
Karlsruher Institut für Technologie 

Schriftenreihe
Kontinuumsmechanik im Maschinenbau

Numerically Efficient Gradient Crystal  
Plasticity with a Grain Boundary Yield Criterion 
and Dislocation-based Work-Hardening

Stephan Wulfinghoff

5

S.
 W

u
lfi

n
g

h
o

ff
 

N
u

m
er

ic
al

ly
 E

ffi
ci

en
t 

G
ra

d
ie

n
t 

C
ry

st
al

 P
la

st
ic

it
y





Stephan Wulfinghoff

Numerically Efficient Gradient Crystal  
Plasticity with a Grain Boundary Yield Criterion  
and Dislocation-based Work-Hardening



Schriftenreihe
Kontinuumsmechanik im Maschinenbau
Band 5

Karlsruher Institut für Technologie (KIT)
Institut für Technische Mechanik 
Bereich Kontinuumsmechanik

Hrsg. Prof. Dr.-Ing.habil. Thomas Böhlke

 

Eine Übersicht über alle bisher in dieser Schriftenreihe erschienenen Bände 

finden Sie am Ende des Buchs.



Numerically Efficient Gradient Crystal  
Plasticity with a Grain Boundary Yield 
Criterion and Dislocation-based Work-
Hardening

by
Stephan Wulfinghoff



Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Maschinenbau (MACH)
Tag der mündlichen Prüfung: 19.05.2014

Print on Demand 2014

ISSN 2192-693X
ISBN 978-3-7315-0245-6
DOI 10.5445/KSP/1000042280

This document – excluding the cover – is licensed under the 
Creative Commons Attribution-Share Alike 3.0 DE License  

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons  
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE): 

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)  
KIT Scientific Publishing 
Straße am Forum 2 
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe  
Institute of Technology. Reprint using the book cover is not allowed. 

www.ksp.kit.edu







Numerically Efficient

Gradient Crystal Plasticity with

a Grain Boundary Yield Criterion and

Dislocation-based Work-Hardening

Zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

der Fakultät für Maschinenbau

Karlsruher Institut für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Ing. Stephan Wulfinghoff

Tag der mündlichen Prüfung: 19.05.2014

Hauptreferent: Prof. Dr.-Ing. Thomas Böhlke

Korreferent: Prof. Dr.-Ing. Samuel Forest





Zusammenfassung

Die vorliegende Arbeit soll einen Beitrag zur Weiterentwicklung ver-
schiedener Aspekte der gradientenerweiterten Plastizität liefern. Diese
hat noch nicht den Status einer eindeutigen, anwendungsnahen und
präzisen Theorie erlangt. Es werden daher verschiedene offene Fragen
zu diesem Thema behandelt, wobei die effiziente numerische Imple-
mentierung besondere Berücksichtigung findet.
Nach einer kurzen Einführung des Versetzungsbegriffs und der beispiel-
haften Behandlung einer speziellen Gradientenplastizitätstheorie wer-
den zwei vielversprechende, energetische Potentiale für die gener-
alisierten Spannungstensoren untersucht, welche in vielen der oben
genannten Theorien auftauchen. Anschließend wird ein Modellmaterial
mit lokalisierten plastischen Scherbändern durch eine Gradiententheo-
rie approximiert, um eine anschauliche Interpretation der zuvor genan-
nten generalisierten Spannungen zu erhalten und ein verbessertes Ver-
ständnis verschiedener abstrakter Größen, wie etwa Mikroflächenkraft-
dichten, Mikrokraftbilanzen und inneren Längenparametern zu er-
möglichen.
In der Folge wird eine thermodynamisch konsistente Gradientenplas-
tizitätstheorie basierend auf einer skalaren, phänomenologischen plas-
tischen Feldvariablen betrachtet, welche besonders für effiziente nu-
merische Anwendungen geeignet ist. In diesem Zusammenhang wer-
den energetische und dissipative generalisierte Spannungen sowie ein
Korngrenzenfließmodell eingeführt. Darüber hinaus werden mögliche
konzeptionelle Probleme der Theorie hinsichtlich bestimmter Instabil-
itäten aufgedeckt, die mit den Randbedingungen zusammenhängen,
und es wird eine entsprechende Abhilfe für ein gradientenerweitertes
Kristallplastizitätsmodell vorgeschlagen. Die Finite Elemente Imple-
mentierung dieses Modells wird anschließend diskutiert, wobei ein
phänomenologisches lokales Voce-Verfestigungsgesetz und eine mikro-
morphe Formulierung eine einfache, robuste und numerisch effiziente
Implementierung ermöglichen. Durch den Einsatz des Korngrenzen-



fließkriteriums können Größeneffekte erfolgreich reproduziert werden,
welche in experimentellen Kupferdraht-Zugversuchen beobachtet wur-
den.
Um die physikalische Bedeutung des phänomenologischen Korn-
grenzenmodells weiter zu untersuchen, wird ein Vergleich mit dem
Versetzungsaufstau-Modell von Eshelby et al. (1951) durchgeführt, und
die Möglichkeit der Abbildung des Hall-Petch Effekts durch das Gradi-
entenmodell wird diskutiert.
Anschließend wird das phänomenologische Voce-Verfestigungsmodell
durch ein erweitertes Kaltverfestigungsmodell ersetzt. Das erweit-
erte Modell basiert auf der Gesamtversetzungsdichte und der mit-
tleren Versetzungskrümmung, deren Evolution durch partielle Differ-
entialgleichungen bestimmt wird, welche die krümmungsinduzierte
Versetzungslinien-Produktion sowie Versetzungstransport berücksichti-
gen. Die Versetzungsevolutionsgleichungen stellen eine vereinfachte
Version einer höherdimensionalen Theorie dar, welche im Detail
aufgearbeitet wird.

ii



Summary

This thesis is ought to be a contribution to the further development of
several aspects of gradient plasticity, which has not yet achieved the
status of a unique, applicable and generally accurate theory. Therefore,
several open questions are addressed, where the efficient numerical
implementation is particularly focused on. After a short introduction
to dislocations and an exemplary gradient plasticity framework, the
thesis inspects two promising constitutive energetical potentials for
the generalized stress tensors arising in many theories. Subsequently,
a model material with localized plastic slip bands is approximated
by a gradient theory allowing for an illustrative interpretation of the
aforementioned generalized stresses and a better general understand-
ing of the meaning of several, usually abstract quantities like, e.g.,
microtractions, microforce balance equations and internal length scale
parameters.
In order to consider a theory which is particularly suited for effi-
cient numerical applications, a thermodynamically consistent gradient
plasticity framework is discussed based on the introduction of a phe-
nomenological scalar plastic field variable. In this context, energetical
and dissipative generalized stresses as well as a grain boundary yield
model are introduced. Moreover, possible conceptual difficulties of
the framework concerning instabilities associated to the boundary con-
ditions are revealed and a remedy is proposed for a gradient crystal
plasticity model. The finite element implementation of this model is
subsequently discussed using a phenomenological local Voce-hardening
model and a micromorphic formulation allowing for a simple, robust
and numerically efficient implementation. Owing to the grain boundary
yield criterion, the size effect observed in tensile test experiments of
copper micro-wires can successfully be reproduced.
In order to further investigate the physical significance of the phe-
nomenological grain boundary model, a comparison to the pile-up
model of Eshelby et al. (1951) is carried out and the potential of the



gradient model to reproduce the Hall-Petch effect is inspected.
An enhanced work hardening model is then introduced in order to
replace the phenomenological isotropic Voce-hardening model. The
enhanced hardening model is based on the total dislocation density and
average curvature which evolve according to partial differential equa-
tions that take into account curvature-induced dislocation line-length
production as well as dislocation transport. The dislocation evolution
equations represent a simplified version of a higher-dimensional theory
which is revised in detail.
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Introduction

Motivation

Plasticity theories are nowadays widely used in research and indus-
try. They cover a broad field of applications ranging from crash and
deep drawing simulations to the modeling and optimization of micro-
structured materials. However, classical continuum plasticity theories
without internal length scale usually fail to predict the mechanical
behavior of micro-components if their dimensions fall below a critical
size (typically around 10µm). In addition, these models are not able
to account for size effects when they are applied on the microscale to
predict the effective behavior of micro-heterogeneous materials. For
example, they cannot reproduce the influence of the precipitate or
grain size (i.e. the Hall-Petch effect). However, these size effects are
technologically highly relevant.
These drawbacks motivated the mechanical community to enhance
classical plasticity theories by introducing internal length scales into
the models. In many cases, this is realized through the consideration
of plastic strain gradients or familiar quantities in the constitutive
equations. The principal motivation of this kinematical extension is
the close relation of plastic strain gradients to geometrically necessary
dislocations (GNDs). These represent a special continuum description
of the underlying dislocation structure, described by different effective
Burgers vector measures. For example, GNDs may be given in terms of
the dislocation density tensor, which is the curl of the plastic distorsion.
Alternatively, closely related scalar edge and screw densities are often
introduced for the individual slip systems of a single crystal. Each
representation leads to an improved consideration of the dislocation



Introduction

microstructure in the respective model.
Many gradient plasticity theories are formulated in a thermodynamic
fashion, e.g., by adding the dislocation density tensor to the list of
arguments of the stored energy function. As a result, the mechanical
response of the model indeed becomes size-dependent, which – in
principle – allows for a large range of new applications.
However, due to the need for abstract quantities like generalized stresses
or microtractions, gradient plasticity theories are often difficult to under-
stand for researchers unfamiliar with the field. In addition, many open
questions exist concerning the following aspects.

• Often, simplistic quadratic energy density functions are applied.
The optimal form of the energy is still subject of current research.

• Additional partially highly complex boundary conditions are re-
quired. These have significant influence on the solution. However,
oversimplified conditions are usually applied due to the lack of
more realistic models.

• Gradient plasticity facilitates the formulation of grain boundary
models. However, this technically highly relevant aspect needs
significantly more investigation, since available models are usually
not sufficiently accurate.

• The material parameters involved often lack a satisfying physical
interpretation. Instead, they are often simply introduced as "inter-
nal length scale".

• In gradient plasticity, work hardening is often modeled in terms of
so-called statistically stored dislocation densities. Their effective
transport is usually neglected, although the admissibility of this
omission is highly questionable on the microscale.

Gradient plasticity is an active field of current research and did not
yet achieve the status of a quantitatively correct and practical theory.
In many cases, the results do not even match qualitatively with ex-
periments. For example, many models yield a size-dependent overall
hardening instead of a size-dependence of the yield strength, which is

2
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more frequently observed in experiments.
This lack of accuracy still contrasts with the significantly increased
computational effort of gradient models compared to classical theories
without internal length scale. For example, the global systems of linear
equations arising in finite element simulations of gradient plasticity
models are mostly significantly larger than those of comparable classical
models. Therefore, there are barely any three-dimensional applications.
Moreover, the additional nodal unknowns usually represent plastic vari-
ables which, depending on the model, require a global active set search
strategy or comparable nontrivial algorithms for the determination of
the plastically active zone.
This work is ought to be a contribution to the resolution of various of
the aforementioned issues.

• The work investigates more promising energy density functions
than the quadratic approach. Amongst other things, all material
parameters of the functions allow for a physical interpretation.

• In order to improve the understanding of various rather abstract
quantities like generalized stresses or the internal length scale
parameter, a model material is approximated by a gradient theory.
For this particular material, gradient plasticity features which
are usually abstract, take an illustrative character and can be
understood intuitively.

• In order to reduce the large computational effort in three-
dimensional applications, a simplified model is proposed. It
is based on the gradient of a scalar plastic field variable and
includes thermodynamically consistent and numerically efficient
grain boundary formulations.

• Compared to other theories (e.g. based on the full dislocation
density tensor), a significant reduction of nodal degrees of freedom
is obtained in a finite element simulation of the model. In addition,
the theory allows for a robust implementation and large time
steps. It is shown to facilitate the simulation of three-dimensional
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problems, involving several hundred grains, with a comparatively
low computational effort. Although more complex models are
more precise, the theory preserves many important features of
other gradient plasticity frameworks.

• Depending on the application and the parameters of the simplified
model, the size-effect concerns either the overall hardening, the
overall yield strength, or both. The material parameters are
successfully fitted to experimental data of micro tensile-tests, illus-
trating the capacity of the model to reproduce the experimentally
observed size-effect. In addition, the potential to capture the
Hall-Petch effect is extensively discussed.

• An enhanced work hardening model is introduced based on dis-
location densities, the evolution of which is governed by partial
differential equations. Amongst other things, these equations
do not neglect dislocation transport, in contrast to many other
approaches. The evolution equations of the dislocation densities
are investigated thoroughly.

State of the Art

The discovery of dislocations was a milestone in the process of under-
standing plastic deformations in metals (Orowan, 1934; Polanyi, 1934;
Taylor, 1934). Henceforth, many experimentally observed phenom-
ena could be explained physically by a rapidly emerging dislocation
theory. Examples are given by the particular plastic deformation of
single crystals which is usually characterized by plastic shear in specific
crystallographic slip systems. Moreover, the discrepancy between the
theoretical and the measured critical resolved shear stress as well as the
observed work hardening could be explained (Schmid and Boas, 1935;
Taylor, 1938; Kröner, 1960). See Hirth and Lothe (1982) as well as Hull
and Bacon (1984) for an introduction to dislocation theory.
Continuum mechanical formulations have been established describing
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the evolution of larger amounts of dislocations in terms of scalar densi-
ties. These are interpreted as total line length per unit volume (Gillis and
Gilman, 1965; Essmann and Rapp, 1973; Essmann and Mughrabi, 1979;
Estrin, 1996; Arsenlis and Parks, 2002; Hochrainer et al., 2014). A further
important continuum mechanical quantity is the dislocation density
tensor. This effective Burgers vector variable represents an illustrative
measure of plastic incompatibility (Kondo, 1952; Nye, 1953; Bilby et al.,
1955; Kröner, 1958).
A geometrically linear, macroscopic continuum crystal plasticity theory
was proposed by Hill (1966). This framework as well as its geometrically
nonlinear generalization are nowadays widely applied (Teodosiu, 1970;
Rice, 1971; Mandel, 1971). An important ingredient of the framework
are phenomenological work hardening models, accounting for the effect
of dislocation multiplication and entanglement on the overall material
strength (e.g. Taylor, 1938; Hill, 1966; Kocks, 1970; Chang and Asaro,
1981; Franciosi and Zaoui, 1982; Estrin, 1996; Kocks and Mecking, 2003).
Numerical Algorithms for local single crystal plasticity were discussed,
e.g., by Needleman et al. (1985), Cuitiño and Ortiz (1992), Steinmann
and Stein (1996), Ortiz and Stainier (1999) as well as Miehe and Schröder
(2001).
An early strain gradient plasticity theory allowing for the modeling of
size effects in shear bands was formulated by Aifantis (1987). Further
gradient theories by Fleck and Hutchinson (1993), Steinmann (1996)
as well as Nix and Gao (1998) exploit the concept of geometrically
necessary dislocations developed by Ashby (1970). Henceforth, a
large number of micro-experiments has been performed covering many
loading cases like tension, compression, bending, torsion and micro-
indentation (e.g. Fleck et al., 1994; Stölken and Evans, 1998; Dimiduk
et al., 2005; Xiang and Vlassak, 2006; Gruber et al., 2008; Yang et al.,
2012). The principal outcome of these tests is the confirmation of
the size-dependence of plastically inhomogeneous deformations on the
microscale, summarized by the slogan "smaller is stronger".
Simultaneously, additional gradient crystal plasticity theories emerged,
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most of them being formulated thermodynamically based on an exten-
sion of the stored energy function. Ortiz and Repetto (1999) propose
a rank-one energy, leading to a size-dependent overall yield stress
as shown by Ohno and Okumura (2007) using a slightly different
energy. Rank-one potentials have been applied in various finite element
simulations and require a special numerical treatment since they are
non-smooth (Kametani et al., 2012; Hurtado and Ortiz, 2012, 2013;
Wulfinghoff et al., 2014).
Berdichevsky (2006a) proposes a logarithmic energy with similar prop-
erties, which additionally accounts for dislocation saturation effects (see
also Berdichevsky, 2006b). This potential has been investigated in
a series of analytical and numerical solutions, e.g., by Berdichevsky
and Le (2007), Le and Sembiring (2008b), Kochmann and Le (2008)
as well as Kochmann and Le (2009b). It was further compared to
discrete dislocation dynamics simulations by Le and Sembiring (2008a)
and extended to a deformation twinning theory by Kochmann and Le
(2009a).
Mesarovic et al. (2010) discuss a three-dimensional gradient crystal
plasticity theory including a quadratic energy. This theory has been
derived from the coarsening of highly correlated dislocation arrange-
ments in discrete slip planes (see also Mesarovic, 2005; Yassar et al., 2007;
Baskaran et al., 2010; Mesarovic, 2010).
The different energy functions have been compared by Forest and
Guéninchault (2013) as well as Wulfinghoff et al. (2014). The authors
propose another logarithmic function motivated by the statistical theory
of Groma et al. (2003).
Gurtin (2000) formulated a large strain gradient plasticity framework
for single crystals with special emphasis on the exploitation of the
principle of virtual power. It has been further developed by Gurtin
(2002) and specified for small deformations by Cermelli and Gurtin
(2002). Moreover, Gurtin and Needleman (2005) formulated a closely
related grain boundary model based on the Burgers vector flow (see
also Gurtin, 2006, 2008b). The aforementioned rank-one energy of Ohno
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and Okumura (2007) has been integrated into the framework by Gurtin
(2008a). Besides energetical generalized stresses, the theory allows for
dissipative stresses as well (e.g. Anand et al., 2005; Gurtin et al., 2007).
The concept of generalized dissipative stresses is critically discussed
by Hutchinson (2012) who noted that dissipative "higher order stress
quantities can change discontinuously for bodies subject to arbitrarily
small load changes".
A closely related, geometrically linear framework for gradient-extended
dissipative solids has been proposed by Miehe (2011). Here, the prin-
ciple of virtual power derives from a global incremental potential (see
also Hurtado and Ortiz, 2013). The framework is a further development
of local variational concepts (e.g. Ortiz and Stainier, 1999; Miehe, 2002)
and has been applied to an isotropic plasticity model by Miehe et al.
(2013). In a series of papers, the theory has been generalized to large
deformations by Miehe (2014) and applied to gradient crystal plasticity
by Miehe et al. (2014a). The contribution comprises a new finite element
formulation which has been used to solve several three-dimensional
problems, partially involving multiple grains.
Forest (2009) proposes a micromorphic theory based on the introduction
of an additional field variable, which is interpreted as the micromorphic
counterpart of an internal or state variable. Depending on the choice of
the variables and their coupling, the theory is able to reconcile several
classes of generalized theories, e.g., gradient enhanced plasticity and
damage models, Eringen’s and Mindlin’s micromorphic theory (Eringen
and Suhubi, 1964; Mindlin, 1964) as well as implicit gradient mod-
els (e.g. Engelen et al., 2003; Peerlings et al., 2012). The theory has been
applied to crystal plasticity and damage, e.g., by Cordero et al. (2010),
Aslan et al. (2011) and Cordero et al. (2013). It facilitates the preservation
of the local character of the flow rule, i.e., an associated variational for-
mulation is not required. This property has been exploited numerically,
e.g., by Anand et al. (2012), Cordero et al. (2012) and Wulfinghoff et al.
(2013a).
Geometrically linear thermodynamical gradient plasticity theories for
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polycrystals have been developed, e.g., by Menzel and Steinmann
(2000), Gurtin (2004) as well as Gudmundson (2004) (see also Fredriks-
son and Gudmundson (2005)). The polycrystal theory of Fleck and
Willis (2009b,a) has been implemented by Nielsen and Niordson (2013).
Geometrically nonlinear polycrystal frameworks are discussed, e.g., by
Liebe et al. (2003) as well as Miehe et al. (2014b), who propose a gradient
extended version of the logarithmic strain theory by Miehe et al. (2002).
In microplasticity, grain boundaries play an important role, since they
have a strong influence on the overall plastic response. Therefore, the
possibility to formulate respective interface models is a crucial feature of
gradient plasticity. Several works focus particularly on grain boundary
models (e.g. Aifantis and Willis, 2005; Aifantis et al., 2006; Fredriksson
and Gudmundson, 2007). The theory of Dahlberg et al. (2013) accounts
for interfaces that slide and separate. A numerical treatment of a grain
boundary model is discussed by Wulfinghoff et al. (2013a).
In contrast to thermodynamical frameworks, various gradient plasticity
theories do not explicitly introduce generalized stresses conjugate to the
gradients of plastic strain measures. Examples are given by the contri-
butions of Acharya and Bassani (2000), Evers et al. (2002), Cheong et al.
(2005) and Becker (2006). Ertürk et al. (2009) discussed a unification of
Gurtin’s thermodynamical theory and the physically motivated model
formulation of Evers et al. (2004a,b) (see also Bayley et al., 2006; Geers
et al., 2007). Additional comparisons were performed by Bargmann
et al. (2010) as well as Svendsen and Bargmann (2010), who showed that
many of the aforementioned models can be unified in a thermodynamic
rate variational formulation.
Apart from the application to size-effects, gradient extended models
are often applied to regularize localization phenomena, e.g., due to
softening (e.g. Liebe, 2004; Anand et al., 2012; Mazière and Forest, 2013)
and damage (e.g. Geers et al., 1998; Liebe et al., 2001; Miehe et al.,
2010a,b; Aslan and Forest, 2011).
Usually, numerical implementations of gradient plasticity define plastic
strain measures as independent variables, i.e., they appear as additional
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nodal degrees of freedom. Early numerical contributions of this kind
were made by de Borst and Mühlhaus (1992) as well as Liebe and
Steinmann (2001). The latter propose a variational formulation of the
flow rule, leading to an active set search procedure on the nodal level.
Becker (2006) compared this strategy to a projection method which maps
the integration point values of the plastic slips to the nodes. A similar
projection procedure has been applied by Han et al. (2007).
Kuroda and Tvergaard (2008) introduce scalar densities of geometrically
necessary dislocations as additional nodal degrees of freedom (see
also Klusemann et al., 2012; Kuroda, 2013). Moreover, Reddy et al.
(2012) discuss a primal-dual formulation where the displacements, the
plastic slips and the backstress are treated as global unknowns (see also
Wieners and Wohlmuth, 2011). This strategy facilitates a local evaluation
of the radial-return algorithm, similar to the micromorphic approach
of Forest (2009). For a discontinuous Galerkin approach to gradient
plasticity, see Djoko et al. (2007a,b).
The theory of Gurtin (2002) was implemented by Bittencourt et al. (2003)
and compared to Discrete Dislocation Dynamics (DDD) simulations of
a model composite subject to simple shear (see, e.g., Cleveringa et al.,
1997). Closely related comparisons have been carried out, e.g., by Shu
et al. (2001), Aifantis et al. (2009), Aifantis et al. (2012) as well as
Bardella et al. (2013), who used DDD-simulations to discuss the effect
of geometrically necessary dislocations on latent hardening.
Yefimov et al. (2004) used DDD-results to benchmark the statistical
dislocation theory of Groma et al. (2003). Groma’s work has been
derived from the dynamics of individual dislocations. It relates the
internal length scale of the backstress to the inverse of the square root of
the total dislocation density, instead of treating it as a material constant.
The model accounts for dislocation sources and dislocation transport in
a continuum mechanical sense.
Hochrainer (2006) developed a three-dimensional generalization of
Groma’s kinematical dislocation density evolution equations (see also
Hochrainer and Zaiser, 2005; Hochrainer et al., 2007; Zaiser et al., 2007).
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Hochrainer’s basic field variables are given by a scalar dislocation
density and average dislocation curvature. These are defined in an ex-
tended space which accounts for the dislocation orientation in addition
to the three-dimensional Euclidean space and the time. A simplified
theory without extra dimensions has been proposed by Hochrainer
et al. (2010) (see also Hochrainer et al., 2014). Numerical simulations
of both approaches have been carried out by Sandfeld et al. (2010),
Sandfeld (2010), Sandfeld et al. (2011), Wulfinghoff et al. (2011) as well
as Wulfinghoff and Böhlke (2012b), amongst others.

Outline

The thesis starts with a short introduction to crystal plasticity and
dislocations in Chap. 1. The geometrical description as well as the stress
fields of edge and screw dislocations are summarized. Fundamental
examples concerning the application of dislocation theories in applied
material science are discussed. Subsequently, continuum mechanical
descriptions of dislocations are introduced. Moreover, a classical
continuum mechanical crystal plasticity framework including a work-
hardening model is shortly reviewed. In addition, some basic gradient
plasticity model features are introduced by means of an example which
illustrates some differences between classical and gradient-enhanced
approaches.
Chap. 2 investigates two promising defect energy candidates for gra-
dient crystal plasticity applications. First, a rank-one defect energy is
considered, allowing for a size-effect on the overall yield strength of
micro-heterogeneous materials. As a second candidate, a logarithmic
defect energy is proposed, which is motivated by the work of Groma
et al. (2003). The characteristics of both energies are investigated by
applying them to a laminate microstructure. A new regularization tech-
nique for the numerical treatment of the rank-one potential is presented
based on an incremental potential involving Lagrange multipliers. The
effect of the two energies on the macroscopic size-dependent stress-
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strain curve as well as the arising pile-up forms are investigated. Under
cyclic loading, the model is shown to provide a continuum formulation
of Asaro’s type III kinematic hardening (Asaro, 1975).
The aim of Chap. 3 is to improve the understanding of several abstract
quantities introduced in Chaps. 1 and 2, like generalized stresses and
the internal length scale. Therefore, a special single crystal model is
approximated by a gradient plasticity theory in a single slip situation.
The particular feature of the single crystal model is the concentration
of the plastic slip into ideally localized and equidistant slip bands.
Hence, the regions in between the slip bands deform purely elastically.
Exemplary bending and torsion examples illustrate that continuum
crystal plasticity theories without internal length scale are unable to
properly describe the material behavior, if the characteristic deformation
wave lengths approach the slip band spacing. Subsequently, it is
shown that an improved continuum mechanical approximation of the
material is obtained by enhancing the stored energy function by a
defect energy term. For this specific model, the generalized stresses,
tractions, boundary conditions, microforce balance equation as well as
the internal length scale have an illustrative and intuitive character in
certain situations. The introduction of a dissipation potential and the
presentation of an illustrative example close the discussion.
In Chap. 4, the frameworks introduced in the first part of the work
are simplified in order to optimize the theory for three-dimensional
numerical applications of several grains, including grain boundary
models. Therefore, the number of kinematically independent global
plastic field variables is reduced to only one phenomenological scalar
field. The grain boundaries are explicitly accounted for in the principle
of virtual power, yielding an additional grain boundary microforce
balance equation, which supplements the linear momentum balance and
the microforce balance equation in the bulk. The introduction of bulk
and grain boundary energy density functions as well as thermodynam-
ically consistent flow rules close the set of equations. In this context,
rate-dependent and rate-independent settings are discussed.

11



Introduction

Furthermore, it is shown that the reduction to only one scalar plastic
field variable leads to conceptual difficulties concerning the direction
of plastic flow. By means of an example, it is demonstrated that the
solution is generally not stable with respect to the boundary conditions,
i.e., arbitrarily small changes of the boundary conditions may lead
to finite changes of the solution. An alternative, stable approach
is discussed and applied to a gradient-extended, visco-plastic single
crystal model.
In Chap. 5, a micromorphic version of the crystal plasticity model
developed in Chap. 4 is presented. The finite element implementation
is discussed in detail. Emphasis is put on the enhancement of the
power law material subroutine. The associated implicit Euler scheme
is optimized based on an improved starting value for the Newton
scheme. Three-dimensional simulations illustrate that the proposed
algorithm facilitates significantly larger time steps compared to the
standard Newton scheme. The numerical model is fitted to experimental
data of polycrystalline copper micro-tensile tests. Therefore, a quadratic
defect energy and an isotropic Voce-hardening model are applied. The
size dependent yield strength is reproduced notably well owing to the
grain boundary model introduced in Chap. 4.
This interface model is compared to a pile-up model in the spirit
of Eshelby et al. (1951) in Chap 6. A relation between the relevant grain
boundary stresses of both theories is established. This relation illustrates
the incompatibility of the approaches: the gradient model can in general
not be expected to yield the typical Hall-Petch relation (the yield stress
increase scales inversely with the square root of the grain diameter). The
findings are verified by three-dimensional FEM-simulations of several
hundred grains.
Chap. 7 revises the kinematical continuum dislocation framework of
Hochrainer (2006) based on the dislocation density and average disloca-
tion curvature, which are introduced for each slip system. Both fields are
defined in the Euclidean space extended by the dislocation orientation,
which is introduced as an extra-dimension. The different terms of the
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evolution equations are motivated from the kinematics of individual
dislocations. Finally, a simplified version of the theory without extra
dimension is discussed (Hochrainer et al., 2010).
In Chap. 8, the simplified version is coupled to the equivalent plastic
strain gradient model presented in Chap. 5. The phenomenological
isotropic Voce-hardening approach is therefore replaced by a dislocation
density based work-hardening model. More precisely, the critical
resolved shear stress of each slip system is assumed to be a function
of the total dislocation densities, the evolution of which is governed
by the partial differential equations introduced in Chap. 7. In addition,
the introduction of further generalized stresses is discussed. These are
assumed conjugate to the dislocation densities and the plastic slips. As
a result, additional generalized force balance equations are obtained
which enter the flow rule in form of a backstress term. In particular
situations, the backstress comes out to be a line-tension induced curva-
ture effect.

Notation. A direct tensor notation is preferred throughout the text.
Vectors and 2nd-order tensors are denoted by bold letters, e. g. a or A.
The symmetric part of a 2nd-order tensor A is designated by sym(A).
A linear mapping of 2nd-order tensors by a 4th-order tensor is written
as A = C[B]. The scalar product of 2nd-order tensors is denoted, e. g.,
by A ·B = tr(ATB). The composition of two 2nd-order tensors is
formulated by AB and the dyadic product by A⊗B. Matrices are
labeled by a hat, e. g. ε̂.
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Chapter 1

Introduction to Crystal Plasticity and Dislocations

This chapter serves as an introduction to crystal plasticity and disloca-
tions. The presentation is kept as short as possible since most of the
content is a revision of well-established theories and does not contain
any new findings. In particular, the text concentrates on aspects which
are relevant for the subsequent chapters. For a more detailed and
comprehensive introduction to dislocations the reader is referred to Hull
and Bacon (1984). Hirth and Lothe (1982) give a broad overview on the
theory of dislocations. In the context of applied material science, Bargel
and Schulze (2008) provide a basic introduction. Standard references on
continuum crystal plasticity models are, e.g., Mandel (1971) and Rice
(1971). The content has partially been taken from Wulfinghoff and
Böhlke (2010).

1.1 The Plastic Deformation of Single Crystals

1.1.1 Crystallographic Slip

Usually, everyday metallic components exhibit a polycrystalline mi-
crostructure. This means they are composed of a large number of
individual crystals, which form regions with highly ordered atomic
structure. The size of these so-called grains can vary within a wide
range (from less than one up to several hundred microns, depending
on the application). The grains are delimited by grain boundaries. In
many cases, the macroscopic mechanical properties of polycrystalline
materials are nearly isotropic (direction-independent), since the crys-
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tallographic orientation of the individual grains does not show any
preferred direction. However, the individual crystals are anisotropic
due to their crystallographic atomic structure. In particular, the basic
plastic deformation mechanism is shear in certain lattice directions.

Figure 1.1: Slip traces on an tungsten-specimen (taken from Schob, 1972).

For example, Fig. 1.1 shows a deformed tungsten single crystal tensile
specimen. The slip traces illustrate the plastic shear deformation.
Geometrically, the deformation can be characterized by the slip di-
rection d, the slip plane normal n and the amount of plastic slip γ.
Together, these quantities form a slip system. They are schematically
illustrated in Fig. 1.2, which shows a homogeneously sheared piece of
material. In order to attach an orthonormal coordinate system to the
considered slip system one may define a third vector by l = n× d, or
alternatively h = d× n = −l (see Fig. 1.2).
Only one active slip system is visible in Figs. 1.1 and 1.2, respectively.
This particular case is referred to as single-slip. In general, several slip
systems are present in a crystal and can simultaneously be active (see
Chap. 1.5). If the crystal orientation of a single crystal tensile specimen
is properly chosen, the activated slip system usually forms an angle of
approximately 45◦ with the loading direction, indicating the direction of
the maximum shear stress.
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d d · ∇γ = 0l

h

Figure 1.2: Illustration of the slip direction d, the slip plane normal n and the plastic
slip γ (for small deformations).

1.1.2 Dislocations as Origin of the Plastic Deformation

In real crystals, the plastic shear deformation process is not as smooth as
indicated in Fig. 1.2. Instead, it is the result of the collective motion of a
large number of discrete, line-like crystallographic defects, the so-called
dislocations. Therefore, Fig. 1.2 shows an idealization of the actual
plastic deformation. Fig. 1.3 shows a schematic example of a dislocation.
The motion of the dislocation on the glide plane with normal n causes a
local change of the atomic neighborship relations. This is the principal
origin of the macroscopically observed plastic deformation.
The dislocation in Fig. 1.3 has entered the crystal from the surface,
leaving a step. The plastic slip represents a displacement jump, i.e., it is
localized and can be interpreted as the trace of the dislocation (indicated
by the dashed line in Fig. 1.3).

The presence of the dislocation implies an elastic deformation of the
crystal lattice (Fig. 1.3) and a stress field around the dislocation. For
the simple geometry in Fig. 1.4 (left), the stress field can be computed
analytically in regions which are sufficiently far from the dislocation
core (Volterra, 1907; Taylor, 1934). For this purpose, the theory of
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n

d
l trace

elastic lattice deformation

Figure 1.3: Motion of an edge dislocation through the crystal lattice (schematically).
The trace of the dislocation represents a localized plastic slip.

b b
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x2

Figure 1.4: Volterra edge dislocation (left) and screw dislocation (right).

isotropic linear elasticity is applied. The stress field of the edge dislo-
cation (Fig. 1.4, left) is given by

σ11 = Dsx2
3x2

1 + x2
2

r4
, σ12 = −Dsx1

x2
1 − x2

2

r4
, σ22 = −Dsx2

x2
1 − x2

2

r4
, (1.1)

where Ds = bG/(2π(1− υ)) with Poisson’s ratio υ, the shear modulus
G and the absolute value b of the Burgers vector (Fig. 1.4), which will
subsequently be defined more rigorously. The radial distance from the
dislocation core is denoted by r.
In addition, Fig. 1.4 (right) schematically shows the second basic dis-
location type: the screw dislocation. This kind of dislocation leads to
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shear stresses τ(r) which are tangentially aligned to circles around the
dislocation core and which lie in planes orthogonal to the line direction.
They are given by

τ(r) =
bG

2πr
. (1.2)

In general, dislocations in real materials are curved, i.e., they are
compositions of the aforementioned edge and screw prototypes. The
elastic dislocation energy per unit length Wl can be computed from the
stress fields by integration

Wl = αGb2, (1.3)

where α depends on the geometry of the considered system and on
whether the dislocation is of screw, edge or mixed type.

n

d
l

b

b

Burgers circuit C

Figure 1.5: Relaxation of the crystal lattice and Burgers circuit (neglecting surface
energy effects).

Usually, the velocity of the screw portion of an expanding dislocation
loop succeeds the velocity of the edge portion, since the motion of
the edge part implies the production of additional screw line length.
However, the edge dislocation is energetically more favorable leading
to a larger driving force of the screw component motion.
The stored elastic energy around the dislocation can be removed by
virtually cutting the piece of material as indicated in Fig. 1.5. This leads
to a purely plastic, incompatible deformation and well defined atom
positions (Fig. 1.5, right). The width b of the opening gap represents
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the absolute value of the Burgers vector characterizing the dislocation.
In general, the Burgers vector can be determined from the Burgers cir-
cuit (Frank, 1951), which is a closed atom-to-atom path in the deformed
crystal (Fig. 1.5, left). In an undeformed, ordered crystal the same path
is in general not closed, if it contains dislocations (Fig. 1.5, right). The
closure-vector is the Burgers vector b.

1.1.3 Regularization of Discrete Dislocations

The edge and screw dislocation stress fields (1.1) and (1.2) are singular
at the dislocation center. This is a result of the localized plastic slip
(displacement jump), which is bounded by the dislocation line. In
some situations, it is useful to regularize the stresses by replacing the
localized plastic slip by a smoothed version. This can for example be
effectuated by first defining the plastic slip as delta distribution and
then replacing the sharp delta by a smooth function, e.g., a Gaussian
distribution with finite width (variance). As a consequence, the stresses
are decreased to finite values close to the core. However, they can still
be approximated by (1.1) and (1.2) at sufficient distances from the center,
i.e., at radial distances which are much larger than the width of the
Gaussian distribution.
Note carefully that the energy (1.3) will also decrease if the stress
field is regularized, depending on the width of the regularized delta
distribution. Hence, the smoothing procedure also changes the energy
of the dislocation. This observation is also important in the context of
certain continuum plasticity theories, which do not explicitly resolve
individual dislocations. Instead, an averaged (or smoothed) description
of the crystal kinematics is adopted, i.e., information is lost deliberately.
It is important to note that this smoothing procedure requires special
energetical considerations in order to accurately describe the energy of
the system under consideration.
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1.2 Dislocations in Applied Material Science

Since the 1930s, the discovery of dislocations initiated a significant
improvement of the mechanical understanding of metal plasticity (e.g.
Orowan, 1934; Polanyi, 1934; Taylor, 1934). One of the first important
perceptions was that the macroscopically observed plastic deformation
is not the result of the spontaneous sliding of whole atomic planes. This
mechanism would require a significantly larger applied stress which is
known as the theoretical strength being a multiple of the experimentally
measured strength. Instead, the material resistance against plastic
deformation is mainly determined by the stress required to trigger
dislocation motion. However, besides dislocations additional origins of
plastic deformations exist (e.g. formation of twins and grain boundary
sliding).

1.2.1 Precipitation Hardening

Nowadays, the knowledge about dislocations is systematically ex-
ploited in the development and optimization of mechanical material
properties. This is usually based on the introduction of various obstacles
against dislocation motion. For example, the obstacles may be given by
precipitates interacting with dislocations in various ways. If the crys-
tallographic structure and orientation of the precipitates are coherent
with the matrix, dislocations tend to cut the precipitates, if these are
sufficiently small. However, dislocations normally bypass incoherent
and large precipitates, e.g., by leaving their slip plane through climb or
cross slip. Here, climb denotes dislocation motion normal to the slip
plane due to diffusion of vacancies while cross slip can be effectuated
by screw dislocations changing to another glide plane.
Another mechanism to bypass a precipitate is the Orowan mechanism,
i.e., the dislocation bends around the impurity until it is fully sur-
rounded and the dislocation can move on, leaving a so-called Orowan
loop around the precipitate (Fig. 1.6).
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precipitate

Figure 1.6: Illustration of the Orowan mechanism.

1.2.2 Substitutional and Interstitial Atoms – Dynamic Strain Aging

Besides precipitates, interstitial and substitutional atoms can be added
to a material to increase its strength. The principal strengthening
mechanism of substitutional atoms can be explained by the lattice
distorsion around the atom which represents an energy barrier against
dislocation motion.
In contrast, interstitial atoms additionally tend to move to the disloca-
tion core by diffusion. Since the dislocation core is a center of dilatation,
it represents an energetically favorable position for interstitials. When
applied to an external shear stress, the pinned dislocation first needs to
be torn away from the interstitials in order to generate plastic deforma-
tions. Macroscopically, this effect can often be observed by the existence
of an upper and lower yield point in the stress strain diagram. When
the upper yield point is reached, the deformation changes from elastic
to plastic accompanied by a sudden stress drop representing the relieved
dislocations. Simultateously, instead of being homogeneous, the plastic
deformation usually starts at some small region of the specimen which
subsequently expands until the whole specimen deforms plastically.
Subsequently the material starts to harden.
After the deformation, the interstitials travel back to the dislocation
cores leading once more to an increased strength. Depending on the
temperature, this diffusion-controlled process may take some time. Un-
der certain conditions, the diffusion speed competes with the dislocation
velocity, leading to a dynamic pinning and unpinning of the dislocations
during the deformation process. As a consequence, the microscopic
strain rate sensitivity can become negative and localization phenomena
become visible. This behavior is referred to as Portevain-Le Chatelier
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effect (PLC effect, e.g. Portevin and Le Chatelier, 1923) . It manifests
itself in an oscillating stress strain diagram reflecting the competition of
pinning and unpinning of dislocations (Fig. 1.7).

σ

ε

Figure 1.7: Illustration of the PLC effect.

1.2.3 Hall-Petch Effect

Grain boundaries represent another effective obstacle against disloca-
tion motion. Therefore, the material strength can be increased by
decreasing the grain size. This mechanism is referred to as the Hall-
Petch effect (Hall, 1951; Petch, 1953). It is a favorable strengthening
mechanism since it usually leads to an improved ductility of the ma-
terial, which is usually desirable in actual applications. Dislocations
interact with grain boundaries in manifold ways. For example, a grain
boundary may serve as dislocation source or sink and dislocations may
pile up in front of it.
If the grains are extremely fine, the main plastic deformation mechanism
changes from dislocation motion to grain boundary sliding. This is
accompanied by a reversal of the strengthening effect with decreasing
grain size, known as the inverse Hall-Petch effect.

1.2.4 Single Crystals and Texture Strengthening

If a polycrystal is loaded in tension, several grains are always oriented
such that the resolved shear stress takes large values in certain slip
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systems. These grains usually initiate the plastic deformation.
Similarly, the tensile yield stress of a single crystal strongly depends on
its orientation. This is exploited technically, e.g., in single crystalline
turbine blades by optimizing the crystal orientation with respect to the
load carrying capacity of the component under consideration.
Similarly, the strength of polycrystalline metals may be increased if
the crystal orientation distribution is manipulated systematically, i.e., a
texture is introduced for purpose.

1.2.5 Work Hardening

If a metallic specimen is deformed plastically, the number of dislocations
and the total dislocation line lenght usually increase monotonously due
to the presence of various sources of dislocation multiplication, like
spiral sources or Frank-Read sources (Fig. 1.8) as well as dislocation
interactions. The newly formed dislocations act as additional obstacles
to other dislocations leading to an increased overall yield stress. This
effect is called work hardening.

Figure 1.8: Frank-Read source.

The dislocation density of heavily deformed components can be reduced
by recrystallisation. During this sort of heat treatment so-called recrys-
tallization fronts move through the material. These interfaces separate
regions with high and low dislocation densities. They move in the
direction of the high-density region leaving an almost defect-free region
behind, i.e., the atoms are reordered in the recrystallization front. The
principal driving force of the interface motion is the energy difference
between both aforementioned regions.
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In heavily distorted metals, recrystalization allows for a significant
refinement of the grains and a substantial Hall-Petch effect.

1.3 Continuum Description of Dislocations in Crystal Plasticity

Continuum crystal plasticity models allow to estimate the mechanical
response of a body B subjected to a given set of boundary conditions.
In general, the body may consist of several phases, at least some of
which are considered to be crystals in the following. Usually, crystal
plasticity models are applied to predict the bulk behavior of materials
with microstructure (e.g. in a two-scale simulation) or to simulate micro
components. In the small deformation context, one is interested in the
deformation in terms of the displacement field u or the infinitesimal
strain tensor ε = sym(H). Here, H = ∇u = ∂xj

uiei ⊗ ej is the displace-
ment gradient and {e1, e2, e3} is an orthonormal basis.

1.3.1 Orowan’s Equation

In continuum crystal plasticity, dislocations are usually described in
terms of density measures and the individual dislocations are normally
not resolved1. For example, one introduces the dislocation density ρ,
which is interpreted as the "total line length per unit volume". Normally,
the continuum crystal plasticity approach is useful in situations where
the total dislocation line length in a considered volume element is
much larger than the characteristic dimensions of the volume itself. In
this case, it would be technically impossible to resolve each and every
dislocation. Since real crystals usually have several slip systems, one
introduces the dislocation density for each system separately. Here, the
single slip situation is considered for simplicity.

1Discrete dislocations can also be described by continuum theories. However, here the term

"continuum crystal plasticity" is used for theories which do not resolve individual dislocations.
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Orowan (1934) motivated the following relation between the plastic slip
rate and the dislocation density

γ̇ = ρ b νavg, (1.4)

where νavg is the line average of the dislocation velocity in the considered
volume element. If a fraction of the dislocations is immobile, only
the remaining, mobile part of the dislocation density is considered in
Eq. (1.4).

γ

n

d
l

Burgers circuit C continuum smoothing process

γ + ∆γ

Figure 1.9: Discrete (localized) and continuum representation of the plastic slip γ.

The plastic slip γ can be interpreted as a smoothed version of the
actual, localized plastic slip. This smoothing procedure is visualized
schematically at the edges of the body in Fig. 1.9 (the smoothing of
the dislocations is not visualized). Here, several edge dislocations have
entered the material from the surface, leaving respective steps. These
are not visible in the continuum crystal plasticity representation.

1.3.2 Plastic Distorsion and Dislocation Density Tensor

In addition to the aforementioned observations, Fig. 1.9 (right) illus-
trates that the presence of several dislocations of equal sign lead to
a non-vanishing plastic slip gradient ∇γ in the continuum crystal
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plasticity representation. This relation will be discussed in more detail
in the following. Therefore, the plastic distorsion is defined

Hp = γd⊗ n. (1.5)

In Fig. 1.9, the elastic lattice deformation has been relaxed by cutting
the material as explained in Sect. 1.1.2. It should be mentioned that the
material could have been cut in an infinite number of ways in order to
elastically relax the lattice.
Fig. 1.9 shows that the plastic deformation is obviously incompatible.
This can be seen from the Burgers circuit which, initially closed, is now
interrupted at the cutting positions. In the given example, the value
of the total closure or Burgers vector is given by −4b. It is important
to note that this value coincides with the total amount of (discrete)
plastic slip, which occurs at the Burgers circuit (at the points where the
dislocation traces intersect with the Burgers circuit). This connection
becomes particularly obvious if the dislocation traces are chosen as
cutting positions. It also holds true, if additional edge dislocations with
opposite sign or more complex dislocations with mixed character are
surrounded by the Burgers circuit.
Motivated by these considerations, the continuum crystal plasticity
analogon of the total or net Burgers vector btot is defined as the following
line integral

btot = d
∫

C
γn · dx =

∫

C
(γd⊗ n) dx =

∫

C
Hp dx, (1.6)

where C denotes an arbitrary Burgers circuit. Note that Eq. (1.6) also
applies to the discrete case, if the localized plastic slip is inserted.
The application of Stokes’ theorem leads to

btot =
∫

C
Hp dx =

∫

A

curlT(Hp) da, (1.7)

with curl(Hp) = ǫijk∂xi
Hp

ljek ⊗ el, where ǫijk is the permutation symbol.
The area A is an arbitrary area bounded by C = ∂A. The direction of da
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is given by the normal of A at the corresponding position. Eq. (1.7)
motivates the interpretation of the tensor

α = curlT(Hp) (1.8)

as a dislocation density tensor (Kondo, 1952; Nye, 1953; Bilby et al., 1955;
Kröner, 1958). It may be interpreted as a generalized "Burgers vector
density per unit area".
If exclusively edge dislocations are present (like in Fig. 1.9), the disloca-
tion density tensor reads

α = −(d · ∇γ)d⊗ l = ρ⊢d⊗ l, (1.9)

where ρ⊢ = −(d · ∇γ) may be interpreted as scalar edge dislocation
density.
It should be noted that the identity ρ = ρ⊢/b holds only if the dislocations
share the same sign and direction. This is not the case, for example, if
the amount of positive dislocations equals that of negative dislocations.
Then, ρ⊢ is zero and ρ takes a finite value.
In general, the total dislocation density is decomposed into a geometri-
cally necessary part and a remaining part denoted by "statistically stored
dislocations" (SSDs). The portion of the underlying dislocations which is
related to α represents the geometrically necessary dislocations (GNDs,
Ashby (1970)).
The fact that the curl of Hp does in general not vanish is equivalent to
the statement that Hp itself cannot be derived from a potential. This
means that, generally, there is no plastic displacement field, i.e., the
plastic deformation is usually incompatible as discussed in Sect. 1.1.2.
Therefore, the dislocation density tensor is often referred to as a measure
of incompatibility.
SSDs are dislocations which trap each other randomly and do therefore
not contribute to plastic strain gradients (Bortoloni and Cermelli, 2000).
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1.4 A Classical Continuum Crystal Plasticity Framework for
Single Slip

1.4.1 Elastic Properties

It is assumed that the total displacement gradient decomposes addi-
tively into an elastic part He and a plastic part Hp,

H = He + Hp. (1.10)

The elastic and plastic strains can be defined as εe = sym(He)

and εp = sym(Hp), respectively. Hence, the additive decomposition also
applies to the infinitesimal strain tensor

ε = sym(H) = εe + εp. (1.11)

A typical constitutive assumption for the Cauchy stress is Hooke’s law

σ = C[εe], (1.12)

with the elastic stiffness tensor C, which is assumed to have the usual
properties (major and minor symmetry as well as positive definiteness).
Defining the volumetric elastic energy density by

We =
1

2
εe · C[εe], (1.13)

the stress power is given by

σ · ε̇ = σ · ε̇e + σ · ε̇p = ∂εeWe · ε̇e + γ̇σ · (d⊗ n) = Ẇe + τ γ̇. (1.14)

Here, τ = σ · (d⊗ n) denotes the resolved shear stress of the considered
slip system.

1.4.2 Viscoplastic Formulation

In general, the plastic response of real crystals is rate-dependent, i.e., the
stress response depends on the applied strain rate. Motivated by the
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typical power-law type creep behavior of metals, these are often of the
form (Hutchinson, 1976)

γ̇ = sgn (τ) γ̇0

∣
∣
∣
∣
∣

τ

τC

∣
∣
∣
∣
∣

p

. (1.15)

Here, γ̇0 is a reference shear rate and p is a strain rate sensitivity param-
eter. For large values of p, Eq. (1.15) approximates a rate-independent
material with the critical resolved shear stress τC. Alternatively, the
following overstress approach is often used

γ̇ = sgn (τ) γ̇0

〈 |τ | − τC

τD

〉p

, (1.16)

where τD is called drag stress and 〈•〉 = (•+ | • |)/2 = max{•, 0}.
Creep is highly controlled by dislocations bypassing obstacles by climb,
i.e., the creep behavior strongly depends on the diffusion properties
of vacancies. Therefore, the strain rate sensitivity is a function of the
temperature.
A rate-independent model can be considered a reasonable approxi-
mation in many applications. However, it is well known that in
some situations, the plastic slip rates may not be unique in the rate-
independent multislip case (Taylor, 1938; Kocks, 1970). This requires
a special numerical treatment (see, e.g., Miehe and Schröder, 2001).
Therefore, rate-dependent models (e.g. Perzyna, 1971) are often applied.

1.4.3 Work Hardening Models

Equation (1.14) illustrates that the resolved shear stress τ is power conju-
gate to γ̇, i.e., the product τ γ̇ contributes to the mechanical power (1.14).
Hence, τ can be interpreted as plastic driving force. Indeed, Schmid
and Boas (1935) found experimentally that many metals yield when
the resolved shear stress τ reaches a critical value τC. This relation
is referred to as ’Schmid law’. Usually, this is a good approximation
for face centered cubic (FCC) metals, while body centered cubic (BCC)
metals show more complex slip modes and partially violate the Schmid
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The critical resolved shear stress τC depends on several parameters, for
example the temperature or the concentration of interstitial atoms. In
general, the critical resolved shear stress evolves during plastic defor-
mation processes due to work-hardening. Phenomenological hardening
models have been proposed, for example, by Taylor (1938), Koiter (1953)
or Hill (1966) who proposed linear hardening relations for the multislip
case. These relate the critical resolved shear stresses τC

α to the slip rates
of the individual slip systems via the evolution law

τ̇C
α =

∑

β

hαβ|γ̇β|, (1.17)

where hαβ are the hardening moduli.
Kocks (1970) further investigated the relation between self- and latent
hardening and found that the latent hardening is usually stronger than
the self-hardening rate (e.g. by a factor up to 1.4). This can be formalized
by

hαβ = H[ql + (1− ql)δαβ], (1.18)

with ql ∈ [1, 1.4] (see also Cuitiño and Ortiz, 1992). In order to account for
the hardening nonlinearity, the modulus H is often taken as a function
of an equivalent plastic strain γeq which may, for example, be defined by

γeq =
∑

α

t∫

0

|γ̇α| dt̃. (1.19)

Alternative (but closely related) hardening models are based on heuris-
tic dislocation density evolution equations of the saturation type (Gillis
and Gilman, 1965; Essmann and Rapp, 1973). For example, for the single
slip case, these relations often take the following form

ρ̇ = cρ(1− ρ/ρsat)|γ̇|, (1.20)

where cρ and ρsat are model parameters. Typically, the critical shear
stress is estimated by the relation (Taylor, 1934)

τC = τC
0 + aTGb

√
ρ, (1.21)
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where aT is a constant of order one. For multislip, Eq. (1.21) must
be generalized to account for multiple dislocation densities (see, e.g.,
Franciosi and Zaoui, 1982).
Recent works on gradient plasticity apply equations of the form (1.20)
as evolution equations of the SSD-density (Evers et al., 2004b; Becker,
2006).

1.5 Gradient Crystal Plasticity Based on Scalar GND-Densities

1.5.1 Motivation

One objective of the work at hand is the investigation and formulation
of phenomenological gradient plasticity theories. In this context, geo-
metrically necessary dislocations (GNDs) play a major role. Therefore,
this section extends the geometrically linear kinematical description of
geometrically necessary dislocations outlined in Sect. 1.3.2. In addi-
tion, a prominent phenomenological gradient crystal plasticity model
based on an energetic approach is shortly reviewed. A simple two-
dimensional shear example will be discussed in order to illustrate
the typical mechanical behavior of this widespread type of gradient
plasticity model.

1.5.2 Different Representations of Geometrically Necessary

Dislocations

The classical kinematical framework of geometrically linear elasto-
plasticity has been introduced in Sect. 1.4. It is based on the
strain ε = sym(H) as the symmetric part of the displacement gradient H

and the additive decompositions H = He + Hp as well as ε = εe + εp of
these tensors into elastic and plastic parts.
In gradient plasticity, this kinematical framework is extended. The prin-
cipal motivation of this extension are size effects exhibited by metals,
when the length scale of the system under consideration is in the order
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of microns. Size effects have been observed in many experiments using
micro-specimens (see the introduction for an overview). As a general
rule it was found that the smaller the system size, the stronger the
mechanical response. Additional examples are given by the Hall-Petch
effect and precipitation hardening, where it has been found that the
strengthening does not only depend on the precipitates’ volume fraction
but also on their size.
Classical continuum plasticity models without internal length scale
are unable to reproduce the observed size-dependence. Some experi-
ments (e.g. Fleck et al., 1994) suggest a correlation between the size effect
and the plastic spatial variation, i.e., deformation inhomogeneity. As
a consequence, phenomenological models have been proposed which
assume the material strength to depend on the gradient of some plastic
strain or strain-like variable and thereby introduce an internal length
scale into the theory. Many of these gradient extended models are based
on Nye’s dislocation density tensor (Eq. (1.8))

α = curlTHp = −curlTHe. (1.22)

Here, it has been exploited that the curl of the displacement gradi-
ent H = He + Hp vanishes due to the compatibility of the displacement
gradient H .
Relation (1.22) has been discussed for the case of single slip in Sect. 1.3.2.
By superposition, it can also be applied to the geometrically linear
multislip case based on the following representation of the plastic
distorsion

Hp =
N∑

α=1
γαdα ⊗ nα, (1.23)

where N is the number of slip systems, γα denotes the plastic slip on
slip system α and the vectors dα and nα are the slip directions and slip
plane normals, respectively. Eq. (1.23) is a superposition of the single
slip case (1.5), which is only valid in the geometrically linear regime.
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Inserting the representation (1.23) of Hp into Eq. (1.22) yields

α =
N∑

α=1
dα ⊗ (ρα

⊢lα + ρα
⊙dα). (1.24)

Here, the scalar edge and screw dislocation densities ρα
⊢ = −dα · ∇γα,

ρα
⊙ = lα · ∇γα as well as the lattice vectors lα = nα × dα have been

introduced.

1.5.3 A Gradient Plasticity Hardening Model

Gradient plasticity theories have in common that they model the mate-
rial behavior to be dependent on geometrically necessary dislocations
or similar quantities. However, this can be done and was actually done
in various ways (see the introduction for an overview). The probably
most popular approach introduces the GNDs as additional arguments
of the energy density (e.g. Steinmann, 1996; Cermelli and Gurtin, 2002;
Berdichevsky, 2006a).
In the following, a typical computational example is discussed (see, e.g.,
Wulfinghoff and Böhlke, 2010). This example illustrates typical disloca-
tion microstructures which arise from the aforementioned widespread
energy based approach. In addition, the model’s features are compared
to a theory without internal length scale. Note that the theory is not
presented in detail here (for additional information see Gurtin et al.,
2007), since the purpose of this section is a first illustration of some key
features, including the notion of field equations, generalized stresses
and the overall behavior of gradient plasticity models instead of a
detailed theoretical examination which is carried out in the subsequent
chapters.
The field equations may be derived from the principle of virtual power.
Here, they are assumed to be given by the linear momentum balance
div(σ) = 0 and additional microforce balance equations for the dissipa-
tive force τd

α = τα−τB
α in the αth slip system, where σ denotes the Cauchy

stress tensor. The dissipative forces τd
α determine the (volumetric)
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dissipation density D =
∑

α
τd

α γ̇α. Moreover, τα = σ · (dα ⊗ nα) is the
resolved shear stress of slip system α and

τB
α = − div (ξα) (1.25)

can be interpreted as a backstress resulting from the presence of GNDs.
The components of the generalized stresses ξα are here assumed ener-
getically conjugate to the scalar edge and screw dislocation densities ρα

⊢
and ρα

⊙ (Eq. (1.24)) as explained in the following.

u0(t)

|γ1||γ1|

l = 0

ω = 2

60◦
d1

d2

ω = 4

Figure 1.10: Plastic shear strain evolution for ω = 2 and ω = 4

The elastic energy is supplemented by an additional phenomenological
term Wg, i.e., W = We(ε, εp) + Wg(ρ

α
⊢, ρα

⊙), also denoted as defect
energy (Gurtin et al., 2007). For simplicity, no isotropic hardening is
considered. The generalized stresses

ξα =
∂Wg

∂∇γα
= −∂Wg

∂ρα
⊢

dα +
∂Wg

∂ρα
⊙

lα (1.26)

are also denoted as microstresses. The aforementioned expressions

τα + div (ξα)− τd
α = 0 (1.27)

represent microforce balance equations, which supplement the linear
momentum balance.
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To generate a closed set of equations, thermodynamically consistent
constitutive functions are assumed for the dissipative stresses τd

α(γ̇α), the
strain energy We(ε, εp) and the defect energy Wg(ρ

α
⊢, ρα

⊙). A quadratic
approach is chosen for We(ε, εp), the dissipative stresses τd

α(γ̇α) are
assumed to be given by a power law. Two decoupled approaches

Wg = cω

∑

α
|ρα
⊢l|ω (1.28)

with ω = 2 (Gurtin et al., 2007) and ω = 4 are compared (cω is another
material property and l is an internal length scale parameter).

u0(t)

|ρ1
⊢||ρ1

⊢|

dislocation density

ω = 2 ω = 4

dislocation

pile-up

Figure 1.11: Dislocation pile-up evolution for ω = 2 and ω = 4

The analyzed periodic plane strain problem involves two slip systems,
the slip directions of which are ±60◦ with respect to the horizontal.
The displacement at the top is prescribed. The top and bottom are
assumed impenetrable for dislocations. This can be accounted for by
setting the Dirichlet boundary conditions involving the plastic slips to
zero. Physically, these so-called micro-hard boundary conditions can be
interpreted as passivated surface layers or idealized grain boundaries.
The results (see Figs. 1.10 and 1.11) show, that the first ansatz (ω = 2)
leads to smooth strain curves (Fig. 1.10, center) and dislocation pile-
ups (Fig. 1.11, center). These pile-ups generate a long-range influence
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from the boundary on the bulk behavior. For comparison, the result
of the classical theory without internal length scale, i.e. l = 0 is also
depicted in Fig. 1.10. In this case, no dislocation pile ups emerge and
the deformation is homogeneous. The ansatz ω = 4 generates a clearer
distinction between bulk and boundaries than ω = 2.
The size effect due to the quadratic defect energy extension is depicted
qualitatively in Fig. 1.12. The overall hardening is size-dependent, the
yield strength is not. In addition, the diagram shows the model response
for vanishing defect energy (i.e. l = 0) which is comparable to the model
response for an infinite layer thickness.

τ̄

γ̄

Decreasing
layer thickness

l = 0

Figure 1.12: Average shear stress-strain-diagram for the quadratic defect energy model.
The smaller the layer thickness the stronger the overall hardening.
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Chapter 2

Application of Gradient Plasticity to a Laminate
Material – Inspection of Energies

The chapter at hand is largely taken from Wulfinghoff et al. (2014). It
introduces the framework of gradient crystal plasticity based on the
dislocation density tensor. Since the framework is exploited in the
subsequent sections, the derivations are given in detail.

2.1 Gradient Crystal Plasticity Based on the Dislocation Density
Tensor

The extension of crystal plasticity based on GNDs is not unique. For
example, the constitutive equations may account for scalar edge and
screw densities (as illustrated in Sect. 1.5). These are defined for each
slip system and interact through constitutive models (e.g. Gurtin et al.,
2007). Alternatively, the extension may be based on the full dislocation
density tensor (Eq. (1.22)). In this case, the interaction is implicitly
defined (although little is known about the accuracy of this approach).
Besides the Cauchy stress σ, additional generalized stresses s and M are
introduced, which are in general nonsymmetric. These are second-order
tensors being work-conjugate to Ḣ

p
and α̇, respectively. The virtual

power of this internal force system is assumed to be given by

δPint =
∫

B
δpint dv =

∫

B

(

σ · δε̇ + s · δḢ
p

+ M · δα̇
)

dv, (2.1)

with δε̇ = sym(∇δu̇) and δα̇ = curlT(δḢ
p
).

In absence of volume forces, the virtual power of the external forces is
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given by
δPext =

∫

∂Bt

t̄ · δu̇ da +
∫

∂Bm

m̄ · δḢ
p

da, (2.2)

where the integration domains represent Neumann-type boundaries
with prescribed tractions t̄ and microtractions m̄. The evaluation of the
principle of virtual power under static conditions,

δPint = δPext, (2.3)

gives, in combination with the chain rule and Gauss’ theorem, the field
equations at regular points

div (σ) = 0, s + curlT(M) = 0. (2.4)

In addition, the principle yields the following Neumann-type boundary
conditions on ∂Bt and ∂Bm

t̄ = σn, m̄ = Mn̂, (2.5)

with
n̂ = −ǫn = −(ǫijkei ⊗ ej ⊗ ek)(nlel) = −ǫijknkei ⊗ ej. (2.6)

The power density of the internal forces reads

pint = σ · ε̇ + s · Ḣp
+ M · α̇. (2.7)

Up to this point, the theory is quite general, since it may be applied to
single as well as polycrystal plasticity. In the following, the work will
focus on single crystal plasticity, where the plastic distorsion is given by
the additional kinematical relation (1.23)

Hp =
∑

α
γαdα ⊗ nα, (2.8)

where dα and nα denote the slip directions and slip plane normals,
respectively. The index α runs over all slip systems.
In addition, an equivalent plastic strain γeq is introduced. One possible
definition is given by Eq. (1.19)

γeq =
t∫

0

∑

α
|γ̇α| dt̃. (2.9)
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It is assumed that the volumetric stored energy density has the form

W = We + Wg + Wh, (2.10)

with We = (ε− εp) · C[ε− εp]/2. The expressions Wh and Wg are as-
sumed to be functions of µ̂ and α, respectively. Here, µ̂ = (µ1, µ2, ..., µNµ

)

denotes a vector of internal history variables. The functions are assumed
normalized, i.e., Wh(0̂) = 0 and Wg(0) = 0. Isotropic hardening is
accounted for by Wh, while Wg models size effects. The evolution of
µ̂ is assumed to be given by the rate-independent approach

µ̇α =
∑

β

fαβ(µ̂) |γ̇β| with fαβ(µ̂) ≥ 0. (2.11)

The functions fαβ determine which specific hardening model is applied.
For example, if µ̂ = (γeq), it follows that f1β = 1.
In this chapter, the following two approaches will be investigated

W 1
g = cGb‖α‖, W ln

g = c0‖α‖ ln
‖α‖
α0

, (2.12)

where c is a constant of order unity, G is the macroscopic shear modu-
lus, b is the Burgers vector, α0 is a constant and c0 is given by

c0 =
Gbc1

2π(1− υ)
, (2.13)

where υ is Poisson’s ratio and c1 is of order unity (in this work c1 = 1).
The Euclidean norm of the dislocation density tensor is defined as:
‖α‖ =

√
α ·α.

The rank-one energy W 1
g can be motivated by simple line tension

arguments as follows. In many situations, the total elastic energy of
a real crystal is well represented by We. However, the stored elastic
energy around dislocations seems to be partially missing in We, since
the regions close to the dislocation cores are not explicitly resolved in
the continuum model (see the discussion in Sect. 1.1.3). In addition,
one might assume that the respective energies of a set of statistically
stored dislocations (SSDs) may be negligible, since SSDs tend to form
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di- and multipoles. This implies a mutual screening of the individual
stress fields and lower energies. Finally, it may be assumed that all other
dislocation interactions are accounted for in We. Then, the remaining
energy that needs to be accounted for is the stored elastic energy around
geometrically necessary dislocations. The associated energy density is
proportional to the amount of GNDs, since the interactions are assumed
to be already represented by We. This explains the form of W 1

g in
Eq. (2.12). For additional arguments see Ortiz and Repetto (1999) and
Hurtado and Ortiz (2012, 2013).
The logarithmic energy W ln

g (Eq. (2.12)) is motivated by the form of the
associated backstress (Forest and Guéninchault, 2013). It turns out, that
the approach W ln

g leads to a backstress which is formally close to the one
derived in the statistical theory of Groma et al. (2003)2, given by

− Gc1

2π(1− υ)ρ
∂2

x1
γ (2.14)

for a single slip situation with slip direction e1. Here, ρ denotes the
total dislocation density. In the two-dimensional single slip regime,
the backstress involves the Laplacian of the plastic slip, as postulated
by Aifantis (1987). However, the internal length scale is not interpreted
as a material constant but determined by the dislocation microstructure,
if W ln

g is applied. This point is discussed in detail in Sect. 2.2.2.
The subsequent sections investigate the features of the rank-one and
logarithmic energies W 1

g and W ln
g , respectively. Since the logarithmic

energy is neither smooth nor convex, a regularization will also be
discussed.
The stresses σ and M are assumed to be energetic, i.e.

σ = ∂εW, M = ∂αW. (2.15)

The dissipation inequality can be shown to be given by

D = pint − Ẇ =
∑

α
(τ eff

α − qα sgn (γ̇α)) γ̇α ≥ 0 (2.16)

2Since Groma’s work represents a two-dimensional single slip theory, this comparison is made for that

situation.

42



Inspection of Energies

with τ eff
α = (σ + s) · (dα ⊗ nα) and qα =

∑

β fαβ∂µβ
Wh. A possible flow

rule, satisfying the dissipation inequality (2.16), is given by the following
power law

γ̇α = sgn
(

τ eff
α

)

γ̇0

〈 |τ eff
α | − (τC

0 + qα)

τD

〉p

. (2.17)

Here, τC
0 is the initial yield stress, γ̇0 is a reference shear rate, p is the

strain rate sensitivity and τD is a drag stress.
If the stored energy is not differentiable at α = 0, the symbol ∂ in
Eq. (2.15)2 is interpreted as a sub-differential operator (see, e.g., Han and
Reddy, 2013), i.e.

M
∣
∣
∣
α=0
∈ {M : Wg(α)−M ·α ≥ 0 ∀ α}. (2.18)

This can be interpreted as follows. If the stress M is applied at
a material point, α will take a value which minimizes the expres-
sion Wg(α)−M ·α. For small values of M , the minimum is given
by α = 0. However, for sufficiently large values of M , the value of α

can be determined from the stationarity condition M = ∂αWg.

Example: If Wg is given by W 1
g = cGb‖α‖, it follows that α = 0 if

M · α̃ ≤ W 1
g (α̃) = cGb‖α̃‖ ∀α̃ (2.19)

⇔M · α̃ ≤ ‖M‖‖α̃‖ ≤ cGb‖α̃‖ ∀α̃. (2.20)

Hence, it is found that






M ∈ {M : ϕ1
g(M) ≤ 0}, if α = 0

M = cGb α
‖α‖ , else.

(2.21)

with ϕ1
g(M) = ‖M‖ − cGb.

Remark: Note that the generalized stress M can be computed uniquely
from α only if α 6= 0. This makes analytical solutions as well as the
numerical implementation difficult. The same problem arises in rate-
independent rigid plasticity, where the stress can only be computed
from the plastic slip rate if this is non-vanishing. Possible regulariza-
tion techniques include the introduction of small elastic strains or the
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approximation of the rate-independent model by, e.g., a power law with
a large rate-sensitivity. The introduction of elastic strains usually implies
better convergence properties. Therefore, the work at hand introduces
an analogue regularization technique which will be discussed later.
Possible other numerical strategies concerning this problem are dis-
cussed in Kametani et al. (2012) as well as Hurtado and Ortiz (2013).

2.2 Shearing of a Periodic Laminate

In this section, the theory introduced in Sect. 2.1 is applied to an elasto-
plastic laminate microstructure exposed to plane strain (Fig. 2.1). Similar
problems have been investigated by Cordero et al. (2010), Aslan et al.
(2011) as well as Forest and Guéninchault (2013).
The principal objective of the chapter at hand is the presentation of an-
alytical and numerical solutions of the aforementioned simple gradient
plasticity model problem. In particular, two promising candidates of
the defect energy function Wg are investigated concerning their effect
on the overall size effects as well as the dislocation pile-up structures
building up at impenetrable boundaries. The main motivation of the
work is the need for more realistic defect energy functions compared to
the quadratic approach. A major deficiency of the latter one represents
the necessity of an internal length scale parameter, which usually
lacks a physically meaningful interpretation (see Eq. (1.28) with ω = 2).
Therefore, energy density functions are considered in the following, the
material parameters of which are physically more relevant.
The laminate consists of periodic elastic (hard) and elasto-plastic (soft)
layers. The widths of the hard and soft layers are given by h and s, re-
spectively. It is assumed that the plastic layer deforms in single slip with
horizontal slip direction d = e1 and vertical slip plane normal n = e2,
i.e. Hp = γe1 ⊗ e2. Per definition, the plastic shear strain in the hard
phase is set to zero, γ = 0.
The dislocation density tensor (1.24) can be expressed in terms of the
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edge density ρ⊢ = −∂x1
γ

α = −ρ⊢e1 ⊗ e3. (2.22)

The quantity ρ⊢ represents the total Burgers vector amount per unit area
of edge dislocations. Note, that its unit (µm−1) differs from the unit of
the total line length per unit volume ρ, given by µm−2.

x1, d

x2, n

γ̄
s h

Figure 2.1: Undeformed laminate material and deformed unit cell. The dark elastic
phase is hard (h) and the light elasto-plastic phase is soft (s).

Subsequently, the unit cell in Fig. 2.1 (right) is considered. The origin of
the coordinate system is located in the center of the soft phase.
The shear deformation is assumed to be given by the following displace-
ment field

u = γ̄x2e1 + ũ(x1)e2. (2.23)

The deformation is driven by the macroscopic shear strain γ̄ (not to be
confused with the average of γ)3.
Since ũ(x1) is a periodic fluctuation, the following relations have to be
satisfied

s/2+h
∫

−s/2

ũ dx1 = 0,

s/2+h
∫

−s/2

ũ′ dx1 = 0. (2.24)

3Assuming isotropic elastic properties, it can be shown that the fluctuation in e1-direction vanishes

using the linear momentum balance (2.4)1.
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Henceforth, (•)′ denotes the derivative with respect to x1. From
Eq. (2.23) and the definition of Hp, the displacement gradient and elastic
strain are found to be

H = γ̄e1 ⊗ e2 + ũ′(x1)e2 ⊗ e1 (2.25)

and
εe = (γ̄ + ũ′ − γ)sym(e1 ⊗ e2), (2.26)

respectively. The material is taken to be elastically isotropic and
homogeneous, for the sake of simplicity. Therefore, Eq. (2.26) implies
that all stress components vanish, except for σ12 = σ21. From the linear
momentum balance σ′12(x1) = 0 (see Eq. (2.4)1), it follows that the stress
and the elastic strain are homogeneous

εe
12 =

1

2
(γ̄ + ũ′ − γ) =

σ12

2G
= const. (2.27)

Assuming the defect energy Wg to be a function of ‖α‖, the generalized
stress M reads

M = ∂αWg = ∂‖α‖Wg
α

‖α‖ = −sgn (ρ⊢) ∂|ρ⊢|Wge1 ⊗ e3 = M(x1)e1 ⊗ e3.

(2.28)
All other components of M are assumed to vanish4. From the balance
equation (2.4)2, it follows that

s12 −M ′ = 0. (2.29)

Throughout this section, the isotropic hardening contribution will be
neglected, i.e. Wh = 0.

2.2.1 Rank-One Defect Energy

Analytical Solution

For the laminate, the following energy is adopted

W 1
g = cGb ‖α‖ = cGb |ρ⊢|, (2.30)

4Note, that this is a quite strong assumption, if α = 0 and a non-smooth energy are considered.

For α 6= 0, this is a mere consequence of the constitutive equation for M .
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where c is of order unity (Ortiz and Repetto, 1999). According to
Eq. (2.28), the generalized stress M reads

M = − ρ⊢

|ρ⊢|cGb = −sgn (ρ⊢) cGb, if |ρ⊢| > 0

|M | ≤ cGb, if |ρ⊢| = 0.
(2.31)

where the second line follows from Eq. (2.21).
Subsequently, a monotonous shear deformation in the positive direction
is prescribed such that the following relations hold in the soft phase

τ eff ≥ τC
0 , γ̇ ≥ 0. (2.32)

In a first step of the analysis, the flow rule (2.17) is assumed to be given
by a linear visco-plastic relation, i.e.

γ̇ = γ̇0
τ eff − τC

0

τD
⇔ τ eff = τC

0 + τD γ̇

γ̇0
. (2.33)

Note, that the analysis is finally aiming at a rate-independent formula-
tion. At the present stage, the viscous term is still kept to prove that the
model leads to a size effect in the model response. Afterwards, viscous
terms will be neglected. With Eq. (2.33), the dissipation (2.16) reads

D = τ eff γ̇ = τC
0 γ̇ + τD γ̇2

γ̇0
. (2.34)

A symmetric slip profile is expected with

γ ′(x1) ≥ 0 ∀x1 ∈ (−s/2, 0), γ ′(x1) ≤ 0 ∀x1 ∈ (0, s/2). (2.35)

A cuboid-shaped volume ∆B is considered, as illustrated in Fig. 2.2. For
this volume, the equality of external and internal powers is evaluated in
the following.
The power of the external forces reads

Pext(∆B) =
∫

∂(∆B)

t · u̇ da +
∫

∂(∆B)

m · Ḣp
da. (2.36)
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∆B

s
ǫ ǫ

Figure 2.2: Illustration of the integration volume ∆B.

The second integral vanishes, as shown in App. A.1.
From Gauss’ theorem as well as the linear momentum bal-
ance div (σ) = 0 and the boundary condition t = σn (Eqns. (2.4)1

and (2.5)1), it follows that

Pext(∆B) =
∫

∂(∆B)

t · u̇ da =
∫

∆B
σ · ε̇ dv. (2.37)

On the contrary, the power of internal forces is given by

Pint(∆B) =
∫

∆B
pint dv

(2.16)
=

∫

∆B
(Ẇ +D) dv. (2.38)

Finally, the equality Pext(∆B) = Pint(∆B) can be represented as follows
(after some rearrangements, see Eq. (2.33) and App. A.2)

2cGb γ̇(0) + (τC
0 − σ12)

s/2+ǫ
∫

−s/2−ǫ

γ̇ dx1 +
τD

γ̇0

s/2+ǫ
∫

−s/2−ǫ

γ̇2 dx1 = 0. (2.39)

This relation allows to show that there is a size effect on the overall
strength of the laminate. In order to prove this, assume that there
were no size effect. Then, the solution would be the classical one
with γ̇ =const. in the soft phase. In this case, Eq. (2.39) would reduce to

σ12 = τC
0 + τD γ̇

γ̇0
+

2cGb

s
, (2.40)

after division by γ̇s. Since the last term scales like 1/s, the assumption
that there is no size effect must be wrong.
The rate-independent limit can be considered by setting γ̇0 →∞. In this
case, the last integral in Eq. (2.39) vanishes. As before, a fully plastic
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2cGb
s

γ̄

σ12

τC
0

γ

x2

|ρ⊢|

s

Figure 2.3: Macroscopic shear stress strain curve for the rank-one energy. The increase
of the overall yield point scales inversely with the size of the soft phase.

situation is considered, i.e., the yield condition τ eff = σ12 + s12 = τC
0 is

assumed to hold everywhere in the soft phase. Then,

M ′ (2.29)
= s12 = −(σ12 − τC

0 ) = const. (2.41)

⇒M = −(σ12 − τC
0 )x1, (2.42)

where the constant of integration vanishes due to the symmetry re-
quirement |M(−s/2)| = |M(s/2)|. Since |M(x1)| is not constant, the
dislocation density ρ⊢ = −γ ′ must vanish (comp. Eq. (2.31)). Therefore,
γ =const. and from Eq. (2.39) it follows that

σ12 = τC
0 +

2cGb

s
. (2.43)

This equation holds in the plastic regime. Clearly, the application of
the rank-one energy increases the macroscopic yield stress by 2cGb/s,
i.e., the increase scales inversely with the size of the soft phase (see
Fig. 2.3). The same scaling behavior has been found by Ohno and
Okumura (2007) for a spherical grain, also using a rank-one energy.
The authors concentrated on the overall mechanical response without
having to compute the fields inside of the grains. As illustrated in
Fig. 2.3, the dislocations localize in dislocation walls at the elasto-plastic
interface.
In the plastic regime, the plastic shear strain follows from Eqns. (2.27)
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and (2.43) and the constraint (2.24)2

γ =
s + h

s



γ̄ − τC
0 + 2cGb/s

G



 . (2.44)

In addition to these results, the system behavior can be characterized as
follows

• For the material parameters of aluminum (G = 26.12 GPa and
b = 0.286 nm) and c = 1, the size effect becomes important when
the system size is below ∼ 10µm.

• The plastic shear strain is constant in the bulk, i.e., the dislocations
form singularities (walls) at the boundaries.

• The backstress is constant (w.r.t. space) in the bulk. During the first
period, it increases and thereby impedes any plastic deformation.
Therefore, the overall deformation is purely elastic during this
period. At a certain point, the plastic deformation starts and
the backstress remains constant afterwards. Its value is given
by 2cGb/s.

2.2.2 Logarithmic Energy

Motivation

This section investigates the following defect energy

W ln
g = c0‖α‖ ln

‖α‖
α0

, (2.45)

with the constant c0 as defined in Eq. (2.13). The energy is motivated
by the statistical theory of dislocations by Groma et al. (2003). The
authors derive a backstress term which involves the second gradient of
slip as postulated by Aifantis (1987). However, their theory involves an
internal length scale which is given by 1/

√
ρ, where ρ denotes the total

dislocation density.
In pure metals, the geometrical characteristics of the microstructure are
essentially determined by the dislocation arrangement. This is a strong
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argument for a (variable) internal length scale, which is determined by
the available dislocation field variables (instead of a constant length
scale parameter, see also Forest and Sedláček (2003) where this depen-
dency is derived from a dislocation line tension model).
It is demonstrated subsequently, that the approach (2.45) leads to a
backstress which is similar to that of Groma et al. (2003). However,
it should be mentioned that this energy is neither convex nor smooth
with respect to the dislocation density tensor (a regularization will be
discussed at a later stage).
For the laminate problem, the generalized stress M reads (see Eq. (2.28))

M = −sgn (ρ⊢) c0



ln
|ρ⊢|
α0

+ 1



 . (2.46)

In this section, rate-independent plasticity will be considered based on
the yield criterion

f = |τ eff | − τC
0 ≤ 0. (2.47)

Here, the effective stress reads

τ eff = (σ + s) · (d⊗ n) = σ12 + s12
(2.29)
= σ12 + M ′. (2.48)

With Eq. (2.46) and M ′ = (∂ρ⊢
M) (∂x1

ρ⊢), it follows that

τ eff = τ − c0

|ρ⊢|
∂x1

ρ⊢ = τ +
Gc1

2π(1− υ)

b

|ρ⊢|
∂2

x1
γ. (2.49)

Here, the second term can be interpreted as a backstress. Note that
the backstress involves no internal length scale parameter. Instead, the
internal length scale,

√

b/ρ⊢, is determined by the dislocation microstruc-
ture. In contrast to the backstress of Groma et al. (2003), the internal
length scale is determined by the GND-density ρ⊢ instead of the total
density ρ. Hence, the influence of statistically stored dislocations (SSDs)
is ignored. This question will be addressed at a later point. For the
moment, GND-dominated problems will be focused on. Therefore, a
homogeneous initial GND-density |ρ⊢| = α0 will be assumed to be given.
In addition, it is assumed that the SSD-density is equal or less than α0.
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Figure 2.4: Macroscopic stress-strain diagram for three different sizes. Analytical (lines)
and regularized, numerical (triangles) solution for the logarithmic potential.

Analytical Solution

The soft phase is assumed to be under plastic loading, with τ eff = τC
0 in

the soft phase. In this case,

M ′ (2.29)
= s12 = −(σ12 − τC

0 ) = const. (2.50)

⇒M = −(σ12 − τC
0 )x1, (2.51)

where, again, the constant of integration vanishes due to the symmetry
requirement |M(−s/2)| = |M(s/2)|. The plastic slip γ can be derived
from the equality of Eqns. (2.46) and (2.51), which yields a differential
equation for γ. The solution reads

γ =
α0Lτ

e

(

exp

(

s

2Lτ

)

− exp

(

−a
x1

Lτ

))

with Lτ =
c0

σ12 − τC
0

, (2.52)

where the matching conditions γ(−s/2) = γ(s/2) = 0 have been ex-
ploited and where e = exp(1). The variable a is defined by a = sgn (γ ′)

and is assumed positive in (−s/2, 0) and negative in (0, s/2) 5.

5It is noteworthy, that the solution depends on α0, although this constant does neither appear in the

field equation τC
0 = σ12 + c0∂2

x1
γ/|∂x1

γ| nor in the matching condition γ(±s/2) = 0.
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Figure 2.5: Plastic slip γ and dislocation density ρ⊢/b for the smallest size (s = 1µm),
according to the logarithmic model. Left: Plastic slip at 0.3, 1.1 and 5 % macroscopic
strain (triangles: regularized, numerical solution). Right: corresponding GND-
densities.

From Eqns. (2.24)2 and (2.27) the macroscopic stress strain relation
follows

γ̄ =
α0Lτ

e(s + h)

(

exp

(

s

2Lτ

)

(s− 2Lτ) + 2Lτ

)

+
σ12

G
. (2.53)

The solution is evaluated for the following material parameters

E [GPa] υ τC
0 [MPa] b [nm] c1 α0/b [µm−2]

70 0.34 10 0.286 1 1

Here, E and υ denote Young’s modulus and Poisson’s ratio. A very
thin hard phase with negligible width h is considered (h/s = 10−6 for
the analytical solution).
The macroscopic stress-strain curve (2.53) is illustrated in Fig. 2.4. A
clear size effect is visible. Apparently, mainly the overall yield stress is
affected. The hardening shows less size dependence. It is remarkable
that the model provides a size–dependent yield stress and non–linear
kinematic hardening.
The microscopic plastic shear strain γ and dislocation density are shown
in Fig. 2.5. Dislocation pile-ups are observed at the boundaries of the soft
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Figure 2.6: Scaling-comparison of the two energies for c = 1.2. The shear stress values
of the logarithmic energy correspond to 0.2% plastic shear strain.

Since there is no distinct yield stress, the evaluation of the scaling
behavior is based on the offset yield stress at 0.2% plastic strain. Fig. 2.6
shows the offset yield stress as a function of the inverse of the size 1/s.
For comparison, the results obtained from the rank-one energy are
illustrated, in addition. For c = 1.2, the scaling behavior of both energies
is similar in the considered range. The cyclic loading curves are repre-
sented in Fig. 2.7 for s = 3µm. The influence of the backstress is clearly
observable. The curves in Fig. 2.7 have been obtained numerically.
Therefore, both models are regularized as explained in the subsequent
sections.
The type of non–linear kinematic hardening observed for both models
corresponds to Asaro’s type KIII model, corresponding to a first in / last

out sequence of dislocation motion (Asaro (1975)). It is considered by
Asaro as the most perfect form of recovery of plastic memory. Such
stress–strain loops display inflection points that are observed in some
materials, see Asaro (1975) for a Nimonic alloy, but such observations
have also been made in several Nickel based superalloys. It is usually
attributed to substructural recovery on the microscale, for instance pile–
up formation and destruction at γ ′ precipitates. In the present simple
single crystal model, it is the only active hardening mechanism induced
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Figure 2.7: Cyclic loading for s = 3µm.

by the strain gradient plasticity effects and the presence of the hard
phase in the laminate. It represents an accurate continuum description
of piling-up and unpiling-up dislocation phenomena.

Regularization of the Logarithmic Energy

The length scale
√

b/ρ⊢ of the backstress in Eq. (2.49) is determined by
the GNDs. This was the main motivation of the logarithmic energy
(Eq. (2.45)). In the following, the theory is extended to problems
which are not fully GND-dominated. For that purpose, the following
regularization is introduced (see Fig. 2.8)

Wg =







1
2

c0

b l2‖α‖2, ‖α‖ < αL

c0‖α‖ ln ‖α‖α0
+ W0, else.

(2.54)

In the region of small GND-densities, the energy is replaced by a
quadratic potential. The internal length scale l, the transition density αL

and the offset energy W0 are chosen such that Wg, ∂‖α‖Wg and ∂2
‖α‖Wg are

continuous at the transition point ‖α‖ = αL. As a result

αL = α0, l2 =
b

α0
, W0 =

c0α0

2
. (2.55)
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Figure 2.8: Regularization of the logarithmic energy.

The regularized energy (2.54) is convex, normalized and twice differen-
tiable. The backstress for the laminate problem reads

x =







− c0

α0
∂2

x1
γ, |ρ⊢| < α0,

− c0

|ρ⊢|∂
2
x1

γ, else.
(2.56)

The solution based on the regularized model has been obtained numer-
ically by finite elements. Figs. 2.4 and 2.5 compare the analytical and
numerical solution.

Interpretation of the Regularization

If the dislocation microstructure is GND-dominated, the internal length
scale of the laminate model is supposed to be

√

b/ρ⊢, i.e., determined
by the GND-density. Therefore, the threshold α0 in Eq. (2.56) should
be chosen such that it clearly indicates whether the microstructure at
a given point is GND- or SSD-dominated. If the SSD-density is nearly
homogeneous, a reasonable choice of α0 is the SSD-density itself. If the
SSD-density is not constant, α0 might be interpreted as a characteristic
SSD-density. In this case, the logarithmic energy is applied, if |ρ⊢| > α0,
i.e., if the problem is GND-dominated.
However, the quadratic energy is applied if |ρ⊢| < α0, i.e., when the SSDs
dominate. As an interesting feature, the internal length scale

√

b/α0 of
the backstress (2.56) is then determined by the SSD-density.
In both cases, the backstress (2.56) is approximately given by

x ≈ −c0/b

ρ
∂2

x1
γ. (2.57)
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Figure 2.9: Influence of α0 on the overall size effect, according to the regularized
logarithmic model.

This backstress coincides with Groma’s representation. In this sense, the
energy approach (2.54) reduces to a gradient plasticity approximation of
Groma’s theory. Eq. (2.57) is valid except of the case ρSSD ≈ ρGND. In this
case, the backstress is overestimated by a factor of two.
Fig. 2.9 shows the influence of the parameter α0 on the size effect.
The parameter α0 has been varied within three orders of magni-
tude (α0/b = 0.1, 1 and 10 µm−2). Obviously, a variation of α0 within
orders of magnitude is indeed necessary in order to significantly influ-
ence the results. Hence, the model sensitivity with respect to changes
of α0 is smaller than might have been expected.
One might hope that a rough estimate of the SSD-density could be suf-
ficient to achieve a reasonable guess of the parameter α0. In particular,
the overestimation of the backstress in the case ρGND = ρSSD by a factor
of two has less consequences than expected, since a multiplication of α0

by two has a minor influence on the results.
Here, the sensitivity of σ12 with respect to changes of α0 has been
investigated for a specific set of material parameters. A more general
sensitivity analysis, as given in App. A.3, leads to similar results.
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2.3 Numerical Solution Strategy

The numerical solution strategy is formulated for the general three-
dimensional case. For the laminate problem, the implementation can
be simplified in a straightforward way.

2.3.1 Incremental Potential

It is convenient to introduce slip parameters λ̂ = (λ1, λ2, ..., λ2N)T for
the numerical implementation, where N is the number of slip systems.
Two slip parameters per slip system are introduced which account for
positive and negative slip increments separately. These are associated to
the positive and negative slip directions dα and−dα, i.e., the total slip γα

of a given slip system is represented by the difference of the associated
two slip parameters. As a consequence, the flow rule (2.17) is replaced
by

λ̇α = γ̇0

〈

τ eff
α − (τC

0 + q)

τD

〉p

, (2.58)

where, for simplicity, it is assumed that γeq is the only history variable,
i.e. µ̂ = (γeq).
The numerical solution is based on the implicit Euler scheme. This
means, that the time is discretized into steps. Quantities of the pre-
ceding time step are marked by an index “n”. For convenience, the
index “n + 1“ is dropped. Increments are marked by the symbol ”∆”.
Subsequently, it will be discussed that the overall problem can be
reformulated as the stationarity conditions of the following potential

Π = ΠW + ΠL + ΠD + Πext, (2.59)

with a contribution from the free energy

ΠW =
∫

B

(

We(sym(∇u), εp(λ̂)) + Wg(α) + Wh(γeq(λ̂))
)

dv, (2.60)

a Lagrange-contribution

ΠL =
∫

B



s ·


Hp −∑

α
λαdα ⊗ nα



 + M ·
(

curlT(Hp)−α
)



dv, (2.61)
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a dissipative contribution

ΠD =
∫

B
∆t




∑

α
τd

α

∆λα

∆t
− γ̇0 τD

p + 1

〈

τd
α − τC

0

τD

〉p+1 

dv (2.62)

and an external force contribution

Πext = −
∫

∂Bt

t̄ · u da−
∫

∂Bm

m̄ ·Hp da. (2.63)

The stationarity conditions associated to the potential Π with respect
to the (a priori independent) arguments {u, Hp, λ̂, s, M , α, τ̂d} yield
the system equations. Here τ̂d = (τd

1 , τd
2 , ..., τd

2N)T can be interpreted as
dissipative shear stresses. The principle of virtual power (Eq. (2.3))
is recovered by the conditions δuΠ = 0 and δHpΠ = 0. Note, that
the relations σ = ∂εWe with ε = sym(∇u) are implicitly accounted for.
Equations (1.8) and (2.8) are obtained by δMΠ = 0 and δsΠ = 0, respec-
tively. These relations illustrate the interpretation of the stresses M

and s as Lagrange multipliers which enforce the kinematic relations (1.8)
and (2.8).
Evaluation of the condition δαΠ = 0 yields the relation M = ∂αWg.
Finally, the conditions δλα

Π = 0 and δτd
α
Π = 0 yield in combination the

implicit Euler scheme associated to the flow rule

∆λα

∆t
= γ̇0

〈

τ eff
α − (τC

0 + q)

τD

〉p

, (2.64)

with τ eff
α = (∂εW + s) · (dα ⊗ nα) and ε = sym(∇u).

2.3.2 Augmented Lagrange Multiplier and Penalty Method

The augmented Lagrange Multiplier Method is based on the replace-
ment of the Lagrange multipliers M and s in Eq. (2.61) by

M = M old + HM
χ (curlT(Hp)−α), (2.65)

s = sold + Hs
χ

(

Hp −∑

α
λαdα ⊗ nα

)

. (2.66)
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Here, HM
χ and Hs

χ are penalty parameters and M old as well as sold are
approximations of the actual Lagrange multipliers. As a consequence of
the replacements (2.65) and (2.66), the set of arguments of the potential Π

(Eq. (2.59)) reduces to {u, Hp, λ̂, α, τ̂d}. Once a converged solution
has been obtained (i.e. the stationarity conditions are satisfied), the
following update is effectuated

M old ← M old + HM
χ (curlT(Hp)−α), (2.67)

sold ← sold + Hs
χ

(

Hp −∑

α
λαdα ⊗ nα

)

(2.68)

and the computation of the solution is repeated with an updated set of
Lagrange multipliers yielding an improved approximation of Eqns. (2.8)
and (1.8). The overall procedure is reiterated until Eqns. (2.8) and (1.8)
are satisfied up to a certain tolerance.
If HM

χ and Hs
χ are very large, the solution might be sufficiently accurate

after one iteration already. In this case, the updates (2.67) and (2.68) are
dispensable and can be omitted. Then, the scheme represents a penalty
method (which has been used to obtain the numerical results in the work
at hand with HM

χ = Hs
χ = 106 MPa). Note that, in contrast to the original

model (2.18), M can be computed even if α = 0. The close connection
to classical elasto-plasticity will become obvious during the subsequent
discussion of the local algorithm 2.

2.3.3 Local Algorithms

The principle of virtual power (2.3) is discretized by the finite element
method. At the integration points, the following two algorithms allow
the determination of the stresses.
Algorithm 1. Compute the stresses {σ, s, q} by solving the nonlinear
system of equations

0 = −S[σ] + ε− εp
n −

∑

α

∆tγ̇0

〈
(σ + s) · (dα ⊗ nα)− q − τC

0

τD

〉p

sym(dα ⊗ nα)

s

Hs
χ

=
sold

Hs
χ

+ Hp −
∑

α

(

λα,n + ∆tγ̇0

〈
(σ + s) · (dα ⊗ nα)− q − τC

0

τD

〉p)

dα ⊗ nα

0 = q − ∂γeq
Wh.
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Here, S = C
−1 denotes the compliance tensor. The linearization of

this system of equations yields the consistent linearizations (tangent
operators) of the stresses {σ, s, q} (for details see, e.g., Wulfinghoff and
Böhlke, 2013, for a similar problem).

Algorithm 2. The following non-smooth energy is considered

Wg = cGb‖α‖+ W s
g(‖α‖), (2.69)

where W s
g = W s

g(‖α‖) is assumed to be convex and smooth. For simplic-
ity, it is assumed that W s

g = El2
s‖α‖2/2. Then the following algorithm

can be applied.
Trial step: Set α̃ = curlT(Hp)

αTr = 0, M Tr = M old + HM
χ (α̃−αTr), ϕ1,Tr

g = ‖MTr‖ − cGb. (2.70)

If ϕ1,Tr
g ≤ 0

α = αTr = 0, M = MTr (2.71)

else set

NTr =
MTr

‖MTr‖ , α =
ϕTr

HM
χ + El2

s

NTr, M = M Tr −HM
χ α. (2.72)

For the FE-implementation, the linearization of M w.r.t. α̃ can be
obtained by the linearization of the algorithm.
Note the formal similarity of algorithm 2 and classical radial-return
algorithms (e.g. Simo and Hughes, 1998).
In the work at hand, a linear-viscous model (p = 1) with very small
viscosity (γ̇0 = 103s−1, τD = 1MPa) has been applied. The total simula-
tion time was 1s. The penalty approximation (2.67) (with M old = 0) has
only been used for the rank-one potential. This is not necessary for the
regularized logarithmic energy (2.54), which is smooth. The problem
has been solved using 50 one-dimensional linear elements. The results
correspond to the Figs. 2.4, 2.5 and 2.7 in Sect. 2.2.
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Chapter 3

Approximation of a Model Material With
Localized Slip Bands by a Gradient Plasticity
Theory

3.1 Introduction

Several crystal gradient plasticity theories are based on the dislocation
density tensor (Eq. (1.22)) or on scalar GND-densities (Eq. (1.24)). These
are reasonable kinematical measures, since they describe actual features
of the underlying dislocation microstructure as discussed in Chap. 1.
However, the associated stresses (like the higher order stresses ξα,
Eq. (1.26), or M , Eq. (2.15)) are generally less intuitively understandable
than conventional stresses, like the resolved shear stress or the Cauchy
stress tensor. Therefore, the behavior of gradient plasticity models is
usually neither easy to predict nor to understand. However, in many
cases it is necessary to have a clear idea of the model behavior in mind,
for example to set proper boundary conditions.
In order to improve the understanding of gradient plasticity theories,
an idealized crystal plasticity model is introduced. The microstructure
of this model is simple, such that its mechanical behavior can be
understood and predicted intuitively. It is then shown, that the material
behavior of this model is in some situations approximately described by
standard gradient plasticity equations. For this simple material, most
usually abstract quantities – like the internal length scale, microstresses
or microtractions – have a clear and intuitive character. Having in mind
that this simplified material model does not represent the real single
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crystal microstructure, it still can be quite helpful to improve the overall
understanding of phenomenological gradient theories and get an insight
into the following aspects of gradient plasticity

• the idea of an internal length scale

• the mechanical character of boundary microtractions

• the interaction of these microtractions with the bulk

• a possible interpretation of microstresses and their long-range
character

The presented idealized material model is formulated based on the
following assumptions

• a single slip situation is considered

• the plastic slip is perfectly localized in discrete slip bands with
constant distance h, which takes the role of the internal length scale

• the layers in between the slip bands deform perfectly elastically

• except for the localization of the plastic slips, the deformation is
assumed smooth, in particular the characteristic wavelengths of
the displacement field are sufficiently large compared to the slip
band spacing

Although idealized, the material model is not purely artificial, since
there are indeed experimental examples where the plastic deformation
of single crystals is to a high extend localized in slip bands. However,
this chapter does not aim at a discussion concerning the situations in
which the aforementioned assumptions might represent real single crys-
tal behavior. Instead, the model is supposed to serve as an illustrative
example for a gradient plasticity theory which is ought to give some
intuitive ideas concerning the meaning of terms like microstresses and
micro-force balances.
In addition, the considerations might also be interesting for an appli-
cation to layered composites, if a relative motion (e.g. due to creep)
between the layers is possible.
Originally, a similar but more substantial theory has been proposed
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by Mesarovic et al. (2010) (see also Mesarovic, 2005; Yassar et al., 2007;
Baskaran et al., 2010; Mesarovic, 2010). Their theory is applicable to
multislip situations and comprises advanced grain boundary models.
The theory outlined in this chapter can be considered as a similar but
simplified version thereof. It is emphasized that the principal goal of the
chapter at hand is the formulation of a gradient plasticity theory which
is first of all illustrative.

3.2 Slip Band Size Effects

In this section, two simple examples demonstrate the accuracy limits
of classical crystal plasticity, as outlined in Sect. 1.4, when the plastic
deformation is not fully continuous but localized in the form of slip
bands. Therefore, a bending and a torsion example are discussed. It
is shown, that the continuum mechanical crystal plasticity model might
be applicable in situations where the characteristic wavelengths of the
deformation are much larger than the slip band spacing. However,
the continuum model becomes inaccurate when the aforementioned
wavelengths approach the order of magnitude of the slip band spacing.

3.2.1 Plastic Bending

Continuous Plastic Deformation

Let the displacement field of the cube shaped single crystal with dimen-
sions Lc in Fig. 3.1 be given by

u(x) = u(x)ex + v(x)ey + w(x)ez. (3.1)

Let the displacement field and the plastic deformation be given (subse-
quently, it will be shown that the body is in equilibrium).
A simple bending deformation is considered by setting

w = w(x) =
γ0

2Lc
x2 (3.2)
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x, d

y

z, n

Lc

LcLc

Figure 3.1: Cube suspended to bending.

and u = v = 0, respectively. Here, γ0 is a constant.
The displacement gradient reads

H = ∇u = γ0
x

Lc
ez ⊗ ex. (3.3)

A single slip situation is considered with

γ1 = γ(x) = γ0
x

Lc
(3.4)

associated to the slip system with direction d1 = d = ex and slip plane
normal n1 = n = ez. The plastic part of the displacement gradient reads

Hp = γ(x)ex ⊗ ez. (3.5)

Assuming additivity of elastic and plastic strains, the elastic strain
tensor is given by

εe = ε− εp = sym(H)− sym(Hp) = 0. (3.6)

If Hooke’s law is applied, the stress tensor vanishes

σ = C[εe] = 0, (3.7)

with the elastic stiffness tensor C. Accordingly, the elastic strain energy
also vanishes

We =
1

2
εe ·C[εe] = 0. (3.8)

This means that the bending deformation is purely plastic.
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Localized Plastic Deformation

Now the same deformation is applied to a body assuming the plastic
deformation strictly localized in planes which separate isotropic, purely
elastic layers of constant thickness h, see Fig. 3.2. The total number of
layers is given by Nc = Lc/h. The layers are assumed to behave like
simple beams (i.e. they are described by a one-dimensional generalized
continuum theory). The Bernoulli hypothesis is applied, i.e., the cross
sections are assumed to be perpendicular to the center line (connecting
the centroids of all cross sections). This approach is a strong simplifica-
tion since it completely ignores the influence of lateral contractions (as
it is usually done in bending theory). Strictly speaking, this approach is
only correct for υ → 0 (υ is Poisson’s ratio). However, it is applied here
since it is well known and at this point, this level of accuracy is sufficient.
Let the deflection of the individual beams be given by Eq. (3.2). The axial
moment of inertial of an individual layer with index i reads I = Lch

3/12

and its strain energy can be computed by

Wi =
1

2

Lc∫

0

EI(w′′(x))2 dx =
1

24
L2

cEh3(γ ′(x))2, (3.9)

where w(x) is given by Eq. (3.2), E denotes Young’s modulus and γ ′(x)

is constant due to Eq. (3.4). The plastic slip γ(x) = w′(x) may be
understood in an averaged sense as visualized in Fig. 3.2.
The total energy is

Wtot = NcWi =
1

24
L3

cEh2(γ ′(x))2. (3.10)

The average volumetric energy reads

W g =
Wtot

L3
c

=
1

2

E

12
h2(d · ∇γ)2, (3.11)

where γ ′(x) = d · ∇γ has been used.
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x

y

z

Lc

LcLc
h

γ

Figure 3.2: Layered cube with strictly localized plastic slip. For illustration reasons,
only five layers are shown. In general, the number of layers is assumed to be much
larger.

Remarks:

• Note that result (3.11) is independent of Lc, i.e., the result does not
change, if the number of layers Nc (and consequently Lc = Nch)
is changed as long as h and the curvature w′′(x) remain constant.
Therefore, the term ’volumetric energy’ is indeed meaningful, if a
sufficient number of layers is considered.

• Moreover, note that for a fixed layer thickness h the volumetric
energy

W g
γ′=γ0/Lc

=
1

2

E

12

(

h

Lc

)2

γ2
0 (3.12)

may be neglected in the case h≪ Lc. In particular, in the limit
case h/Lc → 0 the model with localized plastic deformation tends
to the model with continuous plastic deformation, comp. Eq. (3.8).

• The energy depends quadratically on γ ′ = d · ∇γ. This expression
represents the bending of the layers. It is also correlated with
the geometrically necessary edge dislocation density ρ⊢ = −d · ∇γ

(Eq. (1.24)).

It is concluded that the material with localized slip bands may be
modeled by the classical continuum crystal plasticity theory, if the layers
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are sufficiently thin. However, in the case of a finite layer thickness h

the application of the classical theory implies an error. This error
is (approximately) given by the energy W g (Eq. (3.11)).
One might want to extend the classical theory with continuous plastic
deformation to materials with localized slip bands, without explicit
resolution of the slip bands. Therefore, one might try to modify the
stored energy. In the present case, a possible modified stored energy for
the continuous model (the model without explicitly resolved, localized
slip bands) is given by

W (ε, γ,∇γ) =
1

2
(ε− εp) · C[ε− εp] +

1

2

E

12
h2(d · ∇γ)2. (3.13)

If the prescribed displacement field (3.2) and the γ-field (3.4) are applied,
the continuous model would then yield the correct energy, which
matches the prediction of the model with discontinuous plastic slip.
However, it is questionable if the energy (3.13) also holds for more
general deformations. This question will be pursued in the subsequent
sections. Moreover, the limited accuracy of the applied beam theory will
be discussed.

3.2.2 Plastic Torsion

Continuous Plastic Deformation

Now consider an elasto-plastic cube under a torsion-like deforma-
tion (Fig. 3.3) with the displacement field

u(x) = w(x, y)ez = θ0
x

Lc
yez (3.14)

and displacement gradient

H =
θ0

Lc
yez ⊗ ex + θ0

x

Lc
ez ⊗ ey. (3.15)

This deformation can be characterized by the angle θ0 (Fig. 3.3).
Two slip systems are introduced with common slip plane normal n = ez
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,

Figure 3.3: Cube suspended to a torsion like deformation.

and orthogonal slip directions d1 = ey and d2 = ex. The plastic slips are
prescribed by

γ1(x) = θ0
x

Lc
, γ2(y) =

θ0

Lc
y, (3.16)

i.e., the plastic part of the displacement gradient reads

Hp = θ0
x

Lc
ey ⊗ ez +

θ0

Lc
yex ⊗ ez. (3.17)

Again, the elastic strains and the stress as well as the elastic strain energy
vanish

εe = σ = 0 ⇒ We = 0. (3.18)

Localized Plastic Deformation

The localized counterpart of the deformation is realized by thin-walled
beams with the same dimensions as in the last section. The deformation
is assumed to include warping as illustrated in Fig. 3.4. Otherwise the
cross sections perpendicular to the x- and the y-axes are assumed to
preserve their rectangular shape (the exact displacement field will be
discussed subsequently).
As can be concluded from Fig. 3.4 the average plastic shears are formally
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x, d2

x, d2

y, d1

y, d1

z, n

z, n z, n

γ1(Lc)
= θ0

γ2(Lc/2) = θ0/2

Figure 3.4: Cube suspended to torsion.

identical with the continuous case, Eq. 3.16. The total strain energy of
one layer is given by

Wi =
1

2

Lc∫

0

GIT(θ′(x))2 dx =
1

6
Gh3θ2

0 =
4

24
Gh3L2

c

(

θ0

Lc

)2

(3.19)

with IT = 1/3Lch
3, θ(x) = θ0x/Lc and the shear modulus G. The volu-

metric energy consequently reads in this specific case

W g =
Wtot

L3
c

=
NcWi

L3
c

=
1

2

G

12
h2q(∂xγ1, ∂yγ2). (3.20)

Here, q is a non-unique function of the plastic strain gradients. A
possible realization is given by

q = (l1 · ∇γ1)
2 + (l2 · ∇γ2)

2 + 2(l1 · ∇γ1)(l2 · ∇γ2), (3.21)

with l1 = ex and l2 = ey. The form (3.21) will be motivated in the
subsequent sections.

Remarks:

• The two slip system directions are orthogonal, which seems
to be artificial if, e.g., FCC-crystals are considered. However,
the second slip system can be replaced by two systems with
directions da =

√
3/2ex − 1/2ey and db = −

√
3/2ex − 1/2ey with

slip plane normal n = ez. If the associated slips are chosen to
be γa = −γb = γ2/

√
3 the computations yield the same results.

• The projected plastic strain gradients in Eq. (3.21) can be inter-
preted as geometrically necessary screw dislocation densities (see
Eq. (1.24)).
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3.2.3 Single-Slip Torsion

The last example investigated the strain gradient influence in the case
of two slip systems. It was chosen in order to clearly demonstrate that
the continuous theory yields a solution with zero strain energy, while
the discontinuous solution does not. Therefore, two active slip systems
were required. Consequently, the function q(∂xγ1, ∂yγ2), Eq. (3.21), could
not uniquely be chosen. In order to identify a unique energy for one
slip system (like in the bending example), the deformation is slightly
modified. Therefore, the displacement fields of the layers in the last
example (Sect. 3.2.2) are revised more precisely

ui(x) = ui(y, z)ex + vi(x, z)ey + wi(x, y)ez

= −θ0
y

Lc
∆z(z)ex − θ0

x

Lc
∆z(z)ey + θ0y

x

Lc
ez. (3.22)

Here, i is the layer index. If zi represents the z-coordinate of the layer
center plane, the function ∆z(z) = z − zi describes the (signed) distance
from this plane. The strain tensor can be computed by

εi = −2θ0

Lc
∆z(z) sym(ex ⊗ ey), (3.23)

i.e. εxy = εyx is the only non-vanishing strain component as it is well
known from torsion theory. The associated strain energy is given by

Wi =
1

2

∫

Bi

σ · ε dv =
1

6
θ2

0Gh3, (3.24)

which coincides with result (3.19), as required. In order to reduce
the number of slip systems from two to one, the displacement of the
layers in x-direction is constrained to vanish and consistently the plastic
slip γ2 vanishes, too (comp. Fig. 3.4). The index of the first slip system
will therefore be dropped in the following. The displacement field
reads (comp. Eq. (3.22))

ui(x) = −θ0
x

Lc
∆z(z)ey + θ0y

x

Lc
ez, (3.25)
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with strain tensor

εi = − θ0

Lc
∆z(z) sym(ex ⊗ ey) +

θ0

Lc
y sym(ex ⊗ ez) (3.26)

and stain energy

Wi =
1

2

∫

Bi

σ · ε dv =
Gθ2

0

24
(hL2

c + h3). (3.27)

The total strain energy reads

Wtot = NcWi = L3
c




Gθ2

0

24
+

1

2

G

12
h2(l · ∇γ)2



 . (3.28)

Comparing this result with the result from the continuous model
based on the displacement field (3.14) and Hp = γ(x)ey ⊗ ez (with
γ(x) = θ0x/Lc, Eq. (3.16)1)

Wtot = L3
c

Gθ2
0

24
(3.29)

clearly illustrates the influence of a finite layer thickness incorporated
by the strain gradient term in Eq. (3.28). Again, consistency is reached
for h/Lc → 0. The volumetric energy associated to the plastic strain
gradient influence for this example is given by

W g =
1

2

G

12
h2(l · ∇γ)2, (3.30)

with l = −ex. Alternatively, the energy (3.30) can be written as

W g =
1

2

G

12
h2(h · ∇γ)2, (3.31)

with h = ex (see Fig. 1.2). At this point the choice of the func-
tion q(∂xγ1, ∂yγ2) (Eq. (3.21)) becomes clear, since it is consistent with
Eq. (3.30).

3.2.4 Need for a new Continuum Theory

The bending and torsion examples illustrate that materials with lo-
calized slip bands might be modeled by a classical continuum crystal
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theory. This approach seems reasonable if the slip band distances are
negligible compared to the wavelengths of the overall deformation.
However, in the case of finite layer thicknesses the energy of the model
with discrete slip bands is not reasonably predicted by the continuous
model. In order to extend the classical crystal plasticity theory, energy
correction terms might be introduced. The bending and torsion exam-
ples suggest the following approach for the single slip case

W =
1

2
εe · C[εe] +

1

2

h2

12

(

E(d · ∇γ)2 + G(l · ∇γ)2
)

. (3.32)

This energy approach implies energy predictions which are consistent
with the discontinuous bending and torsion examples. However, the
generality of approach (3.32) is questionable. Therefore, more general
deformation modes will be considered in the subsequent section.

3.3 Generalized Energy Functions

3.3.1 Kinematical Assumptions

Microscopic Fields

Subsequently, an estimation of the stored energy density is derived for
more general deformation types than bending and torsion. More pre-
cisely, several hierarchical energies are developed for the single slip case.
First, a kinematical framework based on a microscopic displacement
field u∗(x) is formulated in order to evaluate the microscopic elastic
energy. This energy is taken as a function of the microscopic strains.

Assumptions on the microscopic displacement field u∗(x):

• The displacement field u∗(x) is defined on the micro-scale tak-
ing the slip bands into account explicitly as ideal displacement
jumps [[u∗(x)]] = u+ − u−, with the normal n pointing from ’-’ to
’+’ (see Fig. 3.5).
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• The direction of the displacement jumps is given by the slip
direction d, i.e.,

l · [[u∗(x)]] = n · [[u∗(x)]] = 0. (3.33)

• It should be noted that the microscopic displacement field u∗(x) is
not defined on some representative volume element. Instead, it is
defined throughout the whole body B, i.e.

u∗ = u∗(x), x ∈ B. (3.34)

• The slip bands are assumed plane and parallel (see Fig. 3.5). They
are denoted by SBi (i = 1, ..., NSB). Their normal is denoted by n.
The totality of all slip bands is given by

SB =
NSB⋃

i=1

SBi. (3.35)

• The distance h between the slip bands is assumed to be con-
stant (Fig. 3.5).

• The regions between the slip bands are referred to as layers with
associated center planes Li (i = 1, ...NL) (Fig. 3.5). The plastic
deformation in the layers is assumed negligible. As a consequence,
the elastic strain in the layers is equal to the total strain.

• The localized plastic deformation is assumed to be caused by
dislocations moving in the localized slip bands (the dislocations
are not explicitly resolved). Moreover, the in-plane dislocation
density is assumed large, i.e., the average dislocation spacing
in the slip bands is assumed much smaller than the slip band
distance h.

Clearly, the aforementioned assumptions constitute a strong idealization
of the actual crystal deformation observed in experiments. Although
the model is intended to illustrate different aspects of gradient plasticity
rather than representing any real material, a discussion of its similarities
and differences compared to the experimentally observed single crystal

75



Approximation of a Model Material

Layer
center
planes Li

Slip
bands SBi

u∗(x)

u(x)

B

h

d

n

1
∆V

∫

∆V
u∗ dv

Figure 3.5: Schematic illustration of the mesoscopic and microscopic displacement
fields for single slip. Note that the volume ∆V should not be confused with the
illustrated cube.

behavior should not be left out.
Experimental investigations of copper single crystals suspended to ten-
sion were carried out for example by Mader (1957). Surface observations
show that stage I of the deformation is characterized by homogeneously
distributed slip lines (fine slip). These slip lines represent strongly
localized plastic shear deformations of roughly 10 Burgers vectors
length. They are assumed to be the result of a sequence of microscopic
strain events. This means that the microscopic plastic deformation is not
only discrete in space but also in time. The slip line distribution is nearly
homogeneous during stage I .
In stage II , the heterogeneity of the slip line distribution increases. The
slip lines tend to group, i.e., they form shear bands (structurized fine
slip). Again, the activity of the shear bands seems to be limited in
time (Mader, 1957). In stage III , the heterogeneity is again increased.
Distinct shear bands become visible.
The modeling approach at hand completely neglects that plasticity is a
time discrete phenomenon on the microscale. The localization into slip
lines and shear bands is strongly idealized.
In the following, a microscopic kinematical framework based on the
aforementioned assumptions is developed. To this end, all microscopic
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quantities are denoted as (•)∗. For example, the microscopic displace-
ment gradient in the layers is given by H∗(x) = ∇u∗(x) and the mi-
croscopic strain tensor reads ε∗(x) = sym(H∗(x)). The aforementioned
displacement jumps [[u∗(x)]] represent singularities. They take finite
values in the slip bands SBi and vanish in the layers.

x · n

ju(x)
d · [[u(x)]]

h

Figure 3.6: Illustration of the interpolation ju(x) of the displacement jumps (along a
line perpendicular to the slip bands).

A smooth interpolation field ju(x) is introduced by setting

ju(x) =







d · [[u∗(x)]], x ∈ SB
itp

(

[[u∗(x)]]
)

, otherwise
(3.36)

Here, itp
(

[[u∗(x)]]
)

is a smooth interpolation of the displacement jumps
which guarantees that ju(x) is a continuous and differentiable function
everywhere. Fig. 3.6 illustrates the function ju(x). The definition of ju(x)

is not unique which leaves some freedom in its choice.

x

x

ju

Figure 3.7: Schematic illustration of the function ju along the center line of a bar.

It should be noted that the function ju(x) can in general not be expected
to be as smooth as depicted in Fig. 3.6. In particular, variations of ju(x)

may be strong in the direction of the slip plane normal n. For example,
Fig. 3.7 illustrates a case where this situation arises.
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Additionally to ju(x), the (signed) distance ∆z(x) of a point x from the
closest layer center plane Li is defined (cf. Fig. 3.8). This allows for
the formulation of an orthogonal projection of a given point x onto the
closest layer center plane Li

xp(x) = x−∆z(x)n. (3.37)

Li

SBi

n

∆z(x)

x

xp(x)

Figure 3.8: Signed distance ∆z(x) in direction n from the closest layer center plane Li.

Mesoscopic Fields

The microscopic displacement field u∗(x) explicitly takes the slip bands
into account as displacement jumps. These jumps are eliminated by a
smoothing operation in order to obtain the mesoscopic displacement
field

u(x) =
1

∆V (x)

∫

∆V (x)

u∗(x′) dv′, (3.38)

where ∆V (x) is an averaging volume with centroid at x and dv′ is the
infinitesimal volume element at the position x′ (see Fig. 3.9).
It turns out that an advantageous definition of ∆V (x) is not necessarily
given by a volume which has similar dimensions in all three spatial
directions (like the volume in Fig. 3.9). Instead, the dimension normal to
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xx′

∆V (x)
dv′

0

Figure 3.9: Averaging volume with centroid at x.

the slip plane is here chosen to coincide with the slip band spacing h

while the in-plane dimensions are chosen to be much larger than h

(see Fig. 3.10). Let L denote a characteristic in-plane dimension of the
averaging volume ∆V (x). The main motivation of this choice of ∆V (x)

is the desire to capture strong plastic slip gradients in the out-of-plane
direction (as illustrated, e.g., in Fig. 3.7) on the mesoscale.
Fig. 3.5 illustrates the deformation on the micro- and the mesoscale.
Moreover, the mesoscopic displacement gradient and strain tensor
read H(x) = ∇u(x) and ε(x) = sym(H(x)), respectively.
The difference of the microscopic and the mesoscopic displacements is
given by a micro fluctuation ũ(x)

u∗(x) = u(x) + ũ(x). (3.39)

∆V (x)

h

n

Figure 3.10: Averaging volume ∆V (x).
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In addition, the gradient of the displacement fluctuations
reads H̃(x) = ∇ũ(x) (the properties of H̃ are discussed subsequently).
The following expression is adopted as definition of the plastic shear
strain

γ(x) =
1

∆V (x)

∫

∆V (x)

δSB(x
′) d · [[u∗(x′)]] dv′. (3.40)

Here, the delta distribution δSB is implicitly defined (for an arbitrary
function f(x)) by

∫

∆V (x)

δSB(x
′) f(x′) dv′ =

∫

A

f(x′) da′, (3.41)

where the short notation A = ∆V (x) ∩ SB has been introduced, for
convenience.

3.3.2 A Hierarchy of Energies

The scope of this section is the derivation of several mesoscopic energy
density functions with with different levels of accuracy. The functions
are supposed to capture the elastic strain energy density of the elasto-
plastic material with highly localized plastic deformations in the form of
localized slip bands, as introduced in the previous section. The energies
are defined on the mesoscopic scale in terms of the mesoscopic displace-
ment field u(x) and the plastic shear strain γ(x) (and their gradients).
The average energy density of a given averaging volume ∆V (x) is given
by

W (x) =
1

∆V (x)

∫

∆V (x)

1

2
ε∗(x′) ·C[ε∗(x′)] dv′. (3.42)

Here and in the following, the centroid x of ∆V (x) is treated as a
fixed but otherwise arbitrary point. Due to the minor symmetry of
the stiffness tensor C, the strain can be replaced by the displacement
gradient

ε∗(x′) · C[ε∗(x′)] = H∗(x′) · C[H∗(x′)]. (3.43)
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The microscopic displacement gradient can be expressed in terms of the
mesoscopic gradient and the fluctuation gradient

H∗(x′) = H(x′) + H̃(x′). (3.44)

Subsequently, different approaches of H(x′) and H̃(x′) are introduced
in order to derive approximations of W (x) (Eq.(3.42)).

A Simple Energy Based on Constant Strain Approximations

In order to derive a simple approximation W11 (the meaning of the in-
dices will subsequently be explained) of W , the Taylor series expansion
of the mesoscopic displacement gradient is truncated after the constant
term

H(x′) ≈H1(x
′) = H(x), (3.45)

where x denotes the centroid of the averaging vol-
ume ∆V (x) (Eq. (3.42)). The index ’1’ indicates that the Taylor
series expansion of H is truncated after the first (constant) term. For the
displacement field it follows that

u(x′) ≈ u1(x
′) = u(x) + H(x)(x′ − x). (3.46)

In order to derive an approximation of the fluctuations, the following
ansatz is proposed

ũ(x′) = −ju

(

xp(x′)
)

d
∆z(x′)

h
. (3.47)

This approach implies that the fluctuations in the layers are linear with
respect to ∆z, as illustrated in Fig. 3.11.
For the computation of W11(x), the function ju(x′) is assumed to be
constant in ∆V (x) (Eq. (3.42)). This represents an analogue of a Taylor
series expansion truncated after the first term

ju(x′) ≈ ju,1(x
′) = ju0 ⇒ [[u∗(x′)]] ≈ ju0d, x′ ∈ SB ∩∆V (x). (3.48)
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u = 0u = 0

ju = 0

ju = 0

u 6= 0 u 6= 0

ju 6= 0

ju 6= 0

Li

n

d

u u∗ = u + ũ

ũ

Figure 3.11: The micro displacement field u∗(x) is a superposition of the mesoscopic
field u(x) and the fluctuations ũ(x).

The meaning of the index of ju,1(x
′) is analogous to the index

of H1(x
′) (truncation after the constant term). The unknown constant ju0

can be expressed in terms of γ(x) owing to the following consistency
requirement (cf. the definition of γ(x), Eq. (3.40))

γ(x)
!

=
1

∆V (x)

∫

∆V (x)

ju0δSB(x
′) dv′ =

ju0

h
. (3.49)

Eq. (3.49) leads to the following representation of the fluctua-
tions (Eq. (3.47))

ũ1(x
′) = −∆z(x′)γ(x)d. (3.50)

As a result, the microscopic displacement gradient is approximated by

H∗
11(x

′) = H1(x
′) + H̃1(x

′)
(3.45),(3.50)

= H(x)− γ(x)d⊗ n. (3.51)

Here, the first index of H∗
11 represents the index of H1(x

′), the second
index is associated with the index of H̃1(x

′). The expression on the right
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hand side of Eq. (3.51) is well known from continuum crystal plasticity
theories as the elastic part of the displacement gradient

H∗
11(x

′) = He(x) = H(x)− γ(x)d⊗ n. (3.52)

Finally, the energy W (x) (Eq. (3.42)) can be approximated by insertion
of the identity H∗

11(x
′) = He(x) into Eq. (3.42) and letting ∆V (x)→ 06

W11(x) = lim
∆V (x)→0

1

∆V (x)

∫

∆V (x)

1

2
H∗

11(x) · C[H∗
11(x)] dv′. (3.53)

The indices of W11 represent the accuracy of the approach. They match
the indices of H∗

11. Summarizing the results, the simplest possible
approximations of H(x′) and of the fluctuations (in terms of ju(x)) leads
to the classical energy

W11(x) =
1

2
εe(x) · C[εe(x)], (3.54)

with εe(x) = sym(He(x)).
Clearly, the energy density W11 can be applied in situations where the
characteristic wavelengths of the deformation field are much larger than
the layer thickness h. In this situation, the microscopic strain is nearly
homogeneous in the averaging volume ∆V (x).
It remains to be shown, that the fluctuation approach (3.50) is consistent
with the definition of u(x) (Eq. (3.38)). This is done in App. B.1.

Enhanced Displacement Approximation

As has been discussed in the previous section, the energy density W11

represents a reasonable mesoscopic approach, if the characteristic wave-
lengths of the mesoscopic deformation field are much larger than
the layer thickness h. In order to derive a more accurate energy
than W11(x), the approximation of the mesoscopic displacement gradi-
ent is improved. As mentioned in Sect. 3.3.1, the characteristic in-plane

6To the authors’ knowledge, there is no theorem which guarantees the reasonability of the energy
densities which are derived from an approach like (3.53). Therefore, each subsequently computed

energy density must and will be verified and checked concerning its plausibility.
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dimension L of the averaging volume is assumed significantly larger
than the normal dimension h. Therefore, the mesoscopic displacement
gradient H is approximated linearly in the slip plane and constant
normal to the slip plane, for simplicity, by taking into account the linear
in-plane term of the Taylor series expansion

H2(x
′) = H(x) +∇pH(x)(x′−x) = H(x) +∇H(x)(I−n⊗n)(x′−x).

(3.55)
Here, the gradient is given by ∇H = ∂xk

Hijei ⊗ ej ⊗ ek.
The constant approximation (3.48) of the fluctuations is applied again.
For that reason, Eq. (3.50) remains valid

ũ1(x
′) = −∆z(x′)γ(x)d. (3.56)

As a consequence, the microscopic displacement gradient reads (cf.
Eq. (3.44))

H∗
21(x

′) = H2(x
′) + H̃1(x

′) (3.57)

= H(x)− γ(x)d⊗ n +∇pH(x)(x′ − x). (3.58)

The associated energy W21(x) is defined by

W21(x) = lim
∆V (x)→0

1

∆V (x)

∫

∆V (x)

1

2
H∗

21(x
′) · C[H∗

21(x
′)] dv′. (3.59)

The combination of Eqns. (3.57) and (3.59) and yields

W21(x) = lim
∆V (x)→0

(

1

2
He(x) ·C[He(x)] + O(L2)

)

(3.60)

=
1

2
εe(x) · C[εe(x)], (3.61)

with He as defined in Eq. (3.52). Obviously, the improvement of the
previous ansatz H11(x) (Eq. (3.51)) based on the consideration of the
mesoscopic in-plane gradient∇pH(x) does not alter the result, i.e.

W21(x) = W11(x). (3.62)

This result is verified in App. B.2.
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Remarks:

• In the purely elastic case (i.e. γ(x) = 0), the microscopic and
mesoscopic constitutive equations of the material should coincide,
since there is no internal length scale separating the two scales.
Hence, the only consistent way to include ∇pH into the energy
consists of a ∇pH-dependent term, which vanishes in the elastic
case. Therefore, the only meaningful mesoscopic energy approach
for the purely elastic case is given by

1

2
ε(x) · C[ε(x)]. (3.63)

This condition is fulfilled by the approximation W21(x) (Eq. (3.61)).

An Energy Including Plastic Strain Gradients

In order to derive an improved energy, the constant ansatz (3.48) for ju is
replaced by a linear approach. Again, this ansatz represents an analogue
of a Taylor series expansion, now truncated after the linear term

ju,2(x
′) ≈ ju0 + b0 · (x′ − x). (3.64)

Since the out-of-plane dimension h of the averaging volume ∆V (x) is
significantly smaller than the characteristic in-plane dimension L, the
out-of-plane component of b0 is neglected for simplicity

n · b0 = 0. (3.65)

Again, the fluctuations are approximated by ansatz (3.47), given by

ũ(x′) = −ju

(

xp(x′)
)

d
∆z(x′)

h
. (3.66)

In App. B.3, it is shown that this ansatz (in combination with Eq. (3.64))
is consistent with the definition (3.36) of ju(x).
The constants ju0 and b0 are determined based on consistency conditions
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with respect to the field γ(x). First, an approximation of γ(x′) is
computed by inserting ansatz (3.64) in the definition of γ (Eq. (3.40))

γappr.(x
′) =

1

∆V (x′)

∫

∆V (x′)

(

ju0 + b0 · (x′′ − x)
)

δSB dv′′ (3.67)

=
1

h

(

ju0 + b0 · (x′ − x)
)

. (3.68)

The first consistency condition reads

γ(x)
!

= γappr(x). (3.69)

Consequently, the constant ju0 is given by

ju0 = h γ(x). (3.70)

The second condition is given by

(I − n⊗ n)∇γ(x) = (I − n⊗ n)∂xγ(x)
!

= (I − n⊗ n)∂x′γappr(x) =
b0

h
. (3.71)

Here, the normal component of the gradient has been neglected as a
result of assumption (3.65). Eq. (3.71) yields

b0 = h (I − n⊗ n)∇γ(x) = h∇pγ(x). (3.72)

Here, ∇pγ(x) = (I − n⊗ n)∇γ(x) represents the gradient of γ(x) pro-
jected onto the glide plane. This quantity can be reformulated

∇pγ(x) = (d · ∇γ(x))d + (h · ∇γ(x))h, (3.73)

with h = d× n (see Fig. 1.2). Eqns. (3.70) and (3.72) allow to reformulate
the fluctuations (Eq. (3.66)) in terms of γ(x)

ũ2(x
′) = −∆z(x′)γ2(x

p(x′)) d, (3.74)

with

γ2(x
p(x′)) = γ(x) + (x′ −∆z(x′)n− x) · ∇pγ(x) = γ(x) + (x′ − x) · ∇pγ(x). (3.75)
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Here, Eq. (3.64) has been exploited. Approach (3.74) implies

1

∆V (x′)

∫

∆V (x′)

ũ2(x
′′) dv′′ = 0, (3.76)

as required. Having obtained the representation (3.74) of the fluctu-
ation, an approximation of the mesoscopic displacement u(x′) is also
required to compute the energy density approximation. The Taylor
series expansion of H(x′) is again truncated after the constant term,
for simplicity, i.e. H(x′) ≈H1(x

′) = H(x). The influence of the linear
in-plane gradient ∇pH will subsequently be discussed. In order to
compute the microscopic displacement gradient H∗(x′) the fluctuation
gradient is derived from Eq. (3.74)

H∗
12(x

′) = H1(x
′) + H̃2(x

′)

= H(x)− γ2(x
p(x′))d⊗ n−∆z(x′)d⊗∇pγ(x). (3.77)

Note that the components which have been identified with
bending-like micro-deformations (d · ∇γ) and torsion-like micro-
deformations (h · ∇γ) in Sect. 3.2 also appear here (see Eq. (3.73)).
Before computing the energy W12(x), it is worthwhile to investigate the
stresses in the averaging volume ∆V (x)

σ∗12(x
′) = C[H∗

12(x
′)] = C[H1(x

′) + H̃2(x
′)] (3.78)

(3.77)
= C[H1(x)− γ2(x

p(x′))d⊗ n]−∆z(x′)C[d⊗∇pγ(x)].

If the stresses are evaluated over the height of a given layer (i.e. along
a line segment with direction n), two contributions can be identified: a
constant term C[H1(x)− γ2(x

p(x′))d⊗ n] and a fluctuation term which
depends linearly on the distance ∆z(x′) from the layer center plane Li.
The latter term is given by

−∆z(x′)C[d⊗∇pγ(x)] = −∆z(x′)(h · ∇γ(x))C[d⊗ h] (3.79)

− ∆z(x′)(d · ∇γ(x))C[d⊗ d]. (3.80)
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For the special case of an isotropic material the first term of the right
hand side represents shear stresses in the h-d-plane (with respect to
the {h, d, n}-coordinate system)

τt = −∆z(x′) G (h · ∇γ(x)). (3.81)

The second term represents normal stresses. For example, the compo-
nent in d-direction is given by

σb = −∆z(x′)(d · ∇γ(x))
E

1 + υ

1− υ

1− 2υ
. (3.82)

These stresses are illustrated in Fig. 3.12.

σb

τt

n mtmb

d

Figure 3.12: Visualization of the stresses σb(∆z) and τt(∆z).

Clearly, σb reminds of bending stresses and τt can be associated with tor-
sion. The stresses are proportional to the components d · ∇γ and h · ∇γ,
respectively (compare Sect. 3.2). In fact, Fig. 3.12 could identically
have appeared in Sect. 3.2 illustrating the bending and torsion stresses
in the layers. The major difference, compared to Sect. 3.2, is the
consideration of lateral stresses (Eqns. (3.80) and (3.82)). These have
been neglected in the bending example in Sect. 3.2. Consistency is
achieved in the special case υ → 0. In that case, the bending stress
reads σb = −∆z(x′)E(d · ∇γ(x)) and all other normal stresses vanish.
In the following, the considerations are restricted to (anisotropic) cubic
crystals. In the subsequent sections, the moments generated by σb and τt

will reappear. The bending moment is given by

mb(x) = −1

h

h/2
∫

−h/2

∆z σb d∆z. (3.83)
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More precisely, mb represents an average moment per unit area. Note
that mb(x) could have been computed anywhere in the averaging
volume ∆V (x). The evaluation of the integral yields

mb(x) =
h2

12
Cdd

(

d · ∇γ(x)
)

, (3.84)

with Cdd = (d⊗ d) · C[d⊗ d].
Similarly, the torsion moment per unit area is given by

mt(x) = −1

h

h/2
∫

−h/2

∆z τt d∆z =
h2

12
Cdh

(

h · ∇γ(x)
)

, (3.85)

with Cdh = (d⊗ h) · C[d⊗ h].
In general, moments are vectors, i.e., they have a direction. Figure 3.12
motivates the following directions of mb and mt

mb(x) = mb(x)h, mt(x) = mt(x)h. (3.86)

The shear stresses τtd⊗ h imply shear stresses τth⊗ d due to the
symmetry of the stress tensor (see Fig. 3.12). The associated moment
reads

m⊥
t (x) = −mt(x)d. (3.87)

Finally, the energy W12(x) can be computed based on approxima-
tion (3.77) of H∗(x′)

W12(x) = lim
∆V (x)→0

1

∆V (x)

∫

∆V (x)

1

2
H∗

12(x
′) · C[H∗

12(x
′)] dv′. (3.88)

It can be shown (App. B.4) that

W12(x) =
1

2
εe(x) · C[εe(x)] +

1

2

h2

12
(d⊗∇pγ(x)) · C[d⊗∇pγ(x)] (3.89)

=
1

2
εe(x) · C[εe(x)] +

1

2

h2

12

(

Cdd(d · ∇γ(x))2 + Cdh(h · ∇γ(x))2
)

. (3.90)

In the special case of elastic isotropy and υ → 0, one obtains the
result (3.32), which has been guessed based on the fundamental bending
and torsion examples.
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• The stress fluctuations vanish upon averaging of σ∗12(x
′)

(Eq. (3.78)) over ∆V (x). The remaining average stress reads

σ̄12(x) =
1

∆V (x)

∫

∆V (x)

σ∗12(x
′) dv′ = C[ε(x)− γ(x)P S] = C[εe(x)],

(3.91)
with P S = sym(d⊗ n).

• Formally, the energy (3.89) is close to the energy (1.28) proposed
by Gurtin et al. (2007), where it is postulated based on dislocation
arguments.

• In contrast to Sect. 3.2, the Bernoulli-Hypothesis is in general not
fulfilled in the approach at hand. This means that the microstresses
depicted in Fig. 3.12 do not explicitly depend on the curvature of
the layers. Therefore, the present theory might rather be compared
to the Timoshenko beam than to the Bernoulli theory (as far as
bending is concerned). The normal stresses in the Timoshenko
beam can take the typical linear shape (Fig. 3.12, left) even if the
beam is remains straight. This is a result of the decoupling of the
cross section rotation from the slope of the bending curve which
constitutes the basic distinction between the Timoshenko and the
Bernoulli theory.

• The fluctuation-approximation associated to bending involves ten-
sile and compressive regions (Fig. 3.12). These stresses cause
lateral contractions which are not yet accounted for. In order
to compute more realistic energy approximations, these lateral
contractions should be taken into account, additionally (this is not
within the scope of the present work).

• As a next step, it seems natural to enrich the formulation by taking
into account the influence of ∇pH , in addition (in Eq. (3.77)).
This would lead to the further improved energy W22. However,
some calculations show that this does not alter the result (3.89),
i.e. W22 = W12. The proof follows the same lines as App. B.4.
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in the in-plane directions than in the out-of-plane direction. This
special choice simplifies the derivation and takes into accout that
the plastic slip may become non-smooth in the direction of the
slip plane normal (Fig. 3.7). However, the chosen shape of the
averaging volume may limit the accuracy of the derived energies.
An evaluation of this point may lead to further insights, but is
beyond the scope of this work.

• Yet, the slip band distance h has been considered a constant.
However, in a generalized setting it may be assumed that h

changes during the plastic deformation process. For example, one
may assume that only few slip bands are present at the beginning
of the deformation and that additional ones occur with ongoing
deformation.
In a first rough approximation, this effect may be accounted for as
follows. Since the dislocation density also tends to increase with
ongoing deformation and increasing number of slip bands (more
slip bands "carry" more dislocations), the slip band distance h may
be approximated as a function of the dislocation density. If, in
addition, the loading is monotonous and the problem is GND-
dominated, the total dislocation density may be approximated by
the GND-density. For example, if exclusively edge dislocations
are present, the slip band distance could then be estimated by a
function h(|ρ⊢|), as illustrated in Fig. 3.13.

h

|ρ⊢|
Figure 3.13: Slip band distance as a function of the GND-density.

91

• The dimensions of the averaging volume are significantly larger



Approximation of a Model Material

In order to exemplarily investigate the effect of such an approach
on the energy, consider, for example, the ansatz h =

√

chb/|ρ⊢|,
where ch is a dimensionless constant. This ansatz implies the
assumption that the average dislocation distance inside the indi-
vidual slip bands scales like the dislocation distance normal to the
slip bands (i.e. the slip band spacing). In this case, the plastic strain
gradient-depended part of the energy (3.89) reduces to

Wg =
ch b Cdd

24
|ρ⊢|. (3.92)

Hence, in this simplified setting, the energy represents a rank-one
potential, as discussed in the context of a laminate material in
Chap. 2 (Eq. (2.30)) and used, e.g., by Ortiz and Repetto (1999).

3.4 Dissipation Potential

The relative displacement in the slip bands is assumed to be caused
by dislocation motion. If no external load is applied the dislocations
are assumed to be trapped in energetically favorable configurations.
Additionally, their motion is hindered due to obstacles. Therefore,
pronounced dislocation motion is expected to occur only if the local
shear stress exceeds a critical value.
Introducing the time as additional coordinate, this behavior is
modeled phenomenologically by a dissipation potential φv(vrel),
where vrel = d · [[u̇]] denotes the relative velocity of adjacent layers in the
slip bands. The dissipation per unit area (of the slip band) is given by

∂vrel
φv(vrel)vrel, (3.93)

i.e., for vrel 6= 0 the expression τd = ∂vrel
φv(vrel) represents a dissipative

shear stress. In order to account for a possible elastic range, the symbol ∂

may be understood as a sub-differential operator (see, e.g., Han and
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Reddy, 2013, and Sect. 2.1). The plastic shear rate is given by (cf.
Eq. (3.40))

γ̇(x, t) =
1

∆V (x)

∫

∆V (x)

∂tju(x′, t) δSB(x
′) dv′. (3.94)

It is assumed that ju(x′, t) can be approximated by the following linear
approach inside of ∆V (x)

ju(x′, t) ≈ ju,2(x
′, t) = ju0(x, t) + b0(x, t) · (x′ − x). (3.95)

In the slip bands, the following relation holds

vrel(x, t) = ∂tju(x, t), x ∈ SB. (3.96)

The insertion of Eq. (3.95) into Eq. (3.94) yields

γ̇(x, t) ≈ 1

h
∂t ju0(x, t) =

1

h
vrel(x, t). (3.97)

This result leads to following integral dissipation potential approxima-
tion

∑

i

∫

SBi

φv(vrel(x)) da ≈
∫

B

1

h
φv(h γ̇(x)) dv. (3.98)

The latter integral motivates the definition of the dissipation potential in
terms of the plastic slip rate

φ(γ̇) =
1

h
φv(h γ̇). (3.99)

Remarks:

• In the rate independent case, the dissipation potential is homoge-
neous of degree one and consequently

φ(γ̇) = φv(γ̇). (3.100)

• The rate dependent case may, e.g., be modeled by a dissipation
potential of the power law type, which is homogeneous of de-
gree p + 1 > 1

φ(ωγ̇) = ω(p+1)φ(γ̇), ω ∈ R. (3.101)
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This kind of potential is consistent with a potential φv(vrel) which
is homogeneous of degree p + 1 since in that case

φ(ωγ̇) =
1

h
φv(ωh γ̇) = ω(p+1) 1

h
φv(h γ̇) = ω(p+1)φ(γ̇). (3.102)

• Eq. (3.99) implies that rate dependent dissipation potentials φ

depend on the internal length scale h. For example, a typical power
law approach is considered

φv(vrel) =
p τD v0

(p + 1)




|vrel|
v0





1+ 1
p

. (3.103)

Here, the drag stress τD, the rate sensitivity p and the reference
velocity v0 are phenomenological material parameters. The dissi-
pative shear stress is given by

τd = ∂vrel
φv = ∂γ̇φ = sgn (γ̇) τD




|γ̇|

v0/h





1
p

. (3.104)

The denominator v0/h can be interpreted as reference shear rate γ̇0

which is the lower the smaller the distance h between the slip
bands.

3.5 A Gradient Plasticity Theory based on W12

The principle of virtual power is exploited in order to derive field
equations for cubic crystals. A single crystal B in a single slip situation
is considered. Since the mesoscopic scale is the only length scale
considered in this section, the following notations are used. The
strain tensor ε = sym(H) is the symmetric part of the displacement
gradient H = ∇u. The plastic strain (in terms of the plastic shear
strain γ) reads εp = γP S with P S = sym(d⊗ n). Here, d denotes the slip
direction and n is the slip plane normal. The vector h = d× n allows the
definition of the orthonormal system {h, d, n}.
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The theory is based on the following stored energy approach (cf.
Sect. 3.3.2, Eq. (3.89))

W = We(ε, γ) + Wg(∇γ) (3.105)

with the elastic energy

We =
1

2
εe ·C[εe] =

1

2
(ε− γP S) ·C[ε− γP S] (3.106)

and the gradient extension

Wg =
1

2

h2

12

(

Cdd(d · ∇γ)2 + Cdh(h · ∇γ)2
)

(3.107)

=
1

2

(

mb (d · ∇γ) + mt (h · ∇γ)
)

(3.108)

with Cdd = (d⊗ d) · C[d⊗ d] and Cdh = (d⊗ h) · C[d⊗ h] (cf.
Eqns. (3.84) and (3.85)). Here, the slip band distance h is considered a
constant, for simplicity. The microscopic moments mb and mt are given
by

mb =
h2

12
Cdd(d · ∇γ), mt =

h2

12
Cdh(h · ∇γ). (3.109)

They are the components of the energetical micro-moment vector

m = ∂∇γWg = mbd + mth, (3.110)

which is formally identical to the (energetic) microstresses ξα (1.26) of
Gurtin’s gradient plasticity theory. The slip band distance h represents
the internal length scale of the model. Note that for single slip and a
properly chosen quadratic defect energy Wg, the generalized stresses m

and ξ are fully identical. For simplicity, ansatz (3.105) does not account
for isotropic hardening.
Moreover, the inelastic behavior is modeled by a dissipation poten-
tial φ = φ(γ̇) (cf. Sect. 3.4). As a consequence, the following internal
forces can be identified

σ = ∂εWe, τ = −∂γWe, m = ∂∇γWg, τd = ∂γ̇φ. (3.111)
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The virtual power of the internal forces is assumed to be given by

δPint(∆B) =
∫

∆B
(δẆ + ∂γ̇φ δγ̇) dv. (3.112)

The set ∆B ⊆ B is an arbitrary subset of the body B. The virtual
power δẆ of the energetical stresses is given by

δẆ = ∂εWe · δε̇ + ∂γWe δγ̇ + ∂∇γWg · ∇(δγ̇) (3.113)

= σ · δε̇− τ δγ̇ + m · ∇(δγ̇). (3.114)

Here, δu̇ denotes the virtual velocity, δγ̇ is a virtual plastic shear rate
and δε̇ = sym(∇δu̇) is the virtual strain rate. The application of the chain
rule and Gauss’ theorem yields

δPint(∆B) =
∫

∆B

(

σ · δε̇− (τ − τd) δγ̇ + m · ∇(δγ̇)
)

dv (3.115)

= −
∫

∆B

(

div (σ) · δu̇ + (τ + div (m)− τd) δγ̇
)

dv

+
∫

∂∆B

(

(σñ) · δu̇ + (m · ñ) δγ̇
)

da,

where ñ is the outer normal. The virtual power of the external forces is
assumed to be given by

δPext(∆B) =
∫

∂∆B

(

t · δu̇ + ma δγ̇
)

da. (3.116)

Here, t denotes the traction vector and ma is a micro moment. The prin-
ciple of virtual power postulates the equality of δPext(∆B) and δPint(∆B)

for arbitrary virtual fields. This implies various equations. The first one
reads

t = σñ. (3.117)

The second one states that the externally applied micro moment ma

partially equilibrates the two internal micro moments

ma = m · ñ = mb(d · ñ) + mt(h · ñ). (3.118)
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Moreover, the classical linear momentum balance is preserved

div (σ) = 0, (3.119)

and a micro moment equation is obtained

τ + div (m)− τd = 0. (3.120)

These equations are formally close to the equations obtained, e.g.,
by Gurtin et al. (2007).
In general, the boundary conditions are given as follows: the displace-
ment is prescribed on a subset ∂Bu ⊆ ∂B by a given function ū(x, t).
The tractions are prescribed by the function t̄(x, t) on the remaining
part ∂Bt = ∂B \ ∂Bu. Similarly, the plastic shear strain is prescribed
on ∂Bγ ⊆ ∂B by the function γ̄(x, t) and the micro moment is prescribed
by m̄a(x, t) on ∂Bm = ∂B \ ∂Bγ.
Eq. (3.120) represents the continuum generalization of the moment
equation which is well known from the classical beam theory. This
physical interpretation will be further investigated in the next section.
Moreover, Eq. (3.120) is formally identical to the microforce balance
equation (Eq. (1.27)) of Gurtin’s gradient plasticity theory.

τ̄ τ̄

n

d

SBi

tr

ma,r

Figure 3.14: Visualization (qualitative) of the stress vector tr (support reac-
tions) and the microscopic representation of the micro reaction moment ma,r.
Here ma,r = m · ñ = −mb.

In order to physically interpret Eq. (3.118) a simple example is consid-
ered (see Fig. 3.14). An elastoplastic cantilever beam is loaded by a
prescribed shear stress t̄ = τ̄ez on its right end. The slip plane normal
and slip direction are illustrated in Fig. 3.14. The load is assumed
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sufficiently large, such that the beam deformation is fully elasto-plastic.
The support reactions at the left end are given by the reaction stress
vector tr and distributed reaction micro moment ma,r. The expected
support reactions are qualitatively illustrated in Fig. 3.14. In this
example, the normal vector at the support is given by ñ = −d. As a
consequence, the reaction micro moment density ma,r reads

ma,r = m · ñ = (mb d + mt h) · (−d) = −mb. (3.121)

3.6 Polycrystals and Grain Boundaries

3.6.1 Beam Theory Solution

A simplified polycrystal model, as illustrated in Fig. 3.15, is considered
in plane strain in order to investigate systems consisting of several
grains.

x

z

τext

τf
Fγ(x) = w′(x)

subsystem

Figure 3.15: Simplified polycrystal model.

Each grain is modeled by a cube with edge length Dg consisting
of Ng ≫ 1 layers with thickness h = Dg/Ng. On the left, the model is
supported by a built-in support. Its right end can be displaced vertically
and is loaded by an external shear stress τext. In between the layers,
a shear stress τf with friction character is assumed. For simplicity,
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each layer is assumed to behave like a beam which is loaded by a
force F = τextDgh (Fig. 3.15, right).
The slip bands of different layers are assumed incompatible. This means
that each slip band ends at the grain boundary since the vertical slip
band positions of adjacent grains are not matching. As a consequence,
the rotation of the beam ends is constrained to vanish. The grain
boundaries can therefore be considered impenetrable for dislocations.
For the special case τf = 0, the bending curve can be computed from the
differential equation of the bending line

w′′(x) = −Mb(x)

EI
(3.122)

and the boundary conditions w(0) = w′(0) = w′(Dg) = 0. Here, Mb

denotes the bending moment and shear influences have been neglected.
The solution of Eq. (3.122) reads

w(x) =
τext

Eh2
(3Dgx

2 − 2x3). (3.123)

The derivative of w(x) can be interpreted as average plastic shear strain
γ(x) = w′(x) (cf. Fig. 3.15, left).
As already mentioned, shear force influences have been neglected since
the Bernoulli beam theory has been applied. The shear influence can
be approximately accounted for by assuming a homogeneous shear
deformation εxz = τext/(2G) of the beam. The superposition of the
associated displacement with the bending deflection (3.123) reads

w(x) =
τext

Eh2
(3Dgx

2 − 2x3) +
τext

G
x. (3.124)

In order to interpret the equilibrium equation (3.120) a cuboid shaped
subsystem of a grain with edge lengths ∆x, ∆y = Dg and ∆z is consid-
ered (see Fig. 3.15, top). The subsystem consists of n = ∆z/h layers.
In Fig. 3.16, the free body diagram of the subsystem is illustrated. The
associated equilibrium of moments reads

−nMb(x) + nMb(x + ∆x)− nQ(x)∆x + τ f∆x∆y∆z = 0, (3.125)
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nQ(x)

nQ(x + ∆x)

nMb(x)

nMb(x + ∆x)

τf

∆z

∆x

Figure 3.16: Free body diagram of the subsystem as indicated in Fig. 3.15.

with

τ f =
1

∆x

x+∆x∫

x

τf(x̄) dx̄. (3.126)

Introducing the average shear stress and average bending moment per
unit area

τ(x) =
nQ(x)

∆y∆z
, mb(x) = −nMb(x)

∆y∆z
(3.127)

and division of Eq. (3.125) by −∆x∆y∆z yields

mb(x + ∆x)−mb(x)

∆x
+ τ(x)− τ f(x) = 0. (3.128)

In the limit ∆x→ 0 the following identity is obtained

τ + div (mbd)− τ f = 0. (3.129)

This equation is formally identical to Eq. (3.120), given by

τ + div (m)− τd = 0. (3.130)

Both equations describe almost the same mechanics. The second equa-
tion also accounts for torsion like moments.
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3.6.2 Continuum Theory Solution

Subsequently, the continuum theory derived in Sect. 3.5 is applied to
solve the problem considered in the previous section. For simplicity,
only one crystal is considered (see Fig. 3.17). The material is assumed
to be elastically isotropic with υ → 0. The displacement and the plastic
shear strain are assumed to be functions of x

u = w(x)ez, γ = γ(x). (3.131)

In addition, the boundary conditions are given by

w(0) = 0, γ(0) = γ(Dg) = 0, σxz(x = Dg) = σzx(x = Dg) = τext.

(3.132)
The conditions (3.132)2 represent the slip band incompatibility at the
grain boundaries. Moreover, the gradient of γ reads (d · ∇γ)d = γ ′(x)d

x, d

z, n

τext

Dg

Dg

Figure 3.17: Crystal loaded by constant shear stress τext.

and the constant Cdd is given by Cdd = E, since υ → 0. As a conse-
quence, the stored energy (3.105) is given by

W =
1

2
εe · C[εe] +

1

2

h2

12
E
(

γ ′(x)
)2

. (3.133)
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The micro moment reads

m = ∂∇γW =
h2

12
Eγ ′(x)d. (3.134)

Since friction between the layers has been neglected in the previous
section, the dissipation potential φ is analogously set to zero. The elastic
strain can be derived from H and Hp

H = w′(x)ez ⊗ ex, Hp = γ(x)ex ⊗ ez ⇒ εe = (w′(x)− γ(x))sym(ex ⊗ ez). (3.135)

Hence, the resolved shear stress is given by

τ = σ · P S = σxz = σzx
(3.135)

= G(w′(x)− γ(x)). (3.136)

Moreover, the linear momentum balance (3.119) implies

∂xσzx = 0 ⇒ σxz = σzx
(3.132)3= τext

(3.136)
= τ. (3.137)

Obviously, the resolved shear stress τ is homogeneous and equal to the
externally applied stress τext. The micro moment equation (3.120) takes
the form

τ + div (m)
(3.134)

= τext +
h2

12
Eγ ′′(x) = 0. (3.138)

The solution of this differential equation is given by

γ(x) =
6τext

Eh2
(Dgx− x2). (3.139)

Here, the boundary conditions (3.132)2 have been applied. A differential
equation for w(x) can be obtained by combining Eqns. (3.136), (3.137)
and (3.139)

w′(x) = γ(x) +
τext

G
. (3.140)

Integration and application of the boundary condition w(0) = 0 gives

w(x) =
τext

Eh2
(3Dgx

2 − 2x3) +
τext

G
x. (3.141)

This is exactly the result (3.124), which has been obtained from the beam
theory. Obviously, the shear influence is accounted for.
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Finally, the density of geometrically necessary edge dislocations can be
computed

ρ⊢(x) = −γ ′(x) =
6τext

Eh2
(2x−Dg). (3.142)

Eq. (3.142) represents the dislocation pile-up structure. This result is
not astonishing since the mathematical structure of the model at hand
matches the structure of different gradient approaches like for example
the theory of Gurtin et al. (2007). However, dislocation interactions
have at no point explicitly been introduced in the current approach.
Instead, they are assumed to be accounted for implicitly through the
elastic micro-deformation of the layers.

Remark:

The grain boundaries of the model at hand are assumed perfectly micro-
hard. This means that the rotations of the beam ends are constrained
to vanish. This constraint leads to a non-vanishing bending moment
at the grain boundaries, which increases with ongoing deformation.
A more advanced model could allow for grain boundary yielding by
introducing (at a certain point of the deformation process) additional
slip bands such that those are matching at the grain boundaries. As a
consequence, the plastic slip would no longer be constrained to vanish
at the grain boundaries. An obvious criterion of the onset of new,
matching slip bands may be the introduction of a critical (distributed)
grain boundary micro moment. If the distributed micro moment at the
grain boundary reaches this critical moment, the transition of the plastic
deformation from one grain to another would then take place, i.e., the
grain boundary would no longer behave micro hard. A familiar grain
boundary model will be formulated in the subsequent chapter in the
context of another gradient plasticity theory.
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Chapter 4

Simplification of Gradient Plasticity based on a
Scalar Plastic Field Variable

4.1 Introduction

The preceding chapters summarize various aspects of gradient crystal
plasticity, for example, the kinematical description of GNDs and the
consideration thereof in the constitutive framework. In this context,
additional partial differential equations (PDEs) have been derived and
interpreted as extra (micro force) balance equations (e.g. Eqns. (1.27),
(2.4)2 and (3.120)).
In the multislip case the number of additional scalar PDEs can be a
multiple of the three scalar linear momentum balance equations. This
implies a significant increase of the necessary computational effort
compared to classical plasticity theories without internal length scale. In
addition, the implementation of the discretized models is non-standard
and non-trivial. For example, the determination of plastically active
zones remains a demanding task within the context of gradient plasticity
simulations. As a result, the application of associated models to three-
dimensional problems remains an exception.
In addition, gradient plasticity models are currently far from being
accurate. This is due to several uncertainties concerning, for example,
boundary and interface conditions, the form of the potentials (see
Chap. 2) and a lack of experimental data. Often, the predicted size effects
are not only quantitatively wrong, but even qualitatively inaccurate. For
example, the overall hardening of the model may be size-dependent.
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However, many experiments rather suggest a size-dependent yield
stress, instead. Therefore, the increase in computational cost and
complexity usually contrasts with the gain of accuracy associated to
gradient plasticity models.
The aforementioned computational effort may be reduced by decreasing
the number of additional partial differential equations. This can be
achieved by a modification of the kinematical framework. For example,
one may not take into account the gradients of all plastic slips (or the
curl of the plastic distorsion) but the gradient of only one scalar plastic
field variable. This means that the kinematical information is reduced.
In the following, such a phenomenological, geometrically linear gra-
dient plasticity framework including the gradient of a scalar plastic
field variable is discussed. The theory can be considered as a gradient
extended thermodynamic generalization of classical plasticity theories
without internal length scale like the Von Mises theory (for an overview
see, e.g., Simo and Hughes (1998)). It summarizes different aspects of
gradient plasticity, like energetic or dissipative micro-stresses and inter-
face models. These concepts are later applied to a gradient extension
of single crystal plasticity. In order to understand the origin of the
concepts as well as possible difficulties, they are first summarized in
a more simple isotropic context.
Possible fields of application of the theory are for example microme-
chanical problems including size effects, interfaces like grain boundaries
or the regularization of softening problems that otherwise suffer from
localization. The model relies on one scalar plastic field variable ζ which
is defined throughout the body under consideration. It is introduced in
order to model the internal mechanical state of the material, in particular
its resistance against plastic deformation as well as hardening or soften-
ing. The variable is supposed to have a kinematical character. In many
applications, ζ has the interpretation of an equivalent plastic strain. It is
kinematically coupled with the plastic strain through the flow rule. This
is in line with many classical approaches (as summarized, e.g., by Simo
and Hughes, 1998).
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As already mentioned, the field ζ is intended to represent the internal
mechanical state of the material. This means that a change in ζ is, for
example, associated with a change of the energy state of the material
or with dissipative processes. Therefore, generalized stresses are in-
troduced extending power over ζ̇ and its gradient. These stresses are
assumed to affect the plastic deformation. Therefore, they are accounted
for in the yield condition and the flow rule. This implies the assumption
that the aforementioned stresses (for example conjugate to ζ) control
the onset of plastic deformation in addition to the Cauchy stress. This
phenomenological approach allows, for example, to model hardening
and, in the context of gradient theories, size effects. Taking into account
not only ζ but also its gradient is considered as the main difference
compared to the aforementioned classical theories.
Various motivations of gradient plasticity have been discussed in
Chaps. 1, 2 and 3. Alternatively, the introduction of the gradient can
be motivated by the assumption that the plastic response of a material
point is in general nonlocal (Engelen et al., 2003). This means that the
response does not exclusively depend on the internal state of that point
but also on the surrounding particles. Simple nonlocal models can be
approximated by gradient theories. For example, let the yield stress at a
given point x be given by

σY(x) = σC
0 + Hζ(x) + E

∫

∆V (x)

w(‖x′ − x‖)
(

ζ(x)− ζ(x′)
)

dv′. (4.1)

Here, σC
0 is the initial yield stress and H and E denote the hardening and

Young’s modulus, respectively. The term Hζ(x) represents a standard
local linear hardening model. The integral is a nonlocal extension. It
introduces a plastic interaction of the considered particle at position x

and its surrounding neighborhood ∆V (x). The spherical volume ∆V (x)

is centered at x and w is a weighting function which decays to zero
at ∂∆V . It is assumed normalized in the following sense

∫

∆V (x)

w(‖x′ − x‖) dv′ = 1. (4.2)
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The plastic particle interaction is established through the difference of
the plastic variable ζ of the particle at x and any other particle at x′

in the vicinity of x. If ζ at x succeeds the value at x′, the yield
stress is (infinitesimally) increased. Otherwise, it is decreased. This
means that a high plastic activity in the neighborhood of the particle
at x ’stimulates’ the plastic activity of the particle and vice versa.
Therefore, plastically heterogeneous deformations are penalized by the
integral term (this is the principal effect of the nonlocal extension). The
yield stress can be approximated by replacing ζ(x′) by its Taylor series
expansion around x. If the series is truncated after the quadratic term, a
short calculation yields

σY(x) = σC
0 + Hζ(x)− El2∆ζ(x). (4.3)

Here, l is an internal length scale parameter, which has the order
of magnitude of the averaging volume diameter. The influence of
the Laplace term becomes generally important when the system size
approaches the order of magnitude of l. Exceptions are given by
localization phenomena. The relation (4.3) is an approximation of the
nonlocal expression (4.1). Since Eq. (4.3) does not involve any integral
quantities, but only an approximation of these based on the Laplacian,
it is sometimes referred to as ’weakly nonlocal’.
Considering a generalized Von Mises theory and neglecting isotropic
hardening, plastic yielding occurs if the yield condition is fulfilled

f = ‖σ′‖+ El2div (∇ζ)− σC
0 = 0. (4.4)

Formally, Eq. (4.4) is similar to the microforce balance (1.27) of Gurtin’s
single crystal gradient plasticity theory. In particular, for the quadratic
approach Wg = El2 ∑

α((ρα
⊢)

2 + (ρα
⊙)2)/2, the balance equation (1.27)

takes the following form

τα + El2div (P n
α∇γα)− τd

α = 0, (4.5)

with the projectors P n
α = I − nα ⊗ nα.

In addition, the term El2div (∇ζ) = El2∆ζ is closely related to Groma’s
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x ≈ −c0/b

ρ
∂2

x1
γ. (4.6)

The principal difference between both backstresses is given by the
fact that the latter does not require the introduction of an additional
material parameter. Instead, the internal length scale is given by 1/

√
ρ,

representing the average dislocation spacing.
In this sense, pragmatic and computationally manageable gradient
plasticity models based on the scalar plastic field variable ζ can be
motivated by general non-local theories, more complex gradient crystal
plasticity frameworks as well as by the statistical dislocation theory
of Groma et al. (2003).
In the following, phenomenological models which take the gradient
of the scalar plastic field variable ζ into account, are revised in the
thermodynamic context (neglecting temperature effects). The presenta-
tion comprises various aspects of phenomenological gradient plasticity
theories

• The treatment by the principle of virtual power

• Boundary conditions and interfaces

• Energetic and dissipative micro-stresses

• Thermodynamic consistency

• Bulk and interface flow rules

These and other aspects have been discussed by various authors in
the context of gradient plasticity. In order to formulate meaningful
models for micromechanical systems, boundary and interface influences
must not be neglected, if the interface-to-volume ratio reaches a critical
value. Therefore, the possibility to formulate phenomenological plastic
interface models is probably one of the most important features of
gradient plasticity theories.
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4.2 Power of the External and Internal Forces

The theory is based on the assumption of an additive decomposition of
the strain into an elastic and a plastic part (Eq. (1.11))

ε = sym(∇u) = εe + εp, (4.7)

where u denotes the displacement field. The body under consideration
may consist of different phases

B =
⋃

i

Bi. (4.8)

The phases are separated by interfaces, the union of which is denoted
by Γ. The power of the internal forces is assumed to be given by

Pint =
∫

B

(

σ · ε̇ + ξ ζ̇ + ξ · ∇ζ̇
)

dv +
∫

Γ

ΞΓ ζ̇ da. (4.9)

Here, σ denotes the Cauchy stress conjugate to ε̇ (i.e. σ extends power
over ε̇). Since changes of ζ and its gradient are assumed to be associated
to internal thermodynamic processes, additional stresses ξ and ξ are
assumed to extend power over ζ̇ and its gradient. The same holds for ζ̇

and ΞΓ at the interfaces. For simplicity, possible interface jumps of ζ are
neglected. Just like the stress power σ · ε̇, the power expressions ξ ζ̇

and ξ · ∇ζ̇ as well as ΞΓ ζ̇ represent power densities. The associated
energy is stored or dissipated inside the material. The power of the
external forces is assumed to be given by

Pext =
∫

∂B
t · u̇ da +

∫

∂B
Ξ ζ̇ da. (4.10)

Let the tractions t and microtractions Ξ be given by the fields t̄ and Ξ̄

on the Neumann parts ∂Bt and ∂BΞ of the boundary, respectively. Body
forces are neglected. On the Dirichlet parts ∂Bu and ∂Bζ of the boundary,
u and ζ are assumed to be given. Due to energy conservation reasons it
is assumed that

Pint = Pext. (4.11)

Note that at this point, there is no coupling between the conventional
fields σ and ε and the purely phenomenological field ζ .
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4.3 Principle of Virtual Power and Balance Equations

The relation (4.11) is assumed to hold for arbitrary processes. Such a
process is considered in the following. It is assumed that the virtual
rates δu̇ and δζ̇ are introduced. Let these be compatible with the
Dirichlet boundary conditions, i.e. δu̇ = 0 on ∂Bu and δζ̇ = 0 on ∂Bζ.
In this case, one finds

Pint + δPint = Pext + δPext. (4.12)

As Eq. (4.11) still holds, the following relation is obtained

δPint = δPext. (4.13)

This equation represents the principle of virtual power

∫

B

(

σ · δε̇ + ξ δζ̇ + ξ · ∇δζ̇
)

dv +
∫

Γ

ΞΓ δζ̇ da =
∫

∂Bt

t̄ · δu̇ da +
∫

∂BΞ

Ξ̄ δζ̇ da.

(4.14)
Note that δε̇p = 0, i.e., the variables εp and ζ are chosen to be a priori
independent.
Since the variations are arbitrary, one can deliberately choose δζ̇ = 0.
The application of the chain rule and Gauss’ theorem to Eq. (4.14) then
yields

∫

B
div (σ) · δu̇ dv =

∫

∂Bu

(t̄− σn) · δu̇ da. (4.15)

The arbitrariness of δu̇ implies

div (σ) = 0 ∀x ∈ B, σn = t̄ ∀x ∈ ∂Bu. (4.16)

These equations represent the linear momentum balance as well as
Neumann-type boundary conditions.
An analogue procedure (choosing δu̇ = 0 in Eq. (4.14)) yields a micro-
force balance equation and associated Neumann boundary conditions.
However, in this case the integration must be carried out for each
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phase Bi separately due to the presence of the interface integral in
Eq. (4.14). Consequently, interface conditions are obtained in addition

ξ = div (ξ) ∀x ∈ Bi, ΞΓ = [[ξ]] · n ∀x ∈ Γ, ξ · n = Ξ̄ ∀x ∈ ∂BΞ. (4.17)

The jump of the normal component of the microstress ξ is defined by

[[ξ]] · n = (ξ+ − ξ−) · n, (4.18)

where n points from ’-’ to ’+’.

4.4 Constitutive Assumptions

4.4.1 Energetic Assumptions and Dissipation Inequality

The stored energy density is assumed to be a function of the elastic
strain, the plastic variable ζ and ∇ζ

W = W (ε− εp, ζ,∇ζ). (4.19)

Moreover, the interface energy density is assumed to be a function of ζ

WΓ = WΓ(ζ). (4.20)

The constitutive model is required to be thermodynamically consistent.
This means that the dissipation must be non-negative. The total
dissipation is given by the difference of the power of the external forces
(the energy which is introduced into the system) and the energy storage
rate

Dtot = Pext −
∫

B
Ẇ dv −

∫

Γ

ẆΓ da ≥ 0. (4.21)

From Eqns. (4.9), (4.11), (4.19) and (4.20) it follows that the total dissipa-
tion can be represented by

Dtot =
∑

i

∫

Bi

(

(σ − ∂εW ) · ε̇ + ∂εW · ε̇p + (ξ − ∂ζW )ζ̇ + (ξ − ∂∇ζW ) · ∇ζ̇
)

dv

+
∫

Γ

(ΞΓ − ∂ζWΓ)ζ̇ da. (4.22)
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The integrand of the first integral represents the local (bulk) dissipation

D = (σ− ∂εW ) · ε̇ + ∂εW · ε̇p + (ξ− ∂ζW )ζ̇ + (ξ− ∂∇ζW ) ·∇ζ̇ ≥ 0. (4.23)

The dissipation is required to be positive or zero. Assuming that, for
virtually and instantaneously frozen states εp, ζ and ∇ζ, the stress
power σ · ε̇ is fully stored energetically, one finds for arbitrary strain
rates ε̇

D(ε̇p = 0, ζ̇ = 0, ∇ζ̇ = 0) = (σ − ∂εW ) · ε̇ = 0. (4.24)

This statement implies the following constitutive relation for the Cauchy
stress

σ = ∂εW. (4.25)

For better readability, the following energetic and dissipative stresses
are defined

ξe = ∂ζW, ξd = ξ−ξe (4.17)
= div (ξ)−∂ζW, ξe = ∂∇ζW, ξd = ξ−ξe. (4.26)

The stress powers of the energetic stresses and their conjugate kinematic
rates, for example ξeζ̇ = ∂ζWζ̇, lead to energy storage (or release) in the
material. In contrast, the sum of the stress powers of the dissipative
stresses and the associated rates gives the dissipation

D = σ · ε̇p + ξd ζ̇ + ξd · ∇ζ̇ ≥ 0. (4.27)

Equation (4.27) is the reduced dissipation inequality of the bulk. At the
interface, an analogous procedure yields the dissipation per unit area

DΓ = (ΞΓ − Ξe
Γ) ζ̇ ≥ 0 with Ξe

Γ = ∂ζWΓ. (4.28)

For better readability, the dissipative interface microtraction Ξd is intro-
duced

Ξd
Γ = ΞΓ − Ξe

Γ ⇒ DΓ = Ξd ζ̇ . (4.29)
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4.4.2 Rate-Independent Setting

The reduced dissipation inequality (4.27) states that the dissipative
stresses can be interpreted as the driving forces of dissipative processes
like the plastic deformation. Therefore, the plastic deformation is
assumed to be triggered when the dissipative stresses reach a critical
value. This relation is expressed by the yield criterion which is assumed
to be given by

f = f(σ, ξd, ξd) ≤ 0. (4.30)

In the case of plastic yielding f = 0 holds.

Remark: In many applications the stored energy is assumed to have an
additive form

W = We(ε− εp) + Wh(ζ) + Wg(∇ζ). (4.31)

Interestingly, in this case, no equations exist in the theory which couple
the fields {u, ε, εp} with the field ζ until the yield condition is intro-
duced.

The dissipation inequality (4.27) can be exploited to identify suitable
constitutive equations involving ε̇p, ζ̇ and ξd. These constitutive models
must satisfy Eq. (4.27). This can be realized by maximizing the dissipa-
tion. Therefore, the following Lagrangian is considered

FL(σ, ξd, ξd) = σ · ε̇p + ξd ζ̇ + ξd · ∇ζ̇ − λ̊ f(σ, ξd, ξd). (4.32)

Accordingly, for given non-vanishing plastic rates {ε̇p, ζ̇,∇ζ̇} one as-
sumes that the associated stress state {σ, ξd, ξd} maximizes the dissipa-
tion. The yield condition f = 0 takes the role of a constraint on the stress
state and is accounted for by means of the Lagrange multiplier λ̊. The
symbol (̊•) expresses the rate-like character of the multiplier. From the
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dissipation maximization requirement, it follows that

∂σFL = 0 ⇒ ε̇p = λ̊∂σf, (4.33)

∂ξdFL = 0 ⇒ ζ̇ = λ̊∂ξdf, (4.34)

∂ξdFL = 0 ⇒ ∇ζ̇ = λ̊∂ξdf. (4.35)

This set of equations is associated to the unknowns ε̇p, ζ̇ and ξd.
The first and second equations can be interpreted as flow rules for ε̇p

and ζ̇ which thereby become kinematically coupled. Note that the
principle of maximum dissipation leaves no freedom in the choice of
these flow rules. As a consequence, the kinematical coupling of ζ with
the plastic strain is completely determined through the yield criterion, if
the principle of maximum dissipation is applied.
Let the yield criterion have the form

f(σ, ξd, ξd) = f̃(σ, ξd, ξd)− c̃, (4.36)

where f̃ is homogeneous of degree one with respect to the stresses
and c̃ ≥ 0 is a constant. Equation (4.36) implies the following represen-
tation of the dissipation (Miehe, 2011)

D = (σ · ∂σf̃ + ξd ∂ξdf̃ + ξd · ∂ξdf̃ )̊λ = c̃ λ̊ ≥ 0. (4.37)

The Kuhn-Tucker conditions summarize the results and take the classi-
cal form

λ̊ ≥ 0, f ≤ 0, λ̊ f = 0. (4.38)

Considering the interface dissipation (4.29), a canonical form of the
interface flow rule is given by

fΓ = Ξd
Γ − ΞC

0
(4.29)
= ΞΓ − (ΞC

0 + Ξe
Γ), (4.39)

with the initial yield strength ΞC
0 ≥ 0. The microtraction ΞΓ = [[ξ]] · n

(see Eq. (4.17)) can be interpreted as the interface loading. The energetic
microtraction Ξe

Γ = ∂ζWΓ (Eq. (4.29)) determines the hardening behavior
of the interface. The interface has a micro-hard behavior for fΓ < 0. This
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means, that in this case, the interface condition ζ̇ = 0 has a Dirichlet
character. In contrast, interface yielding implies fΓ = 0, at least in the
rate-independent setting.
Given fΓ = 0, the loading condition is given by ḟΓ

∣
∣
∣
ζ

> 0. If
the loading condition is fulfilled, the interface conditions, given
by [[ξ]] · n = ΞC

0 + Ξe
Γ, exhibit a mixed Neumann-Robin character. Finally,

the dissipation inequality DΓ = Ξd
Γ ζ̇ = ΞC

0 ζ̇ ≥ 0 implies ζ̇ ≥ 0 on Γ. As
a summary, interface conditions which are in line with the Kuhn-Tucker
conditions (4.38) are obtained

ζ̇ ≥ 0, fΓ ≤ 0, ζ̇ fΓ = 0. (4.40)

Example: Let the yield criterion be given by (compare, e.g., Fleck and
Willis, 2009a)

f(σ, ξd, ξd) =
√

‖σ′‖2 + (1/ld)2‖ξd‖2 +

√
√
√
√

2

3
(ξd − σC

0 ), (4.41)

where σC
0 is the initial yield strength and ld represents an internal length

scale parameter. Eqns. (4.33) to (4.35) take the form

ε̇p = λ̊
σ′

√

‖σ′‖2 + (1/ld)2‖ξd‖2
, (4.42)

ζ̇ =

√
√
√
√

2

3
λ̊, (4.43)

ld∇ζ̇ = λ̊
ξd

√

(ld)2‖σ′‖2 + ‖ξd‖2
. (4.44)

Note that for large mechanical systems without localization effects, one
can generally assume that ‖ε̇p‖ ≫ ‖ld∇ζ̇‖which implies ‖σ′‖ ≫ ‖ξd‖/ld.
Hence, the dissipative gradient effect incorporated by ξd is negligible if
the system length scale is significantly larger than ld.
With Eq. (4.26) the yield condition can be represented by

f(σ, ξd, ξd) =





√

‖σ′‖2 + (1/ld)2‖ξd‖2 +

√

2

3
div (ξe)



−
√

2

3
(σC

0 + ξe). (4.45)
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In order to get more specific, the following energy is assumed

W =
1

2
εe · C[εe] +

1

2
Hζ2 +

1

2
(le)2E∇ζ · ∇ζ (4.46)

with the linear hardening modulus H and the energetic length scale
parameter le. Neglecting dissipative gradient effects, the yield condi-
tion (4.45) becomes

f = ‖σ′‖ −
√
√
√
√

2

3

(

σC
0 + Hζ −E(le)2∆ζ

)

. (4.47)

This yield criterion is equivalent to the yield stress (4.3) which has been
obtained from the approximation of a nonlocal theory.
If gradient influences are neglected, the yield condition (4.45) equals
the classical Von Mises yield condition with isotropic hardening
stress ξe = ∂ζW .

4.4.3 Rate-Dependent Setting

In the rate-depend setting, stress states {σ, ξd, ξd} in the re-
gion f(σ, ξd, ξd) > 0 are generally possible. They are called overstress
states and determine the plastic deformation rate. It is assumed that
Eqns. (4.33) to (4.35) remain formally identical

ε̇p = λ̊∂σf, (4.48)

ζ̇ = λ̊∂ξdf, (4.49)

∇ζ̇ = λ̊∂ξdf. (4.50)

However, λ̊ is no longer a Lagrange multiplier but a monotonous
function of the overstress state

λ̊ = λ̊
(

〈f〉
)

≥ 0, with λ̊(0) = 0, (4.51)

where 〈•〉 =
(

|(•)|+ (•)
)

/2 denote the McAuley brackets. Many appli-
cations are based on a power-type creep law

λ̊ = λ̇0

〈

f

σD

〉p

. (4.52)
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The reference strain rate λ̇0, the drag stress σD and the strain rate
sensitivity p are material parameters. Note that λ̇0 and σD are not
independent (i.e. a multiplication of σD by a factor a has the same effect
as a division of λ̇0 by ap).
The dissipation (4.27) is given by (compare Eq. (4.36))

D = (σ · ∂σf̃ + ξd ∂ξdf̃ + ξd · ∂ξdf̃ )̊λ = (f + σC
0 ) λ̊ ≥ 0. (4.53)

Here, the value of f represents the overstress, which has a viscous
character.
The rate-depend interface theory follows the same line as the bulk
theory. It is based on the following rate equation

ζ̇ = λ̊Γ

(

〈fΓ〉
) (4.39)

= λ̊Γ

(

〈[[ξ]] · n− (ΞC
0 + Ξe

Γ)〉
)

on Γ, (4.54)

where the function λ̊Γ(•) has the same properties as λ̊(•). Eq. (4.54) is
again based on the overstress fΓ at the interface, which also has a viscous
character.
Note that a rate-dependent bulk model does not preclude rate-
independent interface equations and vice versa.

4.5 Conceptual Difficulties in Plasticity including the Gradient of
one Scalar Plastic Field Variable

4.5.1 One-Dimensional Example

A conceptual difficulty in plasticity including the gradient of one scalar
plastic field variable ζ arises, e.g., in the following situation

• the generalized dissipative stress ξd is neglected

• the yield criterion f = 0 is satisfied at a given point

• at the same time, the Cauchy stress is zero

This situation occurs, for example, when the term div (ξe) in Eq. (4.45) is
sufficiently large. In this case, plastic deformation is triggered, but the
flow rule (4.42) cannot provide the direction of ε̇p. In order to further
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investigate this problem, a one-dimensional viscoplastic example is
considered in the following.
The stored energy function is assumed to be given by

W =
1

2
E(ε− εp)2 +

1

2
KG(ζ ′)2 with ζ ′ = ζ ′(x), KG = E(le)2. (4.55)

Neglecting dissipative microstresses, the yield criterion reads (compare
Eq. (4.45))

f = |σ|+ KGζ ′′ − σC
0 . (4.56)

The flow rule (4.42) in combination with the creep law approach (4.52)
takes the form

ε̇p = ε̇0 sgn (σ)

〈

f

σD

〉p

= ε̇0 sgn (σ)

〈 |σ|+ KGζ ′′ − σC
0

σD

〉p

(4.57)

with the reference strain rate ε̇0. The field ζ satisfies the equation ζ̇ = |ε̇p|
(compare Eq. (4.49)). For simplicity, the initial yield stress is set to zero
and the rate sensitivity is chosen to be linear, i.e. σC

0 = 0 and p = 1.
Hence, the model is reduced to a viscoelastic gradient model. The vis-
coelastic setting is sufficient to illustrate the aforementioned conceptual
difficulty, which is discussed by means of the following initial boundary
value problem.

aa

x

ǫF, ǫ→ 0F

t = 0

I II

Figure 4.1: Initial configuration of the bar. The direction of the force ǫF is determined
by the sign of ǫ.

A bar (see Fig. 4.1) is loaded by a tensile force F > 0 and an additional
small perturbation force ǫF . The direction of the perturbation is
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determined by sgn (ǫ). Here, the limit process ǫ→ 0 is of special interest.
The stress in the two regions is given by

Region I (0 ≤ x ≤ a) : σI =
F

A
, (4.58)

Region II (a < x ≤ 2a) : σII =
ǫF

A
. (4.59)

Here, A denotes the cross sectional area of the bar.
Let the initial conditions be given by

εpI (x, t = 0) = ζI (x, t = 0) =
Fa2

4AKG



2−
(

x

a

)2


 , (4.60)

εpII (x, t = 0) = ζII (x, t = 0) =
Fa2

4AKG

(

x− 2a

a

)2

. (4.61)

These initial conditions allow for a simple solution of the problem.
It is assumed that the loading F is small and consequently the pre-
deformation is small, too. In the one-dimensional setting, the field
equations (4.16) and (4.17) take the form

σ′ = 0, ξ = KGζ ′′. (4.62)

Let the boundary conditions be given by

(ζI )′(x = 0) = (ζII )′(x = 2a) = 0. (4.63)

This means that microfree conditions are assumed at the boundaries.
The support at x = a has no direct effect on the field ζ since it can
deliberately be replaced by the associated support reaction. For ǫ→ 0,
the solution of the problem is given by

εpI = ζI =
F ε̇0

2σDA
t + εpI (x, 0) (4.64)

εpII = sgn (ǫ)
F ε̇0

2σDA
t + εpII (x, 0) (4.65)

ζII =
F ε̇0

2σDA
t + εpII (x, 0). (4.66)

The displacement field can easily be obtained by integration, but is not
of interest here. For sufficiently large times t, the strain is approximately
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given by εp. The deformation in region I is characterized by tensile
strains. The sign of the strain in region II is determined by the sign of the
perturbation ǫF . This means that the perturbation ǫF has a significant
influence on the solution. It determines if the right part of the bar is
stretched or compressed. This is illustrated in Fig. 4.2.

ǫF

ǫF

|ǫ|F

F

F

F

t = 0

t > 0, ǫ > 0

t > 0, ǫ < 0

Figure 4.2: Undeformed and deformed bar with positive and negative perturbation.

The result visualizes the conceptual problem of gradient plasticity
theories including one scalar field ζ. This scalar contains no information
on the direction of the plastic flow. Therefore, even arbitrarily small
perturbations can determine the direction of the plastic deformation.
In this sense, the solution is not stable with respect to the boundary
conditions.

4.5.2 A Stable One-Dimensional Formulation

A stable one-dimensional formulation can be obtained by accounting for
tensile and compressive plastic strain increments separately. Consider
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for example the following flow rule for a material without gradient
effects (formulation A)

ε̇p = sgn (σ) ε̇0

〈 |σ| − σC
0

σD

〉

. (4.67)

An equivalent formulation can be obtained as follows. Let the flow
rules for tensile and compressive plastic strain increments be given by
(formulation B)

ε̇p
t = ε̇0

〈

σ − σC
0

σD

〉

, ε̇p
c = ε̇0

〈−σ − σC
0

σD

〉

. (4.68)

These flow rules implicitly introduce the following yield criteria for
tensile and compressive plastic flow

ft = σ − σC
0 , fc = −σ − σC

0 . (4.69)

In this formulation, the flow rule for ε̇p is given by the sum of the tensile
and compressive strain rates

ε̇p = ε̇p
t − ε̇p

c ⇒ εp = εp
t − εp

c . (4.70)

It can be verified that this formulation is consistent with Eq. (4.67). This
means, that both formulations, A and B, are equivalent if no gradient
extension is introduced. However, this does not hold for the gradient
extended versions. The gradient extended version of formulation A

has been discussed in the last section. It has been shown to possibly
yield instable solutions. The gradient extended version of formulation B

reads (compare Eq. (4.52))

ε̇p
t = ε̇0

〈

σ + KGζ ′′ − σC
0

σD

〉

, ε̇p
c = ε̇0

〈−σ + KGζ ′′ − σC
0

σD

〉

. (4.71)

The associated yield criteria for tensile and compressive plastic defor-
mations are in line with Eq. (4.45)

ft = σ + KGζ ′′ − σC
0 , fc = −σ + KGζ ′′ − σC

0 . (4.72)
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The flow rule for ζ consequently reads (comp. Eq. (4.49))

ζ̇ = ε̇p
t + ε̇p

c = ε̇0

〈

σ + KGζ ′′ − σC
0

σD

〉

+ ε̇0

〈−σ + KGζ ′′ − σC
0

σD

〉

. (4.73)

In contrast to formulation A, the flow rules of formulation B do not
require the evaluation of sgn (σ). Remember that the factor sgn (σ) has
been at the origin of the instable behavior of formulation A. This has
been illustrated by the example in the last section. If the same problem is
solved with formulation B, it can easily be verified that the deformation
of the right part of the bar vanishes for ǫ→ 0, since

ε̇pII = ε̇pII

t − ε̇pII

c
(4.71)
= ε̇0

〈

ǫF/A + KGζ ′′

σD

〉

− ε̇0

〈−ǫF/A + KGζ ′′

σD

〉

ǫ−→
0

0.

(4.74)
Therefore, the instable behavior of formulation A does not appear
when formulation B is applied. The instability does not emerge using
formulation B since the gradient term KGζ ′′ equally enters the flow rules
for tensile and compressive plastic strains. This is conceptually in line
with the fact that the scalar variable ζ contains no information on the
direction of the plastic strain rate, but only on its amount.

Discussion. The instable character of the gradient model vanishes
if formulation B is applied. However, the introduction of separate
flow rules for tensile and compressive plastic strains seems artificial.
Moreover, it can be shown that the dissipation of formulation B and
the rate ζ̇ can take finite values in the case ε̇p = 0. These unphysical
properties of the model occur if the term KGζ ′′ becomes too large.
These disadvantages are interpreted as unavoidable consequences of
the simplicity of the model, incorporated by the gradient of only one
single scalar plastic field variable ζ . It can be argued that more complex
models based on the full dislocation density tensor α do not suffer from
the aforementioned drawbacks (see also the work of Poh et al., 2011).
However, in many applications the aforementioned drawbacks of the
simplified theory play a minor role. As already mentioned, the problems
occur if the term KGζ ′′ becomes large. However, very often this term is
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negative, especially in the region of micro-hard boundaries or interfaces.
In these cases, the aforementioned disadvantages are often negligible.

4.6 Rate-Dependent Gradient Crystal Plasticity

The theory introduced in Sects. 4.3 and 4.4 can be generalized to a crystal
plasticity setting by the introduction of yield criteria for the different slip
systems. These yield criteria are based on the resolved shear stresses

τα = σ · P S
α, with P S

α = sym(dα ⊗ nα). (4.75)

Here, dα and nα denote the slip directions and slip plane normals,
respectively.
For simplicity, dissipative microstresses are neglected

ξd = 0 ⇒ ξ = ξe. (4.76)

The yield criteria are assumed to be given by

fα = τα + ξd − τC
0 , (4.77)

where τC
0 denotes the initial yield stress. This representation is in line

with Eq. (4.36). In order to avoid instable solutions, two yield criteria
are introduced for each crystallographic slip system. These yield criteria
account for the positive and negative slip directions. Here, the following
convention is used for opposed slip directions dα and d′α

dα = −d′α, d′α = dα+N , α = 1, ..., N (4.78)

with N being the number of slip systems. The slip plane normals of
opposed slip directions are equal nα = n′α = nα+N . For example, face
centered cubic (FCC) crystals, which have 12 slip systems, imply 24
directions dα and 24 yield criteria fα.
Since the dissipative stress ξd is defined by

ξd = ξ − ξe (4.17)
= div (ξ)− ∂ζW, (4.79)
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an alternative representation of the yield criteria is given by

fα = τα + div (ξ)− (τC
0 + ξe). (4.80)

Obviously, ξe = ∂ζWh can be interpreted as classical isotropic hardening
stress, and div (ξ) = div (ξe) can be interpreted as an energetic gradient
stress which reduces the inhomogeneity of the plastic deformation. The
flow rule is assumed to be a superposition of the flow rules of the
individual yield criteria (compare Eqns. (4.48) and (4.49))

ε̇p =
∑

α
λ̊α ∂σfα =

∑

α
λ̊αP S

α, (4.81)

ζ̇ =
∑

α
λ̊α ∂ξdfα =

∑

α
λ̊α. (4.82)

This is in line with classical approaches involving several yield crite-
ria (Koiter, 1953). The sums run over α = 1, ..., 2N . The rate-dependency
of the model is defined through the power law creep model

λ̊α = γ̇0

〈

fα

τD

〉p

= γ̇0

〈

τα + div (ξ)− (τC
0 + ξe)

τD

〉p

, (4.83)

which is in line with Eq. (4.52). Clearly, λ̊α ≥ 0.
Let slip parameters be defined by

λα =
∫

λ̊α dt. (4.84)

This definition implies λ̇α = λ̊α.
The effective plastic shear strain of a given slip system is given by

γα = λα − λ′α. (4.85)

Consequently, the plastic strain is given by

εp =
∑

α
γαP S

α =
∑

α
λαP S

α, (4.86)

where the sums run over all slip systems and slip parameters, re-
spectively. In many applications, an equivalent plastic shear strain is
introduced by

γeq =
∑

α

t∫

0

|λ̇α| dt̃ =
∑

α
λα. (4.87)
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Obviously, the plastic variable ζ coincides with the equivalent plastic
strain (compare Eq. (4.82))

γeq = ζ. (4.88)

Hence, the proposed gradient crystal plasticity theory coincides with
the equivalent plastic strain gradient enhanced theory of Wulfinghoff
and Böhlke (2012a), the micromorphic version of which is treated
in Wulfinghoff and Böhlke (2013) and Wulfinghoff et al. (2013a) (see
Chap. 5).
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Chapter 5

Equivalent Plastic Strain Gradient Crystal
Plasticity – Micromorphic Formulation and
Implementation

In Chap. 4, a theoretical basis of phenomenological gradient crystal
plasticity based on a scalar plastic field variable has been outlined. In
the chapter at hand, this framework is discretized by the Finite Element
Method and applied to micro-components. As a consequence, the
presentation focuses on a formulation which is well-suited for numerical
implementations. Therefore, a micromorphic setting is applied (Forest,
2009). In addition, the role of grain boundary models is emphasized.
The content of the chapter has largely been taken from Wulfinghoff and
Böhlke (2013) and Wulfinghoff et al. (2013a).

5.1 Theoretical Framework for Grain Boundary Resistance

5.1.1 Motivation

Many continuum mechanical single crystal models introduce an internal
hardening variable which is often denoted as the equivalent (or accumu-
lated) plastic strain γeq. The equivalent plastic strain serves as a measure
of the total plastic deformation at a material point. Specifically, it takes
large values in plastically strongly deformed regions and small values
in plastically weakly deformed regions.
The close formal relation of the gradient of the equivalent plastic
strain ∇γeq and Nye’s dislocation density tensor (the curl of the plastic
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distorsion) serves as motivation for the interpretation of∇γeq as approx-
imate measure of geometrically necessary dislocations. Therefore, the
gradient extension of the crystal plasticity theory at hand is established
through ∇γeq. The principal difference between both quantities is given
by the fact that the gradient of the equivalent plastic strain ∇γeq is
rather a measure of inhomogeneity than of incompatibility of the plastic
deformation.
As has been outlined in Chap. 4, the main motivation for employ-
ing ∇γeq instead of the dislocation density tensor is given by its com-
putational benefit, which involves the gradient of only one scalar field
variable γeq. In contrast, the computation of the dislocation density
tensor requires the evaluation of the spatial derivatives of all nine
components of the plastic distorsion. As an additional motivation, the
formulation of grain boundary models is expected to be conceptually
more simple if only one scalar variable γeq is involved.
Of course, the theory cannot be expected to include the full richness
of more complex strain gradient plasticity theories. For example, the
shear bands observed in the work of Cordero et al. (2012) are not
expected to be reproducible by the theory at hand since those are a
result of the complex dislocation kinematics incorporated by the full
dislocation density tensor. However, the model accounts for size effects
concerning the material strength which are related to inhomogeneous
plastic deformations of the model at the microscale.
As has been discussed by Wulfinghoff and Böhlke (2012a), in addition
to γeq, a field variable ζ is needed for numerical reasons. It must
be introduced in order to facilitate the aforementioned computational
benefit. Without the introduction of ζ, the numerical implementation
requires the evaluation of the gradients of all plastic slips, i.e., the
computational merit of the approach would be lost (see Wulfinghoff and
Böhlke, 2012a, for details). The equality of γeq and ζ has been established
by the aforementioned authors in a weak sense by means of a Lagrange
multiplier. In Chap. 4, the connection has been realized through the flow
rule. For numerical reasons, this coupling is established in the chapter

128



Equivalent Plastic Strain Gradient Crystal Plasticity

at hand by a penalty method which is in line with the micromorphic
approach of Forest (2009). The gradient extension is then realized
through ζ instead of γeq, which preserves its short-range character.
As a result, the field ζ ≈ γeq can be interpreted as the micromorphic
counterpart of the equivalent plastic strain.
In this chapter, the equivalent plastic strain γeq and its micromorphic
counterpart ζ remain close, since the micromorphic framework is ap-
plied like a penalty method. However, in general, the material parame-
ters could also be chosen such that significant deviations between both
quantities occur (Aslan et al., 2011; Poh et al., 2011). Therefore, the
micromorphic variable ζ should be distinguished clearly from γeq.

5.1.2 Kinematical Assumptions

In the subsequent paragraphs a geometrically linear gradient plasticity
framework is developed. The theory accounts for grain boundary
resistance against plastic flow. A micromorphic theory is formulated,
the kinematical framework of which differs from the one of Chap. 4.
Therefore, the kinematics are shortly outlined. As before, material
position vectors of the body B under consideration are referred to
as x, the displacements of the material points as u(x, t) and the strain
tensor is given by ε = sym(∇u), where ∇u = ∂juiei ⊗ ej in a Cartesian
coordinate system with basis vectors {e1, e2, e3}. The plastic strain reads

εp =
∑

α
λαP S

α, (5.1)

where P S
α = sym(dα ⊗ nα) and α = 1, . . . , N are the slip indices. The

directional dependent plastic slips are denoted by λα, the slip direc-
tions by dα, and the slip plane normals by nα. Each slip system
is defined by its slip plane and opposite slip direction pairs. Fur-
thermore, it is required that the directional dependent plastic slips
increase monotonously, i.e. λ̇α ≥ 0. Consequently, the total plastic slip
of each slip system is given by the difference between its two directional
dependent plastic slips. For a face centered cubic (FCC) crystal this
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The elastic part of the strain tensor ε is defined by εe = ε− εp. In
addition, the equivalent plastic strain is introduced. Here, it takes the
form

γeq(λ̂) =
∑

α

t∫

0

|λ̇α| dt̃ =
∑

α
λα. (5.2)

5.1.3 Principle of Virtual Power and Field Equations

The principle of virtual power follows the same lines as in Sect. 4.3. For
completeness, it is shortly reviewed. Neglecting body forces, the virtual
power of the external forces is assumed to be given by

δPext =
∫

∂Bt

t̄ · δu̇ da +
∫

∂BΞ

Ξ̄ δζ̇ da. (5.3)

The virtual power of the internal forces is assumed to be given by

δPint =
∫

B
δpint dv +

∫

Γ

ΞΓ δζ̇ da, (5.4)

where Γ denotes the union of all grain boundaries. The internal virtual
power density is assumed to be given by

δpint = σ · δε̇ + ξ δζ̇ + ξ · ∇δζ̇. (5.5)

The stresses σ, ξ and ξ are work conjugate to the associated kinematical
quantities, i.e., the associated power density of the internal forces,

pint = σ · ε̇ + ξ ζ̇ + ξ · ∇ζ̇ , (5.6)

may be stored energetically or dissipated at the material point under
consideration. In an analogous manner, the grain boundary microtrac-
tion ΞΓ is conjugate to ζ̇ on Γ. Possible jumps [[ζ]] at the grain boundary
are neglected in order to keep the number of necessary constitutive
equations and new material parameters low.
The field equations as well as the Neumann and the grain boundary
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Linear momentum 0 = div (σ) ∀x ∈ B
Microforce balance ξ = div (ξ) ∀x ∈ B \ Γ

GB microtraction ΞΓ = [[ξ]] · n ∀x ∈ Γ

Neumann BCs σn = t̄ ∀x ∈ ∂Bt, ξ · n = Ξ̄ ∀x ∈ ∂BΞ

Box 1: Field equations, Neumann and grain boundary conditions. The grain boundary
jump is denoted by [[ξ]] = ξ+ − ξ− with the normal n pointing from ’-’ to ’+’.

The following relation is obtained by the choice δu̇ = u̇ and δζ̇ = ζ̇

Pint = Pext, (5.7)

i.e., the power of the internal forces equals the power of the external
forces. However, note that the integral represented by Pext takes into
account the whole boundary ∂B, contrary to δPext (cf. Eq. (5.3)).

5.1.4 Constitutive Assumptions

Stored Energy Density

The stored energy density is assumed to have the following contribu-
tions

W (ε, λ̂, ζ,∇ζ) = We(ε, εp(λ̂)) + Wh(ζ) + Wg(∇ζ) + Wχ(ζ − γeq(λ̂)), (5.8)

with We(ε, εp) = 1/2(ε− εp) · C[ε− εp], where C denotes the elastic
stiffness tensor. Deviations of ζ from γeq are penalized by the en-
ergy Wχ = Hχ(ζ − γeq)2/2 by use of a large penalty factor Hχ. Hardening
mechanisms due to dislocation multiplication and trapping are modeled
through the phenomenological isotropic hardening energy Wh(ζ). The
gradient hardening energy Wg(∇ζ) introduces an internal length scale
into the theory which plays a significant role in the context of size effects
(see Chap. 4). Additionally, an interface energy per unit surface WΓ(ζ) is
introduced on the grain boundaries Γ in order to account for energetical
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grain boundary resistance against plastic flow. Note that the penalty
energy Wχ couples the two field variables γeq and ζ . In this sense, the
model contrasts with the theory outlined in Sect. 4.6. As a consequence,
the dissipation inequality changes, as is shown subsequently.

Dissipation Inequality

In case of a purely mechanical theory thermal effects are neglected and
the total dissipation Dtot is given by

Dtot = Pext −
∫

B
Ẇ dv −

∫

Γ

ẆΓ da ≥ 0. (5.9)

From Pint = Pext (Eq. (5.7)) it follows that

Dtot =
∫

B
D dv +

∫

Γ

DΓ da ≥ 0, (5.10)

where the bulk dissipation is given by (cf. Eqns. (5.6) and (5.8))

D = (σ − ∂εWe) · ε̇− ∂εpWe · ε̇p − ∂γeq
Wχγ̇eq (5.11)

+ (ξ − ∂ζWh − ∂ζWχ) ζ̇ + (ξ − ∂∇ζWg) · ∇ζ̇ ≥ 0. (5.12)

At the grain boundary, the dissipation (per unit area) reads

DΓ = (ΞΓ − ∂ζWΓ) ζ̇ = (ΞΓ − Ξe
Γ) ζ̇ = Ξd

Γ ζ̇ ≥ 0. (5.13)

Here, the energetic and dissipative grain boundary microtractions Ξe
Γ

and Ξd
Γ have been introduced

Ξe
Γ = ∂ζWΓ, Ξd

Γ = ΞΓ − Ξe
Γ. (5.14)

For better readability, the following notation is introduced

β = ∂ζWh, p̌ = −∂ζWχ = ∂γeq
Wχ = Hχ(γeq − ζ). (5.15)

It is assumed, that the stresses σ, ξ and ξ are purely energetic, i.e.

σ = ∂εWe, ξ = ∂ζW = β − p̌, ξ = ∂∇ζWg, (5.16)
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These assumptions lead to the reduced dissipation inequality

D = −∂εpWe · ε̇p − ∂γeq
Wχγ̇eq =

∑

α
(τα − p̌) λ̇α ≥ 0. (5.17)

Here, the relations σ = −∂εpWe and Eqns. (5.1), (5.2) and (5.15) have been
exploited. The resolved shear stresses are defined by τα = σ · P S

α.

Flow Rules

In order to be thermodynamically consistent, the bulk flow rule must
satisfy Eq. (5.17). A possible choice is given by the power law type creep
law

λ̇α = γ̇0

〈

τα − p̌− τC
0

τD

〉p

= γ̇0

〈

τα + div (ξ)− (τC
0 + β)

τD

〉p

. (5.18)

Here, the microforce balance (Box 1) and Eq. (5.16) have been exploited.
The reference shear rate γ̇0, the drag stress τD, the initial yield stress τC

0

and the strain rate sensitivity p are material parameters. Isotropic
hardening is accounted for through the stress β = ∂ζWh. Formally, the
term div (ξ) is related to more complex gradient theories (e.g. Gurtin
et al., 2007), where it has the interpretation of a backstress. However,
the kinematic hardening effects observed in those theories are in general
not expected here. In fact, the term div (ξ) rather leads to a reduction
of inhomogeneity of the plastic deformation, since it is a direct conse-
quence of the introduction of Wg(∇ζ). This implies, in general, the effect
that the smaller the system the stronger is the mechanical response to
inhomogeneous deformations.
The grain boundary dissipation inequality (5.13) motivates the follow-
ing grain boundary yield condition (cf. Box 1 and Eq. (5.14))

fΓ = Ξd
Γ − ΞC

0 = [[ξ]] · n− (ΞC
0 + Ξe

Γ), (5.19)

where ΞC
0 is the dissipative contribution to the yield strength, which

is assumed to be constant. In the case fΓ < 0→ ζ̇ = 0 holds. As-
suming a rate-independent grain boundary model, grain boundary
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yielding occurs if the yield criterion fΓ = 0 and the loading condition
ḟΓ

∣
∣
∣
ζ

> 0→ ζ̇ > 0 is fulfilled. Thus, the Kuhn-Tucker conditions for the
grain boundaries can be expressed by

fΓ ≤ 0, ζ̇ ≥ 0, ζ̇fΓ = 0. (5.20)

Microfree and microhard grain boundaries are represented
by the two limit cases ΞC

0 = 0, WΓ = 0 and, e.g., ΞC
0 →∞,

respectively. The grain boundary dissipation (per unit area)
reads DΓ = ΞC

0 ζ̇ (cf. Eqns. (5.13) and (5.20)). It should be noted
that a rate-dependent grain boundary flow rule is also possible.

5.2 Finite Element Implementation

5.2.1 Linearization of the Variational Form

The finite element implementation of the model involves the compu-
tation of the field variables u and ζ, which are solved for on a global
level by a classical Newton algorithm. This means that each node has
4 degrees of freedom {u, ζ}. The stresses and internal variables are
computed in each global Newton step by a separate integration point
algorithm. The consistent linearization of this local algorithm is required
in order to compute the global stiffness matrix for the aforementioned
Newton scheme. The basis for the global Newton algorithm is the
linearization of the principle of virtual power (Eqns. (5.3) and (5.4)).
Time steps are addressed by subscripts, e.g. “n”, in the following. For
simplicity the subscript “n + 1” is dropped for quantities of a subsequent
time step, i.e. τα = τα,n+1, for example.
The linearization of the terms in δu̇ yields

∫

B
(∂ε σ[∆ε] + ∂ζ σ∆ζ) ·δε̇ dv = −

∫

B
σ ·δε̇ dv +

∫

∂Bt

t̄ ·δu̇ da ∀δu̇. (5.21)
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The partial derivatives denote the algorithmic tangents. Furthermore,
the linearization of the terms in δζ̇ reads

∫

B



δζ̇
(

∂ζ β − ∂ζ p̌
)

∆ζ − δζ̇ ∂ε p̌ ·∆ε +
(

∂∇ζ ξ∇(∆ζ)
)

· ∇(δζ̇)



dv

+
∫

Γact

δζ̇ ∂ζ Ξe
Γ ∆ζ da = −

∫

B





(

β − p̌
)

δζ̇ + ξ · ∇(δζ̇)



dv +
∫

∂BΞ

Ξ̄ δζ̇ da

−
∫

Γ\Γact

(Ξd
Γ + Ξe

Γ) δζ̇ da
︸ ︷︷ ︸

I

−
∫

Γact

(ΞC
0 + Ξe

Γ) δζ̇ da,

(5.22)
where it is exploited that the yield condition fΓ = Ξd

Γ − ΞC
0 = 0 is fulfilled

on Γact = {x ∈ Γ : ζ̇ > 0}. It should also be noted that the integral I is
irrelevant for the computation if δζ̇ is chosen to vanish on Γ\Γact (for the
same reason the linearization of I is neglected).
Equations (5.21) and (5.22) are discretized in space with the Finite
Element Method. The numerical integration of Eqns. (5.21) and (5.22)
requires the computation of the different stresses and tangents by the
integration point routine.

5.2.2 Numerical Time Integration

In the following, the computation of the stresses in Eqns. (5.21) and (5.22)
is shortly summarized. This computation is effectuated by an integra-
tion point subroutine during each Newton iteration. The implicit Euler
scheme is applied to Eq. (5.18)

λα = λα,n + γ̇0∆t

〈

σ · P S
α − p̌− τC

0

τD

〉p

. (5.23)

The first equation of the local Newton scheme reads

rσ = −S[σ] + ε− εp
n −

∑

α
∆tγ̇0

〈

σ ·P S
α − p̌− τC

0

τD

〉p

P S
α = 0, (5.24)

with S = C−1. This equation states ε = εe + εp, since S[σ] = εe and
∑

α ∆tγ̇0

〈

(τα − p̌− τC
0 )/τD

〉p
P S

α = ∆εp.
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The second part of the residual can be deduced from Eq. (5.15)

rp = γeq,n +
∑

α
∆tγ̇0

〈

σ · P S
α − p̌− τC

0

τD

〉p

︸ ︷︷ ︸

∆γeq

−ζ − p̌

Hχ
= 0. (5.25)

Equations (5.24) and (5.25) are solved for σ and p̌ by an enhanced
Newton algorithm (see Sect. 5.4).

5.2.3 Algorithmic Tangent

The application of Newton’s scheme to the global problem requires
the computation of the algorithmic tangent operators which appear
in Eqns. (5.21) and (5.22). This must be effectuated at each integration
point of the mesh in each global Newton iteration. In the following
drσ = 0, and drp = 0 as a consequence of any perturbation in the global
fields u and ζ in order to obtain the algorithmic tangent. The total
differentials of the residuals are then given by

drσ = ∂σrσ[ dσ] + I
s[ dε] + ∂p̌ rσ dp̌ = 0, (5.26)

and
drp = ∂σrp · dσ + ∂p̌ rp dp̌ + ∂ζ rp dζ = 0. (5.27)

This can be rewritten in matrix-vector notation by







−∂σ̂ r̂σ −∂p̌ r̂σ

−∂σ̂ rp −∂p̌ rp








︸ ︷︷ ︸

Â






dσ̂

dp̌




 =






Î 0

0 −1






︸ ︷︷ ︸

B̂






dε̂

dζ




 , (5.28)

and thus 




dσ̂

dp̌




 = Â−1B̂

︸ ︷︷ ︸

D̂






dε̂

dζ




 , (5.29)

where

D̂ =








∂ε̂ σ̂ ∂ζ σ̂

∂ε̂ p̌ ∂ζ p̌








, (5.30)

with D̂ ∈ Sym due to ∂σrσ ∈ Sym and ∂p̌r
σ = −∂σrp.
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5.2.4 Discretization of the Grain Boundaries

Equations (5.21) and (5.22) are discretized by the standard Finite El-
ement Method except for the integral over Γact in Eq. (5.22) which is
approximated by

−
∫

Γact

(ΞC
0 + Ξe

Γ)δζ̇ da ∼= −
∑

i∈Γact

(ΞC
0 + Ξe

Γ)iwiδζ̇i, (5.31)

with the integration points i and the quadrature weights wi. The
integration points are chosen to be coinciding with the nodes of the
Finite Element mesh. This strategy, which is inspired by the work
of Liebe and Steinmann (2001), eases the determination of the plastically
active part Γact of the grain boundaries and is well-established for
linear elements. The discretized counterpart of Γact is given by the
active set A of grain boundary nodes where fΓ = 0 and ∆ζ ≥ 0 (see
Eq. (5.20)). Inactive grain boundary nodes are treated as Dirichlet nodes
with ∆ζ = 0 and δζ̇ = 0. Hence, the explicit computation of the integral

−
∫

Γ\Γact

(Ξd
Γ + Ξe

Γ) δζ̇ da ∼= −
∑

i∈Γ\Γact

(Ξd
Γ + Ξe

Γ)iwiδζ̇i, (5.32)

in Eq. (5.22) is not necessary (and not possible), since the associated lines
and columns are eliminated from the global stiffness matrix and the
residual, respectively. Due to the neglect of Eq. (5.32) during the assem-
bly, the corresponding components of the force residual do not become
zero when convergence is reached but take the values (Ξd

Γ + Ξe
Γ)iwi. This

result is exploited to evaluate the yield criterion fΓ = Ξd
Γ − ΞC

0 at the
inactive nodes and eventually update the active set A.
The full algorithmic determination of A as well as the contribution of
the grain boundary term in Eq. (5.31) to the global stiffness matrix and
force residual are presented in Box 2.
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1. Grain boundary contribution to the residual and the stiffness matrix:
For all grain boundary nodes in active set A:

a) Add −(Ξe
Γ + ΞC

0 )iwi to the right-hand side of the global force residual
(cf. Eqns. (5.22) and (5.31))

b) Add (∂ζζWΓ)iwi to the diagonal of the global stiffness matrix (If WΓ is
assumed to be linear in ζ the stiffness matrix consequently does not
need to be updated)

2. Update of active set A:
If res∗

<tolA (i.e. update A only if close to convergence)

a) For all grain boundary nodes i:
If i ∈ A

If ∆ζi = ζi − ζi,n < 0

• A ← A\{i}
• ζi = ζi,n

Else

If fΓ = Ξd
Γ − ΞC

0 > 0

• A ← A ∪ {i}
b) If active set A has changed:

Recompute the stiffness matrix and the residuals (including step 1)

3. If res<tolforce and A has not changed the time step is considered converged

∗
res is the maximum norm of the force residual

Box 2: Algorithm for determination of plastic activity of grain boundary nodes.
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5.3 Numerical Results

5.3.1 Simulation Setup and Boundary Conditions

In this section at first some general details of the simulations are
presented. Subsequently, the discretization and the model parameters
used are discussed, with emphasis on the influence of the introduced
grain boundary yield criterion. Finally, the numerical results are
compared to experimental results from the literature.
Throughout the simulations, the considered cubic oligocrystals consist
of 2, 8 and 64 grains, respectively, with simplified geometries and
randomly assigned crystal orientations. The length of the cubic
structures is 25 µm each, i.e., for an 8 grain aggregate, e.g., each
grain is represented by a cubic 12.5 x 12.5 x 12.5 µm3 volume. The
oligocrystals are loaded in tension. It should be noted that free lateral
contraction is permitted by the chosen boundary conditions throughout
the simulations in this work. In detail, the boundary conditions for the
displacements in x, y, z-direction, respectively, are depicted in Fig. 5.1.
All initial values are set to zero. This means that the body is completely
undeformed at the beginning of the first time increment. The whole
boundary ∂B is treated as Neumann boundary with Ξ̄ = 0. All
simulations are performed using the in-house Finite Element code
of the Institute of Engineering Mechanics (Chair for Continuum
Mechanics).

5.3.2 Discretization Details

Standard linear hexahedrons are used for all discretizations. The
number of elements is 64000 in all presented simulation results (element
length h = 25µm/40), cf. Fig. 5.2, if not indicated contrarily. At each
node 4 degrees of freedom (DOFs), i.e., three for the displacements u

and one for the field ζ , exist. An adaptive time stepping algorithm is
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A: x prescribed

C: x, z fixed

D: x, y, z fixed

B: x prescribed

L

L

L

x

y

z

Loading direction

Figure 5.1: Tensile test FEM displacement boundary conditions. On plane A the
displacement in x-direction is prescribed to remain zero, and on plane B the loading
is prescribed via the displacement in x-direction. Furthermore, at node C the
displacement is fixed for x- and z-direction as well as for x-, y- and z-direction at node
D, respectively. The length is L = 25µm.

used during the total simulation time of 1 s. The global Newton scheme
is considered to be converged, if the initial residual is reduced by a factor
of 10−8 (i.e. tolforce = 10−8 res0, see Box 2) and if the set of active grain
boundary nodes A is not changed during an iteration. The tolerance for
the active set search is taken as tolA = 10 tolforce (see Box 2). However,
an absolute tolerance of 10−8 (associated to the maximum norm of the
local residual, Eqns. (5.24) and (5.25)) is applied for the integration point
subroutine.
Residuals for two characteristic timesteps are listed in Tab. 5.1. The need
for the active set search on the grain boundaries leads to additional
iterations, mainly in the elastic-plastic transition regime. However,
once all grain boundary nodes are plastically active, these additional
iterations do not further occur.
The convergence of the results is visualized in Fig. 5.3. As a fair
compromise of computational time and accuracy, the mesh with 275684
degrees of freedom is used for all presented simulations.
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Figure 5.2: Discretizations of simplified grain aggregates used for simulating the
mechanical response of annealed copper microwire tensile tests from Yang et al. (2012).
From left to right: Simplified grain aggregate used for microwires annealed at 400◦C,
600◦C, and 900◦C. Grain boundaries are highlighted by dashed lines.

Table 5.1: Residuals for two typical timesteps, one with active set search (in the elastic-
plastic transition regime) and one without active set search (in the plastic regime). The
highlighted residual values indicate iterations after which an update of the active setA
occurs. The data is taken from a simulation of an aggregate of 64 crystals.

∆t
Maximum norm of residual

res0

Iteration 1 2 3 4 5 6 7 8 9

0.01s 5.67e+00 6.70e+00 7.96e-01 9.90e-02 1.75e-02 4.62e-04 5.93e-07 6.69e+00 1.15e+00

1.84e+03 10 11 12 13 14 15 16 17

1.20e-01 3.09e-03 5.11e-06 1.34e+00 1.25e-02 2.99e-06 1.14e-03 2.24e-09

0.32s Iteration 1 2 3 4 5 6 7

5.88e+04 1.52e+01 9.92e+00 2.83e+00 4.92e-01 3.60e-02 1.21e-03 5.29e-06

5.3.3 Model Parameters

For the contributions to the stored energy, cf. Eq. (5.8), a quadratic defect
energy approach

Wg(∇ζ) =
1

2
KG∇ζ · ∇ζ (5.33)

and a Voce hardening relation

Wh(ζ) = (τC
∞ − τC

0 )ζ +
1

Θ0
(τC
∞ − τC

0 )2 exp



− Θ0ζ

τC
∞ − τC

0



 , (5.34)

are considered. A material length scale parameter l is implicitly in-
troduced through KG = l2E (where E denotes Young’s modulus of the
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Figure 5.3: Final average normal stress at the end of the last time increment versus
degrees of freedom for oligocrystals under tensile load with 64, 8 and 2 grains,
respectively, using different discretizations. The diminution of DOFs due to the
Dirichlet boundary conditions is neglected.

macroscopic material). The grain boundary energy WΓ is set to zero.
For simplicity, the grain boundary yield strength ΞC

0 is assumed to be
uniform and constant on the grain boundaries. Since the grain boundary
yield strength does not depend on the crystal orientation in the model at
hand, effects regarding the grain boundary resistance resulting from the
orientations are not considered in the simulations. Consequently, the
grain boundary yield criterion is given by fΓ = [[ξ]] · n− ΞC

0 . It should
be noted, however, that instead of the dissipative treatment, the same
mechanical model behavior can be achieved with the introduction of a
linear grain boundary energy WΓ = ΞC

0 ζ.
Exemplarily, the influence of ΞC

0 and KG (while keeping all other pa-
rameters constant) on the mechanical response of an oligocrystal with 8
grains under tensile load is illustrated in Fig. 5.4.
Upon an increase of ΞC

0 the material responds with an increased yield
strength in the region of well established plastic flow, leading to a
stiffer behavior, cf. Fig. 5.4. As depicted, KG mainly influences the
elastic-plastic transition regime and the overall hardening. Furthermore,
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Figure 5.4: Influence of ΞC
0 and KG, respectively, on the mechanical response of a 25µm

oligocrystal with 8 grains under tensile load.

Table 5.2: Model parameters for simulations of copper oligocrystals, fitted to experi-
mental data of Yang et al. (2012).

C1111 C1122 C1212 Hχ KG p

168 GPa 121 GPa 75 GPa 106 MPa 10−2 N 20

γ̇0 Θ0 ΞC
0 τC

0 τC
∞ τD

10−3 1/s 330 MPa 55 N/m 6 MPa 55 MPa 1 MPa

It should be noted that the depicted simulation results for KG = 10−4 N
can only be regarded as a trend, due to a need of more refined meshes
for this value of KG.
The parameter KG has been varied within six orders of magnitude. This
corresponds to three orders of magnitude of the internal length scale
parameter l =

√

KG/E. Considering this range of change, one might
have expected a stronger effect of the variation of KG on the overall
material behavior. However, it should be noted that the considered
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the used model parameters for the simulations are listed in Tab. 5.2,
except for ΞC
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load case (tension) corresponds to a minimum of plastic heterogeneity.
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The tension and torsion simulations of Wulfinghoff and Böhlke (2012a)
indicate that more heterogeneous deformation modes (like torsion)
imply a stronger effect of KG on the mechanical response, mainly on
the overall hardening (a detailed consideration exceeds the scope of the
work at hand, for details see Wulfinghoff and Böhlke (2012a)). As a
result, the overall tensile response is only weakly affected by KG, but
mainly controlled by the grain boundary yield strength ΞC

0 .
The parameters KG and ΞC

0 control the size dependence of the model.
In order to illustrate this size effect, Fig. 5.5 shows the influence of
the cube length L on the mechanical response. For decreasing size
the model responds with increased strength. Upon letting the gradient
contribution to the stored energy as well as the grain boundary yield
strength vanish, it can be observed that this size effect disappears (see
the lower three coinciding curves).
With the aforementioned interpretations of the material parameters at
hand, the material model can be fitted to experimental tensile test data
based on the following guidelines.

• The size dependence of the overall yield stress is mainly controlled
by the grain boundary yield strength ΞC

0 . Therefore, ΞC
0 must be

fitted to the vertical distances of the stress strain curves associated
to different specimen and/or grain dimensions in the plastic
regime.

• For sufficiently large values of the strain rate sensitivity p, the
material model approximates a rate-independent model. In this
case, a moderate variation of the reference strain rate γ̇0 has no
noticeable effect. Additionally, the offset stress (i.e. the yield
stress of the lower three (coinciding) curves in Fig. 5.5) is mainly
controlled by τC

0 + τD in the rate-independent limit.

• The Voce hardening parameters Θ0 and τC
∞ control the evolution of

the hardening slope.

• As has been discussed, a meaningful fitting of the parameter KG
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Figure 5.5: Influence of the structure size on the mechanical response of an oligocrystal
with 8 grains in the presence and absence of grain boundary and gradient influence
under tensile load.

Figure 5.6: Resulting distributions of the equivalent plastic strain γeq and its micromor-
phic counterpart ζ for a tensile test simulation with 64 grains.

In order to illustrate the influence of the penalty approximation con-
trolled by Hχ, the distributions of ζ and γeq are depicted in Fig. 5.6
for one of the simplified grain aggregate simulations. Although small
local deviations occur for the selected penalty parameter, the overall
field solutions of both quantities are still in reasonable agreement. In
addition, in Tab. 5.3 the influence of the presence of the interface yield
criterion on the computational costs is shown. There is no obvious trend,
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regarding the influence of the grain boundary yield strength ΞC
0 on the

computational time.

Table 5.3: Computational time of a 64-crystal tensile test simulation for different values
of the parameter ΞC

0 , where “0” corresponds to a simulation without grain boundary
resistance. Calculations are performed on Intel Xeon CPU E5540 2.53GHz.

ΞC
0 Number of timesteps Largest timestep Computational time DOFs

0 N/m 12 0.32 s 18042 s 275684
50 N/m 10 0.35 s 17112 s 275684

100 N/m 15 0.16 s 28786 s 275684

5.3.4 Comparison of Simulation Results to Experimental Data

In the following a work by Yang et al. (2012) is considered, focusing
on the size effects of polycrystalline copper microwires under tensile
load. The mechanical response of three microwires annealed at different
temperatures (and thus having substantially different average grain
sizes) is simulated by simplified cubic grain aggregates, cf. Fig. 5.2. The
grain sizes are chosen in a way, such that the average grain size reported
in the experiments is approximately matched in the first two cases, cf.
also Fig. 5.7. Thus, the microstructures are accounted for in a simplified,
yet reasonable way. In the third case, one grain with a length of 20 µm is
chosen for simplicity and thus the grain size is within the tolerance of the
reported average grain size. Consequently, this leads to an additional
smaller grain of 5 µm in the setup.
The mechanical response is fitted (with the described guidelines in the
preceding subsection) to the experimental data of the annealed 25 µm
thick microwires (see Figure 3 (a) in Yang et al. (2012)), and the resulting
simulated stress-strain curves are shown in comparison in Fig. 5.7.
Furthermore, the distributions of the micromorphic approximation of
the equivalent plastic strain at an engineering strain of 0.05 are depicted
for all three cases in Fig. 5.8. The determined plastic model param-
eters for the fitted tensile curves as well as the used elastic material
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da = 11.5± 2.3 (Exp)

2 Grains (Sim)
da = 22± 3 (Exp)

Figure 5.7: Comparison of simulation results of simplified grain aggregates (Sim) and
experimental data (Exp) of copper microwire tensile tests by Yang et al. (2012). From
the experiments of Yang et al. (2012), the average grain size - here denoted by da in µm
- (which was there determined as half of the mean of the longitudinal and transversal
average grain size) is listed above.

parameters for copper are listed in Tab. 5.2. Assuming a macroscopic
Young’s modulus of E = 100 GPa, the internal length scale parameter is
given by l =

√

KG/E ≈ 0.32µm. This value of KG has the same order
of magnitude as in Wulfinghoff and Böhlke (2012a), where no grain
boundary yield condition was accounted for. As has been discussed
in the previous section, the parameter KG can be varied in a wide
range without having a strong effect on the results since a tensile test is
considered. A more rigorous determination of KG requires experimental
data of more heterogeneous deformations.
In addition, in Fig. 5.9, for an 8 grain aggregate the distributions of the
equivalent plastic strain and the gradient hardening stress div (ξ) are
depicted in comparison for the first four time increments. As soon as
the grain boundary yield criterion is fulfilled, the grain boundaries start
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Figure 5.8: Resulting distributions of the micromorphic approximation of the equiva-
lent plastic strain for tensile test simulations of simplified grain aggregates; displace-
ment scaled by factor 3.

yielding. It can be seen in Fig. 5.9 that during each time increment the
amount of plastically activated grain boundary nodes is increased.

5.3.5 Discussion of Results

The stress-strain curves of the simulated grain aggregates are in good
agreement with the experimental data, cf. Fig. 5.7. It is emphasized
that for all three simulations the same set of parameters is used and
consequently the model represents the experimentally observed size
effects qualitatively and quantitatively.
As can be seen here, for the presented set of parameters, there exists a
correlation between the grain boundary area in a unit volume and the
initial yielding resistance of the sample. The more grain boundaries, or
rather the more grain boundary area is present, the higher is the initial
resistance to yielding.
The depicted gradient hardening stress distributions in Fig. 5.9 show an
increase close to the grain boundaries with proceeding plastic deforma-
tion. However, it should be noted that the rate of increase of the gradient
hardening stress div (ξ) is higher in the beginning of the deformation
process than in the end.
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Figure 5.9: Distributions of the micromorphic approximation of the equivalent plastic
strain γeq and the gradient hardening stress div (ξ) for tensile test simulations of a
simplified grain aggregate with 8 grains. Depicted are the distributions at the end
of each of the first four timesteps. The color scale of the upper series is limited in order
to visualize the grain boundary yielding.

5.4 Enhanced Power-Law Subroutine

5.4.1 Convergence Improvement

This section deals with the theory developed in Sects. 5.1 to 5.2 and
focuses on the implementation details of the associated power-law
material subroutine. It is to a large part taken from Wulfinghoff and
Böhlke (2013). For applications of the theory to periodic polycrystals,
see Wulfinghoff et al. (2013b,c).
It turns out that the gradient enhancement supports the improvement of
the convergence properties of the power law subroutine. As a result of
the gradient extension, a reasonable guess of the starting solution for
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the local Newton iteration scheme can be identified. This allows for
significantly larger time steps.
The local material subroutine always converged in the subsequently
illustrated simulations, even in the case of strongly nonlinear material
properties, large time steps and two million degrees of freedom. An
exemplary performance comparison of the material subroutine with
and without improved initial solution guess demonstrates the compu-
tational benefit of the approach.

5.4.2 Improvement of the Starting Solution

The numerical solution of the nonlinear system of equations (5.24)
and (5.25) is challenging in the case of large values of the rate sensitivity
parameter p. The evaluation of the power term is not always possible
since, in practice, the result often exceeds the numerical range of a
standard computer. This problem can occur if the initial guess for the
local Newton scheme is not sufficiently close to the correct solution.
If the time increment ∆t is small, the solution of the last step can be
expected to be a good starting value. However, increasing the time step
rapidly leads to a loss of convergence.
The algorithm can be stabilized by improving the starting solution as
follows: in a first step the flow rule (5.18) is modified in the large stress
range by a linear function (cf. Fig. 5.10). A continuous differentiable
transition between power law and linear approximation is used at the
point indicated by the parameter γ̇L. Thereby, regularized versions of
Eqns. (5.24) and (5.25) are obtained which are less sensitive concerning
the numerical range of the computer. The solution of the regularized
problem can be expected to be an improved starting solution for the
correct (i.e. non-regularized) system of equations (5.24) and (5.25).
The smaller the parameter γ̇L is chosen the smaller is the slope of the
linear approximation and, consequently, the better is the convergence of
the regularized model. In contrast, γ̇L should not be chosen too small
since the regularized model (and improved starting value) is supposed
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λ̇α

τα − pχ

Power law

Linear
approximationγ̇L

τC
0

Figure 5.10: Regularization of the power law for the computation of an improved
starting solution for the Newton scheme.

to be as close as possible to the correct model and the associated solution.
To satisfy both requirements at once the value of γ̇L is estimated by

γ̇L =
kL(|∆ζ|+ ǫ)

∆t
, (5.35)

where kL > 1 is a factor close to 1 and ǫ is a small number. In this
work, the values kL = 2 and ǫ = 10−4 are applied. This choice permits
the solution of the regularized problem to be (in most cases) within the
power law range, since for large values of the penalty parameter Hχ, the
following relation holds

∆λα

∆t
≤ ∆γeq

∆t
≈ ∆ζ

∆t
≤ γ̇L. (5.36)

At the same time, the definition (5.35) of the parameter γ̇L is expected
to be sufficiently small to prevent the algorithm from exceeding the
numerical range of the computer.
The choice of the numerator kL(|∆ζ|+ ǫ) in estimation (5.35), instead
of simply using ∆ζ, is motivated by the fact that the approxima-
tion ∆γeq ≈ ∆ζ in Eq. (5.36) is not exact.
Having obtained the improved starting guess, the correct solution is
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obtained in a subsequent Newton iteration by increasing γ̇L to a very
large value to assure that the solution lies in the power law (not in the
linear) regime. Indeed, the numerical examples discussed in the next
section indicate significantly improved convergence properties.

5.4.3 Numerical Examples

Simulation Set-Up

The performance of the improved power law subroutine is compared to
the standard subroutine in a tensile test simulation. Periodic boundary
conditions are applied, i.e. the displacement field is assumed to be given
by

u = ε̄x + w̃, (5.37)

where ε̄ represents the macroscopic strain and w̃ the displacement
fluctuations. The variable ζ is assumed periodic. Applying a tensile test
with free lateral contractions, the shear strains ε̄ij, i 6= j are set to zero.
The tensile strain ε̄11 = ε(t) is prescribed and ε̄22 as well as ε̄33 represent
additional degrees of freedom.
In order to model the gradient and isotropic hardening contributions,
the quadratic defect energy Wg(∇ζ) = 1/2 KG∇ζ · ∇ζ and the Voce
hardening relation (5.34) are applied. The plastic material parameters
are given by

γ̇0 p τD τC
0 τC

∞ Θ0 KG Hχ iii

10−3s−1 10 1 MPa 70 MPa 200 MPa 1 GPa 0.01N 107MPaiii

Here, τC
∞ is the limit yield stress and Θ0 is an initial hardening mod-

ulus. The elastic constants read C1111 = 168 GPa, C1122 = 121 GPa and
C1212 = 75 GPa, respectively. To prevent the standard material sub-
routine (i.e. the non-improved algorithm) from requiring excessively
small time steps, the rate sensitivity exponent is chosen relatively
small (p = 10). The tolerances of the global Newton scheme and
the material subroutine are given by 10−9 (times the initial euclidean
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residual norm) and 10−10 (absolute), respectively. However, numerical
experiments indicate that much (several orders of magnitude) less de-
manding tolerances already yield satisfactory results which can barely
be distinguished from the presented findings. If no convergence can be
achieved at the global or at the integration point level, the time step is
reduced, otherwise it is increased (by a factor of ∼2).
Two periodic FCC grains (see Fig. 5.11) with random orientations are
discretized by 32× 32× 32 standard linear hexahedrons with ∼130000
degrees of freedom in total. The cube shaped domain has an edge
length of 30 µm. In order to apply a simple geometric multigrid solver,
a penalty approximation of the micro-hard boundary conditions was
implemented, i.e., the boundary condition ζ = 0 is approximated. The
applied strain rate is 0.05 s−1.

Discussion of the Results

The macroscopic tensile stress response is visualized in Fig. 5.12. The
simulation results of the standard and the improved integration point
subroutine match qualitatively and quantitatively, i.e., there is neither
a dependence on the algorithm nor on the time step size observable.
This is underlined by a comparison of the final deformations of both
simulations in Fig. 5.11.

xx

y
y

zz

γeq

0.034

0.017

5.1e-6

Back stress

-34.3

247.9

530.1

Figure 5.11: Comparison of the simulation results of the standard (left) and improved
(center) algorithm. Right: visualization of the back stress −div (ξ).

Fig. 5.12 shows that the standard algorithm requires significantly
smaller time steps than the improved Newton scheme. Especially, the
numerically challenging elasto-plastic transition diminishes the time
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step size of the standard scheme due to loss of convergence of the in-
tegration point Newton procedure. Contrary, no convergence problems
are induced at the transition in case of the improved scheme. In total, the
standard algorithm required 158 time steps, while the improved scheme
always converged leading to a total number of five steps. The conver-
gence properties of the non-improved algorithm can be ameliorated by
decreasing the strain rate sensitivity p, as illustrated in Fig. 5.12 (right).
Consequently, larger deformations (here 5% macroscopic strain) can be
simulated in passable times, even with the standard routine.
Table 5.4 (left) summarizes the convergence of the improved scheme
for p = 10. The convergence of the Newton scheme can be improved
by increasing the accuracy of the linear equation solver (by increasing
the maximum number of V-Cycles). Table 5.4 (right) shows exemplary
convergence rates for this case. However, since the solution of the
individual linear systems is more time consuming, a less accurate
solution of the multigrid solver is accepted leading to an increased
number of global Newton steps.

Figure 5.12: Left: Macroscopic tensile response computed by the standard and the
improved algorithm for p = 10. Right: Amelioration of the convergence properties
of the non-improved algorithm for a decreased strain rate sensitivity p = 5.

In the following, a physical interpretation of the results is summarized.

• The back stress plays an important role close to the grain bound-
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Step 1 Step 2 Step 3 Step 4 Step 5

1.00e+00 1.00e+00 1.00e+00 1.00e+00 1.00e+00
3.95e-03 2.79e-02 1.56e-02 2.76e-02 2.95e-02
1.89e-05 1.01e-02 8.15e-03 1.27e-02 6.75e-03
2.80e-07 2.97e-02 3.08e-03 2.35e-03 1.50e-03
4.18e-09 4.52e-04 2.03e-03 5.53e-04 4.44e-04
6.36e-11 1.84e-04 1.16e-03 1.33e-04 6.92e-05

1.04e-04 3.82e-04 1.14e-05 5.00e-06
4.10e-05 5.20e-05 5.03e-07 2.62e-07
1.44e-05 1.36e-06 9.31e-09 2.09e-09
8.16e-06 6.71e-09 8.47e-11 1.72e-11
7.42e-06 6.11e-11
1.72e-07
1.14e-09
1.70e-11

Step 1 · · · Step 5

1.00e+00 1.00e+00
4.33e-07 6.68e-04
2.40e-13 3.86e-05

2.57e-06
3.34e-08
8.98e-12

Table 5.4: Left: Euclidean norm (normalized) of the residual of the improved algorithm.
The values belong to the results in Fig. 5.12. Right: exemplary convergence rates
illustrating that increasing the accuracy of the linear equation solver tends to decrease
the number of necessary Newton steps (Steps 2, 3 and 4 required 14, 10 and 7 Newton
iterations, respectively).

aries (Fig. 5.11), where it significantly reduces the plastic defor-
mation. Physically, this result represents the strong dislocation
interaction forces in dislocation pile-ups. This behavior is typical
of strain gradient plasticity theories.

• The macroscopic stress-strain response (Fig. 5.12) is comparable
to the prediction of other gradient plasticity theories. Especially,
the quadratic defect energy leads to an additional, approximately
linear hardening contribution (for a detailed discussion cf. Wulfin-
ghoff and Böhlke (2012a) and Sect. 1.5.3).

Towards Polycrystal Simulations

In the following, the performance of the improved material subroutine
is tested in the case of a large strain rate sensitivity exponent (p = 200)
as well as an elevated number of grains (with random orientations) and
elements.
Additionally, the ultimate tensile strain is increased to ε̄11(1s) = 0.05.
The edge length of the cube shaped domain is 60 µm. Figs. 5.13 and 5.14
illustrate the results of a periodic micro structure consisting of 27 grains
which are discretized by 80× 80× 80 elements. Consequently, the
total number of degrees of freedom is ∼2 million. Except for these
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Figure 5.13: Deformed periodic micro structure at 5% macroscopic tensile strain.

changes, all model parameters remain unchanged. The total number
of integration points is ∼4 million. The associated material subroutines
converged in all time steps and all iterations.

Figure 5.14: Macroscopic tensile response of the model in Fig. 5.13.

However, the global Newton scheme did not always converge leading to
a reduction of the time step size, especially in the elasto-plastic transition
phase (cf. Fig. 5.14). The simulation was done on a Pentium Dual Core
PC with 3.0GHz and 6 GB RAM. Neither the multigrid solver, nor the
integration point subroutine evaluation was parallelized. The global
and local convergence tolerances of 10−9 and 10−10 (see above) were not
changed. The total simulation time was ∼41 hours.
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Chapter 6

Gradient Plasticity Grain Boundary Models vs. a
Classical Pile-Up Theory

6.1 Introduction

The Hall-Petch effect (Hall, 1951; Petch, 1953) is a central motivation of
gradient plasticity theories. Many frameworks include a plastic grain
boundary energy, see e. g. Fredriksson and Gudmundson (2005), Aifan-
tis and Willis (2005) or Aifantis et al. (2006). Other works using interface
energies in the context of gradient plasticity are by Fredriksson and
Gudmundson (2007) and Voyiadjis and Deliktas (2009). Gurtin (2008b)
suggests a theory that accounts automatically for grain misorientations.
The theory developed by Dahlberg et al. (2013) models interfaces that
slide and separate.
The present chapter aims at an investigation concerning the potential
of certain gradient plasticity interface models to mimic the Hall-Petch
effect. It is found that the macroscopic yield stress and the grain size
of these models are indeed inversely related. However, in general,
the increase of the yield stress of the gradient models does not scale
like 1/

√
D (where D is the mean grain diameter).

The origin of this apparently wrong scaling behavior of the models
is investigated. Therefore, the gradient theories are compared to the
work of Eshelby et al. (1951) (see also Armstrong et al. (1962)). Their
work represents one of the most prominent explanations of the Hall-
Petch effect. In addition, the gradient models and the Eshelby model
account for similar phenomena, like pile-ups and grain boundary yield-
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ing. Therefore, it seems to be worthwile to compare both approaches.
Moreover, the work at hand is driven by the desire to improve the
understanding of gradient plasticity.
The outline of the chapter is as follows. First, the scaling behavior
of certain grain boundary models discussed. Subsequently, the work
of Eshelby et al. (1951) is reviewed. Their work is then compared
to certain grain boundary models in gradient plasticity. In particular,
the grain boundary stresses of both models are compared, since these
govern the grain boundary yielding behavior. The stresses are found to
be related, but in general inconsistent. This leads to different Hall-Petch
exponents, i.e., different scaling laws.
The findings are subsequently applied to a gradient plasticity grain
boundary yield theory, which is close to the model formulated in
Chap. 5. Three dimensional polycrystal simulations with several hun-
dred grains illustrate and confirm the theoretical results.

6.2 Size Effects provoked by Energetical and Dissipative Grain
Boundary Models within Gradient Plasticity

The size effects due to energetical and dissipative grain boundary mod-
els in gradient plasticity are investigated in the following. Energetical
grain boundaries are assumed to store energy as a result of plastic
deformations at the grain boundary. In contrast, the power generated
at dissipative grain boundaries is not stored. The grain size dependence
of the macroscopic yield stress σY of the gradient models is of particular
interest.
For real materials, this dependence is well approximated for many
metals by the Hall-Petch relation (Hall, 1951; Petch, 1953)

σY = σY0 +
kHP√

D
, (6.1)

where σY0 denotes the yield stress of a very coarse-grained polycrys-
tal, kHP is the Hall-Petch slope and D is the average grain diameter.
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The Hall-Petch relation is the most common relation describing grain
boundary strengthening. However, it should be mentioned, that doubts
concerning its generality exist, in particular with respect to the exponent
of −0.5 (e.g. Dunstan and Bushby, 2014).

6.2.1 Energetical Interfaces

Despite the formal simplicity of the Hall-Petch relation (6.1), the formu-
lation of associated gradient plasticity models turns out to be non-trivial.
Interface energy terms have been introduced into the theory to model
the grain boundary (GB) resistance, e.g., in Chaps. 4 and 5. In the
following, it is investigated if such energies are consistent with the
Hall-Petch relation (6.1).
A continuum model formulation on the microscale is considered, i.e.,
individual grains or phases, but no discrete dislocations are resolved.
The GB energy density is assumed to be a convex function of some
plastic strain variable εp

WΓ = WΓ(εp), WΓ,tot =
∫

Γ
WΓ da. (6.2)

For simplicity, εp is assumed to be a scalar variable (this might be the
equivalent plastic strain, for example, see Chaps. 4 and 5). However, the
considerations are expected to be formally similar for tensorial variables.
The set Γ denotes the union of all grain boundaries. The rate of WΓ reads

ẆΓ = Ξe
Γ ε̇p, (6.3)

where Ξe
Γ = ∂εpWΓ is an energetic force.

The introduction of WΓ changes the macroscopic/overall response of the
polycrystal model. In the region of well-established flow, it is expected
to increase the macroscopic yield stress. The following scaling behavior
is estimated (see App. C.1)

∆σ̄ ∼ 1

D
. (6.4)
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This result contrasts with the Hall-Petch relation (6.1), where the scaling
behavior is 1/

√
D. Note that the form of WΓ (for example homogeneous

of degree one or quadratic in εp) does not influence the result (6.4).

6.2.2 Dissipative Interfaces

Dissipative interfaces are treated in analogy with energetic interfaces.
The dissipation per unit grain boundary area is assumed to be given by

DΓ = Ξd
Γ ε̇p. (6.5)

Here, Ξd
Γ is a dissipative force.

In App. C.2, it is assumed that Ξd
Γ is constant in the region of well-

established plastic flow. In this case, the resulting scaling behavior is
approximately given by (App. C.2)

∆σ̄ ∼ 1

D
. (6.6)

Again, the result contrasts with the Hall-Petch relation (6.1).
As a summary, neither the energetical grain boundaries nor the pro-
posed dissipative model lead to the scaling behavior 1/

√
D. The work

at hand tries to investigate why these models exhibit a different scaling
behavior.

6.3 Review of the Hall-Petch Model of Eshelby et al. (1951)

If a polycrystal is loaded by external forces, the body initially deforms
mainly elastically. When the internal stresses become sufficiently large,
a significant number of dislocations starts to move inside of the crystals.
It might be assumed that initially, most grain boundaries represent hard
obstacles for dislocations. This is usually mainly due to the lattice misfit.
When the external loading is increased, the dislocation driving forces
become larger. At some point, dislocations are assumed to enter, leave
and interact with the grain boundary. Subsequently, this process is
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called grain boundary yielding. In the following, an associated yield
criterion will be formulated. Therefore, an arbitrary grain is considered
and modeled as a sphere with diameter d. It is assumed that a slip band
is formed in the center of the grain during the initial loading period. For
simplicity, one slip system is considered. The area of the circular slip
band is given by A = πd2/4.
The dislocations in the slip band are assumed to build pile-ups at
the grain boundary. This kind of dislocation configuration induces
stress concentrations in the vicinity of the grain boundary. According
to Eshelby et al. (1951), these stresses are comparable to the stress field of
a crack tip. Nearby dislocation sources experience this increased stress
intensity. Such a nearby source in the adjacent grain is considered. If
it is appropriately oriented, it can be activated. This means, it emits
dislocations and thereby extends the slip band into the next grain.
This propagation of the slip band from grain to grain is considered as
the starting point of increased plastic deformation (see, e.g., Armstrong
et al. (1962)). It is further assumed that, on the macro scale, this
propagation mechanism causes the elasto-plastic transition in the stress-
strain diagram.
In the following, the initial activation of the aforementioned source is
considered. The source is idealized as a point. It is assumed to be
activated if the absolute value of the resolved shear stress τs at the source
reaches a critical value τC

s . Therefore, the elastic range of the source is
given by

τs ≤ τC
s . (6.7)

The grain boundary yield point is reached when the source starts to emit
dislocations. At that point, τs reaches the critical value τC

s and the plastic
deformation is transmitted through the grain boundary. Therefore, the
grain boundary yield criterion can be formulated as

f ∗Γ =
1

4k1
(|τs| − τC

s ) ≤ 0. (6.8)
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The constant factor 1/(4k1) will be explained subsequently. Eshelby et al.
(1951) found a relation close to the following one

|τs| = k1|τ̄eff|
√

d. (6.9)

Here, k1 is a constant of proportionality, which depends on the distance
of the source from the end of the pile-up. The average effective resolved
shear stress τ̄eff in the slip band is given by

τ̄eff =
1

A

∫

A

(τ − τd) da. (6.10)

Here, τd models dissipative friction-like effects and τ denotes the re-
solved shear stress (the projection of the Cauchy stress onto the slip
system). Note that the work of Eshelby et al. (1951) is not based
on the average effective shear stress τ̄eff . Instead, the more simple
(one-dimensional) setting of a homogeneous stress is assumed (which,
however, coincides with the average stress in that case).
For simplicity, friction-like effects are neglected in the following

τd = 0⇒ τ̄eff = τ̄ =
1

A

∫

A

τ da. (6.11)

In this case, the combination of Eqns. (6.7) and (6.9) gives the following
grain boundary yield condition

|τ̄ | = |τs|
k1

√
d
≤ τC

s

k1

√
d

. (6.12)

If it is assumed that τ̄ is proportional to the externally applied load,
Eq. (6.12) directly yields the Hall-Petch relation. Note that Eq. (6.12)
has been derived for a central slip band. It can be argued that a similar
result also holds for non-central slip bands. In this case, k1 would take a
different value.
In the following, the aforementioned model will be referred to as
Eshelby model, since it is closely related to the work of Eshelby et al.
(1951).
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6.4 Comparison of the Eshelby Model with Gradient Plasticity
Grain Boundary Models

As pointed out in Sect. 6.2, the considered gradient plasticity interface
models are expected to imply the scaling behavior ∆σ̄ ∼ 1/D (Eqns. (6.4)
and (6.6)). In contrast, the Eshelby model implies ∆σ̄ ∼ 1/

√
D. In order

to compare the gradient models with the Eshelby model, the former are
reviewed in the following.

6.4.1 Review of Grain Boundary Stresses in Gradient Plasticity

In many gradient plasticity theories, the number of balance equations is
extended. Typically, micro force balance equations arise in addition to
the linear momentum balance. Here, it is assumed that this additional
balance equation is given by (see, e.g., Gurtin et al. (2007) and Sect. 1.5,
Eq. (1.27))

τ + div
(

ξ̃
)

− τd = 0, (6.13)

where ξ̃ is a so-called microstress. Here, this quantity is assumed to
depend on the gradient of the plastic shear strain∇γ projected onto the
slip plane. Some quantities are marked by (•̃) in order to distinguish
them from similar quantities introduced in subsequent sections.
In this section, the out-of-(slip-)plane component of ξ̃ is assumed to
vanish (like in most approaches). The presence of microstresses implies
the existence of microtractions

Ξ̃ = ξ̃ · n (6.14)

playing an important role at boundaries. Here, n denotes the outer
surface normal.
The solution of strain gradient plasticity problems of the aforementioned
type necessitates the definition of boundary conditions. Very often, γ

is simply set to zero in order to model boundaries impenetrable for
dislocations. In this case, a steady increase of |Ξ̃| at the GB with ongoing
deformation can often be observed, especially if the strain gradients
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at the grain boundary take large values. Physically, the increased
strain gradients normally represent dislocation pile-ups. The general-
ized force |Ξ̃| = |ξ̃ · n| is the larger the more dense the dislocations at
the grain boundary, since ξ̃ = ξ̃(∇γ) usually increases with increasing
gradients.
As a consequence, it seems to be natural to assume that a critical value
of |Ξ̃| leads to grain boundary yielding, i.e. |Ξ̃| is interpreted as grain
boundary load (see also the discussion in Sect. 3.6.2).
It should be noted that, in general, microtractions Ξ̃ of both grains and
all slip systems must be considered. However, this is not necessary if it
is assumed that the slip system in the considered grain is the only active
one, yet.
A more formal interpretation of |Ξ̃| as grain boundary loading may be
based on the requirement of positive dissipation, i.e., a grain bound-
ary yield criterion with |Ξ̃| as grain boundary loading is expected to
yield a thermodynamically consistent theory. This means that the
microtraction |Ξ̃| represents the driving force of plastic grain boundary
deformation processes. Plastic deformations are assumed to occur when
the associated driving forces reach a critical value. In order to further
clarify this argumentation, it will be applied to a specific gradient model
in Sect. 6.5.

6.4.2 Comparison with the Eshelby Model

In the following, a comparison of the gradient and the Eshelby model
is proposed. In particular, the grain boundary loading stresses of both
theories (|τs| and |Ξ̃|) are compared. This can be achieved based on the
observation that the average effective stress τ̄eff can be expressed in terms
of the microtractions. From Eqns. (6.10) and (6.13) it follows that

τ̄eff =
1

A

∫

A

(τ − τd) da
(6.13)
= − 1

A

∫

A

div
(

ξ̃
)

da. (6.15)
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Since the component of ξ̃ which is normal to the glide plane is assumed
to vanish, Gauss’ theorem can be applied

τ̄eff = − 1

A

∫

∂A

ξ̃ · n ds = − 1

A

∫

∂A

Ξ̃ ds. (6.16)

For the special case of constant microtractions at the grain boundary, it
follows that

τ̄eff =
−πd Ξ̃

π(d/2)2
= −4 Ξ̃

d
, (6.17)

since the grain is assumed spherical.
In order to compare the grain boundary loading stresses of both models,
Eqns. (6.8), (6.9) and (6.17) are combined, yielding the following result

f ∗Γ =
1

4k1
(|τs| − τC

s ) ≤ 0, |τs| =
4k1√

d
|Ξ̃|. (6.18)

Eq. (6.18) is the central result of this chapter. It is interpreted as
follows: the quantity |τs| describes the stresses at dislocation sources
in the vicinity of the grain boundary (in the Eshelby model). These
stresses represent the grain boundary loading, since the sources emit
dislocations at the point where |τs| reaches a critical value τC

s . This point
is considered as the grain boundary yield point. Mathematically, it is
described by the yield condition f ∗Γ.
Equation (6.18)2 relates the grain boundary loading |τs| of the Eshelby
model with the grain boundary loading |Ξ̃| of the gradient theory.
These two GB stress quantities are found to be proportional (in the
simple setting considered). Therefore, the interpretation of |Ξ̃| as a
grain boundary load is closely connected to the respective interpretation
of |τs|. In particular, a gradient plasticity simulation of a given system
might allow to roughly estimate the stresses |τs| of a respective system
in the spirit of Eshelby et al. (1951).
However, according to Eq. (6.18), |τs| is not only proportional to |Ξ̃|
but also to 1/

√
d. This result suggests that the grain boundary loading

terms (|τs| on the one hand and |Ξ̃| on the other) of the two theories
are not fully compatible. The microtractions |Ξ̃| cannot be considered
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as a universal measure of the source stresses |τs|, since the term
√

d

has to be considered, too. If this term is not accounted for, the scaling
behavior of the gradient model will be, in general, different from the
scaling behavior 1/

√
d of the Eshelby model (as outlined in Sect. 6.2).

Of course, the explicit consideration of a characteristic microstructural
length like the grain diameter is not desirable if a gradient plasticity
theory is applied.
As a result, a gradient plasticity simulation of a specific microstructure
might be used to roughly estimate the GB loading |τs| of an associated
Eshelby model. This can be done by evaluating the computed GB
microtractions |Ξ̃| in combination with Eq. (6.18)2. However, the same
values of |Ξ̃| lead to different values of |τs| if the size of microstructure is
changed.

6.5 A Simple Gradient Theory

This section aims at a modification of the micromorphic grain boundary
yield theory presented in Chap. 5 in order to numerically verify the
theoretical investigations of the preceding sections. To this end, the
grain boundary yield condition is modified according to Eq. (6.18).
The grain boundary energy density WΓ is chosen to vanish, i.e., the
grain boundary yield strength is assumed to remain constant during
the deformation process. The omission of an interface energy renders
the microtraction ΞΓ = [[ξ]] · n (Sect. 5.1.3, Box 1) purely dissipative , i.e.,
from Eq. (5.13) it follows that

DΓ = ΞΓ ζ̇ ≥ 0. (6.19)

In Chap. 5, the following grain boundary yield condition has been
applied (Eq. (5.19))

fΓ = ΞΓ − ΞC
0 , (6.20)

where ΞC
0 represents the grain boundary yield strength. The necessary

condition for grain boundary yielding reads fΓ = 0. In this case, the

166



Gradient Plasticity vs. a Classical Pile-Up Theory

grain boundary loading ΞΓ reaches the critical value ΞC
0 . Then, plastic

grain boundary activity can occur, i.e. ζ̇ > 0.
The criterion (6.20) may be applied to a periodic multi-grain microstruc-
ture with average grain diameter D. In this case, a Hall-Petch exponent
of −1 is expected to describe the scaling behavior of the overall material
response (see Eq. (6.6)).
However, in the following a different GB yield criterion than (6.20) will
be applied. This is done to verify the theoretical comparison of the
Eshelby and gradient models carried out in Sect. 6.4. If the theoretical
investigations are correct, the Eshelby GB loading |τs| may be roughly
estimated by

|τs| =
4k1√

D
ΞΓ, (6.21)

compare Eq. (6.18). Here, k1 has a slightly different interpretation.
It might also depend on the grain misorientation. However, this
dependence is neglected in the following.
As already mentioned, relation (6.21) can be verified by applying
the yield condition of the Eshelby model to the discretized gradient
plasticity model. This means that, instead of the yield condition (6.20),
the condition

f ∗Γ =
1

4k1
(|τs| − τC

s ) ≤ 0 (6.22)

will be used for the subsequent gradient plasticity simulation. The value
of |τs| is estimated based on Eq. (6.21). As a consequence, the scaling
behavior of the gradient model is expected to be consistent with the
Eshelby model.

Remark: A major motivation of the introduction of gradient theories is
the desire to model size effects. Clearly, it is not desirable to formulate
constitutive equations which depend on the characteristic system length
scale. Instead, all parameters entering the constitutive equations should
be constant material parameters. Eqns. (6.21) and (6.22) do not meet this
requirement since the grain size explicitly enters Eq. (6.21). Therefore,
it is emphasized that this model is subsequently applied exclusively to
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verify the theoretical comparison of the Eshelby and the gradient model,
as outlined in Sect. 6.4.2 (in particular Eq. (6.18)).

6.6 Numerical Simulations

6.6.1 Simulation Set-Up

The numerical implementation of the theory is based on a micromorphic
approximation which is documented in detail in Sect. 5.2. For the
isotropic hardening, the Voce hardening relation (5.34) is applied. The
elastic energy is taken as We = εe · C[εe]/2 and the defect energy Wg is
represented by the quadratic approach

Wg(∇ζ) =
1

2
KG∇ζ · ∇ζ. (6.23)

Finally, the bulk flow rule (5.18) as well as the grain boundary yield
condition, given by Eqns. (6.21) and (6.22), are applied. Table 6.1
summarizes the material parameters. An interpretation of the material
parameters can be found in App. C.3.

Table 6.1: Model parameters

C1111 C1122 C1212 KG p kC = τC
s /(4k1)

168 GPa 121 GPa 75 GPa 0.01 N 200 13.05 MPaµm−1/2

γ̇0 Θ0 τC
0 τC

∞ τD

10−3 1/s 160 MPa 5 MPa 100 MPa 5 MPa

A full periodic Voronoi microstructure consisting of 422 grains models
the polycrystal. The RVE is loaded in tension in x1-direction with peri-
odic boundary conditions and free lateral contractions. This means that
the volume averages of the lateral normal stresses σ̄22 and σ̄33 vanish.
The FEM-mesh is based on linear hexahedrons and has ∼1 million
degrees of freedom. The first solution time steps are depicted in Fig. 6.1.
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Plastically inactive GBs

GBs partially active GBs fully active

Figure 6.1: Tensile test simulation of a periodic Voronoi RVE with 422 grains. The
figures illustrate the micromorphic counterpart ζ ≈ γeq of the equivalent plastic strain
and the stress−div (ξ). In addition, the transition from plastically inactive to plastically
active grain boundaries is shown.

6.6.2 Interpretation

The simulation results clearly illustrate that the onset of the plastic defor-
mation is located inside of the grains, while the grain boundaries remain
plastically inactive during the initial phase. The plastic grain boundary
deformation is delayed since the grain boundary yield condition f ∗Γ = 0

is not instantly satisfied.
When the grain boundary jumps of ∇ζ and the associated mi-
crostresses ξ = KG∇ζ become sufficiently large, the grain boundary
stress |τs| = 4k1 ΞΓ/

√
D = 4k1 [[ξ]] · n/

√
D reaches the critical value τC

s

and the grain boundary yields. This effect models dislocation pile-ups
which build up at the grain boundaries (see Fig. 6.1).
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Figure 6.2: Simulated macroscopic stress-strain diagrams. The simulated 0.2% offset
yield stresses are indicated by black filled circles. The right figure compares the
simulation results to the Hall-Petch relation, Eq. (6.1).

Once, the grain boundary break through is reached (i.e. the grain
boundary yields) the growth rate of the gradient stress div (ξ) = KG∆ζ

reduces significantly. A possible interpretation of this result is related
to the dislocation pile-up density roughly remaining constant after the
onset of grain boundary yielding.
The simulation has been carried out for different cube sizes but geo-
metrically similar microstructures. The stress strain curves (Fig. 6.2,
left) show the typical Hall-Petch behavior, i.e., the macroscopic yield
stress σY depends on the average grain size D, while the macroscopic
hardening slope barely shows any size dependence.
Figure 6.2 (right) illustrates a comparison of the simulated 0.2% offset
yield stress and the Hall-Petch relation (6.1)

σY = σY0 +
kHP√

D
. (6.24)

For large grain sizes, the extrapolated yield stress comes out to
be σY0 ≈ 30 MPa which matches the theoretical prediction based on the
Taylor factor (see App. C.3, Eq. (C.18))

MT(τC
0 + τD) = 30.6 MPa. (6.25)
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The simulated Hall-Petch slope reads kHP ≈ 122 MPaµm−1/2, which is
also close to the prediction proposed in App. C.3, Eq. (C.22)

kHP ≈ 3kε
τC

s

4k1
= 117.45 MPaµm−1/2. (6.26)

The good match of the simulation results with the Hall-Petch
line (Fig. 6.2) confirms the theoretical comparison of the Eshelby model
and gradient plasticity models outlined in Sect. 6.4. It is emphasized
again, that the good match is a result of the rescaling of the gradient
plasticity grain boundary loading (i.e. the division of ΞΓ by

√
D,

Eq. (6.21)). The gradient theory is unable to match the Hall-Petch
exponent of 0.5 without this rescaling.
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Chapter 7

Revision of a Continuum Dislocation Dynamics
Theory at Small Strains

The principal motivation of this chapter is the revision of a dislocation
continuum theory, which can extend the gradient plasticity framework
developed in Chaps. 4 and 5. This extension allows for a significantly
more detailed kinematical description of the dislocation microstructure
in the single crystal model as well as the formulation of associated
hardening models.
The theory is a higher-dimensional kinematical dislocation framework,
developed by Hochrainer (2006), and can be represented by two par-
tial differential equations. These two equations govern the evolution
of the two field variables of the theory, given by the space-, time-
and orientation-dependent dislocation density and curvature. The
theory can be applied to systems of three-dimensional, continuously
distributed, plane and curved dislocations. The evolution equations
were derived by Hochrainer from the evolution equation of a higher-
dimensional dislocation-density tensor – a generalization of Nye’s ten-
sor.
Aiming at contributing physical interpretations of the theory, the work
at hand suggests how each of the terms of the evolution equations of
Hochrainer (2006) can be motivated individually from the kinematics
of individual dislocations. In addition, a simplified version of the
higher-dimensional theory (Hochrainer et al., 2010) is discussed, which
is numerically more attractive.
In Chap. 8, the simplified theory outlined in this chapter is coupled to



Continuum Dislocation Dynamics

the gradient plasticity theory of Chap. 5, yielding a dislocation based
crystal plasticity theory. The resulting model contains a considerable
amount of information on the dislocation microstructure. At the same
time, it remains (at least in certain cases) computationally manageable.

7.1 Introduction

Hochrainer (2006) generalized Nye’s dislocation density tensor to a
kinematical framework for a higher-dimensional description of con-
tinuously distributed, curved dislocations. Hochrainer’s dislocation
kinematics can be regarded as the basis for a Continuum Dislocation
Dynamics Theory (CDD). The introduction of the dislocation orientation
as additional dimension allows the definition of a higher-dimensional
dislocation density tensor which contains more detailed information
on the dislocation microstructure than Nye’s dislocation density tensor.
Amongst other aspects, it allows for the computation of the geometri-
cally necessary dislocation density and the total dislocation density.
Hochrainer and Zaiser (2005) showed that for plane dislocations, the
tensor is completely described by two scalar higher-dimensional fields,
namely the orientation-dependent dislocation density and the average
curvature. Moreover, they generalized the evolution equation of Nye’s
tensor for a given dislocation velocity to the higher-dimensional coun-
terpart and thus derived the evolution equations of the aforementioned
dislocation density and curvature. The equations were numerically
solved and constitutively coupled with the stress field of a bending
specimen by Sandfeld et al. (2010) based on the finite difference method.
Here, the focus lies on the evolution equation of the orientation de-
pendent dislocation density derived by Hochrainer (2006). Aiming
at contributing interpretations of the different terms of the equations,
each of the terms is separately motivated based on the kinematics
of discrete dislocations. Similarities between the transport equation
of continuously distributed mass density (i.e. the continuity equation)
and the spatial dislocation transport term of the dislocation evolution
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equation are discussed (e.g. Hochrainer et al., 2007).



Continuum Dislocation Dynamics

Subsequently, the production of new dislocation line length as a result
of the motion of a single dislocation is illustrated. This process is gen-
eralized in Hochrainer’s concept of continuously distributed orientated
and curved dislocations.
Finally, the work concentrates on the evolution of dislocation segments,
the ends of which are constrained to have constant orientations. All
dislocations except those segments with a particular orientation are
blinded out. This consideration allows to describe how – in the case of
an orientation-dependent dislocation density – the transport from one
orientation to the adjacent orientation can be exploited to reproduce the
associated term of Hochrainer’s theory.

7.2 Kinematics of a Discrete Dislocation

A single slip system is considered. The slip direction and slip plane
normal are given by d = e1 and n = e3, respectively (where {e1, e2, e3} is
a right-handed orthonormal system) and dislocation climb is neglected.
Planar dislocations and small deformations are considered exclusively,
such that several slip systems can be modeled by means of superposi-
tion.
An arbitrary discrete dislocation with index i is represented by a smooth
curve (see Fig. 7.1)

Ci : xi = xi(Si, t), (7.1)

where Si is the arc length in the initial state at t = 0 and si = si(Si, t)

denotes the arc length in the current configuration.
Additionally, the curve can be described in the current configuration by
x̃i(si, t) = xi(Si(si, t), t), given that the inverse Si(si, t) = s−1

i (si, t) exists
and is unique. In the following, the motion of two families of points will
be of special relevance.

• Points xi(Si = Si,0, t) =: yi(t) with a constant arc length Si in the
initial configuration will be called quasi-material points. They
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coincide with actual material points, if the motion of a dislocation
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is mimicked by a material object, for example a rubber band, the
center-line of which is to follow the same motion xi(Si, t) as the
dislocation.

• Points which are constrained to lie on the dislocation, may “slide”
along it and thereby do not represent quasi-material objects. The
direction of the tangents at these points will be restricted to be
constant (see point P in Fig. 7.1). Consequently, they will travel
along the dislocation if it rotates locally.

In the following, the dislocation motion is assumed to be such that the
velocity of the quasi-material points

νi(Si, t) = ∂txi(Si, t) = νieν,i (no summation) (7.2)

is perpendicular to the line direction

el,i(Si, t) =
1

‖∂Si
xi(Si, t)‖∂Si

xi(Si, t). (7.3)

In that case the inverse Si(si, t) is unique, such that el,i = ∂si
xi(si, t).

+

constant tangent

t
t + dt

ν i

vT,i

P

vP,i

el,i

Figure 7.1: Representation of a dislocation by a smooth curve Ci. The point P is sliding
along the dislocation such that the tangent in P is constant. For illustration reasons the
left end is frozen.

The angular velocity is defined by (e.g. Sandfeld et al., 2010)

ϑi(si, t) = −∂si
νi(si, t). (7.4)

The motion of an infinitesimal quasi-material segment, identified by its
initial arc length Si, is described by νi(Si, t) and ϑi(si(Si, t), t), i.e., the
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state of the segment is a point in the Euclidean space extended by the
orientation space. It can be shown (see App. D) that the velocity of a
point P at si in el,i-direction is given by

vT,i(si, t) = −ϑi

ki
el,i, (7.5)

if the point is constrained to lie on the dislocation and the direction of
the tangent at the point is restricted to be constant (see Fig. 7.1). Here
ki = ki(si, t) is the local (signed) curvature.
The total velocity vP,i of the point P is then given by

vP,i(si, t) = ν i(si, t) + vT,i(si, t) = νieν,i −
ϑi

ki
el,i. (7.6)

7.3 Review of the Continuity Equation

The derivation of the evolution equation of the dislocation density will
be based on an analogon. First, the transfer of a model of discrete
particles, for example atoms or molecules, to the continuity equation
of a continuously distributed mass will be reviewed.
Let a given volume of interest Ω contain a large number of particles and
let an arbitrary subvolume ∆Ω ⊂ Ω with |∆Ω| ≪ |Ω| and centroid x.
It is assumed that ∆Ω contains a sufficiently large number of particles
Ñ ≫ 1. If the dimensions of the particles are negligible they can be
treated like point-masses (see Fig. 7.2).
The total particle mass (divided by |∆Ω|) contained in ∆Ω is given by

∆m

|∆Ω| =
1

|∆Ω|
Ñ∑

i=1

mi, (7.7)

where mi is the mass of the i-th particle.
In continuum mechanics the counterpart of the total particle mass
∆m divided by ∆Ω is the mass density ρm(x, t), which represents

177



Continuum Dislocation Dynamics

x

e1

e2

e3

∆Ω

Ω

Figure 7.2: Subvolume ∆Ω containing Ñ ≫ 1 particles

the “continuously distributed mass per unit volume”. The subset of
particles in ∆Ω is associated with a mass flux (the linear momentum
divided by |∆Ω|)

fm =
1

∆Ω

Ñ∑

i=1

mivi, (7.8)

where vi is the spatial velocity of particle i.
The corresponding flux of a continuously distributed mass is ρmv, where
v = v(x, t) is the velocity field. The mass flux through a given area A

with normal ñ is
∫

A ρmv · ñ da.
The balance equation of the mass – the continuity equation – states that
the time derivative of the total mass in an arbitrary fixed volume V is
given by the negative outward mass flux

∂t

∫

V

ρm dv = −
∫

∂V

ρmv · ñ da. (7.9)

Note that, due to the conservation of mass, this equation comprises
neither a production nor a supply term.

7.4 An Orientation-Dependent Dislocation Density

In the following, the modeling process presented for point masses is
adopted for dislocation lines, aiming at an interpretation of the “Con-
tinuum Dislocation Dynamics”-theory of Hochrainer et al. (2007), who
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derived an evolution equation of an orientation-dependent dislocation
density. Interpretations of all terms of the evolution equation are given
by motivating them – one after another – from their respective discrete
counterpart (a finite number of dislocations).
Once more, let the volume Ω (a single crystal) contain a huge number of
dislocations and let the subvolume ∆Ω ⊂ Ω with |∆Ω| ≪ |Ω| contain a
sufficiently large number of dislocations. Here, the special case where all
dislocations stay in their glide planes is considered. All dislocations are
assumed to either represent closed curves or to end at the boundary ∂Ω.
At a given time t and a fixed but arbitrary orientation ϕ ∈ [0, 2π), a set of
points on the dislocation lines is considered, which is characterized by a
common tangent direction el(ϕ) = cos(ϕ)e1 + sin(ϕ)e2 (see Fig. 7.3).

ϕ ϕ
d = e1

e2

n

el(ϕ)

eν(ϕ)∆Ω

Ω

Figure 7.3: Discrete dislocations and tangent points with line orientation el(ϕ). Note
that points of opposite line orientation el(ϕ + π) are not considered.

Let Nϕ be the number of tangent points in ∆Ω 7. The index ϕ indicates
that Nϕ depends on the arbitrarily chosen but fixed orientation ϕ.
The total radius of curvature (divided by |∆Ω|) is introduced by

∆R(ϕ)

|∆Ω| =
1

|∆Ω|
Nϕ
∑

i=1

|Rϕ,i|, (7.10)

where Rϕ,i is the radius of curvature at tangent point i.
Note the formal equivalence of (7.10) and the definition (7.7) of the

7The case of straight lines, where Nϕ →∞ will be treated in the subsequent text.

179



Continuum Dislocation Dynamics

total mass (divided by |∆Ω|), which will be explored in the subse-
quent derivation. This equivalence motivates the introduction of the
orientation-dependent field ρϕ(x, ϕ, t) which represents the “continu-
ously distributed total radius of curvature per unit volume” (akin to the
mass density which represents the “continuously distributed mass per
unit volume”).
To derive the link between the total dislocation density (“the to-
tal dislocation line length per unit volume“) and the density
ρϕ(x, ϕ, t), Mϕ discrete orientations ϕj = j

Mϕ
2π are introduced, where

j = 1, . . . , Mϕ. Equivalently, ϕj+1 = ϕj + ∆ϕ (j = 1, . . . , Mϕ − 1) holds
with ∆ϕ = 2π/Mϕ. Then, in the case of discrete dislocations, for
each orientation ϕj, a set of Nϕj

tangent quasi-material points can be
identified in ∆Ω with radii Rϕj ,i and total radius of curvature ∆R(ϕj).
Moreover, in the case of continuously distributed dislocations, an asso-
ciated orientation-dependent field ρϕ(x, ϕj, t) exists. To each of these
tangent quasi-material points a segment of a circle can be attached. The
radius of the circle is chosen to be equal to the local radius of curvature
and the opening angle is set to ∆ϕ. Additionally, the mid-point of the
segment is chosen to coincide with the quasi-material point, such that
the direction of the circle segment coincides with the direction of the
dislocation at the tangent point (see Fig. 7.4).

ϕ1 = ∆ϕ ϕ1 = ∆ϕ

ϕ2 = 2∆ϕ ϕ2 = 2∆ϕ

ϕ3 = 3∆ϕ
ϕ3 = 3∆ϕ

∆ϕ

∆ϕ

∆ϕ

∆ϕ

∆ϕ

Figure 7.4: Approximation of the dislocations by circle segments of equal open-
ing angle ∆ϕ attached to the tangential quasi-material points with orientations
ϕ1, ϕ2, . . . , ϕMϕ

.
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The union of all these discrete, discontinuous segments is an approxi-
mation of the smooth dislocation lines Ci. For an infinitesimal opening
angle ∆ϕ→ dϕ, i.e., for Mϕ →∞, the approximation converges to the
curves Ci.
The total line length of all segments associated with the orientation ϕj is
given by

∆lϕj
= ∆ϕ

Nϕj
∑

i=1

|Rϕj ,i| = ∆ϕ
1

|∆Ω|

Nϕj
∑

i=1

|Rϕj ,i||∆Ω|, (7.11)

where Nϕj
is the total number of tangent quasi-material points with

orientation ϕj in ∆Ω. In the case of infinitesimal segments, Eq. (7.11)
becomes

dlϕ = dϕ
1

|∆Ω|
Nϕ
∑

i=1

|Rϕ,i||∆Ω|. (7.12)

The associated expression in the case of continuously distributed dislo-
cations is

dlϕ = ρϕ(x, ϕ, t) dϕ dv. (7.13)

This result shows that the field ρϕ(x, ϕ, t) can be interpreted as an
orientation-dependent dislocation line length per unit volume and per
unit angle (see also, e.g., Hochrainer, 2006). Consequently, it is referred
to as dislocation density. The product ρϕ(x, ϕ, t) dϕ represents the in-
finitesimal total line length per unit volume of continuously distributed
dislocation segments with common orientation ϕ and opening angle dϕ.
The total line length of all discrete segments in ∆Ω is the sum of the
contributions of all Mϕ discrete orientations

∆l =
Mϕ
∑

j=1

∆lϕj

(7.11)
=






Mϕ
∑

j=1

1

|∆Ω|

Nϕj
∑

i=1

|Rϕj ,i| ∆ϕ




 |∆Ω|. (7.14)

The expression (7.14) motivates the definition of the total dislocation
density ρ(x, t) in the continuous case (e.g. Hochrainer, 2006)

dl = ρ(x, t) dv =
(∮

ρϕ(x, ϕ, t) dϕ
)

dv. (7.15)
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Note that ρ does not depend on the orientation. It represents the ”total
dislocation line length per unit volume“. This result underlines the in-
terpretation of the field ρϕ(x, ϕ, t) as orientation-dependent ”dislocation
density per unit volume and per unit angle”.
The case of straight dislocations can be handled using delta-
distributions.

7.5 Dislocation Transport

The discrete flux of infinitesimal dislocation segments with orientation
ϕ (divided by |∆Ω|) is defined in analogy to the mass flux (Eq. (7.8))

f(ϕ) dϕ =




1

|∆Ω|
Nϕ
∑

i=1

|Rϕ,i|νϕ,i



 dϕ. (7.16)

In the following, a simplifying assumption is adopted, stating that the
motion of the discrete dislocations is described by a smooth velocity
field ν = ν(x, ϕ, t) = ν(x, ϕ, t)eν(ϕ) (where ν = |ν|) in the sense that
νi(si, t) = ν(xi(si, t), ϕi(si, t), t), where ϕi(si, t) (a smooth function of
(si, t)) is the angle between the line direction el,i(si, t) = el(ϕi(si, t)) and
the slip direction d = e1.
Accordingly, all tangent quasi-material points with common orientation
ϕ in the small volume ∆Ω centered at x share approximately the same
velocity ν(x, ϕ, t) (as ∆Ω is considered to be sufficiently small, the Taylor
series expansion of ν around x can be truncated after the first, constant
term). Consequently, the flux is given by (see Eq. (7.16))

f(ϕ) dϕ ≈ 1

|∆Ω|
Nϕ
∑

i=1

|Rϕ,i|ν(x, ϕ, t) dϕ. (7.17)

This result motivates the definition of the orientation-dependent flux

ρϕ(x, ϕ, t)ν(x, ϕ, t) dϕ (7.18)

of the dislocation density ρϕ(x, ϕ, t) in direction eν(ϕ) in analogy to the
mass density flux ρmv. Eq. (7.18) is the continuous counterpart of (7.17).
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The (infinitesimal) flux of continuously distributed dislocation segments
with infinitesimally small opening angle dϕ and orientation ϕ through
a given area A can then be postulated to be






∫

A

ρϕ(x, ϕ, t)ν(x, ϕ, t) · ñ da




 dϕ. (7.19)

It represents the transport of infinitesimal dislocation line length
through that area in direction eν(ϕ).
Note that these results depend crucially on the arbitrarily chosen and
fixed orientation ϕ and on the assertion that all tangent points share the
same velocity direction eν(ϕ).
Moreover, the introduction of an infinitesimal time increment dt result-
ing in the time point t + dt may show that the tangents at the considered
quasi-material points are no longer parallel, as their angular velocities
are, in general, different.
Hence, at t + dt the tangent points associated to the fixed but arbitrary
orientation ϕ will be given by a different set of quasi-material points
adjacent to the quasi-material points considered at t with different radii
of curvature Rϕ,i.
Accordingly, the rate of change of the infinitesimal small total line length
of the continuously distributed dislocation segments with common
orientation ϕ and opening angle dϕ in an arbitrary fixed volume V is
given by

∂t






∫

V

ρϕ(x, ϕ, t) dv




 dϕ (7.20)

= −





∫

∂V

ρϕ(x, ϕ, t)ν(x, ϕ, t)eν(ϕ) · ñ da




 dϕ +






∫

V

w(x, ϕ, t) dv




 dϕ

The production term w = w(x, ϕ, t) accounts for the fact that at t+ dt the
local radii of curvature have changed with respect to t and is subject of
the subsequent developments.
By virtue of the arbitrariness of V , the local form reads

∂tρϕ = −div (ρϕν) + w, (7.21)
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7.6 Line Length Production

For the derivation of the source term w(x, ϕ, t) the curvature of all
segments in ∆Ω of an arbitrary but fixed orientation ϕ is assumed
positive, for simplicity. The more general case, where different signs
are allowed, will be considered later.
First, the start and end points of an arbitrarily chosen finite
segment L(t) of the dislocation Ci are parameterized by the as-
sociated constant arc lengths Ss

i and Se
i in the initial config-

uration. Then ss
i = si(S

s
i , t) and se

i = si(S
e
i , t) are their analo-

gon in the current configuration, giving rise to the definition
L(t) = {xi(si, t) : si ∈ [ss

i; se
i ], ss

i = si(S
s
i , t); se

i = si(S
e
i , t)}.

The partial derivative of the arc length in the current configuration with
respect to the initial configuration is given by

FS,i(Si, t) = ∂Si
si. (7.22)

Note the formal equivalence to the deformation gradient in continuum
mechanics of deformable solids. The quantity ES,i = FS,i − 1 is inter-
preted as a quasi-material Biot-type strain measure which represents the
relative elongation of a quasi-material segment dSi with quasi-material
end points

ES,i(Si, t) =
dsi − dSi

dSi
. (7.23)

As the total length of the considered segment is given by
|L| = lL =

∫ se
i

ss
i

dsi, its quasi-material time rate of change is defined
by

l̊L =
∂

∂t

Se
i∫

Ss
i

FS,i dSi =

se
i∫

ss
i

(∂tFS,i)F
−1
S,i dsi =

se
i∫

ss
i

ds,i dsi (7.24)

with the inverse F−1
S,i = ∂si

Si of FS,i and the stretch rate
ds,i(si, t) = (∂tFS,i) F−1

S,i .

184



Continuum Dislocation Dynamics

dα

dst
i

dst+∆t
i

Ri(si, t)
t

t + ∆t

Figure 7.5: Incremental motion of a quasi-material segment with infinitesimal opening
angle dα at time t and t + dt.

From Fig. 7.5 the arc length increment of a quasi-material infinitesimal
segment at two subsequent time steps t and t + ∆t with small time
increment ∆t can be approximated

dst+∆t
i − dst

i ≈ (Ri(si, t) + νi(si, t)∆t) dα− Ri(si, t) dα = νi(si, t)∆t dα.

(7.25)
In the limit case ∆t→ dt the relation (7.25) becomes exact and it follows
that

ds,i dt =
dst+ dt

i − dst
i

dsi
⇒ ds,i(si, t) =

νi(si, t)

Ri(si, t)
. (7.26)

7.7 Rotational Density Transport

In the next step, a more complex motion of a finite non-quasi-
material dislocation segment L∆ϕ(t) ⊂ Ci is considered, like
in Fig. 7.1. The end points of the segment are constrained
to have the arbitrary but fixed orientation ϕ̃ (left end in
Fig. 7.1) and ϕ̃ + ∆ϕ (right end), respectively. They define
L∆ϕ(t) = {xi(si, t) : si ∈ [ss

i; se
i ], el,i(s

s
i, t) = el(ϕ̃); el,i(s

e
i , t) = el(ϕ̃ + ∆ϕ)}.

Hence, the ends of the segment can, in general, not be identified by
quasi-material points.
The angle ∆ϕ is required to be sufficiently small, such that the finite

185



Continuum Dislocation Dynamics

segment can be approximated by a segment of a circle and the inverse
si(ϕi, t) of ϕi(si, t) can be defined onL∆ϕ. Locally, the radius of curvature
and angular velocity can be expressed as R̃i(ϕi, t) = Ri(si(ϕi, t), t) and
ϑ̃i(ϕi, t) = ϑi(si(ϕi, t), t), si ∈ [ss

i; se
i ], respectively.

According to Fig. 7.1, the line length of segment L∆ϕ(t) increases
or decreases due to a nonzero angular velocity ϑi(s

s
i, t) and ϑi(s

e
i , t)

at the ends. According to Fig. 7.1 and Eq. (7.5), the associated
line-“production” at ϕ + ∆ϕ during a time interval dt is

vT,i(s
e
i , t) dt = −Ri(s

e
i , t)ϑi(s

e
i , t) dt = −R̃i(ϕ + ∆ϕ, t)ϑ̃i(ϕ + ∆ϕ, t) dt.

The total rate of change of the segment length |L(t)| = l∆ϕ = se
i − ss

i is
given by the sum of the quasi-material time rate of change of l∆ϕ and
the “production”-rates at the ends

dl∆ϕ

dt
= l̊∆ϕ + vT,i(s

e
i , t)− vT,i(s

s
i, t)

(7.24),(7.26)
=

se
i∫

ss
i

νi

Ri
dsi− R̃iϑ̃i

∣
∣
∣
∣
∣
∣
ϕ+∆ϕ

+ R̃iϑ̃i

∣
∣
∣
∣
∣
∣
ϕ

.

(7.27)
For any infinitesimal subsegment of L∆ϕ(t) at si ∈ [ss

i; se
i ] (or

ϕ ∈ [ϕ̃; ϕ̃ + ∆ϕ], respectively) with length dsi = Ri(si, t) dϕ, the
infinitesimal limiting case of Eq. (7.27) reads

dϕ
d

dt
Ri(si, t) = dϕνi(si, t)− ∂ϕ

(

R̃i(ϕ, t)ϑ̃i(ϕ, t)
)

dϕ. (7.28)

To carry this result over to continuously distributed dislocations, the
angular velocity is considered

ϑi(si, t) = ∂si
νi(si, t)

= ∇ν(xi(si, t), ϕi(si, t), t) · ∂si
xi +

(

∂ϕ(ν(xi(si, t), ϕi(si, t), t)
)(

∂si
ϕi

)

= ∇ν(xi, ϕi, t) · el(ϕi) + ki(si, t) ∂ϕν(xi, ϕi, t) (7.29)

≈ ∇ν(x, ϕi, t) · el(ϕi) + ki(si, t) ∂ϕν(x, ϕi, t), (7.30)

where ki is the local radius of curvature.
This result leads to an interesting expression of the line average ϑ̄ϕ of the
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angular velocity of all infinitesimal segments with common orientation
ϕi = ϕ in ∆Ω

ϑ̄ϕ =

∑

i ϑϕ,i dlϕ,i
∑

i dlϕ,i
=

∑

i ϑϕ,iRϕ,i
∑

i Rϕ,i
(7.31)

(7.30)
= el(ϕ) · ∇ν(x, ϕ, t) +

∑

i kϕ,i dlϕ,i
∑

i dlϕ,i
∂ϕν(x, ϕ, t) (7.32)

= el(ϕ) · ∇ν(x, ϕ, t) + k̄ϕ ∂ϕν(x, ϕ, t), (7.33)

with the (orientation dependent) line average of the curvature

k̄ϕ :=

∑

i kϕ,i dlϕ,i
∑

i dlϕ,i
=

∑

i kϕ,iRϕ,i
∑

i Rϕ,i

(kϕ,i=1/Rϕ,i)
=

Nϕ

|∆Ω|
|∆Ω|
∑

i Rϕ,i
= n̄ϕ

|∆Ω|
∑

i Rϕ,i
.

(7.34)
In (7.31) and (7.34), the sums run over all Nϕ segments in ∆Ω. The num-
ber Nϕ of infinitesimal dislocation segments with common orientation ϕ

divided by |∆Ω|

n̄ϕ =
Nϕ

|∆Ω| (7.35)

will play an important role in the subsequent developments. Therefore
its continuously distributed counterpart is introduced. It will be called
distributed segment density n(x, ϕ, t) (“number of infinitesimal segments
with orientation ϕ per unit volume“). The (line-)average curvature
k(x, ϕ, t) in the continuous case can then be defined by (see Eq. 7.34)

k(x, ϕ, t) =
n(x, ϕ, t)

ρϕ(x, ϕ, t)
. (7.36)

Motivated by Eq. (7.31) the line average of the angular velocity is defined
in the continuous case by

ϑ(x, ϕ, t) = el(ϕ) · ∇ν(x, ϕ, t) + k(x, ϕ, t)∂ϕν. (7.37)

Relations equivalent to (7.36) and (7.37) can be found, e.g., in Hochrainer
et al. (2007).
From Eqns. (7.28) and νi(si, t) ≈ ν(x, ϕ, t) (as ∆Ω is small), the rate of
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change of the total line length of all Nϕ segments in ∆Ω follows by
superposition

d

dt




1

|∆Ω|
Nϕ
∑

i=1

Rϕ,i



 dϕ|∆Ω| (7.38)

=
Nϕ

|∆Ω|ν(x, ϕ, t) dϕ|∆Ω| − ∂ϕ















1

|∆Ω|
Nϕ
∑

i=1

Rϕ,i









∑

i ϑϕ,iRϕ,i
∑

i Rϕ,i





︸ ︷︷ ︸

ϑ̄ϕ












dϕ|∆Ω|,

where the segment flux over the boundary ∂∆Ω has been neglected.
An analogue expression in the continuous case is given by

w(x, ϕ, t) dϕ dv =
(

n(x, ϕ, t)ν(x, ϕ, t)− ∂ϕ(ρϕ(x, ϕ, t)ϑ(x, ϕ, t))
)

dϕ dv,

(7.39)
where n, ν, ρϕ, ϑ and, consequently, w are functions of (x, ϕ, t). This
result yields the evolution equation of the dislocation density ρϕ (see
Eq. (7.21))

∂

∂t

∫

V

∫

∆ϕ

ρϕ dϕ dv = −
∫

∆ϕ

∫

∂V

ρϕν · ñ da dϕ +
∫

V






∫

∆ϕ

nν dϕ−
(

ρϕϑ
∣
∣
∣
ϕ+∆ϕ

− ρϕϑ
∣
∣
∣
ϕ

)




 dv,

(7.40)

where the domain of integration V × [ϕ; ϕ + ∆ϕ] is arbitrary.
The local form represents the evolution equation of the dislocation
density

∂tρϕ + div (ρϕν) = −∂ϕ(ρϕϑ) + nν, (7.41)

as can be found in, e.g., Hochrainer (2006). To solve this equation, it has
to be supplemented with initial and boundary conditions. The evolution
equation of n is subject of the subsequent developments.

7.8 Evolution of the Segment Density

The solution of Eq. (7.41) requires the evolution of the segment density
n(x, ϕ, t) which is the continuously distributed number of tangent
points with common orientation ϕ per unit volume. The kinematics
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of the associated tangent points, which are constrained to have con-
stant orientation, has already been analysed. Their motion is exactly
described by the trajectory of point P in Fig. 7.1.
The derivation of the evolution equation of n(x, ϕ, t) can again be
postulated by analogy to the continuity equation of the mass density
ρm(x, t). Therefore, note the formal equivalence of

n̄ϕ =
Nϕ

∆Ω
=

1

∆Ω

Nϕ
∑

i=1

1 (7.42)

and Eq. (7.7). Considering all Nϕ segments in the small volume ∆Ω, the
associated segment flux can be defined analogously (see Eqns. (7.6) and
(7.8))

1

|∆Ω|
∑

i

1 vP,i =
1

|∆Ω|
∑

i

(νϕ,i + vTϕ,i
)

≈ Nϕ

|∆Ω|ν(x, ϕ, t)− 1

|∆Ω|
∑

i

Rϕ,iϑϕ,iel(ϕ)

(7.31)
= n̄ϕν(x, ϕ, t)−

∑

i Rϕ,i

|∆Ω| ϑ̄ϕel(ϕ).

This result allows to define the flux in the case of continuously dis-
tributed dislocations associated to the segment density n(x, ϕ, t) by

nvP = n(x, ϕ, t)ν(x, ϕ, t)− ρϕ(x, ϕ, t)ϑ(x, ϕ, t)el(ϕ) = n

(

ν − ϑ

k
el

)

,

(7.43)
which represents an implicit definition of the average segment velocity

vP = ν + vT = νeν −
ϑ

k
el, (7.44)

such that the segment flux is given by nvP . Note the remarkable
formal equivalence to Eq. (7.6). As neither sources nor dislocation
annihilation are considered, the production of n is zero and it follows
that (Hochrainer, 2006; Hochrainer et al., 2007; Hochrainer, 2013)

∂t

∫

V

n dv = −
∫

∂V

nvP ·da ⇒ ∂tn+div (nvp) = ∂tn+div (nν − ρϕϑel) = 0.

(7.45)
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Eqns. (7.41) and (7.45) have been derived based on the assumption of
strictly positive curvatures. In the more general case, where curvatures
of different signs are allowed, segments with negative curvature can be
accounted for by generalizing n(x, ϕ, t) to a measure of the effective seg-
ment density, considering the continuously distributed generalization
of

N+
ϕ −N−ϕ
∆Ω

, (7.46)

where N+
ϕ and N−ϕ are the numbers of segments of orientation ϕ

in ∆Ω with positive and negative curvatures, respectively. In that
case Eqns. (7.41) and (7.45) still hold. However, the (rather lengthy)
derivation does not furnish new physical insights. The interested reader
is referred to Hochrainer (2006), where the evolution equations of the
density and the curvature are derived based on the higher-dimensional
dislocation-density-tensor.

7.9 An Analytical Solution

To derive an analytical solution, an initial distribution of dislocation
loops of homogeneous radius R0 is considered. Let the distribution be
independent of x1 and increase linearly with respect to x2

n(x, ϕ, 0) = mn0x2 + bn0 + mn0R0 cos(ϕ). (7.47)

The last term accounts for the constraint that dislocations must not end
inside the crystal (see, e.g., Hochrainer, 2006). The evolution is governed
by the dislocation velocity, which is prescribed to be constant ν = ν0.
Hence, all dislocation loops grow linearly in time

Ri = R0 + νt ⇒ k =
1

R0 + νt
. (7.48)

The segments of orientation ϕ move in the direction
eν(ϕ) = sin(ϕ)e1 − cos(ϕ)e2. This motion preserves the independence
of x1 and yields the following solution

n = mn0[x2 + ν0t cos(ϕ)] + bn0 + mn0R0 cos(ϕ). (7.49)

190



Continuum Dislocation Dynamics

ρ

x2

t

Figure 7.6: Qualitative representation of the analytical solution at different times.

The dislocation density is given by

ρϕ =
n

k
= (R0 + ν0t) {mn0[x2 + (R0 + ν0t) cos(ϕ)] + bn0} . (7.50)

These solutions satisfy the evolution equations (7.41) and (7.45).
The total dislocation density is given by

ρ =
∮

ρϕ dϕ = 2π(R0 + ν0t)(mn0x2 + bn0). (7.51)

It is visualized qualitatively in Fig. 7.6.

7.10 Averaged Equations

For practical applications, the solution of Eqns. (7.41) and (7.45) is, in
general, numerically expensive due to the additional dimension ϕ. In
order to eliminate the extra dimension, the system is integrated over
the orientation space (Hochrainer et al., 2010; Hochrainer, 2013) and the
problem is reformulated in terms of the total dislocation density

ρ =
∮

ρϕ dϕ, (7.52)

curvature density
ρk =

∮

ρϕk dϕ =
∮

n dϕ (7.53)

and dislocation density vector κ

κ =
∮

ρϕel dϕ. (7.54)
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The dislocation density vector κ can be expressed in terms of ρ⊢ and ρ⊙
(see Eq. (1.24))

κ =
1

b
(ρ⊢l + ρ⊙d), (7.55)

i.e., it is a GND measure. Here, it has been assumed that the initial
plastic shear γ|t=0 vanishes.
For simplicity, the special case of an isotropic velocity is consid-
ered, i.e., ν = ν(x, t). In this case, the angular velocity is given by
ϑ(x, ϕ, t) = −el(ϕ) · ∇ν(x, t).
The vector valued average dislocation velocity is given by

1

ρ

∮

ρϕν dϕ =
κ⊥ν

ρ
=

(

κ

ρ
ν

)

eκ⊥, (7.56)

with κ = ‖κ‖ and κ⊥ = −∇pγ/b = −(I − n⊗ n)∇γ/b.
Integration of Eqns. (7.41) and (7.45) yields

∂tρ + div
(

κ⊥ν
)

= ρkν,

∂tρk + div
(∮

ρϕkeν dϕν +
∮

ρel ⊗ el dϕ∇ν
)

= 0.

Further simplifying assumptions are required to evaluate the remaining
integrals. The integrals can be simplified, if the curvature k (first
integral) and density ρϕ (second integral), respectively, are assumed
independent of the orientation (Hochrainer et al., 2010)

∂tρ + div
(

κ⊥ν
)

= ρkν, (7.57)

∂tρk + div

(

k̄κ⊥ν +
1

2
ρ∇pν

)

= 0, (7.58)

with k̄ = ρk/ρ and ∇pν = (I − n⊗ n)∇ν. An alternative approach of
the simplification of the two integrals can be found in Hochrainer et al.
(2014).
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Chapter 8

A Simplified Thermodynamic Continuum
Dislocation Dynamics Framework – Theoretical
Aspects and Finite Element Simulation

8.1 Introduction

In order to enhance the gradient plasticity theory developed in Chaps. 4
and 5, the kinematical framework of the model is subsequently ex-
tended. A significantly more detailed description of the dislocation
microstructure is established by introducing two additional field vari-
ables per slip system: the total dislocation density ρ and the average
dislocation curvature k̄, as defined in Chap. 7. These quantities extend
the kinematical setting of Chaps. 4 and 5, which extended a classical
crystal plasticity framework by the gradient of the equivalent plastic
strain.
The evolution of the total dislocation densities and curvatures of the
different slip systems is governed by the partial differential equa-
tions (7.57) and (7.58), which were derived by Hochrainer et al. (2010).
Orowan’s equation (Orowan, 1934) kinematically couples the additional
dislocation fields with the plastic slip rates.
The extended kinematical basis can then be exploited to improve the
constitutive model. In this regard, the principal aim of this chapter
represents the application of a dislocation forest hardening model,
which allows for the determination of the local yield stress as a function
of the dislocation densities.
Although the improvement of the forest hardening model is the major
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aim, additional modifications of the model might be useful. For
example, a more realistic form of the stored energy density function
may be possible by introducing the dislocation densities and curvatures
as additional arguments of the function. Unfortunately, the associated
optimal form of the energy density function is (in general) unknown.
Nevertheless, it is worthwhile to investigate the system equations
associated to such a modification. The introduction of new energy
function arguments implies additional conjugate forces. The latter
are accounted for when the principle of virtual power is evaluated,
yielding an extended set of balance equations. Here, the application
of the principle of virtual power differs slightly from its exploitation in
previous chapters, since the evolution equations (7.57) and (7.58) of the
additional field variables contain transport terms. The transport terms
distinguish the model at hand from many other extended field theories
like, for example, usual gradient extended standard dissipative solids
and other Cosserat-like models.
An exemplary simple energy ansatz is investigated based on the as-
sumption that dislocation interactions can be neglected, i.e., an extra
energy term is introduced which is proportional to the total dislocation
density. This ansatz is chosen for illustration reasons, i.e., its physical
relevance remains to be discussed. Here, it is applied since it implies an
additional backstress term in the flow rule related to the dislocation line
tension and curvature.
Finally, a numerical example illustrates the model behavior in a sin-
gle slip situation, where the curvature dependent backstress term is
neglected. In particular, the transport properties of the model are
highlighted. The content of this chapter has partially been taken
from Wulfinghoff and Böhlke (2012b).
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8.2 Kinematical Framework

8.2.1 Distorsion and Dislocation Measures

In line with the previous chapters, the geometrically linear theory is
applied. Accordingly, the displacement gradient and the strain tensor
are assumed to be decomposed additively into elastic and plastic parts
(Eqns. (1.10) and (1.11))

H = He + Hp, ε = εe + εp. (8.1)

Here, the plastic part of the deformation gradient takes the form

Hp =
N∑

α=1
λαdα ⊗ nα. (8.2)

Moreover, the equivalent plastic strain reads (Eq. (4.87))

γeq =
∑

α

∫

λ̇α dt. (8.3)

The screw- and edge-components of the geometrically necessary dislo-
cations (Eq. (1.24)) are interpreted as the components of the dislocation
density vectors κα (times the absolute values of the corresponding
Burgers vectors, Eq. (7.55))

α = curlT(Hp) =
N∑

α=1
dα ⊗ (ρα

⊢lα + ρα
⊙dα) =

N∑

α=1
bα ⊗ κα, (8.4)

with lα = nα × dα, ρα
⊢ = −dα · ∇γα and ρα

⊙ = lα · ∇γα (Eq. (1.24)).
In addition to the aforementioned GND-measures, the dislocation mi-
crostructure is represented by the total dislocation densities ρα and
average curvatures k̄α of the individual slip systems (see Sect. 7.10).
Here, ρα is interpreted as the "total line length per unit volume".
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8.2.2 Kinematical Equations

The dislocation fields ρα and k̄α evolve according to Eqns. (7.57)
and (7.58) which were derived by Hochrainer et al. (2010)

∂tρα = −div
(

νακ⊥α
)

+ ραkανα, (8.5)

∂tραkα = −div
(

k̄ανακ⊥α
)

− 1

2
div (ρα∇pνα) , (8.6)

with ραkα = ραk̄α and κ⊥α = −(I − nα ⊗ nα)∇γα/bα. As mentioned in
Sect. 7.10, the dislocation velocity να is assumed to be independent of
the dislocation orientation.
Equations (8.5) and (8.6) are purely kinematical evolution equations that
account for curvature-induced dislocation line production and disloca-
tion transport. They require proper initial and boundary conditions. The
production of new lines (for example as a consequence of Frank-Read
sources) is not included.
The dislocation fields ρα and να are kinematically coupled to the plastic
slip rates by Orowan’s equation (1.4)

γ̇α = ραbανα. (8.7)

The weak forms of Eqns. (8.5) and (8.6) are given by
∫

B

(

(∂tρα−ραkανα)wρ,α−να κ⊥α ·∇wρ,α

)

dv +
∫

∂B
wρ,αναn ·κ⊥α da = 0 (8.8)

and
∫

B

(

∂tραkαwρk,α − (να k̄α κ⊥α + (1/2)ρα∇pνα) · ∇wρk,α

)

dv

+
∫

∂B
wρk,α(να k̄α κ⊥α + (1/2)ρα∇pνα) · n da = 0. (8.9)

Here, wρ,α and wρk,α denote arbitrary test functions.

8.3 Principle of Virtual Power

In order to derive field and boundary conditions for a single crystal,
the principle of virtual power (Chap. 4, Eq. (4.14)) is exploited. Based
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on the extended kinematical framework outlined in Sect. 8.2, additional
generalized stresses are introduced conjugate to ζ̇, ∇ζ̇, γ̇α and ρ̇α. It
turns out that an advantageous choice of the independent kinematical
variables is given by the displacement field u, the plastic variable ζ

and the plastic slip parameters λα. Like in Chaps. 4 and 5, two slip
parameters are introduced for each crystallographic slip system. These
account for the positive and negative slip direction, respectively. Let
the slip parameters with indices 1 to N be associated to the positive slip
directions (Eq. (4.78)).
The plastic slips γα are dependent variables and can be obtained from
the differences of the associated slip parameters (Eq. (4.85)). The virtual
quantities are assumed to respect this dependency, i.e. δγ̇α = δλ̇α − δλ̇′α.
In addition, the virtual slip rates are chosen to respect Orowan’s equa-
tion (8.7)

δγ̇α = ραbαδνα, (8.10)

where δνα denote the virtual dislocation velocities. Moreover, the virtual
rates of change of the dislocation densities are given by (see Eq. (8.5))

δρ̇α = −div
(

δνακ⊥α
)

+ ραkαδνα. (8.11)

As already mentioned, the principle of virtual power (4.14) is extended.
The virtual power of internal forces is postulated by

δPint =
∫

B

(

σ · δε̇ + ξ δζ̇ + ξ · ∇δζ̇ +
∑

α
(τ k

αδγ̇α + ηαδρ̇α)

)

dv. (8.12)

Here, τ k
α and ηα are generalized stresses conjugate to γ̇α and ρ̇α.

Virtual power contributions associated to the curvatures k̄α are ne-
glected, for simplicity. Moreover, grain boundary contributions do not
arise since the body under consideration is a single crystal.
In analogy to the virtual power of internal forces, the external part is
extended, too

δPext =
∫

∂Bt

t̄ · δu̇ da +
∫

∂BΞ

Ξ̄ δζ̇ da +
∑

α

∫

∂Btα

t̄α δνα da, (8.13)
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where the generalized tractions t̄α arise in addition to the tractions t̄ and
microtractions Ξ̄. They are assumed to be defined at the boundaries ∂Bt,
∂BΞ and ∂Btα

, respectively. In addition, Dirichlet boundary conditions
are considered at the remaining parts of the boundary. In this work,
exclusively microhard Dirichlet boundary conditions are considered
for the plastic variables λα and ζ. These are regions of the boundary
which are modeled impenetrable for dislocations, i.e., all plastic field
variables are assumed to vanish. This implies equality of the remaining
parts ∂BΞ = ∂Btα

, α = 1, . . . , N .
With the same arguments as in Sect. 4.3 (application of Gauss’ theorem
and the chain rule) as well as Eqns. (8.10) and (8.11), the following field
equations follow from the principle of virtual power δPint = δPext

div (σ) = 0, (8.14)

div (ξ) = ξ, (8.15)
1

ραb2
α

∇ηα · ∇pγα −
k̄αηα

bα
= τ k

α, α = 1, . . . , N. (8.16)

This set of equations represents an extended version of Eqns. (4.16)1

and (4.17)1 derived in Chap. 4.3. In addition, the following boundary
equations arise (compare Eqns. (4.16)2 and (4.17)2)

t̄ = σn on ∂Bt, (8.17)

Ξ̄ = ξ · n on ∂BΞ, (8.18)

t̄α = n · ∇pγα
ηα

bα
on ∂Btα

, α = 1, . . . , N. (8.19)

Eqns. (8.15) and (8.16) are generalized force balance equations, which ex-
tend the linear momentum balance (8.14). They are direct consequences
of the introduction of the generalized forces, which are conjugate to the
additional dislocation field variables.

8.4 Energy Density and Dissipation

In a quite general setting, the stored energy density may be assumed to
be a function of the different state and history variables introduced in
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Sect. 8.2
W = W (ε, εp, ρ̂, k̂, ρ̂⊢, ρ̂⊙, . . . ), (8.20)

where the following arrays have been introduced

ρ̂ = (ρ1, ρ2, . . . , ρN)T, k̂ = (k̄1, k̄2, . . . , k̄N)T (8.21)

and

ρ̂⊢ = (−d1 · ∇γ1,−d2 · ∇γ2, . . . ,−dN · ∇γN)T, (8.22)

ρ̂⊙ = (l1 · ∇γ1, l2 · ∇γ2, . . . , lN · ∇γN)T. (8.23)

In this work, the general approach (8.20) is simplified as follows.

• In order to reduce the computational effort, the arrays of projected
slip gradients ρ̂⊢ and ρ̂⊙ are replaced by the gradient of the plastic
field variable∇ζ.

• In addition, the influence of the curvatures k̂ on the energy density
function is neglected.

As a result, the energy density function can be represented as follows

W = W (ε, εp, ρ̂,∇ζ). (8.24)

For simplicity, it is assumed that the following stresses are energetic

σ = ∂εW, ξ = ∂∇ζW, ηα = ∂ρα
W. (8.25)

It can be shown that in this case, the reduced dissipation inequality reads

D = ξζ̇ +
∑

α
(τα + τ k

α)λ̇α ≥ 0. (8.26)

Here, the same arguments as in Sect. 4.4.1 (Eq. (4.27)) have been applied.
As has been mentioned earlier, each slip system is described by two
slip parameters λα. Note that the associated resolved shear stresses τα

have the same magnitude but different signs. The same holds for the
stresses τ k

α.

Example: The mesoscopic elastic energy is assumed to be given
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by We = εe · C[εe]/2. Any energetic interaction of the different argu-
ments εe, ρ̂ and∇ζ is neglected, i.e.,

W = We(ε, εp) + Wρ(ρ̂) + Wg(∇ζ). (8.27)

This is a strong simplification. Nevertheless, the identification of suit-
able forms of the individual contributions We(ε, εp), Wρ(ρ̂) and Wg(∇ζ)

remains a non-trivial task, which is not within the scope of the work at
hand. Instead, further simplified assumptions are made for Wρ and Wg.
For example, a simple approach may be

Wρ(ρ̂) = cL

∑

α
ρα, Wg(∇ζ) =

1

2
El2∇ζ · ∇ζ, (8.28)

where cL can be interpreted as dislocation self-energy per unit length
and l is an internal length scale parameter.
As a consequence, the dissipation (8.26) takes the form

D = ζ̇ El2∆ζ +
∑

α
(τα ± cLk̄α/bα)λ̇α ≥ 0. (8.29)

Here, Eqns. (8.15) and (8.16) have been exploited. Obviously, the
energy contribution Wρ(ρ̂) (Eq. (8.28)1) implies a line tension induced
backstress which is proportional to the average curvature. The sign of
the backstress depends on whether the associated slip parameter refers
to the positive or negative slip direction (where it has been assumed
that kα+N = kα).

8.5 Yield Criteria and Flow Rule

Motivated by Eq. (8.26), the following yield criteria are proposed

fα = τ eff
α + ξ − τC

α , (8.30)

where τ eff
α = τα + τ k

α is an effective shear stress and τC
α = τC

α (ρ̂) denotes
an offset yield stress due to forest hardening and lattice friction.
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In addition, thermodynamically consistent viscoplastic flow rules are
given by

λ̇α = Λα∂τeff
α

fα = Λα, (8.31)

ζ̇ =
∑

α
Λα∂ξfα =

∑

α
Λα. (8.32)

Here, Λα = Λα(fα) are overstress type functions satisfying

Λα(fα) ≥ 0, (8.33)

Λα(fα) = 0, if fα ≤ 0. (8.34)

Like in Chap. 4 (Eq.(4.88)), the field variable ζ can be identified by the
equivalent plastic strain

ζ = γeq. (8.35)

Example: The previous example (based on Eqns. (8.27) and (8.28)) is
continued. A possible choice of the overstress functions Λα(fα) is the
power law

Λα = ραbαν0

〈

fα

τD

〉p

= ραbαν0

〈

τα ± (cLk̄α/bα) + El2∆γeq − τC
α (ρ̂)

τD

〉p

,

(8.36)
where ν0 is a dislocation reference velocity and the remaining material
parameters have the same interpretation as in the previous chapters. In
Eq. (8.36), Eqns. (8.15), (8.16) and (8.30) have been exploited.
Compared to the flow rule (4.83) of the gradient plasticity model
introduced in Sect. 4.6, the flow rule (8.36) additionally includes a line
tension induced backstress. Moreover, the yield stress τC

α (ρ̂) is modeled
as a function of the dislocation densities. This model replaces the
phenomenological hardening stress βe = ∂ζW of flow rule (4.83).

8.6 Numerical Example

The model is discretized in space by the Finite Element Method. For
simplicity, a single slip situation is considered and the slip system index
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is dropped. Moreover, the elastic properties are assumed isotropic and
described by Young’s modulus E and Poisson’s ratio υ.
The following approaches are applied

Wg(∇γeq) =
1

2
KG∇γeq · ∇γeq, τC = τC

0 + aTGb
√

ρ, (8.37)

where G is the shear modulus, τC
0 denotes the lattice friction stress

and aT is a constant of order unity (see Eq. (1.21)). The gradient modu-
lus KG = El2 implicitly defines an internal length scale parameter l.

Figure 8.1: Simulation set up.

The term Wρ(ρ) = cLρ is not considered for three reasons.

1. The physical relevance of the ansatz Wρ(ρ) = cLρ is not verified.
It has been chosen for illustration reasons. Moreover, it implies a
backstress term (Eq. (8.36)) which is associated to the line tension
and curvature. This is illustrative, but not necessarily physically
correct.

2. The influence of the curvature k̄ is negligible if it is sufficiently
large. It may be assumed that a reasonable value of cL should be
equal to or less than the dislocation self-energy per unit length
of a single dislocation. The latter is given by ∼ 1 nJ/m, i. e., the
value of the backstress cLk̄/b is expected to be less than∼ 0.01MPa

for k̄ = 1µm−1 (which is the order of magnitude observed in the
simulations) and therefore negligible.
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3. Yet, the effects of the curvature-induced backstress on the nu-
merical implementation have not been studied and might be of
complicated type (e. g. softening phenomena, localization).

A linear viscous model is applied, i.e., the rate sensitivity parameter p of
the flow rule (8.36) is set to one. The parameters ν0 and τD are chosen
such that the viscosity-like quantity τD/ν0 is small, i.e., the results are
close to the rate-independent case.
In detail, the material parameters are given by

KG E υ τC
0 aT ν0 τD

0.1 N 70 GPa 0.34 20MPa 0.2 1m/s 1 MPa

Figure 8.2: Evolution of the dislocation density ρ for 30%, 40%, 60% and 100% of the
deformation. One quarter of the body has been removed to show the bulk response.
The deformation of the body is scaled by a factor of 50.

A tensile test of a cube-shaped crystal is simulated. The edge length is
given by L = 10µm. Micro-hard boundary conditions and prescribed
displacements u0 = u0t/Te1 are applied on one face (cf. Fig. 8.1).
The total simulation time and final displacements are given by T = 1 s

and u0 = 0.05µm, respectively. Accordingly, the ultimate average tensile
strain is 0.5%. Furthermore, the displacement boundary conditions
allow for free lateral contractions.
The body is discretized by 20× 20× 20 standard linear hexahedrons.
For simplicity, dislocation boundary flux terms are assumed to
vanish. The slip system is rotated about 45◦ with respect to the tensile
direction (see Fig. 8.1).
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The initial conditions of the dislocation fields are given
by ρ(x, t = 0) = 2µm−2 and ρk(x, t = 0) = 2µm−3. Accordingly, the
initial curvature is k̄(x, t = 0) = 1µm−1. Physically, these initial
conditions correspond to a homogeneous distribution of small loops (cf.
Fig. 8.1).
The problem is solved in 100 equal time steps. In each step, the
following quantities are implicitly solved for

• the displacement increments (as nodal unknowns)

• the increments of the equivalent plastic strain (as nodal unknowns)

• the plastic slip parameter increments (at the integration points)

The dislocation velocities are assumed constant during the individual
time steps. They are computed at the integration points based on
Orowan’s equation

∆γ = ρnbν∆t. (8.38)

Having identified the dislocation velocities at the integration points,
those are mapped to the nodes by a L2-projection (based on a diag-
onalized mass matrix, see e. g. Becker (2006)). The weak forms (8.8)
and (8.9) of the dislocation evolution equations (8.5) and (8.6) are
subsequently solved based on the explicit Euler scheme (again based on
a diagonalized mass matrix). Then, the next time step can be solved. To
prevent the algorithm from producing large negative density values due
to numerical errors, the viscosity is set to a high value in regions where
the dislocation density ρ falls below a critical threshold (i.e. a plastic
deformation is not possible if no dislocations are present).
In the following, the simulation results are interpreted. Due to the
prescribed displacements, the resolved shear stress increases until it
reaches the yield stress τC. Subsequently, the dislocation motion is trig-
gered, i.e., the continuously distributed loops start to grow (curvature-
induced line length production). The dislocation density "piles up"
at the boundaries (see Fig. 8.3) and, as a consequence, slows down
the density production close to the boundaries (cf. Fig 8.2 at 30% of
deformation). At the early stage of the deformation, the dislocation
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microstructure is SSD-dominated. This result is reasonable because, at
this point of the deformation process, the orientations of the dislocation
lines (which are represented by ρ) in the bulk can be considered nearly
uniformly distributed (overlapping growing circles).

Figure 8.3: The geometrically necessary dislocation density ‖κ‖ for 40% and 100% of
the deformation and the final plastic slip γ.

As the deformation advances, the dislocation lines are expected to grow
until they become pile-ups at the micro-hard boundary. Indeed, the
simulation shows that the dislocation density, which was produced in
the bulk, is transported towards the boundary (Fig. 8.2). The evaluation
of the geometrically necessary density ‖κ‖ shows that

1. at the final state nearly the total dislocation density is geometri-
cally necessary (cf. Figs. 8.2 and 8.3 at 100% deformation),

2. the predictions of the kinematical theory, given by Eqns. (8.5)
and (8.6) is consistent with the GND-density predictions which are
computed from the gradients of the plastic slips.

The latter point verifies that the dislocation evolution Eqns. (8.5)
and (8.6) represent the dislocation transport and production in a rea-
sonable way.
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Chapter 9

Summary and Outlook

This thesis addresses various open questions in gradient and micro
plasticity. Amongst other things, the following aspects of gradient
crystal plasticity are considered

• the form of the defect energy density function

• a possible illustration of the generalized stresses and microtrac-
tions

• the decreased numerical efficiency due to the need for additional
nodal degrees of freedom and a simplified, numerically efficient
and robust gradient theory including a grain boundary model

• the capability of grain boundary models to capture the Hall-Petch
effect

• dislocation density based work-hardening models taking into ac-
count dislocation transport

The first point is related to the defect energy density function, which is a
key ingredient of most gradient plasticity theories. Besides the quadratic
approach, several non-smooth energies have been proposed in the
literature. The work at hand describes these by sub-differentials, which
are also applied in the rate-variational description of local plasticity
models.
A non-smooth rank-one energy is the first one of two promising defect
energy candidates that are investigated in the work at hand. This
type of potential has been used by several authors and is known to
lead to a size-dependent overall yield stress in certain situations. The
second candidate is a regularized logarithmic energy function, leading
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to a gradient plasticity approximation of Groma’s theory. Illustrative
physical interpretations of all material parameters are given for both
energy functions.
The features of both energies are investigated through an exemplary ap-
plication to a laminate model material. In both cases, a size-dependent
overall yield stress and Asaro’s type KIII hardening are obtained.
Subsequently, it is shown that the model is fully represented by a mixed
incremental potential including Lagrange multipliers which are identi-
fied with the generalized stresses. The potential is used as starting point
for the finite element discretization introducing the displacements and
the plastic distorsion as nodal degrees of freedom. In three-dimensional
applications, this implies twelve nodal unknowns.
The incremental potential structure, including the aforementioned La-
grange multipliers, facilitates a new numerical treatment of non-smooth
defect energies like, e.g., the rank-one potential. The sub-differential
description reveals an analogy to rigid-plasticity, which may be regular-
ized by introducing small elastic deformations. This type of regulariza-
tion is known to yield robust and efficient numerical algorithms. In the
work at hand, this regularization technique is applied to non-smooth
defect energies and further developed in the form of an augmented
Lagrange multiplier algorithm.
The gradient plasticity framework used to solve the laminate problem
exploits the principle of virtual power, which requires the introduction
of generalized stresses. These are, e.g., conjugate to the dislocation
density tensor and closely related to the microtractions at the boundary.
In the subsequent investigation, these rather non-intuitive quantities are
exemplarily illustrated for a special model material, which is character-
ized by a highly correlated dislocation microstructure. More precisely,
the dislocations are assumed to be arranged in ideally localized slip
bands. The regions in between the slip bands are assumed to deform
purely elastically. It is argued that, under certain conditions, the material
model may be approximated by a gradient plasticity theory.
This approximation facilitates an illustrative interpretation of several
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usually non-intuitive features of the gradient theory. For example, the
generalized stresses can be identified with microscopic Cauchy stress
fluctuations in elastic regions in between the slip bands. The internal
length scale is found to be given by the slip band distance. Moreover,
the microscopic stress fluctuations are similar to stress distributions
known from bending and torsion theories. In addition, the defect energy
coefficients can be interpreted as generalized, distributed moments
of inertia. The resultant moments of the stress fluctuations may be
related to the microtractions of the gradient model. For simple systems,
the microforce balance is related to the differential moment equations
known from bending and torsion theory.
Having obtained this illustrative interpretation of the generalized
stresses for the considered model material, the subsequent chapter
returns to a more abstract description. The principal idea is to formulate
a simplified, numerically efficient theory, being particularly suited for
three-dimensional multislip and multiphase applications. Therefore,
the independent kinematical fields are chosen to be the displacement
field and a phenomenological scalar plastic field variable. This implies
a significant reduction of the number of nodal degrees of freedom
compared to most gradient crystal plasticity theories.
The exploitation of the principle of virtual power yields the balance
equations. In this regard, grain boundaries are explicitly accounted for
through a respective microtraction balance equation.
The system of equations is closed by constitutive assumptions on, e.g.,
the energy density and the yield criteria. In this context, the principle
of maximum dissipation is exploited in order to derive thermodynam-
ically consistent flow rules for the rate-independent case. In addition,
viscoplastic flow rules of the overstress type are discussed.
Although thermodynamically consistent, the theory is not free of con-
ceptual difficulties. These arise due to the inability of the scalar plastic
field variable to carry any information on the plastic flow direction.
As a consequence, the solution may become unstable with respect to
infinitesimal changes of the boundary conditions. This problem can
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partially be resolved by the definition of separate yield criteria for
opposed flow directions. A gradient crystal plasticity framework is
presented adopting this concept.
Subsequently, a micromorphic reformulation of this model is outlined.
The micromorphic framework facilitates an efficient finite element im-
plementation and integration point wise evaluation of the flow rule.
In particular, a numerically robust algorithm for the grain boundary
treatment is discussed. Moreover, an enhanced power law subroutine
is presented which can handle large time steps, even if the flow rule is
strongly nonlinear due to a large strain rate sensitivity.
The model parameters are fitted to experimental tensile test data of
copper microwires with variable grain size. The data indicates that the
grain size effect mainly affects the overall yield strength of the wires.
In contrast, the overall hardening barely shows any size effect, i.e., the
wires exhibit the typical Hall-Petch behavior.
The proposed model is capable to capture this experimentally observed
size effect. For the investigated load case and parameters, the size effect
of the model is mainly controlled by the grain boundary resistance. In
contrast, the defect energy material parameters could be varied within a
wide range without having a strong effect on the results. It is expected
that the defect energy has a stronger influence on the results if more
heterogeneous deformation modes than tension are considered.
The subsequent study investigates the theory’s general potential to
reproduce the Hall-Petch scaling law. A rough estimation suggests that
the overall yield strength rather scales like 1/D than 1/

√
D, where D

is the average grain size. In order to better understand this deficiency,
the theory is compared to a model which is close to the one proposed
by Eshelby et al. (1951). This comparison is motivated by the fact that
the model of Eshelby et al. (1951) represents a wide-spread explanation
of the Hall-Petch effect. Moreover, the quantities of both models are
closely related. In particular, in both models the onset of plastic grain
boundary yielding is controlled by grain boundary stresses. In the
Eshelby model, these are shear stresses acting at dislocation sources
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close to the grain boundary, while the gradient theory contains grain
boundary microtractions.
In certain situations, the grain boundary stresses of both models are
found to be related. However, they scale differently with the grain
size. More precisely, the microtractions of the gradient model need
to be rescaled by a factor of 1/

√
D to be a reasonable (but still rough)

estimation of the Eshelby grain boundaries stresses.
Clearly, when applying a gradient theory, it is not desirable to explicitly
account for a characteristic length of the system under consideration.
Nevertheless, in order to verify the theoretical results, the aforemen-
tioned rescaling law is applied in three-dimensional periodic finite
element simulations of microstructures consisting of several hundred
grains. Indeed, the simulations match the Hall-Petch scaling law in a
wide range of grain sizes.
Having obtained a numerically efficient and robust gradient plastic-
ity model, the next part of the thesis is concerned with the replace-
ment of the phenomenological work-hardening model. Conventional
phenomenological work-hardening models usually neglect dislocation
transport. Therefore, their application in micro-plasticity may yield
unrealistic results when the free paths of the dislocations approach the
order of magnitude of the system size, i.e., the transport is no longer
negligible.
The starting point of the modification is the revision of Hochrainer’s
higher dimensional continuum dislocation theory. This kinematical
framework provides partial differential evolution equations for the
dislocation density as well as the average curvature. These have been
derived from the averaging of systems of individual dislocations, i.e.,
they account for dislocation transport and curvature induced line length
production.
After a detailed motivation and interpretation of the different evolution
equation terms, a simplified version is discussed. Subsequently, the
simplified equations are coupled to the equivalent plastic strain gradient
plasticity theory that has been developed in the preceding part of the
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thesis. Besides the aforementioned modification of the work-hardening
model, the introduction of further generalized stresses, conjugate to the
dislocation densities and the plastic slips, is discussed. The principal
effect of this modification is a curvature related backstress in the flow
rule as well as additional generalized force balance equations. A
numerical example closes the chapter.
To summarize, several open questions in gradient plasticity theory have
been worked on in this thesis. Clearly, several aspects of the work call
for further investigations. Some examples are given in the following.

• The grain boundary yield criterion has a substantial influence
on the overall model response. Yet, the grain boundary yield
strength has been treated as material constant. However, in a more
realistic setting, the influence of the grain misorientation on the
grain boundary yield strength should be considered. Moreover,
possible grain boundary jumps of the plastic field variable should
be accounted for. This requires an extended constitutive model
taking into account these jumps.

• Many crystal plasticity theories are based on the full dislocation
density tensor. Compared to these, the equivalent plastic strain
model implies a loss of information concerning the direction of
the plastic flow. Therefore, clear guidelines are needed, indicating
which situations allow for the usage of the equivalent plastic strain
model and which applications require more elaborate frameworks.
In the considered examples, the microstructures did not exhibit
any preferred directions. The equivalent plastic strain model
seems to yield reasonable results in this case. However, the ap-
plicability of the model to morphologies with distinct anisotropies
remains to be quantified.

• Additional comparisons of the model response to experiments
and DDD-simulations would be helpful to further investigate the
accuracy of the model. In this context, plastically heterogeneous
deformations are particularly interesting, since they facilitate a

212



Summary and Outlook

further investigation of the rank-one and logarithmic energies,
which have been applied in Chap. 2.

• The enhanced work-hardening model based on the dislocation
density and the average curvature is able to account for dislocation
transport. However, several questions arise in this context. For
example, the kinematic framework does not yet account for the
production of additional dislocations, i.e., the total number of dis-
locations is preserved. The same holds for dislocation annihilation.

• Physically meaningful dislocation flux terms need to be defined
at open boundaries as well as grain boundaries. As long as
this type of boundary and interface conditions is not available, a
rigorous application of the continuum dislocation theory is limited
to periodic problems with only one plastic phase. Therefore,
the interactions of dislocations with grain boundaries need to be
understood physically, before a meaningful mathematical theory
can be developed.

• Substantial numerical problems arise, if the dislocation density
approaches zero. In this case, the material behavior instantly
changes from plastic to elastic which may lead to convergence
problems. In addition, evaluating the second evolution equation
of the dislocation continuum theory requires the division by the
dislocation density. Note that the simplified version of the theory
is not exact, i.e., even analytical solutions may contain negative
dislocation density values. Therefore, robust numerical schemes
are needed which prevent the dislocation density from becoming
negative.

• Finally, the theory may be generalized to the geometrically nonlin-
ear case.
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Appendix A

A.1 Vanishing External Power of Micro Tractions

The second term of Eq. (2.36) reads
∫

∆B
m · Ḣp

da, (A.1)

with Ḣ
p

= γ̇e1 ⊗ e2 and
m

(2.5)
= Mn̂. (A.2)

The boundary is given by ∂(∆B) = A+
1 ∪ A−1 ∪A+

2 ∪A−2 ∪ A+
3 ∪A−3 ,

where A±i denote the surfaces of the cuboid ∆B with associated surface
normals e±i (i = 1, 2, 3). At the top and bottom (A±2 ), the microtractions
read

mT = M(x1)n̂T, n̂T
(2.6)
= −ǫe2 = −n̂B (A.3)

⇒mB = M(x1)n̂B = −mT. (A.4)

Since Ḣ
p
T = Ḣ

p
B, the top and bottom contributions (A±2 ) to the inte-

gral (A.1) cancel each other. The A±3 -contributions vanish based on
analogous arguments. The A±1 -contributions vanish since Ḣ

p
= 0 in the

elastic phase.

A.2 Power Balance for Rank-One Energy

With the representation W = We + Wg (Eq. (2.10)), the power of internal
forces (2.38) can be rewritten as

Pint(∆B) =
∫

∆B

(

∂εWe · ε̇ + ∂εpWe · ε̇p + Ẇg +D
)

dv. (A.5)
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Since We = (ε− εp) · C[ε− εp]/2, it follows that σ = ∂εWe = −∂εpWe and

Pint(∆B) =
∫

∆B

(

σ ·ε̇−σ ·(γ̇ sym(e1⊗e2))+Ẇg+(τC
0 +τDγ̇/γ̇0)γ̇

)

dv. (A.6)

Here, Eq. (2.34) has been applied. From Pext(∆B) = Pint(∆B) and
Eq. (2.37), it follows that

s/2+ǫ
∫

−s/2−ǫ

(

−σ12 γ̇ + Ẇg +

(

τC
0 + τD γ̇

γ̇0

)

γ̇

)

dx1 = 0. (A.7)

The total defect energy rate is given by

s/2+ǫ
∫

−s/2−ǫ

Ẇg dx1
(2.30)
= cGb

d

dt

s/2+ǫ
∫

−s/2−ǫ

|γ ′(x1)| dx1 (A.8)

(2.35)
= cGb

d

dt

0∫

−s/2−ǫ

γ ′(x1) dx1 − cGb
d

dt

s/2+ǫ
∫

0

γ ′(x1) dx1 (A.9)

= 2cGb γ̇(0). (A.10)

From this equation and Eq. (A.7), relation (2.39) immediately follows.

A.3 Sensitivity Analysis

According to Eq. (2.53) the macroscopic shear strain can be additively
decomposed into an elastic part σ12/G and a plastic part

γ̄p/α0 =
Lτ

e(s + h)

(

exp

(

s

2Lτ

)

(s− 2Lτ) + 2Lτ

)

, (A.11)

with Lτ as defined in Eq. (2.52). The stress can be obtained as the inverse
of (A.11), σ12 = g(γ̄p/α0). The function g is illustrated qualitatively in
Fig. A.1.
The total differential reads

dσ12 = ∂γ̄p
σ12 dγ̄p + ∂α0

σ12 dα0 = g′ d

(

γ̄p

α0

)

(A.12)

=
1

α0
g′ dγ̄p −

γ̄p

α2
0

g′ dα0. (A.13)
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σ12

σ12 = g(γ̄p/α0)

g′(γ̄p/α0) = m0
σ12

(γ̄p/α0)

γ̄p/α0
γ̄p/α0

Figure A.1: Visualization of the function g(γ̄p/α0).

Hence, the sensitivity of σ12 with respect to changes of α0 reads

∂α0
σ12 = − γ̄p

α2
0

g′. (A.14)

In the region of well-established plastic flow, one might conclude from
Fig. A.1 that

∂α0
σ12 = − γ̄p

α2
0

g′ = −m0
γ̄p

α2
0

σ12

(γ̄p/α0)
= −m0

σ12

α0
, (A.15)

where m0 takes a small value < 1. At constant plastic strain, small
variations of α0 lead to the following variations of σ12

∆σ12 ≈ −σ12 m0
∆α0

α0
. (A.16)

Since m0 is expected to be small, variations |∆α0| < α0 have a small
influence on the overall size effect.
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B.1 Displacement Consistency

Inserting the approximations (3.45) and (3.50) into Eq. (3.38) yields

u(x′) =
1

∆V (x′)

∫

∆V (x′)

(

u(x) + H(x)(x′′ − x)−∆z(xp(x′′))γ(x)d
︸ ︷︷ ︸

u∗

11
(x′′)

)

dv′′. (B.1)

Neglecting boundary influences, this expression is given by

u(x′) = u(x) + H(x)(x′ − x). (B.2)

This means that the contribution of the fluctuations to the mesoscopic
displacement approximation (inside of V (x), Eq. (3.42)) indeed van-
ish. Therefore, the approach is consistent with the definition of u(x)

(Eq. (3.38)).

B.2 Verification of W21

Let Ω denote a volume (with centroid x0) with the same properties
as ∆V . If Eq. (3.62) is correct, then the application of W21 is reasonable in
situations where the micro-displacements within Ω can be approximated
by

u∗(x) ≈ u(x0)+H(x0)(x−x0)+
1

2
(∇pH(x0) : (x−x0)⊗(x−x0))−∆z(x)γ(x0)d. (B.3)

Here, the mesoscopic displacements u(x) are given by the first part.
The last term represents the fluctuations ũ(x). The reasonability can
be verified by noting that

∫

Ω

1

2
H∗(x) · C[H∗(x)] dv =

∫

Ω

W11(x) dv. (B.4)
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B.3 Slip Consistency

The verification of Eq. (3.66) is carried out by proving the following
identity

d · [[ũ2(x
′)]] = ju,2(x

′), x′ ∈ SB. (B.5)

Here, it has been assumed that the jump of the mesoscopic displacement
vanishes, i.e. [[u(x)]] = 0.

d · [[ũ2(x
′)]] (B.6)

(3.64),(3.66)
= −d ·



ju,2(x
′ + h/2 n)d

−h/2

h
− ju,2(x

′ − h/2 n)d
h/2

h



(B.7)

= ju0 + b0 ·
(

x′ − x
)

= ju,2(x
′), x′ ∈ SB. (B.8)

B.4 Verification of W12

The result (3.89) can be verified in the special case, where the micro
displacement field u∗(x) can be represented based on the expression

u∗(x) = u0 + H0(x− x0)−
(

ju0 + b0 · (xp(x)− x0)
)∆z(x)

h
d. (B.9)

This implies, that the mesoscopic displacement field u is given by
a linear function in the averaging volume. As has been argued be-
fore (Eqns. (3.68), (3.70) and (3.72)),

γ(x) = γ(x0) +∇pγ(x0) · (x− x0) =
1

h

(

ju0 + b0 · (x− x0)
)

, (B.10)

with ∇pγ(x0) = b0/h due to Eq. (3.65). Hence, the mesoscopic plastic
slip is also approximated linearly in the glide plane and constant in n-
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direction. It can be shown that the total strain energy of a volume V (x0)
is then given by

Wtot =
1

2

∫

V (x0)

(

H0 − γ(x)d⊗ n
)

· C[H0 − γ(x)d⊗ n] dv

+
1

2

∫

V (x0)

h2

12

(

d⊗∇pγ(x0)
)

·C[d⊗∇pγ(x0)] dv (B.11)

=
∫

V (x0)

W12 dv,

with Cdn = (d⊗ n) · C[d⊗ n].
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C.1 Energetical Interfaces

First, some geometrical assumptions are made. Therefore, a macroscopic
cubic polycrystal is assumed to be loaded in tension. The geometrical
properties of the microstructure are assumed to have no preferred
direction and the grains are roughly approximated by spheres. The total
volume of the polycrystal with edge length L reads

V = L3 =
∑

i

Vi ≈ N◦V◦ =
π

6
N◦D

3 =
D

3

(

N◦
2

πD2
)

, (C.1)

where i is the grain index, N◦ ≫ 1 represents the total number of grains
and D is the average grain diameter. V◦ is the volume of a sphere with
diameter D. The total grain boundary surface is given by

Γ =
1

2

∑

i

Γi ≈
N◦
2

A◦ =
N◦
2

πD2 (C.2)

(C.1)⇒ Γ ≈ 3V

D
. (C.3)

Here, Γi is the grain boundary area of an individual grain. The factor 1/2

accounts for the fact that a grain boundary is shared by two grains.
A◦ denotes the surface of a sphere with diameter D.
In a tensile test, two forces F (with opposite sign) are applied at two
opposite faces of the cubic polycrystal. Assuming well-established
plastic flow, the macroscopic strain rate reads

˙̄ε =
v

L
, (C.4)

where v denotes the relative velocity between the two aforementioned
faces.
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In case of a very coarse-grained polycrystal (i.e. grain boundary influ-
ences are assumed negligible) the macroscopic tensile stress reads

σ̄ =
Fcoarse

L2
. (C.5)

The power of the external forces is given by

P0 = Fcoarsev = σ̄ ˙̄εL3. (C.6)

This is the power of the external forces required to deform a coarse-
grained polycrystal, where the grain boundary influence has been
neglected.
In the following, also fine-grained polycrystals are considered. In order
to phenomenologically model the resistance of the grain boundaries, the
grain boundary energy density (6.2) is introduced

WΓ = WΓ(εp), WΓ,tot =
∫

Γ
WΓ da. (C.7)

The introduction of WΓ influences the macroscopic response of the
polycrystal model. It is assumed that

Ffinev = (σ̄ + ∆σ̄) ˙̄εL3 ≈ P0 + ẆΓ,tot. (C.8)

The stress increase ∆σ̄ is a consequence of the introduction of the grain
boundary energy. It reads

∆σ̄ =
ẆΓ,tot

˙̄εL3
. (C.9)

In the following, it is assumed that the macroscopic strain is sufficiently
large such that the plastic flow is established in the whole grain ensem-
ble. In this case, the average plastic strain rate can in most cases safely
be expected to be nearly proportional to the macroscopic strain rate

˙̄εp =
1

V

∫

V

ε̇p dv ≈ kε ˙̄ε, (C.10)

where kε is a constant of proportionality. Furthermore, the rate of WΓ,tot

is estimated by

ẆΓ,tot =
∫

Γ
W ′

Γ(εp) ε̇p da ≈ W ′
Γ(ε̄p) ˙̄εp Γ. (C.11)
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Insertion of Eqns. (C.10) and (C.11) into Eq. (C.9) yields

∆σ̄ =
kεW

′
Γ(ε̄p) ˙̄ε Γ
˙̄εL3

(C.3)
=

3kεW
′
Γ(ε̄p)

D
. (C.12)

Based on the assumptions made, it is found that the increase in yield
stress is proportional to the inverse of the grain diameter

∆σ̄ ∼ 1

D
. (C.13)

C.2 Dissipative Interfaces

The analogue of Eq. (C.8) reads

L3(σ̄ + ∆σ̄) ˙̄ε = P0 + DΓ,tot ⇒ ∆σ̄ =
DΓ,tot

˙̄εL3
. (C.14)

Here, DΓ,tot denotes the total dissipation at the grain boundaries. DΓ,tot

is assumed to be proportional to the total grain boundary area Γ on the
one hand and the plastic strain rate ˙̄εp on the other hand

DΓ,tot =
∫

Γ
DΓ da =

∫

Γ
Ξd

GB ε̇p da ≈
∫

Γ
Ξd

Γ da ˙̄εp ≈ kDΓ ˙̄εp, (C.15)

where kD is a constant of proportionality, DΓ denotes the dissipation per
unit (grain boundary) area and Ξd

Γ is a microstress which extends power
over ε̇p. Since the dissipative grain boundary does not store energy, this
power cannot be recovered and Ξd

Γ is purely dissipative. The application
of Eqns. (C.3) and (C.10) yields

DΓ,tot = kD Γ ˙̄εp (C.10)
= kD Γ kε

˙̄ε
(C.3)
=

3L3 kD kε
˙̄ε

D
. (C.16)

A comparison with Eq. (C.14) yields

∆σ̄ =
3kεkD

D
. (C.17)

If kε is assumed independent of the grain diameter D, the result does,
again, not match the Hall-Petch relation (6.1).
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C.3 Interpretation of the Material Parameters

In the following, the influence of various material parameters on the
overall behavior are discussed. First, a material with large grains is con-
sidered. In this case, the grain boundary influence is negligible. At room
temperature the rate sensitivity usually takes high values (e.g. p = 20).
Then, the simulation is rather insensitive with respect to changes of the
reference shear rate γ̇0 (at least at moderate up to high strain rates).
Consequently, the overall yield stress is expected to be approximately
given by

σY0 ≈MT(τC
0 + τD), (C.18)

where MT is a Taylor factor (MT ≈ 3.06 for FCC metals, Taylor (1938)).
Cold work hardening is accounted for by the isotropic hardening
stress β = ∂γeq

Wh (Eq. (5.18)).
For small grains, the influence of the grain boundaries must be taken
into account. The grain boundary behavior is governed by the material
constant kC = τC

s /(4k1), see Eqns. (6.21) and (6.22). In the following, it is
shown that the Hall-Petch slope kHP, Eq. (6.1), is expected to be directly
proportional to kC. In appendix C.2, the following estimation is derived

∆σ̄ =
3kεkD

D
. (C.19)

with kε = ˙̄γeq/ ˙̄ε (volume averages) and

kD
(C.15)
=

1

Γ

∫

Γ
ΞΓ da ≈ kC

√
D. (C.20)

Here, Eqns. (6.21), (6.22) and f ∗Γ = 0 have been exploited. Hence, this
relation is assumed to hold in the case of well established plastic flow. It
follows that the Hall-Petch slope is directly proportional to kC

∆σ̄ =
3kεk

C

√
D

=
kHP√

D
. (C.21)

This result allows for a first guess of kC without having to fit any
numerical model

kHP ≈ 3kεk
C ⇔ kC ≈ kHP

3kε
. (C.22)
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This guess does not yet take into account the dependence of kC on
the grain misorientation. The parameter kε has been estimated from a
numerical simulation. It was found that kε ≈ 3 (for a set of parameters,
which is typical for copper).
Once, the simulations have been done for a given value of kC, the Hall-
Petch slope kHP can be manipulated by changing kC. Multiplication of kC

by a given factor will roughly in- or decrease the Hall-Petch slope kHP

by this factor (Eq. (C.22)).
Besides the parameter kC, the influence of the defect energy Wg(∇γeq)

remains to be discussed. For the simulations, a quadratic approach was
applied

Wg(∇γeq) =
1

2
KG∇γeq · ∇γeq. (C.23)

Interestingly, in Sect. 5.3.3 (Fig. 5.4) it has been found that the variation
of the parameter KG (in a quite wide range) had almost no effect
on the macroscopic stress strain curves. However, if KG is chosen
sufficiently small, the elasto-plastic transition of large-grain-systems
becomes smoother. In this work, the value KG = 0.01 N is chosen.
Many authors introduce an internal length scale instead of a parameter
like KG by setting KG = l2E, where E is Young’s modulus of the
macroscopic material. Taking copper with E ≈ 110 GPa, the internal
length scale is given by l =

√

KG/E ≈ 0.3µm.
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Appendix D

Proof of Eq. 7.6

For simplicity, the index i of the dislocation is dropped in the proof. The
derivatives of the direction vectors along the dislocation are given by

∂el

∂s
= − 1

R
eν ,

∂eν

∂s
=

1

R
el, (D.1)

where the local radius of curvature R is signed.
An intermediate configuration for one fixed moment t̃ ∈ [0; t] is intro-
duced

s̃ = s(S, t̃), xt̃ = x(S(s̃, t̃), t) = xt̃(s̃, t). (D.2)

At the point P , a generalized tangent vector is defined

et̃
l =

∂xt̃

∂s̃
⇒ el = et

l . (D.3)

Now the case t̃ = t is considered, i.e., ˙̃s = vT. The time rate of change of
the generalized tangent vector is evaluated as follows

det̃
l

dt

∣
∣
∣
∣
∣
∣
t̃=t

=
∂et̃

l

∂s̃
˙̃s

∣
∣
∣
∣
∣
∣
t̃=t

+
∂et̃

l

∂t

∣
∣
∣
∣
∣
∣
t̃=t

= − 1

R
eνvT +

∂et̃
l

∂t

∣
∣
∣
∣
∣
∣
t̃=t

. (D.4)

The first term results from the motion of P in the direction el, the second
term from the motion of C.
The second term, evaluated at t̃ = t, and rearranged using the chain rule
yields

∂et̃
l

∂t

∣
∣
∣
∣
∣
∣
t̃=t

=
∂

∂s̃

∂xt̃

∂t

∣
∣
∣
∣
∣
∣
t̃=t

=
∂ν

∂s
=

∂ν

∂s
eν +

ν

R
el. (D.5)



Appendix

If the point P is enforced to indicate a constant tangent, its velocity can
be deduced from the requirement

det̃
l

dt

∣
∣
∣
∣
∣
∣
t̃=t

· eν
!

= 0, (D.6)

which leads to the following expression for the tangential velocity of P

vT = −Rϑ. (D.7)
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List of Frequently Used Symbols

Greek letters

α0 characteristic density of statistically stored dislocations

αL transition density

αTr trial dislocation density tensor

α dislocation density tensor

β energetic isotropic hardening stress

δαβ Kronecker delta

δSB slip band delta function

ε̇0 reference strain rate

ǫ small number

η generalized stress conjugate to ρ̇

εe elastic strain tensor

εp plastic strain tensor

εi strain of layer with index i

ǫ permutation (Ricci’s) tensor

ε infinitesimal strain tensor

γ̄ macroscopic shear strain

γ̇0 reference slip rate

γ̇L regularization parameter

γ0 characteristic plastic shear parameter

γeq equivalent plastic strain

γ plastic shear strain



List of Frequently Used Symbols

κ dislocation density vector

κ norm of κ

λ̇0 reference strain rate

Λ overstress type function

λ plastic slip parameter

λ̊ Lagrange multiplier

µ history variable

φv dissipation potential w.r.t. the relative layer velocity

ΠD integral dissipation potential

ΠL integral Lagrange parameter potential

ΠW integral stored energy potential

Πext potential of external forces

Π integral potential

ϕ1
g indicator function of rank one energy

ϕ1,Tr
g trial indicator function

ϕ dislocation orientation

ρ⊙ geometrically necessary screw dislocation density

ρϕ orientation-dependent dislocation density

ρ⊢ geometrically necessary edge dislocation density

ρm mass density

ρGND geometrically necessary dislocation density

ρsat saturation dislocation density

ρSSD statistically stored dislocation density

ρ total dislocation density

σ Cauchy stress tensor

σC
0 initial yield stress

σD drag stress

σb bending stress

σY0 yield stress of a coarse grained polycrystal

σY yield stress
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List of Frequently Used Symbols

σij components of the Cauchy stress w.r.t. a Cartesian basis

τB backstress

τC
0 initial critical resolved shear stress (initial yield stress)

τC
∞ saturation yield stress

τC critical resolved shear stress

τD drag stress

τd dissipative shear stress

τ eff effective shear stress

τ k generalized stress conjugate to γ̇

τext externally applied shear stress

τf lattice friction stress

τC
s critical dislocation source stress

τs dislocation source stress

τt torsion shear stress

τ resolved shear stress

Θ0 initial hardening modulus

θ0 deformation angle

ϑ angular dislocation velocity

υ Poisson’s ratio

ν dislocation velocity vector

ν0 dislocation reference velocity

ν dislocation velocity

ω defect energy exponent

ξ microstress

ΞC
0 initial grain boundary yield strength

ΞΓ grain boundary microtraction

ξ scalar microstress

ζ phenomenological plastic field variable
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List of Frequently Used Symbols

Â jacobian matrix

aT constant of order one

A set of surface points/area

a length of bar

b0 gradient of linear approximation of ju

btot total or net Burgers vector

b Burgers vector

b absolute value of Burgers vector

C elastic stiffness tensor of fourth order

c̃ yield resistance

C ij projection of the stiffness tensor (i, j ∈ {d, h, n})
c0 log. energy constant

c1 constant of order unity

cω defect energy material parameter

cρ initial density modulus

Cijkl stiffness tensor component

c constant of order unity

D volumetric dissipation density

d slip direction

D̂ algorithmic tangent matrix

ds dislocation stretch rate

Dg edge length of square grains

Dtot total (integral) dissipation

D mean grain diameter

d diameter of specific grain

eν dislocation velocity direction

ei orthonormal unit vectors (i = 1, 2, 3)

ex unit vector in x-direction

ey unit vector in y-direction
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List of Frequently Used Symbols

el line direction

ES quasi-material dislocation strain measure

E Young’s modulus

e Euler’s constant

FL Lagrangian

fm discrete mass flux

f̃ equivalent stress

f ∗Γ grain boundary yield criterion in terms of τs

fΓ grain boundary yield criterion

FS quasi-material dislocation stretch measure

fαβ history variable function

fc compressive yield criterion

ft tensile yield criterion

F concentrated force

f yield criterion

G shear modulus

He elastic part of the displacement gradient

Hp plastic distorsion

H displacement gradient

h crystallographic vector, cross product of d and n

HM
χ penalty parameter

Hs
χ penalty parameter

Hχ micromorphic coupling modulus

hαβ hardening moduli

H hardening modulus

h width of hard layer

IT torsion moment of inertia

ju0 constant approximation of ju

ju smooth displacement jump interpolation function
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ez unit vector in z-direction



List of Frequently Used Symbols

KG gradient modulus

kHP Hall-Petch slope

kL regularization parameter

k dislocation curvature

∆lϕ total segment line length associated to orientation ϕ

l crystallographic vector, cross product of n and d

lL segment length

Lτ stress dependent length parameter

Lc cube width

ls internal length scale parameter

L characteristic length of the average volume

l internal length scale parameter

∆m total particle mass

M old (unconverged) approximation of M

MTr generalized trial stress

M generalized stress conjugate to α̇

m microtraction

P S symmetric part of Schmid tensor

Mϕ number of discrete orientations

Mb bending moment

mb distributed bending moment

MT Taylor factor

mt distributed torsion moment

M non-vanishing component of M

m mass

NTr trial direction

n normal vector

n̂ axial tensor

N̂ large number of particles
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k1 constant of proportionality



List of Frequently Used Symbols

ñ surface normal

Nϕ number of tangent points

NL number of layers

NSB number of slip bands

Nc number of layers of cube

Ng number of layers of grain

N number of slip systems

n orientation-dependent dislocation segment density

p̌ micromorphic coupling stress

Pext power of external forces

Pint power of internal forces

pint power density of internal forces

p rate sensitivity parameter

qα isotropic hardening stress

ql latent hardening parameter

q quadratic strain gradient function

∆R total radius of curvature

rσ residual associated to Cauchy stress

rp residual associated to coupling stress p̌

Rϕ radius of curvature

S compliance tensor

sold (unconverged) approximation of s

s generalized stress conjugate to Ḣ
p

s width of soft phase

t traction vector

t time

u0 constant term of Taylor series expansion of u∗

u displacement field

u displacement in x-direction
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n preceding time step



List of Frequently Used Symbols

vT tangential velocity

v velocity

v0 reference velocity

vrel relative layer velocity

v displacement in y-direction

W g average volumetric energy

W0 offset energy

Wχ micromorphic coupling energy

WΓ grain boundary energy density (hardening potential)

wρ test function

Wi elastic energy of layer with index i

WΓ,tot total (integral) grain boundary energy

wρk test function

We elastic strain energy density

Wg gradient hardening potential

Wh isotropic hardening potential

Wtot total elastic energy

xp orthogonal layer center plane projection

∆z signed distance from layer center plane

Sets

A active set of grain boundary nodes

Bi grain with index i

B body (set of material points)

C dislocation line

Γact plastically active part of grain boundaries

Γ set of all grain boundaries

Li center plane of layer i

L∆ϕ non-quasi-material dislocation segment
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vP velocity of point P



List of Frequently Used Symbols

∆Ω averaging volume

P point with restricted tangent

R set of real numbers

SBi slip band i

SB union of all slip bands

∆V averaging volume

Special Operators

δ(•) variation/virtual quantity
˙(•) time rate of change/partial derivative w.r.t. time

[[•]] jump of field quantity

∇p(•) projected gradient

⊗ dyadic product

Sub- and superscripts

(•)∗ microscopic quantity

(•)d dissipativie part

(•)e energetic/elastic part

(•)p plastic part

(•)α quantity associated to slip system α
¯(•) given traction-quantity at Neumann boundary

(•) average quantity
˜(•) fluctuation
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L dislocation segment
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This work is ought to be a contribution to the further development of gradient 
plasticity, which has not yet achieved the status of a unique, applicable and gen-
erally accurate theory. Therefore, several open questions are addressed, where 
the efficient numerical implementation is particularly focused on. After a short 
introduction to dislocations, the thesis inspects two promising constitutive ener-
getical potentials for generalized stress tensors. Subsequently, a model material 
with localized plastic slip bands is approximated by a gradient theory allowing 
for an illustrative interpretation of the aforementioned generalized stresses and 
several usually abstract quantities. In order to consider a theory which is particu-
larly suited for efficient numerical applications, a gradient plasticity framework is 
discussed based on a scalar plastic field variable. In this context, a grain bound-
ary yield model is introduced. The finite element implementation is subsequently 
discussed using a micromorphic formulation allowing for a simple, robust and 
numerically efficient implementation. Owing to the grain boundary yield crite-
rion, the size effect observed in tensile test experiments of copper micro-wires 
can successfully be reproduced. A comparison to the pile-up model of Eshelby et 
al. (1951) is carried out. An enhanced work hardening model is then introduced. 
The hardening model is based on the total dislocation density and average cur-
vature which evolve according to partial differential equations that take into  
account curvature-induced dislocation line-length production as well as disloca-
tion transport.
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