
Atmos. Meas. Tech., 2, 47–54, 2009
www.atmos-meas-tech.net/2/47/2009/
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.

Atmospheric
Measurement

Techniques

The horizontal resolution of MIPAS

T. von Clarmann1, C. De Clercq2, M. Ridolfi 3, M. Höpfner1, and J.-C. Lambert2
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Abstract. Limb remote sensing from space provides atmo-
spheric composition measurements at high vertical resolution
while the information is smeared in the horizontal domain.
The horizontal components of two-dimensional (altitude and
along-track coordinate) averaging kernels of a limb retrieval
constrained to horizontal homogeneity can be used to esti-
mate the horizontal resolution of limb retrievals. This is use-
ful for comparisons of measured data with modeled data, to
construct horizontal observation operators in data assimila-
tion applications or when measurements of different horizon-
tal resolution are intercompared. We present these averaging
kernels for retrievals of temperature, H2O, O3, CH4, N2O,
HNO3 and NO2 from MIPAS (Michelson Interferometer for
Passive Atmospheric Sounding) high-resolution limb emis-
sion spectra. The horizontal smearing of a MIPAS retrieval
in terms of full width at half maximum of the rows of the
horizontal averaging kernel matrix varies typically between
about 200 and 350 km for most species, altitudes and atmo-
spheric conditions. The range where 95% of the information
originates from varies from about 260 to 440 km for these
cases. This information spread is smaller than the MIPAS
horizontal sampling, i.e. MIPAS data are horizontally under-
sampled, and the effective horizontal resolution is driven by
the sampling rather than the smearing. The point where the
majority of the information originates from is displaced from
the tangent point towards the satellite by typically less than
10 km for trace gas profiles and about 50 to 100 km for tem-
perature, with a few exceptions for uppermost altitudes. The
geolocation of a MIPAS profile is defined as the tangent point
of the middle line of sight in a MIPAS limb scan. The major-
ity of the information displacement with respect to this nom-
inal geolocation of the measurement is caused by the satel-
lite movement and the geometrical displacement of the actual
tangent point as a function of the elevation angle.

Correspondence to:T. von Clarmann
(thomas.clarmann@imk.fzk.de)

1 Introduction

Typical limb sounding retrieval schemes assume local hori-
zontal homogeneity of the atmosphere, i.e., vertical profiles
of atmospheric state variables are retrieved under the (usu-
ally hard-wired) assumption that the atmosphere seen during
one limb scan varies only with altitude but not in the hori-
zontal domain (e.g.,McKee et al., 1969; Mill and Drayson,
1978; Goldman and Saunders, 1979; Carlotti, 1988; Ridolfi
et al., 2000; von Clarmann et al., 2003; Raspollini et al.,
2006). Because of horizontal variations of the real atmo-
spheric state, this assumption causes a so-called smoothing
error (Rodgers, 2000) and affects the horizontal resolution of
the limb measurement. This horizontal smoothing must be
considered in quantitative applications, e.g. in comparisons
of measurements with modeled data, data assimilation (e.g.,
Lahoz et al., 2007), whenever the model grid is significantly
finer than the horizontal resolution of the measurement. Sim-
ilar considerations apply to the intercomparison of measure-
ments of different horizontal resolution (e.g.,Ridolfi et al.,
2007). In this paper we present a set of horizontal averag-
ing kernels for Michelson Interferometer for Passive Atmo-
spheric Sounding (MIPAS) (Fischer et al., 2008). These av-
eraging kernels characterize the horizontal response of the
retrieval to a delta perturbation of the true atmospheric state
(Rodgers, 2000). In particular, they can be used to construct
horizontal observation operators (c.f.,Ide et al., 1997).

2 MIPAS measurements and retrievals

MIPAS is an infrared limb emission sounder on Envisat, de-
signed and operated for measurements of constituents be-
tween the upper troposphere and the mesosphere. MIPAS
is a rear looking instrument with the lines of sight approxi-
mately in the orbit plane. In the original measurement mode,
which was operational from July 2002 to March 2004, 17
tangent altitudes between 6 and 68 km were measured per
limb scan. The altitude of the Envisat orbit is about 800 km,
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and the ground track speed is about 510 km per 76.5 s which
are needed to record one full limb scan. The field of view
covers about 3 km in altitude at the tangent point. The hor-
izontal extension of the field of view is about 30 km at the
tangent point. While the latter number indicates the horizon-
tal extension of the air mass sampled by MIPAS, it is not
adequate to talk about cross-track resolution here, because
there is no instantaneous cross-track sampling.

The operational MIPAS level-2 processor (Ridolfi et al.,
2000; Raspollini et al., 2006) performs a maximum likeli-
hood profile retrieval (Rodgers, 2000) of temperature and
trace species abundance profiles using an unconstrained
global fit approach (Carlotti, 1988). As usual in limb sound-
ing, horizontal homogeneity of the atmosphere is assumed.
The vectory contains those measurements of a MIPAS limb
scan which are actually used for the retrieval (Dudhia et al.,
2002; Raspollini et al., 2006) of the vertical profilex of the
target variable, sampled at the tangent altitudes of the limb
measurements,K is the Jacobian matrix containing the par-
tial derivatives∂ym/∂xn. Sy is the measurement noise co-
variance matrix. The estimatêx of the vertical profile of the
target variable can be calculated as

x̂i+1 = x̂i +

(
KT S−1

y K + λI
)−1

KT S−1
y (y − F(x̂i)), (1)

where i is the iteration number in a Newtonean iteration,
and F is the radiative transfer model used for simulation
of the measurements. The termλI limits the stepwidth of
the iteration and pushes the correction vectorxi+1−xi to-
wards the direction of the steepest gradient of the penalty
function(y−F(x))T S−1

y (y−F(x)) (Levenberg, 1944; Mar-
quardt, 1963) but does not influence the solution in the case
perfect numerical convergence is achieved. This term thus
does not need to be cosidered in estimating the spatial re-
sponse function of the retrieval. As most common limb re-
trieval schemes, Eq. (1) assumes local horizontal homogene-
ity of the atmosphere. The vertical averaging kernel of this
kind of retrieval, i.e. the derivative of the estimated profile
with respect to the true atmospheric state, sampled on the
tangent altitude grid, is unity. The horizontal averaging ker-
nels need some further investigation.

3 Horizontal averaging kernels: theory

In order to allow the assessment not only of hard-wired 1-D
retrievals but also of retrievals where horizontal variability
is subject to a soft constraint, we formulate this retrieval as
a formal two-dimensional retrieval (altitude and along-track
coordinate) where the assumption of horizontal homogene-
ity is implemented by a numerical constraint. For clarity,
we omit all formalism related to the Newtonean iteration be-
cause this is unnecessary for retrieval diagnostics in the case
of moderately nonlinear radiative transfer. We further as-
sume that the lines of sight of the instrument lie in the orbit

plane of the spacecraft, an assumption which is justified for
major parts of the Envisat orbit (Carlotti et al., 2001):

x̂2D = x̂2D,0 (2)

+

(
KT

2DS−1
y K2D + R

)−1
KT

2DS−1
y (y − F(x2D,0))

Here x2D is the 2-dimensional representation of
the atmospheric state, arranged in a column vector
(x1,1, . . ., x1,j , x2,1, . . ., x2,j , . . . , xk,j )

T where k is the
number of altitude gridpoints andj is the number of
horizontal gridpoints (in a geocentered angular coordinate).
The JacobianK2D contains the derivatives of the signal
with respect to the full 2-dimensional field of atmospheric
state variables, as provided by radiative transfer codes
supporting 2-dimensional radiative transfer and Jacobian
calculation, e.g. the KOPRA model (Steck et al., 2005;
Stiller, 2000; Stiller et al., 2002) or the forward model used
in the GEOFIT (Carlotti et al., 2001) or the GMTR (Carlotti
et al., 2006) retrieval codes. Thejk×jk constraint matrix
R is block-diagonal. Each diagonal block of the sizek×k is
calculated asγLT L whereL is a first order finite differences
operator (Phillips, 1962; Tikhonov, 1963b,a; Twomey, 1963,
1965):

L =


−1 1 0 . . . 0 0
0 −1 1 . . . 0 0

. . .

0 0 0 . . . −1 1

 (3)

With the scalar tuning parameterγ chosen large enough,
all horizontal variation of the atmosphere is suppressed and
a 1-dimensional profile retrieval is emulated within the 2-
dimensional retrieval formalism. Differentiation of Eq. (2)
with respect to the the true atmospheric statex2D gives the 2-
dimensional averaging kernel of the 1-dimensional retrieval:

A2D =

(
KT

2DS−1
y K2D + R

)−1
KT

2DS−1
y K2D (4)

The k diagonal blocks of sizej×j of the kj×kj averaging
kernel are the horizontal averaging kernels of the retrieval.
With γ large enough to remove all horizontal variation, all
the rows within such a block are identical. A row of a di-
agonal block can be used as horizontal observation operator
at the respective altitude and can be used to characterize the
horizontal smoothing of a standard 1-dimensional limb re-
trieval.

For hard-wired one-dimensional profile retrievals, the
horizontal averaging kernel can be obtained in a more
straight-forward manner simply by differentiating the one-
dimensional estimates (i.e. the vertical profile values) with
respect to the variations of the true two-dimensional field of
atmospheric state variables.

Ahor =

(
KT S−1

y K
)−1

KT S−1
y K2D (5)
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Applied to hard-wired one-dimensional profile retrievals
evaluated for a horizontally homogeneous atmosphere, the
approaches Eq. (4) and Eq. (5) are equivalent with respect to
the result but Eq. (5) is computationally more efficient. Re-
sults are different for averaging kernels evaluated for a non-
homogeneous atmosphere because non-homogeneity is con-
sidered in the JacobianK2D of Eq. (4) but not in the Jacobian
K used in Eq. (5). In such cases, the latter approach is appro-
priate to characterize hard-wired one-dimensional retrievals,
while the former characterizes constrained two-dimensional
retrievals.

4 Application to MIPAS

Horizontal averaging kernels have been calculated for the
MIPAS key products (temperature and mixing ratios of H2O,
O3, CH4, N2O, HNO3 and NO2). These horizontal averaging
kernels refer to MIPAS high spectral resolution (0.025 cm−1,
unapodized) measurements that were acquired from July
2002 until March 2004. These calculations are based on Ja-
cobians calculated with the KOPRA (Stiller, 2000) radiative
transfer model with 50 km horizontal gridwidth and a verti-
cal retrieval grid defined by the MIPAS nominal tangent al-
titudes (6–42 km at 3-km stepwidth, additionally 47, 52, 60
and 68 km, reduced altitude range for some species). These
calculations have been performed for a retrieval setup con-
sistent with the MIPAS offline (OFL) data (Raspollini et al.,
2006), which cover a wider altitude range and are based on
a larger subset of the available tangent altitudes than the MI-
PAS near-real-time (NRT) data. Three atmospheric condi-
tions have been investigated (Fig.1), namely midlatitudinal,
polar, and tropical (Kiefer et al., 2002). Unless explicitly
mentioned, the Jacobians were evaluated for a horizontally
homogeneous atmosphere. No numerical constraint has been
applied in the vertical except that implied by the quite coarse
retrieval grid.

We discuss the results with respect to three charac-
teristics, namely information displacement, information
spread, and impacts onto the profile shape. Numeri-
cal results for quantitative use are provided in the sup-
plemental data (http://www.atmos-meas-tech.net/2/47/2009/
amt-2-47-2009-supplement.zip). In this paper we restrict the
discussion to some typical sample cases.

4.1 Information displacement

The information displacement we define is the horizontal dis-
tance between the point where the most information comes
from and the nominal geolocation of the limb scan, which is
defined as the geolocation of the tangent point of the mid-
dle line of sight in a MIPAS limb scan. For a nominal MI-
PAS limb scan this is the geolocation of the 30-km tangent
point. The ESA online processor assumes local horizontal

Fig. 1. Target species mixing ratio vertical profiles used in this
study for polar (top panel), milatitude (middle panel) and tropic
(lower panel) atmospheres.
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Fig. 2. MIPAS horizontal averaging kernel for O3, evaluated for
a midlatitude homogeneous atmosphere. The black line is the po-
sition of the actual tangent points. The grey line is the centroid of
the horizontal averaging kernel. 95% of the information originates
from the region between the dashed lines. Negative distances are
displacement towards beyond the tangent point, positive distances
are displacement towards the satellite. Numeric data are found in
the auxiliary files.

homogeneity and each retrieved profile is assigned to the
nominal geolocation of the limb scan.

A part of the information displacement is explained by
the observation geometry and the satellite movement, but
radiative transfer effects and sampling density are also im-
portant in some cases. The information displacement can
be calculated on the basis of the position of the centroid
of the horizontal averaging kernel, its maximum or the
median. All these quantifiers are reported in the sup-
plemental data files (http://www.atmos-meas-tech.net/2/47/
2009/amt-2-47-2009-supplement.zip).

The tangent point is displaced towards the satellite by
160 km for the lowermost nominal tangent altitude (6 km)
and 159 km in the opposite direction for the uppermost nom-
inal tangent altitude (68 km). This displacement is caused
by the satellite movement (≈510 km per limb scan) and the
position of the tangent point as a function of the elevation
angle. Since MIPAS is rearward looking top down scanning,
both effects in tendency compensate, with a net movement
of the tangent point of about 320 km during one limb scan
in flight direction. In most trace gas retrievals, this geomet-
rically caused displacement explains the majority of the ac-
tual information displacement for all species and most alti-
tudes. Figure2 shows the O3 midlatitudes horizontal aver-
aging kernels and may serve as a typical example. Besides
this displacement due to measurement geometry, in most
cases the information maximum is displaced slightly (typi-
cally less than 10 km) towards the satellite. The latter is be-
cause weighting functions of a single line of sight through

Fig. 3. MIPAS horizontal averaging kernel for H2O, evaluated
for a midlatitude homogeneous atmosphere. For details, see Fig.2.
Pronounced information displacement towards the satellite through
saturized radiative transfer is visible for the uppermost altitudes.

a horizontally homogeneous atmosphere typically peak be-
tween the tangent point and the satellite because of the non-
linearity of radiative transfer. A longer optical path between
the emitting air volume and the observing instrument goes
along with more absorption of the signal. The only excep-
tions are H2O (all atmospheres) and CH4 (tropical and mid-
latitudinal atmospheres) at the uppermost altitude of 68 km.
Since the particular retrieval scheme under assessment scales
the a priori profiles above the uppermost tangent altitude in-
stead of attempting to obtain independent profile informa-
tion, this altitude represents the information about the entire
atmosphere between 68 km and the top of the atmosphere,
(c.f. Ridolfi et al., 2000; Raspollini et al., 2006). In these
particular cases the peak of information is displaced by up to
about 510 km towards the satellite (Fig.3). This is because
in these cases the information gained through emission of ra-
diance near the tangent point is outweighted by absorption
in higher, colder atmospheric layers. This effect is particu-
larly large in cases of non-linear radiative transfer in an at-
mosphere of large opacity in the given spectral region.

In some cases, however, the majority of information of MI-
PAS profile retrievals originates from the atmosphere slightly
beyond the actual tangent point, e.g. for daytime tropical
NO2 at 42 and 50 km altitude (Fig.4). While the argument
of nonlinear radiative transfer certainly holds for each single
MIPAS limb scan, this effect can sometimes be overcompen-
sated for all but the lowermost tangent altitudes by the fol-
lowing geometrical effects: First, the MIPAS field of view
is finite and covers about 3 km in the vertical at the tangent
point. This means that beyond the tangent point the fields
of view of measurements at adjacent tangent altitudes are
overlapping, leading to multiple sampling of air masses be-
yond the tangent point. This effect accounts for a backward
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Fig. 4. MIPAS horizontal averaging kernel for NO2, evaluated for a
tropical daytime homogeneous atmosphere. For details, see Fig.2.
Some minor information displacement towards beyond the tangent
point is visible near 42 and 50 km altitude.

displacement of the median point by 1–7 km. Moreover,
the interaction between satellite movement and downward
scanning contributes to this effect: While a limb sequence
of spectra is recorded top down, i.e. from the uppermost to
the lowermost tangent altitude, Envisat moves about 510 km
in the opposite of the viewing direction. This leads, during
one single limb scan, to denser sampling of the atmosphere
beyond the tangent points than satellite-side of the tangent
point. Through the satellite motion, the points where the ray-
paths of a limb scan intersect a certain altitude level move
together beyond the tangent point, while they diverge on the
satellite side of the tangent point. As a consequence, the
retrieval uses more information per latitude increment from
beyond the tangent point (c.f. Fig.3, 30 km altitude). This
explanation has been verified by a test retrieval where the
satellite was assumed stationary and where this information
displacement effect has not been observed. Due to its small
effect, however, this issue is of purely academic interest.

For temperature the situation is slightly different: Most in-
formation on temperature originates from a point displaced
from the actual tangent point towards the satellite by about
50 to 100 km (Fig.5). This is because at the spectral in-
tervals used for temperature retrieval the atmosphere is far
less transparent than at those used for trace gas abundance
retrievals. This is an issue not only because the temper-
ature information is inaccurately assigned to its true ge-
olocation but also because this can trigger a systematic er-
ror when retrieved temperatures are subsequently used for
trace gas retrievals. While this kind of error is included in
the error budget of the MIPAS-OFL data (Raspollini et al.,
2006), other MIPAS data processors account for this prob-
lem by retrieving a horizontal temperature gradient jointly
with the temperature and elevation pointing and using this

Fig. 5. MIPAS horizontal averaging kernel for temperature, evalu-
ated for a midlatitude homogeneous atmosphere. For details, see
Fig. 2. There is a systematic information displacement of 50–
100 km towards the satellite.

gradient information for subsequent trace gas retrievals (c.f.
http://www.fzk.de/imk/asf/sat/envisat-data).

4.2 Information spread

The information spread is a measure of the horizontal smear-
ing of the retrieval. We report the spread in terms of both the
half-width (full width at half maximum, FWHM) and vari-
ous centered quantile distances (CQD), namely 50%, 68%,
95%, and 99%. Thex% CQD is the distance between the
x+(1−x)/2 and the(1−x)/2 quantiles and indicates the hor-
izontal regionx percent of information originates from.

The FWHM of the horizontal averaging kernel generally
increases with altitude. It ranges from 210 km (CH4, trop-
ical atmosphere) to 330 km (NO2, tropical atmosphere day-
time) at 6 km tangent altitude. The respective 95% CQDs
are 262 km and 382 km. For 52 km tangent altitude, it ranges
from 315 km (H2O, midlatitudes) to 387 km (N2O, polar at-
mosphere), with related 95-% CQDs of 683 km (H2O, mid-
latitudes) and 478 km (N2O, polar atmosphere). The FWHM
is somewhere between the 68-% and the 95-% CQDs in most
cases. Compared to the MIPAS along-track sampling, which
is about 510 km, the horizontal smearing in terms of FWHM
often is a factor of about 2 smaller. That means that the atmo-
sphere is horizontally undersampled even in the along-track
direction. In consequence, small-scale periodic phenomena
are prone to aliasing.

4.3 Impact of horizontal smoothing on profile information

In order to assess if the horizontal smoothing error triggers
profile errors, in other words, to find out if the hard con-
straint of horizontal homogeneity causes profile errors, we
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Fig. 6. MIPAS horizontal averaging kernel for O3, evaluated for a
midlatitude atmosphere with a meridional temperature gradient of
1 K/100 km, warmer towards South. For details, see Fig.2.

have calculated the horizontally integrated averaging kernel
Ã with the elements

ãk,n =

j∑
i=1

ai;k,n (6)

wherek andn are the altitude indices andi is the horizontal
index of the elementa of Ahor. Ã was found to equal the
identity matrix at at least three digits. This confirms expecta-
tions that within linear estimation no profile error is triggered
by horizontal smoothing and verifies the implementation of
the method.

4.4 Averaging kernels evaluated for horizontally non-
homogeneous atmospheres

The horizontal averaging kernels discussed above were eval-
uated for horizontally homogeneous atmospheres. One
might expect different behaviour of retrievals in horizontally
inhomogeneous atmospheres. Temperature is a particularly
critical parameter whose horizontal gradients may largely
affect radiative transfer. Horizontal gradients in interfering
trace species are supposed to have small influence due to ef-
ficient microwindow selection, where interferences by non-
target species are minimized. Thus we have, as a kind of esti-
mate for a particularly difficult case, evaluated the horizontal
averaging kernel for a midlatitudinal ozone retrieval in an at-
mosphere with an along-line-of-sight temperature gradient of
1K/100km, increasing from North to South. Results do not
largely differ from those evaluated for the horizontally ho-
mogeneous atmosphere (Fig.6). The FWHM is smaller by
less than 2.5%, and the center of information is moved by
only about 5 km off the satellite.

As a worst case, we have also investigated the horizontal
averaging kernel evaluated for an atmosphere with a horizon-

Fig. 7. MIPAS horizontal averaging kernel for O3, evaluated for a
meridional temperature gradient of 10 K/100 km, applicable over a
range of 400 km, warmer towards South. For details, see Fig.2.

tal temperature gardient of 10 K/100 km, applicable over a
range of 400 km around the nominal geolocation of the limb
scan, i.e. with a maximum temperature difference of 40 K
between the colder foreground and the warmer background.
While the information spread is not significantly affected,
there is an information displacement of about 50 km towards
the background (Fig.7). Due to higher temperatures beyond
the tangent point, radiance contributions and thus Jacobians
are larger there.

We conclude that it is justified to use the averaging ker-
nels evaluated for homogeneous atmospheres as approxima-
tive averaging kernels for the true atmospheric state, unless
extreme horizontal temperature gradients are analyzed using
models with horizontal gridwidth approaching 50 km.

5 Conclusions

The horizontal MIPAS averaging kernels indicate the re-
gion where the retrieved profile information originates from
and describe the horizontal smoothing of a retrieval which
assumes local horizontal homogeneity of the atmospheric
state. The latitudinal smearing of information is surpris-
ingly small (below about 380 km in terms of FWHM, below
about 500 km in terms of CQD except for the uppermost al-
titudes) and is considerably smaller than the horizontal sam-
pling (ca. 510 km) which is defined by the horizontal distance
between two adjacent limb scans. This means that the atmo-
sphere is not continuously sampled by the MIPAS nominal
high resolution measurement scenario. A potential conse-
quence of this along-track undersampling and missing phys-
ical low-pass filtering by the measurement geometry is the
risk of aliasing effects even in the along-track direction when
small scale wave structures are analyzed.
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The horizontal MIPAS averaging kernels can be used to
construct the along-track components of observation opera-
tors for data assimilation purposes. The low horizontal sam-
pling width allows to disregard the horizontal smearing ef-
fects of MIPAS for all assimilation or model comparison ap-
plications where the horizontal gridwidth is larger than about
300 km. For many of these applications, it will be sufficient
to just consider the information displacement relative to the
nominal geolocation of the MIPAS limb scan. With a few
exceptions, the horizontal displacement is dominated by the
displacement of the tangent point with respect to the nominal
geolocation of the limb scan, while other effects (nonlinear-
ity of radiative transfer, overlapping fields of view behind the
tangent point, and denser sampling behind the tangent point)
play a minor role, except for temperature, where the infor-
mation is displaced by 50–100 km from the actual tangent
point towards the satellite. In the cross-track domain, MIPAS
data can be interpolated like point-measurements unless the
model gridwidth approaches values as low as 30 km, which
is the horizontal width of the instantaneous field of view of
MIPAS.

While the numerical values presented here are MIPAS
instrument-specific, and even depend on the MIPAS mea-
surement scenario (results shown here refer to the nominal
high spectral resolution measurement mode), the methods
to calculate the horizontal averaging kernels can be applied
to each limb sounding emission or occultation instrument
with lines of sight approximately in the orbit plane, and,
with straight-forward modifications, also to any other limb
sounding instrument. An application of this approach to con-
strained retrievals is found invon Clarmann et al.(2009).
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