
Analyzing Alloy Constraints using an SMT Solver:
A Case Study

Aboubakr Achraf El Ghazi
Karlsruhe Institute of Technology

Karlsruhe, Germany
elghazi@kit.edu

Mana Taghdiri
Karlsruhe Institute of Technology

Karlsruhe, Germany
mana.taghdiri@kit.edu

ABSTRACT
This paper describes how Yices, a SAT Modulo theories
solver, can be used to analyze the address-book problem ex-
pressed in Alloy, a first-order relational logic with transitive
closure. Current analysis of Alloy models – as performed by
the Alloy Analyzer – is based on SAT solving and thus, is
done only with respect to finitized types. Our analysis gener-
alizes this approach by taking advantage of the background
theories available in Yices, and avoiding type finitization
when possible. Consequently, it is potentially capable of
proving that an assertion is a tautology – a capability com-
pletely missing from the Alloy Analyzer. This paper also
reports on our experimental results that compare the per-
formance of our analysis to that of the Alloy Analyzer for
various versions of the address book problem.

Keywords
Formal specification, SAT Modulo Theories, Yices, Rela-
tional logic, Alloy, Modeling languages

1. INTRODUCTION
Alloy[15] is a first order, declarative language that is widely

used for specifying safety properties of structurally-rich sys-
tems. It is based on relational logic and supports transitive
closure as a built-in language construct. Due to its expres-
siveness and yet simplicity, Alloy has been used in a wide
range of applications, both as a stand-alone constraint solver
(e.g [4, 17, 20]), and as a backend engine in various program
analysis tools (e.g [22, 11, 21, 18]).

Alloy models can be analyzed fully automatically. How-
ever, the analysis is always performed with respect to a
bounded scope in which only a finite number of values is
considered for each type. This is because the constraints are
translated to a propositional logic and solved using a SAT
solver. Therefore, although the Alloy Analyzer can produce
counterexamples efficiently, it can never prove the correct-
ness of an assertion – even for the simplest models. Further-
more, since arithmetic expressions are directly translated to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

SAT via bit blasting, they can be analyzed with respect to
only a few bits. Consequently, Alloy offers limited support
for arrays and numerical constraints.

This motivated our project: to analyze Alloy models using
an SMT solver rather than a SAT solver. SMT solvers are
particularly attractive because they can efficiently prove a
rich combination of decidable background theories without
sacrificing completeness or full automation. Furthermore,
their capability to generate satisfying instances as well as
unsatisfiable cores[23] (offered only by some SMT solvers)
supports Alloy’s lightweight and easy-to-use approach.

This paper describes the first step of our project. It re-
ports on a case study where an SMT solver, namely Yices[7],
is used to analyze an Alloy model, namely the address book
problem[16]. To our knowledge, this is the first attempt to
analyze a rich relational logic using an SMT solver.

We have checked several assertions in three different ver-
sions of the address book model: (1) the basic model where
each name is mapped to at most one address, (2) the hi-
erarchical model where groups and aliases are allowed, and
(3) the acyclic model where no name is mapped to itself.
Although the models are small, their constraints are typical
of Alloy formulas; they include many of the Alloy constructs
that are often used in various applications.

This case study is performed in the context of a bigger
project in which Alloy specifications will be automatically
translated to an SMT logic and solved by an SMT solver.
Therefore, we ensure that our formulation of the address-
book problem is loyal to its Alloy model. However, in or-
der to mitigate the bounded-analysis problem of Alloy, we
avoid type finitization as much as possible. This approach
poses challenges in handling some Alloy constructs such as
abstract signatures, multiplicity keywords on a relation’s
range, and set membership. Our translation of these con-
structs involves the use of Yices λ-expressions and quanti-
fiers. Consequently, it is possible for the Yices analysis to be
unsound. In such cases, the Yices output will be preceded
by the word ”unknown”, and should be checked for validity.
In this case study, however, the unsatisfiable outputs were
always definite, meaning that the assertions were soundly
proven correct and the satisfying instances, although pre-
ceded by ”unknown”, were real counterexamples.

Since the Alloy logic is undecidable, type finitization is
inevitable for some Alloy constructs. In particular, our en-
coding of transitive closure requires type finitization. How-
ever, even when finitization is required, it can be done on-
demand: it is sufficient to finitize only the types to which
those certain constructs are applied; the other types can

stay unbounded and be interpreted as infinite. Therefore,
checking Alloy models using an SMT solver provides a more
general analysis than using a SAT solver.

Our experimental results are encouraging. Out of a total
of 9 assertions checked, 5 could be verified by Yices without
having to finitize any of the types, meaning that Yices could
soundly prove them, and the other 4 needed only a partial
finitization.

The rest of the paper is organized as follows: Section 2
provides an overview of the approach along with some back-
ground on Alloy and Yices. Section 3 gives the details of
our case study. Section 4 reports on the performance results.
Section 5 describes related work and Section 6 concludes the
paper.

2. OVERVIEW

2.1 Background on Alloy
Alloy is a first order relational logic with an object-oriented-

like syntax. An Alloy model consists of a type declaration
part, a number of formulas (facts), and an assertion. The Al-
loy Analyzer checks the validity of the assertion with respect
to a user-provided scope, an upper bound on the number of
elements considered for each type. In case the assertion is
not valid, the analyzer produces a counterexample with sym-
bolic values for each type and relation. In this section, we
briefly describe a subset of the Alloy language used in our
case study. More details can be found elsewhere[15].

Types. Alloy types represent sets of atoms and are in-
troduced using the signature construct. The declaration
sig A{} introduces a top-level type named A. A type can
also be introduced as a subtype (subset) of another type
using either the extends or the in keyword. The declara-
tions sig B extends A{} and sig C extends A{} define B
and C as two disjoint subsets of A, whereas the declarations
sig B in A{} and sig C in A{} allow B and C to have
common elements. The abstract keyword preceding a sig-
nature A constrains all atoms of type A to belong to one of
its subtypes.

A signature declaration may also contain fields (relations).
The declaration sig A {f : B} declares A as a top-level type
and f as a relation of type A → B. By default, f will be a
total function. That is, each element of A will be mapped
to exactly one element of B. However, the multiplicity can
be changed using the keywords lone (at most one), some (at
least one), one (exactly one), and set (any number).

Expressions. Every Alloy expression is a relation. The
number of columns in a relation is called its arity and the
number of rows is called its size. Sets are unary relations,
and scalars are singleton unary relations.

The standard set operators union, intersection, and dif-
ference are denoted by ”+” , ”&”, and ”-” respectively. The
”.” operator denotes relational join: for two relations p and q
with arities m and n respectively, the expression p.q is a rela-
tion of arity m+n−2 defined as {(p1, . . . , pm−1, q2, . . . , qn) |
(p1, . . . , pm) ∈ p ∧ (q1, . . . , qn) ∈ q ∧ pm = q1}. The p→ q
expression denotes Cartesian product of the two relations p
and q.

The operators ^ and * respectively denote transitive clo-
sure and reflexive transitive closure, and are defined only on
homogeneous binary relations.

Formulas. Basic Alloy formulas are formed by the use
of equality operator ”=” and the subset operator ”in”. The

formula p : q is the same as p in q with the additional
constraint that if q is a set, then p should be a scalar.

Quantified formulas have the general form of Q x : e | F
where F is a formula based on the variable x, the expression
e bounds the values of x, and Q is a quantifier. In addi-
tion to the standard universal (all) and existential (some)
quantifiers, Alloy also offers one (exactly one), lone (at most
one), and no (none) quantifiers. All quantifiers except all
can also be used with an expression alone to constrain its
cardinality. The formula lone A, for example, constrains the
relation A to have at most one element.

Facts, Predicates, Functions and Assertions. Non-
parametrized constraints (assumptions) of the system are
expressed as facts. These constraints are considered to be
true all the time. Parameterized or reusable formulas ex-
pected to be used in different contexts are expressed as pred-
icates and reusable expressions are expressed as functions.
The properties to be checked are expressed as assertions.

2.2 Background on Yices
Yices is a SAT Modulo Theories (SMT) solver that checks

satisfiability of arbitrary formulas containing uninterpreted
function symbols with equality, linear real and integer arith-
metic, scalar types, recursive datatypes, dependent types,
tuples, records, extensional arrays, fixed-size bit-vectors, quan-
tifiers, and λ-expression [12]. It can also compute MAX-
SMT and produce unsatisfiable cores. Yices accepts the
SMT-Lib format[6] as input. However, it also supports a
LISP-like language that is more expressive than SMT-Lib.
This is the language that we use in our case study. In this
section, we describe a subset of the Yices language that we
use. More details can be found elsewhere[7].

Types and Subtypes. In addition to its built-in types
real, int, nat, and bool, Yices allows users to declare
new basic (uninterpreted) types. The type declaration (define-

type A) defines A as a new uninterpreted type, whereas
(define-type A e) defines A as an alias for the type ex-
pression e which is expressed in terms of the existing types.

A type expression (-> A1 . . . An) denotes a function type
over the types A1 to An. The expression (scalar a1 . . . an)

denotes a scalar type consisting of the identifiers a1 to an.
The type expression (subtype (x::A) p) denotes a sub-
type of A for which the predicate p holds.

Expressions. A constant value, function, or predicate x
of type T can be declared as (define x::T). A constant can
also be defined as a particular expression e using (define

x::T e).
The usual boolean operators and, or, not, and => (implies)

are allowed. Equality and inequality are denoted by = and /=

respectively. Conditional expressions can be expressed using
the if-then-else semantics denoted by the ternary operator
(if cond e1 e2).
λ-expressions are also allowed. They are generally used to

express unnamed functions, and have the following syntax:
(lambda (t1::T1 . . . tn::Tn) e)

Functions (among other types) can be updated using the
update construct. The expression (update f (p1 . . . pn) v)

updates the function f at the location [p1, . . . , pn] with the
new value v. It is semantically equivalent to the λ-expression:
(lambda (t1::T1 . . . tn::Tn) (if (and (= t1 p1) . . . (= tn
pn)) v (f t1 . . . tn)))

There is also limited support for recursive functions. Yices
expands recursion during pre-processing. The default recur-

sion limit is 30, but it can be changed using (set-nested-

rec-limit! n) where n is a constant number.
Commands. In addition to the above constructs, the

Yices language provides a set of commands including the
(assert f) command that asserts a formula f in the current
logical context.

2.3 Approach
We apply the following rules to translate the Alloy address-

book model to the Yices language. It should be noted that
these rules are not meant to be complete; they do not ad-
dress all Alloy constructs. They only encode so much of
the Alloy language that is necessary to translate the ad-
dress book model. Here we only provide an overview of the
translation; the details are presented in Section 3.

• Predicates, functions. All predicates and functions of
the Alloy model are inlined at their usage sites.

• Facts. An Alloy fact f is translated to JfK and added to
the Yices constraints using the command (assert JfK)

• Assertions. An Alloy assertion f is negated, trans-
lated, and added to the Yices constraints as (assert J¬fK).
Therefore, if Yices finds a satisfying instance, that in-
stance will represent a counterexample to the asser-
tion. Otherwise the assertion is valid (with respect to
the finite bounds of types if any).

• Types. A basic signature A in Alloy is translated to
a basic, uninterpreted type in Yices. An Alloy exten-
sion type sig B extends A{} becomes a Yices subtype
(define-type B (subtype (a::A) (isB a))) where
the isB function (of type A -> bool) determines which
elements of A are instances of B. Additional axioms
are used to ensure that multiple extension types are
disjoint, and to enforce the semantics of abstract sig-
natures (see Section 3).

• Relations. An Alloy functional relation f : A → B is
translated to a Yices function (define f::(-> A B)).
If f is a partial function, a special constant noB is de-
fined to represent the empty value: (define noB::B).
A non-functional relation r : A→ B in Alloy is trans-
lated to a Yices function with an additional boolean
column whose value is ”true” for the tuples that belong
to r and ”false” for all others: (define r::(-> A (->

B bool)))

• Relational operators. The operators union, intersec-
tion, relational join, and transitive closure are defined
separately for the functional relations and non-functional
relations. Transitive closure is defined recursively and
thus, requires type finitization. Details of these oper-
ators are shown in Section 3 as needed.

• Quantifiers. Universal quantifiers are encoded using
type finitization1. A formula all x : T | f(x) is trans-
lated to (assert (JfK T1)) . . . (assert (JfK Tn)) where
T1 to Tn denote the possible values of type T . Exis-
tential quantifiers are skolemized.

1We could use Yices quantifiers directly. But, in this case
study, the only universally quantified formula contains tran-
sitive closure. So finitization is more appropriate.

1: sig Name, Addr {}
2: sig Book {
3: addr: Name -> lone Addr

}
pred add (b, b’: Book, n: Name, a: Addr) {

4: b’.addr = b.addr + n->a
}
pred del (b, b’: Book, n: Name) {

5: b’.addr = b.addr - n->Addr
}
fun lookup(b: Book, n: Name): set Addr {

6: n.(b.addr)
}
assert delUndoesAdd{

7: all b, b’, b’’: Book , n: Name, a: Addr |
8: no n.(b.addr) and
9: add[b, b’, n, a] and
10: del[b’, b’’, n] implies
11: b.addr = b’’.addr

}
12: check delUndoesAdd for 3

Figure 1: Basic address book model in Alloy

3. THE ADDRESS BOOK CASE STUDY
The address-book problem[16] models the address book

system of an email client. It represents a database that
associates email addresses with names. We describe three
versions of the address book: (1) the basic one in which each
name is mapped to at most one address, (2) the hierarchical
one in which an alias name can be created for an address
and addresses can be referred to by group names, and (3) an
acyclic one which is similar to the hierarchical one except
for the additional constraint that no name can appear in its
own set of aliases and groups.

3.1 Basic Address Book
The basic address book model is given in Figure 1. Lines

1-3 declare three basic types Name, Addr, and Book, and a
ternary functional relation addr : Book → Name → Addr
that maps each pair (b, n) of Book and Name to at most
one Addr.

To describe the dynamic behavior of the system, the model
defines two predicates: add for the addition operation and
del for deletion. The lookup function returns all the ad-
dresses that correspond to a name in a particular book.

The original model contains three assertions that check
how different combinations of these operations behave. In
the interest of space, we only discuss the delUndoesAdd as-
sertion. As the name suggests, this assertion specifies that if
a fresh name and an address are first added to a book, and
then deleted, the resulting book is the same as the original
one. The assertion holds and thus, no counterexamples can
be found.

The Alloy Analyzer, however, cannot prove that this as-
sertion is a tautology. It can only check the model with
respect to a bounded scope given by the user. In this case,
a scope of 3 is provided in Line 12.

Figure 2 gives our translation of the basic address book
to Yices. The numbers in this figure denote which line in
the Alloy model has produced a particular Yices constraint.
The translation steps are described below:

• (Lines 1-2). The Alloy basic types Name, Addr, and
Book are translated to uninterpreted types in Yices.

1: (define-type Name)
1: (define-type Addr)
2: (define-type Book)

3: (define addr::(-> Book (-> Name Addr)))
3: (define noAddr::Addr)

7: (define b::Book)
7: (define b’::Book)
7: (define b’’::Book)
7: (define n::Name)
7: (define a::Addr)
7: (assert (/= a noAddr))

8: (assert (= ((addr b) n) noAddr))
9: (assert (or (= ((addr b) n) a) (= ((addr b) n) noAddr)))
9: (assert (= (addr b’) (update (addr b) (n) a)))
10:(assert (= (addr b’’) (update (addr b’) (n) noAddr)))
11:(assert (/= (addr b) (addr b’’)))

Figure 2: Translation of basic adress-book to Yices

• (Line 3). The relation addr is translated to a ternary
function that maps each Book to a function from Name
to Addr. Since Yices functions map each element of
the domain type to exactly one element of the range
type, we translate the lone multiplicity construct by
introducing a special Yices constant noAddr. This
constant represents a non-value of type Addr. That
is, if ((addr b) n) = noAddr, then the name n is not
mapped to any addresses in the book b.

• (Lines 7-11). In order to find a counterexample for an
assertion, we add its negation to the set of Yices con-
straints. The negation of the assertion delUndoesAdd
is

7: some b, b’, b’’: Book , n: Name, a: Addr |
8: no n.(b.addr) and
9: add[b, b’, n, a] and
10: del[b’, b’’, n] and
11: not (b.addr = b’’.addr)

and its translation is given in Lines 7-11 of Figure 2.
The constant definitions (Line 7) correspond to the
existential quantifier in Alloy. Since a non-value has
been defined for the Addr type in Yices, in order to
follow the semantics of a : Addr in Alloy, we constrain
the constant a :: Addr not to be non-value (noAddr).

The translation of Line 8 exploits the semantics of the
noAddr constant.

The union operator used in the add operation (Line
9) can be efficiently translated using Yices function
updates. For a functional relation f : X → Y , the
Alloy expression f + x → y can be expressed by the
Yices expression (update f (x) y). However, because f
is functional, if it already contains a pair (x, z) where
z 6= y, then the above union operation is undefined.
Therefore, in order to follow the Alloy semantics, our
Yices translation of this union expression constrains
f(x) to be either empty or equal to y.

The del operation (Line 10) removes all mappings of a
name n from the book b′. This can be translated using
an update that maps n to the non-value noAddr.

The last line of the Yices model (Line 11) is a straight-
forward translation of the inequality constraint in the
negation of the Alloy assertion.

1: abstract sig Target {}
2: sig Addr extends Target {}
3: abstract sig Name extends Target {}
4: sig Alias, Group extends Name {}
5: sig Book {
6: names: set Name,
7: addr: names -> some Target

}
fact {

8: all b: Book, a:Alias | lone a.(b.addr)
}
pred add (b, b’: Book, n: Name, t: Target) {

9: b’.addr = b.addr + n->t
}
pred del (b, b’: Book, n: Name, t: Target) {

10: b’.addr = b.addr - n->t
}
fun lookup (b: Book, n: Name): set Addr {

11: n.^(b.addr) & Addr
}
assert delUndoesAdd {

12: all b, b’, b’’: Book , n: Name, t: Target |
13: no n.(b.addr) and
14: add[b, b’, n, t] and
15: del[b’, b’’, n, t] implies
16: b.addr = b’’.addr

}

Figure 3: Hierarchical address book model in Alloy

When checking delUndoesAdd, Yices outputs ”unsat”, mean-
ing that no counterexample exists. Since the constraints are
checked for infinite types, the unsat result is a proof of cor-
rectness. That is, unlike Alloy, Yices can show that this
assertion is a tautology.

3.2 Hierarchical Address Book
The hierarchical model represents a more realistic address

book. It allows to create an alias for an address and then use
that as the target address of another alias. It also allows to
use an alias for multiple targets so that a group of addresses
can be referred to by a single name. The hierarchical address
book is given in Figure 3.

The major differences between the hierarchical model and
the basic one are the use of the Alloy type hierarchy and
multiplicity constructs. The operations and assertions are
very similar to the ones in the basic model2. The corre-
sponding Yices translation is given in Figure 4. Again, the
line numbers in this figure denote which lines in the Alloy
model have produced which Yices constraints. The main
ideas of this translation are described below.

• (Lines 1-5). The type hierarchy of the Alloy model is
translated using the Yices subtype construct along with
uninterpreted membership functions. The extensions
of an abstract Alloy signature divide the space of all
atoms into disjoint subsets. To avoid finitizing types,
we use explicit axioms to constrain the membership
functions accordingly. Such axioms are applied to all
levels of the type hierarchy.

• (Line 6). The Alloy relation names : Book → set Name
is a non-functional relation. Therefore, it is translated
to the Yices function (→ Book (→ Name bool)) in
which the extra boolean column denotes whether a pair
(b, n) belongs to the relation names or not.

2The lookup function here uses the transitive closure oper-
ator which will be discussed in Section 3.3.

1: (define-type Target)

2: (define isAddr::(-> Target bool))
2: (define-type Addr (subtype (t::Target) (isAddr t)))

3: (define isName::(-> Target bool))
3: (define-type Name (subtype (t::Target) (isName t)))

3: (assert (forall (t::Target)
(not (and (isAddr t) (isName t)))))

3: (assert (forall (t::Target) (or (isAddr t) (isName t))))

4: (define isAlias::(-> Name bool))
4: (define-type Alias (subtype (n::Name) (isAlias n)))

4: (define isGroup::(-> Name bool))
4: (define-type Group (subtype (n::Name) (isGroup n)))

4: (assert (forall (n::Name)
(not (and (isAlias n) (isGroup n)))))

4: (assert (forall (n::Name) (or (isAlias n) (isGroup n))))

5: (define-type Book)

6: (define names::(-> Book (-> Name bool)))

7: (define-type addrRange (-> Name (-> Target bool)))
7: (define-type addrType (-> Book addrRange))
7: (define choose::addrType)
7: (define oneTarget::(-> Book (-> Name Target)))

7: (define addr::addrType
7: (lambda (b::Book)
7: (lambda (n::Name)
7: (lambda (t::Target)
7: (if (not ((names b) n))
7: false
7: (if (= t ((oneTarget b) n))
7: true
8: (if (isAlias n)
8: false
7: (((choose b) n) t)

)))))))

12: (define b::Book)
12: (define b’::Book)
12: (define b’’::Book)
12: (define n::Name)
12: (define t::Target)

(define f::addrRange)
(assert (= f (addr b)))
(define f’::addrRange)
(assert (= f’ (addr b’)))
(define f’’::addrRange)
(assert (= f’’ (addr b’’)))

13: (define emptyTarget::(-> Target bool)
(lambda (t::Target) false))

13: (assert (= (f n) emptyTarget))
14: (assert (= f’ (update f (n) (update (f n) (t) true))))
15: (assert (= f’’

(update f’ (n) (update (f’ n) (t) false))))
16: (assert (/= f f’’))

Figure 4: Translation of hierarchical address book
to Yices

• (Line 7). Similar to names, the non-functional relation
addr is declared using an additional boolean column,
i.e. of type (→ Book (→ Name (→ Target bool))).
However, in the Alloy model, for every book b, (addr b)
is defined only for those atoms of type Name that
belong to (names b). We use a λ-expression to ex-
press this fact. The lambda expression specifies that
for any book b and name n, if ((names b)n) is false,
then (((addr b)n)t) is also false (for all target t).

Furthermore, the some keyword in the declaration of
addr specifies that any name in the domain set of
addr is mapped to at least one target. We represent
this in Yices using the auxiliary functions choose and
oneTarget. The former models the fact that ((addr b)n)
can be a set of targets, whereas the latter models the
fact that this set is non-empty. More precisely, choose
is an unconstrained function that may contain any
number of tuples. The function oneTarget, on the
other hand, maps every pair (b, n) to exactly one tar-
get. The addr relation contains all tuples (b, n, t) that
belong either to oneTarget or to choose (assuming
that ((names b)n) = true).

• (Line 8) The lone keyword, in the Alloy model, spec-
ifies that addr maps each alias to at most one target.
We augment the Yices λ-expression defining addr to
specify this fact. A target is of type Alias if it passes
the isAlias test. The addr relation maps an alias to
exactly one target: the one specified by the oneTarget
function.

• (Lines 12-16). The translation of the assertion is sim-
ilar to the basic address book. The only differences
are because of the additional boolean column in the
declaration of the addr function. The union operator
requires a double update of addr and the constraint
no n.(b.addr) in line 13 requires the definition of the
auxiliary emptyTarget function.

Again, Yices outputs ”unsat”. This means that the asser-
tion has been proven valid without having to finitize any of
the types – a result that can never be achieved by the Alloy
Analyzer.

3.3 Acyclic Address Book
The acyclic address book is the same as the hierarchical

one except for an extra fact that states that for any book,
there is no name that belongs to the set of targets reachable
from the name itself. That is, b.addr is acyclic.

all b: Book, n: Name | not (n in n.^(b.addr))

The challenge of this constraint is to translate transitive
closure properly. For a homogeneous relation r : A→ A, we
have ^r = r + r.r + r.r.r + · · · + r(i) + . . . where the com-
putation of r(i) continues until a fixpoint is reached. Our
translation of transitive closure to the Yices language re-
quires finitization of the type A, and is based on the auxil-
iary functions union, join, and iterative-join defined for non-
functional relations.

Union. The operation (union f g) returns all the tuples
that are either in f or in g. The formal definition is as
follows:

(define-type relType (-> A (-> B bool)))

(define union::(-> relType relType relType)
(lambda (f::relType g::relType)
(lambda (a::A)
(lambda (b::B)

(or ((f a) b) ((g a) b))
))))

Join: The definition of the Alloy join operator is given in
Section 2.1. The operation (join f g) contains a tuple (a, c)
if ∃b | (f a b) ∧ (g b c). That is,

(define-type relType1::(-> A (-> B bool)))
(define-type relType2::(-> B (-> C bool)))
(define-type relType3::(-> A (-> C bool)))

(define join::(-> relType1 relType2 relType3)
(lambda (f::relType1 g::relType2)

(lambda (a::A)
(lambda (c::C)

(exists (b::B) (and ((f a) b) ((g b) c)))
))))

Transitive closure: We define a stepwise transitive clo-
sure recursively using the iterative-join operator. For a nat-
ural number i > 0 and a homogeneous relation r, we define
(iterJoin i r) = r(i) and the transitive closure (tc i r) =

r + r.r + · · ·+ r(i) recursively.

(define-type relType::(-> A (-> A bool)))

(define iterJoin::(-> nat relType relType)
(lambda (i::nat r::relType)

(if (= i 1) r (join r (iterJoin (- i 1) r)))
))

(define tc::(-> nat relType relType)
(lambda (i::nat r::relType)

(if (= i 1) r (union (tc (- i 1) r) (iterJoin i r)))
))

It is easy to see that if the type A consists of only n distinct
values, then ^r = (tc n r). That is, it is guaranteed that
after at most n steps, ^r reaches a fixpoint.

Having defined a transitive-closure operator, we translate
the acyclicity constraint by finitizing the types Book and
Name to n values, inlining the universal quantifiers for all
those values, and replacing the transitive closure operator
with (tc n).

In finitized models, the ”unsat” ouput of Yices only means
that the assertion holds with respect to the analyzed fini-
tization bounds. No general proof of validity is implied.
However, because in the Yices model, the types Target and
Addr are not finitized, the analysis accounts for a larger
scope, and thus, the outcome is more general than Alloy’s
outcome. The results of checking various assertions in the
acyclic model with different bounds for types are discussed
in the next section.

4. EVALUATION
We have evaluated our translation of Alloy to Yices by

checking the 3 assertions of the Alloy address book model. In
addition to the delUndoesAdd assertion discussed before, we
check the two assertions addIdempotent and addLocal given
in Figure 5. The first one states that repeating an addi-
tion has no effect, and the second one states that adding an
entry for a name n does not affect the result of a lookup
for a different name n′. All assertions are checked in all 3
versions of the address book. The assertions delUndoesAdd
and addIdempotent have no counterexamples in any of the

assert addIdempotent {
all b, b’, b’’: Book, n: Name, t: Target |
add[b, b’, n, t] and add[b’, b’’, n, t] implies
b’.addr = b’’.addr

}

assert addLocal {
all b, b’: Book, n, n’: Name, t: Target |
n!=n’ and add[b, b’, n, t] implies
lookup[b,n’] = lookup[b’, n’]

}

Figure 5: Other assertions of the Alloy model

models. The addLocal assertion, however, is valid only in
the basic version. In the other two address books, it has a
counterexample.

We evaluated the correctness of our translation by ensur-
ing that whenever the Alloy Analyzer returns a counterex-
ample, Yices returns a valid counterexample too, and when
Alloy cannot find a counterexample in a specific scope, Yices
does not find any in that scope either. We evaluated the ef-
ficiency of our translation by comparing the Yices analysis
time to that of Alloy. The results are given in Table 1. The
time columns give the CPU time (in second) measured on an
Intel Core 2 Quad CPU 2.83GHz with 8GB memory. The
time-out threshold is 180 seconds. We increase the analy-
sis scope until either Alloy or Yices times out. The Alloy
analysis time is the total of the time spent on generating
CNF and the time spent in the SAT solver as reported by
the Alloy Analyzer 4.1.10 running the SAT4J solver. The
Yices analysis time is what Yices 1.0.27 reports using the
-st option. We have repeated each experiment 3 times and
given the average analysis time in the tables.

The Tautology? column is ”Yes” if Yices manages to prove
the correctness of the assertion. That is, if our Yices model
does not have any type finitization and the analysis outputs
”unsat” for the negation of the assertion. This column is
”No” when a counterexample is found, and ”Don’t know”
when the Yices model requires finitization of some types. In
these cases, even if the analysis returns ”unsat”, it cannot
guarantee the correctness of the assertion beyond the scope
checked.

As shown in Table 1, in cases where a tautology is proven,
our Yices model is very easy to analyze. Yices runtime for
all such assertions is close to zero. Since these cases do not
require any type finitization, increasing the scope has no ef-
fects on the Yices analysis time. The Alloy analysis time,
however, increases as the scope is increased. The scope num-
bers reported in these cases denote the bounds used for all
Alloy signatures. For a scope of x, we use the Alloy com-
mand check [assertion] for x to perform the analysis.
This command causes the Alloy Analyzer to check all con-
figurations of types and subtypes in which all types have at
most x elements. It should be noted that, due to the finitiza-
tion requirement, Alloy can never prove that an assertion is
a tautology. Therefore, in these cases, Yices analysis result
is strictly stronger than that of Alloy.

Checking delUndoesAdd and addIdempotent in the acyclic
model requires finitizing the types Book and Name (see
Section 3.3). The value of n given in the scope column of
the table gives the bound on these types. Although our Yices
model does not finitize Target and Addr, we have to finitize
those in Alloy. To allow at least n atoms of type Addr, we
use the Alloy command check [assertion] for 2n but n

Model Assertion Scope Yices time (s) Alloy time (s) Tautology?
Basic Addr. Book delUndoesAdd 25 0.0006 13.11 Yes

30 0.0006 45.82
35 0.0006 time-out

addIdempotent 30 0.0006 82.38 Yes
40 0.0006 141.27
50 0.0006 time-out

addLocal 40 0.0003 19.67 Yes
50 0.0003 45.01
60 0.0003 102.41
70 0.0003 memory-out

Hierarchical Addr. Book delUndoesAdd 30 0.009 54.02 Yes
40 0.009 139.25
50 0.009 time-out

addIdempotent 20 0.008 7.46 Yes
30 0.008 23.71
40 0.008 time-out

addLocal n = 2 0.02 0.19 No
n = 3 time-out 0.13

Acyclic Addr. Book delUndoesAdd n = 4 0.45 0.19 Don’t know
n = 5 14.36 4.44
n = 6 8.10 150.31
n = 7 29.45 time-out

addIdempotent n = 4 0.39 0.22 Don’t know
n = 5 10.76 4.03
n = 6 8.10 135.59
n = 7 30.20 time-out

addLocal n = 2 0.07 0.18 No
n = 3 time-out 0.23

Table 1: Performance evaluation results

Book, n Name. For these two assertions, the performance
of Yices varies significantly with the scope. As shown in
the table, similar to SAT solvers, the performance of SMT
solvers is not monotonic; the Yices analysis time for the
scope of 6 is smaller than that of scope 5. Furthermore,
in analyzing finite models containing transitive closure, the
Alloy Analyzer can sometimes be more efficient than Yices.

The addLocal assertion (in the hierarchical and the acyclic
model) is the only assertion for which Yices performs strictly
worse than Alloy. Since this assertion uses transitive closure
(see the Lookup function of Figure 3), our Yices model is
finitized based on a number n as described above. The as-
sertion is invalid. Similar to the Alloy Analyzer, Yices can
find a counterexample even in the small scope of n = 2. Al-
though this result is sufficient to show that the assertion is
invalid, we increased the scope to assess the performance of
our Yices model. As shown in the table, increasing the scope
to 3 makes our model too difficult for Yices to solve. This
is because this assertion uses the transitive closure operator
in both sides of equality. In other words, it asserts that the
results of two transitive closures are equal. Since our defini-
tion of transitive closure is a recursive λ-expression, checking
such equalities becomes too difficult for Yices. Currently, we
are investigating other translation techniques for transitive
closure to reduce the complexity of such assertions.

It should be noted that because of our extensive use of
λ-expressions, when Yices reports a satisfying instance, it is
preceded by the word ”unknown”. This implies that the in-
stance might be a false alarm. In our experiments, however,
the instances found by Yices were always real counterexam-
ples. The unsat outputs were always definite, meaning that

the assertions were soundly proven correct.

5. RELATED WORK
SMT solvers have been used as the analysis engine of var-

ious software verification tools. To our knowledge, however,
they have never been used to analyze a relational logic. They
are widely used to increase the automation level of theo-
rem provers, to improve the performance of bounded model
checkers, and also as solvers for specific logics applicable to
software verification.

Theorem provers such as PVS[5], Key[3], HOL-Light[1],
and Isabelle[2] have integrated SMT solvers in their back-
end engines to improve their automation and support for
counterexamples. The smt tactic[9], for example, integrates
generic SMT solvers with Isabelle via translation to SMT-
Lib[6]. The ismt tactic[13], on the other hand, uses the
Yices input language to take advantage of a wider range of
background theories in the translation of Isabelle. Although
the use of SMT-Lib as an interface to the SMT solver allows
the use of different SMT solvers, its limitations can make
the translation unintuitive and sometimes less expressive.

SMT solvers are also used for software model checking
(e.g. [14, 8]). SMT-CBMC[8], for example, integrates CVC-
Lite SMT solvers with the C Bounded Model Checker (CBMC).
The CBMC tool encodes program traces in propositional
logic and solves them using a pure SAT solver. SMT-CBMC,
on the other hand, provides an encoding into richer, and yet
decidable set of theories supported by CVC-Lite. It pro-
duces more compact formulas that are often easier to solve
than the ones generated by CBMC.

Botincan, et. al.[10] introduced a technique for modular

verification of C programs against specifications written in
separation logic. They extended the separation logic prover
so that it can use the Z3 SMT solver both as a prover and
as a guide for proof search. This prevents the separation
logic prover from stopping at formulas that it cannot rea-
son about. Leino, et. al.[19] use SMT solvers within the
context of the Spec# program verifier. They translate com-
mon comprehension expressions into verification conditions
that can be solved by either Simplify or Z3 SMT solvers. A
comprehension expression is an expression in which a set of
elements (with a particular characteristics) is combined us-
ing an operator (e.g. addition, comparison, multiplication,
etc.). Encoding such expressions in an SMT logic requires
the design of appropriate matching triggers. Since the Al-
loy language also allows set comprehension, we believe that
Leino’s approach can be used in our translation of the Alloy
language to an SMT formula.

6. CONCLUSIONS
We have described a case study in which the Alloy ad-

dress book problem is analyzed using the Yices SMT solver.
This case study is the first step of a bigger project in which
the Alloy language will be translated to the Yices input
language automatically, and thus, analyzed using an SMT
solver rather than a SAT solver. The main advantage of this
approach is to avoid finitization of types when possible, and
thus to provide a stronger analysis than the one offered by
the current Alloy Analyzer.

Since the Alloy Analyzer translates all language constructs
to propositional logic and uses a SAT solver, it performs the
analysis only with respect to a finite scope. It can never
prove that an assertion is a tautology, even for the simplest
models. Unlike SAT solvers, SMT solvers support a number
of theories and can prove or refute the constraints within
those theories without sacrificing completeness.

Our case study was a witness to feasibility of this project.
Out of a total of 9 assertions that were checked in 3 models, 5
were proven to be tautologies. That is, all Alloy constraints
could be translated to the Yices without having to finitize
any type. In the other 4, finitization was required, but only
for a subset of the types; the others were left infinite.

The Alloy logic is undecidable. Therefore, finitization is
inevitable. Our case study, however, showed that the finiti-
zation can be done on-demand; only for those types to which
certain language constructs are applied (e.g. universal quan-
tifiers and transitive closure).

During this case study, we realized that many of the Alloy
constructs can be translated to Yices in more than one way.
So far, we have picked the ones that work reasonably well
for the address book problem. More experiments are needed
until we can fix a particular translation rule for each Alloy
construct. In fact, our current experiments show that our
translation of transitive closure is too difficult to analyze
when it is applied to different relations and then checked for
equality. We are currently investigating other translation
techniques to mitigate this problem.

Although, in our experiments, any time that Alloy did
not find a counterexample, Yices did not either, this is not
always the case. Some Alloy models for which the analyzer
cannot find a counterexample, actually have counterexam-
ples, but in higher scopes than the one that the analyzer can
check. Investigating whether Yices can analyze such models
in a high-enough scope to find the counterexample, will be

left for future work.
Once the basic translation of the Alloy language is done,

we will also investigate how to apply optimization techniques
such as symmetry breaking and subexpression sharing de-
tection to produce formulas that are easier to solve for the
underlying SMT solver.

7. REFERENCES
[1] The HOL Light theorem prover.

http://www.cl.cam.ac.uk/ jrh13/hol-light/.

[2] Isabelle.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

[3] KeY project: Integrated deductive software design.
http://www.key-project.org/.

[4] Mondex case study with alloy.
http://www.eleves.ens.fr/home/ramanana/work/mondex.

[5] PVS specification and verification system.
http://pvs.csl.sri.com/.

[6] The satisfiability modulo theories library (smt-lib).
http://goedel.cs.uiowa.edu/smtib.

[7] Yices: An SMT solver. http://yices.csl.sri.com/.

[8] A. Armando, J. Mantovani, and L. Platania. Bounded
model checking of software using SMT solvers instead
of SAT solvers. STTT, 11(1):69–83, 2009.

[9] D. Barsotti, L. Nieto, and A. Tiu. Verification of clock
synchronization algorithms experiment on combination
of deductive tools. ENTCS, 145:63–78, 2006.

[10] M. Botincan, M. Parkinson, and W. Schulte.
Separation logic verification of c programs with an
SMT solver. ENTCS, 254:5–23, 2009.

[11] G. Dennis, F. Chang, and D. Jackson. Modular
verification of code with SAT. In ISSTA, pages
109–120, 2006.

[12] B. Dutertre and L. de Moura. The yices SMT solver.
Available at yices.csl.sri.com/tool-paper.pdf, 2006.

[13] L. Erkök and J. Matthews. Using yices as an
automated solver in Isabelle/HOL. In AFM, 2008.

[14] S. Ghilardi and S. Ranise. Model checking modulo
theory at work: the intergration of yices in MCMT. In
AFM, 2009.

[15] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. The MIT Press, 2006.

[16] D. Jackson. Software Abstractions: Logic, Language,
and Analysis. Pages 5-23, The MIT Press, 2006.

[17] E. Kang and D. Jackson. Formal modeling and
analysis of a flash filesystem in alloy. In ABZ, 2008.

[18] S. Khurshid. Generating Structurally Complex Tests
from Declarative Constraints. PhD thesis, MIT, 2003.

[19] R. Leino and R. Monahan. Reasoning about
comprehensions with first-order SMT solvers. In SAC,
pages 615–622, 2009.

[20] S. Narain, G. Levin, V. Kaul, and S. Malik.
Declarative infrastructure configuration synthesis and
debugging. In JNSM, 2008.

[21] M. Taghdiri and D. Jackson. Inferring specifications to
detect errors in code. JASE, 14(1):87–121, 2007.

[22] M. Vaziri. Finding Bugs in Software with a Constraint
Solver. PhD thesis, MIT, 2004.

[23] L. Zhang and S. Malik. Validating SAT solvers using
an independent resolution-based checker. In DATE,
pages 10880–10886, 2003.

