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Abstract. The Lanczos method is an iterative procedure to compute an orthogonal basis for the Krylov
subspace generated by a symmetric matrix A and a starting vector v. An interesting application of this method
is the computation of the matrix exponential exp(−τA)v. This vector plays an important role in the solution of
parabolic equations where A results from some form of discretization of an elliptic operator. In the present paper
we will argue that for these applications the convergence behavior of this method can be unsatisfactory. We will
propose a modified method that resolves this by a simple preconditioned transformation at the cost of an inner–
outer iteration. A priori error bounds are presented that are independent of the norm of A. This shows that the
worst case convergence speed is independent of the mesh width in the spatial discretization of the elliptic operator.
We discuss, furthermore, a posteriori error estimation and the tuning of the coupling between the inner and outer
iteration. We conclude with several numerical experiments with the proposed method.

1. Introduction. Using the matrix exponential operator in the numerical solution of large
time-dependent problems has been an extensive area of research in the last few years. A key aspect
of such exponential integrators is that they require the evaluation or approximation of the product
of the exponential of the Jacobian with a vector. In this paper we consider the approximation of

y(τ) = exp(−τA)v, ‖v‖ = 1, (1.1)

where A results from a finite difference or finite element discretization of an elliptic partial differ-
ential operator.

In 1978, Moler and van Loan [24] published their famous paper discussing nineteen dubious
ways to compute the exponential of a matrix. Since then, Krylov subspace methods have been
an important development towards tackling the problem (1.1) when the matrix A is very large
and sparse. Hence the updated paper [23] mentions Krylov subspace methods as the “twentieth”
method. For matrices A that stem from a self-adjoint elliptic partial differential equation, it has
been shown [7, 8, 13] that Krylov approximations to y(τ) always yield superlinear error reduction
with the superlinear decay starting after the number of steps exceeds ‖A‖1/2. Unfortunately, nu-
merical experiments typically show that these error bounds are fairly sharp for these applications.
This means that the computational complexity grows like n1+1/d for a uniform discretization of
an elliptic operator on a d-dimensional cube with n spatial grid points. The aim of this paper
is to present an algorithm which allows us to compute the approximation with O(n) operations.
Speeding up the Lanczos process is achieved by a preconditioned operation. The emphasis in this
paper is on the computation of the vector in (1.1) and we will not discuss details of the spatial
discretization resulting in the matrix A. For ease of presentation, throughout this paper, we as-
sume that A is symmetric and positive semi-definite, although most of the techniques apply to
discretizations of sectorial operators as well. The demand that the matrix is positive definite is
no essential restriction since indefinite matrices can easily be handled by shifting the matrix and
multiplying the result with a suitable factor.

The paper is organized as follows. In Section 2 we discuss the motivation for this work. The
central idea in this paper is to transform the spectrum in such a way that convergence is much
faster. This leads to a new method which is proposed in Section 3, consisting of an inner and outer
iteration. The convergence behavior of the new method is treated in Section 3.1 and termination
strategies are the subject of Section 4. In Section 5 we discuss the tuning of the coupling between
the inner and outer iteration in such a way that the overall procedure is as efficient as possible.
We conclude by giving some examples of typical numerical experiments in Section 6.

We have learned recently that the method proposed in this paper has been studied earlier by
Novati and Moret in [25]. In that work the authors derive the method from a different point of
view and furthermore consider the more general problem of approximating the matrix exponential
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of sectorial operators. Unfortunately, this makes it much more challenging to give insight into
the behavior and properties of the method. In that sense the results in this paper supplement
the work in the report [25] since we consider Hermitian matrices which allows us to give a more
thorough discussion. Moreover, the central question in the present paper is on how to include a
preconditioner efficiently into Lanczos approximation methods for the matrix exponential whereas
in [25] the linear systems are solved with a direct method

2. Motivation. When approximating the vector y(τ) in (1.1) for high dimensional matrices
A, it becomes essential to exploit the sparsity of the matrix and the fact that only the action
on a given vector is required. A standard idea is to use a polynomial approximation to the
exponential function. In most cases this approach can be divided into two parts. First, there
is the construction of a basis for the m-dimensional Krylov subspace. This part can often be
summarized by the following matrix formulation:

AVm = VmTm + βmvm+1e
∗
m, where Vme1 = v. (2.1)

The matrix Tm is upper Hessenberg and the vector ej denotes the jth column of the identity
matrix. The second ingredient is the approximation to the product of the matrix exponential and
the vector v and is usually given by

y(τ) ≈ ym(τ) = Vmexp(−τTm)e1. (2.2)

Different choices for Tm lead to different polynomial approximations. The simplest choice is when
Tm is defined by

Tmej = ej+1 for j < m and Tmem = 0.

In this case the polynomial approximation (2.2) coincides with the standard Taylor series expan-
sion of the matrix exponential, [23, Section 3]. Other attempts have been based on Chebyshev
polynomials, e.g, [38] or, in the non-Hermitian case, on Faber polynomials in the complex plane,
e.g., [29].

In this paper we focus on methods where (2.1) is constructed by means of the Lanczos method
in which case the columns of the matrix Vm form an orthogonal basis for the Krylov subspace.
The resulting method has been discussed by several authors and analyzed in various papers, see,
for instance, [6, 7, 8, 10, 13, 33, 42] and [23] for a more extensive bibliography. We will refer to
the vector ym(τ) in this case as the Lanczos approximation. The advantage here is that these
Lanczos approximations have a potential for exploiting the discrete nature of the spectrum of
A: By interpolating the exponential in eigenvalues of A the required degree of the polynomial
approximation can be much smaller than for Chebyshev approximations, for example, where a
uniform approximation is constructed on an interval containing the spectrum of A. Moreover, no
a priori knowledge is required about the spectral radius of the method.

Unfortunately, when A is a discrete representation of the elliptic operator, Lanczos approxi-
mations can have two distinct drawbacks. First of all, the Lanczos method often is unsuccessful
in exploiting the discrete character of the spectrum as mentioned above. One example is when
A is the usual finite difference/element discretization of a one dimensional Poisson operator with
Dirichlet boundary conditions. In this case, the eigenvalues of A coincide with the roots of a
shifted and scaled Chebyshev polynomial and the Lanczos method cannot identify any eigenvalue
of A quickly, e.g, [21, Section 4.1]. This explains why we often observe for parabolic problems that
Lanczos approximations do not require significantly fewer multiplications with the matrix than
using a polynomial approximation based on Chebyshev polynomials, whereas they do have some
overhead cost compared to this method. A related issue is that convergence analysis shows that
the required number of steps is proportional to ‖A‖1/2. This means that the number of opera-
tions grows faster than linearly in the number n of spatial grid points. This should be compared
with the solution of an elliptic problem which can be accomplished in O(n) flops using multigrid
techniques.
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An extension of the Lanczos approximation is to somehow precondition the iterative proce-
dure as is done when solving linear systems. This is the aim of this paper. Other attempts in
this direction have been made in [4]. The main idea there is to choose a matrix M ≈ A (the
preconditioner) for which exp(−τM)v is cheap to compute and to combine this with a generalized
Runge-Kutta method for the solution of the differential equation for the defect. It should also
be mentioned that for the solution of parabolic partial differential equations the idea of precondi-
tioning the time-differencing is not new. Two important developments in this area are parabolic
multigrid methods [12] and methods based on waveform relaxation, e.g., [15].

3. Preconditioning Lanczos approximations. The exponential function is a quickly de-
caying function. This implies that the vector exp(−τA)v is mostly determined by the smallest
eigenvalues and their corresponding invariant subspaces. Recall again that the Lanczos method
does not necessarily utilize this since the first eigenvalues (and their eigenvectors) are difficult to
find. This suggests that we should transform the spectrum in such a way that the Lanczos method
can quickly find these eigenpairs. The simplest idea is to apply the Lanczos method to the matrix
(I + γA)−1 (with γ > 0) which emphasizes the eigenvalues of importance. The Lanczos relation
for the spectrally transformed matrix reads

(I + γA)−1Vm = VmTm + βmvm+1e
∗
m, where Vme1 = v and V ∗

mVm = I. (3.1)

We define the function

fτ
γ (t) = exp((1 − t−1)τ/γ) for t ∈ (0, 1], f τ

γ (0) = 0,

and note that f τ
γ ((I + γA)−1) = exp(−τA). As an approximation to y(τ) we use

ym(τ) = Vmf
τ
γ (Tm)e1 = Vm exp(−τ T̃m)e1, T̃m =

1

γ
(T−1

m − I).

It is well known that the Lanczos method usually quickly finds approximations to the eigen-
values that are in some sense nicely separated from the other eigenvalues in the spectrum. A
quantitative measure that expresses this separation is the ratio between the eigenvalue spread and
gap. For the invariant subspace that corresponds to the smallest eigenvalue this quantity is given
by

λn − λ1

λ2 − λ1
, (3.2)

where λ1, λ2 and λn denote respectively the smallest, second smallest and largest eigenvalue of
A. This quantity appears in upper bounds on the convergence speed of the Lanczos method for
finding eigenpairs, see e.g., [17]. On the other hand, for the transformed system the ratio of
the eigenvalue spread and gap of the invariant subspace corresponding to the smallest (positive)
eigenvalue of the transformed system is bounded by

(1 + γλ1)
−1 − (1 + γλn)−1

(1 + γλ1)−1 − (1 + γλ2)−1
≤ (1 + γλ1)

−1

(1 + γλ1)−1 − (1 + γλ2)−1
=

1 + γλ2

γ(λ2 − λ1)
.

The first expression follows directly from (3.2) by plugging in the transformed eigenvalues. When
A stems from an appropriate discretization of an elliptic operator then the eigenvalues λ1 and λ2

approach the eigenvalues of the elliptic operator when the accuracy of the spatial discretization
increases. As a consequence this ratio does not become arbitrarily large when the size of the
matrix A increases as a result of decreasing the mesh width in the spatial discretization. For
example, for the already mentioned one dimensional Poisson operator with Dirichlet boundary
conditions the spread/gap ratio for the smallest invariant subspace of the continuous operator is
unbounded since the spread of the spectrum is infinite. On the other hand, the spread/gap ratio
for the transformed spectrum can be bounded by (1 + γ4π2)/(3γπ2).
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The practical importance of these observations is that a good approximation to the leading
invariant subspaces can in turn speed up the convergence of the method in a way that is analogous
to what is often witnessed for the conjugate gradient method [41]. Our hope is that, due to the
spectral transformation, the Lanczos method is more effectively able to exploit the discrete nature
of an important part of the spectrum.

Finally, we mention that in our shift-and-invert Lanczos method we have to invert a fairly
standard elliptic operator in every step. This can be done efficiently by very effective precondi-
tioned methods that can be found in the literature. This is exploited in our numerical experiments
in Section 6. The idea of this paper is to incorporate preconditioning in the Lanczos method by
using it to accomplish a spectral transformation that results in more favorable convergence speed
at the cost of an inner–outer iteration. We will further investigate this in the coming sections.

3.1. A priori error estimation. The Lanczos approximations are given by

Vmf
τ
γ (Tm)e1 = p((I + γA)−1)v = (I + γA)−(m−1)q(A)v, p, q ∈ Πm−1.

The space Πm−1 is the space of all polynomials of degree m− 1 or less. Our method can be alter-
natively characterized as constructing iterates from the class of restricted rational approximations
defined by

Rj
i =

{
p(t)(1 + γt)−i | p ∈ Πj

}
.

This shows that the Lanczos approximations now are matrix rational approximations to exp(−τt)
with all poles fixed at −1/γ. In the present section we will exploit this viewpoint to get more
insight into the impact of our spectral transformation on the convergence speed and we will neglect
the discrete nature of the spectrum. We define

Ej
i (γ) := inf

r∈Rj

i

sup
t≥0

|r(t) − exp(−t)|. (3.3)

We can now easily derive the following result.
Lemma 3.1. Let µ be such that A− µI is positive semi-definite. Then,

‖Vmf
τ
γ (Tm)e1 − exp(−τA)v‖ ≤ 2 exp(−τµ)Em−1

m−1(γ̃) with γ̃ =
γ

τ(1 + γµ)
.

Proof. The eigenvalues of A are all larger than µ and as a direct consequence of [33, Lemma 4.1]
we have that

‖Vmf
τ
γ (Tm)e1 − exp(−τA)v‖ ≤ 2 inf

p∈Πm−1

sup
t∈(0,(1+γµ)−1]

|fτ
γ (t) − p(t)|

= 2 inf
p∈Πm−1

sup
t∈(0,1]

|fτ
γ

(
t

1 + γµ

)
− p(t)|

= 2 inf
p∈Πm−1

sup
t∈(0,1]

| exp(−µτ) exp

((
1 − 1

t

)
τ(1 + γµ)

γ

)
− p(t)|

= 2 exp(−µτ)Em−1
m−1(γ̃).

It is important to stress that this error estimate is independent of the norm of A and only
the first (smallest) eigenvalue of A plays a modest role in the form of µ. We also see that the
restriction of A to positive semi-definite matrices is too stringent since reasonable upper bounds
are obtained if the spectrum is bounded from below by a modest constant.

A priori error bounds for the proposed method can be obtained by estimating Em−1
m−1(γ̃). A

good choice for γ̃ automatically leads to a good choice for γ (if τ and a reasonable estimate for µ is
known). Therefore we want to derive upper bounds to (3.3) where we, without loss of generality,
assume that τ = 1 and µ = 0 which leads to γ̃ = γ. Our attempts for bounding this quantity
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have resulted in upper bounds which are too pessimistic. However, some insight can be obtained
by considering the asymptotic situation for m → ∞. The use of the class Rj−1

j to approximate
exp(−t) for t ∈ [0,∞) is discussed by Saff et al. [34]. The authors’ analysis implies that the best
shift is given by γ = 1/j which was shown to lead to geometric convergence with an asymptotic
decay rate between 1/5.828 and 1/2. This result was later sharpened by Andersson [1] who showed
the following result.

Theorem 3.2 (Andersson [1]). Asymptotically the optimal value for γ is given by
√

2/j for

which we have

lim
j→∞

(
Ej

j (
√

2/j)
)1/j

=
1√

2 + 1
.

Hence, the value of γ should ideally be chosen to be inversely proportional to the number of
Lanczos steps. Our shift-and-invert strategy requires a fixed a priori chosen value of γ. In this
case we cannot expect linear convergence. Based on work in [34] we can show the following result.

Theorem 3.3. Let 0 < γ < 1. Asymptotically we have

(
Ej−1

j (γ)
)1/

√
j

≤ κj , where lim
j→∞

κj = exp

(
−
√

2(1 − γ)

γ

)
.

Proof. Equations (3.4) and (3.14) in [34] are

Ej−1
j (γ) ≤

√
2ρj−1(1/γ), (3.4)

where

ρj−1(1/γ)
2 <

1

2
exp(1/γ)

∫ ∞

0

exp(−s/γ)
(

s

s+ 1

)2j−2

ωj(s)ds,

and

ωj(t) =
(j + 1)(2j + 1)t2

(1 + 2t)(1 + t)
+

(4j + 5)t4

(1 + 2t)2(1 + t)
+

4t6

(1 + 2t)3(1 + t)
.

We have

ωj(t) ≤
t2

(1 + t)2
ωj(t), ωj(t) := (j + 1)(2j + 1) +

4j + 5

4
t+

1

2
t2.

Using the identity exp(−s/γ) = exp(−s/γ + s) exp(−s) and the mean value theorem we obtain

ρj−1(1/γ)
2 <

1

2
max
t≥0

{
exp

(
1 − t

γ
+ t

)(
t

t+ 1

)2j
}∫ ∞

0

exp(−s)ωj(s)ds

≤ max
t≥0

exp(ψj(t))

(
j2 + 2j +

13

8

)

≤ 5j2 max
t≥0

exp(ψj(t))

with

ψj(t) =
1

γ
(1 − t) + t+ 2j(log(t) − log(t+ 1)).

We find that

max
t≥0

ψj(t) =
1

2γ

(
3 −Dj − γ + 4jγ log

(
−γ − 1 +Dj

γ − 1 −Dj

))
=: ψj ,
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Fig. 3.1. Ej

j
(γ) as function of γ for j = 0, . . . , 6.

j Ej
j (γopt) γopt j Ej

j (γopt) γopt

1 6.7 · 10−2 1.73 · 100 11 4.0 · 10−6 9.90 · 10−2

2 2.0 · 10−2 4.93 · 10−1 12 1.6 · 10−7 1.19 · 10−1

3 7.3 · 10−3 2.64 · 10−1 13 6.1 · 10−7 1.00 · 10−1

4 3.1 · 10−3 1.75 · 10−1 14 2.5 · 10−7 8.64 · 10−2

5 1.4 · 10−3 1.30 · 10−1 15 1.0 · 10−7 7.54 · 10−2

6 4.0 · 10−4 1.91 · 10−1 16 4.0 · 10−8 8.67 · 10−2

7 1.6 · 10−4 1.44 · 10−1 17 1.6 · 10−8 7.63 · 10−2

8 6.5 · 10−5 1.90 · 10−1 18 6.6 · 10−9 6.78 · 10−2

9 2.4 · 10−5 1.47 · 10−1 19 2.7 · 10−9 7.62 · 10−2

10 9.7 · 10−6 1.19 · 10−1 20 1.1 · 10−9 6.82 · 10−2

Table 3.1
Numerical approximations to the optimal value of γ, γopt, and the corresponding value Ej

j
(γopt).

with Dj =
√

(1 − γ)(8jγ − γ + 1) (the maximum is attained at t = 1
2 (−1 +

Dj

1−γ )).

Taking the limit of ψj/
√
j for j → ∞ and using (3.4) shows the desired result.

In our context we are interested in approximations where the degree is modest. In the absence
of insightful analytical estimates, we have decided to give numerical approximations to the values
of Em−1

m−1(γ) and more interestingly the location of the optimal value of γ, that is, the value that

minimizes Em−1
m−1(γ). These results can be obtained using the Remez method, e.g., [31, Section 1.3],

by constructing the optimal polynomial approximation to f 1
γ (t) on the interval [0, 1], see the proof

of Lemma 3.1 for more details.

In Figure 3.1 we have plotted Em−1
m−1(γ) as a function of γ for seven different values of m. This

shows a very interesting pattern that is summarized by the following observation.

Conjecture 3.1. The function Ej−1
j−1(γ) for j = {2, 3, . . . } has j − 1 local minima. These

minima coincide with local maxima of Ej
j (γ). The minima of Ej−1

j−1(γ) interlace the minima of

Ej
j (γ).

If the curve Ej
j (γ) has a local minimum this appears to coincide with the fact that the error

curve for the polynomial approximation at this point seems to have one additional alternation
point. In Table 3.1 the optimal value of γ and the corresponding error have been reported. We
used a straightforward search algorithm for this in combination with Remez approximations.

As mentioned previously we must choose our shift γ before we start our iterative procedure.
Changing it during the process is too expensive. Although this appears to be a drawback from
a theoretical point of view, in practice this is no problem since the required precision is known
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beforehand. For instance, if one is interested in a precision of about 10−5 one can consider Table 3.1
and decide to choose γ = 0.119τ since this γ minimizes our upper bound from Lemma 3.1.

3.2. Discussion. One might wonder if there is anything to gain by using different real shifts
in the Lanczos method, that is, does it pay to construct an approximation from the class

R̃j
i =

{
p(t)

i∏

i=1

(1 + γit)
−1 | p ∈ Πj

}
where γi ∈ R.

Using different shifts in a Lanczos method can be facilitated by rational Krylov methods [32].
Interestingly enough, it was conjectured in two independent papers [19, 22] that the optimal ap-

proximation from R̃j
i is also contained in Rj

i . This conjecture was later shown to be true [2, The-
orem 1]. If one is willing to work with quadratic factors, or linear factors with complex shift, one
can consider using Chebyshev rational approximations. A comparison for solving linear parabolic
equations between the Crank-Nicolson method and using a Chebyshev rational approximation can
be found in [5].

Using optimal restricted rational approximations on the negative real axis to approximate
the exponential function for solving semi-discretized parabolic differential equations is discussed
in [34, p. 319]. The authors emphasize the computational advantages when only shifted systems
with constant real shifts have to be solved. Many other rational approximations, for example,
Chebyshev rational approximations, and the diagonal elements of the Padé table, cannot be fac-
tored into linear factors with real coefficients. Restricted rational approximations to the matrix
exponential of Padé type have been used by Nørsett et al. [26, 27, 28], see also the paper by
Van Iseghem [43]. These rational approximations play an important role in the development of
so-called semi-implicit diagonal Runge-Kutta methods, which are attractive since in one step of
the method only systems have to be inverted with a constant real shift. In [16] explicit expressions
for the restricted rational approximations are derived that interpolate the exponential function in
an equispaced mesh. It is shown by a numerical example that rational interpolations are better
suited for approximating the matrix exponential than restricted Padé approximations when A
originates from a Poisson operator. The main difference of all these techniques with the method
considered in this paper is that the use of the Lanczos method allows us to exploit the favorable
eigenvalue spectrum of the transformed matrix as discussed previously. This will become clear
when we discuss numerical examples in Section 6.

The proposed method in this paper is also related to the work on extended Krylov subspaces in
[9], where the authors are interested in Krylov subspaces for A extended by a Krylov subspace gen-
erated by A−1. They show that these subspaces have a superior approximation quality (although
they consider a different function class). One essential difference is that, in the present paper, we
work with shifted inverses and, considering the results in the previous section, we mention that
this is pivotal. Also, the a priori error bounds presented in [9] depend on the condition number
of the matrix A. Finally, a difference is that we are interested in preconditioned solvers for the
solution of linear systems. We will discuss this further in Section 5.

4. A posteriori error estimation. In this section we consider strategies for terminating
the shift-and-invert Lanczos process as soon as ym(τ) is within a predefined distance to the sought-
after vector. To this purpose we first derive an explicit expression for the error. In practice this
relation cannot be evaluated exactly. Subsequently we will discuss a few ideas to come to practical
error estimators.

By rewriting (3.1) we find that

VmT
−1
m = (I + γA)Vm + βmṽm+1z

∗
m, ṽm+1 = (I + γA)vm+1, zm = T−1

m em.

Hence, we obtain the following relation

AVm = VmT̃m − βm

γ
ṽm+1z

∗
m, T̃m =

1

γ
(T−1

m − I). (4.1)
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Using this relation we see that our approximation satisfies

y′m(t) = −VmT̃m exp(−tT̃m)e1 = −Aym(t) + gm(t), gm(t) = −βm

γ
ṽm+1z

∗
m exp(−tT̃m)e1,

with ym(0) = v, whereas the exact solution fulfills

y′(t) = −Ay(t), y(0) = v.

We define em(t) = ym(t) − y(t) and get

e′m(t) = −Aem(t) + gm(t), em(0) = 0. (4.2)

Finally, an explicit expression for the error follows by writing down the solution of this ODE using
variation of constants, which yields

em(τ) =

∫ τ

0

exp(−(τ − t)A)gm(t) dt = −βm

γ

∫ τ

0

exp(−(τ − t)A)ṽm+1z
∗
m exp(−tT̃m)e1 dt (4.3)

or, equivalently,

em(τ) = −βm

γ
Xmvm+1 (4.4)

where

Xm :=

∫ τ

0

e∗m(I + γT̃m) exp(−tT̃m)e1 exp(−(τ − t)A)(I + γA) dt (4.5)

Hence, the error is determined by the norm of the operator Xm. Unfortunately, the precise size of
the error is hard to assess through (4.3) since this quantity is difficult to evaluate. In the remainder
of this section we focus on practical error estimators.

We substitute

exp(−(τ − t)A) = I − (τ − t)A+
1

2
(τ − t)2A2 + . . .

in (4.3) and obtain

em(τ) = −βm

γ

∫ τ

0

(
I − (τ − t)A+

1

2
(τ − t)2A2 + . . .

)
ṽm+1z

∗
m exp(−tT̃m)e1 dt.

By defining the functions

φj(−τA) =
1

(j − 1)!

∫ τ

0

(τ − t)j−1 exp(−tA) dt, (4.6)

we get the following result.
Lemma 4.1. The error em(τ) satisfies the following expansion:

em(τ) = −βm

γ

∞∑

j=0

z∗mφj+1(−τ T̃m)e1(−A)j(I + γA)vm+1. (4.7)

By partial integration it can be shown that the φ-functions can be computed by means of a simple
recursion. This series is similar to the one given in [33] for standard Lanczos approximations. A
practical error estimator follows by taking only the first summand of the series:

‖em(τ)‖ ≈ βm

γ
|z∗mφ1(−τ T̃m)e1| ‖(I + γA)vm+1‖. (4.8)
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Fig. 4.1. Error of the shift-and-invert Lanczos approximation (solid) and the error estimators (4.8) (dash-
dot), (4.9) (o) and the difference of two iterates (+). In both pictures γ = τ/10. Left picture: τ = 1/5 and right
picture: τ = 1/100.

More advanced strategies can be taken as in the software package [35] for the standard Lanczos
approximation which is based on the analogous expansion in [33]. We will not follow this direction.

Our derivation of (4.7) immediately suggests alternative approximations to the error by using
more advanced approximations than the Taylor series expansion, e.g., using Chebyshev series or
again by Lanczos approximations. We can substitute for instance into (4.3) the approximation:

(I + γA) exp(−(τ − t)A)vm+1 ≈ Vm+j(I + γT̃m+j) exp(−(τ − t)T̃m+j)em+1.

The obvious advantage of this approximation is that the error estimator only requires information
that is already computed in the Lanczos process, so there is no additional work necessary. Not
surprisingly, it is very easy to see that with this substitution the norm of (4.3) is equal to ‖ym+j(τ)−
ym(τ)‖.

Estimating the error by the difference of two (consecutive) approximations is straightforward
and simple, however it has some less appealing properties. For example, stagnation of the process
leads to excessively optimistic error estimates. In our practical experience with the presented
method, no problems were encountered if γ is sensibly chosen and therefore convergence is fast
enough. A different problem occurs in the first few steps where we see that ‖ym(τ)‖ ¿ ‖y(τ)‖
which can be explained by the fact that the eigenvalues of T̃m are far from the smallest eigenvalue
of A. Numerical experience shows that an effective upper bound for the relative error in step m is
given by

δm =
‖ym(τ) − ym−j(τ)‖

‖ym(τ)‖ .

With this assumption we have that ‖y(τ)‖ . δm‖y(τ)‖+‖ym(τ)‖ and we correct the error estimator
as follows

‖em(τ)‖ .
δm

1 − δm
‖ym(τ)‖. (4.9)

A trivial upper bound is ‖em(τ)‖ ≤ 1 + ‖ym(τ)‖. In our experiments, we take the minimum of
this bound and (4.9) as an error estimator to circumvent very large error estimates in the first
steps. In all our experiments we, furthermore, have taken j to be equal to one.

The corrected estimator (4.9) turns out to be very effective in experiments and we now will
demonstrate this with a simple example. The matrix A is a central finite difference discretization
with 30 grid points in both directions of the Poisson operator on the unit square with homogeneous
Dirichlet boundary conditions. Figure 4.1 illustrates that for τ = 1/5 estimating the error by the
difference of two iterates can lead to overly optimistic estimates in the start. This behavior is
corrected by (4.9). Typically we see that the estimator starts in the neighborhood of one and after
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a few iterations it quickly decreases as more information on the norm of the error becomes available.
We remark that these two figures demonstrate some interesting properties of the convergence of
the proposed method; we will discuss this in detail in Section 6.

5. Tuning the inner–outer iteration. We want to compute an approximation ym(τ) which
is at an absolute distance of about ε from the true vector. In step j of the shift-and-invert Lanczos
process we have to solve a linear system involving an elliptic operator. If this is accomplished
using an iterative solver we have to prescribe a constant ηj that determines the precision for this
inner solve, that is

‖rj‖ ≤ ηj with rj = vj − (I + γA)cj . (5.1)

The vector cj is the approximate solution of the linear system. In this section we look in more
detail at the influence of these inaccuracies on the Lanczos approximation. Numerical experiments
show that the sensitivity towards these errors in the Lanczos process is similar to that witnessed
in other applications of the Lanczos method where matrix-vector products are perturbed. A
precise error analysis, however, turns out to be very challenging and we restrict ourselves to more
heuristical arguments here.

The errors in the solution of the linear systems in (5.1) result in a perturbed Lanczos relation
(3.1) which after some manipulation can be recast as a perturbed form of (4.1):

AVm = VmT̃m − βm

γ
ṽm+1z

∗
m − 1

γ
FmT

−1
m . (5.2)

Here, the jth column of the matrix Fm equals the residual of the linear system that is solved in
the jth step of the Lanczos process, in other words we have Fmej = rj . We warn the reader that
the tridiagonal matrix Tm and the matrix Vm in this relation are different from the tridiagonal
matrix generated by the Lanczos method in the error free case. For instance, there is no guarantee
that the matrix Vm is orthogonal. Another source of errors is rounding errors resulting from the
use of floating point arithmetic. Since these errors are typically many orders of magnitude smaller
than the approximation errors introduced in the solution of the shifted systems, we will neglect
rounding errors. Using the relation (5.2) and reasoning along the same lines as in the previous
section, we find the following bound for the error:

‖em(τ)‖ ≤ βm

γ
‖Xmvm+1‖ +

1

γ
‖
∫ τ

0

exp(−(τ − t)A)FmT
−1
m exp(−tT̃m)e1 dt‖.

The matrix Xm is again as defined in (4.5). If we assume that ηj = ε, and therefore ‖rj‖ ≤ ε,
then a crude estimate for the second quantity is given by

1

γ
‖
∫ τ

0

exp(−(τ − t)A)FmT
−1
m exp(−tT̃m)e1 dt‖ ≤ ‖T−1

m e1‖
√
mτ

γ
ε.

Here we have used the Cauchy-Schwarz inequality. This shows that

‖em(τ)‖ ≤ βm

γ
‖Xmvm+1‖ + ‖(I + γT̃m)e1‖

√
mτ

γ
ε. (5.3)

We see that in the first few iterations the first term is the dominating quantity and, in fact,
determines the convergence behavior of the perturbed method. Standard practice would be to
view the first term in (5.3) as the error computed by an exact Lanczos process on a nearby matrix.
This is a common approach in the analysis of perturbed Lanczos methods, see for instance [6].
Unfortunately, this idea does not easily carry over to the method of the present paper since the
matrix Xm defined by (4.5) not only depends on the tridiagonal matrix Tm, but also on the original
matrix A.

As an alternative we focus on the expansion in Lemma 4.1 and in particular the quantities
z∗mφj+1(−τ T̃m)e1 as a function of the iteration number m. We assume that for all m, the eigenval-
ues of Tm are contained in an interval (0, α]. In practice the positive definiteness of the tridiagonal
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matrix Tm can be guaranteed by using a version of the Lanczos method based on coupled recur-
rences in combination with solving the linear systems by the conjugate gradient method. Bounds
on the eigenvalues of the tridiagonal matrix Tm generated by a perturbed Lanczos process can be
found in [30]. For every polynomial p ∈ Πm−2, we have

|z∗mφj+1(−τ T̃m)e1| = |e∗m
(
T−1

m φj+1(−τ T̃m)e1 − p(Tm)
)
e1|

≤ infp∈Πm−2
supt∈(0,α] | 1tφj+1

(
τ
γ (1 − 1

t )
)
− p(t)|.

This suggests that the coefficients in the expansion (4.8) decrease as a function of m with our
assumption on the eigenvalues of the tridiagonal matrices. This argument confirms the observation
that the vector ‖Xmvm+1‖ gets many orders of magnitude smaller than ε before it stagnates. As
a consequence this means that in the end the attainable precision of the method is essentially
bounded by the second term in (5.3) and we have argued that the method can achieve a final
precision of O(ε) when all linear systems are solved with a fixed residual precision of ε.

There are some recent research efforts in the analysis of the effect of approximate matrix
vector products on Krylov subspace methods, e.g., [3, 11, 36, 39]. These works show that when
solving linear systems, or computing eigenvectors, by means of a Krylov subspace method, accurate
approximations to the matrix-vector product are necessary in the first iterations, but this precision
can be relaxed as the method converges. It is interesting to see if such strategies can be extended
to the current context where inexact matrix-vector products result from the errors in the solution
of the shifted systems.

A key issue of the analysis in [11, 36, 39] is that the computed vector in the approximation
subspace has a decreasing pattern. Suppose that after m steps of the error free method we have
computed an approximation that is sufficiently accurate, i.e., ‖ym(τ)−y(τ)‖ ≤ ε. We have for the
component of the solution in the direction of the vector vj = Vmej :

|v∗j ym(τ)| ≤ |v∗j (ym(τ) − y(τ))| + |v∗j y(τ)| ≤ ε+ ‖(I − Vj−1V
∗
j−1)y(τ)‖ ≈ ε+ ‖ej−1(τ)‖.

In the last step we have assumed that the iterate from step j − 1 is approximately equal to the
optimal approximation from the (j − 1)st Krylov subspace. Intuitively, this shows that the errors
in the Lanczos process in the first steps have a relatively large impact since the solution lies mainly
in the direction of the first Lanczos vectors. For this reason, we propose the following strategy for
controlling the tolerances of the linear systems:

ηj =
ε

‖ej−1(τ)‖ + ε
. (5.4)

Practical strategies result from replacing ‖ej−1(τ)‖ in (5.4) with a suitable upper bound as dis-
cussed in the previous section, for instance (4.9). Following nomenclature from [3] we will refer
to (5.4) as a relaxation strategy for the remainder of this paper. In the current context such a
strategy turns out to be much harder to analyze than for linear systems due to the nonlinear
character. Nevertheless, this strategy worked very satisfactorily in all our numerical experiments.
We will give an example of this in Section 6.1.

6. Numerical experiments. In this section we discuss some numerical experiments that are
typical of our experiences with the presented method. All experiments are conducted in Matlab.
The purpose of our first experiment is to illustrate properties of the convergence behavior of the
new method. The matrix A results from a simple central finite difference discretization of the
one dimensional Poisson operator with periodic boundary conditions. Although this matrix is of
little practical importance, it leads to representative results and, more importantly, it allows us to
compute the true solution with a fast Fourier transform for comparison purposes. Moreover, the
smallest eigenvalue of this matrix is zero, which means that the norms of the true solutions are
not very sensitive to the choice of τ . The dimension of the matrix is 105 and in all experiments
in this section we take γ = τ/10. This latter choice is not necessarily optimal. However, using
this fixed strategy in all experiments shows that the method is not very sensitive towards a very
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Fig. 6.1. Error as a function of the number of iterations for τ = 1/2 (+), τ = 1/20 (o), τ = 1/50 (×),
τ = 1/2000 (*) and the upper bound from Lemma 3.1 (dotted).

precise choice for γ. Notice that the traditional Lanczos approximation is not an option here since
upper bounds suggest, and experiments often show, that for one dimensional elliptic operators
convergence starts after the number of iteration steps is almost equal to the number of spatial
grid points. The results of our numerical experiments are reported in Figure 6.1 where we have
included as a reference the upper bound from Lemma 3.1.

Interestingly, the number of Lanczos iterations increases when τ becomes smaller. An expla-
nation lies in fact that for larger values of τ a relatively small portion of the eigenvalues essentially
determines the final vector. Due to the nice separation of these eigenvalues, as discussed in Sec-
tion 3, Krylov subspaces quickly come to contain approximations to the corresponding invariant
subspaces and therefore only a few iteration steps are required. When τ decreases, loosely speak-
ing, more and more eigenvalues determine the final result and a more uniform approximation is
more effective then. This shows that the Lanczos approximation indeed takes advantage of the
nice eigenvalue distribution of the transformed system and it shows that convergence might be
much faster than is expected from treating the problem as a uniform approximation problem on
an unbounded interval as we did in our upper bounds in Section 3.1.

6.1. The impact of errors in the solution of the linear systems. In the remainder of
this section we take as model equation the parabolic partial differential equation in two spatial
dimensions:

∂

∂t
u(t, x, y) = Lu(t, x, y), (x, y) ∈ Ω = (0, 1)2, 0 ≤ t ≤ τ, (6.1)

subject to the initial condition

u(0, x, y) = u0(x, y).

The operator L is a self-adjoint linear second-order elliptic operator,

L =
∂

∂x
a(x, y)

∂

∂x
+

∂

∂y
b(x, y)

∂

∂y
+ c(x, y), (6.2)

with time independent boundary conditions. The matrix A originates from discretizing the oper-
ator L using central finite differences on a square grid.

We investigate the impact of errors in the solution of the shifted systems (the inner iteration)
on the final accuracy of the overall method. Therefore, we have experimented with two choices
of ηj in (5.1): taking ηj = ε (fixed) and the relaxation strategy given by (5.4) in Section 5. For
the latter strategy we have replaced the norm of the error by the approximation given by (4.9).
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Moreover, the Lanczos process was terminated as soon as this quantity dropped below ε. The
matrix A stems from discretizing the operator L in (6.2) with

a(x, y) = 1 + y − x, b(x, y) = 1 + x+ x2, c(x, y) = 0,

and homogenous Dirichlet boundary conditions on the western and eastern boundaries and a ho-
mogenous Neumann boundary condition on the northern and southern boundaries of the domain.
For the discretization of the operator we have used 40 grid points in both directions which still
allows us to compute the true solution with a dense method for comparison purposes. We are
interested in a precision of ε = 10−6.

The results of our numerical experiments are summarized in Table 6.1. The shifted linear sys-
tems are solved with the conjugate gradient method (CG) preconditioned by a standard incomplete
LU preconditioner. In the next section we use more advanced and effective preconditioners. As
a measure for the total amount of work we have reported the total number of applications of the
ILU preconditioner in the inner iterations and the number of outer iterations. Moreover, we have
included the error of the computed approximation at termination as well as the error estimated
at this point by (4.9).

Fixed Relaxed
τ in./out. error estimate in./out. error estimate
1 228/5 3.8 · 10−8 3.9 · 10−7 152/5 3.7 · 10−8 4.0 · 10−7

1/5 348/10 6.5 · 10−8 3.1 · 10−7 230/10 1.9 · 10−7 3.1 · 10−7

1/10 326/12 2.3 · 10−7 8.9 · 10−8 202/12 5.7 · 10−7 9.6 · 10−8

1/50 182/13 8.2 · 10−7 7.0 · 10−7 114/13 8.9 · 10−7 7.0 · 10−7

1/100 140/14 1.2 · 10−6 2.3 · 10−7 82/14 1.3 · 10−6 2.1 · 10−7

Table 6.1
Numerical results for γ = τ/10.

The table shows that in all cases we achieve the required precision of about 10−6. The use of
a relaxation strategy as opposed to using a fixed precision for the inner iterations has no influence
on the total number of Lanczos (outer) iterations. The amount of work in the inversions of the
linear systems, measured as the total number of applications of the ILU preconditioner, is reduced
by about 30 to 40 percent. This is comparable with reductions that are seen in applications of
inexact Krylov methods in other areas, see for a more detailed discussion [40, Section 3]. For the
purpose of illustration we have included in Figure 6.2 and Figure 6.3 a visual representation of
the results for τ = 1/10 and τ = 1/100 for both strategies.

Again, we have that the number of Lanczos iterations increases when τ becomes smaller as
in the previous example. This is a combination of the fast convergence of the method for modest
values of τ and, furthermore, is partially explained by the small norm of the true solution. On
the other hand, we see that the number of CG steps per outer iteration decreases for smaller
values of τ . This is a result of our choice γ = τ/10 which makes the matrix more and more
diagonally dominant when τ becomes smaller. For comparison purposes we mention that solving
a linear system with this matrix and right-hand side to a precision of 10−6 requires 49 steps of
the GMRES method preconditioned by an incomplete LU decomposition, a factor 4 less than for
computing the exponential with τ = 1/10.

From Figures 6.2 and 6.3 it seems that the convergence of the method stagnates now and then
for one iteration. A possible explanation is that the Lanczos approximation mimics a property
of the optimal uniform approximation. This is related to the observation in Conjecture 3.1 and
can also be seen in Figure 3.1. Since, for smaller values of τ the Lanczos method constructs a
more and more uniform approximation on an interval, this might explain why these plateaus occur
more often for small values of τ , see Figures 6.2 and 6.3, and also Figure 4.1. We notice that in
this experiment the error estimator (4.9) is a little too optimistic in the neighborhood of 10−5 for
τ = 1/10 which is caused by the temporary stagnation of the method at that point. Although
such underestimation is not large and, in our experience, seldomly occurs, it can be resolved by
switching to j = 2 in (4.9).
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Fig. 6.2. Error (solid), tolerance ηj (+) and error estimator (o) as a function of the total number of appli-
cations of the ILU preconditioner for ηj = ε and ηj as in (5.4) for τ = 1/10. See also Table 6.1.
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Fig. 6.3. Error (solid), tolerance ηj (+) and error estimator (o) as a function of the total number of appli-
cations of the ILU preconditioner for ηj = ε and ηj as in (5.4) for τ = 1/100. See also Table 6.1.

6.2. The influence of mesh refinement. In our next experiment we explore the impact
of the number of spatial grid points on the method. In order to be able to handle large matrices
we have used the SAMG algebraic multigrid package [37] for solving the shifted systems. This
package is written in Fortran and we have interfaced it with Matlab. For ease of illustration we
have taken the standard Poisson operator on a square grid with Dirichlet boundary conditions,
i.e., a(x, y) = b(x, y) = 1 and c(x, y) = 0 in (6.2). We aim at a precision of ε = 10−8. In
Table 6.2 we have reported the total number of cycles done in the inner iterations and the number
of Lanczos iterations necessary to reduce the error estimator below 10−8 for different combinations
of n (number of spatial grid points) and τ . Again we have used two strategies for choosing ηj :
ηj = ε and ηj as in (5.4) with the norm of the error replaced by the estimator (4.9). The matrices
were unfortunately too large to check if the obtained solution fulfills our accuracy requirement by
comparing it against the outcome of a dense method. Instead, we have verified the results via
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another sparse method set to a smaller tolerance. In all cases the computed vectors have an error
that is at most of the order of the required precision.

n 322 642 1282 2562 5122 10242

Fixed

τ = 1 20/4 24/4 24/4 27/4 28/4 28/4
τ = 1/10 65/13 70/13 78/13 78/13 90/13 91/13
τ = 1/100 104/15 48/16 89/18 90/18 108/18 108/18
τ = 1/1000 23/8 52/11 123/14 64/16 76/16 80/16

Relaxed

τ = 1 18/4 21/4 21/4 23/4 24/4 24/4
τ = 1/10 43/13 48/13 52/13 53/13 58/13 60/13
τ = 1/100 62/15 32/16 48/18 55/18 61/18 64/18
τ = 1/1000 15/8 30/11 66/14 39/16 42/16 48/16

Table 6.2
Total number of cycles/number of Lanczos iterations as a function of τ and the size of the matrix.

The table shows that increasing the accuracy in the spatial discretization has no dramatic
influence on the total number of Lanczos iterations. For example, for τ = 1, in all tests we needed
four steps. This shows that even in situations where convergence is heavily based on exploiting
the eigenvalue spectrum, the convergence is grid independent. This is expected since the upper
estimate of the spread/gap ratio does not depend on the norm of A. When τ is decreased we
see again that more steps of the Lanczos method are required. The computational advantage of
a relaxation strategy is modest for a large value of τ . The reason is that in this situation the
upper bound is around one in the first iterations and then very quickly drops in the final two
iterations. For smaller values of τ the gain is comparable to that for the example in the previous
section. We warn the reader that the SAMG package detects diagonal dominance of a matrix and
automatically switches to a different solution strategy if this is more appropriate. This means that
one cannot straightforwardly compare the total number of cycles for different combinations of τ
and n.

7. Summary and outlook. The aim of this paper is to generalize the concept of precon-
ditioning for linear systems to the computation of the product of the matrix exponential and
a vector. The idea explored is to apply the Lanczos process to a shifted and inverted matrix
that better emphasizes the important eigenvalues. This results in an inner–outer iteration scheme
where the solution of the shifted systems can be accomplished by preconditioned solvers. The
worst case convergence behavior of the method can be bounded in terms of a rational approxima-
tion problem on the positive real axis. However, convergence speeds observed in practice are often
much higher than these bounds suggest. This is due to the fact that the spectral transformation
facilitates the exploitation of the discrete nature of the spectrum of the matrix. We have argued
and demonstrated that the method shows convergence speeds independent of the norm of the ma-
trix and, if an appropriate method is used for the solution of the linear systems, we can compute
the sought-after vector in a time proportional to the number of spatial grid points. Furthermore,
we have proposed an empirical strategy for choosing the tolerances for the errors in the solution
of the shifted linear systems. This strategy can reduce the amount of work in the solution of the
shifted systems with up to 40 percent compared with using a fixed tolerance on the error.

For clarity of this paper we have restricted our attention to the computation of the exponential
function. However, the same approach seems to carry successfully over to the computation of the
matrix functions related to (4.6) that play, beside the exponential function, an important role in
exponentially based integrators, e.g., [14, 18, 20]. Also, we have assumed throughout this paper
that the matrix is symmetric positive semi-definite. It is clear how our work can be extended to
deal with so-called sectorial operators as well. Much of the theory and heuristics here are expected
to hold in this case too. For example, it has been shown that there is a sequence of approximations
from the classes Rm−1

m that converges geometrically to exp(−t) in a sector symmetrically around
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the real axes, see [34].

In our future work we plan to investigate also other ideas for incorporating preconditioning in
the computation of the matrix exponential. This is in particular important in applications where
the matrix is skew-symmetric and, therefore, has purely imaginary eigenvalues. In this case it is
not possible to exploit the rapid decay of the exponential functions and a different approach is
required.
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