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Abstract

Background: The measurement of activity energy expenditure (AEE) via accelerometry is the most commonly used
objective method for assessing human daily physical activity and has gained increasing importance in the medical, sports
and psychological science research in recent years.

Objective: The purpose of this study was to determine which of the following procedures is more accurate to determine the
energy cost during the most common everyday life activities; a single regression or an activity based approach. For this we
used a device that utilizes single regression models (GT3X, ActiGraph Manufacturing Technology Inc., FL., USA) and a device
using activity-dependent calculation models (move II, movisens GmbH, Karlsruhe, Germany).

Material and Methods: Nineteen adults (11 male, 8 female; 30.469.0 years) wore the activity monitors attached to the waist
and a portable indirect calorimeter (IC) as reference measure for AEE while performing several typical daily activities. The
accuracy of the two devices for estimating AEE was assessed as the mean differences between their output and the
reference and evaluated using Bland-Altman analysis.

Results: The GT3X overestimated the AEE of walking (GT3X minus reference, 1.26 kcal/min), walking fast (1.72 kcal/min),
walking up2/downhill (1.45 kcal/min) and walking upstairs (1.92 kcal/min) and underestimated the AEE of jogging (2
1.30 kcal/min) and walking upstairs (22.46 kcal/min). The errors for move II were smaller than those for GT3X for all
activities. The move II overestimated AEE of walking (move II minus reference, 0.21 kcal/min), walking up2/downhill
(0.06 kcal/min) and stair walking (upstairs: 0.13 kcal/min; downstairs: 0.29 kcal/min) and underestimated AEE of walking fast
(20.11 kcal/min) and jogging (20.93 kcal/min).

Conclusions: Our data suggest that the activity monitor using activity-dependent calculation models is more appropriate
for predicting AEE in daily life than the activity monitor using a single regression model.
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Introduction

Physical activity is an important determinant of health, and a

lack of physical activity increases the risk of developing diseases

and conditions including coronary heart diseases, Type 2 diabetes

and colon and breast cancer and decreases life expectancy [1]. In

recent years, a large research effort has been put into developing

effective physical activity measures for disease prevention and

therapy. Accurate assessment of physical activity and its outcomes

is a prerequisite for evaluating the efficacy of novel prevention and

rehabilitation interventions [2,3] and for monitoring physical

activity profiles of patients with limited mobility such as patients

with multiple sclerosis, Parkinson’s disease or patients undergoing

rehabilitation [4,5].

Daily physical activity is typically assessed using energy

expenditure (EE) estimates where activity-related energy expendi-

ture (AEE) is the most varying component of total energy

expenditure (TEE). The amount of the daily AEE may vary from

15% TEE in less active persons to 65% TEE in very active persons

[6] and can therefore be used as dimension for the assessment of

physical activity. The gold standards for measuring EE are indirect

calorimetry in laboratory settings [7] and the doubly labeled water

method for field testing [8]. Alternative methods for physical

activity assessments include questionnaires or diaries, and accel-

erometers. The doubly labeled water method is very costly and

cumbersome and does not resolve data by time, and question-

naires and dairies are subjective measures with moderate accuracy

of measuring physical activity [9]. In contrast, accelerometry is

suitable for field testing and has the potential for accurately

measuring daily physical activity, and hence has become the most

frequently used technique for assessing daily physical activity [10].

Accelerometer based devices use the recorded acceleration for

identifying postures, classifying between types of daily activities,
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measuring number of steps, identifying gait patterns and

identifying normal or abnormal movements (e.g. falls) [11].

Moreover, most commercially available accelerometers also

estimate the EE for daily activities.

Accelerometers can be designed as uniaxial, multi-axial or as

multi-sensor systems. Previous studies have investigated the

validity of different commercial acceleration-based devices for

assessing EE in healthy [12,13] and unhealthy subjects [14] and

whether multi-axial accelerometers are superior in quantifying

physical activity compared to uniaxial [15] or multi-sensor systems

[16]. The main disadvantage of many current acceleration-based

activity monitors is that they are based on the assumption of a

linear association between the acceleration (usually in form of

activity counts) and EE across all types of activities and thus use

single regression equations for predicting EE. However, predicting

EE from a single regression equation often results in overestimat-

ing the EE during low intensity activities and underestimating EE

during all other activities [17]. To overcome this problem,

separate regression models can be used for each type of activity.

In fact, using this activity-based approach EE estimation is more

accurate than using a single regression based method [18,19].

The purpose of this study was to determine the accuracy of

measuring AEE during the most common daily activities for the

two acceleration-based activity monitors GT3X (single regression

model) and move II (activity-based regression models) compared

to indirect calorimetry (IC).

Materials and Methods

Subjects & Ethics Statement
Nineteen healthy subjects (11 men and 8 women) participated in

this study after providing written informed consent. Subjects with

a large range in age, body characteristics and physical conditions

and both sexes were included in this study to represent a sample

that roughly corresponds to the general adult population. Only

subjects who were between 18 and 55 years old were included.

Exclusion criteria were chronic diseases, body impairments and

medication intake.

This study was exempt from full ethics review by the Ethics

Committee at the Karlsruhe Institute of Technology. All subjects

gave written informed consent prior to participation. The study

was conducted in accordance with the Declaration of Helsinki.

Anthropometric Measurements
Prior to testing, subjects’ height and mass were measured

(without shoes and in light clothing), using a stadiometer and a

calibrated physician’s scale (Seca GmbH, Hamburg, Germany),

respectively. Body mass index (BMI) was calculated as the subject’s

mass (in kg) divided by the height squared (in m2). Descriptive data

of all subjects are listed in Table 1.

Procedures
First, the resting metabolic rate (RMR) was measured. Subjects

were equipped with the indirect calorimeter. During RMR-

measurements, the subjects were at complete rest in supine

position and were asked to relax, to refrain from any movements

and from talking, and to lightly breathe. RMR was extracted from

a 5-minute steady state period without high fluctuations in the

VO2, VCO2, and respiratory quotient (RQ). This was automat-

ically performed from the IC software. The RMR-measurement

ended automatically after completing a 5-minute steady state

period and lasted between 30 and 45 minutes.

Subsequently, the subjects performed a series of different

predefined daily indoor and outdoor activities (Table 2) including

walking at different speeds, walking up- and down-stairs and

crossing a sloped pedestrian bridge (representing walking up- and

downhill). To assess the validity of the two devices for measuring

EE in free-living activities, we aimed at creating situations similar

to those found under habitual conditions and asked each subject to

perform the activities at his/her normal intensity. To avoid

influencing the intensity of the activity, the investigator only gave

instructions when to start and stop.

Between consecutive types of activities, subjects were asked to

rest. This was necessary to accurately assess AEE for each activity

and to ensure that the subjects did not experience any fatigue.

Because different recovery times may be required following

different activities and different intensities, the break was defined

as the time needed by the subject to reach 20% above his/her

resting heart rate. Overall, data collection took around 75 minutes

including all transitions between the activities and breaks.

Table 1. Descriptive characteristics of the participants (mean, SD, minimum, maximum).

Women (N=8) Men (N=11)

Mean SD Min Max Mean SD Min Max

Age [years] 30.8 8.6 23.0 46.0 30.6 9.0 22.0 51.0

Height [cm] 167.3 4.2 161.0 173.5 178.7 7.3 166.6 192.5

Mass [kg] 65.2 9.0 51.8 78.8 80.3 12.3 64.0 103.2

BMI [kg/m2] 23.3 3.0 19.6 28.7 25.1 3.4 21.2 33.4

RMR [kcal/d] 1631.6 197.1 1330.0 1840.0 2163.5 291.3 1904.0 2773.0

BMI – body mass index; RMR – resting metabolic rate.
doi:10.1371/journal.pone.0090606.t001

Table 2. Study procedure.

Activity Duration Distance Place

Sitting 5 min – indoor

Standing 5 min – indoor

Slow walking 415 m outdoor

Fast walking 415 m outdoor

Jogging 26415 m outdoor

Walking
up2/downhill

46130 m outdoor

Walking stairs
up/down

3 floors indoor

doi:10.1371/journal.pone.0090606.t002

Validation of Two Activity Monitors

PLOS ONE | www.plosone.org 2 February 2014 | Volume 9 | Issue 2 | e90606



Devices
All subjects simultaneously wore the portable IC MetaMax 3B

(Cortex Biophysik, Leipzig, Germany) as criterion measure of the

EE, the GT3X (ActiGraph Manufacturing Technology Inc.,

Pensacola, FL, USA) and the move II (movisens GmbH,

Karlsruhe, Germany) activity sensors attached to their waist

above the right anterior axillary line according to the manufac-

turers’ recommendations. The heart rate was monitored using a

Polar Activity Watch (Polar Electro Oy, Kempele, Finland). Prior

to each trial, all devices were initialized and synchronized using

their respective software.

Indirect calorimetry. The MetaMax 3B was calibrated

before each test according to the manufacturer’s guidelines. The

IC consists of a face mask, a measurement module and a battery

module. The two modules have the same size (1261164.5 cm3)

and are attached to the chest by a harness. The entire system

weighs approximately 570 g and can operate remotely for up to 15

hours. The measured data is transmitted wirelessly to a laptop and

can be further analyzed using the software MetaSoft (Cortex

Biophysik, Leipzig, Germany). The validity and reliability of the

MetaMax 3B compared with the Douglas bag method and

another validated gas analysis system (Jaeger Oxycon Pro system)

have been previously reported [20].

ActiGraph – GT3X. The GT3X activity sensor consists of a

three-axial acceleration sensor (adxl335, Analog Devices, Boston,

USA; range: 63 g; sampling rate: 30 Hz; resolution: 12 bit). The

sensor weighs 27 g, measures 3.863.761.8 cm3, can be worn

either on the hip or on the wrist and allows measurements for up

to 21 days. The recorded data is saved as activity counts on a

4 MB flash memory and transferred to the computer via standard

USB 2.0 interface.

movisens GmbH - move II. The move II activity sensor

consists of a three-axial acceleration sensor (adxl345, Analog

Devices; range:68 g; sampling rate: 64 Hz; resolution: 12 bit) and

an air pressure sensor (BMP085, Bosch GmbH; resolution:

0.03 hPa; sampling rate: 8 Hz). The sensor weighs 32 g, measures

5.063.661.7 cm3, can be attached at different locations (hip, wrist

or chest) and allows measurements for up to 7 days. The recorded

raw data is saved on a 2 GB micro SD card and transferred to the

computer via standard USB 2.0 interface.

Data Processing
The data from the IC were analyzed using the associated

software (MetaSoft). The IC was used both to collect the reference

data for the EE and to set the start- and stop-markers for the

different activities. For each activity, steady state EE was

identified, and the corresponding EE values were averaged and

used for subsequent analyses. This procedure was repeated for all

subjects and the following activities: walking, fast walking and

jogging. Because of the short durations of all other activities

(walking up2/downhill, ascending and descending stairs), steady

state was not reached during these activities, and the mean EE was

calculated for each activity and used as reference. The AEE for

each activity was calculated by subtracting the RMR from the EE.

The raw data from the GT3X in form of counts were analyzed

using the ActiLife 5 (ActiGraph Manufacturing Technology Inc.,

FL., USA) software. The device was set to record every second

(epoch). The subject’s mass was entered prior to data collection,

and the software was set to calculate AEE per second using a

‘‘vector magnitude’’ algorithm. A more detailed description on

estimating AEE using the GT3X can be found elsewhere [21].

The raw data from the move II were analyzed using the

associated software DataAnalyzer (movisens GmbH, Karlsruhe,

Germany). The output sampling rate was set to 1 sec. The

subject’s physical characteristics (age, height, mass and sex) were

entered prior to data collection, and the software estimated AEE.

A more detailed description on estimating EE using the move II

has been published previously [22].

All data were imported into MS Excel (Microsoft Corporation,

Redmond, USA) and synchronized for further statistical analyses.

The second by second AEE estimates for both devices were

converted into kcal/min, and the data were averaged to define the

AEE rate for each subject and each activity expressed as kcal/min.

Statistical Analysis
All statistical analyses were performed using the open source

computing language and statistics package R 2.13.2 and SPSS

version 17.0 (SPSS Inc., Chicago, IL, USA). The accuracy of the

two devices for predicting AEE was defined as the mean difference

(in kcal/min and in percent) between estimated AEE and the

reference AEE from IC for each device and each activity. To

assess the agreement of the two measuring devices with respect to

the reference, a Bland–Altman analysis [23] was performed. The

Bland–Altman plots for each device and each activity were

calculated and the measurement errors of both devices were

plotted against their bias. A zero bias represented no difference

between estimated and reference AEE, a negative bias (estimated

AEE minus reference AEE) indicated an underestimation of AEE

by the monitoring device, and a positive bias corresponded to an

overestimation of AEE by the monitoring device. The limits of

agreement, which are defined as the mean difference (bias) 61.96

times the standard deviation of the errors, are also shown in the

plots. The smaller the range between these two limits the more

accurate is the device.

Results

The mean and percent differences between AEE measured

using the activity monitors and that measured using IC (reference)

differed between activities (Table 3). The Bland-Altman plots for

the GT3X and the move II are shown in Figures 1 and 2,

respectively. Overall, the differences relative to the reference

values were 1.5 to 15 times larger for the GT3X than for the move

II devices. The difference in bias between the two activity monitors

was statistically significant (P,0.01) for all activities except for

jogging (Table 3).

The GT3X overestimated AEE during walking, fast walking,

walking up2/downhill and descending stairs and underestimated

AEE for all other activities (Table 3). The largest differences

between the estimated and reference value were observed while

ascending and descending stairs (22.46 (0.95) and 1.92 (1.54)

kcal/min, respectively). In general GT3X underestimated moder-

ate activity and overestimated vigorous activity.

The move II overestimated AEE while walking, walking up2/

downhill and stair walking and underestimated AEE for all other

activities (Table 3). The largest error in AEE was observed for

jogging (20.93 kcal/min), followed by descending stairs

(0.29 kcal/min).

Discussion

The aim of this study was to test the validity of two different

activity monitors for estimating AEE for selected daily life activities

against a reference method (IC). One device (GT3X) uses the

commonly used single regression model for estimating AEE, and

the other device (move II) first detects the type of the activity and

then uses the respective regression model for estimating AEE. The

latter approach was found to be more accurate for estimating

Validation of Two Activity Monitors
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AEE, which is in agreement with previous studies that proposed

using different regression models according to the type [19,24] or

the intensity [25,26] of activity to improve AEE estimation.

In general, the GT3X overestimated AEE during moderate

activities (walking, fast walking, walking up2/downhill and

walking upstairs) and underestimated AEE during vigorous

activities (jogging and walking upstairs). This result is in agreement

with previous studies that showed that single regression models

overestimate EE during moderate intensity walking and underes-

timate EE during jogging [13] and that the GT3X significantly

underestimated EE for vigorous physical activities [12]. Crouter

et al. [17] tested multiple different single regressions during a wide

range of activities and concluded that no single equation was

appropriate for predicting AEE of all activities and that usually

AEE is underestimated for most activities except for walking.

Similarly, the move II overestimated AEE for most activities (that

is for walking, walking up2/downhill and stair walking) and

underestimated AEE for fast walking and for jogging. Similar to

Berntsen et al. [12] who reported that all tested devices

underestimated vigorous and very vigorous intensity physical

activity, both devices in our study underestimated AEE during

jogging. It can be concluded that both activity monitors were

inconsistent in terms of under- or overestimating reference AEE

Figure 1. Bland–Altman plots for GT3X. The solid lines represent the mean bias between estimated and reference AEE, and the dashed lines
represent the limits of agreement (61.96 SDs).
doi:10.1371/journal.pone.0090606.g001
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values and that the direction of bias depends on the specific

physical activity.

The largest errors in estimating AEE with the GT3X were

observed for walking up- and downstairs. This is a well-known

limitation of the acceleration-based activity monitors [27]: they are

not able to assess the increase in energy cost of walking upstairs or

uphill because the acceleration pattern remains very similar to that

for normal walking despite the increased effort required to elevate

the body’s center of mass, and hence tend to underestimate the

AEE for these activities. In contrast, for descending stairs the

acceleration magnitude is greater although the effort remains

almost the same thus resulting in an overestimation of the AEE.

The technology of move II not only utilizes activity-based

prediction models but also comprises a barometer, and hence

accounts for these differences in center of mass elevation reflected

in smaller errors in estimating AEE for walking up- and downstairs

than those of the GT3X device. Consequently, for activities

Figure 2. Bland–Altman plots for move II. The solid lines represent the mean bias between estimated and reference AEE, and the dashed lines
represent the limits of agreement (61.96 SDs).
doi:10.1371/journal.pone.0090606.g002
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involving elevation gain or loss, the use of barometer data for

estimating AEE seems compulsory.

The move II was more accurate in estimating AEE for walking

than for jogging. It is possible that the error during jogging

resulted from the fact that the move II uses the same regression

model for both walking and jogging. Different models for these

two types of activity may generate more accurate predictions. In

comparison, both the GT3X and the move II underestimated the

reference AEE while crossing a sloped pedestrian bridge. One

possible explanation for this underestimation is the relatively short

duration of this activity and that the AEE was averaged across the

entire activity. To assess the validity of the two devices for walking

on an incline, walking up- and downhill should be examined

separately. In addition, future studies should collect data for longer

distances and hence also for longer periods of time to generate a

larger and more robust data set.

This study was based on relatively small study cohort. Although

we recruited subjects with different body characteristics, the final

test sample included only healthy young to middle aged subjects

(22 to 51 years) and therefore the results cannot be generalized for

other populations (e.g. elderly people, children, obese). Moreover,

the RMR-measurement for some subjects was performed in the

afternoon and not in the morning as suggested by the international

guidelines. However, the tests were conducted after 3 h fasting for

all subjects.

In summary, the results of this study showed that the move II

device was more accurate in predicting AEE than the GT3X. We

conclude that using different AEE prediction models depending on

the type of activity being performed improves the AEE estimation.

This may be due to the fact that there is no linear relationship

between the acceleration and the AEE across all different types of

activities, since different types of activities include the use of

different muscles. This can be modelled by using different

equations for different groups of activities [28]. Furthermore the

use of barometer in addition to the acceleration sensor improves

the AEE estimation for the case of walking on a slope. However

only a limited number of activities were examined, thus the

validity of these results should be further tested for other daily

activities (e.g. cycling, household activities). The result data will be

made available to anyone willing to apply further statistical

analysis. For this please contact the corresponding author.
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