
An Algorithmic View on Sensor Networks
–

Surveillance, Localization, and Communication

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dennis Schieferdecker

aus Aalen

Tag der mündlichen Prüfung: 17.07.2014

Erster Gutachter: Herr Prof. Dr. Peter Sanders

Zweiter Gutachter: Herr Prof. Dr. Stefan Funke

To my parents.

Acknowledgements

At this point, I wish to thank all of the people that have accompanied me on my
journey over the last couple of years. This includes but is not limited to my current
and former colleagues in the research group of Peter Sanders, members of the research
group of Dorothea Wagner as well as my dear friends and family.

In particular, I wish to thank my doctoral advisor Peter Sanders for giving me the
opportunity to join his group and experience many facets of research in Karlsruhe and
all over the world. I further wish to thank my long-term office mate and namesake
Dennis Luxen for the great atmosphere and interesting discussions in “Casa Dennis”.
Additional thanks go to Stefan Funke for immediately agreeing and taking the time to
review my PhD thesis.

I also wish to thank my co-authors Reinhard Bauer, Daniel Delling, Daniel Funke,
Robert Geisberger, Thomas Hauth, Marco Huber, Vincenzo Innocente, Moritz Kob-
itzsch, Dennis Luxen, Günter Quast, Marcel Radermacher, Samitha Samaranayake,
Peter Sanders, Dominik Schultes, Markus Völker, and Dorothea Wagner. It was a
pleasure working with you. Thank you for the fruitful collaboration. In addition, I wish
to thank Dennis Luxen and Markus Völker for proofreading parts of my thesis and the
members of our group whom I bothered with countless questions about formulations,
structuring, and layout over the last months, particularly Veit Batz, Timo Bingmann,
and Moritz Kobitzsch. Special thanks go to Daniel Delling who encouraged me to
accept the position in the research group of Peter Sanders.

I am grateful to the German Research Foundation (DFG) for supporting the first
years of my research within the Research Training Group GRK 1194 “Self-Organizing
Sensor Actuator Networks”, and I wish to thank the people involved in organizing this
research training group for all the effort they put into this project.

Last but not least, I wish to thank my parents for their continued support in countless
ways during my studies of physics and informatics as well as during my doctorate. This
work is dedicated to them. Thank you!

iii

Deutsche Zusammenfassung

Die systematische Umweltbeobachtung hat in den letzten Jahren immer mehr an Be-
deutung gewonnen. Kontrolle von Schadstoffbelastungen, Beobachtung von Wildtieren
sowie Schutz vor Waldbränden und Wilderern sind nur ein kleiner Auszug aus ihrem
Aufgabenbereich. Um diesen Aufgaben möglichst unauffällig nachzukommen, können
wir viele kleinste Sensoren im zu beobachtenden Gebiet ausbringen. Das beständige
Ablaufen und Auslesen dieser Sensoren würde allerdings schnell zu mühsam werden.
Daher bietet es sich an, die Sensoren selbstorganisiert über Funk zu einem (drahtlosen)
Sensornetzwerk zusammenzuschließen. Dies löst das Problem der Datennahme elegant,
da wir nun einfach vom Rand des Gebietes eine Anfrage an das Netzwerk stellen
können, um alle gesammelten Daten zu erhalten. Des Weiteren kann es nützlich sein,
den Sensoren ein gewisses Maß an Eigenintelligenz zu geben, so dass Messdaten schon
im Netzwerk vorverarbeitet werden können und es auf bestimmte Ereignisse selbständig
reagieren kann. Wenn sich die Sensoren zum Beispiel der Grenzen des Netzwerkes
bewusst sind, können sie eine Warnung senden, falls sich diese plötzlich verschieben
oder neue Löcher im Netzwerk entstehen, wie es zum Beispiel beim Ausbruch eines
Feuers möglich wäre. Solche Warnungen und andere Nachrichten müssen möglichst
effizient im Netzwerk weitergeleitet werden. Es kann aber auch nötig werden, sinnvolle
Umwege zu wählen, falls einzelne Sensoren ausfallen oder ansonsten überlastet würden.
Die Hauptaufgabe der Sensoren bleibt aber weiterhin die Beobachtung ihrer Umge-
bung. Da wir sie nicht mit beliebig großen Batterien ausstatten können, müssen wir
ihren Energieverbrauch allerdings irgendwie beschränken. Falls eine große Menge an
Sensoren ausgebracht wurde, genügt es zum Beispiel, immer nur einen Teil von ihnen
einzuschalten, um die volle Funktionalität des Netzwerkes zu gewährleisten.

Für die oben genannten Funktionen, Randerkennung, Nachrichtenübermittlung sowie
Sensoreinsatzplanung, existieren bereits Lösungen. Da Sensornetzwerke jedoch immer
größer und dichter werden, wird es immer schwieriger, dies effizient umzusetzen. Unsere
Arbeit betrachtet daher skalierbare Algorithmen für eben diese Problemstellungen.

v

Deutsche Zusammenfassung (German Summary)

Ganz allgemein besteht ein Sensornetzwerk aus kleinen, autonomen Einheiten, den
Sensorknoten. Diese wiederum bestehen zumindest aus einer Recheneinheit, einer Kom-
munikationseinheit und irgendeiner Art der Energieversorgung. Sensoren selbst sind
nicht unbedingt erforderlich, z.B. bei Knoten, die nur zur Nachrichtenübermittlung
dienen. Obwohl der technische Fortschritt der letzten Jahre zu immer kleineren und
leistungsfähigeren Sensorknoten geführt hat, sind sie immer noch weit eingeschränkter
als selbst einfache eingebettete Systeme. Insbesondere der Energieverbrauch ist ein
beständiges Problem, da man die Knoten nicht mit großen Batterien ausstatten kann
und Solarzellen oder andere Systeme zur Energiegewinnung bestenfalls zur Unterstüt-
zung dienen können. Die Kommunikation zwischen den Knoten benötigt hierbei für
gewöhnlich die meiste Energie.

Aufgrund ihrer besonderen Struktur weisen Sensornetzwerke viele technische aber
auch algorithmische Herausforderungen auf. Beim Algorithmenentwurf müssen unter
anderem die beschränkten Ressourcen der Hardwareplattform wie Rechenleistung, Spei-
cherplatz und Batteriekapazität berücksichtigt werden. Ebenso muss die Skalierbarkeit
der Algorithmen gewährleistet werden. Was auf ein paar Knoten noch problemlos
funktioniert, kann mit wachsender Knotenanzahl schnell unmöglich werden, insbe-
sondere wenn Kommunikation über das gesamte Netzwerk oder lokaler Speicherplatz
proportional zur Netzwerkgröße benötigt wird. Andererseits bieten Sensornetzwerke
auch viele interessante Möglichkeiten, die bisher nur wenig Beachtung erhielten oder
schlicht nicht möglich waren. Zum Beispiel stellt jeder einzelne Sensorknoten einen
vollständigen Rechner dar. Daher bietet es sich an, massiv verteile Algorithmen zu ent-
wickeln, um den Beschränkungen der einzelnen Knoten entgegenzuwirken. Berechnung
und Datenhaltung können über viele Knoten verteilt werden, so dass im Idealfall jeder
Knoten nur einen Bruchteil des kompletten Problems bearbeitet. Ein weiterer wichtiger
Punkt in diesem Zusammenhang ist die Beschränkung auf lokale Informationen. Ein
Sensorknoten kann normalerweise weder eine globale Sicht auf das gesamte Netzwerk
halten, noch sie effizient beziehen. Algorithmen müssen dies berücksichtigen und so
ausgelegt werden, dass ein Knoten mit seinem lokalen Wissen oder Daten, die mit
wenig Kommunikation bezogen werden können, auskommt. Schließlich weisen Sensor-
netzwerke für gewöhnlich ein hohes Maß an Redundanz auf, das man ausnutzen kann,
um z.B. Fehlertoleranz zu gewährleisten oder durch intelligente Sensoreinsatzplanung
die Laufzeit des Netzwerkes zu verlängern.

Die Forschung an Sensornetzwerken wird durch spezielle Anwendungen wie Simulati-
onsumgebungen und Analysewerkzeuge unterstützt. Dies sind wichtige Hilfsmittel, um
die Funktionalität sowie die Möglichkeiten von Netzwerken und Algorithmen, die auf
ihnen ausgeführt werden, zu analysieren. Sie werden auf klassischen Systemen eingesetzt
und müssen eine große Anzahl an Sensorknoten berücksichtigen, ohne auf die massive
Parallelität eines echten Sensornetzwerkes zurückgreifen zu können. Dadurch ergeben
sich weitere algorithmische Herausforderungen. Die hierfür benötigten Algorithmen
und Datenstrukturen müssen effizient und skalierbar sein, damit diese Anwendungen
die Forschung sinnvoll unterstützen können.

vi

Die vorliegende Arbeit befasst sich mit der Skalierbarkeit von Sensornetzwerken
in verschiedenen Anwendungsgebieten. Dabei gibt es zwei grundlegende Aspekte zu
berücksichtigen. Zum einen gibt es Anwendungen, die direkt auf Sensornetzwerken
ausgeführt werden. Hier können wir erhöhten Rechenanforderungen durch verteilte
Algorithmen begegnen. Allerdings müssen wir immer noch das Kommunikationsvolumen
und den von jedem Knoten benötigten Speicherplatz im Auge behalten. Des Weiteren
gibt es Anwendungen wie Simulationsumgebungen oder Analysewerkzeuge, die auf
klassischen Systemen ausgeführt werden. In diesem Fall können wir den verteilten
Parallelismus der Sensornetzwerke nicht ausnutzen. Allerdings sind Speicherplatz und
Kommunikationsvolumen seltener ein Problem, da die Algorithmen eine globale Sicht
auf das Netzwerk haben können. Generell gilt jedoch, dass Probleme, die für kleine
Netzwerke noch einfach zu lösen sind, mit zunehmender Knotenanzahl oder -dichte
schnell sehr komplex wenn nicht sogar unlösbar werden können.

Diese Arbeit behandelt exemplarisch drei verschiedene Problemstellungen, für die
wir mit Hilfe von algorithm engineering versuchen, skalierbare Lösungen zu finden.
Falls optimale Lösungen nicht effizient berechenbar sind, geben wir skalierbare Appro-
ximationsalgorithmen mit einer beweisbar guten Approximationsgüte an.

Sensoreinsatzplanung. Sensornetzwerke bieten die Möglichkeit kontinuierliche Mes-
sungen von einem gesamten Gebiet zu erstellen. Dies bildet die Grundlage für viele
Anwendungen. Es ist daher wichtig, diese Funktionalität so lange und mit einem
so geringen Energieverbrauch wie möglich zu erbringen. Wir können die inhärente
Redundanz der Netzwerke ausnutzen und einen Einsatzplan für jeden Knoten erstellen.
Dieser erlaubt es einem Knoten, in einen energiesparenden Zustand zu wechseln, falls
andere Knoten die gleichen Messungen durchführen können.

Unsere Arbeit zeigt, dass die Bestimmung eines optimalen Einsatzplanes für alle
Knoten ein NP-vollständiges Problem ist. Um dennoch ein skalierbares Lösungsverfah-
ren zu erhalten, beschreiben wir ein effizientes Approximationsschema (EPTAS), das
in Linearzeit läuft. Unser Verfahren nützt die Diskretisierung von Knotenpositionen
sowie die Aufteilung des zu beobachtenden Gebietes in kleinere Bereiche aus, um
diese Ergebnisse zu erzielen. Im Vergleich zu früheren Ansätzen bietet unsere Lösung
eine bessere Zeitkomplexität als auch eine bessere Approximationsgüte. Des Weiteren
beschreiben wir ein Verfahren zur nachträglichen Optimierung der Reihenfolge, in der
Knoten ihren Zustand zwischen schlafend und beobachtend wechseln, falls sich dieser
Wechsel als energieintensiv erweist. Neben diesen theoretischen Ergebnissen zeigen wir
außerdem wie man kleinere bis mittlere Instanzen optimal löst. Dieses Verfahren ba-
siert auf Linearer Programmierung und bedient sich der verzögerten Spaltenerzeugung
(delayed column generation [DW60]) sowie des Garg-Könemann Algorithmus [GK07].
Wir zeigen in ausführlichen Simulationen, dass unsere Methode frühere Verfahren
bei weitem schlägt. Außerdem untersuchen wir den Einfluss von unterschiedlichen
Netzwerkinstanzen auf die Laufzeit unseres Algorithmus.

vii

Deutsche Zusammenfassung (German Summary)

Die beschriebenen Verfahren sind primär für den Einsatz in Analysewerkzeugen ge-
eignet, um damit die Eigenschaften von Sensornetzwerken zu untersuchen. Wir können
u.a. obere Schranken für die Dauer, die ein Sensornetzwerk Messungen vornehmen
kann, bestimmen und damit die Qualität von verteilten Algorithmen zur Sensoreinsatz-
planung bewerten. Falls sich die Netzwerkstruktur nicht ändert und Knotenausfälle
unwahrscheinlich sind, können die berechneten Einsatzpläne sogar auf echten Sensor-
netzwerken verwendet werden. Des Weiteren kann unser Verfahren als Ansatzpunkt
zur Entwicklung neuer verteilter Verfahren dienen.

Randerkennung. Viele Anwendungen benötigen ein gewisses Wissen über die Netz-
werktopologie, insbesondere über die Löcher und Ränder des Sensornetzwerkes. Exakte
Systeme zur Positionsbestimmung, wie z.B. GPS, sind oft nicht vorhanden, um diese
Aufgabe zu erleichtern, da sie zu viel Energie benötigen. Andererseits sollten Algorith-
men auch keine generellen Annahmen über die Netzwerkstruktur treffen.

Daher beschreiben wir ein neues Verfahren zur Bestimmung dieser topologischen
Strukturen, das keine Knotenpositionen benötigt. Wir setzen dabei auf eine verteilte,
dezentrale Ausführung, damit das Verfahren mit der Netzwerkgröße skaliert. Jeder
Knoten entscheidet selbständig, nur mit Hilfe von lokalen Verbindungsdaten, ob er
im Inneren des Netzwerkes oder an dessen Rand liegt. Dazu berechnet er mittels
multidimensionaler Skalierung [Tor52] eine Einbettung aus den Verbindungsdaten
seiner 2-Hop Nachbarschaft und prüft diverse Winkeleigenschaften. Im Gegensatz zu
früheren Verfahren benötigt unser Algorithmus sehr wenige Ressourcen, sowohl was
den Rechenaufwand als auch das Kommunikationsvolumen betrifft. Wir vergleichen
unser Verfahren in ausführlichen Simulationen mit früheren Ansätzen. Es stellt sich
als außerordentlich robust gegenüber verschiedensten Netzwerkmodellen heraus und
erzeugt trotz seiner Einfachheit extrem wenige Fehlklassifikationen.

Durch seine verteilte Arbeitsweise ist unser Verfahren klar für den direkten Einsatz auf
Sensornetzwerken konzipiert. Hier kann es außerdem dabei helfen, Gebiete mit schlechter
Überdeckung zu identifizieren—dort wo sich nur vereinzelte Knoten als Randknoten
klassifizieren. Des Weiteren kann es breitere Bänder entlang der Ränder des Netzwerkes
markieren und andere Anwendungen wie unser Verfahren zur Sensoreinsatzplanung
darüber informieren, wenn sich diese verschieben, z.B. durch Knotenausfall aufgrund
von Energiemangel oder durch externe Einflüsse wie den Ausbruch eines Feuer.

Effizientes Routing. Die Weiterleitung von Informationen zwischen Knoten ist eine
der grundlegendsten aber auch eine der wichtigsten Aufgaben, die ein Sensornetzwerk
zu leisten hat. Es existieren viele effiziente Heuristiken für den verteilten Einsatz. Die
Berechnung von (fast) optimalen Routen oder guten Alternativen zu diesen kann in
einer Simulationsumgebung aber leicht zu einem Flaschenhals werden. Bereits bewährte
Beschleunigungstechniken zur Berechnung von kürzesten Wegen können nicht verwendet
werden, da sie für die besondere Struktur von Sensornetzwerken nicht geeignet sind.

viii

Unsere Arbeit stellt ein echt polynomielles Approximationsschema (FPTAS) zur
Berechnung von kürzesten Wegen vor. Es basiert auf Contraction Hierarchies [BGSV13],
einer für Straßennetzwerke sehr effizienten Technik. Wir belegen durch ausführliche
Simulationen, dass unser Ansatz auch auf Sensornetzwerken weit effizienter ist als
frühere exakte und approximative Techniken. Zudem verwenden wir diesen Algorithmus
als Baustein, um gute Alternativen zu einer optimalen Route zu bestimmen. Dieser
Ansatz beruht ebenfalls auf einer effizienten Technik für Straßennetzwerke [ADGW13],
die wir unter Ausnutzung der Beobachtung, dass gute Alternativen zwischen zwei
Bereichen des Netzwerkes nur über wenige Zwischenknoten verlaufen, erweitern. Durch
ihre kurzen Antwortzeiten bieten unsere Algorithmen skalierbare Lösungen in Bezug
auf die Netzwerkgröße als auch auf die Anzahl zu bearbeitender Anfragen.

Unsere Verfahren sind für klassische Systeme optimiert, da sie primär für den Einsatz
in Simulationsumgebungen vorgesehen sind. Sie können aber auch für weitere Analyse-
werkzeuge von Nutzen sein, z.B. um Engstellen in der Kommunikationsinfrastruktur
aufzuzeigen oder um Gleichgewichte wie in [LS11] für Straßennetzwerke zu berechnen.
Zudem lassen sie sich auch in statischen Sensornetzwerken, wie z.B. großflächigen
infrastrukturellen Netzwerken entlang von Straßen und Autobahnen, einsetzen.

Unsere Resultate zeigen exemplarisch, wie man skalierbare Algorithmen für Sen-
sornetzwerke entwirft, sowohl für Anwendungen, die auf den Sensornetzwerken selbst
ausgeführt werden, als auch für Hilfsanwendungen, die zur Analyse der Netzwerke und
Algorithmen dienen. In jedem der betrachteten Bereiche haben wir große Fortschritte
im Vergleich zu bestehenden Verfahren erzielen können.

ix

Contents

Acknowledgements iii

Deutsche Zusammenfassung (German Summary) v

Contents xi

1 Introduction 1
1.1 A Brief History of Sensor Networks . 2
1.2 Principal Components and Challenges 2
1.3 Contributions and Thesis Outline . 4

2 Foundations 7
2.1 Complexity Theory . 7

2.1.1 Computational Complexity . 8
2.1.2 Approximation Algorithms . 9

2.2 Graph Theory . 10
2.2.1 Definitions . 10
2.2.2 Graph Algorithms . 11

2.3 Mathematical Tools . 11
2.3.1 Mathematical Programming . 12
2.3.2 Multidimensional Scaling . 13

2.4 Simulational Environment . 15

3 Lifetime Maximization of Monitoring Sensor Networks 17
3.1 Introduction . 18

3.1.1 Related Work . 18
3.1.2 Contribution . 25

xi

Contents

3.2 Model and Problem Definition . 26
3.2.1 Network Model . 26
3.2.2 Problem Definition . 27
3.2.3 Proof of NP-Completeness . 29

3.3 Approximation Algorithm . 31
3.3.1 Discretizing Positions . 31
3.3.2 Area Partitioning . 33
3.3.3 Full Method . 36
3.3.4 Target Monitoring . 39

3.4 Exact Algorithm . 40
3.4.1 Delayed Column Generation . 40
3.4.2 Initialization Step . 42
3.4.3 Oracle Problem . 44
3.4.4 Termination Condition . 45
3.4.5 Garg-Könemann Approach . 46
3.4.6 Full Method . 47

3.5 Optimizing State Changes . 48
3.5.1 Traveling Salesperson Problem 48
3.5.2 Minimizing Node State Changes 49

3.6 Simulations . 50
3.6.1 Simulational Setup . 50
3.6.2 Comparison to Previous Work 51
3.6.3 Network Settings . 59

3.7 Concluding Remarks . 63

4 Location-free Detection of Network Boundaries 67
4.1 Introduction . 68

4.1.1 Related Work . 68
4.1.2 Contribution . 71

4.2 Models . 72
4.2.1 Network Model . 72
4.2.2 Hole and Boundary Model . 73

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR) 75
4.3.1 Base Algorithm . 76
4.3.2 Refinement . 79
4.3.3 Graph Embedding Strategies . 80
4.3.4 Performance Guarantees . 81

4.4 Enclosing Circle Boundary Recognition (EC-BR) 85
4.4.1 Enclosing Circle Detection . 85
4.4.2 Classification Results . 88
4.4.3 Refinement . 88

xii

Contents

4.5 Non-Local Network Structures . 89
4.5.1 Large-Scale Holes . 89
4.5.2 Connected Boundary Cycles . 90

4.6 Simulations . 90
4.6.1 Simulational Setup . 90
4.6.2 Visual Comparison . 92
4.6.3 Quantitative Analysis . 94
4.6.4 Refinement . 104
4.6.5 MDS-BR Properties . 106

4.7 Concluding Remarks . 114

5 Determining Efficient Paths in Large-Scale Sensor Networks 117
5.1 Introduction . 118

5.1.1 Related Work . 119
5.1.2 Contribution . 126

5.2 Models and Concepts . 126
5.2.1 Network Model . 126
5.2.2 Problem Definition . 127
5.2.3 Basic Algorithms and Concepts 128

5.3 Approximate Queries . 133
5.3.1 Baseline Algorithm . 133
5.3.2 Approximation Algorithm . 136
5.3.3 Combination with Other Techniques 142

5.4 Alternative Connections . 145
5.4.1 Baseline Algorithm . 145
5.4.2 Preprocessed Candidate Nodes 149
5.4.3 Applications . 157

5.5 Simulations . 159
5.5.1 Simulational Setup . 160
5.5.2 Approximate Queries . 163
5.5.3 Alternative Connections . 168

5.6 Concluding Remarks . 183

6 Discussion 187

Bibliography 191

Appendices

A Lifetime Maximization of Monitoring Sensor Networks 213

xiii

Contents

B Location-free Detection of Network Boundaries 223

C Determining Efficient Paths in Large-Scale Sensor Networks 247

Author’s Information

Curriculum Vitæ 277

List of Publications 279

xiv

1 Chapter 1

Introduction

Beginning. The first part or earliest stage of something.
— Oxford Dictionary of English

In recent years, environmental monitoring has become more important than ever before.
Protection from wildfires and poachers, assistance in the studies of wild animals, or
measuring the concentration of pollutants are all highly relevant. To do so unobtrusively,
we can deploy many diverse sensors throughout the considered area. However, visiting
each of them to read out the measured data would soon become strenuous. Having the
sensors link with each other wirelessly and autonomously in a (wireless) sensor network
solves this issue conveniently as it allows us to initiate queries from the fringes of the
monitored area to gather all data. It may further be beneficial to endow the sensors
with some intelligence so that data can be processed in the network, or that they can
react to certain events. For example, if sensors are aware of network boundaries, they
can send a warning when boundaries suddenly shift or holes emerge inside the network,
e.g. due to an outbreak of fire. Such warnings and other messages should naturally be
passed to the respective recipients in an efficient way with as little overhead as possible.
Though, taking alternative routes may become necessary if sensors fail or cannot relay
a message for some reason. Still, monitoring the area they were deployed in, remains
the main task of the sensors. As we cannot equip them with large batteries, we have
to somehow limit their energy consumption. For example, if we have deployed a large
amount of sensors, we can activate just a subset of them at each moment to conserve
energy while still providing the full functionality of the network.

All of the aforementioned tasks, boundary recognition, routing of messages, and
scheduling of sensors are feasible in principal and have already been considered in
various contexts. However, with sensor network sizes becoming ever larger in both
density and expansion, it gets more and more difficult to solve these problems efficiently.
Thus, we consider and provide scalable algorithms for all of these tasks in this thesis.

1

1 Introduction

1.1 A Brief History of Sensor Networks

Technology has come a long way since the effects of electricity have first been studied.
The experimental proof of electromagnetic waves by Hertz in the late 19th century, a
theory previously established by Maxwell and Faraday, marked an important stepping
stone towards the ubiquitous wireless communication of today. The invention of
the bipolar transistor by a research team at Bell Laboratories in the middle of the
last century was another important event that eventually led to a myriad of tiny
technological gadgets. We now have smartphones, tablets, and soon intelligent glasses,
all communicating with each other, gathering information, and processing data. But
this is only one of the more visual aspects of the technological advances that have been
made in the last century. Many ideas that have formerly been placed into the realm of
science fiction came to fruition thanks to this technological progress, whereas other
figments like transforming robots still belong there.

One of these developments are (wireless) sensor networks. As many other new
technologies they have first been studied for militaristic reasons. The oldest ancestor
of sensor networks is probably SOSUS, the Sound Surveillance System, a chain of
underwater listening posts, devised in the early days of the Cold War by the US military.
After their investments in the ARPANET, the predecessor of the Internet, the Defense
Advanced Research Projects Agency (DARPA) took an interest in sensor networks as
early as the 1970s. They organized the Distributed Sensor Nets Workshop in 1978 that
focused on sensor network research challenges such as networking technologies, signal
processing techniques, and distributed algorithms. This led to the Distributed Sensor
Networks (DSN) program and later to the Sensor Information Technology (SensIT)
program. Civil and more prevalent research of sensor networks only took off at the end
of the last century around the time when the University of California, Berkley, started
their Smart Dust project [KKP99], an initiative to pack the whole functionality of a
single network component into one cubic millimeter. This development was fostered by
rapid technological advances that allowed for ever smaller and less power-consuming
devices. Novel sensor network applications became feasible for the first time and
kindled the interest of diverse research communities in this topic. This ultimately led
to widespread academic research projects in multiple fields.

A more elaborate history of sensor networks is given by Chong and Kumar in [CK03].

1.2 Principal Components and Challenges

A sensor network is composed of small, autonomous elements. At the bare minimum,
each of these sensor nodes is equipped with a processing unit, a communication unit,
and a means of power supply. A sensing component, though their namesake and usually
present, is not strictly required—one can imagine a relay node that only receives and
transmits messages. The nodes in a sensor network can be heterogeneous, specialized

2

1.2 Principal Components and Challenges

for various tasks like the aforementioned relay node. They are often tiny and pretty
cheap so that lots of them can be deployed easily. Each individual sensor node is
similarly structured as a classical embedded system with a dedicated microcontroller
and typically both volatile and non-volatile memory, running an embedded operating
system like TinyOS1. However, the node itself is much more restricted due to cost
and size constraints. Its power supply is usually handled by a battery that gets
depleted over time. Thus, conserving energy becomes a major concern in this context.
There are means to harvest energy, though, e.g. through solar panels or piezoelectric
elements, but they can only support a battery and do not sustain the whole node.
These energy constraints also restrict the selection of applicable processors and memory
modules to low-energy and thus less performant or, respectively, less capacious, models.
Communication, likely the most energy-intensive task, is generally performed wirelessly,
though there exist tethered sensor networks, such as infrastructural networks along
roads and highways, in which data transmission and even power supply are handled
by wire. The underlying communication network is organized autonomously by the
sensor nodes themselves with a flexible structure that allows nodes to join and leave
the network easily. The nodes can be equipped with any type of sensor imaginable,
but here as well, energy consumption and size of the component have to be taken into
account. Common types of sensors include localization devices such as GPS (Global
Positioning System) receivers and environmental sensors for measuring temperature,
light, humidity, or the concentration of some pollutant.

The unique structure of sensor networks, consisting of many dispersed nodes, all
linked in a flexible communication network and capable of acting autonomously or
cooperating with each other, offers new and exciting challenges for both technology
and algorithmics. When developing algorithms for these kinds of systems, we have
to take into account the limited resources available to each sensor node. Processing
power, storage space, and especially battery capacities are all much more restricted
than in a classical system. We further need to consider the scalability of our algorithms.
What is feasible for a couple of nodes can quickly become impractical in large networks,
especially if communication over the whole network or storage space proportional to
the network size at each node are required.

On the other hand, sensor networks also offer new prospects that have not received a
lot of attention previously or that simply have not been feasible. As each sensor node
is a self-contained computing system, massively distributed algorithms are an obvious
choice. Computation and data storage can be spread over the network to counter the
processing and memory limitations of the individual nodes. In an extreme case, every
node in the network computes a tiny fraction of the solution with the locally available
information. This gives rise to another important paradigm, local information. A
node typically cannot hold a global view of the entire network nor obtain it efficiently.
Thus, algorithms have to be adapted accordingly so that nodes can work with the data

1http://www.tinyos.net/. Accessed: 2014-08-06.

3

http://www.tinyos.net/

1 Introduction

available to them or that can be acquired with little communication. Finally, sensor
networks usually offer a lot of redundancy due to the large number of sensor nodes.
We can exploit these additional resources e.g. by introducing an activation schedule for
saving energy and extending the lifetime of the entire network without compromising
its functionality, or by guaranteeing some degree of reliability against node failures or
other disturbances of the network.

Research in sensor networks is always accompanied by auxiliary applications such
as simulation frameworks or theoretical analysis tools. These are important utilities
in studying the functionality and capabilities of sensor networks and the algorithms
running on them. As these applications are executed on classical systems but have to
emulate a large number of sensor nodes without the benefit of the massive parallelism
an actual sensor network provides, new algorithmic challenges arise. The respective
underlying data structures and algorithms have to be efficient and scalable for them to
be of any practical value.

There exists a large body of work covering the various aspects of sensor networks.
As we can only give a brief introduction here, we refer to [YMG08, DP10] for a general
overview on their capabilities and to [WW07, NS10] for more algorithmic aspects.

1.3 Contributions and Thesis Outline

This thesis focuses on the scalability of sensor networks in diverse applications. Problems
that are easy to solve on the small scale with at most a few hundred nodes to consider
quickly become intractable with growing network sizes. It is up to algorithm engineering
to devise scalable solutions before such large sensor networks emerge. If exact solutions
cannot be given efficiently, at least scalable approximation algorithms that provide
good guarantees on the solution quality have to be found.

There are two main aspects to scalability in a sensor network context that we need
to consider. First, there are applications that run on the sensor network. Here, we can
counter increased computational requirements by distributed algorithms. However, we
still have to keep the communication overhead and the data needed at each node in
check. Second, there are offline applications such as simulation frameworks or analysis
toolsets. We cannot exploit the distributed parallelism of sensor networks in this case.
However, data storage and communication are usually of less concern as we have a
global view of the network.

The main body of this thesis is structured as follows:

Chapter 2: Foundations. We introduce fundamental concepts and notations that
are used throughout this work. We cover topics in complexity theory and graph theory
insofar as they concern our thesis before detailing two important mathematical tools,
(integer) linear programming and multidimensional scaling. We conclude with an
overview of our simulational environment and measuring methods.

4

1.3 Contributions and Thesis Outline

Chapter 3: Lifetime Maximization of Monitoring Sensor Networks. The ability
of sensor networks to offer continuous measurements of their surroundings is the basis
of many applications. It is therefore crucial to provide these monitoring capabilities for
as long as possible and with little impact on the battery reserves of the sensor nodes.
Luckily, we can exploit the redundancy inherent to these networks to determine an
activation schedule for each node that allows them to stay in a sleeping state if another
node can perform their measurements.

We show that finding an optimal activation schedule is an NP-complete problem.
To retain scalability to large networks, we introduce the first efficient polynomial-
time approximation scheme for this problem. Previous approaches offer worse time
complexities and approximation guarantees. We further describe a method to optimize
the order in which nodes are activated that minimizes the total number of state changes
between sleeping and monitoring. Following these theoretical results, we consider
solving small to medium-sized instances to optimality. In extensive simulations, we
show that our method outperforms previous approaches by a considerable margin and
study the impact of different network settings on the performance of our algorithm.

Chapter 4: Location-free Detection of Network Boundaries. Multiple applica-
tions on sensor networks require some knowledge of the underlying network topology,
especially of the holes and boundaries of the network. Exact positioning systems are
often not available, though, to facilitate this task. Moreover, algorithms should not
make any general assumptions on the structure of the networks.

We therefore introduce a novel approach for the location-free detection of these
topological structures. To keep our solution scalable in the advent of vast networks,
the computation is performed distributed. Each node decides independently based
on local connectivity information alone whether it is in the interior of the network
or on its fringes. In contrast to previous solutions, our algorithm requires very little
resources in terms of both computation and communication, while still offering reliably
good classification results. In extensive simulations, we compare the performance of
our approach to several previous ones. We find that it is very robust to any considered
network setting and yields very few misclassifications despite its simplicity.

Chapter 5: Determining Efficient Paths in Large-Scale Sensor Networks. Re-
laying information between nodes is arguably one of the most basic and important tasks
a sensor network has to perform. While there exist efficient heuristics for distributed
usage, determining (near) optimal routes or good alternatives to them can become a
bottleneck in simulation frameworks. Common speed-up techniques for shortest path
computation do not offer a viable option as they are not well suited for the special
structure of sensor networks.

We propose a fully polynomial-time approximation scheme for finding shortest paths
based on a successful technique for road networks. In extensive simulations, we show

5

1 Introduction

that our approach can handle sensor networks much more efficiently than previous
exact or approximate techniques. We further apply this algorithm as a building block
for determining good alternatives to the optimal route. This approach is again based
on and extends a successful technique for road networks as we find and exploit that
good alternatives between two regions pass over one of few intermediate nodes. Both
of our algorithms offer scalable solutions in terms of both the size of the sensor network
and the number of queries to process due to their short practical runtimes.

Chapter 6: Discussion. Our thesis concludes with this chapter. We summarize and
discuss our findings of the previous chapters and propose possible future directions for
research in the field of sensor networks.

The main body of this thesis is followed by our bibliographical references and three
appendices to complement Chapters 3–5. We present additional results that support our
findings in the respective chapters and explain how to generate the problem instances
that we use in our simulations.

This work was partly supported by the German Research Foundation (DFG) within
the Research Training Group GRK 1194 “Self-Organizing Sensor Actuator Networks”.

6

2 Chapter 2

Foundations

Basics. The essential facts or principles of a subject or skill.
— Oxford Dictionary of English

This chapter introduces notations and fundamentals on complexity theory and graph
theory as well as mathematical tools that are used in this thesis. Furthermore, we give
an overview of our simulational environment and methods. We start by introducing
some general conventions and notations.

The symbols Z and R are used according to common convention as the set of integers
and the set of real numbers, respectively. A subscript plus symbol indicates that the
set of numbers is restricted to non-negative values. We also write N0 = Z+. The
residue class ring of k is denoted by Zk, i.e. Zk = {0, . . . , k − 1}. Value ranges indicate
real numbers unless otherwise stated. Rd denotes the d-dimensional Euclidean space.
We may write ||v|| for the Euclidean norm of vector v ∈ Rd and du,v = ||u − v|| as
Euclidean distance between two vectors u,v ∈ Rd. Vectors and matrices are written
in bold, vectors in lower case, matrices in upper case. The same notation is used
for functions returning them. Vectors of zeros and ones are denoted by 0 and 1,
respectively.

2.1 Complexity Theory

When considering computational problems, we often want to assess the difficulty
of a problem, i.e. whether it takes long to determine a solution. There is a whole
field of study dedicated to this subject. Here, we only briefly discuss the theory of
computational complexity and, as an extension, the approximability of problems. We
refer to text books [GJ79, Weg03] for an introduction to complexity theory and to text
books [Vaz02, Weg03] for further details on approximation algorithms. Our following
notations and explanations are loosely based on these works.

7

2 Foundations

2.1.1 Computational Complexity

A computational problem Π describes a general question with some degrees of freedom
in a formal system. A problem instance I ∈ IΠ is an input to the problem that fully
specifies the question. IΠ denotes the set of all possible inputs to Π. Algorithm AΠ

describes a precise procedure to solve any instance I of problem Π, and AΠ(I) denotes
a solution if one exists. A problem instance may permit multiple correct solutions. We
call any correct solution feasible. If a problem instance permits a feasible solution, we
also call it feasible.

An optimization problem Π asks for a solution with some corresponding maximum
(or minimum) value. Each instance I ∈ IΠ is associated with a subset SΠ(I) of all
feasible solutions SΠ of Π. An objective function w : SΠ →→ R maps each feasible
solution to an objective value. An algorithm AΠ that solves the problem computes an
optimal solution AΠ(I) = argmaxx∈SΠ(I) w(x). If a maximum does not exist, we call
the problem instance infeasible if SΠ(I) is empty, i.e. there exists no feasible solution
for this instance, or unbounded otherwise. We denote the optimal objective value by
optΠ(I) = maxx∈SΠ(I) w(x). Minimization problems are defined accordingly.

A decision problem Π asks whether a question in some formal system is true or
false. Each instance I ∈ IΠ either permits a yes or a no answer. We can transform an
instance of an optimization problem I ∈ ΠO into an instance of a decision problem
(I, p) ∈ ΠD, p ∈ R, by asking whether the optimal objective value of the optimization
problem is optΠO

(I) ≥ p when maximizing (optΠO
(I) ≤ p when minimizing).

Landau Notation. We classify algorithms by the amounts of resources, usually
running time, they require. Running time is measured by the number of operations a
random access machine (RAM) takes to solve a problem instance I ∈ IΠ. To generalize
from specific instances, we consider running time as a function f : N0 →→ R of the
size of the problem instance n = |I|. We refer to f as time complexity function. We
classify time complexity functions by their upper or lower bounded asymptotic behavior.
Classes are denoted by the common Landau symbols O, Ω, and Θ. We specify

O(g) = {f : N0 →→ R | ∃C > 0, n0 ∈ N0 ∀n ≥ n0 : f(n) ≤ C · g(n)} ,
Ω(g) = {f : N0 →→ R | ∃c > 0, n0 ∈ N0 ∀n ≥ n0 : c · g(n) ≤f(n) } ,
Θ(g) = {f : N0 →→ R | ∃c, C > 0, n0 ∈ N0 ∀n ≥ n0 : c · g(n) ≤f(n) ≤ C · g(n)} .

We may refer to the asymptotic running time of an algorithm as time complexity for
short. To further differentiate between the theoretical running time of an algorithm
and actual time measurements on real hardware, we denote the latter by runtime.

We say a problem Π is polynomially solvable, if there exists an algorithm AΠ that
computes a solution in polynomial time, i.e. in O(nk), k ∈ N0, time. On the other hand,
problem Π is exponentially growing, if any algorithm AΠ requires Ω(kn), k > 0, time.

8

2.1 Complexity Theory

Complexity Classes. We further generalize from the running time of algorithms
to the complexity of problems. All problems that are solvable in polynomial time
belong to the class P (polynomially solvable). We consider these problems as tractable.
Another important class NP (non-deterministically polynomially solvable) consists of
all problems for which we can verify in polynomial time whether a candidate solution
is correct. Obviously, P ⊆ NP. It is still an open question, though, whether both
problem classes are equal.

Given two decision problems Π1,Π2, we say Π1 is polynomially reducible to Π2 if we
can transform any instance of Π1 into an instance of Π2 with the same solution and in
polynomial time. We write Π1 ≤p Π2. A problem Π∗ is NP-hard if Π ≤p Π

∗ for all
problems Π ∈ NP . If the problem itself is also in NP , we say that it is NP-complete.
If any problem in P is also NP-complete, we have P = NP .

2.1.2 Approximation Algorithms

Many interesting problems are not tractable. We are able to obtain useful results
in practice for some of them, though. If the size of the problem instance is small,
for example, we can resort to exponentially growing algorithms. A restricted set of
problem instances might be solvable by a polynomial-time algorithm, or when relaxing
the constraint on optimal solutions, there might exist an efficient algorithm that finds
feasible, if not optimal, solutions for any instance of the problem.

Approximation algorithms belong to the latter category. They solve optimization
problems, but instead of providing an optimal—or exact—solution, an approximation
algorithm only computes a feasible one. Even though they are mainly used for solving
intractable problems, approximation algorithms also pose a viable option for problems
in P with long practical runtimes.

Consider maximization (minimization) problem Π with objective function w : SΠ →→
R. We say that an approximation algorithm AΠ has an approximation ratio ρ ∈ [1,∞)
iff it finds a solution AΠ(I) for any feasible problem instance I ∈ IΠ such that

w(OPTΠ(I))

w(AΠ(I))
≤ ρ

w(AΠ(I))

w(OPTΠ(I))
≤ ρ

holds. OPTΠ denotes a theoretical algorithm that computes an optimal solution for
any instance I ∈ IΠ. Note that there exists another common definition in the literature
with ρ ∈ (0, 1] for maximization problems that requires slightly different formula.

Complexity Classes. We classify problems with respect to the running time T (n, ϵ)
and the approximation ratio ρ(n, ϵ) of the approximation algorithms they permit, with
n the size of the problem instance and ϵ > 0 some approximation factor. A problem Π
belongs to class APX if there exists an algorithm that solves Π with a running time
polynomial in n and with a constant approximation ratio. We say an algorithm is an

9

2 Foundations

approximation scheme for an optimization problem if it has an approximation ratio
ρ = (1 + ϵ). If it has a polynomial time complexity in n, we call it a polynomial-time
approximation scheme (PTAS). If we can write the time complexity as f(1/ϵ) · p(n),
with f an arbitrary function and p a polynom, we speak of an efficient polynomial-time
approximation scheme (EPTAS). If the running time is polynomial in n as well as in
1/ϵ, the algorithm is a fully polynomial-time approximation scheme (FPTAS). This
classification is due to [GJ78], with [CT97] later introducing EPTAS.

Problems that permit these approximation schemes belong to the classes PTAS,
EPTAS, or FPTAS. With PO and NPO denoting the optimization problems in P
and NP , respectively, we have PO ⊆ FPTAS ⊆ EPTAS ⊆ PTAS ⊆ APX ⊆ NPO.
The subset relations are strict unless P = NP . “In a very technical sense, an FPTAS
is the best one can hope for an NP-hard optimization problem” [Vaz02], though in
practice an EPTAS already works well.

2.2 Graph Theory

A graph is an abstract entity that models objects and the relations between them. It
is a common tool in mathematics and computer sciences to describe and to formally
define a problem. In the following, we give a formal definition of graphs and introduce
several basic graph algorithms. For more details on graph theory and graph algorithms,
we refer to text books [MS08, CLRS09], as well as for a general overview on algorithms
and data structures.

2.2.1 Definitions

Formally, we define a graph G = (V,E) as a set of nodes V and a relation E ⊆ V × V
on them. We denote the ordered set (s, t) ∈ E as edge with source s and target t.
Accordingly, E is the set of edges of G. We call this graph directed. An edge does not
have to be unique. In this case, we speak of parallel edges. If there exists a reverse
edge (s, t) = (t, s) ∈ E for each edge (s, t) ∈ E, we say the graph is bidirected. If the
edge direction is irrelevant in a bidirected graph, we denote an edge by an unordered
set {s, t} and omit the reverse edge. The respective graph is called undirected. In our
context, V and E are always finite. We speak of a finite graph. The reverse graph
G = (V,E) to a directed graph G consists of the same set of nodes and of the set of
reverse edges E = {e | e ∈ E}.

Nodes and edges can be augmented by further attributes. For example, we often
associate an edge with some non-negative cost c ∈ N0. In our context, this could indicate
the distance between the two sensor nodes or the required energy for communication
between them. For easier reading, attribute symbols also denote the respective mapping
functions, e.g. c : E →→ N0 maps edges to their cost values. We call it edge cost function—
or metric—of G. We may further abbreviate c(u, v) as costs of edge (u, v) ∈ E.

10

2.3 Mathematical Tools

A path ps,t = ⟨(s = v0, v1), . . . , (vk−1, t = vk)⟩ = ⟨e1, . . . , ek⟩ with vi ∈ V and ei ∈ E
is a sequence of edges such that the target of each edge and the source of the following
edge are the same. We may abbreviate by only writing nodes, i.e. ⟨s, . . . , t⟩. The path
describes a connection or transitive relation between nodes s and t. We say that t is
reachable from s. The cardinality of the sequence is called hop count h(ps,t) = |ps,t|.
We may write h(s, t) for short. If t is not reachable from s, we set h(ps,t) =∞. The
length—or cost—of path ps,t is given by the sum of all edge costs c(ps,t) =

k
i=1 c(ei).

Again, we may abbreviate by c(s, t). A path of minimum cost between two nodes
s, t ∈ V is called shortest path Ps,t. It is not unique in general. The associated cost is
called shortest path distance d(s, t) = c(Ps,t). A concatenation of two shortest paths
Ps,v, Pv,t is denoted by Ps,v,t. We similarly write ps,v,t for general paths.

The neighborhood N of a node v encompasses all nodes that are “close” to v in some
sense. The k-hop neighborhood Nk(v) ⊆ V is a subset of V that contains all nodes
that are reachable from V by a path of hop length at most k. This includes node v.
We write Nk\l(v) = Nk(v) \Nl(v) as an abbreviation.

An embedding p : V →→ Rk assigns a position p(v) in a k-dimensional space to each
node v ∈ V . If there exists a two-dimensional embedding p with ||p(u)−p(v)|| ≤ 1⇔
(u, v) ∈ E for all nodes u, v ∈ V , we call G = (V,E) a unit disk graph (UDG).

2.2.2 Graph Algorithms

The most common techniques for graph exploration are breath first search (BFS)
and depth first search (DFS). In each technique, the search starts at some node and
recursively considers all of its neighbors that have not been seen so far. A BFS considers
all neighbors of a node first before continuing with their neighbors. In a DFS, the
algorithm directly descends to a neighbor of a node before considering the remaining
neighbors of this node. Both algorithms can be modelled with a queue data structure,
a BFS inserts and removes nodes at opposite ends of the queue, a DFS inserts and
removes at the same side. The time complexity of both algorithms is in O(|V |+ |E|).

The Floyd-Warshall algorithm [Flo62] offers a simple means to find shortest path
distances between all pairs of nodes in a graph. A distance matrix D is initialized with
Dv,v = 0 for all nodes v ∈ V , Du,v = c(u, v) for all edges (u, v) ∈ E, and Du,v = ∞
otherwise. The algorithm runs in |V | iterations. In iteration i, Du,v is replaced with
Du,i + Di,v if the path over node i is shorter than the current best one. The basic
approach has a cubic time complexity, i.e. it runs in O(|V |3) time.

2.3 Mathematical Tools

Next, we consider two mathematical tools that we apply in the following chapters. One
is a very general method for solving optimization problems. The other one is a more
specialized technique, originally used for visualizing the dissimilarities in a data set.

11

2 Foundations

2.3.1 Mathematical Programming
When speaking of mathematical programming in general, we refer to a whole class
of mathematical optimization problems: Given n variables written as n-dimensional
vector x ∈ P over some domain P and an objective function f : P →→ R, we search for
a value of x that maximizes (or minimizes) the value of f(x). For additional details on
this subject, we refer to texts books [Sch89, BT97]. The following brief introduction
uses elements of both works, historical details are taken from [Dan63, Sch89].

Linear Programming. Linear programming goes back to Fourier in the early 18th
century and was later revisited in the 1940s by several authors. The mathematical
foundations were laid by von Neumann [vN47].

A linear program (LP) is an optimization problem. It can be written in the form

max cᵀx c,x ∈ Rn

s.t. Mx ≤ b M ∈ Rm×n,b ∈ Rm

x ≥ 0 .
(2.1)

The goal is to maximize a linear function f(x) = cᵀx in n variables that is subject to
m linear constraints. Each row of Mx ≤ b is interpreted as one constraint. All feasible
solutions are described by polytope P = {x ∈ Rn |Mx ≤ b,x ≥ 0}, and the desired
optimum by maxx∈P x. If P is empty, the problem is infeasible. LPs are solvable in
polynomial time in the number of their variables as first shown by Khachiyan’s ellipsoid
method [Kha79]. By now, there exist theoretically more efficient techniques such as the
interior point method by Karmarkar [Kar84]. Anstreicher [Ans99] gives the currently
best time complexity for solving LPs with O(n3

lnn
). The worst-case exponential time

simplex method [Dan51] is still of practical use, though, as it offers expected linear
running times.

Linear programming theory states that each linear program has a dual formulation
[Dan63]. More precisely, the strong duality theorem states that if a linear problem has
an optimal solution x∗ then its dual also has an optimal solution y∗ with cᵀx∗ = bᵀy∗.
The dual problem to the primal problem in Equation (2.1) is given by

min bᵀy b,y ∈ Rm

s.t. Mᵀy ≥ c M ∈ Rm×n, c ∈ Rn

y ≥ 0 ,
(2.2)

with the cardinality of constraints and variables switched compared to the primal
problem. [vN47] and [GKT51] were the first to show that if a problem is feasible, so is
its dual, and the solution values of the respective optimal solutions x∗,y∗ are the same,
i.e. cᵀx∗ = bᵀy∗. Transformation between both problems is possible in polynomial
time. This implies that both problems are equally hard to solve. The dual problem is
used as part of several solving strategies such as the primal-dual method [DFF56].

12

2.3 Mathematical Tools

Integer Programming. Integer programming is a generalization of linear program-
ming. When we consider an LP with all (some) variables restricted to integer values,
we speak of a (Mixed) Integer Linear Program

(M)ILP

. In contrast to linear pro-

gramming, this class of problems is NP-hard to solve in general [GJ79].
By removing the restriction to integral values of an (M)ILP, we obtain the LP

relaxation of the problem. The solution to the relaxed problem gives a bound on the
optimal objective value of the integral problem. This can be exploited e.g. by exact
solvers. Techniques for solving (M)ILPs include the cutting plane and the branch-
and-bound methods, introduced by Gomory [Gom58] and Land and Doig [LD60],
respectively. The branch-and-cut algorithm [PR91] uses aspects of both methods.

2.3.2 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a collection of techniques aimed at visualizing
the dissimilarities between objects in a data set by transforming them to distances that
can be represented in a lower-dimensional space. It has its origins in psychophysics. By
now, MDS is frequently applied in other fields such as behavioral sciences, statistical
analysis, or as a means to estimate coordinates from a set of distance measurements.
There exist numerous variants to cope with diverse demands such as metric MDS for
dissimilarities that can be represented by some metric, or non-metric MDS if only the
ranking of the dissimilarities is important but not their actual value. In this thesis, we
focus on classical scaling by Torgerson [Tor52], a special case of metric MDS which
assumes dissimilarities to be Euclidean distances and the lower-dimensional space to
be Euclidean as well. The following description of classical scaling is based on [BG97].
For a broader overview on the topic, we refer to text books [CC94, BG97].

Classical Scaling. We are given a set of n objects V and pairwise dissimilarities—or
distances—δi,j ∈ R between all objects i, j ∈ V . Objects are assumed to be enumerated
from 1 to n. Our goal is to find an embedding p : V →→ Rk of all objects into an
Euclidean space, usually into R2, that minimizes the quadratic differences

n

i,j=1

(δi,j − ||p(i)− p(j)||)2 (2.3)

between dissimilarities δi,j and induced distances ||p(i) − p(j)||. The problem can
be transformed into finding the k dominant eigenpairs of a matrix. Now, consider
a perfect embedding into Rk. This implies δi,j = ||p(i) − p(j)||, i, j ∈ V , which we
we can rewrite as B∆ = EEᵀ, with E = [p(1), . . . ,p(n)]ᵀ the embedding of V . To
determine B∆, we first compute the matrix of squared dissimilarities

(∆i,j) = δ2i,j, i, j ∈ {1, . . . , n} = EEᵀ

13

2 Foundations

between all objects and apply double centering, i.e. setting the sum of each column and
row to zero. This operation removes the indeterminacy of the solution by translating
the origin of the embedding to the centroid of all objects. We obtain

B∆ = −1
2
J∆J = EEᵀ ,

with J = I − 1
n
11ᵀ the centering matrix and I = diag(1, . . . , 1) ∈ Rn×n the identity

matrix. A matrix decomposition of B∆ yields the desired coordinates. As B∆ is an
orthogonal matrix, we can compute its eigendecomposition as

B∆ = VΛVᵀ ,

with Λ = diag(λ1, . . . , λn) the diagonal matrix of eigenvalues and V = [v1, . . . ,vn] the
matrix of corresponding normalized eigenvectors of B∆. The n-dimensional embedding
follows as E = VΛ

1
2 . To obtain the k-dimensional embedding, we restrict the solution

to the k dominant eigenvalues. If we assume eigenvalues to be sorted by descending
magnitude, we can write

Ek = VkΛ
1
2
k ,

with embedding Ek ∈ Rn×k and Vk = [v1, . . . ,vk], Λk = diag(λ1, . . . , λk) the matrices
of eigenvectors and eigenvalues of B∆, restricted to the k dominant components.

We assess the time complexity of this approach as follows: Problem transformation
takes O(n2) time. Eigenpairs can be determined one by one with the power method
[vMPG29] in O(n2) time per iteration, with the number of iterations determining the
accuracy of the result. Alternatively, [GB08] show how to compute multiple dominant
eigenpairs at once. To conclude this section, we give a sample embedding in Figure 2.1.

δi,j a b c d e
a 0 2 3 4 3
b 2 0 4 6 4
c 3 4 0 5 6
d 4 6 5 0 5
e 3 4 6 5 0

d

e

b
a

c

−2.70

−1.74 0.61

−0.18
−2.70

0.21

0.21

−7.59

−7.59

0.00

Figure 2.1: The left side lists pairwise distances δi,j between 5 vertices. The right
side shows an embedding that minimizes equation (2.3). Edge costs denote the
error (||p(i)− p(j)||/δi,j − 1) between given and embedded distance in percent.

14

2.4 Simulational Environment

2.4 Simulational Environment

The simulational studies presented in this thesis are conducted on one of two machines,
both running a Linux distribution. Machine A is a consumer-grade machine equipped
with a quad-core Intel Core i7-920 CPU and 12 GB of RAM. Machine B comes with
four eight-core Intel Xeon E5-4640 CPUs and a total of 512 GB of RAM. Table 2.1
details the respective hardware platforms and software installations.

sockets clock L1 L2 L3 RAM
name processor × cores [Ghz] [kB] [kB] [MB] [GB]

Machine A Intel Core i7-920 1 × 4 2.67 Ghz 4 × 32 4 × 256 1 × 8 12
Machine B Intel Xeon E5-4640 4 × 8 2.40 Ghz 32 × 32 32 × 256 4 × 20 512

name architecture memory channels interconnect distribution / kernel

Machine A Bloomfield 3 × DDR3-800 1 × 4.8 GT/s QPI openSUSE 11.3 / 2.6.34
Machine B Sandy Bridge 4 × DDR3-1600 2 × 8.0 GT/s QPI Ubuntu 12.04 / 3.2.0-38

Table 2.1: Hardware platforms and software installations used for our experiments.

Implementation. Our algorithms are implemented in C++ and compiled with the
C++ compiler of the GNU Compiler Collection1 (GCC), version 4.8.1, with tuning
parameters -std=c++11 -O3 -mtune=native as well as -fopenmp -msse4.2 where
applicable. We apply the Boost libraries2, version 1.54.0, for multiple basic algorithms
and data structures, the Intel Math Kernel Library3, version 11.1.0.080, for computing
eigenpairs of matrices in MDS, and the Gurobi Optimizer4, version 5.6.0, for solving
LP and ILP problems.

Runtime Measurements. We perform runtime measurements by reading the clock
cycle counter available in 64-bit x86 CPUs. Hyperthreading and energy-saving measures
are switched off on both machines. In addition, turbo-mode is disabled on Machine B.

1http://gcc.gnu.org/. Accessed: 2014-08-06.
2http://www.boost.org/. Accessed: 2014-08-06.
3http://software.intel.com/intel-mkl/. Accessed: 2014-08-06.
4http://www.gurobi.com/products/gurobi-optimizer/. Accessed: 2014-08-06.

15

http://gcc.gnu.org/
http://www.boost.org/
http://software.intel.com/intel-mkl/
http://www.gurobi.com/products/gurobi-optimizer/

3 Chapter 3

Lifetime Maximization of
Monitoring Sensor Networks

Surveillance. Close observation, especially of a suspected spy or criminal.
— Oxford Dictionary of English

Surveillance in the context of sensor networks usually comprises more civil tasks than
described in the dictionary definition above. We speak of a surveilling—or monitoring—
sensor network whenever there is some property we want to observe over a longer span
of time. This could be the concentration of some pollutant in the air [TYIM05], the
seismic movements of the pillars of a bridge [XRC+04], or simply the temperature
distribution in an expansive area [MCP+02]. Besides continuous measurements, this
also comprises the detection of dynamic events like the outbreak of wildfires [YWM05]
or tsunamis [APM05] as well as tracking tasks such as the movement of animal flocks
[JOW+02] or as found in traffic guidance systems [KSC06]. A more detailed overview
on monitoring applications can be found in [YMG08]. One of the key features of sensor
networks is their ability to perform monitoring tasks autonomously. They are able to
collect data in inhospitable or even hostile environments without requiring constant
human supervision on site. Moreover, with their very small environmental footprint,
sensor networks are ideal to monitor and preserve fragile ecosystems.

This chapter focuses on allowing energy-constraint sensor networks to provide their
monitoring capabilities for as long as possible. We exploit the redundancy present in
the deployed sensor nodes and compute an activation schedule that permits nodes to
sleep and conserve energy without impeding the functionality of the network while
prolonging its lifetime at the same time. This approach effectively minimizes the energy
wasted by the sensor network.

References. The contents of this chapter are partially based on joint work with
Peter Sanders [SS10] and discussions with David Steurer who provided an outline of
our approximation algorithm in Section 3.4. Wordings of the above publication are
used in this thesis.

17

3 Lifetime Maximization of Monitoring Sensor Networks

3.1 Introduction

The ability of sensor networks to provide continuous monitoring is the basis of many
applications. Examples include the tasks listed above as well as surveillance tasks,
like fencing or intrusion detection, in which we want to be informed when someone or
something crosses a designated area. All of these applications require the monitoring
to be uninterrupted and without any blind spots to be most effective. However, the
unique structure and limitations of sensor networks present us with new and challenging
problems. Single nodes are usually only equipped with non-rechargeable batteries.
Therefore, energy is a highly limited resource and energy consumption becomes a
critical factor in this context. On the other hand, the sensor nodes themselves are
usually cheap and available in abundance. This fact can be exploited to counter
their inherent limitations. A lot of research concentrates on maximizing the lifetime
of monitoring sensor networks under these constraints while guaranteeing complete
coverage. The main idea is to activate only a subset of sensor nodes at each moment
while the remaining nodes can be in an energy conserving sleep mode.

There exist many variations of the basic problem, though. In the target monitoring
problem, there is a set of locations that has to be monitored, i.e. during the entire
lifetime of the network and for every target t, there has to be an active node with t
in its sensing range. In the area monitoring problem, every spot in a designated area
has to be monitored. Some applications may introduce further degrees of freedom,
such as variable sensing ranges, or impose additional constraints, like fault tolerance
or requiring the active nodes to form a connected communication network. Moreover,
we have to differentiate between distributed algorithms and centralized approaches.
While the former can be directly deployed on sensor networks, the latter are usually
not applicable in real-life scenarios as costly broadcasts over the entire network would
be required. However, we can still use centralized approaches for theoretical studies of
the problem or to determine bounds on various network properties, like the maximum
lifetime. Moreover, with values like the (approximate) maximum lifetime readily
available, we can evaluate the quality of distributed algorithms.

3.1.1 Related Work

We consider the problem of maximizing the lifetime of a sensor network deployed to
monitor a given area with a focus on approximation guarantees and exact solvers.
There exists a large body of work in this field, each with its own take on the problem.
We therefore limit ourselves to introducing the most prominent as well as recent
contributions to the field.

Our problem can be divided into two subproblems: The auxiliary coverage problem
of determining sets of sensor nodes that fulfill certain coverage (and possible other)
constraints, and the primary lifetime problem of selecting a subset of these node sets

18

3.1 Introduction

with appropriate durations to maximize the total lifetime of the sensor network while
respecting the energy capacities of all nodes. Both problems are usually considered
in combination. The coverage problem proves to be more difficult, though, and there
exists a lot work only concerned with this subproblem. In the following, we present
some general results before discussing centralized and distributed algorithms dealing
with the full problem. We conclude our overview by detailing several approaches that
focus solely on the coverage problem. Surveys on the general problem are offered by
Cardei and Wu [CW06] as well as Wang [Wan11].

General Results. Cardei and Wu [CW06] classify coverage problems into three
general groups—area coverage, target coverage, and barrier coverage. In [BCSZ05],
Berman et al. argue that area coverage can be reduced to target coverage with at most
n2 targets, given a network of n sensor nodes. However, guaranteeing complete coverage
of an area might not be sufficient in a real-life scenario. An underlying application
could, for example, require a connected network to ensure communication between all
nodes. Zhang and Hou [ZH05] show that if a convex area is covered by a set of sensor
nodes, the nodes are connected when their communication ranges rc are at least twice
their sensing ranges rs. Tian and Georganas extend this result in [TG05]. They prove
that if a sensor network is connected, so is any subset of its nodes that covers the same
area as the whole network when rc ≥ 2 · rs. Unlike simple area coverage, connected
coverage cannot be reduced to covering a set of targets, though, as previously shown
by Lu et al. in [LWCL09].

In one dimension, the general problem is reduced to monitoring a border, i.e. barrier
coverage. A special case of this problem—all sensor nodes having the same capacity—
can be reduced to finding node-disjoint paths in a network. This can be modelled as a
maximum flow problem as shown by Frisch [Fri67]. The general case can be considered
as minimum cost flow problem according to Steiglitz and Bruno [SB71]. The problem
can be augmented to “1.5” dimensions, meaning that the nodes are distributed in an
area but we do not want to cover the whole area, just an arbitrary path from one side
to the other. This problem can be solved by the same means as in one dimension.

Centralized Setting. We identify two main approaches to the lifetime maximization
problem in the centralized setting. One approach focuses on the combinatorial aspects of
the problem, while the other one considers the problem as a linear program. The latter
approach can be further classified by the strategy used to deal with the exponential
number of possible covers.

The first group of algorithms focuses on the combinatorial nature of the problem
and considers it as a variant of the set cover problem. The sensor nodes are partitioned
into (possibly) disjoint sets, i.e. covers, and activated in sequence for a fixed duration.
Slijepcevic and Potkonjak are among the first to study the problem in [SP01], focusing
on area monitoring. They model the problem as a set cover variant by imposing the

19

3 Lifetime Maximization of Monitoring Sensor Networks

following constraints: Each sensor node has the same initial energy and is active in at
most one cover. The authors provide a heuristic to compute disjoint sets of nodes that
each cover the designated area. They start by organizing the area into smaller regions
so that each region is coverable by a different set of sensor nodes. Constructing a cover
is done iteratively by selecting an uncovered region that is coverable by the smallest
amount of remaining nodes and adding one of them to the cover. If multiple nodes are
eligible, nodes are favored that cover a larger amount of yet uncovered regions while
introducing less redundant coverage. Covers remain active until the batteries of the
constituting nodes are depleted. The authors state that their heuristic has a worst-
case time complexity of O(n2), with n the number of sensor nodes. Approximation
guarantees are not given. In [CD05], Cardei and Du consider the same constrained
problem but focus on target monitoring. They show the problem to be NP-complete
and approximable within a factor of 2 by polynomial-time algorithms. The authors
present a heuristic solution by transforming the problem into a maximum flow problem.
Time complexities and approximation ratios are not given. Simulations show that their
approach yields more disjoint covers than [SP01], though at a higher computational
cost. Later in [CTLW05], Cardei et al. drop the restriction on disjoint sets. By allowing
sensor nodes to participate in multiple sets, network lifetimes are further improved.
The authors provide a proof of NP-completeness, reducing from 3-SAT. This proof is
subsequently cited by most of the literature on this subject, even though it does not
take into account the geometric structure nor the battery capacities of the problem.
We rectify this shortcoming in Section 3.2.3 with our own proof of NP-completeness.
Cardei et al. further propose two heuristics to solve the problem. The first one is based
on a linear programming relaxation of an ILP formulation of the problem. It has a
time complexity of O(n3p3), with n the number of sensor nodes and p an upper bound
on the number of set covers. The second one is a greedy heuristic. Single covers are
constructed iteratively, similar to [SP01]. In each step, a critical target is selected
and an available node with the greatest contribution is chosen to cover it. Once a
cover is complete, a fixed amount of energy is subtracted from the contributing nodes
and the next cover is computed. The running time of the heuristic is in O(dm2n),
with n the number of sensor nodes, m the number of targets, and d the minimum
number of nodes covering a single target. Approximation guarantees are not given
for either of the two approaches. A more recent publication by Deshpande et al.
[DKMT11] revisits the problem. In contrast to previous work, the authors do not aim
at maximizing the lifetime while guaranteeing coverage. Instead, they maximize the
coverage for a given lifetime, i.e. for a given number of node sets. The authors still
assume uniform battery capacities, though. Variants with each node being active in
multiple sets as well as having each target covered by more than one node are considered.
They further study a variant in which each node can only cover a limited number of
targets at once. The authors introduce (randomized) approximation algorithms and
provide approximation guarantees whenever the considered problem does not permit a
polynomial-time solution.

20

3.1 Introduction

Algorithms belonging to the second group describe the problem as a linear program
and apply the Garg-Könemann approach [GK07] to compute a (1+ ϵ) ·f -approximation
in O(1

ϵ2
n log n · T) time. The subproblem of computing a single cover is handled by

an f -approximate algorithm in time T . This approach was originally devised by Garg
and Könemann to provide faster and simpler algorithms for multi-commodity flow and
other fractional packing problems.

Berman et al. discuss area monitoring in [BCSZ05] which expands upon [BCSZ04].
They do not enforce any constraints on node sets or battery capacities as seen for the
previous group of algorithms. The authors formalize the problem as sensor network
lifetime problem and identify the coverage subproblem as a weighted geometric set cover
problem. They outline an efficient data structure and algorithm to transform the area
coverage task to a target coverage task with at most n2 targets, n being the number
of sensor nodes. This reduces the subproblem to weighted set cover. The authors
propose to use a basic greedy approach to solve it and state an approximation ratio of
f = H(n2), H(k) denoting the k-th harmonic number. Using a tighter approximation
ratio, we can reduce this to f = (1 + logM), with M the maximum number of nodes
covering a single target. The time complexity is not given. Berman et al. consider
further extensions to the basic problem, either only requiring partial coverage, or taking
into account communication costs. Finally, they suggest optimizing the duration of
each cover with an LP solver. A variation of the problem is considered by Dhawan et al.
in [DVZ+06]. They generalize the sensor model by introducing variable sensing ranges
that affect the energy consumption. The authors describe a greedy solution for the
modified subproblem and obtain the same approximation ratio as given for the original
problem. Again, the time complexity is not stated. Zhao and Gurusamy [ZG08] extend
the model of Berman et al. [BCSZ05] by requiring all active nodes to be directly or
indirectly connected to a dedicated sink with unlimited energy reserves. They describe
an algorithm that is a variation of the basic Garg-Könemann approach and achieves
the same approximation ratio as the approach by Berman et al. [BCSZ05]. Solving its
subproblem requires the computation of shortest path trees. The time complexity of
the algorithm is polynomial in the number of nodes and targets. The authors further
propose a simpler greedy heuristic based on their approximation algorithm. Erlenbach
et al. [EGK11] consider a fault-tolerant variant in which each target has to be covered
by at least two nodes. They give a polynomial-time (6 + ϵ)-approximation for their
coverage subproblem. The problem is decomposed into smaller blocks, and enumeration
techniques are used in combination with dynamic programming to find approximate
solutions. The authors apply a geometric shifting strategy by Hochbaum and Maass
[HM85] to eliminate boundary effects due to the partitioning. Erlenbach et al. further
show how to adapt their results for connected coverage. In [DWW+12], Ding et al.
revisit the basic sensor network lifetime problem. They give a polynomial-time (4 + ϵ)-
approximation for the subproblem using a similar technique as [EGK11]. The primary
problem is solved by a modified Garg-Könemann approach with a slightly different
scaling method. The authors do not give credit to [GK07], though.

21

3 Lifetime Maximization of Monitoring Sensor Networks

The final group of algorithms applies delayed column generation, introduced by
Dantzig and Wolfe [DW60] in the early days of linear programming, to iteratively
add new covers to the considered linear program. Two factors impact the speed of
convergence to an optimum solution, the set of covers that is used for initialization,
and the algorithm that computes a new cover in each iteration. Depending on whether
this algorithm finds optimal solutions, the final result is either exact or approximate.
Moreover, the column generation process can be terminated early with a near optimal
solution as the convergence often stretches over many iterations. Time complexities
are not stated as the considered problem is NP-hard.

The sensor network lifetime problem of Berman et al. [BCSZ05] is picked up by Alfieri
et al. in [ABBC07]. They extend the model by considering energy costs for transmitting
data to a sink. The column generation approach is initialized with a set of covers
computed by the approach in [SP01]. The auxiliary problem of finding appropriate
minimum weight covers is formulated as a flow problem and solved optimally with
an ILP solver. The authors further describe a simple greedy heuristic. To form a
cover, a random subset of non-depleted nodes is chosen and all constraints are checked.
This is repeated until a feasible cover is found. Not surprisingly, the simulations find
the greedy approach to be much faster but offering worse results. Gu et al. [GLZ07]
consider a similar extension to the basic problem, demanding the existence of a data
gathering tree and factoring in communication costs. In addition, they require each
target to be covered by multiple sensor nodes. Initialization is done by constructing
a set of random but feasible covers. The subproblem is solved with integer linear
programming. The authors further describe a heuristic to stop the algorithm early
when the improvement in solution quality stays below a given threshold over several
iterations. Their simulations show that the solution converges the more quickly to an
optimum, the more initial covers are used. Later in [GJLZ09], Gu et al. revisit the
problem and provide a more thorough analysis while dropping the requirement on data
gathering trees. The authors further study the effect of their early termination heuristic,
but the presented results remain unconvincing. The following publication [GZJL11] by
Gu et al. focuses on the basic problem. They describe how to compute an upper bound
on the maximum network lifetime by considering a relaxed problem in which each
target is only required to be covered by one node on average. The algorithm terminates
when the current solution is within a (1− ϵ) fraction of this bound. The authors further
describe a linear programming relaxation of the ILP subproblem and how to derive a
feasible integer solution from the solution of the relaxed problem. Average runtimes
improve by one third while results remain optimal up to a factor of (1− ϵ). Luo et al.
consider the basic problem as one example to demonstrate their technique for solving
large LPs in [LGR09]. Their main contribution is an efficient method for generating
new columns via enumeration that yields a considerable speed-up. The approach works
best if the considered problem is not too regular as this allows to significantly restrict
the complete enumeration process. In [Des11], Deschinkel also studies the basic sensor
network lifetime problem. She proposes to solve the auxiliary problem either exactly

22

3.1 Introduction

using an ILP formulation or with a simple greedy heuristic that iteratively covers each
target with the most beneficial of the still available nodes. Her simulations show that
a combination of both approaches works best, with the greedy heuristic used first until
no more feasible covers are found and then switching to the ILP solver. Initialization
is simply done by ten random but minimal covers. In three publications, Raiconi and
a group of co-authors extend the basic problem in various directions. In [RG11], they
require the covers to be connected. They develop a greedy heuristic based on [CTLW05]
and embed it into a GRASP scheme (greedy random adaptive search procedure [FR89]).
Both approaches can be used either stand-alone or to initialize a column generation
approach. Simulations show that the greedy heuristic is faster, while GRASP yields
better results. The authors further suggest solving the ILP subproblem repeatedly
with random weights to generate initial covers. The following work [CdDR12] considers
variable sensing ranges and applies a similar combination of greedy heuristic and local
search scheme. In [GR13], the authors study the effects of allowing each cover to ignore
a fraction (1−α) of the targets. The basic tools to solve the problem remain the same.
Their results show that we can greatly improve network lifetime and average target
coverage time even for small values of α. The work of Rossi et al. [RSS12] considers
adjustable sensing ranges. They are the first to apply a genetic algorithm to solve
the subproblem. This decreases average runtimes by a considerable amount. However,
they potentially lose a lot of performance by initializing the column generation with
only a single cover in which all nodes are active at their maximum sensing range.
The subsequent publication by Castaño et al. [CRSV13] considers connected coverage
and partial coverage. The authors propose a GRASP and VNS heuristic (variable
neighborhood search [MH97]) to solve the auxiliary problems. Their simulations show
that GRASP quickly provides good covers, while VNS yields better overall solutions.
The authors further discuss a multi-phase approach that applies GRASP first, followed
by VNS. This combination offers a faster convergence than VNS alone while usually
yielding even better results. If optimal solutions are required, an exact ILP solver can
be applied after VNS finds no more feasible covers. In comparisons to [GR13], Castaño
et al. dominate their results in both, runtimes and solution quality.

Distributed Setting. As our approach is not distributed, we only provide a brief
overview on distributed algorithms, focusing mainly on the distributed implementations
found in the previously cited publications. Following [Dha12], we classify distributed
algorithms into greedy, randomized, and other approaches.

The distributed algorithms presented in [SP01, BCSZ05, LWCL09] all construct
covers in a greedy fashion by selecting nodes according to some priority rule. Among
them, only Slijepcevic and Potkonjak [SP01] consider area coverage. Their distributed
approach works similar to the previously discussed centralized method. However, before
each node can perform its computation independently, coverage information has to
be distributed over the network. The procedure suggested by Berman et al. [BCSZ05]

23

3 Lifetime Maximization of Monitoring Sensor Networks

tries to balance the load evenly between all nodes. Nodes broadcast their remaining
energy and the targets they cover to their direct neighbors. A node decides to go
offline if there is another node with more remaining energy that also covers its targets.
This process is repeated as needed. Lu et al. [LWCL09] describe two algorithms for
connected coverage. One starts by constructing a virtual (communication) backbone
before adding nodes to ensure coverage. The other approach considers coverage first.
Sensing ranges are adjusted as needed to maximize lifetime. Both approaches proceed
in rounds of equal duration, computing a new cover at the start of each round.

All of the following approaches introduce some form of randomization. Tian and
Georganas describe an algorithm for area coverage in [TG02]. Nodes decide periodically
whether to switch themselves off according to a coverage-based eligibility rule. Coverage
is preserved by a randomized delay before nodes switch themselves off. No two nodes
leave the cover at the same time, preventing the emergence of coverage holes. Zhang
and Hou [ZH05] derive a set of optimality conditions under which a subset of sensor
nodes can be chosen to completely cover an area. Based on these conditions, the
authors describe a randomized algorithm that maintains connectivity. In each round
a new cover is computed and activated for a fixed duration. One node is randomly
chosen and two more nodes are selected in relation to the first one. This is repeated
until a full cover is found. The distributed algorithm by Alfieri et al. [ABBC07] works
in rounds of variable duration. In each round, nodes activate themselves at random.
They verify whether the desired target coverage is achieved and whether all of them can
reach the designated sink. If this is not possible, the node set is discarded. Otherwise,
the nodes remain active until the verified conditions no longer hold.

The remaining approaches belong to the “other” category. Gupta et al. [GZDG06]
describe two algorithms that guarantee connected coverage. One is a distributed variant
of their approximation algorithm and considers paths of nodes. The other is based
on node priorities. It offers a lower communication overhead but no guarantees on
the size of the constructed cover. The authors only consider computing single covers.
To obtain an activation schedule one has to repeat the algorithm when nodes become
depleted. In [ZG08], Zhao and Gurusamy show how to implement their greedy heuristic
for connected coverage in a distributed manner. Each node determines its profit in
terms of uncovered targets it can cover and communication costs to the sink. Locally
maximal nodes declare themselves to be part of the current cover and transmit this
information to the sink. This is repeated until all targets are covered. The sink then
broadcasts the duration until a new cover is selected. Special care has to be taken
if nodes on the transmission path to the sink do not have enough energy reserves.
In [Dha12], Dhawan introduces the notion of lifetime dependency graphs to model
overlapping covers and upper bounds on their combined lifetime. In each round of his
proposed heuristic, every node constructs a lifetime dependency graph based on local
neighborhood information and deduces a best order of local covers to activate. To deal
with the exponential number of covers and high runtimes, he suggests considering the
linear-sized graph of equivalent covers and to sample a subset of all covers.

24

3.1 Introduction

Coverage Problem. We conclude our overview with several results focusing on the
coverage problem. In [GZDG06], Gupta et al. describe an O(log n)-approximation
algorithm for connected coverage of minimum cardinality, with n the number of sensor
nodes. Their greedy approach iteratively constructs paths to nodes whose sensing areas
overlap the currently covered area and adds the most beneficial path to the current
cover. The algorithm runs in polynomial time. Funke et al. [FKK+07] improve upon
these results with various polynomial-time, constant-factor approximation schemes for
minimum connected area coverage and a PTAS when covering targets. Their algorithms
are based on grid placement strategies. The authors further show how to guarantee
connectivity when sensing ranges are equal to communication ranges.

As the weighted dominating set problem can be reduced to weighted set cover at the
same approximation ratio, see e.g. [Vaz02], we briefly discuss it here. The most recent
results obtain a (4+ ϵ)-approximation in polynomial time. This is shown independently
in [EM09, ZWX+11] using partitionings of the area in combination with geometric
shifting [HM85]. The respective subproblems are solved by dynamic programming
techniques. Erlenbach and Mihalák [EM09] introduce an approach mimicking a sweep-
line algorithm with multiple sweep lines, while Zou et al. [ZWX+11] compute chromatic
covers. Both results can be augmented to yield connected node sets using node-weighted
Steiner trees. However, the respective approximation ratios become worse.

3.1.2 Contribution
This chapter studies the problem of maximizing the lifetime of a sensor network deployed
to monitor a given area under the assumption that the monitoring task consumes the
most amount of energy. At first, we show the problem to be NP-complete and provide
a proof that takes into account its geometric structure, unlike the previous work by
Cardei et al. [CTLW05]. We present an efficient polynomial-time approximation scheme
(EPTAS) to solve large problem instances and discuss its adaption to monitoring single
targets. The algorithm offers better approximation guarantees along with a better
asymptotic time complexity than any previous approach.

As our approximation algorithm needs to solve smaller instances of the same problem
as a subtask, we study how to optimally solve small to medium-sized problem instances.
We propose an approach based on delayed column generation in combination with an
efficient initialization step. In simulations, we compare ourselves to other techniques
and study the runtime behavior on various network instances. We find that our
approach converges much faster to an optimum solution than when using any of the
previously suggested initialization methods. Our simulations further show that the
problem becomes more difficult to solve the more regular it gets.

We further discuss a post-optimization based on the traveling salesperson problem
that can minimize the number of node state changes if the energy consumption of node
activations and deactivations becomes significant. Our solution is generic and can be
applied to any lifetime maximization algorithm that generates a set of node covers.

25

3 Lifetime Maximization of Monitoring Sensor Networks

3.2 Model and Problem Definition

Before going into the details of our algorithms, we need to introduce our sensor network
model and the notations used throughout this chapter. We formally define our problem
and provide alternate problem formulations as well as a proof of NP-completeness.

3.2.1 Network Model

We consider a sensor network consisting of n nodes vi ∈ V , with i ∈ {1, . . . , n}. Each
node v = (v, b, r) is described by three attributes, its location in the plane v ∈ R2, its
battery capacity b ∈ R+, and its maximum sensing range r ∈ R+. We assume sensor
nodes to monitor circular areas of radius r around their position. Communication
between nodes and thus network connectivity is not considered.

Node Distribution. Our principal strategy, random placement, distributes sensor
nodes uniformly at random in the designated area. We further consider a regular
node distribution with the grid placement strategy. Here, nodes are located at the
intersections of a quadratic grid. A variation thereof, perturbed grid placement, allows
nodes to randomly deviate from these positions by a small amount.

Energy Consumption. When active, the energy consumption of a sensor node is
constant over time and independent of small changes in the sensing range. We assume
the energy consumption to be negligible when the node is not actively monitoring its
surroundings. We further assume that the costs for communication, processing, and
state changes, i.e. from active to sleeping and back, are proportional to the monitoring
costs. This allows us to incorporate these costs implicitly by using effective monitoring
costs that are a linear combination of all costs. We lift our assumption on the cost of
node state changes in Section 3.5.

For convenience, we normalize all quantities, i.e. a sensor node consumes one unit of
energy per unit of time, and battery capacities are specified in units of energy. This
implies that a node with battery capacity b can be active for b units of time.

Coverage. We say that a sensor node v = (v, b, r) ∈ V covers a region R if a disk
centered at position v with radius r contains region R completely. If the disk only
intersects said region, we say v intersects—or overlaps—region R.

Now, let an area be a connected or unconnected region with a description complexity
linear in n. Given an area A, a set of sensor nodes c ⊆ V is called a cover of A, if
the area is contained in the union of disks centered at each sensor node with radii
corresponding to the sensing ranges of the respective nodes. In particular, the set of all
sensor nodes V has to be a cover of A if any cover exists at all. We denote the set of all
possible covers by C. Its size is exponential in the number of nodes, i.e. |C| = O(2n).

26

3.2 Model and Problem Definition

3.2.2 Problem Definition
Given a set of sensor nodes and a designated area, we want to determine an activation
schedule for each node so that we can monitor the area for as long as possible without
gaps before this becomes impossible due to node failures because of empty batteries.
Definition 3.1 formalizes this problem.

Definition 3.1 (Sensor Network Lifetime Problem [BCSZ05]—SNLP). Given a sensor
network V and an area A as specified above, find an activation schedule (C, t) for area
A with maximum duration Topt⟨V,A⟩ so that the active time of any node vi ∈ V does
not exceed its battery capacity bi.

We denote a problem instance of SNLP by the tuple (V,A), with V the considered
sensor network and A the area to be monitored. In the special case of a uniform, fixed
maximum sensing range R for all nodes, i.e. ri = R, i ∈ {1, . . . , n}, we write (V,A,R).
A solution to (V,A) is of the form (C, t). Such a schedule comprises a set of m covers
C = {c1, . . . , cm} ⊆ C of area A and a corresponding set of durations t = {t1, . . . , tm}.
Applying a schedule implies activating each cover iteratively for its corresponding
duration. If a cover is active, all of its sensor nodes are active and all other nodes are
sleeping. We call a schedule, i.e. a solution, feasible if it respects the limited battery
capacity bi of each node vi ∈ V , i.e.

j:vi∈cj
tj ≤ bi, ∀vi ∈ V . (3.1)

We abbreviate the duration
m

j=1 tj of a schedule (C, t) for problem instance (V,A)
by T⟨V,A⟩. We refer to this duration as lifetime of the sensor network. The lifetime
of an optimum solution is denoted by Topt⟨V,A⟩. Similarly, we write T⟨V,A,R⟩ and
Topt⟨V,A,R⟩ for instances with uniform sensing ranges. For easier reading, we may
omit writing out area A and normalize distances to one maximum sensing range.

Linear Programming Formulation. To complement the combinatorial, set-based
view on the sensor network lifetime problem given above, we introduce an equivalent
formulation based on linear programming. Here, sets become vectors, and sets of sets
become matrices. To avoid confusion, we apply the same or similar notations for both
representations of the problem.

We reformulate our problem as a packing linear program in which we want to

maximize
m

j=1

tj , (lifetime)

subject to
m

j=1

Cijtj ≤ bi, i ∈ {1, . . . , n} , (capacity constraints)

t ≥ 0 , (sanity check)

27

3 Lifetime Maximization of Monitoring Sensor Networks

with t ∈ Rm
+ , b ∈ Rn

+, and C ∈ Zm×n
2 . Vector b and matrix C are (implicitly) given by

problem instance (V,A) of SNLP, while vector t is an open variable of the problem.
Our linear program can also be written in a more convenient, shorthand form as

max {1ᵀt | Ct ≤ b, t ≥ 0} , t ∈ Rm
+ ,b ∈ Rn

+, C ∈ Zm×n
2 . (3.2)

We model a cover c as binary column vector c ∈ Zn
2 , with entry ci denoting whether

node vi is active (ci = 1) or not (ci = 0). In other words, vi ∈//∈ c in the set formulation
translates to a binary value in the vector notation. The set of all covers C corresponds
to binary matrix C = [c1, . . . , cm] ∈ Zm×n

2 . Every column of the matrix conforms to
a single cover. The duration of each cover is described by column vector t ∈ Rm

+ .
An entry tj corresponds to the duration tj of cover cj, j ∈ {1, . . . ,m}. The battery
capacities of all sensor nodes are compiled in column vector b ∈ Rn

+, with each entry bi

denoting the battery capacity bi of a node vi, i ∈ {1, . . . , n}. Note that the geometric
structure of the problem instance is implicitly represented by matrix C.

The result of the maximization problem conforms to the optimum lifetime Topt⟨V,A⟩
of a problem instance (V,A) of SNLP. The corresponding schedule is given by (C, t),
with t the argument of the maximum. As t usually contains many zero valued entries,
we may want to condense the schedule to the actually contributing covers by removing
all entries cj ∈ C and tj ∈ t for which tj = 0.

Given this linear programming formulation, we can now make use of the full range of
techniques available for linear programs to solve the sensor network lifetime problem.
This is discussed in more detail in Section 3.4.

Alternative Problem Interpretation. Assuming uniform fixed sensing ranges is a
common practice in theoretical publications on the subject at hand as it simplifies
problem descriptions and analyses. We have to admit, though, that this is not a
reasonable assumption for real-life scenarios. Sensor nodes rarely offer exact circular
monitoring ranges of uniform radii. Therefore, we introduce a reinterpretation of the
sensor network lifetime problem that does not require sensing ranges at all.

Consider the task of continuously taking measurements of a designated area A at
a given minimum resolution R. This implies that each point of the considered area
has to be within distance R of a position where measurements are taken, i.e. from a
sensor node. The problem corresponds to SNLP with nodes covering circular regions
of uniform radii. If we introduce variable measurement resolutions, this formulation
further covers the case of SNLP with non-uniform sensing ranges.

Overall, we are convinced that our reinterpretation of the problem offers a much
more realistic view on the sensor network lifetime problem and shows that even a very
simplistic theoretical model can be of actual relevance in real-life scenarios. However,
for the sake of consistency to the previous work, we follow the original problem
interpretation for the remainder of this chapter.

28

3.2 Model and Problem Definition

3.2.3 Proof of NP-Completeness
We now take a look at the hardness of the sensor network lifetime problem. It has
been shown to be NP-complete before by Cardei et al. in [CTLW05]. However, we
are convinced that a novel proof is necessary as the previous one by Cardei et al. does
not take into account the geometric structure of the problem. Geometric variants of
NP-hard problems can have a vastly different structure than the general problem and
are often easier to solve. Thus, by ignoring this additional information, the authors of
the previous proof essentially considered a different, potentially much more difficult
problem. Moreover, Cardei et al. require battery capacities to be uniform, a restriction
we do not make in our proof.

A short outline of our proof follows: We introduce a geometric problem and prove it
to be NP-complete. Using linear programming, we show that SNLP is equally hard to
solve as a derived problem. We then prove the NP-completeness of SNLP by showing
that the geometric problem and the derived problem are equivalent.

Geometric Problem. We begin by recapitulating a well-known problem, weighted
minimum dominating set, and some of its properties. Thereafter, we show a connection
between dominating sets and area covers to aid us in the subsequent proofs.

Definition 3.2 (Weighted Minimum Dominating Set—wMDS). A dominating set in
a graph G = (V,E) is a subset D ⊆ V so that every node v ∈ V is either in D or
adjacent to a node in D. In the weighted case, a weight wv is associated with each node
v ∈ V and a dominating set D of minimum total weight

d∈D wd is requested. The

decision variant asks whether a dominating set D with

d∈D wd < W exists.

Theorem 3.1. The Minimum Dominating Set (MDS) problem is NP-complete for
unit disk graphs [MIH81]. The same holds true for wMDS and unit disk graphs.

Lemma 3.1. Given a unit disk graph G = (V,E) and an embedding of G in R2, a set
D ⊆ V is a dominating set iff the set of unit disks centered at the nodes in D covers V .

Proof. Let the set of unit disks centered at D be a cover of V . Thus, there is at least
one node d ∈ D for each node v ∈ V of distance 1 or less. By definition of unit disk
graphs, an edge (d, v) exists unless d = v. Thus, D is a dominating set of G.

Conversely, let D be a dominating set of G. Every node v ∈ V is either in D or
neighboring to a node d ∈ D. By definition of unit disk graphs, the distance between
v and d is at most 1. Therefore, the set of unit disks centered at D covers V .

We are now ready to introduce a geometric problem, weighted minimum geometric
disk cover, and show its NP-completeness. It allows us to incorporate the geometric
structure of SNLP into our proof of NP-completeness. The problem definition appears
to be equivalent to wMDS on unit disk graphs at first glance, but a closer look reveals
it to be a more general problem.

29

3 Lifetime Maximization of Monitoring Sensor Networks

Definition 3.3 (Weighted Minimum Geometric Disk Cover—wMGDC). Given a set
of points P ⊂ R2 and a set of disks U with arbitrary radii and associated weights wu,
u ∈ U , find a cover D ⊆ U of point set P with minimum total weight

d∈D wd. The

decision variant asks whether a cover D with total weight

d∈D wd < W exists.

Theorem 3.2. The decision variant of wMGDC is NP-complete.

Proof. NP-hardness is shown by reduction from the decision variant of wMDS. The
nodes V in input graph G = (V,E) of wMDS become centers of disks U with radius 1
in wMGDC. The set of nodes doubles as set of points P that has to be covered. Any
geometric cover of U computed by wMGDC is a dominating set of V , as shown by
Lemma 3.1. As weights in wMGDC correspond to weights in wMDS, a solution of
the decision variant of wMGDC is also a solution of the decision variant of wMDS.
NP-completeness follows trivially as we can verify in time polynomial in |P | and |U |
whether a candidate solution of wMGDC is a cover with total weight W or less.

Separation Problem. We now consider the linear programming formulation of SNLP
and introduce two associated problems to aid us in our proof of NP-completeness. We
first give a short overview of the definition and the interpretation of the dual linear
program to SNLP.

Definition 3.4 (Dual to SNLP). Following Section 2.3.1, the dual to the linear program
for SNLP (3.2) is given by min {bᵀw | Cᵀw ≥ 1, w ≥ 0}. We read the problem as
finding (optimal) weights for all sensor nodes in V so that the weight cᵀw of each cover
c ∈ C is at least 1 and the sum of the weighted battery capacities bᵀw is minimal. The
dual variables w are considered to be node weights, i.e. wi is the weight of node vi ∈ V .

The separation problem to a linear program verifies whether a candidate solution
meets all of the constraints of this LP and otherwise provides a counter-example.
We specify the separation problem associated with the dual LP to SNLP below and
introduce a general property of separation problems that can be used to assess the
time complexities of linear programs.

Definition 3.5 (Separation Problem of the Dual to SNLP). Given a candidate solution
consisting of a set of sensor nodes V with associated weights w, decide whether there
exists a cover of area A using nodes with total weight less than 1. If true, the candidate
solution does not meet all constraints. The cover serves as counter-example.

Theorem 3.3. The separation problem associated with an LP is polynomially solvable
if and only if the corresponding LP is polynomially solvable [GLS81].

SNLP. Having introduced two auxiliary problems, wMGDC and the separation
problem, we can now focus on our main problem, the sensor network lifetime problem.
We first show our auxiliary problems to be equivalent before providing a proof of
NP-completeness for SNLP with the introduced problems as main ingredients.

30

3.3 Approximation Algorithm

Lemma 3.2. The separation problem of the dual to SNLP is equivalent to wMGDC.

Proof. As per [BCSZ05], covering an area is equivalent to covering a set of points.
Thus, considering Definition 3.3 and Definition 3.5, the separation problem is equivalent
to wMGDC with W = 1 and sensor nodes substituted by disks at the same positions,
with the same weights, and with their radii corresponding to the sensing ranges.

Theorem 3.4. The sensor network lifetime problem (SNLP) is NP-complete.

Proof. The separation problem of the dual to SNLP is equivalent to wMGDC according
to Lemma 3.2. Theorem 3.2 shows wMGDC to be NP-complete. Therefore, so is
the separation problem. It follows as per Theorem 3.3 that the dual to SNLP is also
NP-complete. A solution of the dual to an LP can be transformed into a solution of
the LP in polynomial time [Dan63]. Thus, SNLP is NP-complete as claimed.

This completes our proof. In contrast to the previous proof given by Cardei et al. in
[CTLW05], we allow sensor nodes to have varying battery capacities, and we take into
account the geometric structure of the problem. By ignoring this structure, Cardei et al.
showed the NP-completeness of a different, potentially much more difficult problem.
Thus, we claim to have given the first complete proof of NP-completeness for SNLP.

3.3 Approximation Algorithm

As seen in the last section, the sensor network lifetime problem is NP-complete. Thus,
to obtain an algorithm that handles arbitrarily large problem instances efficiently, we
need to introduce some relaxations to the original problem. We consider increasing
sensing ranges by a small amount when applying a discretization technique. Secondly,
we allow slightly suboptimal results when building a global solution from the solutions
of smaller regions. Finally, we assume uniform maximum sensing ranges. We combine
all of these ingredients into an EPTAS and prove its approximation ratio and time
complexity. Constant factors are not optimized in our proofs for easier reading. Tighter
bounds are discussed at the end of Section 3.3.3.

3.3.1 Discretizing Positions
Rounding continuous values to few discrete values is a common technique of many
approximation schemes to obtain simpler problems that can be solved more efficiently.
We show how to apply this approach to SNLP. Consider a modified problem with sensor
nodes restricted to positions on a grid, i.e. a set of points {(γ · x, γ · y) | x, y ∈ Z} ⊂ R2,
with γ ∈ R the width of the grid. If we allow the maximum sensing range R to increase
by a small amount and given an algorithm A that computes an f -approximate solution
for this altered problem, we can find an f -approximate solution for the original problem
with only a small computational overhead compared to algorithm A.

31

3 Lifetime Maximization of Monitoring Sensor Networks

We first consider a single sensor node and the area it covers. Corollary 3.1 shows that
when moving a sensor node by a small amount and increasing its maximum sensing by
the same amount, the node still covers at least the same area as before.

Corollary 3.1. Consider disk D1 with center x = (x, y) and radius r, covering area A,
and disk D2 with center x+ dx, dx = (dx, dy) and radius r + dr, dr ≥ ||dx||. Then,
disk D2 also covers area A.

Proof. We have ||p−x|| ≤ r for each point p = (xp, yp) in A as D1 covers A. According
to the triangle inequality ||p− (x+ dx)|| ≤ ||p− x||+ ||dx|| ≤ r + ||dx|| holds. Thus,
no point p in A is further away from x + dx than r + ||dx||. With dr ≥ ||dx||, it
follows that D2 covers A.

With this corollary shown, we can now formalize our previous claims in Lemma 3.3.
The basic approach is summarized by Algorithm 3.1. If multiple sensor nodes are
shifted to the same grid position, we replace them by one node with the combined
battery capacity. The approach further assumes that small changes in the maximum
sensing range R have only a negligible impact on the energy consumption of the sensor
nodes. Figure 3.1 depicts the general idea for a single node.

Algorithm 3.1 Approximation algorithm for SNLP
Input: Parameter δ ∈ (0, 1], set of sensor nodes V , algorithm A
Output: Set of feasible covers C, set of corresponding durations t

1: Ṽ ← snapToGrid(V, δ/2) ◃ move each node to nearest point on grid
2: (C, t)← A(Ṽ , 1 + δ/2) ◃ solve relaxed problem
3: return (C, t)

Lemma 3.3. Let δ ∈ (0, 1]. Algorithm 3.1 yields a feasible solution to instance (V, 1+δ)
of SNLP with lifetime T ⟨V, 1 + δ⟩ ≥ f · Topt⟨V, 1⟩. The asymptotic time complexity is
O(n+ tA), with n = |V | and tA the running time of algorithm A.

Proof. Approximation Guarantee. Consider the problem instance (V, 1). Moving all
nodes in V to the nearest position on a grid of width γ = δ/2 yields Ṽ . Each node is
shifted by at most

√
2
2
· δ/2 < δ/2. If we increase the maximum sensing range R by a

factor (1 + δ/2), a cover with respect to (V, 1) is a cover with respect to (Ṽ , 1+ δ/2) as
shown by Corollary 3.1. Thus, Topt⟨Ṽ , 1 + δ/2⟩ ≥ Topt⟨V, 1⟩. Algorithm A computes a
solution to (Ṽ , 1+δ/2) with lifetime T ⟨Ṽ , 1+δ/2⟩ ≥ f ·Topt⟨Ṽ , 1+δ/2⟩ ≥ f ·Topt⟨V, 1⟩.
A solution to (Ṽ , 1 + δ/2) is a solution to (V, 1 + δ) by the same argument as above
for problems (V, 1) and (Ṽ , 1 + δ/2). Thus, the solution provided by algorithm A is a
feasible solution for (V, 1 + δ) with lifetime T ⟨V, 1 + δ⟩ ≥ f · Topt⟨V, 1⟩.

Time Complexity. Relocation of a sensor node to a grid position is done by basic
arithmetic operations and requires time O(1). Thus, the time complexity of shifting
all n nodes and performing algorithm A amounts to O(n+ tA).

32

3.3 Approximation Algorithm

A

1

δ/2

u

(a)

A

u

1 + δ/2

δ/2

(b)

Figure 3.1: A grid of width δ/2 is shown. Intersections symbolize grid positions.
(a) Sensor node u with sensing range R = 1 covers area A. (b) Node u is moved to
a grid position and its sensing range is increased by δ/2 to still cover area A.

This completes the first ingredient of our approximation algorithm. In Section 3.3.3,
we show how this discretization technique helps us to simplify a subproblem of SNLP
so that only a constant number of nodes have to be considered.

3.3.2 Area Partitioning

Geometric shifting is another common technique when dealing with hard problems.
Hochbaum and Maas introduced it in [HM85] to formulate polynomial approximation
schemes for numerous NP-complete geometric covering and packing problems. The
basic idea is to partition the problem into smaller problems that are easier to solve.
Their respective solutions are then combined to a solution for the global problem. This
is repeated for multiple partitionings to eliminate boundary effects and achieves an
almost optimal result. We show how to adapt this technique for our purposes.

Consider an instance (V,A, 1) of SNLP and a partitioning T of the plane into axis-
aligned squares of width k. If we confine our problem to a single square—or tile—T
of this partitioning, we only have to deal with covering area (A ∩ T) by the subset of
sensor nodes in V that are located within T or up to one maximum sensing range away.
We write (V ∩ T+) for this subset, with T+ denoting tile T extended by one maximum
sensing range in all directions. Given an algorithm A that computes an f -approximate
solution for a problem restricted to a small (quadratic) area, we can find a solution for
each tile of partitioning T and merge them to a solution of the whole problem. Here, a
node has to be active if the solution for any tile requires it to be. This implies that the
schedule for each tile can be executed concurrently and independently. Unfortunately,
such a solution does not have to be feasible. Consider a sensor node that is required

33

3 Lifetime Maximization of Monitoring Sensor Networks

for the coverage of more than one tile. As the solutions for all tiles are independent,
this node might be assigned to be active for longer than its battery capacity allows.

After having considered solving SNLP for a single partitioning, we now describe how
to use the solutions for multiple partitionings to avoid infeasible solutions. Consider a
set of k partitionings T =

T l

, l ∈ Zk. Each partitioning consists of axis-aligned tiles

of width k. Partitioning T l+1 is formed from partitioning T l by translation to the top
and to the right by one, see Figure 3.2(b). Note that T k = T 0. In each partitioning, a
sensor node has to be considered for the coverage of at most four tiles. The case of
more than one tile only occurs for at most two partitionings if we assume k > 2 as
depicted in Figure 3.2 and shown in the following corollary.

Corollary 3.2. Let T be a set of k partitionings as described above. If k > 2, any
node is considered for the coverage of at most four tiles of any T ∈ T and for the
coverage of more than one tile in at most two partitionings.

Proof. Consider disk D of radius 1 at position p = (xp, yp). It intersects multiple tiles
iff the corner of a tile is within its bounding box B = [xp − 1, xp + 1]× [yp − 1, yp + 1].
There is at most one tile corner inside the bounding box unless k ≤ 2, the width of B.
Note that k also denotes the width of a tile. Thus, disk D intersects at most four tiles
of any partitioning. By construction, each partitioning is shifted to the top and to the
right by one compared to the previous one. Therefore, a tile corner remains within B
for at most two consecutive partitionings. As at most one tile corner lies within B,
disk D intersects multiple tiles for only two partitionings.

Consider the (potentially infeasible) solution (Cl, tl) to instance (V, 1) of SNLP,
constructed from the solutions of each tile of partitioning T l as shown above. We have

T ⟨V, 1⟩l =

j:clj∈Cl

tlj ≥ f · Topt⟨V, 1⟩ , and (3.3)

∀vi ∈ V :

j:vi∈clj

tlj ≤

4 · bi node vi needed by more than one tile,
1 · bi otherwise.

(3.4)

Lifetime T ⟨V, 1⟩l is the sum of the durations tlj ∈ tl of its covers clj ∈ Cl. It is optimal
up to a factor f as algorithm A provides f -approximate solutions for each tile. Similarly,
the active time of each sensor node vi ∈ V is the sum of the durations tlj ∈ tl of each
cover clj ∈ Cl that contains vi. It exceeds the battery capacity of the node by at most
four times as a node is in at most four covers according to Corollary 3.2. We obtain a
feasible, almost optimal solution to the full problem by applying the solutions for each
partitioning T l ∈ T , l ∈ Zk, in succession and scaling the duration of each cover by a
constant a, i.e.

(C, t) = (

l∈Zk

Cl,

l∈Zk

a · tl) . (3.5)

34

3.3 Approximation Algorithm

v k

u

T

1

1

v

u

(a)

1

T l−1
T l

T l+1

v

u

(b)

Figure 3.2: (a) A partitioning T is depicted. Sensor node u has to be considered
for the coverage of four tiles, i.e. the disk centered at u with radius equal to one
maximum sensing range intersects four tiles. (b) Three consecutive partitionings
T l−1, T l and T l+1 are shown. In partitionings T l−1 and T l, node u has to be
considered for the coverage of four tiles and node v for only one. In partitioning
T l+1, the disk at u overlaps just one tile while the one at v intersects two tiles.

These claims are summarized by Lemma 3.4, which completes the description of the
second ingredient for our approximation algorithm.

Lemma 3.4. Let k = ⌈10/ϵ⌉ with ϵ ∈ (0, 1]. The union (C, t) of the solutions for each
partitioning in Equation (3.5) is a feasible solution to instance (V, 1) of SNLP with
lifetime T ⟨V, 1⟩ ≥ f · (1− ϵ) · Topt⟨V, 1⟩, if a = (1− ϵ)/k.

Proof. Approximation Guarantee. The total lifetime T ⟨V, 1⟩ is the sum of the lifetimes
T ⟨V, 1⟩l of each partitioning T l scaled by a = (1− ϵ)/k. This sum is bounded below by

T ⟨V, 1⟩ = 1− ϵ

k

l∈Zk

T ⟨V, 1⟩l ≥ 1− ϵ

k

l∈Zk

f · Topt⟨V, 1⟩ = f · (1− ϵ) · Topt⟨V, 1⟩ ,

as claimed. The inequality follows by Equation (3.3).
Feasibility. Each sensor node vi ∈ V is active for the sum of the durations tlj of all

covers clj ∈ Cl with vi ∈ clj over all partitionings T l, with l ∈ Zk. This sum is bounded
above by

1− ϵ

k

l∈Zk

j:vi∈clj

tlj ≤
1− ϵ

k

(k − 2) · 1 + 2 · 4

· bi ≤ bi . (3.6)

The first inequality follows by Equation (3.4) and Corollary 3.2. The second inequality
follows due to our choice of k. The active time of each node vi is bounded by its battery
capacity bi. Therefore, the solution is feasible.

35

3 Lifetime Maximization of Monitoring Sensor Networks

3.3.3 Full Method
With our two main ingredients described in the previous sections, we can now show
how to combine these relaxation techniques into an efficient linear-time approximation
scheme for the sensor network lifetime problem. We assume the availability of an
f -approximate algorithm A that can compute solutions for instances of SNLP on small
(quadratic) areas with sensor nodes restricted to positions on a grid and a running
time tA dependent on the number of nodes. This algorithm combines the restrictions
of both algorithms assumed in the previous sections. Now, consider a general instance
(V, 1) of SNLP. We construct a feasible solution (C, t) as in Section 3.3.2 by computing
solutions for tiles of partitionings of the plane with algorithm A and merging them.
As algorithm A assumes the sensor nodes to be in grid positions, we have to use the
same approach as in Section 3.3.1 when discretizing node positions and allow the
sensing ranges to increase by a small amount. The complete approach is depicted by
Algorithm 3.2. It runs in pseudo-linear time and yields a solution that comes arbitrarily
close to the maximum network lifetime if we allow sensing ranges to grow by a small
amount. Theorem 3.5 summarizes these claims.

Algorithm 3.2 EPTAS for SNLP
Input: Parameters δ ∈ (0, 1], ϵ ∈ (0, 1], set of sensor nodes V , algorithm A, area A
Output: Set of feasible covers C, set of corresponding durations t

1: Ṽ ← snapToGrid(V, δ/2) ◃ move each node to nearest point on grid
2: for all partitionings T l ∈ T do ◃ loop over all k partitionings
3: for all tiles T ∈ T l do ◃ and each tile in the partitioning
4: (Cl

T , t
l
T)← A(Ṽ ∩ T+, A ∩ T, 1 + δ/2) ◃ solve relaxed problem confined

to tile T of partitioning T l

5: end for
6: (Cl, tl)← merge(

(Cl

T , t
l
T) | T ∈ T l

) ◃ combine partial solutions

7: end for
8: (C, t)← (∪l∈Zk

Cl, (1− ϵ)/k · ∪l∈Zk
tl) ◃ unite all k solutions

9: return (C, t)

Theorem 3.5. Let δ ∈ (0, 1] and k = ⌈10/ϵ⌉ with ϵ ∈ (0, 1]. Algorithm 3.2 computes
a feasible solution (C, t) to instance (V, 1 + δ) of SNLP with lifetime

T ⟨V, 1 + δ⟩ ≥ (1− ϵ) · f · Topt⟨V, 1⟩. (3.7)

The time complexity of Algorithm 3.2 is pseudo-linearly bounded in n = |V | by

O

n+ 1

ϵ
n · tA(O(1

δ2ϵ2
))

= O(n) . (3.8)

It is an EPTAS for the sensor network lifetime problem if f = (1 + ξ), ξ ∈ R+.

36

3.3 Approximation Algorithm

Proof. Feasibility. The feasibility of solution (C, t) follows directly from the proofs of
feasibility in Lemma 3.3 and Lemma 3.4. The latter lemma states that a combination
of feasible solutions for small (quadratic) tiles results in a feasible solution. According
to the former, a solution for each tile is feasible with sensor nodes relocated to grid
positions and their radii slightly increased. Therefore, (C, t) is feasible.

Approximation Guarantee. By discretizing node positions, we have an approximation
guarantee T ⟨V, 1+δ⟩ ≥ f ·Topt⟨V, 1⟩ for the solution of each tile according to Lemma 3.3.
As stated by Equation (3.3), the same approximation guarantee holds for each solution
(Cl, tl) of (V, 1 + δ), with (Cl, tl) the merged solutions of all tiles of partitioning T l.
Combining the solutions of all k partitionings to (C, t) as in Equation (3.5), introduces
an additional factor (1− ϵ) to the approximation guarantee according to Lemma 3.4.
The claimed lifetime follows.

Time Complexity. According to Lemma 3.3, there is an additive computational
overhead of O(n) when discretizing node positions. The solution for each tile can be
found in time tA(O(1

δ2ϵ2
)) as each tile only contains ⌊k2/δ2⌋ = O(1

δ2ϵ2
) distinct grid

positions and thus at most as many sensor nodes. The number of nodes to be considered
for covering each tile is higher by at most a constant factor as only nodes closer to the
tile than one maximum sensing range have to be considered additionally. There are k
partitionings and in each partitioning there are at most 4n tiles to be considered since,
according to Corollary 3.2, each sensor node is required for the coverage of at most
four tiles in each partitioning. Thus, solutions for k · O(4n) = O(1

ϵ
n) tiles have to be

found. Altogether, we obtain the claimed asymptotic running time.
EPTAS. Following Section 2.1.2, an EPTAS requires a (1 + ζ)-approximation ratio,

ζ ∈ R+, and a time complexity polynomial in the problem size. This polynomial may
further depend only multiplicatively on a function of the approximation parameters. For
f of the form (1 + ξ), ξ ∈ R+, we can choose ζ appropriately to satisfy the requirement
on the approximation ratio. The requirement on the time complexity holds too, as seen
in Equation (3.8). Thus, Algorithm 3.2 is an efficient polynomial-time approximation
scheme. For f not of the above form, we only obtain a linear-time approximation
algorithm without the required approximation ratio.

We do not have to be concerned about the time complexity of algorithm A as it only
contributes a constant factor to the running time of Algorithm 3.2—we could apply
any algorithm that solves the problem. In an actual implementation, though, we would
opt for a preferably efficient one since constant factors matter in practice. However, we
still need to take into account the solution quality. Here, the exact solver in Section 3.4
is an interesting choice. It is very fast for an optimal algorithm and as it covers the
general problem, it can handle any instance, algorithm A is expected to solve.

As sensor nodes usually cannot extend their sensing ranges in an actual application,
we can take (1 + δ) as the maximum feasible sensing range. Then, our solution would
correspond to an approximate solution for an instance with slightly reduced sensing
ranges, i.e. (V, 1− δ). Similar reasonings hold for our alternate problem formulation.

37

3 Lifetime Maximization of Monitoring Sensor Networks

Refinement. The asymptotic time complexity of Algorithm 3.2 can be further refined
compared to our results in Theorem 3.5 if we have additional knowledge of the problem
structure. We show how to improve upon the number of tiles, O(1

ϵ
n), that have to be

considered for each partitioning before tightening constant factors.
If area A is connected, the disks of radius R = (1 + δ) representing the sensing area

of each node have to be connected as well. Unconnected disks do not contribute to
the coverage of area A and can be ignored. Assume there are n disks. They span at
most 2R · n/k = O

(1 + δ) ϵn

tiles of width k if we arrange them on a horizontal or

vertical line touching each other. Thus, the number of tiles to be considered in each
partitioning is restricted accordingly. This extreme arrangement requires A to be an
axis-aligned rectangular area of infinitesimal width. For extensive areas, the actual
number of tiles is much smaller, though.

We can use packing arguments to assess the number of relevant tiles if area A is
good-natured as specified below. As per [Wil79], at least 2√

27R2 disks of radius R
are required to cover an area of size 1. Therefore, n disks of radius (1 + δ) cover at
most O

(1 + δ)2 ϵ2n

tiles of size k2. The number of tiles to be considered in each

partitioning is restricted accordingly. Area A does not have to be connected for this
assessment. However, most disks have to be fully inside of area A, i.e. the greatest
extent of area A times (1 + δ) has to be much smaller than the area of A.

If we can assess the lifetime of the sensor network, the time complexity can be
further refined. With Tlower a lower bound on the lifetime of the sensor network and
bmax the maximum capacity over all sensor nodes, ⌈Tlower/bmax⌉ denotes the minimum
number of sensor nodes required to cover any position for the complete lifetime of the
network. This bounds the number of nodes that can be active in each partitioning to
at most n/⌈bmax/Tlower⌉ if a cover exists. We can similarly bound this number from
below by n/⌈bmin/Tupper⌉, given an upper bound on the network lifetime Tupper and the
minimum battery capacity bmin. Since the number of relevant tiles in each partitioning
depends on the number of nodes, it is bounded accordingly.

We did not optimize the constant factors in our proofs for easier reading. However,
much tighter bounds are possible without having to change any of our other statements.
We can increase the grid width introduced in Section 3.3.1 to γ = δ/

√
2. As discretizing

shifts a node by at most
√
2
2
γ to the nearest grid position and since we want to retain

the same increase (1 + δ) in the sensing ranges at before, the stated value follows
by δ ≥ 2 ·

√
2
2
γ. The minimum width of a (quadratic) tile and thus the number of

partitionings as given in Section 3.3.2 is bounded below by kquad = ⌈61−ϵ
ϵ
⌉. This follows

from Equation (3.6), i.e. 1−ϵ
k
((k − 2) · 1 + 2 · 4) ≤ 1.

In addition, we can consider further partitioning patterns to improve constant factors.
For example, using a hexagonal partitioning scheme results in only khex = ⌈41−ϵ

ϵ
⌉

partitionings that have to be computed. However, each hexagonal tile covers about√
3 times more space than a quadratic tile. A rough estimation khex/kquad ·

√
3 > 1

suggests that actual runtimes are likely to increase with this pattern.

38

3.3 Approximation Algorithm

The range of parameter δ is strict only if we consider the maximum sensing range to
be normalized to (1+δ) as described above and compute solutions of problem instances
(V, 1− δ) with sensing ranges reduced by δ. The range of parameter ϵ is always strict.

3.3.4 Target Monitoring

Our approximation algorithm is designed for the problem of monitoring a complete,
arbitrary area. In [BCSZ05], Berman et al. describe how to reduce area coverage to
target coverage, and many recent studies simply refer to this work and only consider
target monitoring. We therefore show in this section how to easily adapt our general
approach to monitoring a set of discrete targets.

In principle, Algorithm 3.2 is already capable of handling this task. We only need
to switch algorithm A for another one that solves the target monitoring problem on
a small (quadratic) area with sensor nodes restricted to grid positions. However, the
time complexity of this algorithm may also depend on the number of targets. We
can resolve this problem by discretizing target positions similarly to node positions.
Multiple targets occupying the same position can be regarded as one target for the
purpose of coverage. If we discretize target positions to the same grid positions as
we did for the sensor nodes, only a constant number of O(1

δ2ϵ2
) targets remains to be

considered in each tile. Thus, the time complexity of our approximation algorithm no
longer depends on the total number of targets.

For all of our statements to remain correct, we have to double the increase in the
sensing ranges compared to the area monitoring problem, i.e. Topt⟨V, 1 + δ⟩ is replaced
by Topt⟨V, 1 + 2δ⟩ and solving (Ṽ , 1 + δ/2) becomes solving (Ṽ , 1 + δ). This is required
as now both, sensor nodes and targets, are relocated. Figure 3.3 depicts the general
idea in analogy to Figure 3.1 and Corollary 3.1 for area monitoring.

t
u

1

δ/2

(a)

t

u

1 + δ/2

δ/2

(b)

t

u

1 + δ
δ/2

(c)

Figure 3.3: A grid of width δ/2 is shown. (a) Sensor node u with sensing range
R = 1 covers target t. Both are located in arbitrary positions. (b) Target t is moved
to a grid position. The sensing range of sensor node u has to be increased by δ/2
to still cover t. (c) Sensor node u is also moved to a grid position and its sensing
range is increased by an additional δ/2 to (1 + δ). It still covers target t.

39

3 Lifetime Maximization of Monitoring Sensor Networks

3.4 Exact Algorithm

The last section demonstrated how to construct an efficient linear-time approximation
scheme for SNLP using dual relaxations. This approximation algorithm required solving
a restricted variant of the same problem as a subproblem. The time complexity of the
solver for this subproblem is virtually irrelevant as it only contributes a constant factor
to the total running time, see Equation (3.8). However, the factor f introduced into
the approximation ratio in Equation (3.7) is a possible issue. We therefore study how
to solve the subproblem to optimality.

Our focus is on the general problem, though, as being able to solve this problem
also allows us to solve the restricted subproblem. Section 3.2.2 showed that the sensor
network lifetime problem can be modelled as linear program

max {1ᵀt | Ct ≤ b, t ≥ 0} , t ∈ Rm
+ ,b ∈ Rn

+, C ∈ Zm×n
2 . (3.9)

We refer to this linear program as our master problem. This formulation implies that
the problem is solvable in polynomial time in the number of its variables m. However,
this number, i.e. the number of columns in matrix C and thus the number of possible
covers, is exponential in the number of nodes n = |V |. We have m = O(2n). Therefore,
constructing and handling the complete matrix of covers C is not an option but for the
smallest of problem instances.

We have argued before that the time complexity of our subproblem is of no concern.
However, this is only true for theoretical results. In an efficient implementation, one
wants to minimize all constant factors. Moreover, constructing the full cover matrix C
can easily become infeasible due to the required memory. To cope with these issues,
we make use of delayed column generation to iteratively construct the linear program
column by column as needed during the solution process. This concept was introduced
by Dantzig and Wolfe in [DW60]. By now, it has become a prominent method in
handling linear programs with an exponential number of variables. The approach offers
several degrees of freedom that directly impact its runtimes. We will discuss several
existing techniques for each of them in order to achieve best results.

3.4.1 Delayed Column Generation
First, we describe how to apply the delayed column generation approach in general
to solve our master problem (3.9) to optimality. The procedure is summarized by
Algorithm 3.3. For a theoretical discussion on column generation, we refer to the
original work [DW60] and a survey article by Lübbecke and Desrosiers [LD05].

We start by computing an initial set of covers that form matrix C = [c1, . . . , ck],
with ci ∈ C, 1 ≤ k ≪ m (line 1). How they are found is detailed later. We solve the
restricted master problem

max {1ᵀt | Ct ≤ b, t ≥ 0} , t ∈ Rk
+,b ∈ Rn

+,C ∈ Zk×n
2 , (3.10)

40

3.4 Exact Algorithm

to obtain a tentative solution t (line 3). The problem corresponds to our master
problem (3.9) but with much less variables, i.e. covers, to consider. After determining
the solution w of the dual problem to (3.10) in line 4, compare Section 2.3.1, we can
solve the so-called oracle problem (line 5)

max {1− cᵀw | c ∈ C} , w ∈ Rn
+, c ∈ Zn

2 . (3.11)

The problem is an integer linear program. If its solution value (1−cᵀw) is non-positive,
the tentative solution t corresponds to an optimal solution of the master problem (3.9),
and we are done (line 10). Otherwise, we add c to the restricted master problem as a
new column in cover matrix C (line 7), our tentative set of “known” covers, and repeat
the process by re-optimizing the modified problem (3.10) in line 3.

The final solution is described by a tuple, the set of durations t and the set of related
covers C. The solution value 1ᵀt denotes the lifetime Topt⟨V,R⟩ of the sensor network.

Algorithm 3.3 Column Generation Approach
Input: Battery capacities b, set of all covers C (implicitly)
Output: Set of feasible covers C, set of corresponding durations t

1: C = [c1, . . . , ck]← init_covers(C,b) ◃ determine initial covers
2: repeat
3: t← argmax {1ᵀt | Ct ≤ b, t ≥ 0} ◃ solve restricted master LP
4: w← find_dual(C, t,b) ◃ compute dual solution
5: c← argmax {1− cᵀw | c ∈ C} ◃ solve oracle ILP
6: if (1− cᵀw) > 0 then
7: C← [C, c] ◃ add cover c to set C
8: end if
9: until (1− cᵀw) ≤ 0

10: return (C, t) ◃ optimum solution found

Note that the set of all covers is given implicitly, i.e. by stating the problem geometry.

Discussion. The solution of the master problem (3.9) is uniquely defined by the
argument of the maximum t. However, when using delayed column generation, we do
not have a complete enumeration of all covers but still need to know which duration
corresponds to which cover. Therefore, a solution of the column generation approach
consists of the computed durations t as well as of the associated covers C. The set of
covers C comprises all covers that have been found by the initialization step and that
have been computed during column generation. Not all of them have to contribute to
an optimum solution, though. In this case, their respective durations are set to zero.
The solution of the column generation approach, tuple (C, t), directly corresponds to
an optimal schedule for the sensor network.

41

3 Lifetime Maximization of Monitoring Sensor Networks

The column generation approach has several degrees of freedom that have to be
assigned carefully to obtain competitive runtimes. The initialization step in line 1 is
crucial for a quick convergence to an optimum solution. We discuss possible options in
the next section. Solving the LP in line 3 is not critical, though. The problem size is
small enough so that any reasonably fast LP solver can be applied. The oracle problem
in line 5, however, requires more attention. It is easier to handle than the master
problem (3.9) as we only need an implicit description of C, which is polynomial in the
number of nodes n—recall that we can describe area coverage by at most n2 targets
[BCSZ05], with each of them coverable by at most n nodes. However, the problem still
remains an ILP. Section 3.4.3 takes a closer look at this problem. As a final degree of
freedom, we can choose when to terminate the algorithm. We can stop early after any
iteration. The tentative solution t at that point is a feasible solution for the master
problem (3.9) as it adheres to all constraints. However, the solution value, i.e. the
network lifetime T⟨V,R⟩ = 1ᵀt, is less than the optimum. We consider this degree of
freedom in Section 3.4.4.

Finally, note that unlike our approximate algorithm in the last section, the principal
approach described here supports arbitrarily shaped sensing areas for each node. The
underlying geometry is hidden in cover matrix C. It is only required when generating
covers in the initialization step and when solving the oracle problem (3.11).

3.4.2 Initialization Step

The delayed column generation approach requires an initial set of covers C ⊆ C. There
are many strategies to choose such a set, but for quick convergence, it should obviously
be close to the set of covers of an optimum solution. Another important aspect is
that every cover c ∈ C should be minimal in the number of nodes. By removing
any node v ∈ c, set c should no longer be a cover, i.e. c \ {v} /∈ C. If this is not
guaranteed, we may end up with many similar covers or, even worse, with covers that
are supersets of other covers. In algebraic terms, the columns of matrix C should be
linearly independent. This is not strictly required, but a cover that is a superset of
another cover only increases the problem size without contributing to the solution, so
this should be avoided. The same is true for covers that are a superset of the same
cover, e.g. c1 ∩ c2 = c ∈ C, even if c is not part of the current set of covers C.

We therefore minimize each cover after its computation, and before adding it to the
current set of covers C, we check for duplicates. Minimization is done with a very
simple heuristic that iterates once over all nodes in the cover and checks for each node
whether the remaining nodes still form a cover. If true, we can safely remove the node.
This process does not yield a minimum set of nodes, but a minimal one is good enough
to prevent linearly dependent columns in our cover matrix C.

Below we introduce several strategies that we study as possible initialization step
during our simulations in Section 3.6. We classify these strategies into three categories.

42

3.4 Exact Algorithm

Basic Strategies. The most basic strategy offers the full set of nodes as a single
cover to the column generation approach. This node set is obviously a cover, for
otherwise, there would not exist any cover. Publications [LGR09, RSS12, CRSV13]
apply this approach. We call it the basic strategy.

Another simple strategy, labelled random, is used e.g. in [GLZ07, GZJL11, Des11].
A fixed but adjustable number of covers is computed. For each cover, we iteratively
select nodes at random and add them to a node set until it forms a cover. After
minimizing the cover, we verify that it is not a duplicate before accepting it. Note that
this last step is not documented in the referenced previous work.

Greedy Strategies. Using the same principal approach as for the random strategy
in the last paragraph, but applying a more sophisticated greedy algorithm to find
covers, is another obvious strategy to obtain an initial set of covers. Our basic greedy
strategy, called greedy, uses the heuristic for the wMGDC problem that we introduce
in the next section. We repeatedly run this algorithm with random weights to generate
covers as suggested in [RG11]. As before, we minimize the covers and verify that we
do not add duplicates to our set of initial covers.

The greedy heuristics by Slijepcevic and Potkonjak [SP01] and Cardei et al. [CTLW05]
solve slightly different problems than SNLP with nodes restricted to one or few covers
and uniform battery capacities. However, we can still use these approaches to find
an initial set of covers for our column generation approach. In the following, we refer
to them by their first author. The Slijepcevic approach computes a maximal set of
disjoint covers. For each cover, we start by determining a critical region of the area that
we want to cover, i.e. an uncovered region that is difficult to cover by the remaining
available nodes. We cover it by greedily choosing an appropriate node that covers the
most yet uncovered regions of the whole area while introducing the least redundant
coverage. This is repeated until a cover for the whole area is found. The process is
iterated until no more covers can be computed. Alfieri et al. [ABBC07] make use of
this approach. The Cardei approach works similarly, but it is more sophisticated as
each node is allowed to contribute to a (small) fixed number of covers. Raiconi and a
group of co-authors use this method in [RG11, CdDR12, GR13].

Further Strategies. Advanced approximation schemes for SNLP can also serve as
initialization step to the column generation approach. We have to carefully balance
solution quality and runtimes, though. Otherwise, the improved speed of convergence
could be nullified by the time spent during initialization.

In this category, we focus on the approach by Garg and Könemann [GK07]. It is
a particular interesting choice. Even though a very effective heuristic, it has not yet
been applied in our context of delayed column generation. We give a full description of
the Garg-Könemann approach in Section 3.4.5 and compare its performance to the
other previously introduced initialization methods in Section 3.6.

43

3 Lifetime Maximization of Monitoring Sensor Networks

3.4.3 Oracle Problem

The oracle problem (3.11) tries to determine a new cover c ∈ C \C whose addition
would improve the solution value compared to only considering the set of covers C of
the current tentative solution. We can interpret the term (1− cᵀw) as improvement
in the solution value if cover c is added with unit duration, minus the compensation
required in the durations of the other covers to keep the solution feasible [BT97]. If
the term is non-positive for all covers c ∈ C, no further improvement can be achieved.

The oracle problem (3.11) can be rewritten as

min {cᵀw | c ∈ C} , w ∈ Rn
+, c ∈ Zn

2 .

In this representation, we see that the ILP models a weighted set cover problem for
some yet to be specified sets and computes a cover c of minimal weight. The dual
variables w of the restricted master problem (3.10) serve as node weights. The problem
corresponds to the NP-complete weighted minimum geometric disk cover problem
(wMGDC) introduced in Section 3.2.3 as we can translate area coverage to target
coverage with a polynomial number of targets [BCSZ05]. Targets represent the sets
in the set cover problem. Appendix A shows how to derive the targets from an area
coverage problem. Overall, the oracle problem is hard to solve.

Fortunately, there exist many highly optimized algorithms for this kind of problem.
We have the choice between various approximate and exact solvers. If we apply a
heuristic to compute the covers, we are not guaranteed that the solution of the column
generation approach is optimal once (1− cᵀw) ≤ 1 holds, though. To deal with this
problem, we can switch to an exact solver as soon as the heuristic does not find any
more covers as in [Des11]. The process until we switch to the exact solver can be
regarded as a sophisticated initialization step. Using an exact ILP solver from the start
obviously does not lead to this issue, however, average runtimes might be longer. In
either case, we have to guarantee that the computed cover is minimal in the number of
nodes and no duplicate of a previous cover as reasoned in the last section. Non-minimal
covers are, for example, caused by nodes with zero weight.

In the following, we describe a simple heuristic for wMGDC that we apply to solve
the oracle problem (along with an exact ILP solver) as well as a subroutine in the basic
greedy strategy and in the Garg-Könemann approach, introduced in the last section as
possible initialization steps for the column generation approach.

Solving wMGDC. Given a set of n sensor nodes, the wMGDC problem asks for a
cover of a set of points—or targets—with minimal weight with respect to some node
weights w. The problem corresponds to a weighted set cover problem as reasoned
above. Thus, we follow common solution strategies for this type of problem. Our
approach is a greedy heuristic that iteratively adds sensor nodes to a set until the
nodes in this set form a cover of the considered area, i.e. until all targets are covered.

44

3.4 Exact Algorithm

In each step, a node is chosen for which the ratio of newly covered targets to node
weight is maximized. Ties are resolved arbitrarily.

The algorithm achieves an approximation ratio of H(M), with H(x) the x-th
harmonic number and M the maximum number of nodes covering a single target. This
follows from the basic greedy solution for the weighted set cover problem [Chv79].
With at most n nodes covering a single target and the estimate H(x) ≤ 1 + log x,
we obtain an (1 + log n)-approximation in the number of sensor nodes n. Or, more
generally speaking, the wMGDC heuristic has an approximation ratio of O(log n).

The time complexity of the algorithm is in O(n3). This follows from the asymptotic
running time of the basic greedy set cover algorithm [CLRS09], which grows with the
sum of the nodes that cover each target. With at most n nodes covering each of the
O(n2) targets—recall that area coverage can be reduced to target coverage with at
most n2 targets [BCSZ05]—we observe the claimed running time.

3.4.4 Termination Condition
Each iteration of the column generation approach yields a feasible solution t for the
master problem (3.9). The solution value T⟨V,R⟩ = 1ᵀt converges to the optimum
Topt⟨V,R⟩. However, this process can be very slow as the improvements tend to become
smaller with each subsequent iteration. If we are content with a good but suboptimal
solution, we can terminate the process early.

A common termination condition, compare [GJLZ09], is to stop the algorithm as
soon as the relative improvement in the solution value stays below a certain threshold
for a given number of iterations. We usually do not want this number to be too
small, though, as the improvement does not monotonically decrease, and we would risk
stopping the algorithm too soon. The whole approach is purely heuristic in nature and
so is the choice of the threshold value and the number of iterations.

Unfortunately, the former method does not give any guarantees on the expected
solution quality. This shortcoming can be remedied if we can assess an upper bound
Tupper⟨V,R⟩ on the optimal solution value Topt⟨V,R⟩. As described in [GZJL11], we
iteratively generate new columns until 1ᵀt ≥ (1− ϵ) · Tupper⟨V,R⟩, ϵ ∈ [0, 1]. Once this
threshold is reached, we terminate the algorithm. This ensures the solution value to be
within a factor of (1− ϵ) of the optimum.

If we are more interested in guaranteed maximal runtimes instead of optimal solutions,
though, we can terminate the column generation after a fixed amount of time has
passed or a fixed number of iterations have been performed. In the final iteration, we
only solve the restricted master problem to obtain a new value for t that incorporates
the latest cover. We do not compute another cover with the ILP as it would not
contribute to the solution anymore. As an extreme variant, we can terminate the
algorithm after the first iteration. This simply takes the set of initial covers C and
optimizes their durations t according to the restricted master problem. Berman et al.
[BCSZ05] suggest this approach as a post-optimization step for their SNLP heuristic.

45

3 Lifetime Maximization of Monitoring Sensor Networks

3.4.5 Garg-Könemann Approach
The Garg-Könemann approach was introduced by its namesakes in [GK07]. It is an
approximation algorithm for packing linear programs like our master problem (3.9).
The approach computes an (1 + ϵ) · f -approximation given an f -approximate solver for
some subproblem. Its asymptotic running time is in O(1

ϵ2
n log n · T), with T the time

complexity for solving the subproblem and n the number of nodes.
Below we describe the Garg-Könemann approach adapted to our requirements.

Algorithm 3.4 summarizes this procedure. For a theoretical discussion on the general
mechanics and properties of this approach, we refer to the original work [GK07] as well
as to [DWW+12] who adapt it to a similar problem.

Algorithm 3.4 Garg-Könemann Algorithm
Input: Parameter ϵ ∈ (0, 1], battery capacities b, set of all covers C (implicitly)
Output: Set of feasible covers C, set of corresponding durations t

1: C← [], t← () ◃ initialization
2: δ ← (1 + ϵ)/ ϵ

(1 + ϵ)m, wi ← δ/bi, i ∈ {1, . . . , n}

3: while bᵀw < 1 do
4: c← argmin {cᵀw | c ∈ C} ◃ find cover of minimal weight
5: bmin ← min {bi | vi ∈ c, i ∈ {1, . . . , n}} ◃ find minimum capacity
6: C← [C, c], t← (t,bmin) ◃ add cover c with duration bmin

7: wi ← wi · (1 + ϵ · bmin/bi), vi ∈ c, i ∈ {1, . . . , n} ◃ update node weights
8: end while
9: return (C, t/ log1+ϵ

1+ϵ
δ
) ◃ scale durations

Note again that the set of all covers is given implicitly as before in Algorithm 3.3.

The algorithm starts with empty sets of covers C and associated durations t (line 1).
We initialize node weights wi = δ/bi, i ∈ {1, . . . , n} in line 2 before beginning to
iteratively compute covers. At the start of each iteration, we compute a minimal
cover c with respect to our node weights w (line 4). This is done by an algorithm A
that we discuss below. We determine the minimum battery capacity bmin of all nodes
contributing to cover c (line 5). It is added to the set of covers C with a duration
corresponding to the minimal battery capacity bmin (line 6), i.e. we activate cover c for
as long as possible. At the end of each iteration, we increase the weights of all nodes
in c by a fraction of ϵ relative to their usage (line 7). We repeat the process until
bᵀw ≥ 1 holds (line 3). To obtain a feasible solution, we have to scale the durations
t by a factor of log1+ϵ

1+ϵ
δ

to satisfy all constraints (line 9), i.e. nodes can be used in
multiple covers and thus possibly longer than their battery capacities allow.

The solution is described by a tuple, the set of covers C and the set of corresponding
durations t. It provides an (1 + ϵ) · f -approximation for linear program (3.9), i.e. for
the sensor network lifetime problem.

46

3.4 Exact Algorithm

Discussion. The approach by Garg and Könemann is a primal-dual method as
introduced in Section 2.3.1 that exploits the duality of linear programs to more
efficiently compute (approximate) solutions for several types of problems. The dual to
our master problem (3.9) is of the form

min {bᵀw | Cᵀw ≥ 1, w ≥ 0} , w ∈ Rn
+,b ∈ Rn

+, C ∈ Zm×n
2 ,

with the dual variables corresponding to our node weights w. Algorithm 3.4 iteratively
constructs primal and dual solutions t, w at the same time.

The Garg-Könemann approach yields a feasible but suboptimal schedule (C, t) for
SNLP. When using the algorithm as part of our column generation approach, we
only require the set of covers C and can skip computing the corresponding durations
t. However, we have to take them into account if we want to compare the solution
qualities of the various initialization steps to each other and to the exact approach.

The problem solved by algorithm A corresponds to the oracle problem (3.11) in the
column generation approach. Therefore, we can apply the same principal approaches
as discussed in Section 3.4.3. We propose to use the previously introduced greedy
heuristic for wGDMC with its O(log n)-approximation guarantee and a worst-case
cubic running time. For the oracle problem, we further suggested applying an exact
ILP solver. In this context, however, the ILP would be too expensive as we only want
to generate some initial covers and do not require optimality.

Similar to what we described in Section 3.4.4 for Algorithm 3.3, we can terminate the
Garg-Könemann approach early and use the tentative set of covers C to initialize our
column generation approach. We did not consider this direction more closely, though,
as the time spent in the initialization step is not particularly critical.

3.4.6 Full Method

After having discussed the column generation approach and its various degrees of
freedom in the previous sections, we can now combine everything into one algorithm.
In the following, we describe our proposed approach for solving the sensor network
lifetime problem to optimality.

Our method applies delayed column generation as described in Algorithm 3.3 as
its foundation. We use the Garg-Könemann approach of the last section to compute
initial covers. Its subproblem is solved by the greedy wMGDC heuristic introduced
in Section 3.4.3. Both, the restricted master problem (3.10) and the oracle problem
(3.11), are solved with exact solvers. We do not apply any early termination condition
as we are looking for exact solutions.

This combination of techniques has not been studied before in the related literature.
The results of our simulations in Section 3.6 show that, in particular, the union of a
delayed column generation with the Garg-Könemann approach for initialization is a
very powerful technique for solving our considered problem.

47

3 Lifetime Maximization of Monitoring Sensor Networks

3.5 Optimizing State Changes

In the previous sections, we assumed that the costs for node state changes are propor-
tional to the monitoring costs and that we can incorporate them implicitly through
effective monitoring costs. We now drop this assumption and consider changes in the
state of a node, i.e. switching from an active state to sleeping, or vice versa, to consume
a substantial amount of energy. There exists a large body of work that does not take
into account this source of battery drain explicitly, including our own algorithms in the
previous sections. We therefore opt for a post-processing strategy that can be applied
after any of these algorithms have computed their results. Our strategy only requires a
set of independent covers that can be activated in an arbitrary order.

We present an optimization algorithm that orders a set of covers of an area so that
the number of state changes and thus the induced energy drain is minimized. As our
approach reduces the problem to an instance of the traveling salesperson problem, we
first give a short recapitulation of this well-known optimization problem before going
into the details of our algorithm.

3.5.1 Traveling Salesperson Problem

The traveling salesperson problem (also traveling salesman problem) is a classic problem
in optimization theory. It goes back to the 1800s and was first mathematically formalized
by Menger in [Men31]. We summarize the general problem in Definition 3.6.

Definition 3.6 (Traveling Salesperson Problem—TSP). Given a complete graph G =
(V,E) with an edge cost function c : E →→ R+, compute a path of minimal length that
visits all nodes exactly once and then returns to the starting node. Such a full cycle
over all nodes is called a tour.

The problem is NP-complete [Kar72] and in general hard to approximate within a
constant factor of the optimum [SG76]. However, when we consider the special case
of metric TSP, we can find constant factor approximations, e.g. Christofides gives
a 1.5-approximation in [Chr76]. A metric TSP assumes edge costs to be symmetric
and adhere to the triangle inequality, i.e. c(u, v) + c(v, w) ≥ c(u,w),∀u, v, w ∈ V .
Today, heuristics without approximation guarantees outperform most approximation
algorithms in practice. For example, the local search heuristic by Lin and Kerningham
in [LK73] is still one of the best methods for approximating metric TSP. An efficient
implementation is provided by Helsgaun1, free for academic use.

An extensive overview on the history and the theory of the traveling salesperson
problem can be found in the textbook by Applegate et al. [ABCC07].

1http://www.akira.ruc.dk/~keld/research/LKH/. Accessed: 2014-08-06.

48

http://www.akira.ruc.dk/~keld/research/LKH/

3.5 Optimizing State Changes

3.5.2 Minimizing Node State Changes

We formalize our optimization problem, minimum node state changes (MNSC), in
Definition 3.7. In order to solve this problem, we show how to translate an instance
of MNSC to an instance of metric TSP. Given this transformation, we can apply any
(approximate) solver for the traveling salesperson problem to find a solution of our
MNSC instance. The resulting tour corresponds to an (almost) optimal order of our
covers with respect to the battery drain due to node state changes.

Note that this technique is not tailored towards our SNLP problem. It can be used
to optimize the order of any set of covers that can be activated in an arbitrary order.

Definition 3.7 (Minimum Node State Changes—MNSC). Given a set of covers
C = {c1, . . . , cm}, find an order that requires a minimal amount of state changes
between covers, i.e. switches from an active to a sleeping state, and vice versa. All
nodes start and end in an inactive state.

The number of state changes is proportional to the amount of energy required by
these operations. It is therefore sufficient to consider only this number when minimizing
the energy consumption due to state changes. One could argue that activating a node
requires more energy than switching it off. However, as we start and end with all nodes
in an inactive state, each node performs an equal amount of state changes in either
direction. Thus, we can amortize energy costs over both types of operations.

Problem Translation. We now describe how to translate an instance of the MNSC
problem to an instance of metric TSP. Consider the set of covers C, i.e. an instance
of MNSC. Each cover c ∈ C corresponds to a (graph) node vc in node set V . In
addition, the empty set 0 = {}, i.e. all sensor nodes being inactive, is added to V as
v0. It serves as the starting and ending node of our TSP tour. Node set V induces
the complete graph G = (V,E). Edge costs are defined as c(vc, vc′) = |c \ c′|+ |c′ \ c|,
with (vc, vc′) ∈ E. This corresponds to the number of state changes required to switch
from cover c to c′, i.e. the number of nodes only active in cover c that have to be
switched off going to c′, plus the number of nodes only active in cover c′ that have to
be switched on coming from c. The edge costs are obviously symmetric. They also
satisfy the triangle inequality since the relative complement of sets with respect to set
cardinality does too, i.e. |A \B|+ |B \ C| ≥ |A \ C| for some sets A,B,C. This can
be easily reasoned, for instance by using Venn diagrams. Thus, we have constructed a
complete graph G = (V,E) with metric edge costs c from our instance C of MNSC
that can be used as an instance of metric TSP.

The length of a path ⟨vc1 , . . . , vck⟩ corresponds to the number of state changes that
have to performed, switching between covers c1, . . . , ck in this order. Thus, a shortest
path describes an order with a minimal number of state changes, and a TSP tour
starting at v0, i.e. with all sensor nodes inactive, gives an optimal order of all covers.

49

3 Lifetime Maximization of Monitoring Sensor Networks

3.6 Simulations

We conclude with extensive simulations of our exact algorithm for solving SNLP. The
performance of this approach is evaluated with respect to the previously discussed
degrees of freedom. All simulations were performed on one core of Machine A.

3.6.1 Simulational Setup

Network Setting. We generate the topologies of our simulated sensor networks by
iteratively placing nodes on a squared area following one of the distribution strategies
in Section 3.2.1, random placement, grid placement, or perturbed grid placement. The
size of the area is chosen to match the desired number n and average density davg of
nodes, i.e. we set its edge length to

n/davg. Grid positions are spaced 0.5 apart,

and perturbation allows for a deviation of 0.25 from these positions. Nodes have a
maximum sensing range of (1 + ρ), with ρ taken uniformly at random from [0, R]. R is
called variation in the sensing range. Battery capacities are uniformly set to 1. Nodes
in the same location are merged and their battery capacities are added up.

We consider multiple distinct network settings in our simulations. Each setting is
defined by the node distribution strategy, the number of nodes, the node density, and
the variation in the sensing range. Our default setting uses random placement, n = 300
nodes with an average density davg = 2.5, and a fixed sensing range, i.e. R = 0.

Measurement Procedure. We evaluate each of our network settings 100 times with
different random seeds and a hard runtime limit of three hours. Our quantitative
analysis states mean values for all measurements. For each setting, we present the
required runtime, the relative error (1 − T/Topt) of the solution T to the maximum
lifetime Topt where applicable, the number of covers in the solution, and the number of
iterations required by the column generation approach.

Before computing an activation schedule, though, we have to define the area A that
has to be monitored by the considered sensor network instance. We cannot simply take
the whole area that is covered by the sensor nodes as there are sparsely covered regions
on the fringes of this area. If we were to include them in area A, the maximum lifetime
of the network would be (severely) limited by the minimum number of nodes covering
any of them. To make a reasonable choice for area A, we partition the area covered by
the union of all nodes into smaller, not necessarily connected regions, called entities.
Each entity is covered by a unique set of sensor nodes. We define area A to consist of
all entities covered by at least ⌈covavg/2⌉ nodes, with covavg the average coverage over
all entities. The entities also correspond to targets when converting from area coverage
to target coverage [BCSZ05]. Appendix A details how to compute these entities and
lists the number of considered entities, the average coverage over all entities, and the
connectivity of the considered areas for each network setting in Table A.1.

50

3.6 Simulations

Considered Approaches. We take the general column generation approach intro-
duced in Section 3.4.1 as a basis and consider the different techniques for its various
degrees of freedom that we introduced in the previous sections.

For the initialization step, we consider the six strategies described in Section 3.4.2.
We provide our own implementations for all strategies according to the respective
publication where applicable. As there are no recommended parameter settings, we use
the following ones: Both, the random and the greedy strategy, generate 1 000 distinct
covers. The Slijepcevic approach uses four minor scaling variables. We introduce them
here to make our results reproducible. Using the same notation as in [SP01], we set
K = 1, L = 1, M = | {Vj ∈ V | ei ∈ Vj} |, and N = | {Vj ∈ C \ Ci | ei ∈ Vj} |. The
Cardei approach does not define how to choose a critical entity or how to select a node
to cover it. We specify that an entity is critical if it is covered by the least amount of
sensor nodes with respect to their remaining energy. The chosen node has to cover the
most yet uncovered entities. The remaining energy of the node serves as a tie-breaker.
Moreover, each use of a sensor node is set to consume 10% of its battery capacity.
The Garg-Könemann approach is applied with ϵ = 0.1 and the wMGC heuristic for
solving its subproblem. In a separate study, we consider different values for the error
parameter ϵ as well as using an exact solver for the subproblem.

For the oracle problem (3.11), we compare three different solution strategies: Only
using a greedy heuristic, using the greedy heuristic followed by an exact solver once the
greedy approach does not yield any more covers, and only applying the exact solver.
We use our greedy wMGDC heuristic in the first two cases.

For the termination condition, we consider three strategies: Only performing the
initialization step, performing exactly one iteration of the column generation approach,
and generating columns until the approach finishes normally. We may abbreviate
column generation by CG in our tabular results. In a separate study, we consider
terminating the algorithm once the improvements in the solution quality become too
small. We apply the parameter settings of [GJLZ09], requiring 10 successive iterations
with a relative improvement below 1% and 10%, respectively.

3.6.2 Comparison to Previous Work
First, we evaluate our method for solving SNLP with respect to the previous work
before studying its performance for different network settings in the next section. We
cannot compare ourselves directly to most of the previous work, though, as they often
study (slightly) varied problem settings, e.g. allowing variable sensing ranges or taking
into account communication costs. However, we can consider the basic techniques used
in these publications to solve their respective LPs. They are general techniques for
the various degrees of freedom of the column generation approach as detailed in the
last sections. We compare them to each other and to our choices for these degrees of
freedom under the default network setting of Section 3.6.1. Tabulated results list our
choices in the last row with best runtimes and error ratios marked in bold.

51

3 Lifetime Maximization of Monitoring Sensor Networks

Initialization Step. In a first series of simulations, we consider multiple options for
the initialization step of the column generation approach. Table 3.1 summarizes our
findings. We list the results of the initialization step and show how they impact a
subsequent column generation approach. Note that performing only one iteration of
column generation corresponds to computing optimal durations for the covers found
by the initialization step. The runtimes given for the column generation approach do
not include the time spent in the initialization step.

Table 3.1: Results of the column generation approach for solving SNLP with
different methods for computing initial covers. The basic (b), random (rnd), and
greedy (gr) strategies as well as the Slijepcevic (sp), Cardei (c), and Garg-Könemann
(gk) approaches are considered.

Initialization CG (1 iter.) Full CG
time error covers time error covers time covers iter.

strategy [s] [%] [#] [s] [%] [#] [s] [#] [#]

b 0.0 70.9 1 0.4 70.9 1 90.4 170 793
rnd 0.2 – 1 000 0.5 38.4 59 124.0 172 461
gr 0.6 – 1 000 0.8 13.1 115 95.5 169 307
sp 0.0 44.8 2 0.4 44.8 2 89.9 171 768
c 0.4 34.0 23 0.4 32.9 20 79.4 169 640

gk 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25

Focusing on the results of the initialization step for the moment, we see that our
proposed method, applying the Garg-Könemann approach, requires the largest amount
of time and generates the most covers. However, its approximate solutions come much
closer to the optimum solution values at an average error of about 12% than any of
the other approaches. The random and greedy strategies only generate covers and
do not provide an initial solution. We therefore do not give an error value for them.
The same is true for the basic strategy, but as it consists of only one cover, we can
simply activate this cover for as long as possible to obtain a solution value that we can
compare to the optimum. The Slijepcevic approach only generates two covers as it is
looking for disjoint covers. The low number of covers in the Cardei approach is due to
it allowing each node to be part of at most 10 covers by setting the duration of a cover
to 10% of the maximum battery capacity.

When considering the middle columns of Table 3.1, we can assess the potential of
the various initialization methods, i.e. how many of the covers required by an optimal
solution they are able to find. Most notably, the covers computed by the greedy
strategy allow for solutions that are just 13% worse than optimal on average. Only the
Garg-Könemann approach that is used by our solver fares better. In 57% of all cases,
the set of covers provided by this approach already contains all covers of an optimum
solution. Thus, the column generation can stop after only one iteration.

52

3.6 Simulations

These observations can only be transferred partially to a full run of the column gen-
eration approach, though. We see clearly that our runtimes with the Garg-Könemann
approach are the lowest by a wide margin. On average, we only need 25 iterations to
find all additional covers required for an optimal solution. We have 5 outliers with more
than 100 iterations, though. On the other hand, when using any other initialization
method, we need several hundred iterations on average! This implies that the initial
set of covers provided by them was not very good—a conclusion we already drew from
the results after one iteration. The other initialization methods perform about equally
poor, with the Cardei approach being slightly better and the random strategy being
slightly worse. In particular the greedy strategy that gave quite good results after the
first iteration could not confirm its performance in the long run. Finally, we observe an
interesting fact when considering the number of covers in the optimal solutions. When
using the Garg-Könemann approach to compute an initial set of covers, the optimal
solution has slightly more covers than for the other initialization methods. This implies
that our approach found a different optimal solution than the other approaches.

Overall, it is evident that our choice of using the Garg-Könemann approach provides
the best results. Simply generating a lot of covers as in the random and greedy strategies
is not enough, they have to be diverse, too. It is surprising that the combination of the
Garg-Könemann approach and column generation has not been considered before, even
more so as the former is frequently used for monitoring problems on sensor networks.

Oracle Problem. Next, we consider using a heuristic instead of an exact algorithm
for solving the oracle problem (3.11) during column generation as often suggested in
the previous work. Since this does not yield optimal solutions, one may switch to an
exact algorithm once the heuristic does not provide any more covers. Table 3.2 gives
results for both variants as well as for using an exact solver from the start. We consider
all previously studied initialization methods once more since one of them might fare
better in combination with the heuristic.

Table 3.2: Results of the column generation approach with different methods for
solving the oracle problem. Using a greedy heuristic alone and in combination with
an exact solver is considered as well as only using an exact solver.

heuristic heur. + exact exact
time error covers iter. time covers iter. time covers iter.

strategy [s] [%] [#] [#] [s] [#] [#] [s] [#] [#]

b 29.2 5.5 157 696 89.3 170 907 90.4 170 793
rnd 42.2 5.4 158 331 126.3 171 564 124.0 172 461
gr 20.6 6.0 154 161 103.7 171 398 95.5 169 307
sp 29.2 5.4 157 687 90.8 169 898 89.9 171 768
c 23.9 5.4 155 585 82.2 169 797 79.4 169 640

gk 1.6 0.6 181 1 20.1 180 26 20.2 181 25

53

3 Lifetime Maximization of Monitoring Sensor Networks

We observe that only applying the wMGDC heuristic for solving the oracle problem
already yields good results with a small error. The results improve by a large amount
compared to only optimizing the durations of the initial covers (see Table 3.1). This is
true for all initialization methods but for the Garg-Könemann approach. The sets of
covers it provides are often close to optimal so that the greedy heuristic cannot find
any more covers during column generation. Among the other initialization methods,
the greedy strategy fares best in terms of runtimes and required iterations, though,
the error of its solutions is marginally higher than for the other methods. The random
strategy fares worst, requiring even more time than the basic strategy, even though
its average number of iterations is very high. This is due to the column generation
approach starting with many more covers (1 000) than for any of the other initialization
methods except for the greedy one.

Comparing the results when applying the heuristic followed by the exact solver to
only applying the exact solver, we find them to be almost identical. Sometimes the
former is better, sometimes the latter. This suggests that most of the work is done by
the exact solver for the oracle problem. The heuristic discovers the “easy” covers, while
the exact solver has to generate the remaining covers that are required for an optimal
solution. Considering the number of iterations, we see that applying the exact solver
after the heuristic adds roughly 200 iterations. Using the exact solver from the start
results in less overall iterations, but each one requires more time on average yielding
roughly the same total runtimes.

Concluding, we can state that applying a heuristic before switching to an exact
solver does not pay off. This observation holds true for other network settings as the
results in Table A.2 and Table A.3 show for the Garg-Könemann approach. Therefore,
we opt not to add unnecessary complexity to our method and only use an exact solver
for the oracle problem during column generation.

Termination Condition. As we are only interested in optimal results or at least in
results with an approximation guarantee, most of the termination conditions proposed in
the previous work are not suited for us. Moreover, the only one giving an approximation
guarantee requires us to compute good upper bounds on the optimal lifetime. For the
sake of completeness, though, we consider terminating the column generation early if
the relative improvement in the solution quality stays below a threshold value ∆ for 10
iterations. The results are listed in Table 3.3 with ∆ = 0 indicating early termination.
We further state results for the initialization step and after one iteration for reference.
Note that they do not change with ∆ as there is always at least one iteration.

We see directly that the number of iterations is much lower when using this early
termination condition and, consequently, so is the required amount of time. The
difference in the computed network lifetime to the optimum is very small, which is
good news. However, we cannot guarantee these near optimal results. Moreover, the
presented numbers have to be taken with a grain of salt as only 23% of the studied

54

3.6 Simulations

problem instances require more than 10 iterations. Thus, the termination condition
only affects a fraction of all instances. In the other cases, it is simply not necessary.
We give further results in Table A.5 and Table A.6, though, to support our findings.

Table 3.3: Results of the column generation approach when terminating early. The
algorithm is stopped if the relative improvement stays below ∆ for 10 iterations.

Initialization CG (1 iter.) Full CG
∆ time error covers time error covers time error covers iter.
[%] [s] [%] [#] [s] [%] [#] [s] [%] [#] [#]

10.0 1.5 12.1 1 839 2.0 0.6 181 5.6 0.2 182 4
1.0 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5
0.1 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5

0.0 1.5 12.1 1 839 2.0 0.6 181 20.2 0.0 181 25

In summary, we can say that this termination condition is effective in reducing the
runtime of our method while retaining good results. We have to keep in mind, though,
that there is no guarantee for near optimal results. Moreover, we cannot get arbitrarily
close to an optimum solution by simply decreasing ∆ since the relative improvement
does not monotonically decrease in each iteration, compare the results for ∆ = 1% and
0.1%. Increasing the required number of iterations with small improvements should
have a greater impact. Our choice of 10 iterations is arbitrary, but as the total number
of iterations varies strongly, there is little potential for a general optimization.

Garg-Könemann Approach. As we have seen, the Garg-Könemann approach plays
an important part in the quick convergence to an optimum solution. It offers several
degrees of freedom of its own, which we study next. We consider switching to an exact
solver for its subproblem and varying its error parameter ϵ. Table 3.4 lists our findings.

Table 3.4: Results of the column generation approach with different settings for
the Garg-Könemann approach. Different values for error parameter ϵ are studied
as well as using an exact solver for the subproblem of this approach.

Initialization CG (1 iter.) Full CG
ϵ time error covers time error covers time covers iter.

solver [1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

exact 0.10 63.2 22.7 649 0.5 10.6 85 46.3 161 194

he
ur

is
ti

c 0.02 66.9 6.4 46 536 16.7 0.1 216 35.2 215 6
0.50 0.1 48.4 54 0.4 9.3 49 68.3 167 482
0.90 0.0 88.4 4 0.4 38.3 3 87.5 169 726

0.10 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25

55

3 Lifetime Maximization of Monitoring Sensor Networks

First, we consider varying the error parameter ϵ. When decreasing its value from
the default value, ϵ = 0.1, we see that the solutions of the Garg-Könemann are getting
closer to being optimal but at the cost of a significantly increased runtime. The
number of computed covers increases, too. Both changes impact the subsequent column
generation approach. The number of required iterations decreases, but as each iteration
requires more time due to the larger amount of covers, the total runtime increases, too.
In the other direction, increasing ϵ, we see a quicker termination of the Garg-Könemann
approach that yields a smaller set of covers and, as expected, a larger error. The time
saved during the initialization step does not pay off during the column generation
approach, though, as runtimes and, in particular, the numbers of required iterations
increase by a large amount. However, the time spent in each iteration decreases as
there are less covers to consider initially. Results for additional values of ϵ are listed in
Table A.4. Note that when using ϵ = 1.0, the Garg-Könemann approach terminates
immediately without computing any cover.

Next, we study the effects of replacing the heuristic solver for the subproblem of the
Garg-Könemann approach by an exact one. It is evident that the runtimes increase by
a significant amount. However, the solution quality of the Garg-Könemann approach
does not improve by using the exact solver. We are provided with less covers on
average, and the error ratio even increases by a fair amount. This is a side effect of the
interplay between the termination condition of the Garg-Könemann approach and the
solutions provided by the exact solver that we do not fully understand. Focusing on the
rightmost columns of Table 3.4, we see the poor solution quality after the initialization
step reflected in the results of the column generation approach. It requires much more
iterations and thus longer to find an optimal solution. However, whereas the number
of iterations increases by a factor of 8, the runtime only doubles. This is again due to
the smaller number of covers the column generation approach has to deal with initially.
We only briefly considered different values of ϵ as even for the default setting ϵ = 0.1
both, the runtime and the solution quality, are worse than when applying the heuristic.
We did not expect better results as changing ϵ should only improve one of these values
while deteriorating the other. Our trial studies support this assumption to be correct.

In a final study, we consider to restrict the number of iterations in the Garg-Könemann
approach, i.e. setting a limit on the number of covers it computes. This could prove to
be beneficial as the column generation approach would have to process less covers. As
shown e.g. in Table 3.1, the number of covers in an optimal solution is much less than
the amount the Garg-Könemann approach computes. However, we are not guaranteed
that the covers needed for an optimal solution are found early on. Table 3.5 shows the
results of our studies. We see that the time spent in the initialization step scales almost
linearly with the number of iterations apart from a small overhead. However, even by
limiting their number only slightly, the errors grow drastically. More importantly, the
column generation approach does not profit from the reduced number of input covers.
In fact, its runtimes increase by a large amount, much more than the time saved during
the initialization step. We conclude that the covers that become useful during the

56

3.6 Simulations

column generation process are generated over the whole course of the Garg-Könemann
approach. They are, in particular, not all already found in the earlier iterations.

Table 3.5: Results of the column generation approach with the number of iterations
of the Garg-Könemann approach and thus the number of returned covers restricted.

Initialization CG (1 iter.) Full CG
gk iter. time error covers time error covers time covers iter.

[#] [s] [%] [#] [s] [%] [#] [s] [#] [#]

10 0.0 99.5 10 0.4 38.6 9 82.7 168 672
100 0.1 95.2 100 0.4 7.6 74 56.4 164 357

1 000 0.8 52.2 1 000 1.2 1.0 166 23.4 169 40

∞0 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25

In summary, we have learned two things. The better the solution quality after
the initialization step becomes, the less iterations of column generation are required,
and the more covers are handed to the column generation approach, the longer each
iteration takes. However, these two findings are linked as the better the solution quality
of the Garg-Könemann approach becomes, the more covers it generates. Thus, we have
to balance both aspects for a short runtime of our complete algorithm. Overall, we
can say that our default choices for the Garg-Könemann approach, using a heuristic to
solve its inner subproblem, setting the error ratio to ϵ = 0.1, and not stopping early,
yield the best results for our setting.

Minimizing Covers. The minimization of covers before adding them to our set of
known covers seems to be a minor optimization. However, as we have already reasoned
in Section 3.4.2, it is actually very important for the performance of our approach,
and the results in Table 3.6 clearly support this claim. We see that by not minimizing
covers during the Garg-Könemann approach, the initialization step terminates earlier
with a smaller number of computed covers. However, the gap of its solution quality to
the optimal lifetime becomes larger, and thus the quality of the initial set of covers
handed to the column generation approach gets worse. In turn, the column generation
approach requires almost four times as long to finish. Judging from the much higher
number of iterations, we spend a lot of time searching for new covers required by an
optimal solution. If we do not minimize the covers found by the oracle problem (3.11)
when generating columns, the average runtime increases by an even larger amount,
by a factor of 11. The number of iterations also increases but not as much as before.
The initialization step provides a suitable subset of the covers needed for an optimal
solution. However, the total number of covers in the solution increases. This implies
that the solution consists of several covers that are a superset of other covers. They
could be removed while retaining the smaller covers and increasing their durations

57

3 Lifetime Maximization of Monitoring Sensor Networks

appropriately. When not minimizing covers in either case, both effects multiply and our
runtimes become more than 40 times higher. Similar effects are seen for the number of
iterations and the number of covers in the optimal solutions.

Table 3.6: Results for not minimizing covers during the Garg-Könemann approach
(gk), during the column generation approach (cg), and during both (both) steps are
shown next to the normal (norm) results when always minimizing covers.

Initialization CG (1 iter.) Full CG
covers not time error covers time error covers time covers iter.
minimal in [s] [%] [#] [s] [%] [#] [s] [#] [#]

gk 1.0 16.2 1 753 3.6 4.3 241 76.9 182 120
cg 1.5 12.1 1 839 2.0 0.6 181 235.8 203 85
both 1.1 16.2 1 753 3.6 4.3 241 835.7 260 509

norm 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25

The reason for the observed huge increase in runtimes has already been described
in Section 3.4.2. In short, our LP and ILP solvers have to deal with a large number
of very similar covers that essentially provide the same benefit in an optimal solution.
We conclude that it is vital to minimize covers to obtain reasonable runtimes.

Further Techniques. The attentive reader might wonder about the techniques in
the related work section that we did not cover in our comparison, e.g. the genetic
approach in [RSS12] or the complete enumeration strategy in [LGR09]. We cannot
reimplement and evaluate all of them, but we can give some general reasonings to
argue that our method fares better than them.

First, we are able to consider much more entities, i.e. targets, than any of the previous
work. Whereas their test instances usually stay well below 1 000 targets, we handle
one to two orders of magnitude more entities (see Table A.1). This is significant since
the running time of our approach grows linearly with the number of entities—compare
the time complexity of the wMGDC heuristic in Section 3.5 and consider the time
required to check whether a set of nodes forms a cover. The same holds true for the
considered number of nodes, though to a lesser extent. However, their impact on the
time complexity is more significant. Second, one of our main results is that the Garg-
Könemann approach is a potent source of an initial set of covers. Another one is that all
covers should be minimized. These results can be combined with the other techniques
that we did not study in detail. For example, the genetic approach in [RSS12] requires
an initial population of covers. This can be provided by the Garg-Könemann approach,
and newly generated covers can be minimized before adding them to the population.
Finally, we have to see whether the proposed techniques are even suited for general
problem instances. For example, the complete enumeration approach [LGR09] is only

58

3.6 Simulations

competitive if the problem instance is not too regular and the enumeration process can
prune a large fraction of the considered covers. However, the uniform sensing ranges
already render our problem too regular so that this technique cannot be successfully
applied to our network setting.

We conclude this section by stating that our combination of well-known techniques
is better suited for solving the sensor network lifetime problem to optimality than any
previously proposed technique. The combination of a column generation approach
with the Garg-Könemann approach for initialization and the minimization of covers
lets us compute optimum monitoring schedules faster than ever before.

3.6.3 Network Settings
In the last section, we studied multiple techniques for the various degrees of freedom of
the column generation approach for solving SNLP. We found that our novel combination
of well-known techniques clearly outperformed previous approaches. This section now
only considers our method, i.e. delayed column generation with the Garg-Könemann
approach during initialization, and studies its performance for various other network
settings than the default one specified in Section 3.6.1. We briefly considered the other
strategies for the initialization step to see whether their relative performance compared
to using the Garg-Könemann approach changes for different network settings. A small
trial study suggests that this is not the case. We therefore do not include them in our
subsequent studies. As before, we list results for the initialization step, after one round
of column generation, and after the full algorithm.

Network Size. In a first study, we vary the network size between 100 and 1 000 nodes
to assess the scalability of our method. Table 3.7 provides the respective results. The
values for 1 000 nodes have to be considered separately, though, as we reached our hard
time limit of three hours for this network setting. In 38% of the respective problem
instances, we had to stop before finding an optimal solution. The starred numbers in
Table 3.7 represent results that depend on values for which this occurred.

Our simulations show a steep increase in the runtimes for larger sensor networks.
The values for the initialization step and after performing the column generation
once suggest a polynomial growth in the number of nodes. This is actually expected
behavior. Recall that performing only one iteration of the column generation approach
corresponds to solving an LP that can be solved in polynomial time. Likewise, the
Garg-Könemann approach and the wMGDC heuristic used during initialization have a
polynomial time complexity. The runtimes of the full algorithm grow exponentially,
though. This is also expected behavior as our main problem is NP-hard. Interestingly,
the maximum lifetime remains roughly constant over all network sizes. This seems
obvious at first glance as the average coverage remains about the same over all network
sizes. However, with a growing number of entities to cover (see Table A.1 for both
properties), one would expect that it becomes more likely for one of these entities to

59

3 Lifetime Maximization of Monitoring Sensor Networks

be less conveniently covered, leading to a shorter maximum lifetime. This effect is
eclipsed by other factors, though, as the maximum lifetimes are always around 70%
of what is theoretically possible based on the (required) minimal coverage for each
entity. Even with the maximum lifetimes remaining roughly constant, we see that the
number of covers required by the optimal solutions increases with the network size.
This is most likely due to our approach not enforcing a minimal number of covers in an
optimal solution. As larger problem instances offer a larger amount of possible covers,
it is more likely that there exist multiple optimal solutions with different numbers of
required covers. Now, considering only the initialization step, we see that its solution
quality decreases for larger network sizes. This is not surprising as the approximation
ratio of our wMGDC solver depends on the number of sensor nodes. The number of
required covers also increases with the network size due to the same reasons as for the
full algorithm.

Overall, we observe an expected strong dependence of the runtime of our algorithm
on the network size. We conclude that our exact approach is capable of handling
medium-sized network instances well, but for larger networks one would have to switch
to other methods, e.g. to our approximation algorithm. The number of entities to cover
is very high in our area coverage setting, though, much higher than the number of
nodes (see Table A.1). We expect much shorter runtimes if our method is applied to
target coverage settings as there are usually far less targets than sensor nodes.

Table 3.7: Results of our approach when varying the number of nodes between
100 and 1 000 are listed. Starred numbers have to be considered separately as they
depend on values for which we reached our hard time limit of three hours.

Initialization CG (1 iter.) Full CG
nodes time error covers time error covers time covers iter.
[#] [s] [%] [#] [s] [%] [#] [s] [#] [#]

100 0.2 11.6 1 397 0.1 0.4 65 1.7 61 14
300 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25
500 3.7 12.5 1 999 7.1 1.6 265 232.4 284 91

1 000 13.6 12.7* 2 204 28.2 2.8* 412 6 553.0* 527* 561*

Network Density. Next, we keep the number of nodes fixed at 300 and change the
node density between 1.0 and 10.0 nodes per unit square. The first thing to notice from
our results in Table 3.8 is that the runtimes increase with the node density. Thus, our
problem instances become more difficult to solve. Table A.1 tells us that the number
of entities we have to consider grows similarly as when varying the number of nodes.
The resulting problem instances remain more manageable, though, as the maximal
number of covers stays constant. This is reflected in the shorter runtimes compared to
the results given in the last paragraph. We further see the number of iterations of the
column generation approach as well as the number of covers in the optimal solutions

60

3.6 Simulations

increasing with higher node densities. This is due to an increase in the total lifetime of
the sensor network as every point in the monitored area A is covered by more sensor
nodes on average. Considering the initialization step, we see that the Garg-Könemann
approach yields much more covers with each increase in node density while the error
ratios also become much larger. This is probably due to the approach not being able
to remove previously computed covers nor to alter their duration. When the algorithm
computes a new cover and assigns it with a shorter than the optimal duration, it will
most likely compute another similar cover later on to fill this gap. This may happen
recursively and leads to a large amount of similar covers with decreasing durations. It
could have been prevented if the initial cover would have been assigned the optimal
duration. Our assumption is supported by the results after the first iteration of the
column generation approach. Recall that we only optimize the durations of the covers
provided by the Garg-Könemann approach in this case. The number of covers used in
the solution decreases drastically, and the error ratio is reduced back to normal levels
as encountered e.g. in the last paragraph.

Overall, we see that an increasing node density makes the sensor network lifetime
problem more difficult to be solved. It remains more manageable as when increasing the
number of sensor nodes n, though, as this number directly impacts on an exponentially
growing quantity, the maximal number of covers (2n). The increasing node density
leads to a more complex geometry and thus to a larger number of entities. However,
this quantity only grows polynomially as it is bounded by O(n2), see [BCSZ05].

Table 3.8: Results of our approach when varying the node density between 1.0 and
10.0 nodes per unit square are listed.

Initialization CG (1 iter.) Full CG
density time error covers time error covers time covers iter.
[#/1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

1.0 0.7 9.1 1 015 0.5 0.0 137 6.3 136 40
2.5 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25
5.0 4.5 16.2 3 285 5.4 2.0 216 86.7 217 73
10.0 18.2 22.6 6 110 12.5 5.4 236 490.5 243 236

Node Distribution. So far, we have only considered random node placement. We
now take a look at how (perturbed) grid placement impacts on our algorithm. The
respective results are listed in Table 3.9. It is evident that the more regular network
settings are much more difficult to solve with our method. Though, they do not become
more complicated with respect to the number of nodes or the number of entities to
cover (compare Table A.1). Considering the results for performing one iteration of the
column generation approach, i.e. for solving the LP once, we also see that the runtimes
do not deviate much between each network setting. However, the total number of
iterations increases steeply when we switch to more regular node distributions. A more

61

3 Lifetime Maximization of Monitoring Sensor Networks

regular problem instance exhibits more inherent symmetry and thus more redundant
covers that have to be considered. The column generation approach has to work
through a lot of redundant covers before finding the few distinct covers that are needed
for an optimal solution. When using perturbed grid placement, the problem appears
to be more difficult to solve as when using the normal grid placement strategy, even
though the latter yields a more regular problem structure. This is probably due to
the problem instances that use this placement strategy requiring far less covers for
an optimal solution. Thus, our method has to search less. It seems that the issue
of many redundant covers is alleviated for completely regular problems due to the
optimal solutions requiring less covers. Interestingly, our initialization step is much
less impacted by the node distribution strategy as the subsequent column generation
process. This might be due to the Garg-Könemann approach not looking for optimal
solutions and thus not searching for the last few missing distinct covers.

We conclude that for less random network settings, it may be advantageous to apply
a specialized solver that can exploit the inherent problem structure. Our approach,
however, is aimed at solving the general problem and thus may perform weaker for
certain degenerate network settings or problem instances.

Table 3.9: Results of our approach with different node distribution strategies.
We consider grid placement (g), perturbed grid placement (pg), and random node
placement (rnd).

Initialization CG (1 iter.) Full CG
node time error covers time error covers time covers iter.
distr. [s] [%] [#] [s] [%] [#] [s] [#] [#]

g 1.5 10.3 1 806 1.2 0.5 140 52 137 66
pg 1.6 11.1 1 952 1.7 0.7 174 129 172 90
rnd 1.5 12.1 1 839 2.0 0.6 181 20 181 25

Sensing Range. In the previous paragraph, we have seen that our problem becomes
more difficult to solve, the more regular it becomes. Now, we are considering the reverse
case. By allowing a variation in the sensing ranges of the nodes, we make the problem
less regular. In the results listed in Table 3.10, we immediately see a very pronounced
effect. The runtimes of the column generation approach decrease by a large amount as
we allow a larger variation in the sensing ranges. The number of required iterations
decreases likewise. This is due to two effects. First, the problem becomes easier to
solve, the less regular it becomes. There is less symmetry and therefore less equivalent
solutions. Thus, we do not generate as many similar covers before finding the ones
contributing to an optimal solution. For the second effect, we need to take a look at
the initialization step. As the problem becomes less regular, the runtimes and the
numbers of computed covers increase slightly. However, it also yields approximations

62

3.7 Concluding Remarks

that are closer to the optimal solutions. Thus, the Garg-Könemann approach provides
better initial sets of covers for the column generation approach, which, in turn, has to
perform less work. This can be seen especially well for R = 1, the maximum variation
in the sensing range we consider. When performing the column generation once, we
almost always obtain an optimal solution. The full algorithm rarely needs to perform
any additional iterations. Results for other network settings are given in Table A.7
and Table A.8. Our general findings hold for them as well.

Overall, we obtain similar results as in the last paragraph. The less symmetry our
problem instances exhibit, the easier they become to solve by our algorithms. This is
actually good news for real-world applications as they are unlikely to offer completely
regular conditions. For example, sensing ranges always vary by a small amount. And
as we have seen, even a small variation by 1% makes the problem easier to solve.

Table 3.10: Results of our approach with different sensing ranges. We consider
varied sensing ranges for each node taken uniformly at random from [1, 1 + R].
Note that R = 0 corresponds to our default setting.

Initialization CG (1 iter.) Full CG
R time error covers time error covers time covers iter.
[1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

0.00 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25
0.01 1.5 12.0 1 849 1.9 0.6 182 18.0 185 21
0.10 1.6 11.8 1 921 1.7 0.4 181 10.5 182 12
1.00 2.1 10.0 2 510 1.2 0.0 134 1.4 134 1

Concluding this section, we can say that our method is capable of solving a wide
range of network settings efficiently. Only for very large networks of 1 000 nodes and
with over 25 000 entities to cover, we sometimes hit our hard time limit of three hours.
An important insight we gained is the fact that the problem becomes significantly
more difficult to solve optimally with our general purpose method, the more regular it
becomes. As soon as there is some variation, e.g. randomized node positions or sensing
ranges, symmetries are broken and we need to consider far less similar covers. The
next chapter introduces a different kind of problem for which we observe the reverse
effect. It becomes significantly more difficult to solve, the more random the structure
of the considered sensor network becomes.

3.7 Concluding Remarks

We presented the sensor network lifetime problem (SNLP) and introduced a more
realistic interpretation for this basic surveillance problem, i.e. guaranteeing a minimum
measurement resolution for a given area over a maximum timespan. The combination

63

3 Lifetime Maximization of Monitoring Sensor Networks

of a simple model and a realistic interpretation sets this problem apart from many
other theoretical problems and was one of the main motivations for us to start looking
into this particular problem.

We developed an efficient linear-time approximation scheme for the basic problem.
The approach takes advantage of two relaxation techniques to achieve both, a better
approximation ratio and a lower time complexity than previous results. We allow
sensing ranges to increase by a small amount when exploiting discretized node positions,
and we are content with a slightly shorter lifetime when decomposing the problem into
smaller subproblems and utilizing a geometric shifting strategy. In combination, this
yields an efficient dual approximation scheme that offers better approximation ratios
at a lower time complexity than previous approaches.

As a subproblem requires us to solve smaller instances of SNLP, we also considered
exact solvers based on the linear programming formulation of our problem. We proposed
a novel combination of existing techniques, applying the Garg-Könemann approach
to compute an initial set of covers that is subsequently used by a delayed column
generation approach to find an optimal node schedule. Minimizing covers before adding
them to the tentative set of known covers was another crucial insight. Our proposed
method runs faster and on larger problem instances than previous attempts at solving
SNLP or similar problems. We further showed how to optimize the order of a set of
covers to conserve energy if node state changes become an important factor in the
total energy consumption of the sensor nodes.

Our approaches are centralized in nature and thus intended for a supporting role.
They are well suited for application in simulational environments. For example, as
our approximation algorithm scales linearly with the number of sensor nodes, it is
ideal for studying very large sensor networks efficiently. Another possible field of
application is in assessing the quality of distributed (and localized) algorithms. They
scale to large network sizes by virtue of their very nature but usually do not come
with any performance guarantees. Thus, if one wants to rate their results, (centralized)
algorithms are required that can handle equally large networks while giving tight upper
bounds. Our algorithms provide just that.

Finally, we hope that our novel proof of NP-completeness will be recognized by the
community and, henceforth, be referenced as (correct) proof for the sensor network
lifetime problem (SNLP), i.e. the problem of continuously monitoring an area with
battery-constraint sensor nodes of arbitrary capacity.

Outlook. Even though our theoretical results are very strong, they only mark an
intermediate step. There is still a lot of potential to enhance the underlying model,
e.g. by considering non-uniform or variable sensing ranges. We are confident that
our approximation algorithm can be based more firmly in the field of computational
geometry. By adapting our proofs for general low-dimensional metrics, the inclusion of
obstacles, and variable sensing areas should become easy. Furthermore, a generalization

64

3.7 Concluding Remarks

to higher dimensions and angular dependent sensing ranges would be possible as well
as removing the dependence on squared partitions, which would give us more flexibility
in setting up the required subproblems.

Similarly, our exact algorithm offers very strong results. However, an extension to
more involved settings has to come next. We mainly focused on analyzing different
techniques for solving the basic problem. These techniques should be easy to adapt
to other settings, though, simply by exchanging the underlying linear program and
modifying the required heuristics. Integrating our post-processing step for optimizing
the order of covers into the linear program can be done at the same time by requiring
a minimum number of covers next to a maximum lifetime. Finally, looking for other
methods than the common column generation approach is an interesting direction as it
could lead to further insights into the general problem structure.

Since we are considering sensor networks, a distributed implementation is a natural
extension to our efforts. The structure of our approximation algorithm is already well-
suited for a parallel implementation as each tile of each partitioning can be considered
independently. This could be taken one step further, e.g. by allowing the sensor nodes
to autonomously organize themselves into these partitionings. One node in each tile
could be elected to compute an (exact) schedule for the tile, or one could apply a
distributed heuristic for each tile. Our approximation scheme would still guarantee
a solution for the whole network that is optimal up to a small factor. A completely
distributed implementation, especially with little communication overhead, would
require new approaches, though.

65

4 Chapter 4

Location-free Detection of
Network Boundaries

Localization. Assign (something) to a particular place.
— Oxford Dictionary of English

The dictionary entry above already gives a fairly good impression of what localization
implies in a sensor network setting. A priori, a sensor node has no positional awareness.
It neither knows its absolute position nor its location relative to the other nodes of
the network. Many applications require certain knowledge of the underlying network
structure, though. Examples include intrusion detection and data gathering [WGM06]
as well as mundane services like efficient routing within the network [FGG06, RRP+03]
or event detection [DLL09] through changes in the network structure, e.g. due to fires
or collapsing structures.

This demand can be met in many ways. Geographic coordinates provide the most
accurate localization, but they need absolute positioning systems like GPS, a central
infrastructure, or setting them manually. This is often not a viable solution, e.g. due
to cost or energy constraints. Virtual coordinates offer a good substitution for many
applications. Based on the network topology, they provide a rough sense of relative
location between the sensor nodes. Sometimes even more abstract information about
node positions in relation to the network is sufficient.

This chapter focuses on the last alternative—in particular, on how to efficiently
decide for a sensor node whether it is in the interior of the network or on its fringes.
Ideally, this classification is performed distributed and location-free, without relying
on positional information.

References. The contents of this chapter are based on joint work with Markus Völker
and Dorothea Wagner [SVW11a, SVW11b]. Contributions to the EC-BR algorithm
were provided mainly by Markus Völker. Wordings of the above publications are used
in this thesis.

67

4 Location-free Detection of Network Boundaries

4.1 Introduction

A lot of applications on sensor networks require certain knowledge of the underlying
network topology, especially of the holes and boundaries. Examples include the tasks
listed in the chapter preface as well as the surveillance algorithms described in Chapter 3.
Having identified a band of nodes around the fringes of the network, intrusions can be
detected reliably while the network lifespan is maximized. In many situations, holes
can be used as indicators for insufficient coverage or connectivity within the network.
Especially in dynamic settings, in which nodes can run out of energy, fail, or move, an
online detection and update of holes and boundaries is inevitable.

Many different algorithms for boundary detection have been developed in the past.
However, most of them come with certain disadvantages. Some algorithms rely on
oversimplified assumptions concerning the communication model, or they require
knowledge about absolute or relative node positions, both of which are usually not
available in a large-scale sensor network. Other algorithms are not distributed or
require information exchange over long distances, and therefore they do not scale well
with the network size. Algorithms that rely only on local information usually produce
many misclassifications. Furthermore, many of the existing algorithms are too complex
for an actual implementation on real sensor nodes. Thus, there is still demand for
simpler and more efficient algorithms for boundary detection.

4.1.1 Related Work

As there is a wide range of applications that require boundary detection, there is an
almost equally large number of approaches to detect and classify network boundaries
and holes. Based on the underlying principles, these approaches can be classified
roughly into three categories: Geometrical approaches, statistical approaches, and
topological approaches. Furthermore, there are multiple classification schemes for
boundary detection in the previous work.

Geometrical Approaches. Algorithms use information about node positions, dis-
tances between nodes, or angular relationships to detect network boundaries and holes.
Accordingly, these approaches require appropriate sensing equipment such as GPS
devices to be available. Unfortunately, in many realistic settings this is either not the
case, or the existing equipment is not accurate enough (e.g. when inferring distances
from signal strength).

In [MS04], Martincic and Schwiebert describe an algorithm which requires each node
to know the positions and communication links of its 2-hop neighborhood. With this
information, the node determines whether it is surrounded by a circle of other nodes.
If such a circle exists, it is used as witness that the node is located in the interior of
the network. Deogun et al. [DDHG05] only require a node to be able to determine the

68

4.1 Introduction

distances to its direct neighbors. The node selects four of its neighbors that are close
to the node but far from each other. Then it checks whether three of these neighbors
fully surround itself or not. The approach by Fang et al. [FGG06] needs nodes to know
their position. Using a Delaunay graph and local searches, holes are identified. Zhang
et al. [ZZF09] apply localized Voronoi polygons. Each node has to collect the positions
of its direct neighbors. The work by Shirsat and Bhargava [SB11] only requires a
node to know a clockwise order of its neighbors. Each node checks for empty cones
and chordless paths in the connectivity graph of its 2-hop neighborhood. Luthy et al.
[LGDH12] propose an algorithm that draws an actual image to decide whether the
border of a node’s communication range is covered wholly by the communication ranges
of its neighbors. Node coordinates are required for this approach.

Statistical Approaches. This type of algorithms tries to exploit statistical properties
such as node degrees to detect boundary nodes. As long as nodes are evenly distributed,
this approach works quite well since boundary nodes usually have less neighbors than
interior nodes. However, as soon as node degrees fluctuate noticeably, most statistical
approaches produce many misclassifications. Besides, these algorithms often require
unrealistically high average node degrees.

Prominent statistical approaches are by Fekete et al. [FKP+04, FKKL05] and Bi
et al. [BTG+06]. Fekete et al. first analyze node degree distribution in a theoretical
work. Their implementation in a second work requires data gathering over the entire
network to compute a histogram of node degrees. Using the histogram, they determine
a threshold value by which each node can classify itself as inner node or boundary node.
In the approach by Bi et al., nodes only need information of their local neighborhoods.
Each node compares its node degree with the average node degree of its 2-hop neighbors
to decide whether it is on the network boundary.

Topological Approaches. Algorithms using this approach concentrate on informa-
tion given by the connectivity graph and try to infer boundaries from its topological
structure. They often require nodes to gather information of a large neighborhood or
entail complex algorithms with high computational cost.

Funke [Fun05] and Funke and Klein [FK06] describe algorithms that construct iso-
contours and check whether those contours are broken. If a node detects that a contour
is broken, it classifies the corresponding contour end-points as boundary nodes. The
first algorithm requires that the whole network is flooded starting from some seed
nodes. The second algorithm works distributed, based on 6-hop neighborhoods. The
methods proposed by Ghrist and Muhammad [GM05] and De Silva and Ghrist [dSG06]
detect holes by utilizing algebraic homology theory. They are centralized and rely on
restrictive assumptions on the communication model. The algorithm of Kröller et al.
[KFPF06] works by identifying complex combinatorial structures called flowers. Such
flowers exist with high probability under some assumptions on the communication

69

4 Location-free Detection of Network Boundaries

model if the average node degree is above 20. The algorithm requires that every node
knows its 8-hop neighborhood. An algorithm that works well even in networks with low
average node degree is given by Wang et al. [WGM06]. The algorithm involves multiple
steps, some of which require that the whole network is flooded. In [SSGM10], Saukh
et al. propose an algorithm that tries to identify distinct patterns in the neighborhood
of a node. Under certain conditions, they can guarantee that all nodes which are
classified as inner nodes lie inside of the network. The algorithm is distributed and
every node only needs information of its k-hop neighborhood. The radius h depends on
the node density. For low density, k = 6 is used. For higher densities, it is possible to
use smaller neighborhoods. The algorithms by Dinh [Din09] and Chu and Ssu [CS12]
show similarities to our own EC-BR algorithm (see Section 4.4). Each node constructs
a graph induced by its neighbors in exactly 2-hop distance. They check whether these
graphs form closed circles. This is done by verifying the connectivity of subgraphs in
Dinh’s case or by tree construction and analysis in the approach Chu and Ssu. They
also provide a proof of correctness of their method. Dong et al. [DLL09] describe a
distributed algorithm that is based on topological transformations of the connectivity
graph. It is especially aimed at locating small holes. The approach by Li and Hunter
[LH09] needs to decide whether the sensing ranges of two nodes overlap by some means
(e.g. by comparing sensing results). The graph induced by this information is used
by their algorithm. Boundary node candidates are determined by finding circles in
their 1-hop neighborhood. Using knowledge of their k-hop neighborhood, holes of up
to 4k + 2 hops in perimeter are detected. Yan et al. [YMD11] focus on detecting small
coverage holes. They assume the communication range of each node to be two times its
sensing range and that nodes know or can easily determine whether they are located on
the outer boundary of the network. Their theoretical reasoning applies the topological
C̆ech and Rips complexes. In their distributed implementation, each node needs to find
a Hamilton cycle in its 2-hop neighborhood. In another work, Dong et al. [DLL+12]
also focus on discovering small coverage holes. They make the same assumptions as
Yan et al. regarding communication ranges and periphery awareness.

Classification Schemes. Until recently, most boundary (or hole) definitions were
based on an embedding of the connectivity graph. In [FGG06], Fang et al. determine
the Delaunay triangulation of the node positions and remove edges of length greater
than one. They classify faces of this reduced Delaunay graph with at least four edges
as holes of the network. Boundary nodes are those nodes that induce these faces. In
[KFPF06], Kröller et al. define boundaries according to a decomposition of the plane
into faces based on the embedded connectivity graph. A face is called a hole if the
perimeter of its convex hull exceeds a minimum value. Since the vertices of a face
usually do not correspond to network nodes, the authors define boundary nodes to
be the nodes on a cycle in the network graph surrounding this face. The approaches
by Fekete et al. [FKP+04, FKKL05] only apply a basic boundary definition for the

70

4.1 Introduction

continuous case. Given a set of holes, a closed cycle is called a boundary if it separates
the area of a hole from the area occupied by the network. A mapping of the continuous
boundary to network nodes is not defined. Saukh et al. [SSGM10] classify a node as
boundary node if there exists any feasible embedding of the connectivity graph in
which this node is located on the boundary of the embedded graph. In [DLL09], Dong
et al. propose a topological boundary definition. They define a cycle in the connectivity
graph to be a topological boundary if, given an arbitrary embedding of the graph, the
embedded cycle can be continuously transformed into a boundary of the embedded
graph. Similar to us, Luthy et al. [LGDH12] base their boundary definition on actual
node coordinates. They paint an image of the network in which each node is drawn as
a colored disk of radius equal to its communication range. If the disk is adjacent to
the background color, the corresponding node is considered as boundary node.

4.1.2 Contribution
We present a novel boundary detection algorithm that allows a node to decide solely
based on the connectivity information of its local neighborhood whether it is a boundary
node. Our approach uses multidimensional scaling to compute a two-dimensional
embedding of the 2-hop neighborhood of each node. Based on this information, we
reconstruct opening angles between the node and its neighbors to decide whether the
node is surrounded by other nodes or located at a network boundary. The approach can
be adjusted to either mark thin boundary outlines or broader bands—halos—around
network boundaries. We show that this classification can be performed efficiently and
in a distributed way.

The presented algorithm has several benefits over existing approaches. Unlike many
other algorithms, it is strictly local and suited for distributed application. As it only
uses connectivity information, no knowledge about absolute or relative node positions
is needed. It does not require the underlying network to be based on a unit disk graph
or rely on other simplistic assumptions. Our approach is very robust to non-uniform
node deployment and variations in node degree. It can be used equally well to detect
extensive boundaries or small network holes that can occur when single nodes fail or
move. Above all, it is much easier to understand and implement than most existing
approaches. All of these features make our algorithm perfectly suited for application
in large-scale networks.

We compare our approach qualitatively and quantitatively to multiple previous
approaches. In order to allow for an objective comparison, we provide an intuitive
definition of network holes and classify network nodes into three distinct groups, manda-
tory boundary nodes, optional boundary nodes, and interior nodes. The classification
scheme is based on actual node positions in relation to network holes and boundaries.
Extensive simulations show that our algorithm, despite its simplicity, outperforms the
other algorithms in most settings by detecting a higher percentage of boundary nodes
correctly and, at the same time, misclassifying less interior nodes.

71

4 Location-free Detection of Network Boundaries

4.2 Models

Before detailing our boundary detection approach and presenting the results of our
simulations, we need to introduce the models that we use to describe our sensor
networks and to analyze our algorithms. We show how to construct the sensor networks
that we use in our simulations, and we define the classification scheme used in the
evaluation of our simulation results.

4.2.1 Network Model

We assume the nodes of our sensor network to be placed in the two-dimensional plane
according to some distribution strategy. The connectivity graph G(V,E), with graph
nodes v ∈ V corresponding to sensor nodes and graph edges (u, v) ∈ E, u, v ∈ V , to
communication links between sensor nodes, is induced by a communication model. It
describes which nodes can communicate with each other. An embedding p : V →→ R2

of the connectivity graph G assigns a two-dimensional coordinate p(v) ∈ R2 to each
node v ∈ V . For easier reading, we normalize distances to the maximum possible
communication range between sensor nodes.

Communication Models. A communication model determines whether two nodes
can communicate directly with each other depending on their relative position and
possibly on their surroundings. It can provide further information on the induced
communication links, such as the expected signal strength. Our simulations consider
two models that are frequently found in the literature.

In the unit disk graph (UDG) model, two sensor nodes u, v ∈ V can communicate
with each other, i.e. there exists a communication link between them if the distance
between them, ||p(u)−p(v)||, is at most 1. This model is widely used and its properties
have been thoroughly analyzed in the literature, see e.g. [CCJ90].

The d-quasi unit disk graph (d-QUDG) model was first introduced by Kuhn et al. in
[KWZ08]. The sensor nodes u, v ∈ V can to communicate directly if ||p(u)−p(v)|| ≤ d
for d ∈ [0, 1]. For distances ||p(u)−p(v)|| > 1, communication is infeasible. In between,
communication is possible with a probability of 50%. Choosing d = 1 corresponds to
the UDG model. The d-QUDG model was conceived as it is considerably closer to
reality than the unit disk graph model while still being simple enough to be theoretically
analyzed.

Both models are still far away from accurately reflecting the complex conditions
found in real-life sensor networks. However, they can be (and are) used to assess the
quality of algorithms in simulated settings with great success.

Signal Strength. A sensor node receives messages from a neighboring node as
electromagnetic waves. The amplitude of these waves is denoted as signal strength. In

72

4.2 Models

a vacuum, signal strength decreases with the second power of the distance. However
reflections and loss due to obstacles as well as random effects impact the received
signals and cause their strength to diminish faster.

We can still try to exploit signal strength information to improve our knowledge of the
sensor network and, in turn, the results of our boundary detection. In one simulation
setting, we analyze the impact of utilizing signal strengths. As signal strength is a
very sensitive quantity, depending on many exterior factors such as node orientation or
signal interference, we opt to only apply a very simple model. We differentiate between
two states, strong signals and weak signals. We assume the signal strength between
two nodes u, v ∈ V to be strong if ||p(u)− p(v)|| ≤ 0.5 and weak otherwise, as long as
they can still communicate with each other.

Distribution Strategies. A distribution strategy describes the spatial deployment
of sensor nodes, i.e. where they are placed on the plane. This can be an independent
process or depend on the positions of previously placed nodes. Our simulations examine
two node distribution strategies.

By using the random placement strategy, nodes are distributed uniformly at random
in the plane. This strategy models applications in which sensor nodes are arbitrarily
scattered in the environment, e.g. when dropped from an aircraft.

The perturbed grid placement strategy places sensor nodes on a regular grid with
grid spacing 0.5, translated by an additional offset chosen uniformly at random from
[−0.25, 0.25]× [−0.25, 0.25]. Each grid position is chosen once before any grid position
is used for a second time. This strategy guarantees a more uniform node distribution
with less variance in node degree compared to random placement. It models node
deployments in which sensor nodes are placed in a regular pattern without having
to watch closely for the exact placement. This strategy is frequently found in the
literature on boundary detection.

4.2.2 Hole and Boundary Model

To evaluate and compare boundary detection algorithms quantitatively, well-defined
definitions of holes and boundaries are required. We decided to take a very practical
and intuitive approach at what to label as holes and boundaries. In short, we call large
areas with no communication links crossing them holes and nodes on the fringes of
these areas boundary nodes.

Hole Definition. We base our hole definition on the true embedding of the considered
sensor network. All faces induced by the edges of the embedded connectivity graph
p(G) are hole candidates. Similarly to Kröller et al. [KFPF06], we define holes to be
those faces of p(G) with a minimum perimeter of hmin. The exterior of the network
can be considered as an infinite face for our purposes. To avoid special cases, we treat

73

4 Location-free Detection of Network Boundaries

u v

hole

(a)

u v

hole

(b)

Figure 4.1: Illustration of hole and boundary model. (a) Hole definition: Hole
border (green). (b) Boundary node definition: Mandatory boundary nodes (green),
optional boundary nodes (orange), and interior nodes (black).

it as a hole during computation and evaluation. Figure 4.1(a) depicts a hole and its
border according to our definition.

We believe that our choice, basing the hole definition on the network embedding,
reflects reality better than solely basing the definition on topological properties as
several other authors propose. Naturally, we only take advantage of real node positions
for evaluation purposes. They are not used but to define our classification scheme. Our
boundary detection algorithms work solely on connectivity information.

Boundary Node Definition. As seen in Figure 4.1(a), hole borders and node posi-
tions do not have to align. This leads us to the question, which nodes to classify as
boundary nodes. For example, we could argue both ways whether to consider nodes u
and v as boundary nodes. The correct choice might even depend on the underlying
application. To circumvent this problem, we divide nodes into three categories:

• Mandatory Boundary Nodes. Nodes that are found exactly at the border of a hole
are always considered to be boundary nodes.

• Optional Boundary Nodes. Nodes not located exactly at the border of a hole but
within one maximum communication range of it may, but are not required to, be
called boundary nodes.

• Interior Nodes. All other nodes must not be classified as boundary nodes.

The resulting node classification is shown in Figure 4.1(b). Mandatory boundary
nodes form thin bands around holes, interrupted by topological structures as seen
previously for nodes u and v. Together with the optional boundary nodes, they
form a halo around each hole. Any node within the halo is at most one maximum

74

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)

Figure 4.2: Node classification example. Border outline of mandatory boundary
nodes (green), halo of optional boundary nodes (orange), and interior nodes (grey).
Full network and magnified upper right corner are shown.

communication range away from the border of the enclosed hole. A sample classification
of one of our network topologies is depicted in Figure 4.2.

We believe that this threefold classification scheme allows for a fairer comparison
between different boundary detection algorithms. It is not tailored towards the strengths
of our algorithm but solely built on observations of different network topologies. Only
the classification of mandatory boundary nodes and interior nodes is strict. We think
that their definition is reasonable enough so that their correct classification can be
required. The introduction of optional boundary nodes provides some leeway to
compensate for the unique nature of each boundary detection algorithm. Naturally,
there might be applications that require a completely different classification scheme,
but the one presented here should be sufficient for a wide range of interesting problems.

4.3 Multidimensional Scaling Boundary Recognition
(MDS-BR)

Our novel algorithm for detecting network boundaries, Multidimensional Scaling Bound-
ary Recognition (MDS-BR), can be seen as a hybrid approach. It combines elements
from both, topological and geometrical approaches. Each node considers its local
neighborhood and approximates the positions of these nodes based on connectivity
information alone, using multidimensional scaling (see Section 2.3.2). Having obtained
virtual coordinates via the network topology, the node can verify some simple geometric
properties to decide whether it is located at a network border.

Our approach works distributed and location-free. All nodes decide independently
whether they are a boundary node or an interior node by applying the base algorithm,
followed by a possible refinement step.

75

4 Location-free Detection of Network Boundaries

4.3.1 Base Algorithm
At first, each node u gathers the connectivity information of its local 2-hop neighborhood
N2(u) and constructs the neighborhood graph G2(u) = (N2(u), E2(u)) induced by the
communication links. Classical multidimensional scaling is applied as described in
Section 2.3.2 to compute a two-dimensional embedding p(G2(u)) of the neighborhood
graph. We approximate the required distances between all pairs of nodes by their
respective distances in G2(u) (measured in hops). They are determined with the Floyd-
Warshall algorithm of Section 2.2.2. Classical multidimensional scaling is well-suited
for the embedding task as we only consider 2-hop neighborhoods, i.e. graphs with a
diameter of at most four hops. We therefore do not need to compensate for drifting or
folding effects that may occur when embedding large graphs.

With virtual coordinates given by the embedding, node u declares itself as a boundary
node if it can verify some geometric properties of p(G2(u)). Below, we describe two
classification strategies that offer structurally different classification results. The
properties tested by them only depend on angular information of the embedded graph.

MDS-BR1. The first strategy leads to a thin outline of nodes marked as boundary
nodes around each hole structure. This classification result is desirable e.g. to detect
coverage holes in the network and to assess the extent of the entire network. We call
our algorithm MDS-BR1 when using this classification strategy.

First, node u sorts its direct neighbors in clockwise order. It determines the maximum
opening angle α between itself and two consecutive neighbors v, w as depicted in
Figure 4.3(a). If α is smaller than a threshold value αmin, node u considers itself as
an interior node. Otherwise, it is verified that nodes v, w have no common neighbors
other than u in the cone spanned by the edges (uv) and (uw). If this is fulfilled, node u
marks itself as a boundary node, otherwise as an interior node. Figure 4.3(b) illustrates
this requirement.

The first requirement models our observation that boundary nodes exhibit a large
gap in their immediate neighborhood due to the presence of a hole, whereas interior
nodes are completely surrounded by other nodes. The second requirement is aimed at
detecting and filtering miniature holes that are framed by four nodes with a perimeter of
up to four maximum communication ranges. This topology is depicted in Figure 4.3(c).
If an application is interested in this type of holes, we can omit the second requirement.

MDS-BR2. Our second strategy marks broader bands of nodes around holes as
boundary nodes. These halos have a width of about one maximum communication
range. They are useful in settings in which e.g. communication around network borders
or load balancing in boundary structures become important. To distinguish from our
first classification strategy, we speak of MDS-BR2 when using this approach.

Node u only considers nodes that are exactly two hops away. Similar to our first
strategy, u sorts these nodes in clockwise order and determines the maximum opening

76

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)

α

border

v

w

u

(a)

prohibited
cone

v

w

u

(b)

miniature
hole

(c)

border

u α

v

w
(d)

Figure 4.3: Geometric properties used by MDS-BR. (a) Maximum opening angle
to neighboring nodes. (b) Cone not containing common neighbors of nodes v, w.
(c) Miniature hole. (d) Maximum opening angle to nodes in 2-hop distance.

angle α between itself and two consecutive neighbors as in Figure 4.3(d). If α is larger
than a threshold αmin, node u marks itself as boundary node.

Just as before, this angular requirement models the observation that boundary nodes
show a large gap in their neighborhood. Considering opening angles to nodes that
are further away from node u is less susceptible to classifying small, sparse structures
as boundary nodes. This also allows us to omit a check for miniature holes as they
are completely enclosed by our 2-hop neighborhoods. However, this strategy declares
nodes as boundary nodes that are further away from the actual hole border—which
can be a benefit as discussed above.

The running time of the base algorithm is dominated by the computation of the
embedding. The asymptotic time complexity of multidimensional scaling is O(n3), with
n = |N2(u)| the number of considered nodes, as discussed in Section 2.3.2. Determining
the pairwise distances needed as input for MDS with the Floyd-Warshall algorithm has
the same asymptotic running time (Section 2.2) but much lower constant factors in
practice. Thus, using a more efficient technique is not required unless the embedding can
be computed more efficiently, too. Verifying the geometric properties takes O(n log n)
due the sorting involved. This amounts to a total running time of O(n3) at each
node u. We can generalize the result using |N2(u)| = O(dmax) [PG04], with dmax the
maximum node degree of G. We obtain an asymptotic running time of O(d3max), which
only depends on general network properties. Communication is limited to collecting
the connectivity information of the 2-hop neighborhoods. If we assume synchronous
communication in rounds and data aggregation, each node has to send at most two
messages of size O(dmax).

Our base algorithm offers further synergies with other applications running on the
sensor network. If one of them computes virtual node coordinates that give reasonable
estimates of the real positions, we can utilize them and skip the embedding process.

77

4 Location-free Detection of Network Boundaries

Linear Time Implementation. As our algorithm runs distributed on each node and
only has to consider a 2-hop neighborhood, its running time is not very important.
Still, computing embeddings becomes more and more time-consuming on dense graphs
as the neighborhood size grows. We present a filtering step that runs in O(m), with
m = |E2(u)|, on each node u and allows the time complexity of MDS-BR to become
asymptotically independent of the graph size. The basic observation is that dense
graphs contain much more information than we actually need to find a good embedding.
As long as the topological structure remains largely unchanged, each node u can thin
out its neighborhood graph G2(u) to an average node degree davg. This approach is
very effective in reducing the runtimes of MDS-BR as its time complexity grows with
the third power of the neighborhood size. Moreover, as we shrink the neighborhood
graphs to a fixed average degree davg, the time complexity of MDS-BR itself becomes
asymptotically independent of the graph size.

Our proposed filtering step is very simple but highly efficient. After constructing its
neighborhood graph G2(u) from connectivity information, node u begins the reduction
process. First, it randomly removes nodes from its 1-hop neighborhood N1(u) until only
davg nodes remain. Next, nodes are considered that are exactly two hops away from u,
N2\1(u). They are removed at random until N2\1(u) is reduced to davg, scaled by the
ratio |N2\1(u)|/|N1(u)| at their original sizes. The scaling guarantees that the ratio
between nodes in one and two hops distance does not change. This aids in keeping the
topology largely intact as does reducing N1(u) and N2\1(u) separately. The filtering
step runs in O(m) since we have to consider each edge at most once. Our simple
approach is very effective, but it changes the topological structure of G2(u). As our
simulations have shown, a reduction to davg = 15 still produces premium results. By
reducing the number of nodes any further, classification quality starts to deteriorate as
the embeddings become too much distorted.

If we accept longer runtimes for the filtering step, we can reduce the average node
degree of G2(u) even further to davg = 10 while retaining very good results. We
can prevent topological changes to the graph and, in turn, distorted embeddings
by a contraction process during node removal. When a node u with adjacent edges
(u, v), (u,w) is removed, we insert a new edge (v, w) into the graph. We also keep
track of the number of hops that each of these edges represents in the original graph.
This is required for multidimensional scaling to yield good embedding results. If we
treated them only as single hops, MDS would compute a very distorted embedding
based on these false assumptions. This approach is no longer linear in the number of
edges, though. For each node removal, we have to look at O(n2) pairs of nodes, with
n = |N2(u)|. Assuming O(n) node removals on a dense graph with m = Θ(n2), we
obtain a time complexity of O(m1.5).

To distinguish between both filtering approaches, we speak of random filtering in
the former case and contraction-based filtering in the latter when discussing them in
our section on simulational results (Section 4.6.5).

78

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)

4.3.2 Refinement

Our base algorithm already gives very good results as shown in Figure 4.4(a). However,
some isolated nodes remain marked as boundary nodes. This “noise” is highlighted in
Figure 4.4(b). It is caused by a sensitivity of our algorithm towards very small holes,
one might not be interested in, and by some real misclassifications. The effect is mainly
pronounced for MDS-BR1. If desired, we can use a refinement step to remove most of
these artifacts. The results of this procedure are depicted in Figure 4.4(c).

(a) (b) (c)

Figure 4.4: Classification results of MDS-BR1 on a sample network. Boundary
nodes are marked in blue. (a) Results of the base algorithm. (b) Zoom of lower left
region. “Noise” is highlighted in red. (c) Results after refinement.

The refinement is performed distributed on the set of nodes marked as boundary
nodes by the base algorithm. We refer to these nodes as tentative boundary nodes.
Each tentative boundary node u gathers the connectivity information of its rmin-hop
neighborhood Ñrmin

(u), restricted to nodes marked by the base algorithm. The graph
induced by the this information is called G̃rmin

(u). Node u computes a shortest path
of maximum length between two nodes v, w in G̃rmin

(u) that also contains u. If the
length of the found path is less than rmin, node u reclassifies itself as interior node.

Our refinement step exploits the observation that artifacts occur isolated and only
removes tentative boundary nodes that are not part of some larger boundary structure.
The desired minimum size of the structures that we want to keep is specified by rmin

as illustrated in Figure 4.5. Respectively to the base algorithm, only connectivity
information is required by this procedure.

The time complexity of our proposed refinement step is bounded by O(n3) for each
node u, with n = |Ñrmin

(u)|. We assume that all pairwise shortest paths of Grmin
(u)

are computed with the Floyd-Warshall algorithm (see Section 2.2). Paths containing
node u can be identified during the execution of this algorithm. The running time is
not critical even for large values of rmin as the number of considered nodes is small.
Figure 4.4(a) supports this statement. The base algorithm yields thin outlines of

79

4 Location-free Detection of Network Boundaries

border

(a)

border

u
G̃2(u)

(b)

border

(c)

Figure 4.5: (a) Tentative boundary nodes marked by MDS-BR1 (blue). (b) Graph
induced by tentative boundary nodes reachable by u in two hops, G̃2(u) (purple) .
(c) Boundary nodes remaining after refinement with rmin = 2 (blue).

tentative boundary nodes around holes and scattered groups of isolated marked nodes
elsewhere. Larger connected structures of tentative boundary nodes only occur within
these boundary bands, and evidently they are much smaller than a complete rmin-hop
neighborhood. The results of our simulations in Section 4.6.5 suggest that the growth
rate of Ñrmin

(u) is linear in rmin. This is not surprising as the tentative boundary bands
can be considered as one-dimensional structures, whereas a complete neighborhood
would be clearly two-dimensional. Taking into account these empirical results, this
implies a running time of O(r3min), independent of network properties. Communication
is, again, only required to gather connectivity information of a small neighborhood.
With synchronous communication in rounds and data aggregation, each node has to
send at most rmin messages. The maximum message size is given by the size of the
marked neighborhood. It is in O(n) or, more precisely, in O(rmin) as reasoned above.

4.3.3 Graph Embedding Strategies

Our boundary detection algorithm depends heavily on the quality of the computed
graph embeddings. To improve the embedding results of MDS, i.e. to make them
more accurate, we can take into account additional information. This yields better
classification results but comes at the cost of a higher running time or with the issue
of how to obtain this information. We introduce three graph embedding strategies
that show what can be done at what additional cost. We could also look into other
techniques that provide us with realistic angular relations between nodes. However, as
multidimensional scaling is already a well-studied method that is as simple as efficient,
we focus on the possibilities it has to offer.

If real node positions are known, there is no need to compute an embedding, and
we can use them directly. This turns our algorithm into a geometrical approach. It is

80

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)

not practical for deployment on most sensor networks, though, due to similar concerns
as for other geometrical approaches. However, we can use this approach to gauge
the performance of our classification strategies during simulations, independent of the
embedding quality. We call this optimum strategy MDSopt.

If we want to improve our results while still only relying on connectivity information,
we can consider larger neighborhoods during the embedding process. However, this
comes with an increased computation time. We opt to use 3-hop neighborhoods as the
induced jump in processing time is still reasonable, while the gain in quality is already
clearly noticeable. Moreover, the problems that multidimensional scaling faces on large
graphs are still not very pronounced on this scale. The strategy is labeled MDS3.

In a third, and most interesting, strategy, we incorporate signal strengths to better
approximate node distances in G2(u). We only distinguish between strong and weak
signals in our model. If node u receives a weak signal from another node v, we assume
that they are far apart and set their distance to 1.0. Otherwise, we assume that the
nodes are closer together and use 0.5 for their approximate distance. Distances between
non-neighboring nodes are derived from these values as before. Multidimensional scaling
uses these distance approximations as input to compute a more accurate embedding.
We refer to this strategy as MDSSS.

We have to take into account, though, that signal strength is a very sensitive quantity,
depending on many external factors that make its evaluation prone to errors. To gauge
the effects of making mistakes, we introduce two variants of MDSSS that deliberately
make mistakes when estimating node distances from signal strength values. One variant
simply interprets a signal randomly as weak or strong. We label it MDSSSrnd. The
other variant models a worst case scenario, in which we assume to always obtain
incorrect signal strength values. If the true signal was strong, we interpret it as a weak
signal, and vice versa. This variant is called MDSSSerr.

4.3.4 Performance Guarantees
Some boundary detection approaches give theoretical guarantees on their classification
performance. They show that a certain percentage, or all, of the marked nodes are
located close to a network border and, respectively, that unmarked nodes are nowhere
near the edge of the network. For these guarantees to hold, certain assumptions on
the network structure have to be fulfilled, e.g. concerning the communication model
or the node placement strategy. The hole definition has to be chosen appropriately
as well. Our work, in contrast, is not tailored towards a specific setting, and our
hole definition tries to be as natural as possible. One might argue that the other
algorithms can achieve good results even for settings in which their assumptions do
not apply. However, for their proofs to work, they need to collect large neighborhoods
(5 hops or even more), which entails a large communication volume and computational
overhead. As we focus on efficient heuristics that can be used in real-world applications
on large-scale sensor networks, we want to consider as little information as possible,

81

4 Location-free Detection of Network Boundaries

i.e. only the connectivity information of a 2-hop neighborhood. This makes it rather
difficult to give any theoretical guarantees. The necessity to quantify the deviation
of the computed embedding to the real node positions further complicates this task.
However, if we assume known node positions and do not consider a possible refinement
step, we can at least show some properties of our technique.

Unfortunately, we cannot provide guarantees on the correctness of our classification
results. It is easy to construct degenerate network topologies in which a boundary
node is classified as interior node, and vice versa. Figure 4.6 gives examples for
both cases. However, all of these topologies require carefully placed nodes with long,
uninterrupted communication links. This becomes less likely with growing node density
as nodes move closer together and additional communication links emerge, interrupting
degenerate structures and preventing classification errors that would be caused by them.
As we cannot guarantee correctness, we resort to discussing the effects of erroneous
classifications and try to assess upper bounds on the misclassification ratios. Our
analysis is divided into a section discussing the possible misclassification of boundary
nodes and one concerned with interior nodes. We assume αmin = 0.5π (90◦) in either
case. This is the same value we use in most of our simulations.

1

1

(a)

1

1

1

> 1

1

(b)

Figure 4.6: Misclassification examples. Respective nodes are marked in red.
Communication ranges are indicated by grey arcs. (a) Miniature holes give rise to
falsely marked interior nodes. (b) Hastate structures cause boundary nodes to be
classified incorrectly.

Misclassification of Boundary Nodes. Any hastate structure as in Figure 4.6(b)
gives rise to falsely classified boundary nodes. But how often can this occur in succession
when considering an extensive boundary outline? We find that at most two consecutive
boundary nodes are classified as interior nodes by MDS-BR1. This is illustrated in
Figure 4.7. A boundary structure with two successive nodes classified as interior nodes
comprises four nodes and requires at least three of them to be far apart as depicted in
Figure 4.7(b). If we extend the structure by another node and try to construct a third
consecutive interior node, there are two options. We can place the node in a position

82

4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)

that generates communication links to previous nodes and have the structure coil up
on itself. This shifts the position of the network border and the two misclassified nodes
become actual interior nodes as shown in Figure 4.7(c). Otherwise, the opening angle to
the newly placed node is larger than αmin = 0.5π. This results in the third node to be
classified as boundary node as we see in Figure 4.7(d). To summarize, in a worst-case
scenario at most two thirds of all mandatory boundary nodes are misclassified by
MDS-BR1. However, as our sample topology requires precise positioning, this structure
arises less likely with growing network density as the average node distance decreases.

u v

w
x

≤ 1

border

(a)

u v

wx

1

1

1

border

(b)

u v

wx

1

1

1z

(c)

u v

w
x

1

1

1

border

z

(d)

Figure 4.7: Misclassifications of boundary nodes by MDS-BR1. At most two
consecutive (mandatory) boundary nodes are classified as interior nodes. (a) Given
nodes u and v, the position of node w is restricted to the light grey area if v should be
classified as interior node. Respectively, the dark grey area gives possible positions
for node x depending on the placement of w. With u, v moving closer together, the
colored areas become smaller. (b) Possible node positions with v, w falsely classified
as interior nodes (red). We choose extreme positions to maximize the placement
options for node z. (c) Node z can be placed inside the light grey area to classify
x as interior node. This placement permits communication links back to previous
nodes. The boundary structure coils up and creates a new borderline with v, w
becoming interior nodes. (d) Otherwise, node x is classified as boundary node, and
we retain only two misclassifications in a row.

We cannot give similar bounds for MDS-BR2 in general. As shown in Figure 4.8(a),
all nodes around the hole are classified as interior nodes since the angle to their
neighbors in 2-hops distance is at most 0.5π. However, this is only possible for small,
closed structures. In an extensive boundary structure there has to be a large angle
at some point as indicated by Figure 4.8(b), otherwise the structure coils up on itself.
Here, we can assess an upper bound similar to Figure 4.7(c). By doubling each node
and translating it by a small amount, we obtain a topology with similar properties.
This is shown in Figure 4.8(c). The same reasoning as for MDS-BR1 gives an upper
bound of 4 on the number of consecutive misclassifications of boundary nodes.

83

4 Location-free Detection of Network Boundaries

1+ε
1+

ε

1+
ε

1

1

1 1

(a) (b)

1

1

1

border

ε

ε

ε

ε

(c)

Figure 4.8: Misclassification of boundary nodes by MDS-BR2. (a) All nodes
around the local boundary structure are falsely considered as interior nodes (red).
Communication ranges are indicated by grey arcs. (b) Extended boundary structures
only allow for few successive misclassifications. The respective closed structure is
implied in grey. (c) Similar structure to Figure 4.7(b). All nodes are doubled and
translated by an epsilon. Adding another node gives the same results as Figure 4.7.

Misclassification of Interior Nodes. Interior nodes marked as boundary nodes are
found at the border of miniature holes. Even though falsely classified according to our
hole definition, they can aid in uncovering areas of sparse coverage. Moreover, they
are easily removed by our refinement step as there are no large clusters of miniature
holes blending into each other but for very sparse networks. Figure 4.9 gives a minimal
example for each of our classification strategies. With this, we can assess lower bounds
on the perimeter of miniature holes that cause misclassifications. We obtain 2 + ϵ′ for
MDS-BR1 and 2 + 2

2−
√
2 + ϵ′ for MDS-BR2. Due to the larger bound, our second

strategy is less prone to misclassify interior nodes in random, sparse structures.
The random network structure does not allow us to give meaningful upper bounds

on the misclassification ratio of interior nodes. Miniature holes can be clustered or
chained indefinitely but with at least one correctly classifed interior node at each hole.

u
ε

1

ε

1

√
2ε

(a)

1

1

1+ε (1+ε)
√
2 –
√
2

u
ε
ε

(b)

Figure 4.9: Misclassification of interior nodes at the border of a miniature hole
when using (a) MDS-BR1 or (b) MDS-BR2. Node u (red) is marked incorrectly.
Communication ranges are indicated by grey arcs. Minimal holes are shown.

84

4.4 Enclosing Circle Boundary Recognition (EC-BR)

4.4 Enclosing Circle Boundary Recognition (EC-BR)

In [SVW11b, SVW11a], we presented a second algorithm to detect network boundaries,
Enclosing Circle Boundary Recognition (EC-BR). This thesis uses EC-BR mainly as
another reference algorithm when assessing the performance of MDS-BR. We only
introduce the basic concepts of the approach and refer to our previous publications
and to the PhD thesis of Markus Völker [Vö12] for a more elaborate discussion.

The EC-BR algorithm is a topological approach but also contains some statistical ele-
ments. Its basic idea is simple and efficient. The nodes ignore their direct neighbors and
only consider nodes that are exactly two hops away. For a node u, we denote the corre-
sponding node set as N2\1(u) and the induced subgraph as G2\1(u) = (N2\1(u), E2\1(u)).
Based on the connectivity information in G2\1(u), the node tries to decide whether it
is surrounded by a closed path C. If such a closed path exists, one can be sure that
the node is not a boundary node. Otherwise, this is seen as an indication that the
node lies near a hole or border (compare Figures 4.10(a)-(c)).

u

(a)

C

z

u

(b)

u′

border

(c)

Figure 4.10: Basic idea of EC-BR. (a) 2-hop neighborhood of node u (black).
(b) Enclosing circle C (green). (c) Boundary node without enclosing circle. A
non-enclosing circle is highlighted (red).

4.4.1 Enclosing Circle Detection
How can we decide whether an enclosing circle exists? Knowing the actual node
positions, this would be an easy task. However, we do not have this information and
reconstructing node positions as in the previous section would be too imprecise for
this task. In particular, we need to distinguish between an enclosing circle like in
Figure 4.10(b) and a non-enclosing circle such as in Figure 4.10(c). The length of the
circle is no sufficient criterion as both circles have the same length and only the first
one is enclosing. However, there is a structural difference between both types of circles:
The enclosing circle in Figure 4.10(b) sits around the hole like a tight rubber band.

85

4 Location-free Detection of Network Boundaries

There is no way to split it into smaller circles by using other edges of E2\1(u). On the
other hand, it is easy to see that the circle in Figure 4.10(c) can be split into smaller
circles. More formally, the first circle is a chordless circle. This implies, for each pair
v, w of nodes on the circle, the shortest path between them using only circle edges
is also a shortest path between them in G2\1(u). Thus, we simply need to look for a
preferably long circle with this property in G2\1(u).

C

z

1

2

3

4

5

6

0

Figure 4.11: Modified breadth-first search. Normal lines indicate the search tree,
and dashed lines symbolize cross edges that close circles. Numbers denote distances
in hops from z. The maximum circle C is marked in green.

To find a maximum chordless circle, we can use a modified breadth-first search. The
corresponding search tree for G2\1(u) of Figure 4.10(b) is depicted in Figure 4.11. We
start the search at a random node z in G2\1(u) with maximum degree. In every step
of the search, we maintain shortest path distances for all pairs of visited nodes. When
a new edge is traversed, there are two possibilities: Either a new node is visited, or a
previously encountered node is revisited. In the first case, we compute the shortest
path distances between the new node and the previously visited ones. This can be
done efficiently by inferring the distances from the distances to the parent node. In
the second case, we have found a new circle in G2\1(u). The length of the circle
is the current shortest path between the endpoints of the traversed edge plus one.
Subsequently, we update the shortest path information of all nodes. During the search
we keep track of the maximum length of the circles encountered so far. Depending on
the maximum circle length that was found during the search, the considered node u is
classified either as a boundary node or as an inner node.

In a unit disk graph, we are guaranteed that such a circle exists with length of
at least 7 if node u is enclosed by other nodes. On the other hand, if node u lies
somewhere near to a hole, it is not fully enclosed by other holes, and it is very unlikely
that a large chordless circle exists. Figure 4.12 shows histograms of maximum circle
lengths as found by our simulations on networks based on unit disk graphs and quasi

86

4.4 Enclosing Circle Boundary Recognition (EC-BR)

3 5 7 9 11 134 6 8 10 12 14

0
0

.1
0

.2
0

.3

Maximum circle length [1]

R
el

at
iv

e
fr

eq
u

en
cy

 [
1

]

Interior node

Boundary node

(a)

3 5 7 9 11 134 6 8 10 12 14

0
0

.1
0

.2
0

.3

Maximum circle length [1]

R
el

at
iv

e
fr

eq
u

en
cy

 [
1

]

(b)

Figure 4.12: Distribution of maximum circle lengths for different communication
models: (a) UDG and (b) 0.75-QUDG. Colors depict classification results of EC-BR.

unit disk graphs. We see two very well defined peaks that correspond to nodes with
and without enclosing circles. Based on this distribution, we classify all nodes u with
a maximum circle in G2\1(u) of length 6 or more as inner nodes and all other nodes as
boundary nodes. Our simulations indicate that this statistical classification into nodes
with and without enclosing circle works extremely well for both UDGs and QUDGs.

This kind of classification is extremely robust to variations in node degree. It does
not matter whether N2\1(u) consists of a small number of nodes or hundreds of nodes,
the same threshold 6 on the maximum circle length can be used to distinguish interior
nodes from boundary nodes. The classification stays the same as long as we assume
that the node density is sufficiently high so that inner nodes are actually surrounded by
other nodes. This robustness distinguishes EC-BR from existing statistical approaches.

The asymptotic time complexity of the algorithm is in O(mn2), with m = |E2\1(u)|
and n = |N2\1(u)|. Each edge in G2\1(u) is visited exactly once, and the update of all
tentative pairwise distances is performed at most once at each visit.

Linear Time Implementation. The enclosing circle detection of EC-BR runs dis-
tributed on every single node and each node only has to consider its 2-hop neighborhood.
Thus, its running time is virtually uncritical.

For the sake of completeness, we describe how to improve the search to run in
linear time O(m) on each node u, with m = |E2\1(u)|, if the underlying network has
properties of a quasi unit disk graph. The key insight is that it does not make any
difference for the classification if a node u is enclosed by thousands of nodes or by
just enough nodes so that the circle is closed. Thus, in a first step, each node u
filters N2\1(u) to obtain a small set of representatives. By considering each edge in
E2\1(u) once, a maximal independent set I of G2\1(u) can be computed in time O(m).

87

4 Location-free Detection of Network Boundaries

Based on packing arguments, the number of nodes in set I is bounded by a small
constant for QUDGs. By iterating again over all edges, we assign each node v to
the nodes of I that v is connected to. Next, two nodes in I are connected if there
exists an edge (v, w) ∈ E2\1(u) with v and w assigned to these two nodes. As the size
of I is asymptotically independent of the network size, this can be achieved in time
O(m). Now, node u is enclosed by nodes in I if and only if it was enclosed in G2\1(u).
Thanks to the constant size of I, the time for the enclosing circle detection on I is
asymptotically independent of the size of G2\1(u). The classification threshold γ has
to be adjusted, though, as edges no longer correspond to 1-hop distances. Altogether,
the enclosing circle detection can be done in time linear in the size of E2\1(u).

4.4.2 Classification Results
Figure 4.13 shows an example classification done by EC-BR. Nodes classified as
boundary nodes are marked as blue dots. We can see that our approach recognizes
broad boundaries, halos, meaning that even nodes which are only in the proximity of a
hole or the outer boundary are classified as boundary nodes. The reason for this is
that EC-BR checks whether the nodes in 2-hop distance form a closed circle. And even
for nodes that are almost one hop away from the boundary such a closed circle does
not exist. Another observation are the many small circles which do not belong to the
large-scale boundaries. By looking at the magnification in Figure 4.13(b), we can see
that the marked circles enclose small holes in the network.

We show how to remove both kinds of artifacts in the next section, the wide borders
and the circles around tiny holes in the network. However, in many situations exactly
this kind of information might be of interest. The detection of small holes, for instance,
can be used to detect node failures or areas of insufficient coverage. And having a
broader border might increase the fault tolerance and makes it easier to distribute
messages along the border as it is guaranteed to be connected. Additionally, neighboring
boundary nodes can divide their workload and thus extend the lifetime of their batteries.

4.4.3 Refinement
Sometimes one might not be interested in the tiny holes that occur in areas with low
node density. We can extend EC-BR with a simple refinement technique that removes
most of these small holes and also yields a thinner boundary. After the tentative
boundary nodes have been marked with EC-BR, each marked node u checks whether a
certain percentage γ of its neighbors are currently marked as boundary nodes. If this is
true, the node remains a boundary node. Otherwise, the node changes its classification
to being an interior node.

The basic insight behind this strategy is that a node that is near a hole is surrounded
by other nodes that are marked as boundary nodes and by the hole itself. Under the
idealized assumption that the connectivity graph is a unit disk graph, γ = 100% results

88

4.5 Non-Local Network Structures

(a) (b) (c)

Figure 4.13: Classification results of EC-BR. Boundary nodes are marked in blue.
(a) Results of the base algorithm. (b) Magnification of upper left corner. Artifacts
are marked in red. (c) Results after refinement.

in very precise boundaries. For more realistic communication models, a threshold
γ ≈ 70% is more reliable. The results of this refinement strategy are depicted in
Figure 4.13(c). Apparently, all nodes but the ones near large-scale holes are marked as
inner nodes and the border is very precise.

4.5 Non-Local Network Structures

Our algorithm, MDS-BR, works on a local scale and only provides a single bit of
information for each node—whether it is a boundary node or not. An underlying
application might have more specific requirements on a boundary detection algorithm
and require information about non-local network structures. We describe two extensions
to our algorithm that make it possible to determine larger structures.

4.5.1 Large-Scale Holes

Our algorithm is sensitive to very small holes, but an application might be interested
only in large-scale holes of a minimum perimeter pmin. To meet this demand, we perform
MDS-BR to determine a tentative boundary. As the length of a shortest path around
such holes is at least⌊pmin/2⌋, we apply our refinement step with rmin = ⌊pmin/2⌋ to
filter small holes. All boundary structures that do not permit shortest paths of length
rmin are removed, and only nodes around large holes remain marked.

This approach can be used to recognize hole structures of arbitrary size with very
little communication overhead. Only information about a small subset of all nodes,
the boundary nodes, is communicated. The approach is no longer strictly local as we
need to consider neighborhoods that can contain holes of the desired minimum size.

89

4 Location-free Detection of Network Boundaries

4.5.2 Connected Boundary Cycles

Some applications need to know connected cycles of boundary nodes around holes. We
can extend our algorithm to identify these structures and relay this information. Due
to their nature, boundary cycles cannot be determined locally. Fortunately, we only
have to consider nodes previously marked as boundary nodes. The strategy is quite
simple. We begin by determining boundary nodes with MDS-BR. Next, we select an
arbitrary boundary node and perform a shortest path query within its halo to find
an enclosing circle. As the halo consists of roughly the 1-hop neighborhood of the
boundary, we are all but guaranteed a connected component around the hole. After a
closed cycle is found, all nodes within the 1-hop neighborhood are classified as interior
nodes and the cycle structure is stored. This is repeated until all nodes either belong
to a connected boundary cycle or are classified as interior nodes. As a precaution to
guarantee the existence of connected components around holes in difficult network
instances, we can mark all nodes adjacent to a boundary node to enlarge the halos
before commencing with the shortest path queries. Special care has to be taken if two
large holes are less than one maximum communication range away from each other. In
this case, the two boundary cycles might have to share some nodes.

This approach exhibits similar properties in terms of communication overhead and
sense of locality as seen in the last section. Both ideas can be combined to reliable
report only boundary cycles around large holes.

4.6 Simulations

We conclude the chapter by providing extensive simulations. We compare MDS-BR
qualitatively and quantitatively to other previous approaches before analyzing its
properties in more detail. All simulations were performed in parallel on Machine B.

4.6.1 Simulational Setup

Network Setting. We generate the topologies of our simulated sensor networks by
iteratively placing nodes on an area of 50 × 50 maximum communication ranges
according to one of the distribution strategies described in Section 4.2, perturbed grid
placement and random placement. After each node is placed, communication links are
added according to the UDG or d-QUDG model. Nodes are added until an average
node degree davg is reached and at least 1 000 nodes have been placed. To generate
holes, we apply hole patterns such as the ones in Figure 4.14.

We consider multiple distinct network settings in our simulations. Each setting is
defined by the node distribution strategy, the average node degree, and the commu-
nication model. Our default setting uses perturbed grid placement, the UDG model,
and davg = 12. Average network sizes for each setting are listed in Appendix B.

90

4.6 Simulations

Figure 4.14: Hole patterns. Sample node distributions are shown for our default
setting with perturbed grid placement and an average node degree davg = 12.

Measurement Procedure. We evaluate each of our network settings 100 times with
different random seeds for each hole pattern in Figure 4.14. Faces with a perimeter
hmin ≥ 4 are considered as holes, e.g. squares of edge length 1 with no communication
links crossing them. Our quantitative analysis gives mean misclassification ratios (false
negatives) of mandatory boundary nodes and interior nodes in percent. For optional
boundary nodes, we state the percentage of nodes classified as interior nodes.

We present our results as box-and-whisker plots. Boxes denote the range between the
first and the third quartile of all test instances. Median values are marked. Whiskers
give maximum and minimum values safe for outliers which are hidden. Entries with
poor classification quality, i.e. with median values above 35% for most plots, are
indicated by a star symbol. Network settings are distinguished by hue and saturation.
We provide numerical values along with further results in Appendix B.

Different approaches use slightly different hole and boundary definitions. This might
imply that these algorithms perform worse under our classification scheme. However, we
believe that our distinction in mandatory and optional boundary nodes helps to achieve
a fair comparison. Only nodes that are immediately at a network border or at least one
hop away from any border are considered when determining the classification quality.
In our opinion, it is reasonable to expect that these nodes are classified correctly by
any algorithm. For all other nodes, it depends on the underlying application whether
they should be classified as boundary nodes or not, and thus we do not rate them.

When assessing the classification quality of an algorithm, it is important to consider
both, boundary nodes and interior nodes. With only one type, one cannot determine
the quality of a boundary detection algorithm reliably. For example, by marking all
nodes as boundary nodes, we would achieve a perfect classification of them while all
interior nodes would be marked incorrectly. An effective algorithm has to balance the
misclassification ratios of both types of nodes. Therefore, we evaluate the classification
results for both, boundary nodes and interior nodes, in comparison.

Considered Algorithms. We compare the performance of our approach, MDS-BR,
quantitatively to six well-known boundary detection algorithms: The geometrical
approach by Martincic and Schwiebert [MS04], the statistical algorithm by Fekete

91

4 Location-free Detection of Network Boundaries

et al. [FKP+04], the centralized and distributed topological methods by Funke [Fun05]
and Funke and Klein [FK06], the statistical approach by Bi et al. [BTG+06], and the
EC-BR algorithm of our previous publications [SVW11a, SVW11b]. Our qualitative
comparison in Section 4.6.2 also includes classification results of the global algorithm
by Wang et al. [WGM06] and the topological approach by Saukh et al. [SSGM10]. We
label each algorithm by its first author followed by the publication year, except for
our algorithms. For the analysis, we provide our implementations of all algorithms
according to the description in the respective publication and use the recommended
parameter settings. Unless noted otherwise, our algorithms use these default settings:
Both MDS-BR classification strategies use αmin = 0.5π. MDS-BR1 further applies our
refinement step with rmin = 2. We take a closer look at these choices in Section 4.6.5.
EC-BR is used with and without refinement. The refinement threshold is γ = 100%.

The number of existing approaches makes it impossible to include all of them in our
simulations. Therefore, we tried to primarily select algorithms that assume similar
conditions and constraints as our approach. We cannot compare ourselves directly to
many of the other existing algorithms for various reasons. They might use additional
information like absolute or relative node positions or the connectivity information of
large neighborhoods up to the whole network. Some rely on certain network properties
such as high average node degrees or the UDG communication model, while others
require expensive operations like flooding the whole network or centralized computation.
Some of these approaches might even achieve better classification results by utilizing
more information or more expensive operations. However, our goal is to show that
connectivity information of nearby nodes is sufficient to achieve impressive classification
results with simple yet highly efficient algorithms and without any further assumptions
on the underlying graph. For a comprehensive analysis, though, we include some
geometrical and statistical approaches in our comparison.

4.6.2 Visual Comparison
We start by giving a visual comparison of the classification results of the considered
algorithms in Figure 4.15. The network representations depict nodes that have been
classified as boundary nodes in blue. The set of mandatory boundary nodes of the
considered setting is marked in green as seen in Figure 4.15(l).

Both, MDS-BR1 and MDS-BR2, return faithful representations of the inner and outer
network borders with almost no artifacts. Similar results are obtained by EC-BR. While
the classification before refinement resembles MDS-BR2 with broad boundary bands,
after refinement, the boundary is the same precise outline as for MDS-BR1. There are
two striking differences, though. The results without refinement in Figure 4.15(c) also
mark circles around miniature holes. When considering the results after refinement
in Figure 4.15(d), we see that the classification by EC-BR is less precise in regions
in which hole borders are near each other. Here, the boundary halos of both borders
overlap, and the refinement routine can no longer differentiate between them both.

92

4.6 Simulations

(a) MDS-BR1 (b) MDS-BR2 (c) EC-BR (d) EC-BR Ref.

(e) Martincic 04 (f) Fekete 04 (g) Funke 05 (h) Funke 06

(i) Bi 06 (j) Wang 06 (k) Saukh 10 (l) Truth

Figure 4.15: Visual comparison of multiple boundary detection algorithms.

Funke06 correctly identifies the boundaries with some artifacts. Similar to EC-BR,
the apparent “noise” is caused by small holes which are surrounded by marked nodes.
The results of Martincic04, Fekete04, and Funke05 show many random artifacts, though
Martincic04 offers the most precise boundary outline. Moreover, Fekete04 failed to
detect some mandatory boundary nodes. The results of Bi06 are extremely poor. The
average node degree of our network is obviously too small for this statistical approach
to work properly. Only some boundary nodes are marked correctly, and there are a lot
of artifacts. We show the results of Wang06 in Figure 4.15(j). Their algorithm yields
closed boundary circles with no artifacts, but due to its nature, marked boundaries are
not always at the fringes of the network but shifted inwards. This characteristic led us
to not include this algorithm into our quantitative analysis as it would result in an
unfairly poor rating compared to the other algorithms. Still, the algorithm by Wang

93

4 Location-free Detection of Network Boundaries

et al. provides a fairly good sense of the general location of boundaries and performs
satisfying for even lower average node degrees than our approach. The algorithm by
Saukh et al. gives a result similar to MDS-BR2 and EC-BR without refinement. We
see broad bands marked as boundary nodes and no artifacts. Unfortunately, their very
impressive classification quality comes at a steep price. The algorithm suffers from a
high computational overhead and requires each node to collect a large neighborhood.
Including it in our quantitative analyses would have resulted in prohibitively long
runtimes, even higher than the combined runtimes of all other algorithms.

Refinement. In order to convey a feeling for the influence of the refinement, we
present additional classification results of our algorithm before and after refinement in
Figure 4.16. Later in Section 4.6.4, we consider the question whether our refinement
procedure can be used to improve the other algorithms. We also take a closer look at
the refinement step of EC-BR.

w
it

ho
ut

R
ef

.
w

it
h

R
ef

.

Figure 4.16: Visual comparison of MDS-BR1 with and without refinement.

4.6.3 Quantitative Analysis

Network Density. This paragraph considers how classification performance depends
on the average node degree davg of the network. We provide a quantitative comparison
in Figure 4.17, in which the percentages of false classifications for mandatory boundary
nodes and interior nodes are shown with increasing values of davg. Most remarkably,
MDS-BR2 classifies almost all nodes correctly except for the smallest node degree.
This extreme setting, however, causes problems for all algorithms as additional small
holes arise due to the overall sparse connectivity. EC-BR with refinement fares slightly
worse, but it is still better than the other previous approaches. Only Martincic04
comes close, but good classification results are expected of a geometrical approach.

94

4.6 Simulations

Our algorithms are still on par in case of MDS-BR1 or perform much better as seen for
MDS-BR2. The falsely classified interior nodes of EC-BR before refinement are mostly
due to the algorithm detecting very small holes that fall below our set threshold. The
performance of MDS-BR1 on mandatory boundary nodes is surpassed by Fekete04
on denser graphs. Interior nodes are still detected more accurately by our approach,
though. The improvement of Fekete04 on these graphs is reasonable since, as a
statistical approach, it is optimized for dense networks. Funke06 achieves better results
for interior nodes on denser graphs, but the results for mandatory boundary nodes
deteriorate even more. As expected, the centralized variant, Funke05, performs much
better in this respect. Bi06 offers a good classification of interior nodes, but this
comes at the cost of a very poor performance on boundary nodes. Only for very dense
networks its overall quality improves.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 09 12 15 18 21

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 4.17: Misclassification ratios (false negatives) in percent for average node
degrees between 9 and 21.

Figure 4.18 gives results for optional boundary nodes. We state how many nodes
within one maximum communication range of a hole are not classified as boundary
nodes, excluding mandatory boundary nodes. Here, the results of EC-BR are of
particular interest. Before refinement, EC-BR classifies almost all of the optional nodes
as boundary nodes while still providing a strict separation to the interior nodes. This
makes the algorithm well suited for situations in which one is not only interested in
the outermost boundary nodes but also in nodes close to holes. A similar behavior is
seen for our algorithm, MDS-BR2, though the halo of boundary nodes is less distinct
as only three quarters of the optional nodes are marked as boundary nodes. The other
algorithms could approximate similar boundary bands using their results, but this
would require an additional step, while here the solution is provided directly. With

95

4 Location-free Detection of Network Boundaries

MDS-BR1, we offer the other extreme, over all node degrees it classifies less optional
nodes as boundary nodes than most of the other approaches, while still recognizing
almost all mandatory boundary nodes correctly. A similar behavior can be seen for
EC-BR after refinement and Martincic04. Especially the results of the latter are
noteworthy. Martincic04 classifies almost all optional nodes as interior nodes while still
providing a good separation to the mandatory boundary nodes and thus offering very
precise boundary outlines. But we already expected premium results of an approach
that takes into account node positions.

C
la

ss
if

ic
at

io
n

 r
at

io
 [

%
]

Optional boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

09 12 15 18 21

Figure 4.18: Classification ratios of optional boundary nodes as interior nodes in
percent for average node degrees between 9 and 21.

We conclude the paragraph with a visual impression of the considered algorithms in
Figures 4.19 and 4.20. The number of apparent classification artifacts increases rapidly
for average node degrees of 10 and below. One reason is that for low node densities,
many miniature holes emerge as seen for the true classification of the mandatory
boundary nodes. Thus, most nodes are close to a hole and (correctly) classified
as boundary nodes. Accordingly, for such sparse networks different algorithms and
boundary definitions might be more appropriate. All algorithms we are considering
exhibit the same principle behavior. However, apart from our two approaches, EC-BR
with refinement, and Saukh10, all of them show a lot of “noise”, i.e. interior nodes falsely
marked as boundary nodes. Saukh10 offers very good results, but there are still more
random misclassifications than for MDS-BR2. EC-BR before refinement is obviously
not suited for sparse networks as it is too sensitive to miniature holes. Especially
Fekete04 and Funke05 have problems detecting the boundary correctly. Furthermore,
Bi06 is clearly unable to cope with our sparse networks. Only few nodes are marked as
boundary nodes and many of them by mistake.

96

4.6 Simulations
N

et
w

or
k

Tr
ut

h
M

D
S-

B
R

1
M

D
S-

B
R

2
E

C
-B

R
E

C
-B

R
R

ef
.

Figure 4.19: Influence of average node degree on classification results. The number
states the average node degree of the respective network.

97

4 Location-free Detection of Network Boundaries

M
ar

ti
nc

ic
04

Fe
ke

te
04

Fu
nk

e0
5

Fu
nk

e0
6

B
i0

6
Sa

uk
h1

0

Figure 4.20: Influence of average node degree on classification results. The number
states the average node degree of the respective network.

98

4.6 Simulations

Random Placement. Perturbed grid placement ensures low variance in node degree
over the entire network and few very small holes. Random node placement, however,
leads to many gaps in the network that have to be detected. Figure 4.21 gives an
impression of the expected mandatory boundary nodes in both settings. This paragraph
considers the performance of the algorithms in this more difficult setting. A regular
network structure is especially well suited for statistical boundary detection algorithms.
For this reason, we expect Fekete04 and Bi06 to yield many misclassifications in a
random placement setting, while our algorithms should still produce reasonable results.

(a) (b)

Figure 4.21: Comparison of network boundaries depending on the node placement
strategy: (a) Perturbed grid placement, (b) random placement.

Figure 4.22 compares the performance of all algorithms for both placement strategies
and davg = 12. The performance of the existing algorithms decreases drastically
compared to perturbed grid placement. The results of MDS-BR and EC-BR, however,
only decrease noteworthy for interior nodes. The classification of these nodes is still
on par with or even better than for the other approaches, though. For mandatory
boundary nodes, our results together with EC-BR remain much better than the next
best competitor. Only Martincic04 comes close, but as it uses node positions, it should
yield good results. The increased misclassifications of interior nodes are partially due to
our algorithms detecting very small holes with a perimeter of less than four maximum
communication ranges that occur frequently in a random placement setting.

In addition, we consider the influence of the network density when using the random
placement strategy. Figure 4.23 shows the classification results. We see that all
algorithms perform better with increasing network density. For some algorithms only
the quality ratio of the mandatory boundary nodes or of the interior nodes improves,
but the other one does not deteriorate. It is striking that Funke06 performs very poorly
in this setting compared to the other algorithms. Only the classification quality of Bi06
is worse. However, for the highest node degree, Bi06 surpasses the results of Funke06
as the network starts to be dense enough for this approach to work properly. Overall,
EC-BR and MDS-BR dominate the other algorithms for both, mandatory boundary

99

4 Location-free Detection of Network Boundaries

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 perturbed grid random placement

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 4.22: Misclassification ratios (false negatives) in percent for perturbed grid
placement and random node placement with davg = 12.

nodes and interior nodes, with MDS-BR2 giving the best results. For sparse networks,
we see an increased misclassification of interior nodes with a very high variance. As
before, this is partly caused by detecting very small holes. Still, MDS-BR2 is able to
classify more interior nodes correctly than all of the other approaches while retaining
premium results for mandatory boundary nodes.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 09 15 21 27

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 4.23: Misclassification ratios (false negatives) in percent for random node
placement and average node degrees between 9 and 27.

100

4.6 Simulations

Beyond Unit Disk Graphs. Unit disk graphs are frequently used for theoretical
analyses and in simulations. They are motivated by the fact that under good-natured
conditions, each sender has a transmission range which is roughly fixed. However, under
realistic assumptions, the transmission range depends on environmental conditions
and obstacles as well as on unpredictable effects such as interference and signal
reflections. In this paragraph, we evaluate the algorithms under more realistic conditions.
Uncertainties are taken into account by the use of the d-quasi unit disk graph model,
which integrates the observation that short-range transmissions are usually successful,
while long-range transmissions have some random behavior. Unlike for random node
placement, the basic hole structure remains unchanged when using more uncertain
communication models as we show in Figure 4.24.

(a) (b) (c)

Figure 4.24: Comparison of network boundaries depending on the communication
model: (a) 0.05-QUDG, (b) 0.75-QUDG, (c) UDG.

Even though the general structure of what we want to classify as boundary nodes
does not change, the network structure does. To compensate for the more random
communication links, EC-BR already applies a refinement with a smaller threshold
of γ = 70%. A refinement with γ = 100% would perform poorly because in QUDGs
mandatory boundary nodes are not necessarily surrounded by other boundary nodes.
Similarly, we need to alter the parameters of MDS-BR2 to obtain premium results.
Figure 4.25(a) shows the classification of MDS-BR2 on a 0.25-QUDG network. At first
sight, the classification appears to be good, but a closer inspection reveals that many
mandatory boundary nodes are missing. We find that the maximum opening angles are
shifted to lower values for quasi unit disk graphs. Section 4.6.5 goes into more details
on the distribution of opening angles. To compensate for this effect we choose a smaller
threshold value αmin = 0.3π for networks with a high amount of uncertainty. The
results in Figure 4.25(b) already look promising as most boundary nodes are found. An
additional refinement step can help to remove the “noise” as seen in Figure 4.25(c). We
do not apply the refinement step in this paragraph, though, but refer to Section 4.6.4
and Section 4.6.5 for additional information on using refinement. If one does not want

101

4 Location-free Detection of Network Boundaries

(a) (b) (c)

Figure 4.25: Comparison of MDS-BR2 classifications on a 0.25-QUDG network:
(a) Normal algorithm, (b) with αmin = 0.3π, (c) and with additional refinement.

to choose between two different threshold values, we propose to use αmin = 0.35π as
a compromise. This offers almost the same results for 0.05-QUDG and 0.25-QUDG
networks while still providing good results for 0.75-QUDGs and UDGs, especially when
combined with refinement.

Figure 4.26 shows the performance of the algorithms for average node degrees between
9 and 18 in simulations on 0.25-QUDG networks. We can see that the results offered
by MDS-BR2 are among the best. Only for the sparsest setting, the classification of
interior nodes deteriorates noticeably. This is due to many nodes near miniature holes

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 09 12 15 18

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 4.26: Misclassification ratios (false negatives) in percent for quasi unit
disk graphs with d = 0.25 and average node degrees between 9 and 18.

102

4.6 Simulations

being marked as boundary nodes. The increased error rate of MDS-BR1 for mandatory
boundary nodes is a result of the base algorithm producing a tentative boundary set
that is not necessarily connected. In consequence, the refinement classifies many correct
boundary nodes as interior nodes as the connected substructures are not sufficiently
large. EC-BR before refinement suffers from the same problem as MDS-BR2, just
more pronounced and over the complete range of network densities. The result quality
remains rather mixed, even after refinement. For davg = 12, 15, the classification is
average but declines for both, very low and very high node degrees. Martincic04 detects
boundary nodes well, but especially at low node degrees, many interior nodes are
classified falsely. The other algorithms yield much higher misclassification rates than
MDS-BR2 for mandatory boundary nodes and perform significantly worse at detecting
interior nodes safe for the lowest node degree.

In Figure 4.27, we go a step further and compare the results on QUDG networks
with a growing level of uncertainty to UDGs. As expected, all algorithms produce more
misclassifications the more random the distribution of communication links becomes.
Again, MDS-BR2 outperforms the other algorithms easily. Especially for QUDGs
with a high amount of uncertainty, it detects boundary nodes very accurately while
retaining a premium classification quality for interior nodes. EC-BR without refinement
and Martincic04 offer better results for mandatory boundary nodes, but they fare far
worse for interior nodes and thus yielding an altogether poor classification. Overall, all
algorithms perform significantly worse than in our UDG simulations. Only MDS-BR2
is able to retain a similar classification quality for both, mandatory boundary nodes
and interior nodes, for these test instances.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 0.05−QUDG 0.25−QUDG 0.75−QUDG UDG (pert.)

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure 4.27: Misclassification ratios (false negatives) in percent for quasi unit
disk graphs with average node degree 12 and uncertainty levels between 0.05 and
1.00 (i.e. for unit disk graphs).

103

4 Location-free Detection of Network Boundaries

4.6.4 Refinement
Our algorithm, MDS-BR, as well as EC-BR propose to apply a refinement heuristic
to improve results after an initial boundary classification has been achieved. Both
approaches use the heuristic to eliminate false positives, interior nodes marked as
boundary nodes. In network visualizations, these nodes appear as small, random
artifacts, similar to what we saw for most other algorithms in Figure 4.15. One might
ask whether our refinement procedure could be used in conjunction with the other
algorithms to improve their results. When comparing Figure 4.28 to the classification
results in Figure 4.15, we see that the refinement procedure gets rid of most of the
random artifacts but also of small—or in case of Fekete04 and Bi06 large—sections of
the actual boundaries. The results of Funke06 remain mostly unchanged, boundaries
around small holes are retained similar to EC-BR, only obvious, small artifacts are lost.
The classifications of Martincic04 and Funke05 also seem to improve as most of the
initial “noise” is removed. However, a closer inspection reveals that the boundaries are
interrupted on short sections. The results of Fekete04 and Bi06 are obviously useless
after refinement. In light of the already poor visual results, we refrain from performing
extensive quantitative simulations.

(a) (b) (c) (d) (e)

Figure 4.28: Impact of MDS-BR refinement with rmin = 2 on different algorithms:
(a) Martincic04, (b) Fekete04, (c) Funke05, (d) Funke06, (e) Bi06.

As MDS-BR and EC-BR apply different refinement routines, but both aiming at the
same goal, one might wonder how well each of them works on the solution provided by
the other algorithm. We first take a look at how EC-BR fares when we apply MDS-BR
refinement. The lower row of Figure 4.29 shows that our refinement procedure has
little impact on the classification results of EC-BR, even when applying much more
aggressive parameter values to consider larger neighborhoods. As EC-BR yields a
broad halo around each hole, the refinement of MDS-BR almost always finds a path
within this halo of the required length, and only few small structures can be changed
to interior nodes. Figure 4.29(d) shows that our refinement removes some of the “noise”
while retaining the broad boundary structures and the circles around small holes.
However, EC-BR refinement with a smaller threshold value does a much better job
at removing small artifacts while keeping the broad boundaries intact as depicted in
Figure 4.29(b). We can achieve similar results with our refinement procedure tuned

104

4.6 Simulations
M

D
S-

B
R

1
M

D
S-

B
R

2
E

C
-B

R

(a) (b) (c) (d) (e)

Figure 4.29: Impact of using different refinement heuristics: (a) No Refinement,
(b) EC-BR Refinement (γ = 30%), (c) EC-BR Refinement (γ = 100%), (d)
MDS-BR Refinement (rmin = 3), (e) MDS-BR Refinement (rmin = 6).

more aggressively, but we completely lose boundaries around small enclaves with a
radius of less than rmin. This can be seen in Figure 4.29(e).

When considering EC-BR refinement for MDS-BR, we have to distinguish between
MDS-BR1 and MDS-BR2. The classification results of MDS-BR2 are already almost
optimal for our default setting as seen in the middle row of Figure 4.29. A refinement
procedure cannot hope to improve upon them by much. Both, EC-BR refinement with
a lower threshold and normal MDS-BR refinement, seem to be good candidates in
this regard as they remove the remaining small artifacts while retaining the boundary
bands. Using more aggressive settings for either refinement procedure leads to missed
boundary nodes. We go into more details on choosing the best refinement parameter
value for different network settings in Section 4.6.5. Note that EC-BR refinement
is not able to yield the same thin boundary outlines for MDS-BR2 as for EC-BR.
The boundary bands of MDS-BR2 are more rugged, and thus there exists no single
threshold value that removes the broad band but retains the thin outlines. For this
requirement, we offer a separate classification strategy with MDS-BR1.

For MDS-BR1, a refinement step is required to remove the random artifacts as seen
in the upper row of Figure 4.29. Applying the refinement step of EC-BR returns poor

105

4 Location-free Detection of Network Boundaries

results. The small artifacts are gone but so are large parts of the actual boundary.
This occurs as MDS-BR1 already yields a thin boundary outline, but the refinement of
EC-BR requires boundary nodes to be completely surrounded by other boundary nodes
to remain marked. The effect remains even for a lowered threshold value. Parts of
the boundary are still missing, while some random artifacts start to reappear. Similar
results would be achieved for the same reasons when using EC-BR refinement on the
other approaches. We summarize that for MDS-BR1 only our refinement procedure
helps in removing “noise” while retaining the actual boundary.

4.6.5 MDS-BR Properties
After comparing our algorithm to various competing boundary detection approaches,
we focus on the properties of MDS-BR in this section. We start by studying alternative
graph embedding strategies, followed by a discussion on embedding errors and angular
distributions. This leads to an analysis of the optimal parameter values for MDS-BR.
We conclude by taking a look at our proposed linear time implementation.

Graph Embedding Strategies. Our boundary detection approach depends on a
good approximation of the relative angles between nodes to offer premium results.
We deduce these angles from embeddings of local graphs. The actual node positions
are not required, though. This paragraph considers the graph embedding strategies
presented in Section 4.3.3 and studies their impact on boundary detection quality.
Figure 4.30 shows the classification results for different network settings. We consider
the UDG model with perturbed grid and random node distributions as well as quasi
unit disk graphs with a growing amount of uncertainty. The analysis uses the MDS-BR2
classification strategy after computing the embedding, but our findings hold true for
MDS-BR1 as well. Respective results are found in Appendix B along with results for
davg = 15.

We see that all three alternate graph embedding strategies, MDS3, considering 3-hop
neighborhoods, MDSopt, using true node positions, and MDSSS, taking into account
signal strength information, improve the results in the d-QUDG model compared
to plain multidimensional scaling. They are able to deal with randomly missing
communication links much better than our default approach. This leads to more
accurate embeddings and, in turn, to a higher classification quality. The results for unit
disk graphs have already been almost optimal and cannot be improved much further.
Interestingly, MDS3 and MDSopt produce a very high amount of misclassifications for
mandatory boundary nodes for random node distributions. Both strategies actually
compute more accurate embeddings than plain MDS and MDSSS. However, as the
distribution of maximum opening angles does not allow for a clear distinction between
inner and boundary nodes in this setting (see paragraph on angular distributions),
classification quality is poor. The (imprecise) embeddings by our default embedding
approach and MDSSS actually help to better differentiate between both types of nodes.

106

4.6 Simulations
M

is
cl

as
si

fi
ca

ti
o

n
 r

at
io

 [
%

]

Mandatory boundary nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0 UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

Figure 4.30: Misclassification ratios (false negatives) in percent for different net-
work settings with average node degree 12 and multiple graph embedding strategies.

The results of taking into account signal strengths are particularly interesting. As
already discussed, classification quality improves for quasi unit disk graphs and remains
roughly the same for the UDG model with either node placement strategy. This alone is
already impressive as we only apply a very rough distance estimation by distinguishing
solely between weak and strong signals. However, we also consider the impact of making
errors when estimating node distances from signal strengths. Randomly interpreting
signal strength as weak or strong in case of MDSSSrnd, the resulting classification
becomes slightly worse compared to plain multidimensional scaling. Even when always
estimating node distances poorly with MDSSSerr, the results do not deteriorate much
further. This shows that MDSSS is very robust to fluctuating signal strengths.

Considering the performance of our graph embedding strategies, utilizing signal
strength information seems to be the best option to improve the classification quality.
The other strategies offer better results, but both entail further complications, while
MDSSS can be integrated easily. MDS3 induces an additional communication and
computation overhead, and the node locations required by MDSopt are usually not
readily available.

Embedding Quality. Using the perfect embeddings offered by MDSopt, we are able to
assess the quality of our own embeddings, comparing the computed maximum opening
angles to the true values. Note that this is done in a simulated setting, in which we can
easily offer access to node locations for the sake of analysis. Considering angles to nodes
in 2-hop distance—similar to MDS-BR2—we obtain an average absolute deviation
of 0.04π for plain multidimensional scaling in our default setting. By differentiating

107

4 Location-free Detection of Network Boundaries

between interior nodes and mandatory boundary nodes, we gain further insights. While
the average absolute error of the former is quite small at 0.03π, it is considerable at
0.11π for the latter. MDS3 reduces the deviation for mandatory boundary nodes to
0.10π, and by using MDSSS we achieve an even smaller error of 0.08π. The deviation
for interior nodes remains stable. The average absolute error for opening angles to
neighboring nodes—as required by MDS-BR1—is much larger at 0.2π for plain MDS,
0.18π for MDS3, and 0.13π for MDSSS when considering boundary nodes. The deviation
for interior nodes increases only slightly to 0.05π for either technique. Results for other
network settings as well as relative error values can be found in Appendix B.

While these deviations seems to be quite high compared to our default threshold
value for αmin, our simulations in Section 4.6.3 showed the maximum opening angle to
be an excellent classification criterion for all considered settings. The next paragraph
sheds some more light on these results by considering angular distributions and showing
that the respective values for boundary nodes and interior nodes remain sufficiently
separated even for imperfect embeddings.

Angular Distributions. We now take a closer look at the distributions of the true
maximum opening angle and of the values that our embedding provides. We focus on
opening angles to nodes in 2-hop distance as required by MDS-BR2. The same general
observations hold for opening angles to neighboring nodes. These results are listed in
Appendix B along with results for the alternate embedding strategies.

Figure 4.31 shows the results for the UDG model with the perturbed grid and random

Tr
ut

h
M

D
S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
] Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
] Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

Figure 4.31: Distributions of the maximum opening angle in the UDG model with
(a) perturbed grid or (b) random node placement.

108

4.6 Simulations

placement strategies. We see a clear separation in the occurring angles for interior nodes
and mandatory boundary nodes for perturbed grid placement. Our embedding retains
the general separation, though the distribution of boundary nodes is slightly skewed to
lower values. Setting the threshold αmin right between the two peaks obviously yields
an almost perfect classification. The results for the random placement strategy paint a
completely different picture, though. While the angular distribution for interior nodes
remains sharply peaked, the distribution for mandatory boundary nodes is spread over
a large range of angles. Obviously, this is not a good classification criterion in this
setting. However, looking at the distributions produced by our embeddings, we again
see two clear peaks. The topological properties of networks generated with either node
distribution strategy seem to be similar on a local (2-hop) scale as the embedding yields
similar results in either case. A more flat distribution only emerges when information
of a larger neighborhood is considered by the embedding, and the random character
of the network starts to have an impact. This is supported by the results of MDS3

resembling those of MDSopt, while distributions with MDSSS look more like those
obtained with plain multidimensional scaling (see Appendix B).

The results in Figure 4.32 show the distributions for the d-quasi unit disk graph
model. Obviously, the true angular distributions are very similar to the one for unit
disk graphs. This is in accordance to Figure 4.24 that shows similarly structured
boundaries for both communication models. The flank for mandatory boundary nodes
is slightly drawn-out towards lower values. This justifies using a lower threshold value
for the maximum opening angle to obtain best classification results. The distributions

Tr
ut

h
M

D
S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
] Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
] Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(c)

Figure 4.32: Distributions of the maximum opening angle in the (a) 0.05-QUDG,
(b) 0.25-QUDG, and (c) 0.75-QUDG model.

109

4 Location-free Detection of Network Boundaries

look very different for our embeddings though. The higher the amount of uncertainty in
the QUDG model, the more the distribution of mandatory boundary nodes is spread to
smaller values. Results for the embedding strategies MDS3 and MDSSS remain similar
to MDSopt (see Appendix B). This indicates that our default embedding strategy has
difficulties to compute an accurate embedding. Still, the distributions for both types
of nodes remain sufficiently separate to allow for a good classification.

We still need to determine the best threshold value αmin to separate boundary
nodes from interior nodes. The following parameter analysis determines this optimum
threshold value. We will see that we can manage with one value if we are content with
good but not optimum results. By using separate thresholds for networks based on the
UDG model and the d-QUDG model, we can obtain best results, though.

Parameter Selection. Our previous analysis focused on one set of parameter values
for MDS-BR, an opening angle threshold αmin = 0.5π and, in case of MDS-BR1, a
refinement step with rmin = 2. We now take a closer look at how different parameter
values impact the classification quality of our algorithm. As we have already seen in
the previous paragraph on the distributions of maximum opening angles, our default
threshold value for αmin seems to be chosen well. In addition, Section 4.6.4 showed
that applying the refinement procedure of EC-BR with a lower threshold value for γ
can be beneficial to our algorithm, too. Both observations are now examined in more
detail and verified by our simulations. We focus on MDS-BR2 in the following analysis.
The results for MDS-BR1 are similar and given in Appendix B.

We present our findings in form of heatmaps as seen in Figure 4.33. Each colored
square represents the results of one set of parameter values, opening angle threshold and
refinement amount. Red indicates a good classification quality, while white stands for
poor results. The color scale is optimized for discriminability for each plot individually.
We measure classification quality as the geometrical mean of the correct classification
ratios of mandatory boundary nodes and interior nodes. Note the split x-axis. Single
digit numbers to the left indicate rmin values for the refinement step of MDS-BR, while
double digit numbers to the right indicate γ values in percentage for the refinement
step of EC-BR. Running the algorithm without refinement is implied by rmin = 0.

The heatmaps depicting our results for the UDG model in Figure 4.33 show that the
opening angle threshold αmin = 0.5π is the best choice when not using any refinement.
The classification quality improves for larger values of rmin before it deteriorates again
at rmin = 5. Here, small but required boundary structures are eliminated by the
refinement process. This behavior does not emerge for random node placement as
there is no particular decline of appropriately sized boundary structures. Using EC-BR
refinement with increasing threshold values, we see that the sweet spot for αmin shifts
to smaller values while the quality decreases in general. A small refinement threshold of
γ = 20 - 30% yields good results but not significantly different than without refinement.

The heatmaps in Figure 4.34 indicate that the optimum value for the opening

110

4.6 Simulations

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

0.02

0.04

0.06

0.1

0.2

0.3

0.7

1

3

4

13

29

100

[%]

(a)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

3.8

4.4

5

6

9

10

13

19

21

31

37

66

100

[%]

(b)

Figure 4.33: Heatmap of classification results for different sets of parameter values
in the UDG model: (a) Perturbed grid placement, (b) random placement.

angle threshold shifts from αmin = 0.5π to αmin = 0.25π with a growing amount of
uncertainty in the d-QUDG model. This effect is supported by the angular distributions
shown in the last paragraph. It is much less pronounced for MDS-BR1, which is also in
accordance to the respective angular distributions (see Appendix B). Apart from that
we see the same general behavior as for unit disk graphs. Interestingly, using EC-BR
refinement with small threshold values provides the best results. A value of γ = 30%
seems to work best for all settings.

As we typically cannot assess the network structure in a real-life setting beforehand,
we need to select one set of parameter values that works well for all cases. Based on our
results, we deduce that αmin = 0.3π and γ = 30% provide a good compromise for any
network setting. Though, if we know that the UDG model is a good approximation of
the communication links in our network, αmin = 0.5π and rmin = 0 work even better.

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

1.5

3.5

7

8

11

17

22

30

36

48

64

80

100

[%]

(a)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

1.5

2

4

7

10

12

15

22

27

36

53

73

100

[%]

(b)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

0.6

0.8

1

1.2

1.6

2.5

3

5

7

12

20

42

100

[%]

(c)

Figure 4.34: Heatmap of classification results for different sets of parameter values
on d-QUDGs: (a) d = 0.05, (b) d = 0.25, (c) d = 0.75.

111

4 Location-free Detection of Network Boundaries

Refinement Costs. We argued in Section 4.3.2 that our refinement procedure runs
efficiently as we only have to consider few nodes. Our simulations confirm this initial
assumption. Using MDS-BR1 and varying rmin, we obtain the marked neighborhood
sizes shown in Figure 4.35 and Figure 4.36. For our default setting, we see that the
sizes increase linearly with rmin and the average node degree. This is expected behavior
as the considered boundary is a very thin band, most often only one node wide. For
the smallest node degree, the numbers are much higher, though, as the boundary
structures start to overlap and we no longer have thin boundary bands. The same effect
occurs for both, networks with random node placement and networks using the quasi
unit disk graph model with a high amount of uncertainty. With higher average node
degrees, the marked neighborhoods become smaller as the boundaries become more
precise and better separated. For our default parameter setting, rmin = 2, the average
neighborhood size that is considered stays at 25 or well below for all network settings.
Thus, we conclude that the refinement costs are indeed negligible for MDS-BR1.

As our refinement step is not very effective in combination with MDS-BR2, we do not
promote to apply it in this case. However, we give a brief summary of the respective
refinement costs for the sake of completeness. Detailed results are listed in Appendix B.
The average considered neighborhood stays below 30 nodes for all network settings and
rmin = 2. Sizes increase quicker for larger values of rmin and average node degrees as
MDS-BR2 marks broader bands of boundary nodes. We see the effect that low-degree
networks exhibit large neighborhoods less often and less pronounced than for MDS-BR1
as the boundary structures are more distinct, even for difficult network settings.

N
u
m

b
er

 o
f

co
n
si

d
er

ed
 n

o
d
es

 [
#
]

Refinement parameter rmin

1 2 3 4 5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0 09 12 15 18 21

(a)

N
u
m

b
er

 o
f

co
n
si

d
er

ed
 n

o
d
es

 [
#
]

Refinement parameter rmin

1 2 3 4 5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0 09 12 15 18 21

(b)

Figure 4.35: Neighborhood size that our refinement strategy considers on UDG net-
works with average node degrees between 9 and 21 and (a) perturbed grid placement
or (b) random node placement.

112

4.6 Simulations
N

u
m

b
er

 o
f

co
n

si
d

er
ed

 n
o

d
es

 [
#

]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(a)

N
u

m
b

er
 o

f
co

n
si

d
er

ed
 n

o
d

es
 [

#
]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(b)

N
u

m
b

er
 o

f
co

n
si

d
er

ed
 n

o
d

es
 [

#
]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(c)

Figure 4.36: Neighborhood size that our refinement strategy considers on d-QUDG
networks with average node degrees between 9 and 21 and (a) d = 0.05, (b) d = 0.25,
or (c) d = 0.75.

Linear Time Implementation. We discussed a linear time implementation of MDS-
BR that uses random filtering to reduce the considered neighborhoods to an average
node degree davg = 15 in Section 4.3.1. We argued that the classification quality does
not significantly suffer. Figure 4.37 compares the results of this approach to our normal
algorithm and to the contraction-based approach on high-degree networks. Again, we
only consider MDS-BR2 as the general findings are the same for MDS-BR1.

Obviously, our default algorithm that considers complete neighborhoods yields the

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

no
ne

ra
nd

om

co
nt

ra
ct

io
n−

ba
se

d

0
5

1
0

UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

no
ne

ra
nd

om

co
nt

ra
ct

io
n−

ba
se

d

0
5

1
0

Figure 4.37: Misclassification ratios (false negatives) in percent for different
network settings with average node degree 27 and multiple MDS filtering techniques.

113

4 Location-free Detection of Network Boundaries

best results. They get worse when we apply our linear time implementation. However,
this is to be expected as the embedding of the filtered neighborhood is less precise.
The classification quality is still largely on par with what to expect from an actual
network with davg = 15. The results for interior nodes on networks with random node
placement are the only outliers. It is already difficult to embed complete neighborhoods
in this setting as seen previously. Removing nodes at random without compensating for
them only aggravates this task. When applying our contraction-based implementation,
contracting the neighborhood to an average node degree of 10, we observe an improved
classification quality compared to the linear time implementation. As we do not simply
remove nodes but retain the topological structure of the reduced neighborhoods, the
computed embeddings are more accurate and therefore yield better classifications. The
approach still fares worse than our normal algorithm but also offers better asymptotic
running times even if they are not quite linear time.

4.7 Concluding Remarks

We presented a novel algorithm, MDS-BR, for location-free boundary detection in
sensor networks. Our approach works distributed and only needs to gather connectivity
information of small, local neighborhoods around each node. This is a huge improvement
over most existing algorithms that either need to query much larger neighborhoods or
rely on additional network properties. The resulting low communication overhead makes
MDS-BR an excellent choice for boundary detection in large-scale sensor networks. It
also makes our approach well suited for scenarios that include mobility or dynamic
changes of the network topology. Depending on the requirements of the underlying
application, we can offer two classification strategies to either mark a precise outline
of the network boundary or to give broader bands around the fringes of the network.
The latter option is of particular interest when building a sensor network to monitor
the perimeter of a larger area. Together with the results of Chapter 3, we can identify
a broad boundary band around the area and compute a schedule that maximizes the
network lifetime. As nodes start to fail, we can even update the halo and have it move
inwards to further prolong the monitoring activity.

Extensive simulations showed that our approach is very robust to different network
densities, communication models, and node distributions. Despite its simplicity and
low communication overhead, MDS-BR outperformed the other considered approaches
significantly, especially in challenging network settings. Additionally, we offer much
lower computational complexity than many existing approaches. Our simulations are
complemented by an analysis of the properties and variants of our algorithm.

Outlook. Our approach depends on the embedding procedure to return an accurate
representation of the angular relationships between nodes. This makes it worthwhile to
look into alternate embedding strategies in the future. There are two possible benefits

114

4.7 Concluding Remarks

to gain, a higher precision in reconstructing angles and an accelerated computation.
The first leads to better classification results, while the latter helps the nodes to
conserve their scarce energy reserves.

Moreover, MDS-BR offers synergies with other applications running on the sensor
network. If they also compute virtual node coordinates and provide a reasonable
estimate of the real positions, we could utilize them and avoid the embedding process
entirely. A worthwhile candidate to consider is the algorithm MDS-MAP(F) by Katz
[Kat09] that finds embeddings for large-scale networks of high quality.

Our refinement step only considers boundary nodes and turns them into interior
nodes if some conditions are not fulfilled. A revised procedure should be able to identify
falsely classified interior nodes as well and mark them correctly.

115

5 Chapter 5

Determining Efficient Paths in
Large-Scale Sensor Networks

Communication. The imparting or exchanging of information by speaking,
writing, or using some other medium.

— Oxford Dictionary of English

The exchange of information is a central aspect in sensor networks. Without sharing
data, each node in the network is just an isolated system with very limited capabilities.
Only in interaction with other sensor nodes, more complex tasks can emerge such as
the detection of network boundaries discussed in Chapter 4, traffic guidance systems
that provide early warnings of arising and potentially dangerous situations [KSC06],
or the study of cosmic rays at the Pierre Auger Observatory [Kie10].

As the above dictionary definition implies, communication, i.e. the exchange of infor-
mation, can be done over diverse media. In a sensor network context, communication is
usually handled by wireless transceivers, but tethered sensor networks exist, too. The
information is relayed over multiple intermediate nodes before arriving at the intended
target. There are numerous, sometimes even opposing demands on how to relay this
information between nodes. For example, if response times are crucial, preferably direct
connections are used. Energy consumption is often equally important as most sensor
nodes are energy-constraint. Which demands are set depends on the network structure
and may even vary between different applications on the same sensor network.

This chapter focuses on finding efficient paths in sensor networks that meet the
above demands. Our efforts are aimed at the quick computation of these paths in
static settings with respect to a high frequency of queries as encountered in simulation
frameworks or within large-scale infrastructural networks.

References. The contents of this chapter are based on previous publications. Results
on approximate queries are based on joint work with Robert Geisberger [GS10] who
gave the respective proofs. Alternative connections are based on joint work with Dennis
Luxen [LS12a, LS14]. Wordings of the above publications are used in this thesis.

117

5 Determining Efficient Paths in Large-Scale Sensor Networks

5.1 Introduction

Routing information through a network, i.e. finding some best path from a sender to
the intended receiver, is of such fundamental importance as motivated in the chapter
preface that it is worthwhile to consider this aspect isolated on its own. We can
distinguish between online routing approaches that use little to no information to relay
a message from node to node following a usually simple protocol on each sensor node
and offline routing algorithms that often require a significant amount of preprocessing.
While the latter can also be deployed on sensor networks, they are most often found
in auxiliary applications such as simulation frameworks that run on classical systems.
The reasons for this are obvious and manifold. Foremost, offline algorithms are not
distributed. Thus, preprocessing has to be handled at some central point or replicated
at each sensor node. This implies that the network topology has to be known in
advance or gathered before running the preprocessing. Later, the processed data has
to be spread again to all sensor nodes. Both operations cause a substantial amount
of communication over the whole network. Moreover, the amount of computation
and auxiliary data required at each node can become significant, especially if the
preprocessing is replicated at all sensor nodes. To make matters worse, changes in the
network topology may induce at least a partial reprocessing of the auxiliary data.

Offline algorithms have their own benefits, though. They focus on processing large
amounts of routing queries in a very short timeframe and determine the complete
relaying information, not just the next hop on the path to the target. Moreover, they
provide optimal solutions or at least come with tight error bounds. These properties are
beneficial in auxiliary applications such as the aforementioned simulation frameworks or
general analysis toolkits. Both of them face their own challenges, though. As they are
implemented on classical systems, there is only a limited amount of parallelism available
compared to a sensor network. However, they still have to deal with potentially large
networks and process communication volumes (i.e. routing queries) that grow rapidly
with the network size. Thus, a quick processing of single queries is crucial, especially
when dealing with large-scale sensor networks. To assess the capabilities of these
networks, we obviously need (near) optimal paths, i.e. shortest paths with respect to
the requirements of the considered setting, but reasonable alternative paths to them are
important to consider as well. They serve, for example, to spread the communication
load more evenly over the entire network and provide choices in case of (simulated)
node failures or overload in the considered scenarios.

Even sensor networks, as long as they do not suffer from the above limitations, can
profit from offline algorithms. A good example are tethered infrastructural networks
along roads and highways that are unlikely to change and come with ample processing
and power reserves. Optimal routing strategies, even for some exceptional cases, can
be precomputed and distributed to all nodes in the network, guaranteeing, for example,
shortest communication paths in the network.

118

5.1 Introduction

While there has been a tremendous amount of work on shortest path techniques over
the last decade, most of these efforts focus on transportation networks alone. Previous
studies like [BDS+10] even show that techniques that work well on road networks do
not permit equally impressive results on sensor networks. Thus, even in the offline
setting there is still a gap to close.

5.1.1 Related Work
Determining a path that is efficient in some sense is a similar problem to finding a
shortest path in a network. In fact, many such problems involve the computation
of shortest paths as a subproblem. We therefore focus on shortest path techniques
before considering further publications on alternative paths. As there is a tremendous
amount of work in this area, especially from the last decade, we can only list the most
prominent techniques in our overview on the related work.

For an extensive overview on routing techniques, we refer to the recent survey article
by Bast et al. [BDG+14], even though they only focus on traffic networks. In [Som14],
Sommer provides a more general overview on shortest path techniques in static networks
from both a theoretical and a practical perspective. Zwick [Zwi01] further considers
approximate techniques. These articles are completed by a history on the shortest
path problem given by Schrijver in [Sch12].

Shortest Path Techniques. The computation of shortest paths dates back to the
middle of the last century, with Dijkstra’s algorithm [Dij59] likely the most prominent
solution to this problem and the basis of many recent algorithms. In a graph without
negative edge costs, it finds shortest path distances from one source node to all other
nodes. It searches radially around the source by iteratively settling the node with
minimal distance from the source. If just a single point-to-point distance is needed, it
may stop early once encountering the target. The algorithm can be augmented to yield
shortest paths and shortest path trees. Even though its running time is polynomial,
it does not scale well to large networks. An obvious way to accelerate at least point-
to-point queries is to perform a bidirectional search with Dijkstra’s algorithm (BD)
[Dan63]. Two searches start simultaneously, one from the source and one from the
target. A shortest path is found once the same node is settled by both searches. In
practice, this approach is about twice as fast as running plain Dijkstra’s algorithm.

More involved techniques prune the search space of Dijkstra’s algorithm, i.e. the
number of nodes it visits, for a considerable speed-up. These approaches can be divided
into goal-directed and hierarchical techniques and combinations thereof. They usually
allow for bidirectional search in some form, and most of them require a preprocessing
step in which data is aggregated to accelerate queries at the expense of some memory.
This scheme is effective if there are many queries to answer on the same graph.

Below, we consider these types of techniques as well as algorithms for batched queries,
theoretical results on finding shortest paths, approximate algorithms, and futher results.

119

5 Determining Efficient Paths in Large-Scale Sensor Networks

Goal-directed Techniques. Whereas Dijkstra’s algorithm searches uniformly in all
directions, goal-directed techniques try to focus the search in the direction of the target.
A simple heuristic from artificial intelligence is the A* search [HNR68]. It uses lower
bounds on the shortest path distance to the target node, and in each iteration, it
settles the node which minimizes the sum of its distance from the source and said lower
bound. The method usually performs better than Dijkstra’s algorithm, but slowdowns
are reported in the presence of inadequate bounds [GH05]. This publication further
reports on ALT, a variant of A* that uses a graph-theoretic lower-bounding heuristic
based on landmarks and the triangle inequality. It selects a small set of well distributed
nodes and precomputes distances to and from all other nodes. During a query, the
distances are used to determine lower bounds with the triangle inequality. The obvious
advantage of this approach to other heuristics is the independence on external data. It
is also more than an order of magnitude faster than Dijkstra’s algorithm. However, a
lot of memory is required for the precomputed distances.

The Arc Flags (AF) approach [Lau04] partitions the graph into regions. Every edge
is augmented by a label that holds a flag for each region, indicating whether there is a
shortest path over this edge into the region. The query follows Dijkstra’s algorithm but
only considers edges with the flag of the target’s region set. The approach has been
revisited several times to consider different partitioning schemes or faster preprocessing
methods [KMS05, MSS+07, HKMS09]. It is very quick with reported speed-ups to
Dijkstra’s algorithm of over 1 000 in the bidirectional case. However, preprocessing is
costly as it requires the computation of shortest paths from each boundary node of a
region to all other nodes, i.e. one complete Dijkstra run from each such node. Hilger
et al. [HKMS09] suggest a technique to compute shortest paths of all boundary nodes
of a region simultaneously, but it is memory intensive and still slow. By now, PHAST
[DGNW13] allows for very fast computation of arc flags on certain types of graphs.

Hierarchical Techniques. These approaches exploit that some edges are more im-
portant than others. While this is apparent for road networks with city streets and
highways, it is less obvious for others graphs. For example, in sensor networks one
tries to avoid energy-intensive long-distance communication if battery power is limited,
but if transmission speed is of the essence, they are actually preferred.

Contraction Hierarchies (CH) [GSSV12] is the pinnacle in a series of techniques
based around the concept of shortcut edges [SS07, SS12a]. In a preprocessing step,
nodes are removed iteratively from the graph in a heuristic order of importance, and
shortcut edges are inserted to retain shortest path distances in the remaining graph.
The query is a bidirectional variant of Dijkstra’s algorithm with a modified stopping
criterion. It runs on the original graph augmented by the shortcut edges and only
proceeds to more important nodes due to the construction of the graph. Impressive
results are achieved on sparse networks, exceeding even those of Arc Flags, but so far,
CH performs less well on dense graphs like sensor networks. As this approach is the
basis of our first contribution, we give a more elaborate description in Section 5.3.1.

120

5.1 Introduction

The Customizable Route Planning (CRP) technique [DGPW13] takes a different
approach and focuses on fast preprocessing of different metrics. It is almost an order
of magnitude slower than CH but allows to process a new metric in the blink of
an eye, especially with GPU support [DKW14]. In a first (slow) preprocessing step,
a multi-level partitioning of the graph is generated. On each level, the respective
boundary nodes induce an overlay graph. To maintain shortest path distances, each
region is connected in a clique by shortcut edges. A second (fast) preprocessing step
incorporates the metric by computing correct costs for all shortcut edges. The query
is a (bidirectional) Dijkstra’s algorithm that (implicitly) switches to the next higher
level at each boundary node to proceed on the respective overlay graph. The basic
idea has been studied before with some success, e.g. in [SWZ02, HSW08, DHM+09],
but CRP profits greatly from clever engineering and PUNCH [DGRW11] to find tiny
separators. In general, these approaches work best if the graph has small (and efficiently
computable) separators. Unfortunately, this is not the case for sensor networks.

Transit Node Routing (TNR) [BFSS07] identifies a small set of important nodes
during preprocessing and computes pairwise distances between these transit nodes.
For all other nodes, it further determines a minimal set of transit nodes that covers
all shortest path starting at them. The nodes in these sets are called access nodes. A
query selects a path that minimizes the combined distances of source and target to
their respective access nodes and between the access nodes. A locality filter further
estimates whether the shortest path might avoid transit nodes entirely and runs a
normal query as a fallback. This approach is almost two orders of magnitude faster
than CH, but it needs an expensive preprocessing and a lot of memory. A variant
solely based on graph theoretical concepts simplifies the approach and reduces the
preprocessing overhead considerably [ALS13].

Recently, Hub Labels (HL) [ADGW11] have emerged as the fastest technique for
computing shortest path distances. Queries take about the same time as five memory
accesses. The algorithm stores a label at each node with distances to some other
nodes. Preprocessing guarantees that a shortest path between two nodes goes over
a common node in both of their labels. Thus, finding a shortest path distance is
reduced to scanning these labels and adding distances. However, the algorithm comes
with hefty preprocessing and memory requirements. Subsequent publications relax
these requirements at the expense of query performance [ADGW12, DGW13, AIKK14].
Though the basic labeling algorithm [Pel00b] has long been known, only recent advances
in the theoretical understanding of speed-up techniques [ADF+13], especially with
respect to transportation networks, allowed for these impressive results. The approach
is extended to denser networks in a recent publication [DGPW14].

Combined Techniques. The combination of goal-directed techniques and hierarchical
methods holds a lot of promise and is consequently studied in multiple publications
on single combinations [BD09, DSSW09] and in more extensive surveys [SWW00,
HSWW05, BDS+10]. The latter publication introduces two very successful techniques,

121

5 Determining Efficient Paths in Large-Scale Sensor Networks

Core-ALT (CALT), which combines ALT with a single-level overlay graph, and CHASE,
combining Contraction Hierarchies with Arc Flags. Both of them apply a similar idea
to different approaches. The respective goal-directed technique is only applied to a
small core of the graph containing the most important nodes. This saves a lot of
preprocessing time and memory while retaining most of the performance compared
to applying the goal-directed technique on the whole graph. Queries are performed
in two phases. The first phase only uses the hierarchical technique and explores the
graph up to the core. The second phase is restricted to nodes in the core and activates
goal direction. In practice, this leads to a speed-up of about an order of magnitude
compared to the single techniques. With the recent advances in computing and storing
arc flags, CHASE now commonly uses arc flags on the whole graph. This also simplifies
the query as only one phase is needed. Bauer et al. [BDS+10] further describe a
combination of TNR with Arc Flags, which was the fasted approach until the recent
emergence of Hub Labels.

Batched Techniques. Some applications, like the introduced preprocessing routines,
require the computation of shortest paths from one node to all others. While Dijkstra’s
algorithm already solves this problem asymptotically optimal, it is neither cache-
efficient nor can it exploit parallelism well. The PHAST algorithm [DGNW13] uses the
augmented graph of Contraction Hierarchies to remedy these shortcomings. It performs
a search from the source like CH, but instead of a search from a target, it scans linearly
over all nodes once the initial search finishes. This can be done cache-efficiently and
in parallel. The sequential execution is already an order of magnitude faster than
Dijkstra’s algorithm. The approach efficiently computes multiple queries at once, and
it can be adapted to only use a subset of all nodes as targets [DGW11].

Some applications may require shortest paths between multiple sources and targets,
though. This is easily done in parallel with point-to-point queries or PHAST from above,
but we can do even better with a bucket-based approach [KSS+07]. The algorithm only
needs time linear in the sum of sources and targets instead of their product. Using
any hierarchical approach, like CH, we first perform all searches from the target nodes,
storing for each node its tentative distance to all targets in a bucket. Next, we run the
respective searches from the source nodes. By scanning the buckets, we can efficiently
determine shortest paths for each pair of source and target node. A variant using CRP
shows how to further exploit the existence of separators in [DW13].

Theoretical Results. Apart from a multitude of highly engineered algorithms to com-
pute shortest paths, the last years also provided us with several interesting theoretical
results. The following two are of particular interest to us. All preprocessing routines of
the above algorithms have a heuristic component, be it the choice of landmarks, the
partitioning of the graph, or the order of node contraction. Bauer et al. [BCK+10]
show that making optimal choices is NP-hard. The introduction of highway dimension
[ADF+13] gave a theoretical justification why recent hierarchical techniques perform so

122

5.1 Introduction

well on some types of graphs. Roughly speaking, a graph has low highway dimension,
and in turn the above techniques work well, if at any scale, all shortest path of a certain
length are hit by set of nodes that is locally sparse. This seems to be the case for at
least transportation networks and similarly structured graphs.

Approximate Shortest Path Techniques. So far, we only considered algorithms for
computing exact shortest paths. However, there is a whole area of research that focuses
on approximate shortest path techniques. They forego exact results in favor of a faster
computation or lower memory requirements but usually still demand some guarantee
on the computed paths. For instance, paths should not become arbitrarily long.

An interesting topic in this area are ϵ-spanners. An ϵ-spanner is a spanning subgraph
of a graph such that any shortest path is at most (1+ϵ) times longer than the respective
one in the original graph. For example, for a complete graph on n nodes in k dimensions,
there exists an ϵ-spanner with O(ϵ−kn) edges [Vai91]. Clearly, correctness is traded for
lower memory requirements. However, this may implicitly lead to shorter runtimes,
too. Zwick provides an overview on spanner algorithms in [Zwi01].

Algorithms that focus on a quick computability often originate from the field of
artificial intelligence. For example, Pohl introduces the weighted A* search in [Poh70].
It applies more aggressive bounds than plain A* and only guarantees a certain error on
shortest path distances. [Pea84] gives an overview on related techniques from this field.

Further Results. Most of the above publications focus on transportation networks
alone. While [BDS+08] shows that techniques that work well on these networks do not
permit equally impressive results on sensor network instances, the results in [DGPW14]
are promising that some of the previous techniques can be adapted for sensor networks.
Studies that concentrate on other types of networks often only provide theoretical
results, though, focusing on asymptotic time complexities but not on constant factors
or measured runtimes. For example, Beier et al. [BFMS11] apply techniques from
computational geometry to compute energy-efficient paths in radio networks under
different constraints like a bounded number of hops or certain energy cost models.
Their approaches are theoretically efficient, but their simulations in [FMS08] show that
the required preprocessing is already substantial for tiny networks.

With respect to sensor networks, there are also many publications on routing schemes
for the distributed application on sensor nodes. Each node decides with locally available
information alone where to relay a message next for an efficient delivery. The main goal
of these routing schemes is to keep the information stored at each node low compared
to the network size while guaranteeing that the found paths do not become arbitrarily
long. Not requiring node positions or similar labels is a further goal. [AGGM06] and
[KRX07] present asymptotically (near) optimal results for a certain class of networks
using hierarchical decompositions of the network. The work by Sarkar et al. [SZG13] is
interesting as well. At each node, they store routing information to a few distant nodes
similar to shortcut edges and guarantee near optimal routes. Moreover, this information

123

5 Determining Efficient Paths in Large-Scale Sensor Networks

is generated in a distributed and unsupervised way. The book by Peleg [Pel00a] and
the surveys by Peleg and Gavoille [Gav01, GP03] provide further background and
details on routing schemes. Next to these theoretically results, [AKK04] and [GG12]
give an overview on practically used routing techniques for sensor networks. Neither of
these theoretical results nor any of the distributed algorithms is applicable to our use
case, though, the computation of efficient paths for large sensor networks on classical
systems. We therefore do not go into further details on these topics.

Alternative Path Techniques. Next to the abundant research in shortest path
techniques, there exists quite a lot of work that can be considered for finding alternative
paths. An intuitive approach is to compute the k-th shortest path between two nodes
s and t in a network. Yen and Eppstein study the general k-shortest path problem
in their respective articles [Yen71, Epp98]. Unfortunately, reasonable alternatives are
usually not among the first few hundred or even thousand shortest paths as they only
offer minimal deviations from the actual shortest path. Consider a path with l minor
detours as seen in Figure 5.1. There are 2l possible paths, each with a similar distance
between s and t. Unfortunately, none of these paths is a reasonable alternative as
all of them have a high amount of pair-wise overlap. Even for a moderate number l
of such minor detours, the parameter of a k-shortest path algorithm must be chosen
exponentially high in l to yield any reasonable alternative. Moreover, these algorithms
are not fast enough to be considered practical.

t

d

m1

m2

m3 ml

s

Figure 5.1: Path from s to t with l minor detours mi (black), i ∈ {1, . . . , l}, and
one long detour d (green). Neither combination of minor detours yields a reasonable
alternative, whereas detour d represents a distinct alternative. However, it is much
longer than even taking all l minor detour from s to t.

Another natural approach applies multiple cost functions, e.g. energy consumption
or hop count. In a multi-criteria search, a maximum set of incomparable paths, i.e.
a Pareto set, is computed that hopefully contains several distinct paths. Two paths
are incomparable if neither dominates the other in all cost functions. This problem is
first considered by Hansen [Han80] and later revisited in [Mar84, MHW01, DW09]. As
long as the Pareto set is small this can be done efficiently with variants of Dijkstra’s
algorithm and even in parallel [SM13, EKS14]. However, we are not guaranteed to
obtain a reasonable alternative. Another option to handle multiple cost functions is to

124

5.1 Introduction

apply linear combinations. By varying the ratio between them, different and possibly
distinct paths are obtained. A variant of Contraction Hierarchies provides paths that
are optimal with respect to all linear combinations of two [GKS10] or more [FS13] cost
functions. But again, it is not evident that reasonable alternatives are among them.

The disjoint path problem is similar to the k-shortest path problem, except that paths
may not overlap. Scott et al. [SPJB97] propose a combination of both methods to find
reasonable alternative paths. They compute k-similar paths, i.e. shortest paths with
the additional restriction to only have k edges in common with the unrestricted shortest
path. However, their linear programming based heuristic is very time-consuming.

Choice Routing by Camvit, though not entirely published, provides alternatives of
good quality in practice. This approach is also referred to as plateau method as it
searches for plateaus in the shortest path trees from a source s and to a target t. A
plateau Pu,v from node u to v is a path of maximal length that appears in both trees.
They give candidates for natural alternative paths, i.e. follow the forward tree from s
to u, then the plateau, and then the backward tree from v to t. The general concept is
first formalized by Abraham et al. in [ADGW13]. They model the alternative paths
that are found by the plateau method as a combination of two shortest paths over a via
node. As considering all plateaus is too costly, the authors introduce several heuristics
based on popular speed-up techniques for Dijkstra’s algorithm. Their approaches form
the basis for our alternative path algorithms and are therefore elaborated in more
detail in Section 5.4.1. The plateau method is also studied by Kobitzsch [Kob13]. He
exploits the structure of the augmented graph of Contraction Hierarchies in his HiDAR
approach to efficiently consider all plateaus at once. This is less efficient than the
method of Abraham et al. for one alternative path but soon gets better when multiple
alternatives are requested.

Chen et al. [CBB07] introduce a different approach for finding reasonable alternatives
to the shortest path with the penalty method. They iteratively compute shortest paths
while increasing a number of edge costs on the computed paths. A variant thereof that
also penalizes edges leaving an joining the computed paths is applied by Bader et al.
in [BDGS11]. Their main focus is on computing sparse subgraphs of the considered
network that encode many alternative paths, though. They compute multiple paths
with the penalty method and choose several of them for inclusion in these alternative
graphs. Bader et al. further define quality measures for the alternative graphs and
introduce filters that can be applied to thin out these graphs. However, they leave open
how to extract good alternative paths from them. Kobitzsch et al. and Paraskevopoulos
and Zaroliagis revisit the alternative graph problem in [KRS13, PZ13]. The former
focus on reducing the runtimes of the penalty method with their CRP-π approach using
a modified and parallelized CRP algorithm. In addition, they show how to extract
good alternative paths from their alternative graphs. The latter suggest modifications
to the penalization scheme to obtain alternative graphs of higher quality. They further
introduce a pruning technique based on ALT that yields shorter runtimes than the
original method based on Dijkstra’s algorithm, but it remains slower than CRP-π.

125

5 Determining Efficient Paths in Large-Scale Sensor Networks

5.1.2 Contribution

This chapter considers the computation of efficient paths for large sensor networks on
classical systems, e.g. as part of a simulation framework or to be used for static networks.
We present a heuristic shortest path algorithm based on Contraction Hierarchies that
performs well on dense sensor networks. It is an approximation scheme, i.e. computed
paths are at most (1 + ϵ) times longer than a shortest path. Its performance gains are
achieved by selectively avoiding the insertion of shortcut edges during the preprocessing
compared to the original method. Moreover, this also reduces the memory requirements
of our algorithm. Our non-trivial contributions are to ensure that errors do not stack
during preprocessing and modifying the query algorithm to remain efficient. We also
consider combinations with other speed-up techniques to further improve runtimes at
the cost an increased memory overhead.

As efficient paths are not limited to the shortest path, we further study the com-
putation of alternative paths. We show how to engineer previous algorithms found
in [ADGW13] to achieve a substantial speed-up. We observe that reasonable alterna-
tives between distinct regions of the network pass over few intermediate nodes. This
observation allows us to further decrease runtimes considerably by determining these
nodes in advance. We combine our contributions on approximate and alternative path
computation for additional gains on dense sensor networks. Moreover, we show how to
extend our approach to an online setting without the need for a dedicated preprocessing
and how to compute alternative graphs.

In extensive simulations, we show that our shortest and alternative path techniques
fare better than previous work from the literature. Our results prove to be robust to
multiple distinct network settings.

5.2 Models and Concepts

Before going into the details of our algorithms, we need to describe the models that
we apply to represent sensor networks and introduce the notations and concepts used
throughout this chapter. We formally define a fundamental routing problem and
present basic algorithms for solving it.

5.2.1 Network Model

We consider a sensor network consisting of n nodes vi ∈ V , with i ∈ {1, . . . , n}. Node
positions are arbitrary. The (reliable) communication links between these nodes are
described by a connectivity graph G(V,E). This graph is induced by the underlying
communication model. Edge (u, v) ∈ E implies that node v is in the communication
range of node u. There are m = |E| communication links in total. Links may be
unidirectional. Edge costs model various properties of the communication.

126

5.2 Models and Concepts

Communication Model. As implied above, a communication model defines whether
two sensor nodes can communicate directly with each other depending on their relative
positions and possible further conditions, e.g. obstacles or interfering nodes. The
model determines whether a node receives signals emitted from another node at a large
enough signal strength so that they can be decoded. It induces the connectivity graph
G(V,E) associated with the sensor network.

The unit disk graph model requires the connectivity graph to be a unit disk graph
as introduced in Section 2.2.1. Two nodes are assumed to be able to communicate
(reliably) with each other if their distance is below a certain threshold. Otherwise,
communication is considered to be impossible. The threshold is uniform for all pairs of
nodes. Other models may introduce multiple threshold values for each pair of nodes
and decrease the probability for a reliable communication link to exist between them,
the further they are apart. Differing threshold values for each pair of nodes are another
possible extension to the basic model.

Edge Cost Model. We utilize edge costs to describe properties of the communication
links between nodes. Often, these properties are correlated to the distance between the
nodes. Here, we set the cost of each edge (u, v) ∈ E to the Euclidean distance between
nodes u and v to the power of p. This choice covers a wide range of models, especially
in context of wireless communication.

For p = 0, our edge costs are uniformly set to one and model hop counts. A shortest
path distance in this metric corresponds to the minimum number of transmissions
required for two nodes to exchange messages. For p = 1, we obviously obtain Euclidean
distances, which describe signal latencies as signal propagation is roughly uniform
at the speed of light in the considered medium (e.g. air, fiber optics). Additional
delay in relay nodes can be added as an offset. We use p = 2 to model the energy
requirements of free-space communication. Imagine the signal as the surface of a
growing sphere. The total signal strength is constant, but for an area of fixed size,
it shrinks quadratically with the radius of the sphere, i.e. the distance to the sender.
Higher values of p in (2, 6] are commonly used to model energy requirements in the
presence of signal absorption, reflection, or interference [Rap02]. While values up to 4
are often used to model outdoor communication, e.g. in the flat world model where
signals may reflect from the surface and interfere with themselves, higher values up to
6 are only required for complex indoor environments.

5.2.2 Problem Definition

A basic problem that naturally occurs in routing applications is the shortest path
problem. Many other applications can be broken down to shortest path problems or at
least require them as a subroutine, like our alternative path algorithms. The problem
was first formally defined in the 1950s by multiple independent authors according to

127

5 Determining Efficient Paths in Large-Scale Sensor Networks

Schrijver’s discourse on the history of the shortest path problem [Sch12]. Formally, we
define the problem as

Definition 5.1 (Single Source Shortest Path Problem). Given a directed graph G(V,E)
with edge cost function c, source node s ∈ V , and target node t ∈ V , find the shortest
path Ps,t between these two nodes.

The problem is only well-defined in the absence of negative cycles. Otherwise, one
can iterate over such a cycle to obtain arbitrarily small results. While the basic problem
asks for the actual point-to-point shortest path, variations thereof may only ask for
the shortest path distance d(s, t). Algorithms solving this problem are called distance
oracles. Other variants ask for shortest paths between multiple nodes. These batched
problems are solved by one-to-many, many-to-one, or many-to-many queries.

5.2.3 Basic Algorithms and Concepts

We now revisit some of the basic algorithms and concepts introduced in our overview
on the related work. In particular, we describe Dijkstra’s algorithm, the A* search,
and the Arc Flags approach in more detail as well as the partitioning of graphs since
these concepts form the basis of the algorithms in the following sections.

Dijkstra’s Algorithm. The seminal algorithm by Dijkstra [Dij59] computes shortest
path distances from a given source node s to all other nodes in a directed graph G(V,E)
with non-negative edge costs c. The algorithm maintains a label µ(u) for each node
u ∈ V with a tentative distance from s, which is an upper bound on the shortest path
distance. Nodes can be unreached, reached, or settled. Unreached nodes are not yet
encountered, reached nodes represent the current search horizon and are managed in
a priority queue Q with µ(u) as key for node u, and settled nodes have their correct
distance already computed.

The query is initialized by setting µ(s) = 0 and inserting it into Q. All other
tentative distances are set to infinity. In each step, node u with the minimal distance
from s is removed from the queue and becomes settled. The algorithm then scans all
outgoing edges (u, v) of u and relaxes them, i.e. if µ(u) + c(u, v) ≤ µ(v) holds, the
tentative distance µ(v) is updated and v is either inserted into the priority queue or
its key is decreased. The query terminates once the priority queue is empty. We then
have µ(u) = d(s, u) for all u ∈ V . Algorithm 5.1 summarizes this procedure.

If we are only interested in shortest path distances between two nodes s and t, we
can stop the algorithm once t becomes settled. All remaining nodes in Q have a larger
tentative distance than µ(t), and since the graph only contains positive edge costs,
µ(t) cannot be decreased later. This is called a point-to-point query in contrast to the
regular one-to-all query. We can further reduce runtimes by performing a bidirectional
query from s and t simultaneously [Dan63]. The forward search from s only relaxes

128

5.2 Models and Concepts

Algorithm 5.1 Dijkstra’s algorithm
Input: Graph G(V,E), edge cost function c, source s
Output: Array µ of shortest path distances between s and all u ∈ V

1: for all v ∈ V do µ(v) =∞ end for ◃ initialize query
2: µ(s)← 0
3: Q.insert(s, 0)
4: while not Q.empty() do
5: u← Q.deleteMin() ◃ settle node u
6: for all (u, v) ∈ E do
7: if µ(u) + c(u, v) ≤ µ(v) then ◃ relax edge (u, v)
8: µ(v) = µ(u) + c(u, v)
9: Q.update(v, µ(v)) ◃ insert v or decrease its key

10: end if
11: end for
12: end while
13: return µ ◃ return all shortest path distances

outgoing edges and computes distances µf from s. The backward search from t only
relaxes incoming edges and finds distances µb to t. We alternate between both search
directions. Once a meeting node u becomes settled in both directions, we have found
the shortest path distance d(s, t) = µf(u) + µb(u). In practice, this approach takes
roughly half the time of a unidirectional search with Dijkstra’s algorithm. If we think
of a normal query as growing a ball of settled nodes around s until it reaches t, the
bidirectional search grows two balls of half the radius around s and t, see Figure 5.2(a)
and 5.2(b). These balls indicate the search space of the query, i.e. the settled nodes.

If we are not only interested in shortest path distances but actual shortest paths,
we can augment the algorithm by storing the predecessor of each node, i.e. if µ(v) is
updated while relaxing an edge (u, v), we set u as predecessor of v. By following these
predecessors back to s from a node t, we can reconstruct the shortest path from s to
t. In the bidirectional case, we have to follow the predecessors from meeting node u
back to s and t. The union of all predecessors computed by a full run of Dijkstra’s
algorithm from s induces the search tree for node s.

The time complexity of Dijkstra’s algorithm depends on the actual implementation
of the priority queue and the running times of its operations. In general, we have
TDijkstra = O(m · TdecreaseKey + n · (TdeleteMin + Tinsert)). The algorithm inserts and
removes each node exactly once from the priority queue, and each edge results in the
decrease of at most one key. Speed-up techniques to Dijkstra’s algorithm as introduced
in Section 5.1.1 try to minimize the number of queue operations. Their search horizons
and thus the number of elements stored in the priority queues usually remain very
small. The time complexity of queue operations is therefore less important in practice.

129

5 Determining Efficient Paths in Large-Scale Sensor Networks

s

t

(a)

s

t
u

(b)

s

t

(c)

Figure 5.2: Forward (blue) and backward (red) search spaces for a query of Ps,t

with (a) plain and (b) bidirectional Dijkstra’s algorithm, and (c) A* search.

A* Search. The A* algorithm [HNR68] is a simple heuristic to Dijkstra’s algorithm
for point-to-point queries. It applies additional knowledge to reduce the number of
settled nodes before reaching target node t. This information is formalized by a node
potential function π : V →→ R, which estimates the distances from each node u ∈ V to
target t. We use these estimates to modify the order in which nodes are processed by
sorting the nodes in the priority queue by the sum µ(u) + π(u) for each node u. Thus,
nodes which are on a path of lowest estimated total cost, i.e. nodes that potentially
lead closer to the target, are settled first. This is equivalent to performing Dijkstra’s
algorithm on a graph with reduced edge costs c′(u, v) = c(u, v)+π(v)−π(u), i.e. nodes
are settled in the same order.

We cannot choose the potential function π arbitrarily, though. The above formulation
implies that the reduced edge costs c′(u, v) of all edges (u, v) ∈ E have to be non-
negative. This property is called feasibility. It is a necessary condition for Dijkstra’s
algorithm to remain correct. If potential function π is feasible, so is π′(u) = π(u)−π(t),
and π′(u) is a lower bound on the distance d(u, t) for all u ∈ V . Consider a shortest path
Ps,t = ⟨s, v1, . . . , t⟩. We have π′(s) ≤ c(s, v1) + π′(v1) ≤ . . . ≤ c(Ps,t) + π′(t) = c(Ps,t).
Inequalities hold as π′ is feasible. The A* search is often faster than Dijkstra’s algorithm,
but its performance depends on the quality of the lower bounds of π′. Its search space
can be visualized by an ellipsoid as shown in Figure 5.2(c). This is already an indicator
for shorter runtimes when compared to the ball representing Dijkstra’s algorithm.

The A* search can be performed bidirectionally as well with potentials πf and πb for
the forward and, respectively, backward search direction. In general, a query cannot
be stopped once a node u becomes settled in both directions, though. We either have
to apply a more complicated stopping criterion [Poh71] or use consistent potential
functions [IHI+94]. They can be obtained from any two feasible potentials πf and πb

as (πf − πb)/2 for the forward and (πb − πf)/2 for the backward direction. While the
former approach may use better potential functions, the latter is faster in practice as
we may stop once both search spaces meet.

A common choice for the node potentials are Euclidean distances if node positions
are known, especially if the edge cost function also models Euclidean distances or a

130

5.2 Models and Concepts

correlated value. The ALT approach by Goldberg and Harrelson [GH05] uses a graph-
theoretic lower-bounding heuristic based on landmarks and the triangle inequality. It
only applies information inherent to the graph and, in particular, does not need node
positions. In a preprocessing step, the approach selects a small set of nodes L and
computes distances to and from all other nodes. We have d(u, t) ≥ d(u, l) − d(t, l)
and d(u, t) ≥ d(l, t)− d(l, u) for any node u ∈ V and landmark l ∈ L. The maximum
of these estimates over all landmarks is used as a lower bound. The corresponding
potential function is feasible. The quality of the heuristic depends on the landmarks’
positions. In general, they should be well spread over the network. Goldberg and
Werneck [GW05] study several selection strategies. Their avoid strategy is a good
compromise between quality and computability. The authors further discuss using a
small, adaptive set of active landmarks for performance reasons.

The weighted A* algorithm [Poh70] is a more aggressive variant of A*. To speed
up the query, the condition on feasibility is relaxed at the expense of optimality. It
is obtained by exchanging the feasible potential function π for π′(u) = (1 + ϵ) · π(u),
with ϵ ≥ 0. This node potential no longer has to be feasible or a lower bound on the
distances to t. When settling target t, we can only guarantee that µ(t) is at most
(1 + ϵ) times longer than the shortest path distance d(s, t). The reasoning behind this
approach is to preferably settle nodes that are closer to the target and thus arrive
sooner at a provably good solution.

Arc Flags. The Arc Flags approach [Lau04] is another extension to Dijkstra’s algo-
rithm that uses precomputed information to accelerate point-to-point queries. This
aggregated data is like road signs, preventing the query to look in an obviously wrong
direction. More formally, the algorithm considers a partitioning of the graph into k
regions and stores a label of k flags, one for each region, at every edge e ∈ E. A flag
denotes whether a shortest path exists into the respective region over this edge.

A query based on Dijkstra’s algorithm only relaxes edges for which the flag of the
target’s region is set. This simple modification reduces the search space significantly.
Closer to the target, however, we experience a coning effect as more and more edges
have the flag to the target’s region set until it is set for all edges inside the target region
as shown in Figure 5.3(a). There are two obvious solutions to this problem. The first
is to use a bidirectional search with separate arc flags needed for each search direction.
The coning effect is reduced by a great deal as the searches stop once the search spaces
meet. The other solution uses a multi-level partitioning of the graph [MSS+07]. Once
the search gets closer to the target, it switches to a finer partitioning with a different
set of arc flags, narrowing the cone. The search spaces of both approaches are depicted
in Figure 5.3(b) and 5.3(c), respectively.

The simplest way to compute arc flags is to perform a one-to-all search in the reverse
graph from every node. When setting a node, the appropriate flag is set on the edge
incoming from its predecessor, i.e. the flag for the region of the source of this search.

131

5 Determining Efficient Paths in Large-Scale Sensor Networks

s

t

(a)

s

t

(b)

s

t

(c)

Figure 5.3: Forward (blue) and backward (red) search spaces for a query of Ps,t

with (a) normal, (b) bidirectional, or (c) multi-level Arc Flags. Light colors indicate
full AF search spaces. The dashed line marks the switch to the finer partitioning.

However, this is not practical but for very small graphs. An easy improvement considers
only the nodes at region boundaries as every shortest path into a region has to pass
them. This is much faster but still rather slow. Hilger et al. [HKMS09] propose to
compute the shortest path trees for all boundary nodes of a region at once using a
modified Dijkstra’s algorithm that stores tentative distances to all boundary nodes.
This further reduces preprocessing times but requires a lot of memory during the
computation. PHAST [DGNW13] now allows us to efficiently compute many one-to-all
searches in parallel, significantly reducing preprocessing times.

In practice, one often only computes shortest path distances instead of shortest path
trees. This is more efficient as predecessors do not have to be managed. A subsequent
scan over all edges (u, v) ∈ E is used to set the arc flags by comparing the difference of
the computed distances to u and v to c(u, v). This has the side effect that arc flags are
set for all shortest paths if multiple equivalent ones exist. This is not strictly needed
for the Arc Flags approach and even slightly reduces its query performance, but it
simplifies the combination with other techniques as one does not have to take care that
both techniques compute the same shortest path.

Storing flags at each edge is very expensive. As many of them are equal, though,
they can be managed more efficiently in a lookup table, e.g. in a hash map. They can
be further compressed by setting some unset flags, yielding more equivalent labels.
This does not impact optimality but slows down the query as slightly more edges have
to be relaxed [BDGW10].

Partitioning. Arc Flags and multiple of the algorithms in Section 5.1.1 require a
partitioning of the network. We see this subproblem as largely orthogonal to our efforts
on shortest path techniques and therefore do not focus on it. We only provide a short
overview of the general concepts and notations and refer to the numerous partitioning
schemes proposed in the literature, see [BMS+13] for an overview.

A partitioning of G(V,E) is a set of k pairwise disjoint subsets Ri ⊆ V , i ∈ {1, . . . , k}
such that the union of all subsets yields V . We refer to these subsets as regions. The

132

5.3 Approximate Queries

subgraph of G induced by each region does not have to be connected. We write Ru for
the region of node u ∈ V . Node u is a boundary node if there is an edge (u, v) ∈ E with
Ru ̸= Rv. The number of boundary nodes and the edge cut, i.e. the number of edges
(u, v) ∈ E with Ru ̸= Rv, describe the quality of a partitioning. We further require all
regions to be of roughly equal size, i.e. |Ri| ≤ (1 + ϵ) · ⌈|Ri|/k⌉ ∀i ∈ {1, . . . , k}, with
ϵ ≥ 0 the imbalance parameter.

5.3 Approximate Queries

We first consider the computation of approximate shortest paths since our approach
can be used as a basis for the subsequent alternative path techniques. As it is based
on Contraction Hierarchies [GSSV12], we provide an overview of this method before
detailing our own contributions. We show how to adapt preprocessing and query
algorithms for the approximate case and introduce an additional optimization for dense
graphs. Combinations with previous speed-up techniques for shortest path queries
complete our contributions.

5.3.1 Baseline Algorithm

Contraction Hierarchies by Geisberger et al. [GSSV12] is a very efficient speed-up
technique for Dijkstra’s algorithm and the basis for many other algorithms. It applies a
preprocessing step to generate an augmented search graph G∗(V,E∗) from the original
graph G(V,E), which is later used to run queries on.

During preprocessing, nodes are heuristically ordered by some measure of importance,
denoted by function I : V →→ {1, . . . , n}, and contracted in this order. Contracting a
node u implies removing it (temporarily) from the graph without changing shortest path
distances between the remaining, more important nodes. This is ensured by preserving
shortest path distances between the neighbors of u. Given two of its neighbors, v and
w, we may have to insert a shortcut edge (v, w) with cost c(v, u) + c(u,w). A witness
search verifies whether this is actually needed. It runs a local Dijkstra’s algorithm
in the remaining graph without u to find a shortest path between v and w. If such
a path exists with less or equal cost than the potential shortcut edge, it is a witness
that the shortcut edge is not needed. Otherwise, we insert the shortcut edge to retain
shortest path distances. Witness searches can be performed simultaneously for all
pairs of neighbors of a node by a modified Dijkstra’s algorithm that stores tentative
distances from all source nodes. They do not have to run exhaustively as false negative
results do not impact correctness. Unnecessary shortcut edges only increase the search
space of a query. We can therefore prune the witness searches, e.g. after settling a
given number of nodes. Once all nodes are contracted, the search graph G∗ is defined
as the union of the original graph G and all generated shortcut edges. The final node
order, i.e. the computed importance values, defines a hierarchy on the nodes of G∗.

133

5 Determining Efficient Paths in Large-Scale Sensor Networks

The order in which nodes are contracted is determined by an online heuristic since
the computation of an optimal order, e.g. minimal in the number of shortcut edges
or in the query search space, is NP-hard [BCK+10]. We assign an initial importance
I(u) to each node u ∈ V prior to any contraction. It measures how attractive it is
to contract a node, with the least important nodes contracted first. We describe the
importance by a linear combination of several terms, which are computed during a
simulated contraction of u. While the original publication uses multiple complicated
terms, Vetter [Vet10] introduces much simpler and more efficient ones. We have

α · edge quotient + β · original edges quotient + γ · hierarchy depth , (5.1)

with α, β, γ ∈ N. The edge quotient is the number of shortcut edges added during
simulation divided by the number of (any) removed edges. It tries to keep the graph
sparse. The original edges quotient represents the same measure but counts shortcut
edges by the number of edges they comprise in the original graph. It attempts to keep
shortcut edges small in terms of original edges they represent. The hierarchy depth
stresses a uniform distribution of contracted nodes and keeps the height of the search
graph small. It is the maximum number of hops from a previously contracted node
using only (shortcut) edges to more important nodes. Updating the importance values
during contraction takes the most amount of time as performing each simulation costs
as much as actually contracting the node. Thus, only the neighbors of a contracted
node are updated after it is removed from the graph. This heuristic does not catch
all changes, though. One can therefore perform lazy updates, i.e. update a node right
before it is contracted. If it is no longer the node of least importance, this is repeated.
If this happens too often, the importance values of all remaining nodes are updated.

Vetter [Vet09] shows that the preprocessing can be parallelized by selecting inde-
pendent sets of nodes and iteratively contracting them in parallel until the whole
graph is processed. Independent implies that each node in the set can be contracted
without interfering with the contraction of any of the other nodes. The nodes of each
independent set are heuristically chosen so that they are minimal in terms of their
importance values within a 2-hop neighborhood. This maintains a similar contraction
order as in the sequential case, in particular with respect to a uniform distribution.
The 2-hop radius further ensures that the node contractions do not interfere with each
other. Lazy updates are not applied by Vetter.

The query algorithm is essentially a bidirectional variant of Dijkstra’s algorithm on
the search graph G∗(V,E∗). However, it only relaxes edges to more important nodes
and requires a modified stopping criterion. We keep track of the tentative shortest
path distance and abort the search in either direction once the minimum key in the
respective priority queue is greater than this distance. More formally, we define an
upward (downward) graph

G↑ = (V,E↑), E↑ = {(u, v) ∈ E∗ | I(u) < I(v)}
(G↓ = (V,E↓), E↓ = {(u, v) ∈ E∗ | I(u) > I(v)})

134

5.3 Approximate Queries

of (original and shortcut) edges that lead to more (less) important nodes. Each path
in this graph only leads “upward” (“downward”) in the hierarchy and is therefore called
an upward (downward) path. We further define an up-down path which consists of
an upward path followed by a downward path. The forward search of the CH query
algorithm only considers G↑ and the backward search only G↓. Figure 5.4(a) gives
an example of the respective search spaces. The tentative shortest path distance for
a query between s and t is given by the minimum over all µf(s, u) + µb(u, t), with
meeting node u settled in both directions. The (final) shortest path is an up-down
path over the meeting node u, which induced the tentative shortest path distance.
Geisberger et al. [GSSV12] show that such a path exists in the search graph for each
shortest path in the original graph and that they have the same length.

In practice, one often stores the search graph as G∗(V,E↑ ∪ E↓) since the backward
search considers incoming edges and therefore operates on the reverse graph. This graph
is the union of all (normal and reverse) edges that go “upward” in the hierarchy defined
by the node order, and it represents a directed acyclic graph (DAG). We therefore may
simply speak of an upward path when we actually mean either an upward path in G↑

or a downward path in G↓.

s

t
2 3 1

2

2
35

7

(a)

u

v

1

1
1

5

4
w

x

s

4

node
order

(b)

Figure 5.4: (a) Search graph of Contraction Hierarchies with shortcut edges (grey).
Forward (blue) and backward (red) search spaces of a CH query between s and t
are shown. (b) Stall-on-demand technique. When u is settled over ⟨s, u⟩ (red), it is
stalled by v—path ⟨s, v, u⟩ (green) costs less. Its neighbor w is also stalled as it is
already reached over ⟨s, x, w⟩ (orange), but the path over (v, u) costs less.

Stall-On-Demand Technique. Contraction Hierarchies may settle nodes with a
suboptimal distance during a query. While a regular search with Dijkstra’s algorithm
would never do that, it can happen for Contraction Hierarchies since we do not relax
edges leading to less important nodes. Continuing the query from such nodes does not
yield a shortest path. We can therefore prune the search at them to reduce the search
space and prevent unnecessary work. The following explanation covers the forward
search; the backward search is handled symmetrically.

135

5 Determining Efficient Paths in Large-Scale Sensor Networks

It is easy to verify whether a node u is reached via a suboptimal upward path ps,u
when settling it. The general situation is depicted in Figure 5.4(b). For each more
important neighbor v of u with edge (v, u) that is already reached by an upward path
ps,v, we inspect path ps,v,u = ⟨s, . . . , v, u⟩. As ps,v,u is no upward path, it could be
shorter than ps,u. In particular, if we find c(ps,v,u) < c(ps,u), we stall u, i.e. we do not
relax its incident edges. This is correct as the CH query is correct and as the suboptimal
path ps,u is never part of an optimal path. We further try to stall the reached neighbors
w of u if the path via v is shorter than their current tentative distance. For correctness,
unstalling such reached nodes w can be necessary when the search later finds a shorter
upward path than the path via v. The propagation of stalling information is handled
in various ways in the literature. While the original publication [Sch08b] conducts a
breath-first search to consider even more nodes, [Lux13] does not even propagate the
stalling information to the neighbors of u.

This technique is particularly well-suited for pruning search spaces in dense graphs
as there are usually a lot of reached but not settled nodes during a query. However, in
combination with other techniques that already decrease the overall search space size,
the overhead of stalling may become too high in practice [BDS+10].

Shortest Path Retrieval. While the shortest path distances returned by Contraction
Hierarchies are equivalent to the ones from Dijkstra’s algorithm in the original graph,
the resulting path may contain shortcut edges. They have to be unpacked to reconstruct
the shortest path in the original graph. This is done by a recursive procedure that
replaces any shortcut edge with the two edges from which it was built. Storing a
middle node with each shortcut edge, i.e. the contracted node from the creation of the
shortcut edge, is sufficient for the reconstruction of the original path. This information
may be omitted if we are only interested in shortest path distances.

5.3.2 Approximation Algorithm
Our heuristic shortest path algorithm, approximate Contraction Hierarchies (apxCH),
no longer provides exact shortest paths but guarantees that the found path is at most
(1 + ϵ) longer than the exact shortest path for some ϵ ≥ 0. It applies a modified
preprocessing step to generate an approximate search graph G∗

ϵ(V,E
∗
ϵ) subject to ϵ.

The query remains the same as for normal Contraction Hierarchies. However, we later
show that the stall-on-demand technique has to be adapted.

During preprocessing, we no longer preserve shortest path distances in the remaining
graph when contracting a node, but we still have to guarantee an error bound. Intu-
itively, when we contract node u, we do not add a shortcut edge between its neighbors
v and w if the witness search finds a path pv,w that is just a bit longer than ⟨v, u, w⟩.
However, we need to ensure that the errors do not stack when we later contract a node
on pv,w to guarantee a maximum relative error of ϵ. We therefore introduce a second
edge cost c̃ that has to adhere to

136

5.3 Approximate Queries

Lemma 5.1. For each edge (u, v) ∈ E∗
ϵ the inequality

c(u, v)

1 + ϵ
≤ c̃(u, v) ≤ c(u, v)

holds, with ϵ ≥ 0 and c̃ : E∗
ϵ →→ N0 the witnessed cost of an edge.

The witnessed cost c̃(p) of a path p denotes the minimal length of a shortcut edge
that this path prevented as a witness. We initialize c̃ with the original edge costs.
When contracting node u, we add no shortcut edge (v, w) if our witness search finds
a path pv,w with cost c(pv,w) ≤ (1 + ϵ) ·

c̃(v, u) + c̃(u,w)

. In this case, we have to

update the witnessed edge costs on the (approximate) witness path pv,w, though. We
distribute the cost difference between witness and omitted shortcut edge proportionally
among all edges of the witness. Let γ =

c̃(v, u) + c̃(u,w)

/c(pv,w), we then set

c̃(e) = min {γ · c(e), c̃(e)} for each edge e ∈ pv,w on the witness path. This strategy
maintains the requirements of Lemma 5.1. The first inequality holds as γ ≥ (1 + ϵ)−1

due to our constraint when to omit a shortcut edge. The second inequality holds
as we initialize the witnessed costs with the original edge costs and only decrease
them in the following. The strategy further implies that c̃(pv,w) ≤ c̃(v, u) + c̃(u,w).
We may also use other strategies to distribute the cost difference as long as they are
compatible with the above lemma. If we have to insert a shortcut edge (v, w), we set
c(v, w) = c(v, u) + v(u,w) and c̃(v, w) = c̃(v, u) + c̃(u,w).

The query algorithm of our approximate Contraction Hierarchies remains the same
as for exact Contraction Hierarchies. Similar to CH, it is performed on G∗

ϵ(V,E
∗
ϵ), the

original graph augmented by the shortcut edges of the modified contraction process.
In order to prove that apxCH finds paths that are at most (1 + ϵ) times longer than
corresponding shortest paths, we first show

Lemma 5.2. Given a search graph G∗
ϵ = (V,E∗

ϵ) for G with ϵ ≥ 0 and an arbitrary
path ps,t in G∗

ϵ . There exists an up-down path qs,t in G∗
ϵ with c̃(qs,t) ≤ c̃(ps,t).

Proof. Let Ps,t be a shortest path in G∗
ϵ . If it is an up-down path, we are done and Ps,t

corresponds to qs,t. Otherwise, we iteratively construct an up-down path as Figure 5.5
illustrates. We select a locally minimal node u ∈ Ps,t, i.e. a node whose predecessor
v and successor w on Ps,t have a higher importance, of overall minimal importance
(obviously excluding s and t). During preprocessing, it is contracted before v and w, and
therefore either a shortcut edge (v, w) or a witness path pv,w of more important nodes
and cost c(pv,w) ≤ (1 + ϵ) ·

c̃(v, u) + c̃(u,w)

exists. By construction, the witnessed

cost of either is no more than c̃(⟨v, u, w⟩). Thus, we can replace subpath ⟨v, u, w⟩
on Ps,t by either of the two to obtain path qs,t with cost c̃(qs,t) ≤ c̃(Ps,t). It consists
only of nodes more important than v. Since n <∞, we can iterate this process only
finitely many times until there exists no more node u with the above property to select.
The resulting path qs,t is therefore an up-down path, and c̃(qs,t) ≤ c̃(Ps,t) ≤ c̃(ps,t)
holds.

137

5 Determining Efficient Paths in Large-Scale Sensor Networks

u
node

ordert
s

1

1

1

3 + 3ε

1

1

1

Ps,t

qs,t

1

Figure 5.5: Illustration for Lemma 5.2. We can iteratively replace subpath ⟨v, u, w⟩
on the shortest path Ps,t (green) by a path of more important nodes than u (orange),
always complying with the cost constraints, until we obtain up-down path qs,t (red).

We are now ready to show that our query algorithm has an approximation ratio of
(1 + ϵ) with respect to the cost of the “shortest” path that it returns when used with
an approximate search graph G∗

ϵ(V,E
∗
ϵ) as introduced above. We have

Theorem 5.1. Given a directed graph G(V,E) with edge cost function c, source node
s ∈ V , and target node t ∈ V . Let d̃(s, t) be the distance computed by the apxCH
algorithm with ϵ ≥ 0 and let d(s, t) be the optimal (shortest) distance in the original
graph. Then d(s, t) ≤ d̃(s, t) ≤ (1 + ϵ) · d(s, t).
Proof. Let G∗

ϵ = (V,E∗
ϵ) be an approximate search graph for G and ϵ. By construction,

the shortest path distance between s and t in G∗
ϵ is the same as in the original graph.

Thus, the first inequality holds. Moreover, every shortest path Ps,t in the original graph
also exists in G∗

ϵ . Our query algorithm, however, only finds up-down paths. But if there
exists a shortest path Ps,t in G∗

ϵ , there exists an up-down path qs,t with c̃(qs,t) ≤ c̃(Ps,t),
as per Lemma 5.2. We can further assess c(qs,t)

1+ϵ
≤ c̃(qs,t) and c̃(Ps,t) ≤ c(Ps,t) with

Lemma 5.1. Altogether, we obtain c(qs,t) ≤ (1 + ϵ) · c(Ps,t). Thus, the second part of
our initial inequality holds as well. Our query algorithm either finds qs,t or another
path that is no longer than qs,t as a CH query finds a smallest up-down path.

Just as the proof of correctness of exact Contraction Hierarchies, see [GSSV12], our
proof of Theorem 5.1 does not depend on the order in which nodes are contracted.
Moreover, while the proof uses witnessed edge costs c̃, the actual query algorithm does
not use them at all. They are only required during preprocessing and therefore do not
need to be stored afterwards.

Our algorithm is an approximation scheme according to the definition in Section 2.1.2
as it has an approximation ratio of (1 + ϵ). If we further consider [ADF+13], which
states a time complexity for the preprocessing and query algorithm of Contraction
Hierarchies that is polynomial in the highway dimension and the diameter of the
graph (which are both polynomial in the graph size), we may label our algorithm as a

138

5.3 Approximate Queries

polynomial time approximation scheme (PTAS). As we only omit shortcut edges for
ϵ > 0, which speeds up preprocessing and query, we could even consider our algorithm
as a fully polynomial time approximation scheme (FPTAS). However, no proof is given.

Stall-On-Demand Technique. As stressed before, the stall-on-demand technique is
an important ingredient for a practically efficient implementation of the Contraction
Hierarchies query. However, when using approximate search graphs, we have to be
careful not to destroy the correctness of our query algorithm as it no longer computes
optimal paths. Figure 5.6 gives an example in which a query with stall-on-demand
does not find a shortest path.

t
u

v

z

1

3

2
1

1

node
orders

2+ε
2

x

1

Figure 5.6: A query with stall-on-demand does not find a shortest path from s
to t. Node u is stalled by x when settled—path ⟨s, x, u⟩ costs less than ⟨s, u⟩. Its
neighbor v is also stalled as it is already reached by ⟨s, x, v⟩ (red), but the path
over (x, u) (green) costs less. The forward search therefore never reaches z. Note
that shortcut (x, v) (grey) is omitted in the approximate search graph G∗

0.1(V,E
∗
0.1)

during contraction.

To maintain the correctness of our algorithm, i.e. to ensure that it finds a path
between any pair of nodes s and t that is at most (1+ϵ) times longer than the respective
shortest path in G, we need to modify the stall-on-demand technique. When settling a
node u over upward path ps,u, we consider all of its more important neighbors x with
edge (x, u) that are already reached over another upward path ps,x. If we find

c(ps,x) + (1 + ϵ) · c(x, u) < c(ps,u) , (5.2)

we stall node u and propagate the stalling information to its reached neighbors v. They
are stalled if the path via x is shorter than their current tentative distance. However,
we consider the cost of the subpath from x to v as scaled by a factor of (1 + ϵ). The
symmetric approach applies to the backward search. For ϵ = 0, this corresponds to
the stalling condition of the exact query algorithm. To show that our approximate
stall-on-demand condition (5.2) is correct, we iteratively construct a new up-down path
from a stalled one by applying Lemma 5.3. Figure 5.7 illustrates a single iteration.

139

5 Determining Efficient Paths in Large-Scale Sensor Networks

node
order

v

w =: y

s

u

x

qs,t

1

1 + ε1

31

ps,t
1

1

t

3 + 2ε

Figure 5.7: Illustration for Lemma 5.3. Node u on up-down path ps,t (red) is stalled
by x. A new up-down path qs,t (green) can be computed from the concatenation of
paths ps,x, (x, u), and pu,t ⊆ ps,t with Lemma 5.2.

Lemma 5.3. Let (ps,t, v, w) be a stall state triple (SST), with ps,t an up-down path,
node v ∈ ps,t settled by the forward search over ps,v and not stalled and node w ∈ ps,t
settled by the backward search over pw,t and not stalled. We further define

g(ps,t, v, w) = c(ps,v) + (1 + ϵ) · c̃(pv,w) + c(pw,t) .

If one of the nodes in pv,w ⊆ ps,t becomes stalled, there is an SST (qs,t, x, y) with

g(qs,t, x, y) < g(ps,t, v, w) .

Proof. Let u ∈ pv,w be the node that is stalled. We assume w.l.o.g. that pv,u ∈ ps,t is
an upward path, i.e. the stalling occurs in the forward search. Let u be stalled by x,
which is reached over upward path ps,x. Let rx,w be the up-down path constructed
from the concatenation of (x, u) and pu,w ⊆ ps,t following Lemma 5.2. Set y := w and
let qs,t be the concatenation of ps,x, rx,w, and pw,t. By construction, (qs,t, x, y) is an
SST with the above property since

g(qs,t, x, y) = c(qs,x) + (1 + ϵ) · c̃(qx,y) + c(qy,t)

= c(ps,x) + (1 + ϵ) · c̃(rx,w) + c(pw,t) (by definition)

≤ c(ps,x) + (1 + ϵ) · (c̃(x, u) + c̃(pu,w)) + c(pw,t) (Lemma 5.2)

≤ c(ps,x) + (1 + ϵ) · c(x, u) + (1 + ϵ) · c̃(pu,w) + c(pw,t) (Lemma 5.1)

< c(ps,u) + (1 + ϵ) · c̃(pu,w) + c(pw,t) (5.2)

= c(ps,v) + c(pv,u) + (1 + ϵ) · c̃(pu,w) + c(pw,t)

≤ c(ps,v) + (1 + ϵ) · c̃(pv,u) + (1 + ϵ) · c̃(pu,w) + c(pw,t) (Lemma 5.1)

= g(ps,t, v, w)

If u is stalled through the propagation of stalling information, we replace edge (x, u)
by the path from x to u, with ps,x still a maximal upward path starting at s.

140

5.3 Approximate Queries

With this lemma, we can show that our query algorithm is correct on G∗
ϵ(V,E

∗
ϵ),

even when using the approximate stall-on-demand technique. We state

Theorem 5.2. Theorem 5.1 holds when using approximate stall-on-demand (5.2).

Proof. We iteratively construct an SST with Lemma 5.3, starting with the up-down
path ps,t found by a query between s and t without stall-on-demand as in the proof of
Theorem 5.1. Obviously, at the beginning of the query, both nodes s and t are settled
and not stalled. Thus, (ps,t, s, t) is an SST and

g(ps,t, s, t) = c(ps,s) + (1 + ϵ) · c̃(ps,t) + c(pt,t)

= (1 + ϵ) · c̃(ps,t)
≤ (1 + ϵ) · d(s, t) , (Theorem 5.1)

holds. After a finite number of applications of Lemma 5.3, we obtain an SST (qs,t, x, y)
so that path qs,t is found by our query with stalling. For this path qs,t, we have

c(qs,t) = c(qs,x) + c(qx,y) + c(qy,t)

≤ c(qs,x) + (1 + ϵ) · c̃(qx,y) + c(qy,t) (Lemma 5.1)

= g(qs,t, x, y)

≤ g(ps,t, s, t) (Lemma 5.3)

≤ (1 + ϵ) · d(s, t) .

As our graph is finite and due to the strict relation in Lemma 5.3, we can apply
Lemma 5.3 only a finite number of times. The final SST (qs,t, x, y) is found by our
query algorithm as x is settled in the forward search and not stalled and as y is settled
in the backward search and not stalled. Since this is the final SST, no node on the
path qx,y is stalled. Thus, our query finds path qs,t or a shorter path.

As before, we only require the witnessed edge costs c̃ for our proofs. They are not
used in the actual query algorithm and therefore still do not have to be stored once
the preprocessing is done.

While Theorem 5.2 guarantees that the approximation ratio (1 + ϵ) of Theorem 5.1
also holds for our query algorithm when applying the approximate stall-on-demand
technique, it does not ensure that we obtain the same path and therefore the same
error. Figure 5.8 gives an example in which the observed error increases when using
the stall-on-demand technique.

Node Ordering. We introduce a slight modification to the heuristic node ordering
process. While not strictly required for approximate Contraction Hierarchies, it is a
necessary ingredient to handle dense graphs efficiently.

The preprocessing routine of exact Contraction Hierarchies updates the importance
values of all neighbors of a contracted node. In addition, it performs lazy updates for

141

5 Determining Efficient Paths in Large-Scale Sensor Networks

node
order

u

v

x

1

110

12

10

s
t

100

1

101

Figure 5.8: Stalling may increase the observed error. An apxCH query without
stalling finds up-down path ⟨s, u, x, t⟩ with an error of 0.9%. With stalling, only
the longer path ⟨s, v, x, t⟩ with an error of8.0%, is found since u is stalled by
v—⟨s, v, u⟩ (green) costs less than ⟨s, u⟩ (red). Note that shortcut (v, x) (grey) is
omitted in the approximate search graph G∗

0.1(V,E
∗
0.1) during contraction.

the node of least importance before contracting it, and it recomputes the importance
of all remaining nodes from time to time. Updating neighbors is very expensive in
a dense graph, though. Not only are there many neighbors, for which importance
values have to be recomputed, the required simulated node contraction is also much
more expensive than on sparse graphs. While we can limit local searches, the number
of relaxed edges remains high if we want to find any witness path (e.g. consider an
average node degree of 20, even reaching a node in 2 hops distance may require 400
edge relaxations). We therefore opt not to update neighbors of contracted nodes, and
since each update is expensive, we also forego updating the remaining nodes after too
many lazy updates. We only perform lazy updates.

For parallel preprocessing, we proceed slightly differently than for normal lazy
updates. After selecting an independent set of nodes for contraction, we recompute the
importance values of these nodes. Next, we check which of these nodes remain locally
minimal with respect to their updated importance. The ones that remain minimal are
contracted (in parallel) before the next independent set is determined.

5.3.3 Combination with Other Techniques

In general, we can use the approximate search graph of apxCH with any technique
that utilizes the exact CH search graph without any modifications as long as only
information of up-down paths is considered, like in many-to-many queries or PHAST.
Otherwise, however, we can encounter shorter paths than our approximate query is
able to find. This may lead to inconsistencies and thus to complications similar to
what we described for the (exact) stall-on-demand technique before. The general issue
is illustrated in Figure 5.9.

142

5.3 Approximate Queries

t

u

v
1 1

1 + ε
1 + ε node

order

s
2

Figure 5.9: By considering edge (s, v), which goes to a less important node, we
may encounter path ps,v,t (green), which is shorter than path ps,u,t (red). However,
an apxCH query between s and t only find the latter path. The shortcut edge (grey)
required for correctness in an exact CH search graph is omitted when using apxCH.

Combinations of goal-directed and hierarchical speed-up techniques have been very
successful in the past, see Bauer et al. [BDS+10], trading a little bit of preprocessing
time and memory for a substantial gain in query times. We therefore consider two
combinations of approximate Contraction Hierarchies with previous goal-directed
techniques in more detail.

apxCHASE. First, we consider the CHASE algorithm, which combines Contraction
Hierarchies with Arc Flags. The original implementation in [BDS+10] only applies arc
flags on a small core of the graph consisting of the most important nodes. This is done
as their preprocessing was expensive at that time and the overhead of storing them at
each edge substantial. By now, PHAST allows us to quickly compute arc flags even
for large graphs and by storing them not at the edges but in a hash map, we can save
a lot of memory. We therefore apply arc flags on the whole graph. Preprocessing for
CHASE computes a CH search graph and arc flags as for the individual techniques.
However, boundary nodes are now inferred from the search graph instead of the original
graph and arc flags are also computed for shortcut edges. The CHASE query algorithm
remains largely equivalent to the one of CH, but it checks whether an edge has a flag
set for the appropriate target region before relaxing it. Thus, the forward search prunes
all edges not on a shortest path to region Rt, and the backward search respectively
prunes all edges not coming from Rs, the region to which source s belongs.

To adapt CHASE for approximate queries, we exchange CH for apxCH. We call
the resulting heuristic algorithm apxCHASE. Preprocessing starts by computing the
approximate CH search graph, which is then used for preprocessing arc flags. We need
to modify the required graph searches for the latter to only consider up-down paths,
though. As they normally run on a flattened search graph, i.e. they relax edges to both
more and less important nodes, this may lead to the issues described above and thus
to inconsistencies between the shortest paths flagged by the arc flags and the paths
apxCH finds. However, when using PHAST to determine arc flags, this is automatically

143

5 Determining Efficient Paths in Large-Scale Sensor Networks

guaranteed as the shortest paths returned by PHAST are the same paths a CH (or
apxCH) query would return.

The apxCHASE query uses the changes to the stall-on-demand technique detailed
in Section 5.3.2 for apxCH. In addition, a path p may only stall an upward path
if the flag for the appropriate target region is set on all edges of p. However, the
stall-on-demand technique is usually switched off in CHASE (and apxCHASE) queries
as the computational overhead outweighs the performance gain in practice.

With these changes to CHASE we have
Theorem 5.3. Given a directed graph G(V,E) with edge cost function c, source node
s ∈ V , and target node t ∈ V . Let d̃(s, t) be the distance computed by the apxCHASE
algorithm with ϵ ≥ 0 and let d(s, t) be the optimal (shortest) distance in the original
graph. Then d(s, t) ≤ d̃(s, t) ≤ (1 + ϵ) · d(s, t).

apxCHALT. On some networks, ALT proves to be superior to using the Arc Flags
approach. We therefore propose our second combination, apxCHALT, which combines
apxCH with ALT. The pattern is the same as before with apxCHASE. We first compute
an apxCH search graph and then apply ALT on this graph. This time, however, we only
apply ALT on a small core like in the original CHASE algorithm or CALT. The reason
for this deviation to our above choices is the huge impact on memory consumption
that applying ALT on the whole graph would entail. Formally, the core consists of the
top fraction of nodes in the apxCH search graph with respect to the node order. ALT
preprocessing selects a small but fixed set of landmark nodes from within this core and
computes shortest path distances from and to all other nodes in the core.

The apxCHALT query algorithm is performed in two phases. The first phase is a
pure apxCH query without ALT that stops at nodes belonging to the core. The second
phase, if required, starts from the core nodes that have been settled during the first
phase of the query and only runs on the core. We continue with an apxCH query,
but now guided by ALT node potentials. The conditions when to stop each phase are
the same as for the CALT query. We further apply the same approach as CALT to
determine node potentials if source or target are not in the core, i.e. using appropriate
proxy nodes.

Overall, we obtain
Theorem 5.4. Given a directed graph G(V,E) with edge cost function c, source node
s ∈ V , and target node t ∈ V . Let d̃(s, t) be the distance computed by the apxCHALT
algorithm with ϵ ≥ 0 and let d(s, t) be the optimal (shortest) distance in the original
graph. Then d(s, t) ≤ d̃(s, t) ≤ (1 + ϵ) · d(s, t).

Similarly to the weighted A* algorithm of Section 5.2.3, we may choose to also
approximate the ALT part of the query by scaling the node potentials by a factor of
(1 + ϵ′). The approximation guarantees of both algorithms, apxCH and the weighted
ALT search, are multiplicative. We therefore can only guarantee that the computed
distances are no longer than (1 + ϵ) · (1 + ϵ′) times the shortest path distance.

144

5.4 Alternative Connections

5.4 Alternative Connections

We now turn to the computation of alternative paths. As already mentioned in
the related work section, our approach is based on the modelling and algorithms
introduced by Abraham et al. in [ADGW13]. We therefore begin with an overview
of their method, which we also refer to as baseline algorithm, before introducing our
own contributions. We develop query variants and show how to perform the required
preprocessing efficiently. An online setting with on-the-fly preprocessing and the
computation of alternative graphs complete our contributions.

5.4.1 Baseline Algorithm

Abraham et al. [ADGW13] model alternative paths between two nodes s, t ∈ V as a
concatenation of two shortest paths Ps,v and Pv,t. They are fully specified by the via
node v. The concatenated path Ps,v,t is a via path. A via path has to be reasonable to
be considered as a viable alternative, though. The authors describe a class of admissible
alternative paths in which a via path Ps,v,t has to obey three heuristic but natural
conditions: First, the via path has to be significantly different from the shortest path.
Second, every local decision along the via path has to make sense. And finally, every
via path should only be a fraction longer than a shortest path. Figure 5.10 gives
example alternative paths that do not respect the above conditions.

s t

(a)

s t

(b)

s t

(c)

Figure 5.10: Examples for alternative paths (green) to Ps,t (black) that are not
admissible due to the condition in Definition 5.2 on (a) limited sharing, (b) local
optimality, or (c) uniformly bounded stretch.

Before formalizing these conditions and the notion of an admissible alternative in
Definition 5.2, we need to introduce two properties of via paths: A via path Ps,v,t is
T -locally optimal (T-LO) if two conditions hold: (a) Every sufficiently short subpath
p′ ⊆ Ps,v,t with c(p′) ≤ T has to be a shortest path. (b) Let p′ be a subpath of Ps,v,t

and p′′ obtained from p′ by removing the ending nodes of p′ on both sides, then p′

has to be a shortest path if c(p′) > T and c(p′′) < T . A via path Ps,v,t is said to have
(1 + ϵ) uniformly bounded stretch (UBS) if every subpath pu,w ⊆ Ps,v,t is at most (1 + ϵ)
times longer than the respective shortest path Pu,w.

Given the above properties, Abraham et al. [ADGW13] introduce

145

5 Determining Efficient Paths in Large-Scale Sensor Networks

Definition 5.2 (Admissible Alternative). With α, γ ∈ [0, 1] and ϵ ≥ 0, a path Ps,v,t

between s and t is called an admissible alternative to Ps,t if it satisfies the following
three conditions:

1. c(Ps,t ∩ Ps,v,t) ≤ γ · c(Ps,t), (limited sharing)

2. Ps,v,t is T -locally optimal for T = α · c(Ps,t), and (local optimality)

3. Ps,v,t has (1 + ϵ)-UBS. (uniformly bounded stretch)

The summed cost of all edges common to both paths is denoted by c(Ps,t ∩ Ps,v,t).
The above measures require a number of shortest path queries to be verified that is
quadratic in the number of nodes of Ps,v,t. Generally speaking, this is not practical for
a setting in which many queries have to be answered in a short timeframe.

A Practical Algorithm. When requesting an alternative to a shortest path Ps,t, we
obviously cannot consider all nodes in the graph and check whether they induce an
admissible alternative. We cannot even consider a sizeable amount of them since the
conditions that have to be checked are expensive to compute. In order to still obtain
reasonable alternatives in an efficient manner, one has to resort to heuristics.

Abraham et al. [ADGW13] give a practical solution based on a bidirectional Dijkstra’s
algorithm, called X-BDV, to compute single via paths that are reasonable and good
alternatives. The heuristic incorporates ideas from the plateau method and works
as follows: An exploration query identifies potential alternative paths. A (forward)
shortest path tree is grown from s and another (backward) tree from t until all nodes
are settled that are not farther than (1+ϵ) ·c(Ps,t) away from the root of their respective
tree. This bound is tight as no admissible path can be any longer than this threshold.
Next, each node v that is settled in both search trees becomes a via node candidate.
Three measurements are computed in linear time for each of the candidates: c(Ps,v,t),
the length of via path Ps,v,t, σ(Ps,v,t), the amount of sharing of Ps,v,t with the optimal
route, and pl(Ps,v,t), the length of a longest plateau containing v. These more practical
measures are used to sort all candidates in non-decreasing order according to the
priority function f(Ps,v,t) = 2 · c(Ps,v,t) + σ(Ps,v,t)− pl(Ps,v,t). The first via path Ps,v,t

is returned that is approximately admissible. If no viable alternative can be found, we
report this as a negative result.

Before formalizing the notion of approximate admissibility in Definition 5.3, we
introduce a 2-approximation for T -local optimality—called T -test—that is easy to
compute in linear time. Given a via path Ps,v,t and a parameter T , let u be the closest
node on Ps,v that is at least T away from v or s. Likewise, w is the closest node on
Pv,t that is also at least T away or s. Such a path Ps,v,t is said to pass the T -test if
the portion of Ps,v,t between u and w is a shortest path. If pl(Ps,v,t) > T , the T -test is
always successful.

Given the above approximation, Abraham et al. [ADGW13] specify

146

5.4 Alternative Connections

Definition 5.3 (Approximately Admissible). With α, γ ∈ [0, 1] and ϵ ≥ 0, a path Ps,v,t

between s and t is an approximately admissible alternative to Ps,t if the following three
conditions hold:

1. σ(Ps,v,t) < γ · c(Ps,t), (limited sharing)

2. successful T -test for T = α · c(Ps,v,t\Ps,t), and (local optimality)

3. c(Ps,v,t\Ps,t) < (1 + ϵ) · c(Ps,t\Ps,v,t). (small stretch)

We have c(Ps,v,t\Ps,t) = c(Ps,v,t) − σ(Ps,v,t) and c(Ps,t\Ps,v,t) = c(Ps,t) − σ(Ps,v,t).
Note that Abraham et al. define local optimality and stretch with respect to the detour
of the alternative to the shortest path and not with respect to the entire path. This is
done for practical reasons, see [ADGW13] for their reasoning.

We may exclude nodes that are not approximately admissible before sorting the
remaining ones according to the above priority function as all required measures are
already available during the exploration query. We further need to ensure that forward
and backward search consider the same paths in the presence of multiple equidistant
nodes. Otherwise, no meaningful plateaus are found. If this is not an option, we have
to omit the plateau term in our priority function and perform the T -test explicitly.

The X-BDV approach can be iterated to compute multiple via paths that represent
an alternative to the shortest path and to all previous alternatives. In the presence of
multiple alternatives, σ(Ps,v,t) denotes the overlap to Ps,t and to all previous alternatives.
The other measures remain the same as for one alternative.

A Faster Variant. Abraham et al. [ADGW13] further apply the query of Contraction
Hierarchies to the above method in order to obtain a faster algorithm, X-CHV, which we
describe next. The forward and backward (CH) search spaces of nodes s and t are fully
explored. Nodes v in the forward search space are reached over path ps,v with forward
distance µf (v) and, respectively, nodes in the backward search space are reached over
path pv,t with backward distance µb(v). These paths do not have to be shortest paths
and may still contain shortcut edges. For each node v that occurs in both search spaces,
a preselection similar to the conditions in Definition 5.3 is done. Nodes are discarded for
which the sum of forward and backward distance is longer than a certain fraction of the
length of the shortest path, i.e. µf (v)+µb(v) ≥ (1+ ϵ) · c(Ps,t). These distances are not
necessarily correct but at least upper bounds. Thus, we have µf (v) + µb(v) ≥ c(Ps,v,t).
We further check whether the approximated overlap σapx(ps,v,t) of the concatenated
paths ps,v and pv,t in the forward and backward search spaces is at most as long as a
certain fraction of the shortest path distance, i.e. σapx(ps,v,t) < γ · c(Ps,t). Paths ps,v
and pv,t are unpacked as needed. In addition, a condition regarding the stretch of these
paths must hold, i.e. c(ps,v)+ c(pv,t)−σapx(ps,v,t) < (1+ ϵ) ·

(c(ps,t)−σapx(ps,v,t)

. The

remaining candidates are ranked according to the same priority function as X-BDV
except that approximated overlap and distance values are used. Moreover, the plateau

147

5 Determining Efficient Paths in Large-Scale Sensor Networks

length is always zero for methods based on Contraction Hierarchies as their forward
and backward search spaces only meet but do not overlap. We compute the exact
via path Ps,v,t for nodes v in the order of the ranking. The first node for which the
conditions of Definition 5.3 hold is selected as via node.

The success rate of X-CHV is inferior to X-BDV since search spaces are much
narrower. To cope with these smaller success rates, Abraham et al. introduce a relaxed
exploration phase. This relaxed query is allowed to search more nodes than the plain
CH query to (hopefully) find more viable via node candidates. While the latter prunes
all edges to lower-order nodes in the search graph hierarchy, the relaxed query may look
to less important nodes under certain conditions. Let predi(u) be the i-th ancestor
of u in the search tree. The x-relaxed CH query prunes an edge (u, v) if and only
if v precedes all vertices u, pred1(u), . . . , predx(u) in the order of the hierarchy. If u
has fewer than k ancestors v is never pruned. A 0-relaxed CH query corresponds to
plain Contraction Hierarchies. Relaxed CH search spaces may contain plateaus due to
this “downward” search, but the priority function continues to use pl(Ps,v,t) = 0. For
our implementation, we apply a slightly modified relaxation as it achieves superior
runtimes with only a small impact on the found alternatives. Our variant prunes an
edge (u, v) if and only if v precedes node predx(u) in the order of the hierarchy. It
explores less than a third of the nodes compared to the original relaxation technique.

This algorithm, the x-relaxed variant of X-CHV, is the starting point of our work.

Engineering the Baseline Algorithm. The X-CHV algorithm can be further accel-
erated by exchanging some of its algorithmic components by more efficient ones. While
this is mostly straight-forward, we give a description for the sake of completeness. This
engineered variant has not been described in the previous work and is used later in our
simulations in Section 5.5.3.

Recall that the algorithm is a two-step method. A bidirectional exploration query
searches for via node candidates that are subsequently tested using a number of point-
to-point shortest path queries, which we call target queries. The obvious approach is to
handle path searches by faster methods than Contraction Hierarchies. One has to keep
in mind, though, that the optimization goals for target and exploration queries are
conflicting. The first one should be as fast as possible and therefore settle as few nodes
as possible that are not in the shortest path, while the latter one has to explicitly
explore nodes that are not on the shortest path.

For instance, we apply CHASE as introduced in Section 5.1.1 for the target queries.
Albeit any path oracle could be used in principle, CHASE is a natural choice as we
show in the following sections. The only additional data necessary are a partitioning
of the input graph and precomputed arc flags. While the point-to-point queries of
CHASE are very fast, their search spaces are too narrow to be used for exploration as a
comparison in Appendix C confirms. In addition to that, we store all shortcut edges of
the CH search graph pre-unpacked to replace the recursive path unpacking procedure

148

5.4 Alternative Connections

by a simple table lookup. Both optimizations have equal impact on the runtimes. The
combination of these two steps speeds up the computation by roughly a factor of two
when compared to a simple CH query. We refer to the baseline algorithm X-CHV that
uses CHASE for target queries and pre-unpacked shortcut edges as X-CHASEV.

5.4.2 Preprocessed Candidate Nodes

The analyses of Abraham et al. [AFGW10] show that speed-up techniques to Dijkstra’s
algorithm work especially well on certain classes of graphs where most shortest paths
leaving a region go through a small set of nodes, i.e. all shortest paths out of that
region are covered by this small node set. Their analyses lead us to the following
similar assumption for alternative paths:

Assumption 5.1 (Limited Number of Alternative Paths). If the number of shortest
paths between any two sufficiently far away regions of a network is small [AFGW10],
so is the number of plateaus for the Choice Routing algorithm [Cam05]. Likewise, the
number of admissible alternative paths of the algorithms in [ADGW13] is small and
can be covered by few nodes.

As any path between two regions of a partitioned graph has to go through the
boundary nodes of the regions, it should suffice to consider only alternative paths
between the boundary nodes. As distances between (non-neighboring) regions are much
longer than within a region, the expected error due to this simplification should be
minimal. Preliminary simulations support our assumptions. We observe that although
positions of via nodes are (sometimes substantially) different, the number of good
alternative paths between the two regions is rather limited. This variation in via node
positions is a consequence of any node on a plateau being a via node for the same
alternative over this plateau. In the light of these observations, the above assumption
leads to the natural question whether the set of via nodes for entire regions is small
and can be used to speed up the computation of an alternative path.

In the following paragraphs, we are interested in two things. First, we investigate
how to find good candidate sets for via nodes between pairs of regions and second, how
to actually extract good alternative paths from these candidates. Moreover, we would
like sets that can be efficiently precomputed in a preprocessing step and for which the
resulting alternative paths are approximately admissible and of good quality.

Single-Level Via Node Candidates. We split the generation of alternative paths
into a preprocessing and a query phase. The preprocessing generates a small amount of
additional data by bootstrapping that is exploited by the query phase. Bootstrapping
implies that the query algorithm for computing alternative paths is used during
preprocessing as well. Our working assumption is that the number of admissible
alternative paths between any two nodes and likewise the number of such paths

149

5 Determining Efficient Paths in Large-Scale Sensor Networks

between (connected) regions of the network is rather limited and that they can be
represented by a very small set of via nodes. Hence, we partition the graph and apply
bootstrapping to generate via node candidate sets for pairs of regions {R1, R2}, labelled
C(R1, R2). We assume the pairs to be ordered since shortest paths between two nodes
and thus alternatives to them can be different in either direction.

Assume that for each pair of non-neighboring regions, we have already precomputed
a set of via node candidates. Since candidates are already present, we do not need to
identify them during an exploration phase. Computing an alternative path to a given
shortest path Ps,t becomes straight-forward. We iterate over all nodes v in the via node
candidate set C(Rs, Rt) of the pair of regions to which s and t belongs. For each v we
check whether Ps,v,t is approximately admissible according to Definition 5.3. The first
approximately admissible path is returned as the result of the procedure in a greedy
fashion. If there exists no appropriate node in the via node candidate set or the set is
empty, we report this as a negative result. Figure 5.11(a) illustrates the query process.

s

RtRs

C(Rs, Rt)

t
v

Ps,t

Ps,v,t

(a)

R2R1

C(R1, R2)

(b)

Figure 5.11: (a) Single-level query between s and t. The regions of s and t are
marked in blue and red, the associated via node candidate set C(Rs, Rt) in green.
The selected via node v and alternative path Ps,v,t are highlighted. (b) Preprocessing.
Each boundary node (blue) computes alternative paths to all boundary nodes of the
other region (red). Processed shortest and alternative paths are shown as well as
the already found via nodes (green). The currently considered path is highlighted.

When considering a query between neighboring regions or within a single region, we
perform X-CHASEV as a fallback. The reason for this procedure is our observation
that the number of candidates is often too numerous in these cases. We observe average
candidate set sizes of well above thirty for neighboring regions and even more within a
single region. It is faster to use the baseline algorithm than to verify the pregenerated
node sets in most of these instances. Figure 5.12(a) depicts an example. The same
effect may even emerge between regions that are not adjacent if the average region size
is chosen too small as non-neighboring regions remain close to each other.

Precomputing via node candidate sets starts with a partitioning of the underlying
network. As the graph is already partitioned for CHASE, we can reuse this data. A
set of via node candidates is generated greedily for each pair of regions by computing

150

5.4 Alternative Connections

alternative paths for all pairwise combinations of their boundary nodes. We store
a tentative set of via node candidates for each pair of regions that keeps track of
the candidates that have been identified thus far during preprocessing. To compute
alternatives, we apply the above query algorithm with the tentative node set as
bootstrapping. When an approximately admissible alternative is found over a node
in this set, we continue with the next pair of boundary nodes. Otherwise, we run
the baseline algorithm X-CHASEV to identify a new one. Whenever such a fallback
query results in a new via node, it is added to the set of tentative via nodes. This
continues until all pairs of boundary nodes have been considered. Figure 5.11(b) depicts
a snapshot of a preprocessing run.

If we want to support multiple alternatives, we need separate via node candidate sets
for each subsequent alternative. The query algorithm applies the set corresponding
to the requested alternative with the overlap computation respecting all previous
alternatives. During preprocessing, we compute the desired number of alternatives for
each pair of boundary nodes. We may independently fall back to X-CHASEV for each
one, e.g. we may require X-CHASEV to obtain a second alternative but still find a
good one with the tentative candidate set for third alternatives. Whenever we find a
new via node with our fallback query, we store it in the appropriate candidate set.

Multi-Level Via Node Candidates. So far, our algorithm does not compute via node
candidate sets for neighboring pairs of regions and within a single region. We propose a
second, fine partitioning to handle this shortcoming. Our network is partitioned into an
order of magnitude more regions. The fine partitioning should respect the coarse one
in the sense that all nodes of a fine region belong to exactly one of the coarse regions.
While not strictly required, it reduces preprocessing times and memory requirements
as discussed below. We denote the fine region to which node v belongs by Mv. Fine
via node candidate sets are indicated by fine regions, i.e. C(M1,M2). Figure 5.12(b)
and 5.12(c) give examples of the expected number of via node candidates.

We do not run a full precomputation for all pairs of fine regions. Albeit technically
feasible, this would induce a large number of additional alternative path computations,
quadratic in the number of fine regions. This, in turn, would translate into roughly two
orders of magnitude more work in practice. As our algorithm performs well for most
pairs of coarse regions, we run the same preprocessing algorithm as before only on a
subset of all pairs of fine regions. More precisely, we preprocess each non-neighboring
pair of fine regions that either belongs to the same coarse region or to a pair of
neighboring coarse regions, i.e. to those pairs of regions for which X-CHASEV is used
during a single-level query. This results in a linear number of pairs of regions that have
to be considered. If the fine partitioning does not respect the coarse one, preprocessing
becomes more costly as more fine regions have to be considered for each coarse region,
even some that only extend into the coarse region with a single node.

A query recurses to the fine partitioning for nodes in neighboring coarse regions

151

5 Determining Efficient Paths in Large-Scale Sensor Networks

C(R1, R1)

R2

R1

(a)

M2M1

C(M1,M2)

(b)

C(M1,M2)

M2
M1

(c)

Figure 5.12: (a) Coarse via node candidate set C(R1, R2) between neighboring
coarse regions R1, R2 is very large, while (b) fine via node candidate set C(M1,M2)
between fine regions M1, M2 is of a manageable size. (c) Fine via node candidate
set C(M1,M2) between neighboring fine regions M1, M2 is again very large.

or within the same coarse region. When source and target are within the same or in
neighboring fine regions, plain X-CHASEV is run as a fallback. As fine regions are
much smaller, source and target are generally very close to each other. Thus, even the
fallback query runs fast and poses no time penalty. In theory, though, it is possible that
another level of partitioning is beneficial for very large graphs or regions. Algorithm 5.2
gives a more formal description of the multi-level query algorithm.

Algorithm 5.2 Multi-Level Query Algorithm with Candidate Sets
Input: Graph G(V,E), source s, target t, via node candidate sets C,

coarse regions Rs, Rt, fine regions Ms,Mt

Output: Approximately admissible alternative path Ps,v,t (∅, if none exists)

1: if Rs ̸= Rt and not neighboring then ◃ single-level query
2: C ′ ← C(Rs, Rt)
3: else if Ms ̸= Mt and not neighboring then ◃ multi-level query
4: C ′ ← C(Ms,Mt)
5: else ◃ fallback query
6: C ′ ← ExplorationQuery(s, t) ◃ identify nodes in search space overlap
7: C ′ ← filter(C ′) ◃ discard unsuitable nodes
8: C ′ ← sort(C ′) ◃ rank nodes by f(Ps,v,t)
9: end if

10: for all v ∈ C ′ do
11: if isApproxAdmissible(Ps,v,t) then ◃ see Definition 5.3
12: return Ps,v,t ◃ viable alternative found
13: end if
14: end for
15: return ∅ ◃ no viable alternative found

152

5.4 Alternative Connections

Further Engineering. After introducing our bootstrapping technique, we now turn
to engineering its performance. There are many opportunities for further improvements
of the preprocessing as well as the query algorithm. All subsequent ideas are applicable
to both the single-level and multi-level variant of our approach.

We begin by considering extensions to our preprocessing step: The computation of via
node candidate sets is easily adaptable to shared-memory parallelism as the processing
of each pair of regions does not depend on the other pairs. This parallelization scales
almost linearly with the number of processors until the memory bandwidth is saturated.
It has no effect on the quality of the via node candidate sets as the selection of via
nodes stays the same. We may further accelerate the preprocessing step by sampling.
Most alternative path queries only verify the existence of a via node and do not result
in a new node that is added to the tentative via node candidate set. Thus, a natural
approach is to consider only a subset of all pairs of boundary nodes for each pair of
regions instead of doing a full precomputation. Given a sampling rate s, we perform
sampling by choosing 1/s boundary nodes of each region at random and computing
alternatives only for this fraction of nodes. This effectively decreases the runtime of the
preprocessing step while retaining the quality of the candidate sets if the sample rate is
chosen reasonably. We further observe that a substantial amount of the computational
effort during preprocessing is spent in search space exploration. Preprocessing times can
be reduced by about a factor of three by storing forward and backward search spaces
of the boundary nodes since they are required multiple times during preprocessing.
However, the impact on memory consumption is not negligible. Preprocessing for each
pair of regions involves a large number of target queries between the boundary nodes
and the nodes in the tentative via candidate set. Thus, running the precomputation
with a many-to-many technique like [KSS+07] seems to be reasonable. However, the
computation takes about the same time as the above method when storing search
spaces. When not expending memory for the storage of search spaces, though, the
many-to-many technique is superior. We already argued that the sizes of the via node
candidate sets are too large for queries between neighboring regions or within a single
region. In principle, this may occur for any pair of regions, but it is more likely on
dense graphs and between regions that are close to each other. To counter this issue,
we may introduce an upper bound Vmax for the size of the via node candidate sets.
As soon as the preprocessing computes this many via nodes for a pair of regions, the
processing of this pair is stopped and it is marked. The query considers marked pairs
of regions as neighboring regions and always uses the fallback query.

We now move on to extensions to our query algorithm: Similar to the preprocessing
step before, we can accelerate our query algorithm by storing forward and backward
search spaces of the via nodes in the candidate sets. This effectively halves the duration
of the target and exploration queries that involve these via nodes. As already mentioned
before, we may further store shortcut edges pre-unpacked to reduce runtimes. Another
tuning parameter is the order in which via node candidates are stored. We keep the
(tentative) candidate sets ordered by the number of how often the node is used as a

153

5 Determining Efficient Paths in Large-Scale Sensor Networks

via node during the preprocessing step. This order is not necessarily a best one as it
heavily depends on the sequence in which the pairs of boundary nodes are processed.
Fully sorting, i.e. computing some best among all possible orders, independent of the
processing sequence, is technically feasible and leads to slightly superior runtimes for
our query algorithm, but it is also computationally expensive to generate. Our query
algorithm greedily chooses the first viable via node from the candidate set. We could,
however, opt to select the via node that yields a best quality alternative. This is, of
course, much more expensive as all nodes in the via node candidate set have to be
examined. Note that the choice of the via node has a direct impact on whether viable
subsequent alternatives can be found. Consider the example in Figure 5.13. The via
node selected for the first alternative may yield a via path so that all possible choices
of via nodes for a subsequent alternative overlap substantial parts of this path. Thus,
none of them is admissible due to the overlap with the first alternative, but both of
them would have been admissible by choosing a different first alternative.

(b.1)

(b.2)

(b.3)

(b.4)(a)

s t

C2

C1 s t

Ps,v1,t

Ps,u2,t

Ps,u2,t

Ps,v2,t

s t

Ps,v2,t

t

ts

s

Ps,t

Ps,v1,tPs,u1,t

Ps,u1,t

u2

u1

v2v1

Figure 5.13: (a) Shortest path Ps,t with two sets of via node candidates, C1 (green)
for the first and C2 (blue) for the second alternative. (b) Possible choices for the
first and second alternative. As seen in Figure (b.1) and (b.2), choosing the upper
via node candidate u1 for the first alternative results in too much overlap. By
choosing the lower via node candidate u2 as in Figure (b.3) and (b.4), however, the
first and second alternative path do not share any subpath.

For both, preprocessing and query algorithm, we can exchange the underlying
shortest path algorithms for our approximate variants apxCH and apxCHASE if the
considered network is too dense. This decreases success rates as the search space of
apxCH is much smaller than that of normal Contraction Hierarchies. However, as
before, this can be amended by a relaxed query at only a small impact on runtimes.
Our approximate algorithms work right out of the box, but one should make sure that
negative distance differences are handled correctly, especially during relaxed queries
that not only consider upward paths in either search direction.

154

5.4 Alternative Connections

Complexity. Preprocessing and query times of our approach depend on the baseline
algorithm and the underlying shortest path algorithm. They determine the size of
the via node candidate sets and the cost of shortest path queries. Moreover, the
quality of graph partitioning has an impact on preprocessing. We denote the time
complexity of the baseline algorithm by Tbaseline and the time complexity of the test
for approximate admissibility by Tcheck. The running time of the latter is dominated
by four point-to-point shortest path queries.

The preprocessing algorithm tries to compute an alternative route for each pair of
boundary nodes for all region pairs. In the worst case, each of these queries finds a new
via node after unsuccessfully testing all previous via node candidates for approximate
admissibility. Consider the graph in Figure 5.14(a). Each boundary node of a region is
connected to exactly one boundary node of the other region over a direct edge as well as
over an intermediate node. Thus, assuming R regions and at most B boundary nodes
per region, we obtain Tprepro = O

R2B2 · (Tbaseline + B2 · Tcheck)

as time complexity

of the preprocessing step. We may replace the factor B2 by Vmax, the maximum
cardinality over all via node candidate sets. By applying sampling to consider only√
B of the boundary nodes of each region, we can subtract another factor of B from

the running time. As seen in our respective simulations in Section 5.5.3, this has little
impact on quality and even larger reductions remain practical.

The query algorithm applies a baseline algorithm if the regions of source and target
node are neighboring or the same. This has the same time complexity as the baseline
algorithm since the overhead for retrieving regions and candidate sets is constant.
Otherwise, we have to check all via node candidates of the considered pair of regions
for approximate admissibility in the worst case, e.g. if no viable alternative is found.
Again, overhead due to accessing regions and candidate sets is negligible. This gives us
the time complexity Tquery = O(Tbaseline + Vmax · Tcheck) of the query algorithm.

Considering plain X-CHV as baseline algorithm for the exploration query, via node
candidates can only be those nodes at which forward and backward search spaces
meet. In the worst case, both search spaces are equal besides the root nodes as
depicted in Figure 5.14(b). Thus, all nodes become via node candidates. The size of
Contraction Hierarchies search spaces is bound by O(h logD) according to Abraham
et al. [ADF+13], with h the highway dimension h and D the diameter of the considered
graph. This yields a very rough upper bound for the maximum size Vmax of the via
node candidate sets. In practice, we only see the square root of these values as usually
only the borders of the search spaces touch and have to be considered. However, a
tight analysis remains an open question.

Abraham et al. bound the time complexity of a Contraction Hierarchies query by
O

(h logD)2

[ADF+13]. The same holds for the time complexities of our target and

exploration query when using plain CH and thus for Tbaseline and Tcheck. No theoretical
analysis exists for Arc Flags and consequently neither for CHASE. The time complexity
of Contraction Hierarchies can serve as a rough upper bound for CHASE, though, as
the CHASE query degenerates to plain CH if we assume that all arc flags are set.

155

5 Determining Efficient Paths in Large-Scale Sensor Networks

In conclusion, we obtain Tquery = O

(h logD)3

for 0-relaxed, single-level X-CHASEV

queries and Tprepro = O

(RB)2 ·Tquery

for the respective preprocessing. The multi-level

variant has the same query time complexity, while preprocessing times are increased by
the additional pairs of regions to be considered. We cannot reasonably assess search
space sizes and query times for relaxed CH queries, though. Considering multiple
alternatives introduces a constant factor to both running times.

Note that the cited complexities by Abraham et al. assume an optimal CH prepro-
cessing, which is hard [BCK+10]. With a more realistic polynomial time preprocessing,
each term (h logD) has to be replaced by (h log h logD) [ADF+13].

R1
R2

(a)

s

t

(b)

Figure 5.14: (a) Worst-case via node candidate set size: Each pair of boundary
nodes (blue, red) between region R1 and R2 induces a unique via node (green). (b)
Worst-case CH search space overlap: Forward (blue) and backward (red) search
spaces from s and to t overlap in all nodes but the root nodes (green). Recall that
the query only follows edges to more important nodes.

Correctness. To complete the description and analysis of our approach, we argue
that its results are correct with respect to the underlying baseline algorithm.

If our query algorithm returns an alternative path, it is always approximately
admissible according to Definition 5.3—just as the results of a baseline algorithm. This
is due to the construction of our algorithm. If the regions to which source and target
belong are neighboring or the same, the result of a baseline algorithm is returned which
guarantees approximate admissibility. Otherwise, all nodes in the via node candidate
set of the respective pair of regions are checked for approximate admissibility until one
is found or all have been tested. This is done with the same routine as for the baseline
algorithm. Thus, a reported alternative is guaranteed to be approximately admissible.

However, if our query algorithm fails to find an alternative, there is still a chance
that the baseline algorithm would find one. This may happen as our preprocessing
routine only computes alternatives between the boundary nodes of each pair of regions.
As actual queries usually originate from within the regions, they are slightly longer
compared to queries between boundary nodes, and thus the approximate admissibility
criteria may become violated and via paths rejected in turn.

156

5.4 Alternative Connections

We can guarantee to find approximately admissible alternatives for all queries that
the baseline algorithm does by applying it as a fallback to all queries that did not
yield an alternative after testing all via node candidates. This is the same approach
as during the learning phase of our online algorithm in the following section. Average
runtimes increase since the baseline algorithm is much slower than our approach, but
this is partially amortized as it is only needed in few queries. Moreover, our evaluation
of the online algorithm in Section 5.5.3 shows that running this fallback query has
virtually no (positive) impact on the success rate and average solution quality. Thus,
it can be entirely omitted in the presence of preprocessed via node candidate sets.

5.4.3 Applications
We now move on to two applications that our approach can be naturally extended
to. We consider an online setting in which our algorithm does not require explicit
preprocessing of via node candidate sets and improves over time. We further discuss
the efficient generation of alternative graphs from our candidate sets.

Online Algorithm. Our method can be easily adapted to an online setting. In
this case, via node candidate sets are not computed in advance but instead learned
on-the-fly from a stream of queries. The resulting online algorithm is well-suited to
be added on top of a legacy system that already implements one of the algorithms of
Section 5.4.1 or another method based on via nodes. The only other prerequisite is a
partitioning of the graph of the considered network. We regard this requirement as a
minor issue and largely orthogonal to the problem at hand. The online algorithm is
further suitable for applications in which the network data changes on a regular basis.
Under such circumstances, one would not want to spend much time on preprocessing
additional data as its life-time is very limited. Our online algorithm is an extension to
the bootstrapped preprocessing routine proposed in Section 5.4.2 and as such easy to
implement, which we demonstrate now.

As mentioned above, the via node candidates are not precomputed but learned
on-the-fly while answering queries for alternative paths. Thus, the candidate sets for
each pair of regions are empty at first. When answering a query for an alternative
path to Ps,t, we look up the via node candidate set C(Rs, Rt) of the pair of regions to
which s and t belongs. This set may still be empty or already filled with via nodes
from previous queries. If one of the nodes in the set yields an approximately admissible
alternative to Ps,t, we report the respective via path. Otherwise or if the set was
empty, we use—similar to our preprocessing step—some baseline algorithm as a fallback
method to compute an approximately admissible alternative. If this is successful, we
store the via node in the respective candidate set. Thus, the fallback method gradually
fills the via node candidate sets. When enough candidates have been learned from
the stream of queries, no further fallback computations are performed. This decision
is made independently for each candidate set. Our simulations in Section 5.5.3 show

157

5 Determining Efficient Paths in Large-Scale Sensor Networks

that the sets saturate quickly for coarse via node candidates. About t = 60 queries
for each pair of regions suffice to gather enough information to be competitive with
respect to success rate and quality compared to explicit preprocessing. If we cannot
find an approximately admissible alternative for a query at this point, we report this
as a negative result. Multiple alternatives can be handled in the same way as before.

Alternative Graphs. Another application we want to highlight is the computation of
alternative graphs. As briefly introduced among our related publications, the concept of
an alternative graph aims to encode many alternatives at once. Due to their sparseness,
these subgraphs of the considered network may be later processed efficiently by more
expensive path finding algorithms. Our method is a natural extension to our via node
candidate sets and aims at quickly providing alternative graphs in the absence of other
dedicated methods or supplementing these techniques. The approach is simple and
easy to implement as we show now.

For a given query between source s and target t, we first compute a shortest path
Ps,t and add it to our alternative graph, which is initially empty. Next, we consider the
via node candidate set C(Rs, Rt) of the regions to which s and t belong. Via paths are
computed iteratively for all nodes in this set and added to the alternative graph unless
they are longer than a certain threshold. We stop when the via node candidate set
is exhausted or a maximum number of via paths have been added to the alternative
graph. Figure 5.15 depicts an example graph.

s

RtRs

C(Rs, Rt)

tPs,t

Figure 5.15: Alternative graph between s and t constructed from via node candidate
set C(Rs, Rt). It consists of the shortest path Ps,t (black) and four alternative paths
over the via nodes in C(Rs, Rt) (green).

We distinguish between single-level alternative graphs that are generated only from
our coarse via node candidate sets and multi-level alternative graphs that further
consider the fine candidate sets. Alternative graphs for nodes in neighboring or within
the same region only contain the shortest path as the respective candidate sets are not
computed during preprocessing and thus remain empty.

Approximate admissibility is not verified for the added via paths as the established
quality measure for alternative graphs in [BDGS11] does not consider it. If this or other
properties are required, though, they can be easily verified on the sparse alternative

158

5.5 Simulations

graph. However, we still check each via path Ps,v,t for self-overlapping subpaths as in
Figure 5.16(a) and remove them. Due to the construction of via paths such overlaps
only occur around via node v. Thus, to remove these appendages, it suffices to
traverse Pv,t in forward and Ps,v in backward direction until both paths diverge. All
nodes but the last common node v′ are pruned. Ps,v′,t remains a via path due to the
subpath optimality of shortest paths and can be added to the alternative graph, see
Figure 5.16(b) for the results.

s t

v′

v

Ps,v,t

Ps,t

(a)

s t
Ps,t

Ps,v′,t

v′

(b)

Figure 5.16: (a) Subpath Pv′,v,v′ of Ps,v,t is not locally optimal and therefore pruned.
(b) The remaining via path Ps,v′,t is added to the alternative graph.

The computation can be accelerated by running a one-to-many search [KSS+07]
from s to all nodes in the via node candidate set and a subsequent many-to-one search
from these nodes to t. The cited publication applies a deprecated technique, Highway
Hierarchies, but the general approach is directly applicable to Contraction Hierarchies
and CHASE. Runtimes can be further improved by storing additional data. As suggest
in Section 5.4 as an option for further engineering, we may store the forward and
backward search spaces for all nodes of the via node candidate sets. All paths that are
(possibly) added to an alternative graph by our approach could then be identified by a
forward search from s and a backward search from t only. Pruning operations have
little impact on runtimes as they only take time linear in the length of the appendage
and can be performed while unpacking and reporting the path.

5.5 Simulations

We conclude the chapter by providing extensive simulations in which we study the
computation of (approximate) shortest paths and reasonable alternatives to them. We
compare the performance of our algorithms to previous techniques in various aspects.
Most of our simulations use one core of Machine A. The preprocessing of Contraction
Hierarchies and all instances of PHAST were performed in parallel on machine A, with
PHAST also applying SSE instructions. Preprocessing for via node candidate sets was
done in parallel on machine B.

159

5 Determining Efficient Paths in Large-Scale Sensor Networks

5.5.1 Simulational Setup

Network Setting. We consider two distinct types of networks, unstructured random
networks (box) and infrastructural networks that model roads and population densities
in some sense (road). We generate the topologies of our simulated sensor networks by
iteratively placing nodes on a squared area. Node positions are chosen uniformly at
random. To model the above types, we consult a probability map to decide whether a
node is actually placed. We stop after having placed 1 000 000 nodes. Edges are set so
that the resulting graph is a unit disk graph (see Section 2.2.1), with distances scaled
to obtain an average node degree davg within a tolerance of 1%. We assume bidirected
edges. Edge costs are set to the Euclidean distance between nodes to the power of p.
We extract the largest strongly connected component of this graph. Node positions are
only used during graph generation. The algorithms in our simulations are only aware
of the graph topology. The resulting graph sizes are found in Table C.2.

The probability map for network type “box” is uniform. The map used for type
“road” is depicted in Figure 5.17(a). Lighter areas denote higher probability for
node placement, and vice versa. The map is modelled after the OpenStreetMap1

data for Regierungsbezirk Karlsruhe. Appendix C goes into more details on how we
extract OpenStreetMap data and compute the probability map. Examples for network
topologies using either network type are given in Figure 5.17(b) and 5.17(c).

(a) (b) (c)

Figure 5.17: (a) Probability map for network type “road”. Network topologies with
davg = 10 for network type (b) “box” and (c) “road”.

We apply three different edge cost functions in our simulations. We use p = 0 to
model hop counts, p = 1 for signal latencies, and p = 2 gives us the energy costs for
free-space communication. Since the shortest path problem only gets easier to solve
for larger values of p, see [BDS+10], we do not consider values above p = 2.

1http://www.openstreetmap.org/. Accessed: 2014-08-06.

160

http://www.openstreetmap.org/

5.5 Simulations

We consider multiple distinct network settings in our simulations. Each setting is
defined by the network type, the average node degree, and the power used for the edge
costs. Our default setting is of network type “road” and uses davg = 10 and p = 1.

Measurement Procedure. All reported query measures are based on 10 000 random
but fixed queries unless otherwise stated. We report average values. We present several
results as plots against the Dijkstra rank, with each data point representing 1 000
queries. The Dijkstra rank of a query is the number of nodes Dijkstra’s algorithm
would settle. Statistics for the partitionings of each network setting, i.e. edge cut value,
number of boundary nodes, and neighboring regions are listed in Table C.2.

Shortest Path Techniques. We measure the performance of shortest path techniques
by the three values preprocessing time, query time, and memory overhead compared to
a bidirectional Dijkstra’s algorithm. For approximate techniques, we further state the
average error. Usually, there is not a single best algorithm but several pareto-optimal
ones providing different tradeoffs between the aforementioned measures. Note that the
preprocessing time does not include the time required for partitioning the graphs as we
can set an arbitrary time limit with little impact on the quality of the final partitioning
as reasoned in Appendix C when discussing our network instances.

Alternative Path Techniques. In analogy to [ADGW13], we measure the performance
of alternative path techniques in terms of efficiency and quality. Efficiency comprises
query time and success rate. Quality is defined by the three measures uniformly
bounded stretch, sharing, and detour-based local optimality of Definition 5.2. The time
needed to compute these measures is not taken into account. Appendix C describes
how to determine them efficiently for evaluation purposes.

For our approaches, we list further statistical values with respect to via node candidate
sets. We state preprocessing time and memory overhead for the candidate sets and
list their average size and the fraction of empty sets with respect to pairs of regions
for which we perform preprocessing. Query statistics include the average number of
tested via node candidates as well as the rates of fallback queries and queries that
consider via node candidates. Details that only apply to the implementation of our
online setting are described in the respective section of our simulational evaluation.

Considered Approaches. We compare the performance of our contributions, ap-
proximate Contraction Hierarchies and via node candidate sets for alternative paths,
to multiple other approaches. We provide our own implementations of all algorithms
according to the respective publication. Graphs are stored explicitly in main memory
as adjacency arrays. Priority queues are based on binary heaps. Both data structures
are described more closely in Appendix C. Shortest path techniques that are used
in the evaluation of both approximate and alternative path queries apply the same
settings and preprocessed data in either case. Partitioning is detailed in Appendix C.

161

5 Determining Efficient Paths in Large-Scale Sensor Networks

Shortest Path Techniques. We consider bidirectional Dijkstra’s algorithm [Dan63],
Arc Flags [Lau04], and Core-ALT [BDS+10] as purely exact techniques and apply ALT
[GH05], Contraction Hierarchies [GSSV12], and the combinations CHASE [BDS+10]
and CHALT with and without approximation. ALT based algorithms use 64 landmarks
computed with the avoid strategy. Parallel CH preprocessing is considered without lazy
updates (nlu) and with only lazy updates, the default case. Nodes are ordered as per
Equation (5.1) with α = 2, β = 4, and γ = 1. Witness searches are pruned after 2 000
settled nodes (1 000 during simulation). Arc Flags based algorithms use a partitioning
into 128 regions. The flags are computed in parallel with PHAST [DGNW13], 64
trees per sweep, and stored in a hash map. CHASE applies arc flags on the whole
graph, while CHALT applies landmarks only on the 5% most important nodes. CH
and CHALT use stall-on-demand. We do not reorder graphs for better cache-locality.

We do not consider further, more recent techniques for various reasons. Customizable
Route Planning [DGPW13] requires a small number of boundary nodes to be efficient.
However, this is not possible for dense sensor network instances. Hub Labels [ADGW11],
on the other hand, should reflect the capabilities of Contraction Hierarchies on these
instances, though at much shorter query times. However, the required preprocessing
times and the memory overhead are likely much higher than for any of our considered
techniques. We also do not consider distributed routing schemes as they are not aimed
at quick computability in a centralized setting.

Alternative Path Techniques. We compare our approach with coarse and fine candi-
date sets to the algorithms X-BDV and X-CHV in [ADGW13] as well as to X-CHASEV.
We apply the same parameter values as in the above publication. Minimum local
optimality is set to α = 0.25, maximum sharing to γ = 0.8, and maximum stretch to
ϵ = 0.25. X-BDV uses an explicit T -test for p = 0. CH based techniques are considered
unrelaxed (x = 0) and 3-relaxed (x = 3). Shortcut edges are stored pre-unpacked in
case of X-CHASEV. The coarse partitioning corresponds to the Arc Flags partitioning
with 128 regions. The fine partitioning uses 1 024 regions and does not respect the
coarse partitioning. During the preprocessing of via node candidates, search spaces
are stored and reused. Sampling of boundary nodes is considered in a separate study.
Further engineering techniques are not applied in our simulations.

We do not compare ourselves to other previous techniques for various reasons. CRP-π,
the fastest approach based on the penalty method, is still two orders of magnitude
slower than X-CHV. They focus on alternative graphs, though, and not on single
alternative paths. HiDAR, which is based on the plateau method like our approach,
is a more serious contender, but for few alternatives it remains slower than X-CHV.
As our results supersede the algorithms by Abraham et al. in query times and as our
focus is on at most three alternative paths, we do not consider CRP-π or HiDAR.

For an evaluation of our approach to generate alternative graphs, we refer to [LS14]
for results on road networks. To summarize them briefly, we observe about 10% lower
quality measures but up to two orders of magnitude shorter runtimes than even CRP-π.

162

5.5 Simulations

5.5.2 Approximate Queries

We start the discussion of our simulational results on finding efficient paths in large-
scale sensor networks by considering the performance of our heuristic shortest path
algorithm, approximate Contraction Hierarchies. Table 5.1 lists results for all considered
techniques in unstructured random networks (network type “box”). We focus on this
network type at first and consider the latency cost model (p = 1) with average node
degrees of davg = 10 and 20. Results for the other edge cost models together with this
network type are listed in Appendix C. In the following, we only study different edge
cost models in our default setting, infrastructural networks (network type “road”) with
an average node degree of davg = 10. The respective results are presented in Table 5.2.
Further results for this network type are found in Appendix C.

Improved Node Ordering. We first focus on the modified node ordering process for
the preprocessing phase of Contraction Hierarchies that we introduced in Section 5.3.

Table 5.1: Performance of all considered (exact and approximate) algorithms using
the network type “box” and the latency cost model (p = 1).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 156.804 – 0 0 231.287 –
Arc Flags 1 363 95 2.373 – 9 279 182 4.658 –
Core-ALT 205 164 1.474 – 778 432 4.850 –

A
LT

exact 215 512 2.985 – 268 512 4.756 –
apx (ϵ = 0.01) 215 512 1.714 0.1 268 512 1.947 0.2
apx (ϵ = 0.10) 215 512 1.310 1.0 268 512 1.441 1.2
apx (ϵ = 0.21) 215 512 1.262 1.9 268 512 1.408 1.9

C
H

exact (nlu) 5 415 −2 2.325 – 266 749 29 14.643 –
exact 895 1 2.477 – 30 492 30 14.831 –
apx (ϵ = 0.01) 400 −5 2.238 0.2 8 967 −8 12.615 0.2
apx (ϵ = 0.10) 177 −19 2.182 2.2 1 277 −51 7.223 1.8

C
H

A
SE exact 6 216 97 0.042 – 62 761 243 0.225 –

apx (ϵ = 0.01) 4 878 86 0.038 0.2 27 863 169 0.167 0.2
apx (ϵ = 0.10) 3 120 61 0.028 2.2 9 540 84 0.073 1.8

C
H

A
LT

exact 927 26 0.415 – 30 586 56 2.522 –
apx (ϵ = 0.01) 427 20 0.351 0.2 9 028 17 1.798 0.2
apx (ϵ = 0.10) 198 7 0.292 2.2 1 312 −25 0.843 1.8
apx (ϵ, ϵ′ = 0.10) 198 7 0.124 3.6 1 312 −25 0.379 3.4

163

5 Determining Efficient Paths in Large-Scale Sensor Networks

While the original (parallel) approach always updates the importance of all neighbors
of a contracted node and performs no lazy updates (nlu), we only perform lazy
updates. Comparing the preprocessing times of these two exact Contraction Hierarchies
implementations, we observe that our approach is an order of magnitude faster for
networks of davg = 10 and 20. Using only lazy updates effectively avoids a lot of
(potentially) unnecessary updates of node importance values. However, the quality
of the generated search graph suffers as the order of node contraction is likely less
optimized for the same reason. We observe that the search graph gets slightly denser
as reflected by the increased memory overhead. Query times increase likewise.

Consulting Table 5.2, we see that the preprocessing speed-up gained by using only
lazy updates is most pronounced for the latency cost model (p = 1). For the other two
models, we still see an improvement by a factor of 2 (p = 2) and, respectively, by at
least 50% (p = 0). Once we have considered further results for all three cost models,
we will see that the latency cost model is the most demanding model with respect to
query times. Thus, by avoiding witness searches, which essentially are a variant of
Dijkstra’s algorithm, we gain the most benefits under the latency edge cost model. We
discuss later why it is more demanding than the other two models.

Our approximate Contraction Hierarchies technique, which we consider next, already
applies the modified node ordering process with only lazy updates by default.

Table 5.2: Performance of all considered (exact and approximate) algorithms using
the network type “road” with average node degree davg = 10 under different edge
cost models (p ∈ {0, 1, 2}).

Prepro. Query Prepro. Query Prepro. Query
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm hop count (p = 0) latency (p = 1) energy consumption (p = 2)

Bidir. Dijkstra 0 0 118.149 – 0 0 141.151 – 0 0 148.387 –
Arc Flags 500 92 2.720 – 522 92 0.835 – 477 91 1.022 –
Core-ALT 237 170 5.249 – 239 170 2.702 – 239 175 4.089 –

A
LT

exact 164 512 7.153 – 178 512 3.666 – 191 512 5.155 –
apx (ϵ = 0.01) 164 512 6.523 0.2 178 512 3.047 0.0 191 512 4.578 0.0
apx (ϵ = 0.10) 164 512 3.872 1.3 178 512 2.354 1.1 191 512 4.186 0.7
apx (ϵ = 0.21) 164 512 3.218 2.5 178 512 2.342 2.5 191 512 4.174 2.5

C
H

exact (nlu) 144 −36 0.170 – 1 071 −14 0.482 – 204 −33 0.109 –
exact 92 −34 0.177 – 254 −10 0.440 – 113 −30 0.103 –
apx (ϵ = 0.01) 92 −34 0.183 0.0 166 −17 0.381 0.2 111 −31 0.102 0.1
apx (ϵ = 0.10) 94 −34 0.202 0.7 116 −29 0.322 2.1 111 −34 0.099 1.2

C
H

A
SE exact 1 025 25 0.012 – 2 086 72 0.013 – 1 116 31 0.006 –

apx (ϵ = 0.01) 1 026 25 0.012 0.0 1 680 59 0.011 0.2 1 096 29 0.006 0.1
apx (ϵ = 0.10) 997 25 0.012 0.7 1 147 34 0.009 2.1 950 23 0.006 1.2

C
H

A
LT

exact 106 −8 0.120 – 275 16 0.244 – 126 −5 0.077 –
apx (ϵ = 0.01) 106 −8 0.121 0.0 185 9 0.213 0.2 124 −5 0.076 0.1
apx (ϵ = 0.10) 107 −8 0.138 0.7 131 −3 0.171 2.1 123 −8 0.074 1.2
apx (ϵ, ϵ′ = 0.10) 107 −8 0.100 1.2 131 −3 0.109 2.8 123 −8 0.061 1.5

164

5.5 Simulations

Approximate CH. By allowing a small one-sided error when answering queries, we
are able to further decrease preprocessing times than with the modified node ordering
process alone. Especially on the dense network, we observe a considerable speed-up
by a factor of 30 when accepting an error of up to 10% (ϵ = 0.1) in our queries. The
actually measured error rates, however, are about an order of magnitude lower than
the guaranteed maximum error. This already seems to be a good trade-off, but there
are even more benefits. By not inserting certain shortcut edges into the search graph,
it remains much sparser than the search graph of an exact CH. We even observe, again
in Table 5.1 and for davg = 20, a large negative memory overhead. This is also reflected
in shorter query times. For the sparse network, the reduction in query times is less
pronounced, but the reduction in memory overhead is still significant.

At this point, we should briefly explain how a negative memory overhead can
be achieved and what it implies. As mentioned in Section 5.5.1 when discussing our
simulational setup, we measure memory overhead compared to a bidirectional Dijkstra’s
algorithm. This algorithm stores an edge at each of its nodes to facilitate the lookup
of incoming and outgoing edges. In Contraction Hierarchies, however, we only need
to store an edge at the node of less importance. Thus, if we add less shortcut edges
than there are edges in the original graph, we achieve a negative memory overhead.
Less memory consumption further translates into a better cache locality, which in turn
improves query times.

When we consider the other edge cost models in Table 5.2, we only see a negligible
improvement in any considered measure for p = 2 and even a decline for the hop count
cost model (p = 0) that worsens with growing values of ϵ. This effect also holds true
for the dense graphs of network type “road”. In general, our approach is most effective
on graphs with many similar paths of similar but not equal lengths. By allowing some
error, we can omit a lot of shortcut edges, which in turn keeps the graph sparse during
contraction and facilitates preprocessing. Paths in the latency cost model (p = 1) offer
this property. Thus, the improvement between exact and approximate preprocessing is
very pronounced. When considering energy consumption (p = 2), there are only few
similar paths of similar cost as even small differences in the distances between nodes
translate to large variations in the edge costs. In addition, we observe a more distinct
hierarchy, with edges between close nodes being preferred, i.e. paths of many hops are
more desirable. This is the exact opposite of the hop count cost model (p = 0), which
tries to minimize the number of hops and therefore has a preference for edges between
distant nodes. In this model, there are many equivalent (shortest) paths, which is
already handled well by exact Contraction Hierarchies. Thus, graphs that apply either
of these two edge cost models offer only few paths that our approximate algorithm
can exploit. We therefore see no improvement when switching from the exact to our
approximate algorithm. Exact Contraction Hierarchies already works well for these
settings. The performance decrease for p = 0 is explained by an inferior search graph.
If we omit a shortcut edge, we may later have to add further shortcut edges that would
otherwise not be required due to witness paths that include the omitted shortcut edge.

165

5 Determining Efficient Paths in Large-Scale Sensor Networks

In general, approximate Contraction Hierarchies can help to process graphs that
are less hierarchically structured, and we should see a comparable performance to our
network settings under the latency cost model. Moreover, our approach can be easily
combined with other techniques that are based on Contraction Hierarchies. In addition
to the already discussed benefits of our approach, this is particularly helpful if the
other technique has significant costs related to the number of edges. As we reduce the
number of shortcut edges, this can bring a significant improvement. In the following,
we study two such examples, query algorithms that apply a goal-directed technique,
either Arc Flags or ALT, on top of Contraction Hierarchies.

apxCHASE & apxCHALT. We are able to reduce the preprocessing times and the
memory overhead of Contraction Hierarchies by using a modified node ordering and
approximation. However, it remains questionable whether the general (hierarchical)
technique is the right tool for our considered networks. When we regard common
goal-directed techniques, namely Arc Flags and variants of ALT, in Table 5.1, we
observe that they are already on par or even better than our approach with respect to
query times, which is arguably the most important aspect for our desired application
setting. There are some trade-offs, though. The ALT variants have a very high memory
overhead and the preprocessing of Arc Flags takes long.

However, if we combine either of these techniques with (approximate) Contraction
Hierarchies, we not only observe a huge improvement in query times by one to two
orders of magnitude, the memory consumption also decreases compared to the pure
goal-directed methods. While this is expected behavior from previous studies like
[BDS+10], it shows that our technique is the best tool for this job given the right
support. For example, apxCHALT with ϵ = 0.1 dominates all other ALT-based methods
for davg = 10. The average observed errors might be higher than for ALT with ϵ = 0.1,
but both approaches only guarantee the same maximum error. On dense networks,
though, our preprocessing times remain higher. The average error rates of approximate
Contraction Hierarchies, apxCHASE, and apxCHALT are equal for the same value of
ϵ as approximation is only applied to the hierarchical component of the query. If we
also allow approximation in the goal-directed component of our query, we obtain even
higher speed-ups in query time at a slightly increased error rate. Consider apxCHALT
with ϵ, ϵ′ = 0.1. Its approximation guarantee corresponds to ALT with ϵ = 0.21.
The shortest query times are obtained by apxCHASE, though its preprocessing takes
the most time, even when applying approximation. However, we observe that the
preprocessing overhead compared to Contraction Hierarchies greatly decreases for
higher values of ϵ as does the memory overhead. Since there are fewer edges in the
approximate case, there are less flags (or indices to the corresponding lookup table)
to store, but there are also less boundary nodes and therefore less shortest path trees
to compute for Arc Flags. However, when only storing unique flags, the memory
consumption could increase as there are more distinct flags in the approximate case.

166

5.5 Simulations

However, in our simulations this is always compensated by the reduced number of edges.
The beneficial effects for CHASE in the approximate setting are more pronounced on
our dense networks as more edges are omitted.

If we consider the other edge cost models once more, Table 5.2 tells us that Contrac-
tion Hierarchies already performs well in these network settings, dominating all of the
goal-directed techniques. In combination with them, though, we can further decrease
query times. However, also applying approximation has almost no effect—similar as for
plain Contraction Hierarchies. Only the preprocessing times for apxCHASE decrease
by up to 10%. As stated before, our approximate technique does not have much to
work with in these settings. There are simply few shortcut edges that can be omitted.

Our results show that the preprocessing times of CHASE are high in any network
setting and remain so, even when applying approximation. However, when considering
combinations of goal-directed techniques with (approximate) Contraction Hierarchies,
we have the choice between two general approaches. We can either apply goal-direction
to the whole graph or only to a core of important nodes. In our simulations, we choose
to use ALT only on the core and Arc Flags on the whole graph to cover both options.
If we would choose to only compute arc flags for the core, which actually conforms
to the original implementation of the CHASE technique, we would see a reduction in
preprocessing time and memory overhead by a large amount with only a small impact
on query times as previously studied in [BDS+10].

To conclude our main results on approximate queries, we repeat that this technique
works best in the presence of many similar paths of similar but not equal cost. In-
dependent thereof, the modified node ordering seems to be beneficial for any dense
network. We obtain vastly shorter preprocessing times at roughly the same query
times. Finally, we want to stress that none of our techniques requires node positions,
neither actual positions nor virtual coordinates. Unlike many other techniques that
are explicitly designed with sensor networks in mind, only the communication graph of
the considered sensor network is needed.

Further Network Models. We briefly considered further communication models
and node distributions in our simulations. The main result of these trial studies is
that, next to the average node degree, the distribution of node degrees has the most
significant impact on measured runtimes. In our network settings that follow the unit
disk graph model, we observe a normal distribution of node degrees with small variance.
However, when using different and potentially more realistic communication models,
the distribution may become heavy-tailed with a significant amount of nodes of high
degree, even though the average node degree remains small. Such network instances
are already more demanding to process. However, the average node degree remains
a main indicator for the complexity of an instance. Overall, we can state that the
more high degree nodes there are in the communication graph of a network, the more
demanding this network instance is to be handled by one of our studied methods.

167

5 Determining Efficient Paths in Large-Scale Sensor Networks

5.5.3 Alternative Connections

After discussing (heuristic) shortest path algorithms in the previous section, we now
turn to the evaluation of our approaches for determining alternative connections to
the best one. We focus on the default network setting (type “road”, davg = 10, p = 1)
for the majority of our studies. While we present results for the other two edge cost
models, we do not consider network type “box” and networks of a higher average node
degree. The reason behind this decision is that these network settings offer (too) many
(approximately) admissible alternative paths according to our Definition 5.3. Thus, no
elaborate technique is required to find them efficiently. A comprehensive compilation of
the results of all considered network settings and all applied alternative path techniques
and their variants is given in Appendix C.

As the results of this section are obtained on two different machines, we compare their
respective performances for target and exploration queries in preliminary simulations.
These results are listed in Table C.3. The corresponding section in Appendix C further
discusses the search spaces sizes of the considered algorithms and explains why CHASE
is not applicable for exploration queries.

Engineered Baseline Algorithm. We start our evaluation by comparing our engi-
neered baseline algorithm, X-CHASEV, to two methods by Abraham et al. [ADGW13],
X-BDV, which applies a bidirectional Dijkstra’s algorithm for target and exploration
queries, and X-CHV, which runs on top of Contraction Hierarchies. At first, we limit
ourselves to exact query algorithms. Tables 5.3 and 5.4 report on the query performance
and alternative path quality of these algorithms with normal exploration queries (x = 0)
and relaxed ones (x = 3). As they do not use via node candidate sets, the respective

Table 5.3: Query performance for finding alternative paths a = {1, 2, 3} under the
latency cost model (p = 1). Exact queries without relaxation (x = 0) are used.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 871.229 98.5 7.7 29.2 63.5 – – –
X-CHV 7.354 91.7 5.3 40.1 67.1 – – –
X-CHASEV 3.936 91.7 5.3 40.1 67.1 – – –

2 X-BDV 925.930 96.3 7.7 48.8 57.8 – – –
X-CHV 17.994 86.8 5.6 52.8 60.6 – – –
X-CHASEV 6.552 86.8 5.6 52.8 60.6 – – –

3 X-BDV 981.484 92.0 7.4 60.3 54.7 – – –
X-CHV 35.115 81.8 5.8 57.6 58.3 – – –
X-CHASEV 10.574 81.8 5.8 57.6 58.3 – – –

168

5.5 Simulations

columns remain empty. Moreover, X-BDV has no relaxation by design.
As stated in Section 5.4.1, our engineered algorithm is faster than X-CHV by about a

factor of two while providing alternative paths of the same quality. Table 5.3 confirms
this statement. These results are rather expected, judging from the performance of the
individual algorithmic components that we added on top of X-CHV. The speed-up even
grows when computing second or third alternative paths as the fraction of fast target
queries that can use CHASE increases. X-BDV offers the highest success rates but
obviously also the longest query times by several orders of magnitude. However, the
relative amount of additional work to determine further alternative paths is rather small
compared to the CH-based algorithms whose runtimes double with each subsequent
alternative path. Note that the listed query time for an alternative path a includes
the time for computing any previous alternative path. The path quality measures are
very similar for all algorithms and identical for X-CHV and X-CHASEV by design.
The success rates of all three algorithms drop with each subsequent alternative path,
though they remain high for X-BDV. They are measured relative to the actual number
of queries for a first, second, or third alternative path and not relative to the total
number of queries. By considering the rate of failed queries instead of the success rate,
we realize that X-BDV actually performs much better than X-CHV/X-CHASEV. For
example, whereas the former only fails to find a third alternative path in 8% of all
queries that request one, the CH-based techniques do not provide one for over 18% of
all queries. This is expected behavior as X-BDV encounters many more nodes in the
overlapping search spaces of its exploration query, whereas CH preprocessing already
prunes many suboptimal paths and, moreover, its search spaces only meet but do not
overlap. Still, this high success rate comes at the cost of long query times. X-BDV
essentially explores a number of nodes linear in the network size.

Table 5.4: Query performance for finding alternative paths a = {1, 2, 3} under the
latency cost model (p = 1). Exact queries with relaxation (x = 3) are used.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 871.229 98.5 7.7 29.2 63.5 – – –
X-CHV 16.151 96.7 6.7 32.3 63.6 – – –
X-CHASEV 10.553 96.7 6.7 32.3 63.6 – – –

2 X-BDV 925.930 96.3 7.7 48.8 57.8 – – –
X-CHV 32.375 92.1 6.7 49.8 58.8 – – –
X-CHASEV 14.654 92.1 6.7 49.8 58.8 – – –

3 X-BDV 981.484 92.0 7.4 60.3 54.7 – – –
X-CHV 57.828 86.4 6.7 59.0 56.4 – – –
X-CHASEV 20.874 86.4 6.7 59.0 56.4 – – –

169

5 Determining Efficient Paths in Large-Scale Sensor Networks

Table 5.5: Query performance of X-CHASEV when applying apxCHASE for target
queries and apxCH for exploration queries w/o relaxation (x = 0). The latency
cost model (p = 1) is considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a X-CHASEV [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 exact 3.936 91.7 5.3 40.1 67.1 – – –
apx (ϵ = 0.01) 2.853 89.9 5.3 39.8 63.9 – – –
apx (ϵ = 0.10) 1.485 86.9 5.9 40.7 61.0 – – –

2 exact 6.552 86.8 5.6 52.8 60.6 – – –
apx (ϵ = 0.01) 4.894 82.5 5.0 52.9 59.3 – – –
apx (ϵ = 0.10) 2.635 73.4 5.5 52.5 57.0 – – –

3 exact 10.574 81.8 5.8 57.6 58.3 – – –
apx (ϵ = 0.01) 7.838 78.1 5.1 58.6 56.5 – – –
apx (ϵ = 0.10) 4.247 67.7 5.6 57.9 55.1 – – –

The values in Table 5.4 for results with relaxed (x = 3) exploration queries indicate
that relaxation improves the average path quality as well as the success rate of the
CH-based methods. The latter uniformly increase by about 5–6% for determining the
first through third alternative path. Query times increase by a factor of two to three,
though, which is a direct result of the larger number of nodes that are settled during
exploration, compare Table C.3. Relaxation is as a viable trade-off between query times
and success rates since the number of queries for which we find no alternative path is
halved. This reduces the gap between the success rates of X-CHV (and X-CHASE-V)
and X-BDV to 2% per considered alternative path.

We focus on approximate shortest path techniques next. Table 5.5 reports on our
findings when we switch to apxCHASE for target queries and to apxCH for exploration
queries in X-CHASEV. In this case, it suffices to exchange the original search graph for
the approximate one since neither CHASE nor CH use the stall-on-demand technique
when performing exploration queries. Query times decrease much more than what is
expected from our previous results of these algorithms (see query times in Table 5.2).
For example, computing a first alternative path becomes about three times faster with
ϵ = 0.1 than with exact queries. This is easily explained, though, when we consult
the reported success rates. While they only decrease slightly for the first alternative
path, there is a large drop when looking for a second or even a third alternative
path. As the approximate search graph is smaller than the one of exact Contraction
Hierarchies (compare the respective memory overheads in Table 5.2), so are the search
spaces in an exploration query. Thus, less via node candidates are encountered and
potentially useful nodes are missed. However, by using relaxation, we can boost the
success rates again and to even higher levels than for exact but unrelaxed X-CHASEV

170

5.5 Simulations

queries for first and second alternative paths. This is reported among further results
on approximate queries in Appendix C. The quality of the reported alternative paths
remains similar to the exact technique since when a via node is selected, it is often the
same as in the exact case.

Overall, our engineered baseline algorithm, X-CHASEV, already beats all previous
approaches with respect to query times, especially when requesting second or third
alternative paths, and by applying relaxation, its success rates come close to those
of X-BDV while query times remain low. They can be further decreased by applying
approximation, but this comes at cost of lower success rates. We need to keep in mind,
though, that the underlying CHASE algorithm requires additional preprocessing and
needs to store additional data. However, both issues are much less of a concern than
some years ago, with better techniques now available for computing and storing arc flags.
Still, the engineering applied to X-CHV remains rather obvious. The next paragraphs
therefore report on our actual contribution, precomputed via node candidate sets that
offer even more substantial improvements.

Efficient Queries With Via Node Candidate Sets. We now evaluate our approach
with precomputed coarse and fine candidate sets, denoted by single-level and multi-level
in the respective tables. As it runs on top of X-CHASEV, we mainly compare ourselves
to this engineered baseline algorithm. Table 5.6 gives results without relaxation (x = 0).
We observe that query times are an order of magnitude faster than with the engineered
baseline algorithm. Even for determining three alternative paths, the average runtime
stays well below 2 ms, which is more than practical. We further see that our approach
even improves the success rate of the query while the quality of the returned alternative
paths remains at a high level. A fallback to X-CHASEV is used in 4% of all queries,

Table 5.6: Query performance for finding alternative paths a = {1, 2, 3} under the
latency cost model (p = 1). Exact queries without relaxation (x = 0) are used.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-CHASEV 3.936 91.7 5.3 40.1 67.1 – – –
single-level 0.424 93.6 5.8 42.1 65.7 94.2 4.7 1.8
multi-level 0.353 93.8 5.8 42.2 65.7 98.2 0.5 1.9

2 X-CHASEV 6.552 86.8 5.6 52.8 60.6 – – –
single-level 0.928 88.7 6.0 52.4 61.4 94.3 4.3 2.6
multi-level 0.817 88.9 6.0 52.4 61.5 98.1 0.4 2.7

3 X-CHASEV 10.574 81.8 5.8 57.6 58.3 – – –
single-level 1.775 84.2 6.1 58.2 58.3 94.9 3.7 4.1
multi-level 1.585 84.3 6.0 58.2 58.3 98.3 0.3 4.2

171

5 Determining Efficient Paths in Large-Scale Sensor Networks

which is not surprising as it only depends on the partitioning of the graph. This rate
is reduced by an order of magnitude when introducing the multi-level partitioning. We
are therefore able to consult precomputed via node candidate sets for over 99% of all
considered queries. Thus, we briefly tried to omit the fallback query entirely while
using the multi-level approach and observed that neither the quality measures nor the
success rate degraded noticeably. We conclude that a third partitioning level does not
give any significant improvement to the performance of the query in our settings.

The quality of the applied candidate sets is high. This is indicated by the small
absolute number of via node candidates that are tested per query. On average, we
need to test less than two nodes to obtain an (approximately) admissible alternative
path. About three suffice for a second alternative path and four for the third one. This
further implies that the via node candidates cover entire sets of alternative paths and
not just individual ones. The quality of the candidate sets is further testified by the
alternative path quality that remains on the same level as for X-CHASEV.

The results for using relaxation (x = 3) are given in Table 5.7. We observe a further
improvement in success rates by up to 5% for the single- and multi-level approach.
While the query times of the former increase by half, the multi-level approach still
shows the same query time as without relaxation. Since the multi-level approach only
performs X-CHASEV as a fallback for 0.5% of all queries, the increased cost of a
relaxed exploration query is insignificant. The path quality measures become slightly
worse compared to the baseline algorithm. In particular, we observe a higher sharing
amount for the first and second alternative path. However, these measures are still
better than those of X-CHASEV without using relaxation. Due to a larger choice of
nodes when exploring relaxed search spaces, nodes are selected for inclusion in the via
node candidate sets that yield alternative paths of higher quality.

Table 5.7: Query performance for finding alternative paths a = {1, 2, 3} under the
latency cost model (p = 1). Exact queries with relaxation (x = 3) are used.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-CHASEV 10.553 96.7 6.7 32.3 63.6 – – –
single-level 0.659 96.8 6.6 38.1 63.8 95.0 4.7 1.8
multi-level 0.361 96.8 6.6 38.6 63.9 99.2 0.5 1.9

2 X-CHASEV 14.654 92.1 6.7 49.8 58.8 – – –
single-level 1.431 93.5 6.6 53.0 59.9 94.9 4.7 2.6
multi-level 0.820 93.7 6.5 53.2 60.1 99.1 0.5 2.6

3 X-CHASEV 20.874 86.4 6.7 59.0 56.4 – – –
single-level 2.637 88.8 6.7 60.0 57.1 95.3 4.5 3.9
multi-level 1.531 89.0 6.7 59.9 57.0 99.3 0.4 4.0

172

5.5 Simulations

Table 5.8: Query performance under different edge cost models (p ∈ {0, 1, 2}).
Exact queries without relaxation (x = 0) are used.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

p algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

0 X-BDV 769.008 100.0 – 33.2 44.0 – – –
X-CHASEV 0.862 89.4 3.2 40.9 69.8 – – –

single-level 0.195 91.7 2.8 43.5 69.6 93.7 4.7 1.6
multi-level 0.178 91.9 2.8 43.6 69.6 97.7 0.5 1.6

1 X-BDV 871.229 98.5 7.7 29.2 63.5 – – –
X-CHASEV 3.936 91.7 5.3 40.1 67.1 – – –

single-level 0.424 93.6 5.8 42.1 65.7 94.2 4.7 1.8
multi-level 0.353 93.8 5.8 42.2 65.7 98.2 0.5 1.9

2 X-BDV 1 018.658 94.8 9.6 38.8 71.0 – – –
X-CHASEV 0.895 72.3 7.9 38.9 73.5 – – –

single-level 0.298 76.8 8.3 43.5 72.9 88.2 4.7 1.7
multi-level 0.282 77.1 8.3 43.7 72.8 92.1 0.5 1.8

Using precomputed candidate sets is faster by an order of magnitude than the
engineered baseline algorithm and faster by far than the original method X-BDV. We
identify two reasons for this result. First, a rather expensive (relaxed) exploration
query has to be performed only in the rare case when a fallback is needed. Second,
the number of via node candidates that have to be tested is small on average. Our
approach also delivers consistently higher success rates than the engineered baseline
algorithm on which it is based. This result is surprising at first, yet easy to explain.
The nodes in each candidate set are chosen from the union of the search spaces of
all boundary nodes of the corresponding pair of regions. This union of search spaces
covers a much larger part of the graph than any search space of a single exploration
query. Thus, the obtained via node candidates are more diverse and can (potentially)
cover more alternative paths.

Next, we consider the impact of different edge cost models. Table 5.8 lists the
respective results. We observe that the query times remain comparable between all
models. The relative improvement between X-CHASEV and our approach is most
pronounced for the latency cost model (p = 1), though. When we go back to Table 5.2
and consider the average runtimes of Contraction Hierarchies and CHASE under these
models, the observed behavior becomes obvious. While the latter performs similarly
for all models, CH queries are about four times slower for p = 1. Thus, X-CHASEV
is also slower by a similar amount under this model. As our approach only applies
target queries with CHASE (apart from a few fallback queries), there is no significant
difference in query times between the different edge cost models. Considering success

173

5 Determining Efficient Paths in Large-Scale Sensor Networks

rates, we observe a significant decrease under the energy consumption cost model
(p = 2). While X-BDV yields slightly lower success rates, those of the CH-based
techniques take a large hit. Consulting Table 5.2 once more, we infer from the memory
overheads that the CH search graphs are very small for p ∈ {0, 2} and therefore so
must be the search space of an exploration query. Thus, we expect the success rate in
either model to be low. While this is true for p = 2, the hop count cost model offers
the highest success rate of all edge cost models. This is easily explained since there is
an abundance of equivalent paths when edge costs are uniform as for p = 0. Finally, we
want to remark on the missing stretch value for X-BDV in the hop count cost model.
They were erroneous at a value of around 500%. We therefore opted to omit them.

We now briefly report on approximate queries in combination with our single- and
multi-level approach. The respective numerical values are listed in Appendix C among
our comprehensive results. We observe only a slight decrease in query time, on the
same level as when comparing apxCHASE to CHASE in Table 5.2. These values are
reasonable as our algorithm with precomputed candidate sets only performs target
queries unless a fallback to X-CHASEV is needed. This only happens rarely, though,
with source and target nodes in neighboring regions or within the same region. While
the results with coarse via node candidate sets offer relatively high success rates close to
those without approximation, the success rates decline substantially for the multi-level
approach. We are not completely sure about the reason for this effect, but we assume
that it can be entirely explained by poor fine candidate sets. Queries between distant
regions remain the same as in the single-level setting. Only queries between neighboring
coarse regions or within a single coarse region now consider (fine) candidate sets instead
of performing a fallback query with X-CHASEV. Thus, X-CHASEV apparently provides
much higher success rates for short-range queries than our fine candidate sets when
using approximation. Concluding the discussion on approximate queries, we want
to remark that they can also apply the via node candidate sets computed by exact
methods, and vice versa. We did not consider this option further, though.

So far, we only considered average results over random queries. However, we also
want to gain a better understanding of the performance of our approach with respect to
the distance of a query. Figure 5.18 presents success rates for finding a first alternative
path with and without relaxation for varying Dijkstra ranks. We opt to use the
energy consumption cost model (p = 2) as the differences between our approach
and X-CHASEV are more pronounced and therefore easier to study in this setting.
Considering the results without relaxation (x = 0), we see consistently equal or higher
success rates for our approach with coarse or fine candidate sets than for X-CHASEV.
The success rates of X-BDV are given for reference as they mark a “gold-standard”. They
are obviously much higher than for the other approaches. However, with relaxation
(x = 3) enabled, all curves shift much closer to each other and to the reference values
of X-BDV. Our approach shows a clear advantage for long-range queries, starting at a
Dijkstra rank of 214 for a single-level of partitioning and, respectively, at 211 for the
multi-level approach. These numbers roughly correspond to the size of two regions

174

5.5 Simulations

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

● X−BDV

X−CHASEV

 single−level

 multi−level

X−BDV

X−CHASEV

 single−level

 multi−level

Figure 5.18: Success rates against Dijkstra rank for the energy consumption cost
model (p = 2) and exact queries w/o (x = 0), left, and with relaxation (x = 3), right.

in the respective partitioning. This fits well to the fact that our approach does not
consider via node candidate sets for queries between neighboring regions or within
a single region. In general, the success rates rise with the distance between source
and target with a dent at a Dijkstra rank of 217 that is most likely caused by some
peculiarities of the topology of our network. We infer that the further apart two nodes
are in a network, the more likely it is to find an (approximately) admissible alternative
path to the shortest path between them.

In summary, we can state that our approach with precomputed via node candidates
offers a considerable boost to query times while increasing success rates at the same
time. When using relaxation, we are almost on par with X-BDV with respect to success
rates while our queries are over three orders of magnitude faster. Moreover, our results
hold true for all considered edge cost models. It remains to be seen, though, how
expensive the required preprocessing becomes. We consider this question next.

Preprocessing Via Node Candidate Sets. Having thoroughly discussed the query
algorithm, we now report on the efficiency of the preprocessing that is required for
both our single- and multi-level approaches. Table 5.9 lists results for the latency cost
model with normal (x = 0) and relaxed (x = 3) exploration queries, while Table 5.10
gives additional results for x = 0 and the other edge cost models. We do not report on
the preprocessing with approximate CH variants as their performance is virtually the
same as when using exact algorithms. Results for all combinations of network settings
and applied techniques are found in Appendix C.

In Table 5.9, we observe that preprocessing takes a substantial amount of time,
especially when computing the via node candidate sets of a multi-level partitioning.
The reported preprocessing time and memory usage of the latter even have to be

175

5 Determining Efficient Paths in Large-Scale Sensor Networks

Table 5.9: Preprocessing performance under the latency cost model (p = 1). Exact
queries without (x = 0) and with (x = 3) relaxation are considered.

Performance Candidate Sets
a = 1 a = 2 a = 3

time size empty size empty size empty size
x type [h] [kiB] [%] [#] [%] [#] [%] [#]

0 single-level 6.0 1 795 1.2 6.2 4.1 9.4 8.8 13.0
+ multi-level 15.7 11 755 2.2 9.8 5.4 14.9 9.5 20.3

3 single-level 4.4 2 009 0.3 6.8 1.2 10.4 3.1 14.8
+ multi-level 15.2 13 907 0.2 11.0 1.0 17.3 2.8 24.9

considered on top of the ones required for the coarse candidate sets. The following
paragraphs therefore consider methods to reduce the preprocessing time or to avoid
preprocessing entirely while affecting the quality of the computed sets as little as
possible. Focusing on the other reported values for now, we see that the multi-level
preprocessing yields a higher average number of via node candidates per pair of regions.
This is to be expected as multi-level preprocessing only considers pairs of regions that
are close to each other, which naturally have more distinct alternative paths—this is the
very reason why we introduced a multi-level approach for neighboring coarse regions in
the first place. The fraction of empty candidate sets, i.e. of pairs of regions for which
we could not identify a single via node, grows with each subsequent alternative path
since it is more difficult to identify reasonable second or third alternative paths. Recall
that this value only includes pairs of regions for which we actually try to find via nodes,
it does not include neighboring pairs of regions for instance. Our observation holds
true for both single-level and multi-level preprocessing, but the actual numbers are
higher for the latter. There are less other regions to consider per region, and therefore
each single empty candidate set has a greater impact on the statistics. The memory
requirements of our approach are well below 20 MiB, even with fine candidate sets.
Hence, we conclude that the memory overhead of our approach is more or less irrelevant
on current systems. The relative speed-up that we see on machine B scales linearly
with the number of cores. However, we experienced hitting the memory bandwidth on
some older machines, which limits scalability.

Comparing the results of using a normal exploration query to using a relaxed one,
we observe an actual decrease in preprocessing time for the latter. This is surprising at
first since a relaxed query settles a substantial amount of nodes more than an unrelaxed
one, compare Table C.3. However, if we find better via nodes that are suitable for more
pairs of region boundary nodes or any via node at all, there are less (fallback) queries
to perform in total, which directly impacts the time required for preprocessing. The
reduced number of empty candidate sets supports the latter assumption. Moreover,
the average number of via node candidates stored in each set increases. This implies

176

5.5 Simulations

Table 5.10: Preprocessing performance under different edge cost models (p ∈
{0, 1, 2}). Exact queries without relaxation (x = 0) are used.

Performance Candidate Sets
a = 1 a = 2 a = 3

time size empty size empty size empty size
p type [h] [kiB] [%] [#] [%] [#] [%] [#]

0 single-level 1.0 1 223 1.9 4.6 6.4 6.5 12.3 8.4
+ multi-level 2.1 6 808 3.7 6.1 8.7 8.7 13.4 11.2

1 single-level 6.0 1 795 1.2 6.2 4.1 9.4 8.8 13.0
+ multi-level 15.7 11 755 2.2 9.8 5.4 14.9 9.5 20.3

2 single-level 1.4 883 6.9 3.9 16.6 4.9 28.5 5.3
+ multi-level 2.4 5 891 5.9 5.9 14.0 7.8 23.1 8.8

that we can now support alternative paths between nodes for which we did not find a
reasonable via node before without using relaxation.

When we move on to different edge cost models, compare Table 5.10, we observe
a similar situation as before. The latency cost model is by far the most demanding
one to preprocess. The two other models require almost an order of magnitude less
time for preprocessing. Our other observations are generally true for them, though.
Interestingly, they both show a higher amount of empty sets, even substantially so
in case of p = 2. Considering the performance of the baseline algorithm in Table 5.8,
we see its performance reflected in the results of the preprocessing. Finally, note that
the size of the candidate sets is lower by about a third for the hop count cost model
(p = 1) than for the latency cost model (p = 2), even though the success rates are not
that different. This implies that the set of reasonable alternative paths between two
regions is easier to cover in the former model, i.e. a single node is a good intermediate
stop for many alternative paths.

Overall, we conclude that while preprocessing can be substantial in case of the
latency cost model, the gained benefits in query time and even in success rates more
than compensate for this single shortcoming. Moreover, the following two paragraphs
show that we can reduce this deficiency or get rid of it entirely.

Sampled Preprocessing. As mentioned in Section 5.4.2, sampling is a viable option
to reduce the required amount of preprocessing. We present exemplary results for a
single-level of partitioning without relaxation (x = 0) and focus on the latency cost
model (p = 1) with exact queries as this is the most demanding setting with the
highest amount of preprocessing time. We choose to skip either every second (s = 2)
or every fourth (s = 4) boundary node. As expected, the preprocessing time decreases
quadratically with s since we only consider this fraction of pairs of boundary nodes.
Table 5.11 reports on our preprocessing results in more detail.

177

5 Determining Efficient Paths in Large-Scale Sensor Networks

Table 5.11: Preprocessing performance with sampling of boundary nodes. Single
level candidates are computed. No relaxation (x = 0) is applied.

Performance Candidate Sets
a = 1 a = 2 a = 3

time size empty size empty size empty size
s type [h] [kiB] [%] [#] [%] [#] [%] [#]

1 single-level 6.0 1 795 1.2 6.2 4.1 9.4 8.8 13.0
2 single-level 1.6 1 466 1.4 5.3 4.5 7.7 9.5 10.3
4 single-level 0.4 1 133 1.6 4.4 5.1 6.0 11.0 7.6

We further consider the impact of the sampled results on the performance of our
queries. Table 5.12 shows the respective results. We observe that sampling yields
via node candidate sets that offer only slightly inferior success rates compared to the
results with full preprocessing. In particular, they remain better than those of our
baseline algorithm for s = 2 and on par for s = 4. The quality of the alternative paths
remains the same as without sampling. It is reasonable to assume that similar results
hold for the candidate sets of a multi-level partitioning and for other network settings.

Overall, this approach introduces a space/time/quality trade-off. By sampling, the
preprocessing is obviously much faster and, as seen in the above results, it requires
less memory, but memory usage was already very low to begin with. However, we pay
for these improvements with slightly inferior success rates. We think that this is a
reasonable trade-off, though, especially for the latency cost model (p = 1). The online
algorithm in the next paragraph is another viable option when trying to minimize the
cost of preprocessing via node candidate sets.

Table 5.12: Query performance with candidate sets from sampled preprocessing.
Coarse candidates are used without relaxation (x = 0).

Performance Path Quality Candidate Sets
time success UBS sharing locality via. cand. fallback tested

a s [ms] rate [%] avg. [%] avg. [%] avg. [%] rate[%] rate [%] avg. [#]

1 1 0.424 93.6 5.8 42.1 65.7 94.2 4.7 1.8
2 0.433 92.5 5.9 41.8 65.7 94.0 4.7 1.9
4 0.431 90.2 5.9 41.9 65.5 93.9 4.7 1.8

2 1 0.928 88.7 6.0 52.4 61.4 94.3 4.3 2.6
2 0.925 87.9 6.0 52.4 61.3 94.1 4.3 2.5
4 0.916 85.9 6.0 51.9 61.4 93.6 4.4 2.4

3 1 1.775 84.2 6.1 58.2 58.3 94.9 3.7 4.1
2 1.708 83.1 6.0 57.9 58.6 94.6 3.8 3.7
4 1.646 80.7 6.0 57.3 58.3 93.8 4.0 3.3

178

5.5 Simulations

Online Algorithm. We conclude the discussion of our approach for computing alter-
native paths by considering the online setting introduced in Section 5.4.3. We only
present results for the single-level variant of our approach with no relaxation (x = 0)
as the other variants show a similar behavior. Moreover, we focus on the results for
the latency cost model (p = 1) and exact Contraction Hierarchies (ϵ = 0.0) as this is
the most demanding setting. Results for all possible combinations of p and ϵ are listed
in Appendix C.

Candidate sets are learned from a stream of queries instead of explicitly preprocessing
the network. We simulate a stream of 3 000 000 random queries. To demonstrate the
behavior of the underlying baseline algorithm, X-CHASEV, we only perform fallback
computations at first. No learning is involved at this point, and thus no via nodes
are recorded. Only after 500 000 queries have been processed, we activate the learning
phase. This phase continues until the via node candidate sets become saturated. We
call a set saturated once t = 60 queries have been performed for the corresponding pair
of regions. This threshold value is determined heuristically as we discuss below. Once
it is reached, no further fallback computations are performed for that pair of regions.

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1

0
1

2

a = 1 a = 2 a = 3

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Figure 5.19: Query time and success rate of our approach in the online setting.
Exact queries (ϵ = 0.0) and the latency cost model (p = 1) are used.

Figure 5.19 shows the development of the query time and success rate over the course
of a simulation run. Values are averaged over 1 000 queries. We observe a particularly
steep decline in query time during the first 100 000 queries after starting to learn
via nodes. Since the number of via nodes that are required to sufficiently cover the
alternative paths between two regions is small on average (see Table 5.9), we only need
to learn few nodes to obtain competitive query times. Recall that we have 128 regions,
and thus there are less than ten queries per pair of regions during this timeframe.
The success rate likewise increases after starting to learn via nodes, but the effect is
much less significant. It quickly reaches the same level as the single-level approach

179

5 Determining Efficient Paths in Large-Scale Sensor Networks

with precomputed via node candidate sets. Thereafter, the query time remains stable
with some variance. After roughly one million queries, less fallback computations are
performed since the candidate sets start to become saturated. This induces the second
decline in query time. However, we see that the success rate is virtually unaffected.
After full saturation, query time and success rate are on about the same level as with
explicit preprocessing. Considering the second and the third alternative path, we
observe the same general behavior. The average query time rises and the average
success rate decreases for each subsequent alternative path, which is in accordance to
the behavior with explicit preprocessing.

We determine a best threshold value for declaring a via node candidate set to be
saturated in multiple simulation runs. Figure 5.20 shows the results of these simulations
for the first through third alternative path. Query times on the left are averaged over
1 000 queries, while success rates on right correspond to 100 000 queries for clarity. We
consider threshold values t ∈ {10, 40, 60, 100}. As before, we start learning only after
the 500 000th query.

We observe a similar behavior for all alternative paths and therefore focus on the
results of the first one in Figure 5.20(a) for now. The query time drops rapidly in the
beginning for all values of t and shows a second decline after the via node candidate
sets start to become saturated. It is more drawn-out, the higher the threshold value
becomes as it obviously takes longer to saturate sets. Once fallback computations
are no longer performed, query times are almost the same for any value of t, even
though the stored sets are larger for higher threshold values as can be inferred from
the higher success rates. This is due to the number of tested nodes being small on
average, even with explicit preprocessing, compare Table 5.6. In fact, the query time
after full saturation is on par with that of the single-level approach when using explicit
preprocessing. We further observe that the success rates are higher for larger threshold
values, but their relative differences get smaller. When comparing them to the results
with precomputed candidate sets from above (see Table 5.6), we observe that they are
on par. Surprisingly, we see that the success rates rise at first, only to decline later over
the course of the simulation run. This effect is more pronounced for smaller threshold
values, especially for t = 10. While this seems odd at first, a closer examination shows
that the decline happens when the via node candidate sets start to become saturated.
Thus, the reason for this behavior is that the candidate sets are prematurely saturated
and the stored via nodes do not suffice for best success rates once the fallback method
is no longer performed. For t = 10, the success rates even drop far below those of the
baseline algorithm, i.e. of the fallback method.

Our analysis of the saturation threshold for the first alternative path (a = 1) is
generally true for the second and third one as well, see Figure 5.20(b) and 5.20(c).
The most obvious differences are a higher query time and a lower success rate. This
is expected behavior, though, as already seen with explicit preprocessing. Another
difference is that the second decline in query time happens much later and is less
pronounced. These “tails” are more drawn-out since second and third alternative paths

180

5.5 Simulations

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6
7

8

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure 5.20: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Exact queries
(ϵ = 0.0) and the latency cost model (p = 1) are used.

181

5 Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

ε= 0.0 ε= 0.01 ε= 0.1

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Figure 5.21: Query time and success rate of our approach in the online setting for
the first detour (a = 1). Exact and approximate queries are used with the latency
cost model (p = 1).

are requested less often—only when there is a first alternative path, searching for a
second one makes sense. Thus, it takes more queries to reach the saturation threshold
of the respective via node candidate sets. By comparing all results, we determine that
a saturation threshold of t = 60 is a good trade-off between the final success rate and
the required number of queries to saturate each via node candidate set.

The results for approximate Contraction Hierarchies with ϵ ∈ {0.01, 0.1} and other
edge cost models, p ∈ {0, 2}, show a similar behavior and reflect the results that we
already discussed for precomputed candidate sets. The differences in query time before
starting to learn via nodes and after full saturation of the via node candidate sets are
less pronounced, though, which is expected behavior when consulting the previous
results. As we see in Figure 5.21 for the first alternative (a = 1), using approximate
queries reduces the query time by almost a factor of three, while the success rate only
decreases by roughly 5%, both with respect to ϵ = 0.1. Moving on to Figure 5.22, again
showing results for a = 1, it is obvious that the latency cost model (p = 1) is the most
demanding one, but it also yields the highest success rates. The other two edge cost
models offer roughly equal query times in the beginning, but after the learning starts,
the hop count cost model (p = 0) is clearly easier to process. Moreover, it always offers
higher success rates than the energy consumption cost model (p = 2). There are many
equivalent paths in the hop count cost model. Thus, an (approximately) admissible
alternative path is easy to find in this model, and only few via node candidates are
required for each pair of regions. This explains the higher success rates and the shorter
query times as less via nodes candidates implies that less of them have to be tested.
Our reasoning is supported by the numerical results for precomputed candidate sets in
Table 5.8. Results for all combinations of ϵ, p, and a are given in Appendix C.

182

5.6 Concluding Remarks

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
0

.5
1

1
.5

2
2

.5
3

3
.5

4

p = 0 p = 1 p = 2

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

Figure 5.22: Query time and success rate of our approach in the online setting
for the first detour (a = 1). Exact queries (ϵ = 0.0) and multiple edge cost models
are used.

We can even extract an observation from these simulations that justifies a choice that
we made for our approach with preprocessed candidate sets. Once our online algorithm
has found near optimal candidate sets compared to explicit preprocessing, performing
a fallback query after not finding an alternative path has no significant impact on
success rates. This reasoning is supported by comparing our results for t = 100 shortly
before the second decline in query times starts to those after full saturation. We can
therefore safely omit such fallback queries even in our general approach and report
a negative result if a via node candidate set is empty or none of its nodes yields an
(approximately) admissible alternative path.

Overall, the online algorithm offers an interesting means to completely avoid any
(potentially high) preprocessing times compared to the sampling approach that only
reduces preprocessing times. We can directly start to serve queries once some baseline
algorithm is available and improve the query performance over time. Moreover, we
could even opt to forget via nodes that are rarely used or that yield alternative paths
of poor quality and reenable learning periodically.

5.6 Concluding Remarks

We presented two main results. The first contribution is an approximation scheme
for Contraction Hierarchies. We showed that our approach guarantees a maximum
stretch of (1 + ϵ) for the length of the computed paths, with even lower values seen in
practice. By not adding selected shortcut edges to the CH search graph, we were able
to save a substantial amount of runtime during both preprocessing and queries, which

183

5 Determining Efficient Paths in Large-Scale Sensor Networks

is also reflected in a reduced memory overhead. This modification and changes to the
node ordering process made our approach capable of handling dense sensor networks
efficiently. We further decreased runtimes with Arc Flags and ALT, showing that
combinations of techniques profit even more from the reduced size of the CH search
graph. Moreover, we saw that other techniques based on Contraction Hierarchies like
the many-to-many query in [KSS+07] or PHAST [DGNW13] can be directly used with
approximate CH search graphs without any modifications as long as they only consider
information of up-down paths.

The second contribution is centered around our assumption that there are few
reasonable alternative paths between two distinct regions of a network and that they
can be covered by few nodes. We showed that these via node candidates can be
efficiently precomputed to facilitate alternative path queries. Our method is more than
one order of magnitude faster and offers higher success rates than the previous results
of [ADGW13]. It can be combined with our results on approximate queries to further
improve runtimes on dense sensor networks. In addition, we showed how to adapt our
algorithm for the generation of alternative graphs and to an online setting that does
not need a dedicated preprocessing of via node candidates.

Both contributions are accompanied by an extensive simulational analysis. We
compared their performance to other techniques in diverse sensor network settings
and explored the impact of various parameters. Our simulations showed that our
approaches are efficient and outperform the competition in all considered settings. For
alternative paths, they further showed that the set of via node candidates is compact.
This supports our assumption that few via nodes suffice in practice.

Outlook. Our contributions only consider centralized offline algorithms. It remains
an open problem, though, how to effectively translate previous results on transportation
networks to a distributed setting. A first step could be a semi-distributed variant of
Contraction Hierarchies that uses centralized preprocessing. Queries would only use
local information and shortcut edges would be stored distributed over all nodes covered
by the edge. Nodes would relay a query to their direct neighbors and over shortcut
edges. Arc flags could be used to effectively confine the search space, i.e. the nodes
that are involved in the query process.

Considering approximate shortest path queries in general, it would be worthwhile
to study whether similar techniques can be applied to other recent approaches like
Customizable Route Planning or Hub Labels. Our own contraction process currently
avoids adding shortcut edges in a greedy fashion. Using smarter approaches may further
decrease the number of necessary shortcut edges and, in turn, shorten preprocessing
and query times even more.

Our preprocessing routine for alternative paths determines via node candidate sets in
a greedy fashion. A more sophisticated approach might be able to obtain smaller sets of
similar quality. Generating via node candidate sets in reasonable time and of the same

184

5.6 Concluding Remarks

or higher quality to what X-BDV yields is another open problem. Exploring theoretical
guarantees for our method could help to assess our prospects in this direction. While
we see high quality candidate sets in practice, we would like to capture the reason
for this result in a theoretical analysis. A measurement related to highway dimension
[ADF+13] might be the next step towards this goal.

185

6 Chapter 6

Discussion

The end. A final part of something, especially a period of time, an activity, or
a story.

— Oxford Dictionary of English

In the future, ever growing sensor networks will emerge with thousands to even millions
of nodes, be it networks in the conventional sense, established through initiatives in
the line of the Smart Dust project [KKP99] and its successors, or networks that are
part of the infrastructure and thus most likely connected to a steady power supply and
a reliable communication infrastructure. We need strategies to efficiently deal with
these vast structures, and we need them now, before they can ever become a problem.
Our thesis approached the scalability issues that arise with large-scale sensor networks
and showed various approaches to handle them in three diverse scenarios.

In Chapter 3, we introduced an efficient polynomial-time approximation scheme for
the sensor network lifetime problem and also showed how to solve it optimally for small
to medium-sized instances. These results are best used in auxiliary tools to study the
capabilities of a sensor network. We can determine tight upper bounds on the maximal
duration the sensor network is able to take data in a designated area. This can be
further used to assess the quality of distributed algorithms for the same task. Moreover,
if the network structure does not change and node failures are unlikely, we can even
apply the computed schedules on an actual sensor network. This approach may also
serve as a starting point for designing distributed algorithms as detailed in Section 3.7.
The two main lessons to learn from this chapter, though, are to exploit the redundancy
found in sensor networks and to consider (efficient) approximation algorithms for
problems that are otherwise hard to solve. This holds true for both algorithms directly
applied on sensor networks as well as for algorithms used in auxiliary applications that
only have to run on classical systems.

Chapter 4 discussed a novel approach for determining boundaries and holes in a
sensor network. Here, our solution is clearly aimed at applications running on sensor

187

6 Discussion

networks. Each sensor node decides independently, only based on local connectivity
information whether it is an interior node or on the fringes of the network. The
suggested algorithm is agnostic to the network structure and gives remarkably good
results for any network instance despite its simplicity. It can be further used to identify
regions of sparse coverage and broader bands around network borders for applications
like our scheduling algorithm. Our solution exemplifies several important design goals
for algorithms that run on sensor networks: They need to be simple as the processing
power of each node is limited. To compensate for this shortcoming, though, they can
exploit the sheer number of sensor nodes and be massively distributed. However, the
communication volume has to be kept low due to energy constraints. Thus, algorithms
working with local data are to be preferred. Moreover, they should make no assumptions
on the network structure to be generally applicable. We need to keep these guidelines
in mind when designing efficient algorithms for sensor networks.

Finally, in Chapter 5, we considered algorithms for relaying messages on provably
efficient routes through the sensor network. As these results are mainly in support
of simulation frameworks, the respective algorithms are designed with execution on
classical systems in mind. They have to be very efficient since there can be a lot of
queries to answer with only little parallelism to exploit compared to an actual sensor
network. We therefore proposed a fully polynomial-time approximation scheme for
finding shortest paths. It is further used as a building block for determining good
alternatives to an optimal routing. Both algorithms can rely on a preprocessing step
as we assume the network not to change during a simulation run. Our solutions can be
further used as a basis for other analysis tools, e.g. to assess bottlenecks in the network
when all communication is done over the alleged best routes, or to compute equilibria if
we can assess the communication volume as done in [LS11] for road networks. They are
even applicable in actual, static settings such as expansive infrastructural networks. The
lessons to take away in this case are that algorithm engineering can help to minimize
the shortcomings of a hardware platform and that the preprocessing of information
can be an efficient tool in accelerating repetitive tasks.

All of our results are naturally just examples of what can be done to counter an
increase in network size with more sophisticated algorithms. Nonetheless, we highlighted
three distinct fields of application in this thesis and made progress in all of them with
diverse solution strategies. We named general techniques and guidelines to deal with
ever growing sensor networks in applications that run directly on them as well as for
algorithms that are part of auxiliary applications and executed on classical systems.
As the previous chapters already provide detailed summaries and discussions on future
work of our problems, we want to close this thesis with a more general résumé.

Outlook. Sensor networks are here to stay. They will become part of our daily life in
one form or another if they not already have. For example, ad-hoc networks between
mobile phones or other novelty gadgets can be regarded as one form of sensor networks

188

as can infrastructural networks erected alongside roads and highways. With growing
network sizes and easier availability new and challenging problems will arise. Thus,
research in sensor networks will remain highly relevant for the foreseeable future.

Our efforts must grow in multiple directions, though. Algorithms that run on sensor
networks naturally have to remain a main focus, but we also need to consider algorithms
that are part of auxiliary tools for network analysis and simulation. They run on
classical systems and come with their own set of challenges. Orthogonally to this,
research has to further expand in both theoretical and experimental directions, but
also the middle ground, algorithm engineering for this new kind of systems, has to be
considered and given sufficient attention.

An important prospect for the future is the availability of actual, large-scale sensor
networks. We can do research in simulation frameworks and with theoretical models, and
while this is certainly relevant and necessary, it can only give us so much insight. Ideally,
there is a feedback loop between design, analysis, implementation, and experiments.
At the moment, we do not have any options to close this loop, though, as the installed
hardware platforms are just too small to require any sophisticated algorithms. However,
this should be remedied over time.

Finally, we want to mention one aspect that we found especially frustrating when
doing research in the field of sensor networks. It is the fragmentation of the community.
There are many places to go to when doing purely theoretical research and even more
when working with testbeds or simulators. However, when one is in the middle ground,
doing algorithm engineering on sensor networks, it is very difficult to get accepted by
either community. The one side wants proofs that cannot be given for a general model
while the other side wants real experiments that cannot be done in the required scale.
One is often relegated to general algorithm engineering conferences, and thus many
interesting results are missed by the sensor network community.

189

Bibliography

[ABBC07] Arianna Alfieri, Andrea Bianco, Paolo Brandimarte, and Carla-Fabiana
Chiasserini. Maximizing System Lifetime in Wireless Sensor Networks.
European Journal of Operational Research, 181(1):390–402, 2007.

[see pages 22, 24, and 43]

[ABCC07] David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J.
Cook. The Traveling Salesman Problem. Princeton University Press, 2007.

[see page 48]

[ADF+13] Ittai Abraham, Daniel Delling, Amos Fiat, Andrew V. Goldberg, and
Renato F. Werneck. Highway Dimension and Provably Efficient Shortest
Path Algorithms. Technical Report MSR-TR-2013-91, Microsoft Research,
2013. [see pages 121, 122, 138, 155, 156, and 185]

[ADGW11] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. A Hub-Based Labeling Algorithm for Shortest Paths on Road Net-
works. In International Symposium on Experimental Algorithms (SEA’11),
LNCS, vol. 6630, pp. 230–241. Springer, 2011. [see pages 121 and 162]

[ADGW12] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F.
Werneck. Hierarchical Hub Labelings for Shortest Paths. In European
Symposium on Algorithms (ESA’12), LNCS, vol. 7501, pp. 24–35. Springer,
2012. [see page 121]

[ADGW13] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Wer-
neck. Alternative Routes in Road Networks. ACM Journal of Experimental
Algorithmics, 18(1):1–17, 2013.

[see pages ix, 125, 126, 145, 146, 147, 149, 161, 162, 168, 184, and 250]

191

Bibliography

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck.
Highway Dimension, Shortest Paths, and Provably Efficient Algorithms.
In Symposium on Discrete Algorithms (SODA’10), pp. 782–793. SIAM,
2010. [see page 149]

[AGGM06] Ittai Abraham, Cyril Gavoille, Andrew V. Goldberg, and Dahlia Malkhi.
Routing in Networks with Low Doubling Dimension. In International
Conference on Distributed Computing Systems (ICDCS’06), pp. 75:1–75:10.
IEEE, 2006. [see page 123]

[AIKK14] Takuya Akiba, Yoichi Iwata, Ken-ichi Kawarabayashi, and Yuki Kawata.
Fast Shortest-Path Distance Queries on Road Networks by Pruned High-
way Labeling. In Meeting on Algorithm Engineering and Experiments
(ALENEX’13), pp. 147–154. SIAM, 2014. [see page 121]

[AKK04] Jamal N. Al-Karaki and Ahmed E. Kamal. Routing Techniques in Wireless
Sensor Networks: A Survey. IEEE Wireless Communications, 11(6):6–28,
2004. [see page 124]

[ALS13] Julian Arz, Dennis Luxen, and Peter Sanders. Transit Node Routing
Reconsidered. In International Symposium on Experimental Algorithms
(SEA’13), LNCS, vol. 7933, pp. 55–66. Springer, 2013. [see page 121]

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice Hall, first edition,
1993. [see page 248]

[AMOT90] Ravindra K. Ahuja, Kurt Mehlhorn, James Orlin, and Robert E. Tarjan.
Faster algorithms for the shortest path problem. Journal of the ACM,
37(2):213–223, 1990. [see page 248]

[Ans99] Kurt M. Anstreicher. Linear Programming in O(n3

lnn
L) Operations. SIAM

Journal on Optimization, 9(4):803–812, 1999. [see page 12]

[APM05] Ian F. Akyildiz, Dario Pompili, and Tommaso Melodia. Underwater Acous-
tic Sensor Networks: Research Challenges. Ad Hoc Networks, 3(3):257–279,
2005. [see page 17]

[BCK+10] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and
Dorothea Wagner. Preprocessing Speed-Up Techniques Is Hard. In In-
ternational Conference on Algorithms and Complexity (CIAC’10), LNCS,
vol. 6078, pp. 359–370. Springer, 2010. [see pages 122, 134, and 156]

[BCSZ04] Piotr Berman, Gruia Calinescu, Chintan Shah, and Alexander Zelikovsky.
Power Efficient Monitoring Management in Sensor Networks. In Wireless

192

Bibliography

Communications and Networking Conference (WCNC’04), vol. 4, pp. 2329–
2334. IEEE, 2004. [see page 21]

[BCSZ05] Piotr Berman, Gruia Calinescu, Chintan Shah, and Alexander Zelikovsky.
Efficient Energy Management in Sensor Networks. In Ad Hoc and Sensor
Networks, Wireless Networks and Mobile Computing, vol. 2, pp. 71–90.
Nova Science Publishers, 2005.

[see pages 19, 21, 22, 23, 27, 31, 39, 42, 44, 45, 50, 61, 213, and 221]

[BD09] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirec-
tional Routing. ACM Journal of Experimental Algorithmics, 14(2.4):1–29,
2009. [see page 121]

[BDG+14] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-
Hannemann, Dorothea Wagner, and Renato F. Werneck. Route Planing
in Transportation Networks. Technical Report MSR-TR-2014-4, Microsoft
Research, 2014. [see page 119]

[BDGS11] Roland Bader, Jonathan Dees, Robert Geisberger, and Peter Sanders.
Alternative Route Graphs in Road Networks. In International ICST
Conference on Theory and Practice of Algorithms in (Computer) Systems
(TAPAS’11), LNCS, vol. 6595, pp. 21–32. Springer, 2011.

[see pages 125, 158, and 250]

[BDGW10] Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner.
Space-Efficient SHARC-Routing. In International Symposium on Experi-
mental Algorithms (SEA’10), LNCS, vol. 6049, pp. 47–58. Springer, 2010.

[see page 132]

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In Interna-
tional Workshop on Experimental Algorithms (WEA’08), LNCS, vol. 5038,
pp. 303–318. Springer, 2008. [see page 123]

[BDS+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Jour-
nal of Experimental Algorithmics, 15(2.3):1–31, 2010.

[see pages 119, 121, 122, 136, 143, 160, 162, 166, and 167]

[BFMS11] Rene Beier, Stefan Funke, Domagoj Matijević, and Peter Sanders. Energy-
Efficient Paths in Radio Networks. Algorithmica, 61(2):298–319, 2011.

[see page 123]

193

Bibliography

[BFSS07] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast
Routing in Road Networks with Transit Nodes. Science, 316(5824):566,
2007. [see page 121]

[BG97] Ingwer Borg and Patrick Groenen. Modern Multidimensional Scaling:
Theory and Applications. Springer Series in Statistics. Springer, first
edition, 1997. [see page 13]

[BGSV13] Gernot V. Batz, Robert Geisberger, Peter Sanders, and Christian Vetter.
Minimum Time-Dependent Travel Times with Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 18(1.4):1–43, 2013.

[see page ix]

[BMS+13] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Chris-
tian Schulz. Recent Advances in Graph Partitioning. Preprint available
at arXiv:1311.3144 [cs.DS], Clemson University, Karlsruhe Institute of
Technology, and Lawrence Berkeley National Laboratory, 2013.

[see page 132]

[BT97] Dimitris Bertsimas and John N. Tsitsiklis. Introduction to Linear Opti-
mization. Athena Scientific, first edition, 1997. [see pages 12 and 44]

[BTG+06] Kun Bi, Kun Tu, Naijie Gu, Wan Lin Dong, and Xiaohu Liu. Topo-
logical Hole Detection in Sensor Networks with Cooperative Neighbors.
In International Conference on Systems and Networks Communication
(ICSNC’06), pp. 31–35. IEEE, 2006. [see pages 69 and 92]

[Cam05] Cambridge Vehicle Information Tech. Ltd. Choice Routing,
2005. http://camvit.com/camvit-technical-english/Camvit-Choic
e-Routing-Explanation-english.pdf. Accessed: 2014-08-06.

[see page 149]

[CBB07] Yanyan Chen, Michael G. H. Bell, and Klaus Bogenberger. Reliable
Pretrip Multipath Planning and Dynamic Adaptation for a Centralized
Road Navigation System. IEEE Transactions on Intelligent Transportation
Systems, 8(1):14–20, 2007. [see page 125]

[CC94] Trevor F. Cox and Michael A. A. Cox. Multidimensional Scaling. Mono-
graphs on Statistics and Applied Probability. Chapman & Hall/CRC, first
edition, 1994. [see page 13]

[CCJ90] Brent N. Clark, Charles J. Colbourn, and David S. Johnson. Unit Disk
Graphs. Discrete Mathematics, 86(1–3):165–177, 1990. [see page 72]

194

http://camvit.com/camvit-technical-english/Camvit-Choice-Routing-Explanation-english.pdf
http://camvit.com/camvit-technical-english/Camvit-Choice-Routing-Explanation-english.pdf

Bibliography

[CD05] Mihaela Cardei and Ding-Zhu Du. Improving Wireless Sensor Network Life-
time Through Power Aware Organization. Wireless Networks, 11(3):333–
340, 2005. [see page 20]

[CdDR12] Raffaele Cerulli, Renato de Donato, and Andrea Raiconi. Exact and
Heuristic Methods to Maximize Network Lifetime in Wireless Sensor Net-
works with Adjustable Sensing Ranges. European Journal of Operational
Research, 220(1):58–66, 2012. [see pages 23 and 43]

[Chr76] Nicos Christofides. Worst-Case Analysis of a New Heuristic for the Travel-
ling Salesman Problem. Management Sciences Research Report No. 388,
Carnegie Mellon University, 1976. [see page 48]

[Chv79] Vašek Chvatal. A Greedy Heuristic for the Set-Covering Problem. Mathe-
matics of Operations Research, 4(3):233–235, 1979. [see page 45]

[CK03] Chee-Yee Chong and Srikanta P. Kumar. Sensor Networks: Evolution,
Opportunities, and Challenges. Proceedings of the IEEE, 91(8):1247–1256,
2003. [see page 2]

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, third edition, 2009.

[see pages 10 and 45]

[CRSV13] Fabian Castaño, André Rossi, Marc Sevaux, and Nubia Velasco. A Column
Generation Approach to Extend Lifetime in Wireless Sensor Networks
with Coverage and Connectivity Constraints. Computers & Operations
Research, 2013. Accepted for publication. [see pages 23 and 43]

[CS12] Wei-Cheng Chu and Kuo-Feng Ssu. Decentralized Boundary Detection
without Location Information in Wireless Sensor Networks. In Wireless
Communications and Networking Conference (WCNC’12), pp. 1720–1724.
IEEE, 2012. [see page 70]

[CT97] Marco Cesati and Luca Trevisan. On the Efficiency of Polynomial Time
Approximation Schemes. Information Processing Letters, 64(4):165–171,
1997. [see page 10]

[CTLW05] Mihaela Cardei, My T. Thai, Yingshu Li, and Weili Wu. Energy-Efficient
Target Coverage in Wireless Sensor Networks. In Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM’05), vol. 3,
pp. 1976–1984. IEEE, 2005. [see pages 20, 23, 25, 29, 31, and 43]

[CW06] Mihaela Cardei and Jie Wu. Energy-Efficient Coverage Problems in
Wireless Ad-Hoc Sensor Networks. Computer Communications, 29(4):413–
420, 2006. [see page 19]

195

Bibliography

[Dan51] George B. Dantzig. Maximization of a Linear Function of Variables
Subject to Linear Inequalities. In Activity Analysis of Production and
Allocation, Cowles Commision Monographs, vol. 13, pp. 339–347. Wiley,
1951. [see page 12]

[Dan63] George B. Dantzig. Linear Programming and Extensions. Princeton
University Press, first edition, 1963.

[see pages 12, 31, 119, 128, and 162]

[DDHG05] Jitender S. Deogun, Saket Das, Haitham S. Hamza, and Steve Goddard.
An Algorithm for Boundary Discovery in Wireless Sensor Networks. In
International Conference on High Performance Computing (HiPC’05),
LNCS, vol. 3769, pp. 343–352. Springer, 2005. [see page 68]

[Des11] Karine Deschinkel. A Column Generation based Heuristic for Maximum
Lifetime Coverage in Wireless Sensor Networks. In International Confer-
ence on Sensor Technologies and Applications (SENSORCOMM’11), pp.
209–214. IARIA, 2011. [see pages 22, 43, and 44]

[DF79] Eric V. Denardo and Bennett L. Fox. Shortest-route methods: 1. reaching,
pruning, and buckets. Operations Research, 27(1):161–186, 1979.

[see page 248]

[DFF56] George B. Dantzig, Lester R. Ford, and Delbert R. Fulkerson. A Primal-
Dual Algorithm for Linear Programs. In Linear Inequalities and Related
Systems, Annals of Mathematics Studies, vol. 38, pp. 171–181. Princeton
University Press, 1956. [see page 12]

[DGNW13] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. PHAST: Hardware-Accelerated Shortest Path Trees. Journal of
Parallel and Distributed Computing, 73(7):940–952, 2013.

[see pages 120, 122, 132, 162, and 184]

[DGPW13] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck. Customizable Route Planning in Road Networks, 2013. Preprint avail-
able at http://research.microsoft.com/pubs/198358/crp_web_130
724.pdf. Accessed: 2014-08-06. [see pages 121 and 162]

[DGPW14] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Wer-
neck. Robust Exact Distance Queries on Massive Networks. Technical
Report MSR-TR-2014-12, Microsoft Research, 2014.

[see pages 121 and 123]

[DGRW11] Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F.
Werneck. Graph Partitioning with Natural Cuts. In International Parallel

196

http://research.microsoft.com/pubs/198358/crp_web_130724.pdf
http://research.microsoft.com/pubs/198358/crp_web_130724.pdf

Bibliography

and Distributed Processing Symposium (IPDPS’11), pp. 1135–1146. IEEE,
2011. [see page 121]

[DGW11] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster
Batched Shortest Paths in Road Networks. In Workshop on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems
(ATMOS’13), OASIcs, vol. 20, pp. 52–63. Dagstuhl Publishing, 2011.

[see page 122]

[DGW13] Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Hub Label
Compression. In International Symposium on Experimental Algorithms
(SEA’13), LNCS, vol. 7933, pp. 18–29. Springer, 2013. [see page 121]

[Dha12] Akshaye Dhawan. Maximum Lifetime Scheduling in Wireless Sensor
Networks. In Wireless Sensor Networks - Technology and Protocols, pp.
25–48. InTech, 2012. [see pages 23 and 24]

[DHM+09] Daniel Delling, Martin Holzer, Kirill Müller, Frank Schulz, and Dorothea
Wagner. High-Performance Multi-Level Routing. In The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, DIMACS Book Se-
ries, vol. 74, pp. 73–92. American Mathematical Society, 2009.

[see page 121]

[Dij59] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959. [see pages 119 and 128]

[Din09] Thanh Le Dinh. Topological Boundary Detection in Wireless Sensor
Networks. Journal of Information Processing Systems, 5(3):145–150, 2009.

[see page 70]

[DKMT11] Amol Deshpande, Samir Khuller, Azarakhsh Malekian, and Mohammed
Toossi. Energy Efficient Monitoring in Sensor Networks. Algorithmica,
59(1):94–114, 2011. [see page 20]

[DKW14] Daniel Delling, Moritz Kobitzsch, and Renato F. Werneck. Customizing
Driving Directions with GPUs. In International Conference on Parallel
Processing (Euro-Par’14), LNCS, vol. 8632, pp. 728–739. Springer, 2014.

[see page 121]

[DLL09] Dezun Dong, Yunhao Liu, and Xiangke Liao. Fine-Grained Boundary
Recognition in Wireless Ad Hoc and Sensor Networks By Topological
Methods. In International Symposium on Mobile Ad Hoc Networking and
Computing (MobiHoc’09), pp. 135–144. ACM, 2009.

[see pages 67, 70, and 71]

197

Bibliography

[DLL+12] Dezun Dong, Xiangke Liao, Kebin Liu, Yunhao Liu, and Weixia Xu. Dis-
tributed Coverage in Wireless Ad Hoc and Sensor Networks by Topological
Graph Approaches. IEEE Transactions on Computers, 61(10):1147–1428,
2012. [see page 70]

[DP10] Waltenegus Dargie and Christian Poellabauer. Fundamentals of Wireless
Sensor Networks: Theory and Practice. Wiley Series on Wireless Commu-
nication and Mobile Computing. Wiley, first edition, 2010. [see page 4]

[dSG06] Vin de Silva and Robert Ghrist. Coordinate-free Coverage in Sensor
Networks with Controlled Boundaries via Homology. International Journal
of Robotics Research, 25(12):1205–1222, 2006. [see page 69]

[DSSW09] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Highway Hierarchies Star. In The Shortest Path Problem: Ninth DIMACS
Implementation Challenge, DIMACS Book Series, vol. 74, pp. 73–92.
American Mathematical Society, 2009. [see page 121]

[DVZ+06] Akshaye Dhawan, Chinh T. Vu, Alexander Zelikovsky, Yingshu Li, and
Sushil K. Prasad. Maximum Lifetime of Sensor Networks with Adjustable
Sensing Range. In International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing
(SNPD’06), pp. 285–289. IEEE, 2006. [see page 21]

[DW60] George B. Dantzig and Philip Wolfe. Decomposition Principle for Linear
Programs. Operations Research, 8(1):101–110, 1960.

[see pages vii, 22, and 40]

[DW09] Daniel Delling and Dorothea Wagner. Pareto Paths with SHARC. In
International Symposium on Experimental Algorithms (SEA’09), LNCS,
vol. 5526, pp. 125–136. Springer, 2009. [see page 124]

[DW13] Daniel Delling and Renato F. Werneck. Customizable Point-of-Interest
Queries in Road Networks. In International Symposium on Advances
in Geographic Information Systems (GIS’13), pp. 490–493. ACM, 2013.

[see page 122]

[DWW+12] Ling Ding, Weili Wu, James Willson, Lidong Wu, Zaixin Lu, and Wonjun
Lee. Constant-Approximation for Target Coverage Problem in Wireless
Sensor Networks. In International Conference on Computer Communica-
tions (INFOCOM’12), pp. 1584–1592. IEEE, 2012.

[see pages 21 and 46]

198

Bibliography

[EGK11] Thomas Erlebach, Tom Grant, and Frank Kammer. Maximising Life-
time for Fault-Tolerant Target Coverage in Sensor Networks. Sustainable
Computing: Informatics and Systems, 1(3):213–225, 2011. [see page 21]

[EKS14] Stephan Erb, Moritz Kobitzsch, , and Peter Sanders. Parallel Bi-Objective
Shortest Paths Using Weight-Balanced B-Trees with Bulk Updates. In
International Symposium on Experimental Algorithms (SEA’14), LNCS,
vol. 8504, pp. 111–122. Springer, 2014. [see page 124]

[EM09] Thomas Erlebach and Matúš Mihalák. A (4 + ϵ)-Approximation for the
Minimum-weight Dominating Set Problem in Unit Disk Graphs. In Inter-
national Workshop on Approximation and Online Algorithms (WAOA’09),
LNCS, vol. 5893, pp. 135–146. Springer, 2009. [see page 25]

[Epp98] David Eppstein. Finding the k Shortest Paths. SIAM Journal on Com-
puting, 28(2):652–673, 1998. [see page 124]

[FGG06] Qing Fang, Jie Gao, and Leonidas J. Guibas. Locating and Bypassing Holes
in Sensor Networks. Mobile Networks and Applications, 11(2):187–200,
2006. [see pages 67, 69, and 70]

[FK06] Stefan Funke and Christian Klein. Hole Detection or: "How Much Geom-
etry Hides in Connectivity?". In Symposium on Computational Geometry
(SCG’06), pp. 377–385. ACM, 2006. [see pages 69 and 92]

[FKK+07] Stefan Funke, Alexander Kesselman, Fabian Kuhn, Zvi Lotker, and Michael
Segal. Improved Approximation Algorithms for Connected Sensor Cover.
Wireless Networks, 13(2):153–164, 2007. [see page 25]

[FKKL05] Sándor P. Fekete, M. Kaufmann, Alexander Kröller, and N. Lehmann. A
New Approach for Boundary Recognition in Geometric Sensor Networks.
In Canadian Conference on Computational Geometry (CCCG’05), pp.
84–87. University of Windsor, 2005. [see pages 69 and 70]

[FKP+04] Sándor P. Fekete, Alexander Kröller, Dennis Pfisterer, Stefan Fischer, and
Carsten Buschmann. Neighborhood-Based Topology Recognition in Sensor
Networks. In International Workshop on Algorithmic Aspects of Wireless
Sensor Networks (ALGOSENSORS’04), vol. 3121, pp. 123–136. Springer,
2004. [see pages 69, 70, and 92]

[Flo62] Robert W. Floyd. Algorithm 97: Shortest Path. Communications of the
ACM, 5(6):345, 1962. [see page 11]

[FMS08] Stefan Funke, Domagoj Matijević, and Peter Sanders. Constant Time
Queries for Energy Efficient Paths in Multi-hop Wireless Networks. Journal

199

Bibliography

of Computing and Information Technology, 16(2):119–130, 2008.
[see page 123]

[FR89] Thomas A. Feo and Mauricio G.C. Resende. A Probabilistic Heuristic for
a Computationally Difficult Set Covering Problem. Operations Research
Letters, 8(2):67–71, 1989. [see page 23]

[Fri67] Ivan T. Frisch. An Algorithm for Vertex-Pair Connectivity. International
Journal of Control, 6(6):579–593, 1967. [see page 19]

[FS13] Stefan Funke and Sabine Storandt. Polynomial-Time Construction of
Contraction Hierarchies for Multi-Criteria Objectives. In Meeting on
Algorithm Engineering and Experiments (ALENEX’13), pp. 31–54. SIAM,
2013. [see page 125]

[FT87] Michael L. Fredman and Robert E. Tarjan. Fibonacci Heaps and Their
Uses in Improved Network Optimization Algorithms. Journal of the ACM,
34(3):596–615, 1987. [see page 248]

[Fun05] Stefan Funke. Topological Hole Detection in Wireless Sensor Networks and
its Applications. In Joint Workshop on Foundations of Mobile Computing
(DIALM-POMC’05), pp. 44–53. ACM, 2005. [see pages 69 and 92]

[Gav01] Cyril Gavoille. Routing in Distributed Networks: Overview and Open
Problems. SIGACT News, 32(1):36–52, 2001. [see page 124]

[GB08] James E. Gubernatis and Thomas E. Booth. Multiple Extremal Eigenpairs
by the Power Method. Journal of Computational Physics, 227(19):8508–
8522, 2008. [see page 14]

[GG12] Jie Gao and Leonidas Guibas. Geometric Algorithms for Sensor Networks.
Philosophical Transactions of the Royal Society A, 370(1958):27–51, 2012.

[see page 124]

[GH05] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path:
A* Search Meets Graph Theory. In Symposium on Discrete Algorithms
(SODA’05), pp. 156–165. SIAM, 2005. [see pages 120, 131, and 162]

[GJ78] M. R. Garey and David S. Johnson. “Strong” NP-Completeness Results:
Motivation, Examples, and Implications. Journal of the ACM, 25(3):499–
508, 1978. [see page 10]

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W. H. Freeman and Company,
first edition, 1979. [see pages 7 and 13]

200

Bibliography

[GJLZ09] Yu Gu, Yusheng Ji, Jie Li, and Baohua Zhao. QoS-Aware Target Cover-
age in Wireless Sensor Networks. Wireless Communications and Mobile
Computing, 9(12):1645–1659, 2009. [see pages 22, 45, and 51]

[GK07] Naveen Garg and Jochen Könemann. Faster and Simpler Algorithms for
Multicommodity Flow and Other Fractional Packing Problems. SIAM
Journal on Computing, 37(2):630–652, 2007.

[see pages vii, 21, 43, and 46]

[GKS10] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning
with Flexible Objective Functions. In Workshop on Algorithm Engineering
and Experiments (ALENEX’10), pp. 124–137. SIAM, 2010.

[see page 125]

[GKT51] David Gale, Harold W. Kuhn, and Albert W. Tucker. Linear Program-
ming and the Theory of Games. In Activity Analysis of Production and
Allocation, Cowles Commision Monographs, vol. 13, pp. 317–329. Wiley,
1951. [see page 12]

[GLS81] Martin Grötschel, László Lovász, and Alexander Schrijver. The Ellipsoid
Method and Its Consequences in Combinatorial Optimization. Combina-
torica, 1(2):169–197, 1981. [see page 30]

[GLZ07] Yu Gu, Hengchang Liu, and Baohua Zhao. Joint Scheduling and Routing
for Lifetime Elongation in Surveillance Sensor Networks. In Asia-Pacific
Service Computing Conference (APSCC’07), pp. 81–88. IEEE, 2007.

[see pages 22 and 43]

[GM05] Robert Ghrist and Abubakr Muhammad. Coverage and Hole-Detection in
Sensor Networks via Homology. In International Symposium on Informa-
tion Processing in Sensor Networks (IPSN’05), pp. 254–260. IEEE, 2005.

[see page 69]

[Gom58] Ralph E. Gomory. Outline of an Algorithm for Integer Solutions to Linear
Programs. Bulletin of the American Mathematical Society, 64(5):275–278,
1958. [see page 13]

[GP03] Cyril Gavoille and David Peleg. Compact and Localized Distributed Data
Structures. Distributed Computing, 16(2–3):111–120, 2003.

[see page 124]

[GR13] Monica Gentili and Andrea Raiconi. α-Coverage to Extend Network
Lifetime on Wireless Sensor Networks. Optimization Letters, 7(1):157–172,
2013. [see pages 23 and 43]

201

Bibliography

[GS10] Robert Geisberger and Dennis Schieferdecker. Heuristic Contraction
Hierarchies with Approximation Guarantee. In International Symposium
on Combinatorial Search (SoCS’10), pp. 31–38. AAAI Press, 2010.

[see page 117]

[GSSV12] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.
Exact Routing in Large Road Networks Using Contraction Hierarchies.
Transportation Science, 46(3):388–404, 2012.

[see pages 120, 133, 135, 138, and 162]

[GW05] Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point
Shortest Paths from External Memory. In Workshop on Algorithm Engi-
neering and Experiments (ALENEX’05), pp. 26–40. SIAM, 2005.

[see page 131]

[GZDG06] Himanshu Gupta, Zongheng Zhou, Samir R. Das, and Quinyi Gu. Con-
nected Sensor Cover: Self-Organization of Sensor Networks for Efficient
Query Execution. IEEE/ACM Transactions on Networking, 14(1):55–67,
2006. [see pages 24 and 25]

[GZJL11] Yu Gu, Bao-Hua Zhao, Yu-Sheng Ji, and Jie Li. Theoretical Treatment
of Target Coverage in Wireless Sensor Networks. Journal of Computer
Science and Technology, 26(1):117–129, 2011. [see pages 22, 43, and 45]

[Han80] Pierre Hansen. Bricriterion Path Problems. In Conference on Multiple
Criteria Decision Making (MCDM’79), LNEMS, vol. 177, pp. 109–127.
Springer, 1980. [see page 124]

[HKMS09] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling.
Fast Point-to-Point Shortest Path Computations with Arc-Flags. In
The Shortest Path Problem: Ninth DIMACS Implementation Challenge,
DIMACS Book Series, vol. 74, pp. 41–72. American Mathematical Society,
2009. [see pages 120 and 132]

[HM85] Dorit S. Hochbaum and Wolfgang Maass. Approximation Schemes for
Covering and Packing Problems in Image Processing and VLSI. Journal
of the ACM, 32(1):130–136, 1985. [see pages 21, 25, and 33]

[HNR68] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for
the Heuristic Determination of Minimum Cost Paths. IEEE Transactions
on Systems Science and Cybernetics, 4(2):100–107, 1968.

[see pages 120 and 130]

202

Bibliography

[HSW08] Martin Holzer, Frank Schulz, and Dorothea Wagner. Engineering Multi-
Level Overlay Graphs for Shortest-Path Queries. ACM Journal of Experi-
mental Algorithmics, 13(2.5):1–26, 2008. [see page 121]

[HSWW05] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm.
Combining Speed-Up Techniques for Shortest-Path Computations. ACM
Journal of Experimental Algorithmics, 10(2.5):1–18, 2005.

[see page 121]

[IHI+94] Takahiro Ikeda, Min-Yao Hsu, Hiroshi Imai, Shigeki Nishimura, Hiroshi
Shimoura, Takeo Hashimoto, Kenji Tenmoku, and Kunihiko Mitoh. A
Fast Algorithm for Finding Better Routes by AI Search Techniques. In
Vehicle Navigation and Information Systems Conference (VNIS’94), pp.
291–296. IEEE, 1994. [see page 130]

[JOW+02] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-Efficient Computing for Wildlife
Tracking: Design Tradeoffs and Early Experiences with ZebraNet. In
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS’02), pp. 96–107. ACM, 2002.

[see page 17]

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems. In Com-
plexity of Computer Computations, The IBM Research Symposia Series,
pp. 85–103. Plenum Press, 1972. [see page 48]

[Kar84] Narendra Karmarkar. A Polynomial Algorithm in Linear Programming.
Combinatorica, 4(4):373–396, 1984. [see page 12]

[Kat09] Bastian Katz. Positioning and Scheduling of Wireless Sensor Networks—
Models, Complexity, and Scalable Algorithms. PhD thesis, University of
Karlsruhe, Department of Informatics, 2009. [see page 115]

[KFPF06] Alexander Kröller, Sándor P. Fekete, Dennis Pfisterer, and Stefan Fischer.
Deterministic Boundary Recognition and Topology Extraction for Large
Sensor Networks. In Symposium on Discrete Algorithms (SODA’06), pp.
1000–1009. ACM, 2006. [see pages 69, 70, and 73]

[Kha79] Leonid G. Khachiyan. A Polynomial Algorithm in Linear Programming.
Doklady Akademiia Nauk SSSR, 224(S):1093–1096, 1979. English transla-
tion in Soviet Mathematics Doklady, 20(1):191–194. American Mathemati-
cal Society, 1979. [see page 12]

203

Bibliography

[Kie10] Roger M. Kieckhafer. Hard Real-Time Wireless Communication in the
Northern Pierre Auger Observatory. In Real Time Conference (RT’10),
pp. 1–8. IEEE, 2010. [see page 117]

[KK99] George Karypis and Gautam Kumar. A Fast and Highly Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific
Computing, 20(1):359–392, 1999. [see page 251]

[KKP99] Joseph M. Kahn, Randy H. Katz, and Kristofer S. J. Pister. Next Century
Challenges: Mobile Networking for “Smart Dust”. In International Confer-
ence on Mobile Computing and Networking (MobiCom’99), pp. 271–278.
ACM, 1999. [see pages 2 and 187]

[KMS05] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of
Shortest Path and Constrained Shortest Path Computation. In Inter-
national Workshop on Efficient and Experimental Algorithms (WEA’05),
LNCS, vol. 3503, pp. 126–138. Springer, 2005. [see page 120]

[Kob13] Moritz Kobitzsch. An Alternative Approach to Alternative Routes: HiDAR.
In European Symposium on Algorithms (ESA’13), LNCS, vol. 8125, pp.
613–624. Springer, 2013. [see page 125]

[KRS13] Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker. Evo-
lution and Evaluation of the Penalty Method for Alternative Graphs.
In Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’13), OASIcs, vol. 33, pp. 94–107.
Dagstuhl Publishing, 2013. [see page 125]

[KRX07] Goran Konjevod, Andréa W. Richa, and Donglin Xia. Optimal Scale-Free
Compact Routing Schemes in Networks of Low Doubling Dimension. In
Symposium on Discrete Algorithms (SODA’07), pp. 939–948. SIAM, 2007.

[see page 123]

[KSC06] Marcin Karpiński, Aline Senart, and Vinny Cahill. Sensor Networks for
Smart Roads. In International Conference on Pervasive Computing and
Communications (PerCom’06), pp. 306–310. IEEE, 2006.

[see pages 17 and 117]

[KSS+07] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and
Dorothea Wagner. Computing Many-to-Many Shortest Paths Using High-
way Hierarchies. In Workshop on Algorithm Engineering and Experiments
(ALENEX’07), pp. 36–45. SIAM, 2007.

[see pages 122, 153, 159, 184, and 250]

204

Bibliography

[KWZ08] Fabian Kuhn, Rogert Wattenhofer, and Aaron Zollinger. Ad-Hoc Networks
Beyond Unit Disk Graphs. Wireless Networks, 14(5):715–729, 2008.

[see page 72]

[Lau04] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest
Paths in Static Networks with Geographical Background. In Geoinfor-
mation und Mobilität – von der Forschung zur praktischen Anwendung,
vol. 22, pp. 219–230. IfGI prints, 2004. [see pages 120, 131, and 162]

[LD60] Ailsa H. Land and Alison G Doig. An Automatic Method of Solving
Discrete Programming Problems. Econometrica, 28(3):497–520, 1960.

[see page 13]

[LD05] Marco E. Lübbecke and Jacques Desrosiers. Selected Topics in Column
Generation. Operations Research, 53(6):1007–1023, 2005. [see page 40]

[LGDH12] Kyle Luthy, Edward Grant, Nikhil Deshpande, and Thomas C. Hender-
son. Perimeter Detection in Wireless Sensor Networks. Robotics and
Autonomous Systems, 60(2):266–277, 2012. [see pages 69 and 71]

[LGR09] Jun Luo, André Girard, and Catherine Rosenberg. Efficient Algorithms to
Solve a Class of Resource Allocation Problems in Large Wireless Networks.
In International Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks (WiOPT’09), pp. 23–27. IEEE, 2009.

[see pages 22, 43, and 58]

[LH09] Xiaoyun Li and David K. Hunter. Distributed Coordinate-Free Algorithm
for Full Sensing Coverage. International Journal of Sensor Networks,
5(3):153–163, 2009. [see page 70]

[LK73] Shen Lin and Brian W. Kernighan. An Effective Heuristic Algorithm
for the Traveling-Salesman Problem. Operations Research, 21(2):498–516,
1973. [see page 48]

[LS11] Dennis Luxen and Peter Sanders. Hierarchy Decomposition for Faster User
Equilibria on Road Networks. In International Symposium on Experimental
Algorithms (SEA’11), LNCS, vol. 6630, pp. 242–253. Springer, 2011.

[see pages ix and 188]

[LS12a] Dennis Luxen and Dennis Schieferdecker. Candidate Sets for Alternative
Routes in Road Networks. In International Symposium on Experimental
Algorithms (SEA’12), LNCS, vol. 7276, pp. 260–270. Springer, 2012.

[see page 117]

205

Bibliography

[LS12b] Dennis Luxen and Dennis Schieferdecker. Doing More for Less—Cache-
Aware Parallel Contraction Hierarchies Preprocessing. Preprint available
at arXiv:1208.2543 [cs.DS], Karlsruhe Institute of Technology, 2012.

[see page 248]

[LS14] Dennis Luxen and Dennis Schieferdecker. Candidate Sets for Alternative
Routes in Road Networks. ACM Journal of Experimental Algorithmics,
2014. Accepted for publication. [see pages 117 and 162]

[Lux13] Dennis Luxen. Building Blocks for Mapping Services. PhD thesis, Karlsruhe
Institute of Technology, Department of Informatics, 2013.

[see page 136]

[LWCL09] Mingming Lu, Jie Wu, Mihaela Cardei, and Minglu Li. Energy-Efficient
Connected Coverage of Discrete Targets in Wireless Sensor Networks.
International Journal of Ad Hoc and Ubiquitous Computing, 4(3/4):137–
147, 2009. [see pages 19, 23, and 24]

[Mar84] Ernesto Queiros Vieira Martins. On a Multicriteria Shortest Path Problem.
European Journal of Operational Research, 16(2):236–245, 1984.

[see page 124]

[MCP+02] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless Sensor Networks for Habitat Monitoring. In
International Workshop on Wireless Sensor Networks and Applications
(WSNA’02), pp. 88–97. ACM, 2002. [see page 17]

[Men31] Karl Menger. Bericht über ein mathematisches Kolloquium 1929/30.
Monatshefte für Mathematik und Physik, 38(1):17–38, 1931.

[see page 48]

[MH97] Nenad Mladenović and Pierre Hansen. Variable Neighborhood Search.
Computers & Operations Research, 24(11):1097–1100, 1997.

[see page 23]

[MHW01] Matthias Müller-Hannemann and Karsten Weihe. Pareto Shortest Paths
is Often Feasible in Practice. In International Workshop on Algorithm
Engineering (WAE’01), LNCS, vol. 2141, pp. 185–197. Springer, 2001.

[see page 124]

[MIH81] Shigeru Masuyama, Toshihide Ibaraki, and Toshiharu Hasegawa. The
Computational Complexity of the m-Center Problems on the Plane. IECE
Transactions, E64(2):57–64, 1981. [see page 29]

206

Bibliography

[MS04] Fernando Martincic and Loren Schwiebert. Distributed Perimeter Detec-
tion in Wireless Sensor Networks. Technical Report WSU-CSC-NEWS/03-
TR03, Wayne State University, 2004. [see pages 68 and 91]

[MS08] Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The
Basic Toolbox. Springer, first edition, 2008. [see pages 10 and 248]

[MSS+07] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and
Thomas Willhalm. Partitioning Graphs to Speedup Dijkstra’s Algorithm.
ACM Journal of Experimental Algorithmics, 11(2.8):1–29, 2007.

[see pages 120 and 131]

[NS10] Amiya Nayak and Ivan Stojmenovic, editors. Wireless Sensor and Actuator
Networks: Algorithms and Protocols for Scalable Coordination and Data
Communication. Wiley, first edition, 2010. [see page 4]

[Pea84] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Prob-
lem Solving. Addison-Wesley, first edition, 1984. [see page 123]

[Pel00a] David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM
Monographs on Discrete Mathematics and Applications. SIAM, first edi-
tion, 2000. [see page 124]

[Pel00b] David Peleg. Proximity-Preserving Labeling Schemes. Journal of Graph
Theory, 33(3):167–176, 2000. [see page 121]

[PG04] Srinivasan Parthasarathy and Rajiv Gandhi. Fast Distributed Well Con-
nected Dominating Sets for Ad Hoc Networks. Technical Report CS-TR-
4559, University of Maryland, 2004. [see page 77]

[Poh70] Ira Pohl. Heuristic Search Viewed as Path Finding in a Graph. Artificial
Intelligence, 1(3):193–204, 1970. [see pages 123 and 131]

[Poh71] Ira Pohl. Bi-Directional Search. In Machine Intelligence Workshop, vol. 6,
pp. 124–140. Edinburgh University Press, 1971. [see page 130]

[PR91] Manfred Padberg and Giovanni Rinaldi. A Branch-and-Cut Algorithm for
the Resolution of Large-Scale Symmetric Traveling Salesman Problems.
SIAM Review, 33(1):60–100, 1991. [see page 13]

[PZ13] Andreas Paraskevopoulos and Christos Zaroliagis. Improved Alternative
Route Planning. In Workshop on Algorithmic Approaches for Transporta-
tion Modelling, Optimization, and Systems (ATMOS’13), OASIcs, vol. 33,
pp. 108–122. Dagstuhl Publishing, 2013. [see page 125]

207

Bibliography

[Rap02] Theodore S. Rappaport. Wireless Communications: Principles and Prac-
tice. Prentice Hall, second edition, 2002. [see page 127]

[RG11] Andrea Raiconi and Monica Gentili. Exact and Metaheuristic Approaches
to Extend Lifetime and Maintain Connectivity in Wireless Sensors Net-
works. In International Network Optimization Conference (INOC’11),
LNCS, vol. 6701, pp. 607–619. Springer, 2011. [see pages 23 and 43]

[RRP+03] Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker,
and Ion Stoica. Geographic Routing without Location Information. In
International Conference on Mobile Computing and Networking (Mobi-
Com’03), pp. 96–108. ACM, 2003. [see page 67]

[RSS12] André Rossi, Alok Singh, and Marc Sevaux. An Exact Approach for
Maximizing the Lifetime of Sensor Networks with Adjustable Sensing
Ranges. Computers & Operations Research, 39(12):3166–3176, 2012.

[see pages 23, 43, and 58]

[SB71] Kenneth Steiglitz and John Bruno. A New Derivation of Frisch’s Algorithm
for Calculating Vertex-Pair Connectivity. BIT Numerical Mathematics,
11(1):94–106, 1971. [see page 19]

[SB11] Amit Shirsat and Bharat Bhargava. Local Geometric Algorithm for Hole
Boundary Detection in Sensor Networks. Security and Communication
Networks, 4(9):1003–1012, 2011. [see page 69]

[Sch89] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-
Interscience Series in Discrete Mathematics. Wiley, first edition, 1989.

[see page 12]

[Sch08a] Dennis Schieferdecker. Systematic Combination of Speed-Up Techniques
for Exact Shortest-Path Queries. Diploma thesis, University of Karlsruhe,
Department of Informatics, 2008. [see page 249]

[Sch08b] Dominik Schultes. Route Planning in Road Networks. PhD thesis, Univer-
sity of Karlsruhe, Department of Informatics, 2008. [see page 136]

[Sch12] Alexander Schrijver. On the History of the Shortest Path Problem. Docu-
menta Mathematica, Optimization Stories:155–167, 2012.

[see pages 119 and 128]

[SG76] Sartaj Sahni and Teofilo Gonzalez. P-Complete Approximation Problems.
Journal of the ACM, 23(3):555–565, 1976. [see page 48]

208

Bibliography

[SM13] Peter Sanders and Lawrence Mandow. Parallel Label-Setting Multi-
Objective Shortest Path Search. In International Parallel and Distributed
Processing Symposium (IPDPS’13), pp. 215–224. IEEE, 2013.

[see page 124]

[Som14] Christian Sommer. Shortest-Path Queries in Static Networks. ACM
Computing Surveys, 46(4):45:1–45:31, 2014. [see page 119]

[SP01] Sasa Slijepcevic and Miodrag Potkonjak. Power Efficient Organization of
Wireless Sensor Networks. In International Conference on Communications
(ICC’01), vol. 2, pp. 472–476. IEEE, 2001.

[see pages 19, 20, 22, 23, 43, 51, and 221]

[SPJB97] Kelley Scott, Glarycelis Pabón-Jiménez, and David Bernstein. Finding
Alternatives to the Best Path. Preprint paper 970682, Transportation
Research Board, 1997. [see page 125]

[SS05] Catherine Soanes and Angus Stevenson, editors. Oxford Dictionary of
English. Oxford University Press, revised second edition, 2005.

[see pages 1, 7, 17, 67, 117, and 187]

[SS07] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing.
In International Workshop on Experimental Algorithms (WEA’07), LNCS,
vol. 4525, pp. 66–79. Springer, 2007. [see page 120]

[SS10] Peter Sanders and Dennis Schieferdecker. Lifetime Maximization of Mon-
itoring Sensor Networks. In International Workshop on Algorithms for
Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile En-
tities (ALGOSENSORS’10), LNCS, vol. 6451, pp. 134–147. Springer, 2010.

[see page 17]

[SS12a] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies.
ACM Journal of Experimental Algorithmics, 17(1):1–40, 2012.

[see page 120]

[SS12b] Peter Sanders and Christian Schulz. Distributed Evolutionary Graph
Partitioning. In Meeting on Algorithm Engineering and Experiments
(ALENEX’12), pp. 16–29. SIAM, 2012. [see page 251]

[SSGM10] Olga Saukh, Robert Sauter, Matthias Gauger, and Pedro J. Marrón. On
Boundary Recognition without Location Information in Wireless Sensor
Networks. ACM Transactions on Sensor Networks, 6(3):20:1–20:35, 2010.

[see pages 70, 71, and 92]

209

Bibliography

[SVW11a] Dennis Schieferdecker, Markus Völker, and Dorothea Wagner. Efficient
Algorithms for Distributed Detection of Holes and Boundaries in Wireless
Networks. Karlsruhe Reports in Informatics 2011,8, Karlsruhe Institute of
Technology, 2011. [see pages 67, 85, and 92]

[SVW11b] Dennis Schieferdecker, Markus Völker, and Dorothea Wagner. Efficient
Algorithms for Distributed Detection of Holes and Boundaries in Wire-
less Networks. In International Symposium on Experimental Algorithms
(SEA’11), LNCS, vol. 6630, pp. 388–399. Springer, 2011.

[see pages 67, 85, and 92]

[SWW00] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s Algorithm
On-Line: An Empirical Case Study from Public Railroad Transport. ACM
Journal of Experimental Algorithmics, 5(12):1–23, 2000. [see page 121]

[SWZ02] Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Using Multi-
Level Graphs for Timetable Information in Railway Systems. In Workshop
on Algorithm Engineering and Experiments (ALENEX’02), LNCS, vol.
2409, pp. 43–59. Springer, 2002. [see page 121]

[SZG13] Rik Sarkar, Xianjin Zhu, and Jie Gao. Distributed and Compact Routing
Using Spatial Distributions in Wireless Sensor Networks. ACM Transac-
tions on Sensor Networks, 9(3):32:1–32:20, 2013. [see page 123]

[TG02] Di Tian and Nicolas D. Georganas. A Coverage-Preserving Node Schedul-
ing Scheme for Large Wireless Sensor Networks. In International Workshop
on Wireless Sensor Networks and Applications (WSNA’02), pp. 32–41.
ACM, 2002. [see page 24]

[TG05] Di Tian and Nicolas D. Georganas. Connectivity Maintenance and Cover-
age Preservation in Wireless Sensor Networks. Ad Hoc Networks, 3(6):744–
761, 2005. [see page 19]

[Tor52] Warren S. Torgerson. Multidimensional Scaling: I. Theory and Method.
Psychometrika, 17(4):401–419, 1952. [see pages viii and 13]

[TYIM05] Wataru Tsujita, Akihito Yoshino, Hiroshi Ishida, and Toyosaka Moriizumi.
Gas Sensor Network for Air-Pollution Monitoring. Sensors and Actuators
B: Chemical, 110(2):304–311, 2005. [see page 17]

[Vö12] Markus Völker. Algorithmic Aspects of Communication and Localization in
Wireless Sensor Networks. PhD thesis, Karlsruhe Institute of Technology,
Department of Informatics, 2012. [see page 85]

210

Bibliography

[Vai91] Pravin M. Vaidya. A Sparse Graph Almost as Good as the Complete
Graph on Points in K Dimensions. Discrete & Computational Geometry,
6(1):369–381, 1991. [see page 123]

[Vaz02] Vijay V. Vazirani. Approximation Algorithms. Springer, first edition, 2002.
[see pages 7, 10, and 25]

[Vet09] Christian Vetter. Parallel Time-Dependent Contraction Hierarchies. Stu-
dent research project, Karlsruhe Institute of Technology, Department of
Informatics, 2009. [see page 134]

[Vet10] Christian Vetter. Fast and Exact Mobile Navigation with OpenStreetMap
Data. Diploma thesis, Karlsruhe Institute of Technology, Department of
Informatics, 2010. [see page 134]

[vMPG29] Richard von Mises and Hilda Pollaczek-Geiringer. Praktische Verfahren
der Gleichungsauflösung. Zeitschrift für Angewandte Mathematik und
Mechanik, 9(1):58–77, 1929. [see page 14]

[vN47] John von Neumann. Discussion of a Maximum Problem, 1947. Unpublished
working paper. Reprinted in John von Neumann, Collected Works, volume
VI, pages 89–95. Pergamon Press, 1963. [see page 12]

[Wan11] Bang Wang. Coverage Problems in Sensor Networks: A Survey. ACM
Computing Surveys, 43(4):32:1–32:53, 2011. [see page 19]

[Weg03] Ingo Wegener. Komplexitätstheorie: Grenzen der Effizienz von Algorith-
men. Springer, first edition, 2003. [see page 7]

[WGM06] Yue Wang, Jie Gao, and Joseph S. B. Mitchell. Boundary Recognition
in Sensor Networks by Topological Methods. In International Conference
on Mobile Computing and Networking (MobiCom’06), pp. 122–133. ACM,
2006. [see pages 67, 70, and 92]

[Wil79] Robert Williams. The Geometrical Foundation of Natural Structure: A
Source Book of Design. Dover Publications, first edition, 1979.

[see page 38]

[WW64] John William and Joseph Williams. Algorithm 232: Heapsort. Communi-
cations of the ACM, 7(6):347–348, 1964. [see page 248]

[WW07] Dorothea Wagner and Roger Wattenhofer, editors. Algorithms for Sensor
and Ad Hoc Networks: Advanced Lectures, LNCS, vol. 4621. Springer, first
edition, 2007. [see page 4]

211

Bibliography

[XRC+04] Ning Xu, Sumit Rangwala, Krishna Kant Chintalapudi, Deepak Ganesan,
Alan Broad, Ramesh Govindan, and Deborah Estrin. A Wireless Sensor
Network For Structural Monitoring. In International Conference on Em-
bedded Networked Sensor Systems (SenSys’04), pp. 13–24. ACM, 2004.

[see page 17]

[Yen71] Jin Y. Yen. Finding the k Shortest Loopless Paths in a Network. Man-
agement Science, 17(11):712–716, 1971. [see page 124]

[YMD11] Feng Yan, Philippe Martins, and Laurent Decreusefond. Connectivity-
Based Distributed Coverage Hole Detection in Wireless Sensor Networks.
In Global Telecommunications Conference (GLOBECOM’11), pp. 1–6.
IEEE, 2011. [see page 70]

[YMG08] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless Sensor
Network Survey. Computer Networks, 52(12):2292–2330, 2008.

[see pages 4 and 17]

[YWM05] Liyang Yu, Neng Wang, and Xiaoqiao Meng. Real-Time Forest Fire
Detection with Wireless Sensor Networks. In International Conference
on Wireless Communications, Networking and Mobile Computing (WC-
NMC’05), vol. 2, pp. 1214–1217. IEEE, 2005. [see page 17]

[ZG08] Qun Zhao and Mohan Gurusamy. Lifetime Maximization for Connected
Target Coverage in Wireless Sensor Networks. IEEE/ACM Transactions
on Networking, 16(6):1378–1391, 2008. [see pages 21 and 24]

[ZH05] Honghai Zhang and Jennifer C. Hou. Maintaining Sensing Coverage
and Connectivity in Large Sensor Networks. Ad Hoc & Sensor Wireless
Networks, 1(1–2):89–124, 2005. [see pages 19 and 24]

[Zwi01] Uri Zwick. Exact and Approximate Distances in Graphs – A Survey. In
European Symposium on Algorithms (ESA’01), LNCS, vol. 2161, pp. 33–48.
Springer, 2001. [see pages 119 and 123]

[ZWX+11] Feng Zou, Yuexuan Wang, Xiao-Hua Xu, Xianyue Li, Hongwei Du, Pengjun
Wan, and Weili Wu. New Approximations for Minimum-Weighted Domi-
nating Sets and Minimum-Weighted Connected Dominating Sets on Unit
Disk Graphs. Theoretical Compututer Science, 412(3):198–208, 2011.

[see page 25]

[ZZF09] Chi Zhang, Yanchao Zhang, and Yuguang Fang. Localized Algorithms
for Coverage Boundary Detection in Wireless Sensor Networks. Wireless
Networks, 15(1):3–20, 2009. [see page 69]

212

A Appendix A

Lifetime Maximization of
Monitoring Sensor Networks

We complement our studies in Section 3.6 on solving SNLP to optimality by additional
insights. We describe how to determine the entities required by our algorithm. This is
followed by further simulational results to support our previous findings. We conclude
with a small excursion on a set-based modelling of the coverage problem.

Converting Area Coverage to Target Coverage

As reasoned in Section 3.6.1, we have to partition the area covered by all sensor nodes
into smaller, not necessarily connected regions, called entities, so that each entity is
covered by a unique set of nodes. This decomposition allows us to define the area A
that we want to have monitored by the sensor network. Moreover, the entities double as
targets when converting from area coverage to target coverage. The conversion makes
it easier to verify whether a set of sensor nodes covers area A. It was first described in
[BCSZ05]. In the following, we present our approach for determining these entities.

Our approach considers the overlay of the outlines of the sensing areas of all nodes.
Each face in this structure represents an entity. Faces covered by the same subset of
nodes are combined into one logical unit, i.e. an entity. The procedure is summarized in
Algorithm A.1. We first determine the intersections between all outlines (Algorithm A.2)
before deducing the faces and thus the entities from them (Algortihm A.3).

Algorithm A.1 Compute Entities
Input: Set of sensor nodes (v, 1) ∈ V , with node position v and sensing range 1
Output: Set of entities e ∈ E, with e described by the nodes covering it

1: I ← computeIntersections(V) ◃ determine intersections of all sensing areas
2: F ← computeFaces(V, I) ◃ determine all faces
3: E ← removeDuplicates(F) ◃ remove duplicate faces
4: return E ◃ remaining faces correspond to entities

213

A Lifetime Maximization of Monitoring Sensor Networks

In the following, we give a detailed description of our procedure. Consider a set of
sensor nodes V . We assume circular sensing areas with uniform radii of 1. First, we use
Algorithm A.2 to compute the set of intersections I between the outlines of the sensing
areas of all nodes in V . For each node v ∈ V , we determine its set of neighboring nodes
Nv within a maximal distance of 2 (line 3). For each pair of nodes (v, n), n ∈ Nv, we
compute the set of intersection points Pv,n of the unit circles centered at the positions
of s and n (line 5), i.e. of the outlines of their sensing areas. We store each intersection
point i ∈ Pv,n and the set of nodes Ni inducing the intersection in I, see lines 7–11. If
we encounter an intersection point i again, we only add the new nodes to Ni.

Algorithm A.2 Compute Intersections
Input: Set of sensor nodes (v, 1) ∈ V , with node position v and sensing range 1
Output: Set of intersections (i, Ni) ∈ I, with intersection point i and set of associated

nodes Ni inducing the intersection

1: I ← ∅ ◃ initialize set of intersections
2: for all nodes v := (v, 1) ∈ V do
3: Nv ← getNeighbors(v, 2, V) ◃ find nodes in V within distance 2 of v
4: for all neighbors n := (n, 1) ∈ Nv do
5: Pv,n ← intersectUnitCircles(v,n) ◃ intersect unit circles centered at v, n
6: for all i ∈ Pv,n do
7: if exists (i, Ni) ∈ I then ◃ check if intersection at i already exists
8: (i, Ni)← (i, Ni ∪ {v, n}) ◃ if true, only add new nodes
9: else

10: I ← I ∪ {(i, {v, n})} ◃ otherwise, add new intersection
11: end if
12: end for
13: end for
14: end for
15: return I

Once we have found all intersections I, we use Algorithm A.3 to determine the set of
faces F . We consider each intersection (i, Ni) ∈ I. For each node v ∈ Ni, we compute
the inclination α of the tangent at i to the unit circle centered at its position (line 5),
i.e. to the outline of its sensing area. Each tangent is viewed as two half-lines starting
at i and stored as two tuples (v, α, opening) and (v, α + 180◦, closing) in T , the set
of tangents at i. They are marked as “opening” and “closing”, with the right-hand
one, facing intersection point i from node v, marked as opening (line 6). The set of
tangents T at i partitions the immediate area around i into |T | regions, with each
covered by a different set of nodes. When they have been computed, we iterate twice
over T in clockwise order, with closing tangents before opening tangents to break ties.
Meanwhile, we keep track of the set of active nodes Nact. It is initialized with all nodes

214

within a maximal distance of 1 of i that are not in Ni, i.e. with all nodes that cover
the immediate area surrounding i (line 9). When we encounter an opening tangent,
we add the associated node to Nact (line 12). We remove it once we encounter the
corresponding closing tangent (line 14). In either case, we add a new face fv,t to the
set of faces F (line 16). It is described by the current set of active nodes Nact, i.e. by
all nodes covering it. During the second iteration, we only consider closing tangents
(line 20) and add nodes to the respective faces instead of creating new ones (lines 22).
This addresses the nodes that should have been active at the start of the first iteration
and guarantees, together with the sorting order, that we obtain the correct combination
of nodes for each face. Figure A.1 illustrates the construction of tangents and faces.

Algorithm A.3 Compute Faces
Input: Set of sensor nodes (v, 1) ∈ V , with node position v and sensing range 1,

set of intersections (i, Ni) ∈ I, with intersection point i and set of associated
nodes Ni inducing the intersection

Output: Set of faces f ∈ F , with f described by the nodes covering it

1: F ← ∅ ◃ initialize set of faces
2: for all intersections (i, Ni) ∈ I do
3: T ← ∅ ◃ initialize set of tangents
4: for all nodes v := (v, 1) ∈ Ni do
5: α← getTangentAngle(i,v) ◃ get angle of tangent at i to unit circle at v
6: T ← T ∪ {(v, α, opening), (v, α + π, closing)} ◃ store tangents
7: end for
8: T ← sort(T) ◃ sort clockwise, closing tangents first to break ties
9: Nact ← getNeighbors(i, 1, V) \Ni ◃ find nodes in V within distance 1 of i

10: for all tangents (v, ·, type) ∈ T do
11: if type = opening then
12: Nact ← Nact ∪ {v} ◃ opening tangent: add node
13: else
14: Nact ← Nact \ {v} ◃ closing tangent: remove node
15: end if
16: F ← {fv,t := Nact} ◃ add new face consisting of active nodes
17: end for
18: for all tangents (v, ·, type) ∈ T do
19: if type = closing then
20: Nact ← Nact \ {v} ◃ closing tangent: remove node
21: end if
22: fv,t ← fv,t ∪Nact ◃ add active nodes to face
23: end for
24: end for
25: return F

215

A Lifetime Maximization of Monitoring Sensor Networks

After we have computed all of the faces surrounding each intersection point and
stored them in the set of faces F , we remove duplicate entries (Algorithm A.1, line 3),
i.e. faces that are covered by the same set of nodes. The resulting set E comprises all
(unique) entities of the area covered by the sensor nodes in V that we are looking for.

{u, v}

{v}{u}

{}

u v(u,32◦,closing)(v,328◦,opening)

i

(u,212◦,opening) (v,148◦,closing)

Figure A.1: Sensor nodes u and v are shown with their respective circular sensing
areas of radius 1 drawn in grey. The outlines of their sensing areas intersect at
position i. Further depicted are the tangents to each sensing area at position i. The
tuples at each tangent denote the entries stored for each half-line of the tangent
starting at i. They consist of the position of the center of the circle that the half-line
is tangent to, the angle of the half-line to the upward vertical axis, and an entry
describing whether the half-line marks the beginning of the sensing area or the end,
considered in clockwise order around i. The values in curly brackets denote the
four faces induced by the tangents and describe the nodes covering each of them
(other nodes that might also cover these faces are omitted for clarity).

Our implementation applies several advanced data structures. We use a quadtree as
geometric data structure to determine all nodes within some maximal distance of a
given position. Intersections are stored in an associative array with intersection points
as keys and the associated sets of nodes as values. The nodes comprising a face as well
as the nodes associated with an intersection point are stored as an ordered set to avoid
duplicates. Duplicate faces are filtered using a hash map.

We can simplify our procedure if we assume that only two circles can intersect at
any one point. In this case, we do not have to construct or process any tangents. Each
intersection point i is caused by just two nodes and yields exactly four faces. Each face
consists of either both nodes, exactly one of them, or neither, as well as of all nodes
within distance 1 of i. The special case of two circles only touching each other has to
be considered separately, though.

Our approach computes all entities of the area the sensor network covers. However,
we only consider a subset of these entities in our studies as explained in Section 3.6.1.
Thus, the next section gives an overview on the average number of considered entities
as well as further statistics on the monitored areas for each of our network settings.

216

Monitored Areas

To complement our studies in Section 3.6, we provide further information on the
considered areas for each of the network settings. Table A.1 lists the average number
of entities that have to be covered as well as the average number of nodes that can
cover each entity in each network setting. In addition, the spatial connectivity of the
monitored areas is considered. We list the total number of isolated subareas, called
components, as well as the number of large components, i.e. components that encompass
at least 1% as many entities as the largest one.

Table A.1: Statistical information on the considered areas in each network setting.
The average number of entities and the average amount of nodes covering one entity
are listed. In addition, the number of isolated components of the monitored area is
given. Large components contain at least 1% as many entities as the largest one.

Entities Components
nodes count avg. coverage total large
[#] [#] [#/1] [#] [#]

100 2 110 7.9 39.2 6.4
300 7 285 8.4 13.1 1.1
500 12 705 8.5 3.4 1.0

1 000 26 609 8.7 1.4 1.0

Entities Components
density count avg. coverage total large
[#/1] [#] [#/1] [#] [#]

1.0 2 784 4.1 3.4 1.1
2.5 7 285 8.4 13.1 1.1
5.0 13 947 15.4 23.0 1.1
10.0 24 652 28.4 43.4 1.1

Entities Components
node count avg. coverage total large
distr. [#] [#/1] [#] [#]

g 7 177 8.0 1.5 1.0
pg 7 948 8.4 3.7 1.0
rnd 7 285 8.4 13.1 1.1

Simulational Results

In the following paragraphs, we present the results of additional simulations to support
our previous findings. While we mainly focused on networks of 300 nodes with an
average node density of 2.5 before, we now consider network sizes between 100 and
1 000 nodes and node densities between 1.0 and 10.0 nodes per unit square. All other
parameters remain as in our default network setting of Section 3.6.1. The numbers
confirm our previous findings in Section 3.6 to be robust in different network settings.
As before, starred results for networks with 1 000 nodes have to be taken into account
separately as they depend on values for which we reached our hard time limit of three
hours and did not find an optimal solution.

We further show the impact of using different values for the error parameter ϵ in the
Garg-Könemann approach while using a heuristic to solve its inner subproblem. The
general trend that we observed before holds for all studied values.

217

A Lifetime Maximization of Monitoring Sensor Networks

Oracle Problem

Table A.2: Results of the column generation approach with different methods for
solving the oracle problem and with network sizes between 100 and 1 000 nodes.
Using a greedy heuristic alone and in combination with an exact solver is shown as
well as only using an exact solver. Starred results have to be regarded separately as
they depend on values for which we reached our time limit of three hours.

heuristic heur. + exact exact
nodes time error covers iter. time covers iter. time covers iter.
[#] [s] [%] [#] [#] [s] [#] [#] [s] [#] [#]

100 0.1 0.4 65 1 1.6 61 15 1.7 61 14
300 1.6 0.6 181 1 20.1 180 26 20.2 181 25
500 6.5 1.6 264 1 234.2 282 91 232.4 284 91

1 000 31.2 2.8* 408 3 6 609.8* 529* 563* 6 553.0* 527* 561*

Table A.3: Results of the column generation approach with different methods for
solving the oracle problem and with node densities between 1.0 and 10.0 nodes per
unit square. Heuristic and exact approaches are considered.

heuristic heur. + exact exact
density time error covers iter. time covers iter. time covers iter.
[#/1] [s] [%] [#] [#] [s] [#] [#] [s] [#] [#]

1.0 0.5 0.0 137 3 6.8 136 43 6.3 136 40
2.5 1.6 0.6 181 1 20.1 180 26 20.2 181 25
5.0 4.8 1.9 216 1 85.2 216 73 86.7 217 73
10.0 11.3 5.4 236 1 490.5 244 237 490.5 243 236

Garg-Könemann Approach

Table A.4: Results of the column generation approach with different settings for
the Garg-Könemann approach. Different values for error parameter ϵ are studied
as well as using an exact solver for the inner subproblem of this approach.

Initialization CG (1 iter.) Full CG
ϵ time error covers time error covers time covers iter.

solver [1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

he
ur

is
ti

c

0.01 778.6 5.7 186 237 109.8 0.0 210 109.8 210 4
0.02 66.9 6.4 46 536 35.2 0.0 215 35.2 215 6
0.05 6.7 8.4 7 430 24.2 0.0 198 24.2 198 10
0.10 1.5 12.1 1 839 20.2 0.0 181 20.2 181 25
0.20 0.4 20.5 441 31.0 0.0 162 31.0 162 94
0.50 0.1 48.4 54 68.3 0.0 167 68.3 167 482
0.90 0.0 88.4 4 87.5 0.0 169 87.5 169 726
0.99 0.0 96.9 1 89.1 0.0 171 89.1 171 768
1.00 0.0 100.0 0 93.7 0.0 171 93.7 171 796

exact 0.10 63.2 22.7 649 46.3 0.0 161 46.3 161 194

218

Termination Condition

Table A.5: Results of the column generation approach when terminating early.
The algorithm is stopped if the relative improvement stays below ∆ for 10 iterations.
We consider network sizes between 100 and 1 000 nodes. Starred results have to be
regarded separately as they depend on values for which we reached the time limit.

Initialization CG (1 iter.) Full CG
nodes ∆ time error covers time error covers time error covers iter.
[#] [%] [s] [%] [#] [s] [%] [#] [s] [%] [#] [#]

100 10.0 0.2 11.6 1 397 0.1 0.4 65 0.3 0.2 64 3
100 1.0 0.2 11.6 1 397 0.1 0.4 65 0.4 0.1 64 3
100 0.1 0.2 11.6 1 397 0.1 0.4 65 0.4 0.1 64 3
100 0.0 0.2 11.6 1 397 0.1 0.4 65 1.7 0.0 61 14

300 10.0 1.5 12.1 1 839 2.0 0.6 181 5.6 0.2 182 4
300 1.0 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5
300 0.1 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5
300 0.0 1.5 12.1 1 839 2.0 0.6 181 20.2 0.0 181 25

500 10.0 3.7 12.5 1 999 7.1 1.6 265 35.5 0.7 275 8
500 1.0 3.7 12.5 1 999 7.1 1.6 265 48.2 0.5 277 12
500 0.1 3.7 12.5 1 999 7.1 1.6 265 48.2 0.5 277 12
500 0.0 3.7 12.5 1 999 7.1 1.6 265 232.4 0.0 284 91

1 000 10.0 13.6 12.7 2 204 28.2 2.8 412 141.8 1.9 451 10
1 000 1.0 13.6 12.7* 2 204 28.2 2.8* 412 202.4 1.7* 463 15
1 000 0.1 13.6 12.7* 2 204 28.2 2.8* 412 202.3 1.7* 463 15
1 000 0.0 13.6 12.7* 2 204 28.2 2.8* 412 6 553.0* 0.0* 527* 561*

Table A.6: Results of the column generation approach when terminating early and
with node densities between 1.0 and 10.0 nodes per unit square.

Initialization CG (1 iter.) Full CG
density ∆ time error covers time error covers time error covers iter.
[#/1] [%] [s] [%] [#] [s] [%] [#] [s] [%] [#] [#]

1.0 10.0 0.7 9.1 1 015 0.5 0.0 137 0.7 0.0 137 2
1.0 1.0 0.7 9.1 1 015 0.5 0.0 137 0.7 0.0 137 2
1.0 0.1 0.7 9.1 1 015 0.5 0.0 137 0.7 0.0 137 2
1.0 0.0 0.7 9.1 1 015 0.5 0.0 137 6.3 0.0 136 40

2.5 10.0 1.5 12.1 1 839 2.0 0.6 181 5.6 0.2 182 4
2.5 1.0 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5
2.5 0.1 1.5 12.1 1 839 2.0 0.6 181 6.9 0.1 182 5
2.5 0.0 1.5 12.1 1 839 2.0 0.6 181 20.2 0.0 181 25

5.0 10.0 4.5 16.2 3 285 5.4 2.0 216 15.8 0.8 216 8
5.0 1.0 4.5 16.2 3 285 5.4 2.0 216 20.6 0.5 216 12
5.0 0.1 4.5 16.2 3 285 5.4 2.0 216 20.6 0.5 216 12
5.0 0.0 4.5 16.2 3 285 5.4 2.0 216 86.7 0.0 217 73

10.0 10.0 18.2 22.6 6 110 12.5 5.4 236 40.5 3.3 237 11
10.0 1.0 18.2 22.6 6 110 12.5 5.4 236 72.0 2.2 240 24
10.0 0.1 18.2 22.6 6 110 12.5 5.4 236 72.0 2.2 240 24
10.0 0.0 18.2 22.6 6 110 12.5 5.4 236 490.5 0.0 243 236

219

A Lifetime Maximization of Monitoring Sensor Networks

Sensing Ranges

Table A.7: Results of our approach with varying sensing ranges taken uniformly
at random from [1, 1 +R] for each node and with network sizes between 100 and
1 000 nodes. Starred results have to be regarded separately as they depend on values
for which we reached our hard time limit of three hours.

Initialization CG (1 iter.) Full CG
nodes R time error covers time error covers time covers iter.
[#] [1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

100 0.00 0.2 11.6 1 397 0.1 0.4 65 1.7 61 14
100 0.01 0.2 11.6 1 406 0.1 0.3 68 1.2 68 11
100 0.10 0.2 11.4 1 459 0.1 0.2 68 0.4 68 4
100 1.00 0.3 10.5 1 871 0.1 0.0 58 0.1 58 1

300 0.00 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25
300 0.01 1.5 12.0 1 849 1.9 0.6 182 18.0 185 21
300 0.10 1.6 11.8 1 921 1.7 0.4 181 10.5 182 12
300 1.00 2.1 10.0 2 510 1.2 0.0 134 1.4 134 1

500 0.00 3.7 12.5 1 999 7.1 1.6 265 232.4 284 91
500 0.01 3.7 12.4 2 010 7.3 1.5 265 203.6 288 74
500 0.10 3.9 12.0 2 095 7.1 1.0 266 116.8 282 34
500 1.00 5.4 10.0 2 799 3.2 0.1 196 6.2 198 2

1 000 0.00 13.6 12.7* 2 204 28.2 2.8* 412 6 553.0* 527* 561*

1 000 1.00 19.3 9.2 3 038 11.5 0.1 281 64.4 286 9

Table A.8: Results with sensing ranges taken uniformly at random from [1, 1 +R]
for each node and with node densities between 1.0 and 10.0 nodes per unit square.

Initialization CG (1 iter.) Full CG
density R time error covers time error covers time covers iter.
[#/1] [1] [s] [%] [#] [s] [%] [#] [s] [#] [#]

1.0 0.00 0.7 9.1 1 015 0.5 0.0 137 6.3 136 40
1.0 0.01 0.7 9.0 1 051 0.5 0.1 154 2.6 156 20
1.0 0.10 0.7 7.5 1 091 0.3 0.0 120 0.3 120 1
1.0 1.00 0.9 4.5 1 329 0.3 0.0 50 0.3 50 1

2.5 0.00 1.5 12.1 1 839 2.0 0.6 181 20.2 181 25
2.5 0.01 1.5 12.0 1 849 1.9 0.6 182 18.0 185 21
2.5 0.10 1.6 11.8 1 921 1.7 0.4 181 10.5 182 12
2.5 1.00 2.1 10.0 2 510 1.2 0.0 134 1.4 134 1

5.0 0.00 4.5 16.2 3 285 5.4 2.0 216 86.7 217 73
5.0 0.01 4.6 16.1 3 305 5.4 1.8 218 78.3 220 66
5.0 0.10 4.7 16.1 3 440 5.6 1.7 217 57.6 219 47
5.0 1.00 6.5 14.2 4 628 4.2 0.3 198 10.2 199 5

10.0 0.00 18.2 22.6 6 110 12.5 5.4 236 490.5 243 236
10.0 0.01 18.1 22.5 6 145 12.6 5.3 237 477.7 246 226
10.0 0.10 18.9 22.5 6 383 12.9 5.1 237 434.5 245 201
10.0 1.00 25.7 20.0 8 514 15.1 1.4 238 70.4 240 19

220

Set-Based Model for Coverage

In Section 3.2, we described the sensor network lifetime problem as a combinatorial,
set-based problem as well as a linear program. We considered the attached coverage
problem only implicitly at that time, though, as it was sufficient for our purposes. To
complement the modelling of our problem, we now describe a set-based model for the
coverage problem that is also used in the literature, e.g. in [SP01].

First, recall that area coverage can be reduced to target coverage, see [BCSZ05]. We
can therefore concentrate on modelling the latter problem by sets. Consider a set of
targets T that has to be covered by a set of sensor nodes V . We represent each node
v ∈ V by the subset of targets that it can cover. In consequence, each set of nodes is a
subset of of the power set of T , i.e. V ⊆ P(T). A set of nodes c is a cover if the union
of the sensor nodes contains all targets, i.e.

v∈c v = T . This completes the set-based

model for (target) coverage and concludes our short excursion.

221

B Appendix B

Location-free Detection of
Network Boundaries

We complement the results on boundary detection presented in Section 4.6 by results
of additional simulations and numerical values. Individual network settings are not
listed if they correspond to our default setting. Unless otherwise stated, tables list
misclassification ratios of mandatory boundary nodes and interior nodes in percentage.
Best values in each column are highlighted in bold. We also provide an overall rating
for each algorithm to assess its general performance over all settings in the respective
table. For each setting we calculate the geometric mean of the correct classification
ratios of mandatory boundary nodes and interior nodes. The rating is then computed
as (1 − the geometric mean of these values). Lower values denote better results.

Network Sizes

Table B.1: Average network sizes for all considered settings. Numbers of sensor
nodes and communication links are listed. All communication links are undirected.

davg nodes links

U
D

G
(p

er
t.

) 09 6 573 59 157
12 8 662 103 947
15 10 608 159 129
18 12 623 227 222
21 14 682 308 328
27 18 692 504 704

davg nodes links

U
D

G
(r

nd
.)

09 6 032 54 297
12 8 042 96 516
15 10 054 150 817
18 12 062 217 130
21 14 071 295 511
27 18 093 488 530

davg nodes links

0.
05

-Q
U

D
G 09 12 604 113 443

12 16 700 200 406
15 20 663 309 962
18 24 729 445 131
27 36 735 991 867

davg nodes links

0.
25

-Q
U

D
G 09 12 101 108 915

12 16 029 192 350
15 19 714 295 720
18 23 557 424 043
27 34 867 941 415

davg nodes links

0.
75

-Q
U

D
G 09 8 493 76 444

12 10 954 131 455
15 13 550 203 260
18 16 217 291 916
27 23 900 645 303

223

B Location-free Detection of Network Boundaries

Quantitative Analysis

We show additional results for settings with random placement and with the d-QUDG
model. This is followed by tables giving numerical values of all considered settings.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 perturbed grid random placement

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.1: Misclassification ratios (false negatives) in percent for perturbed grid
placement and random node placement with davg = 18.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 0.05−QUDG 0.25−QUDG 0.75−QUDG UDG (pert.)

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.2: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 9 and uncertainty levels between 0.05 and 1.00.

224

Q

Q
Q

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 0.05−QUDG 0.25−QUDG 0.75−QUDG UDG (pert.)

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.3: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 15 and uncertainty levels between 0.05 and 1.00.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 0.05−QUDG 0.25−QUDG 0.75−QUDG UDG (pert.)

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.4: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 18 and uncertainty levels between 0.05 and 1.00.

225

B Location-free Detection of Network Boundaries

Q

Q
Q

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 09 12 15 18

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.5: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with d = 0.05 and average node degrees between 9 and 18.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 09 12 15 18

Interior nodes

M
D

S−B
R
1

M
D

S−B
R
2

EC
−B

R

EC
−B

R
 R

ef
.

M
ar

tin
ci

c0
4

Fek
et

e0
4

Fun
ke

05

Fun
ke

06
B
i0

6

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.6: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with d = 0.75 and average node degrees between 9 and 18.

226

Table B.2: Misclassification ratios (false negatives) in percent for average node
degrees between 9 and 21. The table corresponds to Figure 4.17.

Mandatory Interior
algorithm 09 12 15 18 21 09 12 15 18 21 rating

MDS-BR1 1.8 2.9 3.6 3.9 4.0 16.7 0.6 0.2 0.1 0.0 3.5
MDS-BR2 5.7 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 0.0 1.0
EC-BR 2.2 0.0 0.0 0.0 0.0 52.7 6.6 2.7 0.8 0.2 8.4
EC-BR Ref. 4.4 0.4 0.6 0.9 1.3 6.2 0.0 0.0 0.0 0.0 1.4

Martincic04 6.2 1.6 2.2 3.0 4.1 15.5 2.5 1.2 0.5 0.2 3.8
Fekete04 34.6 14.2 6.7 3.5 1.9 10.2 3.4 7.2 6.7 2.5 9.6
Funke05 17.5 6.1 5.7 5.4 4.9 20.9 3.4 1.9 1.1 0.8 7.0
Funke06 38.6 11.9 14.6 16.9 19.0 12.8 3.3 1.3 0.5 0.2 12.7
Bi06 76.4 54.4 41.4 26.4 15.8 1.4 3.7 4.2 2.5 2.5 28.7

Table B.3: Classification ratios of optional boundary nodes as interior nodes in
percent for davg between 9 and 21. The table corresponds to Figure 4.18.

Optional
algorithm 09 12 15 18 21 rating

MDS-BR1 70.7 81.7 81.4 81.4 81.6 55.0
MDS-BR2 53.4 33.0 30.7 29.1 27.9 19.8
EC-BR 1.2 2.3 2.5 2.7 2.8 1.2
EC-BR Ref. 53.1 82.4 83.5 84.9 86.4 55.9

Martincic04 82.4 92.3 93.1 93.9 94.5 71.8
Fekete04 83.5 81.5 70.9 66.1 67.3 50.0
Funke05 63.3 62.0 58.6 56.3 54.4 36.0
Funke06 80.9 71.6 72.7 73.6 74.2 49.8
Bi06 96.0 90.9 81.9 77.8 76.6 64.2

Table B.4: Misclassification ratios (false negatives) in percent for random node
placement and davg between 9 and 27. The table corresponds to Figure 4.23.

Mandatory Interior
algorithm 09 15 21 27 09 15 21 27 rating

MDS-BR1 2.4 4.0 5.7 6.2 28.9 11.8 3.8 1.0 8.4
MDS-BR2 2.1 4.5 1.8 0.3 8.9 3.5 1.2 0.3 2.9
EC-BR 0.2 1.9 1.4 0.2 67.0 44.0 19.6 6.1 22.2
EC-BR Ref. 0.6 4.0 2.7 1.9 28.4 2.6 0.2 0.0 5.5

Martincic04 4.8 6.5 5.3 6.5 23.6 8.6 2.8 0.7 7.6
Fekete04 47.8 25.7 13.8 7.1 7.1 13.5 12.0 10.8 18.4
Funke05 20.3 15.9 8.8 6.0 28.7 15.3 6.4 2.3 13.4
Funke06 85.0 44.9 26.6 24.6 2.8 7.7 5.2 1.7 33.5
Bi06 79.0 62.2 33.7 17.9 3.5 6.6 5.5 5.5 34.3

227

B Location-free Detection of Network Boundaries

Table B.5: Misclassification ratios (false negatives) in percent for perturbed grid
and random node placement with davg = 12. The table corresponds to Figure 4.22.

Mandatory Interior
perturbed random perturbed random

algorithm grid placement grid placement rating

MDS-BR1 2.9 3.1 0.6 19.0 6.7
MDS-BR2 0.0 4.1 0.0 5.5 2.4
EC-BR 0.0 1.0 6.6 56.6 20.4
EC-BR Ref. 0.4 2.4 0.0 9.8 3.2

Martincic04 1.6 6.3 2.5 14.2 6.3
Fekete04 14.2 42.5 3.4 7.7 18.6
Funke05 6.1 18.6 3.4 21.5 12.7
Funke06 11.9 67.8 3.3 5.8 28.7
Bi06 54.4 74.1 3.7 6.0 42.8

Table B.6: Misclassification ratios (false negatives) in percent for perturbed grid
and random node placement with davg = 18. The table corresponds to Figure B.1.

Mandatory Interior
perturbed random perturbed random

algorithm grid placement grid placement rating

MDS-BR1 3.9 5.0 0.1 6.9 4.0
MDS-BR2 0.0 3.4 0.0 2.1 1.4
EC-BR 0.0 2.1 0.8 30.7 9.4
EC-BR Ref. 0.9 3.8 0.0 0.7 1.4

Martincic04 3.0 5.8 0.5 5.0 3.6
Fekete04 3.5 19.8 6.7 12.7 10.9
Funke05 5.4 12.5 1.1 10.1 7.4
Funke06 16.9 31.6 0.5 7.1 14.9
Bi06 26.4 47.3 2.5 5.6 22.7

Table B.7: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 9 and uncertainty levels between 0.05 and 1.00 (i.e.
for unit disk graphs). The table corresponds to Figure B.2.

Mandatory Interior
algorithm 0.05 0.25 0.75 1.00 0.05 0.25 0.75 1.00 rating

MDS-BR1 22.5 21.3 5.4 1.8 35.1 35.7 19.8 16.7 20.6
MDS-BR2 2.7 1.6 0.4 5.7 26.0 30.4 6.4 3.8 10.4
EC-BR 4.5 3.2 0.1 2.2 49.5 51.9 60.1 52.7 32.8
EC-BR Ref. 16.9 11.3 2.0 4.4 10.0 14.1 6.7 6.2 9.1

Martincic04 0.6 0.7 2.0 6.2 52.0 48.9 20.4 15.5 21.1
Fekete04 18.6 19.3 21.1 34.6 22.1 21.9 12.8 10.2 20.4
Funke05 14.6 15.6 12.3 17.5 39.6 39.2 26.6 20.9 24.0
Funke06 42.5 39.6 22.0 38.6 13.8 16.3 21.6 12.8 26.8
Bi06 52.1 52.9 60.8 76.4 7.9 8.0 3.0 1.4 39.9

228

Table B.8: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 12 and uncertainty levels between 0.05 and 1.00
(i.e. for unit disk graphs). The table corresponds to Figure 4.27.

Mandatory Interior
algorithm 0.05 0.25 0.75 1.00 0.05 0.25 0.75 1.00 rating

MDS-BR1 35.5 35.3 9.1 2.9 8.6 8.2 6.9 0.6 14.5
MDS-BR2 6.3 3.8 0.2 0.0 2.0 2.4 1.8 0.0 2.1
EC-BR 4.1 3.0 0.0 0.0 50.1 41.3 28.1 6.6 19.1
EC-BR Ref. 15.2 12.6 5.8 0.4 5.0 1.5 0.5 0.0 5.3

Martincic04 0.7 1.0 1.7 1.6 27.3 23.5 8.7 2.5 9.0
Fekete04 14.5 15.0 16.9 14.2 14.1 13.0 8.9 3.4 12.6
Funke05 11.4 12.4 9.6 6.1 18.5 17.6 12.9 3.4 11.6
Funke06 31.4 24.3 15.7 11.9 1.9 2.6 12.4 3.3 13.5
Bi06 40.6 41.4 51.3 54.4 12.5 12.1 7.4 3.7 30.7

Table B.9: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 15 and uncertainty levels between 0.05 and 1.00
(i.e. for unit disk graphs). The table corresponds to Figure B.3.

Mandatory Interior overall
algorithm 0.05 0.25 0.75 1.00 0.05 0.25 0.75 1.00 rating

MDS-BR1 42.7 43.5 12.1 3.6 1.9 1.9 1.4 0.2 15.5
MDS-BR2 7.8 4.5 0.1 0.0 0.2 0.3 0.2 0.0 1.7
EC-BR 1.6 1.2 0.0 0.0 69.6 57.7 7.1 2.7 23.9
EC-BR Ref. 4.3 4.7 12.0 0.6 33.5 10.7 0.0 0.0 8.9

Martincic04 1.3 1.7 2.3 2.2 14.6 11.7 3.0 1.2 4.9
Fekete04 7.3 7.4 7.0 6.7 15.3 14.9 8.9 7.2 9.4
Funke05 9.8 10.5 7.8 5.7 9.7 9.6 5.2 1.9 7.6
Funke06 52.6 37.0 15.5 14.6 0.3 0.4 3.6 1.3 18.0
Bi06 25.3 26.5 36.7 41.4 19.1 18.2 9.1 4.2 23.5

Table B.10: Misclassification ratios (false negatives) in percent for quasi unit disk
graphs with average node degree 18 and uncertainty levels between 0.05 and 1.00
(i.e. for unit disk graphs). The table corresponds to Figure B.4.

Mandatory Interior
algorithm 0.05 0.25 0.75 1.00 0.05 0.25 0.75 1.00 rating

MDS-BR1 46.7 49.0 14.4 3.9 0.2 0.2 0.1 0.1 17.1
MDS-BR2 7.8 4.3 0.0 0.0 0.0 0.0 0.0 0.0 1.6
EC-BR 0.4 0.4 0.0 0.0 83.6 72.3 0.4 0.8 32.2
EC-BR Ref. 0.7 1.0 19.0 0.9 75.3 41.0 0.0 0.0 23.7

Martincic04 2.1 2.7 3.2 3.0 7.3 5.3 0.7 0.5 3.1
Fekete04 5.0 5.2 3.1 3.5 12.3 11.5 5.2 6.7 6.6
Funke05 8.9 9.0 7.0 5.4 5.1 5.0 2.0 1.1 5.5
Funke06 81.5 61.7 16.7 16.9 0.0 0.1 0.4 0.5 31.5
Bi06 11.6 12.7 19.7 26.4 18.2 16.8 6.2 2.5 14.6

229

B Location-free Detection of Network Boundaries

Table B.11: Misclassification ratios (false negatives) in percent for quasi unit
disk graphs with d = 0.05 and average node degrees between 9 and 18. The table
corresponds to Figure B.5.

Mandatory Interior
algorithm 09 12 15 18 09 12 15 18 rating

MDS-BR1 22.5 35.5 42.7 46.7 35.1 8.6 1.9 0.2 26.1
MDS-BR2 2.7 6.3 7.8 7.8 26.0 2.0 0.2 0.0 7.0
EC-BR 4.5 4.1 1.6 0.4 49.5 50.1 69.6 83.6 42.9
EC-BR Ref. 16.9 15.2 4.3 0.7 10.0 5.0 33.5 75.3 25.6

Martincic04 0.6 0.7 1.3 2.1 52.0 27.3 14.6 7.3 15.4
Fekete04 18.6 14.5 7.3 5.0 22.1 14.1 15.3 12.3 13.8
Funke05 14.6 11.4 9.8 8.9 39.6 18.5 9.7 5.1 15.4
Funke06 42.5 31.4 52.6 81.5 13.8 1.9 0.3 0.0 35.7
Bi06 52.1 40.6 25.3 11.6 7.9 12.5 19.1 18.2 25.0

Table B.12: Misclassification ratios (false negatives) in percent for quasi unit
disk graphs with d = 0.25 and average node degrees between 9 and 18. The table
corresponds to Figure 4.26.

Mandatory Interior
algorithm 09 12 15 18 09 12 15 18 rating

MDS-BR1 21.3 35.3 43.5 49.0 35.7 8.2 1.9 0.2 26.5
MDS-BR2 1.6 3.8 4.5 4.3 30.4 2.4 0.3 0.0 6.5
EC-BR 3.2 3.0 1.2 0.4 51.9 41.3 57.7 72.3 35.3
EC-BR Ref. 11.3 12.6 4.7 1.0 14.1 1.5 10.7 41.0 13.1

Martincic04 0.7 1.0 1.7 2.7 48.9 23.5 11.7 5.3 13.7
Fekete04 19.3 15.0 7.4 5.2 21.9 13.0 14.9 11.5 13.7
Funke05 15.6 12.4 10.5 9.0 39.2 17.6 9.6 5.0 15.5
Funke06 39.6 24.3 37.0 61.7 16.3 2.6 0.4 0.1 26.0
Bi06 52.9 41.4 26.5 12.7 8.0 12.1 18.2 16.8 25.3

Table B.13: Misclassification ratios (false negatives) in percent for quasi unit
disk graphs with d = 0.75 and average node degrees between 9 and 18. The table
corresponds to Figure B.6.

Mandatory Interior
algorithm 09 12 15 18 09 12 15 18 rating

MDS-BR1 5.4 9.1 12.1 14.4 19.8 6.9 1.4 0.1 8.9
MDS-BR2 0.4 0.2 0.1 0.0 6.4 1.8 0.2 0.0 1.2
EC-BR 0.1 0.0 0.0 0.0 60.1 28.1 7.1 0.4 15.3
EC-BR Ref. 2.0 5.8 12.0 19.0 6.7 0.5 0.0 0.0 6.0

Martincic04 2.0 1.7 2.3 3.2 20.4 8.7 3.0 0.7 5.5
Fekete04 21.1 16.9 7.0 3.1 12.8 8.9 8.9 5.2 10.7
Funke05 12.3 9.6 7.8 7.0 26.6 12.9 5.2 2.0 10.7
Funke06 22.0 15.7 15.5 16.7 21.6 12.4 3.6 0.4 13.8
Bi06 60.8 51.3 36.7 19.7 3.0 7.4 9.1 6.2 27.7

230

Graph Embedding Strategies

We give additional results for networks with davg = 12, 15, when using MDS-BR1 and
MDS-BR2. This is followed by tables with numerical values of all considered settings.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.7: Misclassification ratios (false negatives) in percent for MDS-BR1 on
different network settings with davg = 12 and multiple graph embedding strategies.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0 UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

Figure B.8: Misclassification ratios (false negatives) in percent for MDS-BR1 on
different network settings with davg = 15 and multiple graph embedding strategies.

231

B Location-free Detection of Network Boundaries

Q

Q
Q

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0 UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

Figure B.9: Misclassification ratios (false negatives) in percent for MDS-BR2 on
different network settings with davg = 12 and multiple graph embedding strategies.

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

io
 [

%
]

Mandatory boundary nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0 UDG (pert.) UDG (rnd.) 0.05−QUDG 0.25−QUDG 0.75−QUDG

Interior nodes

M
D

S

M
D

S 3

M
D

S op
t

M
D

S SS

M
D

S SSrn
d

M
D

S SSer
r

0
5

1
0

1
5

2
0

Figure B.10: Misclassification ratios (false negatives) in percent for MDS-BR2 on
different network settings with davg = 15 and multiple graph embedding strategies.

232

Table B.14: Results for MDS-BR1 with davg = 12 and multiple graph embedding
strategies. The table corresponds to Figure B.7.

Mandatory Interior
UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-

algorithm (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG rating

MDS 2.9 3.1 35.5 35.3 9.1 0.6 19.0 8.6 8.2 6.9 13.9
MDS3 2.7 3.1 18.1 19.8 7.7 0.4 17.9 7.6 7.0 5.9 9.3
MDSopt 0.6 5.3 1.2 1.1 1.6 0.3 17.8 9.8 9.2 5.1 5.4
MDSSS 0.5 0.8 12.7 12.1 2.1 0.8 22.1 9.7 9.0 8.2 8.0
MDSSSrnd 12.6 9.2 25.1 24.7 14.4 3.6 27.0 16.0 15.8 13.9 16.5
MDSSSerr 16.4 10.8 36.3 36.2 25.9 0.6 18.7 11.2 11.6 8.4 18.4

Table B.15: Results for MDS-BR1 with davg = 15 and multiple graph embedding
strategies. The table corresponds to Figure B.8.

Mandatory Interior
UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-

algorithm (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG rating

MDS 3.6 4.0 42.7 43.5 12.1 0.2 11.8 1.9 1.9 1.4 14.1
MDS3 3.1 3.7 21.0 23.9 9.6 0.2 11.0 1.5 1.5 1.1 8.0
MDSopt 0.3 5.0 0.7 0.7 0.6 0.1 10.7 2.3 2.3 1.0 2.4
MDSSS 0.6 0.9 13.1 13.1 2.7 0.3 13.9 2.2 2.1 1.7 5.2
MDSSSrnd 16.9 13.1 32.2 31.8 20.0 1.2 17.5 5.1 5.3 3.5 15.4
MDSSSerr 19.3 14.9 47.8 47.8 35.4 0.2 11.4 2.5 2.9 1.6 20.6

Table B.16: Results for MDS-BR2 with davg = 12 and multiple graph embedding
strategies. The table corresponds to Figure 4.30.

Mandatory Interior
UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-

algorithm (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG rating

MDS 0.0 4.1 6.3 3.8 0.2 0.0 5.5 2.0 2.4 1.8 2.6
MDS3 0.0 21.2 1.2 0.6 0.6 0.0 0.1 0.5 0.6 0.1 2.7
MDSopt 0.8 34.7 0.0 0.0 1.5 0.0 0.1 0.8 0.9 0.0 4.6
MDSSS 0.0 3.8 0.8 0.2 0.0 0.1 7.2 2.6 3.1 2.3 2.0
MDSSSrnd 1.3 4.6 7.8 5.2 2.8 0.8 13.0 8.0 9.1 4.7 5.8
MDSSSerr 1.9 5.4 14.3 11.9 8.1 0.1 5.8 5.1 6.5 2.5 6.3

Table B.17: Results for MDS-BR2 with davg = 15 and multiple graph embedding
strategies. The table corresponds to Figure B.10.

Mandatory Interior
UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-

algorithm (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG rating

MDS 0.0 4.5 7.8 4.5 0.1 0.0 3.5 0.2 0.3 0.2 2.1
MDS3 0.0 22.5 1.3 0.6 0.1 0.0 0.0 0.0 0.1 0.0 2.7
MDSopt 0.7 30.9 0.0 0.0 0.7 0.0 0.0 0.1 0.1 0.0 3.8
MDSSS 0.0 4.3 0.7 0.1 0.0 0.0 4.7 0.3 0.5 0.3 1.1
MDSSSrnd 1.5 5.4 11.6 7.8 3.2 0.3 8.6 1.7 2.3 0.9 4.4
MDSSSerr 1.7 6.2 21.6 18.4 9.4 0.0 3.6 0.8 1.3 0.3 6.6

233

B Location-free Detection of Network Boundaries

Angular Distributions

We present additional angular distributions for all considered embedding strategies.
Tr

ut
h

M
D

S 3
M

D
S S

S
M

D
S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

Figure B.11: Distributions of the maximum opening angle for MDS-BR1 in the
UDG model with (a) perturbed grid, and (b) random node placement.

234

Q

Q

Tr
ut

h
M

D
S 3

M
D

S S
S

M
D

S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(c)

Figure B.12: Distributions of the maximum opening angle for MDS-BR1 in the
(a) 0.05-QUDG, (b) 0.25-QUDG, and (c) 0.75-QUDG model.

235

B Location-free Detection of Network Boundaries

Q

Q
Tr

ut
h

M
D

S 3
M

D
S S

S
M

D
S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

Figure B.13: Distributions of the maximum opening angle for MDS-BR2 in the
UDG model with (a) perturbed grid and (b) random node placement.

236

Q

Q

Tr
ut

h
M

D
S 3

M
D

S S
S

M
D

S

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

R
el

at
iv

e
fr

eq
u
en

cy
 [

1
]

Interior node

Boundary node

(a)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

Maximum opening angle α [radian/π]

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(b)

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

0 0.4 0.8 1.2 1.6 2

0 0.4 0.8 1.2 1.6 2

0
0
.1

0
.2

0
.3

0
.4

(c)

Figure B.14: Distributions of the maximum opening angle for MDS-BR2 in the
(a) 0.05-QUDG, (b) 0.25-QUDG, and (c) 0.75-QUDG model.

237

B Location-free Detection of Network Boundaries

Embedding Quality

We consider maximum opening angles to neighboring nodes and to nodes in 2-hop
distance. We list absolute and relative angular errors of our embedding strategies when
compared to the true values given by MDSopt.

Table B.18: Absolute angular errors in multiples of π radians for our embedding
strategies on multiple network settings. Values for angles to nodes in 1-hop and
2-hop distance are given.

Mandatory Interior
embedding UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-
strategy (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG

1-
ho

p MDS 0.63 0.53 1.37 1.34 0.81 0.16 0.21 0.27 0.27 0.22
MDSSS 0.40 0.42 0.85 0.82 0.50 0.14 0.19 0.22 0.23 0.19
MDS3 0.58 0.52 0.98 1.01 0.73 0.16 0.21 0.25 0.26 0.22

2-
ho

p MDS 0.35 0.58 1.20 1.07 0.46 0.10 0.19 0.11 0.12 0.15
MDSSS 0.24 0.56 0.66 0.54 0.31 0.09 0.21 0.11 0.12 0.16
MDS3 0.31 0.40 0.75 0.68 0.39 0.08 0.11 0.09 0.09 0.10

Table B.19: Relative angular errors in percentage for our embedding strategies on
multiple network settings. Values for angles to nodes in 1-hop and 2-hop distance
are given.

Mandatory Interior
embedding UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-
strategy (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG

1-
ho

p MDS 19.18 18.84 37.14 36.64 24.11 13.46 15.24 17.86 18.54 16.94
MDSSS 12.71 16.48 22.99 22.74 15.68 12.28 13.45 15.05 15.48 14.95
MDS3 17.78 18.51 26.61 27.76 22.03 13.57 15.21 16.64 17.51 16.76

2-
ho

p MDS 11.74 38.00 37.74 33.83 15.45 16.47 24.31 24.36 24.30 22.56
MDSSS 8.46 38.70 21.22 17.35 11.01 15.79 26.04 24.33 24.08 23.98
MDS3 10.26 22.56 24.17 21.80 12.88 13.31 14.29 18.97 18.76 16.01

238

Parameter Selection

We present additional heatmaps of the classification results of MDS-BR1. This is
followed by tables giving numerical values of all considered settings. Each table
entry denotes (1 − the geometric mean of the average correct classification ratios of
mandatory boundary nodes and interior nodes). The best result over all parameter
values is highlighted in bold.

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

1

2

3

4

6

9

13

16

23

28

54

82

100

[%]

(a)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

10

11

13

14

17

20

24

28

32

39

47

57

100

[%]

(b)

Figure B.15: Heatmap of classification results for different sets of parameter
values for MDS-BR1 in the UDG model: (a) Perturbed grid placement, (b) random
placement.

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

20

22

23

25

30

32

39

42

51

58

73

88

100

[%]

(a)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

19

21

23

25

29

31

38

42

49

58

73

87

100

[%]

(b)

0 1 2 3 4 5 20 40 6030 50 70

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

O
p
en

in
g
 a

n
g
le

 t
h
re

sh
o
ld

α

m
in

[r

ad
ia

n
/π

]

Refinement amount [1]

7

9

10

12

14

16

21

28

30

39

53

75

100

[%]

(c)

Figure B.16: Heatmap of classification results for different sets of parameter
values for MDS-BR1 on d-QUDGs: (a) d = 0.05, (b) d = 0.25, (c) d = 0.75.

239

B Location-free Detection of Network Boundaries

Table B.20: Geometric means of the correct classification ratios for mandatory
boundary nodes and interior nodes. Listed are (1 − geometric mean) values in
percentage for MDS-BR1 in the UDG model with perturbed grid placement. The
table corresponds to Figure B.15(a).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 26.4 26.4 26.3 26.3 26.3 26.4 25.3 22.6 17.7 12.5 6.4 3.7
0.25 17.3 17.0 16.6 16.3 16.1 16.0 13.9 10.1 6.2 3.6 2.9 6.8
0.30 11.0 10.2 9.2 8.5 7.9 7.5 6.4 3.8 2.2 2.2 7.5 18.8
0.35 6.6 5.4 4.3 3.6 3.1 2.7 2.6 1.6 2.4 6.0 19.6 36.8
0.40 3.8 2.7 2.0 1.6 1.3 1.1 1.3 2.0 6.4 14.8 35.3 54.3
0.45 2.5 1.8 1.4 1.2 1.0 1.0 1.2 4.4 13.3 25.7 49.1 67.1
0.50 2.4 2.0 1.8 1.7 1.6 1.6 2.2 8.7 22.0 36.9 60.0 75.9
0.55 3.4 3.2 3.1 3.2 3.3 3.4 4.4 15.6 32.2 48.0 68.9 82.0
0.60 5.5 5.5 5.9 6.3 6.9 7.6 8.7 25.0 43.3 58.8 76.3 86.5
0.65 8.8 9.5 11.0 12.5 14.5 16.8 16.0 36.6 54.6 68.4 81.8 89.6
0.70 13.2 15.3 19.3 23.3 27.9 32.7 26.4 48.8 64.6 76.1 86.1 91.8

Table B.21: Respective results for MDS-BR1 in the UDG model with random node
distribution. The table corresponds to Figure B.15(b).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 48.1 48.1 48.1 48.1 48.1 48.2 48.1 47.8 47.0 44.9 39.7 31.5
0.25 38.9 38.9 38.9 38.9 38.9 39.0 38.6 37.6 35.4 32.0 25.9 19.8
0.30 31.2 31.2 31.1 31.1 31.1 31.1 30.2 28.4 25.4 21.8 17.3 15.3
0.35 24.3 24.2 24.0 24.0 24.0 24.0 22.5 20.2 17.4 15.0 14.4 17.3
0.40 18.6 18.3 18.0 18.0 17.9 17.9 16.3 14.4 13.1 13.4 17.6 24.7
0.45 14.7 14.2 13.9 13.8 13.6 13.6 12.5 11.7 12.9 16.1 24.2 33.7
0.50 12.2 11.7 11.4 11.3 11.1 11.1 10.6 11.6 15.5 21.0 31.6 42.3
0.55 10.8 10.3 10.1 10.0 9.9 9.9 10.0 13.4 19.8 27.1 39.2 50.1
0.60 10.5 10.1 10.0 10.0 10.0 10.2 11.2 17.6 26.3 34.7 47.3 58.0
0.65 12.6 12.5 13.1 13.8 14.6 15.7 16.9 26.7 36.7 45.3 57.3 67.0
0.70 18.7 20.3 24.2 27.6 31.0 34.7 29.5 41.2 50.8 58.4 68.5 76.3

240

Table B.22: Respective results for MDS-BR1 in the 0.05-QUDG model. The table
corresponds to Figure B.16(a).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.4 49.9 48.3 42.1 32.0
0.25 39.0 39.0 39.0 39.0 39.0 39.0 38.7 37.7 34.7 29.8 22.9 20.9
0.30 30.6 30.6 30.6 30.5 30.5 30.5 29.3 26.4 22.0 18.7 20.1 28.5
0.35 25.4 25.2 25.1 25.0 25.0 25.0 22.5 19.6 18.0 19.7 29.6 43.5
0.40 22.9 22.5 22.3 22.1 22.0 21.8 19.6 19.4 22.4 28.6 43.4 58.2
0.45 22.5 22.0 21.7 21.5 21.3 21.2 20.5 24.3 31.3 40.4 56.2 69.8
0.50 23.2 23.3 23.2 23.3 23.7 24.4 24.4 32.3 42.2 52.2 67.1 78.5
0.55 24.9 26.1 27.0 28.2 30.1 32.7 30.7 42.3 53.5 63.1 76.0 85.1
0.60 27.7 31.2 34.0 37.4 41.8 46.9 39.6 53.8 64.8 73.1 83.3 89.8
0.65 32.1 39.3 45.1 51.6 58.6 65.4 51.0 66.0 75.3 81.5 88.9 93.2
0.70 38.2 50.2 59.5 68.4 76.4 82.7 63.5 76.9 83.8 87.6 92.6 95.3

Table B.23: Respective results for MDS-BR1 in the 0.25-QUDG model. The table
corresponds to Figure B.16(b).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 49.1 49.1 49.1 49.1 49.1 49.1 49.1 49.0 48.3 46.4 39.6 29.5
0.25 37.6 37.6 37.6 37.6 37.6 37.6 37.3 36.1 32.8 27.7 21.0 19.8
0.30 29.5 29.4 29.4 29.4 29.4 29.4 28.0 24.9 20.5 17.4 19.3 28.2
0.35 24.5 24.3 24.2 24.1 24.1 24.0 21.5 18.6 17.1 19.0 29.3 43.5
0.40 22.3 21.8 21.5 21.3 21.1 21.0 18.9 18.6 21.8 28.3 43.4 58.4
0.45 22.1 21.6 21.2 20.9 20.8 20.7 20.0 23.8 31.1 40.3 56.5 70.0
0.50 23.1 22.9 22.8 23.0 23.6 24.4 24.0 32.1 42.1 52.2 67.3 78.7
0.55 25.0 25.8 26.7 28.2 30.4 33.2 30.4 42.1 53.4 63.1 76.0 85.0
0.60 27.9 30.9 33.8 37.6 42.2 47.5 39.3 53.5 64.6 73.0 83.2 89.7
0.65 32.2 38.5 44.4 51.3 58.5 65.4 50.2 65.3 74.9 81.1 88.6 93.1
0.70 38.0 48.9 58.3 67.6 75.7 82.1 62.4 75.9 83.1 87.2 92.4 95.1

Table B.24: Respective results for MDS-BR1 in the 0.75-QUDG model. The table
corresponds to Figure B.16(c).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 39.2 39.2 39.2 39.2 39.2 39.2 39.0 38.1 35.7 31.3 23.0 14.9
0.25 28.8 28.8 28.7 28.7 28.7 28.7 27.7 25.1 20.8 16.2 11.0 10.1
0.30 21.2 21.0 20.7 20.5 20.4 20.3 18.5 15.2 11.5 8.9 9.6 16.4
0.35 15.6 15.0 14.4 14.0 13.7 13.3 11.9 9.3 7.7 8.5 16.6 29.5
0.40 11.9 11.0 10.2 9.6 9.0 8.4 8.2 7.2 8.9 14.0 28.6 44.4
0.45 9.9 9.0 8.2 7.7 6.9 6.4 7.1 8.5 14.4 23.3 41.3 57.3
0.50 9.4 8.5 8.0 7.6 7.1 6.8 7.9 12.8 22.7 34.2 52.8 67.4
0.55 10.2 9.5 9.3 9.4 9.4 9.8 10.6 19.9 32.9 45.4 62.8 75.3
0.60 12.1 11.9 12.6 13.6 14.9 16.6 15.7 29.7 44.2 56.5 71.5 81.5
0.65 15.3 16.3 18.9 21.9 25.5 29.5 23.9 41.6 55.7 66.8 78.8 86.6
0.70 19.7 22.7 28.8 34.9 41.3 47.7 34.6 53.7 66.0 75.1 84.4 90.3

241

B Location-free Detection of Network Boundaries

Table B.25: Geometric means of the correct classification ratios for mandatory
boundary nodes and interior nodes. Listed are (1 − geometric mean) values in
percentage for MDS-BR2 in the UDG model with perturbed grid placement. The
table corresponds to Figure 4.33(a).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 29.6 29.5 29.4 29.4 29.3 29.4 28.5 26.7 23.4 19.5 13.5 8.2
0.25 6.5 5.8 4.8 4.3 3.9 3.9 3.9 2.8 1.9 1.2 0.6 0.3
0.30 1.3 1.0 0.7 0.6 0.5 0.6 0.5 0.3 0.2 0.1 0.1 0.2
0.35 0.4 0.3 0.2 0.1 0.1 0.3 0.1 0.1 0.0 0.0 0.1 0.6
0.40 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.3 1.2
0.45 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.8 2.4
0.50 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2 0.5 1.8 4.7
0.55 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.5 1.3 3.9 8.7
0.60 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.5 1.3 2.9 7.7 15.4
0.65 0.8 0.8 0.8 0.8 0.8 1.0 0.9 1.8 3.6 6.5 14.8 25.4
0.70 2.4 2.5 2.7 3.0 3.3 3.7 3.1 4.9 8.4 13.4 25.4 37.9

Table B.26: Respective results for MDS-BR2 in the UDG model with random node
distribution. The table corresponds to Figure 4.33(b).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 66.7 66.6 66.6 66.6 66.6 66.7 66.6 66.6 66.5 66.2 65.1 62.2
0.25 37.4 37.4 37.4 37.4 37.4 37.4 37.2 36.8 35.9 34.3 30.9 25.8
0.30 20.7 20.6 20.5 20.5 20.5 20.5 20.0 19.0 17.4 15.3 12.0 8.8
0.35 13.5 13.3 13.1 13.1 13.0 13.1 12.4 11.2 9.6 7.9 6.1 5.2
0.40 9.3 9.1 8.8 8.7 8.7 8.7 8.0 6.9 5.7 4.9 4.8 6.0
0.45 6.5 6.3 5.9 5.8 5.8 5.8 5.2 4.5 4.2 4.6 6.4 9.6
0.50 4.8 4.5 4.2 4.1 4.1 4.3 3.8 3.8 4.7 6.4 10.2 15.0
0.55 4.0 3.7 3.5 3.5 3.6 3.9 3.5 4.6 6.9 9.9 15.3 21.1
0.60 4.5 4.3 4.3 4.4 4.6 5.0 5.0 7.5 11.1 15.0 21.4 28.0
0.65 8.4 8.7 9.5 10.2 10.8 11.5 11.2 15.0 19.3 23.5 30.4 37.2
0.70 16.9 18.5 21.7 24.5 26.8 29.0 22.5 26.7 30.9 34.9 41.6 48.4

242

Table B.27: Respective results for MDS-BR2 in the 0.05-QUDG model. The table
corresponds to Figure 4.34(a).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 9.8 8.8 8.4 8.0 7.6 7.4 5.9 3.9 2.3 1.4 0.9 1.4
0.25 3.8 2.8 2.5 2.2 2.1 2.0 1.8 1.5 1.3 1.5 3.0 7.3
0.30 4.2 3.7 3.6 3.5 3.5 3.5 3.5 3.6 4.1 5.3 10.4 19.6
0.35 6.9 6.8 6.7 6.7 6.7 6.7 6.8 7.5 9.2 12.5 22.1 34.8
0.40 10.7 10.7 10.7 10.8 10.8 10.9 11.1 13.0 16.7 22.4 35.5 49.4
0.45 14.8 15.0 15.1 15.3 15.6 15.9 16.1 19.7 25.8 33.5 48.2 61.4
0.50 18.7 19.2 19.5 20.1 21.0 22.0 21.4 27.1 35.4 44.4 59.0 70.8
0.55 22.7 23.5 24.3 25.6 27.5 29.6 27.2 35.3 45.1 54.4 68.0 77.9
0.60 26.8 28.2 29.9 32.6 35.8 39.4 34.0 44.4 55.0 63.8 75.4 83.4
0.65 31.7 34.0 37.6 42.5 47.7 53.1 42.7 54.9 65.0 72.6 81.6 87.6
0.70 38.1 42.5 49.2 56.8 64.0 70.3 53.9 66.4 74.6 80.2 86.5 90.6

Table B.28: Respective results for MDS-BR2 in the 0.25-QUDG model. The table
corresponds to Figure 4.34(b).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 11.9 11.1 10.7 10.3 10.0 9.8 8.1 5.6 3.5 2.1 1.1 0.9
0.25 3.9 2.9 2.5 2.2 2.0 1.8 1.7 1.1 0.9 0.8 1.5 4.2
0.30 3.1 2.5 2.3 2.2 2.2 2.1 2.1 2.1 2.2 2.7 5.8 12.6
0.35 4.6 4.4 4.3 4.3 4.3 4.2 4.3 4.5 5.2 7.1 13.8 24.7
0.40 7.3 7.2 7.2 7.2 7.2 7.2 7.3 8.1 10.1 13.9 24.5 37.8
0.45 10.4 10.4 10.4 10.5 10.6 10.7 10.8 12.6 16.5 22.4 35.9 49.9
0.50 13.7 13.8 13.9 14.1 14.4 14.8 14.7 18.1 24.1 31.9 46.9 60.4
0.55 17.2 17.5 17.8 18.4 19.2 20.2 19.3 24.8 32.9 42.0 57.3 69.4
0.60 21.1 21.8 22.6 24.1 25.8 28.0 25.2 33.1 43.0 52.6 66.6 76.9
0.65 26.0 27.3 29.5 32.8 36.4 40.5 33.3 43.8 54.4 63.1 74.7 82.8
0.70 32.4 35.3 40.3 46.6 52.9 59.1 44.4 56.5 66.0 73.1 81.6 87.2

Table B.29: Respective results for MDS-BR2 in the 0.75-QUDG model. The table
corresponds to Figure 4.34(c).

rmin (MDS-BR refinement) γ (EC-BR refinement)
0 1 2 3 4 5 20% 30% 40% 50% 60% 70%

th
re

sh
ol

d
α

m
in

[r
ad

ia
n
/π

] 0.20 42.1 42.1 42.1 42.1 42.1 42.1 41.8 40.9 39.0 36.0 29.9 22.4
0.25 16.9 16.5 16.0 15.6 15.4 15.2 14.5 12.4 10.0 7.7 4.9 2.9
0.30 7.2 6.7 6.0 5.6 5.3 5.0 5.1 3.9 2.8 2.0 1.2 1.0
0.35 3.9 3.5 3.0 2.8 2.6 2.3 2.5 1.9 1.3 1.0 0.9 1.5
0.40 2.4 2.0 1.8 1.6 1.4 1.2 1.4 1.1 0.8 0.7 1.1 2.7
0.45 1.5 1.3 1.1 1.0 0.8 0.7 0.9 0.7 0.6 0.8 1.9 4.7
0.50 1.0 0.8 0.7 0.7 0.5 0.5 0.6 0.6 0.7 1.3 3.6 8.1
0.55 0.9 0.8 0.7 0.7 0.6 0.6 0.7 0.8 1.3 2.5 6.6 13.2
0.60 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.6 2.8 5.1 11.8 20.9
0.65 2.5 2.5 2.5 2.6 2.7 2.8 2.7 3.9 6.4 10.4 20.1 31.4
0.70 5.3 5.4 5.9 6.5 7.1 7.9 6.3 8.9 13.4 19.3 31.6 43.8

243

B Location-free Detection of Network Boundaries

Refinement Costs

We present additional figures in case of using MDS-BR2. This is followed by tables
giving numerical values of all considered settings. Each table entry shows the average
neighborhood size considered by our refinement step in the respective setting.

N
u
m

b
er

 o
f

co
n
si

d
er

ed
 n

o
d
es

 [
#
]

Refinement parameter rmin

1 2 3 4 5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5 09 12 15 18 21

(a)

N
u
m

b
er

 o
f

co
n
si

d
er

ed
 n

o
d
es

 [
#
]

Refinement parameter rmin

1 2 3 4 5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

0
5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5 09 12 15 18 21

(b)

Figure B.17: Neighborhood size that our refinement strategy considers for MDS-
BR2 on UDG networks with average node degrees between 9 and 21 and (a) perturbed
grid or (b) random node placement.

N
u

m
b

er
 o

f
co

n
si

d
er

ed
 n

o
d

es
 [

#
]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(a)

N
u

m
b

er
 o

f
co

n
si

d
er

ed
 n

o
d

es
 [

#
]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(b)

N
u

m
b

er
 o

f
co

n
si

d
er

ed
 n

o
d

es
 [

#
]

Refinement parameter rmin

1 2 3 4 5

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

09 12 15 18 21

(c)

Figure B.18: Neighborhood size that our refinement strategy considers for MDS-
BR2 on d-QUDG networks with average node degrees between 9 and 21 and (a)
d = 0.05, (b) d = 0.25, or (c) d = 0.75.

244

Table B.30: Average neighborhood sizes considered by our refinement strategy for
MDS-BR1 in the UDG model with average node degrees between 9 and 21. The
table corresponds to Figure 4.35.

Perturbed Grid Placement Random Placement
rmin 09 12 15 18 21 09 12 15 18 21

1 4.88 4.40 4.86 5.25 5.65 6.36 6.26 6.05 5.88 5.90
2 9.95 7.47 8.30 9.01 9.78 14.12 13.47 12.23 11.12 10.66
3 15.88 10.51 11.74 12.78 13.92 25.42 23.28 19.69 16.66 15.32
4 21.97 13.49 15.12 16.48 18.03 39.86 34.80 27.49 21.82 19.57
5 28.25 16.45 18.46 20.15 22.11 57.37 47.95 35.62 26.83 23.69

Table B.31: Respective results for MDS-BR1 in the d-QUDG model with average
node degrees between 9 and 21. The table corresponds to Figure 4.36.

0.05-QUDG 0.25-QUDG 0.75-QUDG
rmin 09 12 15 18 21 09 12 15 18 21 09 12 15 18 21

1 7.43 6.64 5.89 5.34 5.48 7.46 6.56 5.84 5.34 5.49 4.43 4.36 4.57 4.85 5.06
2 26.24 21.48 17.06 13.98 14.13 25.24 20.01 15.92 13.09 13.07 8.66 7.79 7.85 8.31 8.68
3 56.88 43.78 31.84 23.52 22.80 53.88 39.76 28.96 21.45 20.57 13.10 11.01 10.98 11.66 12.21
4 98.38 73.12 49.82 33.71 31.47 92.75 65.53 44.69 30.31 28.07 17.32 13.93 13.92 14.89 15.60
5 150.01 109.69 71.20 44.64 40.31 141.19 97.50 63.19 39.72 35.67 21.46 16.72 16.76 18.01 18.87

Table B.32: Respective results for MDS-BR2 in the UDG model with average node
degrees between 9 and 21. The table corresponds to Figure B.17.

Perturbed Grid Placement Random Placement
rmin 09 12 15 18 21 09 12 15 18 21

1 6.33 7.92 9.52 11.06 12.60 8.10 8.80 9.66 10.92 12.55
2 12.45 14.64 17.76 20.88 24.10 17.68 18.38 19.13 20.80 23.56
3 19.61 21.40 26.01 30.70 35.57 31.24 31.18 30.52 31.64 35.03
4 26.83 28.12 34.25 40.49 47.01 48.77 46.34 42.60 42.38 46.35
5 34.04 34.85 42.50 50.31 58.47 69.95 63.24 54.92 53.05 57.60

Table B.33: Respective results for MDS-BR2 in the d-QUDG model with average
node degrees between 9 and 21. The table corresponds to Figure B.18.

0.05-QUDG 0.25-QUDG 0.75-QUDG
rmin 09 12 15 18 21 09 12 15 18 21 09 12 15 18 21

1 5.40 6.58 7.50 8.23 8.86 5.70 6.94 8.15 9.13 10.02 5.99 7.53 9.09 10.48 11.90
2 13.98 16.71 19.56 21.95 24.12 14.68 17.16 20.64 23.67 26.41 11.33 14.21 17.43 20.51 23.53
3 24.18 26.32 30.53 34.20 37.50 25.61 26.87 32.08 36.73 40.93 16.92 20.94 25.77 30.47 35.04
4 35.23 35.65 41.13 46.01 50.41 37.81 36.36 43.24 49.45 55.06 22.21 27.58 34.08 40.39 46.50
5 46.84 44.94 51.68 57.78 63.26 50.88 45.81 54.35 62.11 69.13 27.42 34.21 42.38 50.31 57.97

245

B Location-free Detection of Network Boundaries

Linear Time Implementation

We show numerical values of all considered settings with MDS-BR2 while using random
filtering, contraction-based filtering, and without using filtering.

Table B.34: Misclassification ratios (false negatives) in percent for different MDS
filtering techniques, using MDS-BR2 on multiple network settings with davg = 27.
The table corresponds to Figure 4.37.

Mandatory Interior
filtering UDG UDG 0.05- 0.25- 0.75- UDG UDG 0.05- 0.25- 0.75-

technique (pert.) (rnd.) QUDG QUDG QUDG (pert.) (rnd.) QUDG QUDG QUDG rating

none 0.0 0.3 3.1 3.1 0.0 0.0 0.3 0.0 0.0 0.0 0.7
random 0.0 0.2 7.3 3.2 0.0 3.5 15.5 2.2 2.5 2.2 3.8
contr.-based 0.0 0.3 6.6 3.0 0.0 1.0 5.3 0.7 1.0 0.3 1.8

246

C
Appendix C

Determining Efficient Paths in
Large-Scale Sensor Networks

This appendix complements our simulations in Section 5.5. We detail several basic data
structures that are used by our algorithms for preprocessing and query. A description of
how to generate the sensor network instances that we consider in this thesis follows. We
further show how to efficiently compute the quality measures of alternative paths and
conclude with an overview of our network instances and further simulational results.

Data Structures

Our algorithms apply several basic data structures whose efficiency is crucial for the
performance of our techniques. We therefore provide our own implementations of them
and do not rely on available libraries. In the following, we provide a short overview.

Priority Queue. A priority queue is an abstract data structure that maintains a set
of elements. Each element is associated with a key that determines its importance.
The key data type is required to have a total order on its values. A basic priority queue
data structure supports the four operations

insert inserts a new element with an associated key,
min returns the minimum element,
deleteMin removes the element with minimum key,
size returns the number of stored elements.

An addressable priority queue allows for the additional operation

decreaseKey decreases the key of a stored element.

Other definitions may merge min and deleteMin into a single operation or introduce
further operations such as merging priority queues, removing arbitrary elements from
the priority queue, or an update operation that combines insert and decreaseKey.

247

C Determining Efficient Paths in Large-Scale Sensor Networks

This abstract concept is usually implemented with a heap data structure that keeps
the elements partially ordered according to their associated keys. In our case, we use a
binary heap [WW64], implemented with an array. It allows for min operations in O(1)
time while the other operations have an amortized running time of O(log n), with n the
number of stored elements. Other implementations such as bucket heaps [DF79], radix
heaps [AMOT90], or Fibonacci heaps [FT87] may allow for faster practical runtimes
or time complexities, depending on the application. As elements can be large, we store
them separately from the heap for performance reasons. The heap only holds keys and
references to the elements. The elements are stored in an array for runtime efficiency
or in a hash map for memory efficiency. [LS12b] details how we can have both at the
same time, runtime efficiency and memory efficiency.

Our query algorithms require an addressable priority queue. We further require
persistent data storage to access elements and keys once they have been removed from
the queue. As the priority queue is accessed and modified frequently during a query, the
respective operations have to be fast. However, the performance of the priority queue
becomes less important, the more efficient a speed-up technique is, i.e. the smaller its
search space is. Other algorithms such as the preprocessing of Contraction Hierarchies
or alternative path queries with X-BDV and its variants also apply priority queues,
but their performance is not crucial. Moreover, a simple priority queue without the
need for addressability or persistence is sufficient in these cases.

Graph Representation. Our graph data structure is based on an adjacency array
[MS08]. This graph representation is also known as forward or backward star repre-
sentation [AMO93]. The graph is stored as an array of directed edges. The edges
are sorted in ascending order by their source, keeping all outgoing edges of a node in
succession. An auxiliary array represents nodes and stores indices to the adjacency
array that indicate the beginning of the outgoing edges of each node. The end is given
implicitly by the beginning of the outgoing edges of the next node or by a sentinel at
the end of the auxiliary array. As all outgoing edges of a node are grouped together,
edges do not store their source. In case of dynamic graphs, we keep empty slots in the
adjacency array that can be filled by new edges. The auxiliary array now also has to
hold indices that specify the end of the outgoing edges of each node.

This representation comes with the disadvantage of not offering easy access to the
incoming edges of a node. We could use a second adjacency array to hold the reverse
graph, but we opt to keep the data in a single structure for cache-efficiency. Thus, we
store each edge and its reverse edge, differentiating between them by a flag. In case
of an undirected edge, we may condense normal and reverse edges to a single edge at
their respective source and target nodes.

Our graph data structure is optimized for quick access to the neighbors of each node.
It offers access to an array of incoming and outgoing edges for each node that can be
scanned cache-efficiently. Figure C.1 provides an example of our graph representation.

248

target
cost
outgoing flag
incoming flag

first edge

adjacency array

0 2 5 7 8
0 1 2 3 sentinel

1 3 0 2 2
0 1 2 3 4

1 1 0
5 6 7

4 7 4 8 5 5 8 7
t t f t f t f t
f t t f t t tf

2

bidirectional edge

unidirectional edge

undirected edge

auxiliary array

4

8

5

7

7

3

0

1

Figure C.1: Representation of a small sample graph that contains all edge types.
Array elements are arranged vertically. Outgoing and incoming flags indicate
normal and reverse edges, respectively. This example is borrowed from [Sch08a].

Sensor Network Modelling

In order to generate a sensor network that reflects roads and population densities for
modelling an infrastructural network, we resort to the highly detailed OpenStreetMap1

data that is freely available. OpenStreetMap is a collaborative project to collect
geospatial data. The project enjoyed strong growth over the last years, and by now,
the collected data is very detailed, sometimes even better than official sources. It is
available under the Open Database License (ODbL). One can download a so-called
full history dump and reconstruct the database at any given timestamp. We apply the
OpenStreetMap data of Regierungsbezirk Karlsruhe. The respective bounding box and
the daily extract are available from Geofabrik2. The timestamp of our data revision is
May 15th, 2014, 20:55.

To render the probability map shown in Figure 5.17(a), we consider all way data in
our OpenStreetMap extract with one of the highway tag values listed in Table C.1. We
draw the ways on a black canvas of 4000× 5245 pixels in Mercator projection using a
rounded, white brush. The brush size in pixels is listed in Table C.1 for each highway
tag value. Next, we shrink the canvas by a factor of 20 using cubic interpolation.
Finally, we stretch the picture again to a quadratic size.

1http://www.openstreetmap.org/. Accessed: 2014-08-06
2http://www.geofabrik.de/. Accessed: 2014-08-06

249

http://www.openstreetmap.org/
http://www.geofabrik.de/

C Determining Efficient Paths in Large-Scale Sensor Networks

The reasoning for our procedure is that population density is correlated with road
density. This includes footways and other paths that are not useable by cars. Drawing
all roads in a resolution that has them clearly distinct and scaling the resulting picture
allows us to quickly approximate a density map with shades of grey for different
densities. We put more emphasis on important roads by drawing them wider as we
expect additional infrastructure along them.

Table C.1: Highway tag values that are considered when extracting OpenStreetMap
way data. Stroke width denotes the brush size in pixel that is used to draw the way.

highway tag stroke width highway tag stroke width

motorway 20 motorway_link 20
trunk 20 trunk_link 20
primary 20 primary_link 20
secondary 1 secondary_link 1
tertiary 1 tertiary_link 1
unclassified 1 residential 1
living_street 1 service 1
services 1 bridleway 1
road 1 track 1
raceway 1 path 1
cycleway 1 steps 1
footway 1 pedestrian 1

Alternative Path Quality

In the literature, the quality of an alternative path Ps,v,t is measured by three values,
uniformly bounded stretch, sharing the with shortest path Ps,t, and detour-based local
optimality. Abraham et al. [ADGW13] who introduced these values do not describe
how to obtain them efficiently, and Bader et al. [BDGS11] report that computing them
is very time-consuming. Here, we briefly introduce an efficient method.

First, we determine the sets X = Ps′,v and Y = Pv,t′ of nodes on Ps,v,t with s′ and t′

the nodes at which the shortest path Ps,t and the alternative path Ps,v,t diverge and
converge again. Due to the nature of via paths, this happens only once. Next, we
run two many-to-many queries, one from all nodes in X to v and one from v to all
nodes in Y to obtain shortest path distances. We apply the many-to-many technique
of [KSS+07] with CHASE for a considerable speed-up. Given these distances, we scan
over all pairs {x, y}, x ∈ X, y ∈ Y , to determine the maximum stretch of all paths
R = {Px,v,y | x ∈ X, y ∈ Y }. We find the largest distance for which the paths in R
remain locally optimal, i.e. the largest value with c(Px,y) = c(Px,v) + c(Pv,y), during
the same scanning operation. Sharing is then obtained trivially as c(Ps,s′) + c(Pt′,t).
We can scan the shortest path distances in an order that in practice only requires us
to consider 25% of all pairs by exploiting subpath optimality. Moreover, this approach
is cache-efficient. In our simulations, computing statistics for a single alternative path
takes about 150 ms on average.

250

Network Instances

Our simulations in Chapter 5 consider four distinct network instances with three
different edge cost models each. Table C.2 lists basic information for them and for the
applied partitionings. These values are obviously independent of the underlying edge
cost model. We state the number of sensor nodes and communication links, i.e. edges,
in each graph. For each partitioning, we give the edge cut, the number of boundary
nodes, and the number of neighboring pairs of regions. Pairs are ordered, i.e. we count
{1, 2} and {2, 1} separately. We further state the number of fine regions that overlap
each coarse region at least partially. Recall that our fine partitioning does not respect
the coarse partitioning.

Partitioning is done in parallel on Machine B using KaFFPaE [SS12b]. We allow for
a maximum imbalance of 3%, apply the economical preconfiguration setting, and set
a time limit of 2 hours. Using faster settings for KaFPPaE or plain METIS [KK99]
results in a roughly 10–20% higher edge cut value, but partitioning times become
negligible at mere seconds. As changes in the edge cut value translate only linearly to
the required preprocessing time for computing arc flags and via node candidate sets,
we would experience only a slight increase. Thus, we opt to entirely ignore partitioning
times in our statistics.

Table C.2: Network sizes of all considered settings. Numbers of sensor nodes and
communication links are listed. All communication links are undirected. Statistics
of the coarse (128 regions) and fine partitioning (1 024 regions) are listed as well.

Graph Data Coarse Partitioning Fine Partitioning
avg. border neighbor border neighbor avg.

type degree nodes links edge cut nodes pairs edge cut nodes pairs overlap

box 10 999 807 9 987 756 21 681 26 597 686 73 785 85 591 6 006 13.9
20 1 000 000 19 954 602 110 688 66 433 680 355 975 199 537 5 934 14.3

road 10 854 491 9 440 060 10 753 11 253 574 65 760 58 785 4 878 12.8
20 991 714 19 922 762 53 358 33 953 716 266 647 136 089 6 054 13.8

Preliminary Simulations

We examine basic properties of three shortest path algorithms that are prominently
featured in our simulations on both of our machines. Table C.3 compares their
performance in our default network setting (network type “road”, davg = 10, and p = 1).
CH-based algorithms use exact queries. We report on their query times on both of our
machines to better assess their respective single-core performance. We further state
the average number of settled nodes for target queries and for exploration queries, the
latter with (x = 3) and without using relaxation (x = 0) for CH-based algorithms.
The exploration query visits the entire search space for CH-based techniques, while
the variant using a bidirectional Dijkstra’s algorithm only explores the network up to
a distance of (1 + ϵ) times the respective shortest path distance.

251

C Determining Efficient Paths in Large-Scale Sensor Networks

Table C.3: Performance of our main shortest path algorithms on both machines in
terms of query times. Average search space sizes of target queries and of exploration
queries with x ∈ {0, 3} are also listed for the respective algorithms. Values are
reported for our default network setting.

Time [ms] Settled Nodes [#]
algorithm machine A machine B target query exploration query with relaxation

Bidir. Dijkstra 183.352 220.461 307 228 875 135 –
CH 0.507 0.569 872 3 722 9 461
CHASE 0.020 0.023 36 39 937

We observe that machine A offers about 10–20% more single-core query performance
than machine B. The difference is more pronounced for the bidirectional variant of
Dijkstra’s algorithm than for the CH-based methods as more memory accesses are
required. The number of settled nodes in a CHASE exploration query is virtually
the same as in a target query. Even when using relaxation, it settles only about the
same amount of nodes as a target query with Contraction Hierarchies. As the latter
approach settles up to 100 times as many nodes during exploration, it is obviously
much more likely to find appropriate via nodes. Overall, CHASE is not suitable to
be used for exploration as already argued in Section 5.4.1 since it considers only few
nodes that are not already on the shortest path.

Approximate Queries

In the following, Tables C.4–C.9 provide performance values of all considered algorithms
for all considered network settings. The results of Table C.5 correspond to Table 5.1 in
Section 5.5.2. We repeat them here for the sake of completeness.

The general results that have been discussed in the main body of this thesis hold
true for all considered network settings. The latency cost model (p = 1) is the most
demanding edge cost model, for instance due to many similar but not equivalent paths
that have to be explored by the queries. Network type “road” is easier to process than
network type “box”, probably due to it offering at least a slight hierarchical structure,
whereas the networks of type “box” possess a relatively uniform distribution of nodes.
Moreover, the network of type “road” has about 15% less nodes in the davg = 10 setting.
Finally, networks with a high average node degree (davg = 20) obviously take longer
to process than networks with a small average node degree (davg = 10). The reason
for this is twofold. First, the respective graphs have twice as many edges, but more
importantly, each node has twice as many neighbors to consider. Thus, considering just
the 2-hop neighborhood of a node can be four times as costly in the dense settings than
in the sparse ones. Our techniques, especially CHASE, still fare fairly well, though,
even for the most demanding network settings.

252

Table C.4: Performance of all considered (exact and approximate) algorithms
using the network type “box” and the hop count cost model (p = 0).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 129.224 – 0 0 178.440 –
Arc Flags 1 134 94 5.917 – 5 139 202 21.693 –
Core-ALT 202 164 2.085 – 752 431 7.368 –

A
LT

exact 193 512 4.370 – 234 512 7.918 –
apx (ϵ = 0.01) 193 512 3.491 0.2 234 512 6.032 0.2
apx (ϵ = 0.10) 193 512 2.238 1.4 234 512 3.416 1.6
apx (ϵ = 0.21) 193 512 1.941 2.3 234 512 2.891 2.5

C
H

exact (nlu) 161 −28 0.575 – 1 029 −61 1.728 –
exact 86 −26 0.648 – 462 −60 1.804 –
apx (ϵ = 0.01) 86 −26 0.666 0.0 472 −60 1.903 0.0
apx (ϵ = 0.10) 83 −26 0.852 0.6 482 −60 2.487 0.2

C
H

A
SE exact 2 449 42 0.025 – 8 596 75 0.101 –

apx (ϵ = 0.01) 2 448 43 0.025 0.0 8 564 80 0.102 0.0
apx (ϵ = 0.10) 2 363 49 0.024 0.6 8 332 93 0.092 0.2

C
H

A
LT

exact 103 −0 0.153 – 491 −34 0.513 –
apx (ϵ = 0.01) 103 −0 0.152 0.0 501 −34 0.517 0.0
apx (ϵ = 0.10) 100 −1 0.174 0.6 511 −34 0.544 0.2
apx (ϵ, ϵ′ = 0.10) 100 −1 0.096 1.9 511 −34 0.383 1.9

Table C.5: Performance of all considered (exact and approximate) algorithms
using the network type “box” and the latency cost model (p = 1).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 156.804 – 0 0 231.287 –
Arc Flags 1 363 95 2.373 – 9 279 182 4.658 –
Core-ALT 205 164 1.474 – 778 432 4.850 –

A
LT

exact 215 512 2.985 – 268 512 4.756 –
apx (ϵ = 0.01) 215 512 1.714 0.1 268 512 1.947 0.2
apx (ϵ = 0.10) 215 512 1.310 1.0 268 512 1.441 1.2
apx (ϵ = 0.21) 215 512 1.262 1.9 268 512 1.408 1.9

C
H

exact (nlu) 5 415 −2 2.325 – 266 749 29 14.643 –
exact 895 1 2.477 – 30 492 30 14.831 –
apx (ϵ = 0.01) 400 −5 2.238 0.2 8 967 −8 12.615 0.2
apx (ϵ = 0.10) 177 −19 2.182 2.2 1 277 −51 7.223 1.8

C
H

A
SE exact 6 216 97 0.042 – 62 761 243 0.225 –

apx (ϵ = 0.01) 4 878 86 0.038 0.2 27 863 169 0.167 0.2
apx (ϵ = 0.10) 3 120 61 0.028 2.2 9 540 84 0.073 1.8

C
H

A
LT

exact 927 26 0.415 – 30 586 56 2.522 –
apx (ϵ = 0.01) 427 20 0.351 0.2 9 028 17 1.798 0.2
apx (ϵ = 0.10) 198 7 0.292 2.2 1 312 −25 0.843 1.8
apx (ϵ, ϵ′ = 0.10) 198 7 0.124 3.6 1 312 −25 0.379 3.4

253

C Determining Efficient Paths in Large-Scale Sensor Networks

Table C.6: Performance of all considered (exact and approximate) algorithms
using the network type “box” and the energy consumption cost model (p = 2).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 170.320 – 0 0 258.244 –
Arc Flags 1 107 88 2.588 – 4 572 169 3.496 –
Core-ALT 212 169 1.631 – 774 435 4.558 –

A
LT

exact 230 512 3.141 – 301 512 4.552 –
apx (ϵ = 0.01) 230 512 2.443 0.1 301 512 3.551 0.1
apx (ϵ = 0.10) 230 512 1.972 1.1 301 512 2.866 1.2
apx (ϵ = 0.21) 230 512 1.898 3.0 301 512 2.746 3.4

C
H

exact (nlu) 277 −21 0.523 – 965 −61 0.562 –
exact 115 −19 0.560 – 465 −61 0.599 –
apx (ϵ = 0.01) 103 −20 0.545 0.1 451 −62 0.583 0.1
apx (ϵ = 0.10) 88 −25 0.646 1.2 446 −67 0.692 1.0

C
H

A
SE exact 3 035 52 0.015 – 6 675 49 0.016 –

apx (ϵ = 0.01) 2 902 50 0.014 0.1 6 392 46 0.015 0.1
apx (ϵ = 0.10) 2 408 41 0.012 1.2 5 611 37 0.014 1.0

C
H

A
LT

exact 134 7 0.143 – 492 −35 0.163 –
apx (ϵ = 0.01) 122 6 0.133 0.1 477 −36 0.155 0.1
apx (ϵ = 0.10) 105 1 0.128 1.2 470 −41 0.145 1.0
apx (ϵ, ϵ′ = 0.10) 105 1 0.072 2.4 470 −41 0.089 2.2

Table C.7: Performance of all considered (exact and approximate) algorithms
using the network type “road” and the hop count cost model (p = 0).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 118.149 – 0 0 197.202 –
Arc Flags 500 92 2.720 – 2 620 176 11.859 –
Core-ALT 237 170 5.249 – 513 328 10.219 –

A
LT

exact 164 512 7.153 – 228 512 10.325 –
apx (ϵ = 0.01) 164 512 6.523 0.2 228 512 8.592 0.2
apx (ϵ = 0.10) 164 512 3.872 1.3 228 512 4.518 1.6
apx (ϵ = 0.21) 164 512 3.218 2.5 228 512 3.790 3.0

C
H

exact (nlu) 144 −36 0.170 – 1 416 −66 0.774 –
exact 92 −34 0.177 – 696 −65 0.822 –
apx (ϵ = 0.01) 92 −34 0.183 0.0 696 −65 0.848 0.0
apx (ϵ = 0.10) 94 −34 0.202 0.7 710 −65 1.016 0.4

C
H

A
SE exact 1 025 25 0.012 – 5 289 45 0.059 –

apx (ϵ = 0.01) 1 026 25 0.012 0.0 5 289 46 0.059 0.0
apx (ϵ = 0.10) 997 25 0.012 0.7 5 178 50 0.057 0.4

C
H

A
LT

exact 106 −8 0.120 – 723 −39 0.392 –
apx (ϵ = 0.01) 106 −8 0.121 0.0 723 −39 0.396 0.0
apx (ϵ = 0.10) 107 −8 0.138 0.7 737 −39 0.416 0.4
apx (ϵ, ϵ′ = 0.10) 107 −8 0.100 1.2 737 −39 0.283 1.6

254

Table C.8: Performance of all considered (exact and approximate) algorithms
using the network type “road” and the latency cost model (p = 1).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 141.151 – 0 0 249.750 –
Arc Flags 522 92 0.835 – 3 219 169 3.301 –
Core-ALT 239 170 2.702 – 527 328 4.904 –

A
LT

exact 178 512 3.666 – 255 512 5.670 –
apx (ϵ = 0.01) 178 512 3.047 0.0 255 512 3.280 0.1
apx (ϵ = 0.10) 178 512 2.354 1.1 255 512 2.127 1.6
apx (ϵ = 0.21) 178 512 2.342 2.5 255 512 2.106 2.8

C
H

exact (nlu) 1 071 −14 0.482 – 30 118 −3 3.006 –
exact 254 −10 0.440 – 4 942 −0 3.001 –
apx (ϵ = 0.01) 166 −17 0.381 0.2 1 923 −30 2.635 0.2
apx (ϵ = 0.10) 116 −29 0.322 2.1 934 −60 1.972 2.0

C
H

A
SE exact 2 086 72 0.013 – 17 521 169 0.066 –

apx (ϵ = 0.01) 1 680 59 0.011 0.2 10 161 110 0.055 0.2
apx (ϵ = 0.10) 1 147 34 0.009 2.1 5 510 51 0.032 2.0

C
H

A
LT

exact 275 16 0.244 – 5 004 26 1.019 –
apx (ϵ = 0.01) 185 9 0.213 0.2 1 968 −4 0.764 0.2
apx (ϵ = 0.10) 131 −3 0.171 2.1 964 −34 0.467 2.0
apx (ϵ, ϵ′ = 0.10) 131 −3 0.109 2.8 964 −34 0.233 3.3

Table C.9: Performance of all considered (exact and approximate) algorithms
using the network type “road” and the energy consumption cost model (p = 2).

Prepro. Query Prepro. Query
time overhead time error time overhead time error
[s] [B/n] [ms] [%] [s] [B/n] [ms] [%]

algorithm node degree davg = 10 node degree davg = 20

Bidir. Dijkstra 0 0 148.387 – 0 0 264.966 –
Arc Flags 477 91 1.022 – 2 376 164 2.070 –
Core-ALT 239 175 4.089 – 526 332 8.196 –

A
LT

exact 191 512 5.155 – 286 512 8.290 –
apx (ϵ = 0.01) 191 512 4.578 0.0 286 512 7.525 0.0
apx (ϵ = 0.10) 191 512 4.186 0.7 286 512 6.691 0.8
apx (ϵ = 0.21) 191 512 4.174 2.5 286 512 6.615 3.0

C
H

exact (nlu) 204 −33 0.109 – 1 724 −67 0.188 –
exact 113 −30 0.103 – 812 −65 0.198 –
apx (ϵ = 0.01) 111 −31 0.102 0.1 809 −66 0.195 0.1
apx (ϵ = 0.10) 111 −34 0.099 1.2 847 −70 0.207 1.1

C
H

A
SE exact 1 116 31 0.006 – 4 707 34 0.009 –

apx (ϵ = 0.01) 1 096 29 0.006 0.1 4 560 32 0.009 0.1
apx (ϵ = 0.10) 950 23 0.006 1.2 4 132 25 0.008 1.1

C
H

A
LT

exact 126 −5 0.077 – 836 −40 0.118 –
apx (ϵ = 0.01) 124 −5 0.076 0.1 832 −40 0.116 0.1
apx (ϵ = 0.10) 123 −8 0.074 1.2 869 −44 0.115 1.1
apx (ϵ, ϵ′ = 0.10) 123 −8 0.061 1.5 869 −44 0.096 1.5

255

C Determining Efficient Paths in Large-Scale Sensor Networks

Alternative Connections

Tables C.10–C.17 compile all query and preprocessing results on computing alternative
paths in our default network setting (network type “road”, average node degree davg = 10)
under all edge cost models (p ∈ {0, 1, 2}). Plots of the respective success rates follow.

Table C.10: Query performance for computing alternative paths under the hop
count cost model (p = 0). Relaxation is not used (x = 0). Exact and approximate
algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 769.008 100.0 – 33.2 44.0 – – –
X-CHV 1.682 89.5 3.5 41.0 69.7 – – –
X-CHASEV 0.862 89.4 3.2 40.9 69.8 – – –

single-level 0.195 91.7 2.8 43.5 69.6 93.7 4.7 1.6
multi-level 0.178 91.9 2.8 43.6 69.6 97.7 0.5 1.6

X-CHASEV (ϵ = 0.01) 0.829 87.4 2.6 39.8 70.2 – – –
single-level (ϵ = 0.01) 0.189 90.2 2.6 42.3 70.0 92.5 4.7 1.6
multi-level (ϵ = 0.01) 0.181 87.6 3.0 43.0 69.0 96.2 0.5 1.7

X-CHASEV (ϵ = 0.10) 0.780 84.1 3.2 39.7 69.1 – – –
single-level (ϵ = 0.10) 0.189 90.2 2.6 42.3 70.0 92.5 4.7 1.6
multi-level (ϵ = 0.10) 0.181 87.6 3.0 43.0 69.0 96.2 0.5 1.7

2 X-BDV 915.741 99.9 – 51.6 34.3 – – –
X-CHV 2.958 80.3 4.8 54.5 64.8 – – –
X-CHASEV 1.333 80.4 4.5 54.5 64.9 – – –

single-level 0.383 84.2 4.7 54.6 64.7 93.6 4.1 2.2
multi-level 0.367 84.4 4.5 54.6 64.7 97.2 0.4 2.2

X-CHASEV (ϵ = 0.01) 1.241 76.8 5.6 53.5 64.0 – – –
single-level (ϵ = 0.01) 0.372 81.8 3.8 54.2 64.7 91.4 4.2 2.2
multi-level (ϵ = 0.01) 0.376 80.2 3.4 54.3 63.6 93.8 0.5 2.4

X-CHASEV (ϵ = 0.10) 1.221 74.7 4.3 54.2 63.1 – – –
single-level (ϵ = 0.10) 0.372 81.8 3.8 54.2 64.7 91.4 4.2 2.2
multi-level (ϵ = 0.10) 0.376 80.2 3.4 54.3 63.6 93.8 0.5 2.4

3 X-BDV 1 041.846 99.3 – 65.2 28.9 – – –
X-CHV 4.520 73.3 5.4 60.4 60.6 – – –
X-CHASEV 1.906 73.1 5.0 60.4 60.8 – – –

single-level 0.630 79.0 5.0 60.0 60.9 93.8 3.9 3.1
multi-level 0.616 79.2 4.6 59.9 61.2 97.3 0.4 3.1

X-CHASEV (ϵ = 0.01) 1.792 71.5 3.7 61.3 62.0 – – –
single-level (ϵ = 0.01) 0.625 76.9 4.2 60.2 61.7 90.8 4.0 3.2
multi-level (ϵ = 0.01) 0.666 75.2 4.2 58.7 59.9 96.2 0.4 3.8

X-CHASEV (ϵ = 0.10) 1.816 66.8 4.9 59.9 59.6 – – –
single-level (ϵ = 0.10) 0.625 76.9 4.2 60.2 61.7 90.8 4.0 3.2
multi-level (ϵ = 0.10) 0.666 75.2 4.2 58.7 59.9 96.2 0.4 3.8

256

Table C.11: Query performance for computing alternative paths under the latency
cost model (p = 1). Relaxation is not used (x = 0). Exact and approximate
algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 871.229 98.5 7.7 29.2 63.5 – – –
X-CHV 7.354 91.7 5.3 40.1 67.1 – – –
X-CHASEV 3.936 91.7 5.3 40.1 67.1 – – –

single-level 0.424 93.6 5.8 42.1 65.7 94.2 4.7 1.8
multi-level 0.353 93.8 5.8 42.2 65.7 98.2 0.5 1.9

X-CHASEV (ϵ = 0.01) 2.853 89.9 5.3 39.8 63.9 – – –
single-level (ϵ = 0.01) 0.396 91.3 5.6 43.3 63.6 94.2 4.7 2.1
multi-level (ϵ = 0.01) 0.266 89.9 5.9 44.6 60.7 98.2 0.5 2.3

X-CHASEV (ϵ = 0.10) 1.485 86.9 5.9 40.7 61.0 – – –
single-level (ϵ = 0.10) 0.396 91.3 5.6 43.3 63.6 94.2 4.7 2.1
multi-level (ϵ = 0.10) 0.266 89.9 5.9 44.6 60.7 98.2 0.5 2.3

2 X-BDV 925.930 96.3 7.7 48.8 57.8 – – –
X-CHV 17.994 86.8 5.6 52.8 60.6 – – –
X-CHASEV 6.552 86.8 5.6 52.8 60.6 – – –

single-level 0.928 88.7 6.0 52.4 61.4 94.3 4.3 2.6
multi-level 0.817 88.9 6.0 52.4 61.5 98.1 0.4 2.7

X-CHASEV (ϵ = 0.01) 4.894 82.5 5.0 52.9 59.3 – – –
single-level (ϵ = 0.01) 0.873 85.6 5.1 53.3 58.8 94.2 4.2 3.1
multi-level (ϵ = 0.01) 0.630 79.5 6.0 53.6 57.8 96.5 0.4 3.8

X-CHASEV (ϵ = 0.10) 2.635 73.4 5.5 52.5 57.0 – – –
single-level (ϵ = 0.10) 0.873 85.6 5.1 53.3 58.8 94.2 4.2 3.1
multi-level (ϵ = 0.10) 0.630 79.5 6.0 53.6 57.8 96.5 0.4 3.8

3 X-BDV 981.484 92.0 7.4 60.3 54.7 – – –
X-CHV 35.115 81.8 5.8 57.6 58.3 – – –
X-CHASEV 10.574 81.8 5.8 57.6 58.3 – – –

single-level 1.775 84.2 6.1 58.2 58.3 94.9 3.7 4.1
multi-level 1.585 84.3 6.0 58.2 58.3 98.3 0.3 4.2

X-CHASEV (ϵ = 0.01) 7.838 78.1 5.1 58.6 56.5 – – –
single-level (ϵ = 0.01) 1.667 80.9 5.1 57.9 56.8 94.7 3.7 4.9
multi-level (ϵ = 0.01) 1.249 73.4 5.6 57.1 54.9 97.0 0.3 6.4

X-CHASEV (ϵ = 0.10) 4.247 67.7 5.6 57.9 55.1 – – –
single-level (ϵ = 0.10) 1.667 80.9 5.1 57.9 56.8 94.7 3.7 4.9
multi-level (ϵ = 0.10) 1.249 73.4 5.6 57.1 54.9 97.0 0.3 6.4

257

C Determining Efficient Paths in Large-Scale Sensor Networks

Table C.12: Query performance for computing alternative paths under the energy
consumption cost model (p = 2). Relaxation is not used (x = 0). Exact and
approximate algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 1 018.658 94.8 9.6 38.8 71.0 – – –
X-CHV 1.918 72.3 7.9 38.9 73.5 – – –
X-CHASEV 0.895 72.3 7.9 38.9 73.5 – – –

single-level 0.298 76.8 8.3 43.5 72.9 88.2 4.7 1.7
multi-level 0.282 77.1 8.3 43.7 72.8 92.1 0.5 1.8

X-CHASEV (ϵ = 0.01) 0.866 71.0 7.4 40.1 71.2 – – –
single-level (ϵ = 0.01) 0.307 76.8 7.8 44.5 71.0 88.4 4.7 1.9
multi-level (ϵ = 0.01) 0.310 73.9 8.0 46.7 71.3 93.5 0.5 2.1

X-CHASEV (ϵ = 0.10) 0.631 65.6 7.7 42.2 72.2 – – –
single-level (ϵ = 0.10) 0.307 76.8 7.8 44.5 71.0 88.4 4.7 1.9
multi-level (ϵ = 0.10) 0.310 73.9 8.0 46.7 71.3 93.5 0.5 2.1

2 X-BDV 1 124.868 85.0 11.8 57.6 64.3 – – –
X-CHV 3.098 65.6 9.8 54.4 67.0 – – –
X-CHASEV 1.406 65.6 9.8 54.4 67.0 – – –

single-level 0.607 72.8 10.3 55.0 66.2 90.5 4.3 2.4
multi-level 0.592 73.3 10.3 55.0 66.2 94.2 0.4 2.5

X-CHASEV (ϵ = 0.01) 1.468 57.9 8.6 56.4 64.7 – – –
single-level (ϵ = 0.01) 0.642 67.5 9.4 56.4 64.3 89.0 4.1 2.7
multi-level (ϵ = 0.01) 0.622 55.4 9.8 54.2 63.3 86.3 0.4 3.2

X-CHASEV (ϵ = 0.10) 1.053 41.4 9.2 53.7 64.2 – – –
single-level (ϵ = 0.10) 0.642 67.5 9.4 56.4 64.3 89.0 4.1 2.7
multi-level (ϵ = 0.10) 0.622 55.4 9.8 54.2 63.3 86.3 0.4 3.2

3 X-BDV 1 206.628 77.7 12.9 66.1 58.5 – – –
X-CHV 4.717 55.0 9.8 62.0 63.7 – – –
X-CHASEV 2.106 55.0 9.8 62.0 63.7 – – –

single-level 0.951 65.1 10.7 60.6 63.4 90.0 3.7 3.3
multi-level 0.945 65.3 10.7 60.5 63.5 93.3 0.3 3.5

X-CHASEV (ϵ = 0.01) 2.189 42.2 9.6 60.8 61.6 – – –
single-level (ϵ = 0.01) 1.023 51.7 10.3 58.1 61.3 86.2 3.4 4.1
multi-level (ϵ = 0.01) 1.010 53.5 10.0 57.5 61.0 88.9 0.3 4.9

X-CHASEV (ϵ = 0.10) 1.573 38.7 9.7 59.3 62.6 – – –
single-level (ϵ = 0.10) 1.023 51.7 10.3 58.1 61.3 86.2 3.4 4.1
multi-level (ϵ = 0.10) 1.010 53.5 10.0 57.5 61.0 88.9 0.3 4.9

258

Table C.13: Query performance for computing alternative paths under the hop
count cost model (p = 0). Relaxation (x = 3) is applied. Exact and approximate
algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 769.008 100.0 – 33.2 44.0 – – –
X-CHV 4.441 95.4 3.4 36.4 70.0 – – –
X-CHASEV 3.463 95.4 3.0 36.1 68.9 – – –

single-level 0.289 95.9 3.0 41.4 69.3 94.9 4.7 1.6
multi-level 0.187 95.9 3.1 41.6 69.3 99.1 0.5 1.6

X-CHASEV (ϵ = 0.01) 3.466 96.0 3.3 36.4 68.5 – – –
single-level (ϵ = 0.01) 0.289 96.4 2.1 41.8 68.9 94.9 4.7 1.6
multi-level (ϵ = 0.01) 0.193 95.7 3.4 42.9 68.1 99.1 0.5 1.7

X-CHASEV (ϵ = 0.10) 3.220 95.1 3.2 37.7 68.0 – – –
single-level (ϵ = 0.10) 0.289 96.4 2.1 41.8 68.9 94.9 4.7 1.6
multi-level (ϵ = 0.10) 0.193 95.7 3.4 42.9 68.1 99.1 0.5 1.7

2 X-BDV 915.741 99.9 – 51.6 34.3 – – –
X-CHV 6.383 89.8 5.4 53.1 62.4 – – –
X-CHASEV 4.350 89.7 5.1 53.0 62.6 – – –

single-level 0.495 92.1 4.1 55.0 63.9 94.7 4.7 2.2
multi-level 0.377 92.2 4.0 55.0 64.0 98.9 0.5 2.2

X-CHASEV (ϵ = 0.01) 4.366 90.0 6.4 53.7 61.7 – – –
single-level (ϵ = 0.01) 0.496 92.3 4.0 55.7 63.3 94.8 4.7 2.2
multi-level (ϵ = 0.01) 0.390 90.9 4.0 55.9 62.6 98.8 0.5 2.4

X-CHASEV (ϵ = 0.10) 4.111 87.0 5.4 54.5 62.4 – – –
single-level (ϵ = 0.10) 0.496 92.3 4.0 55.7 63.3 94.8 4.7 2.2
multi-level (ϵ = 0.10) 0.390 90.9 4.0 55.9 62.6 98.8 0.5 2.4

3 X-BDV 1 041.846 99.3 – 65.2 28.9 – – –
X-CHV 8.941 85.3 6.8 61.3 58.6 – – –
X-CHASEV 5.436 85.2 6.8 61.3 58.7 – – –

single-level 0.751 89.3 5.2 62.1 59.9 94.8 4.6 3.0
multi-level 0.619 89.5 5.2 62.0 60.1 98.9 0.5 3.0

X-CHASEV (ϵ = 0.01) 5.441 83.3 7.5 61.8 59.6 – – –
single-level (ϵ = 0.01) 0.762 86.7 4.4 62.0 61.1 94.3 4.6 3.1
multi-level (ϵ = 0.01) 0.650 84.8 5.1 61.2 58.7 98.0 0.5 3.4

X-CHASEV (ϵ = 0.10) 5.220 78.7 6.5 62.0 58.0 – – –
single-level (ϵ = 0.10) 0.762 86.7 4.4 62.0 61.1 94.3 4.6 3.1
multi-level (ϵ = 0.10) 0.650 84.8 5.1 61.2 58.7 98.0 0.5 3.4

259

C Determining Efficient Paths in Large-Scale Sensor Networks

Table C.14: Query performance for computing alternative paths under the latency
cost model (p = 1). Relaxation (x = 3) is applied. Exact and approximate
algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 871.229 98.5 7.7 29.2 63.5 – – –
X-CHV 16.151 96.7 6.7 32.3 63.6 – – –
X-CHASEV 10.553 96.7 6.7 32.3 63.6 – – –

single-level 0.659 96.8 6.6 38.1 63.8 95.0 4.7 1.8
multi-level 0.361 96.8 6.6 38.6 63.9 99.2 0.5 1.9

X-CHASEV (ϵ = 0.01) 8.015 96.1 5.4 35.5 62.5 – – –
single-level (ϵ = 0.01) 0.569 96.0 5.7 40.8 61.6 95.0 4.7 2.1
multi-level (ϵ = 0.01) 0.272 95.3 5.9 41.9 60.0 99.1 0.5 2.3

X-CHASEV (ϵ = 0.10) 5.127 94.6 6.1 37.3 61.4 – – –
single-level (ϵ = 0.10) 0.569 96.0 5.7 40.8 61.6 95.0 4.7 2.1
multi-level (ϵ = 0.10) 0.272 95.3 5.9 41.9 60.0 99.1 0.5 2.3

2 X-BDV 925.930 96.3 7.7 48.8 57.8 – – –
X-CHV 32.375 92.1 6.7 49.8 58.8 – – –
X-CHASEV 14.654 92.1 6.7 49.8 58.8 – – –

single-level 1.431 93.5 6.6 53.0 59.9 94.9 4.7 2.6
multi-level 0.820 93.7 6.5 53.2 60.1 99.1 0.5 2.6

X-CHASEV (ϵ = 0.01) 11.419 89.8 6.0 51.3 57.9 – – –
single-level (ϵ = 0.01) 1.201 92.2 6.0 53.5 57.5 95.0 4.6 3.0
multi-level (ϵ = 0.01) 0.607 91.0 5.9 55.0 56.9 99.3 0.5 3.4

X-CHASEV (ϵ = 0.10) 7.535 86.9 5.7 53.6 57.2 – – –
single-level (ϵ = 0.10) 1.201 92.2 6.0 53.5 57.5 95.0 4.6 3.0
multi-level (ϵ = 0.10) 0.607 91.0 5.9 55.0 56.9 99.3 0.5 3.4

3 X-BDV 981.484 92.0 7.4 60.3 54.7 – – –
X-CHV 57.828 86.4 6.7 59.0 56.4 – – –
X-CHASEV 20.874 86.4 6.7 59.0 56.4 – – –

single-level 2.637 88.8 6.7 60.0 57.1 95.3 4.5 3.9
multi-level 1.531 89.0 6.7 59.9 57.0 99.3 0.4 4.0

X-CHASEV (ϵ = 0.01) 16.533 81.3 6.6 60.4 56.4 – – –
single-level (ϵ = 0.01) 2.125 86.9 6.1 60.0 56.2 95.0 4.4 4.5
multi-level (ϵ = 0.01) 1.140 86.3 6.0 61.4 55.1 99.1 0.5 5.4

X-CHASEV (ϵ = 0.10) 10.648 75.5 6.2 61.6 55.5 – – –
single-level (ϵ = 0.10) 2.125 86.9 6.1 60.0 56.2 95.0 4.4 4.5
multi-level (ϵ = 0.10) 1.140 86.3 6.0 61.4 55.1 99.1 0.5 5.4

260

Table C.15: Query performance for computing alternative paths under the energy
consumption cost model (p = 2). Relaxation (x = 3) is applied. Exact and
approximate algorithms (ϵ ∈ {0, 0.1, 0.01}) are considered.

Performance Path Quality Candidate Sets
time success UBS sharing locality via.cand. fallback tested

a algorithm [ms] rate [%] [%] [%] [%] rate [%] rate [%] [#]

1 X-BDV 1 018.658 94.8 9.6 38.8 71.0 – – –
X-CHV 4.246 90.7 9.3 40.1 70.2 – – –
X-CHASEV 2.874 90.7 9.3 40.1 70.2 – – –

single-level 0.415 91.2 9.2 45.4 70.3 94.8 4.7 1.8
multi-level 0.329 91.3 9.2 45.8 70.4 98.9 0.5 1.8

X-CHASEV (ϵ = 0.01) 2.778 88.8 7.7 41.9 69.4 – – –
single-level (ϵ = 0.01) 0.416 90.8 7.9 46.9 70.3 94.7 4.7 1.9
multi-level (ϵ = 0.01) 0.352 88.4 7.7 47.7 70.3 98.7 0.5 2.2

X-CHASEV (ϵ = 0.10) 2.370 88.6 75.5 42.9 69.6 – – –
single-level (ϵ = 0.10) 0.416 90.8 7.9 46.9 70.3 94.7 4.7 1.9
multi-level (ϵ = 0.10) 0.352 88.4 7.7 47.7 70.3 98.7 0.5 2.2

2 X-BDV 1 124.868 85.0 11.8 57.6 64.3 – – –
X-CHV 6.321 74.6 10.7 56.4 64.4 – – –
X-CHASEV 3.894 74.6 10.7 56.4 64.4 – – –

single-level 0.773 79.3 11.2 57.7 63.9 92.3 4.6 2.7
multi-level 0.667 79.6 11.2 57.9 63.9 96.3 0.5 2.7

X-CHASEV (ϵ = 0.01) 3.789 74.7 52.8 57.9 63.5 – – –
single-level (ϵ = 0.01) 0.797 77.9 10.7 59.0 63.0 92.2 4.7 3.0
multi-level (ϵ = 0.01) 0.720 76.5 10.9 59.4 62.0 96.8 0.5 3.3

X-CHASEV (ϵ = 0.10) 3.287 70.3 147.3 58.3 63.1 – – –
single-level (ϵ = 0.10) 0.797 77.9 10.7 59.0 63.0 92.2 4.7 3.0
multi-level (ϵ = 0.10) 0.720 76.5 10.9 59.4 62.0 96.8 0.5 3.3

3 X-BDV 1 206.628 77.7 12.9 66.1 58.5 – – –
X-CHV 8.974 68.6 11.1 64.1 61.7 – – –
X-CHASEV 5.162 68.6 11.1 64.1 61.7 – – –

single-level 1.206 73.8 11.7 63.2 61.3 93.2 4.6 3.9
multi-level 1.084 74.2 11.7 63.2 61.3 97.3 0.5 4.0

X-CHASEV (ϵ = 0.01) 5.033 62.7 12.7 64.5 60.9 – – –
single-level (ϵ = 0.01) 1.236 71.4 11.7 62.6 59.3 92.6 4.5 4.2
multi-level (ϵ = 0.01) 1.178 69.9 11.8 62.5 59.3 96.7 0.5 4.9

X-CHASEV (ϵ = 0.10) 4.404 58.1 44.6 65.3 59.8 – – –
single-level (ϵ = 0.10) 1.236 71.4 11.7 62.6 59.3 92.6 4.5 4.2
multi-level (ϵ = 0.10) 1.178 69.9 11.8 62.5 59.3 96.7 0.5 4.9

261

C Determining Efficient Paths in Large-Scale Sensor Networks

Table C.16: Preprocessing performance for each edge cost model (p ∈ {0, 1, 2})
with exact and approximate queries (ϵ ∈ {0, 0.01, 0.1}) and w/o relaxation (x = 0).

Performance Candidate Sets
a = 1 a = 2 a = 3

time size empty size empty size empty size
p preprocessing type [h] [kiB] [%] [#] [%] [#] [%] [#]

0 single-level 1.0 1 223 1.9 4.6 6.4 6.5 12.3 8.4
+ multi-level 2.1 6 808 3.7 6.1 8.7 8.7 13.4 11.2
single-level (ϵ = 0.01) 0.9 1 197 3.1 4.5 9.3 6.4 18.3 8.2
+ multi-level (ϵ = 0.01) 2.1 7 107 4.1 6.4 9.4 9.2 15.5 11.6
single-level (ϵ = 0.10) 0.9 1 197 3.1 4.5 9.3 6.4 18.3 8.2
+ multi-level (ϵ = 0.10) 2.1 7 107 4.1 6.4 9.4 9.2 15.5 11.6

1 single-level 6.0 1 795 1.2 6.2 4.1 9.4 8.8 13.0
+ multi-level 15.7 11 755 2.2 9.8 5.4 14.9 9.5 20.3
single-level (ϵ = 0.01) 4.8 2 206 1.3 8.1 5.4 11.7 10.2 15.4
+ multi-level (ϵ = 0.01) 7.4 12 232 3.5 11.0 8.1 15.9 14.1 19.9
single-level (ϵ = 0.10) 4.8 2 206 1.3 8.1 5.4 11.7 10.2 15.4
+ multi-level (ϵ = 0.10) 7.4 12 232 3.5 11.0 8.1 15.9 14.1 19.9

2 single-level 1.4 883 6.9 3.9 16.6 4.9 28.5 5.3
+ multi-level 2.4 5 891 5.9 5.9 14.0 7.8 23.1 8.8
single-level (ϵ = 0.01) 1.7 950 7.0 4.5 17.9 5.4 33.6 5.3
+ multi-level (ϵ = 0.01) 2.1 6 024 6.8 6.6 17.0 8.1 29.3 8.3
single-level (ϵ = 0.10) 1.7 950 7.0 4.5 17.9 5.4 33.6 5.3
+ multi-level (ϵ = 0.10) 2.1 6 024 6.8 6.6 17.0 8.1 29.3 8.3

Table C.17: Preprocessing performance for each edge cost model (p ∈ {0, 1, 2})
with exact and approximate queries (ϵ ∈ {0, 0.01, 0.1}) and with relaxation (x = 3).

Performance Candidate Sets
a = 1 a = 2 a = 3

time size empty size empty size empty size
p preprocessing type [h] [kiB] [%] [#] [%] [#] [%] [#]

0 single-level 0.9 1 524 0.4 5.2 2.0 8.0 4.3 11.1
+ multi-level 2.1 8 607 0.3 7.3 1.5 10.8 3.4 14.8
single-level (ϵ = 0.01) 1.0 1 552 0.4 5.4 1.6 8.1 4.7 11.3
+ multi-level (ϵ = 0.01) 2.2 8 992 0.4 7.6 1.7 11.3 4.3 15.5
single-level (ϵ = 0.10) 1.0 1 552 0.4 5.4 1.6 8.1 4.7 11.3
+ multi-level (ϵ = 0.10) 2.2 8 992 0.4 7.6 1.7 11.3 4.3 15.5

1 single-level 4.4 2 009 0.3 6.8 1.2 10.4 3.1 14.8
+ multi-level 15.2 13 907 0.2 11.0 1.0 17.3 2.8 24.9
single-level (ϵ = 0.01) 3.7 2 473 0.3 8.9 1.3 12.9 3.7 17.7
+ multi-level (ϵ = 0.01) 6.6 15 265 0.4 12.5 1.5 19.0 3.8 27.0
single-level (ϵ = 0.10) 3.7 2 473 0.3 8.9 1.3 12.9 3.7 17.7
+ multi-level (ϵ = 0.10) 6.6 15 265 0.4 12.5 1.5 19.0 3.8 27.0

2 single-level 2.3 1 337 0.7 5.1 4.9 7.3 12.5 9.0
+ multi-level 2.9 8 885 0.6 7.6 3.0 11.5 8.1 15.0
single-level (ϵ = 0.01) 2.3 1 479 0.7 5.8 5.2 8.1 14.0 9.7
+ multi-level (ϵ = 0.01) 2.6 9 726 1.2 8.8 4.8 12.7 11.2 15.8
single-level (ϵ = 0.10) 2.3 1 479 0.7 5.8 5.2 8.1 14.0 9.7
+ multi-level (ϵ = 0.10) 2.6 9 726 1.2 8.8 4.8 12.7 11.2 15.8

262

●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

●
● ● ● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ● ● ●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

● X−BDV

X−CHASEV

 single−level

 multi−level

X−BDV

X−CHASEV

 single−level

 multi−level

Figure C.2: Success rates against Dijkstra rank for the hop count cost model
(p = 0) and exact queries w/o (x = 0), left, and with relaxation (x = 3), right.

●

●

●

● ● ● ● ●
● ●

●
● ●

●

●

●

● ● ● ● ●
● ●

●
● ●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

●

●

●

● ● ● ● ●
● ●

●
● ●

●

●

●

● ● ● ● ●
● ●

●
● ●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

● X−BDV

X−CHASEV

 single−level

 multi−level

X−BDV

X−CHASEV

 single−level

 multi−level

Figure C.3: Success rates against Dijkstra rank for the latency cost model (p = 1)
and exact queries w/o (x = 0), left, and with relaxation (x = 3), right.

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

Dijkstra Rank

S
u

cc
es

s
R

at
e

[%
]

27 28 29 210 211 212 213 214 215 216 217 218 219

0
2

0
4

0
6

0
8

0
1

0
0

● X−BDV

X−CHASEV

 single−level

 multi−level

X−BDV

X−CHASEV

 single−level

 multi−level

Figure C.4: Success rates against Dijkstra rank for the energy consumption cost
model (p = 2) and exact queries w/o (x = 0), left, and with relaxation (x = 3), right.

263

C Determining Efficient Paths in Large-Scale Sensor Networks

Online Algorithm

We list further results for our online setting. Some figures that have already been
presented in Section 5.5.3 are repeated here for the sake of completeness.

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
0

.5
1

1
.5

2
2

.5

a = 1 a = 2 a = 3

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

(a) Results for exact queries (ϵ = 0.0).

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
0

.5
1

1
.5

2
2

.5

a = 1 a = 2 a = 3

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

(b) Results for approximate queries (ϵ = 0.01).

Queries [1k]

Q
u

er
y

 T
im

e
[m

s]

0 500 1000 1500 2000 2500 3000

0
0

.5
1

1
.5

2

a = 1 a = 2 a = 3

Queries [1k]

S
u

c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

(c) Results for approximate queries (ϵ = 0.1).

Figure C.5: Query time and success rate of our approach in the online setting.
The hop count cost model (p = 0) is used.

264

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Results for exact queries (ϵ = 0.0).

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Results for approximate queries (ϵ = 0.01).

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Results for approximate queries (ϵ = 0.1).

Figure C.6: Query time and success rate of our approach in the online setting.
The latency cost model (p = 1) is used.

265

C Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(a) Results for exact queries (ϵ = 0.0).

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(b) Results for approximate queries (ϵ = 0.01).

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2

a = 1 a = 2 a = 3

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
0

4
0

5
0

6
0

7
0

8
0

(c) Results for approximate queries (ϵ = 0.1).

Figure C.7: Query time and success rate of our approach in the online setting.
The energy consumption cost model (p = 2) is used.

266

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.8: Query time and success rate of our approach in the online setting with
different threshold values t for saturating via node candidate sets. Exact queries
(ϵ = 0.0) and the hop count cost model (p = 0) are used.

267

C Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.9: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.01) and the hop count cost model (p = 0) are used.

268

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.10: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.10) and the hop count cost model (p = 0) are used.

269

C Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6
7

8

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.11: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Exact queries
(ϵ = 0.0) and the latency cost model (p = 1) are used.

270

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

6
7

8

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
2

4
6

8
1
0

1
2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.12: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.01) and the latency cost model (p = 1) are used.

271

C Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

3
3
.5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
1

2
3

4
5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.13: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.1) and the latency cost model (p = 1) are used.

272

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.14: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Exact queries
(ϵ = 0.0) and the energy consumption cost model (p = 2) are used.

273

C Determining Efficient Paths in Large-Scale Sensor Networks

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2
2
.5

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.15: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.01) and the energy consumption cost model (p = 2) are used.

274

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
0

4
0

5
0

6
0

7
0

8
0

(a) Query time and success rates for the first (a = 1) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.4

0
.8

1
.2

1
.6

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
0

4
0

5
0

6
0

7
0

8
0

(b) Query time and success rates for the second (a = 2) alternative.

Queries [1k]

Q
u
er

y
 T

im
e

[m
s]

0 500 1000 1500 2000 2500 3000

0
0
.5

1
1
.5

2

t = 10 t = 30 t = 60 t = 100

Queries [1k]

S
u
c
c
e
ss

 R
a
te

 [
%

]

0 500 1000 1500 2000 2500 3000

3
0

4
0

5
0

6
0

7
0

8
0

(c) Query time and success rates for the third (a = 3) alternative.

Figure C.16: Query time and success rate of our approach in the online setting
with different threshold values t for saturating via node candidate sets. Approximate
queries (ϵ = 0.1) and the energy consumption cost model (p = 2) are used.

275

Curriculum Vitæ

Personal Data

Full Name: Dennis Schieferdecker
Date of Birth: October 2nd, 1978
Place of Birth: Aalen, Germany

Nationality: German

Work Experience

Current– Researcher at Karlsruhe Institute of Technology, Germany
Jun 2008 Institute for Theoretical Informatics—Algorithms

Academic research on Algorithm Engineering with focus on algorithms for sensor
networks and routing algorithms.

Mar 2005– Student Assistant at University of Karlsruhe, Germany
Oct 2001 Student advisor for first year courses in Informatics (5 terms). Conception of official

presentation and exercise material for first year courses in Informatics (2 terms).

Sep 1999 Administrative Assistant at Ostalb-Klinikum, Aalen, Germany
Compilation of statistics and performance of analyses on operational sequences.

Aug 1999– Alternative Civilian Service at Ostalb-Klinikum, Aalen, Germany
Aug 1998 Administration of other people doing alternative civilian service.

Jul 1998 IT Assistant at Telenot Electronic GmbH, Aalen, Germany
Conception of a toolchain to convert product manuals for online publication.

277

Curriculum Vitæ

Education

Jul 2014– Doctorate, Karlsruhe Institute of Technology, Germany
Jun 2008 PhD Degree in Informatics (Dr. rer. nat.)

Grade: magna cum laude (very good)
Thesis Title: “An Algorithmic View on Sensor Networks -– Surveillance, Local-

ization, and Communication”
Advisor: Prof. Dr. Peter Sanders

Jan 2008– Studies in Informatics, University of Karlsruhe, Germany
Apr 2002 Diploma Degree in Informatics

Grade: 1.2 (very good)—top 10% of all graduates
Final Thesis: “Systematic Combination of Speed-Up Techniques for Exact

Shortest-Path-Queries”
Advisor: Prof. Dr. Dorothea Wagner

Feb 2006– Studies in Physics, University of Karlsruhe, Germany
Oct 1999 Diploma Degree in Physics

Grade: 1.3 (very good)
Final Thesis: “Analysis of the tt̄H Channel at the CMS Detector of LHC with

Neural Networks”
Advisor: Prof. Dr. Günter Quast

Jun 1998– Secondary School, Schubart Gymnasium, Aalen, Germany
Aug 1989 Abitur (General Qualification for University Entrance)

Grade: 1.0 (very good)—top of class
Additional merits for best degrees in Physics and Mathematics

Languages

German: Native
English: Fluent
French: Basic Knowledge

278

List of Publications

Journal Articles

[BDS+10] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM
Journal of Experimental Algorithmics, 15(2.3):1–31, 2010.

[LS14] Dennis Luxen and Dennis Schieferdecker. Candidate Sets for Alternative
Routes in Road Networks. ACM Journal of Experimental Algorithmics,
2014. Accepted for publication.

Peer-reviewed Conference Papers

[BDS+08] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In Interna-
tional Workshop on Experimental Algorithms (WEA’08), LNCS, vol. 5038,
pp. 303–318. Springer, 2008.

[FHI+14] Daniel Funke, Thomas Hauth, Vincenzo Innocente, Günter Quast, Peter
Sanders, and Dennis Schieferdecker. Parallel Track Reconstruction in CMS
Using the Cellular Automaton Approach. In International Conference on
Computing in High Energy and Nuclear Physics (CHEP’13), JPCS, vol.
513, pp. 1–7. IOP Publishing, 2014.

[GS10] Robert Geisberger and Dennis Schieferdecker. Heuristic Contraction
Hierarchies with Approximation Guarantee. In International Symposium
on Combinatorial Search (SoCS’10), pp. 31–38. AAAI Press, 2010.

279

List of Publications

[KRS13] Moritz Kobitzsch, Marcel Radermacher, and Dennis Schieferdecker. Evo-
lution and Evaluation of the Penalty Method for Alternative Graphs.
In Workshop on Algorithmic Approaches for Transportation Modelling,
Optimization, and Systems (ATMOS’13), OASIcs, vol. 33, pp. 94–107.
Dagstuhl Publishing, 2013.

[LS12a] Dennis Luxen and Dennis Schieferdecker. Candidate Sets for Alternative
Routes in Road Networks. In International Symposium on Experimental
Algorithms (SEA’12), LNCS, vol. 7276, pp. 260–270. Springer, 2012.

[SH09] Dennis Schieferdecker and Marco F. Huber. Gaussian Mixture Reduc-
tion via Clustering. In International Conference on Information Fusion
(FUSION’09), pp. 1536–1543. IEEE, 2009.

[SS10] Peter Sanders and Dennis Schieferdecker. Lifetime Maximization of Mon-
itoring Sensor Networks. In International Workshop on Algorithms for
Sensor Systems, Wireless Ad Hoc Networks, and Autonomous Mobile En-
tities (ALGOSENSORS’10), LNCS, vol. 6451, pp. 134–147. Springer,
2010.

[SVW11b] Dennis Schieferdecker, Markus Völker, and Dorothea Wagner. Efficient
Algorithms for Distributed Detection of Holes and Boundaries in Wire-
less Networks. In International Symposium on Experimental Algorithms
(SEA’11), LNCS, vol. 6630, pp. 388–399. Springer, 2011.

Technical Reports

[KSS14] Moritz Kobitzsch, Samitha Samaranayake, and Dennis Schieferdecker.
Pruning Techniques for the Stochastic on-time Arrival Problem – An Ex-
perimental Study. Preprint available at arXiv:1407.8295 [cs.DS], Karlsruhe
Institute of Technology and University of California, Berkeley, 2014.

[LS12b] Dennis Luxen and Dennis Schieferdecker. Doing More for Less—Cache-
Aware Parallel Contraction Hierarchies Preprocessing. Preprint available
at arXiv:1208.2543 [cs.DS], Karlsruhe Institute of Technology, 2012.

[SVW11a] Dennis Schieferdecker, Markus Völker, and Dorothea Wagner. Efficient
Algorithms for Distributed Detection of Holes and Boundaries in Wireless
Networks. Karlsruhe Reports in Informatics 2011,8, Karlsruhe Institute of
Technology, 2011.

280

Theses

[Sch06] Dennis Schieferdecker. Analysis of the tt̄H Channel at the CMS Detector
of LHC with Neural Networks. Diploma thesis, University of Karlsruhe,
Department of Physics, 2006.

[Sch08] Dennis Schieferdecker. Systematic Combination of Speed-Up Techniques
for Exact Shortest-Path Queries. Diploma thesis, University of Karlsruhe,
Department of Informatics, 2008.

Supervised Theses

[Fun13] Daniel Funke. Parallel Triplet Finding for CMS Track Reconstruction.
Master thesis, Karlsruhe Institute of Technology, Department of Informat-
ics, 2013.

[Itt09] Dominik Itte. Mehrstufiges Clustering-Verfahren zur Komponentenreduk-
tion von Gaußmischdichten. Student research project, Karlsruhe Institute
of Technology, Department of Informatics, 2009.

[Kol14] Orlin Kolev. Alternative Routes via Avoidance. Diploma thesis, Karlsruhe
Institute of Technology, Department of Informatics, 2014. Ongoing thesis.

[Rad12] Marcel Radermacher. Schnelle Berechnung von Alternativgraphen. Bache-
lor thesis, Karlsruhe Institute of Technology, Department of Informatics,
2012.

281

	Acknowledgements
	Deutsche Zusammenfassung (German Summary)
	Contents
	1 Introduction
	1.1 A Brief History of Sensor Networks
	1.2 Principal Components and Challenges
	1.3 Contributions and Thesis Outline

	2 Foundations
	2.1 Complexity Theory
	2.1.1 Computational Complexity
	2.1.2 Approximation Algorithms

	2.2 Graph Theory
	2.2.1 Definitions
	2.2.2 Graph Algorithms

	2.3 Mathematical Tools
	2.3.1 Mathematical Programming
	2.3.2 Multidimensional Scaling

	2.4 Simulational Environment

	3 Lifetime Maximization of Monitoring Sensor Networks
	3.1 Introduction
	3.1.1 Related Work
	3.1.2 Contribution

	3.2 Model and Problem Definition
	3.2.1 Network Model
	3.2.2 Problem Definition
	3.2.3 Proof of NP-Completeness

	3.3 Approximation Algorithm
	3.3.1 Discretizing Positions
	3.3.2 Area Partitioning
	3.3.3 Full Method
	3.3.4 Target Monitoring

	3.4 Exact Algorithm
	3.4.1 Delayed Column Generation
	3.4.2 Initialization Step
	3.4.3 Oracle Problem
	3.4.4 Termination Condition
	3.4.5 Garg-Könemann Approach
	3.4.6 Full Method

	3.5 Optimizing State Changes
	3.5.1 Traveling Salesperson Problem
	3.5.2 Minimizing Node State Changes

	3.6 Simulations
	3.6.1 Simulational Setup
	3.6.2 Comparison to Previous Work
	3.6.3 Network Settings

	3.7 Concluding Remarks

	4 Location-free Detection of Network Boundaries
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Contribution

	4.2 Models
	4.2.1 Network Model
	4.2.2 Hole and Boundary Model

	4.3 Multidimensional Scaling Boundary Recognition (MDS-BR)
	4.3.1 Base Algorithm
	4.3.2 Refinement
	4.3.3 Graph Embedding Strategies
	4.3.4 Performance Guarantees

	4.4 Enclosing Circle Boundary Recognition (EC-BR)
	4.4.1 Enclosing Circle Detection
	4.4.2 Classification Results
	4.4.3 Refinement

	4.5 Non-Local Network Structures
	4.5.1 Large-Scale Holes
	4.5.2 Connected Boundary Cycles

	4.6 Simulations
	4.6.1 Simulational Setup
	4.6.2 Visual Comparison
	4.6.3 Quantitative Analysis
	4.6.4 Refinement
	4.6.5 MDS-BR Properties

	4.7 Concluding Remarks

	5 Determining Efficient Paths in Large-Scale Sensor Networks
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Contribution

	5.2 Models and Concepts
	5.2.1 Network Model
	5.2.2 Problem Definition
	5.2.3 Basic Algorithms and Concepts

	5.3 Approximate Queries
	5.3.1 Baseline Algorithm
	5.3.2 Approximation Algorithm
	5.3.3 Combination with Other Techniques

	5.4 Alternative Connections
	5.4.1 Baseline Algorithm
	5.4.2 Preprocessed Candidate Nodes
	5.4.3 Applications

	5.5 Simulations
	5.5.1 Simulational Setup
	5.5.2 Approximate Queries
	5.5.3 Alternative Connections

	5.6 Concluding Remarks

	6 Discussion
	Bibliography
	A Lifetime Maximization of Monitoring Sensor Networks
	B Location-free Detection of Network Boundaries
	C Determining Efficient Paths in Large-Scale Sensor Networks
	Curriculum Vitæ
	List of Publications

