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Abstract

The plastic flow of body-centered cubic (bcc) metals is controlled by the
a/2〈111〉 screw dislocation. An accurate description of the dynamics of
screw dislocations in a mesoscale model requires a physical description of
the mobility of screw dislocation. In this thesis, a computational frame-
work for discrete dislocation dynamics simulations of bcc metals, which
naturally accounts for core-effects on screw dislocation mobility based on
atomistic simulation results, is developed. The application of the new
framework is done for tungsten. The finite temperature mobility of the
a/2〈111〉 screw dislocation is based on the thermally-activated motion via
nucleation of kink-pairs. The fundamental physical quantity controlling
the kink-pair nucleation, the stress-dependent activation enthalpy, is ob-
tained by fitting the line-tension model to atomistic data.

Many of the experimentally observed phenomena in bcc metals like tem-
perature dependence of tension-compression asymmetry, orientation de-
pendence, temperature dependence of yield stress and crystallography of
slip can be explained qualitatively in terms of a single screw dislocation.

The mechanism of repulsive interaction between screw dislocations is in-
vestigated which shows that screw dislocations glide collectively maintain-
ing an equilibrium distance between them. Local dislocation interactions
directly control the activation enthalpy of a screw dislocation. From the
simulations of compression on micrometer-sized pillars, a new mechanism
responsible for slip on low-stressed planes called anomalous slip is iden-
tified. The mechanism attributes anomalous slip as a multi-dislocation
process occurring due to the formation of cross-kinks, topological config-
urations generated by prior dislocation interactions. The new mechanism
can account very well for the occurrence of coarse-crystallographic slip
traces observed in experiments on tungsten pillars of the same geome-
try. The simulations also show that in addition to the screw dislocations,
mixed dislocations and the local stress variations caused during their glide
play a significant role during deformation of bcc metals.
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Zusammenfassung

Die Plastizität kubisch-raumzentrierter (krz) Metalle wird maßgeblich
durch a/2〈111〉-Schraubenversetzungen beeinflusst. Um die Dynamik von
Schraubenversetzungen zu beschreiben, muss ein physikalisch basiert-es
Modell der der Mobilität der Schraubenversetzung entwickelt und im-
plementiert werden. Dieser Ansatz ermöglicht es für krz Metalle all-
gemeingültig die Versetzungsdynamik basierend auf der Mobilität der
Schraubenversetzungskerne zu modellieren, basierend auf atomistischen
Ergebnissen. Die temperaturabhängige Mobilität der Schraubenverset-
zungen resultiert aus dem thermisch aktivierten Mechanismus der Kinken-
paarbildung. Die für Kinkenpaarbildung maßgebliche physikalische Größe
ist die spannungsabhängige Aktivierungsenthalpie, welche durch Anpas-
sung eines Linienspannungs-Modell an atomistische Daten parametrisiert
wurde. Viele experiment-ell bekannte Phänomene der krz Metalle, wie die
Temperaturabhängigkeit der Zug-Druck-Asymmetrie, die Orientierungs-
und Temperaturabhängig-keit der Fließspannung, sowie die kristallograph-
ischen Eigenarten der Gleitprozesse sind in diesem Modell qualitativ auf
das Verhalten der einzelnen Schraubenversetzungen zurückführbar.

Die Eigenschaften der abstoßenden Wechselwirkung zwischen Schrauben-
versetzungen wurde analysiert, und es lässt sich zeigen, dass Schrauben-
versetzungen kollektiv gleiten, wobei sich Gleichweichtsabstände zwischen
ihnen einstellen. Die Aktivierungsenthalpie einer Schraubenversetzung
hängt stark von der Wechselwirkung mit anderen Versetzungen ab. An-
hand Simulationen von Druckversuchen mikrometergroßen Säulen kon-
nte ein neuer Mechanismus identifizeirt werden, der für das sogenannte
Phänomen der anomalen Gleitung („anomalous slip“) verantwortlich ist,
also für die Gleitprozesse auf Ebenen niedriger Spannung. Der Mecha-
nismus erklärt anomales Gleiten als einen Mehr-Versetzungs-Effekt, im
Zusammenhang mit der Bildung von sogenannten "Cross-Kinken", deren
Topologie die Folge vorangegangener Versetzungsreaktionen ist. Der vorg-
eschlagene Mechanismus harmoniert bestens mit der Ausbildung kristal-
lographischer Gleitbänder, die experimentell an Wolfram-Säulen mit ver-
gleichbarer Geometrie beobachtet wird. Die Simulation zeigt ferner, dass
nicht nur reine Schraubenversetzungen, sondern auch solche mit gemis-
chtem Charakter einen erheblichen Einfluss auf die plastischen Prozesse
in Wolfram-Säulen haben.
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1. Introduction

Metals have been the milestones marking the progress of human civiliza-
tion ever since the bronze age. A precursor to designing new metals with
enhanced mechanical properties is an understanding of the fundamen-
tal mechanisms governing its deformation. Conventional metals research
has largely been experimental in nature, relying on experience and intu-
ition, to carefully deduce and formulate laws governing material behav-
ior. The Schmid law [1] is a classical example of such a law, which can
still be reliably used to predict the onset of plastic flow in hexagonal-close
packed (hcp) and face-centered cubic (fcc) metals. Extensive experimen-
tal testing was still required to gain further insights into the underlying
mechanisms governing the strength of a metal.

With the advent of computing power over the last fifty years, computa-
tional material science has evolved as an indispensable tool for research
and a reliable counterpart to experiments. A computer simulation has
at its heart a computational model, which critically affects the ability to
capture and describe the physical phenomena that are investigated. To un-
derstand the mechanisms of dislocation plasticity, computer modeling has
been widely used to investigate the properties of single dislocations. The
benefits of computer based modeling are manifold. Not only does this
approach help save time and money by reducing the number of experi-
ments, but also allows to investigate the material properties by varying a
wide range of parameters in a controlled manner not possible in experi-
ments. This helps identify the critical parameters affecting the mechanical
behavior of materials. It also allows to investigate and identify the micro-
scopic laws governing dislocation motion like the relation between the
stress and velocity of a dislocation, which can then be incorporated as
constitutive laws into discrete dislocation dynamics (DDD) models. Since
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such laws cannot always be deduced directly from experiments and are
too complicated to be derived analytically, computer models remain the
only means to study these processes. In the end, validation experiments
serve as the ultimate benchmark for the predictions of a computational
or theoretical model.

Critical aspects of metal plasticity are governed by the long-range elastic
strain fields of dislocations which can be accurately described by contin-
uum linear elasticity theory. It is however known that unlike in fcc met-
als, where yielding follows the predictions of the Schmid law, body-centere-
d cubic (bcc) metals exhibit a much more complicated response to ap-
plied stress. This observed difference in mechanical properties raises a
fundamental question: What is the origin of the difference between the
properties of bcc and other close-packed metals since the elastic fields of
dislocations are independent of the underlying crystal structure [2]. It is
the answer to this critical and long-standing question that has been one
of the most significant achievements of the computer modeling.

Using atomistic simulations, it has been established that the a/2〈111〉 sc-
rew dislocation core is non-planar due to its extension onto the {110}
planes of its zone [3](see [4–6] for review). This concept of a non-planar
screw dislocation core, first proposed by Hirsch [7], is fundamentally dif-
ferent from the planar core structures in fcc metals. The non-planar char-
acter results in two peculiar properties of the dislocation core, firstly, the
dislocation core is sessile and requires large stresses to move the dislo-
cation and secondly, components of stress other than glide stresses also
influence the behavior of screw dislocations and thereby influence the yield-
ing. The latter is also referred to as non-Schmid stress and collectively they
are a characteristic feature of bcc metals. Owing to the large stresses re-
quired to move screw dislocations, they are assumed to govern the plastic
flow in bcc metals. Additionally, the large stresses may be overcome by
the stress-assisted thermally activated formation of kink-pairs and their
subsequent propagation along the screw dislocation line. This thermally
activated glide mechanism is called the kink-pair mechanism [8].

Coarse-grained simulation methods like the discrete dislocation dynam-
ics (DDD) are widely used to study the collective motion of dislocations
and understand the mechanisms responsible for plastic flow in metals. At
the mesoscale of DDD, the phenomena of interest are the arrangement and
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formation of dislocation patterns which arise primarily from collective mo-
tion and interaction of dislocations. These interactions are governed by the
long-range fields of dislocations. The most critical input to a DDD simu-
lation is a constitutive relation describing the relation between stress and
the dislocation mobility. An accurate description of the dislocation mobil-
ity is the first step in understanding the collective motion and interaction
of dislocations and achieving the ultimate aim of identifying statistically
averaged quantities that can be compared to macroscopic experiments or
transferred to a crystal plasticity model. Due to the dominant role played
by the dislocation core in the dynamics of individual a/2〈111〉 screw dis-
locations in bcc metals, a multiscale approach is required which provides
a simplified description of the relevant atomistic information.

1.1. Objectives of this work

The focus of the current work is to develop and implement a multiscale
model that can account for the core-effects on a/2〈111〉 screw disloca-
tion mobility observed on the atomistic scale [9,10] in a DDD simulation
tool. Accordingly, this thesis is divided as follows: The physical and numer-
ical aspects of the computational model, suitable for use in the DDD simu-
lation tool are presented on the example of tungsten. Mobility rules for the
a/2〈111〉 dislocations are based on the kink-pair mechanism. The stress
components which critically influence the activation parameters of a screw
dislocation at finite temperatures in a bcc metal, including the effects on
the dislocation core structure, are accounted for. The fundamental phys-
ical quantity controlling the kink-pair nucleation, the stress-dependent
activation enthalpy, is obtained by fitting the line-tension model to the
atomistic data extending the approach by Gröger et al. [9–11]. It is demon-
strated that such an atomistic based description of dislocation mobility
provides a physical basis to naturally explain many experimentally ob-
served phenomena in bcc metals like the tension-compression asymme-
try, orientation dependence of loading, temperature dependence of yield
stress and the crystallography of slip.

Once the essential aspects of the models for an isolated screw dislocation
are presented, the influence of dislocation-dislocation interactions on the
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activation parameters of a screw dislocation is examined. Repulsive in-
teraction between two screw dislocations is studied since the mechanistic
details of how they interact are not yet understood. The interaction be-
tween mixed and screw dislocations is also investigated and its significance
within the context of in situ experiments is discussed.

Finally, the response of micrometer sized pillars with randomly distributed
initial dislocation-sources in both tension and compression is examined
for middle-oriented pillars. The results of the simulations are in good
agreement with concurrent experiments performed on micropillars at the
Paul-Scherrer Institute, Switzerland. A new mechanism for anomalous slip
is identified which can account for many features reported in experiments
on other bcc metals at low temperatures [4].



2. Literature review

2.1. Concept of a dislocation

In this section, the concept of dislocations is briefly presented to famil-
iarize the reader with the terminology used in the rest of this work. For
a more detailed description of the theory of dislocations, the reader is
referred to references [2, 12].

The concept of a dislocation was developed independently by Orowan, Pol-
anyi and Taylor in 1934 [13–15] to account for the discrepancy between
theoretically predicted yield stresses based on perfect crystal lattices and
experimentally observed yield stresses.A dislocation is characterized by its
Burgers vector b equal to one of the smallest repeat vectors of the crys-
tal lattice and its line direction ζ. Three fundamental dislocation types
have been identified which differ in their geometry. These are edge, screw
and mixed dislocations and are defined depending on whether the line
direction of the dislocation ζ is perpendicular, parallel, or at an arbitrary
orientation to its Burgers vector b. The glide planes on which the disloca-
tion can move under stress are preferably the densest packed planes which
are called the elementary slip planes of the underlying crystal lattice.

The center of the dislocation line is called its core. The total energy of
a dislocation consists of a core energy contribution and the energy due
to the long-range strain field. To describe the dislocation core, the most
commonly used analytical model is the Peierls-Nabarro model [2,16] which
takes into account the discreteness of the lattice. In this model, the dislo-
cation is defined by means of a disregistry between atoms above and below
the slip plane of the dislocation. The width of the dislocation core depends
on the interatomic forces and therefore requires input from ab-initio meth-
ods. Another approach to study the core structure of a dislocation is by
atomistic simulations which will be discussed in detail in section 2.3.
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The total force per unit length acting on a dislocation is given by the
Peach-Koehler (PK) expression [2, 17]

fPK
L

= (b · σtot) × ζ (2.1)

where σ is the total stress on the dislocation with Burgers vector b and
line direction ζ. The force expression has two components: a glide com-
ponent

fgl
L

=
[(b · σtot) × ζ] · [ζ × (b × ζ)]

|b × ζ| (2.2)

and a climb component

fcl
L

=
[(b · σtot) × ζ] · (b × ζ)

|b × ζ| (2.3)

Dislocation climb is a process by which the dislocation can move out
of its slip plane. Climb is driven by diffusion and occurs only at high
temperatures.

It must be emphasized here that only the glide component of the PK force
contributes directly to dislocation glide and hence to plastic slip despite
the non-planar core-structure of screw dislocations in bcc metals. The
other stress components only influence the core-structure.

Dislocation lines typically contain steps of atomic sizes which are called
either kinks if they can glide conservatively along the dislocation line, or
jogs if the step is out of the slip plane and cannot glide conservatively. Jogs
can be sources and sinks for vacancies. These steps can therefore alter the
dynamics of dislocations by acting as pinning points.
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2.2. Mechanical properties of bcc metals

2.2.1. Experiments on bulk crystals

The first systematic attempt to quantify mechanical behavior of close-
packed metals was derived from tensile experiments in cadmium and con-
densed into the Schmid law [1,18]. This law provided the first framework
to predict the onset of plastic flow in close-packed metals. It states that
the plastic flow in metals occurs when the shear stress on a slip plane in
the direction of densest atomic packing (slip direction) reaches a critical
value (critical resolved shear stress CRSS) which was termed "Schubspan-
nungsgesetz" [18](shear-stress law). There are two major implications of
this law. Firstly, there exists a well-defined CRSS to initiate plastic flow
in metals, that is independent of the orientation of applied loading and
the sense of shearing on a crystallographic plane. Secondly, it is not af-
fected by components of the stress tensor other than the resolved shear
stress [3]. Accordingly, plastic flow is expected to initiate on the plane hav-
ing the highest resolved shear stress. However, already the early studies
of plastic flow in α-Fe [19] and β−brass [20] indicated the complex na-
ture of yielding in bcc metals which cannot be described by the Schmid
law. These experiments revealed two important characteristics of slip com-
mon to bcc metals: 1) The slip geometry and the yield stress depended
on the orientation of the applied loading 2) No well-defined close-packed
plane of slip could be identified.

Later investigations of the yield stress dependence on temperature of sev-
eral bcc metals also revealed that the deformation behavior and slip geom-
etry of bcc metals is temperature and orientation dependent [21,22]. The
observed temperature dependence of yield and flow-stress of bcc metals
was at first attributed to the thermally activated unpinning of dislocations
at solute atoms [4]. Availability of new sample growing techniques like the
electron beam floating zone method and subsequent refinement like the
ultra-high vacuum annealing enabled the preparation of samples free from
interstitial impurities [4]. Systematic experiments on several pure bcc met-
als unambiguously demonstrated that the strong temperature behavior
of flow stress is indeed an intrinsic property of all bcc metals. Further-
more, from extensive investigations on α−Fe [23–27], Nb [28–34] , Fe-Si
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alloys [35–37], refractory metals constituting the group VB like V [29,38]
and Ta [39–43] and group VIB like Mo [22, 44–48], W [42, 46, 49–53] the
following fundamental deformation characteristics could be attributed to
all bcc metals:

1. The yield and flow-stress for a given orientation depends on the
sense of loading referred to as the tension-compression asymmetry
which was already observed on β−brass by Taylor et al. [20]. This
constitutes a striking violation of the Schmid law

2. Twinning-antitwinning asymmetry is also intrinsic to bcc metals,
which means that the CRSS depends on the sense of shear. Its exis-
tence was confirmed by pure shear experiments on Mo by Guiu [54]

3. Yield and flow-stress is temperature dependent and this property is
intrinsic to all bcc metals

4. Orientation dependence of flow stress is a characteristic property
of bcc metals

5. Slip geometry is varied and complex and is temperature depen-
dent. Slip direction is always a 〈111〉 direction

6. Work-hardening rate is orientation and temperature dependent. Wh-
ile at high-temperatures most bcc metals exhibit the three stage
hardening similar to that in fcc metals (see for example [28]), low
temperature stress-strain curves are highly orientation dependent. S-
pecimens oriented for single slip typically show quasi-parabolic stress
-strain curves at low temperatures (see [4, 55] for review)

Since the deformation behavior of bcc metals deviates from the Schmid
law, these features are together termed non-Schmid effects [4, 56]. The
theoretical and experimental aspects of plastic deformation in several bcc -
metals have been well-reviewed in [4, 57].

Due to the complex slip behavior, mechanical tests were complemented
with in situ and ex situ transmission electron microscopy (TEM) studies
to gain insight into the dynamics of dislocations and dislocation arrange-
ments. The presence of long-screw dislocations in the post-deformation
TEM images at low temperatures led to the notion that the screw dislo-
cations may be rate-controlling in bcc metals [24, 44, 45]. This view was
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further confirmed by in situ experiments [58, 59] which showed the screw
dislocations moving rigidly at low temperatures. Based on these observa-
tions, it is now understood that : 1) Screw dislocation motion occurs via
kink-pair mechanism and 2) The kink-pair nucleation time is larger than
their propagation along a screw dislocation. These two aspects are also
utilized for modeling the screw dislocation motion in the present work. De-
spite numerous investigations to understand the mechanisms controlling
controlling the plastic deformation in bcc metals, a consistent overall un-
derstanding of mechanical behavior remained elusive.

Temperature and strain rate dependence of flow stress

IIIIII

{112} slip{112} slip{110}
slip

F
lo

w
st

re
ss
τ c

r
s

s

“τ

τ
{110}
P

τ
{112}
P

τM

τ∗

“TT̆
upper bendlower bend

Temperature [K]

TK

Figure 2.1.: Schematic representation of typical flow stress-temperature relationship
of bcc metals adapted from reference [60].
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The dependence of flow-stress on temperature and strain rate investigated
for several bcc metals like W [55, 61, 62], α-Fe [63–65], Mo [66], Nb [67],
and Ta [68] reveals a generic form shown schematically in Fig. 2.1. Below
the so-called knee-temperature TK (also referred to as athermal tempera-
ture 1), there exist three distinct regimes I, II and III [71,72] characterized
by different slopes of the flow-stress vs temperature curve.

Seeger [8, 71] proposed the quantitative tools to interpret the flow-stress
data of bcc metals in terms of the kink-pair nucleation theory [73, 74]. It
is assumed that a reliable experimental determination of temperature de-
pendent flow stress can be justified by the following equation

τcrss = τa + τ∗(γ̇, T ) (2.4)

The equation expresses that below the transition temperature TK , the
effective CRSS τcrss is assumed to consist of a thermal component τ∗ [75]
and a smaller athermal component τa. The athermal component is very
small (about 15 MPa for W [62]) and includes contributions from the long-
range internal strain field whose temperature dependence results from
the dependence of the elastic moduli on temperature [8,75]. It is therefore
assumed that the applied strain rate γ̇ is maintained by screw dislocations
only.

For W, the experimental measurements of the temperature dependence of
flow stress by Brunner [61,62] upto TK = 800 K have shown that the tran-
sition from regimes I and II and regimes II and III occur at 600 K and 220
K respectively. These transition temperatures are also called upper and
lower bend temperatures [8] respectively. Similar regimes and transition
temperatures also exist in other bcc metals. It must be noted that deforma-
tion below 100 K in W and other bcc metals [61,76] is limited by cleavage
fracture and twinning. Therefore, at such temperatures different size of
specimens were used to determine the flow-stress. The experimental value
of the Peierls stress is obtained by extrapolating the stress-temperature
dependence to 0 K.

1The notation Tk for the athermal temperature used here is due to Sestak and
Seeger [69]. This notation is used to interpret experimental results on W by Brun-
ner [55] and is also followed in the present work. However, in the modern litera-
ture [70], the athermal temperature is also denoted by Ta.
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To account for the different regimes, two different kink-pair models are as-
sumed to be active [71] in the respective regimes. Regime I of small applied
stresses (and high temperatures), is attributed to the screw dislocation
being connected to the neighboring Peierls valley by a pair of elastically-
interacting kinks [74]. In other two regimes of moderate to high-stresses, a
line tension approximation has to be used to describe the kinks on a screw
dislocation. This is because owing to large stresses the kink-pairs are so
close that they cannot be accurately described by the linear-elastic the-
ory. These two models will be discussed in detail in section 3.2.3.

Fracture experiments on W single crystals [77–79] also show that the
fracture toughness and the brittle to ductile transition are both directly
correlated with the temperature and strain rate dependent changes of
dislocation mobility [80]. This further emphasizes the necessity for an
accurate description of dislocation mobilities in a computational model
in order to properly link the microscopic mechanisms with macroscopic
behavior.

Elementary slip planes in bcc metals

Another fundamental aspect of deformation in bcc metals, which has been
a subject of controversy over the years, concerns the elementary planes
of slip on which dislocation motion occurs. In fcc metals the elementary
plane of slip is well-known to occur on the {111} planes. In bcc met-
als however, the elementary slip planes are less clear. A feature common
to all bcc metals in experiments is the occurrence of well-defined crys-
tallographic slip on {110} planes at low temperatures and on the maxi-
mum resolved shear stress plane at higher temperatures [4]. At medium
and high-temperatures {112} (or {123}) slip has also been reported in
bcc metals (see for example [49, 55, 81] for W or [45, 46, 66] for Mo).

Taylor and Elam [19] first introduced the notion of pencil glide as a mech-
anism of slip in bcc crystals according to which the direction of slip is
the 〈111〉 direction but the slip plane coincides with the maximum re-
solved shear stress plane. While it is now accepted that slip occurs along
the 〈111〉 direction, the microscopic slip planes on which slip occurs are
still unclear. The most common interpretations are:



12 2. Literature review

1. The elementary slip planes are {110} in the entire temperature range
and the MRSSP slip is composed of slip events on {110} planes [82,
83].

2. The elementary slip planes are {110}, {112} and {123} [46, 84, 85].

3. The elementary slip plane changes from {110} at low temperatures
to {112} at higher temperatures [8, 86]. The change in slip plane of
the screw dislocations at higher temperatures is attributed to a core
transformation of a/2〈111〉 screw dislocations which is hypothesized
to make it easier for the screw dislocation to glide by elementary
steps on the {112} planes [87].

The interpretations 1 and 2 above are based on the macroscopic slip
traces. The interpretation 3 is based on the height of kinks (i.e. the dis-
tance between the Peierls valleys connected by a kink), which is inferred
from experiments from the flow-stress vs temperature data. Specifically
from the measurements on W by Brunner [62], the heights of kinks in
regime I and II correlate well with the kink-pair nucleation on {112}
planes and in the regime III on the {110} planes. However, this inter-
pretation is not unique for all bcc metals since for α−Fe, Brunner and
Diehl [63, 88] conclude that dislocations glide on {110} planes in regime
II.

More recently Caillard [89,90] concluded from in-situ experiments on thin
foils of α−Fe that the elementary slip planes are always of the {110}
type. Luft et al. [91] performed sub-surface microstructure analysis to
correlate the slip planes with the underlying microstructure and obtain
information on the elementary slip planes. However, they concluded that
little reliable information on the slip activity in the bulk can be obtained
from the analysis of surface slip traces alone due to the insufficient res-
olution of the optical methods. In summary, there is no reliable method
to directly determine the slip traces which has led to the ambiguity of
elementary slip planes in bcc metals.

Anomalous slip

The understanding of the mechanical properties of several bcc metals is
further complicated by the occurrence of so called anomalous slip. The
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term "anomalous" refers to the occurrence of slip on a plane of very low
resolved shear stress. Classically, it refers to the occurrence of significant
slip on the low-stressed (01̄1) plane for any orientation of loading inside
the [001] − [011] − [1̄11] stereographic triangle. Anomalous slip was first
observed in Nb by Duesbery et al. [30] as the dominant slip plane at low
temperatures. Other bcc metals like W [46], V [92,93] and Ta [94–97] also
showed anomalous slip, though in these metals it is thought to occur in the
early stages of straining. The role of other slip systems when accompanied
by anomalous slip is highly orientation dependent. No anomalous slip to
date has been observed in α−Fe [76].

The key features of anomalous slip based on slip traces and TEM obser-
vations can be summarized as follows:

1. Anomalous slip in bcc metals is associated with sharp and straight
slip lines and occurs only at low temperatures. It occurs mostly in
high-purity metals [4]. The slip traces are coarse crystallographic
occurring on well-defined {110} planes.

2. A network of dislocations joined by 〈100〉 junctions has been found
on the anomalous slip plane and the conservative motion of the net-
work has been attributed to be responsible for anomalous slip [98].

3. The anomalous slip planes are the same in both tension and com-
pression and the contribution of anomalous slip plane to total defor-
mation is orientation dependent.

4. The Schmid factor of the anomalous slip system is typically fourth
or fifth highest. Recent compression experiments in Mo [99] show
slip on other low-Schmid factor planes as well.

Surface orientation is also known to significantly influence the slip mor-
phology in bcc metals. Vesely [100,101] conducted tensile experiments on
thin foils of Mo single crystals at room temperature for different specimen
geometries subjected to the same loading direction. The surface orienta-
tion influenced the activity of slip systems and led to unexpected plastic
flow on several low-stressed slip systems. However, a mechanistic explana-
tion of this behavior is still elusive.
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In the present work, the phenomenon of anomalous slip is investigated in
greater detail on micrometer sized pillars and compared directly with ex-
periments on pillars of the same geometry. A new mechanism for anoma-
lous slip consistent with the features of anomalous slip listed above is
presented and is discussed within the context of dislocation-dislocation
interaction in micropillars in chapter 4.

2.2.2. Small-scale metallic structures

The mechanical properties described in the previous sections have been
established on bulk bcc single crystals in which the microstructural length
scales (typically of the order of µ m) are small compared with the spec-
imen size (order of mm and higher). In bulk-specimens, the mechanical
properties are known to be independent of the sample size. However, when
the specimen sizes are in the range of few tens of microns or lower, the
flow-stress depends on the smallest critical dimension [102] and this phe-
nomena is called the size effect. A size effect has been observed in several
single crystalline fcc [103, 104] and bcc metals [105, 106]. The flow stress
σy depends on the specimen size d and this relation can be described by
the power law σy ∝ d−n. The value of the exponent n varies between 0.6
for Ni [103] to 0.97 [107] for Au. Bcc metals like W show an orientation
dependent but much weaker size-dependence with n ≈ 0.16 for single-slip
orientation at room temperature [108]. The dominant mechanisms respon-
sible for size-effect in fcc single crystals are attributed to either collective
effects of dislocation multiplication and resulting forest hardening from
junction formation in larger crystals or single source controlled plasticity
in smaller pillars [104]. However, the role of these mechanisms in the size-
effect in bcc metals is unknown. Interestingly, despite differences in the
magnitude of exponent n, both fcc and bcc metals exhibit similar strain-
burst characteristics i.e. nearly elastic loading regions followed by frequent
dislocation avalanches. One possible implication of the same strain-burst
characteristic is that similar mechanisms may control the size-dependent
behavior in these metals [109]. Furthermore, Bei et al. [110] found that
in micro samples of directionally solidified Mo, the flow-stress depends on
the initial-dislocation density.

Schneider et al. [106] have shown that at a given test temperature Ttest the
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scaling exponent n in bcc metals varies inversely with the athermal tem-
perature Tk. Their results show two different regimes of size-dependence:
for metals with high Ttest/Tk, an fcc like size dependence is observed and
for low Ttest/Tk much weaker dependence has been observed. In other
words, since amount of thermal activation depends on Ttest, the screw
dislocation mobility strongly influences the scaling exponent n in bcc met-
als. Similar results have also been obtained by Han et al. [111].

Using DDD simulations, Greer et al. [112] observe that in fcc pillars, a
single dislocation glides and exits the volume without multiplying. Com-
paratively in a bcc pillar, a single screw dislocation can easily multiply and
further generate new screw dislocations due to its ease of cross-slip. The
screw dislocations reside longer in the volume owing to their large CRSS
and therefore are expected to contribute more to strain-hardening. Based
on these observations the authors propose that dislocation-dislocation in-
teractions play a much more important role in bcc metals and this fun-
damental difference in dislocation behavior may possibly be responsible
for the different scaling exponents in fcc metals and bcc metals. How-
ever, Schneider et al. [113] showed that pre-straining had little effect on
the size-effect coefficient of Mo single crystals. While for fcc metals several
large-scale fully 3D DDD simulations have been performed to investigate
the mechanisms of size effect in fcc metals [103, 104], in bcc metals such
simulations are difficult owing to the lack of good models that can account
for the plastic anisotropy of bcc metals in a reliable manner.

2.3. Atomistic investigations of dislocation core

properties at 0 K

2.3.1. Properties of a/2〈111〉 screw dislocation core

Atomistic simulations have been performed since the sixties to investigate
the properties of dislocation cores in bcc metals at 0 K. Simple pair poten-
tials [114, 115], which display the stability of a bcc structure, have been
used to describe the interactions between atoms. These investigations have
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confirmed the non-planar spreading of the dislocation core of screw dislo-
cations in agreement with the Neumann principle [116] which states that
the symmetry of any physical property of a crystal must also include the
symmetry of the crystal lattice. First proposed by Hirsch [7], this also
provided a plausible explanation for the large lattice resistance (Peierls
stresses) and lower mobility of screw dislocations as being the reason for
the observation of the long screw dislocations in experiments on bcc met-
als [4]. The other aspects of non-Schmid behavior like the orientation de-
pendent CRSS and twinning-antitwinning asymmetry could also be quali-
tatively interpreted in terms of single screw dislocation behavior [117,118]
at 0 K. However, all the early calculations have shown two energetically
equivalent configurations of the screw dislocation core which are related
to each other by a {110} diad symmetry and have hence been termed as
degenerate.

The validity of a degenerate core structure has always been questioned
as the pair potentials could not accurately describe the mixed metallic
and covalent type of bonding characteristic of transition metals [119]. Us-
ing more sophisticated yet empirical central-force many-body potentials
like the Finnis-Sinclair (FS), or the embedded atom method (EAM) also
revealed a degenerate core [56, 120]. The empirical potentials being com-
putationally efficient are used for molecular dynamics simulations (see
for example [121]). However, since the dynamics of screw dislocation is
directly related to the core transformation due to atomic rearrangement
induced by the applied loading, the clarification of the true nature of screw
dislocation core is therefore significant.

Ab-initio density functional theory (DFT) based studies on Mo and Ta
[122–124] and other transition metals [125] predict a non-degenerate core
structure which symmetrically spreads on all the {110} planes of the zone
of the 〈111〉 direction. Ab-initio methods being more credible, the equi-
librium core structure of a screw dislocation is now accepted to be non-
degenerate. However, owing to their computational intensity, the ab-initio
methods are limited by the size of the simulation cell and periodic bound-
ary conditions and cannot be used to study the finite temperature behav-
ior of dislocations.

Semi-empirical schemes like the Bond Order Potentials (BOP) which pro-
vide a tradeoff between the accuracy of ab-initio based methods and the
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computational efficiency of empirical methods are being used to study the
properties of dislocation cores of transition metals [126, 127]. They can
successfully describe the directional nature of covalent bonds in bcc tran-
sition metals. They predict a non-degenerate core in agreement with DFT
calculations. The BOP developed in [126] has been used to obtain the
atomistic data used in the present work.

Ito et al. [120] investigated in detail the stress components which affect the
glide of screw dislocation using FS potential for Mo and Ta. They found
that even though the stress state on a dislocation may be quite com-
plex, the only components of stress tensor affecting the CRSS of screw
dislocation are 1) the shear stress parallel to the slip direction and 2)
the shear stress perpendicular to the slip direction. Other components of
the stress tensor do not significantly influence the CRSS of screw disloca-
tion. This has also been confirmed by the recent investigations of Gröger
et al. [9, 128] using BOP on W and Mo [126,127].

Gröger systematically calculated the dependence of the Peierls stress of
a 〈111〉 dislocation on the orientation of the maximum resolved shear
stress plane (MRSSP) in uniaxial loading and on the magnitude of the
shear stress perpendicular to the slip direction. They have found a strong
twinning-antitwinning asymmetry in Mo but virtually none in W. Ad-
ditionally, the most active slip system does not systematically coincide
with the most highly stressed {110}〈111〉 glide system but varies with
both the orientation of the MRSSP and the magnitude of the shear stress
perpendicular to the slip direction. At the discrete atomic level, this is
attributed to the presence of small edge components of displacement
within the non-planar screw dislocation core which are affected by the
applied loading. Based on these results, they have developed an atomistic
yield criterion utilizing the non-Schmid framework of Qin and Bassani
for Ni3Al [129, 130]. The yield criterion has been utilized to construct a
two-dimensional Peierls potential that changes its shape in response to
the non-glide stress components and orientation of the MRSSP [11]. The
constructed Peierls potential has been then utilized to develop a thermo-
dynamic model of the dislocation glide at finite temperatures, which is
based on the classical works of Seeger [74] and Dorn and Rajnak [73]. It is
thus possible to obtain physically justified flow criteria for Mo and W that
originate from the level of isolated a/2〈111〉 screw dislocations. By scaling
the atomistically obtained stresses by a factor of roughly 3-4, this mul-
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tiscale approach has shown to yield reasonable macroscopic predictions
of cavitation instability and the occurrence of strain bursts in bcc met-
als [11, 131]. However, no attempt has been made to directly employ the
atomistic simulation results to study general dislocation-dislocation inter-
actions at arbitrary stresses in bcc metals.

MD simulations have been employed to directly observe and confirm that
the screw dislocations indeed glide by the kink-pair nucleation mecha-
nism [121,132]. All atomistic simulations (both 0 K and finite temperature)
to date suggest that kink-pair nucleation occurs only on the {110} planes
and any other slip occurs as a result of composite slip on these elementary
planes (see for example [133]). The determination of the elementary slip
planes however, is critical for both the DDD and crystal plasticity mod-
els which assume a set of slip systems on which the dislocation evolution
occurs.

2.3.2. Properties of non-screw dislocations

Atomistic simulations have revealed that the non-screw dislocations have
a planar core structure and the Peierls stress of the edge dislocations
in bcc metals is much smaller than that of the screw dislocations [134,
135]. For example, using the FS potential for W, the Peierls stress for an
edge dislocation is 10−4 µ [136] which is about two orders of magnitude
smaller than that of screw dislocations (about 10−2 µ), where µ is the
shear modulus.

Using different interatomic potentials,Yamaguchi et al. [137] showed that
despite having a planar core structure, a mixed orientation which is at
about 71◦ to the a/2〈111〉 Burgers vector and referred to as the M111 ori-
entation, also has a high Peierls stress [138]. Kang et al. [139] investigated
the dependence of Peierls stress on the orientation of the dislocation line
using the FS potential for Ta. They report that in addition to the screw
orientation, several other orientations of dislocation line exist which have
significantly higher Peierls stress compared to the pure edge orientation.

An unresolved issue in the bcc dislocation theory is why the CRSS of
screw dislocation obtained from atomistic studies at 0 K using different
interatomic potentials is consistently a factor of about 2 − 3 higher than
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that obtained from experimentally determined flow-stress extrapolated to
0 K (see [140] for a review). This points towards an inadequacy in under-
standing the fundamental deformation mechanisms governing the plastic
flow in bcc metals. One major hypothesis attributes that the experimen-
tally measured flow-stress reflects the collective motion of dislocations
where the mutual interaction of dislocations compensates the remaining
stress needed for continued motion of screw dislocations [140]. In this re-
spect, DDD simulations are most suited to verify this hypothesis since the
effective yield stresses in these simulations directly reflect the collective
motion of dislocations and will also be addressed in this work.

2.4. Screw dislocation mobility at finite

temperatures

The atomistic calculations of the properties of the dislocation core are
all performed at 0 K on an isolated and infinitely long screw disloca-
tion. At finite temperatures, the mobility of screw dislocations via the
kink-pair mechanism [73, 141] is described using the transition state the-
ory. The average forward velocity of a screw dislocation is given by the
equation [142]

v =
ba0L

l2c
νD exp(

−∆H(Σ)
kBT

) (2.5)

where νD is the Debye frequency, b the magnitude of the Burgers vec-
tor, a0 the height of the kink (a0 = a

√

2/3) where a the lattice con-
stant, L the length of the screw dislocation, lc the critical length for the
nucleation of a kink pair, kB the Boltzmann constant, T the absolute
temperature and ∆H(Σ) the stress-dependent activation enthalpy. The
term L/lc gives the number of possible nucleation sites for kink-pairs im-
plying that the rate of kink nucleation is dependent on the length L of
the screw dislocation. The critical length lc is a variable quantity and
is a function of stress. It can be obtained from the activation volume
V (lc ≈ V

a0b
) [73, 143]. The activation volume is a dislocation parameter
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which gives information about the barrier experienced during the thermal
activation process and is generally defined as

V =
−∂∆H(Σ)

∂τ
(2.6)

The activation enthalpy ∆H links the atomistic and mesoscale models
and its description within a DDD model based on atomistic studies is the
primary focus of this work.

2.4.1. Activation enthalpy of kink-pair nucleation

The dominating term in the velocity Eq. (2.5) is the stress-dependent
activation enthalpy because of its exponential dependence. Hence its de-
termination plays a crucial role in describing the kinetics of screw disloca-
tions. There are several approaches to describe the activation enthalpy:

In the phenomenological approach due to Kocks [144], the activation en-
thalpy is given by the following form

∆H(τ) = ∆Hc[1 − (
τeff
τ0

)p]q (2.7)

In Eq. (2.7), τeff is the effective shear stress resolved on the slip plane,
τ0 the Peierls stress at 0 K, ∆Hc a scaling enthalpy term and p and q are
parameters which are fitted to experiments. The activation enthalpy ∆H
is a function of effective global resolved shear stress and does not account
for the core effects on screw dislocation mobility like tension-compression
asymmetry which from atomistic simulations [5] are known to influence
the glide of screw dislocations.

The classic works of Seeger [74] and Dorn and Rajnak [73] provide two
different phenomenological models to describe the kink-pair nucleation
process and provide a theoretical basis to determine the activation en-
thalpy. These models will be discussed in detail in chapter 3.
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2.5. Overview of DDD methods

The DDD method is a tool to understand the complex link between collec-
tive motion of a large number of dislocations and the macroscopic plastic
response of crystals. Within the framework of hierarchical modeling, study
of ensembles of dislocations can be used to provide a plastic constitutive
relationship for input into higher time and length scale models.

The first attempts to model the dynamics of dislocations in 3D have been
advanced by Kubin and co-workers [145–147]. The model is based on the
concept of following the evolution of dislocations inside a volume sub-
jected to loading. The dislocation lines are represented by a combination
of discretized pure screw and edge orientations of predefined elementary
lengths. This model is also called as the called edge-screw model. The dis-
location lines move in a discretized space, whose points are chosen so that
they coincide with the lattice points of the crystal to be simulated. Other
methods differing in geometric formulation but based on the same princi-
ple of following the evolution of dislocation ensembles have also been devel-
oped [148–153]. It must be emphasized that in a mesoscale simulation like
DDD, the core structure of dislocation is not explicitly modeled. This is
because the most important phenomena occur are governed by long-range
strain and stress fields fields of dislocation, at distances far enough from
the core and can be well described by linear elastic theory [2, 5, 154].

Current bcc modeling approaches in DDD are based on describing the mo-
bility of screw dislocations by parametrizing the activation enthalpy ∆H
of kink-pair nucleation in Eq. (2.5) using the phenomenologically based
Kocks law [143,155] (Eq. (2.7)). More recently, Chaussidon et al. [156] have
partially incorporated non-Schmid behavior via cross-slip rules in DDD
simulations based on atomistic information. These rules give rise to an
asymmetric glide in tension and compression loadings. Wang et al. [157]
utilize atomistic information to incorporate the effects of the non-glide
components of the stress-tensor on screw dislocation mobility within the
Kocks model framework. In their model, {112} planes are additionally
considered as elementary planes of slip.

The most accurate description of the screw dislocation mobility would be
to provide the stress-dependence of activation enthalpy through an ana-
lytical function that can reflect all the non-Schmid effects on the Peierls
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barrier. However, obtaining such a function is indeed formidable, due in
part not only to the difficulty in determining the shape of the Peierls bar-
rier but also because of the additional complexity of its dependence on
the non-Schmid stress components.

The activation enthalpy can in principle be directly provided from MD
simulations as an input to DDD simulations as a function of stress. How-
ever, this would necessitate the determination of the critical stress at
which an infinite screw dislocation glides at a given temperature [132]. The
MD simulations are inherently limited due to their smaller time and length
scales and are therefore performed at high strain rates (106 to 109 s−1

) (see for example [121]). Comparatively, the strain rates at which exper-
iments are conducted are much lower (10−5 to 1 s−1) [65, 99]. At such
high strain rates of MD simulations, other mechanisms like kinetic rough-
ening of screw dislocation, debris formation and self-pinning or even twin-
ning [121] may be dominant deformation mechanisms which may not be
active at the low strain rates of experiments.

A straightforward implementation of the atomistic information into DDD
is therefore not feasible. Mesoscopic models such as DDD have to handle
longer length and time scales, which necessitates a systematic information
transfer from the atomistic scale to dislocation properties in the form of a
constitutive law for the dislocation mobility, which at the same time, re-
tains the fundamental physics.

As a first step towards understanding collective motion of dislocations, an
approach to transfer the results of atomistic studies on isolated a/2〈111〉 s-
crew dislocation to a mesoscopic DDD model, which takes into account
the dislocation core effects on dislocation mobility at the scale of DDD, is
presented in chapter 3 of this work. The motion of each screw dislocation
in DDD is governed by the local stress state along the dislocation. The
details of the modeling approach are presented in the next chapter.



3. Discrete Dislocation Dynamics

In this chapter, the physical principles and the numerical aspects of the
DDD tool and the relevant modeling aspects for modeling dislocation
dynamics in bcc crystals are presented.

3.1. Generalized description of the DDD tool

3.1.1. The physical model

In a DDD model, dislocations are represented as lines embedded in an
elastic continuum. Each dislocation is characterized by its line direction
and Burgers vector. The elementary planes on which the dislocation glides
are defined a priori in a typical DDD simulation. The description of plas-
ticity follows naturally from the change in internal elastic energy of the
crystal when a dislocation moves under stress. Non-conservative motion
of dislocations due to jogs, vacancy formation and climb, is neglected in
this model.

Associated with each dislocation are the corresponding stress and strain
fields which are described within the framework of linear elasticity. Only
isotropic elasticity is considered here. Each dislocation feels the effect due
to other dislocations through their long-range elastic strain fields. When
two dislocations approach each other, the nature of interaction can be
quite complex and depends both on the orientation of both the dislocation
line and the glide plane. Additional constitutive laws are needed to capture
the result of such interactions and are discussed in section 3.2.5.
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Figure 3.1.: Decomposition of the finite boundary value problem.

3.1.2. Boundary value problem

The boundary value problem is used to represent the class of problems
in which certain conditions prescribed on the boundary of the specimen
must always be satisfied. Boundary conditions are necessary to describe
the complete response of any continuum model. Consider a specimen as
shown in Fig. 3.1 with volume Ω and surfaces Γu and Γf on which the
following displacement u and traction boundary conditions t respectively
are prescribed

u = U0 on Γu (3.1)

t = t0 on Γf (3.2)

To solve such a problem, the approach developed by van der Giessen et
al. [158] is used. It is based on the principle of superposition of the field
variables (strain, displacements etc.) characterizing the response of the
specimen. The desired fields (displacement, strain etc.) associated with
the boundary value problem are decomposed into two sub-problems: (a)
An infinite-space field associated with the analytical equations describing
the stress and strain fields of the dislocations and (b) an elastic prob-
lem associated with a linear elastic continuum representing the volume Ω
without dislocations.
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The infinite-space field associated with a dislocation are denoted by (̃ ) and
is readily obtained from direct analytical expressions [2,159–161]. Assum-
ing Ndisloc dislocations are present in the current state, the total fields (dis-
placement, strain and stress) due to all dislocations can be obtained by
superposition

ũ =
∑

i

ũi ε̃ =
∑

i

ε̃i σ̃ =
∑

i

σ̃i (i = 1, 2, 3 . . .Ndisloc) (3.3)

The traction vector on any surface with normal n due to the stress field
σ̃ is given by

t̃ = σ̃ · n (3.4)

The resulting fields associated with the dislocation are generally incon-
sistent with the applied boundary conditions on the corresponding sur-
faces. Hence correction fields denoted by (̂ ) on the modified elastic con-
tinuum are required which are coupled to the (̃ ) fields via the boundary
conditions.

û = U0 − ũ on Γu (3.5)

t̂ = t0 − t̃ on Γf (3.6)

This equation merely states that the solution to the finite boundary value
problem 3.1 and 3.2 is equivalent to solving a modified linear elastic prob-
lem on a finite volume Ω in which the effect of dislocations has been
accounted for.

The corresponding balance equations in the volume Ω are

∇ · σ̂ = ~0 (3.7)

ε̂ = ∇û (3.8)

σ̂ = L : ε̂ (3.9)
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where L is the stiffness matrix. As written in Eq. (3.9), this approach is
valid for small-strains.

The total stress on any dislocation inside the continuum is then given by
summation of the stresses due to the modified boundary value problem
and the stresses due to dislocation-dislocation interactions via their long-
range elastic fields. This can be mathematically represented as

σtot =
Ndisloc∑

j=1

σ̃j + σ̂ (3.10)

The total force acting on a segment of length dl of the dislocation due to
the total stress σtot is given by the Peach-Koehler (PK) expression [2,17]

fPK = (σtot · b) × dl (3.11)

The relevant force component which affects the glide of the dislocation
is the one which acts only in the glide plane. Climb of dislocation is not
considered.

The aspects described above constitute the general framework of the DDD
tool applicable to both fcc and bcc crystals. For a complete description, the
physical representation must be supplemented with appropriate constitu-
tive laws for dislocation motion and are described in the next section.

3.2. Modeling aspects for bcc crystals

In the present work, an existing code for fcc metals developed by Weygand
et al. [162–164] is advanced to account for the bcc crystallography. The
large difference in mobilities of the edge/mixed and screw dislocations
in bcc metals necessitates a different approach than modeling fcc crys-
tals, since the specific dislocation properties must be separately accounted
for. The properties of isolated 〈111〉 screw dislocations are obtained from
the atomistic studies. Since at the mesoscale we are obviously not inter-
ested in describing every elementary process, an empirical law is required
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that can account for the effect of these smaller scale processes and yet
retain its coarse-grained nature.

3.2.1. Modeling of non-screw dislocations

In the model presented in this work, the glide of all non-screw segments
is assumed to be athermal. Their motion is assumed to be limited by
phonon-drag and parametrized by a viscous kinetic law that takes into
account the inertial effects similar to that for fcc metals [164–166].

m0

∂v

∂t
+Bv = τglideb (3.12)

τglide = b · σtot · n (3.13)

where m0 is the mass per unit length of dislocation and v is the speed. B
is a material specific temperature-dependent drag-coefficient that can be
obtained from molecular dynamics (MD) studies. The glide component
of the PK-force τglide b on a dislocation is obtained from the local stress
state using Eq. (3.13). The total local stress σtot is given by Eq. (3.10).

3.2.2. Atomistics of single dislocations and
parametrization of loading

The development of a model describing the mobility of 〈111〉 screw disloca-
tions based on atomistic data is the primary objective of this work. This
physically based model describing the mobility of a/2〈111〉 screw dis-
locations suitable for use within a DDD framework is presented in this
section. The parameters of the mobility law are based on the atomistic
results of Gröger et al. [9–11]. Within the DDD framework, the local
stresses acting on the screw dislocation are known and therefore a lo-
cal mobility law can be formulated. To connect both the atomistic and
DDD framework, the parametrization used for the atomistic results is
presented in section 3.2.2. The 0 K atomistic studies reveal that the core
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structure of screw dislocation, due to its non-planar nature, can be af-
fected by non-glide components of the stress tensor. Since the dislocation
core structure is not explicitly modeled at the DDD scale, the asymmetry
induced in the core structure and its effect on dislocation mobility due to
applied loading must be accounted for in the simulations by appropriate
parametrization.

Here we introduce some basic definitions used throughout this work in a
similar manner as in the literature [4,9]. These definitions are with respect
to a loading axis within the [001] − [011] − [1̄11] stereographic triangle for
a 〈111〉 screw dislocation as shown in Fig. 3.2. For macroscopic uni-axial
loading, all possible loading axes in a bcc crystal can be symmetrically
mapped into the stereographic triangle.

χ

ψ [1̄11]

[011][001]

[1̄01]

[1̄1̄2]

[2̄11]

[111]

P

L

λ

Figure 3.2.: Loading axis in the [001]−[011]−[1̄11] stereographic triangle. The point
L represents the orientation of the loading axis, P the direction normal to the slip plane
and N is the direction normal to the MRSSP.

1. MRSSP: The maximum resolved shear stress plane as shown in
Fig. 3.3, whose orientation is defined as the angle χ it makes with
the (1̄01) plane. For reasons of crystal symmetry, it is sufficient to
consider −30◦ ≤ χ ≤ 30◦.
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2. The twinning (χ < 0) and antitwinning (χ > 0) sense of shearing
on the nearest {112} plane Fig. 3.3.

3. CRSS : The critical resolved shear stress acting on the MRSSP which
indicates the shear (glide) stress required to move the dislocation in
any of the {110} planes.

4. The angle ψ between the (1̄01) plane and the observed (macroscopic)
plane of effective slip.

χ ψ

MRSSP

Slip plane

Twinning side
Antitwinning side

(1̄01)(101̄)

(1̄10)

(11̄0) (01̄1)

(011̄)

(1̄1̄2)

(2̄11)

[111]

Figure 3.3.: Orientation of planes in [111] zone.

The three {110} planes that contain a given 〈111〉 Burgers vector are called
the zonal planes. The most relevant components of the stress tensor that
affects the magnitude of the CRSS to move a screw dislocation on either
of the planes in the zone of a given Burgers vector is given by [9, 10]

Σχ =





−σ 0 0
0 σ τ
0 τ 0



 (3.14)

This tensor is obtained by transforming the stress tensor into a right-
handed system defined in the MRSSP with the z-axis parallel to the Burg-
ers vector, the y-axis normal to the MRSSP and the x-axis in the MRSSP.
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σ and τ denote the shear stress perpendicular and parallel to the slip di-
rection. The perpendicular component is obtained by rotating this stress
tensor counter-clockwise around the z-axis by 45◦ [10], which is the max-
imum value of the normal stress on the MRSSP. Gröger [10] also found
that the CRSS-τ relationship is unique for a given χ and is independent
of the loading history.

α (nα)[mα] α (nα)[mα]
1 (011̄) [111] 13 (011̄) [1̄1̄1̄]
2 (1̄01) [111] 14 (1̄01) [1̄1̄1̄]
3 (11̄0) [111] 15 (11̄0) [1̄1̄1̄]
4 (1̄01̄) [1̄11] 16 (1̄01̄) [11̄1̄]
5 (01̄1) [1̄11] 17 (01̄1) [11̄1̄]
6 (110) [1̄11] 18 (110) [11̄1̄]
7 (01̄1̄) [1̄1̄1] 19 (01̄1̄) [111̄]
8 (101) [1̄1̄1] 20 (101) [111̄]
9 (1̄10) [1̄1̄1] 21 (1̄10) [111̄]
10 (101̄) [11̄1] 22 (101̄) [1̄11̄]
11 (011) [11̄1] 23 (011) [1̄11̄]
12 (1̄1̄0) [11̄1] 24 (1̄1̄0) [1̄11̄]

Table 3.1.: Table of reference slip systems in bcc metals.

The number of crystallographically equivalent {110}〈111〉 slip systems is
12. Slip on higher index planes is assumed to be composed of steps on the
elementary {110} planes. In order to differentiate between the twinning
and antitwinning sense of shearing, positive and negative slip directions
are treated as being distinct. This results in 24 distinct {110}〈111〉 slip
systems as shown in table 3.1.

3.2.3. Screw dislocation mobility

Activation enthalpy: Bottom-up approach

Within the framework of kink-pair nucleation theory, the activation en-
thalpy is a measure of the remaining energy needed from thermal fluctua-
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tions to overcome the Peierls barrier after accounting for the mechanical
part of the loading due to glide stress. This is also the critical input
required in the screw dislocation mobility Eq. (2.5) in a typical DDD sim-
ulation of thermally activated screw dislocation motion. The activation
enthalpy ∆H of kink-pair nucleation provides the link between the atom-
istic and mesoscale modeling. Just like the CRSS, the kink-pair activation
enthalpy must also be a function of the non-Schmid components σ, the
angle of the MRSSP χ and the glide stress τ . Instead of explicitly ac-
counting for σ, it is preferable to consider the ratio η = σ/τ . Hence the
activation enthalpy can be mathematically represented as ∆H(χ, η, τ).

An indirect approach used in this work is to obtain the activation en-
thalpy by coupling the molecular statics studies and analytical models of
kink-pair nucleation. This requires at first, an accurate description of the
Peierls barrier reflecting its dependence on generalized loading states. This
aspect will be discussed later. Secondly, the mathematical framework of
Seeger [71, 74] is used to describe the kink-pair nucleation mechanism.

Two different models corresponding to different temperature regimes are
necessary to characterize the experimentally observed stress-temperature
relationship up to the athermal temperature (Tk). These models differ in
the critical equilibrium shape of the kink-pair on an initial screw disloca-
tion at which the transition of the dislocation to the next Peierls valley
occurs. It is assumed that in both these models each successful kink-pair
nucleation event allows the transition of the screw dislocation to the near-
est neighboring Peierls valley only.

1. Low stress/high temperature regime

In the low stress/high temperature regime, the temperature dependence of
CRSS is weak. It is assumed that in this regime, the critical bow-out con-
figuration is represented by a continuous dislocation line connected over
two neighboring Peierls valleys via fully developed kink-pairs in equilib-
rium (see Fig. 3.4(a)). The kink-segments which are idealized to be of edge
character, interact with each other via their long-range elastic fields. This
model is therefore commonly referred to as the elastic-interaction (EI)
model. The elastic interaction between kinks is described by the attractive
Eshelby potential [74,142]. This is written as µa2

0b
2/8π∆z, where µ is the

shear modulus in the slip plane, a0 the height of each kink or, equivalently,
the distance between two neighboring Peierls valleys, b the magnitude of
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(a)
ξcξ0

V (ξ)

ξ

a0

∆
z

(b)
ξcξ0

V (ξ)

ξ

a0

Figure 3.4.: (a) The critical configuration of the kink-pair due to the EI-model con-
sists of fully-developed pairs of interacting kinks connecting the screw dislocation on
two Peierls valleys. (b) In the LT-model, the critical configuration is a small bow-out
which has not developed into full kinks. Note that in the LT-model, the screw disloca-
tion is already translated a certain distance along the Peierls barrier.

the Burgers vector, and ∆z the separation of the two kinks. This attrac-
tive interaction is opposed by the applied shear stress τ , which does work
τa0b∆z on separating the two kinks. The enthalpy of nucleation of a pair
of interacting kinks in the low stress regime, Hkp, is then determined by a
competition between the attractive elastic interaction and the work done
due to the PK-force. The migration of kink along the screw dislocation line
results in the glide of the screw dislocation into the neighboring Peierls
valley. The activation enthalpy to nucleate the pair of kinks of critical
separation ∆z at the applied stress τ is then given as

Hkp(τ) = 2Hk − (a0b)3/2

√
µτ

2π
, (3.15)
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where µ is the shear modulus, and Hk is an energy of an isolated kink. It
must be noted that since the bow-out configuration consists of fully de-
veloped kinks, the Peierls barrier does not enter the Eq. (3.15). Hence the
non-Schmid stresses do not affect the kink-pair nucleation enthalpy in this
regime.

2. High stress/low temperature regime

V0

V (ξ0)

V (ξ) τb

Work done by glide stresses
during critical bow-out

∆H(Σ)

ξ0 ξc ξ

Figure 3.5.: Qualitative representation of stress dependent activation enthalpy.

At finite applied stresses the dislocation is moved away from the bottom
of the Peierls valley by the action of the shear stress τ . The path of the
dislocation line is curvilinear and the distance of the dislocation along
this curve is denoted by ξ. The position along this path at which the
force dV/dξ, originating from the Peierls potential equals the total PK-
force τb, is denoted by ξ0 in figures (3.4(b)) and (3.5). Following Dorn
and Rajnak [73], the activated state is then represented by a continuous
bow-out of a finite segment of the initially straight dislocation from ξ0

to the position ξc which represents the critical state. This activated state
corresponds to the maximum of the enthalpy that is obtained by maxi-
mizing the difference between the line energy of the dislocation and the
work done by the applied stress on overcoming the Peierls barrier. This
yields the relation V (ξc)−V (ξ0) = τb(ξc−ξ0) which allows to calculate ξc
if the Peierls barrier V (ξ) is known. Hence, the activation enthalpy takes
the form [73]
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Hb(τ) = 2
∫ ξc

ξ0

√

[V (ξ)]2 − [τb(ξ − ξ0) + V (ξ0)]2dξ (3.16)

In the present work, only this LT-model has been used to obtain the ac-
tivation enthalpies [11] from the atomistic data. The calculation of the
activation enthalpy at finite applied stresses from Eq. (3.16) requires ex-
plicit knowledge of the Peierls barrier V (ξ) and its intrinsic dependence
on τ , σ and χ.

The details of the construction of the Peierls potential for W and the cal-
culation of the stress dependence of the activation enthalpy are provided
in references [9–11].

Gröger et al. [11] computed the activation enthalpies for direct transfer
to the continuum based on a scaled value of the Peierls stress correspond-
ing to an effective lowering of the experimentally observed CRSS by col-
lective dislocation motion. These scaled activation enthalpies cannot be
used in DDD simulations because in the present work the primary as-
sumption is that screw dislocations move at CRSS values obtained from
atomistic simulations. Hence, the activation enthalpies were recalculated
by Gröger [167] from his raw-atomistic data for tungsten.

Kinetics of Screw dislocations

Fig. 3.6(a) shows schematically, the projection of the 〈111〉 screw dislo-
cation on the (111) plane and the trace of the three (1̄01), (1̄10) and
(01̄1) planes which belong to the zone of this direction. Since the motion
of an individual screw dislocation is considered in a 3D discrete disloca-
tion setting, kink-pair nucleation is in principle possible on each of these
crystallographic planes corresponding to ψ = 0◦,−60◦,+60◦. This clearly
goes beyond the established approach [10] which for a given Burgers vec-
tor (|χ|≤ 30◦), allows for the activation of the primary system only. Here
we consider dislocation motion on any of the three possible planes in the
zone of the Burgers vector.

The present model is based on the simple idea that the dislocation will
have the highest probability of kink-pair nucleation on the plane with
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(1̄01)

(1̄10)

(01̄1)

L0 L1

L2

L3

(a) undeformed Peierls barriers

(1̄01) ψ = 0◦

(1̄10) ψ = +60◦

(01̄1) ψ = −60◦

L0 L1

L2

L3

(b) deformed Peierls barriers

Figure 3.6.: Schematic description of the change in Peierls barriers on {110} zonal
planes due to non-zero components of non-Schmid stress σ.

the lowest activation enthalpy for a given loading state. In the absence of
applied stress, the Peierls barrier of the dislocation shown schematically
in Fig. 3.6(a) between adjacent lattice sites L0 to L1, L2 and L3 on each
of the planes in the zone respectively is the same. For a general loading
state however, as can be concluded from the atomistic simulations [9–
11], the Peierls barrier on each of the corresponding zonal planes of the
screw dislocation is deformed. This changes the activation enthalpy on the
corresponding plane. With thermal activation, the Peierls barrier is the
determining factor for kink-pair nucleation and Eq. (2.5) gives an average
forward magnitude of velocity vψ on each of the possible {110} planes

vψ =
ba0L

l2c
νD exp(

−∆Hψ

kBT
) (3.17)

This results in highest velocity on the plane having the lowest ∆Hψ. Hence
the problem effectively reduces to determine the dependence of the Peierls
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potential on χ, η and τ for the corresponding MRSSP and to obtain the
kink-pair nucleation enthalpy on each of the three possible planes.

In the DDD model, the activation enthalpy is supplied as a look up
table (χ, η, τ) → ∆Hψ , derived from atomistic calculations for a num-
ber of discrete orientations of the MRSSP (χ) and ratios of the two
shear stresses (η). A plot for a specific parameter set is shown in fig-
ure 3.7. Since the dislocation can move by elementary steps on the three
{110} planes, three tables are provided that give the activation enthalpies
∆Hψ(ψ = 0◦,−60◦,+60◦). To calculate ∆Hψ(χ, η, τ) for a given direc-
tion corresponding to any arbitrary stress state, a trilinear interpolation
scheme is used.
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Figure 3.7.: Example of plot of ∆H(χ = 10◦, η = ±0.5) vs τ (a) corresponds to
η = +0.5, while (b) is for η = −0.5.

Once the activation enthalpy ∆Hψ on each of these three planes is cal-
culated, the total forward velocity of the screw dislocation resulting from
motion on elementary slip planes is written as

vgl =
∑

vψeψ, where ψ = −60◦, 0◦,+60◦ (3.18)

Here eψ is the corresponding unit vector in the translation direction and
vψ is the corresponding magnitude. The angle ψ between the effective
slip plane and the (1̄01) plane can be computed from the velocity vector
using
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ψ = − sin−1 vgl.n

|vgl|
(3.19)

where n is the (1̄01) or (101̄) plane. The effectiveness of this approach will
be demonstrated in the examples in section 4.1. Due to the exponential
dependence of the velocity on ∆Hψ , the glide velocity in Eq. (3.18) is
dominated by the vψ for that {110} plane ψ with the lowest ∆Hψ.

3.2.4. Cross-slip and wavy slip

The geometry of screw dislocations allows it to frequently change its
glide plane when favored by local stress. This ability of screw disloca-
tions to cross-slip is an important stress-relaxation mechanism. Devincre
et al. [168] have shown that the prediction of cross-slip is essential in un-
derstanding the organization of dislocation patterns and dynamic recov-
ery. Post-deformation TEM images of several bcc metals show that individ-
ual screw dislocation lines lie over several planes connected by kinks (see
for example [47]). This indicates a high frequency of cross-slip. Therefore
the correct handling of cross-slip in a DDD simulation is crucial for the
mechanisms of dislocation multiplication and organization. In the present
work, wavy slip (also termed mrss slip) is modeled as a composite of suc-
cessive cross-slip events on {110} planes.

In the present work, the occurrence of cross-slip and wavy slip is a natural
consequence of the relative activation enthalpy ∆Hψ on the three {110}
planes of the zone of a screw dislocation. The activation enthalpy of a
screw dislocation on its habit plane I, ∆Hhb (see Fig. 3.8 is compared
with that of the possible cross-slip plane ∆HCS (either II or III). If
∆Hhb is greater than ∆HCS , then it results in a clear cross-slip. Wavy
slip occurs when ∆Hhb of the habit plane is comparable to the ∆HCS of
the cross-slip plane. {112} slip occurs if ∆Hhb = ∆HCS . The numerical
aspects of the implementation of cross-slip and wavy-slip in the simulation
are discussed in the following sections.
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I

II

III

S b, ζ

MRSSP

χ
{112}

Figure 3.8.: A screw dislocation S with Burgers vector b and line direction ζ moving
on plane I is shown. The MRSSP plane and the nearest {112} plane are inclined at
an angle χ and 30◦ respectively to the plane I. Planes II and III are possible cross
slip planes. Planes I, II and III are of type {110}. The screw dislocation can cross-slip
to the plane II or III if the activation enthalpy of the screw dislocation on plane I is
greater than any of the other two planes.

3.2.5. Dislocation reactions and junctions in bcc metals

In a typical simulation consisting of a large number of dislocations on inter-
secting glide planes, frequent collisions of dislocations occur. The outcome
of these collisions depends on the Burgers vector, the line direction of the
segments, the length of dislocations and the total effective stress. Both the
long-range and short-range interactions are involved in the intersection
process. Atomistic simulations have shown that the energetic contribu-
tions of the latter are small and can be neglected [169]. They also provide
the intrinsic details of junction formation and destruction [169, 170] and
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critical input to their stability. Depending on the nature of the short-range
interactions (attractive or repulsive), either a jog or a junction is formed. If
the local interaction is repulsive, the dislocations may bypass each other
depending on the magnitude of the local driving stress. For the case of
attractive interactions, junction formation depends on an energetic and a
geometric criterion.

(a)

b1

ζ1

ζ2

(b)

b1

n1

n2

b2
b3

ζ3

Figure 3.9.: In (a) reaction leading to annihilation of oppositely oriented screw
dislocations is shown schematically; (b) shows binary junction formation with Burgers
vector b3 of 〈100〉 type due to reaction of two primary 〈111〉 dislocations b1 and b2

gliding on planes with normals n1 and n2 respectively. The junction has resultant
direction ζ3 given by Eq. (3.21). The end points of the junctions shown in dark circles
may glide along the intersection of the glide planes.

Ideally, rules from atomistic studies are needed to accurately describe
such short-range interactions as these interactions cannot be accurately
described by the linear elastic theory. In the absence of such atomistic
input, we use the same energy based criteria for junction formation (and
dissolution) as already described for fcc metals in [163]. For two ap-
proaching dislocation segments with Burgers vector b1 and b2 with line
directions ζ1 and ζ2 and glide planes n1 and n2 respectively, a junction is
formed if the line energy of the resulting dislocation with Burgers vector
b3 = b1 + b2 satisfies the equation

E1(b1, ζ1) + E2(b2, ζ2) > E3(b3, ζ3), (3.20)
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with line direction of the junction

ζ3 =
n1 × n2

|n1 × n2| (3.21)

and the line energy per unit length E given by the following approximate
expression [2]

E(b, ζ)
L

=
G

4 π
((b · ζ)2 +

|(b × ζ)|2
1 − ν

) ln
R

ρ
(3.22)

Following [2], the logarithmic term in Eq. (3.22) is neglected. Eq. (3.20)
expresses that junction formation is favorable if the product dislocation
has lower elastic energy than the reactant dislocations.

Binary junctions are formed when both the reactant dislocations have
a/2〈111〉 Burgers vector. The resulting dislocation can have either null,
a 〈100〉 or a/2〈011〉 Burgers vector. Elastic energy calculations suggest
that the a/2〈011〉 are unstable junctions as they do not lead to a lowering
of energy [171]. Depending on the orientation and the glide plane of the
〈111〉 dislocations, the reactions are:

Annihilation: The reaction of two co-planar dislocations with Burgers
vector b1 and b2 = −b1 results in annihilation (see Fig. 3.9(a)).

Collinear reaction: A collinear reaction occurs when both the reactant
dislocations are related by b1 = −b2 (see Fig. 3.9(b)), but move on differ-
ent glide planes. The result is a junction with zero Burgers vector. The end
nodes of the collinear reaction are constrained to glide along the direction
n1 × n2 which is the intersection line of the planes n1 and n2.

〈100〉 junction: A a 〈100〉 dislocation junction is formed due to the reac-
tion between two unlike a/2[111] dislocations as shown in Fig. 3.9(b). The
reaction can be in-plane if both the reactant and product dislocations lie
on the same plane or out of plane if either of the dislocations lie on a differ-
ent plane. Motivated by atomistic studies [172], all a 〈100〉 junctions are
assumed to have large Peierls stress and are modeled as immobile. Only
the end-points of the junction attached to the reactant 〈111〉 dislocations
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are mobile and constrained to move along the intersection of the two glide
planes allowing for zipping and un-zipping of junctions.

Multi-junctions: Multi-junctions are formed when a binary junction b3

in Fig. 3.9(b) reacts with another 〈111〉 dislocation with Burgers vec-
tor b4, where b4 is not equal to either of b1 or b2. The resulting topo-
logical network has a Burgers vector of the 〈111〉 type. The end points
of such junctions connect four segments. Multi-junctions were first pre-
dicted from simulations [173] and their existence was later confirmed in
experiments. Several configurations of ternary junctions are possible de-
pending on the elementary glide planes in which the dislocation motion
occurs. Multi-junctions are very stable due to their short a/2〈111〉 Burgers
vector and are postulated to contribute significantly to strain harden-
ing [174].

3.3. Numerical modeling

The physical model describing the boundary value problem must be sup-
plemented with appropriate numerical tools to generate a simulation mod-
el which can be represented and solved on a computer. These aspects of
the numerical model are described in the following sections.

3.3.1. Space discretization and description of dislocations

To numerically represent the finite elastic continuum and the dislocation
lines in the simulation, the same methodology described in [162, 163] for
fcc metals is adopted here. The elastic continuum (see Fig. 3.1) is dis-
cretized by twenty-node solid finite elements (with 8-edge nodes and 12
nodes at the mid-point of each edge) are used for this purpose. The ac-
curacy of the stress-resolution depends on the coarseness of the FE-mesh
discretization.

For the bcc crystallography, the elementary planes on which the disloca-
tions move are assumed to be of {110} type. The physical space is dis-
cretized into a finite number of glide planes with normal n separated by
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Figure 3.10.: (a) shows a continuous dislocation loop bowing out in its glide
plane; (b) shows the equivalent representation of the dislocation in DD with line seg-
ments of length li interconnected at nodes (circled). The normal and Burgers vector
of the loop are n and b respectively. The instantaneous tangent on an infinitesimal
segment is replaced by line direction of the line segment.

an integer multiple of {110} inter-planar distance. An arbitrary disloca-
tion loop on a glide plane is discretized by piecewise straight line segments
as shown in the figure 3.10. The line segments are inter-connected at nodes
. . . , A-1, A, A+1, . . . . The dislocation line is characterized by its Burgers
vector b and line direction t. For non-intersecting dislocation segments, a
node shares two segments only. Such a representation of the dislocation is
equivalent to a one-dimensional FEM. The lengths of the line segments are
chosen to give an accurate representation of the geometry of the disloca-
tion loop and capture the local curvature. The lengths of the line-segment
is limited within a user-defined minimum and maximum range (lmin and
lmax). Further an adaptive scheme is used to adapt the length of segments
to local curvature described in [163]. Similar to the approach of Weygand
et al. [163], the following types of nodes are distinguished:

1. Material nodes belong to non-intersecting dislocations

2. Sliding nodes belong either to dislocation junctions, surface nodes
and additionally those nodes connecting a screw and non-screw seg-
ment in case of bcc crystallography.

The position and velocity of a node A is denoted by rA and velocity vA
respectively. In a typical DDD simulation, initial dislocation sources are
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modeled as randomly distributed Frank-Read (FR) sources with disloca-
tion lines pinned at their ends. This modeling approach due to Kubin et
al. [145] is intended to represent the subnet of the Frank net observed in
annealed crystals. The sessile arm of the FR source is not modeled.

To fully define the problem, the numerical representation of the physi-
cal entities of the problem must be supplemented by the specification of
the appropriate boundary conditions. An appropriate time discretization
scheme to solve the problem numerically for the variables is needed. The
general numerical solution of the system is based on an incremental time-
stepping scheme.

3.3.2. Solution scheme

Fig. 3.11 shows the flow-chart of the overall scheme of the DDD simula-
tion. The description of the time-evolution of dislocation microstructure
is equivalent to determining for each node A the corresponding veloci-
ties {vA} and positions {rA}. The starting point in the simulation is the
current known state of the specimen at physical time t at which the po-
sitions and the velocities of the dislocations of the entire microstructure
are denoted by Rt and Vt fields respectively. Due to the different mo-
bility laws needed for screw and non-screw segments, the entire solution
scheme is sub-divided to treat the two types of segments separately. This
requires an accurate book-keeping of the orientation of the dislocation seg-
ments and their classification into screw and non-screw segments which
is performed after every update of nodal position. There are several steps
involved in obtaining the final solution of the problem which are discussed
in subsequent sections.

Boundary conditions and time-stepping scheme

To obtain the time-integrated response of the microstructure for bcc crys-
tals, a time-stepping scheme is applied. The incremental update from
the current physical time t is performed in a two-stage manner involving
global time-stepping and a sub time-stepping scheme. The global time step
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Figure 3.11.: Scheme of the general algorithm used in the DDD simulation.
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scheme is the same as that described in Weygand et al. [163] for fcc met-
als. The scheme involves an update of the boundary conditions, the deter-
mination of the updated positions of the entire dislocation microstructure
and a calculation of interaction of every dislocation segment with all other
dislocations in the volume Ω. The time at which the update of boundary
condition is performed is obtained by adding to the old physical time
the accumulated time-steps in the sub-time stepping scheme discussed be-
low. The linear-elastic modified boundary value problem is now solved to
obtain the displacement fields û corresponding to the new time step t + ∆t
using the multi-grid method (see for example [175]). From these displace-
ment fields, the corresponding strains and stress fields can be obtained at
any point in the volume using the standard finite element method. This is
followed by the detection of possible intersections of dislocations and junc-
tion formation. The velocity field of all nodes is computed corresponding
to the updated boundary conditions.

Within a simulation, the number of segments can increase quickly due to
dislocation multiplication which makes the calculation of pairwise-segment
interaction and update of boundary condition at every step tedious. A sub-
time stepping scheme is used to accelerate the computation. This implies
that the accumulated long-range fields of dislocations do not vary strongly
in space. This allows for a less frequent update of the boundary conditions
and a computation of all dislocation interactions. For bcc metals, the
existing sub-time stepping scheme is adapted to the large differences in
the mobilities of screw and non-screw dislocations and is introduced as
follows

1. From the velocity field of non-screw segments, a time-step δti is com-
puted based on the rotation and length change of the segment i. A
broad distribution of time-steps is obtained for the segments from
which an overall minimum δtnsmin is computed. For the thermally acti-
vated screw segments, a time-step δtsj for screw dislocation segments
is computed. It is the time required for a screw dislocation with ve-
locity vsi to cover a maximum allowed flight distance of 20 b per
step. Correspondingly a global minimum time-step δtsmin for screw
segments is obtained. Owing to the large difference in mobilities be-
tween the non-screw and segments, the time-steps δtnsmin and δtsmin
are quite large (typically a difference of order of 102). The global min-
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imum sub-time step is computed as δt = min(δtnsmin, δt
s
min) and it is

used to update the nodal position and velocities. Additionally, the
possible screw dislocation segments which might cross-slip are de-
tected.

2. Corresponding to the time-step δt obtained in step (1), the mi-
crostructure is updated and further topological changes like junc-
tion formation, re-discretization, detection of segments leaving the
volume of the crystal are performed. For dislocation loops which
have undergone topological changes, interactions are re-computed
for all segments.

3. Steps (1) and (2) are repeated for Nsub number of steps subject to
several conditions. The value of Nsub is an input parameter to the
simulation and is chosen such that during the timeNsub · δt, the long-
range fields do not significantly affect the boundary conditions. The
sub-time stepping scheme is terminated if cross-slip is detected in
which case, only the loops not requiring cross-slip are updated for
the current time-step only. The algorithm returns to the global time-
stepping procedure.

A further modification to the transition between the global and sub-time
stepping schemes is necessary. Screw dislocations are prevalent during de-
formation of a bcc crystal and can cross-slip. If cross-slip occurs within a
sub-time step, the nodal velocities and updated positions are computed for
one sub-time step only. The sub-time step is terminated and the algorithm
returns to the global increment step where an update of all the boundary
conditions is performed. This is essential because it results in generation of
a new loop whose nodal degrees of freedom must be calculated on a newly
populated glide plane based on the current global stress-state. Unfortu-
nately, during straining, the screw dislocations cross-slip very frequently
which restricts the applicability of the sub-time stepping scheme.

Local stress-tensor and Peach-Koehler force

The local stress field σ on a dislocation segment given by the Eq. (3.10),
requires the determination of the elastic FEM solution field σ̂ and the
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field σ̃ [163]. The long-range stress field denoted by (̃ ) due to one disloca-
tion at any point on a remote segment of another dislocation varies with
distance r between the segments.

Within the discretized framework of DDD, the local stress field on a re-
mote dislocation segment is computed at its midpoint for a non-screw
segments [145, 149, 163, 176]. A tree data structure is maintained which
contains the information on segment pairs which are within a critical dis-
tance.

A

B

C

D

Q

P

R

S

rmid

rmin

Figure 3.12.: Stress computation for strongly interacting screw dislocations. The
vectors rmid and rmin are along the midpoints and the nearest approach points of the
two screw segments AB and CD respectively.

For bcc crystals, however a modification to the original approach is nec-
essary. For interacting screw dislocations, the interaction stresses due to
other segments may also vary significantly along a segment which affects
the kink-nucleation rate and hence the velocity of screw dislocation. For
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segments lying within a radius of |rmin|= dmin < 100 b, the stress ten-
sor is therefore evaluated at the point of nearest approach where the re-
solved shear stress due to interactions is strongest (see Fig. 3.12). From
the stress-field, the velocity of each screw segment is calculated using
Eq. (3.23). For all other segments, the stress is evaluated at the mid-point
of the segments. Once the stress field is determined, the velocities of nodes
must be computed. The velocity computation scheme for screw segments
is presented in the next section.

Velocity scheme for screw segments

The continuous form of the mobility law for an isolated single screw dislo-
cation is now known. Its numerical implementation into the framework of
DDD requires additional considerations. For a screw dislocation of total
length L shown in Fig. 3.13, discretized into nseg segments, the averaged
forward velocity vi of each segment i of length li is given by

vi =
ba0li
l2c

νD exp(
−∆Hi

kBT
) (3.23)

The parameters χi, ηi and ∆Hi are computed for each screw segment from
the local stress tensor. These parameters are assumed to be constant for
at least NS

ts sub-time steps. In the event of mixed dislocation segments
which enter a screw orientation and segments rotating out of the screw
orientation for any given loop, the total stress-field on the loop is recal-
culated and the activation enthalpy parameters for all screw dislocations
of that loop are computed. The length li of each dislocation segment is
so chosen that it is always greater than the critical length lc required for
kink nucleation. Kinks on dislocations are generally of the order of a few
lattice spacings which cannot be resolved at the mesoscopic scale of DDD
simulations.

It is additionally assumed that the time of migration of a kink tmig along
a screw dislocation is short compared to the time between two nucleation
events tnuc. This assumption is certainly valid in the low and medium
temperature range [86]. Thus every successful kink generation contributes
to the forward motion of the dislocation. The velocities of all the individual
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Figure 3.13.: Velocity computation scheme of a screw dislocation in DDD.

segments of a dislocation line are added and the entire dislocation of length
L moves forward with the total velocity

VL =
n∑

i=1

vi (3.24)

A homogeneous stress state along a dislocation of line length L, numeri-
cally represented by nseg segments of lengths li, results in equal activation
energies for all segments ∆Hi = ∆H

From Eq. (3.24), the average velocity of the screw dislocation results in
the expected velocity from Eq. (2.5)

VL = (l1 + l2 + · · · ln)
︸ ︷︷ ︸

L

ba0

l2c
νD exp(

−∆H
kBT

) (3.25)

The direction of motion of the dislocation is given by Eq. (3.18).

Certain additional technical assumptions must be made when modeling
dislocations in bcc metals. It is assumed through out that a screw disloca-
tion with node on surface always remain straight. Due to this modeling
assumption, the mobility of screw dislocations corresponds to those of
bulk-crystals. Details are provided in appendix A.1.
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In a typical simulation containing a large ensemble of dislocations, signifi-
cant stress variations across the length of the screw dislocation exist. This
may cause a part of the screw dislocation to change its glide plane. To
account for these variations the following procedure is adopted.

After the determination of the activation enthalpy per screw segment, the
glide plane which corresponds to the lowest-enthalpy plane of its zone is
determined (see Fig. 3.14). Each screw segment is then assigned a sec-
tor corresponding to its plane of lowest activation enthalpy. Neighboring
screw segments which share a common node and glide on the same crys-
tallographic plane are assigned the same sector ID. Once this marking is
done, the sectors which do not change glide plane are collectively moved
in the same direction. For sectors which might cross-slip, the sector infor-
mation like the total length, velocity and the plane of slip is stored. The
corresponding cross-slip step is performed for those sectors where the accu-
mulated velocity of segments exceeds a critical velocity Vcrit on the cross-
slip plane which is an input parameter. Such an approach is necessary to
capture the sudden variations in stresses which occur when an unpinned
edge/mixed dislocation traversing the volume of the crystal encounters a
screw dislocation. The resulting interaction stress on the screw dislocation
can increase rapidly over a short interval of time until the edge/mixed seg-
ment bypasses the screw. Additionally, only those segments whose total
sector length is greater than 30 a0 are allowed to cross-slip.

To simulate wavy slip which occurs when two planes of the screw disloca-
tion have nearly the same activation enthalpies, the procedure described
in [156] is adopted. From the respective velocities vi on each of the glide
planes of a given Burgers vector, a probability p for slip on the secondary
plane is computed from

p =
v2

v1 + v2 + v3

(3.26)

where vi are the velocities of screw segments on each of the corresponding
planes. The velocities entering the Eq. (3.26) are the cumulative veloci-
ties of interconnected segments which belong to the same sector. If p is
greater than a random number, then the cross-slip is performed step on
the secondary slip plane.
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Figure 3.14.: (a) and (b) show the computational procedure for screw dislocations
which cross-slip under favorable stress conditions. In (a), an initial screw dislocation
L1 glides from position AB to CD where the local stress state favors segment wise
cross-slip. The segment lengths and velocities are also displayed; in (b) beginning
with position CD, the sector-wise summing of like segments which are interconnected
based on the direction of velocities is shown. After the summation, the two sectors I
and II have lengths lI and lII with cumulative velocities vI and vII respectively. From
CD, the cross-slip of these two sectors on the cross-slip planes results in loop L2 and
L3 respectively with a common node at G.

From the velocities of the screw segments, a time-step δt is obtained
for screw segments. A global minimum of the time-steps due to both
the screw and non-screw segments is then used to update the entire mi-
crostructure. To avoid arbitrary small-time steps, a minimum time-step is
used. In all the simulations performed in this work, this value is taken to
be 1 × 10−13 s as the simulation volume always contains some mixed dis-
locations as well. The position of nodes of screw dislocations are updated
using an explicit scheme
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Rt+δt
S = Rt

S + Rt
S δt (3.27)

Junction nodes

Numerically, all the junction nodes connected to a 〈111〉 dislocation seg-
ment are treated as sliding nodes to differentiate them from the material
nodes. The nodes are constrained to glide along the intersection line of
the two intersecting planes in which the a/2〈111〉 dislocations lie. The
velocity of such nodes is given by

VJ = VJ tglide (3.28)

with tglide defined by Eq. (3.21).

3.4. Simulation setup

3.4.1. Pillar geometry and initial configuration

In this work, micrometer sized pillars have been simulated under different
loading conditions to understand the deformation mechanisms governing
plastic flow. The cross-section of the pillars is either square or rectangu-
lar. The square cross-section pillars have an aspect ratio which is defined
as the l:h:w where l, h and w stand for the length, height and width re-
spectively as shown in Fig. 3.15. The initial microstructure consists of ran-
domly distributed FR sources with 〈111〉 Burgers vector distributed evenly
among the possible {110} glide planes. In all the investigated pillars, un-
less otherwise stated, the length of the pillar is chosen as 0.5 µm. The
initial length of the sources is taken to be a constant L=200 nm corre-
sponding roughly to the average distance between dislocations according
to the relation L ≈ 1/

√
ρ. The initial dislocation density of the pillar was

about 2.1 × 1013 m−2. The position and orientation of sources is chosen
at random to get a statistical variation. For sources in non-screw orienta-
tion, the initial length of the source does not play a role because once the



3.4. Simulation setup 53

l
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h

FR source

F

Figure 3.15.: Initial distribution of FR sources inside a pillar with aspect ratio l :
w : h. The loading axis is along F. Only dislocations with Burgers vectors of type
〈111〉 on corresponding {110} planes are present. The color of the dislocation lines are
according to their habit planes (see appendix C for the color scheme).

edge and mixed dislocations are driven out of volume, each arm of the FR
source acts as a single armed source pinned at one point.

Two different uniaxial loading directions corresponding to the [1̄ 5 10] and
[1̄ 4 9] orientations are chosen. The choice of the [1̄ 5 10] loading direc-
tion is motivated because of the availability and direct comparison with
compression experiments on W micropillars of the Paul-Scherrer group
in Switzerland. The aspect ratio of the pillar for the [1̄ 5 10] orientation
is 1 : 2.5 : 1 and the pillar geometry in the simulation is the same as in
experiment but the linear dimensions are smaller by a factor 4 owing to
large computational cost for larger pillars.

The [1̄ 4 9] orientation is a single-slip orientation which corresponds with
that of detailed experimental investigations by Brunner [55]. For this
loading direction, simulations are performed in both tension and com-
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pression. The aspect ratio of the pillars for this loading orientation is
1 : 3 : 1. To investigate the role of surface orientation on deformation, sim-
ulations are performed in tension for two different aspect ratios 1 : 3 : 2
and the 1 : 2 : 3.

The Schmid factors for all {110}〈111〉 slip systems for both the [1̄ 5 10]
and [1̄ 4 9] orientations is shown in table 3.2.

Slip system [1̄ 5 10] (m) [1̄ 4 9] (m)

(1̄01)[111] 0.50 0.50
(101)[1̄11] 0.47 0.47
(01̄1̄)[1̄1̄1] 0.29 0.32
(1̄10)[111] 0.27 0.25
(01̄1)[1̄11] 0.26 0.29
(01̄1)[111] 0.23 0.25
(011)[11̄1] 0.19 0.22
(110)[1̄11] 0.21 0.17
(101)[1̄1̄1] 0.17 0.20
(101̄)[11̄1] 0.14 0.17
(1̄10)[1̄1̄1] 0.12 0.12
(1̄1̄0)[11̄1] 0.05 0.05

Table 3.2.: Table of Schmid factors (m) for the [1̄ 5 10] and [1̄ 4 9] loading directions.

All the simulations involving multi-dislocations are performed at a strain-
rate of 5000 s−1. Other relevant details specific to the simulation is pro-
vided in the corresponding section.

3.4.2. Boundary conditions

All the simulations on pillars are strain rate controlled. Displacements
along the loading direction (y-direction) are prescribed on the top and
bottom surfaces at every time increment. The incremental update scheme
of updating boundary conditions is described in section 3.3.2. Rotational
degrees of freedom (dof) are constrained and the remaining dofs have
traction free boundary conditions.
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3.4.3. Material parameters

The following material parameters for tungsten are used in all simulations:
lattice constant a0 = 3.165 Å and b = 2.741 Å. The elastic moduli for
tungsten are C11 = 522.4 GPa, C12 = 204.4 GPa and C44 = 160.6 GPa
which gives an anisotropic factor A = 1.01 . The shear modulus of W is
µ = 159.5 GPa. For the non-screw dislocations, the material parameters
used in the mobility Eq. (3.12) are the mass per unit length m0 = 1.1 ×
10−16kg/m and the drag coefficient B = 1.0 × 10−4 Pa s.





4. Results

In this section, the DDD code is used in the simulations of various disloca-
tion configurations. The final aim is to study the evolution of dislocation
microstructure in W micropillars and correlate the stress-strain response
with the dominant mechanisms. To achieve this objective, the investiga-
tions performed in this work are divided into three parts:

First, the finite temperature behavior of isolated single screw disloca-
tion in tension and compression loadings for several orientations are pre-
sented. The implemented algorithm is validated against the input atom-
istic data with respect to the CRSS and slip plane of isolated screw dislo-
cation at 0 K. The mechanism of operation of single FR source in tension
and compression based on the underlying atomistic parameters is stud-
ied.

Secondly, once the properties of isolated screw dislocations are studied, the
role of dislocation interactions is studied in an incremental manner. The
repulsive interaction between two non-coplanar screw dislocations with
unlike Burgers vectors and interaction between a mixed and screw dislo-
cation is examined.

Finally, further simulations involving FR sources are performed with the
aim of understanding the multiplication mechanisms inside micrometer
sized-pillars. First a system with only two FR sources in which one slip
system has the highest resolved shear stress and the other is inactive
but introduces a stress inhomogeneity in the vicinity of the active dislo-
cations. This is followed by investigations of deformation in micropillars
with different aspect ratios in which all the glide systems are populated
with randomly distributed FR sources. The simulation setup used in this
work is described in section 3.4.
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4.1. Uniaxial tension and compression loading

on an isolated a/2〈111〉 screw dislocation

[1̄ 1 1]

[0 0 1] [0 1 1]

[0 1 14] [0 1 2]

[1̄ 6 34]

[1̄ 3 10]

[5̄ 9 17]

[8̄ 20 27]

χ >
0

[4̄0 101 116]

Figure 4.1.: Loading axis in [001] − [011] − [1̄11] stereographic triangle indicating
the positive sense of χ for tension. The sense of χ is reversed in compression.

At first, the response of single a/2〈111〉 screw dislocations in tungsten
is examined under uniaxial tension and compression along different crys-
tallographic orientations as shown in Fig. 4.1. For all the orientations
considered, the (1̄01) crystallographic plane is the plane with the highest
resolved shear stress. The velocity of the screw dislocations is computed
from Eq. (2.5).

In order to establish an yield criterion for single dislocations an equivalent
critical velocity is derived from the macroscopic strain rate given by the
Orowan equation

γ̇ = ρmbv (4.1)

where γ̇ is the shear strain rate, ρm is the density of mobile screw dis-
locations, b is the magnitude of Burgers vector and v is the average ve-
locity of the screw dislocation. For our computation the numerical values
chosen are ρm = 1012 m−2. The yield stress is defined to be the shear
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stress on the MRSSP required for the screw dislocation to attain a mag-
nitude of velocity of 1 µm s−1 which corresponds to a plastic strain rate
γ̇ = 2.7×10−4 s−1 similar to the experiments on W in [177]. The calcula-
tions were performed up to a temperature of 800 K which is the athermal
temperature for W obtained from experiments [106].

Fig. 4.2 shows the CRSS as a function of temperature up to 800 K for three
of the orientations shown in Fig. 4.1. The general trend for all orientations
is the same. The CRSS strongly decreases with increasing temperature,
displaying two different regimes both in tension and compression. The
high temperature, low stress regime is almost linear and largely dominated
by the work term in Eq. (3.16), while all terms are important in the
steeper low-temperature high stress regime. As an illustration, the two
regimes are marked in Fig. 4.2(b) with II and I respectively. The CRSS
depends on orientation and ranges from below 4 GPa to 6 GPa at 0 K.
The orientation dependence of the CRSS is already much weaker at room
temperature, where values range from 1.8 to 2.3 GPa. The orientation
dependence disappears at 800K.

For the same orientation, the sense of shearing is reversed and the shape
of the CRSS-T curve is somewhat different when changing from tension
to compression. In terms of model parameters, each orientation corre-
sponds to a different χ and η respectively. At lower temperatures and for
orientations shown in Fig. 4.1, the CRSS in uniaxial compression is higher
than in uniaxial tension. The different orientations correspond to differ-
ent non-Schmid stresses σ. In both tension and compression, the CRSS at
0 K obtained by extrapolation converge to different values and this value
is additionally orientation dependent.

In tension, the glide plane is always the (1̄01) plane (ψ = 0◦) for all
orientations.

In compression the atomistic data at 0 K [9,10] show that the dislocation
always moves on the (1̄01) plane for orientations in the cyan region in
figure 4.1, while the dislocation moves on the low-Schmid factor (1̄10)
plane for orientations in the magenta region in figure 4.1. Hence the
asymmetry in orientation dependence manifests itself not only in terms
of the CRSS but also in terms of the preferred glide plane on which screw
dislocations move. This atomistic aspect is recovered by our model and
will be analyzed in more detail in section 4.1.1.
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Figure 4.2.: CRSS vs temperature curves for different orientations of applied loading
shown in the insets.

4.1.1. Slip planes in uniaxial tension and compression

Fig. 4.3 shows the variation of the macroscopic slip angle ψ with tem-
perature T for different orientations in tension and compression obtained
using Eq. (3.19).

In tensile loading and for temperatures up to 300 K, |ψ| stays at 0◦ which
means that |vgl| in Eq. (3.18) is determined entirely by the activation
enthalpy on the (1̄01) plane irrespective of the orientation of the MRSSP
and the magnitude of non-Schmid stresses. With increasing temperature
ψ tends to deviate increasingly away from the low index (1̄01) plane and
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Figure 4.3.: Temperature dependence of ψ for different orientations : (◦) for tension
and (2) for compression.



62 4. Results

contributions from other {110} planes become significant. The average
slip direction ψ moves towards the MRSSP. In tension, the slip angle ψ
always stays within ±30◦ for all orientations in the entire temperature
range. It is however interesting to note that the deviation of ψ from
0◦ towards χ occurs at lower temperatures for χ < 0 as compared to
χ > 0. This suggests that it is easier to operate a secondary plane in the
twinning sense (magenta region) than in the antitwinning sense (cyan).

In compression, the general behavior and all trends are identical to tensile
loading for orientations with χ < 0◦ (magenta region in figure 4.1). For
orientations with χ > 0◦ (cyan region) the slip trace in compression is
more complex. At low temperature the glide plane at ψ = +60◦ is chosen
compared to the ψ = 0◦ plane in tension. The slip trace at low tempera-
ture is well defined. Deviations from this plane which may be viewed as
an indication of wavy slip only occur at higher temperatures. With in-
creasing temperature, slip on the ψ = 0◦ plane becomes increasingly more
significant and the average deformation direction also moves towards the
MRSSP.

4.2. Validation of the implemented algorithm

The above mentioned examples also serve as a test of the consistency of
the implemented algorithm against the underlying atomistic data. This is
because

(a) The tension-compression asymmetry and orientation dependent be-
havior of individual dislocations is reproduced from 0 K atomistic
simulations

(b) The same slip geometry in DDD and atomistics in both tension and
compression is reproduced

(c) A similar order of the CRSS extrapolated to 0 K, between different
slip planes is observed for isolated screw dislocations in DDD and
atomistic studies.
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Figure 4.4.: The figures show successive steps of operation of the FR source with
pinning points A and B, loaded in tension. The dislocation lines are colored according
to their habit plane. Green color of dislocation means it lies on the (1̄01) plane (refer
text for description).

Here, the operation of a single FR source shown in Fig. 4.4 in tension
and compression loading is presented. The source between the pinning
points marked by A and B respectively is in edge orientation and placed
on the (1̄01) plane as shown. The length of the source is 380 nm. Such a
source is subjected to both tension and compression loading at a temper-
ature of 200 K. The applied strain rate is 5000 s−1. The source is placed
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in the middle of a pillar with edge length 1 µm and aspect ratio 1 : 2 : 1.
The first activation of the source in tension geometrically follows the same
steps as described in [143] after the critical stress for bow-out of the
source is reached on the (1̄01) plane. The non-screw oriented disloca-
tion segments are highly mobile and escape the volume very quickly at
low stresses, leaving two long screw dislocation dipoles. Thereafter each
of the arms operates as an individual source. This is different from a
FR source in an fcc metal where the arms recombine resulting in a con-
figuration involving the original FR source surrounded by a dislocation
loop.

The long screw dislocations move at atomistic values of the CRSS as shown
in the stress strain curves in figure 4.6. Snapshots of the operation of the
source in tension and compression are shown for the orientation [8̄ 20 27]
in Fig. 4.4 and 4.5 respectively.

In tension (Fig. 4.4), the dislocation motion is confined to the highest
stressed (1̄01) plane. The mechanism of source operation is similar for all
orientations and both the edge and screw dislocations move only on this
plane. The edge and mixed dislocations quickly move out of the volume
leaving behind the screw dipoles labeled 1 and 2 in Fig. 4.4(a); the screw
dislocations then get activated at their CRSS which generate small edge
dislocations around the pinning points. These edge dislocations quickly
leave the volume and generate further screw dislocation dipoles 3 and 4
in Fig. 4.4(b); Upon further loading, they get activated and create the
inner screw dipoles 3 and 4 as shown in Fig. 4.4(c); Fig. 4.4(d) shows
that dislocations 1 and 2 leave the volume and 3 and 4 annihilate. This
leaves the arms 5 and 6 and the entire sequence of steps is repeated with
generation of dipoles around the pinning points.

In compression (Fig. 4.5), the source activation also begins with the mo-
tion of the edge dislocations on the highest resolved shear stress plane
generating long screw dislocations on the (1̄01) plane. The situation in
Fig. 4.5(a) is similar to that in tension but of course slip occurs in the
opposite direction due to the reversed loading; the screw dislocations 1
and 2 get activated at their CRSS and move via cross-slip on the (1̄10)
plane which has a lower activation enthalpy but not the highest resolved
shear stress as shown in Fig. 4.5(b).
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Figure 4.5.: The figures show the first steps of operation of the FR source in com-
pression with pinning points A and B. The dislocation lines are colored according to
their habit plane. Green color of dislocation means it lies on the (1̄01) plane and cyan
indicates the (1̄10) plane (refer text for more details).
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Spiral sources are thereby generated on parallel planes which operate in-
dependently and no annihilation is possible. This leads to an increase in
dislocation density and a different internal stress state. The motion of
the edge dislocations on (1̄01) plane generates further screw dislocation
dipoles 3 and 4 respectively; In Fig. 4.5(c), these newly generated spi-
ral sources get activated and 3 and 4 move again via cross-slip on parallel
(1̄10) planes; In Fig. 4.5(d), the dipole pair 3 and 4 move on parallel planes
and hence do not annihilate as in tension; Finally, Fig. 4.5(e) shows that
the 3 and 4 are still within and volume and move away from each other on
parallel planes with the source being in position similar to Fig. 4.5(a).

The stress-strain curve for the single FR source in tension and compression
is shown in Fig. 4.6 with subscripts T and C respectively. The correspond-
ing stress is then identified as the flow stress needed to maintain steady
state plastic deformation in the pillar. The orientation dependence of
flow stress in tension and compression can be identified. The flow stress
in compression is always higher than in tension. After yielding in both ten-
sion and compression, a constant flow-stress is required for the periodic
activation of the single-armed sources.

4.4. Repulsive interaction between
a/2〈111〉 screw dislocations

After having established the basic framework for the motion of single
dislocations, we consider here the interaction of two non-parallel screw
dislocations as shown in Fig. 4.7 at 200 K. The dislocations 1 and 2 have
Burgers vector b1 and b2. b1 is always chosen as a/2[111] and b2 is
varied. The two dislocations are placed inside a pillar of square cross-
section with edge length 1 µm. The aspect ratio of the pillar is chosen to
be 1 : 2 : 1 and subjected to loading along the long-axis parallel to the
[1̄ 4 9] direction. Separate loading cases in tension and compression are
considered.

The line orientations of the dislocation are chosen such that the PK-force
due to the mutual stress fields of the dislocations is repulsive. Attractive
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Figure 4.6.: Normal stress vs strain curves for loading in tension and compression
for orientations shown in the legend.

interactions are not considered as they are known to form a 〈100〉 junc-
tions [178]. The shortest distance of approach between the screw dislo-
cations is denoted by d. This represents the simplest case of interacting
screw dislocations and is of interest primarily due to the fact that screw
dislocations are expected to be predominant during deformation. Pair-
wise interaction with all Burgers vectors is considered. The other possible
Burgers vectors b2 are a/2[1̄11], a/2[11̄1] and a/2[111̄]. Each of these slip
directions is stressed differently. The [11̄1] direction is coplanar with the
(1̄01) plane on which dislocation 1 glides. Therefore it is not considered
here since it will not lead to any intersection with a/2[111] screw dislo-
cation. Of the remaining two slip directions, the corresponding highest
stressed slip systems are the (101)[1̄11] and the (011)[111̄] with Schmid
factors 0.47 and 0.32 respectively.
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Figure 4.7.: Schematic view of the configuration of repulsively interacting screw dis-
locations 1 and 2 with Burgers vectors b1 and b2 respectively. The directions r1 and r2

are the directions of the respective PK-force due to the macroscopic loading state. The
vector r and the distance d denotes the direction of approach and the nearest distance
between the two approaching screw dislocations. A and B are the points of strongest
interaction on the dislocations 1 and 2 respectively.

We first consider the interaction between the highest and low stressed non-
coplanar unlike slip directions a/2[111] and a/2[111̄] dislocations denoted
as 1 and 2 in Fig. 4.7. Upon tensile loading the CRSS of screw dislocation 1
is reached first and it begins to glide on the (1̄01) plane. The dislocations
1 glides along the [1̄21̄] direction. It approaches dislocation 2 which is
still immobile. The resolved stress component due to interaction acts on
dislocation 1 against the direction of the applied stress and acts on the
dislocation 2 in the direction of applied stress.

Fig. 4.8(a) and Fig. 4.8(b) show the variation of the resolved shear stress
on the strongest interacting segments of screw dislocations 1 and 2 due to
their mutual interactions and total stress respectively. As the dislocation
1 approaches 2, the interaction stresses play an increasingly greater role
which is shown in Fig. 4.8.
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When d ≈ 100 b, the maximum interaction stress between the dislocations
is about 170 MPa and is much lower than the corresponding CRSS of the
screw dislocation. At a distance of d ≈ 35 b, the total resolved stress on
the nearest approach segment of dislocation 1 and dislocation 2 measured
on the (1̄01) and (011) planes are equal, even though macroscopically the
slip system on which dislocation 1 glides has a higher Schmid factor.
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Figure 4.8.: For the case of repulsively interaction screw dislocations 1 and 2 with
Burgers vectors a/2[111] and a/2[111̄] respectively, (a) shows the variation of the in-
teraction stress and (b) variation of the total stress, both resolved on the (011) and
(1̄01) planes for dislocation 1 and 2 respectively, plotted against the minimum distance
of approach d between the two dislocations. The stress variation of the strongest inter-
acting dislocation segment of each dislocation is shown. d is displayed in the unit of
magnitude of Burgers vector respectively, b.

At a distance of 18 b, dislocation 2 gets activated and glides on the (011)
plane. The velocity of dislocation 2 increases sharply at this distance. A
dynamic equilibrium is established at this distance and both dislocations
glide then collectively maintaining a constant distance. Both the screw
dislocations remain rigid at this distance. Furthermore, the total resolved
stress contributed by interactions at this distance is about 950 MPa.

As the two dislocations approach each other, the loading parameters on
the two screw dislocations constantly changes with the distance of ap-
proach. Figs. 4.9(a) and 4.9(b) show the variation of the loading param-
eters χ and η, on the nearest approach segments of the dislocations 1
and 2. The corresponding loading parameters due to the uniaxial macro-
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scopic loading alone (without interactions) along the [1̄ 4 9] orientation
are χ ≈ 0◦, η ≈ 0.51 and χ ≈ 9◦, η ≈ 1.2 for dislocations 1 and 2 re-
spectively. During the entire course of motion of the two dislocations, the
MRSSP angle χ of both systems remains within 30◦ of the corresponding
primary planes (1̄01) and (011) respectively. Cross-slip is therefore not
observed (see section 3.2.4).
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Figure 4.9.: For the case of repulsively interacting screw dislocations with Burgers
vectors a/2[111] and a/2[111̄] respectively, (a) shows the variation of the MRSSP angle
χ and (b) variation of the loading ratio η, with the minimum distance of approach for
the strongest interacting dislocation segments of dislocation 1 and 2. d is displayed in
the unit of magnitude of Burgers vector b.

The repulsive interaction between screw dislocations with a/2[111] and
a/2[1̄11] Burgers vector shows the same trend as the a/2[111]−a/2[111̄] sy-
stem i.e. dislocation 1 approaches 2 and at an approach distance of d ≈
20 b, the two begin to glide collectively on their respective planes. Dislo-
cations 1 and 2 glide on the (1̄01) and (101) planes respectively. The total
interaction stress at this distance is 850 MPa. The activation of disloca-
tion 2 also occurs at different local parameters compared to that imposed
by the macroscopic loading state.

Each of the above systems of interacting dislocations is now subjected
to compression loading along the [1̄ 4 9] direction. The line directions
of the screw dislocation are reversed so that the direction of motion of
dislocations remains the same as in tension.
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The repulsive interaction between a/2[111] and a/2[111̄] screw dislocations
in compression shows the same trend of collective motion of as in ten-
sion. While, dislocation 1 glides on the (1̄01) plane similar to the scenario
in tension, dislocation 2 glides on the (101) plane compared to the (011)
plane in tension. Fig. 4.10 shows the relative orientations of the planes
and the dislocations. As the mobile dislocation 1 approaches, dislocation
2 cross-slips from the higher stressed (011) onto the low-stressed (101)
plane. The nearest distance of approach at which the collective motion
occurs is about 14 b.
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Figure 4.10.: The interaction between screw dislocation 1 and 2 with Burgers vec-
tors a/2[111] a/2[111̄] respectively in compression causes a cross-slip of dislocation 2
from the (011) habit plane to the (101) plane.

The repulsive interaction between a/2[111] and a/2[1̄11] screw disloca-
tions in compression is similar in tension with respect to the glide plane
on which the dislocation motion occurs, with the only difference being
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that the dislocation 2 activates at a distance of 75 b, compared to 20 b
in tension. The local parameters in compression for each of the pair of
interactions change in a similar manner as in tension.

4.5. Repulsive interaction between mixed and
screw dislocation
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Figure 4.11.: (a) shows the variation of the total resolved stress resolved on the (1̄01)
plane on the screw dislocation due to the interaction with a/2[1̄11] mixed dislocation,
with the minimum distance of approach d. The screw dislocation gets activated as the
local stress on the screw dislocation due to interaction exceeds its CRSS and ; (b)
Velocity of the screw dislocation due to approaching mixed dislocation shows a rapid
increase from zero to 300 m s−1. The external applied stress is still

Here, the interaction between a mixed dislocation with a/2[1̄11] Burgers
vector moving on (101) with a/2[111] screw dislocation is examined. At an
applied stress of τext = 60 MPa, the mixed dislocation moves athermally
on the (101) plane. As the mixed dislocation approaches the immobile
screw dislocation, it feels a little repulsive stress. Fig. 4.11(a) shows the
stress variation on the strongest interacting screw segment due to the ap-
proaching mixed dislocation. At a distance of separation of about 8 b, the
screw dislocation is activated. The velocity v of the a/2[111] screw disloca-
tion shows a sharp increase and reaches the limiting velocity of 300 ms−1

used in the simulation. The mixed dislocation eventually cuts through the
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screw dislocation and continues to glide further on the (101) plane and
exits the volume.

The exact distance to which the screw dislocation can glide collectively
depends on the duration of interaction between the mixed and the screw
dislocation and depends on the strain rate since it determines the velocity
of the mixed dislocation (Eq. (4.1)).

4.6. Uniaxial tensile loading on pillar with two

FR sources

In order to gain insights into the dislocation multiplication mechanisms
and their contribution towards flow-stress, several simulations with sim-
ple arrangements of two dislocation FR sources inside pillars were per-
formed. The configuration of sources are chosen such that both attractive
and repulsive interactions are possible. Here, we show the evolution of
one configuration shown in Fig. 4.12 with Burgers vectors a/2[111] and
a/2[11̄1] . The two dislocation sources are initially in non-screw orienta-
tion on (1̄01) and (110) planes respectively. The aspect ratio of the pillar
is 1:2:1. The length of the pillar is taken as 1 µm. The system is subjected
to tension loading along the [1̄ 4 9] direction at a temperature of 200 K.

Four different simulations were performed to determine the sensitivity
of the response of the pillar to critical input parameters. These param-
eters are the mobility of a 〈100〉 junction dislocations and the critical
velocity of cross-slip Vcrit (see section 3.3.2) at which a cross-slip step
is allowed in the simulations. Due to lack of atomistic information on
the mobility of in plane a 〈100〉 junctions (glissile), different mobilities
of a 〈100〉 dislocations were tested to investigate its influence on the mi-
crostructure evolution. These configurations are summarized below:

1. sim1: Vcrit = 0.1m/s and the mobility of co-planar 〈100〉 same as
mixed dislocation.

2. sim2: Vcrit = 0.1m/s and the mobility of co-planar 〈100〉 hundred
times slower than mixed dislocation.

3. sim3: Vcrit = 0.1m/s and 〈100〉 immobile.
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Figure 4.12.: The initial arrangement of the two sources is shown in (a). P1P2 and
P3P4 are dislocation sources with Burgers vectors a/2[111] (b1 ) and a/2[111̄] (b2)
respectively; (b) shows the arrangement when the mixed segments move out of the
volume leaving behind the screw dipoles.

4. sim4: Vcrit = 0.01m/s and 〈100〉 immobile. parameters.

The critical velocity of cross-slip is based on the studies on single FR
sources and the values are chosen such that the screw dislocation become
active on the cross-slip plane.

The stress-strain response of all four simulations shown in Fig. 4.13(a)
displays the same trend i.e. initial elastic response followed by a drop in
the total effective stress. The initial stage of activation corresponds to
the motion of edge/mixed dislocations out of the volume accompanied by
the generation of less mobile screw dislocations which remain inside the
volume (see Fig. 4.12(b)). The screw arms l1 and l2 are mutually repul-
sive. Upon further straining, the screw dislocations with a/2[111] Burgers
vector get activated at stresses close to the CRSS of screw dislocation. The
peak stress corresponds to the stress required for the activation of the FR
source on the (1̄01)[111] glide system and its value is close to that of op-
eration of a single FR source (see Fig. 4.6). The large drop in the stress is
associated with a large increase in dislocation density (see Fig. 4.13(b)).
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Figure 4.13.: (a) shows the stress vs strain curve for the two source system in
Fig. 4.12(a) for loading in tension. In sim1, sim2 and sim3, the coplanar 〈100〉 disloca-
tions are equally mobile as the edge, 100 times slower than edge and immobile respec-
tively. Sim4 has Vcrit = 0.01m/s and the co-planar 〈100〉 dislocations are immobile; (b)
shows the variation of dislocation density during loading for the four simulations.
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Even though the overall response is similar in all the cases, microscopi-
cally, the effect of making 〈100〉 junctions mobile leads to the activation
of {110}〈100〉 slip. Loops with a [010] Burgers vector are activated on
the (1̄01) plane. In other cases, 〈100〉 dislocations act as pinning points
for 〈111〉 dislocations. Since no slip in the 〈100〉 direction has ever been
reported in bcc metals [4], we focus on sim4 to where the 〈100〉 junctions
are immobile. In this case, the junctions act as pinning points.

The dislocation microstructure of sim4 after a total plastic strain of 0.27 %
is shown in Fig. 4.14. The effective stress decreases to 4.8 GPa after which
the simulation is stopped, since the primary interest of this investigation
was to understand the mechanism of dislocation multiplications. The drop
in flow-stress corresponds to a reduction of 1.4 GPa compared to the flow-
stress of a single FR source as shown in the Fig. 4.13(a). The main feature
of the microstructure is the presence of long and convoluted dislocation
lines of screw and mixed dislocations of the a/2[111] Burgers vector which
cannot be attributed to one single {110} plane. The orientation of the
dislocation lines varies quite sharply and many cusp like features can also
be observed. The sharp change in orientation is due to a change in the glide
plane of a segment on a dislocation line. The entire dislocation density
after total plastic strain of 0.27 % shown in Fig. 4.14 is confined within a
thickness of approximately 80 a0 where a0 is the lattice constant.

The most important feature of plastic flow is that most of the disloca-
tion multiplication occurs due to interaction among dislocations with the
same Burgers vector. The dislocations with a/2[111] Burgers vector are
the most active ones and self-multiply due to interaction with dislocations
gliding on parallel planes. During straining, typically, cross-slip on a re-
gion of a screw dislocation is frequently observed. Such local cross-slip
events generate kinks on new planes and also change the orientation of
the loop sharply. The kinks may accumulate at pinning points which lead
to the formation of kink-complex consisting of several edge dislocation
segments over several planes. The kink-complex have effectively a mixed
character and their glide results in slip over multiple {110} planes. Many
such complexes can be identified in Fig. 4.14 and a few of the complexes
reach the surface of the pillar. The change in color of a dislocation line
indicates a different glide plane. The kink-complex typically get activated
after reaching a critical configuration. Often such complexes intersect
with other complexes of the same Burgers vector moving in opposite di-
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Figure 4.14.: Snap-shot of the microstructure after a total plastic strain of about
0.27%. In (a) and (b), the dislocation segments are colored according to their habit
planes and Burgers vector respectively (see appendix C for the color scheme).
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rections and this leads to dislocation multiplication and long connected
loops are formed. The dislocation activity is dominated by dislocations
with a/2[111] Burgers vector. The dislocations with a/2[11̄1] Burgers
vector move due to interaction with a/2[111] dislocations. Plastic flow is
dominated by the glide of mixed dislocations.
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[111]

R

M
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W
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R

Figure 4.15.: In the figure on the left, a dislocation junction R with Burgers vector
a [010] can be seen. The reaction is in plane and lies on the (1̄01) plane. Screw segments
S1 and S2 lie on parallel planes and form a dipole configuration. The circled part M
is zoomed and shown in inset (a). The dislocation structure around pinning point P is
highly kinked (marked by w) and is composed of several smaller segments. The direction
of motion of this complex is towards the screw dipoles S1 and S2 which move on
parallel planes. Inset (b) shows the zoomed region around the reaction clearly showing
that around the junction the segments with primary Burgers vector a/2[111] are also
kinked.

Fig. 4.15 shows a dislocation junction marked as R with a[010] Burgers
vector which occurs due to the attractive reaction between dislocations
with a/2[111] and a/2[11̄1] Burgers vector. The dislocation junctions act
as pinning centers for other dislocations. A snap-shot of the simulation
in Fig. 4.15 shows the geometry of dislocation network with 〈100〉 junc-
tions. The junction shown in Fig. 4.15 (a) shows a close-up view of the
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same configuration denoted by M . Screw dislocation segments are typi-
cally connected by jogs/kinks such as J over different planes . Fig. 4.15 (b)
shows immobile junctions with [010] Burgers vectors. Both jogs and junc-
tions act as pinning points where the kinks on screw dislocation get accu-
mulated. The network around a junction is typically non-planar.

In the regime where stress-drop occurs after yielding, motion of a screw
dislocation occurs due to their interaction with mixed dislocations of the
same Burgers vector gliding on parallel planes. The interaction of mixed
dislocations with screw dislocations results in either cross-slip of the part
of screw dislocation or collective glide of the entire screw dislocation with
the mixed dislocation. New screw dislocations are produced by dragging
of end points of kinks in opposite directions. The newly generated screw
dislocations act as new sources of dislocations due to their interaction
with other mixed dislocations.

4.7. Uniaxial tension and compression loading
on micrometer sized pillars

4.7.1. [1̄ 5 10] loading orientation

The pillar with initial configuration and geometry described in section 3.4
is subjected to uniaxial compression loading at 300 K along the [1̄ 5 10]
direction. The activation enthalpy for the screw dislocations for this load-
ing orientation is shown in Fig. 4.16 for the slip systems displayed in the
legend.

The initial deformation is characterized by the motion of edge and mixed
segments quickly out of the volume at stresses of the order of the criti-
cal stress needed to operate the FR sources. Edge and mixed dislocations
on all slip systems get activated. The activity of the slip systems follows
the Schmid law with the highest stressed slip system (1̄01)[111] activated
first. The movement of mixed dislocations is accompanied by the gener-
ation of screw dislocation dipoles which become mobile once their corre-
sponding CRSS is reached. A large density of immobile forest screw dis-
locations on the secondary slip planes is produced at the yield stress. It
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must also be mentioned that even when the screw dislocations on the
highly stressed slip systems are activated, some systems with very low
Schmid factors are still populated with mixed dislocations in the bow-out
configuration.

Fig. 4.17(a) shows the stress-strain curve for a representative sample. The
yield point corresponds to the large scale motion of screw dislocations and
their interaction with forest screw dislocations. Cross-slip occurs due to
interactions and kinks/jogs on screw dislocations are generated. Further
motion of screw dislocations results in generation of mixed dislocations
and kink-complex. Past the yield point, a large stress drop is observed. The
dislocation density shows a rapid increase (see Fig. 4.17(b)). Repulsive
cutting due to glide of a mixed dislocation past screw dislocation forests
is a characteristic feature of deformation.
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Figure 4.16.: Input activation enthalpy curves for the slip systems displayed in leg-
end for the loading axis along the [1̄ 5 10] direction.

The primary (1̄01)[111] and the conjugate (101)[1̄11] slip systems are the
most active ones. The microstructure consists mostly of screw dislocation
lines of these two slip systems. A snap-shot of the microstructure during
deformation is shown in Fig. 4.18.



4.7. Uniaxial tension and compression loading on micrometer sized pillars 81

0 0.5 1 1.5 2
Total Strain ε (%)

0

2

4

6

8

T
ot

al
 S

tr
es

s 
σ 

(G
Pa

)

[1 5 10] Compression

I

II

(a)

0 0.5 1 1.5 2
Total Strain ε (%)

0

5

10

15

20

25

30

D
is

lo
ca

tio
n 

de
ns

ity
 ρ

 [x
10

13
/m

2 ]

[1 5 10] Compression

(b)

Figure 4.17.: (a) Normal stress vs strain curves for loading in compression for the
[1̄ 5 10] orientation; (b) Evolution of the dislocation density with strain for one sample
for the [1̄ 5 10] orientation whose stress-strain response is as shown in (a).

Several dislocation junctions with a 〈100〉 Burgers vector (marked as J
in Fig. 4.18(a) are formed as a result of attractive interactions between
〈111〉 dislocations.

A key feature of the microstructure is that the screw dislocations do not lie
on one single plane, but contain many kinks on several {110} planes of its
zone as shown in Fig. 4.19. The kinks can glide conservatively on the plane
containing the dislocation line along the axis of the screw direction. A
conflict arises when kinks nucleated on different glide planes collide when
they glide towards each other. This leads to the formation of cross-kinks
marked as CK in Fig. 4.19. Another peculiarity of the microstructure is
that the dislocation lines meander and often change their character quite
sharply. For example, in Fig. 4.19, following the loop marked L1 shows
that the screw elements are connected over separate planes via mixed
dislocation where the arms with tangents of the screw dislocation along
t1 and t2 are oppositely directed. The dislocation along t2 is obtained
by dragging of kinks by the connected mixed dislocations which can be
driven at low-stresses. Kink-complex (marked M) which have a three-
dimensional character are also observed.

The most unusual dislocation motion is the motion of a dislocation seg-
ment against the direction in which it would want to move if it were
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Figure 4.18.: (a) shows top view of the microstructure inside the volume dur-
ing straining. Several dislocation junctions (J) can also be seen along with debris
loops (D); (b) shows the same arrangement viewed parallel to the (01̄1) plane. This
also shows the spatial distribution of dislocation arrangement across the height of the
specimen. The longest dislocation segments are those belonging to the conjugate Burg-
ers vector. The dislocation lines are assigned colors according to their habit planes (see
appendix C).
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isolated. This occurs due to the presence of complex configurations such
as M in Fig. 4.19 at the end nodes of such segments which exert an effec-
tive force in the direction opposite to that in which they would prefer to
move.

The motion of screw dislocations is intermittent and it is locally pinned
at internal obstacles like junctions or kinks/jogs. Another characteristic
feature of deformation is that the primary (1̄01)[111] and the conjugate
(101)[1̄11] slip systems are coupled. i.e. any slip activity on the primary
system due to screw or mixed dislocation motion is accompanied by some
activity on conjugate slip system.

CK

L1

M [1̄11] [111]

L2

L3

t1

t2

t1

L1

t2

M

(A)

Figure 4.19.: Snap-shot from the simulation on a pillar loaded in compression along
the [1̄ 5 10] orientation. Loops L1 and L2 show a typical long loop observed in the
simulations. The dislocation lines sharply change their orientation as shown by tangents
t1 and t2 for L1. Part of the loop L1 is redrawn in the inset (A) for clarity. The loops
have segments connected over parallel planes such as the mixed part marked M . Loop
L3 has a kink-complex connected with the screw part. Only the most active Burgers
vector directions are shown for clarity.

Activities of slip systems

Fig. 4.20 shows the total plastic slip activity in compression direction. The
lines in Fig. 4.20(a) indicate the orientations of the slip planes at the pillar
surface. The primary (1̄01)[111] and the conjugate (101)[1̄11] slip systems
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Figure 4.20.: Figures show the contributions of individual slip systems towards to-
tal deformation on a pillar loaded in compression along the [1̄ 5 10] direction; (a)
shows in color the y-component of the total plastic displacement superimposed onto
the deformed pillar after a total plastic strain of 0.8% in units of lattice constant. The
deformations are scaled by a factor of 15 and added to the undeformed geometry.
From the history of the deformation, the contributions of individual slip systems are
calculated; (b) and (c) show the contribution of the primary and the conjugate slip
systems i.e. (1̄01)[111] and (101)[1̄11] respectively; (d) shows the contribution of the
total plastic slip on the anomalous plane (01̄1) due to glide of dislocations with both
a/2[111] and a/2[1̄11] Burgers vectors.

contribute 42% and 31% to the total plastic deformation (Fig. 4.20(b) and
4.20(c) respectively). The anomalous slip plane (01̄1) contributes about
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10% to the total deformation (Fig. 4.20(d)). To compute the deformation
on this plane, the deformation due to both the [111] and [1̄11] slip di-
rections, which are co-planar on the (01̄1) plane, have been added. The
remaining plastic strain is contributed by the remaining systems and does
not lead to visible slip traces in Fig. 4.20(a). Another simulation was
performed in this orientation for a different initial dislocation distribu-
tion, which showed a similar trend in plastic slip contributions.

4.7.2. [1̄ 4 9] loading orientation

For further investigations, the [1̄ 4 9] orientation is chosen which lies ex-
actly on χ = 0◦ in Fig. 4.1. For this orientation, simulations are per-
formed in both tension and compression. The input activation enthalpy
curves for this orientation under both tension and compression are shown
in Figs. 4.21(a) and 4.21(b) respectively.
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Figure 4.21.: Input activation enthalpy curves for the [1̄ 4 9] orientation in (a) ten-
sion and (b) compression for the slip systems displayed in the legend.

The initial deformation behavior of the pillars in uniaxial tension and
compression loading along the [1̄ 4 9] orientation is similar to the [1̄ 5 10]
oriented pillars. It is again characterized by the motion of edge and mixed
segments out of the volume at stresses of the order of critical stress needed
to operate FR sources and the generation of screw dislocation dipoles. The
screw dislocations begin to move when their corresponding CRSS are
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reached. The stress-strain curves for tension and compression along with
the corresponding dislocation density evolution inside the pillar is shown
in Figs. 4.22(a) and 4.22(b) respectively. Past the yield point which corre-
sponds to the CRSS of screw dislocations, a large stress drop is observed.
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Figure 4.22.: (a) Representative normal stress vs strain curves for loading in tension
and compression for the [1̄ 4 9] orientation; (b) Evolution of the dislocation density
with strain for one sample for the [1̄ 4 9] orientation whose stress-strain response is as
shown in fig (a).

The microstructure evolution inside the pillar is similar to that of the
[1̄ 5 10] loading orientation. As shown in Fig. 4.23, the screw dislocation
lines of the (1̄01)[111] and (101)[1̄11] form a cross-grid and both these sys-
tems have almost equal dislocation densities. Repulsive interactions are
also frequent. Several mixed dislocations move easily through the forest
dislocations which are mostly screw oriented. Debris loops are generated
which can glide along the 〈111〉 direction. Just like in the [1̄ 5 10] orienta-
tion, screw dislocations lying over several planes connected by edge/mixed
dislocations also observed in both tension and compression

Activities of slip systems

The plastic strain contributions of the individual systems are calculated
for the [1̄ 4 9] loading direction in tension and shown in Fig. 4.24. The
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Figure 4.23.: (a) shows top view of the microstructure inside the volume during
straining in compression along the [1̄ 4 9] orientation. Several dislocation junctions and
debris loops are marked with J and D respectively; (b) shows the same arrangement
viewed parallel to the (01̄1) plane which gives a sense of dislocation arrangement across
the height of the specimen. The dislocation lines are assigned colors according to their
habit planes.
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primary and the conjugate slip systems contribute 42% and 35% to the
total plastic deformation (Fig. 4.24(b) and Fig. 4.24(c) respectively)). The
anomalous slip plane (01̄1) contributes about 9% to the total deformation
(Fig. 4.24(d)) from the a/2[111] and a/2[1̄11] Burgers vectors. The remain-
ing plastic strain is contributed by the nine remaining systems and does
not lead to visible slip traces in Fig. 4.24(a). Several simulations were
performed for this orientation with different initial distributions of FR
sources and a similar trend in the stress-strain response and the overall
deformation was observed.

For compression, the plastic strain contributions of the individual sys-
tems are shown in Fig. 4.25. The primary (1̄01)[111] and the conjugate
(101)[1̄11] slip systems contribute 32% and 39% to the total deforma-
tion (Fig. 4.25(b) and Fig. 4.25(c) respectively). The anomalous slip plane
(01̄1) in compression contributes about 15% to the total deformation
(Fig. 4.25(d)). The (1̄10)[111] also contributes about 8% towards total
plastic strain. The remaining plastic strain is contributed by the eight re-
maining systems and does not lead to visible slip traces in Fig. 4.25(a).

In general, the total contribution of the anomalous slip in compression is
greater than that in tension.

4.8. Tensile loading on pillars with different
surface orientations

In this section, the deformation characteristics of W pillars with different
surface orientations shown in Fig. 4.26, loaded in tension along the [1̄ 4 9]
direction are presented. Pillars referred to as A and B henceforth, are
oriented such that the projection of the a/2[111] directions on the top
surface of the pillar is aligned along the longest and the shortest edges of
the pillars respectively. The [111] direction marked with b makes an angle
of about 78◦ with the normal n.

The stress-strain response and the dislocation evolution in both pillars A
and B shown in Fig. 4.27 is similar to the 1 : 3 : 1 aspect ratio pillars. The
stress-strain curve shows a large drop post the yield point corresponding
to large scale motion of screw dislocations.
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Figure 4.24.: Figures shown the contributions of individual slip systems towards to-
tal deformation on a pillar loaded in tension along the [1̄ 4 9] direction.(a) shows in color
the y-component of the total plastic displacement superimposed onto the deformed pil-
lar after a total plastic strain of 0.6% in units of lattice constant. The deformations are
scaled by a factor of 15 and added to the undeformed geometry. From the history of
the deformation, the contributions of individual slip systems are calculated; (b) and (c)
show the contribution of the primary and the conjugate slip systems i.e. (1̄01)[111] and
(101)[1̄11] respectively; (d) shows the contribution of the total plastic slip on the anoma-
lous plane (01̄1) due to glide of dislocations with both a/2[111] and a/2[1̄11] Burgers
vectors.
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Figure 4.25.: Figures show the contributions of individual slip systems towards to-
tal deformation on a pillar loaded in compression along the [1̄ 4 9] direction. (a) shows
in color in units of lattice constant the y-component of the total plastic displacement
superimposed onto the deformed pillar after a total plastic strain of 0.72% . The de-
formations are scaled by a factor of 15 and added to the undeformed geometry. From
the history of the deformation, the contributions of individual slip systems are calcu-
lated; (b) and (c) show the contribution of the primary (1̄01)[111] and the conjugate
(101)[1̄11] slip systems; (d) shows the contribution of the total plastic slip on the
anomalous plane (01̄1) due to glide of dislocations with a/2[111] and a/2[1̄11] Burgers
vectors; (e) shows the contribution of the (1̄10)[111] slip plane.
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Figure 4.26.: (a) and (b) show the geometry of pillars with different surface orien-
tations and referred to as A and B respectively. The crystal orientations with respect
to the [1̄ 4 9] direction are changed so that the pillar in orientation A and B, the
screw direction projected on the xy-plane is parallel to longest and the shortest edges
respectively. A The orientation of the (1̄01) plane is also shown. In pillar A, the screw
dislocation travels a shorter distance before it reaches the surface compared to B where
it must traverse a longer distance before it exits the surface.
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Figure 4.27.: For pillars A and B (a) shows representative normal stress vs strain
curves for loading in tension for both pillars A and B; (b) shows the evolution of the
dislocation density with strain.
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Activities of slip systems

Fig. 4.28 shows the total plastic slip activity in tensile direction for pillar
A. The lines in Fig. 4.28(a) indicate the orientations of the slip planes at
the pillar surface. The primary and conjugate slip systems contribute 44%
and 28% to the total deformation (Fig. 4.28(b) and Fig. 4.28(c) respec-
tively). The anomalous slip plane (01̄1) contributes about 8% to the total
deformation (Fig. 4.28(d)). The contribution of the anomalous system is
computed in the same manner as done for the [1̄ 5 10] orientation.

Fig. 4.29 shows the total plastic slip activity in tensile direction for pillar
B. The conjugate (101)[1̄11] slip system contribute 39% to the total de-
formation whereas the primary slip system contributes about 37%. The
anomalous slip plane (01̄1) contributes about 10% to the total deforma-
tion.

In summary, the relative contribution of conjugate slip system for pillar
B towards total plastic slip increases compared to pillar A and it is about
the same as that of the primary slip system.
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Figure 4.28.: (a) shows for pillar geometry A the y-component of the total plastic
displacement superimposed onto the deformed pillar after a total plastic strain of 0.5%
in units of lattice constant. The deformations are scaled by a factor of 15 and added to
the undeformed geometry. From the history of the deformation, the contributions of
individual slip systems are calculated. (b) and (c) show the contribution of the primary
and conjugate slip systems i.e. (1̄01)[111] and (101)[1̄11] respectively. Fig. (d) shows
the contribution of the total plastic slip on the anomalous plane (01̄1) due to glide of
dislocations with both a/2[111] and a/2[1̄11] Burgers vectors.
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Figure 4.29.: (a) shows for pillar with geometry B the y-component of the total
plastic displacement superimposed onto the deformed pillar after a total plastic strain
of 0.5% in units of lattice constant. The deformations are scaled by a factor of 15 and
added to the undeformed geometry. From the history of the deformation, the contri-
butions of individual slip systems are calculated. (b) and (c) show the contribution of
the primary and conjugate slip systems i.e. (1̄01)[111] and (101)[1̄11] respectively. (d)
shows the contribution of the total plastic slip on the anomalous plane (01̄1) due to
glide of dislocations with both a/2[111] and a/2[1̄11] Burgers vectors.



5. Discussion

In this chapter, the consequences of the mobility rules developed in chap-
ter 3 on a single screw dislocation and its relation with experiments is dis-
cussed. This is followed by a discussion of the mechanism of interaction be-
tween repulsively oriented screw dislocations presented in chapter 4. The
relevance of these interactions within the context of determining dynamic
properties of screw dislocations from in situ experiments is discussed. Fur-
ther, the mechanisms of dislocation multiplication inside micropillars of
varying diameters and aspect ratios is discussed. The peculiarities of slip
traces on micropillars subjected to uniaxial tension and compression load-
ings and its relation with experiments is also discussed. The mechanisms
which lead to anomalous slip in the simulations on pillars are discussed
and compared with other existing models in literature. Finally, the con-
cept of Peierls stress of a screw dislocation is revisited and its relation
within the context of both non-Schmid effects and dislocation-dislocation
interactions is discussed.

5.1. Finite temperature behavior of an isolated

a/2〈111〉 screw dislocation

5.1.1. Tension-compression asymmetry

Experiments on bcc metals like W [42,52], Mo [4,66], Fe [27] and Ta [42,95]
have revealed that the yield stress in tension and compression are not
the same. This is referred to as the tension-compression asymmetry. It
is a clear indication of the violation of Schmid law in bcc metals. The
tension-compression asymmetry generally increases with decreasing tem-
perature [4].
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Initially, tension-compression asymmetry was thought to be a consequence
of the twinning-antitwinning asymmetry [4, 52] and therefore a conse-
quence of the sense of shear consistent with tension and compression load-
ing. This would suggest that the tension-compression asymmetry is an
effect intrinsic to bcc crystals. Seeger [86] assumed that this is because
slip occurs on {112} planes which are not mirror planes of the bcc struc-
ture making the Peierls potential asymmetric on these planes. He also sug-
gested that additional stress-components other than the resolved stress in-
fluence the tension-compression asymmetry. Atomistic studies however, re-
veal that the twinning-antitwinning asymmetry is negligible in W [9, 10].
The tension-compression asymmetry, however, is pronounced as shown in
Fig. 4.2. Just as for 0 K [9, 120], at finite temperatures too it can be
explained as a direct consequence of the effects of the shear stress perpen-
dicular to the slip direction. In terms of model parameters, tensile loading
is characterized by η > 0 (σ > 0) and compressive loading by η < 0
(σ < 0). In [9, 10] it was shown that the effect of σ > 0 is to extend the
dislocation core on the primary plane and σ < 0 to constrict it on this
plane and extend it on the other two {110} planes of the same zone. This
asymmetry induced by the non-glide component of the stress tensor leads
to a lower CRSS in tension than in compression. The asymmetry decreases
with increasing temperature [4,66]. Hence, the tension-compression asym-
metry is not intrinsic to the lattice but an extrinsically induced effect of
the applied loading.

5.1.2. Orientation dependence of CRSS

The dependence of the yield stress on the orientation of the applied loading
is another characteristic feature of bcc metals like W [42,46,49,51,52], Mo
[46, 48, 66], Ta [42, 43], Nb [179] and Fe [24, 76, 180]. The CRSS in the
mesoscopic model extrapolated to 0 K is consistent with the atomistic
simulations [9, 10]. Note that the CRSS obtained from extrapolation
is not exactly equal to the atomistic value because the Peierls barrier is
obtained from a fitting function to the atomistic values described in [9]
which leads to some deviation from the exact values. However, the order of
stresses and the trend in CRSS-dependence on orientation is the same as
in the atomistic data. Similar to the tension-compression asymmetry, the
orientation dependence also has its origin in the dependence of the Peierls
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barrier on the non-Schmid components of stress which our model repro-
duces. This is expected as the model is fitted against the atomistic data at
0 K. As an example, Fig. 4.2(a) and Fig. 4.2(c) show the dependence of
CRSS on temperature for different orientations of loading which have the
same loading ratio η but different MRSSP angles χ and, consequently, dif-
ferent CRSS in tension. In compression, the difference in CRSS is reduced
a little because yielding occurs by dislocation motion on the secondary
(1̄10) plane for χ > 0 which requires a somewhat lower CRSS.

The orientation dependence of the CRSS reduces considerably with in-
creasing temperature in both tension and compression. At low tempera-
tures, high stresses are applied and the Peierls barrier is strongly deformed.
At higher temperatures and lower stresses the Peierls barrier is almost the
same for all the glide planes and the energy due to thermal fluctuations
plays a greater role. The influence of non-glide stresses therefore vanishes
and the dependence of yield stress on orientation disappears.

5.1.3. Temperature dependence of slip plane

With increasing temperatures, experiments in bcc metals show coarse crys-
tallographic slip at low temperatures. At higher temperatures, non-planar
slip is observed characterized by wavy slip lines on the surface of the sam-
ple and therefore it is called as wavy or irrational slip [4]. To account
for the experimentally observed wavy slip, the approach here is to show
that it is a natural consequence of the competition of at least two {110}
slip planes and that it may occur naturally if the non-Schmid stresses are
properly taken into consideration.

The average glide plane angle ψ displayed in Fig. 4.3 is computed for
different orientations at various temperatures in order to determine the
slip trace in tension and compression using Eq. (3.19). ψ is a measure
of the amount of deviation of the actual slip plane from the most highly
stressed (1̄01) plane. For any orientation in the stereographic triangle
shown in Fig. 4.1, σ is always positive on the MRSSP (1̄01) in tension and
negative in compression. Since in our model, {110} are the elementary slip
planes, the contribution of slip from planes other than the highest stressed
plane depends on the effect of loading on these planes. A positive σ means
a decrease in energy barrier (because of an extension of the core making
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it more glissile) on the most highly stressed {110} plane. The effective
glide plane then depends on the interplay between σ, χ and η and their
effect on the Peierls barrier on all three {110} planes. To understand the
effect of these components in detail, the twinning and antitwinning cases
must be considered separately for tension and compression.

In tension, the simulation results in Fig. 4.3 clearly show that the slip
plane angle |ψ|≤ χ in the entire temperature range displaying (1̄01) slip
at low temperatures and slip on the MRSSP at higher temperatures. For
loading in tension along any stress axis in the stereographic triangle consid-
ered, the (1̄01) plane has the highest resolved shear stress and the lowest
activation enthalpy. Therefore this plane contributes the most to the ve-
locity Eq. (3.18). To activate a secondary plane, the combined effect of
loading and thermal activation must be sufficient to overcome the barrier
on the corresponding plane. For low |χ|, the glide stress component on the
secondary plane is not sufficient to overcome the Peierls barrier and hence
ψ ≈ 0 for a large range of temperatures. With increasing χ, the resolved
shear stress on secondary planes increases, leading to a higher probability
of kink-pair nucleation and thus more plastic slip on the secondary plane.
Hence in qualitative agreement with experimental observations [4], ψ de-
viates increasingly away from zero towards χ.

For compressive loading corresponding to σ < 0, the Peierls barrier is
always increased on the primary (1̄01) plane compared to the undeformed
Peierls barrier. In general, the dislocation has a higher activation enthalpy
on the primary plane irrespective of the orientation of the MRSSP. The
ψ − T dependencies in Fig. 4.3 for loading orientations in the magenta
region in Fig. 4.1 are similar to those in tension. Hence, even though the
barrier on the primary plane is increased, the activation of the secondary
plane is still more difficult in antitwinning orientations.

For loading in the cyan region (Fig. 4.3 (e-g) on page 61), the dislocation
motion occurs on the low-stressed ψ = +60◦ plane at low temperatures as
the activation enthalpy is lowest for this plane. From the point of view of
an isolated screw dislocation, the slip on the low stressed plane is unusual
since no reference is made to other components of the stress tensor. The
unusualness does not exist following the proposed kink pair nucleation
energy based model in this work for the screw dislocation mobility in
bcc metals. The curves in Fig. 4.3 (e)-Fig. 4.3(g) show that in the low
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temperature high-stress regime, the activation enthalpy for the cyan re-
gion in compression is lowest for slip on the (1̄10) plane. Hence at lower
temperatures for these orientations, the dislocation moves entirely on the
(1̄10) plane despite the fact that it has a lower Schmid factor than the
(1̄01) plane because it is energetically more favorable. The velocity of the
screw dislocation is therefore almost exclusively governed by the ψ = 60◦

plane at very low temperatures.

With increasing temperatures, the primary plane (ψ = 0◦) contributes
more towards the velocity but the ψ = 60◦ plane is still the dominant
plane.

The competing activity on the two planes is illustrated by the following
example. The activation enthalpy for motion on the three possible planes
for compression loading in the [5̄ 9 17] orientation (c.f. Fig. 4.3 (e)) is
shown in Fig. 5.1 in the entire stress range up to the Peierls stress.

For τ/C44 > 0.02 which corresponds to high stresses and low tempera-
tures, ∆Hψ=60◦ on the ψ = +60◦ plane (1̄10) is smaller than ∆Hψ=0◦ of
the highest resolved ψ = 0◦ (1̄01) plane. With decreasing stresses (and
increasing temperatures), the activation enthalpy on the ψ = 0◦ (1̄01)
plane becomes comparable to the ψ = 60◦ (1̄10) plane and this plane
contributes increasingly to the plastic slip. The ψ̄ − T plot computed
from these activation enthalpies is shown in Fig. 4.3(e). The average slip
angle changes from ψ̄ = +60◦ at low temperatures and converges to-
wards χ = +8.9◦. This change in activation enthalpy which results in
the change in slip plane from high stress (low temperature) region to
low stress (high temperature) for a given χ is a signature of the role of
the perpendicular shear stress σ. This is a manifestation of the tension-
compression asymmetry in addition to the CRSS dependence on the sense
of loading.

The occurrence of {110} slip at low temperatures and MRSSP slip with
increasing temperatures is consistent with experimental observations in
W [42, 52] and several other bcc metals [4, 86]. This trend of slip often
observed in experiments at higher temperatures [4] can be explained en-
tirely in terms of slip on the {110} planes. Recent experimental findings
on α−Fe by Caillard [89] also support the view that dislocation motion
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Figure 5.1.: Stress dependence of activation enthalpy for loading in compression
along [5̄ 9 17].The loading parameters are given in the insets.

occurs only on {110} planes. It therefore appears not to be necessary to as-
sume that the elementary plane of slip in W and perhaps other bcc metals
is anything other than the {110} plane.

5.2. Dislocation-Dislocation interactions

5.2.1. Determination of elementary slip planes
in bcc metals from junction orientations

The settlement of the question of elementary slip planes in bcc metals is
highly significant for several reasons: 1.) To ensure a sound mechanis-
tic understanding of the fundamental deformation characteristics 2.) For
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numerical modeling at the mesoscale and continuum scales where the ele-
mentary glide systems must be defined a priori and 3.) Mesoscopic screw
dislocation parameters like the kink-height can be defined precisely and
macroscopic measures like the yield and flow stresses of a metal can be
accurately related to the actual microscopic slip planes on which the glide
of dislocations occurs. This emphasizes even more the need to settle the
long-standing debate of the elementary slip planes.

It must be remarked that the very nature of dislocations is that when they
glide on a plane, a clear planar trace on the surface identifiable with a
crystallographic plane occurs. Hence, if the screw dislocations glide exclu-
sively on {112} plane, the slip traces must be well-defined. However, it is
experimentally observed that {112} slip traces are always wavy [4, 46, 51,
86], which is inconsistent with the assumption of elementary slip on {112}
planes. Nevertheless, all methods rely on surface slip traces only and the
elementary slip planes in bcc metals remains an open question.

Elementary slip plane determination from junction orientations

The ambiguity in determining the elementary slip planes in bcc metals
has already been discussed in section 2.2.1. In this section, a method is
proposed that can be used to unambiguously identify the elementary slip
planes from slip activity inside the bulk of the specimen. It is based on
dislocation-dislocation interactions and some direct geometric rules im-
posed by the crystallography of the bcc lattice on junction formation. Ad-
vantage is taken of the fact that in the high-temperature regime, where
there is an ambiguity in the elementary slip plane determination, the edge
and mixed dislocations become predominant and the forest intersection
occurs. This view is supported by in situ experiments which have shown
that mixed dislocations play a predominant role in plastic deformation
at intermediate temperatures [59, 181–183]. Post-deformation TEM im-
ages also show that the microstructure is composed of large densities of
mixed dislocations. [47,53,184]. For isolated screw dislocations, the simu-
lation results in section 4.1 also show that the non-Schmid effects become
less predominant at high temperatures in both temperature and compres-
sion. Therefore the most active slip planes can be well described by the
Schmid law.
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When two 〈111〉 dislocations with distinct Burgers vectors gliding in their
corresponding glide planes n1 and n2 (|n1 × n2|> 0) react, locally at-
tractive dislocation segments may form stable junctions with Burgers vec-
tor 〈100〉 [185]. The line direction ζjn of the junction is given by the
Eq. (3.21).

type n1 n2 ζjn
(a) {110} {110} 〈111〉 ,〈100〉
(b) {110} {112} 〈111〉 ,〈011〉, 〈113〉
(c) {110} {123} 〈111〉 ,〈112〉, 〈115〉, 〈133〉
(d) {112} {112} 〈111〉 ,〈011〉, 〈012〉, 〈135〉
(e) {112} {123} 〈111〉 ,〈124〉, 〈012 〉, 〈135〉,

〈157〉, 〈357〉, 〈5 7 11〉
(f) {123} {123} 〈111〉 , 〈012 〉, 〈013 〉, 〈112〉,

〈133〉, 〈157〉, 〈1 5 13〉, 〈1 7 11〉,
〈245〉, 〈359〉, 〈5 7 11〉

Table 5.1.: Possible families of directions of junctions ζjn in bcc metals assuming

elementary slip of a/2〈111〉 dislocations on {110},{112} and {123} planes.

Table 5.1 shows a list of possible families of line directions ζjn of 〈100〉 due
to dislocation glide on planes with normals n1 n2 respectively. The line di-
rections ζjn are given in integer vectors with unnormalized lengths. In sce-
nario (a), where the elementary glide planes of both the 〈111〉 dislocations
is a {110} plane, 〈100〉 junctions can occur only along a 〈111〉 or 〈100〉
direction. In all other scenarios, where either of n1 or n2 or both belong
to {112} or {123} families of glide planes, additional line directions of
junctions are possible. This is a unique signature of glide on the higher
index planes because 〈100〉 junction directions can occur due to glide of
reactant dislocations on {110} planes alone. Therefore, once the line di-
rection of a junction is known, the Miller indices {hkl} of the planes on
which the reactant dislocations moved before forming a junction can be
retraced and the occurrence of glide on planes other than {110} can be
established.

It directly follows that it is only necessary to show the existence of 〈100〉
junctions along any direction other than the 〈111〉 and 〈100〉 to demon-
strate that elementary slip occurs on planes other than {110}.
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No. n1 n2 ζjn f

(1) [1̄01] [101] [010] 0.74
(2) [1̄01] [11̄2] [131] 0.76
(3) [2̄11] [101] [131̄] 0.68
(4) [2̄11] [11̄2] [351] 0.70
(5) [112̄] [11̄2] [02̄1̄] 0.8
(6) [2̄11] [211] [011̄] 0.67
(7) [1̄01] [121̄] [1̄01̄] 0.63
(8) [12̄1] [11̄2] [3̄1̄1] 0.56

Table 5.2.: Possible line direction of a[100] junction due to interaction of dislocations
with a/2[111] and a/2[1̄11] Burgers vector assuming elementary slip on {110} and {112}
planes only. [1̄1̄2] and [101] is equivalent to (2); [1̄01] and [211]; [2̄11] and [101]; [2̄11]
and [110] interactions equivalent to (3);[1̄1̄2] and [211] equivalent to (4); [12̄1] and [101];
[112̄] and [110] equivalent to (7); [112̄] and [121̄] equivalent to (8). System (6) is glissile
and all others are sessile.

Eq. (3.22) gives the condition for the stability of junction [186, 187]. In
this equation, the energies per unit length E of a dislocation line for
the isotropic elastic case is given by Eq. (3.22). We define a factor f
as the ratio E3/(E1 + E2) where E1/L, E2/L and E3/L are the ener-
gies (per unit length) of dislocation and Burgers vectors b1, b2 and b3 are
a/2[111], a/2[1̄11] and a 〈100〉 respectively given by the Eq. (3.22). Values
of fraction f < 1 indicates that the formation of junction leads to lowering
of energy and indicates a stable junction. All the junctions listed in the
table 5.2 are stable and lead to a lowering of energy.

System (1) in table 5.2, results from dislocations lying only on {110}
systems alone. Each of the other line directions can only occur if a higher
index plane is involved. The system (6) with ζjn = (01̄1) and bjn = [100]
is glissile on the (011) plane whereas none of the reactant dislocations lie
on this plane. System (8) results from interaction between [12̄1][111] and
[11̄2][1̄11] and has the lowest f for junction along the [3̄1̄1] direction. It
must be emphasized that demonstrating the occurrence of even a single
junction directions such as a {311} is sufficient to prove the occurrence of
elementary slip on {112} planes.

For other orientations, the corresponding plane with highest Schmid fac-
tor is shown in Fig. 5.2. Corner orientations [011] or [001] may be more
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Figure 5.2.: For the stereographic triangle, the planes with highest Schmid factors
are shown assuming {110}, {112} and {123} elementary slip planes only (adapted
from [188]). This clearly shows that (1̄01)[111] system has the highest Schmid factor
in only a small region.

suitable for the determination of glide planes. This is because for such ori-
entations, the Schmid factors of the {112} planes are higher than that of
{110} planes. Hence if the {112} are indeed elementary planes of slip, the
probability of dislocation interactions and junction formation involving
these planes is the highest for this loading direction. This also increases the
probability of finding junctions with orientations not possible via {110}
interactions.

Transmission electron microscopy (TEM) from different angles or TEM
tomography are probably best suited to experimentally determine the ori-
entations of junctions. However, they have a limited spatial resolution. To
ensure uniqueness of the determination of the junction directions, it is
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therefore necessary to ascertain that the junction orientations can be re-
solved. The angles between all junction orientations resulting from ele-
mentary slip on {112} planes with the nearest 〈111〉 or 〈100〉 directions
of the junctions formed by {110} slip turns out to be always larger than
19.5◦. This relatively large orientation difference should make it straight
forward to identify such junctions if they exist.

In the bcc crystallography, there are in total 1716 possible sessile reac-
tions [189] when one considers the {110}, {112} and {123} families of
planes as elementary slip planes. Only 96 occur due to reactions be-
tween {110} planes only. So far in experiments only the 〈100〉 screw ori-
entations have been reported in α−Fe [190] and edge, screw and mixed
〈111〉 orientation have been reported in Mo [47,191]. The sessile edge orien-
tation can only result from glide on {110} planes only and the occurrence
of a large density of such junctions is a strong indication for elementary
slip on {110} planes only. So one can conclude at this point that all the
evidence from junctions in bcc metals available to date is only compatible
with elementary slip on {110} planes.

In summary, a method is proposed that can be used to unambiguously
determine whether or not {112} or {123} slip planes are indeed the el-
ementary planes of slip in bcc metals based on the formation of {100}
junctions. The use of line direction of junctions to identify elementary
slip planes has not yet been considered. The proposed method is appli-
cable to all metals in which an open question remains as to which slip
systems are active and can be used to settle the fundamental question of
elementary glide planes. A thorough characterization of the line direction
of the a 〈100〉 junctions in bcc metals can thus provide an information on
the local history of the glide of the reactant dislocations.

5.2.2. FR sources

In the simulations, the different operation of a single FR source in ten-
sion and compression shows the importance of including the non-Schmid
behavior (see section 4.3). In tension, the approaching dipoles prior to an-
nihilation move faster towards each other. The local stress field and the lo-
cal MRSSP of the dislocation varies with the distance between the dipoles.
For any orientation the local MRSSP is different from the MRSSP due to
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the macroscopic loading. The degree of variation in the local parameters
with respect to the macroscopic value is a function of temperature and
dislocation microstructure. Hence in general, the local stress state gov-
erning the screw dislocation activation is different from the macroscopic
state. Since this may lead to screw dislocations leaving the primary plane
of the initial FR source it means that the initial FR sources are less impor-
tant as specific characteristics of the dislocation structure in bcc-metals
compared to fcc and may even be indistinguishable from single-armed
sources in many cases.

Recently, Wang et al. [157] used a different approach to incorporate non-
Schmid effects in a DD model. Their approach utilizes slip on both the
{110} and {112} planes in order to capture the orientation dependence
and the tension-compression asymmetry in Ta. Different Peierls stresses
for screw and edge dislocations on each of these planes are used along
with a modified expression for an "effective Peach-Koehler force" that in-
cludes the non-glide components of stresses to capture the non-Schmid
effects. The stresses normal to the Burgers vector are used to affect the
Peierls stress on the {112} planes only. The Peierls stress values for screw
dislocations in their model are taken from experiments. The different re-
sponse of the FR source in tension and compression as we have shown, can-
not be captured with such a description. From a computational point of
view, evolution of dislocations on slip planes other than {110} must be
taken into account which increases the total computational cost.

5.2.3. Mechanism of repulsive interaction between screw
dislocations

In this section, the mechanistic details of the repulsive interaction between
non-coplanar a/2〈111〉 screw dislocations investigated in section 4.4 and
its relation with in situ experiments will be discussed.

Matsui et al. [192] investigated analytically the case of repulsively inter-
acting screw dislocations (Fig. 4.7) using isotropic elastic fields of screw
dislocations. The authors proposed a mechanism to explain the occurrence
of anomalous slip frequently observed in low temperature experiments
on bcc metals [4, 94, 135, 193, 194]. This mechanism, shown schematically
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in Fig. 5.3, envisages that the mutually repulsive screw dislocations exert
torque on each other and mutually bend into a non-screw orientation in
a common plane. The two dislocations are then hypothesized to glide co-
cooperatively on the common plane via the motion of non-screw segments
at much lower-stresses than the Peierls stress of screw dislocations. This
common plane is always the anomalous plane and hence it is asserted that
the anomalous slip in bcc metals can be accounted for. Louchet et al. [195]
also investigated experimentally the interactions between repulsive screw
dislocations at low temperatures and found that 1.) the screw disloca-
tions behave as rigid lines and never cross each other at low temperatures
2.) the postulated bending of screw dislocations proposed by Matsui et
al. [192] and the collective motion of the dislocation on the anomalous
plane does not occur.

The simulations performed in this work reveal a different mechanistic
picture compared to the hypothesized mechanism of Matsui et al. [192]
and shed new light on the nature of interactions in the low temperature
regime. The main observations are summarized as follows:

(a) The screw dislocations maintain a constant equilibrium distance
from each other. The relative angle between the interacting segments
remains constant equal to the angle between the corresponding Burg-
ers vectors.

(b) The strongest interacting regions of the screw dislocations remain
straight and glide collectively as rigid lines. They do not locally
bend.

(c) The equilibrium distance of approach depends on two factors: the
sense of loading and the interacting Burgers vectors because the
relative angle between the planes on which each screw dislocation
glides is different.

(d) The interactions directly influence the activation enthalpy of the
kink-pair nucleation for the screw dislocation. Therefore, the ac-
tivation enthalpy of kink-pair nucleation varies along the length of
the screw dislocation.

To understand the observed behavior, first the relevant stress components
on screw dislocations as predicted by isotropic elasticity theory are com-
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Figure 5.3.: Schematic representation of the mechanism of repulsively interacting
screw dislocations hypothesized by Matsui et al. [192]. Planes n1 and n2 are the glide
planes of dislocations with Burgers vectors b1 and b2. n3 is the plane containing
both the Burgers vector directions. Dislocation 1 glides from position I to II in the
direction shown (magenta arrow) where the torque exerted by the mutual stress field
is attributed to aid kink-pair generation on the screw dislocation in the common plane
with normal n3. The lateral movement of kinks (shown with half arrows) leads to
forward translation of screw dislocation to position III on this plane.

pared with those of simulations. For the theoretical part, the formalism
of [2, 192] for infinitely long screw dislocations schematically shown in
Fig. 5.4 is adopted. The force components Fy and Fz are defined in the
local co-ordinate system and are calculated using the equations from ref-
erence [192]. Dislocation 1 glides in the xy-plane and 2 glides in a plane at
60◦ to the xy-plane. The plane common to the two dislocations is the xy-
plane. The effect of Fy is to exert a torque on the screw dislocations and
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mutually rotate each other out of their glide plane into the xy-plane. The
component Fz is repulsive and acts in the glide plane of the two disloca-
tions.

x

y

z

dFy

dFz

θ

1

2

b1

dl

b2

Figure 5.4.: Schematic illustration of two interacting screw dislocations and the force
components due to mutual interaction.

Fig. 5.5 shows the variation of the magnitude of resolved shear stress
components Fy/b and Fz/b along the screw dislocations for three differ-
ent values of z. The postulated bending of the screw dislocations in the
anomalous plane does not occur because it would first involve a change
in glide plane of the dislocations necessitating cross-slip. For cross-slip
to occur, the corresponding critical stress for kink-pair nucleation on the
cross-slip plane must be exceeded.

The simulation in tension for the a/2[111]-a/2[111̄] interacting system
shows that the nearest distance of approach is about 18 b. This distance
is far from core-interaction region and governed by the long-range elastic
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stress-fields of the dislocations [2]. The maximum value of the repulsive
stress at a distance of about 18 b obtained from the simulation is about
1 GPa (Fig. 4.8(a)) which is in good agreement with the value predicted
by isotropic elasticity theory (see Fig. 5.5(b)). Correspondingly, the maxi-
mum value of the torque component of stress Fy/b at the same distance ob-
tained from the elasticity theory is about 160 MPa (see Fig. 5.5(a)). There-
fore, the repulsive stress experienced by both the dislocations is signifi-
cantly greater than the torque component. Additionally, the torque com-
ponent of stress combined with the external applied stress on the common
plane is also insufficient to cause a local bend on the screw dislocation on
the common slip plane as hypothesized by Matsui et al. [192].
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Figure 5.5.: (a) shows the variation of the torque component of the stress along the
dislocation line due to interaction between screw dislocations; (b) shows the variation of
the repulsive stress force along the length of the screw dislocation. Both the torque and
repulsive stress components reach a maximum at the point of nearest approach. Both
the stresses are plotted for three different nearest separation distances shown in the
insets.

Collective motion of screw dislocations

Next, we consider how the collective motion of the two screw disloca-
tions occurs by analyzing the local parameters controlling the kink-pair
nucleation enthalpy for the two dislocation system discussed above. The
discussion is equally valid for the a/2[111] and a/2[1̄11] screw dislocation
system.
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To recall, the simulation shows that in tension, the CRSS of screw dis-
location 1 is reached first and it approaches the other in-active disloca-
tion 2. At an equilibrium distance of about 18 − 20 b, the two move
co-cooperatively on their respective planes.

Dislocation 1 is activated when the external stress reaches its CRSS and
approaches dislocation 2 at an angle corresponding to the angle between
Burgers vector directions (71◦). The common plane containing both the
Burgers vector directions is the (1̄10) plane. The direction of approach of
the two dislocations coincides with the normal of this plane i.e. the [1̄10]
direction. The variation of the interaction stress on dislocation along its
length suggests (see Fig. 5.5(b)) it has a stress-concentration at a point
corresponding to the nearest distance of approach. At this point on the
corresponding dislocations 1 and 2, the effect of mutual interaction is to
oppose and aid respectively the effect of the applied stress. Barring a small
region on dislocation 1 which opposes the externally applied stress, the
stress on 1 is homogeneous equal to its CRSS. The further forward glide
of dislocation 1 occurs despite the repulsive effect due to dislocation 2
because the part of the screw dislocation 1 outside the interaction zone
still sees stress equivalent to its CRSS.

In order to demonstrate that the stress required to activate screw disloca-
tion 1 remains almost the same throughout the entire simulation, the acti-
vation enthalpies at the point of nearest approach and the global minimum
activation enthalpy controlling the mobility of both screw dislocations are
plotted in Fig. 5.6(a). They are denoted as ∆Hn

i, ∆Hmin
i respectively

where the superscript i corresponds to the dislocation 1 and 2. The sub-
script n stands for ∆H measured at the point of nearest approach which
is on the strongest interacting segments of the two dislocations and min
stands for the minimum value of activation enthalpy of all the screw seg-
ments of dislocation i.

The plot in Fig. 5.6(a) shows that for dislocation 1, the activation enthalpy
of the strongest interacting segment is much higher than the minimum
along the screw dislocation. This is expected because the repulsive stress
due to dislocation 2 acts in the opposite direction to the externally ap-
plied stress and thereby lowering the effective resolved shear stress. The
plot also shows that the activation enthalpy ∆H of the strongest interact-
ing segment is much higher than the minimum activation enthalpy. The
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minimum activation enthalpy of dislocation 1 occurs away from the inter-
acting region is activated when the external stress reaches its CRSS. In
this manner dislocation 1 continues to glide further despite the presence
of the dislocation 2. For dislocation 2, the curves of ∆Hn

2, ∆Hmin
2 are

coincident (as expected) confirming that the lowest activation enthalpy
and the enthalpy of nearest approach segment are equal. Therefore the
glide of dislocation 2 occurs at the point of nearest approach where the
effect of interaction is strongest. The same trend is also observed for the
a/2[111]−a/2[111̄] dislocation system shown in Fig. 5.6(b).

Another aspect of the collective motion of the two dislocations is that
the activation enthalpy of dislocation 2 when it becomes mobile is lower
than that of dislocation 1. This is because the interaction stress influences
the parameters χ and the normal stress σ on the strongest interacting
screw dislocation segments. Therefore the CRSS and the corresponding
activation enthalpy of glide of screw dislocation is also influenced by the
interactions. For the driven dislocation 2, the activation enthalpy ∆H of
the strongest interacting segment is minimum at the point of strongest
interaction. These results clearly illustrate a fundamental aspect of screw
dislocation motion, namely, the activation of a screw dislocation can occur
at stress concentration points.
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Figure 5.6.: Activation enthalpy minimum vs activation enthalpy at the point of
nearest approach for the (a) a/2[111]−a/2[111̄] and (b) a/2[111]−]a/2[1̄11] interacting
systems of screw dislocations in tension for loading along the [1̄ 4 9] direction.
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Tension-compression asymmetry in dislocation interactions

The tension-compression asymmetry exhibited by an isolated screw dislo-
cation also affects the mechanism of repulsive interaction between screw
dislocations. Firstly, the nearest distance of approach before a secondary
screw dislocation 2 may be activated due to interactions in tension and
compression depends on the slip systems of the two dislocations. For the
a/2[111] − a/2[111̄] (see section 4.4) interacting dislocation system, the
minimum distance of approach at which the screw dislocation 2 is acti-
vated is 18 b in tension compared to 14 b in compression. However, for the
a/2[111]−a/2[1̄11] dislocation system, the nearest distance of approach
is about 75 b compared to 20 b in tension. The larger distance in com-
pression for the a/2[111]−a/2[1̄11] dislocation system can be explained
as follows: Due to the macroscopic loading alone, the loading ratio η on
the MRSSP of these two slip directions are -0.51 and -0.34 respectively in
compression compared to 0.51 and 0.34 in tension. As discussed already
for an isolated screw dislocation in section 5.1.1, in compression corre-
sponding to σ < 0, the CRSS on the corresponding primary planes (1̄01)
and (101) of the two screw dislocations is increased compared to the un-
loaded state. However, due to to larger negative σ on the (1̄01)[111], the
CRSS of the higher stressed (1̄01) plane is more than that on the (101)
plane. Accordingly, the corresponding activation enthalpy curves for the
two slip systems in Fig. 4.21(b) show that in compression the activation
enthalpy of the (101)[1̄11] lies below that of the (1̄01)[111] . Therefore
the activation of a/2[1̄11] screw dislocations due to repulsive interaction
with the a/2[111] screw dislocations occurs at lower magnitudes of inter-
nal stresses (larger nearest distance of approach) in compression than in
tension.

Secondly, the plane on which the screw dislocations move is also influ-
enced by dislocation interactions as shown for the [111̄] screw dislocation
which glides on (011) in tension and (101) in compression even though the
MRSSP angle . The change of glide plane of the a/2[111̄] screw dislocation
in compression occurs because the interaction stresses also modify the non-
Schmid stress components and lower the CRSS on the (101) plane. The
(011) plane is still the highest resolved shear stress plane even after the
interactions are taken into account. The change in slip plane is another
manifestation of the tension-compression asymmetry. However, the change
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in glide plane is a feature sensitive to the potential used to derive the ac-
tivation enthalpies.

It must be emphasized that the values of the critical distance obtained
in the simulation depend obviously on the input values of CRSS of the
screw dislocations. However, the general arguments hold for a different
magnitude of CRSS of screw dislocation, as long as it is sufficiently large
for the screw dislocation to remain rigid. This is because the repulsive
force varies much stronger than the component of force that exerts torque
on the screw dislocation.

The consequences of interaction between mixed dislocations and screw
dislocation will be discussed in section 5.3.5.

Relation with experiments

Recently, in situ TEM experiments have been employed to experimentally
determine the local CRSS of a screw dislocation and relate it to the macro-
scopically measured flow-stress [89]. In this respect, the simulation result
that a screw dislocation can be activated at stress-concentration point is
quite significant. This is because in experimental specimens, such stress-
concentrations may also occur at jogs, in the vicinity of point-defects or
even at surfaces where the atomistic simulations show that dislocation
core structure may be modified [196]. These stress-concentrations may
significantly lower the externally applied stress required to move a screw
dislocation. Therefore the experimentally measured CRSS may not corre-
sponding to the macroscopic loading state.

Furthermore, the barrier for kink-pair nucleation and hence the CRSS of
a screw dislocation depends on its vicinity. Hence the use of TEM to infer
the kinetics of individual screw dislocations at low temperatures, where
the observed motion of isolated screw dislocations is attributed to a ho-
mogeneous stress-state along screw dislocation is questionable [89].

The simulation result that the repulsively interacting screw dislocations
never cross each other is significant in interpreting the dislocations which
are active during deformation in experiments. This is because typical mi-
crostructures observed in specimens after deformation at low tempera-
tures are highly jogged [44, 47, 53, 193, 197, 198]. Takeuchi [26] attributed
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the repulsive cutting of two screw dislocations to be fundamental mech-
anism responsible for the multiplication and work-hardening behavior in
Fe. Lawley et al. [44] explain the occurrence of jogs on screw dislocations
due to cutting of screw dislocation through other screw dislocation forest
in bcc metals. These two conclusions are therefore in contradiction with
the results of simulation on repulsively interacting screw dislocations. How-
ever, in the simulations, mixed dislocations are observed to easily cut
through screw dislocations which would create jogs. Therefore, the high
density of jogs during deformation in experiments implies that significant
deformation in bcc metals must also occur due to mixed dislocation mo-
tion even at low temperatures. This also indicates that mixed dislocations
would also contribute significantly to the overall deformation in bcc met-
als even at low temperatures where the flow-stress is classically related to
screw dislocation motion only [199].

Comparison with dislocation interactions in fcc metals

A similar case of initially straight interacting dislocations was examined
by [150] for fcc metals with the aim of understanding the mechanism of
their interaction. A map of the outcome of approaching dislocations at
arbitrary angles for the fcc structure provided in [187,200,201] shows that
in fcc metals a different and more complicated picture emerges. The actual
final configuration depends on the relative angle of approach and the habit
plane of the two strongly interacting segments of the dislocation. At the
point of nearest approach, the effect of torque is dominant and can cause
a local realignment of these segments. In fact even if the dislocations are
initially repulsive, interaction may lead to a local realignment resulting in
mutually attractive configuration leading to junction formation [202] and
therefore more hardening. The same arguments hold for screw dislocations
in fcc metals.

In comparison, the simulations show that in W (and perhaps other bcc met-
als) the screw dislocation remains rigid and can be activated at any point
along its line by mixed or other screw dislocations. In the forest-hardening
picture therefore, in bcc metals, the forest screw dislocations are not strong
barriers to deformation. This could possibly explain why bcc metals in prin-
ciple show lower work-hardening rates compared to the fcc metals [4].
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5.2.4. Multiplication mechanisms in pillar with two initial
FR sources

The stress strain curve (Fig. 4.13(a)) of the pillar with two initial FR
sources with Burgers vectors a/2[111] and a/2[11̄1] (section 4.6) upon
loading shows a surprising drop in effective stress by about 1.4 GPa after
the yield point is reached. A large increase in dislocation density of mixed
dislocations with a/2[111] Burgers vector is generated (see Fig. 4.14) which
populates the specimen. The increase in dislocation density occurs due to
self-multiplication of dislocations with a/2[111] Burgers vector. Both the
drop in flow-stress and generation of a large density of mixed dislocations
due to self-multiplication is unexpected because firstly, screw dislocations
owing to their larger CRSS are expected to govern the plastic flow and
secondly, mixed dislocations have very low CRSS compared to the CRSS
of screw dislocations and accordingly expected to leave the volume leaving
the pillar with less mobile screw dislocations which would then move at
the corresponding CRSS. The mechanisms responsible for the sustained
self-multiplication of mixed dislocations and the generation of new screw
dislocations and their role in promoting self-multiplication are discussed
in the next section.

Multiplication and storage mechanisms of mixed dislocations

The key to the multiplication and storage of mixed dislocations inside the
volume is the presence of kinks/jogs and generation of kink-complexes
which consist of non-screw dislocations connected over several planes.

The kinks/jogs on screw dislocations act as pinning points to the forward
motion of the screw dislocation but they can glide along the screw direc-
tion. Fig. 5.7 is a schematic representation of the change in dynamics
of screw dislocation due to presence of pinning points such as jogs/kinks
on the dislocation line. An initial screw dislocation S in Fig. 5.7(a) upon
cross-slip in Fig. 5.7(b) has two segments S1 and S2 over two parallel
planes connected by a kink AB which can in principle glide along the
Burgers vector direction. However, if the screw arms are activated, then
it is accompanied by the generation of mixed dislocations such as AC
and BD on parallel planes around the pinning point. If the lengths of the
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mixed segments AC and BD is equal, a dipole may result. However, in
general, the screw arms S2 may get activated more than the arm S1 which
effectively increases the length of the mixed part connected to S2 as shown
in Fig. 5.7(c). Further loading results in the evolution of the loops which
bypass each other on parallel planes as shown in Fig. 5.7(d). Planar mixed
dislocations of the same Burgers vector which glide on a single plane can
only intersect other planar dislocations if they line on the same plane.
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Figure 5.7.: Fig. shows schematically the kinks on screw dislocations generated due
to cross-slip alters the dynamics of a screw dislocation. The effective length of (a) an
initial screw dislocation changes in (b) due to cross-slip. Further evolution results in
the generation and bypassing of the mixed dislocations.

Fig. 5.8 shows a snap-shot from the simulation in which a sequence of
events leading to the formation of kink-complex is shown. The fundamen-
tal mechanism leading to formation of such complex is cross-slip. The
kink-complex M∗ in Fig. 5.19(b) is generated due to the interaction be-
tween the mobile a/2[111] screw dislocation pinned at P1 and the immobile
arm of the source pinned at P3 with a/2[1̄11] Burgers vector which intro-
duces a stress-inhomogeneity. Successive cross-slip on the mobile screw
dislocation and the accumulation of kinks leads to the generation of kink-
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complex which get activated when the effective mixed orientation reaches
a critical configuration.

Self-multiplication of dislocations is aided due to the ease of generation
of kink-complexes on a screw dislocation around pinning points such as
immobile junctions or kinks gliding on other planes. This is because due
to the non-planar character of the kink-complex increases their proba-
bility of interaction and multiplication with other mixed dislocations of
the same Burgers vector increases. Long dislocation loops as observed
in the simulation (see Fig. 4.14) are a result of the interaction of loops
with kink-complexes. The mechanism of formation of such loops is shown
schematically in Fig. 5.9. Two single armed sources S1 and S2 get acti-
vated and typically the evolution of screw arms S1 and S2 is accompa-
nied by generation of kink-complexes such as M1 and M2. They move
in opposite directions r1 and r2 and are therefore attractive. Their in-
tersection results in an exchange of arms and generation of new loops
as shown in Fig. 5.9(c). In the simulation, several kink-complexes are
generated because as a screw dislocation moves through the volume, it ex-
periences stress variation along its length due to the presence of other dis-
locations. Therefore, self-multiplication sets in when such configurations
generated elsewhere in the volume and moving in opposite directions in-
tersect. Plastic flow occurs by the glide of such mixed loops and which
continuously exchange arms as shown in Fig. 5.9(c).

Dragging of kinks and generation of screw dislocations

The main mechanism for generation of new screw dislocations at lower-
effective stresses compared to the CRSS of screw dislocations is the drag-
ging of the end nodes of edge-segments which act as pinning points on
screw dislocations. The screw dislocations are crucial to the generation
of new dislocations because they can cross-slip easily due to interactions
with mixed dislocations and produce new kink-complexes. Fig. 5.10 shows
a snap-shot from the simulation illustrating the generation of new screw
dislocations due to dragging of kinks.

Fig. 5.10 (a) shows the cusps at C with a/2[111] Burgers vector (circled
and redrawn in the inset). The cusp evolves into mixed dislocation loops
which glide in directions r1, r2 and r3 respectively. Insets (A) and (B)
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Figure 5.8.: (a) shows the activation of the single armed source with
a/2[111] Burgers vector. In (b), the local stress field of a/2[11̄1] causes cross-slip on
the screw arm of the a/2[111] dislocations giving rise to a series of kinks on the [111]
dislocation (denoted by M∗). (c) further cross-slip events result in new dislocation
density on previously unoccupied planes. (d) shows only the dislocation segments in
region D in figure (c) zoomed and colored according to their Burgers vector to obtain
an experimentalists view of the dislocation configuration. The circles at A and B indi-
cating the irregular appearing segments with sharp corners. These occur as a result of
short cross-kinks which mutually pin and oppose each others motion on their respective
planes. Note that both dislocations are now spread over multiple planes and connected
via kinks. The colored rectangular surfaces with open circles show the local crystal
surface. The orientation of the local glide planes is also shown. The color scheme is
described in appendix C.
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Figure 5.9.: Schematic representation of the effect of kink-complex on the multi-
plication of dislocations. Two non-coplanar single-armed sources S1 and S2 in screw
orientation pinned at P1 and P2 with opposite line orientations t1 and t2.
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Figure 5.10.: A snap-shot from the simulation showing the mechanism by which
new screw dislocations are generated due to dragging of kinks (see text for descrip-
tion). The dislocation lines are colored according to their habit planes and the color
scheme is described in appendix C.

show a zoom of the corresponding circled regions. In the inset (A), one
end of the mixed part is connected to the in-plane reaction R and is
therefore immobile. The open-circles on the dislocation lines in both the
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insets indicate nodes of a dislocation segment. Only nodes n1 to n4 which
get dragged are shown for clarity. The surrounding complex arrangement
of dislocation segments around nodal pairs n1,n2 and n3,n4 respectively
causes them to glide in opposite directions. In Fig. 5.10(b), the nodes
at n1, n2 and n3, n4 respectively are dragged in opposite directions gen-
erates screw segments S1 and S2. The mixed parts continue to move in
the directions r1 and r2 respectively and due to their three dimensional
nature, their motion is non-planar. Also note that cross-slip results in
combination of loops L1 and L2 combine to form a longer arm L12. The
mixed part of the loop L2 is pinched off field of the screw part with the
two end points at the junction R. Rather than by-passing each other on
parallel planes, they intersect each other and act as sources for further
dislocation multiplication and dragging. Note that local interactions also
cause a change in the glide plane of L3 with a/2[11̄1] Burgers vector and
the accumulation of kinks around the pinning point P3 which gives it a
very non-smooth appearance.

The DDD simulations of Rhee et al. [203] show that an initially jogged
single screw dislocation subjected to loading can self-multiply generat-
ing a large dislocation density. However, the origin of formation of jogs
and the consequence of such large multiplication rate with respect to
the overall plastic response in bcc metals has not been discussed. Fur-
ther, in both MD [204] and DDD simulations [112], cusp formation and
self-multiplication of screw dislocations has been observed leading to gen-
eration of further screw dislocations and is thought to promote strain
hardening in bcc metals. The cusp formation in their simulations is how-
ever attributed to kink-formation by the image forces on different planes
at both ends of an initially straight screw dislocation line and their subse-
quent migration inwards leading to formation of cross-kinks. The simula-
tions performed in this work show that the cross-slip on a screw dislocation
due to interactions with other dislocations plays a very important role in
the formation of kinks/jogs which act as pinning points on screw disloca-
tion. They promote cusp formation and generation of kink-complex but
contrary to the observations of Weinberger et al. [204] no strain hardening
is observed. This may be due to the small size of the pillars (48 nm) used
in their work where the mixed dislocations escape the sample easily. For
the 1 µm pillar used in the present simulation, the mixed loops which
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evolve from cusps multiply easily and since they move at lower CRSS
compared to CRSS of screw dislocation, softening is observed.

The theories of plastic deformation of bcc metals interpret the mechanical
properties such as yield and flow-stress in terms of thermally activated
glide of single screw dislocations [4, 8]. However, the simulation results
show that the presence of jogs aids in the of generation of mixed dis-
locations which residence longer in the specimen and contribute signifi-
cantly to the flow-stress. Hence in bulk-specimens where a large density
of kinks/jogs on screw dislocations are already present in annealed speci-
mens [99], mixed dislocations are also expected to play a significant role
in the overall deformation behavior.

Relation with experiments

Even though the initial configuration is an artificial one, some important
features of the simulation can be used to explain experimental observa-
tions.

1. Localized wavy slip traces on surface of bulk specimens is a char-
acteristic feature of both low temperatures and high-temperatures
deformation in several bcc metals (see for example Nb [193], W and
Mo [46] and α−Fe [89]. Such wavy slip traces can be naturally ac-
counted for in simulations by the glide of the kink-complex such as
M in Fig. 5.8(d). These are formed due to successive cross-slip on a
screw dislocation and accumulation of kinks around a pinning point
and then their subsequent activation when the entire configuration
reaches a critical radius.

2. The sharp changes in the direction of dislocation segments often
observed in experiments [178, 193] which is also a common feature
in simulation (see figure 4.14) can be attributed to cross-slip on a
screw dislocation and subsequent pinning of the kink at pinning
points.

The microstructure in the simulation also shows a striking resemblance
to those obtained in experiments and shown in Fig. 5.11. In the experi-
ment, the pinning effect on screw dislocations may be due to the presence



5.3. Deformation of pillars in tension and compression 123

of alloy atoms. Despite the difference in origin of the pinning points be-
tween experiments and the simulations, the similarity of dislocation loops
indicates a similar mechanistic origin of such structures i.e. presence of
obstacles such as jogs on screw dislocations.

5.3. Deformation of pillars in tension and

compression

5.3.1. Stress-strain curves and dislocation density
evolution in pillars

The stress-strain curves in load-controlled experiments on bcc metal pil-
lars [105, 108, 205] are typically characterized by an initial elastic region
and a plastic region composed of discrete strain bursts. However, in all
the simulations on micropillars with different aspect ratios presented in
section 4.7, the stress-strain curves show an elastic region followed by a
large softening. For the [1̄ 4 9] orientation, Fig. 4.22(a) shows that the flow
stress drops by about 2 GPa in tension and at least 4 GPa in compression
compared to the initial yield stress corresponding to CRSS of screw dis-
location. However, the flow stress magnitudes in simulations on pillars in
compression post softening of about 4 GPa are in agreement with the flow
stresses measured in the experiments at room temperature by Schneider
et al. [108] on W micropillars (3-4 GPa) with similar diameters.

The difference in the stress-strain response between experiments and sim-
ulation could be because in the experimental specimens, the initial mi-
crostructure already consists of a network of dislocations [99]. The initial
configuration in the simulation however, is an assumed one consisting of
randomly distributed FR sources. Before the yield point is reached, only
pure screw dislocations are generated after the mixed dislocations have ex-
ited the volume. Once the screw dislocations begin to move, jog formation
occurs easily due to cross-slip. The same mechanisms operating in a pillar
with two initial FR sources described in section 5.2.4, which aid in the fur-
ther generation of mixed dislocations and formation of kink-complex such
as M in Fig. 4.19 are also active in the pillars with randomly distributed
FR sources. Therefore, after yielding, the mixed dislocations which move
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Figure 5.11.: Dislocation loops evolving in crystal of Nb-16 at. pct Mo at 295 K
reproduced from reference [4] (with permission). Note the resemblance of the loops
to that observed in the simulation shown in Fig. 4.14 showing that similarities in the
general nature of dislocation loops.

at much lower stresses than the CRSS of screw dislocations govern the
plastic flow in the pillars, which leads to the softening response observed
in the simulations.
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From the studies on pillars, several other recent experimental observations
can be rationalized as described below.

The stress-strain response observed in our simulations is similar to the
response of the micropillar experiments on directionally solidified Mo al-
loy micropillars conducted by Bei et al. [110]. The pillars showed a large
elastic region followed by displacement bursts leading to catastrophic and
unstable pillar deformation independent of the diameter of the pillar. The
experimental samples were almost dislocation free and the softening be-
havior is attributed to intense dislocation multiplication. The simulation
of pillar with two initial sources is possibly similar to the pillars of Bei in
terms of initial dislocation density. Therefore, similar mechanisms of defor-
mation described in section 5.2.4 could occur in the experiments leading
to the observed softening response.

The large activity of mixed dislocation in simulation can also be used
to rationalize the strain bursts observed in recent load-controlled experi-
ments bcc micropillars [105, 107, 108]. The experiments show that plastic
deformation progresses by strain bursts at certain levels of stress. Zaiser et
al. [109] show that size distribution of the strain increments corresponding
to the bursts in Mo were similar to those in Ni and are independent of the
orientation of applied loading. Strain bursts would not be expected from
screw dislocations which glide slowly by the kink-pair mechanism. The
similarity of distribution of strain increments in fcc and bcc metals there-
fore, strongly suggests that even in bcc metals mixed dislocations also play
a dominant role in the deformation in the pillars. It must also be noted
that the simulations are strain controlled whereas the experiments are
stress-controlled. The large stress-drop observed in the simulation due to
mixed dislocation activity would correspond to a strain-burst in a load-
controlled experiment.

The simulation also raises some important questions which have not been
addressed so far in the literature. Firstly, the role of jogs on the dynam-
ics of screw dislocation and the flow-stress of bcc metals has not been
accounted for. The simulations performed in this work, clearly show that
the kinks/jogs significantly influence the the dynamics of screw dislocation
motion by changing the effective length of a screw dislocation and there-
fore, its mobility (see Eq. (2.5)). Secondly, the occurrence of kinks/jogs
on screw dislocation could alter the core-structure at that point. At this
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point, atomistic simulations can clarify the effect of jogs on screw disloca-
tion mobility.

More importantly, the M111 orientation could play a significant role in
the deformation of bcc metals as suggested by Kang et al. [139]. This
is because a lot of repulsive cutting between mixed and screw disloca-
tions is observed in the simulation which in reality would result in a seg-
ment each of the dislocation along a line direction corresponding to the
Burgers vectors of the other dislocation. The line direction corresponds
to the M111 orientation which is another high-Peierls stress orientation
in bcc crystals [137, 139]. A large number of instances of cutting implies
a high density of segments along the M111 orientation is likely produced
in experiments. Therefore, the M111 orientation may then indeed govern
the macroscopic response of bcc metals.

5.3.2. Activity of slip systems

Recent room temperature experiments on W micropillars [105, 106, 108]
and other bcc metals [107,206] have been performed on multislip loading
orientations. They are concerned mostly with the investigation of size ef-
fect. Any direct comparison of the simulation results presented here for the
[1̄ 4 9] orientation with experiments is therefore not possible. However, the
atomistic yield criteria of Groeger et al. [9, 10], which does not take into
account the interactions for tension, predicts for the [1̄ 4 9] orientation.

Experiments in several bcc metals like Nb [30, 193], W [46], Mo [44, 46,
47, 207], Fe [23, 180], V [93] and Ta [95, 97] show both the (1̄01)[111]
primary and significant conjugate ((101)[1̄11]) slip system activity from
the beginning of deformation for center-triangle oriented specimens where
one expects single slip only.

Two loading axes of the pillars have been chosen along the [1̄ 5 10] and
the [1̄ 4 9] direction for the simulations in compression. For the [1̄ 4 9]
orientation, simulations were also performed in tension. These correspond
to single slip orientations where the highest resolved shear stress plane
(1̄01) is expected to be largely active both from Schmid law and from
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atomistic studies on isolated screw dislocation including non-Schmid ef-
fects [9, 10]. Similar to experiments in bulk-specimens, single slip has not
been observed in any simulation.

The slip activity on the [1̄ 5 10] oriented pillars are in good agreement with
the in situ Laue in experiments on pillars with same geometry [208]. For
the [1̄ 4 9] oriented pillars, the deformation picture shows the same trend
but the activity of conjugate slip system is always higher in compression
compared to tension.
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Figure 5.12.: A comparison of the activation enthalpies for the (1̄01)[111] and the
(101)[1̄11] incorporating non-Schmid stresses for the [1 4 9] loading orientation. The
plot in green is the activation enthalpy when only Schmid law is considered. In the
Schmid law framework, the activation enthalpy of all slip systems is given by one
curve.

In tension, the slip activity in pillars with aspect ratio 1 : 3 : 1 shows
that at least 30% of plastic slip occurs on the conjugate (101)[1̄11] slip
system. This is interesting because the role of non-Schmid stresses in
tension is to lower the activation enthalpy of kink-pair nucleation for the
a/2[111] screw dislocation on the primary slip system (1̄01)[111] compared
to the case when these effects are neglected. This is illustrated in the
activation enthalpies of the slip systems shown in Fig. 5.12. Therefore, the
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primary slip system (1̄01)[111] is expected to dominate the slip activity
even more when the non-Schmid effects are taken into account.

The occurrence of large amount of slip on the lower stressed conjugate
slip system (101)[1̄11] in both tension and compression can be ratio-
nalized as occurring due to the relative orientation of the a/2[111] and
a/2[1̄11] Burgers vectors. This geometric feature determines the longest
length of the screw dislocations spanning the volume of the pillar. The
effect of high Peierls stress is that the forest screw dislocations remain
straight and span the volume. For the different aspect ratio of the pillars
chosen in the simulations, the screw dislocation with a/2[1̄11] (conjugate)
Burgers vector is the longest. The mobility law for screw dislocation clearly
implies that a longer dislocation has more number of kink-nucleation sites
along its length (Llc ) and hence a higher probability of activation. There-

fore, the screw dislocation with a/2[1̄11] Burgers vector has on an average
the largest probability of being activated due to interactions with other
active slip systems. The other active dislocations could be either screw
dislocations gliding on primary slip plane (1̄01) or even mixed disloca-
tions gliding on low stressed planes. In the simulations, the screw dis-
locations with a/2[1̄11] Burgers vector move on the (101) plane and are
activated primarily due to interactions and contribute to slip, even though
the macroscopic stress state favors the (1̄01)[111] slip system.

Additionally, in compression for the [1̄ 4 9] loading orientation, the con-
tribution of the conjugate slip system (101)[1̄11] (39%) to total slip is
even higher than that of the primary slip system (1̄01)[111] (32%). This
is because in compression the (101)[1̄11] slip system has a lower CRSS
than the (1̄01)[111] slip system due to the effect of non-Schmid stresses
and can be activated at lower internal stresses than in tension (see sec-
tion 5.2.3). Therefore, due to the effect of dislocation interactions, the
conjugate slip system (101)[1̄11] contributes more to the total slip than
the primary slip system (1̄01)[111] .

5.3.3. Influence of surface orientation on slip geometry

Vesely [100,101,209] performed tensile experiments on thin foils of Mo at
room temperature with center-triangle orientation to investigate the influ-
ence of surface orientation on the slip system activity. The geometry of the
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foils used in the experiments of Vesely had similar geometriesA and B (see
Fig. 4.26). The main experimental findings of Vesely were that for orien-
tations A and B the most active Burgers vectors were the a/2[111] and
the a/2[1̄11] (see Fig. 4.26) respectively. Additionally, slip on other low
stressed slip systems was also observed for both the orientations. Experi-
mental investigations by Matsui et al. [210] on Mo also showed that the
most active Burgers vector depended on the orientation of the foil. More
recently Kaufmann et al. [211] also investigated the effects of geometry
on the flow- stress of Ta and Fe micropillars at room temperature. They
showed that the flow-stress depends on the orientation of the primary
Burgers vector with respect to the largest dimension of the specimen. All
these observations underline a very important aspect of bcc deformation
behavior of bcc crystals that the slip activity in bcc metals is influenced
by the specimen geometry.

While no mechanistic interpretation was offered by Vesely, Matsui et
al. [210] proposed that the image force due to the presence of free sur-
face aids the mobility of screw dislocations by nucleating kinks on it and
thereby promoting slip on a low stressed plane in preference to the highest-
stressed plane. Accordingly, the geometry of the sample determines the
orientation of the slip direction which interacts most strongly with the
free surface and the plane on which image force on screw dislocation is
largest. The main result in the simulation presented in section 4.8, simi-
lar to the experiments, is that for the pillar A, the primary slip system
(1̄01)[111] has the largest contribution to plastic flow as expected and for
pillar B, the conjugate slip system (101)[1̄11] contributes the most. How-
ever, in the simulation, the surface effects as proposed by Matsui et
al. [210] are not accounted for because a screw segment with node on
the surface is constrained to remain straight (refer appendix section A.1)
and hence surface effects cannot be responsible for a larger activity of the
conjugate slip system in pillar B.

Here, we show that the greater contribution of the (101)[1̄11] in pillar
B towards total deformation is due to a volume effect than due to im-
age forces. The length effect of the longest screw dislocation discussed
in section 5.3.2 plays a decisive role since by changing the geometry of
the pillar, the longest possible length of the screw dislocation spanning
the volume is altered. Fig. 5.13 shows that in the pillar B, [1̄11] conju-
gate slip direction spans the longest length of the pillar compared to the
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[111] primary slip direction in the pillar A. Therefore, on an average, after
attaining screw orientation, a screw dislocation with a/2[1̄11] Burgers vec-
tor is much longer than the a/2[111] screw for pillar B. Hence the latter
slip direction here has a larger number of kink-nucleation sites and higher
probability of multiplication and activation due to interactions with other
dislocations.
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b1
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Figure 5.13.: Figure (a) shows the two pillars A and B and the constraint imposed
by the geometry of the pillar on the maximum possible length of the Burgers vec-
tors. b1 and b2 are the Burgers vectors a/2[111] and a/2[1̄11] respectively. In (a) and
(b), screw dislocations with the a/2[111] and the a/2[1̄11] Burgers vector have on an av-
erage the longest possible length. Accordingly, screw dislocations with the a/2[111] and
a/2[1̄11] Burgers vectors have the largest number of intersecting points with other dis-
locations inside the volume.

Thus, the observed change in the deformation behavior in pillar A and
B is therefore due to varied geometry of the pillars which influences the
longest 〈111〉 Burgers vectors spanning the volume. The effect of geometry
and interactions is to alter the contributions of the slip systems to the
plastic flow and therefore for pillar B, a large portion of slip occurs on the
macroscopically low stressed (101)[1̄11] slip system. This also emphasizes
the need to account for interactions in crystal plasticity formulations of
plastic flow in bcc metals.
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Simulations on single-slip oriented fcc pillars by Senger et al. [212] with
l = 0.5 µm show that a secondary slip system with lower Schmid factor
is only activated once the highest Schmid factor system is blocked in its
operation due to dislocation reactions leading to lock formation and sub-
sequent blocking of sources on most active planes. Other less favorable
slip systems owing to their low Schmid factors are activated only after
the suppression of activity on higher-Schmid factor planes. In compari-
son, the simulations on W presented in this work show that this is not a
necessary condition. In general there are always sufficient sources of dislo-
cation present on the primary plane and no blocking is observed. In all the
simulations, the conjugate slip system (101)[1̄11] plays contributes almost
equally as the primary slip system (1̄01)[111] towards total strain. The
primary reason for this behavior is also because for this orientation, the
conjugate Burgers vector spans a longer length inside the specimen which
increases the number of kink-pair nucleation sites by local stresses due to
its interaction with dislocations on other planes. Any activity on primary
system due to motion of screw or mixed dislocations is accompanied by
subsequent activity on conjugate slip directions.

5.3.4. Mechanisms of anomalous slip

Among the characteristic features of anomalous slip described in sec-
tion 2.2.1, the most important aspect is the occurrence of well-defined
slip trace on the (01̄1) plane over a large specimen area. In the simula-
tions performed in this work, anomalous slip is observed in pillars loaded
along the [1̄ 5 10] direction and is in good agreement with the experi-
ments on pillars with the same geometry [208]. For the [1̄ 4 9] oriented
pillars too, anomalous slip is observed in both uniaxial tension and com-
pression. The occurrence of anomalous slip in simulations is surprising
because the screw dislocations glide primarily on their lowest activation
enthalpy planes. Accordingly, the screw dislocations with Burgers vector
a/2[111] and a/2[1̄11] are expected to move on the (1̄01) and (101) planes
respectively (see for example Fig. 4.16). In the following sections, the clas-
sical mechanisms of anomalous slip are reviewed and then two new mech-
anisms are proposed which lead to anomalous slip in the simulations.
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Surface-effect mechanism

The surface-effect (SE) mechanism proposed by Matsui et al. [213] ad-
vocates that image stresses perpetually create an edge component on a
screw dislocation on the anomalous plane by rotating the screw disloca-
tion locally out of its screw character. With increasing applied stress, the
edge/mixed component gets activated and moves at stresses lower than
CRSS of screw dislocation on the anomalous plane. The motion of the
edge/mixed dislocations is attributed to the straight crystallographic slip
traces typical of the anomalous slip [98,193,213]. A necessary requirement
of this model is that the slip direction and the crystal surface make a small
angle with each other and slip plane must be nearly normal to the local
crystal surface.

However, Taylor [214] remarked that for certain loading axes within the
stereographic triangle, on cylindrical specimens, the plane most nearly nor-
mal to the surface was the (1̄10) plane and not always the (01̄1) plane. Also
for cylindrical specimens, the plane perpendicular to the surface contain-
ing a given Burgers vector varies with local crystal orientation in that all
planes in the zone of a given slip direction are equally favored yet not
observed in experiments.

The SE mechanism however, cannot account for the disappearance of
anomalous slip with increasing temperatures. This is because the strength
of image force is temperature independent. If the SE mechanism were to
be active, screw dislocations at any temperatures should contain edge seg-
ments lying on the anomalous plane. This mechanism should therefore
be active in the low and medium temperature range in which the critical
stress needed to move edge dislocations is much smaller than the CRSS
of screw dislocations. Therefore, contrary to the experimental observa-
tions [4, 55], at low and medium temperatures, the SE mechanism would
predict plastic slip in bcc metals to occur on the anomalous plane. In the
simulations, the modeling constraint that a screw dislocation on surface
remains straight (see section A.1) ensures that this mechanism is not ac-
tive in the simulations and is not responsible for the observed anomalous
slip.
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Co-planar double slip mechanism

To overcome the drawbacks of the SE-mechanism, Matsui et al. [192] pro-
posed the co-planar double slip (C-D-S) mechanism of anomalous slip. It
was motivated by TEM observations of dislocation structures which re-
vealed a network of primary and conjugate 〈111〉 screw dislocations bound
together by the 〈100〉 junctions on the anomalous plane. An example of
such a network formation observed in Mo is shown in Fig. 5.14. The mech-
anism envisages that the a/2[111] and a/2[1̄11] screw dislocations, which
are co-planar on the (01̄1) plane, glide co-cooperatively on the anoma-
lous plane. Kink-nucleation is proposed to occur at the junction node
on the anomalous plane and is subsequently transmitted conservatively
around the network [192] generating slip the anomalous plane. In situ ob-
servations [194] of motion of dislocation networks involving the primary
and conjugate Burgers vectors on the anomalous plane seemed to sup-
port this view. Bulatov et al. [215] investigated the atomistic aspects of
migration of such a network and found that in principle, conservative
motion of network is possible due to enhanced mobility of screw dislo-
cations at the junction nodes. Louchet et al. [178, 195] also proposed a
similar model in which anomalous slip occurs when the dislocations with
a/2[111] and a/2[1̄11] Burgers vector first cross-slip onto the anomalous
plane and form a a[100] junction. Then the entire network is proposed to
glide collectively on the anomalous plane in a manner similar to the C-
D-S mechanism. Moreover, Garrat-Reed [193] reported anomalous slip in
Nb specimens, where such a network structure was absent, which suggests
that the network formation is not a pre-requisite for anomalous slip.

For the C-D-S mechanism to operate and the network to move conser-
vatively on the anomalous plane, the transmission of kink nucleated at
the junction across the network would require that the network itself be
planar. The DDD simulations however, show that the network structure
is typically non-planar and the screw dislocations on a given plane around
the junction are kinked/jogged. To illustrate this point, a snap-shot from
a simulation in compression on the pillar along the [1̄ 4 9] orientation is
shown in Fig. 5.15 which reveals a non-planar network similar to exper-
iments (Fig. 5.14). Kink-transmission across such a non-planar network
leading to anomalous slip would be require non-conservative motion which
is not possible at low temperatures [12].
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Figure 5.14.: Typical network structure of irregular shaped screw dislocations
formed in Mo reproduced from [98]. R denote the junctions with Burgers vector of
〈100〉 type. D and L denote the dipole trails and dipole loops respectively.

In the simulations, however, an alternate mechanism of conservative mo-
tion of dislocation network is observed which contributes to slip on other
low-stressed planes. The glide of the network occurs locally over a limited
region and it always occurs when one of the reactant 〈111〉 dislocations
has edge/mixed orientation which drives the entire configuration, similar
to the manner described in section 5.3.5 (see also appendix B).
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Figure 5.15.: Figure shows a non-planar network of 〈111〉 dislocations joined to-
gether by the reaction product R Burgers vector [100]. The reactant dislocations have
Burgers vector a/2[11̄1] and a/2[111̄] respectively. The reaction product lies on the
(011) plane. The dislocation arms I,II, III and IV which form the network do not all
lie on the same plane.

Other mechanisms

More recently, Hsiung [99, 216] attributed the occurrence of anomalous
slip to the collective effects of dislocation multiplication, interaction and
subsequent propagation on the anomalous plane. This mechanism how-
ever cannot account for the coarse crystallographic slip trace over a large
specimen area which is a characteristic feature of anomalous slip. This is
because cross-slip on anomalous plane due to local stress-variation occurs
only over a short-distance and only as long as the local stress-variation is
favorable. As soon as the stress-variation is absent, the screw dislocation
cross-slips back onto its low enthalpy plane.
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The mechanisms described previously also cannot account for the occur-
rence of coarse slip traces over large specimen area as observed in the
pillar experiments [208]. In the next sections, the mechanisms of anoma-
lous slip observed in the simulations are described which demonstrate that
anomalous slip is a result of dislocation interactions.

Stress-induced cross-slip

The first mechanism contributing to anomalous slip is stress-induced cross-
slip. A snap-shot of a [111] screw dislocation cross-slipping on the anoma-
lous plane (01̄1) is shown in Fig. 5.16. Dislocation interactions can cause
stress-variation along the screw dislocations on both the primary and con-
jugate slip systems and impose a stress-state which favors cross-slip via
nucleation of kink pairs on the anomalous plane. The kink generated is
now confined to move on the anomalous plane which glides along the
screw dislocation and thereby generates plastic slip. This local activation
is short-lived and the screw part on the anomalous plane cross-slips back
to a plane parallel to the initial plane, once the local stress is no longer fa-
vorable. This mechanism occurs mostly inside the pillar volume and does
not create large slip traces on the surface of the specimen.

Cross-kink mechanism

A second mechanism that generates slip on the anomalous plane is identi-
fied here. Kink-pair nucleation can in principle occur on any of the three
distinct {110} planes of the 〈111〉 Burgers vector. If opposing kinks are nu-
cleated on the same plane, they migrate towards each other under stress
and annihilate each other. If however, opposing kinks are generated on
different {110} planes, they can migrate towards each other along the
screw dislocation and collide to share a common node, which is called a
cross-kink. Fig. 5.17 shows a sequence of snapshots extracted from the
3D simulations which leads to anomalous slip. The cross-kink is formed
by the kinks AB and BC which were generated by prior dislocation in-
teractions and move towards each other. They collide at the common
node B forming a sharp angle. In general, the two kinks are of different
lengths and experience different driving forces but they are geometrically
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(a) (b)

Figure 5.16.: The mechanism of stress-induced cross-slip on dislocation L1 with
[111] Burgers vector in screw orientation. Due to interaction of L1 in (a) with the
neighbor dislocations (L2, L3 and L4) locally cross-slip occurs over a small area on
the anomalous plane (L5). The corresponding areas traced by the segments is also
shown in color in (b). S1 and S2 are the local surfaces which are only displayed for
clarity. The intersection of the dislocation line with the surface is marked with open
circles. Broken lines on arrows indicate the direction (projected) is going into the plane
of paper and solid lines indicate in the plane of the paper. The dislocation lines are
colored according to their habit planes (see appendix C for color code).

constrained to glide together. Their effective direction of motion depends
on the resultant force which can drive the kink segment on the anomalous
plane (AB in figure 5.17(a)) against the direction in which it would want
to move alone.

Fig. 5.17(a) displays such a scenario where the segments AB and BC form
a cross-kink. The free surface of the pillar is indicated in grey color and
marked with FS, the glide planes are indicated in orange (01̄1) and blue (1-
01). The colors of the lines are according to their habit planes. The end A
is attached to a screw dislocation while the end B is connected to a section
of several small segments of mixed character on several planes. Since both
nodes A and B are kinematically constrained to move along the Burgers
vector direction, they cannot separate.

The direction of motion of the entire complex is indicated with the ar-
row M. In Fig. 5.17(b), node A reaches the surface and is released from
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Figure 5.17.: Mechanism of anomalous slip. Snapshots ((a)-(d)) of small sections
of the sample show the occurrence of anomalous slip due to [1̄11] dislocations on the
anomalous (01̄1) plane. See text for description.
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the screw dislocation. The dislocation section AB which experiences a
driving force into the specimen, can then rapidly increase in length and
thereby generate slip on the anomalous plane as shown in Fig. 5.17(c). In
Fig. 5.17(d), an overlay of the dislocation structure at four time steps
after the release of node A is shown. The mixed segment AB glides back
in the direction of the orange arrow. Node A moves along the intersection
line of the anomalous plane II with the surface and the node B moves
along the screw dislocation along the intersection of planes I and II. The
segment DE is screw oriented and lies on plane III parallel to II. Segment
BC moves on plane I and CD represents schematically the kink-complex
attached to BC. The motion of segment AB resembles a single armed
source sweeping a large area on the anomalous plane, before it can again
attain screw orientation. Since this mechanism produces slip by the mo-
tion of mixed dislocations on the anomalous plane, it generates coarse slip
traces over a large region of the surface.

The cross-kink mechanism is also observed to operate in the simulation
on pillars for loading in the [1̄ 4 9] orientation which shows that it is
independent of the loading sense. This is consistent with the fundamental
feature of anomalous slip that the anomalous slip plane is same in tension
and compression [4, 30].

It remains to account for how the cross-kink based model mechanism can
explain the disappearance of anomalous slip at higher temperatures. It
may be possible that at higher temperatures, many thermal kinks may
be present on a screw dislocation due to thermal activation. They may
mutually block each other and the motion of cross-kinks towards surface
may be limited thus suppressing the operation of this mechanism.

The orientation dependence of the anomalous slip as observed in the ex-
periments on Nb [193] at low temperatures can also be well-accounted
for with this mechanism. It has been observed that for loading orienta-
tions towards the [001] corner of the stereographic triangle, probability of
anomalous slip increases and towards the [011] corner, it decreases. For
loading orientations towards the [001] corner of the stereographic trian-
gle, the Schmid factors of both the (01̄1)[111] and (01̄1)[1̄11] systems
increases reaching a maximum at the [001] corner. Therefore, there is a
higher probability of cross-kink formation on the anomalous system due to
stress-induced cross-slip. The edge segments of the cross-kinks experience
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higher driving force towards the surface and thus increased contribution
of anomalous slip to total deformation.

For orientations towards the [011] corner, the Schmid factors of both the
(01̄1)[111] and (01̄1)[1̄11] systems decreases reaching zero at the [011] ori-
entation which means that both the probability of cross-slip of a screw
segment leading to generation of cross-kinks as well as the lower applied
stresses experienced by the CK would result in a lower occurrence of this
mechanism. Hence the contribution of anomalous slip towards total defor-
mation is expected to decrease.

5.3.5. Mechanisms of dislocation motion

The simulations show that the total deformation occurs by a complex
aggregate of several individual mechanisms. In this section, some new
mechanisms of screw dislocation motion are presented which may account
for several experimental observations. These mechanisms occur in all sim-
ulations both in tension and compression and affect the dynamics of screw
dislocations.

Motion of dislocation network

In the classical picture of motion of dislocation network together at 〈100〉
junctions, it is assumed that the 〈111〉 dislocations forming the network
have screw orientations only [194, 215]. In the simulations performed in
this work, a network in which both the 〈111〉 dislocations have screw ori-
entation are not observed to move because 〈100〉 junctions are assumed
to be immobile. However, conservative motion of dislocation network of
〈111〉 screw dislocations has still been observed. Here we present an al-
ternate mechanism of the glide of a dislocation network due to a mixed
dislocation segment which is attached to the junction node. It must how-
ever be remarked that such events are rare.

Fig. 5.18 shows a snap-shot from a larger simulation in compression along
the [1̄ 4 9]] direction, where the motion of screw dislocation at junction
node is aided by edge/mixed dislocations. Loop L2 and L3 with Burgers
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vectors [111] and [11̄1] respectively are locally attractive at J. A macro-
kink E on the screw part of the loop L3 is generated remotely and it
glides in the a/2[11̄1] direction. As it encounters the reaction J along its
path, the mixed segment E of loop L3 and the screw part of the loop
L2 then share a common node at J. Since they are locally attractive, the
common node is driven by the mixed dislocation E which can glide at low
stresses. E also exerts a force on the screw part of loop L2 and activates
it. The entire network glides forward in this manner due to the motion of
mixed dislocation E. This example also illustrates how a single activation
event such as generation of macro kink such as E on a screw dislocation
and its subsequent migration along the screw dislocation line leads to a
succession of further events generating plastic slip.

In order to demonstrate that the activity of the screw part of loop L2

is due to mixed segment E, the macro-kinks generated on L2 are ana-
lyzed. The formation of macro-kinks indicates that different parts of the
screw segments presence of loop L1 in its vicinity, experience different
stresses and the common node at the reaction J glides much faster than
the rest of the screw dislocation. The macro kinks accumulate inside the
specimen at pinning point P2. Thus a locally non-screw segment of the
〈111〉 segment attached to an immobile 〈100〉 junction can also activate
an entire dislocation network where the screw dislocation glide occurs by
mutual interaction.

Similar mechanism has also been observed on other low stressed planes
where the edge or mixed dislocation segment gliding on a high-stressed
plane initiates glide of network on a low stressed plane generating anoma-
lous slip. Since such a slip is generated by locally activated events, it leads
to slip over a small area. Another example of the motion of network in
tension is shown in appendix Fig. B.2.

Mixed dislocation driven screw motion and Jerky motion

Recent low temperature in situ experiments have reported jerky-motion
of screw dislocations [217]. The main characteristics of jerky motion are
sudden jumps of screw dislocation over distances larger than the nearest
Peierls valley and large instantaneous changes in velocity of a screw dis-
location. The jump-lengths were not constant and the screw dislocation
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Figure 5.18.: Figure shows how a sequence of events can trigger other events during
deformation and how macro-kinks may be generated on a screw dislocation. Loops
L1, L2 and L3 have Burgers vectors a/2[111̄] , a/2[111] and a/2[11̄1] respectively.

velocity showed an increase by a factor of about 103. It is thought that
both these features are incompatible with the classical kink-pair mecha-
nism. This is because the classical kink-pair theory necessitates that each
successive kink-pair nucleation leads to forward motion of screw disloca-
tion to the next Peierls valley only. The occurrence of jerky-motion due to
large spatial variation of the internal stress was also rejected on grounds
that such large changes in velocities require a large change in disloca-
tion density (a factor of 2.5 in α−Fe) which was also not observed in the
experiments.

A locking-unlocking mechanism involving the glide of a screw dislocation
over several Peierls valleys was proposed by Caillard [217]. According to
this mechanism, a screw dislocation may remain locked in a Peierls valley
until it is unlocked by a critical bulge configuration, which is a variant of
the kink-pair configuration. The critical bulge configuration represents a
metastable configuration of the dislocation core that does not experience
the effect of intermediate Peierls valleys and can thus glide over several
Peierls valleys. Once the glide occurs, the screw gets locked before being
unlocked again by the same mechanism.

However, the occurrence of apparent glide of screw dislocations on low
Schmid factor planes, in preference to higher stressed plane observed by
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Caillard [90], cannot be explained by the locking-unlocking of screw dis-
location under the influence of macroscopic stresses alone. This is be-
cause the screw dislocations would move on lowest activation enthalpy
planes. An alternate mechanism for jerky motion is proposed here based
on the interaction between mixed and screw dislocations.

It is shown here that this elementary interaction exhibits the same char-
acteristics necessitated by the jerky-motion and is still consistent with
the classical kink-pair mechanism. Firstly, the studies of mixed and screw
dislocation interaction presented in section 4.5 show that the local stress
acting on a screw dislocation can increase by more than 2 GPa due to its
interaction with mixed dislocation on a lower-stressed plane. This change
can be quite rapid and occur over a very small interval of about 10 b. The
velocity reached by the screw dislocation is also the maximum flight ve-
locity allowed in the simulation (300 m s−1) showing an increase by about
a factor 103 similar to that observed in experiments [217].

Fig. 5.19 shows a snap-shot from the simulation on pillar in compres-
sion along the [1̄ 4 9] direction showing an instance of mixed dislocation
driven screw dislocation. The mixed dislocation loop L2 with Burgers vec-
tor a/2[1̄11] gets activated after attaining a critical configuration glides
in the vicinity of a/2[111] screw dislocation. As a result, the screw arm
of the loop L1 cross-slips from the the (1̄01) plane onto the low-stressed
(1̄10) plane. The Schmid factor of the (1̄10)[111] slip system is half that
of the (1̄01)[111] slip system. The activation of low-stressed slip system
in preference to high stressed slip system confirms that the interaction
between mixed and screw dislocation changes the local stress state sig-
nificantly in a short interval of time. This points towards the possibility
that the jerky motion of screw dislocations is rather due to interaction
between mixed and screw dislocations and not an intrinsic mechanism of
screw dislocation.

Bulk stress-strain curves

The activation of screw dislocations by mixed dislocations at low-applied
stresses could significantly influence the shape of the stress-strain curves
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Figure 5.19.: (a) shows the local activation of [111] dislocation (loop L1) pinned at
P due to interaction with incoming loop L2 moving in its vicinity. The screw part of L2

is activated remotely causing it to change its glide plane from (110) plane to (1̄01). In
(b), the local stress field change due to motion of L2 in its vicinity causes cross-slip of
screw part of L1 from (1̄10) plane to (1̄01) plane.

in bulk specimens. Typical bulk stress-strain curves of several bcc met-
als like W [50, 52, 55, 61, 177], Mo [44, 45, 47, 94, 184, 218] show a charac-
teristic parabolic stress-strain response at low temperatures for center-
triangle (single slip) oriented specimens. Classically, the parabolic regime
is referred to as the microplastic regime and attributed to strong initial
work hardening [47, 184, 197, 207]. The mechanistic picture behind the
parabolic response is however not understood. Brunner [55] suggests that
exhaustion of mixed dislocations on secondary slip systems alone cannot
account for the parabolic shape of the stress-strain curves.

It is argued here that the parabolic form of the stress-strain curve observed
in experiments is not due to work hardening but rather due to energy dis-
sipation caused by plastic flow associated with : 1.) Exhaustion of mixed
dislocation sources on secondary slip systems before the CRSS of screw
dislocation on primary slip system is achieved 2.) Interaction between
mixed dislocations and the forest screw dislocations.

The simulations on pillars for the [1̄ 4 9] orientation show that in the
early stage of deformation before before the CRSS of screw dislocations
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of the highest stressed slip system is reached, mixed dislocations on the sec-
ondary slip systems are activated generating forest screw dislocations. Bot-
h attractive and repulsive trees are generated in equal density. The order
of operation of the slip systems follows the Schmid law. The same order
of slip activity in the early stages of deformation is also expected in bulk
specimens. The density of forest dislocations in the early stage of defor-
mation depends on the CRSS of screw dislocation of the primary slip
system. Every newly activated secondary slip system interacts with an
increasing density of forest screw dislocations. The simulation results in
section 4.5 show that the repulsive interaction between mixed and screw
dislocations can activate the screw dislocations even if macroscopically
the CRSS of screw dislocations is not reached, thereby generating plastic
slip. This local plastic slip event manifests itself as a non-linearity in the
stress-strain curve. The total slip contribution due to the interaction be-
tween mixed and forest trees therefore depends on the density of forest
dislocations available. At low-temperatures where the CRSS of screw dis-
location is high, larger contribution of plastic slip in the early stages of
deformation is expected from the larger activity of secondary slip systems
and greater interaction between mixed dislocations moving on secondary
slip systems and forest screw dislocations. Accordingly, the stress-strain
curve is expected to deviate increasingly from the linear elastic response
and show greater non-linear response in the early stages of deformation
with decreasing temperature, consistent with the experimental results.

5.4. Peierls stress and comparison with

experiments

Due to the dependence of the Peierls barrier on the applied loading, it is
essential to recall the notion of Peierls stress as deduced from experiments
and its comparison with the theoretical value derived from atomistic simu-
lation. The Peierls stress is defined as the critical Schmid stress needed to
displace an isolated screw dislocation at 0 K. In contrast, what is referred
to as the Peierls stress in experiments is obtained from uni axial tension
and compression tests over a range of temperatures by extrapolating the
effective resolved shear stress to 0 K.



146 5. Discussion

Atomistics results show that the activation enthalpy, and therefore the
Peierls barrier and the Peierls stress depend on the stress tensor Σ

χ
, one

has to compare the experimental Peierls stress with that obtained from
the corresponding loading. We execute this here for the example of the
[1̄ 4 9] orientation (χ = 0◦ and η = 0.51) for which experimental data
is available [55, 177]. Extrapolation of our data for tensile loading to 0 K
gives a value of about 3.6 GPa (0.022 C44). The value obtained from
the atomistic simulations corresponding to σ = 0 (pure shear parallel
to the slip direction) and χ = 0◦ is about 4.7 GPa (0.029 C44) from
Gröger et al. [9]. This means that due to the effect of the shear stress
perpendicular to the slip direction a reduction of the Peierls stress by
about 25 % can be accounted for. As discussed above, the effect of the
non-Schmid stresses decreases at higher temperatures. Even at 300 K the
reduction of the calculated yield stress in tension as compared to pure
shear is of the order of 10 %.

It must of course be noted that the obtained value for the Peierls stress
from atomistic simulation is still much larger (by about a factor of about
3) than the experimentally deduced Peierls stress even if this correction is
made. Interestingly, the discrepancy between the calculated yield stress
and the experimental yield stresses remains at this difference of a factor of
3-4 up to room temperature. This discrepancy has been known for some
time and several models are discussed to explain the discrepancy. A low-
ering of the atomistically determined stress could for example come from
the collective glide of dislocations in array [140] or the stress variations
in complex dislocation networks. Quantum-mechanical tunneling has also
been proposed as a mechanism which aids screw dislocations in overcom-
ing the Peierls barrier without the need for thermal activation [219–222]
and thereby questioning the applicability of the classical Arrhenius law
in the low temperature regime. Even the influence of zero point vibra-
tions in aiding dislocation motion [223, 224] and applied specifically to
screw dislocation motion in bcc metals by Proville et al. [225] has been
proposed as a major source of this discrepancy. Similarly, the role of in-
terfaces or surfaces for kink-nucleation [213] or even the inertia of the
dislocation could contribute to motion of dislocation over several Peierls
valleys after an activation event [226]. It must be mentioned, that recent
micropillar compression experiments from W single crystals [108] at room
temperature yielded resolved shear stresses of the order of 0.8-1.0 GPa
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for pillars with diameters above 2 µm and significantly larger resolved
shear stresses of the order of 1.5-2.0 GPa for pillars with diameters below
500 nm. Surface kink nucleation and similar effects should actually soften
the smaller pillars and can therefore be responsible for the differences in
Peierls stress. More complex dislocation structures in larger pillars and
even more so in macroscopic specimens might also be responsible for fur-
ther reduction of the Peierls barrier.

Full DDD simulations on pillars in section 4.7 show that the initial yield
stress at which is defined by large scale motion of screw dislocations can be
lowered by at least 10% in tension compared to the flow stress needed for
periodic activation of single FR source due to internal stresses. In compres-
sion, as much as 17% of the total stress is contributed by internal stresses
owing to the prior activity of screw dislocations on conjugate slip sys-
tem. A larger lowering occurs in compression than in tension because the
studies on dislocation interactions between repulsively interaction screw
dislocations show that the difference in the CRSS of the screw dislocations
on primary and conjugate screw dislocations in compression is lower than
in tension (see Fig. 4.21(a) and (4.21(b)). Thus the CRSS of a conjugate
screw dislocation is reached much early in compression due to repulsive
interactions than in tension which is responsible for a larger decrease in
the effective stress in simulations.

From the above considerations it can be concluded that, in addition to the
non-Schmid stresses, internal stresses also lead to reduction of the effective
flow-stress. Anomalous slip causes a further reduction of the effective flow-
stresses. Stress-concentration points around a screw dislocation also can
contribute to the effective lowering of CRSS of screw dislocations. These
effects are also certainly present in experiments. Hence it is argued that the
true magnitude of the Peierls stress discrepancy between the experimental
value of CRSS (which is related to highest Schmid factor plane only [55,
61]) and those obtained from atomistic simulations certainly cannot be
interpreted in terms of single dislocation picture alone. The role of mixed
dislocations in accommodating the applied strain rate can certainly not
be neglected.





6. Conclusions

The main aim of this work was to develop a multi-scale model for trans-
ferring the key atomistic information of screw dislocations to a mesoscale
DDD model to enable the simulation of the plastic flow of bcc metals. The
model takes into account the effect of applied loading and incorporates
non-glide components of the stress tensor which strongly influence the crit-
ical resolved shear stress. The local stress state modifies the Peierls bar-
rier on the three possible glide planes of the screw dislocation and thereby
changes the energy barrier for kink-pair nucleation on these planes. The
plane with the lowest activation enthalpy then controls the slip of the
dislocation.

The model which describes the activation of screw dislocation based on the
minimum activation enthalpy of kink-pair nucleation, can account quali-
tatively very well for the experimentally observed slip on the MRSSP at
higher temperatures, the tension-compression asymmetry and the orien-
tation dependence of slip activity. This non-Schmid framework, based on
atomistic input, naturally provides a physically based description for the
activation of low-Schmid factor planes under compressive loading.

Classically, the {112} and {123} planes have also been considered as el-
ementary slip planes to account for orientation effects. It is shown here
that the experimentally observed ψ → χ relationship can very well be
described by considering {110} as the elementary slip planes only. A new
method is proposed to identify the elementary glide planes in the bulk
of a bcc metal at high-temperatures. The method exploits the fact that
from the line direction of a binary sessile junction, the glide planes of the
reactant dislocations can be unambiguously identified. The occurrence of
elementary slip on every {hkl} plane results in a unique possibility of
line direction of the binary junction. The occurrence of such directions in
experiments can be exploited as a unique signature of slip on high index
planes.
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The repulsive interactions of screw dislocations reveal a fundamentally
different mechanism which is contrary to the prevailing knowledge. Two
interacting repulsive screw dislocations always behave as rigid lines and
maintain a critical distance before they glide collectively in their respective
planes. The equilibrium distance depends on the Burgers vectors involved
and the sense of loading. The activation of the driven dislocation occurs at
the point of strongest interaction with the driving dislocation. This also
shows that the nature of interactions in W and possibly other bcc metals
is fundamentally different from that of fcc metals. More importantly it
emphasizes the role of accounting for non-Schmid stresses in modeling
the effect of interactions can lead to change in the local activation barrier
for screw dislocation. Due to the non-Schmid stresses, the experimentally
determined screw dislocation parameters like activation enthalpy and acti-
vation volume determined from experiments must be treated with caution
as the quantitative effects of non-glide stresses cannot be accounted for.

The interaction of fast moving edge/mixed dislocation with screw dislo-
cations show that locally the Peierls stress can be exceeded even though
the macroscopic applied stress is well-below the CRSS of screw disloca-
tion. As the stress-change is quite rapid varying strongly with the dis-
tance, the screw dislocation has a very large kink-pair nucleation rate and
a rapid rise in its velocity. This offers an alternative explanation to the
jerky motion observed in the recent in-situ experiments on iron [217].

A fundamental assumption in this work was the assumption that isolated
screw dislocations glide at atomistic values of CRSS which is typically
a factor of 2 − 3 higher than the corresponding Peierls stress obtained
from experiments and the mobility is described by the classical Arrhe-
nius law. This was based on the credibility of the DFT and 0 K atomistic
simulations using different interatomic potentials, which have consistently
predicted a much higher value of CRSS of screw dislocations compared
to experiments. Comparing the Peierls stress and the temperature depen-
dence of the flow stress, calculated on single dislocations in our model,
between pure shear (usually assumed in atomistic modeling) and tensile
loading (usually used in experiments), it has been demonstrated that the
non-Schmid stresses can lower the critical stress by as much as 25%. Nev-
ertheless, the critical stress in agreement with the underlying atomistic
data in this model, is still a factor of about 2 to 3 higher than the exper-
imentally observed values [62] even after properly representing the non-
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Schmid stress contributions of a tensile test. Large scale DD simulations
on fully interacting dislocations in micropillars show that the initial yield
stress which is defined by large scale motion of screw dislocations can be
lowered by at least 10% compared to the CRSS of an individual screw
dislocation in tension due to internal stresses. In compression, a lowering
of yield stress by as much as 17% occurs because screw dislocation mo-
tion due to the repulsive dislocation interactions in compression occurs
at larger mean distance (and lower internal stresses) between screw dis-
locations than in tension. Once the screw dislocations begin to glide on
their respective planes, a large stress-drop is observed due to generation
and motion of mixed dislocations and the plastic deformation proceeds at
lower stresses.

Simulations on single-slip orientated micropillars loaded in uniaxial ten-
sion and compression show double slip on the highest and second highest
stressed slip systems. The large activity of the latter is because the slip
direction of this slip system spans the largest length inside the pillar and
has a larger probability of interaction and subsequent activation due to
dislocation glide on other slip systems. This effect is more pronounced
in tension because only the highest stressed slip system is only expected
to be active owing to the effect of the non-glide stresses as predicted by
atomistic yield criteria [9, 10].

A new mechanism of anomalous slip responsible for significant anomalous
slip has been identified from simulations based on cross-kink formation
and subsequent movement towards surface on the anomalous plane. The
mechanism can not only account very well for the observed anomalous
slip on experiments performed on W micropillars, but also for the classical
anomalous slip observed in most bulk bcc metals. The same mechanism
is active in both tension and compression and is also consistent with the
reported coarse crystallographic slip traces characteristic of anomalous
slip. Dislocation-dislocation interactions are the key to generating cross-
kinks on the anomalous plane, since screw dislocations preferentially move
on their lowest activation enthalpy planes. The simulations also provide
ample evidence for the non-planar nature of the dislocation networks due
to which it is unlikely for the C-D-S mechanism to be responsible for
anomalous slip.





7. Outlook

In the present work, a link has been established between atomistic and
the DDD model via the activation enthalpy of kink-pair nucleation. Large
scale DDD simulations suggest that the geometry of the specimen plays a
key role in determining the longest length of the screw dislocation which
may be activated by repulsive dislocation interactions with other slip sys-
tems. Therefore, crystal plasticity models should account for the length
effect of the longest screw dislocation spanning the volume of the crystal
since it can be activated by kink-pair nucleation at any point along its
length.

The simulations performed in this work also show that complex structures
of mixed dislocations are composed of edge/mixed dislocation segments
over several planes are easily generated via cross-slip. Presence of such
complex structures increases the probability of intersection with other
dislocations and leads to further production of mixed dislocations. This
aspect emphasizes that even mixed dislocations are responsible for sig-
nificant amounts of plastic flow. Although the general trend of evolu-
tion of dislocation density is similar to that observed in bulk samples
of other bcc metals, more detailed microstructure studies are needed to
confirm this behavior in micrometer sized specimens.

Three predictions have been made in this work related to the fundamen-
tal aspects of deformation in bcc metals which could be experimentally
verified. Firstly, a method is proposed to determine the elementary slip
planes in bcc metals from the line directions of 〈100〉 junctions. TEM or
TEM-tomography appears to be ideal to determine the line directions
of sessile junctions in experiments but the experimental confirmation re-
quires a high accuracy. Secondly, the mechanism of repulsively interacting
screw dislocations and their collective motion while maintaining a con-
stant distance between each other can also be verified through in situ
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experiments. Finally, the occurrence of jerky motion of screw dislocations
with the aid of fast moving mixed dislocations can also be verified exper-
imentally. Again, in situ TEM experiments are well-suited to verify this
proposition.

The cross-kink mechanism of anomalous slip proposed in this work could
also be verified through in situ experiments. A signature of this mechanism
is the presence of uncharacteristically long mixed dislocations gliding on
the anomalous plane. One end of the dislocation may be pinned or mobile
and the whole configuration reminding of a single-armed source.

This work also raises some important questions which could be answered
by atomistic simulations. Firstly, the interaction between mixed and screw
dislocations leads to a rapid rise in the stress on a screw dislocation over
very short interval of time (which depends on the speed of the mixed
dislocation). Calculations based on isotropic linear elastic theory show
that the local stress exceeds Peierls stress when the distance between
mixed dislocation approaches within a distance of about 8 b, even though
macroscopically the external applied stress is significantly lower than the
CRSS of screw dislocation. At such small distances, atomistic simulations
could offer more insight into the details of the mechanisms of such an
interaction.

DDD simulations performed in this work also show that large scale screw
dislocation motion is accompanied by repulsive cutting of screw disloca-
tions by mixed dislocations. This would lead to formation of atomic sized
kinks on screw dislocation which may change the dynamics of screw dis-
location by altering its effective length. The atomic sized jogs have not
been accounted for in DDD simulations because of the resolution of DDD
methods which is at least a factor 100 greater than atomic dimensions. But
the role of jogs on the mobility of screw dislocations could be examined
in detail by atomistic simulations. Another important aspect is that this
cutting would lead to generation of segments along the M111 orientation
direction which also has a high Peierls stress [137, 139]. Therefore, M111
dislocations could infact be rate controlling in bcc metals rather than the
screw dislocations as suggested by Kang et al. [139]. Further DDD simula-
tions should also account for this additional anisotropy in the dislocation
mobility due to the high Peierls stress of the M111 orientation.



A. Appendix A

A.1. Technical aspects of modeling

In addition to the general aspects of numerical modeling discussed in the
section 3.3, some specific and very important considerations are necessary
for screw dislocation nodes. Firstly, in a strict sense, a screw dislocation
must satisfy the exact condition b · t = 1 where b and t are the Burg-
ers vector and the direction of the line segment respectively. Numerical
errors limit the enforcement of this criteria. Assigning physical character
to dislocation segments based on such a stringent criteria would make
the physical behavior of dislocation segments highly sensitive to numer-
ics. Due to large difference in critical stresses to move screw and non-screw
segments, a small deviation from the exact condition would cause the al-
gorithm to a assign a mixed character to an otherwise screw dislocation.
Therefore the overall dynamics of dislocations can be completely changed
due to numerical errors. Hence additional numerical constraints are nec-
essary to prevent these numerical artifacts and yet allow for a transition
of segment character from screw to non-screw in a physical manner con-
sistent with atomistic studies.

The recent atomistic studies by Kang et al. [139] also reveal a sharp tran-
sition of Peierls stress in the vicinity of screw orientation implying that
the transition from thermal to athermal regime of motion of screw oc-
curs in a very narrow orientation range. Accordingly, a small deviation
from the perfect screw orientation is tolerated for discriminating screw
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segments from non-screw segments in the simulation. A dislocation seg-
ment is treated as non-screw if the angle between the Burgers vector and
local line direction is greater than about 1.3◦. This value is chosen from
studies on single screw dislocations and is consistent with the atomistic
studies [139].
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Figure A.1.: Figure shows the effective velocity of screw dislocation computed per-
pendicular to Burgers vector direction v and computed perpendicular to the local
tangent veff . Numerical errors cause a deviation of an initially perfect screw disloca-
tion and the two velocities are not parallel. Successive updates of nodal position using
veff lead to progressive deviation from screw orientation.

The scheme of update of the nodal positions of screw dislocation segments
is another source of artifact. This is because in conventional DDD algo-
rithms [163,176], the direction of velocity vector s is always perpendicular
to the local line direction t, i.e. s = n × t consistent with the direc-
tion of the local Peach-Koehler force. An incremental update of nodal
position along the s direction leads to a progressive deviation of the local
segment orientation away from the screw direction which is clearly non-
physical. This is because due to numerical errors the line direction of a
screw dislocation is not exactly parallel to the Burgers vector direction.
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Figure A.1 shows schematically the range of orientation around the screw
direction which is numerically treated as a screw dislocation. It also shows
the initially perfect screw segments can deviate from the screw orientation
due to successive nodal position update along a direction perpendicular
to local tangent. Instead, for a screw dislocation the direction of velocity
is always computed perpendicular to the Burgers vector direction. This
ensures that the algorithm for nodal position update does not influence
the physics of the screw dislocation. This scheme is used in conjunction
with the methodology described in section 3.3.2.

Sliding nodes

Surfacetglide

tglideSurface

M1

M2

b

VS
L1 L2

Figure A.2.: A dislocation loop L1 with all screw segments and both ends on the
surface is shown with velocity VS . M1 and M2 are mixed segments which are generated
if the surface nodes are updated with a velocity given by equation A.2.



158 A. Appendix A

Apart from junctions, nodes which leave the surface are also treated as
sliding nodes. In Weygand et al. [163] dislocations leaving the surface are
constrained to glide along the intersection line of the glide plane with the
local surface

tA,glide = ngp × nsurf (A.1)

where ngp and nsurf are unit normals of the glide plane and the local
crystal surface respectively. Since the nodes on surface are constrained to
glide along this direction, the resultant velocity of screw node on surface
is given by

VS,tglide = (Vs · ttglide) ttglide (A.2)

If the surface nodes glide with the velocity given by equation A.2, they
may lag behind the screw direction leading to generation of mixed seg-
ments M1 and M2 as shown in figure (A.2). This may lead to artificial
effects during during cyclic loading where a load-reversal would cause the
edge component gaining in length and making the whole configuration
insensitive to the Peierls stress of the screw segments.

Therefore, a further constraint is enforced on surface nodes of a screw
segment such that it always remains in screw orientation. The velocity
VS,tglide of the surface node is further modified according to the equa-
tion

VS,surf =
VS

|VS · ttglide|
(A.3)

VS is the velocity of such a node obtained from the kink-pair nucle-
ation. Eq. (A.3) ensures that the surface node glides along the surface
sweeps the same incremental distance as the in volume screw segments
and remains in screw orientation. Thus the mobility of screw dislocations
represents that of a bulk specimens where the surface effects do not influ-
ence the dynamics of screw dislocation.
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Figure A.3.: (a) From the configuration I, nodes belonging to both non-screw to
screw segments may overshoot the screw direction if the lateral component of the
velocity of mixed dislocation is not suppressed. Then the edge component dominates
resulting in configurations II and III which makes the screw part insensitive to Peierls
stress; (b) Such nodes are detected in the simulation and prescribed to glide along the
screw direction leading to smooth shapes of loop from I to III.

Another material node which is also treated as a sliding node is one which
connects both edge and screw segments. Such transition nodes are pre-
scribed to glide along the Burgers vector direction. This is necessary be-
cause numerical errors may cause such node to overshoot the screw ori-
entation by means of artificial configurations as shown in Fig. A.3. The
node gets additional edge character and draws the entire screw out of its
orientation. To prevent this, the transition node is given an additional
glide constraint along the Burgers vectors direction which ensures that
the screw-edge transition parts behave well resulting in smooth evolution
of loops as shown in Fig. A.3(b).
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B.1. Alternative operation of cross-kink

mechanism

Fig. 4.20(d) shows schematically one possible scenario of operation of the
cross-kink mechanism, where the node B is free to glide along the Burgers
vector direction. Another possibility of operation of the mechanism after
the node A has reached the surface if the B is pinned is shown schemati-
cally in Fig. B.1. The total area traced by the segment AB depends on the
point on the surface at which the node A is freed on the surface. The slip
trace on the surface is still created as the node A can glide freely along the
surface even if the segment AB encounters resistance due to the presence
of forest dislocations. The kink-complex connected at B glides towards
the surface creating wavy slip traces.



162 B. Appendix B

Figure B.1.: Figure shows schematically another possible mode for the operation of
the single-armed source on the anomalous plane in addition to the one presented in
Fig. 4.20(d). Here the node B remains pinned whereas the single armed source operates
as shown in sequence (1-4).
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B.2. Conservative motion of dislocation network

In this section, another mechanism of motion of dislocation network of
〈111〉 dislocation network with 〈100〉 junctions is presented in addition to
that presented in section 5.3.5. The glide of network is surprising because
〈100〉 junctions are modeled as immobile.

Fig. B.2 is a snap-shot taken from the simulation in tension along the
[1̄ 4 9] orientation, which shows the operation of a 〈100〉 junctions. In
the figure, a network of 〈100〉 dislocations marked R can also be ob-
served. Other dislocations visible are long-screw dislocations, serrated
screw dislocations connected via kinks, edge and mixed dislocations which
are connected at the junction. The junctions are also of variable length. In
Fig. B.2(b), a junction with a [010] Burgers vector is formed on the (101)
plane. The reaction product with Burgers vector [010] involves attractive
interaction between mixed a/2[11̄1] and a screw a/2[111] dislocation. The
circled region in Fig. B.2(a) shows the a[010] junction and B.2(c) shows the
junction magnified for clarity. After the reaction, the mixed dislocation
glides further in the direction T which causes the glide of the common
junction node as well. As the mixed dislocation glides further, it inter-
action activates the a/2[111] screw dislocation near the other junction
node. Thus an entire network glides forward and slip on the low-stressed
(1̄01)[010] slip system (m = 0.29) occurs, driven entirely by the ease of
glide of 〈111〉 mixed dislocations which are connected to the junction.
The slip trace on the surface would only be created by the a/2[111] screw
dislocations.

Therefore, the behavior of network is quite different from that of isolated
screw dislocations. A network junction occurs via the movement of neigh-
boring 〈111〉 dislocations. Note that this is another mode of operation of
anomalous slip.
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Figure B.2.: A sequence of snap-shots showing the motion of 〈100〉 disloca-
tions. Loops L1, L2 form a junction in (b) (circled). Other loops in the vicinity are
L3 and debris loops D. (c) shows the circled region zoomed in, where locally one node
of the junction is connected to mixed 〈111〉 dislocation m1 and the other end of junc-
tion to a/2[111] screw dislocation. The mixed segment drives the junction along the
T direction.The screw part of the loop L2 glides due to its interaction with the mixed
dislocation m1. Note that the mixed part m1 lies on a parallel (1̄01) plane and is
connected to the junction with the segment s1 shown in red. There are several other
reactions R with the reactant 〈111〉 dislocations in the screw orientation.



C. Appendix C

C.1. Color scheme used in simulations

Figure C.1.: Table I and II show the color scheme of the dislocation lines according
to their habit planes and Burgers vectors respectively.
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