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Abstract
We report on the application of a feedback-controlled electromigration technique
for the formation of nanometre-sized gaps in mesoscopic gold wires and
rings. The effect of current density and temperature, linked via Joule heating,
on the resulting gap size is investigated. Our experiments include in situ
measurements of the evolution of the electrical resistance and of the structure of
the device during electromigration. Experimentally, a good thermal coupling to
the substrate turned out to be crucial to reach electrode spacings below 10 nm
and to avoid overall melting of the nanostructures. This finding is supported
by numerical calculations of the current-density and temperature profiles for
structure layouts subjected to electromigration. The numerical method can
be used for optimizing the layout so as to predetermine the location where
electromigration leads to the formation of a gap.
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1. Introduction

The diffusive flow of atoms in metals is driven by several forces one of which is proportional
and parallel to the electric field. This force is partially of electrostatic nature due to the positive
charge of the atomic cores but is in most cases dominated by the so called ‘electron wind’: the
diffusive motion of the conduction electrons has a net direction (namely that of the macroscopic
current density) in response to the electric field; the scattering at lattice defects leads to a
momentum transfer between the electrons and atoms driving the latter in anode direction. It is
this effect which is referred to as electromigration (EM) [1, 2] in the literature. The migration is
almost entirely due to a vacancy exchange mechanism [3] and the material flux can be described
in terms of a vacancy flux Jv [4].

EM is of high technological importance for the semiconductor industry since interconnects
in integrated circuits are made of metals (mainly aluminium or more recently copper) with
ever increasing current densities during normal operation. EM can lead to accumulation and
depletion of material at position of flux divergence, which is strongest at grain boundaries
and at the joints of three grains [5]. Depletion results ultimately in the formation of voids
and line failure. Modelling EM has therefore a long tradition and has reached a high level
of maturity [4]. The focus has naturally been on how to avoid or delay deterioration of
interconnects, i.e. electrical lines of mostly constant cross section meandering in two or three
dimensions. In general, the interconnects are embedded in dielectrics so that all surfaces form
interfaces with solids. This can increase the resistance to EM considerably due to a counterflow
related to the mechanical stress [6] which is stabilized by the confining envelope.

However, for more than a decade [7], EM has been employed to deliberately form gaps of
the order of a few nanometres only in microstructures. These gaps can be used to incorporate
molecules in a source–drain channel. The planar geometry facilitates the integration of gating
electrodes that are essential for a systematic characterization of electronic transport through
molecules. This type of experiments start in general with planar metallic structures (gold being
the most widely used material) on an insulating structure and the opposite surface is in contact
to vacuum or a gaseous atmosphere. The goal of EM is to form a gap at a more or less well
defined position and width. To this end the planar layout contains a constricted region to yield
high current densities and strong Joule heating at the same time. Since Jv is proportional to the
vacancy diffusion coefficient Dv which obeys an Arrhenius type of temperature dependence,
Dv ∝ exp(−Ea/kBT ), EM is strongly temperature dependent. Ea is an activation energy, kB the
Boltzmann constant and T the absolute temperature. Thus, Jv is large in regions of elevated
temperature and high current densities. It is normally assumed that stress cannot build up
over the regions of highest diffusivity in gold [8, 9] since hillocks at the anode side of the
surface easily build up releasing the stress. This in turn leads to depletion of material at the
cathode side leading to void nucleation preferably at grain boundaries located in regions of high
current densities and temperature gradients, followed by void grows, and finally a breaking up of
a gap.

Initially, electromigration-induced break junctions (EIBJ) were fabricated in an cryogenic
environment and irregularly shaped slits with a narrowest separation a were reported. From low-
temperature current–voltage measurements, a ∼ 1 nm was estimated [7, 10]. However, metallic
clusters often remained in the generated gap [11–13]. By working at room temperature, the
cleanliness of the gaps could be improved. However, special care has to be taken so as to limit
the dissipated power during void growth. While the smallest cross section of the structure is
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shrinking the total current has to be reduced accordingly. Otherwise the ever increasing current
density leads at some point to fatal heating and the break junction is produced by melting rather
than EM. The gap is in general far to large in this case. Power control has been achieved either
by active feedback [5, 14–17] or by eliminating the influence of serial resistance by monitoring
the voltage drop over the narrow constriction [18, 19].

Hence, to obtain a high yield of nanogaps, the experimental parameters have to be
optimized with respect to two competing objectives. On the one hand, the temperature T and the
current density j have to be raised sufficiently for material transport to occur on a reasonable
time scale. On the other hand, Joule heating has to be limited to avoid melting of the metal
structure, which would lead to droplet formation due to surface tension and to an unwanted
increase in electrode spacing. Several authors attempted to deduce the temperature at which
EIBJ form. One method uses the resistance change at high bias as a measure of temperature
by using a previously calibrated T versus R relation [18, 20–22]. This method is problematic,
though, since firstly the temperature of the self-heated structure is not constant but varies in
the same way as the current density; thus the resistance change measures at best an average
temperature of the structure while—due to the exponential factor in the Arrhenius law—the
maximal temperature is what matters most. Secondly, the temperature calibration implicitly
depends on the disorder scattering which in general changes during EM. Thus the calibration
can change in the course of the experiment. In one case [18], the total loss of calibration is
obvious. Taychatanapat et al [19] cover their gold structures with nanoclusters. By heating test
layers to different temperatures they determine the temperature T ∗ at which the clusters are
dissolved by the gold layer. When the current I is increased during the EIBJ formation the
nanoclusters are dissolved at a specific I value; the authors can thus pinpoint a current density
at which the structure is heated to T ∗ which is in fact a lower bound for the temperature during
EM. Other authors use numerical simulations to estimate a temperature profile in EIBJ layouts.
The used electro-thermal models range from simple one-dimensional approximations [20] to
more sophisticated finite-element models [5, 23].

In this paper we report on EIBJ experiments and electro-thermal simulations. Our
experimental technique is similar to the one described in [17] aimed at the control of the power
dissipated while the gap is being formed. Our final goal is to extend the technique used so far
for gaps in single wires, to more complicated structures, e.g. to form gaps in the two arms of a
ring connected by leads at opposite sides. In our experiments, we find a clear dependence of the
resulting gap size on the thermal coupling of the electromigrated structure to the cold substrate.
This coupling changes as a function of the thickness of a non-conductive layer insulating the
metallic structure from the semiconducting substrate (p-doped silicon in our case). We present
electro-thermal simulations which leads to a plausible explanation of this finding. It maps the
current density and the excess temperature in the voltage-biased structure taking into account
the heat flow through the insulator to the substrate. The calculations can be used to optimize the
sample geometry so as to predetermine the location where EM leads to the formation of voids
and the structure is finally going to break.

2. Experimental observations

All samples used for this work were prepared by standard e-beam lithography on commercially
available, slightly p-doped (boron, resistivity: 1–20 � cm) silicon substrates. Their surface was
either covered by 400 nm thermally grown SiO2 or merely by native silicon oxide. Here, we
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(a) (b)

Figure 1. SEM images of gold wires after EM in high vacuum (10−5 mbar). The
substrate consists of p-doped silicon covered by (a) native SiO2 and (b) 400 nm
thermally grown SiO2, respectively. The brighter spots in (a) represent hillocks
formed during EM. The bright metal blob in (b) results from droplet formation of
liquid gold after the wire constriction had been destroyed by overheating. Pictures
shown here are stills taken from the videos available as supplementary material from
stacks.iop.org/NJP/16/013017/mmedia.

focus on samples made from 30 nm thick gold deposited by electron-beam evaporation without
any additional adhesion layer.

We report on experiments performed at room temperature and mostly at ambient pressure.
Some experiments were carried out in the high vacuum (10−3 Pa) of a scanning electron
microscope (SEM) for in situ monitoring of the EM process. The resulting gap size, however,
did not depend on the background pressure. The active feedback-control loop was realized by
ramping a voltage across the sample and measuring its resistance in a four-point configuration.
Upon detection of a certain change of 1R/R ∼ 5–10%, the voltage was set back to a safe value
immediately by the control software and the voltage ramp was reinitialized. At an advanced
stage of the process a sudden change of resistance by several orders of magnitude indicates
rupture of the metallic current path and the procedure is stopped.

In this paper we discuss the influence of Joule heating during EM. Its effect manifested
itself mainly in two aspects of our experiments. On the one hand, SEM imaging after gap
formation revealed that metallic structures on silicon wafers covered by a 400 nm thick
thermally grown silicon oxide layer show signs of melting. Consequently, the resulting
electrode separation is considerably above 10 nm. A typical example—confirmed in more than
15 experiments—is shown in figure 1(b). This particular micrograph was taken by a SEM
during the course of an in situ process; the full sequence of micrographs together with the
corresponding V/R characteristics have been used to produce a video clip (see supplementary
material). Samples electromigrated on silicon covered by native oxide, however, display the
intended formation of voids and hillocks leading to the opening of an irregular gap, whose
expansion lies below the resolution of the SEM, i.e. a . 10 nm. An example is shown in
figure 1(a). On the other hand, as can be seen in the same figure, the samples were usually
disrupted near their cathode end and not at the constriction prestructured for this purpose at the
centre of the wire. EIBJ have been fabricated successfully in many experiments on native oxide
and the particular example of figure 1(a) has been chosen from an EM experiment performed
in situ in the vacuum of the SEM; the corresponding video clip is supplied as supplementary
material.
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Breaking at the cathode side is a common observation in straight wires [1, 24–27] of
constant cross section and consequently constant current density. If such wires are connected at
both ends to wider leads with low current densities self heating is largely restricted to the wire
itself; EM as a strongly temperature dependent phenomena is then effective within the wire only
where it leads to material flow in anode direction. Consequently material flows away from the
cathode side and this loss is not balanced by incoming fresh material since flow entering from
the wider leads is blocked due to their lower temperature. The purpose of the constriction shown
in the centre of figure 1(b) is to enhance the current density and create a hot spot at a predefined
position. Electromigration was expected to lead to a break junction at this very location which,
however, was not observed. Apparently, the conditions at the lead-nanowire-junction have to be
taken into account more carefully.

In the next section we present a model to calculate the temperature profile for a given
sample layout which takes into account the heat flow from the metal film to the leads as well
as to the substrate. The latter part is of utmost importance as indicated by our experimental
observations presented in figure 1. The amount of heat flowing to the substrate changes with
the thickness of the insulating barrier between the structure and the silicon substrate and has a
remarkable effect on success or failure of EIBJ formation. To our knowledge, this aspect has
not been addressed in a systematic manner so far.

3. Calculation of the heat distribution

The temperature in a voltage-biased sample is enhanced due to Joule heating. We present a
model to quantify this effect. It is applicable to metallic structures of constant thickness d, sheet
resistance R� and thermal conductivity km. Heat is carried along the metal film to the leads and
through an insulating barrier of thickness b and thermal conductivity kb, where the condition
kb � km naturally holds. The structure is supported below the barrier by a thick substrate with
thermal conductivity ks. The substrate is assumed to be thermally well coupled at the back
side to a heat reservoir at ambient temperature. It is heated from the top by the power flowing
through the barrier which results from the dissipation in the metallic structure. The situation in
the substrate is therefore intrinsically three dimensional (3D). However, we can safely assume
that the temperature in the metallic structure itself does not vary significantly perpendicular to
the film plain (owing to kb � km). The temperature rise in the substrate depends strongly on the
barrier thickness b and is significant for small b only. We postpone the discussion of thicker
barriers to the end of this section and assume first that the temperature varies linearly across the
insulating barrier, i.e. we consider a laminar heat flow across the insulator perpendicular to its
interfaces with the metal film and the substrate. The numerics for the metallic film is reduced to
a two-dimensional problem obeying the modified Poisson equation:

kmd∇
2δT + q̇ =

kb

b
(δT − δTs). (1)

Here δT (r) is the temperature elevation relative to the base temperature of the unbiased
sample, q̇ = j2 R� the power density, j(r) the two-dimensional current density, and δTs(r) the
temperature elevation at the interface between of the substrate and the barrier. The left-hand
side of (1) describes the heat balance in the metallic film, while the right-hand side is equal to
the loss due to heat flow to the substrate. The latter depends implicitly on δTs(r) which itself
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obeys the 3D Laplace equation (describing the source-free heat flow in the thick substrate)

∇
2δTs = 0 (2)

subjected to mixed boundary conditions. At the interface with the insulating barrier we have

∇nδTs =
kb

bks
(δTs − δT ), (3)

where ∇n is the gradient perpendicular to the interface. At all other boundaries we approximate
δTs(r) by zero. Equations (1) and (2) form a set of mutually dependent relations.

We find it convenient to solve this set of equations by a finite-difference method on a
square lattice and discretize the relevant parts of the metallic structure with a predefined cell size
sufficiently small to capture all fine details. For this purpose we use an appropriate rectangular
cutout of the e-beam lithography design file, which covers the area of highest current densities.
For the examples presented below, a cell size between 1 and 5 nm turned out to be reasonable,
with several million cells within the cutout. The current and voltage leads (cf horizontal and
vertical structures, respectively, emanating from the centre in figure 2) have constant cross
section and extend beyond the cutout. In addition the length of the leads included in the explicit
calculation exceeds their width. These measures guarantee that the equipotential lines beyond
the cutout generated by an electromotive force between source and drain current leads run
perpendicular to the latter.

Before solving (1) and (2) we have to calculate the current density j which enters the
second term on the left-hand side of (1). j is directly related by j = ∇V/R� to the potential V ,
which in turn obeys the Laplace equation ∇

2V = 0 with mixed boundary conditions. We solve
the latter equation by successive overrelaxation [28]. For edges of the metallic structure internal
to the explicitly treated area as well as for sections of voltage probes with its border we have von-
Neumann conditions, ∇nV = 0. At the section of the source and drain leads with the border we
apply the actual bias Vmax and Vmin, respectively. After solving the Laplace equation subjected
to these boundary conditions, the total current I =

∫
ds∇nV/R� can be calculated, where the

integral runs along an arbitrary line cutting the source–drain path. It is convenient to normalize
V by I R�, since V/I R� directly reflects the number of squares between different points within
the metallic structure, i.e. the length-to-width ratio of a strip which would acquire an equivalent
voltage drop if biased by the same current. Figure 2 shows the result of the calculation for a
layout typically used in our experiments. The inset of this figure displays the power density in
the centre of the structure. The notch in the middle does indeed lead to the intended peak of the
power density at this position (and of the current density that drives EM). However, a similar
peak is found at the crossover from the funnel-shaped leads to the narrow wire as indicated by
the four lightly coloured spots at the rectangular corners in the inset of figure 2. This is due
to the well-known divergence of the electric field strength at corners [29]. In our numerics,
this divergence is limited only by the finite cell size used in the finite-difference method as
corners are infinitely sharp in the layout. In practice, e-beam lithography leads to a minimal
radius at corners set by the finite resolution of the process and the granularity of the crystalline
metallic layers. This radius sets the scale of the actual current-density enhancements. It can
thus be expected that the current density reaches the same order of magnitude at each concave
corner. The precise value depends, however, on the opening angles and can be tuned by proper
design. Consequently, rectangular corners as the ones visible in figure 2 should be avoided in
the strongly heated parts of the structure, unless a starting point for EM is intended. We are
going to comment further on this issue in the next section.
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Figure 2. Equipotential lines for a test layout biased in horizontal direction. The
taps pointing up- and downwards represent voltage probes. The voltage drop between
consecutive lines is 1V = 0.1R� I and the total drop between the outermost lines
V = 12.4R� I. The inner region where the potential lines merge to a continuous colour
scale corresponds to 1V = 5R� I. The inset displays the resulting power density q̇ in
units of I 2 R� µm−2 for the centre of the main figure. Notice the peaking of the power
density at concave corners.

Having q̇ = (∇V )2/R� at hand, we solve (1) and (2) simultaneously by an iterative
procedure. Starting with δT (r) = δTs(r) = 0 we first relax (1) at constant δTs to get an updated
estimate for δT (r). The boundary conditions for the structure edges are again of von-Neumann
type, ∇nδT = 0. Special care has to be taken to treat the heat flow at the border of the cutout.
Owing to the aforementioned homogeneous nature of the leads extending beyond this border,
the heat-flow problem is essentially one dimensional here [30]. In long leads the temperature
elevation along the wire direction approaches exponentially a steady-state value of

δTa = δTs + I 2
` R�b/(w2kb),

where I` is the current in the specific lead of width w. In general, the substrate temperature δTs

in this equation has to be determined self-consistently as it results from the heat flow caused by
the last term. However, δTs is naturally small compared to more strongly heated zones below
spots of high current density. We ignore small variations of δTs at the border of the cutout and
take in the above formula for δTs a self-consistently calculated value. The functional dependence
of the temperature along the leads is then given by

δT (x) = δTa + (δT0 − δTa) exp(−(x − x0)/λ). (4)

Here x is a spatial coordinate along the current direction leaving the cutout at x0, δT0 is the
temperature elevation of the cross section at x0 and λ =

√
bdkm/kb is the length scale of
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relaxation towards the asymptotic δTa. From (4) the boundary condition of (1) at the cutout
frame can be deduced,

∇nδT = (δTa − δT0)/λ. (5)

Equation (5) completes the boundary-value problem defined in (1) and is used in a
successive overrelaxation loop to update δT (r). In the next step of the iterative procedure we
fix δT (r) in (3) and update δTs(r) via (2). Here, successive overrelaxation would fail since the
3D nature of heat relaxation in the substrate leads to an intractably large number of cells in the
discretization step. The final goal of our calculation, however, is the determination of δT (r)
defined in the two-dimensional plane of the metallic structure. To this end we need to know
δTs(r) at the interface between the substrate and the barrier only. Let G(r) be the solution of
∇

2G = 0 in the 3D half-space of z < 0 obeying Dirichlet conditions G(r → ∞) = 0 and von-
Neumann conditions at z = 0, ∇nG = δ(r). Due to the linearity of the Laplace equation we can
write down immediately the solution of (2) obeying the boundary condition of (3),

δTs(r) =
kb

bks

∫
dr ′G(r − r ′)

(
δT (r ′) − δTs(r ′)

)
. (6)

The integral is restricted to the plane z = 0. Thus, the calculation of δTs(r) at the interface z = 0
requires the knowledge of G(r) at the interface only as well. In this way (6) is reduced to a
two-dimensional convolution which can be solved numerically by discrete Fourier transforms
(DFT) for which fast algorithms exist. Our problem is thus reduced to the determination of
G(r). Details of this calculation are given in the appendix.

Equation (6) can now be used to update δTs(r). Note, however, that (6) does define δTs

only implicitly. Therefore a further relaxation loop is required. In each iteration of this loop
the convolution on the right-hand side is calculated employing the convolution theorem by two
consecutive DFT steps. The result is subsequently used to update δTs. In the course of the
iteration, the changes in δTs get smaller and the loop is terminated after sufficient accuracy
has been obtained. This ends the first round of our overall iterative procedure. In the following
iterations we proceed by using (1) at constant δTs to update δT and (2) at constant δT to update
δTs. The procedure converges to a self-consistent solution after several iterations.

So far we have developed a model applicable for thin barrier thickness b. From now on,
we refer to this particular treatment as approximation I. In the next section we present results
showing that indeed substrate temperature δTs and δT follow each other closely for small b
and the a priori approximation of a laminar heat flow perpendicular to the interface between
substrate and barrier is justified in this case. However, δTs is a monotonically decreasing
function of b while at the same time δT rises monotonically. Moreover, at small b it is possible
to heat the substrate rather locally by the large power density resulting from a notch as, e.g. the
one in the centre of the test structure displayed in figure 2. If b is increased the power is delivered
to the substrate more evenly and the temperature distribution tends to smooth out (with a small
enhancement only even at the centre). The temperature difference δT − δTs soon becomes so
large that δTs on the right-hand side of (1) can safely be neglected. In this case, the vertical
nature of the heat flow is lost and the problem of the heat distribution in the isolating barrier has
to be treated more precisely. Fortunately, this can be done by the same method introduced so
far. For thicker barriers we take the temperature at the interface of the substrate with the barrier
as unelevated, the barrier now stays cold at its back side and takes thus the role formerly played
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by the substrate. The set of equations (1)–(3) now reads

kmd∇
2δT + q̇ = kb

1δT

ε
, ∇

2δTs = 0, ∇nδTs = −
1T

ε
, (7)

where 1T is the temperature drop across a slice of the barrier of infinitesimal thickness ε. In
the finite-difference treatment of the problem we set ε equal to the discretization cell size. In (7)
δTs = δTs(r) represents the 3D temperature profile in the barrier. As such, it is defined at the
interface of the barrier with the metal film, too. At this interface, δTs equals δT (in the numerics
it differs marginally since the infinitesimal ε is approximated by a variable of finite extent).
The thickness b enters this approximation via a modification of G(r) in (6), which we label
Gb(r). It still obeys the Laplace equation ∇

2Gb = 0, now in the barrier, i.e. for −b < z < 0,
but the Dirichlet condition G(r → ∞) = 0 is replaced at z = −b by Gb(z = −b) = 0. In this
way we approximate the temperature at the interface between barrier and substrate by the base
temperature of the unbiased sample. We refer to this variant of the model as approximation II in
the following section. The calculation of Gb(r) on a rectangular grid used in the finite-difference
approximation is explained in the appendix.

4. Results

The model developed in the last section can be used to optimize structure layouts intended for
the formation of narrow break junctions at well defined locations by deliberate electromigration.
In this section we present some examples.

First we want to address the question why metallic structures on a thicker silicon oxide
layer are more likely to melt during the EM process than samples on native SiO2. For
that purpose we calculate the excess-temperature map for the sample geometry shown in
figure 2 for varying barrier height b. For definiteness we consider gold structures (km ≈

316 W K−1 m−1 [31]) with a layer thickness of d = 30 nm, approximate the thermal conductivity
of the substrate by the typical value of silicon at room temperature, ks ≈ 150 W K−1 m−1 [32],
and vary b between 1 nm and 2.5 µm. For the thermal conductivity of the barrier we use that of
thin SiO2 films at room temperature, kb ≈ 1.1 W K−1 m−1 [33].

Figure 3 shows the results for b = 1, 100 and 1 µm. Obviously, the temperatures of
substrate and metallic structure follow each other closely for very thin barriers (see figures 3(a)
and (b)). For thicker barriers the asymptotic temperature δTa in the leads can easily reach values
that exceed the maximum temperature for thin barriers (compare figures 3(a) and (c), calculated
with approximation I, i.e. a 3D heat relaxation in the substrate and a vertical laminar flow
in the barrier). The temperature is maximal at the centre of the wire as expected. A typical
value for the sheet resistance is R� = 2 �, so that I 2 R� = 1 mW at around I = 20 mA. For this
current a moderate temperature rise of Tmax ≈ 50 K results at the centre of the narrow wire, if
the barrier thickness b = 1 nm. For b = 100 nm the temperature rises already by Tmax ≈ 510 K.
The substrate temperature below the leads, however, does not change significantly for thicker
barriers due to the fact that the substrate underneath long leads is heated by the power density
I 2 R�/w2 independent of barrier thickness (compare figures 3 (b) and (d)). For R� = 2 � we
get a marginal warming by about 1.6 K at I = 20 mA. Furthermore, substrate heating below
the centre of the wire is reduced with increasing b. Between b = 1 and 100 nm the maximum
temperature rise in the substrate drops from about 30 to 10 K. This is a rather low temperature
increase as compared to the rise in the metallic structure, i.e. approximation II is a better
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Figure 3. Maps of normalized temperature, δT/I 2 R�, of metallic structure ((a) and
(c)), substrate–barrier interface ((b) and (d)), and interface between barrier and metallic
structure ((e) and (f)). Colours are according to the scale in units of K mW−1. Results
for three barrier thicknesses are shown: b = 1 nm ((a) and (b)), b = 100 nm ((c)–(e)),
and b = 1 µm (f). Panels (a)–(d) are calculated with approximation I, while for (e) and
(f) approximation II is used.

choice for b & 100 nm. Figure 3(e) displays the temperature profile in the plain defined by the
interface between the barrier and metal film calculated in the framework of approximation II,
i.e. evaluating the 3D heat relaxation in the barrier, while the substrate is assumed to remain cold.
Approximations I and II lead to similar results at b = 100 nm as can be judged by inspecting
figures 3(c) and (e). Barrier heating is restricted mainly to the regions underneath the metallic
structure for b = 100 nm with a small halo only. At larger b (see figure 3(f)), however, the area
of the barrier with a significant temperature rise has a considerably larger extent. Nevertheless,
a pronounced maximum of the temperature in the central spot of the structure remains the
dominant feature4.

Data for further values of b are summarized in figure 4, where the temperature profile
along the central axis is displayed. The successive rise of the asymptotic lead temperature
δTa with b for |x/L|& 4 is the most prominent feature in this figure. Furthermore, one can
observe that the ratio between the maximum temperature in the centre and δTa is strongly
reduced with increasing b. For b = 100 nm results of approximation I and II are included.
Both approximations yield similar results at this thickness, with slightly lower values of δT for

4 Our model does not take into account the effect of radiation cooling because the latter is negligible. The radiation
losses are bounded by σ T 4

m ≈ 0.2 µW µm−2 (σ is the Stefan–Boltzmann constant and Tm = 1337.33 K the melting
point of gold) and thus several orders of magnitude smaller than the power carried by heat transport in case of
significant heating.
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Figure 4. Excess temperature δT along the central axis of the same structure as used
in figure 3. Note the logarithmic vertical scale. A picture of the structure has been
underlayed to ease matching regions of different current densities with the shown curves.
L = 1 µm is defined as the length of the narrow wire in the centre. The thickness b of
the SiO2 barrier is varied between 1 nm and 2.56 µm, the temperature is normalized
by I 2 R�. Solid lines correspond to approximation I, while dashed lines are calculated
using approximation II.

approximation II due to the more efficient cooling resulting from the temperature halo around
the metallic structure visible in figure 3(e).

In a well accepted approximation [1], the amount of gold pushed in the anode direction
is proportional to both the current density and the self-diffusivity of the metal. The latter has a
strong temperature dependence described over a wide range by an Arrhenius law [34] (for self-
diffusion data on Au see e.g. [35–38]). Independent of the microscopic details of EM, however,
a sizeable effect sufficient for the deliberate formation of voids requires elevated temperatures.
As a rule of thumb, δT should be at least half the melting temperature Tm, in which case EM
along grain boundaries is in general the dominant material flux mechanism. The effect of EM
is much stronger just below melting and is then in general dominated by flux within the bulk.
However, for a controlled process of gap formation the melting point must not be exceeded.
This is the crucial point discussed here. In figure 5(a) we plot α =

√
1/ymax as a function of b,

where ymax are the maximal values of the curves in figure 4 at x = 0, where the temperature in
the metallic structure is highest. If we fix the temperature elevation at a value δT0 well below
the melting point (let us say at δT0 ≈ 1000 K for gold, the exact choice of δT0 is not important
for our conclusion) I0 = α

√
δT0/R� directly gives a safe current limit for the specific structure.

This safe current limit is considerably reduced when b is increased as shown in figure 5(a). For
a native oxide barrier of b ∼ 1 nm and R� ≈ 2 � a current of almost 100 mA can be tolerated.
For the thermally grown oxide layer of our experiments (b = 400 nm) the safe current limit is by
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(a) (b)

(c) (d)

Figure 5. (a) Plot of α = I
√

R�/δT0 in units of mA
√

�/K as a function of the
barrier thickness b. Here I is the current needed to heat the structure of figure 3 in
its centre to a temperature δT0. (b) Ratio γ of the first term in (1) to the negative of
the term on the right hand side of the same equation in the centre of the structure,
γ = (dbkm/kb)∇

2δT/(δTs − δT ). This compares the amount of heat flow in the metal
to the effect of cooling by the substrate. At large b the structure is thermally decoupled
in its centre. (c) Ratio β = δT1/Tmax of the temperature δT1 at the crossover from
the narrow wire to the funnel-shaped parts of the leads and the temperature Tmax in
the centre as a function of b. Red dots in (a)–(c) are calculated with approximation
I, blue dots with approximation II. (d) Temperature profile along the central axis of
two different structures at b = 10, 100 and 1000 nm. The bluish and reddish underlay
indicate current and voltage probes, respectively. Red lines correspond to results for the
four-point configuration shown in figure 3 (complete underlay). Blue lines are calculated
for a two point configuration, i.e. the voltage probes are missing (bluish underlay only).
For b = 10 nm approximation I and for larger b approximation II has been used.

a factor of four smaller. This makes controlled EM considerably more difficult. The feedback
loop as implemented by us and others [17] uses a resistance change to judge the appropriate
current density. This procedure however might lead to current densities that exceed the limit set
by the melting point of gold and thus to a failure of EIBJ formation.

It is instructive to compare the size of the first term in (1), i.e. the heat transport in the
metallic structure, to the size of the right-hand side of the same equation, i.e. the heat flow to
the substrate. This is done in figure 5(b) for the central point x = 0 of the structure where the
temperature for a given current I is highest. The ratio

γ = (dbkm/kb)(∇
2δT /(δTs − δT ))

12
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of these two terms is considerably smaller than 1 for b . 5 nm, i.e. the centre of the structure
is efficiently cooled via the substrate. For larger b, however, γ rises quickly indicating that the
coupling to the substrate becomes increasingly inefficient and cooling has to rely on the heat
flow along the metallic leads. The barrier thickness at which this decoupling sets in is expected
to be reduced with decreasing width of the notch in the centre. Thus, if void formation by EM
occurs and the current path through a narrowing constriction, temperature is dominated more
and more by the heat flow along the structure. This leads to an even stronger tendency towards
melting which has to be counteracted by increasingly careful settings in the feedback-control
loop and necessitates good thermal coupling from the beginning. In summary, our analysis gives
clear evidence why controlled electromigration on thick oxide barriers is more likely to fail.

Figure 5(c) displays the ratio β of the temperatures at the wire end (i.e. at the crossover
from the narrow region to the funnel-shaped parts of the leads) and at the centre, as a function of
b. Ideally, the temperature peaks so strongly at the centre that EM acts only there with reasonable
strength. This is difficult to achieve, though. Figure 5(b) indicates that an optimal barrier
thickness bopt exists at which β(bopt) ≈ 0.5. This factor-of-two reduction of the temperature is
not sufficient as demonstrated by the experimental result presented in figure 1(a). As indicated in
the inset of figure 2 the current density peaks not only at the notch in the centre but at concave
corners as well. EM leads to material flux in regions of high current density. The formation
of voids or hillocks, in turn, requires some kind of inhomogeneity that causes a divergence
of material flux. Such an inhomogeneity might be simply due to the statistical distribution of
grains comprising the metallic structure, but regions of high temperature gradient lead for sure
to a divergence in atomic flux as the delivery of material from cold regions is less efficient than
delivery of material to the hotter parts. In the structure studied here the temperature gradient is
large at the wire end and vanishes in the centre where the notch is located. In the latter position
material transport tends to be balanced and thus the wire cross-section does not change to first
order. Only at the corner at the cathode end void formation is favoured.

Figure 5(d) compares calculations for two different structures, namely the four-probe
configuration with source and drain contacts and two voltage probes studied so far, and a two-
probe configuration with no voltage probes. Clearly the temperature is reduced in the vicinity
of the current-free voltage probes. However, their cooling effect is confined to a small region
whose extent is set by the relaxation parameter λ =

√
bdkm/kb in (4). The design of cooling

fins would require to place them within a distance set by λ. For the model parameter used in
our calculations λ ∼ 290, 930 nm, and 2.9 µm for b = 10, 100 nm and 1 µm, respectively. The
voltage probes in our test structure are within the range of the central notch for b = 1 µm, only.
Consequently, the temperature is slightly reduced in the centre in this case as can be seen in
figure 5(d). Note, however, that the temperature in the centre of the structure is peaking on top
of the asymptotic temperature δTa and this temperature scales quadratically with 1/w, the width
of the source and drain leads. Thus, a stronger reduction can be obtained by making the leads
as wide as possible.

To demonstrate the application of our numerical simulations for the optimization of the
sample layout with respect to control over the location where gap formation sets in, we design
a structure in which the current path branches into a loop (see figure 6). The final goal with
this specific structure is to produce two gaps, one in each loop arm. If bridged by molecules,
such a sample could be used to test for the quantum coherence of electron transport through
molecules by measuring the magnetoconductance. Coherence would lead to the appearance of
periodic oscillation of the conductance in response to the magnetic flux penetrating the area
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(a)

(b) (c)

Figure 6. (a) Equipotential lines for a ring structure. The voltage drop between
consecutive lines is 1V = 0.1R� I and the total voltage drop between the outermost
lines is 1V = 13.8R� I . The enlarged detail shown in the ring centre displays the power
density in units of I 2 R� µm−2 (see colour scale on the right bottom). (b) Temperature
profile along the blue line in (a) for various barrier thicknesses. Solid lines are calculated
with approximation I and dashed lines with approximation II. (c) Temperature map of
the ring structure with a barrier thickness of b = 1 nm according to approximation I.

between the loop arms [39]. In the design of figure 6(a) we try to avoid unintentional current
density enhancements by rounding all concave corners. A step in the width of the current path
is introduced only at two positions. The inset in the ring centre of figure 6(a) demonstrates that
this leads to a considerable current-density enhancement at singular points. At the same time we
would like to have a large temperature gradient at this location. To this end we make the current
path twice as narrow on the anode side of the ring structure and thus the power density by a
factor of four larger. The investigation of coherent transport requires a high aspect ratio of the
open area between the loop arms and the part of the ring area covered by metal. For this reason,
the step in the ring width is placed close to the cathode side of the structure. Figure 6(c) shows
the result of approximation I for a thin barrier (b = 1 nm). The temperature changes abruptly
at the transition from the wide to the narrow part of the ring thus making the concave corner
at this position a preferred starting point for void formation. In figure 6(b) we display the
temperature profile along the path drawn as a blue line in figure 6(a) for various barrier
thicknesses. The temperature gradient is large at point B for a thin barrier as intended.
The temperature reaches to first approximation almost constant values to the left of point
A and between point C and D for b = 1 nm on account of a short relaxation parameter
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λ ∼ 290 nm. With increasing thickness b, however, Joule heating leads to a more evenly
distributed temperature due to the rise in λ ∝

√
b. As a result, the temperature gradient at point

B gets more and more shallow making the tendency to void formation at the corner weaker.
Still, EM is boosted by the current-density rise at this location which is thus distinguished from
the rest of the structure. Nevertheless, the statistical nature of grain boundaries easily marks
different locations along the line from B to D where void formation might start. Hence, it is not
clear from the outset that the corner close to point B will win for larger b. This again stresses
that reliable void formation is favoured by good thermal coupling via a thin barrier to a substrate
of high thermal conductance.

5. Limitations of the model

The electro-thermal model presented here can be used to calculate the current density and
temperature profile for planar structures. The solution of this model can give hints on where
EM most likely leads to vacancy accumulation and void nucleation. Once void nucleation has
taken place the void is likely to grow and a break junction will form in close proximity to
the initial nucleation centre. A more complete calculation might try to simulate the actual EM
process including the problem of the vacancy dynamics, void nucleation and evolution and thus
would model the time evolution of EIBJ formation [4]. This, however, is a much more ambitious
task and not the purpose of the present work. In our opinion it would blur the statements we
make. As already noted, the exact position of void nucleation in an actual sample will depend
on details of the microscopic arrangement of disorder and large sample-to-sample fluctuations
will be observed. Grain boundaries play a major role in the process and the position of grain
boundaries is hard to control in sample fabrication. However, it is not the fluctuations between
samples we want to model but rather the averaged position of the final break junction. For
this purpose our calculation on a homogenized representation of an ensemble of samples is an
appropriate starting point.

In the present paper we also avoided to include temperature dependent electrical and
thermal conductivities which would have made the calculation much more cumbersome. The
inclusion of temperature dependent parameters would first of all require a reliable model of this
dependence. For the thermal conductivity of Si and SiO2 this is a simple task. In most cases the
silicon substrate is only modestly heated and the change in thermal conductivity thus marginal.
The temperature dependence of the thermal conductivity of SiO2, on the other hand, is much
weaker and is hardly increased by more than 50% even under extreme conditions. Thus the most
pronounced effect can be expected to result from the temperature dependences of R� and km of
the metallic structure. Here a reliable model is not at hand.

Before EM leads to depletion of material a pronounced lowering of the overall resistance
is observed: R/V characteristics are shifted to smaller R values (see video clips in the
supplementary material (available from stacks.iop.org/NJP/16/013017/mmedia)) due to the
annealing of defects and decreasing disorder as a result of heating. The temperature dependence
of the resistance is not very strong. At a sheet resistance of 2 � the Drude mean free path is
of the order of ` = 14 nm. This value does nicely correspond to the granularity of the metallic
film, as can be judged by inspection of SE micrographs. The bulk value of the mean free path of
gold at room temperature, on the other hand, is ` = 34 nm and is connected largely to phonon
scattering. Thus the resistance of our thin film structures is dominated by disorder scattering
of conduction electrons as typical for nanoscaled metallic samples. By heating up we have a
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decrease of disorder and phonon scattering takes over. For example, at 900 K phonon scattering
alone results in ` = 10 nm. At this temperature we expect pronounced material flow caused
by EM. As a result we observe experimentally signs of crystal growth; grains are merged into
growing single-crystalline regions which show in many cases facets (see the video clip supplied
as supplementary material). In view of resistance, we have a reduction of disorder scattering
counteracted by a stronger scattering by phonons. Thus, while it might be difficult to model
the resistance as a function of Joule heating, it has supposably a noticeable but small effect.
This is supported by the success of our simple model. Similar arguments apply to thermal
conductance.

Still, it might by tempting to explore models including temperature and position dependent
parameters. Such a model is currently under construction. It will include a temperature
dependent sheet resistance R�(r, T ) and use a thermal conductivity assuming the validity of
the Widemann–Franz law. Preliminary results indicate that the main conclusion of our paper
is not substantially altered although the overall temperature profile is slightly different for a
large current in the improved model. In particular, the δT (x/L) profile (see figures 4 and 5(d))
will sharpen somewhat for small x/L . Consequentially the safe-current limit as defined in the
discussion of figure 5(a) will be reduced. Thus, it will be even more difficult not to exceed
the safe-current limit in the case of EM performed on samples with thick barriers. Hence the
main conclusion of our experiments, i.e. that thin barriers are mandatory for EIBJ fabrication in
planar structures, is theoretically corroborated by this qualitative argument.

6. Conclusion

In this paper we have presented experimental results showing that nanogap formation by EM
depends crucially on the thickness of an insulating barrier between a planar metallic structure
and a thermally well conducting substrate. We have developed a numerical model which
explains these findings by considering the strength of thermal coupling of the metallic structure
to the substrate. Only for thin barriers is cooling by heat flow to the substrate efficient, while
for thick barriers the temperature is governed only by heat flow along the leads connecting
the microstructures to regions of lower current densities. Thus, only thin barriers allow the
large current densities required for void formation on a reasonable time scale without melting
large parts of the structure by Joule heating. Therefore, good thermal coupling is an important
prerequisite for well controlled EM. On the other hand, thin barriers are not always an option
in practice. The native oxides on silicon wafers have been reported to be as thin as 1 nm. While
such a thin barrier yields a good thermal contact it bears the risk of undesirable electrical leakage
currents through the substrate. For a reliable electrical insulation of the structure a barrier of
several 100 nm thickness is mandatory.

In our model calculation we considered cooling the structure by coupling it to a cold
substrate. In practice, heat can be released by other means. If EM has to be performed in
vacuum for some reason, the only possibility might be to fabricate leads and microstructure from
metallic layers of different thickness [14, 15, 19, 22, 40–42]. If the leads are thicker than the
microstructure, the positive influence on EIBJ control is two fold. Firstly, the heat conductance is
increased and secondly, the self heating of the leads is reduced due to the lower current density;
the lead thus stay colder than their counterpart in planar structures and the temperature of the
microstructure itself is reduced accordingly. Unfortunately, the implementation of thick leads
or more general leads with large cross section limits the geometric freedom of possible layouts.
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A good example where leads of large cross section cannot be tolerated is the ring structure
presented in the last section. Here larger leads would automatically reduce the visibility of the
Aharonov–Bohm oscillations which are the purpose of the experiment in the first place. If it
is possible to execute EM in a controlled atmosphere, the gas can be utilized for cooling. We
have, e.g. performed EM experiments in the gas phase above the liquid level of a helium dewar.
The structure heated by a high current density leads to convection of the cold gas which in turn
gives rise to an efficient heat release. The yield of sufficiently small nanogaps is considerably
increased in this case even on thick SiO2 barriers. Whether the resulting gaps are clean and not
contaminated with metallic nano-clusters is an open question at this moment [11–13].

Besides efficient heat release, a good layout design is needed to predefine the position
of void formation. The latter starts preferably at positions where high current densities meet
large temperature gradients. It is thus advisable not to place the intended gap position in high
symmetry points of the layout where temperature gradients are expected to vanish but to mark
it with sharp corners which can be utilized for a considerable current density enhancement.
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Appendix. Calculation of Gb(r)

Gb(r) resembles closely the Green’s function Gb(r) = G(r, 0) of the Laplace operator defined
by ∇

2G(r, r ′) = δ(r − r ′). The integral in (6) runs over the plane z = 0. So, the second
argument in G(r, r ′) is restricted to this plane. Due to invariance of the problem with respect
to shifts by δr = (x, y, 0), G(r, r ′) does depend on the difference of its arguments only. Gb(r)
obeys the source free Laplace equation for z < 0 with a flux of unit strength flowing into the
surface at r = 0. At the opposite boundary, z = −Nzh, Gb vanishes (Dirichlet condition).

We calculate Gb(r) by discrete cosine transform (DCT) on a cube of N × N × Nz cells
(N = 1024 turns out to be sufficient) with the basic approach

Gb(x, y, z) =

n−1∑
X,Y=0

Nz−1∑
Z=0

Ĝb(X, Y, Z) cos(πx(X + 1/2)/n) cos(πy(Y + 1/2)/n)

× cos(π(z + 1/2)(Z + 1/2)/Nz), (A.1)

where n = N/2 and the arguments of the cosine functions are chosen to assure Gb(±n,

y, z) = Gb(x, ±n, z) = Gb(x, y, Nz − 1/2) = 0, Gb(1, y, z) = Gb(−1, y, z), Gb(x, 1, z) =

Gb(x, −1, z) and Gb(x, y, 0) = Gb(x, y, −1). Together with the discrete version of the Poisson
equation

D2G = δxyz, (A.2)

this describes a single source of unit strength at (x = 0, y = 0, z = −1/2). D2 is the discrete
version of the Laplace operator ∇

2, δ000 = 1 and δxyz = 0 for all other combinations of the
indices. From (A.2) one gets

Ĝb(X, Y, Z) = q̂(X, Y, Z)[4(cos(π(X + 1/2)/n) + cos(π(Y + 1/2)/n)

+ cos(π(2Z + 1)/Nz)) − 3]−1, (A.3)
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where q̂(X, Y, Z) is the DCT of δxyz defined with the same arguments in the cosine functions
as in (A.1). Thus the calculation of Gb(r) involves two DCT operations and normalization
of the intermediate result according to (A.3). The index b enters into the calculation via the
definition of Nz = b/h, where h is the discretization size in the finite-difference method.
For approximation I we need to know G(r) = limb→∞Gb(r). We approximate it by setting
G(r) ≈ G512, which is sufficiently accurate due to the asymptotic 1/r nature of the analytical
solution.
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