time series analysis.

U

USB Universal serial bus.

USD U.S. dollars.

V

V Voltage.

vonMises A circular von Mises distribution.

W

W Watt.

WEKA An open-source datamining toolkit.

WLAN Wireless local area network.

WSN Wireless sensor network.

X

X Set of observations.

x One single observation.

SYMBOLS

β Linear coefficient.

∆ Difference.
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LIST OF SYMBOLS AND ABBREVIATIONS

D Divergence.

ε Degree of emergence of a recognition problem.

E Expectation.

κ The predictability of a given scenario, also, a behavior cluster.

λ A parameter which specifies the acceptable amount of recognition loss
for an application.

µ Mean.

M A disparity matrix.

N Gaussian distribution.

O Computational complexity.

π Mixing coefficient.

ψ Potential function.

φ Decision threshold for affinity, also communication range of mobile
devices.

ρ The number of classes predicted at a specific point in time, also the
role of the individual in a group dynamic ρ ∈ R.

σ Variance.

Σ Covariance matrix.

θ An angle.

V Communication neighborhood.

℘ Power set.

ξ A vector of posterior probabilities.

MODIFIERS

| | Cardinality.

̂ Behavioral estimator.

˜ A subset of a set.
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