
�������������	
���
���������������

���������	��	�
�����
������������
��������

�������
�����	���������������������

����
������������������������

������������������������������������	�������

�����������

�������
����

���

����
���������������
��
���

����!����"�!#�����

��	�
������
�������$�����	% &'(&)(*&+,

����������������% $���(���(�-��.��
����!��������

/����������������% $���(���(�-��
������0�������

�����������	
�������������������������������	���
������������������������������������	������

���������������		���������	�������	�����������������������	�������������	�	�����������������

���		����	����	���������	������������������

������������������������� ��!�����
��"��	������#$�%���������������������������������	������&��'���

���������

�����	������()��)*��+)*,��

����������-����������.������/0�������

Zusammenfassung

Phylogenetische Bäume stellen evolutionären Beziehungen zwischen verschie-
denen Organismen (Arten) dar, die vermutlich gemeinsame Vorfahren haben.
Äußere Knoten eines phylogenetischen Baumes (taxa) bezeichnen lebendi-
ge Arten, für die molekulare Daten verfügbar sind oder sequenziert werden
können. Innere Knoten bezeichnen hypothetische ausgestorbene Arten, für
die in der Regel keine Datenquelle zur Verfügung steht.

In den letzten Jahren hat sich das Feld durch die Einführung von sogen-
nanten NGS (Next-Generation-Sequencing) Methoden dramatisch geändert.
Diese Methoden, die sich rasch etablierten, erlauben einen erhöhten Durch-
satz. Aus diesem Grund wachsen aktuelle molekulare Datenbanken schneller
als vom mooreschen Gesetz vorhergesagt. Dadurch entsteht die Herausforde-
rung, solche große molekulare Datenmengen effizient zu analysieren.

Die Maximum-Likelihood Baumrekonstruktion versucht, den Baum mit
dem höchsten Likelihood score für ein bestimmtes Sequenzalignment (input)
zu finden. Von Seiten der Informatik besteht die Herausforderung darin, die
Phylogenetic Likelihood Function (PLF) zum Bewerten alternativer Topolo-
gien effizient zu berechnen.

In dieser Arbeit beschäftigen wir uns mit der Untersuchung und Entwick-
lung von Methoden, die diese Aufgabe, im Zusammenhang mit groß angeleg-
ten Datensätzen, erleichtern können. Wir präsentieren drei unterschiedliche
Ansätze hierfür: den Speicherbedarf der PLF Funktion zu verringern, Lauf-
zeiten zu reduzieren und die Automatisierung phylogenetischer Analysen.

Verringerung des Speicherbedarfs der PLF Funktion Wir entwickel-
ten drei Methoden, die den Speicherbedarf für Zwischenergebnisse ver-
ringern kann. Die (i) out-of-core und die (ii) recomputation haben
miteinander gemeinsam, dass nur ein Teil der Zwischenergebnisse im
Hauptspeicher gespeichert werden muss. Die restlichen Zwischenergeb-
nisse werden entweder auf der Festplatte (out-of-core) gespeichert oder
erneut berechnet (recomputation trade-off).

Unsere Auswertungen deuten darauf hin, dass der recomputation An-
satz (trade-off) deutlich effizienter ist, da er für typische Datensätze den

i

Speicherbedarf halbiert zu Lasten einer um 10% erhöhten Laufzeit.

Die dritte Methode wird SEV (Subtree Equality Vectors) genannt und
reduziert den Speicherbedarf nahezu proportional zum Anteil fehlen-
der Daten im Datensatz ohne die Laufzeit zu erhöhen. Im allgemeinen
können diese Methoden gleichzeitig eingesetzt werden.

Reduzierung von Laufzeiten Wir portierten die PLF Implementierung
auf GPUs mit OpenCL. Dabei passten wir das Speicherlayout an, um
eine optimale GPU Leistung zu erreichen. Unsere Auswertungen zeigen,
dass für ausreichend lange Datensätze, die Verlagerung von Berech-
nungen auf die GPU bis zu zweimal schneller als der am effizientesten
vektorisierte CPU-Code sein kann.

Aus einer algorithmischen Perspektive haben wir den sogenannten Back-
bone Algorithm, der den Suchraum aller möglichen Bäume beschränkten
kann, entwickelt. Die Anwendung dieser Methode kann die Laufzeit bis
zu 50% verringern und liefert dabei Bäume, die statistisch vergleichbar
sind mit denen, die ohne Suchraumbeschränkungen gefunden werden.

Automatisierung phylogenetischer Analysen Der letzte Teil dieser Ar-
beit beschäftigt sich mit dem Problem, dass vorhandene phylogeneti-
sche Bäume nach kurzer Zeit nicht mehr die aktuellsten Daten aus
den schnell wachsenden Datenbanken widerspiegeln. Wir entwickelten
ein Framework namens PUmPER (Phylogenies Updated PERpertual-
ly). Mit PUmPER können Pipelines erstellt werden, die iterativ neue
Sequenzalignments assemblieren und Bäume aus vorherigen Iteratio-
nen ergänzen. Das Framework kann entweder als stand-alone pipeline
konfiguriert werden oder rechenintensive Aufgaben auf einem Cluster
ausführen.

Obwohl die in dieser Arbeit beschriebene Methoden als proof-of-concept
innerhalb der RAxML codebase implementiert wurden, sind diese Metho-
den nichtsdestotrotz relativ einfach in anderen state-of-the-art Likelihood-
basierten Codes implementierbar. Im allgemeinen erwarten wir, dass diese
Methoden hilfreich sind, um aktuelle phylogenetische Anwendungen besser
zu skalieren und dadurch auch phylogenetische Analysen ermöglichen, die auf
kompletten Genomen basieren.

ii

Acknowledgements

This research project would not have been possible without the support of
many people. I wish to express my gratitude to my supervisor, Prof. Dr.
Alexandros Stamatakis who was abundantly helpful and offered invaluable
assistance, support and dedicated guidance. Deepest gratitude also to Prof.
Dr. Arndt von Haeseler without whose knowledge and assistance this study
would not have been successful. I addition I would like to express my sin-
cere gratitude to Casey Dunn, Stephen A. Smith, and John Cazes for kindly
hosting me at their lab during my research stay at Brown University. Special
thanks also to all my collaborators and fellow group members; Nikos Alachi-
otis, Simon Berger, Andre Aberer, Pavlos Pavlidis, Solon P. Pissis, Tomas
Flouri, Dilrini de Silva, Paschalia Kapli, Kassian Kobert, Jiajie Zhang and
Alexey Kozlov for being an always-collaborative and helpful group.

I would like to thank my parents, brothers and family for their uncondi-
tional support, as well as my friends from Valladolid and Deggendorf, who
have always stood by me during my time in Heidelberg. Last but not least,
my dearest thanks to Beifei for being an endless source of encouragement
and inspiration.

This work was funded via the German Science Foundation (DFG) grants
STA 860/2 and STA 860/3. Part of this work used resources provided by the
iPlant Collaborative (funded by NSF grant #DBI-0735191).

iii

Contents

Zusammenfassung i

Acknowledgements iii

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contribution . 2
1.3 Structure of this thesis . 4

2 Computational Molecular Phylogenetics 5
2.1 Statistical Models of Evolution 5
2.2 Sequence Alignment . 7

2.2.1 Pairwise Sequence Alignment 8
2.2.2 Multiple Sequence Alignment 9

2.3 Phylogenetic Trees . 11
2.4 Tree Reconstruction Methods 12
2.5 Computing the Likelihood of a Tree 15

2.5.1 Accounting for rate heterogeneity 19
2.6 Maximum Likelihood Tree Search 21
2.7 Phylogenetic Likelihood Library 24
2.8 RAxML-family implementation concepts 25

2.8.1 Node records . 25
2.8.2 Internal tree nodes . 25
2.8.3 Data structure for Trees 26
2.8.4 Computing the likelihood on a Tree 27
2.8.5 Optimizing branch lengths 29

3 Memory-Saving Techniques 31
3.1 Memory requirements for the PLF 32
3.2 Out-of-Core . 33

3.2.1 Related Work . 34

iv

3.2.2 Computing the PLF Out-of-Core 34
3.2.3 Experimental Setup & Results 39

3.3 Recomputation of Ancestral Vectors 44
3.3.1 Recomputation of Ancestral Probability Vectors 45
3.3.2 Experimental Setup and Results 54
3.3.3 Evaluation of traversal overhead 56

3.4 Subtree Equality Vectors . 58
3.4.1 Gappy Subtree Equality Vectors 58
3.4.2 Generation of Biological Test Datasets 61
3.4.3 SEV Performance . 62

3.5 Summary . 63

4 The Backbone Algorithm 65
4.1 Constraining tree search to a backbone tree 65
4.2 Algorithm . 66

4.2.1 Starting tree . 67
4.2.2 Tip Clustering . 68
4.2.3 Backbone construction 71
4.2.4 Backbone-constrained Tree Search 73

4.3 Evaluation and Results . 74
4.3.1 Performance . 74
4.3.2 Simulated Datasets (Accuracy) 78

4.4 Summary . 78

5 Introduction to GPU Programming 79
5.1 Overview . 79
5.2 CUDA . 80

5.2.1 CUDA Hardware and Architecture 80
5.2.2 CUDA Programming Model 82
5.2.3 Performance Considerations 82

5.3 OpenCL . 84
5.3.1 OpenCL performance portability 85

6 GPU implementation of Phylogenetic Kernels 86
6.1 Related work . 87
6.2 Generic Vectorization . 88
6.3 GPU Implementation . 91

6.3.1 Kernel Implementation 92
6.3.2 GPU Memory Organization 94
6.3.3 OpenCL Implementation 95

6.4 Experimental setup and results 96

v

6.5 Summary . 100

7 Perpetual Phylogenies with PUmPER 101
7.1 Related Work . 102
7.2 Framework Overview . 103

7.2.1 MSA Construction/Extension with PHLAWD 105
7.2.2 Phylogenetic Inference 107
7.2.3 Manual and automatic tree updates 108

7.3 Software and Availability . 108
7.3.1 Standalone implementation 110
7.3.2 Distributed implementation 110
7.3.3 Custom iPlant setup 111

7.4 Evaluation and Results . 113
7.4.1 Biological examples . 113
7.4.2 Simulated Data . 119

7.5 Discussion . 121
7.6 Summary . 121

8 Conclusion And Outlook 122
8.1 Conclusion . 122
8.2 Future Work . 123

8.2.1 GPUs . 123
8.2.2 PUmPER . 124

8.3 Outlook . 124

List of Figures 126

List of Tables 128

List of Acronyms 129

Bibliography 130

vi

Chapter 1

Introduction

1.1 Motivation

The landscape of genomics and phylogenetics has changed dramatically since
the irruption of Next-Generation Sequencing (NGS) technologies [75]. As
a consequence of the throughput increases, the amount of data accumu-
lated in molecular databases keeps growing at an accelerated pace. A cur-
rent overview over NGS technology platforms is available in [51]. This data
avalanche facilitates the exploration of new research areas, such as phyloge-
nomics, where phylogenetic techniques are applied to infer evolutionary re-
lationships based on multi-species genomes [63]. Furthermore, the reduced
sequencing cost has enabled the execution of collaborative large-scale genome
sequencing projects, such as the 10K vertebrate genome project (http://
www.genome10k.org/) and the 1000 insect transcriptome evolution project
(http://www.1kite.org/). The size of the datasets used in these projects
pose new challenges for large-scale maximum likelihood-based phylogenetic
analyses.

On the other hand, computing power has been growing exponentially in
the last decades as predicted by Moore’s law. However, at present, due to
the high throughput of new sequencing technologies, molecular sequence data
accumulates at a pace faster than Moore’s law. This induces a growing gap
between the data that is available and the computing resources that can be
used for analyzing these data.

Phylogenetic trees are tree topologies that represent the evolutionary his-
tory of a set of organisms. The field of computational phylogenetics entails
the inference of phylogenetic trees. The input data for phylogenetic inference
are generally a pre-processed (aligned) set of molecular sequences. The main
computational challenge consists in efficiently computing the PLF (Phyloge-

1

http://www.genome10k.org/
http://www.genome10k.org/
http://www.1kite.org/

netic Likelihood Function) for scoring alternative tree topologies.
Given the above considerations, in this thesis, we identified and addressed

the following computational challenges in the field of computational phyloge-
netics. Firstly, we aim to reduce the high memory requirements of the PLF
to allow for analyzing larger datasets with the available hardware. Secondly,
we intend to decrease the running time of tree inferences, either by algorith-
mic means or architecture-specific optimizations, for instance, using graphic
cards (GPUs). Finally, we also study and provide solutions related to the
automation of phylogenetic analysis (sequence alignment generation and tree
inference). In this case, the focus is not on computational optimizations to
reduce memory footprints or achieving speedups, but rather man-hours spent
in planning and running phylogenetic analyses. The automation of compu-
tational workflows will become an increasingly important task in genomics
as manual inspection and analysis of datasets becomes unpractical at the
genome scale.

1.2 Scientific Contribution

In this thesis, we explored several areas relevant to the inference of phyloge-
netic trees under maximum likelihood. The phylogenetic likelihood function
(PLF) introduced by Joe Felsenstein in 1981 [23] is one of the most important
statistical functions in the area of evolutionary Bioinformatics.

The existing open source software RAxML [87], is a widely used tool for
phylogenetic inference. In RAxML the PLF dominates inference times (typ-
ically accounting for 80 - 95% of total execution time) and overall memory
requirements (accounting for at least 70% of total RAM consumption).

In this thesis, we used RAxML as a platform to implement and test new
search algorithms, port the PLF to GPUs, implement memory saving tech-
niques, and to infer extremely large plant trees on real biological data. These
ad hoc implementations are freely available as open-source code under the
GNU GPL license. While we have used RAxML as a workbench, the tech-
niques described in this dissertation are conceptually generic enough to be
applied to other likelihood-based state-of-the-art programs for phylogenetic
inference such as IQPNNI [53], GARLI [116], PHYML 3.0 [29], FastTree
2.0 [66], MrBayes [72], PhyloBayes [46], and BEAST [17], as well as for
PLF libraries such as BEAGLE [4], and other phylogenetic applications such
as DPPDiv [31], which requires computing the PLF to estimate divergence
times on fixed topologies.

We have developed the backbone algorithm, which can reduce the time
required for tree inferences by more than 50% while yielding ’good’ trees in

2

the statistical sense. This is achieved by constraining the space of possible
topologies that are evaluated by the PLF.

Regarding memory requirements, we present three different techniques
that can be applied to compute the likelihood score for a given tree while
reducing memory usage. The first two techniques, named out-of-core and
recomputation approaches, reduce memory requirements at the cost of longer
running times. The out-of-core approach stores on disk the intermediate
results that do not fit into memory. The recomputation approach is a trade off
where additional computations are used to re-compute intermediate results
when not enough RAM memory is available to store them.

The third memory-saving technique presented, based on the SEV (Subtree
Equality Vectors) technique, implements the PLF so that some computations
are skipped when data is not present. This can reduce memory requirements
almost proportionally to the amount of missing data, and, in some cases, it
can also significantly reduce running time. However, it is only applicable to
input datasets which show certain patterns of missing data.

BEAGLE [4] is a general purpose library for evaluating the likelihood of
sequence evolution on trees. One major advantage of using such software
libraries is that they often give the user access to parallelized and optimized
function kernel implementations. The exilixis-lab (http://exelixis-lab.
org/) is currently developing the Phylogenetic Likelihood Library (PLL) [27].
Based on the optimized and parallelized PLF implementation of RAxML, the
PLL is a highly optimized open-source library that entails state-of-the art
implementations for common input datatypes (currently DNA and protein
data). The PLL can be executed transparently on a large number of emerging
parallel architectures. In the context of this project, we developed a proof-
of-concept OpenCL GPU implementation of the key PLF functions for DNA
data.

One of the consequences of the rapid growth of molecular databases is
that existing phylogenies, after short periods of time, may not reflect the
latest available data. Furthermore, re-starting phylogeny reconstruction from
scratch to add new data is an expensive task that involves computational
resources and man-hours. In order to address this issue, we have developed
PUmPER (Phylogenies Updated PERpetually), a framework for developing
automated pipelines for phylogenetic analysis. PUmPER can automatically
update existing phylogenies by iteratively assembling new alignments and
extending existing trees, without human intervention. The framework can
be configured to run as a stand-alone pipeline on a single machine, or to
offload computationally expensive tasks to a cluster. PUmPER is written in
Ruby and transparently uses state-of-the-art tools for alignment construction
(PHLAWD [81]) and phylogenetic inference (RAxML-Light [91]).

3

http://exelixis-lab.org/
http://exelixis-lab.org/

The main results presented in this thesis have been published in four
peer-reviewed conferences [35, 37, 39, 40] and two journal articles [36, 38].

During the course of these thesis, we collaborated and conducted ad-
ditional work on other research topics not presented here. These projects
involved the development and usage of the PLL library [15, 27], heuristic al-
gorithms for the protein assignment problem [30], integration of the recompu-
tation technique in RAxML-Light [91], and conducting phylogenetic analysis
in the context of metagenomic species profiling [101]. We also collaborated
with the on-going 1000 insect transcriptome evolution project (http://www.
1kite.org/).

1.3 Structure of this thesis

This thesis is structured as follows: Chapter 2 provides a general introduction
to maximum likelihood based inference of phylogenetic trees, and includes
details on RAxML concepts that are a prerequisite for the rest of the text.
In Chapter 3 we introduce methods to reduce the memory requirements of
the PLF. The backbone algorithm for reducing the tree search space is de-
scribed in Chapter 4. In Chapter 5 an introduction to GPU Programming is
given, followed by Chapter 6, which describes our OpenCL-based GPU im-
plementation of the PLF. In Chapter 7 we introduce PUmPER, our framework
for perpetually updated phylogenies. Finally, we conclude and discuss future
work in Chapter 8.

4

http://www.1kite.org/
http://www.1kite.org/

Chapter 2

Computational Molecular
Phylogenetics

In this chapter we briefly introduce some basic concepts related to the field
of Molecular Phylogenetics.

Phylogenetics is the study of evolutionary relationships among organisms
that share common ancestors. The most common structure used to represent
these relationships is a phylogenetic tree, which depicts ancestor-descendant
relationships. From a biological perspective, it is known that evolution can-
not be modelled as a strict branching process, because genetic information is
not always transferred vertically. For instance, phenomena such as hybridiza-
tion and lateral gene transfer (LGT) cannot be modeled by a phylogenetic
tree. More complex structures, such as phylogenetic networks, are topics of
active research [33]. In this thesis, however, we focus solely on phylogenetic
trees.

The input data used to infer the trees can be morphological or molecu-
lar sequences. Morphological sequences are generated by encoding observed
morphological traits. Molecular data (e.g., DNA, RNA, or AA) is obtained
through sequencing technologies. Due to the continuously decreasing cost
of Next-Generation Sequencing (NGS) technologies, molecular sequences are
nowadays the most common source of data, especially for large-scale datasets.
In this thesis, we will assume that molecular information, in particular DNA
or protein data, is used in all the methods and applications discussed.

2.1 Statistical Models of Evolution

A molecular sequence (e.g., a DNA molecule), can be represented as a string
of characters, where each character is an element of a finite alphabet. In the

5

case of DNA data the four nucleotides (also called bases) are A, C, G, T. For
RNA data, these are A, C, G, U. For amino acid (AA) data, the alphabet
comprises 20 characters that are also called residues. Each element of the
alphabet represents a possible character state for a given sequence index
(position or site).

A statistical model of evolution describes how likely it is for a state to
mutate into a different state (transition) within a given evolutionary time
t. We will now shortly describe nucleotide substitution models of evolution
for DNA data. The distance between two DNA sequences is defined as the
expected number of nucleotide substitutions per site. The number of substi-
tutions can be estimated with a continuous-time Markov model. We assume
that sites are evolving independently from each other. The Markov chain
has four possible states (A, C, G, T) and is memory-less (the next state
depends only on the current one). The substitution rate matrix Q = {qi,j}
defines the probability that state i mutates into state j in an infinitely small
amount of time dt. Each row of the Q matrix sums to zero. To compute
the probability of a state mutating into another given time t, we need to
compute the transition-probability matrix as follows:

P (t) = eQt (2.1)

If Q is symmetrical, we call the model time-reversible. The Markov chain
is reversible if and only if πiqi,j = πjqj,i for any i 6= j, where πi is the proba-
bility that the chain is in state i when time t → ∞. The set (πA, πC , πG, πT)
is known as the limiting distribution or stationary distribution of the chain.
If the states of the chain are in the stationary distribution, the chain will
stay in that distribution. These state frequencies are also called equilibrium
base frequencies. The set of equilibrium frequencies are determined by the
Q matrix, but in practice is often estimated from the data or optimized
numerically.

The numerical optimization of equilibrium base frequencies adds three
free parameters to the model since πA, πC , πG and πT need to sum up to
one. If equilibrium base frequencies are estimated from the data (by count-
ing the number of occurrences of each state), they are called empirical base
frequencies.

The standard approach to calculate the transition probability matrix P (t)
is to compute numerically the eigenvalues and eigenvectors of the rate matrix
Q [112], as shown in Equation 2.2

Q = UΛU−1 (2.2)

where Λ is a diagonal matrix containing the eigenvalues of Q and U is

6

a square matrix whose ith column is the eigenvector of Q. Now we can
rewrite Equation 2.1 as:

P (t) = eQt = UeΛtU−1 (2.3)

We can now describe the GTR (General Time Reversible) model [45],
which is the most commonly used model for nucleotide substitution in large-
scale phylogenetic inference. A detailed description of GTR and other nu-
cleotide and amino acid evolution models can be found in Chapters 1 and 2
of [112].

Q = {qi,j} =

· qA,C qA,G qA,T

qC,A · qC,G qC,T

qG,A qG,C · qG,T

qT,A qT,C qT,G ·

=

· aπC bπG cπT

aπA · dπG eπT

bπA dπC · fπT

cπA eπC fπG ·

(2.4)

Equation 2.4 can be decomposed into a product of a symmetric matrix
of substitution rates and a diagonal matrix of equilibrium frequencies.

Q = {qi,j} =

· a b c
a · d e
b d · f
c e f ·

πA 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

(2.5)

Substitution rates a, b, c, d, e, f are parameters that can be freely opti-
mized (usually f := 1). The GTR has therefore a total of eight free param-
eters.

Other nucleotide substitution models can be derived from GTR by simply
imposing restrictions on the base frequencies and/or the substitution rates.
These derived models are more simple (nested within GTR) and have a lower
number of free parameters. For instance, the Jukes-Cantor model [41] is given
by πA = πC = πG = πT = 0.25 and a = b = c = d = e = f = 1.0.

2.2 Sequence Alignment

A sequence alignment can be seen as a matrix of n sequences of molecular
data (DNA, RNA or protein), where each row corresponds to one sequence.
In general, before sequences are aligned, each input sequence has a different
length.

Any non-trivial alignment contains gaps (sites for which no state is as-
signed). Gaps may occur for biological reasons (character insertions or dele-
tions). Data may also be undetermined due to technical reasons (data is

7

not read correctly during sequencing), or because information is missing (a
specific gene for a specific taxon has never been sequenced). In the methods
described in this thesis, missing and undetermined characters are treated as
gaps.

Aligning sequences consists in identifying regions of common similarity,
that is, gaps are inserted between characters so that the s columns in the ma-
trix contain similar characters. Alignment algorithms strive to maximize this
similarity according to a given optimization criterion. Gaps observed in an
alignment column are interpreted as indels (insertions or deletions in the se-
quence). Columns including mismatches can be interpreted as sequence sites
where one or several species have been subject of point mutations. In DNA
data, point mutations are random SNPs (Single nucleotide Polymorphism),
which usually take place during DNA replication.

If the codon resulting from the mutation change is translated into the
same amino-acid, it is called a silent or synonymous substitution. Oth-
erwise, if the mutation induces a change into a different amino acid, it is
called nonsynonymous substitution, and depending on how different (in terms
of biochemical properties) the new amino acid is, the protein function can
be affected.

Sequence alignment is based on the notion that similar regions share a
common evolutionary history. The interpretation is that regions with high
similarity do not show changes because they correspond to an important,
evolutionary conserved, structural property or function.

2.2.1 Pairwise Sequence Alignment

A pairwise sequence alignment is an alignment of two molecular sequences,
that is, n := 2. In global alignment, every character of each sequence is
aligned, that is, the alignment is at least as long as the longest sequence.
In local alignment, a segment of one sequence, often called query, is aligned
against a segment of a reference sequence.

The two main computational approaches are based on dynamic program-
ming and k-tuple methods.

The Needleman–Wunsch algorithm [57], introduced in 1970, is based on
dynamic programming and performs global alignment. In 1981, the Smith–
Waterman algorithm [83], an adaptation of the Needleman-Wunsch algo-
rithm, was introduced to solve the local pairwise alignment problem.

The importance of Needleman–Wunsch and Smith–Waterman is that,
given a scoring function, they can find optimal solutions for the matching
problem (by using dynamic programming) with time and space complexity
given by O(s1s2), where si is the length of sequence i.

8

Sequence 1 for Gene arb AGCATCGATACCGATATCGCGAT

Sequence 2 for Gene arb AGAAGCGATCCCATACAGATGCGAT

Sequence 3 for Gene arb AGCATCGATACAGATGGCACGAT

Sequence 4 for Gene arb AGCAGCGATACATGGCACGAT

<---- MSA for Gene arb ---->

Seq1 AGCATCGAT-----ACCGATATCGCGAT

Seq2 AGAAGCGATCCCATACAGATG---CGAT

Seq3 AGCATCGAT-----ACAGATGGCACGAT

Seq4 AGCAGCGAT-----AC--ATGGCACGAT

Figure 2.1: From a set of sequences to an alignment: Gaps are introduced in order
to align the available sequences.

The Smith–Waterman algorithm is extensively used in applications such
as, for instance, genome mapping and gene prediction, and has therefore
been subject of intensive optimization and parallelization. Currently, there
exist efficient implementations based on FPGAs (Field-programmable Gate
Arrays) [2], GPUs [50], and vectorization on CPUs [71].

Word (k-tuple) methods are heuristic methods, and do not guarantee
to find an optimal solution, but usually run faster than dynamic program-
ming approaches. These methods are employed by tools that approximate
matching queries against large sequence databases, such as BLAST [3] or
FASTA [47]. Following a seed-and-extend strategy, initially exact matches
of k-tuples (seeds) are identified. Then, the matching locations are extended
into longer alignment candidates called HSPs (High Score Pairs). HSPs
that are statistically significant may then be locally aligned with Smith–
Waterman.

2.2.2 Multiple Sequence Alignment

A multiple sequence alignment (MSA) is an alignment of n molecular se-
quences, where n > 2. An alignment has s alignment columns, which are
also often referred to as sites. The alignment length typically refers to the
number of sites. The phylogenetic signal present in an alignment generally
increases with alignment length [56].

For illustration, an MSA with length of s := 27 sites, corresponding to a
fictional gene arb, and 4 sequences is shown in Figure 2.1

9

<-------- Gene arb --------><----- Gene arb2 ------>

Seq1 AGCATCGAT-----ACCGATATCGCGATA-TAAGCTA-CGT-AGTTGAGGGT

Seq2 AGAAGCGATCCCATACAGATG---CGATG-TAAGCAA-CGT-AGTTGAGGGT

Seq3 AGCATCGAT-----ACAGATGGCACGATG-TAGCCTA-CCC-AGTTTCGCGG

Seq4 AGCAGCGAT-----AC--ATGGCACGATG-TGGCCTA-CCC-AGTTGCGCGT

Figure 2.2: Alignments for gene arb (red) and gene arb (blue) are concatenated to
build a multiple-gene MSA.

It is common to concatenate alignments from different sources (e.g., dif-
ferent genes) for the same set of taxa. Such large concatenated datasets can
then be organized into partitions. For instance, each gene may correspond
to a separate partition. In a Maximum Likelihood partitioned analysis, the
evolutionary model is evaluated under a specific optimized set of parameters
for each partition.

Concatenated alignments, as shown in Figure 2.2, where two partitions
have been concatenated, are also commonly referred to as supermatrices.

The sites that are put into one partition are often, but not necessarily,
genes. The partition boundaries can also be based on other criteria such as
codon positions. It is important to note that there is a distinction between
gene and species phylogenies. Due to biological events such as gene loss, gene
duplication and incomplete lineage sorting, a gene phylogeny may show a
number of topological conflicts with the species phylogeny, which, therefore,
is much more difficult to reconstruct. In this thesis, we always refer to a
phylogeny as the tree we reconstruct given the alignment.

The process of building a multiple sequence alignment for phylogenetic
inference is composed of several phases, that we summarize below:

1. Selection of the region of interest: The region may be a specific gene,
a set of genes or even a genome (phylogenomics). This determines the
length of the alignment.

2. Selection of a taxonomic group and sequence retrieval: The group of
sequences (taxa) that will be included in the alignment. This step
involves homology identification (two sequences are homologous if they
share a lineage and have descended from a common ancestor). These
sequences may be obtained through sequencing or querying databases
such as GenBank [6].

10

3. Sequence alignment. Sequences are aligned and gaps are introduced
so that a scoring criterion is maximized (matching sites are favoured,
insertions of gaps are penalized). Sequence alignment of n sequences (or
taxa) has been shown to be NP-hard [21], that is, the globally optimal
solution is not computationally tractable. In practice, a heuristic search
strategy called progressive alignment is often employed. Some popular
multiple sequence aligners are mafft [42] and muscle [19].

The above procedure can be (partially) automated by computational
pipelines such as PHLAWD [81]. The quality of the generated alignment, how-
ever, is difficult to assess, because the true alignment is unknown. The
quality of the MSA has a substantial impact on the accuracy of the resulting
phylogenetic reconstruction, and in general we assume that the given MSA
is ”correct”. Nonetheless, it is important to be aware that, no matter how
accurate the phylogenetic search method may be, a good phylogenetic tree
can only be inferred if a good MSA is available. Unfortunately, there is no
straight forward mechanism to assess the quality of a MSA. However, given
a pairwise scoring function (see Subsection 2.2.1), it is possible to score an
MSA computing the sum-of-pairs (SP) function. The SP is given by the sum
of all column scores in the alignment, where the the score of each column is
the sum of pair scores for all pairs that occur in the column. The accuracy
of the phylogenetic method is hard to evaluate because the true evolutionary
tree is unknown.

Furthermore, available high-quality database of curated sequence align-
ments, such as Pandit [107], can be used to benchmark MSA tools.

2.3 Phylogenetic Trees

In graph theory, a graph is a representation of a set of vertices where some
pairs of vertices are connected by edges. In an undirected graph, edges have
no orientation. A path is a sequence of edges that connect a sequence of
vertices. A tree is an undirected graph in which any two vertices of the tree
are connected by exactly one path. Therefore cycles, where two vertices are
connected by more than one path, are not present in a tree.

In phylogenetics, such trees are called phylogenetic trees. The branching
pattern defines the topology. Vertices are usually called nodes. Nodes are also
called TUs (taxonomic units). Edges are referred to as branches. Terminal
nodes of the tree are often called tips, taxa, or OTUs (Operational Taxonomic
Unit). A single tip is called taxon, or OTU. The taxa represent living (extant)
organisms for which molecular data is available and can be sequenced. The
inner nodes represent hypothetical extinct common ancestors.

11

Alignment: ../data/7_64.aa.phy
Seaview [blocks=10 fontsize=10 A4] on Wed Jul 31 15:04:13 2013

 1
seq1 mgikglktfl te--hvnkki aldaaflmhr sk-------- -edwldilat cdvkavfifd glsp
seq2 mgvk-igeli e-----gkki aldafnamyq fllmtskgei tsvhsgifyr tgiipiyvfd gekp
seq3 mgiknltkfl pdsiqegqil gvdtsiflyk yk-------- -rflesfvtq idieliyifd gkpp
seq4 m--------- ---------- ---------- ----dsqgrv tshlsglfyr tgvipiyvfd gkpp
seq5 mgikgltali pgaikegrkv aidasmslyq fllmtesget tshllgffyr tgikpmyvfd gtpp
seq6 mgikglkpll vhe-yagkti avdgtfllhk yk-------- vpwhyltlyt lnvkvlfifd gmsp
seq7 mgikgltall pgamredrrv aidasmhiyq fmltneagev tshlqgmlmr tgikpvyvfd gkpp

Figure 2.3: A protein alignment comprising seven sequences. Image generated
with seaview version 4.3.1

In general, a phylogenetic tree represented as an unrooted binary tree,
where all nodes have degree one (leaves) or three (inner nodes). Thus, given
n taxa, there exist n − 2 inner nodes (ancestral nodes) and 2n − 3 edges
(branches). For example, Figure 2.4 shows an unrooted parsimony tree for
the protein alignment shown in Figure 2.3.

The number of distinct possible rooted and unrooted topologies are given
by Equation 2.6 [20].

Nunrooted =
(2n− 5)!

2n−3(n− 3)!
n ≥ 3. (2.6)

A root is a node from which a unique path leads to any other node of the
tree. If a root is given in the tree, the direction of the evolutionary path is
uniquely determined. Such topologies are called rooted trees.

The number of possible rooted topologies for n tips can be computed as
the number of unrooted topologies for n+1 tips and is given by Equation 2.7.

Nrooted =
(2n− 3)!

2n−2(n− 2)!
n ≥ 2. (2.7)

In a rooted tree, a clade is a group of nodes that have evolved from a
common ancestor.

The length of the branches represents the evolutionary distance between
two nodes in the tree. Lengths of branches are measured in units of evolu-
tionary changes. A tree without branch length values is called a cladogram.
For example, Figure 2.5 shows an unrooted tree for the protein alignment
shown in Figure 2.3.

2.4 Tree Reconstruction Methods

There exist different methods for reconstructing trees from molecular se-
quences. The common principle is the analysis of the differences among

12

Figure 2.4: An unrooted phylogenetic tree based on the alignment from figure 2.3.

Figure 2.5: An unrooted tree with branch lengths based on the alignment from
figure 2.3.

13

sequences and the use of that information to reconstruct an evolutionary
history.

We can classify methods into distance based and character based methods.
Distance methods, where a distance matrix is computed from the pair-

wise distances among sequences, are based on the notion that common an-
cestry is reflected by sequence similarity. Once a distance matrix is available,
a clustering algorithm is applied to deterministically generate a phylogenetic
tree. A representative example of this group is Neighbour Joining(NJ). The
canonical NJ problem is anO(n3) time algorithm and usesO(n2) space, where
n is the number of species. This can lead to expensive memory requirements
when the number of species is large, but efficient implementations, such as
NINJA [106], have been designed to handle such datasets.

We now introduce character based methods, where different tree topolo-
gies are searched and evaluated under a given scoring criterion.

Parsimony methods compare trees based on the parsimony criterion. The
parsimony score of a given tree is the minimum number of evolutionary state
changes required to generate the MSA (Multiple Sequence Alignment) given
the tree under evaluation.

Theoretically, in order to find the most parsimonious tree, all possible
topologies should be evaluated. In practice, because the number of possible
topologies grows super-exponentially with the number of taxa, the objective
is to search the tree space for local optima by applying heuristics to evaluate
a promising subset of topologies.

Maximum Likelihood (ML) and Bayesian methods use a Multiple Se-
quence Alignment and a statistical evolutionary model. Both methods are
based on statistical frameworks that extensively rely on the computation of
the Phylogenetic Likelihood Function (PLF). In Maximum Likelihood, the
score to maximize is the likelihood, which is the probability of observing the
MSA given the hypothetical tree and other parameters. Thus, we strive to
explore and find the tree and set of parameters that maximize this score for
our MSA. Likelihood scores cannot be compared across different MSAs.

Under Bayesian methods, the computed score is the (posterior) probabil-
ity of the hypothetical tree, given the data (MSA and model). While this
score has a clearer statistical interpretation (the score is the probability that
the tree is the true tree), it also entails challenges such as, for instance, how to
set the prior probability of a tree, which is unknown. Like Parsimony-based
methods, Maximum Likelihood and Bayesian methods explore a subset of
possible topologies using heuristics.

Distance Matrix methods are usually the fastest, since they do not require
scoring alternative hypothesis during tree search. Parsimony trees are much
faster to score than Likelihood/Bayesian trees, because they rely on a simpler

14

score calculation.
The accuracy of phylogenetic inference methods can be evaluated by con-

ducting simulations, for instance, with tools like INDELible [26]. Such exper-
iments allow to generate simulated true alignments (MSAs) and true trees.
The simulated alignment can then be used to reconstruct trees by different
methods. Then the accuracy of each method can be evaluated by comput-
ing the topological distance between the reconstructed tree and the simulated
(true) tree. Trees on simulated data, however, tend to be easier to reconstruct
than on real data. One possible explanation is that simulation programs gen-
erate the data using the same statistical models of evolution as the programs
used to infer the tree, that is, the evolutionary model is given a priori [94].
Thus, accuracy results derived from such experiments should be interpreted
with caution.

In general, distance methods are the least accurate, but also the fastest.
In terms of accuracy, Likelihood and Bayesian methods clearly outperform
other methods mainly due to the fact that they have an explicit evolutionary
model [52]. In particular, Maximum Likelihood is consistent in the statical
sense: the reconstructed tree converges to the true tree as the number of
aligned sites goes to infinity [25]. In this thesis, we focused on Maximum
Likelihood methods.

2.5 Computing the Likelihood of a Tree

As a consequence of the Maximum Likelihood search process, applying the
PLF (Phylogenetic Likelihood Function) to evaluate alternative tree topolo-
gies dominates both running time and memory requirements of phylogenetic
inference programs [39]. In Chapter 3 we describe the memory requirements
in detail. We will now discuss how to compute the PLF.

The computation of the PLF relies on the following assumptions:

1. Sites in the MSA evolve independently from each other.

2. Evolution in different parts of the tree is independent.

3. A comprehensive unrooted phylogeny T , including a set of branch
lengths bij, is given.

4. An evolutionary model is available, and defines the transition proba-
bilities Pij(b), that is the probability that j will be the final state at
the end of a branch of length b, given that the initial state is i.

5. The evolutionary model is time-reversible, that is, πjPij(b) = πiPji(b)

15

These assumptions allow us to compute the likelihood of the tree as the
product of the site-likelihoods of each column i of the MSA with s columns,
as shown in Equation 2.8.

Let T be an unrooted binary tree with n tips. Let θ be a set of (optimized
or given) evolutionary model parameters (see Section 2.1). Let φ = {bxy} be
a set of (optimized or given) branch length values for tree T , where bxy is the
branch length value connecting nodes x and y in tree T (bxy = byx, x 6= y
and |φ| = 2n− 3).

LT = Pr(D | T, θ, φ) =
s
∏

i=1

Pr(Di | T, θ, φ) (2.8)

In order to prevent numerical underflow, it is common practice to compute
and report log likelihood values:

log(LT) = log(Pr(D | T, θ, φ)) =
s

∑

i=1

log(Pr(Di | T, θ, φ))

The root of the tree is, in general, unknown. In order to compute the
likelihood on unrooted topologies, a virtual root is placed into an arbitrary
branch. Because the substitution model is time-reversible, the likelihood of
the tree is identical, independently of the branch chosen to place the virtual
root. Figure 2.6 shows a virtual root placed on an arbitrary branch of the
tree depicted in Figure 2.5.

For notation clarity, let us assume that we are working with a rooted tree
and DNA data, where we have an alphabet of size four. Thus, only four
states are possible and correspond to the nucleotides A, C, G, and T.

For each site i, four entries must be computed to store the conditional
likelihood for nucleotide states A, C, G, and T at node p. The conditional
likelihood entry L

(p)
S (i) is the probability of everything that is observed from

node p on the tree on up, at site i, conditional on node p having state S [25].
We can define the ancestral probability vector(APV) at node p and site i as:

~L(p)(i) = (L
(p)
A (i), L

(p)
C (i), L

(p)
G (i), L

(p)
T (i)) (2.9)

Let us consider Equation 2.10. Its derivation is explained in detail in
Chapter 4 of [112].

L
(p)
A (i) =

(

T
∑

S=A

PAS(bqp)L
(q)
S (i)

)(

T
∑

S=A

PAS(brp)L
(r)
S (i)

)

(2.10)

This equation computes the ancestral probability vector (APV) entry ~L
(p)
A

for observing the nucleotide A at site i of a parent node p, with two child nodes

16

Figure 2.6: A rooted view of the unrooted ML phylogenetic tree from Figure 2.5.
The virtual root is placed in an arbitrary branch.

q and r given the respective branch lengths bqp and brp, the corresponding
transition probability matrices P (bqp), P (brp), and the probability vectors of

the children ~L(q), ~L(r) for site i. The children/parent relationship is given by
the position of the virtual root (see Figure 2.7).

The tips, which do not have any child nodes, must be initialized. Proba-
bility Vectors at the tips are also called tip vectors. In general, the sequence at
the tips already have a known value for each site and therefore can be directly
assigned a probability. For instance, if site i is an A, the tip vector can be
directly initialized as: (L

(p)
A (i), L

(p)
C (i), L

(p)
G (i), L

(p)
T (i)) := (1.0, 0.0, 0.0, 0.0).

To efficiently calculate the likelihood of a given, fixed tree, we execute
a depth-first post-order tree traversal that starts at the virtual root. Via
the post-order tree traversal, the probabilities at the inner nodes (ancestral
probability vectors) are computed bottom-up from the tips toward the virtual
root. This procedure to calculate the likelihood is called Felsenstein pruning
algorithm [23].

At the virtual root node, the site likelihood of the tree can be computed
using equation 2.11

LT (i) = Pr(Di | T, θ, φ) =
T
∑

x=A

πxL
(root)
x (i) (2.11)

In Equation 2.11, πx is the equilibrium frequency for state x. It represents
the probability that the nucleotide at the root is x.

17

Figure 2.7: Ancestral probability node entries are computed based on the APVs of
the children nodes, the model and the transition probability matrices P (bqp) and
P (brp).

18

A more detailed description of PLF computations and efficient PLF im-
plementations can be found in [88].

2.5.1 Accounting for rate heterogeneity

An important extension in the computation of the PLF is that not all align-
ment sites evolve at the same rate [48]. Ignoring rate variation may re-
sult into incorrect reconstruction of phylogenies [111]. Thus, models of rate
heterogeneity have been introduced in order to accommodate the biological
phenomenon of rate variation .

The most common model is the Γ [110] model of rate heterogeneity, where
for each site the likelihood is integrated over a continuous Γ distribution of
rates. The gamma density is given by Equation 2.12.

g(r; α, β) =
βαrα−1e−βr

Γ(α)
(2.12)

The mean is given by α/β. The Γ model sets α := β, so that the mean
is 1. Thus, the distribution has only one parameter α, which is usually
adjusted by numerical optimization. Figure 2.8 shows the effect of α on the
distribution of rates. If α < 1, the distribution implies that there is a large
amount of rate variation, that is, many sites evolve slowly but some sites
may have high rates. Large values of α tend to minimize the effect of rate
variation, since most rates fall close to the mean.

We can adapt Equation 2.11 to compute the likelihood of the tree inte-
grating over the rate distribution.

LT (i) = Pr(Di | T, θ, φ, α) =

∫

∞

0

g(r; α)
T
∑

x=A

πxL
(root)
x (i, r) dr (2.13)

In phylogenetic software tools, a more computationally tractable discrete
gamma model is implemented. This model approximates the continuous dis-
tribution using K rate categories with equal probability. Accounting for
rate heterogeneity increases accuracy but has an important impact on per-
formance. For every node, site and state K entries must be computed in
the APVs. Therefore, likelihood computations and memory requirements in-
crease by a factor of K. The mean rate in each category is used to represent
all the rates in that category. The most common choice is to use four rates
with K := 4, which is sometimes called Γ4.

Individual per-site evolutionary rates are not used because this might
lead to over-fitting and over-parametrization of the data. The PSR model

19

0 1 2 3 4

0
1

2
3

4

Probability density for the gamma distribution

Rate

D
en

si
ty

α = β

α = 0.1
α = 0.5
α = 5
α = 20
α = 60

Figure 2.8: The shape parameter α is inversely related to the rate variation among
sites: Larger values of α reduce the variation.

20

(previously known as CAT [86]) attempts to alleviate this issue by using a
fixed number c << s, where s is the number of sites and c is the number
of rate categories. Each individually optimized evolutionary rate ri, with
1 < i <= s, is mapped to a rate category ρj, with 0 < j < c − 1. The
relevance of the PSR model is that, while memory usage and number of
computations are four times lower than with the Γ4 model, reconstructed
trees show comparable Γ-likelihood values [86].

2.6 Maximum Likelihood Tree Search

The objective of ML (Maximum Likelihood) phylogenetic inference is to find
the topology that maximizes the (log) likelihood score (computed by the
PLF), given the data (MSA) and a statistical model of evolution.

A näıve strategy for tree space exploration is an exhaustive search, that
is, all possible unrooted topologies are enumerated. Then, for each topol-
ogy, the branch lengths and model parameters are optimized to maximize
the likelihood. The topology with the highest likelihood is the optimal ML
topology. In practice, this is only feasible for very small trees. In general,
finding the optimal ML topology is NP-hard [70].

Tree space is explored making use of heuristics, with the goal of scoring
only a small subset of good topologies. One idea for exploring tree space is to
use a greedy algorithm. First, a comprehensive tree is generated randomly or
with a faster method such as Neighbour Joining or Parsimony. Then, small
rearrangements are applied to the topology of this initial tree, generating
new trees that can be scored with the PLF. Whenever a new tree is better
(higher likelihood score), it is kept and new rearrangements are applied to
this tree.

Typical topological moves for finding/reconstructing a tree topology with
an improved likelihood score are SPR (Subtree Pruning and Re-grafting),
NNI (Nearest Neighbor Interchange) or TBR (Tree Bisection and Reconnec-
tion) moves.

Most of the time, as the SPR example in Figure 2.9 shows, these moves
only induce local changes to the tree topology. In other words, the majority
of the ancestral probability vectors are not affected by the topological change
and do therefore not need to be recomputed/updated with respect to the lo-
cally altered tree topology via a full post-order tree traversal (see Section 2.5).
In these cases, we can compute the likelihood of the tree after a topological
move by only updating the (mostly small number of) ancestral probability
vectors included a local post-order tree traversal.

All standard ML-based programs deploy search strategies that typically

21

Figure 2.9: SPR (Subtree pruning and regrafting) moves can be divided in stages.
In (1) a comprehensive tree is available. (2) a subtree defined by node 3 is selected
and pruned. A new branch length needs to be computed to reconnect nodes 0
and 2. (3) The algorithm selects a insertion branch, usually close to the point
of pruning. (4) The pruned subtree is reinserted and new branch lengths are
recomputed. In lazy SPRs like the one shown here, only surrounding branch
lengths are re-estimated.

22

require updating only a small fraction of probability vectors in the vicinity
of the topological change.

The phylogenetic search is finished when no better topology can be found
according to a convergence criterion. There are several possible convergence
criteria, which vary among different phylogenetic software implementations.
For instance, in PhyML, search convergence is determined by NNIs [29].
RAxML [87] bases its criterion on SPRs.

The best tree after convergence is mostly a local optimum. There is no
guarantee, however, that the global optimum can be found. Therefore the
usual practice is to run several searches with different starting trees to explore
the landscape of local optima.

Assessment of Phylogenetic Trees

In general, the true evolutionary history is unknown. Therefore, an important
questions is how to assess the significance of a tree, and how to quantify how
different a set of trees is among itself.

A bipartition, also referred to as split, represents a branch of the tree, and
defines two disjoint sets of taxa. An unrooted topology is uniquely defined by
its set of bipartitions. A non-trivial bipartition is a bipartition where both
sets contain more than one element. A trivial bipartition is a bipartition
where one set contains one element.

For example, given the tree ((A,B),((C,D),E)), there are two non-trivial
bipartitions defined by {A,B},{C,D,E} and {A,B,E},{D,C}.

One common approach to measure how well a tree represents the under-
lying data is to repeat the phylogenetic search on resampled datasets and
quantify how often a bipartition is recovered.

Given a Maximum Likelihood tree, bootstrap analysis [24] can be con-
ducted to resample the data. First, bootstrap replicates are generated by
resampling columns of the original MSA with replacement. Thereafter, a
phylogenetic is tree inferred on each bootstrap replicate MSA, using the same
inference method as for the maximum likelihood tree. Finally, for each bipar-
tition of the maximum likelihood tree, a bootstrap support value is computed
as the percentage of bootstrap trees that contain that bipartition. Bootstrap
support values reflect how well the maximum likelihood tree represents the
underlying data. Bootstrap replicate trees can also be summarized into a
single consensus tree. For instance, the majority rule (MR) criterion yields
a consensus tree which only includes bipartitions that exist in half or more
of the replicate trees.

Topological distances between unrooted trees are often measured with
the Robinson-Foulds distance [69]. The Robinson-Foulds distance (RF dis-

23

tance) between two trees, also termed symmetric difference and partition
metric, is defined as the number of bipartitions that are not shared between
two trees. This value is usually normalized by the total possible number of
non-trivial bipartitions. Thus, identical trees have an RF distance 0. Trees
that only share trivial bipartitions have an RF distance 1.

Phylogenetic trees can be considered as competing evolutionary hypothe-
sis. Multiple plausible hypothesis (trees) can be compared with site-likelihood
based statistical tests such as the Kishino-Hasegawa (KH) [43], the Shimodaira-
Hasegawa (SH) [77] and the Approximately Unbiased (AU) tests [76]. Given
the site-likelihood values of each tree, the software package CONSEL [78]
can compute p-values for each of these tests. A confidence set of trees (set
of trees that are significantly better than the others) can be obtained by
collecting the trees with p-values that are larger than a chosen significance
level, for instance, trees with p > 0.05.

2.7 Phylogenetic Likelihood Library

The Phylogenetic Likelihood Library (PLL) [27] is a parallelized and highly
optimized software library for phylogenetic calculations. It has been derived
from the highly tuned PLF implementation of RAxML [87].

The PLL library comprises implementations of state-of-the-art algorithms
and data structures, including those described in Section 2.8, along with
low-level technical and hardware-dependent optimizations. The library can
calculate (and optimize) the likelihood on a phylogenetic tree for different
statistical models and data types. It also implements branch length optimiza-
tion, and various tree rearrangement techniques, such as Subtree Pruning and
Regrafting (SPR) and Nearest Neighbor Interchanges (NNI). Moreover, the
PLL can use multiprocessor architectures via a fine-grain parallelization of
the PLF that relies on PThreads or MPI. In the parallel version, the align-
ment sites (or alignment partitions) are distributed across processors. Single
x86 cores use SSE3 or AVX intrinsics to accelerate computations.

While the PLL is currently work in progress, it has already been success-
fully deployed to substantially accelerate DPPDIV [31], a Bayesian program
for divergence time(s) estimates. It has also been used to implement the
proof-of-concept implementation on GPUs described in Chapter 6.

24

2.8 RAxML-family implementation concepts

In this Section, we describe some implementation details regarding data
structures and algorithms that are required for phylogenetic computations.
The data structures and terminology we present here resemble the ones used
in the RAxML-family, which includes the original standard-RAxML [87], as
well as more recent phylogenetic codes such as RAxML-light [91], ExaML [90],
and the PLL library [27].

Thus, we introduce some generic terminology, including pseudo-code for
some functions and data structures whose naming and implementation may
slightly differ but serve the same functionality. Most of these concepts are
also present in other state-of-the-art phylogenetic codes.

These implementation details are required to outline the techniques de-
scribed on Chapter 3, Chapter 4 and Chapter 6 .

2.8.1 Node records

The node record is the fundamental data structure to compute the likelihood
of a tree. Each node record can be seen as a subtree root. The data structure
in Pseudo-code 1 represents a node record.

Pseudo-code 1 The node record data structure

typedef struct noderec

{

double z; /* branch length value */

struct noderec *next;

struct noderec *back;

int number; /* tree node identifier */

char x; /* true if towards the root */

} node;

2.8.2 Internal tree nodes

The internal nodes of a binary tree are represented by circular lists of three
node records. Each internal node of the tree corresponds to one ancestral
probability vector (APV). However, the entries of the APV differ depending
on the orientation of the node. The internal nodes of the tree are circu-
lar lists composed of three node records, where, by definition, the condition
x == TRUE holds only for one node record. In Figure 2.10, tree node records

25

Figure 2.10: Circular double linked lists of node records (black) represent tree
nodes (red). Back links are not shown. Each node record represents a possible
subtree with different ancestral probabilities. For each tree node, the APV entries
are only valid for the node record oriented towards the virtual root (p, q and r).

are labeled p, q and r. The ancestral probability vector for the node corre-
sponds to the subtree root defined by the node record oriented towards the
virtual root.

Thus, given a node record p, all node records share the same number,
which identifies uniquely the internal node (p->number == p->next->number).

2.8.3 Data structure for Trees

The partition data (see Pseudocode 3) can be accessed through tipSequences,
which point to the raw alignment data in memory. The array tipVector con-
tains the product of the left eigenvectors for all possible states. It can be
used as a look-up table to compute the likelihood entries at the tips.

The traversal descriptor (see Pseudocode 3) is used as a list of update
operations for ancestral probability vectors in inner nodes. Each update
operation involves two input child nodes (by convention q and r), and one
parent output node (p). The traversalInfo data structure represents an
update operation. The numbers pNumber, qNumber, and rNumber uniquely

26

Pseudo-code 2 The partition data structure

typedef struct

{

double **apvEntries;

unsigned char **tipSequences;

double *tipVector;

} pInfo;

identify nodes p, q, and r.
The parent node is always an inner node of the tree. The children nodes

can either be tips or inner nodes. Thus, there are three possible cases.
The tipCase field stores the type of configuration (inner/inner, inner/tip
or tip/tip).

Pseudo-code 3 The traversal-descriptor data structure

typedef struct{

int tipCase;

int pNumber;

int qNumber;

int rNumber;

double qz;

double rz;

} traversalInfo;

typedef struct

{

traversalInfo *ti;

int count;

} traversalDescriptor;

The tree data structure (see Pseudocode 4) includes the previously pre-
sented data structures.

2.8.4 Computing the likelihood on a Tree

For computing the likelihood on a tree, we need the following two core func-
tions:

27

Pseudo-code 4 A simplified tree data structure

typedef struct

{

node **nodep;

node *start;

pInfo *partitionData;

traversalDescriptor *td;

} tree;

Pseudo-code 5 Building the traversal descriptor with a post-order traversal

void computeTraversalDescriptor(node *p, traversalDescriptor *td)

{

if isTip(p->number)

return;

node *q = p->next->back;

node *r = p->next->next->back;

if(isTip(q->number) && isTip(r->number))

{

addEntry(td, p, q, r, TIP_TIP);

}

else if(isTip(q->number) || isTip(r->number))

{

swap(q,r) if isTip(r->Number);

computeTraversalDescriptor(q, td);

addEntry(td, p, q, r, TIP_INNER);

}

else

{

computeTraversalDescriptor(q, td);

computeTraversalDescriptor(r, td);

addEntry(td, p, q, r, INNER_INNER);

}

}

28

The newview(tree *tr, node *p) function updates an ancestral proba-
bility vector (apvEntries[p->number]) given two child nodes and given two
transition probability matrices P for the respective branch lengths leading
to these child nodes (see Figure 2.7).

The evaluate(tree *tr) function is called at the virtual root that has
been placed into the unrooted tree for scoring it. Given the two ancestral
probability vectors at either end of the rooted branch and the branch length,
evaluate() computes the overall log likelihood of the tree.

As described in Section 2.5, in order to compute the log likelihood of a
tree, we need to conduct a depth-first post-order traversal of the tree topol-
ogy (starting at the virtual root). Pseudocode 5 shows how the traversal
descriptor is filled. Thereafter, we invoke newview() for each likelihood op-
eration included in the descriptor. If we conduct a full traversal, the length of
the descriptor will be equal to the number of inner nodes (all internal nodes
are visited).

In some cases, for instance, while executing SPR moves (see Figure 2.9),
only a partial traversal is required, because the local perturbation only re-
quires a subset of the APVs to be updated. Once the traversal descriptor
has been executed, all APVs are oriented towards the virtual root. Thus, we
invoke evaluate() to calculate the overall log likelihood score of the tree.

2.8.5 Optimizing branch lengths

The functions evaluate() and newview() are sufficient to implement a
Bayesian inference program, since the MCMC procedure, unlike the max-
imum likelihood method, does not require dedicated parameter optimization
routines.

In the Maximum Likelihood (ML) framework however, we do need such
explicit parameter optimization routines. Typically, branch length optimiza-
tion is implemented via the Newton-Raphson procedure.

Branch length optimization accounts for approximately 20% to 30% of
total execution time in state-of-the-art ML tree inference algorithms [10, 93].
To optimize a specific branch, we need to invoke newview() first on the
nodes at either end of the branch to ensure that the ancestral probability
vectors are oriented towards the branch that is being optimized. In fact,
this corresponds to placing the virtual root of the tree into the branch that
shall be optimized. Furthermore, we also need to invoke newview() when a
branch has been changed to ensure that the ancestral probability vectors in
the tree are in a consistent state and reflect the altered branch.

The Newton-Raphson branch length optimization procedure involves the
following two routines:

29

• coreDerivative() computes the first and second derivative of the like-
lihood function at a given branch.

• sumGAMMA() pre-computes the element-wise product of the ancestral
probability vectors to the left and the right of the branch under op-
timization. This product is then re-used repeatedly by iterations of
coreDerivative() and allows to save time by avoiding redundant com-
putations.

The RAxML-family codes provide a function for direct branch length
optimization (called makenewz()) using the Newton-Raphson procedure that
uses the two functions described above.

30

Chapter 3

Memory-Saving Techniques

The computation of the phylogenetic likelihood function (PLF) for recon-
structing evolutionary trees from molecular sequence data is both memory-
and compute-intensive.

Based on our interactions with the RAxML [87] user community, we find
that, memory shortages are increasingly becoming a problem and represent
the main limiting factor for large-scale phylogenetic analyses, especially at
the genome level. At the same time, the amount of available genomic data is
growing at a faster pace than RAM sizes. For instance, to compute the likeli-
hood on a simulated DNA alignment with 1,481 species and 20,000,000 sites
(corresponding roughly to the 20,000 genes in the human genome) on a sin-
gle tree topology under a simple statistical model of nucleotide substitution
within 48 hours, 1TB of memory and a total of 672 cores are required.

Some solutions to this problem have been previously presented. The use
of single precision arithmetics [7] can reduce memory requirements by 50%,
but it can also potentially introduce numerical instability. Novel algorith-
mic solutions [92] have been introduced to exploit large sections of missing
data. Those approaches, however, remain dataset-specific, that is, their ef-
ficiency/applicability depends on the specific properties of the Multiple Se-
quence Alignment (MSA) that is used as input.

The concepts presented in this chapter can be used to exactly compute
the phylogenetic likelihood function while significantly reducing memory re-
quirements. These techniques can be applied to all programs that rely on
the phylogenetic likelihood function and can contribute significantly to en-
abling the computation of whole-genome phylogenies. In Section 3.1, we
discuss the memory requirements associated to the computation of the PLF,
which dominate the memory requirements of a typical phylogenetics appli-
cation. In Section 3.2, we present an out-of-core implementation of the PLF.
Section 3.3 describes a technique to compute the PLF by trading memory for

31

Node v
Site 1 Site 2

Rate 0 Rate 1 Rate 0 Rate 1
LALCLGLT LALCLGLT LALCLGLT LALCLGLT

Figure 3.1: Memory layout of an ancestral probability vector with a two-rate Γ
model of rate heterogeneity.

recomputations of ancestral probability vectors. In Subsection 3.4.1, we dis-
cuss the reduction of memory and computations by means of subtree equality
vectors when alignments with large gappy sections are present.

3.1 Memory requirements for the PLF

The PLF is defined on unrooted binary trees. The n extant species/organisms
of the MSA under study are located at the tips of the tree, whereas the n−2
inner nodes represent extinct common ancestors. The molecular sequence
data in the MSA that has a length of s sites (alignment columns) is located at
the tips of the tree. The memory requirements for storing those n tip vectors
of length s are not problematic, because one 32-bit integer is sufficient to
store, for instance, 8 nucleotides when ambiguous DNA character encoding is
used. The memory requirements are dominated by the ancestral probability
vectors that are located at the ancestral nodes of the tree. Depending on
the PLF implementation, at least one such vector (a total of n − 2) will
need to be stored per ancestral node. For each alignment site i, i = 1...s,
an ancestral probability vector needs to hold the data for the probability of
observing an A,C,G or T. Thus, under double precision arithmetics and for
DNA data, a total of (n − 2) · 8 · 4 · s bytes is required for the most simple
evolutionary models. If the standard (and biologically meaningful) Γ model
of rate heterogeneity [110] with 4 discrete rates is deployed, this number
increases to (n − 2) · 8 · 16 · s, since we need to store 16 probabilities for
each alignment site. Further, if protein data is used that has 20 instead of
4 states, under a Γ model the memory requirements of ancestral probability
vectors increase to (n− 2) · 8 · 80 · s bytes.

Figure 3.1 depicts a standard memory layout. For each alignment site, the
ancestral probability vector contains 2 rate blocks, which correspond to a two
rate discretization. In real-world applications four rates are typically used
(see Section 2.5). Each rate block contains 4 entries (1 per state, denoted by
LA, LC , LG, and LT).

Thus, total memory requirements can be easily estimated in advance,

32

since they are strongly dominated by the size of the ancestral probability
vectors (APVs). The APVs requirements are directly proportional to align-
ment size.

3.2 Out-of-Core

The content of this Section has been derived from the following peer-
reviewed publication:
F. Izquierdo-Carrasco and A. Stamatakis. Computing the phylogenetic
likelihood function out-of-core. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Sym-
posium on, pages 444–451, 2011

In this Section, we study the performance of an out-of-core execution of the
phylogenetic likelihood function by means of a proof-of-concept implementa-
tion in standard RAxML.

In cases where the data structures for computing a function do not fit into
the available Random Access Memory (RAM), out-of-core execution may be
significantly more efficient than relying on paging by the Operating System
(OS). This is usually the case, because application-specific knowledge and
’page’ granularity can be deployed to more efficiently exchange data between
RAM and disk. Since the PLF is characterized by predictable linear data
accesses to vectors, as we show, PLF-based programs are well-suited to the
out-of-core paradigm.

We find that, in our proof-of-concept implementation, RAM miss rates
are below 10%, even if only 5% of the required data structures are held in
RAM. Moreover, we show that our proof-of-concept implementation runs
more than 5 times faster than the respective standard implementation when
paging is used. The method is generally applicable. The source code and re-
sults are available at http://www.exelixis-lab.org/web/personal_page/
izquierdo/ooc.tar.gz

The remainder of this Section is organized as follows: In Subsection 3.2.1
we briefly discuss related work in the general area of out-of-core computing
and some applications to phylogenetic reconstruction using Neighbor Joining
which exhibits substantially different data access patterns. In Subsection 3.2.2
we initially outline the necessary underlying principles of the PLF that al-
low for out-of-core execution and describe the optimization of the proof-of-
concept implementation in RAxML. In the subsequent Subsection 3.2.3 we
describe the experimental setup and provide respective performance results.

33

http://www.exelixis-lab.org/web/personal_page/izquierdo/ooc.tar.gz
http://www.exelixis-lab.org/web/personal_page/izquierdo/ooc.tar.gz

3.2.1 Related Work

The I/O bandwidth and communication between internal memory (RAM)
and slower external devices (disks) can represent a bottleneck in large-scale
applications. Methods that are specifically designed to minimize the I/O
overhead via explicit, application-specific, data placement control and move-
ment (e.g., between disk and RAM) are termed out-of-core algorithms (fre-
quently also called: External-Memory (EM) algorithms; we will henceforth
use the terms as synonyms).

EM data structures and algorithms have already been deployed for a wide
range of problems in scientific computing including sorting, matrix multi-
plication, FFT computation, computational geometry, text processing, etc.
Vitter provides a detailed review of work on EM algorithms in [105].

With respect to applications in phylogenetics, EM algorithms have so
far only been applied to Neighbor-Joining (NJ) algorithms [79, 106]. NJ is
fundamentally different from PLF-based analysis (see Chapter 2). NJ is a
clustering technique that relies on updating an O(n2) distance matrix that
comprises the pairwise distances of the n organisms for which an evolutionary
tree is reconstructed. The size of this matrix becomes prohibitive for datasets
with several thousand organisms. The data access pattern is dominated by
searching for the minimum in the O(n2) distance matrix at each step of the
tree building process.

3.2.2 Computing the PLF Out-of-Core

Data Access Patterns

The reason why the PLF is particularly well-suited for out-of-core execution
is the regularity and predictability of data access patterns. The likelihood
on the tree is computed according to the Felsenstein pruning algorithm [23],
which we described in Section 2.5. Given an arbitrary rooting of the tree, one
conducts a post-order tree traversal to compute the likelihood. The s values
in an ancestral probability vector are computed recursively by combining
the values in the respective left and right child vectors. Thus, such a tree
traversal to compute the likelihood proceeds from the tips towards the virtual
root in the tree. The ancestral probability vectors are accessed linearly and
the ancestral probability vector access pattern is given by the tree topology.

In general terms, good I/O performance in EM algorithms is achieved by
modifying an application such as to achieve a high degree of data locality.
For the PLF, the straight-forward candidate data structure (the ’page’) for
transfers between disk and RAM are the ancestral probability vectors. In

34

RAxML they are stored linearly in memory. The replacement strategy simply
needs to exploit the access pattern induced by the tree. In current ML search
algorithms, the tree is not entirely re-traversed for every candidate tree that
is analyzed. A large number of topological changes that are evaluated are
local changes. Thus, only a small fraction of ancestral probability vectors
needs to be accessed and updated for each tree that is analyzed.

The typical minimum HW block size is 512 bytes, although some oper-
ating systems use a larger block size of 8KB [105]. For the PLF this gran-
ularity is not an issue, since a representative ancestral probability vector
is significantly larger than the block size. For instance, consider a typical,
but still comparatively small, MSA of DNA data with length s = 10, 000
and n = 10, 000 species. To compute the PLF, 9, 998 ancestral probability
vectors need to be stored. Each of these vectors is stored contiguously in
memory and has a size of 10, 000 · 8 · 4 · 4 = 1, 280, 000 bytes (1.28MB) un-
der double precision arithmetics for a Γ model of rate heterogeneity with 4
discrete rates.

Thus, we can simply set the logical block size b (i.e., the ’page’ size) to the
size of an individual ancestral probability vector. Therefore, I/O operations
can be amortized, that is, each read or write to disk will access a contiguous
number of bytes on disk that is significantly larger than the minimum block
size.

Basic Implementation

In our basic implementation, we store all ancestral probability vectors that
do not fit into RAM contiguously in a single binary file (see figure 3.2).
We deploy an appropriate data structure to keep track of which vectors are
currently available in RAM and which vectors are stored on disk.

Let n be the number of ancestral probability vectors and m the number
of vectors in memory, where m < n (i.e., n − m vectors will be stored on
disk). Due to the way the likelihood is computed by combining the values
of two child vectors for obtaining an ancestral probability vector (see Sec-
tion Section 2.5 and Figure 2.7), we must ensure that m ≥ 3. In other words,
the space allocated in RAM must be large enough to hold at least three an-
cestral probability vectors. To allow for easy assessment of various values of
m with respect to n, we use a parameter f that determines which fraction
of required RAM will be made available, that is, m := f · n. Now, let w be
the number of bytes required for storing an ancestral probability vector, that
is, our proof-of-concept implementation will only allocate m · w bytes. We
henceforth use the term slot (one may think of this as a page), to refer to a
segment of available memory (an ancestral probability vector) with a size of

35

Figure 3.2: Each numbered ancestral node in the tree (left part of figure) needs
to hold a vector of doubles. These vectors are either stored on disk (red) or in
memory (green). A data structure (middle part of figure) is used to look up the
memory location (right part of figure) of each ancestral vector. Each slot has the
size of an ancestral probability vector.

w bytes.
To orchestrate data transfers and to control the location of vectors, we

use the following C data structure (unnecessary details omitted).

typedef struct

{

FILE **fs;

unsigned int num_files;

size_t slot_width;

unsigned int num_slots;

unsigned int *item_in_mem;

unsigned int num_items;

unsigned int disk_items;

nodemap *itemVector;

double *tempslot;

boolean skipReads;

replacement_strategy strategy;

}map;

The array itemVector is a list of n pointers (see Figure 3.2) that is
indexed using the (unique) ancestral node numbers. Each entry of type
nodemap keeps track of whether the respective ancestral vector is stored on
disk or in memory. More specifically, if the ancestral vector resides in RAM,

36

we maintain its starting address in memory. If the vector resides on disk, we
maintain an offset value for its starting position in the binary file.

We also maintain an array of n integers (item_in_mem) that keeps track
of which vector is currently stored in which memory slot.

Replacement Strategies

In the standard implementation of RAxML, where n = m, all vectors are
stored in RAM. Whenever an ancestral probability vector is required, we
simply start reading data from the respective starting addresses for node i

that is stored in the address vector xVector[i]. In the out-of-core version,
we use a function getxVector(i), which returns the memory address of the
requested ancestral vector for node i. The entire out-of-core functionality
is transparently encapsulated in function getxVector(i). The function will
initially check, whether the requested vector is already mapped to RAM. If
not, it will determine an adequate memory slot (according to some replace-
ment strategy, see below), and swap the currently stored vector in that slot
with the requested vector in the binary file.

A constraint for the replacement strategy is that, we must ensure that
the 3 vectors required to compute the values at the current ancestral node
i (vector i and the two child nodes j and k) reside in memory. Using the
example in Figure 3.2, let us assume that we are traversing the tree and
that the virtual root is located in the direction of the dotted line. When
we need to compute the values for vector 3 (i), vectors 1 (j) and 2 (k)
need to reside in memory. Calling getxVector(1) will return the address of
memory slot#1 (where the vector for node 1 is already available). However,
vector 2 may be located on disk. A call to getxVector(2) will thus require a
swap of vectors, but slots #1 and #3 must be excluded (pinned to memory)
from the possible swap candidates, since the values of vectors 1 and 3 are
required for the immediate computation. For this reason, getxVector() has
two additional parameters that specify which inner nodes must be pinned to
memory and can not be swapped out.

Even if we optimize data transfer performance between disk and RAM at
a technical level, accessing data on disk has a significantly higher latency than
accessing data in RAM. Therefore, it is important to minimize the number
of I/O accesses (number of ancestral probability vector swaps).

As already mentioned, a vector is always either stored on disk or in
RAM. Whenever RAxML tries to access a vector that resides on disk via
getxVector(), we need to chose a vector that resides in RAM, and then
swap the vectors. Therefore, we require a replacement strategy, that is con-
ceptually similar to cache line replacement or page swap strategies.

37

To conduct a thorough assessment, we have implemented and tested the
following four replacement strategies:

Random The vector to be replaced is chosen at random with minimum
overhead (one call to a random number generator).

LRU Least Recently Used. The vector to be replaced is the one that has
been accessed the furthest back in time. This requires a list of n time-
stamps as well as an O(log(n)) binary search for the oldest time-stamp.
Note the use of n rather than m, because we only search among time
stamps of vectors that are currently in RAM.

LFU Least Frequently Used. The vector to be replaced is the one which has
been accessed the least number of times. This requires maintaining
a list of m entries containing the access frequency and an O(log(n))
binary search for the smallest value.

Topological The vector to be replaced is the most distant node (in terms
of number of nodes along the path in the tree) from the node/vector
currently being requested. The node distance between a pair of nodes
in a binary tree is defined as the number of nodes along the unique
path that connects them.

The rationale for the topological replacement strategy is that, due to the
locality of the tree search and the computations, we expect the most distant
node/vector to be accessed again the furthest ahead in the future.

Reducing the Number of Swaps

So far, our EM algorithm has been integrated into RAxML in a fully trans-
parent way. We have shown that it is possible to modify the program and
any PLF-based program for that matter, such that the complexity is en-
tirely encapsulated by a function call that returns the address of an ancestral
probability vector. However, it is possible to further reduce the number of
I/O operations by exploring some implementation-specific characteristics of
RAxML, that can also be deployed analogously in other PLF-based imple-
mentations.

For each global or local traversal (re-computation of a part or of all an-
cestral probability vectors) of the tree, we know, a priori (based on the tree
structure), that some of the vectors that will be swapped into RAM will be
completely overwritten, that is, they will be used in write-only mode dur-
ing the first access. Thus, whenever we swap in a vector from file, of which

38

we know that it will initially be used for writing, we can omit reading its
current contents from file. We denote this technique as read skipping and
implement it as follows: We introduce a flag in our EM bookkeeping data
structure that indicates whether read skipping can be applied or not, that
is whether a vector will be written during the first access. We instrument
the search algorithm such that, when the global or local tree traversal order
is determined (this is done prior to the actual likelihood computations), the
flag is set appropriately.

3.2.3 Experimental Setup & Results

Evaluation of replacement strategies

Assessing the correctness of our implementation is straight-forward since this
only requires comparing the log likelihood scores obtained from tree searches
using the standard RAxML version and the out-of-core version. Hence, we
initially focus on analyzing the performance (vector miss rate) of our replace-
ment strategies and the impact of the read skipping technique as a function
of f (proportion of vectors residing in RAM).

To evaluate the replacement strategies, we used 2 real-world biological
datasets with 1288 species (DNA data, MSA length s := 1200 sites/columns),
and 1908 species (DNA data, MSA length: s := 1424 sites/columns) respec-
tively. Tree searches were executed under the Γ model of rate heterogeneity
with four discrete rates. We used the SSE3-based [7] sequential version of
RAxML v7.2.8.

For each of the four replacement strategies, we performed three different
runs for the out-of-core version with f := 0.25 (25% of vectors memory-
mapped), f := 0.50 (50% of vectors memory-mapped), and f := 0.75 (75%
of vectors memory-mapped).

Given a fixed starting tree, RAxML is deterministic, that is, regardless of
f and the selected replacement strategy, the resulting tree (and log likelihood
score) must always be identical to the tree returned by the standard RAxML
implementation. For each run, we verified that the standard version and the
out-of-core version produced exactly the same results.

This part of our computational experiments was conducted on a single
core of an unloaded multi-core system (Intel Xeon E5540 CPU running at
2.53GHz with 36 GB of RAM). On this system, the amount of available RAM
was sufficient to hold all vectors in memory for the two test-datasets, both
for the standard implementation or by using memory-mapped I/O for the
out-of-core version.

We found that, with the exception of the LFU strategy, even mapping

39

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
is

s
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction of RAM allocated

Miss rate for dataset with 1288 species

Topological
LFU

RAND
LRU

Figure 3.3: Vector miss rates for different replacement strategies using a dataset
with 1,288 species. We allocated 25%, 50% and 75% of the required memory for
storing ancestral probability vectors in RAM. Every time a vector is not available
in RAM, we count a miss.

only 25% of the probability vectors to memory results in miss rates under
10%. As expected, miss rates converge to zero as the fraction of available
RAM is increased (see Figure 3.3). In the trivial case (f := 1.0), the miss rate
is zero, since all vectors reside in RAM. The Random, LRU, and Topological
strategies perform almost equally well. Thus, one would prefer the random
or LRU strategy over the topological strategy because it requires a larger
computational overhead for determining the replacement candidate.

In Figure 3.4, we show the positive effect of the read skipping technique
for analogous runs on the same dataset with 1288 species. Here, we quantify
the fraction of ancestral vector reads from disk that are actually carried out
per ancestral vector access. Note that, without the read skipping technique
this fraction would be identical to the miss rate in Figure 3.3. Thus, by
deploying this technique, we can omit more than 50% of all vector read
operations.

40

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ea

d
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction of RAM allocated

Read rate for dataset with 1288 species

Topological
LFU

RAND
LRU

Figure 3.4: Effect of Read skipping: We count the fraction of vector accesses for
which a vector needs to be actually read from file using the same parameters as in
Figure 3.3. Without the read skipping strategy the read rate is equivalent to the
miss rate.

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

M
is

s
ra

te
 (

%
 o

f t
ot

al
 v

ec
to

r
re

qu
es

ts
)

Fraction f of RAM allocated

Miss rate for dataset with 1288 species

RAND

Figure 3.5: Miss rates for several runs using the random replacement strategy
on the dataset with 1288 species. The fraction f of memory-mapped ancestral
probability vectors was divided by two for each run.

41

Miss Rates as a Function of f

To more thoroughly assess the impact of f on the miss rate, we conducted
additional experiments for different values of f using a random replacement
strategy on the test dataset with 1288 taxa. The fraction f was subsequently
divided by two. The smallest f value we tested corresponds to only five
ancestral probability vector slots in RAM.

Figure 3.5 depicts the increase in miss rates for decreasing f . The most
extreme case with only five RAM slots, still exhibits a comparatively low miss
rate of 20%. This is due to the good vector usage locality in the RAxML
algorithm. One reason for this behavior, that is inherent to ML programs,
are branch length optimization procedures. Branch length optimization is
typically implemented via a Newton-Raphson procedure, that iterates over
a single branch of the tree. Thus, only memory accesses to the same two
vectors (located at either end of the branch) are required in this phase which
accounts for approximately 20-30% of overall execution time. In RAxML,
access locality is also achieved by —in most cases— only re-optimizing three
branch lengths after a change of the tree topology during the tree search
(Lazy SPR technique; see [87]).

Real Test Case

Finally, we conducted realistic tests by analyzing large data sets on a system
with only 2GB of RAM. Here, we compare execution times of the standard
algorithm (using paging) with the out-of-core performance.

For these tests, we generated large simulated DNA datasets using IN-
DELible [26]. We intentionally generated datasets whose memory require-
ments for storing ancestral probability vectors (see Figure 3.6) exceed the
main memory available on the test system (Intel i5 running at 2.53 GHz with
2GB RAM configured with 36 GB swap space). To achieve this, we deployed
INDELible to simulate DNA data on a tree with 8192 species and varying
alignment lengths s. We chose values of s such that, the simulated datasets
had (ancestral probability) memory requirements ranging between 1GB and
32GB. Because of the prohibitive execution times for full tree searches on
such large datasets, we did not execute the standard RAxML search algo-
rithm. Instead, we executed a subset of the PLF as implemented in RAxML
(-f z option in the modified code by simply reading in a given, fixed, tree
topology and computing five full tree traversals (recomputing all ancestral
probability vectors in the tree five times) according to the Felsenstein prun-
ing algorithm. This represents a worst-case analysis, since full tree traversals
exhibit the smallest degree of vector locality. Full tree traversals are required

42

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30

E
la

ps
ed

 e
xe

cu
tio

n
tim

e
(s

)

RAM required for inner nodes (GB)

Running time for simulated datasets of variable width (8192 species)

Standard
ooc-1GB-LRU

ooc-1GB-RAND

Figure 3.6: Execution times for 5 full tree traversals on a tree with 8192 sequences
and variable dataset width s for the standard RAxML version (using paging) and
the out-of-core version.

to optimize likelihood model parameters such as the α shape parameter of
the Γ model of rate heterogeneity.

The out-of-core runs were invoked with the -L 1,000,000,000 flag to
force the program to use less than 1GB of RAM for storing ancestral proba-
bility vectors.

Figure 3.6 demonstrates that the execution times of the out-of-core im-
plementation scale well with dataset size (ancestral probability vector space
requirements). As expected, the standard approach is faster for datasets
that still fit into RAM, while it is more than five times slower for the largest
dataset with 32GB. For ancestral vector memory footprints between 2GB
and 32GB, the run-time performance gap between the out-of-core implemen-
tation and the standard version increases, since the standard algorithm starts
using virtual memory (e.g., then number of page faults increases from 346,861
for 2GB to 902,489 for 5GB). Note that, for the out-of-core runs, we only
use 1GB of RAM, that is, better performance can be achieved by slightly
increasing the value for -L. Thus, under memory limitations and given the
runtimes in Figure 3.6 using the out-of-core approach is significantly faster
than the standard approach for computing the likelihood on large datasets.

43

3.3 Recomputation of Ancestral Vectors

The content of this Section has been derived from the following peer-
reviewed publication:
F. Izquierdo-Carrasco, J. Gagneur, and A. Stamatakis. Trading running
time for memory in phylogenetic likelihood computations. In J. Schier,
C. M. B. A. Correia, A. L. N. Fred, and H. Gamboa, editors, BIOIN-
FORMATICS, pages 86–95. SciTePress, 2012
J. Gagneur is the author of the proof in Figure 3.3.1 on the theoretical
minimum memory requirements to compute the PLF.

Given enough execution time and disk space, the out-of-core version can be
deployed to essentially infer trees on datasets of arbitrary size. However, the
increase in execution times in the out-of-core implementation is still large.
While we are confident that the miss rate and miss penalty can be further
improved by low-level I/O performance optimization, we have explored the
overhead of, instead of storing on disk, recomputing ancestral probability
vectors.

In this Section we introduce the implementation of a versatile concept to
trade memory for additional computations in the likelihood function which
exhibits a surprisingly small impact on overall execution times. When trading
50% of the required RAM for additional computations, the average execu-
tion time increase because of additional computations amounts to only 15%.
This slowdown (due to the additional recomputations) is comparable to the
standard deviation of the running time of a set of independent searches, that
is, it is not significant from the user perspective. We demonstrate that, the-
oretically, for a phylogeny with n species only log(n) + 2 memory space is
required for computing the likelihood of a tree. We also assess practical lower
bounds.

The term time-memory trade-off engineering refers to situations/approaches
where memory requirements/utilization is reduced at the cost of additional
computations, that is, at the expense of increased run time. This trade-
off engineering approach has been applied in diverse fields such as language
recognition [18], cryptography [5], and packet scheduling [109]. We are not
aware of any applications of or experiments with time-memory trade-off en-
gineering approaches in the field of computational phylogenetics.

We next describe the underlying idea for the memory saving approach,
demonstrate that only log(n) + 2 vectors are required to compute the PLF,

44

and introduce two vector replacement strategies. In Subsection 3.3.2 we de-
scribe the experimental setup and provide corresponding results.

3.3.1 Recomputation of Ancestral Probability Vectors

Specific PLF Memory Requirements

We have previously discussed the memory requirements for the PLF compu-
tation in Section 3.1. Next, we will discuss how these requirements can be
lowered with the recomputation trade-off. Let us consider again Equation 2.10
for the PLF computation of one entry in the ancestral probability vector of
node p at site i.

L
(p)
A (i) =

(

T
∑

S=A

PAS(blp)L
(l)
S (i)

)(

T
∑

S=A

PAS(brp)L
(r)
S (i)

)

In order to compute L
(p)
A (i), we do not necessarily need to immediately

have available in memory vectors L
(l)
S (i) and L

(r)
S (i), since they can be ob-

tained by a recursive descent (a post-order subtree traversal) into the sub-
trees rooted at l and r using the above equation. In other words, if we do
not have enough memory available, we can recursively re-compute the values
of L(l) and L(r). Note that, the recursion terminates when we reach the tips
(leaves) of the tree and that memory requirements for storing tip vectors are
negligible compared to ancestral vectors.

If not all ancestral probability vectors fit in RAM, the required vectors for
the operation at hand can still be obtained by conducting some additional
computations for obtaining them by applying equation 2.10. We observe
that, when both L

(l)
S (i) and L

(r)
S (i) have been used (consumed) for calculating

L
(p)
A (i), the two child vectors are not required any more. That is, those two

vectors can be omitted/dropped from RAM or be overwritten in RAM to save
space. Therefore, the likelihood of a tree can be computed without storing all
n− 2 ancestral vectors. Instead, a smaller amount of space for only storing
x < (n − 2) vectors can be used. Those x vectors can then dynamically
be assigned to a subset (varying over time) of the n − 2 inner nodes. This
gives rise to the following question: Given a MSA with n taxa, what is the
minimum number of inner vectors xmin that must reside in memory to be
able to compute the likelihood on any unrooted binary tree topology with n
taxa?

Due to the post-order traversal of the binary tree topology, some ancestral
vectors need to be stored as intermediate results. Consider an ancestral node
p that has two subtrees rooted at child nodes l and r with identical subtree

45

1

2

3 4

5

6 7

virtual root

Figure 3.7: A balanced subtree, where the vector of inner node 1 is oriented in
the direction of the virtual root. In order to compute the likelihood of vector 1,
the bold vectors must be held in memory. The transparent vectors may reside in
memory but are not required to.

depth. When the computations on the first subtree for obtaining L(l) have
been completed, this vector needs to be kept in memory until the ancestral
probability vector L(r) has been calculated to be able to compute L(p).

In the following Figure 3.3.1, we demonstrate that the minimum number
of ancestral vectors xmin(n) that must reside in RAM to be able to compute
the likelihood of a tree with n taxa is log2(n) + 2. For obtaining this lower
memory bound, we consider the worst case tree shape, that is, a perfectly
balanced unrooted binary tree with the virtual root placed into the innermost
branch. As we show in Figure 3.3.1, this represents the worst case because
all subtrees from the virtual root have the same length.

Figure 3.7, where we first descended into the left subtree, depicts this
worst case scenario for n = 4. The probability vectors will be written in
the following order: 3, 4, 2, 6, 7, 5, 1. Figure 3.7 shows the number
of vectors required in memory (log2(4) + 2 = 4) at the point of time where
vector 5 needs to be computed. At any other point of time during the post-
order traversal, holding 3 vectors in RAM is sufficient to successfully proceed
with the computations.

Theoretical Minimum Memory Requirements

The underlying idea of our approach is to reduce the total number of an-
cestral probability vectors residing in RAM at any given point of time. Let
PLF be the likelihood function (see Equation 2.10), which —for the sake of
simplifying our notation— can be computed at a tip (essentially at zero com-
putational cost) or an inner node given the ancestral probability vectors of
its two child nodes. The PLF always returns an ancestral probability vector

46

as result.
As a pre-processing step, we compute the number of descendants (size

of the respective subtree) for each inner node. This can be implemented
via a single post-order tree traversal. The memory required for storing the
number of descendants as integers at each node is negligible compared to
required probability vector space. Given this information, the binary tree
data structure can be re-ordered such that, for every node p, the left child
node l contains the larger number of descendants and the right child node r
contains the smaller number of descendants. We can now compute the PLF
of the tree by invoking the following recursive procedure f at the virtual root
p of the tree:

proc f(p) ≡
if isALeaf(p) then return(PLF (p)) fi;
vl := f(p.l); Step 1
vr := f(p.r); Step 2
return(PLF (vl, vr)) Step 3

.

During this computation, the maximum number of probability vectors
xmin(n) that need to reside in memory for any tree with n leaves is log2(n)+2.
This upper bound is required if and only if the binary tree is balanced.

Proof: We demonstrate the above theorem by recursion. xmin(1) = 1, since
for a tree with a single node, only the sequence data (a single probability
vector) need to be stored. Now assume that xmin(n − 1) = log2(n − 1) + 2
and consider a tree with n leaves. We execute all steps of f(p), where p is
the root, and keep track of the number of probability vectors that are stored
simultaneously in RAM:

• Step 1: Computing f(p.l) requires storing at most xmin(n − 1) prob-
ability vectors simultaneously which is strictly less than log2(n) + 2.
Once f(p.l) has been computed only the result vector is stored (i.e.,
only one single probability vector).

• Step 2: Because the subtree size of the right descendant of the root p.r
must be ≤ n/2, this computation needs to simultaneously store at most
log2(n/2) + 2 = log2(n) + 1 probability vectors. Here, we need to add
the number of probability vectors that are required to be maintained
in RAM after completion of Step 1. Thus, overall, Step 2 needs to
simultaneously hold at most log2(n) + 2 probability vectors in RAM.

47

Once the results of f(p.l) and f(p.r) have been computed we are left
with two probability vectors vl, vr that need to reside in memory.

• Step 3: This step requires 3 probability vectors to be stored at the
same time, namely, vl, vr, and the vector to store the result of PLF (vl, vr).
Note that, to obtain the overall likelihood of the tree (a single numer-
ical value), we need to apply a function g() to the single result vector
returned by f(), that is, g(f(p)). Function g() simply uses the data in
the result vector to calculate the likelihood score over all root vector
entries.

Hence the peak in memory usage is reached during Step 2 and its upper
bound is log2(n)+2. Moreover, this upper bound is reached if and only if the
number of descendants in the respective left and right subtrees is identical
for all nodes, that is, for a balanced tree.

Basic Implementation

While holding log2(n) + 2 vectors in RAM provides sufficient space for com-
puting the PLF, this will induce a significant run-time increase (due to re-
computations) compared to holding n vectors in memory. In practice, we
need to analyze and determine a reasonable run-time versus RAM trade-
off as well as an appropriate vector replacement/overwriting strategy. For
instance, in the RAxML or MrBayes PLF implementations, some ancestral
vectors (depending on their location in the tree) can be recomputed faster
than others. In particular, cases where the left and/or right child vectors are
tip sequences can be handled more efficiently. For instance, an observed nu-
cleotide A at a tip sequence corresponds to a simple probability vector of the
form [P (A) := 1.0, P (C) := 0.0, P (G) := 0.0, P (T) := 0.0]. This property of
tip vectors can be used for saving computations in equation 2.10.

Devising an appropriate strategy (see Section 3.3.1) for deciding which
vectors shall remain in RAM and which can be discarded (because they can
be recomputed at a lower computational cost) can have a substantial impact
on the induced run time overhead when holding, for instance, x := n/2
vectors in RAM. In the following, we will outline how to compute the PLF
and conduct SPR-based tree searches with x < n vectors in RAM.

Let n be the number of species, n−2 the number of ancestral probability
vectors, and x the number of available slots in memory, where log2(n) + 2 ≤
x < n (i.e., n−x vectors are not stored, but recomputed on demand). Let w
be the number of bytes required for storing an ancestral probability vector
(all vectors have the same size). Our implementation will only allocate x ·w

48

bytes, rather than n · w. We henceforth use the term slot to denote a RAM
segment of w bytes that can hold an ancestral probability vector.

We define the following C data structure (details omitted) to keep track
of the vector-to-slot mapping of all ancestral vectors and for implementing
replacement strategies:

typedef struct

{

int numVectors;

size_t width;

double **tmpvectors;

int *iVector;

int *iNode;

int *unpinnable;

boolean allSlotsBusy;

unpin_strategy strategy;

}recompVectors;

The array tmpvectors is a list of pointers to a set of slots (i.e., starting
addresses of allocated RAM memory) of size numVectors (x). The array
iVector has length x and is indexed by the slot id. Each entry holds the
node id of the ancestral vector that is currently stored in the indexed slot.
If the slot is free, the value is set to a dedicated SLOT_UNUSED code. The
array iNode has length n − 2 and is indexed using the unique node ids of
all ancestral vectors in the tree. When the corresponding vector resides in
RAM, its array entry holds the corresponding slot id. If the vector does not
reside in RAM the array entry is set to the special code NODE_UNPINNED.
Henceforth, we denote the availability/unavailability of an ancestral vector
in RAM as pinned/unpinned. The array unpinnable tracks which slots are
available for unpinning, that is, which slots that currently hold an ancestral
vector can be overwritten, if required.

The set of ancestral vectors that are stored in the memory slots changes
dynamically during the computation of the PLF (i.e., during full tree traver-
sals and tree searches). The pattern of dynamic change in the slot vector also
depends on the selected recomputation/replacement strategy. For each PLF
invocation, be it for evaluating a SPR move or completely re-traversing the
tree, the above data structure is updated accordingly to ensure consistency.

Whenever we need to compute a local tree traversal (following the appli-
cation of an SPR move) to compute the likelihood of the altered tree topology,
we initially just compute the traversal order which is part of the standard
RAxML implementation. The traversal order is essentially a list that stores
in which order ancestral probability vectors need to be computed. In other

49

words, the traversal descriptor describes the partial or full post-order tree
traversal required to correctly compute the likelihood of a tree. For using
x < n vectors, we introduce a so-called traversal order check, which extends
the traversal steps (the traversal list) that assume that all n vectors reside in
RAM. By this traversal order extension, we guarantee that all missing vectors
(not residing in RAM) will be recomputed as needed. The effect of reducing
the number of vectors residing in RAM is that, traversal lists become longer,
that is, more nodes are visited and thereby run time increases. When the
traversal is initiated, all vectors in the traversal list that already reside in
RAM (they are pinned to a slot) are protected (marked as unpinnable) such
that, they will not be overwritten by intermediate vectors of the recomputa-
tion steps.

If an ancestral vector slot needs to be written/stored by the traversal,
there are three cases:

1. The vector resides in a slot (already in memory). We can just read
and/or write to this slot.

2. The vector is not pinned, but there exists a free slot, which is then
pinned to this vector.

3. The vector is not pinned and there is no free slot available. A residing
vector must be replaced and the corresponding slot needs to be pinned
to the required vector.

Since the traversal only visits each vector at most once, the corresponding
children of this vector can be unpinned once it has been written to memory.
Instead of unpinning them directly, they are merely marked for unpinning.
The real overwrite only takes place if the slot is selected by the replacement
strategy for storing another vector. Otherwise, the slot will store the values
of the current vector for as long as possible for potential future re-use.

Replacement Strategies

In analogy to the replacement strategies discussed in the out-of-core imple-
mentation in Section 3.2, there are numerous approaches for deciding which
memory slot should be overwritten by a new ancestral vector that does cur-
rently not reside in RAM. We implement and analyze the following two re-
placement strategies.

Random A random slot not flagged as pinned is selected. The random
strategy is a näıve approach with minimal overhead and is used as
baseline for performance comparisons.

50

MRC Minimum Recomputation Cost. The slot with minimum subtree size
(see below) and not flagged as pinned is selected.

The MRC strategy entails a slight overhead for keeping track of which
vectors will be most expensive to recompute and should therefore be kept in
RAM for as long as possible. Consider an unrooted binary tree T with n tips.
Each inner node i in an unrooted binary tree with n taxa can be regarded
as a trifurcation that defines three subtrees Ti,a, Ti,b, and Ti,c corresponding
to the three outgoing branches a, b, and c. Given a subtree Ti,x, we define
its subtree size sts(Ti,x) as the number of tips beneath inner node i in the
direction of the outgoing branch x. Thus, sts(Ti,a) + sts(Ti,b) + sts(Ti,c) = n
holds for any inner node i in an unrooted binary tree with n taxa/tips.
When conducting likelihood computations, the tree is always rooted by a
virtual root. Hence, if the virtual root is located in the direction of branch c,
the relevant subtree size with respect to the recomputation cost at an inner
node i is sts(T rooted

i) := sts(Ti,a) + sts(Ti,b). We use this rooted subtree size
sts(T rooted

i) to determine the recomputation cost for each ancestral vector i,
given a virtual rooting of the tree. In particular, the case sts(T rooted

i) = 2
(both children are tips) is particularly cheap to recompute, since tip vectors
always reside in RAM and recomputing ancestral vector i is cheap (see above).
In a perfectly balanced tree with the root placed in the innermost branch,
half of the inner vectors have subtree size sts(T rooted

i) = 2.
As already mentioned, during a partial or full tree traversal for comput-

ing the likelihood, all inner nodes (vectors) involved are oriented in a given
direction toward the virtual root. Evidently, the subtree sizes will change
when the topology is altered and will need to be updated accordingly.

In order to account for this, we keep an array of subtree sizes, that is,
for each inner node we store a subtree size value. Whenever the topology
changes, a local traversal descriptor is created. This local traversal descrip-
tor starts at the new virtual root and recursively includes the inner nodes
whose orientation has changed after the given topology change. Since this
exactly corresponds to the set of nodes whose subtree size values must be up-
dated, the subtree size array can be updated via the same recursive descent
procedure.

Implementation Details

In the following we discuss some important details of the recomputation
process.

Largest subtree first The standard implementation of the PLF, where all
ancestral vectors are available in memory, computes the PLF by conducting

51

1

2 5

4

virtual root

3

Figure 3.8: An unbalanced subtree, where the vector of inner node 1 is oriented
in the direction of the virtual root. Bold rectangles represent vectors that must
be held in memory if we first descend into the left subtree and node 4 is being
written.

a post-order traversal from an arbitrary rooting of the tree. Thus, an an-
cestral probability vector can be computed once the respective left and right
child vectors have been computed. In the standard RAxML implementation,
the traversal always recursively descends into the left subtree first. The (ar-
bitrary) choice whether to descend into the left or right subtree first, does
not affect performance (nor the results) when all ancestral vectors reside in
RAM.

However, when not all vectors reside in RAM, the choice whether to
descend into the left or right subtree first does matter. This is particu-
larly important if we use the minimum setting x := log2(n) + 2, since oth-
erwise we may encounter situations where not enough slots are available
(see Figure 3.3.1).

Suppose that, as in the standard implementation, we always descend into
the left subtree first. In the example shown in Figure 3.8, the left subtree is
significantly smaller than the right subtree. We would first descend into the
left subtree, which consists of a single inner node. The child ancestral vector
corresponding to node 2 must be pinned to its slot. Thereafter, we descend
into the right subtree writing and pinning nodes 3, 4, 5 (always assuming
that we descend into the left —smaller— subtree of each node first). While
we keep descending into the right subtree, the ancestral vector corresponding
to node 2 remains pinned, because it represents an intermediate result.

In contrast, if we initially descend into the right subtree (which is always

52

larger in the example), there is no need to store intermediate results of the left
subtree (node 2). Also, nodes 4 and 5 can be immediately unpinned as soon
as their parent nodes have been computed. Thus, by inverting the descent
order such as to always descend into the larger subtree first (as required by
our proof), we minimize the amount of time for which intermediate vectors
must remain pinned. Note that, when two subtrees have the same size, it
does not matter into which subtree we descend first.

If we descend into the smaller subtrees first, there will be more vectors
that need to remain pinned for a longer time. This would also reduce the
effective size of the set of inexpensive-to-recompute vectors that shall pref-
erentially be overwritten, because more vectors that are cheap to recompute
need to remain pinned since they are holding intermediate results. In this
scenario more expensive-to-recompute vectors will need to be overwritten in
memory and dropped from RAM.

Determining the appropriate descent order (largest subtree first) is trivial
and induces a low computational overhead. When the traversal list is com-
puted, we simply need to compare the subtree sizes of child nodes and make
sure to always descend into the largest subtree first.

Priority List For this additional optimization, we exploit a property of the
SPR move technique. When a candidate subtree is pruned (see Figure 2.9)
from the currently best tree, it will be re-inserted into several branches of
the tree from which it was removed to evaluate the likelihood of different
placements of the candidate subtree within this tree.

In the course of those insertions, the subtree itself will not be changed
and only the ancestral vector at the root of the subtree will need to be
accessed for computations. Hence, we maintain a dedicated list of pruned
candidate subtree nodes (a unpinning priority list) that can be preferentially
unpinned. Because of the design of lazy SPR moves in RAxML (similar
SPR flavors are used in GARLI and PHYML) those nodes (corresponding to
ancestral vectors) will not be accessed while the candidate subtree is inserted
into different branches of the tree. Once this priority list is exhausted, the
standard MRC recomputation strategy is applied.

Full Traversals Full post-order traversals of the tree are required during
certain phases of typical phylogenetic inference programs, for instance when
optimizing global maximum likelihood model parameters (e.g., the α shape
parameter of the Γ distribution or the rates in a GTR matrix) on the entire
tree. Full tree traversals are also important for the post-analysis of fixed
tree topologies, for instance, to estimate species divergence times. Full tree

53

traversals represent a particular case because every inner vector of the tree
needs to be visited and computed. Hence, the number of vectors that need
to be computed under our memory reduction approach is exactly identical
to the number of vectors that need to be computed under the standard
implementation. Thus, there is no need for additional computations while
a large amount of memory can be saved. While full tree traversals do not
dominate run times in standard tree search algorithms, they can dominate
execution times in other phylogenetic downstream analysis, such as, e.g.,
branch length optimization or estimation of species divergence times and
lineage-specific substitution rates [31].

3.3.2 Experimental Setup and Results

We have implemented the techniques described in Subsection 3.3.1 in RAxML-
Light v1.0.4 [91]. RAxML-Light is a strapped-down dedicated version of
RAxML intended for large-scale phylogenetic inferences on supercomputers.
It implements a light-weight software-based checkpointing mechanism and
offers fine-grained PThreads and MPI parallelizations of the PLF. It has
been used to compute a tree on a dense simulated MSA with 1481 taxa and
20,000,000 sites that required 1TB of RAM and ran in parallel with MPI on
672 cores. RAxML-Light will not be maintained anymore, but the ExaML
code [90], which uses a more efficient MPI paralellization strategy, can be
used for phylogenetic inferences on supercomputers. The recomputation im-
plementation used for this evaluation is a fork of RAxML-Light, and available
at https://github.com/fizquierdo/vectorRecomp

Evaluation of recomputation strategies

The recomputation algorithm yields exactly the same log likelihood scores as
the standard algorithm. Thus, for validating the correctness of our imple-
mentation, it is sufficient to verify that the resulting trees and log likelihood
scores of a ML tree search with the standard and recomputation implemen-
tations are identical. The increase of total run time depends on the number x
of inner vectors that are held in memory and on the chosen unpinning strat-
egy (MRC versus RANDOM). We used INDELible [26] to generate simulated
MSAs of 1500, 3000, and 5000 species. All experiments described in this Sec-
tion were conducted for these three datasets. For this purely computational
work it does not matter whether simulated or real data are used.

Initially, we ran the Parsimonator program [85] to generate 10 distinct
randomized stepwise addition order parsimony starting trees for each MSA.
For each starting tree, we then executed a standard ML tree search with

54

https://github.com/fizquierdo/vectorRecomp

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 R
un

ni
ng

 ti
m

e
(s

)

Reduction Factor (% inner vectors on RAM)

Strategy performance for 10 runs of dataset 1500

std
recomRANDOM

recomSLOT_MIN_COST

Figure 3.9: Different replacement strategies. The dataset was run with RAM
allocations of 10%, 25%, 50% , 75%, and 90%, of the total required memory for
storing all probability vectors. Run times are averaged across 10 searches with
distinct starting trees.

RAxML-Light (sequential version 1.0.4 with SSE3 intrinsics) and ML tree
searches with the recomputation version for the two replacement strategies
(MRC and RANDOM) and five different RAM reduction factors (-x and
-r options respectively). In the recomputation version used for the evalua-
tion, both the Largest subtree first and the Priority List optimizations were
activated. All experiments were executed on a 48-core AMD system with
256GB RAM. For all runs, RAM memory usage was measured every 600
seconds with top.

Figure 3.10 shows the corresponding decrease in RAM usage. Values
in Figure 3.10 correspond to maximum observed RAM usage values.

Figure 3.9 depicts the run time increase as a function of available space
for storing ancestral probability vectors.

Clearly, the MRC strategy outperforms the RANDOM strategy and the
induced run-time overhead, even for a reduction of available RAM space
to only 10% is surprisingly small (approximately 40%). This slowdown is
acceptable, considering that instead of analyzing a large dataset on a ma-
chine with 256GB, a significantly smaller and less expensive system with, for
instance, 32GB RAM will be sufficient.

55

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 M
em

or
y

us
ed

 (
M

B
)

Reduction Factor (% inner vectors on RAM)

Memory measured for dataset 1500 for 10 trees

std
recomSLOT_MIN_COST

Figure 3.10: Overall RAM usage when allocating only 10%, 25%, 50% , 75%, and
90%, of the required ancestral probability vectors.

3.3.3 Evaluation of traversal overhead

In order to evaluate the overhead of the extended (larger) tree traversals
due to the required additional ancestral probability vector computations, we
modified the source code to count the number of ancestral vector compu-
tations. We distinguish between three cases with different recomputation
costs (see Subsection 3.3.1). For each case, there exists a dedicated PLF
implementation in RAxML.

Tip/Tip Both child nodes are tips.

Tip/Vector One child node is a tip, and the other is an ancestral vector
(subtree).

Vector/Vector Both child nodes are ancestral vectors.

Table 3.1 shows a dramatic, yet desired increase, in the number of Tip/Tip
vector computations for the MRC strategy. The amount of the slowest type
of ancestral node computations [Vector/Vector], however, is only increased
by 0.16% compared to the standard implementation.

56

Strategy Tip/Tip Tip/Vector Vector/Vector Total Runtime (s)
Standard 11,443,484 57,884,490 76,325,233 145,653,207 5678
MRC (0.5) 20,368,957 61,224,562 76,444,874 158,038,393 6453

Random (0.5) 37,778,575 85,303,730 104,398,910 227,481,215 7999

Table 3.1: Frequency of ancestral vector cases for the standard implementation
and the recomputation strategies (50% of ancestral vectors allocated)

Dataset Standard R:=0.1 R:=0.9
500 0.122 0.121 0.130
1500 0.430 0.430 0.434
5000 2.402 2.412 2.438

Table 3.2: Average run times in seconds for 20 full traversals averaged across 5
runs

Evaluation of full tree traversals

We created a simple test case that parses an input tree and conducts 20
full tree traversals on the given tree. We used the aforementioned starting
trees and the 500, 1500, and 5000 taxon datasets. Each run was repeated 5
times and we averaged running times. All runs returned exactly the same
likelihood scores.

Table 3.2 indicates that, even for very small R values (fraction of inner
vectors allocated in memory), the run time overhead is negligible compared
to the standard implementation.

The recomputation approach permits to save memory at the cost of some
additional computations, and independently of the data pattern in the align-
ment. However, certain data patterns in the MSAs can be exploited to save
memory without any overhead in computations. In fact, as we show in the
next Section, if large blocks of gaps are present in the alignment, it is possible
to reduce both the number of computations and the memory requirements.

57

3.4 Subtree Equality Vectors

3.4.1 Gappy Subtree Equality Vectors

The content of this Section has been derived from the following
peer-reviewed publication:
F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis. Algorithms, data
structures, and numerics for likelihood-based phylogenetic inference of
huge trees. BMC Bioinformatics, 12(1):470, 2011
S. Smith generated the 38K and 56K datasets described
in Subsection 3.4.2

The concept of Subtree Equality Vectors (SEVs) to accelerate likelihood com-
putations by reducing the number of required floating point operations was
first introduced in 2002 [96]. Conceptually similar approaches were presented
in 2004 [64] and 2010 [100].

The underlying idea is based on the following observation: Given two
identical alignment sites i and j in the MSA that evolve under the same
evolutionary model (GTR parameters, α shape parameter of the Γ function,
etc.), and for which a joint branch length has been estimated, their per-site
log likelihoods LnL(i) and LnL(j) will be identical. Hence, to save compu-
tations, one can compress the identical sites into a single site pattern and
assign a respective site pattern count (weight) to this site pattern. Thus,
for two identical sites i and j, we can compute the per-site log likelihood as
2 ·LnL(i). This global compression of alignments (executed prior to conduct-
ing likelihood computations) is implemented in all current likelihood-based
codes. This basic idea of site compression can be extended to the subtree
level, by using SEVs for instance, to save additional computations. Let us
consider again Equation 2.10, which computes the ancestral probability entry
to observe state A at node p and site i.

L
(p)
A (i) =

(

T
∑

S=A

PAS(blp)L
(l)
S (i)

)(

T
∑

S=A

PAS(brp)L
(r)
S (i)

)

(2.10)

We can now consider again Equation 3.1, which computes the ancestral
probability entry to observe state A at node p and site j.

L
(p)
A (j) =

(

T
∑

S=A

PAS(blp)L
(l)
S (j)

)(

T
∑

S=A

PAS(brp)L
(r)
S (j)

)

(3.1)

58

Figure 3.11: All alignment columns are different. Therefore, at the root, each site
will contribute with a different site likelihood. However, at the internal nodes,
the first and the last site share identical patterns (green) at the node level sub-
alignment. Since the APVs for the first and the last site will be identical in the
internal nodes, there is potential for data (APV entries) re-use.

Both entries only differ on L
(l)
S and L

(r)
S , which by recursion depend only

on the likelihood entries at the tip vectors. We can think of node p as a root
node of a subtree (clade), whose likelihood is computed with data from a
sub-alignment. If the data pattern at the tips of the subtree rooted at p are
identical for sites i and j, then L

(p)
A (i) and L

(p)
A (j) must have the same value.

Therefore, the likelihood entry only needs to be computed once. The same
argument can be made for states C, G and T.

The key technical challenge with this approach is that it requires a large
amount of bookkeeping, to keep track of identical subtree site patterns (for
details see [96]). However, this approach can be simplified by considering
only subtree-level presence of gaps in the alignment.

Gaps and undetermined characters are mathematically equivalent in the
standard ML framework. Since structured patches of missing data domi-
nate many phylogenomic datasets (the amount of missing data can be up
to 90%) [74, 92], we only track subtree site patterns that entirely consist of
gaps/undetermined characters (e.g., we are only interested in subtree sites of
the from: ---- in a subtree of size 4). We assume that undetermined char-
acters (?, N) have been translated into gap symbols (-). Thereby, we avoid
the more complex task (see [64] and [100]) of tracking all identical subtree
site patterns (e.g., detecting all sites of the form: ACCT in a subtree of size
4). We show an example in Figure 3.11

This restriction simplifies the required bookkeeping procedure and data
structure significantly, because we only need to know whether a subtree site
consists entirely of gaps or not. Thus, given an alignment with s sites, it
suffices to enhance the data structures for storing tips and inner nodes by a

59

simple bit vector with s bits. If all-gap sites are represented by 1 and non-
gap sites by 0, we simply need to execute a bit-wise AND on the respective bit
vectors of the child nodes l and r in conjunction with the tree traversal for
computing the likelihood to determine the all-gap sites at the ancestral node
p (see Figure 3.12). We can then use this bit vector at p to determine if we
need to compute the likelihood entries of the ancestral probability vector at
a site i.

We have implemented this method for DNA and protein data under the
Γ model of rate heterogeneity in RAxML v728 (alpha) available at http://
www.exelixis-lab.org/web/personal_page/izquierdo/sev.tar.gz. Ev-
idently, the efficiency of this approach depends on the proportion of and dis-
tribution of gaps in the input alignment. Since areas of missing data are
typically well-structured in current phylogenomic datasets, this approach is
expected to work well with this kind of input data.

While SEVs can speed-up ancestral probability vector computations, SEVs
slightly slow down the branch length optimization and likelihood computa-
tion (at the root) functions because of the memory accesses to the bit vectors.

Saving Memory with SEVs

SEVs as implemented here, can also be deployed to reduce memory require-
ments. As mentioned above, if, at an ancestral node p we encounter an
all-gap site, we completely omit its computation. In order to accomplish
this, we need to maintain only one additional ancestral probability vector
site, that contains the signal for all-gap sites. Consider an ancestral proba-
bility vector where 50% of the entries in the all-gap site bit-vector are set to
1, that is, where we only need to compute 50% of the ancestral probability
vector entries with respect to the total alignment length.

We can observe that, in addition to saving 50% of the computations re-
quired for this ancestral probability vector, we can also save 50% of the mem-
ory space required for storing the ancestral probability vector (see Figure 3.13).
Thus, the memory requirements for each ancestral node can be determined
on-the-fly as we traverse the tree, by subtracting the number of entries that
are set to 1 in the bit vector from the input alignment length. Remember
that, the bit vectors we deploy are always as long as the input alignment.

The key technical problem that arises is that, the required ancestral prob-
ability vector lengths at inner nodes will change dynamically when the tree
topology changes or even when the tree is just re-rooted. Given a rooting
of the tree, one may think of this as ancestral probability vectors becoming
longer while one approaches the root of the tree.

At present we have implemented this by dynamically freeing and allo-

60

http://www.exelixis-lab.org/web/personal_page/izquierdo/sev.tar.gz
http://www.exelixis-lab.org/web/personal_page/izquierdo/sev.tar.gz

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
�������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��01110

G−−−T
G−−−T
A−−−G

p

01010

A−T−T

A−G−A
A−T−A
A−A−A

l r

toward virtual root

01010:=01110 AND 01010

all−gap bit vector

ancestral probability vector

with 4 taxa

subtree/subalignment
with 3 taxa subtree/subalignent

data in black areas
does not need to be
computed

Figure 3.12: Using Subtree Equality Vectors to save computations for all-gap
alignment sites in subtrees.

cating memory (using free() and malloc()) at each ancestral node. The
reallocation only takes place when the all-gap bit-vector count (number of
bits set to 1) corresponding to the required ancestral probability vector does
not equal the all-gap bit-vector count of the current ancestral probability
vector at an ancestral node. Due to the large number of calls to malloc()

and free() performance can suffer when the pthreads version is being de-
ployed due to thread contention. The technique may not scale well with the
number of threads because the reallocation of shared memory by one thread
can block other threads. One possible solution is the deployment of lock-
less memory allocators [34], where the syncronization overhead dissapears
because each thread works with local allocation and memories.

Note that, the concepts presented here can also be applied to phyloge-
nomic datasets with joint branch length estimates across partitions, while
the conceptually different ideas presented in [92] can only be applied to par-
titioned phylogenomic datasets with per-partition branch length estimates.

3.4.2 Generation of Biological Test Datasets

To assess our methods, we used two large multi-gene datasets of plants.
The first dataset comprises 37,831 taxa and 9,028 sites and was obtained

as follows: We assembled a DNA sequence matrix of 37,831 seed plant taxa
consisting of the chloroplast regions atpB (1,861 taxa, >2.6 Megabases [Mb]),
matK (10,886 taxa, >14.3 Mb), rbcL (7,319 taxa, >9.7 Mb), trnK (4,163
taxa, >7.5 Mb), and trnL-trnF (17,618 taxa, >13 Mb), and the internal

61

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
�������

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

G−−−T
G−−−T
A−−−G

p

A−T−T

A−G−A
A−T−A
A−A−A

l

toward virtual root

ancestral probability vector

with 4 taxa

subtree/subalignment
with 3 taxa subtree/subalignent

01110 01010

01010:=01110 AND 01010

all−gap bit vector

r

ancestral probability entries
for all−gap columns do not
need to be stored!

Figure 3.13: Using Subtree Equality Vectors to save computations and memory
for all-gap alignment sites in subtrees.

transcribed spacer (ITS; 26,038 taxa, >14.3 Mb), using the Phylogeny As-
sembly with Databases tool (PHLAWD [81]). All sequence alignments were
conducted using MAFFT version 6 [42] for initial alignments and MUSCLE
for profile alignments [19]. Alignment matrix manipulations were performed
with Phyutility [82].

The second dataset comprises 55,593 taxa and 9,853 sites and was ob-
tained using the same pipeline as described above. The gene regions used
were atpB (2,346 taxa, >3.6 Megabases [Mb]), matK (14,848 taxa, >33.6
Mb), rbcL (10,269 taxa, >14.9 Mb), trnK (5,859 taxa, >15.3 Mb), and trnL-
trnF (25,346 taxa, >30.1 Mb), and the internal transcribed spacer (ITS;
37,492 taxa, >30.9 Mb).

For ease of reference we henceforth denote the 37,831 taxon datasets as
38K and the 55,593 taxon as 56K. Trees computed on the 56K dataset have
been published [80].

3.4.3 SEV Performance

We used the 38K and 56K datasets to test memory savings and speedups
achieved by applying the adapted SEV technique to phylogenomic datasets.
The gappyness (percentage of missing data in the alignments) is 81.53% for
38K and 83.40% for 56K, respectively.

For each alignment, we computed a parsimony starting tree with RAxML
that was then evaluated (model parameter and branch length optimization
without tree search, RAxML -f e option) with RAxML under the GTR+Γ

62

SEVs SEVs with memory saving standard
Runtime (s) 4125.1 4116.8 6541.1
Memory (GB) 42 15 41
LogLikelihood -5528590 -5528590 -5528590

Table 3.3: Execution times and memory requirements for optimizing model pa-
rameters and branch lengths under on the 38K dataset using SEVs, SEVs with
memory saving, and the standard likelihood implementation.

SEVs SEVs with memory saving standard
Runtime (s) 7145.2 8095.1 11181.4
Memory (GB) 67 29 67
log likelihood -7059556 -7059556 -7059556

Table 3.4: Execution times and memory requirements for optimizing model pa-
rameters and branch lengths under on the 56K dataset using SEVs, SEVs with
memory saving, and the standard likelihood implementation.

model using the SEV reimplementation (with and without memory saving)
and using the standard likelihood implementation.

The standard implementation required 41GB of memory on the 38K
dataset and 66GB of memory on the 56K dataset. The SEV technique with
the memory saving option enabled (-U option, available as of RAxML v7.2.7)
reduced memory footprints under Γ to 14GB (38K) and 21GB (56K) respec-
tively. The log likelihood scores for all three implementations were exactly
identical. As shown in Table 3.3 and Table 3.4, the runtimes of the SEV-
based versions are 25-40% faster than for the standard implementation. The
runtime differences between the SEV-based implementation with memory
saving enabled and the plain SEV version without memory saving, can be
attributed to differences in memory access patterns. While both versions con-
duct the same number of computations, the memory-saving version needs to
make millions of calls to OS routines (free() and malloc()) while the plain
SEV version exhibits a higher memory footprint and thereby, potentially, a
higher cache miss rate.

3.5 Summary

In this chapter we have described the memory requirements of phylogenetic
inference under ML. Accommodating such huge memory requirements is nec-
essary for analyzing phylogenomic datasets. We have presented several tech-
niques to effectively reduce these requirements. This will allow for computing

63

the PLF on larger datasets than ever before, especially when the limiting fac-
tor is RAM memory.

We have presented the first implementation of the PLF that relies on
out-of-core execution. We find that, given the locality of ancestral proba-
bility vector access patterns, miss rates are very low, even if the amount of
available RAM is limited to a small fraction of the actually required memory.
We demonstrate that our out-of-core implementation, performs substantially
better than the standard implementation that relies on paging.

We have presented a generic strategy for the exact computation of log
likelihood scores and ML tree searches with significantly reduced memory re-
quirements. The additional computational cost incurred by the larger num-
ber of required ancestral vector recomputations is comparatively low when
an appropriate vector replacement strategy is deployed. The memory versus
additional computations trade-off can be adapted by the users via a com-
mand line switch to fit their computational resources. We also show that,
the minimum number of ancestral probability vectors for computing the PLF
that need to be kept in memory for a tree with n taxa is log2(n) + 2. This
result may be particularly interesting for designing equally fast, but highly
memory-efficient phylogenetic post-analysis tools that rely on full tree traver-
sals.

The MRC strategy has been integrated in RAxML-Light [91] and in the
Phylogentic Likelihood Library [27]. This will allow to infer trees and com-
pute likelihood scores on a single multi-core system datasets that previously
would have required a supercomputer. The recomputation strategy clearly
outperforms the out-of-core approach. For this reason, the later is not cur-
rently maintained in any production codebase.

We have adapted and re-implemented the SEV technique for phyloge-
nomic datasets with missing data and enhanced it by a novel memory-saving
option. This technique can reduce execution times by 25-40% on sufficiently
’gappy’ datasets via omitting redundant computations. More importantly,
the revised SEV technique can be deployed to achieve significant memory
savings that are almost proportional to the amount of missing data in the
test datasets. This technique has already been fully integrated into the stan-
dard RAxML distribution and is also available in ExaML [90].

On the software engineering side, it is important to note that the re-
computation and the SEV memory-saving techniques are orthogonal. The
recomputation technique reduces the number of APVs stored in memory.
The SEV technique reduces the size of individual APVs. Therefore, both
techniques can be applied simultaneously, and combined with potential fu-
ture techniques such as the use of lossless compression algorithms for storing
ancestral probability vectors.

64

Chapter 4

The Backbone Algorithm

The content of this chapter has been derived from the following
peer-reviewed publication:
F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis. Algorithms, data
structures, and numerics for likelihood-based phylogenetic inference of
huge trees. BMC Bioinformatics, 12(1):470, 2011
S. Smith generated the 38K and 56K datasets described
in Subsection 3.4.2

This chapter introduces an algorithm for space-constrained phylogenetic tree
searches, which we denote as backbone algorithm. The notion behind this
search algorithm is that, in large alignments, the sequences at the tips are
close enough to each other to be grouped correctly in the early phases of
the tree search algorithm. Therefore, it should be possible to devise some
search heuristics that spend more time evaluating topological moves on in-
ner parts of the tree, which are more likely to yield likelihood increases.
Furthermore, by exploring a smaller tree space, the convergence criteria, as
described in Section 2.6 should be met earlier. The backbone algorithm,
which we describe in detail in this chapter, can reduce the time required for
tree inferences by more than 50% while yielding equally ‘good‘ trees in the
statistical sense.

4.1 Constraining tree search to a backbone

tree

PhyNav (Phylogenetic Navigator [104]) first introduced the idea to reduce
the dimension of the tree for the search phase. PhyNav reduces the number

65

of sequences in the MSA to a subset that contains the most relevant phylo-
genetic information. The subtree based on the reduced alignment is faster to
search on and optimize, and can be used as a scaffold to construct the full,
comprehensive tree.

Similarly, we explored the idea of identifying closely related taxa and
collapsing them to a subtree root, which can be considered as a single virtual
tip, also called super-taxon. The tree induced by all virtual tips and remaining
original (non-collapsed) tips is called backbone tree. This technique can also
potentially reduce the memory footprint of the tree, because the number of
internal nodes that are actually updated is reduced.

By clustering taxa into virtual tips, the dimension of the tree can be
reduced allowing for a tree search on the backbone tree that is induced by the
virtual tips. Given a perfectly balanced tree, a reduction of 50% corresponds
to collapsing each pair of taxa into a single virtual tip. Thus, for each pair
of tips, there is one less inner node to operate on, and the total number of
inner nodes is halved. We henceforth denote such a reduction of the tree
dimension as reduction factor.

Once an appropriate backbone tree has been computed, topological moves
can be applied, following the standard tree search strategy such as the one
described in Section 2.6. The difference with respect to the standard search
is that the topological moves are restricted to the backbone tree.

In other words, the virtual tips are interpreted as tips in the backbone tree
on which we conduct the tree search. In our RAxML proof-of-concept imple-
mentation [38], which deploys SPR moves, only subtrees that form part of the
backbone tree are pruned and will exclusively be re-inserted into branches
that lie within the backbone.

Despite restricting the tree search to the backbone, in our setup, we
always compute the log likelihood score of the comprehensive tree during the
backbone tree search. The log likelihood score of the comprehensive tree can
be easily computed, because virtual tips are ancestral probability vectors that
summarize the signal of the (excluded) real tips situated below the respective
virtual tip.

As discussed in Section 3.1, the memory requirements for storing the
ancestral probability vector representing a virtual tip are significantly higher
than for storing a terminal taxon.

4.2 Algorithm

The main user parameter for the backbone tree algorithm is the desired tree
size reduction factor R, where 0.0 < R < 1.0. This parameter controls how

66

much the backbone tree shall be reduced in size. Ideally, the backbone tree
will then comprise n·R−2 ancestral nodes and n·R backbone tips. Backbone
tips may either be virtual tips (ancestral nodes) or real tips. Evidently,
choosing very low values of R may significantly impact the quality of the
inference, especially if very short branches are present. According to our
experiments (see Section 4.3), using R > 0.25 is a conservative minimum
value for R.

The algorithm comprises the following computational steps:

Starting tree A reasonable starting tree is given by the user or generated
by a fast method, for instance, parsimony.

Tip Clustering We assign the n tips of the starting tree to n · R clusters,
that is, c = ⌈n · R⌉, where c is the total number of clusters obtained.
For each tip we store a cluster identifier that denotes to which cluster
the tip has been assigned.

Backbone delimitation Determine and mark the ancestral probability vec-
tors that will become virtual tips in the backbone. We traverse the tree
and use the cluster identifiers to label all ancestral nodes as residing
inside, outside or on the boundary of the backbone.

Backbone Tree Search Conduct a standard tree search (see Section 2.6)
restricting topological moves to the backbone tree.

To also achieve a memory footprint reduction, one could write a multiple
sequence alignment for the backbone to file that will partially consist of nu-
cleotide sequences and partially of ancestral probability vectors representing
virtual tips. This reduced alignment can then be parsed together with the
backbone tree for conducting a tree search. This approach, however, has not
been implemented.

We next outline the four algorithmic steps in detail.

4.2.1 Starting tree

To build a backbone, we assume that a reasonable (i.e., non-random) fully
resolved comprehensive tree T comprising all taxa (e.g., obtained via par-
simony using TNT [28], Parsimonator [85] or RAxML [87]) is computed or
provided as input. This comprehensive n-taxon tree has n tips and n − 2
ancestral (inner) nodes.

Once the parsimony tree is available, the branch lengths and the statistical
model parameters are optimized under Maximum Likelihood.

67

4.2.2 Tip Clustering

We present an approach based on computing a distance matrix and applying
average-linkage hierarchical clustering [55].

Hierarchical clustering with k small distance matrices

In standard hierarchical clustering, the first step consists of calculating a dis-
tance matrix that contains the pair-wise distances between all items (tips) to
be clustered. However, given a comprehensive tree T with ML estimates of
branch lengths, we can directly obtain this distance matrix from the tree by
calculating the pair-wise patristic distances. The patristic distance between
two taxa is the sum of branch lengths on the path in the tree connecting the
two taxa. Thus, the distance matrix is symmetric. The space requirements
for storing such a patristic distance matrix are in O(n2) which can become
prohibitive for large alignments with n ≥ 30, 000 tips. We observe that, the
pair-wise patristic distances between most tips will be very large and hence
these tips will be assigned to different clusters anyway. Therefore, to save
memory, one can decompose this process into computing several smaller, par-
tial distance matrices, since the comprehensive starting tree already induces
a hierarchical clustering structure. If we subdivide the problem into comput-
ing k partial pair-wise distance matrices, and each partial matrix i defines
ci clusters, we need to ensure that c =

∑k

i=0 ci = ⌈n · R⌉, so that the total
number of desired clusters still corresponds to the specified reduction factor
R. To achieve this, we do not fix the number of partial matrices k a priori.
Instead, we define a threshold value m that represents an upper bound for
the number of tips contained in each partial matrix. Let n be the total num-
ber of taxa, ni the number of tips in a partial matrix, where ni ≤ m and
n =

∑k

i=0 ni. From each partial matrix, we extract an amount of clusters
proportional to its size, that is, ci ∝ c× ni

n
.

This is implemented as follows: First, we find a set of subtrees such that
(i) each subtree has as many tips as possible and at most m tips and (ii)
each tip is included in exactly one subtree, that is, all tree tips are included
in one subtree and no tip forms part of more than one subtree.

For each such subtree i, we then build a (partial) patristic distance matrix
for all ni subtree tips. Thereafter, we cluster them, by generating a hierar-
chical cluster tree. This hierarchical tree may be cut at different levels to
generate a varying number of subtree tip groups. We choose to cut the tree
such that it generates ci clusters of subtree tips. If required, the number of
desired clusters ci will have been iteratively adjusted beforehand (for further
details see below) for each partial matrix i to ensure that c =

∑k

i=0 ci.

68

For example, consider a 40, 000-taxon tree, a reduction factor of 0.5 (cor-
responding to 20, 000 clusters), and a partial matrix threshold of 32, 000 taxa.
In this example, we may obtain distance matrices of 10, 000 and 30, 000 taxa
respectively. Then we will need to extract 15, 000 clusters from the 30, 000
taxon distance matrix and 5, 000 clusters from the 10, 000 taxon distance
matrix.

To be able to apply this method and compute partial patristic distance
matrices, we need to devise an algorithm that selects subtrees from the com-
prehensive phylogeny such that they contain at most m taxa. We start by
selecting the innermost node of the tree, as described below.

Computation of the innermost node

Each inner node i of an unrooted binary tree T is a trifurcation that defines
three subtrees Ti,a, Ti,b and Ti,c. We define the subtree length stl(Ti) as the
sum of all branch lengths in subtree Ti. Thus, stl(Ti,a)+stl(Ti,b)+stl(Ti,c) =
stl(T) holds for any inner node i, where T is the comprehensive tree.

In our current default implementation, we select the innermost node j
that maximizes stl(T)−max{stl(Tj,a), stl(Tj,b), stl(Tj,c)}. An alternative cri-
terion for selecting the innermost node is to determine the node that min-
imizes the variance of the three outgoing subtree lengths. Other possible
criteria, that are not based on subtree length may be defined, for instance,
as finding the node that minimizes the variance of the node-to-tip distance
or finding the node with the highest minimum node-to-tip distance. The
node-to-tip distance is defined as the sum of branch lengths on the path in
the tree leading from an ancestral node to a tip.

The tree diameter is defined as the number of nodes on the longest path
between any pair of tips. We define the node distance between two nodes
as the number of nodes on the path that connects the nodes. The normal-
ized node distance is defined as the raw node distance between alternative
innermost nodes, divided by the tree diameter. We conducted an empirical
assessment (based on our collection of large real-world trees) to compare the
node distances between the innermost node generated by our criterion and
the innermost node of these alternative approaches. Table 4.1 shows the re-
sults for a real-world dataset comprising 55,593 taxa (see Subsection 3.4.2).
The respective innermost nodes (as identified by the alternative criteria) are
either identical or close neighbors, that is, located in the same region of the
tree.

69

Normalized
Alternative criterion Node distance node distance

Lowest subtree length variance 0.00 0.00

Lowest node-to-tip distance variance 2.50 0.01

Maximal minimum node-to-tip distance 11.90 0.06

Table 4.1: Node-distances from the default criterion (55,593 taxa, averaged across
10 trees). Several criteria can be employed to select the innermost node of an
unrooted tree. The alternative innermost nodes are located close to each other
with respect to the tree diameter (186 nodes).

Tip clusters are delimited from k subtree roots

Once we have determined the innermost node, we conduct a depth-first tree
traversal starting at this node and descending into each of the three subtrees.
The depth-first traversal terminates, when a subtree root is encountered that
comprises ≤ m tips. All subtree roots that contain ≤ m tips are stored in
a list for further processing. Thus, when the depth-first traversal has been
completed, this list of k subtree roots can be used to generate the k partial
patristic distance matrices of maximum size O(m2). In our implementation,
we set m := 1024. This is a suitable value, since the time required for
processing partial distance matrices of such size remains in the order of sec-
onds, which is negligible in comparison with total runtime of the tree search
algorithm.

For each subtree root (i.e., each partial patristic distance matrix), we
determine how many clusters should approximately be extracted, via c̄i :=
⌊1
2
+ c · ni

n
⌋, where i is the subtree number, ni is the number of tips in

the respective subtree, c = n · R is the total number of desired clusters,
and c̄i is the number of clusters for subtree i. In general, c 6=

∑k

i=0 c̄i.

The overhead (or deficit) of clusters, that is given by ∆c = c −
∑k

i=0 c̄i, is
then proportionally distributed across all remaining partial matrices. This
process is repeated iteratively until no overhead (or deficit) remains. In each
iteration, we reassign ci := ⌈c̄i +∆c · c̄i

c
⌉ until c =

∑k

i=0 ci for every i.
Then, for each subtree i = 1...k we proceed as follows:

1. For all tips in subtree i, calculate the patristic distances to all other
tips in this subtree and save them in the respective distance matrix.

2. Apply pairwise average clustering to generate a hierarchical tree of joins
from the distance matrix.

3. Cut the tree, such that exactly ci clusters are generated.

70

4. Add those clusters to a global list of clusters. Maintain a list that keeps
track to which cluster a tip belongs.

4.2.3 Backbone construction

When all subtrees have been processed, we have a list of c clusters. Note
that, each cluster contains x tips, where 1 ≤ x ≤ m and that each tip is
assigned to exactly one cluster. The step to build the backbone from the
clusters is not trivial. We use labels (inside, boundary and outside) to
identify which nodes belong to the backbone and which ones do not.

The backbone tree is defined by nodes marked as inside and boundary.
Once the clusters have been computed, we build the backbone as follows:
Initially, we label each inner node in the tree as inside, tip nodes which
belong to clusters of size one as boundary, and all remaining terminal nodes
as outside. In addition, we maintain a list for storing the cluster identifiers
of ancestral nodes that will not form part of the backbone.

Once this is done, we update/adapt the backbone assignment for ancestral
nodes: The nodes of the comprehensive tree that represent the k subtree roots
will remain inside the backbone. On each of the k subtree roots, we initiate
a post-order traversal to relabel the ancestral nodes, if required, according
to the following rule set:

• If the two child nodes are labeled as inside or boundary, the ancestral
node remains labeled as inside.

• If one child is labeled as inside or boundary and the other child as
outside, the ancestral node is relabeled as inside and the outside

child node is relabeled as boundary.

• If both children are labeled as outside, we need to check to which
cluster they belong. If they belong to the same cluster, the parent
node is labeled as outside and the shared cluster identifier of the child
nodes is propagated to the parent node. If the two children do not
belong to the same cluster, the parent node is labeled as inside and
both children are relabeled as boundary.

When the post-order traversal is about to be completed, we arrive at
the subtree root i again, which was originally labelled as inside. At this
point, we check whether the adjacent backbone node of the subtree root
i has been labeled as outside. Whenever this is the case (see Figure 4.1
for an example), the adjacent backbone node is relabeled as boundary for
consistency.

71

O(2)

I I

O(2)
O(2)

O(2)

O(2)

O(2) B(2)

B(3)

B(1)

I

O(2)

I I

(2)
(2)

(2)

(2)

(3)

(1)

I

I

II

Figure 4.1: Consistency of labels at the backbone boundaries. At first (left) an
initial backbone exists (thick branches), all inner nodes are labelled as inside (I)
and each tip node has a cluster id. After completion of the post-order traversal
(right), each inner node has been relabelled accordingly, if required. Here, cluster 2
is monophyletic, hence the cluster id was inherited propagated back to the initial
backbone node. This produced a branch (edge) with an inside and an outside
node; therefore the outside(O) node is relabelled (arrow) as boundary(B) node.

Reduction Factor R n := 37831 (expected) n := 55593 (expected)
0.25 12668.0 (9457.75) 19366.7 (13898.25)
0.50 22340.0 (18915.5) 33501.5 (27796.5)

Table 4.2: Average number of computed backbone tips over 10 distinct trees. The
average number of backbone tips is higher than the expected number n ·R

Given a set of tips that form part of the same cluster, it may occur that
these tips also form a monophyletic group. In this case, during the post-order
traversal, all ancestral nodes will be grouped together under the same cluster
identifier and the common ancestral node will become a backbone boundary
(virtual tip). However, if the tips in a cluster are not monophyletic (see
for instance, in Figure 4.2), the application of the above rules requires some
additional boundary relabelling.

Based on the prolegomena, a single cluster may thus induce more than
a single virtual tip. As a consequence, the number of virtual tips may ac-
tually be higher than the number of clusters. In turn, the reduction of tree
size that can be achieved will be smaller than specified by R. The impact
and frequency of occurrence of this phenomenon (non-monophyletic clusters)
depends on the shape of the tree and the branch lengths. In Table 4.2, we
outline this effect for trees with 37,831 and 55,593 taxa. We computed the
average number of virtual tips generated by our algorithm on 10 distinct
trees per dataset and reduction factors of 0.25 and 0.5 respectively.

72

I I

O(2)

O(2)

B(1)

O(2) B(2)

B(3)

B(4)

I

I I

(2)

(2)

(2)

(1)

(3)

(4)

I

I

II

I

I

B(2)

O(2)

Figure 4.2: At first (left) an initial backbone exists (thick branches), all inner nodes
are labelled as inside (I) and each tip node has a cluster id. Upon completion of
the post-order traversal (right), each inner node has been relabelled accordingly.
Here, cluster 2 is not monophyletic. Hence, an additional virtual tip is created,
that is, cluster 2 generates 2 boundary tips.

4.2.4 Backbone-constrained Tree Search

Once the Backbone has been built, a standard phylogenetic search algorithm
can be applied. We have implemented the above backbone algorithm in
a dedicated proof-of-concept RAxML version. This implementation is avail-
able for download at http://www.exelixis-lab.org/web/personal_page/
izquierdo/backbone.tar.gz

Initially, RAxML will generate a comprehensive randomized stepwise ad-
dition order parsimony tree, or read in a user specified tree via -t. Then
it will optimize ML model parameters—including branch lengths—on the
comprehensive tree. Thereafter, it will execute the backbone algorithm as
described above. The tree searches on the backbone are based on the stan-
dard RAxML hill-climbing algorithm. The standard algorithm implements
lazy SPRs steps, because the likelihood scores obtained are only approximate.
Like in standard SPRs (see Section 2.6), a subtree is pruned and re-grafted
on several neighbouring branches. However, after re-grafting, only the three
branch lengths around the insertion branch are re-optimized, which induces
significant time savings in comparison with re-optimizing all branch lengths
of the tree. These lazy SPRs are used as a fast pre-scoring mechanism to find
good topologies which are later optimized more thoroughly [95] in a subse-
quent evaluation step. In our algorithm, lazy SPR moves are only conducted
within the backbone.

After each complete cycle of SPR moves (see [87] for details), the back-
bone tree will be re-computed based on the currently best tree. Also, the
branch lengths of the entire tree (including those branches not forming part

73

http://www.exelixis-lab.org/web/personal_page/izquierdo/backbone.tar.gz
http://www.exelixis-lab.org/web/personal_page/izquierdo/backbone.tar.gz

of the backbone) will be re-optimized once after each SPR cycle.

4.3 Evaluation and Results

4.3.1 Performance

To test the backbone algorithm we executed the dedicated RAxML version.
with the experimental -L command line option. This option initially builds a
backbone tree and then deploys the CAT approximation of rate heterogene-
ity [86] with the standard RAxML hill-climbing search algorithm [87, 93] to
apply lazy SPR moves (see [87]) within the backbone only. We used tree
size reduction factors of 0.25 and 0.5. As starting trees, we used random-
ized stepwise addition order parsimony starting trees generated with RAxML
v727 (-y option). For each dataset, we inferred 10 ML trees for each of the
10 parsimony starting trees. RAxML was executed using the Pthreads-based
parallel version [97] with 16 threads on unloaded Quad-Core AMD Opteron
nodes with 16 cores and 128GB RAM each.

We computed average runtimes over 10 runs for the 38K and 56K datasets
(see Subsection 3.4.2) respectively. For each backbone tree, we also computed
the theoretical minimum number of bytes (denoted as Memory for Backbone)
required to store the ancestral probability vectors at the virtual tips and the
inner nodes which dominate memory requirements. If the branch length opti-
mization process, unlike in our current implementation, is limited to optimiz-
ing branches within the backbone, this theoretical minimum value represents
a good estimate of the memory footprint for a backbone tree search. We
also computed the respective memory requirements for the comprehensive
tree (denoted as Memory for Full tree), which reflect the ’standard’ memory
requirements when no reduction factor is applied.

These values (see Table 4.3 and Table 4.4) provide a notion of the po-
tential memory savings that can be achieved by the backbone approach.
In Table 4.3 and Table 4.4 we also provide the respective execution times
and average log likelihood scores obtained by using the backbone algorithm
(R := 0.25, R := 0.5) and a comprehensive search on the full tree (R := 1.0).
Those values have been averaged over 10 runs (10 starting trees). While exe-
cution times can be reduced by the backbone approach, log likelihood scores
obtained by conducting searches on a backbone are slightly worse than those
obtained by searching on the full tree.

In Figure 4.3 and Figure 4.4 we show that the choice of the random num-
ber seed (-p option in RAxML), that determines the shape of the starting
trees, has a significant impact on the final log likelihood score (computed

74

-5.534e+06

-5.533e+06

-5.532e+06

-5.531e+06

-5.53e+06

-5.529e+06

-5.528e+06

-5.527e+06

 100 200 300 400 500 600 700 800 900 1000

T
re

e
Lo

g
Li

ke
lih

oo
d

Seed number

log LH for different R and starting seeds (37831 species)

R = 0.5
R = 0.25
Standard

Figure 4.3: Log Likelihood scores for different Reduction factors (38k dataset).
Plot of log likelihood scores under GTR+Γ of the final trees obtained by each
method as a function of the starting tree (random number seed) for the 38K
dataset. Each LH score (point) results from an independent search. The lines
linking the points are only guiding the eye.

75

-7.068e+06

-7.067e+06

-7.066e+06

-7.065e+06

-7.064e+06

-7.063e+06

-7.062e+06

-7.061e+06

-7.06e+06

-7.059e+06

 100 200 300 400 500 600 700 800 900 1000

T
re

e
Lo

g
Li

ke
lih

oo
d

Seed number

log LH for different R and starting seeds (55593 species)

R = 0.5
R = 0.25
Standard

Figure 4.4: Log Likelihood scores for different Reduction factors (56k dataset).
Plot of log likelihood scores under GTR+Γ of the final trees obtained by each
method as a function of the starting tree (random number seed) for the 56K
dataset. Each LH score (point) results from an independent search. The lines
linking the points are only guiding the eye.

76

R=0.25 R=0.5 R=1
Runtime (h) 30.41 38.60 54.03

Memory for Backbone (GB) 4.90 7.70 N/A
Memory for Full tree (GB) 10.33 10.33 10.33

LogLikelihood (Avg) -5531436 -5530051 -5529406
LogLikelihood (Std Dev) 943.26 770.47 1307.16

Avg (logLH - logLH(R=1)) 2030.24 645.31 0.0

Table 4.3: Average runtimes, memory requirements, and log likelihood scores (over
10 runs) for the 38K dataset.

R=0.25 R=0.5 R=1
Runtime (h) 50.17 63.22 85.89

Memory for Backbone (GB) 8.22 12.72 N/A
Memory for Full tree (GB) 16.82 16.82 16.82

LogLikelihood -7063342 -7061516 -7060488
LogLikelihood (Std Dev) 1727.90 1761.27 1718.47

Avg (logLH - logLH(R=1)) 2853.41 1028.04 0.0

Table 4.4: Average runtimes, memory requirements, and log likelihood scores (over
10 runs) for the 56K dataset.

under GTR+Γ), irrespective of the search strategy that is used. On aver-
age, searches on the full tree yield better likelihood scores than searches on
backbone trees. However, the variance of the likelihood score as a function of
the starting tree (parsimony random number seed) is analogous to the score
variance between full and backbone tree searches. For example, on the 38K
dataset, the log likelihood scores on 10 final trees obtained for full searches
show a standard deviation of 1307 log likelihood units. The average differ-
ence in log likelihood scores per starting tree between the full search and a
backbone search with R := 0.50 is only 645 log likelihood units and 2030 log
likelihood units for backbone searches with R := 0.25, respectively.

Given the runtime savings that can be achieved by the backbone ap-
proach, backbone tree searches can be used, for instance, to explore a larger
number of parsimony starting trees which substantially influence the final
log likelihood scores. A reasonable strategy for finding best-known ML trees
may consist in starting many fast searches with a relatively aggressive setting
of R := 0.25 to identify/determine a set of ’good’ starting trees that yield
the best final log likelihood scores. In a second step, full tree searches can
be conducted on those promising starting trees to find trees with even better
scores.

77

R := 0.25 R := 0.5 R := 1
R := 0.25 182.6 169.9 188.0
R := 0.5 169.9 152.8 146.2
R := 1 188.0 146.2 133.0

True Tree 398.8 382.0 388.0

Table 4.5: Average symmetric differences (over 5 runs) for the 1500 simulated
dataset.

4.3.2 Simulated Datasets (Accuracy)

We used simulated datasets in order to better understand the impact of
the backbone algorithm on topological accuracy. We ran INDELible [26] to
generate simulated MSAs of 1500 taxa (575 bp) and 5000 taxa (1074 bp). We
compared the RF distance [69] (number of bipartitions that differ between
two topologies) between the true tree and the topologies from the standard
full search and the backbone-based ones. For each dataset, the full search and
the backbone search with R := 0.25 and R := 0.5 were ran five times with
different starting trees. Table 4.5 shows the average symmetric differences
among all approaches for the dataset with 1500 taxa. We see that, in terms
of topological accuracy, applying reductions of R := 0.25 and R := 0.5
yield topologies that are close to the standard full search. Furthermore, the
distance to the true tree is not increased by the reduction.

4.4 Summary

In this chapter we have proposed an algorithm for reducing the tree size for
phylogenetic inference under likelihood-based methods on trees with several
tens of thousands of taxa. We have explored different backbone construc-
tion techniques and described the method that worked best with respect to
final log likelihood scores. Such backbone-based techniques can help to re-
duce memory footprints and execution times. However, in almost all cases
they yield final trees with worse likelihoods compared to comprehensive tree
searches on a full, unreduced tree. We find that likelihood scores of final trees
heavily depend on the respective starting trees and conclude that backbone
approaches can be deployed for identifying ’good’ starting trees, that can
then be further refined using a comprehensive tree search.

78

Chapter 5

Introduction to GPU
Programming

In this chapter, we briefly introduce the main programming models for GPU
computing, where parallel compute-intensive calculations are offloaded to the
GPU, while the rest of the code is run on the CPU.

5.1 Overview

GPUs (Graphics Processing Units) were originally designed as a dedicated
hardware architecture for accelerating graphics rendering. GPGPU (General-
Purpose computation on GPUs) [62], or GPU computing, refers to the use of
GPUs to accelerate scientific applications, a concept that dates back to the
early 2000s [102].

Modern CPUs consist of a few cores optimized for serial processing, while
GPUs contain thousands of small efficient cores designed for parallel floating-
point operations because of the computational requirements of graphics ren-
dering.

The main programming models/interfaces for GPUs are CUDA (Compute
Unified Device Architecture) and OpenCL. CUDA is a parallel computing
(GPUs) platform introduced by NVIDIA in 2006. It includes a SDK and
API that, using the C language, gives access to the virtual instruction set
and memory of the parallel computational elements in CUDA GPUs.

OpenCL (Open Computing Language) is as a more generic framework. It
was initially introduced in 2009 and is currently maintained by the Khronos
group [14]. OpenCL programs can be executed across heterogeneous plat-
forms, such as central processing units (CPUs), graphics processing units
(GPUs), and digital signal processors (DSPs). OpenCL includes a language

79

(based on C99) for writing kernels (functions that execute on OpenCL de-
vices), plus application programming interfaces (APIs) that are used to define
and then control the platforms.

The high level APIs of CUDA and OpenCL allow the application pro-
grammer to create C programs that can execute specified functions (Kernels).
These Kernels can be run on the GPU’s streaming processors.

In both platforms, the master system that steers the computations is
denoted as host, which is usually a CPU. In addition, one or several devices
are available. A device is a massively parallel processor with a large number
of arithmetic and floating-point processing units. In terms of memory, both
approaches assume a similar memory hierarchy, although the terminology
differs.

5.2 CUDA

In this Section, we introduce the main terminology and concepts of the CUDA
framework [61].

5.2.1 CUDA Hardware and Architecture

From a hardware architecture perspective, NVIDIA GPUs consist of scal-
able arrays of multi-threaded Streaming Multiprocessors (SMs). A group of
threads running on the same processor core is called a thread block. The num-
ber of threads in a thread block is limited by the hardware. On current GPUs,
a thread block can contain up to 1024 threads [61]. Furthermore, thread
blocks can be scheduled in any order because they are required to execute in-
dependently. During a CUDA program execution, as thread blocks complete
their execution, new blocks are launched in the vacant streaming multipro-
cessors. Finally, blocks are organized in one, two or three-dimensional grids
of threads.

We now briefly introduce the NVIDIA Fermi architecture [11]. The Fermi
architecture (see Figure 5.1) includes up to 512 CUDA cores, which are dis-
tributed across 16 streaming multiprocessors, each with 32 CUDA cores.

Each streaming multiprocessor (see Figure 5.2) has 16 load/store units,
four SFUs (special function units), and 64KB of on-chip memory which is
used as shared memory and L1 cache. A streaming multiprocessor manages
and executes threads in groups of 32 parallel threads (warp). A warp executes
one common instruction at a time.

A coherent L2 cache of 768KB is shared across all multiprocesors in the
GPU. The host interface connects the GPU to the CPU via a PCI Express

80

Figure 5.1: The Fermi Architecture (left) contains 16 streaming multiprocessors.
Source [11].

Figure 5.2: Architecture of a Fermi streaming multiprocessor. Source [59].

81

bus.
The SIMT (Single Instruction, Multiple Threads) and SIMD (Single In-

struction, Multiple Data) architectures are closely related, since a single in-
struction is executed on multiple processing elements on different data or
a data vector. In SIMT architectures (GPUs), the programmer can write
thread-level parallel code for independent threads, as well as data-parallel
code for coordinated threads. However, with respect to performance, it is
important to avoid divergence among threads belonging to the same wrap,
because a thread can either execute the same instruction as the other threads
in the wrap, or idle. Therefore, for maximum efficiency, all threads of a wrap
should share the same execution path.

In 2012 NVIDIA released a newer architecture called Kepler [60].In the
course of this thesis, however, we only made use of the Fermi architecture.

5.2.2 CUDA Programming Model

In the CUDA programming model, the host is a CPU running the main
(serial) C program. The host has its own RAM memory. The CUDA threads
are executed on a separate device (GPU).

A Kernel is a CUDA C (an extension of C) function, which is executed
in parallel N times by N different CUDA threads.

Barriers are used to synchronize thread blocks and coordinate memory
accesses to global memory. Figure 5.3 shows this memory hierarchy in detail:
Each thread has a private local memory. Each thread block has shared mem-
ory, that is visible only to threads within the same block (memory near the
corresponding processor cores). All threads (and thread blocks) have access
to global memory.

The CUDA programming model assumes that the device has its own
DRAM memory (device memory). Therefore, the programmer is responsible
for managing the memory units that are visible to kernels through calls to
the CUDA runtime. This includes memory allocation and deallocation on
the device, as well as data transfer between host and device memory.

5.2.3 Performance Considerations

Latencies should be hidden The latency is the number of clock cycles
that a warp is waiting before executing its next instruction. This can hap-
pen when the input operands of the next instruction are not available yet.
Another reason can be that the wrap is waiting due to a memory fence or a
synchronization point. Each GPU multiprocessor can in principle hide these
latencies and maximize the utilization of its functional units. If all wrap

82

Figure 5.3: CUDA memory hierarchy. Source [61]

83

Figure 5.4: This access pattern results in a single 128-byte transaction, indicated
by the red rectangle. Source [61]

schedulers always have at least one instruction to issue for one wrap at every
clock cycle, the latency can be fully hidden. In other words, ideally a wrap
will be issued at every cycle, and it is therefore desirable to have a high
number of resident wraps, so that these can be alternatively scheduled.

Data transfer between Host and Device The amount of data transfer
between host and device should be whenever possible minimized due to the
low bandwidth. A typical approach is to sacrifice parallelism in the kernels
by moving more code from the host to the device. This involves adding
kernel code and data structures to compute and store intermediate results
on the GPU DRAM that never need to communicate with the host. Transfer
overheads can be minimized by batching many small transfers into single
larger transfers.

Accesses to global memory Global memory resides in device memory,
which is accessed via 32-, 64-, or 128-byte memory transactions. Segments
of device memory (32-, 64- or 128-bytes) are aligned if their first address
is a multiple of their size. If threads within a warp access such neighbor-
ing aligned memory elements, only one memory transaction is needed. In
other words, data memory layouts should be designed by the programmer
so that the warps read or write contiguous memory elements, as depicted
in Figure 5.4.

5.3 OpenCL

The programming model of OpenCL is analogous to the one presented for
CUDA. We briefly present it to clarify differences in terminology.

OpenCL (Open Computing Language) is an open standard for parallel
programming of heterogeneous systems. It provides a language (a subset of
ISO C99) for software developers to write portable code on SIMT (Single
Instruction, Multiple Threads) architectures.

84

The OpenCL Execution Model consists of an application running on a
Host (CPU), which offloads work to one or more Compute Devices (for in-
stance GPUs). Each compute device is composed of one or more Compute
Units. In CUDA, these are called Streaming Multiprocessors (SM).

A Kernel represents the code for a work-item (thread). Work-items are
the basic units of work. Work-items are grouped into local work-groups
equivalent to CUDA thread blocks. OpenCL applications can access various
types of memory: Host memory (on the host CPU), global (visible to all
work-groups, e.g., DRAM on the GPU board), local (shared within a work-
group, called shared in CUDA), and private (registers per work-item, called
local in CUDA).

5.3.1 OpenCL performance portability

OpenCL provides developers portability by enabling the usage of and deploy-
ment on diverse processing platforms. In particular, performance differences
with CUDA are rather small on GPUs (CUDA performs at most 30% better),
and tend to disappear under fair comparisons [22].

The OpenCL standard also guarantees functional compliance with other
devices such as CPUs, DSPs, and other hardware platforms, that is, OpenCL
portable code will run correctly and generate the same results. Thus, the
main advantage is that a single implementation can be executed on different
platforms. However, performance portability is not guaranteed. In order
to obtain maximum performance, OpenCL code still requires architecture-
specific implementations.

Recently, Zhang, Sinclair and Chien [114] studied the performance porta-
bility of OpenCL across diverse architectures (NVIDIA GPU, Intel Ivy Bridge
CPU, and AMD Fusion APU) with typical benchmarks, such as SpMV
(Sparse Matrix Vector multiply) and FFT (Fast Fourier Transform). The
results showed poor performance for single-source OpenCL programs (on av-
erage 15% performance in comparison with state-of-the art implementations).
However, with architecture-oriented the performance was improved to 67%
of the performance on the Ivy Bridge CPU [114]. In general, there is a signif-
icant gap between single-source OpenCL programs and architecture-oriented
tuned OpenCL programs.

85

Chapter 6

GPU implementation of
Phylogenetic Kernels

The content of this chapter has been derived from the following peer-
reviewed publication:
F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S. P. Pissis,
and A. Stamatakis. A generic vectorization scheme and a gpu kernel for
the phylogenetic likelihood library. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2013 IEEE International Sym-
posium on, 2013
Simon Berger designed and implemented the generic Vectorization
scheme described in Section 6.2.

In this chapter, we describe in detail a GPU implementation for the computa-
tion of the main phylogenetic functions as a proof-of-concept implementation
for the Phylogenetic Likelihood Library (PLL, introduced in Section 2.7).
These functions involve the computation of the likelihood score and the
Newton-Raphson method for branch length optimization. The proof-of-
concept implementation works for DNA data and the Γ model of rate het-
erogeneity.

We also introduce a GPU-specific memory organization scheme that re-
duces data transfer between the GPU and the CPU to an absolute minimum,
thereby improving performance. The memory layout of the ancestral proba-
bility vectors (APVs) stored in the GPU is an adapted version of a generic
vectorization scheme.

This generic vectorization scheme for the phylogenetic function (PLF)
allows to transparently deploy vector units of arbitrary length for PLF com-
putations. These vector instruction can be x86 intrinsics (128-bit wide SSE3

86

instructions and 256-bit wide AVX instructions) as well as SIMT instructions
on GPUs. A generic vectorization scheme is important to ensure portability
of the code to increasing vector lengths (e.g., the 512-bit wide vector units
on the recent Xeon Phi processor).

According to our experiments, our GPU implementation of the PLF (Phy-
logenetic Function) is approximately twice as fast as the highly tuned x86
version of the PLF that relies on manually inserted AVX vector intrinsics.

The remainder of this chapter is organized as follows: In Section 6.1 we
survey related work on PLF libraries and GPU implementations. Thereafter,
in Section 6.2, a generic vectorization scheme for PLF computations is in-
troduced. In the subsequent Section 6.3 we cover technical details of the
GPU implementation. Thereafter, we describe the experimental setup and
the results obtained (Section 6.4) and conclude in Section 6.5.

6.1 Related work

Early work on porting the RAxML likelihood functions, which comprise the
core of the PLL, to GPUs in the pre-CUDA and pre-OpenCL era was re-
ported in [12]. Exploiting fine-grain parallelism with GPUs for the PLF has
previously been addressed in [65] and [115] for MrBayes [73]. However, these
implementations represent case studies or only cover a small subset (for spe-
cific data types such as DNA data) of the PLF in MrBayes. Hence, these
initial efforts do not represent production-level implementations, but rather
proof-of-concept studies.

The BEAGLE [4] (general purpose library for evaluating the likelihood
of sequence evolution on trees) library introduced an application program-
ming interface (API) for PLF computations and also offers efficient imple-
mentations thereof. BEAGLE can exploit modern hardware using SSE3 in-
trinsics, multi-threading, and GPUs. It has been integrated into Bayesian
programs (BEAST [99] and MrBayes [73]) and Maximum Likelihood pro-
grams (GARLI [116]). The BEAGLE paper [4] reports performance results
for DNA and Codon data on two 15-taxon datasets. The test datasets con-
tained 8558 unique nucleotide (DNA) site patterns and 6080 unique codon
site patterns, respectively. For each of the three programs integrated with
BEAGLE, the authors measured the speedup of the BEAGLE CPU, SSE3,
and GPU (under single and double precision) implementations with respect
to the corresponding native implementations. The largest speedups were ob-
tained for the GPU implementation. For GARLI, only GPU speedups were
reported (factor 3.8 for DNA data and 12 for codon data under double preci-
sion). The BEAGLE-based version of MrBayes yielded a maximum speedup

87

of 16 (DNA data) and of 31 (Codon data) on the GPU using double pre-
cision arithmetics. Note that the relative speedup for MrBayes comparing
the BEAGLE CUDA against the BEAGLE SSE3 performance was approx-
imately 4.6 for DNA data. BEAST showed similar speedups for the GPU
implementation under double precision (14-fold for DNA data and 37-fold
for codon data). The speedups for single precision were larger. However, for
large-scale real-world datasets (in particular with a high number of taxa),
double precision arithmetics are typically required to guarantee numerical
stability of the PLF [7].

The PPL library introduced in Section 2.7, which we use to develop our
GPU proof-of-concept implementation, offers additional features that BEA-
GLE does not support. The PLL can also use AVX intrinsics. Further-
more, it implements numerical optimization functions such as for instance
the Newton-Raphson method for branch length optimization. BEAGLE de-
fers these tedious programming tasks to the application programmer. It only
offers functions for computing the first and second derivative of the like-
lihood function that can then be used by the application programmer to
implement a Newton-Raphson branch length optimization procedure. More-
over, BEAGLE does currently not allow for conducting partitioned analyses
which, given that partitioned analyses (distinct sets of likelihood model pa-
rameters are estimated for different parts of the multiple sequence alignment)
are becoming increasingly common, represents a drawback of BEAGLE. As
a consequence, BEAGLE does also not implement techniques [98, 113] for
improving parallel load balance for partitioned analyses. Unlike the PLL,
it does not offer a fine-grain MPI parallelization of the PLF and is hence
limited to stand-alone shared memory nodes. Finally, BEAGLE does not
implement the PSR (originally CAT) model of rate heterogeneity [86], which
can yield substantial computational savings in terms of floating point op-
erations and memory utilisation compared to the standard Γ model of rate
heterogeneity [110].

6.2 Generic Vectorization

An important part of the PLF is the newview() function (see Section 2.7),
which updates the ancestral probability vectors (APVs) at inner nodes of the
tree in the course of a post-order traversal. The innermost loop of newview()
calculates the sum over products between elements of the transition proba-

88

Node v
Site 1 Site 2

Rate 0 Rate 1 Rate 0 Rate 1
LALCLGLT LALCLGLT LALCLGLT LALCLGLT

Figure 6.1: Memory layout of an ancestral probability vector

Node v
Site 1/2 interleaved

Rate 0 Rate 1
L1,AL2,AL1,CL2,CL1,GL2,GL1,TL2,T L1,AL2,AL1,CL2,CL1,GL2,GL1,TL2,T

Figure 6.2: Memory layout of an ancestral probability vector with a vector width
of 2 (VW := 2)

bility matrix P and corresponding elements in the APV L.

L
(p)
A (i) =

(

T
∑

S=A

PAS(blp)L
(l)
S (i)

)(

T
∑

S=A

PAS(brp)L
(r)
S (i)

)

(2.10)

We assume DNA data and the Γ model of rate heterogeneity. The entries
of these vectors are computed according to Equation 2.10 and stored follow-
ing the layout shown in Figure 6.1, assuming DNA data with 4 states, 2 Γ
rates, and 4 alignment sites.

For each alignment site, the ancestral probability vector contains 2 rate
blocks. Each rate block contains 4 probabilities (one per state and site s,
denoted by Ls,A, Ls,C ,Ls,G, and Ls,T , for site s). Using this memory layout,
the probability values of the states can be read efficiently from contiguous
memory locations to calculate the scalar products in Equation 2.10.

This memory layout is used directly in the initial ad hoc SSE3 and AVX
versions of RAxML. The calculation of the scalar products in the innermost
newview() loop can be implemented by using element-wise multiply and
horizontal add operations. However, this approach is only efficient, if the
number of states (e.g., 4) is equal to or larger than the width of the vector
unit. Since we use double precision floating point numbers this is the case
both for SSE3 (vector width: 2), as well as AVX (vector width: 4) vector
units. In contrast to this, modern GPUs have much wider vector units. In
addition, the width of x86 vector units is also expected to increase (e.g., Intel
Xeon Phi). Hence, the initial ad hoc vectorization scheme can no longer be
used for the PLL. Moreover, the manual vectorization for each model and
data type combination is error-prone and labor-intensive. Thus, we devised

89

a more generic vectorization scheme that is easier to port to new models and
can conveniently be adapted to vector units of arbitrary length.

In order to use the wider vector units on GPUs, we introduce a new and
more generic, vectorization scheme. Instead of exploiting parallelism within
the innermost loop iteration of newview(), the new scheme now calculates
a part of the ancestral probability vectors simultaneously for multiple sites.
We denote this approach as across-site vectorization. In principle, across-
site vectorization is analogous to the sequential implementation of the PLF:
The calculations of the scalar products in the innermost newview() loop are
carried out sequentially. The main difference is that the scalar products are
now being calculated for multiple sites (i.e., 2 or 4 sites for SSE3/AVX or
more than 64 sites on the GPU) in parallel. In the SSE3 and AVX imple-
mentations, this parallelism is exploited by using vector intrinsics. A similar
scheme has been previously used for the inter-sequence vectorization of the
PaPaRa 2.0 [8] dynamic programming algorithm.

This simple vectorization scheme can only be used when the data (i.e., the
APVs) are stored using an appropriate memory layout. Such a layout needs
to allow for reading the probability values of a specific state and rate (e.g.,
Ls,A) that belong to neighboring alignment sites from contiguous memory
locations, that is, we require that Ls,A and Ls+1,A (for a given rate) occupy
contiguous positions in memory. Since this is not possible using the standard
memory layout (see Figure 6.1), we introduce an appropriately adapted and
flexible (regarding the vector unit width) memory layout (see Figure 6.2) .

To assess the efficiency of this more generic vectorization scheme, we im-
plemented it on both CPUs (using SSE as well as AVX) and GPUs. The
major change consists in an adapted memory layout for the APVs which
now allows to efficiently exploit across-site parallelism on CPUs and GPUs.
Note that, SSE and AVX instructions currently do not offer efficient opera-
tions for loading data from non-contiguous sites (data locations) into vector
registers (see Figure 6.1). Generally, GPUs offer greater flexibility with re-
spect to loading values from non-contiguous memory locations (e.g., loading
the values corresponding to state A and discrete Γ rate 0 of sites 0, 1, . . . , 32).
However, overall GPU performance can be increased by accessing values from
contiguous global memory locations, because read/write accesses can be coa-
lesced and delays related to bank conflicts can be avoided. We have therefore
generalized the ancestral probability vector memory layout to store corre-
sponding values from different sites in contiguous memory. This allows for
accessing the data at contiguous memory locations for the vectorized version
of Equation 2.10. The memory layout is parameterized by the desired vector
unit width (VW). For VW := 1, the memory layout corresponds exactly
to the original memory layout of RAxML (see Figure 6.1). The analogous

90

layout for VW := 2 is shown in Figure 6.2. As outlined in Figure 6.2, corre-
sponding values from different alignment sites (e.g., state A, discrete Γ rate 0
of sites 0 and 1) are located at contiguous memory locations. Therefore, they
can directly be loaded into an SSE register via a single load operation. Given
this altered and adaptive memory layout, implementing a vectorized version
of Equation 2.10 for sites 0 and 1 becomes straight-forward. In Section 6.3
we show how we adapt this scheme to arbitrary widths for GPUs.

However, there do exist some limitations. Equation 2.10 can only be vec-
torized for sites that evolve according to the same model of evolution. In
other words, the sites need to share the same P matrices and the same α
shape parameter that determines the form of the Γ curve. With partitioned
datasets, the parameters of the model of evolution will be optimized indepen-
dently for each partition. Thus, the maximum vector width is limited by the
number of sites that evolve according to the same model, which corresponds
to the length of the given partition.

Moreover, it is also difficult to apply the above scheme to the, otherwise
efficient, PSR model of rate heterogeneity [86]. Instead of integrating the
likelihood over different rates, it assigns one rate category (out of typically
25) to each alignment site. This means that, there are at least 25 different
P matrices and that Equation 2.10 can only be vectorized across sites that
evolve according to the same P matrix (rate category). Hence, devising a
generic vectorization scheme for the PSR model, is not straight-forward.

6.3 GPU Implementation

We now describe the design and implementation of GPU kernels for the key
functions of the PLL (newview(), evaluate(), and coreDerivative()).
The model of rate heterogeneity is the Γ model. These functions are described
in detail in Section 2.7, and account for more than 95% of total execution
time in likelihood-based phylogenetic inference programs [10, 93]. For these
functions, the ancestral probability vectors are read as input and, in the case
of newview(), an additional APV is written as output.

These APV access patterns have two important implications in the design
of the GPU implementation.

The first design criterion is associated with improved GPU thread perfor-
mance when threads access contiguous memory locations in global memory.
To maximize global memory throughput in the OpenCL model, it is essen-
tial to optimize memory coalescence and minimize address scatter [1]. The
standard layout for APVs (see Figure 6.1) is problematic, because contiguous
memory locations do not store likelihood entries belonging to the same state

91

and rate. We address this by using the ancestral probability vector memory
layout (see Figure 6.2) presented in Section 6.2 and adapting it to GPUs.

The second challenge is that severe performance penalties are induced by
frequently transferring large amounts of data between the CPU and GPU.
Because the APVs dominate the memory requirements in the PLF com-
putations (see discussion in Section 3.1), we devise an appropriate memory
organization strategy. Under this specific scheme, the ancestral probability
vectors are stored and updated exclusively on the GPU. The host program
on the CPU simply orchestrates the tree search and invokes PLF computa-
tions on the ancestral probability vectors that reside on the GPU. We have
developed an OpenCL kernel that implements this strategy. At each kernel
call, the host program only needs to pass the memory addresses, that is, the
starting positions of an ancestral probability vector (corresponding to a node
of the tree) in GPU memory to the GPU. Apart from that, the CPU only
needs to communicate the substantially smaller P matrices and one addi-
tional variable to the GPU. The variable indicates which PLF function (e.g.,
newview(), evaluate(), etc.) shall be executed.

Each kernel call returns at most one or two floating-point values to the
CPU. In particular, calls to evaluate() return the overal log likelihood,
and calls to coreDerivative() return the first and second derivatives of
the likelihood function. When newview() is invoked, no values are returned
because this function simply updates the ancestral probability vectors that
reside in GPU memory.

6.3.1 Kernel Implementation

Update of ancestral probability vectors The CPU version of newview()
(see Figure 6.4) includes three distinct cases: tip-tip (both children are leaves),
inner-tip (one child is a leave and the other is an inner node), and inner-inner
(both children are inner nodes). For details, see Section 2.8.

In the GPU version, these three cases have been reduced to one generic
case (inner inner). This also induces a change in the layout of the vectors
at the tips, which are stored in the form of inner ancestral probability vec-
tors (tip-APV), rather than as a look-up table that is indexed by the raw
alignment sequence data (for details see [89]).

While this doubles the memory requirements for storing ancestral prob-
ability vectors, it simplifies the storage of vectors in GPU memory, as well
as the OpenCL code implementation (all cases are executed with the same
kernel, avoiding conditional statements that would deteriorate performance).
Hence, we allocate space for storing 2n − 2 ancestral probability vectors on
the GPU, where n is the number of taxa in the multiple sequence input align-

92

ment. Finally, the newview() function also implements a numerical scaling
procedure to avoid numerical underflow in likelihood computations (for a
detailed description, see [89]).

The GPU execution of the traversal descriptor described in Section 2.8 is
depicted in Figure 6.4. Each entry in the descriptor represents an inner-inner
operation, where three APVs are involved. The input APVs r and q are the
child nodes. The ouput APV p is the parent of r and q. The parent/children
relationship refers to the direction of the virtual root. The APVs r and q
can be tip-APVs. The APV p always corresponds to an inner node in the
tree. The branch length connecting the corresponding nodes of APVs p and
q is given by bqp. The branch length connecting p and r is given by brp. The
traversal descriptor is processed sequentially as follows: for each entry in the
descriptor, the host (CPU) computes the matrices P (brp) and P (bqp). The
host then transfers the APV identifiers of q, r and p (the APVs are stored
in GPU global memory), and the P matrices to the device (GPU). The host
then launches the newview() kernel. For each work-group, the corresponding
P matrix is copied to local memory. Thus, threads belonging to the same
work-group are executed in the same streaming multiprocessor, read and
write contiguous memory positions (APV entries) from global memory, and
have fast access to the P entries required to compute the new APV values.
The kernel also performs additional operations related to numerical scaling.
The host does not need to read back anything from the device.

Evaluation of the Likelihood The GPU implementation of evaluate()
is analogous to the newview() kernel. Because of the changed ancestral
probability vector representation at the tips, we simply omit the case where
the left or right node of the branch at which the likelihood is calculated is a
tip. The host must read back a double precision floating-point number (the
log likelihood value).

Branch length optimization We observed that, during branch length
optimization on the GPU, the overhead for invoking the pre-computation
kernel (sumGAMMA()) and storing the results is larger than re-computing the
product of the entries prior to each invocation of coreDerivative(). Hence,
we merged sumGAMMA() and coreDerivative() into a single kernel.

Re-loading tip information in the GPU Apart from the 2n − 2 full
ancestral probability vectors, we also store the raw alignment sequence data
as well as the so-called tipVector data structure on the GPU. The reason
for this is that we need to re-calculate the ancestral probability vectors at the

93

tips each time we change the values in the instantaneous substitution matrix
Q (e.g., when optimizing the parameters of the General Time Reversible
model of nucleotide substitution), which is required to calculate P . Changes
to Q occur frequently when the rates in the Q matrix are being optimized.

While the values in the tip-APVs are normally expected to be constant,
this is not the case for the numerical implementation of the PLF used in
the PLL. In fact, the matrix of left Eigenvectors is multiplied with the tip
probability vectors prior to any further likelihood calculations. This allows
to save some computations later-on.

Each time the values in the Q matrix are changed this induces a change
of the Eigenvector decomposition. As introduced in Section 2.1, the Eigen-
vector decomposition is used to exponentiate Q for obtaining the transition
probability matrix P for a given branch length t (i.e., P (t) = eQt). Thus, the
ancestral probability vectors at the tips need to be updated accordingly when
the Eigenvector decomposition changes. However, transferring n tip vectors
from the CPU to the GPU has a deteriorating effect on performance. Thus,
we only transfer the substantially smaller tipVector array that contains the
product of the left Eigenvectors with all possible DNA states (this is the
look-up table used in the non-GPU PLL implementation) from the CPU to
the GPU.

Once the tipVector is available on the device, the new ancestral proba-
bility vectors at the tips (tip-APVs) can be efficiently updated on the GPU
using the already available raw alignment sequence data. The overhead of
re-computing the ancestral probability vectors at the tips is negligible; it ac-
counts for less than 1% of total run-time. In contrast to this, transferring
all n ancestral probability vectors for the tips from the CPU to the GPU for
each change in Q, induced a run time overhead of up to 70%.

6.3.2 GPU Memory Organization

Due to the aforementioned performance considerations, the APVs must be
stored on the GPU. In order to correctly calculate the PLF, however, there
are other APV-related data structures that must be stored in the GPU. We
list these requirements below:

• Ancestral probability vectors for the n− 2 inner nodes and n tips.

• The raw sequence alignment data of the tips that is required for re-
computing the ancestral probability vectors at the tips when the Q
matrix changes.

94

• The tipVector array that is also required for re-assembling the tip-
APVs.

• A weight vector that indicates how many times each alignment site
pattern occurs in the uncompressed MSA. This is called site pattern
compression and is used in all standard PLF implementations to avoid
unrequired computations (the per-site-LH is the same for two identical
sites).

• Two diagptable arrays (one per child node) representing the P ma-
trices for newview() and evaluate() invocations.

• A globalScaler array of size 2n−2 for storing (and later-on un-doing)
the scaling multiplications conducted to avoid numerical underflow at
each node of the tree.

• Buffers to accumulate results, sum the per-site log likelihoods, and sum
over the number of scaling multiplications.

In terms of memory requirements, this scheme is dominated by the 2n−2
ancestral probability vectors. Thus, memory requirements can be approxi-
mated in advance. The proof-of-concept GPU implementation assumes that
enough memory is available on the GPU. When this is not the case, it should
be possible to apply the memory reduction strategy presented in Section 3.3,
trading the lack of memory for additional computations. Alternatively, the
computations can be split up among several GPUs.

6.3.3 OpenCL Implementation

In OpenCL (see Section 5.3), the work-group size, which is set by the kernel
programmer, corresponds to the number of threads that are executed per
streaming multiprocessor (SM). After experimenting with several multiples
of 32, we empirically determined that a value of 64 worked best for our
target application and HW platform. At each kernel call, all threads within
a block can read data from contiguous positions in global memory. Thus,
in our configuration we access 64 contiguous entries that share the same
state and are evolving according to the same discrete Γ rate category. Our
GPU kernel initializes the tips, and reads/writes the ancestral probability
vectors according to this data layout (workgroup := 64), which is represented
in Figure 6.3.

In order to improve performance, we applied optimization techniques such
as loop unrolling [1], and storing the transition probabilities matrices and the

95

Node v

Site 0/1/ . . . /x interleaved

Rate 0 Rate 1

L1,A . . Lx,A L1,C . . Lx,C L1,G . . Lx,G L1,T . . Lx,T L1,A . . Lx,A L1,C . . Lx,C L1,G . . Lx,G L1,T . . Lx,T

...
Node v

Site x+ 1/x+ 2/ . . . /n interleaved

Rate 0 Rate 1

L1,A . . Lx,A L1,C . . Lx,C L1,G . . Lx,G L1,T . . Lx,T L1,A . . Lx,A L1,C . . Lx,C L1,G . . Lx,G L1,T . . Lx,T

Figure 6.3: GPU Memory layout of an ancestral probability vector with work-
group size x. Only 2 discrete Γ rates are represented.

eigenvectors in shared memory (local memory for each SM). We also explic-
itly use registers to store global variables that are read and written sev-
eral times during kernel execution. The newview implementation is depicted
in Figure 6.4.

6.4 Experimental setup and results

We simulated DNA data sets of different dimensions using INDELible [26] on
random trees under the Jukes-Cantor model. Initially, we used INDELible
(v1.03) to generate a large alignment of 15 taxa (species) and 900,000 sites.
We then used a ruby script to extract subsets of unique site patterns from
this alignment such as to generate 15-taxon datasets with distinct numbers of
unique sites. Thus, in these datasets, the number of sites actually corresponds
to the number of distinct alignment patterns which facilitates the discussion
of the results. The use of simulated data is sufficient for measuring the
performance of the PLL GPU version.

We executed the default RAxML-Light [91] search algorithm (version
1.0.5) to infer trees on these datasets. To conduct a realistic performance
assessment for a real application using a GPU implementation of the PLF for
the PLL, we re-implemented the search algorithm of RAxML-Light [91] using
the PLL library. We compared the GPU implementation (see Section 6.3)
and the AVX implementation based on the new generic memory layout (see
Section 6.2) against the fastest serial version of RAxML-Light using the ad
hoc AVX vectorization. The three code versions are implemented with the
PLL library. They only differ with respect to their PLF implementations
(newview(), evaluate(), sumGAMMA(), coreDerivative()). As mentioned
before, the execution times for these functions dominate the run time. We
manually instrumented the code to measure how much time is spent in each
function. In the current datasets, the cumulative execution time of these

96

Figure 6.4: GPU implementation for newview. The CPU computes a traversal
descriptor, which is a list of operations that must be executed before computing
the likelihood at the virtual root. The host transfers the APVs identifiers of
q, r and p, and the P matrices to the device (GPU). For each work-group, the
corresponding P matrix is copied to local memory (LM). The APV entries for q
and r are read from GPU global memory. The APV entries for p are computed
on a SM, and written to global memory.

97

Patterns 2048 4096 8192 16384 32768 65536 131072 262144

AVX 5.76 14.50 25.01 75.81 117.30 300.05 508.45 1503.48

AVX-NEW 6.20 14.90 25.29 77.23 117.57 302.24 510.82 1506.45

GPU 40.19 52.75 50.12 90.83 85.46 166.69 246.03 652.90

Table 6.1: Total run times (in seconds) for the RAxML-Light search algorithm.
AVX-NEW corresponds to the AVX implementation with the new generic memory
layout for APVs.

four functions accounts for more than 95% of overall execution time on all
datasets, and for 98% on the largest dataset with 262,144 unique site pat-
terns.

The source code and results are available at http://www.exelixis-lab.
org/web/personal_page/izquierdo/gpu.tar.gz

It is straight-forward to verify code correctness since the RAxML-Light
search algorithm is deterministic for given, fixed starting trees. Thus, it is
sufficient to compare the resulting tree topologies and log likelihood scores.

We executed the AVX versions (standard and new generic layout) on an
Intel i5-3550 CPU running at 3.30GHz with 8GB RAM. The GPU version
was executed on the same host system, which is also equipped with a NVIDIA
Tesla C2075 card (448 CUDA cores, 1.15GHz, and 6GB GDDR5 of memory).

The total execution times are shown in Table 6.1. We achieved overall
speedups exceeding a factor of two for the longest test dataset (see Fig-
ure 6.5). The three PLL kernels show comparable speedups. We observed a
maximum speedup of three for the derivative computation. For newview(),
which consumes the largest fraction of execution time, we obtained a maxi-
mum speedup of 2 (see Figure 6.6).

The number of scaling multiplications is proportional to the number of
taxa (see [89] for details). To verify the correctness of the numerical scaling
procedure, we also generated and executed a dataset with 200 taxa to force
the codes to conduct numerical scaling. For this larger dataset, we did not run
the full RAxML-Light algorithm, but a benchmark to evaluate the likelihood
and optimize the branch lengths of a given a starting tree. As Table 6.2
shows, the scaling does not significantly affect GPU performance, that is,
the speedups are comparable to those observed on the 15-taxa dataset, where
scaling is not required.

Overall, there are no significant GPU speedups for DNA data. This is
mainly because we are comparing the GPU code to the probably fastest
currently available PLF implementation that relies on code that has been
manually vectorized and tuned for AVX intrinsics. Thus, the GPU speedups
obtained for DNA data are substantially lower than those reported in the

98

http://www.exelixis-lab.org/web/personal_page/izquierdo/gpu.tar.gz
http://www.exelixis-lab.org/web/personal_page/izquierdo/gpu.tar.gz

Patterns 2048 4096 8192
AVX 2.04 4.13 8.25
GPU 4.76 5.46 7.66

Table 6.2: Total run times (in seconds) for 10 evaluations and branch length
optimization of a 200 taxa tree.

 0

 0.5

 1

 1.5

 2

 2.5

 3

1024 2048 4096 8192 16384 32768 65536 131072 262144

T
ot

al
 S

pe
ed

up
 v

s.
 A

V
X

 v
er

si
on

Number of unique patterns

Speedup for RAxML-Light application (AVX is used as reference version)

GPU
AVX-NEW

Figure 6.5: Speedups for a full application run of RAxML-Light. The reference is
the AVX version with the standard layout.

BEAGLE paper. However, the speedups reported for BEAGLE compare
GPU performance of BEAST, MrBayes, and GARLI, to plain C and SSE3-
based implementations. Nonetheless, the performance of our PLL GPU im-
plementation is expected to improve when models/data with more states are
used, such as protein models, because they perform more computations per
data accesses than for DNA data. Note that, the amount of PLF floating
point computations per site increases with the squared number of states.

Nonetheless, GPUs can yield two-fold speedups over our highly optimized
manual AVX implementation. Another interesting observation is that almost
no performance penalty is induced by using the more generic vectorization
scheme with AVX instructions.

99

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1024 2048 4096 8192 16384 32768 65536 131072 262144

T
ot

al
 S

pe
ed

up
 v

s.
 A

V
X

 v
er

si
on

Number of unique patterns

Speedup for main PLL functions (AVX is used as reference version)

GPU-newview()
AVX-NEW-newview()

GPU-evaluate()
AVX-NEW-evaluate()

GPU-derivatives()
AVX-NEW-derivatives()

Figure 6.6: Speedups for each function of the PLL. The reference is the AVX
version with the standard layout.

6.5 Summary

We have presented a GPU implementation for the main functions that are
required for Bayesian and ML-based phylogenetic inference. In our approach,
we store all ancestral probability vectors in the GPU memory to avoid trans-
ferring large amounts of data between the GPU and the CPU. We have also
introduced an alternative and more generic layout for the ancestral probabil-
ity vectors, which is suitable for x64 vector intrinsics and GPU architectures.
This layout facilitates porting the library to larger x86 vector units that have
recently become available.

100

Chapter 7

Perpetual Phylogenies with
PUmPER

This chapter describes a framework named PUmPER, which makes
use of the following publicly available open source tools: PHLAWD [81]
(developed by Stephen A. Smith, who also implemented the features
described in Subsection 7.2.1), RAxML-Light [91], Parsimonator [85],
and standard-RAxML [87] (developed by Alexandros Stamatakis). John
Cazes implemented the scripts described in Subsection 7.3.3. The con-
tent of this Chapter has been derived from the following peer-reviewed
publication:
F. Izquierdo-Carrasco, J. Cazes, S. Smith, and A. Stamatakis. PUmPER:
Phylogenies Updated Perpetually. Bioinformatics, 30(10):1476–1477,
2014

In this chapter we focus on topics related to automated inference and exten-
sion of phylogenetic trees. While the previous chapters focused on low level
optimizations, here we discuss the benefits of automation with a focus on
saving man-hours.

Existing phylogenies of taxonomic groups need to be updated as new
data for new species, individuals and/or new genes are added to databases.
The straight forward approach is to re-initiating phylogenetic inferences from
scratch (every time data are added to public databases), which represents a
waste of effort (man hours) and computations/energy. Nonetheless, adding
new taxa or genes to a phylogenetic tree may also unravel new evolutionary
relationships that were not supported by previous, smaller datasets. Albeit
still an on-going debate, the taxon sampling density can have an impact on
final tree shapes [9, 117].

101

Thus, it is worth exploring the tree topologies generated by datasets
whose taxon sampling has been extended. In this chapter, we address these
challenges, and present a framework called PUmPER (Phylogenies Updated
Perpetually). PUmPER can iteratively construct multi-gene alignments (with
PHLAWD) and phylogenetic trees (with RAxML-Light) for a given NCBI tax-
onomic group. Existing large reference phylogenies (and alignments) can be
extended with PUmPER, without human intervention, and without the need
to re-compute everything from scratch.

According to its configuration, PUmPER can detect when a sufficient amount
of new data for the target clade and genes are available in GenBank, and
automatically update existing alignments and phylogenies. We call this pro-
cedure a perpetual tree update. This can be helpful for commonly used
datasets such as rbcL for seed plants, which has been used for broad scale
phylogenies since 1993 [13], and also large ribosomal datasets that are used
extensively [68].

PUmPER can be deployed either as a stand-alone tool on single machines, or
on High Performance Computing systems, where phylogenetic inferences can
be offloaded to a cluster. PUmPER is available (under the GNU GPL license)
at https://github.com/fizquierdo/perpetually-updated-trees.
PUmPER does not only allow for extending phylogenies at a lower cost (in
terms of energy and man hours), but it also yields equally good likelihood
trees as de novo tree inferences conducted from scratch.

The rest of this chapter is organized as follows. In Section 7.1, we dis-
cuss previous work on automated inference and extension of phylogenies.
In Section 7.2 we provide an overview of the PUmPER framework. Specific
details about the software design of the stand-alone and distributed versions
are provided in Section 7.3, including a description of the pipeline setup that
perpetually updates the Viridiplantae clade. An evaluation of this pipeline
is presented in Section 7.4.

7.1 Related Work

Previous work on perpetually updated trees focused on a framework called
mor, which was designed for maintaining a specific automated taxonomy of
Homobasidiomycetes [32]. The mor framework retrieves, screens, aligns, and
analyzes nuc-lsu rDNA (nuclear large subunit ribosomal DNA) sequences of
Homobasidiomycetes from GenBank and generates three phylogenetic trees
each week. It generates an unconstrained jackknife neighbor-joining tree, a
topologically constrained maximum parsimony consensus tree, and a topolog-
ically constrained maximum likelihood tree. While mor continuously updates

102

https://github.com/fizquierdo/perpetually-updated-trees

phylogenies, its main purpose is to produce automated taxonomies. To this
end, a ’clade parser’ is used to translate trees into rank-free classifications
using node-based phylogenetic taxon definitions. For details, see [32]. The
mor framework is accessible as a web service, where phylogenetic trees are
published and archived on a weekly basis (at http://mor.clarku.edu). The
mor software is written in Perl and available as open-source code. It can,
in principle, be modified to work with any gene and group of organisms. At
present, however, the web service is not being actively development anymore
(pers. comm. with David Hibbett; March 27, 2013). The last archived files
date back to 2008. The latest sequence added dates back to 2010, and the
largest Maximum Likelihood tree produced by the system comprises 8019
taxa.

Further work has been done on automating the process of phylogenetic in-
ference. STAP (Small Subunit rRNA Taxonomy and Alignment Pipeline) [108]
is a pipeline that uses publicly available packages, such as ClustalW [103],
PhyML [29] and BLASTN [3], to automate the process of phylogenetic infer-
ence and taxonomic assignment for ss-rRNA sequence data. STAP retrieves
data from two public databases of ss-rRNA sequences: Greengenes [16] and
RDP-II [49]. STAP is a collection of scripts available as a Perl package.

Phylometrics [84] is another automated pipeline for inference of phyloge-
netic trees. Like STAP, it uses BLASTN hits and ClustalW for alignment
building, and PhyML for Maximum Likelihood tree inference. The pipeline
is implemented in PHP as a web application, which can be installed locally
or hosted remotely. In addition, batch jobs can be queued for each stage of
the pipeline.

The total running time and memory usage of such automated pipelines
is depends on the performance of their core components (e.g., ClustalW for
alignment and PhyML for tree inference). They can also be compared in
terms of feature availability, extendability, and usability. In this chapter, we
present a flexible framework which can be used to automate the process of
alignment construction and tree inference for arbitrary taxonomic groups. It
can be deployed on both standalone (single machines) and High Performance
Computing systems, enabling long-term availability of up-to-date phyloge-
netic trees.

7.2 Framework Overview

In the following, we outline the structure of PUmPER, our framework for per-
petually updating phylogenetic trees of more than 20,000 taxa.

PUmPER is composed by (i) the multiple sequence alignment (MSA) gen-

103

http://mor.clarku.edu

Figure 7.1: Initial iteration. An initial alignment is built for sequences covering a
given clade and description search term (gene). Parsimony starting trees are used
for Maximum Likelihood searches. The best trees are kept.

eration/extension component, and (ii) the phylogenetic tree inference com-
ponent, which infers/extends the trees via Maximum Likelihood (ML) tree
searches. The MSA component is an extension of PHLAWD [81], which can
retrieve GenBank sequences and subsequently build or extend MSAs. The
tree inference component is based on RAxML-Light [91], a dedicated HPC
version of RAxML that can be executed on clusters using the Message Pass-
ing Interface (MPI). It can be used to infer new trees from scratch or to
extend given trees by inserting additional taxa.

On top of these two components, we developed an iterative procedure
that perpetually updates trees. Each iteration consists of two stages: the
generation of a MSA, and the subsequent inference of a set of trees based on
the generated MSA.

The initial iteration is special, since it builds the initial MSA and ML tree
set from scratch. We call the remaining iterations update iterations, because
they simply extend the MSAs and trees of the preceding iteration.

The setup of the initial iteration (see Figure 7.1) involves editing a con-
figuration file for PHLAWD. In this file, the user must provide the NCBI taxo-
nomic rank (clade name) and the gene(s) for which a MSA shall be assembled.
PUmPER invokes PHLAWD to query GenBank and construct a initial MSA.

PUmPER uses Parsimonator to generate an initial set of distinct (random-
ized step wise addition order) parsimony starting trees based on this initial
MSA. For each parsimony tree, PUmPER conducts an independent ML tree
search with RAxML-Light to generate a set of ML trees. The user can spec-
ify the number of tree searches to be conducted and the size of the tree set
to be kept in a configuration file.

In an update iteration (see Figure 7.2), PUmPER carries out the following
four steps:

1. Update (re-assembly) of the MSA with PHLAWD with new GenBank data
according to the initial configuration file.

104

Figure 7.2: Update iteration. The alignment is extended and previous trees are
re-used to continue searching in ML space with a set of different starting trees.

2. Generation of distinct randomized stepwise addition order parsimony
starting trees with Parsimonator to extend the set of trees from the
previous iteration with the newly added taxa.

3. ML optimization of the comprehensive parsimony starting trees (from
step 2) with RAxML-Light.

4. Selection of a subset of these ML trees (based on their likelihood scores)
that will be used as starting points for the next iteration.

7.2.1 MSA Construction/Extension with PHLAWD

MSA construction in PHLAWD has been described in [81], but for the purposes
of understanding the perpetual procedure, we briefly outline the basic PHLAWD
procedure again. PHLAWD requires the user to supply a configuration file that
specifies for which organisms (as defined by the NCBI taxonomy) and which
gene region(s) to construct a dataset. The user can identify the focal gene
region by supplying a set of exemplar sequences. These sequences will be
used for pairwise alignments and homology assessment. Additionally, the
user can provide search terms that will be compared against the description
of the sequences in the database to limit the scope of the sequence search.
These are used in a Smith–Waterman procedure that discards sequences that
are too dissimilar to the exemplars. Using the remaining sequences, PHLAWD
attempts to construct MSAs. If the sequences included in the MSA are
too divergent to construct a reliable MSA, PHLAWD splits up these sequences
based on a guide tree, the default of which is the NCBI taxonomy. These
subsets are initially aligned independently (with MAFFT [42]), then profile

105

alignment with MUSCLE [19] is used to align the subsets using the guide
tree.

The PUmPER framework requires some adaptations in PHLAWD. We imple-
mented an option to also pass user-supplied sequences to PHLAWD in addition
to retrieving them from GenBank. This facilitated tests with simulated data,
and also allows the user to extend the sequence set, by sequences that are not
available in GenBank (e.g., simulated data or unpublished sequences). For
tests with simulated data, we also extended PHLAWD to read-in user-supplied
comprehensive (containing all taxa) or non-comprehensive (containing a sub-
set of taxa) MSA guide trees. These trees can be used as an alternative to
the NCBI taxonomy for splitting up sets of sequences for profile alignment
and putting them back together. This feature can also be used to assist in
the profile alignments of the user-supplied sequences. We also changed the
underlying PHLAWD file organization. Previously PHLAWD stored all the inter-
mediate alignments and other information in flat files. Now all files produced
by a PHLAWD run are stored in a SQLite database file. This allows for eas-
ier replication of the PHLAWD MSA procedure by storing the order of subset
alignment profiling. This is required for PHLAWD-based MSA extension when
new sequences are added. The database also stores sequences that have been
retrieved from GenBank and included in the MSA as well as sequences that
have been added by users. We extended PHLAWD to allow for updating this
local database with new sequences.

When PHLAWD has already been executed once and new sequences were
added to the database (automatically or by the user), PHLAWD can be executed
in update mode (updatedb option). Initially, the sequences of each new taxon
are aligned to the closest existing subalignment. Depending on the informa-
tion available, the closest subalignment is either determined by taxonomy or
sequence similarity. Then, PHLAWD executes profile-profile alignments in the
same order as in the original run. The information about the sub-alignment
profile-profile alignment order is stored in the SQLite database. If the new
MSA comprises 20% or more species than the preceding alignment, PHLAWD
will re-divide the sequences into subsets and re-align them from scratch. The
20% threshold was empirically determined as ’good’ default value but can be
changed by the user.

Automated Assembly of Multi-gene datasets with PHLAWD

PUmPER also supports the generation of multi-gene alignments. For each gene
region of interest, an independent PHLAWD instance (single-gene MSA) is run.
Each instance has its own configuration and exemplar sequence file. There-
after, PUmPER concatenates all single-gene MSAs into a multi-partitioned

106

dataset and stores the gene boundaries in a RAxML-formatted partition file.
During an update iteration, each PHLAWD instance is extended independently
(as described above).

The end result of a PHLAWD stage, be it initial or update, is a supermatrix
stored in PHYLIP format in a folder for each iteration, which acts as an
interface with the phylogenetic inference stage. Since these two stages are
decoupled, it is straight-forward to substitute PHLAWD by another MSA con-
struction method, that is, user-provided alignments can be used seamlessly
with PUmPER.

7.2.2 Phylogenetic Inference

The second stage of every iteration is the phylogenetic inference of a set
of trees based on the most recent MSA. The number of independent tree
searches conducted at each iteration depends on two user parameters: the
parsimony parameter p, and the size of the tree set b that shall be selected
and kept in the end. In our experiments, we used constant numbers for p
and b over all iterations (p := 30, b := 10 for initial iterations and p := 3,
b := 10 for update iterations). These parameters can be modified by the user
for each individual iteration. We denote the values of p and b for iteration i
as p(i) and b(i).

Generation of starting trees

In the initial iteration i := 0, p determines how many randomized stepwise
addition order parsimony starting trees will be generated (i.e., Parsimonator
is invoked with p distinct random seeds).

In an update iteration i > 0, given an extended MSA and a set of selected
ML trees (from the preceding iteration), p(i) denotes how many comprehen-
sive randomized stepwise addition order parsimony starting trees will be gen-
erated from the tree set of iteration i− 1. Thus, PUmPER calls Parsimonator
to extend the b(i−1) trees from the preceding iteration. In each call, p(i) dis-
tinct comprehensive parsimony trees are generated from the same preceding
(non-comprehensive) ML tree.

Maximum Likelihood Inference

Each comprehensive parsimony starting tree topology is then optimized un-
der ML with RAxML-Light. Thus, PUmPER conducts p(0) ML searches for
the initial iteration (i = 0) and p(i) · b(i− 1) ML searches for all consecutive

107

iterations (i > 0). The choice of which flavor of RAxML-Light will be de-
ployed (SSE3/AVX vectorization, Pthreads or MPI) depends on the available
hardware.

Scoring and selecting the best trees

PUmPER waits until all ML searches have finished, and then scores the p(i) ·
b(i − 1) topologies (-f J option) with standard-RAxML [87] under the Γ
model of rate heterogeneity [110]. This option will also compute SH-like
branch support values as described in [29]. Then, PUmPER selects the b(i)
best-scoring ML tree topologies, which will be the starting tree set used in
iteration i+ 1, and finalizes the iteration.

7.2.3 Manual and automatic tree updates

Update iterations can be initiated manually through the command line inter-
face. However, these updates can also be triggered automatically. An update
iteration is started if (i) the alignment from the previous iteration has been
extended and (ii) the phylogenetic analyses of the previous iteration have
been completed. PUmPER can generate a cron job that periodically checks if
the two conditions are true.

The MSA extension using PHLAWD can be automated via another cron

job that periodically (default: once per week) queries GenBank and will
launch PHLAWD to extend the MSA if enough new sequences (according to
the configuration) have become available.

7.3 Software and Availability

PUmPER is available as open source code. In terms of installation requirements,
all components used in the framework are open source and publicly available
at http://phlawd.net (PHLAWD) and http://www.exelixis-lab.org/

(RAxML). The design comprises Ruby modules that can be included in Ruby
scripts. Each Ruby module encapsulates some independent functionality,
that is, the user does not need to be aware of the specific usage of the
underlying tools.

For instance, in Code Sample 1 we show part of the class implementa-
tion that abstracts the PHLAWD usage. The hash @opts contains a list
of parameters read from user input and configuration files, and define the
configuration of PHLAWD, as well as the database to be used.

108

http://phlawd.net
http://www.exelixis-lab.org/

Ruby Code Sample 1 Code extract from the PHLAWD wrapper. Multiple
instances of PHLAWD are generated to independently build gene multiple
sequence alignments.
class Phlawd

def initialize(opts, log)

@opts = opts

@phlawd_runner = PhlawdRunner.new(log, @opts[’phlawd_binary’])

@instances = find_folder_instances

@genbank_db = GenbankDB.new(@instances, @opts)

end

def run_initial

@phlawd_iteration = PhlawdIteration.new(@phlawd_runner)

Run phlawd sequentially

valid_instances.each do |instance|

instance.run_initial unless File.exist? instance.result_file

@phlawd_iteration.add_fasta_alignment instance

end

@phlawd_iteration

end

def find_folder_instances

working_dir = @opts[’phlawd_working_dir’]

instances = []

Dir.entries(working_dir).reject{|f| f=~ /^\.+$/}.each do |f|

path = File.join working_dir, f

if File.directory? path

instances << PhlawdInstance.new(path, @phlawd_runner)

end

end

instances

end

end

109

The application programmer can generate multi-gene alignments with
a simple call as shown in Code Sample 2. Further detailed examples and
configuration details are available in the code repository.

Ruby Code Sample 2 Calling PHLAWD from the PUmPER framework.
A multi-gene dataset can be generated with automated subsequent calls to
PHLAWD.

opts = PerpetualTreeConfiguration::Configurator.new(ARGV.first)

log = PerpetualTreeUtils::MultiLogger.new

phlawd = PerpetualPhlawd::Phlawd.new(opts, log)

msa = phlawd.run_initial

Configuration files are used to determine specific settings. While our
main use case is the automated update of phylogenetic trees, the framework
can be easily used to build custom phylogenetic pipelines. For example, if
alignments are already available, the PHLAWD component can be omitted. The
on-line repository includes an installation guide, as well as basic usage and
configuration examples.

7.3.1 Standalone implementation

When using the default configuration, PUmPER operates in stand-alone mode
on a single server. PHLAWD and RAxML-Light are executed locally on this
server. The distinct RAxML-Light tree searches are conducted one after
the other, but the framework can be configured such that the Pthreads ver-
sion of RAxML-Light is used on a multi-core machine. RAxML-Light imple-
ments the memory saving techniques described in Section 3.3 and Section 3.4.
Thus, this stand-alone version allows for updating large trees on a medium-
sized lab server.

7.3.2 Distributed implementation

For large trees, the computational resources of a single server may be insuffi-
cient due to memory and/or time constraints. Thus, PUmPER can also offload
the computationally intense ML calculations to a cluster system. Thereby,
the tree can be updated in a timely manner while the process is still or-
chestrated on a local server. This requires PUmPER to interface with remote
systems using standard communications tools (scp and ssh), batch sched-
ulers (SGE, SLURM, etc.), and to also use executables that have been optimized

110

for the remote system (Parsimonator, RAxML-Light, and RAxML). Although
this adds another level of complexity, it is required for trees that take days
and/or multiple nodes to process.

In the PUmPER framework, the local server orchestrates the remote work
flow (ML calculations). By using cluster-specific configuration files and batch
scheduler templates, the local server creates and submits batch scripts to
execute steps 2, 3, and 4 of the update process (see Section 7.2). At the end
of each step, the batch job transfers the results back to the local system.

The ML optimization of Step 3 may run for a long time and require (mul-
tiple) restarts from a checkpoint file. RAxML-Light offers such a checkpoint
and restart facility, which allows for conducting a single tree inference in
multiple steps if the run time exceeds the queue limits. For instance, for the
setup described in Subsection 7.3.3, the standard queue time limit was 24
hours, which was occasionally exceeded, thus requiring a restart.

We have successfully used PUmPER with two popular job submission en-
gines: SGE and SLURM. It should be straight-forward to adapt the current
template files to other schedulers. However, cluster setups, security policies,
queuing system configurations, etc., are different on each individual instal-
lation. Therefore, deploying PUmPER in conjunction with a cluster using SGE

or SLURM might still need manual reconfiguration.

7.3.3 Custom iPlant setup

We are currently running a pipeline based on PUmPER as part of the iPlant col-
laborative (http://www.iplantcollaborative.org/). The goal is to main-
tain and make available perpetually updated trees for the Viridiplantae clade
(using the rbcL, matK, and atpB genes). In this Section, we describe some
details concerning the setup of this pipeline.

We use a dedicated server to control the workflow on a remote cluster.
This server, Wooster, is a dedicated virtual machine (VM) provided by the
iPlant collaborative to orchestrate the inference of perpetually-updated trees.
It is configured with 8 Intel Westmere cores and 16 GB of memory. The
processes running on the local server are relatively lightweight.

There were two clusters available, both at the Texas Advanced Computing
Center (TACC), and part of the XSEDE (Extreme Science and Engineering
Discovery Environment) program. The Linux cluster, Lonestar, was used
during the development phase of the cluster computing component. The
Lonestar cluster is composed of just under 2,000 compute nodes each with two
6-core Intel Westmere processors and 24 GB of RAM. Lonestar uses the Sun
Grid Engine (SGE) batch facility to schedule jobs and allows users to connect
directly via ssh. This batch scheduling facility along with the use of ssh for

111

http://www.iplantcollaborative.org/

remote commands allows the use of a locally managed master server, in this
case Wooster, to distribute the computationally intensive tasks. By using
template files to describe the cluster and the appropriate batch system, we
have developed the cluster component to be portable to most HPC systems.

In January of 2013, a newer, more powerful cluster, Stampede, was made
available at TACC, and is available to iPlant via an XSEDE project. Stam-
pede is composed of 6,400 nodes, each with two 8-core Intel Sandy Bridge
processors, 32 GB of RAM and a Xeon Phi Coprocessor. Although, RAxML,
RAxML-Light, and Parsimonator, do not yet take advantage of the Xeon
Phi, the RAxML family of codes contains AVX optimizations to take advan-
tage of Sandy Bridge processors. Stampede differs from Lonestar in a few
areas that require changes to the template file.

Since the cluster file and batch template files were developed for use on
Lonestar and the SGE system, they had to be modified to run on the newer
system, Stampede. This is easily done for the cluster file, which contains a
description of the compute node resources and the path to the appropriate
binaries. Below is an example of a cluster template file for Stampede.

Info about cluster

cores_per_node: 16

mem_per_node: 31000

#Project required for batch scheduler

project: TG-MCB110022

submission: slurm

Installed binaries, absolute paths in remote machine

parsimonator: ~/remote/wooster/bin/parsimonator-AVX

raxmllight: ~/remote/wooster/bin/raxmlLight-AVX

raxmllight_MPI: ~/remote/wooster/bin/raxmlLight-MPI-AVX

raxmllight_pthreads: ~/remote/wooster/bin/raxmlLight-PTHREADS-AVX

raxmlHPC_pthreads: ~/remote/wooster/bin/raxmlHPC-PTHREADS-SSE3

Since most of the job control logic has been integrated into the local server
rather than the scheduler, the batch script templates are simple and may be
ported to most batch scheduling systems. The only part that must be ported
are the batch directives. An example of the SLURM directives required to run
the RAxML-Light component of PUmPER is given below.

#SBATCH -J raxmllight_<%=params[:exp_name_run_num]%>

#SBATCH -d singleton # ensures that each job with this name

will only run one at a time

112

#SBATCH -n <%=params[:num_tasks]%>

#SBATCH -p normal

#SBATCH -o raxmllight_<%=params[:exp_name_run_num]%>.o%j

#SBATCH -e raxmllight_<%=params[:exp_name_run_num]%>.o%j

#SBATCH -t 24:00:00

#SBATCH -A <%=params[:project]%>

The params variables are set by the local server to launch individually
named jobs. The only requirement of the scheduler is that it should be able
to handle a simple job dependency in which jobs of the same name are run
consecutively. The logic of staging input files and starting or restarting the
RAxML-Light component is handled in the body of the batch file and should
not need to be changed from system to system.

In our TACC setup, at the end of each iteration the best tree is uploaded
to the iPlant collaborative tree visualization system, which uses Phyloviewer
(publicly available at http://portnoy.iplantcollaborative.org/) to cre-
ate a tree visualization on the iPlant server, Portnoy, with a link to the latest
tree.

For example, Figure 7.3 shows the best-scoring and most up-to-date tree
from Table 7.2.

7.4 Evaluation and Results

We have tested and evaluated PUmPER with simulated and real biological
datasets. For each experiment (e.g., different clade or gene), we executed
several iterations. For each update iteration, we also executed a control run
which we denote as scratch iteration. A scratch iteration behaves like an
initial iteration, that is, it builds the MSA from scratch on all sequences.
It also executes the same number of independent ML tree searches as the
update iteration, but without using previous topologies. We used the CON-
SEL package [78] to statistically assess if update and scratch iterations yield
topologies with significantly different likelihood scores.

7.4.1 Biological examples

We have constructed two biologically relevant datasets for testing the PUmPER
approach. The first dataset consists of the rbcL gene region for the clade of
land plants (Embryophyta). The second dataset consists of the 18S ribosomal
region for the Eukaryota clade.

PHLAWD uses identity and coverage to determine what sequences are simi-
lar enough based on Smith–Waterman comparisons. Values of 0.5 were used

113

http://portnoy.iplantcollaborative.org/

Figure 7.3: A perpetually updated tree for the 18S gene. Viewed with Phyloviewer
(http://portnoy.iplantcollaborative.org).

for rbcL and 0.4 for 18S. These numbers were based on plots of identity and
coverage using the seqquery command in PHLAWD. In order to simulate the
update procedure on real data, each of these two datasets was created for
sequences available before January 2008, before January 2010, and before
September 2012.

114

http://portnoy.iplantcollaborative.org

Iteration Taxa Sites Avg LH (30) Avg LH (10) Runtime(h) Avg Branch support
2008 12072 1437 -848794.80 -848745.23 46.55 67.78
2010 16962 1427 -1005824.25 -1005762.81 68.36 64.25

2010 scratch 16962 1427 -1005931.37 -1005863.32 70.89 64.26
2012(Sept) 21791 1424 -1108161.66 -1107598.42 93.40 59.56

2012(Sept)scratch 21791 1424 -1108243.29 -1107774.80 97.42 59.46

Table 7.1: Original run and two updates of the rbcL datasets. Average ML scores at the end of each iteration (averaged over
all 30 trees and the 10 best trees) and overall run times of all searches. The branch support is the average of SH-like support
values on the best tree. The running time is the sum of the 30 ML searches.

115

Iteration Taxa Sites Avg LH (30) Avg LH (10) Runtime(h) Avg Branch support
2008 14634 2363 -1950468.79 -1950281.56 74.16 70.24
2010 18480 2214 -2340314.06 -2340142.38 88.73 68.73

2010 scratch 18480 2214 -2340563.92 -2340260.37 94.08 68.59
2012(Sept) 23298 2110 -2782234.35 -2781965.38 116.48 68.13

2012(Sept)scratch 23298 2110 -2782132.94 -2781959.11 124.23 68.00

Table 7.2: Original run and two updates of the 18S datasets. Average ML score at the end of each iteration (averaged over
all 30 trees and the 10 best trees) and overall run time of all searches. The branch support is the average of SH-like support
values on the best tree. The running time is the sum of the 30 ML searches.

116

Table 7.1 and Table 7.2 show the average ML scores for three update
iterations. Each update iteration was run with parameters p := 3, b := 10,
resulting in 30 independent ML searches.

We concatenated all resulting trees from scratch and update iterations
based on the same biological real MSA, and used the CONSEL package [78]
to assess the confidence of phylogenetic tree selection, that is, which trees
were significantly better in terms of likelihood scores. The confidence set
according to the approximately unbiased (AU) test [76], delimited by a p-
value of p := 0.05, included for each year and dataset topologies from both
the scratch and update iterations.

For example, in Table 7.3 we present the resulting confidence set of trees
(out of all possible 60 trees) that were selected by CONSEL for the 18S
dataset update labelled as 2010 (see Table 7.2). Trees with ids from 1 to 30
correspond to the PUmPER trees, and trees with id from 31 to 60 correspond
to the restart approach. We clearly see that these tree sets, which are not
significantly different from each other, include trees from both approaches.

117

Rank Tree id LH difference AU (p-value)

1 18 -26.5 0.701
2 29 26.5 0.666
3 26 36.6 0.672
4 27 71.5 0.602
5 41 125.7 0.517
6 1 133.9 0.504
7 60 140.6 0.476
8 40 145.5 0.464
9 20 167.4 0.448
10 59 173.3 0.443
11 52 183.8 0.462
12 36 185.6 0.423
13 19 199.8 0.317
14 6 203.8 0.358
15 8 230.0 0.308
16 2 234.3 0.343
17 16 271.5 0.270
18 11 279.4 0.274
19 30 320.0 0.201
20 15 320.6 0.284
21 13 345.0 0.253
22 14 345.2 0.178
23 21 356.5 0.222
24 4 375.2 0.177
25 39 413.6 0.189
26 28 428.8 0.122
27 10 429.0 0.111
28 57 430.0 0.171
29 56 440.3 0.203
30 25 441.7 0.105
31 55 456.8 0.138
32 7 458.5 0.138
33 9 460.3 0.049
34 51 470.2 0.095
35 12 471.0 0.103
36 23 517.3 0.077
37 22 528.8 0.052
38 42 545.7 0.034
39 45 558.8 0.082
40 32 562.1 0.057
41 37 616.9 0.042
42 47 620.1 0.057

Table 7.3: AU test for iteration 2010 of 18S dataset. Trees are ranked by log like-
lihood (first column). The second column shows the tree id, 1 to 30 are PUmPER
trees (bold), 31 to 60 scratch trees. The third column shows the log LH difference
with the best tree. The fourth column is the p-value as computed by the AU
(aproximately unbiased) test. Only trees within the confidence set (p > 0.05) are
shown.

7.4.2 Simulated Data

We used INDELible [26] to generate a simulated dataset with 9097 taxa on
a tree inferred on the rbcL gene for the Viridiplantae clade. We used the
simulated sequences and the underlying true tree as guide tree to asses the
iterative MSA update procedure in PHLAWD.

From the 9079 existing sequences in the simulated alignment, we selected
4000 at random as user sequences to generate the initial PHLAWD-based MSA.
The remaining sequences were randomly distributed across 3 update blocks
of 1345, 1396, and 2329 sequences. Each update block was used as user-
sequences to extend the MSA, generating extended MSAs of 5345, 6741, and
9079 taxa.

We pruned the true tree accordingly such that for each MSA and iteration
a corresponding true tree was available. We used these pruned true trees to
determine the topological accuracy of the inferred trees (at each iteration)
using the Robinson-Foulds distance [69], denoted as RF-distance.

As before, each iteration included a total of 30 independent ML searches.
We observed that starting from extended topologies (update iterations) does
neither increase nor decrease topological accuracy (see Table 7.4).

119

Iteration Taxa Sites Avg LH (30) Avg LH (10) RF (true tree) Runtime(h) Avg support
0 4000 1500 -589036.97 -589035.58 0.146 2.92 77.63
1 5345 1500 -715683.68 -715682.66 0.163 7.46 76.14

1 scratch 5345 1500 -715682.75 -715681.41 0.162 7.89 76.16
2 6741 1500 -838437.33 -838436.48 0.176 6.21 74.72

2 scratch 6741 1500 -838440.38 -838438.06 0.174 8.17 74.73
3 9079 1500 -1033499.23 -1033498.23 0.184 10.10 73.12

3 scratch 9079 1500 -1033498.15 -1033495.85 0.185 19.27 73.12

Table 7.4: Original run and three simulated updates of the simulated datasets. Average Likelihood at the end of each
iteration (30 total trees and 10 best trees) and total run time of all searches. The branch support values are the average of
SH-like support values of the best tree. The running time is the sum of the 30 maximum likelihood searches.

120

7.5 Discussion

According to our first results, the iterative MSA and tree extension (PUmPER)
approach yields neither significantly better, nor worse trees than the standard
(inference from scratch) approach with respect to the likelihood scores. The
topological accuracy in our simulations is comparable in both approaches.
The relatively high RF distances are expected for phylogenetic reconstruc-
tions on short simulated single-gene datasets [44].

The runtimes in the PUmPER (iteration-based) approach are slightly, but
consistently lower. We view the main contribution, however, in saving man-
hours: alignment construction, job setup, filtering, and post-analyzing results
are tedious tasks that consume a significant, and hard to estimate, amount
of time.

The framework offers the required flexibility to set up self-maintained
on-going analysis such as, for example, simultaneous perpetual inference of
gene/species trees using multi-gene and single-gene phylogenetic inferences.

7.6 Summary

We have presented and made available a framework named PUmPER that can
be used to maintain and perpetually update phylogenetic trees. We have
used this framework to implement and set up a pipeline for updating phy-
logenies based on multi-gene alignments for the Viridiplantae clade. PUmPER
can operate in stand-alone mode on a single server, but also offload com-
putationally expensive ML searches to an external cluster. The perpetually
updated phylogenies can be computed slightly faster and are not significantly
(in the statistical sense) worse nor better than phylogenies that are inferred
from scratch.

We are currently using PUmPER to maintain a perpetually updated phy-
logeny for the green plants within the framework of the iPlant collaborative.

121

Chapter 8

Conclusion And Outlook

8.1 Conclusion

The main goal of this thesis was to study and develop methods for analysing
large-scale datasets for Maximum Likelihood based phylogenetic inference.
We have approached this challenge using different strategies: reduction of
memory requirements, reduction of running time, and reduction of man-
hours.

The reduction of memory footprints involved three different techniques.
The out-of-core and the recomputation strategy share the idea of only storing
a subset of the required ancestral probability vectors in memory. The remain-
ing vectors are stored on disk (out-of-core) or obtained through additional
computations (recomputation). Our assessment shows that the recomputa-
tion approach clearly outperforms the out-of-core strategy. We have proved
that the recomputation technique can compute the log likelihood by storing
only log2(n) + 2 APVs for trees with n taxa. Furthermore, the overhead in
running time is negligible for full tree traversals. For partial tree traversals,
the overhead is typically 10% in running time when only half of the required
APVs are stored in memory. These features can be useful for inference of
large trees when memory is a limiting factor.

The re-implementation of the SEV technique can reduce memory almost
proportionally to the amount of missing data, without sacrificing runtime.
Furthermore, the SEV and recomputation techniques are orthogonal and
can thus be deployed simultaneously, as we have shown in the RAxML-Light
implementation.

We have also presented an algorithm to reduce the tree size and thus the
space of possible tree topologies during tree search. We have shown that,
for large topologies comprising tens of thousands of taxa, the resulting trees

122

can be computed faster and are not significantly worse than trees obtained
from standard searches. Backbone-based likelihood scores where consistently
lower, but correlated with topologies inferred with the same starting tree
under a standard search. Therefore, we conclude that this approach can be
useful to identify good starting trees. In other words, the backbone approach
could be used to discard non-promising starting trees during the early phase
of the phylogenetic search.

We have explored and efficiently ported the computation of the phyloge-
netic likelihood function to GPUs. This required adapting the memory layout
for ancestral probability vectors in order to achieve optimal performance for
a GPU architecture. We have shown that, for large datasets, offloading PLF
computations on DNA data to the GPU can be up to two times faster than
the most efficient CPU vectorized code for our RAxML benchmark code.

While we used the RAxML codebase to develop proof-of-concept imple-
mentations of the above mentioned techniques, they are generic enough to
be applicable to other state-of-the-art likelihood-based codes.

Finally, we have released the PUmPER open source framework, which can
be used to build perpetual phylogenetic pipelines. This framework can be
used to maintain and extend up-to-date comprehensive reference trees con-
taining all taxa of a specific taxonomic rank. PUmPER is written in Ruby and
can be configured to operate in stand-alone mode on a single server, or to
offload computationally expensive maximum likelihood searches to an exter-
nal cluster. Currently, we are using this pipeline to maintain and update
phylogenies for a multi-gene alignment of the Viridiplantae clade.

8.2 Future Work

Most of the potential future work concerns the GPU implementation and
the PUmPER framework. The out-of-core approach has been completely aban-
doned since it was clearly outperformed by the recomputation approach. The
other two orthogonal memory-saving techniques (SEV and recomputation)
are currently being integrated in the codebase of the PLL library.

8.2.1 GPUs

With respect to future work on the GPU implementation of the PLF, we
plan to fully integrate the proof-of-concept GPU kernel with the PLL and
support all models and data types (e.g., protein data, partitioned datasets,
and the PSR model of rate heterogeneity). Another possible enhancement is

123

to implement the re-computation technique described in Subsection 3.3.1 on
GPUs, since this would enable the computation of larger datasets on GPUs.

In order to leverage the computational power of modern desktop systems
and clusters, we intend to implement a hybrid CPU/GPU system (using
GPUs and x86 cores). The underlying idea is that, during the execution of
the GPU Kernel, the CPU does not need to wait for the kernel to complete,
but that it can also execute some PLF computations. For instance, the APVs
can be divided into disjoint fragments that are assigned to the GPU and to
the CPU.When the operations stored in the traversal descriptor are executed,
each processing unit can update asynchronously its APV fragment. Once all
fragments have been updated, the CPU can easily combine the partial results
when required, for instance, for evaluate() and coreDerivative(). While
the CPU and GPU implementations are already available, the implementa-
tion of this approach is not straight-forward, because load balancing issues
must be addressed.

8.2.2 PUmPER

Future developments for the PUmPER project include developing a web-service
to facilitate the use of the automated update pipeline for a broader commu-
nity. The framework modules can be easily adapted to fit a Model-View-
Controller (MVC) based web application. In this context, the user could
configure his perpetually updated phylogenetic inference (genes, clade, num-
ber of phylogenies) and visualize the resulting trees from a web browser.

We also intend to integrate the recently introduced approximation tech-
niques for computing bootstrap values [54] into RAxML-Light and the frame-
work, and consider replacing RAxML-Light by the newer and more efficient
ExaML code [90] for phylogenetic inference.

8.3 Outlook

Given the current developments in Next-Generation Sequencing technologies,
such as single molecule sequencing [58], the cost for sequencing genomes is
expected to keep decreasing in the next years. At the same time, the scale of
on-going and planned biological data analysis projects is larger than ever in
terms of data volume. For instance, the 100K Genome Project http://www.
genomicsengland.co.uk/ will sequence the full genomes of 100,000 patients
over the next five years.

In this context, the techniques presented here will become more relevant
over the next years. In particular, we envision that phylogenetic inference of

124

http://www.genomicsengland.co.uk/
http://www.genomicsengland.co.uk/

alignments including hundreds or thousands of genes may become common
practice. The GPU implementation, whose performance improves with se-
quence length, may become more efficient for these type of analyses. Thus,
further work needs to be conducted to improve the performance of these and
upcoming hardware architectures, as well as on the design of the aforemen-
tioned hybrid CPU/GPU system.

Furthermore, the grand challenge of inferring the tree of life, that is a phy-
logeny comprising all described species, remains unsolved. Inferring larger
trees comprising more species is required to understand biological questions,
such as species diversification [67, 80], that cannot be answered by analysing
smaller phylogenies. The inference of such large-scale phylogenies, however,
poses challenges related to the alignment size. On the one hand, memory
requirements increase linearly with the sequence length and the number of
species. These requirements can be reduced by simultaneously applying the
orthogonal memory saving techniques (Subtree Equality and recomputation
of ancestral vectors). On the other hand, adding more taxa to the alignment
increases the amount of possible topologies in tree space. Thus, running
time will remain a limiting factor, and exploring aggressive heuristics to re-
duce tree space may, therefore, be required. To this end, approaches like the
backbone algorithm may be a good starting point for future research.

In general, the techniques presented in this thesis can help to improve the
scalability of current state-of-the-art phylogenetic codes, and thus enable the
analysis of large phylogenies at the genome scale.

125

List of Figures

2.1 From sequences to alignment 9
2.2 Concatenated multiple sequence alingment 10
2.3 Protein . 12
2.4 Unrooted Phylogenetic Tree 13
2.5 Unrooted Phylogenetic Tree with branch lengths 13
2.6 Unrooted Phylogenetic Tree with a virtual root 17
2.7 Ancestral Probability Vectors 18
2.8 Density function for the Γ distribution 20
2.9 A lazy SPR move . 22
2.10 Node records . 26

3.1 Standard Memory Layout of an ancestral probability vector . 32
3.2 Vectors stored on memory and disk 36
3.3 Miss rates for different replacement strategies 40
3.4 Effect of Read skipping . 41
3.5 Miss rates for fractions of memory 41
3.6 Execution times for full tree traversals 43
3.7 Recomputation with a Balanced Subtree 46
3.8 Recomputation with an unbalanaced subtree 52
3.9 Replacement Strategies . 55
3.10 Overall RAM usage with partial allocation 56
3.11 Generic SEVs . 59
3.12 SEV savings in computations 61
3.13 SEV savings in computations and memory 62

4.1 Consistency of labels at the backbone boundaries 72
4.2 Increase of backbone tips due to topology conflicts 73
4.3 Log Likelihood scores for the 38K dataset 75
4.4 Log Likelihood scores for the 56K dataset 76

5.1 The Fermi Architecture . 81
5.2 Architecture of a streaming multiprocessor 81

126

5.3 CUDA memory hierarchy . 83
5.4 Coalesced access to global memory 84

6.1 Standard Memory Layout . 89
6.2 Memory Layout for vector width of 2 89
6.3 Memory Layout for vector in GPU 96
6.4 GPU implementation for newview() 97
6.5 GPU speedups (full run) . 99
6.6 GPU speedups (functions) . 100

7.1 Initial Iteration . 104
7.2 Update Iteration . 105
7.3 A perpetually updated tree for the 18S gene. 114

127

List of Tables

3.1 Frequency of ancestral vector cases for different strategies. . . 57
3.2 Average run times for full traversals 57
3.3 SEV Evaluation for the 38K dataset 63
3.4 SEV Evaluation for the 56K dataset 63

4.1 Evaluation of methods to identify the innermost node 70
4.2 Average number of computed backbone tips 72
4.3 Average Performance for the 38K dataset 77
4.4 Average Performance for the 56K dataset 77
4.5 Average Symmetric Difference 78

6.1 GPU evaluation . 98
6.2 GPU scaling evaluation . 99

7.1 PUmPER iterations of the rbcL dataset 115
7.2 PUmPER iterations of the 18S dataset 116
7.3 AU test for iteration 2010 of 18S dataset 118
7.4 PUmPER iterations on simulated dataset 120

128

List of Acronyms

AA - Aminoacid
API - Application Programming Interface
APV - Ancestral Probability Vector
AS - Ancestral State
AVX - Advanced Vector Extensions
BS - Bootstrap Support
CPU - Central Processing Unit
CUDA - Compute Unified Device Architecture
DNA - Deoxyribonucleic acid
EM - External Memory
GPGPU - General Purpose computation on GPU
GPU - Graphics Processing Unit
GTR - General Time Reversible
LGT - Lateral Gene Transfer
NJ - Neighbour Joining
NNI - Nearest Neighbour Interexchange
OTU - Operational Taxonomic Unit
PLF - Phylogenetic Likelihood Function
PLL - Phylogenetic Likelihood Library
PSR - Per-Site Rate (model of rate heterogeneity)
RNA - Ribonucleic acid
SDK - Software Development Kit
SIMD - Single Instruction, Multiple Data
SIMT - Single Instruction, Multiple Thread
SPR - Subtree Pruning and Regrafting
SSE3 - Streaming SIMD Extensions 3
TBR - Tree Bisection and Reconnection
TU - Taxonomic Unit
VM - Virtual Machine
VW - Vector (Unit) Width

129

Bibliography

[1] N. Alachiotis, S. A. Berger, and A. Stamatakis. Coupling simd and
simt architectures to boost performance of a phylogeny-aware align-
ment kernel. BMC Bioinformatics, 13:196, 2012.

[2] Altera. White paper implementation of the smith-waterman algorithm
on a reconfigurable supercomputing platform, 2007.

[3] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller,
and D. Lipman. Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs. Nucleic acids research, 25(17):3389,
1997.

[4] D. L. Ayres, A. Darling, D. J. Zwickl, P. Beerli, M. T. Holder, P. O.
Lewis, J. P. Huelsenbeck, F. Ronquist, D. L. Swofford, M. P. Cum-
mings, A. Rambaut, and M. A. Suchard. BEAGLE: An Application
Programming Interface and High-Performance Computing Library for
Statistical Phylogenetics. Systematic Biology, 61(1):170–173, 2012.

[5] E. Barkan, E. Biham, and A. Shamir. Rigorous bounds on cryptanalytic
time/memory tradeoffs. In In Advances in Cryptology-CRYPTO 2006,
volume 4117 of LNCS, pages 1–21. Springer-Verlag, 2006.

[6] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and E. W.
Sayers. GenBank. Nucleic acids research, 37(Database issue):D26–31,
Jan. 2009.

[7] S. A. Berger and A. Stamatakis. Accuracy and performance of single
versus double precision arithmetics for maximum likelihood phylogeny
reconstruction. In R. Wyrzykowski, J. Dongarra, K. Karczewski, and
J. Wasniewski, editors, Parallel Processing and Applied Mathematics,
volume 6068 of Lecture Notes in Computer Science, pages 270–279.
Springer Berlin Heidelberg, 2010.

130

[8] S. A. Berger and A. Stamatakis. PaPaRa 2.0: A Vectorized Al-
gorithm for Probabilistic Phylogeny-Aware Alignment Extension;
Exelixis-RRDR-2012-5; http://sco.h-its.org/exelixis/pubs/Exelixis-
RRDR-2012-5.pdf. Technical report, Heidelberg Institute for
Theoretical Studies, 2012.

[9] O. Bininda-Emdons and A. Stamatakis. Reconstructing the Tree of
Life: taxonomy and systematics of species rich taxa, volume 72, chapter
Taxon sampling versus computational complexity and their impact on
obtaining the Tree of Life, pages 77–95. CRC press, 2006.

[10] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, and C. D.
Antonopoulos. RAxML-Cell: Parallel Phylogenetic Tree Inference on
the Cell Broadband Engine. In Proc. of International Parallel and
Distributed Processing Symposium (IPDPS2007), 2007.

[11] A. R. Brodtkorb, T. R. Hagen, and M. L. Saetra. Graphics process-
ing unit (gpu) programming strategies and trends in gpu computing.
Journal of Parallel and Distributed Computing, 73(1):4 – 13, 2013.

[12] M. Charalambous, P. Trancoso, and A. Stamatakis. Initial Experiences
Porting a Bioinformatics Application to a Graphics Processor. In Proc.
of the 10th Panhellenic Conference on Informatics (PCI 2005), pages
415–425, 2005.

[13] M. W. Chase, D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D.
Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron,
J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma,
H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedren,
B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R.
Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M.
Swensen, S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte,
E. Golenberg, J. Learn, Gerald H., S. W. Graham, S. C. H. Barrett,
S. Dayanandan, and V. A. Albert. Phylogenetics of seed plants: An
analysis of nucleotide sequences from the plastid gene rbcl. Annals of
the Missouri Botanical Garden, 80(3):pp. 528–548+550–580, 1993.

[14] K. G. Consortium. Opencl: The open standard for parallel program-
ming of heterogeneous systems.

[15] D. Darriba, A. Aberer, T. Flouri, T. Heath, F. Izquierdo-Carrasco, and
A. Stamatakis. Boosting the performance of bayesian divergence time
estimation with the phylogenetic likelihood library. In Parallel and

131

Distributed Processing Workshops and Phd Forum (IPDPSW), 2013
IEEE International Symposium on, 2013.

[16] T. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E. Brodie, K. Keller,
T. Huber, D. Dalevi, P. Hu, and G. Andersen. Greengenes, a chimera-
checked 16s rrna gene database and workbench compatible with arb.
Appl Environ Microbiol, 72(7):5069–72, 2006.

[17] A. Drummond and A. Rambaut. Beast: Bayesian evolutionary analysis
by sampling trees. BMC evolutionary biology, 7(1):214, 2007.

[18] P. Dri and Z. Galil. A time-space tradeoff for language recognition.
Theory of Computing Systems, 17:3–12, 1984. 10.1007/BF01744430.

[19] R. C. Edgar. Muscle: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research, 32(5):1792–1797, 2004.

[20] A. W. F. Edwards and L. L. Cavalli-Sforza. Reconstruction of evolu-
tionary trees. Systematics Association Publication., 6:67–76, 1964.

[21] I. Elias. Settling the intractability of multiple alignment. J. Comput.
Biol., 13(7):1323–1339, Sep 2006.

[22] J. Fang, A. Varbanescu, and H. Sips. A comprehensive performance
comparison of cuda and opencl. In Parallel Processing (ICPP), 2011
International Conference on, pages 216–225, 2011.

[23] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J. Mol. Evol., 17:368–376, 1981.

[24] J. Felsenstein. Confidence Limits on Phylogenies: An Approach Using
the Bootstrap. Evolution, 39(4):783–791, 1985.

[25] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., 2004.

[26] W. Fletcher and Z. Yang. INDELible: a flexible simulator of biological
sequence evolution. Molecular biology and evolution, 26(8):1879–1888,
2009.

[27] T. Flouri, F. Izquierdo-Carrasco, A. Stamatakis, et al. PLL: Phylo-
genetic likelihood library; http://www.libpll.org. Work in Progress,
2013.

[28] P. A. Goloboff, S. A. Catalano, J. M. Mirande, C. A. Szumik, J. S.
Arias, M. Källersjö, and J. S. Farris. Phylogenetic analysis of 73060
taxa corroborates major eukaryotic groups. Cladistics, 25:1–20, 2009.

132

[29] S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk, and
O. Gascuel. New algorithms and methods to estimate maximum-
likelihood phylogenies: assessing the performance of phyml 3.0. Sys-
tematic biology, 59(3):307, 2010.

[30] J. Hauser, K. Kobert, F. Izquierdo-Carrasco, K. Meusemann, B. Misof,
M. Gertz, and A. Stamatakis. Heuristic algorithms for the protein
model assignment problem. In Z. Cai, O. Eulenstein, D. Janies,
and D. Schwartz, editors, Bioinformatics Research and Applications,
volume 7875 of Lecture Notes in Computer Science, pages 137–148.
Springer Berlin Heidelberg, 2013.

[31] T. Heath, M. Holder, and J. Huelsenbeck. A dirichlet process prior for
estimating lineage-specific substitution rates. Molecular biology and
evolution, 29(3):939–955, 2012.

[32] D. S. Hibbett, R. H. Nilsson, M. Snyder, M. Fonseca, J. Costanzo, and
M. Shonfeld. Automated phylogenetic taxonomy: An example in the
homobasidiomycetes (mushroom-forming fungi). Systematic Biology,
54(4):660–668, 2005.

[33] D. H. Huson, R. Rupp, and C. Scornavacca. Phylogenetic Networks.
Cambridge University Press, Cambridge, 2010.

[34] L. Inc. Lockless memory allocator; http://locklessinc.com.

[35] F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S. P. Pissis,
and A. Stamatakis. A generic vectorization scheme and a gpu kernel for
the phylogenetic likelihood library. In Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), 2013 IEEE International
Symposium on, 2013.

[36] F. Izquierdo-Carrasco, J. Cazes, S. Smith, and A. Stamatakis.
PUmPER: Phylogenies Updated Perpetually. Bioinformatics,
30(10):1476–1477, 2014.

[37] F. Izquierdo-Carrasco, J. Gagneur, and A. Stamatakis. Trading run-
ning time for memory in phylogenetic likelihood computations. In
J. Schier, C. M. B. A. Correia, A. L. N. Fred, and H. Gamboa, ed-
itors, BIOINFORMATICS, pages 86–95. SciTePress, 2012.

[38] F. Izquierdo-Carrasco, S. Smith, and A. Stamatakis. Algorithms, data
structures, and numerics for likelihood-based phylogenetic inference of
huge trees. BMC Bioinformatics, 12(1):470, 2011.

133

[39] F. Izquierdo-Carrasco and A. Stamatakis. Computing the phylogenetic
likelihood function out-of-core. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Sym-
posium on, pages 444–451, 2011.

[40] F. Izquierdo-Carrasco and A. Stamatakis. Inference of huge trees under
maximum likelihood. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International,
pages 2490–2493. IEEE, 2012.

[41] T. Jukes and C. Cantor. Evolution of protein molecules., chapter III,
pages 21–132. Academic Press, New York, 1969.

[42] K. Katoh and H. Toh. Recent developments in the MAFFT multiple
sequence alignment program. Briefings in Bioinformatics, 9(4):286–
298, 2008.

[43] H. Kishino and M. Hasegawa. Evaluation of the maximum likelihood
estimate of the evolutionary tree topologies from dna sequence data,
and the branching order in hominoidea. Journal of Molecular Evolu-
tion, 29(2):170–179, 1989.

[44] A. Kupczok, H. Schmidt, and A. Haeseler. Accuracy of phylogeny
reconstruction methods combining overlapping gene data sets. Algo-
rithms for Molecular Biology, 5(1):1–17, 2010.

[45] C. Lanave, G. Preparata, C. Saccone, and G. Serio. A new method
for calculating evolutionary substitution rates. Journal of Molecular
Evolution, 20:86–93, 1984.

[46] N. Lartillot, S. Blanquart, and T. Lepage. PhyloBayes. v2. 3, 2007.

[47] D. Lipman and W. Pearson. Rapid and sensitive protein similarity
searches. Science, 227(4693):1435–1441, 1985.

[48] P. Li and N. Goldman. Models of molecular evolution and phylogeny.
Genome Research, 8:1233–1244, 1998.

[49] B. Maidak, J. Cole, T. Lilburn, C. Parker Jr, P. Saxman, R. Farris,
G. Garrity, G. Olsen, T. Schmidt, and J. Tiedje. The rdp-ii (ribosomal
database project). Nucleic Acids Res, 29(1):173–4, 2001.

[50] S. Manavski and G. Valle. Cuda compatible gpu cards as efficient
hardware accelerators for smith-waterman sequence alignment. BMC
Bioinformatics, 9(Suppl 2):S10, 2008.

134

[51] E. R. Mardis. Next-generation sequencing platforms. Annual Review
of Analytical Chemistry, 6:287–303, 2013.

[52] P. O. L. Mark Holder. Phylogeny estimation: traditional and bayesian
approaches, 2003.

[53] B. Minh, L. Vinh, A. Haeseler, and H. Schmidt. pIQPNNI: parallel re-
construction of large maximum likelihood phylogenies. Bioinformatics,
21(19):3794–3796, 2005.

[54] B. Q. Minh, M. A. T. Nguyen, and A. von Haeseler. Ultrafast approx-
imation for phylogenetic bootstrap. Molecular biology and evolution,
2013.

[55] J. N. M.J.L. de Hoon, S. Imoto and S. Miyano. Open source clustering
software . Bioinformatics, 20(9):1453–1454, 2004.

[56] B. Moret, U. Roshan, and T. Warnow. Sequence-length requirements
for phylogenetic methods. Algorithms in Bioinformatics, pages 343–
356, 2002.

[57] S. B. Needleman and C. D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins.
Journal of Molecular Biology, 48(3):443 – 453, 1970.

[58] T. P. Niedringhaus, D. Milanova, M. B. Kerby, M. P. Snyder, and A. E.
Barron. Landscape of Next-Generation Sequencing Technologies. Anal.
Chem., 83(12):4327–4341, May 2011.

[59] NVIDIA. Nvidia’s next generation cuda compute architecture: Fermi;
http://www.nvidia.de/content/pdf/fermi white papers/nvidia fermi -
compute architecture whitepaper.pdf, 2009.

[60] NVIDIA. Nvidia’s next generation cuda compute architecture: Ke-
pler gk110; http://www.nvidia.com/content/pdf/kepler/nvidia-kepler-
gk110-architecture-whitepaper.pdf, 2012.

[61] NVIDIA. Cuda c programming guide (design guide, ver-
sion 5.5); http://docs.nvidia.com/cuda/pdf/cuda c programming -
guide.pdf, 2013.

[62] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krger,
A. Lefohn, and T. J. Purcell. A survey of general-purpose computation
on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

135

[63] H. Philippe and M. Blanchette. Overview of the first phylogenomics
conference. BMC Evolutionary Biology, 7(Suppl 1):S1, 2007.

[64] S. Pond and S. Muse. Column sorting: Rapid calculation of the phy-
logenetic likelihood function. Systematic biology, 53(5):685–692, 2004.

[65] F. Pratas, P. Trancoso, L. Sousa, A. Stamatakis, G. Shi, and V. Kin-
dratenko. Fine-grain parallelism using multi-core, cell/be, and gpu
systems. Parallel Computing, 38(8):365–390, 2012.

[66] M. Price, P. Dehal, and A. Arkin. FastTree 2–Approximately
Maximum-Likelihood Trees for Large Alignments. PLoS ONE,
5(3):e9490, 2010.

[67] R. A. Pyron and J. J. Wiens. Large-scale phylogenetic analyses reveal
the causes of high tropical amphibian diversity. Proceedings of the
Royal Society B: Biological Sciences, 280(1770), 2013.

[68] C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P. Yarza,
J. Peplies, and F. O. Glckner. The silva ribosomal rna gene database
project: improved data processing and web-based tools. Nucleic Acids
Research, 41(Database-Issue):590–596, 2013.

[69] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Math.
Biosci, 53(1-2):131–147, 1981.

[70] S. Roch. A Short Proof that Phylogenetic Tree Reconstruction by Max-
imum Likelihood Is Hard. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, pages 92–94, 2006.

[71] T. Rognes. Faster smith-waterman database searches with inter-
sequence simd parallelisation. BMC Bioinformatics, 12(1):221, 2011.

[72] F. Ronquist and J. Huelsenbeck. MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics, 19(12):1572–1574, 2003.

[73] F. Ronquist, M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling,
S. Hhna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. Mr-
bayes 3.2: Efficient bayesian phylogenetic inference and model choice
across a large model space. Systematic Biology, 2012.

[74] B. Roure, D. Baurain, and H. Philippe. Impact of missing data on
phylogenies inferred from empirical phylogenomic data sets. Molecular
Biology and Evolution, 30(1):197–214, 2013.

136

[75] J. Shendure and H. Ji. Next-generation DNA sequencing. Nature
biotechnology, 26(10):1135–1145, Oct. 2008.

[76] H. Shimodaira. An Approximately Unbiased Test of Phylogenetic Tree
Selection. Systematic Biology, 51:492–508, 2002.

[77] H. Shimodaira and M. Hasegawa. Multiple comparisons of log-
likelihoods with applications to phylogenetic inference. Molecular Bi-
ology and Evolution, 16(8):1114, 1999.

[78] H. Shimodaira and M. Hasegawa. CONSEL: for assessing the confi-
dence of phylogenetic tree selection. Bioinformatics, 17(12):1246–1247,
2001.

[79] M. Simonsen, T. Mailund, and C. N. S. Pedersen. Building very large
neighbour-joining trees. In A. L. N. Fred, J. Filipe, and H. Gamboa,
editors, BIOINFORMATICS, pages 26–32. INSTICC Press, 2010.

[80] S. Smith, J. Beaulieu, A. Stamatakis, and M. Donoghue. Understand-
ing angiosperm diversification using small and large phylogenetic trees.
American Journal of Botany, pages ajb–1000481v1, 2011.

[81] S. A. Smith, J. M. Beaulieu, and M. J. Donoghue. Mega-phylogeny
approach for comparative biology: an alternative to supertree and su-
permatrix approaches. BMC Evolutionary Biology, 9(37), 2009.

[82] S. A. Smith and C. W. Dunn. Phyutility: a phyloinformatics tool for
trees, alignments and molecular data. Bioinformatics, 24(5):715–716,
2008.

[83] T. Smith and M. Waterman. Identification of common molecular sub-
sequences. Journal of Molecular Biology, 147(1):195 – 197, 1981.

[84] S. Smits and C. Ouverney. Phylometrics: a pipeline for inferring phy-
logenetic trees from a sequence relationship network perspective. BMC
Bioinformatics, 11 Suppl 6, 2010.

[85] A. Stamatakis. Parsimonator; https://github.com/stamatak/parsimonator-
1.0.2.

[86] A. Stamatakis. Phylogenetic models of rate heterogeneity: A high per-
formance computing perspective. In In Proceedings of the 20th Inter-
nationational Parallel and Distributed Processing Symposium (IPDPS),
2006.

137

[87] A. Stamatakis. RAxML-VI-HPC: maximum likelihood-based phyloge-
netic analyses with thousands of taxa and mixed models. Bioinformat-
ics, 22(21):2688–2690, 2006.

[88] A. Stamatakis. Phylogenetic Search Algorithms for Maximum Likeli-
hood, pages 547–577. John Wiley & Sons, Inc., 2011.

[89] A. Stamatakis. Orchestrating the phylogenetic likelihood function
on emerging parallel architectures. Bioinformatics–High Performance
Parallel Computer Architectures, B. Schmidt, Ed. CRC Press, pages
85–115, 2012.

[90] A. Stamatakis and A. J. Aberer. Novel parallelization schemes for
large-scale likelihood-based phylogenetic inference. In Parallel Dis-
tributed Processing (IPDPS), 2013 IEEE 27th International Sympo-
sium on, pages 1195–1204, 2013.

[91] A. Stamatakis, A. J. Aberer, C. Goll, S. A. Smith, S. A. Berger, and
F. Izquierdo-Carrasco. RAxML-Light: a tool for computing terabyte
phylogenies. Bioinformatics, 28(15):2064–2066, 2012.

[92] A. Stamatakis and N. Alachiotis. Time and memory efficient likelihood-
based tree searches on phylogenomic alignments with missing data.
Bioinformatics, 26(12):132–139, 2010.

[93] A. Stamatakis, F. Blagojevic, D. Nikolopoulos, and C. Antonopou-
los. Exploring new search algorithms and hardware for phylogenetics:
Raxml meets the ibm cell. The Journal of VLSI Signal Processing Sys-
tems for Signal, Image, and Video Technology, 48(3):271–286, 2007.

[94] A. Stamatakis and F. Izquierdo-Carrasco. Result verification, code
verification and computation of support values in phylogenetics. Brief.
Bioinformatics, 12(3):270–279, May 2011.

[95] A. Stamatakis, T. Ludwig, and H. Meier. RAxML-III: A Fast Program
for Maximum Likelihood-based Inference of Large Phylogenetic Trees.
Bioinformatics, 21(4):456–463, 2005.

[96] A. Stamatakis, T. Ludwig, H. Meier, and M. J. Wolf. AxML: A Fast
Program for Sequential and Parallel Phylogenetic Tree Calculations
Based on the Maximum Likelihood Method. In Proceedings of 1st IEEE
Computer Society Bioinformatics Conference (CSB2002), pages 21–28,
2002.

138

[97] A. Stamatakis and M. Ott. Efficient computation of the phylogenetic
likelihood function on multi-gene alignments and multi-core architec-
tures. Phil. Trans. R. Soc. series B, Biol. Sci., 363:3977–3984, 2008.

[98] A. Stamatakis and M. Ott. Load Balance in the Phylogenetic Likeli-
hood Kernel. In Proceedings of ICPP 2009, 2009. accepted for publi-
cation.

[99] M. A. Suchard and A. Rambaut. Many-core algorithms for statistical
phylogenetics. Bioinformatics, 25(11):1370–1376, 2009.

[100] J. Sumner and M. Charleston. Phylogenetic estimation with partial
likelihood tensors. Journal of theoretical biology, 262(3):413–424, 2010.

[101] S. Sunagawa et al. Metagenomic species profiling using universal phy-
logenetic marker genes. Nat Meth, in press.

[102] C. J. Thompson, S. Hahn, and M. Oskin. Using modern graphics ar-
chitectures for general-purpose computing: a framework and analysis.
In MICRO, pages 306–317. ACM/IEEE, 2002.

[103] J. Thompson, T. Gibson, and D. Higgins. Multiple sequence alignment
using clustalw and clustalx. Curr Protoc Bioinformatics, Chapter 2,
2002.

[104] L. S. Vinh, H. A. Schmidt, and A. von Haeseler. Phynav: A novel
approach to reconstruct large phylogenies. In C. Weihs and W. Gaul,
editors, GfKl, Studies in Classification, Data Analysis, and Knowledge
Organization, pages 386–393. Springer, 2004.

[105] J. S. Vitter. Algorithms and data structures for external memory.
Found. Trends Theor. Comput. Sci., 2(4):305–474, January 2008.

[106] T. Wheeler. Large-scale neighbor-joining with ninja. In S. Salzberg
and T. Warnow, editors, Algorithms in Bioinformatics, volume 5724 of
Lecture Notes in Computer Science, pages 375–389. Springer Berlin /
Heidelberg, 2009.

[107] S. Whelan, P. I. W. de Bakker, and N. Goldman. Pandit: a database of
protein and associated nucleotide domains with inferred trees. Bioin-
formatics, 19(12):1556–1563, 2003.

[108] D. Wu, A. Hartman, N. Ward, and J. Eisen. An automated phyloge-
netic tree-based small subunit rrna taxonomy and alignment pipeline
(stap). PLoS One, 3(7):e2566, 2008.

139

[109] J. Xu and R. J. Lipton. On fundamental tradeoffs between delay
bounds and computational complexity in packet scheduling algorithms.
IEEE/ACM Trans. Netw., 13:15–28, February 2005.

[110] Z. Yang. Maximum likelihood phylogenetic estimation from DNA se-
quences with variable rates over sites. J. Mol. Evol., 39:306–314, 1994.

[111] Z. Yang. Among-site rate variation and its impact on phylogenetic
analyses. Trends in Ecology & Evolution, 11(9):367 – 372, 1996.

[112] Z. Yang. Computational Molecular Evolution. Oxford University Press,
Oxford, 2006.

[113] J. Zhang and A. Stamatakis. The multi-processor scheduling problem
in phylogenetics. In Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International,
pages 691–698. IEEE, 2012.

[114] Y. Zhang, I. Sinclair, Mark, and A. Chien. Improving performance
portability in opencl programs. In J. Kunkel, T. Ludwig, and H. Meuer,
editors, Supercomputing, volume 7905 of Lecture Notes in Computer
Science, pages 136–150. Springer Berlin Heidelberg, 2013.

[115] J. Zhou, X. Liu, D. Stones, Q. Xie, and G. Wang. Mrbayes on a
graphics processing unit. Bioinformatics, 27(9):1255–1261, 2011.

[116] D. Zwickl. Genetic Algorithm Approaches for the Phylogenetic Analysis
of Large Biological Sequence Datasets under the Maximum Likelihood
Criterion. PhD thesis, University of Texas at Austin, April 2006.

[117] D. Zwickl and D. Hillis. Increased taxon sampling greatly reduces
phylogenetic error. Systematic Biology, 51(4):588–598, 2002.

140

141

Fernando
Izquierdo Carrasco
Curriculum Vitae

Werderstr. 25
Heidelberg, Germany

H +49(0)15777840246
B fer.izquierdo@gmail.com

Summary

PhD researcher in last year in Bioinformatics, specialising in High Performance Computing and
evolutionary biology. +8 years abroad, work experience in the IT Industry and web development.

Work Experience

01/2010–Present Scientific Staff (PhD Candidate), Technical University of Munich, from
October 2010 at HITS gGmbH, Heidelberg, Germany.
PhD Thesis supervised by Prof. Dr. Alexandros Stamatakis (Karlsruhe Institute of
Technology), with work focus on:
{ Computational Phylogenetics (Maximum Likelihood methods)
{ Large-scale Datasets (Memory efficient techniques)
{ High Performance Computing & GPU programming
{ Data Analysis and SW Development for international large scale projects

- 1KITE - 1K Insect Transcriptome Evolution (http://www.1kite.org/)
- Assembling the Tree of Life for the Plant Sciences (iPToL)

(http://www.iplantcollaborative.org/challenge/iplant-tree-life)

02/2008-12/2009 Database Programmer, TKgG GmbH (Techniker Krankenkasse), Hamburg,
Germany.
First 6 months as a part-time Werkstudent), from Oct. 2008 as an employee.
{ Development and support of database applications in MS Access / MS SQL Server

framework with VBA
{ Design (Requirements documentation, prototyping) of a customized software solution

for the organization, management and analysis of work processes, tracking of working
times and statistical evaluation (around 500 users)

04/2007-02/2008 Student Researcher (HiWi), Center for Bioinformatics, Hamburg, Germany.
Development and implementation of a generic framework for evaluating gene prediction
programs (Ruby, Bash).

02/2005-10/2006 Project Engineer, Medtronic Sofamor Danek GmbH, Deggendorf, Germany.
First 6 months as an intern in Quality Management, afterwards full-time employee in
Manufacturing Engineering.
{ Design and development of a software system for statistical process control and

evaluation of measurements in the manufacturing pipeline (MS SQL Server, Excel-
VBA, Access-VBA)

{ Validation and Qualification of manufacturing processes (21 CFR Part 11, GxP)

1/4

142

Education

10/2006-01/2009 Master of Science Bioinformatics, University of Hamburg, Germany, Note –
1.7.
Main focus: Sequence Analysis, Next-Generation-Sequencing.
Master Thesis: Efficient Processing of short Sequences

10/2004-09/2006 International Management, University of Applied Sciences Deggendorf,
Germany.
Bachelor’s Foundation course (Economics, Accounting, Marketing, IT)

09/1998-02/2005 Telecommunications Engineer, ETSIT, University of Valladolid, Spain.
Main focus: Mathematics, Electronics, Computer networks and Programming.

09/1994-06/1998 High School, I.E.S. Pinar de la Rubia, Valladolid, Spain.

Masters Thesis

Title Efficient Processing of short Sequences

Supervisor Prof. Dr. Stefan Kurtz

Description This thesis explored the design and implementation of a tool for general pro-
cessing of short read data, including quality filtering and mapping making use
of maximal probability information from Illumina files.

Computer skills

Languages With experience in more than one project:
{ Proficient: Ruby, C, SQL, VBA
{ Advanced: R, Matlab, Perl, Bash, OpenCL
{ Basic: HTML, CSS, PHP, JavaScript, Python

Web Dev. Ruby on Rails (+3 yrs)

Op. Systems Windows, Unix/Linux (Ubuntu)

Others Source Version Control (git), Bioinformatics tools (BLAST, Gene Prediction,
Next-Generation Sequencing, Phylogenetics), text proccesing (vi, sed, LATEX),
debugging (valgrind), MS Office (Access, Excel)

Languages

Spanish Mother tongue

English Full Working Proficiency Cambridge Certificate of Proficiency [2001]

German Full Working Proficiency Test DaF (Deutsch als Fremdsprache) [2006]

French Advanced Four years at school [1998]

Academic Experience

2013 Reviewer of Systematic Biology

2011 Research Stay of one month at The Dunn Lab, Department of Ecology and
Evolutionary Biology, Brown University, USA.

2/4

143

Teaching Activities

2013 Co-Supervision of Student Researcher (HiWi)

2013 Teaching Assistant at Wellcome Trust-EMBL-EBI Advanced Course on Com-
putational Molecular Evolution (29 April-10 May 2013, Sanger Centre, Hinxton,
UK)

2012 Lectures and practical excercises at: Parallel Computing & Phylogenetic Infer-
ence at Bioinformatics and systems biology school for young scientists, Institute
of Cytology and Genetics, Novosibirsk, Russia, June 2012.

2012 Co-Supervision of Master Thesis. Paper accepted and presented at ISBRA 2013.

Selected Publications

2013 F. Izquierdo-Carrasco, N. Alachiotis, S. Berger, T. Flouri, S.P. Pissis, A. Sta-
matakis: A generic Vectorization Scheme and a GPU kernel for the Phylogenetic
Likelihood Library, Parallel and Distributed Processing Workshops and Phd Fo-
rum (IPDPSW), 2013 IEEE International Symposium on, Boston, USA, 2013.

2012 F. Izquierdo-Carrasco, J. Gagneur, A. Stamatakis: Trading Memory for Running
Time in Phylogenetic Likelihood Computations, BIOSTEC BIOINFORMATICS
2012, Vilamoura, Portugal.

2011 F. Izquierdo-Carrasco, S.A. Smith, A. Stamatakis: Algorithms, Data Structures,
and Numerics for Likelihood-based Phylogenetic Inference of Huge Trees. BMC
Bioinformatics 12:470 2011.

2011 F. Izquierdo-Carrasco, Alexandros Stamatakis: Computing the Phylogenetic
Likelihood Function Out-of-Core, Parallel and Distributed Processing Workshops
and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, Anchorage,
USA, May 2011.

Communication Skills

2013 Conference Presentation Heuristic Algorithms for the Protein Model Assignment
Problem, at ISBRA 2013, Charlotte, USA, May 2013.

2012 Poster at Inference of Huge Trees under Maximum Likelihood, at IPDPS PhD
forum, Shanghai, China, May 2012.

2012 Conference Presentation Trading Memory for Running Time in Phylogenetic
Likelihood Computations, BIOSTEC BIOINFORMATICS 2012, Vilamoura, Por-
tugal.

2011 Conference Presentation Computing the Phylogenetic Likelihood Function Out-
of-Core at IEEE HICOMB 2011 workshop (held in conjunction with IPDPS
2011), Anchorage, USA, May 2011.

3/4

144

