
Architecture-Level Software
Performance Models for Online

Performance Prediction

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften/
Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Fabian Maria Konrad Brosig
aus Minden

Tag der mündlichen Prüfung: 10.07.2014
Erstgutachter: Prof. Dr. Samuel Kounev
Zweitgutachter: Prof. Dr. Ralf Reussner

escartes

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Abstract

Modern enterprise systems often have distributed application architectures composed of
many independent services running in a heterogeneous environment (Papazoglou et al.,
2007). In such systems, applications are customized and new services are composed and
deployed on-the-fly subjecting the system resources to varying workloads. Moreover, exist-
ing services, given their loosely-coupled nature, can evolve independently of one another.
Managing system resources in such environments to ensure acceptable end-to-end per-
formance and availability, while at the same time optimizing resource utilization, is a
challenge (Armbrust et al., 2009; Brooks, 2011). Service providers are often faced with
questions such as: What would be the performance of a given service if the workload con-
tinues to evolve as currently observed? What performance would a new service deployed
on the infrastructure exhibit and how much resources should be allocated to it? How
should the workloads of the running services be partitioned among the available resources
such that performance objectives are met and resources are utilized e�ciently? Answering
such questions requires the ability to predict at run-time, i.e., during system operation,
how the performance of running services would be a↵ected if the workload or the system
configuration changes. We refer to this as online performance prediction.

Existing approaches to online performance prediction (e.g., Nou et al. (2009); Li et al.
(2009); Jung et al. (2010)) are based on predictive stochastic performance models such
as (layered) Queueing Networks or Queueing Petri Nets. Such models normally abstract
the system at the resource level without explicitly taking into account the software ar-
chitecture. Services are typically modeled as black boxes, i.e., the control flow and the
dependencies between software components are neglected. Detailed models that explic-
itly capture the software architecture and configuration exist in the literature (e.g., Becker
et al. (2009); Grassi et al. (2007); Bertolino and Mirandola (2004)). They are typically soft-
ware architecture models annotated with descriptions of the system’s performance-relevant
behavior. Such models, often referred to as architecture-level performance models, are in-
tended to evaluate alternative system designs at design-time and/or predict the system
performance for capacity planning purposes. However, there are fundamental di↵erences
between o✏ine and online scenarios for performance prediction. This leads to di↵erent
requirements on the underlying performance abstractions of the system architecture and
the respective performance prediction techniques suitable for use at design-time versus
run-time.

To realize proactive performance and resource management, overload situations should be
anticipated and suitable reconfiguration actions must be found and triggered before Ser-
vice Level Agreements (SLAs) are violated. In this context, there are situations where
performance prediction results need to be available very fast to adapt the system before
performance issues arise, as well as situations where a fine-grained prediction is needed
to find an e�cient system configuration. In this thesis, we develop novel architecture-
level performance model abstractions for component-based software systems specifically
designed for online use. We provide modeling and prediction facilities that enable online
performance prediction during system operation. Performance questions can be answered

iii

iv

on the model level, i.e., analyses about the impact of workload changes or system reconfig-
urations can be conducted without executing expensive performance tests. Thus, our work
provides a solid basis for developing model-based autonomic performance and resource
management techniques that continuously adapt the system during operation in order to
ensure that performance objectives are satisfied while at the same time system resources
are used e�ciently.

The major scientific contributions presented in this thesis are:

• Novel architecture-level software performance abstractions for use in on-
line scenarios. This involves: (i) a new approach to model performance-relevant
service behavior at di↵erent levels of granularity, (ii) a new approach to parameterize
performance-relevant properties of software components, and (iii) a new approach to
model dependencies between parameters, each specifically designed for use in online
scenarios. The developed service behavior models are usable in di↵erent online per-
formance prediction scenarios with di↵erent goals and constraints. They need to be
parameterized with, e.g., resource demands, frequencies of external calls and branch-
ing probabilities. Given the online context, these parameters are characterized with
probability distributions based on monitoring data collected at run-time. Further-
more, the behavior of software components is often dependent on parameters that are
not available as input parameters passed upon service invocation. In many practical
situations, providing an explicit characterization of the dependency is not feasible
and we thus introduce a suitable probabilistic representation based on monitoring
data. The presented models enable online prediction of the performance impact of
changing service compositions, resource allocation changes, system reconfigurations,
and changing user behavior. The modeling abstractions are part of the Descartes
Modeling Language (DML), a new modeling language for run-time performance and
resource management of modern dynamic IT service infrastructures.

• A tailored performance prediction process. Online performance prediction
needs to strike a balance between prediction accuracy and time-to-result. Accurate
fine-grained performance predictions come at the cost of higher prediction overhead.
By using more coarse-grained performance models one can speed up the prediction
process. As a solution, we propose a performance prediction process that is tailored
to a requested performance query: A performance query specifies which performance
metrics should be predicted, e.g., which service response times need to be predicted,
if response time percentiles are requested or average response times are su�cient.
Furthermore, the performance query provides means to specify a trade-o↵ between
prediction accuracy and time-to-result, indicating if the query result needs to be
available very fast at the expense of prediction accuracy or a longer prediction process
with higher overhead is acceptable. Based on the performance query, the performance
prediction process selects a suitable model solving technique and abstraction level,
and returns the requested performance metrics. The tailored performance prediction
process encapsulates complex domain knowledge on stochastic performance models
and provides a flexible usage in di↵erent online performance prediction scenarios.

• Methods for the integration of architecture-level performance models and
system environments. For online performance prediction and proactive system
adaptation, it is essential to keep the performance model in sync with the modeled
system. Otherwise, once a performance model of the system is built, the perfor-
mance model may quickly become outdated and would thus not be representative of
the real system anymore. Our approach is to tie the performance model to the system
environment, i.e., to continuously adapt the model during system operation. We de-
scribe methods to ensure that the model is a “causally connected self-representation

iv

v

of the associated system” (Blair et al., 2009) such that it constantly mirrors the
performance-relevant structure and behavior of the system. The integration is real-
ized by a method to extract model instances semi-automatically based on monitoring
data and techniques to automatically maintain the extracted instances at run-time.
Models are thus kept up-to-date and provide exact information about the system to
enable accurate performance predictions.

The contributions are evaluated in two representative case studies. One case study uses
the SPECjEnterprise2010 benchmark, it is a benchmark designed to serve as a represen-
tative application of today’s enterprise Java systems. The second case study is a real-life
enterprise software system from a large Software-as-a-Service (SaaS) provider. In the
SPECjEnterprise2010 case study, the attained prediction accuracy in various realistically-
sized deployment scenarios was below 5% error for resource utilization, and mostly within
10% to 20% and not exceeding 30% error for response time predictions which is considered
acceptable for capacity management. The prediction capabilities were used as a basis for
implementing an approach to autonomic performance-aware resource management. The
e↵ects of changes in user workloads as well as the impacts of reconfiguration actions were
predicted with su�cient accuracy to avoid SLA violations or ine�cient resource usage.
In the SaaS provider case study the prediction accuracy is investigated under di↵erent
workload types, di↵erent workload intensities and di↵erent workload mixes. The achieved
prediction accuracy for resource utilization was within 5% error. For the service response
times, the relative prediction error was mostly within 20%. The case studies demonstrate:
i) that the proposed model abstractions lend themselves well to describe architecture-level
performance models that are representative in terms of the performance properties of the
modeled systems, ii) that the proposed prediction mechanisms can be e↵ectively used to
derive performance predictions in online scenarios, and iii) that the proposed model extrac-
tion and maintenance methods are suitable to extract and maintain performance model
instances that provide an acceptable accuracy.

Our approach is the first approach to online performance prediction that uses architecture-
level performance models. The performance prediction process facilitates flexible model-
based predictions at run-time, combining the strength of simulative as well as analytical
model solving techniques in a novel tailored process. The models are kept up-to-date using
monitoring data, making manual error-prone parameter estimation unnecessary. The pro-
posed approach o↵ers a solid basis for implementing model-based autonomic performance
and resource management techniques that continuously adapt the system during opera-
tion in order to ensure that performance objectives are met while e�ciently using system
resources. The vital benefit of employing models for system adaptation is that the per-
formance models provide relevant information for what-if analyses and thus can drive the
autonomic decision-making process. It is possible to search for valid and suitable system
configurations on the model level and thus, unnecessary and possibly costly adaptations
of the system can be avoided. This thesis opens up a range of new research possibilities.
For example, the thesis of Huber (2014) is built directly on our approach, implementing
a framework for autonomic performance-aware resource management. Other ongoing dis-
sertation projects are going to use DML as a basis. Moreover, the work is already used in
active collaborations with the industry applying it to real-life systems and applications.

v

Zusammenfassung

Nutzer erwarten von Geschäftsanwendungen schnelle Dienstantwortzeiten ohne Verzöge-
rungen. Da heutige Geschäftsanwendungen anpassbar und erweiterbar konzipiert sind, ha-
ben sie oftmals komplexe Software-Architekturen, bestehend aus lose gekoppelten Software-
Diensten (Papazoglou et al., 2007). Die Einhaltung der Performance-Anforderungen bei
gleichzeitig e�zienter Verwaltung der System-Ressourcen gilt daher als Herausforderung
(Armbrust et al., 2009; Brooks, 2011). Dienstanbieter sind dabei mit Fragen konfrontiert,
wie zum Beispiel: Wie verändern sich die Dienstantwortzeiten, wenn sich die Nutzerzahlen
weiter dem beobachteten Trend nach entwickeln? Welche Antwortzeiten sind zu erwarten,
wenn ein neuer Dienst auf der vorhandenen IT-Infrastruktur zur Verfügung gestellt wird?
Wie viele System-Ressourcen müssen für den neuen Dienst alloziert werden? Wie müssen
dabei das System umkonfiguriert bzw. die Ressourcenzuweisungen verändert werden, so
dass vorhandene Ressourcen e�zient genutzt werden? Um Fragen dieser Art beantwor-
ten zu können, muss die Performance des Software-Systems unter verschiedenen Konfi-
gurationen und Auslastungsgraden zur Laufzeit vorhergesagt werden können. Für solche
Performance-Vorhersagen werden Modelle (Performance-Modelle) benötigt, die relevante
Performance-Eigenschaften des betrachteten Systems abbilden.

Existierende Ansätze für die Performance-Vorhersage zur Laufzeit (e.g., Nou et al. (2009);
Li et al. (2009); Jung et al. (2010)) basieren auf prädiktiven stochastischen Performance-
Modellen wie (mehrschichtige) Warteschlangennetzwerke oder Warteschlangen-Petri-Net-
ze. Solche Modelle abstrahieren das System normalerweise auf Ressourcenebene, ohne
die Software-Architektur explizit zu berücksichtigen. Dienste werden häufig als “Black
Box”modelliert, Kontrollflüsse und Abhängigkeiten zwischen Software-Komponenten wer-
den also nicht beachtet. Detaillierte Performance-Modelle, die die Software-Architektur
und die Systemkonfiguration abbilden, existieren in der Forschungsliteratur (e.g., Becker
et al. (2009); Grassi et al. (2007); Bertolino and Mirandola (2004)). Es sind typischer-
weise Software-Architekturmodelle, die zusätzlich mit Beschreibungen des Performance-
relevanten Systemverhaltens annotiert werden. Solche Modelle, auch als deskriptive Perfor-
mance-Modelle auf Architekturebene bezeichnet, wurden mit dem Ziel entwickelt, ver-
schiedene System-Entwurfsalternativen noch während der Entwurfszeit hinsichtlich ihrer
Performance-Eigenschaften gegeneinander abzuwägen. Es gibt jedoch fundamentale Un-
terschiede zwischen den Performance-Vorhersageszenarien zur Entwurfszeit und zur Lauf-
zeit. Diese Unterschiede führen zu unterschiedlichen Anforderungen an die zugrundelie-
genden Modellabstraktionen und zugehörigen Vorhersagetechniken für die Performance-
Vorhersage jeweilig zur Entwurfszeit und zur Laufzeit.

Ein pro-aktives Performance- und Ressourcenmanagement zeichnet sich dadurch aus, das
Überlast-Situationen antizipiert werden und daraufhin geeignete Rekonfigurationsaktionen
gefunden und ausgeführt werden, noch bevor eventuelle Vereinbarungen zur Dienstgüte,
auch Service Level Agreements (SLAs) genannt, verletzt sind. In diesem Kontext gibt es
Situationen, in denen Performance-Vorhersagen sehr schnell verfügbar sein müssen um
das System anpassen zu können bevor Performance-Probleme auftreten. Es gibt aber auch
Situationen, in denen eine feingranulare Vorhersage vonnöten ist, um besonders e�ziente

vii

viii

Systemkonfigurationen ermitteln zu können. In dieser Arbeit werden neue Performance-
Modellabstraktionen auf Architekturebene speziell für die Performance-Vorhersage zur
Laufzeit entwickelt. Performance-Anfragen können dadurch zur System-Laufzeit auf Mo-
dellebene beantwortet werden, d.h. ohne teure Performance-Tests ausführen zu müssen.
Damit ist unsere Arbeit eine geeignete Grundlage für die Entwicklung von Mechanismen für
modellbasiertes autonomes Performance- und Ressourcenmanagement, die das System kon-
tinuierlich während seines Betriebs mit dem Ziel anpassen, die Performance-Anforderungen
unter e�zienter Verwendung der zur Verfügung stehenden Ressourcen einzuhalten.

Die wissenschaftlichen Kernbeiträge dieser Arbeit sind:

• Neue Performance-Abstraktionen auf Architekturebene für die Verwen-
dung zur Performance-Vorhersage zur Laufzeit. Diese beinhalten: (i) einen
neuen Ansatz zur Modellierung der Performance-relevanten Eigenschaften eines Diens-
tes in verschiedenen Granularitätsstufen, (ii) einen neuen Ansatz für die Parametri-
sierung der Performance-relevanten Eigenschaften von Software-Komponenten, und
(iii) einen neuen Ansatz für die Modellierung von Abhängigkeiten zwischen Para-
metern, jeweils spezifisch für die Performance-Vorhersage zur Laufzeit entworfen.
Die Modelle zur Dienstbeschreibung sind nutzbar in verschiedenen Performance-
Vorhersageszenarien zur Laufzeit, die sich in Ziel und Randbedingungen unterschei-
den können. Die vielfältigen Granularitätsstufen tragen dabei auch der oft unter-
schiedlichen Verfügbarkeit von Messdaten Rechnung. Die Dienstbeschreibungen wer-
den u.a. mit Angaben zu Ressourcenbedarfen, Aufrufhäufigkeiten von externen Diens-
ten und Verzweigungswahrscheinlichkeiten parametrisiert. Dies geschieht auf der
Basis von Messdaten, die während der Laufzeit erhoben werden. Weiterhin führen
wir die Möglichkeit ein, Abhängigkeiten zwischen Modellparametern probabilistisch,
ebenso auf der Basis von Messdaten zu charakterisieren. Eine explizite funktionale
Beschreibung der Abhängigkeiten kann nämlich oftmals nicht bereitgestellt werden.
Die vorgestellten Modelle ermöglichen es, den Performance-Einfluss von Verände-
rungen der Dienstkomposition, von Veränderungen der Ressourcenallokation und
Systemkonfiguration, und von Veränderungen des Nutzungsverhaltens zur Laufzeit
vorherzusagen. Die Modellabstraktionen sind Bestandteil der Descartes Modeling
Language (DML), einer neuen Modellierungssprache für das Performance- und Res-
sourcenmanagement von modernen IT Infrastrukturen.

• Ein flexibles Verfahren zur Performance-Vorhersage. Performance-Vorhersa-
gen zur Laufzeit müssen eine geeignete Balance zwischen Vorhersagegenauigkeit und
Vorhersagegeschwindigkeit finden. Genaue, feingranulare Performance-Vorhersagen
bedeuten einen hohen Vorhersage-Overhead, wohingegen grobgranulare Performance-
Modelle schnelle Vorhersagen liefern können. Je nach Situation kann es erforder-
lich sein, auf Vorhersagegenauigkeit zu verzichten um die Vorhersagegeschwindig-
keit zu erhöhen. Wir schlagen ein Verfahren zur Performance-Vorhersage vor, das
auf anstehende Performance-Anfragen jeweils flexibel zugeschnitten wird. So eine
Performance-Anfrage spezifiziert, welche Performance-Metriken wie z.B. durchschnitt-
liche Antwortzeit oder Ressourcenauslastung ermittelt werden sollen. Weiterhin bein-
haltet eine Performance-Anfrage einen Hinweis, wie der Zielkonflikt zwischen Vorher-
sagegenauigkeit und Vorhersagedauer gewichtet werden soll, je nachdem ob zuguns-
ten einer verkürzten Vorhersagedauer auf Vorhersagegenauigkeit verzichtet werden
kann oder nicht. Ausgehend von einer Performance-Anfrage wird der Vorhersage-
Prozess zugeschnitten. Je nach Anfrage werden geeignete Modell-Granularitätsstufen
und Modell-Lösungsverfahren ausgewählt. Das zugeschnittene Vorhersageverfahren
kapselt umfangreiches Domänenwissen über stochastische Performance-Modelle und
bietet eine breite Nutzbarkeit in verschiedenen Vorhersageszenarien zur Laufzeit.

viii

ix

• Methoden für die Integration von Performance-Modellen mit der Syste-
mumgebung. Für die Performance-Vorhersage zur Laufzeit ist es unabdingbar, dass
das Performance-Modell mit dem modellierten System über die Zeit in Übereinstim-
mung gehalten wird. Andernfalls kann ein einmal erstelltes Modell schnell veralten
und damit nur ungenaue Vorhersagen liefern. Unser Ansatz ist es, das Performance-
Modell an die Systemumgebung zu binden, so dass es kontinuierlich während der
Laufzeit mit dem System evolviert, und das System zu jeder Zeit widerspiegelt. Er-
möglicht wird solch eine Integration durch eine Methode zur semi-automatischen
Extraktion von Performance-Modellen aus Messdaten, und durch Techniken zur
automatischen Wartung der Performance-Modelle zur Laufzeit. Die Performance-
Modelle werden somit aktuell gehalten, und versprechen daher genaue Performance-
Vorhersagen.

Die Beiträge dieser Arbeit werden in zwei repräsentativen Fallstudien evaluiert. Eine Fall-
studie nutzt den SPECjEnterprise2010 Benchmark, der einer repräsentativen Geschäfts-
anwendung entspricht. Die zweite Fallstudie nutzt eine reale Geschäftsanwendung eines
großen Software-as-a-Service (SaaS) Anbieters. In der SPECjEnterprise2010 Fallstudie
wurde in verschiedenen Szenarien eine Vorhersagegenauigkeit von unter 5% Abweichung
bezüglich der Ressourcenauslastung und unter 30% Abweichung (meist zwischen 10% bis
20%) bezüglich der vorhergesagten Antwortzeiten erreicht. Diese Abweichungen gelten
für die Kapazitätsplanung als akzeptabel. Die Vorhersagen wurden zudem als Basis ver-
wendet, um einen Ansatz zum autonomen Performance- und Ressourcenmanagement zu
implementieren. Die Performance-Auswirkungen von Veränderungen im Nutzungsprofil so-
wie von Systemkonfigurationen konnten dabei mit einer Genauigkeit vorhergesagt werden,
die zur Vermeidung von SLA Verletzungen oder ine�zienter Ressourcennutzung ausrei-
chend waren. In der Fallstudie mit dem SaaS Anbieter wurden Performance-Vorhersagen
unter verschiedenen Nutzungsarten und verschiedenen Nutzungsintensitäten untersucht.
Die erreichte Vorhersagegenauigkeit bezüglich der Ressourcenauslastung lag im Bereich
von 5% Abweichung. Für die Dienstantwortzeiten lag der relative Vorhersagefehler meist
bei 20%. Die beiden Fallstudien zeigen, (i) dass die vorgeschlagenen Modellabstraktionen
gut geeignet sind Performance-Modelle zu beschreiben, die die Performance-Eigenschaften
eines Systems angemessen abbilden, (ii) dass die entwickelten Vorhersagemechanismen in
der Lage sind, auf Basis der Performance-Modelle Vorhersagen zur Laufzeit abzuleiten,
und (iii) dass die vorgeschlagenen Modellextraktions- und Modellwartungsmethoden dazu
geeignet sind, Performance-Modelle von akzeptabler Genauigkeit zu erhalten.

Der vorgestellte neue Ansatz nutzt für die Performance-Vorhersage zur Laufzeit Mo-
delle, die die Performance-relevanten Eigenschaften eines Systems auf Architekturebe-
ne beschreiben. Der vorgeschlagene Vorhersageprozess vereinfacht flexible Performance-
Vorhersagen zur Laufzeit, indem er die Stärken von simulativen und analytischen Modell-
Lösungsverfahren in einer jeweils zugeschnittenen Vorhersage kombiniert. Performance-
Modelle werden auf der Basis von Messdaten während der Laufzeit aktuell gehalten, so
dass manuelle, oft fehlerträchtige, Parameterschätzungen nicht vonnöten sind. Damit ist
unsere Arbeit eine geeignete Grundlage für die Entwicklung von Mechanismen für modell-
basiertes autonomes Performance- und Ressourcenmanagement, die das System kontinu-
ierlich während seines Betriebs mit dem Ziel anpassen, die Performance-Anforderungen
unter e�zienter Verwendung der zur Verfügung stehenden Ressourcen einzuhalten. Der
große Gewinn, hierfür Modelle einzusetzen, besteht darin, dass die Performance-Modelle
Informationen für “Was wäre wenn”-Analysen liefern, und damit einen automatisierten
Entscheidungsprozess für die Systemrekonfiguration möglich machen. Die systematische
Suche nach gültigen und geeigneten Systemkonfigurationen kann auf der Modellebene er-
folgen, und dadurch unnötiges und kostspieliges Ausprobieren vermeiden. Die vorliegende
Arbeit erö↵net vielfältige neue Forschungsmöglichkeiten. Zum Beispiel baut die Arbeit von

ix

x

Huber (2014) direkt auf unserem Ansatz auf, um ein Rahmenwerk für die Entwicklung von
Techniken zum autonomen Performance- und Ressourcenmanagement bereitzustellen. An-
dere laufende Dissertationsprojekte nutzen ebenfalls die DML als Basis. Weiterhin werden
Ansätze der Arbeit bereits in einigen Kollaborationen mit Industriepartnern genutzt, und
auf reale Systeme und Anwendungen angewendet.

x

Acknowledgements

This thesis would not have been possible without the great support of many people. First of
all, I would like to thank my advisor Prof. Samuel Kounev for giving me the opportunity
to write this thesis as a member of the Descartes research group and for being a great
supervisor and mentor. I would like to thank him for his guidance, his inspiring ideas and
motivation when working on my thesis and our research papers. Without his support,
advice and encouragement, this work would not have been possible. I would also like to
thank Prof. Ralf Reussner for taking over the part of the second reviewer, and for hosting
the Descartes research group at SDQ.

My special thanks go to my colleague and friend Dr.-Ing. Nikolaus Huber, for his help
and advice and patience and distraction and motivation during the di↵erent phases of the
work, for sharing an o�ce with me, and for proofreading this thesis.

From the SE group at the University of Würzburg, and the SDQ group at KIT, I want to
thank my current and former colleagues I had the pleasure to work with. In alphabetical
order: Ste↵en Becker, Franz Brosch, Erik Burger, Axel Busch, Zoya Durdik, Michael Faber,
Giovanni Falcone, Thomas Goldschmidt, Henning Groenda, Prof. Jürgen Wol↵ v. Guden-
berg, Jens Happe, Lucia Happe, Michael Hauck, Christoph Heger, Robert Heinrich, Jörg
Henß, Nikolas Herbst, Heinz Herrmann, Georg Hinkel, Oliver Hummel, Matthias Huber,
Elena Kienhöfer, Joakim v. Kistowski, Benjamin Klatt, Fritz Kleemann, Anne Koziolek,
Heiko Koziolek, Rouven Krebs, Klaus Krogmann, Max Kramer, Ste↵en Kruse, Michael
Kuperberg, Martin Küster, Michael Langhammer, Philipp Merkle, Aleksandar Milenkoski,
Christof Momm, Marco Nehmeier, Qais Noorshams, Fouad ben Nasr Omri, Michal Papez,
Pierre Parrend, Chris Rathfelder, Andreas Rentschler, Tatiana Rhode, Vanessa Martin
Rodriguez, Kiana Rostami, Piotr Rygielski, Kai Sachs, Viliam Simko, Simon Spinner,
Johannes Stammel, Susanne Stenglin, Christian Stier, Misha Strittmatter, Mircea Trifu,
Catia Trubiani, Robert Vaupel, Jürgen Walter, Alexander Wert, and Dennis Westermann.
I was lucky to work in a very enjoyable and fruitful working atmosphere, you supported me
with very constructive feedback in individual discussions, research meetings, and doctoral
rounds.

Furthermore, I would like to thank Fabian Gorsler, Philipp Meier, Simon Spinner for
supporting me as students as part of their diploma/master’s theses, and Daniel Funke,
Fabian Gorsler, Daniel Hoske, Evgeny Matershev, Philipp Meier, Christian Moldovan,
Ste↵en Slavetinsky, Georgios Treskas, and Fabian Wiesner, for supporting me as research
students in various projects.

Finally, I would like to thank my parents, my sister and my brother for their support and
encouragement throughout the years, which made it all possible.

xi

Contents

Abstract iii

Zusammenfassung vii

Acknowledgements xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Current Approaches . 3
1.4 Approach and Contributions of this Thesis 4

1.4.1 Success Criteria . 4
1.4.2 Contributions . 5
1.4.3 Evaluation . 7

1.5 Application Scenarios . 8
1.6 Thesis Organization . 11

2 From Design-Time to Online Performance Models 13
2.1 Black-Box Approaches to Performance Prediction 15
2.2 Predictive Stochastic Performance Models 17
2.3 Descriptive Architecture-Level Performance Models 22
2.4 Run-Time versus Design-Time Performance Prediction 27
2.5 Monitoring Tools . 29
2.6 Summary . 30

3 Related Work 33
3.1 Online Performance Prediction . 34

3.1.1 Approaches Using Black-Box Models 34
3.1.2 Approaches Using Predictive Stochastic Performance Models 35
3.1.3 Discussion . 37

3.2 Performance Model Extraction and Maintenance 38
3.2.1 Model Extraction Using Monitoring Data 38
3.2.2 Model Maintenance Using Monitoring Data 40

3.3 Summary . 41

4 Architecture-Level Performance Abstractions for Online Use 43
4.1 Application Architecture . 45

4.1.1 Component Model and System Model 46
4.1.2 Running Example . 49
4.1.3 Service Behavior Abstractions . 49

4.1.3.1 Motivation . 49
4.1.3.2 Modeling Approach . 51

xiii

xiv Contents

4.1.3.3 Modeling Abstractions . 51
4.1.3.4 Example . 53

4.1.4 Parameterization . 53
4.1.4.1 Motivation . 54
4.1.4.2 Modeling Approach . 55
4.1.4.3 Modeling Abstractions . 55
4.1.4.4 Example . 57

4.1.5 Probabilistic Parameter Dependencies 57
4.1.5.1 Motivation . 57
4.1.5.2 Modeling Approach . 59
4.1.5.3 Modeling Abstractions . 61
4.1.5.4 Example . 64

4.1.6 Interface to Monitoring Infrastructure 65
4.2 Resource Landscape Model and Deployment Model 66

4.2.1 Modeling Abstractions . 67
4.2.2 Example . 68

4.3 Usage Profile Model . 69
4.3.1 Modeling Abstractions . 69
4.3.2 Example . 70

4.4 Summary . 70

5 Online Prediction Techniques 73

5.1 Model Composition . 76
5.2 Parameter Dependency Resolution and Model Parameterization 76

5.2.1 Input and Output . 76
5.2.2 Relationship Resolution . 78

5.2.2.1 Model Traversal . 79
5.2.2.2 Processing Model Variables 80
5.2.2.3 Example . 85

5.2.3 Complexity . 87
5.3 Model Solving . 90

5.3.1 Transformation to Queueing Petri Nets 90
5.3.1.1 Queueing Petri Nets . 90
5.3.1.2 Transformation . 93

5.3.2 Transformation to Layered Queueing Networks 102
5.3.3 Bounds Analysis . 103

5.4 Tailoring . 107
5.4.1 Performance Metrics . 107
5.4.2 Trade-O↵ Between Prediction Accuracy and Time-To-Result 108
5.4.3 Degrees-of-Freedom . 108
5.4.4 Tailored Model Composition . 109
5.4.5 Tailored Model Solving . 110

5.5 Performance Queries . 114
5.5.1 Requirements . 114
5.5.2 Performance Query Language . 115

5.5.2.1 Model Access . 116
5.5.2.2 Model Structure Query . 116
5.5.2.3 Performance Metrics Query 117

5.5.3 Architecture . 121
5.6 Summary . 122

xiv

Contents xv

6 Integration of Architecture-Level Performance Models and System Environ-
ments 125
6.1 Monitoring Capabilities . 126

6.1.1 Call Path Tracing . 126
6.1.2 Overhead Control . 127
6.1.3 Empirical Characterizations . 127

6.2 Semi-Automatic Model Extraction . 128
6.2.1 Extraction of Component Connections 129
6.2.2 Extraction of Service Behavior Abstractions 130

6.3 Model Structure Maintenance . 131
6.4 Model Parameter Maintenance . 133

6.4.1 Control Flow Statistics . 134
6.4.2 Response Times . 136
6.4.3 Resource Demand Estimation . 137
6.4.4 Resource Demand Estimation in Virtualized Environments 142

6.4.4.1 Example . 143
6.4.4.2 Problem Formulation . 145
6.4.4.3 Global Overhead Factors and O↵sets 146
6.4.4.4 Application-Specific Overhead Portions 146

6.4.5 Probabilistic Characterization of Parameter Dependencies 148
6.4.5.1 Parameter Dependencies to Monitor 149
6.4.5.2 Training Data . 150
6.4.5.3 Supervised Learning . 151

6.5 Model Calibration and Adjustment . 153
6.5.1 Model Calibration . 153
6.5.2 Model Adjustment . 154

6.6 Summary . 155

7 Validation 157
7.1 Evaluation Goals . 157

7.1.1 Modeling Capabilities . 158
7.1.2 Prediction Capabilities . 158

7.2 Trade-O↵ Between Prediction Accuracy and Prediction Overhead 159
7.2.1 Context and Experiment Setup . 159
7.2.2 Results . 161
7.2.3 Discussion . 163

7.3 Software-as-a-Service Provider Case Study 164
7.3.1 Customer Relationship Management (CRM) 164
7.3.2 Context and Experiment Setup . 166
7.3.3 Architecture-Level Performance Model 169
7.3.4 Results . 170
7.3.5 Discussion . 183

7.4 SPECjEnterprise2010 Case Study . 184
7.4.1 SPECjEnterprise2010 Benchmark Application 184
7.4.2 Semi-Automatic Model Extraction and Model Parameterization . . . 186
7.4.3 Service Behavior Abstractions and Prob. Parameter Dependencies . 191
7.4.4 Autonomic Performance-Aware Resource Management 200
7.4.5 Discussion . 203

7.5 Summary . 203

8 Concluding Remarks 205
8.1 Summary . 205

xv

xvi Contents

8.2 Open Questions and Future Work . 209

Acronyms 213

List of Figures 215

List of Tables 219

Bibliography 221

xvi

1. Introduction

1.1 Motivation

Modern enterprise systems are expected to provide their services in a responsive man-
ner (Armbrust et al., 2009). The performance requirements of such systems are important,
requiring an e�cient management of the system resources (Woodside et al., 2007). Accord-
ing to Compuware (2008), performance is one of the most decisive factors for successful
software systems. Since today’s enterprise systems are typically designed to be highly cus-
tomizable and extensible, they often have complex distributed application architectures
composed of many independent services running in a heterogeneous environment (Papa-
zoglou et al., 2007; Fowler, 2002). In such systems, applications are customized and new
services are composed and deployed on-the-fly subjecting the system resources to varying
workloads. Moreover, existing services, given their loosely-coupled nature, can evolve in-
dependently of one another. The increased flexibility gained through the adoption of, e.g.,
paradigms like service-oriented architecture or technologies like virtualization, comes at
the cost of higher system complexity due to the complex interactions between the appli-
cations sharing the physical infrastructure as well as the introduced gap between physical
and logical resource allocations. Managing system resources in such environments to en-
sure acceptable end-to-end performance and availability, while at the same time increasing
resource utilization, is a challenge (Armbrust et al., 2009; Brooks, 2011). For instance,
changes in the workload behavior of one application can a↵ect the performance of other
applications if they are sharing resources and services.

To maintain performance requirements and increase resource e�ciency, systems should
be continuously adapted to changes in their environment. For example, the amount of
resources allocated to each service should be continuously adjusted to match the changing
resource demands resulting from variations in the customer workloads. Service providers
are often faced with questions such as: What would be the performance of a given service
if the workload continues to evolve as currently observed? What performance would a new
service deployed on the infrastructure exhibit and how much resources should be allocated
to it? How should the workloads of the running services be partitioned among the available
resources such that performance objectives are met and resources are utilized e�ciently?
If an application experiences a load spike or a change of its workload profile, how would
this a↵ect the system performance? Which parts of the system architecture would require
additional resources? Answering such questions requires the ability to predict at run-time,
i.e., during system operation, how the performance of running services would be a↵ected if

1

2 1. Introduction

the workload or the system configuration changes. We refer to this as online performance
prediction. Note that in the following, we use the expressions ‘online’, ‘run-time’, ‘during
operation’ interchangeably.

To enable performance prediction we need an abstraction of the real system that incor-
porates performance-relevant behavior, i.e., a performance model. The model has to
represent performance-relevant parts of the system by reflecting the abstract system struc-
ture (Balsamo et al., 2004). The software architecture, the flow of control and dependencies
between services, must be taken into account in order to be able to answer questions such
as the ones listed above. The goal of this thesis is to develop architecture-level perfor-
mance models specifically designed for online use. We provide modeling and prediction
facilities that enable online performance prediction during system operation. Performance
questions can thus be answered on the model level, i.e., statements about the impact of
workload changes or system reconfigurations can be made without conducting expensive
performance tests that are typically infeasible during system operation. Such performance
predictions can be leveraged, e.g., by autonomic resource management approaches that
continuously adapt the system at run-time. Before we discuss the shortcomings of current
work and present our approach we take a closer look at the problem we just described.

1.2 Problem Statement

Modern enterprise systems are usually built following the principles of component-based
software architectures (Szyperski et al., 2002; Fowler, 2002). A software component is
defined as a building block of a software system with contractually specified provided and
required interfaces (Szyperski et al., 2002). In this thesis, we refer to the functionality
provided by a component as service. Consequently, we refer to the methods of the pro-
vided interfaces of a component as provided services, and to the methods of the required
interfaces of a component as required services or external services.

Managing system resources to ensure acceptable end-to-end performance and availability,
while at the same time increasing resource utilization, is a challenge (Armbrust et al.,
2009; Brooks, 2011). To address this challenge, online performance prediction facilities
are required to anticipate performance problems before they occur and to predict the
performance impact of system reconfigurations or possible adaptation actions. Since mea-
surement experiments are impractical during system operation, performance predictions
should be carried out on the model level, i.e., without conducting performance tests.

We formulate the following requirements on a performance prediction mechanism for a
component-based software system:

• The prediction mechanism should support performance metrics such as average re-
source utilization, service response time and service throughput. The average re-
source utilization is of interest for processing resources (e.g., CPUs) as well as for
software resources (e.g., thread pools). For a service response time, estimating the
mean, variance and distribution should be supported. The distribution is used to
derive percentiles such as the 90th percentile, indicating an expected response time
level for 90% of the requests. Since “the 90% percentile response time is closer to
what a user would perceive in reality” (Liu, 2009), such percentiles are common met-
rics to reflect end-user performance. Service throughput is of interest when analyzing
closed workloads, i.e., if the system workload is defined by a number of concurrent
users and their think times.

• The prediction mechanism should support predicting the performance impact of
changing service compositions. Service compositions include deploying or removing

2

1.3. Current Approaches 3

a service, replacing a service with another service implementation, and changes of
how the services are connected to each other.

• The prediction mechanism should support predicting the performance impact of
changes of resource allocations and system reconfigurations. Resource allocation
is the assignment of resources to software components. System reconfigurations
include adding or removing physical or virtual machines, and changing performance-
influencing system parameters such as thread pool sizes.

• The prediction mechanism should support predicting the performance impact of
di↵erent load-intensity levels and usage profiles. The load-intensity level is defined
either by the inter-arrival time of user requests or by the number of concurrent users
and their think times. The usage profile captures the services that are called, the
order in which they are invoked, and the input parameters passed to them.

To be able to conduct performance predictions online, additional challenges arise that
induce the following additional requirements:

• Online prediction scenarios di↵er in their requirements for prediction accuracy and
speed. The trade-o↵ between prediction accuracy and time-to-result should be con-
figurable. An accurate fine-grained performance prediction comes at the cost of
higher prediction overhead and a longer prediction process. By using more coarse-
grained performance models one can speed up the prediction process.

• For online performance predictions, it is essential to keep the performance model in
sync with the modeled system. The model should provide up-to-date information
about the system to enable accurate performance predictions. The models@runtime
community describes such a model as “causally connected self-representation of the
associated system” (Blair et al., 2009), i.e., it constantly mirrors the performance-
relevant structure and behavior of the system.

• The prediction accuracy must be adequate to support reasoning about software ser-
vice compositions, resource allocations and system reconfigurations to increase re-
source e�ciency. According to Menasce and Virgilio (2000), for capacity planning a
prediction error of 30% concerning mean response times and 5% concerning resource
utilization is considered acceptable.

In the following, we discuss the shortcomings of current approaches to performance pre-
diction that motivate our work presented in this thesis.

1.3 Current Approaches

Existing approaches to online performance prediction (e.g., Bennani and Menascé (2005);
Nou et al. (2009); Li et al. (2009); Jung et al. (2010)) are based on stochastic performance
models such as (layered) Queueing Networks or Queueing Petri Nets. Such models, often
referred to as predictive performance models, normally abstract the system at a high level
without explicitly taking into account its software architecture and configuration. The
impact of changing service compositions is not possible to predict since the connections
between services are not reflected. Instead, services are typically modeled as black boxes
and many restrictive assumptions are often imposed such as a single workload class, single-
threaded components, or homogeneous servers. Service demands and request inter-arrival
times are often limited to exponential distributions.

There are also pure black-box approaches that use monitoring data to infer mathematical
models (Eskenazi et al., 2004; Elkhodary et al., 2010; Westermann et al., 2012; Gambi
et al., 2013). Systematic measurements (Westermann et al., 2012) serve as input to derive

3

4 1. Introduction

interpolations based on statistical regression models (e.g., Eskenazi et al. (2004)), Kriging
models (Gambi et al., 2013), or other machine learning-based approaches (e.g., Elkhodary
et al. (2010)). However, all these models only interpolate or extrapolate the measurements,
a representation of the system architecture is not extracted and thus predictions for service
composition changes and system reconfiguration scenarios cannot be obtained.

Detailed models that explicitly capture the software architecture and configuration have
been proposed, however, such models are intended for use at design-time (e.g., Becker et al.
(2009); Grassi et al. (2007); Bertolino and Mirandola (2004); Object Management Group
(OMG) (2006)). Models in this area are usually software architecture models (e.g., based
on UML) annotated with descriptions of the system’s performance-relevant behavior. Such
models, often referred to as architecture-level performance models, are used at design-time
to evaluate alternative system designs and/or predict the system performance for capacity
planning purposes.

While architecture-level performance models provide a powerful tool for performance pre-
diction, they are typically expensive to build and solve, and provide limited support for
flexible abstraction levels, which renders them impractical for use at run-time. Recent
e↵orts in the area of component-based performance engineering have contributed a lot
to facilitate model reusability (Koziolek, 2010), however, there is still much work to be
done before they can be used for online performance prediction. The fundamental dif-
ferences between o✏ine and online scenarios for performance prediction lead to di↵erent
requirements on the underlying performance abstractions of the system architecture and
the respective performance prediction techniques. In particular, the type and amount of
data available as a basis for model parameterization and calibration at system design-time
versus run-time is di↵erent, calling for di↵erent abstraction levels. Furthermore, current
approaches to modeling the component context in architecture-level performance models,
in particular dependencies of the component behavior on model parameters, are not suit-
able for use at run-time since they do not provide enough flexibility in the way parameter
dependencies can be expressed and resolved.

1.4 Approach and Contributions of this Thesis

In this thesis, we develop novel modeling abstractions for describing component-based
software systems and their performance relevant behavior at the architecture-level, specif-
ically designed for online use. We provide modeling and prediction facilities that enable
online performance prediction during system operation. Performance questions can thus
be answered on the model level, i.e., analyses about the impact of workload changes or
system reconfigurations can be conducted without executing expensive performance tests.
Performance problems can be anticipated before they occur and the impact of possible
adaptation actions can be predicted. Hence, our work provides a solid basis for developing
model-based autonomic performance and resource management techniques that continu-
ously adapt the system during operation in order to ensure that performance objectives
are satisfied while at the same time system resources are used e�ciently (Kounev et al.,
2010).

1.4.1 Success Criteria

With the aim of being applicable and usable in real-world scenarios, our approach should
fulfill the following success criteria that we consider essential for a modeling and prediction
approach (cf. Rathfelder (2013)).

• Expressiveness: The approach should be applicable to software systems that have
a component-based software architecture. The modeling and prediction capabilities
should support the scenarios described in Section 1.2.

4

1.4. Approach and Contributions of this Thesis 5

• Accuracy: The modeling and prediction techniques should provide su�ciently ac-
curate results compared to the actual system’s performance. Normally, deviations
within 30% for response time and deviations within 5% for resource utilization are
considered acceptable for capacity planning (Menasce and Virgilio, 2000).

• Scalability: The approach should support the modeling and evaluation of systems of
realistic size and complexity.

• Automation: The approach should allow for a high degree of automation, meaning
that it should be possible to automate most activities using tools in order to drive
decision making as part of an autonomic system adaptation process.

1.4.2 Contributions

The contributions presented in this thesis are described in the following.

Novel Architecture-Level Performance Abstractions for Online Use

In this thesis, we propose novel architecture-level performance abstractions for online use.
This involves: (i) a new approach to model performance-relevant service behavior at di↵er-
ent levels of granularity, (ii) a new approach to parameterize performance-relevant prop-
erties of software components, and (iii) a new approach to model dependencies between
parameters, each specifically designed for use at run-time.

It is important to support the modeling of service behavior at di↵erent levels of abstraction
and detail because the models should be usable in di↵erent online performance prediction
scenarios with di↵erent goals and constraints, ranging from quick performance bounds
analysis to accurate performance prediction. Moreover, the information that monitoring
tools can obtain at run-time, e.g., to what extent component-internal monitoring data is
available, di↵ers. This needs to be reflected by supporting di↵erent model abstraction
levels. We provide three service behavior abstractions. A “black-box” abstraction o↵ers a
probabilistic representation of the service response time behavior. This representation cap-
tures the view of the service behavior from the perspective of a service consumer without
any additional information about the service’s behavior. A “coarse-grained” abstraction
captures the service behavior when observed from the outside at the component’s bound-
aries. This abstraction requires information about the service’s total resource consumption
as well as information about external calls made by the service. However, no information
about the service’s internal control flow is required. A “fine-grained” abstraction captures
the service’s performance-relevant control flow, which is an abstraction of the actual con-
trol flow. In contrast to the coarse-grained behavior description, a fine-grained behavior
description requires information about the internal service control flow including informa-
tion about the resource consumption of component-internal actions.

The above-mentioned service behavior abstractions have to be parameterized with, e.g.,
resource demands, frequencies of external calls, and branching probabilities. In the context
of online performance models, these parameters are typically characterized with probability
distributions based on monitoring data collected at run-time. Our modeling abstractions
allow specifying a so-called scope for model parameters that indicate if and how monitoring
data for a given parameter, collected at the component instance level, can be aggregated
with data collected at other component instances.

Furthermore, the behavior of software components is often dependent on parameters that
are not available as input parameters passed upon service invocation (Fowler, 2002; Rolia
and Vetland, 1995). Such parameters are often not traceable directly over the service
interface and tracing them requires looking beyond the component boundaries, e.g., the
parameters might be passed to another component in the call path and/or they might be

5

6 1. Introduction

stored in a database structure queried by the invoked service. Moreover, the behavior of
component services may be dependent on the state of data containers such as caches or
on persistent data stored in a database (Fowler, 2002; Rolia and Vetland, 1995). In many
practical situations, providing an explicit characterization of such parameter dependen-
cies is not feasible and we thus introduce a suitable probabilistic representation based on
monitoring data.

All the mentioned modeling abstractions are part of the Descartes Modeling Language
(DML), a new modeling language for run-time performance and resource management
of modern dynamic IT service infrastructures. The contributions presented above were
published in Brosig et al. (2013b, 2012); Brosig (2011).

Tailored Performance Prediction Process

Techniques for proactive online performance and resource management aim at adapting the
system configuration and resource allocations dynamically. Performance problems such as
overload situations should be anticipated; and suitable reconfigurations should be found
on the model level and triggered before Service Level Agreements (SLAs) are violated. In
such a context, there are situations where the prediction results need to be available very
fast to adapt the system before performance issues arise, as well as situations where fine-
grained predictions are needed to find a suitable system configuration. However, accurate
fine-grained performance predictions come at the cost of higher prediction overhead and
a longer prediction process. By using more coarse-grained performance models one can
speed up the prediction process. Online performance prediction needs to strike a balance
between prediction accuracy and time-to-result.

In this thesis, we provide a performance prediction process that is tailored to a requested
performance query. Performance queries are formulated using our proposed language
named Descartes Query Language (DQL). DQL has means to express the demanded per-
formance metrics for prediction as well as the goals and constraints in a specific prediction
scenario. A performance query describes which performance metrics should be predicted,
e.g., if resource utilization or service response times need to be predicted, if response time
percentiles are requested or average response times are su�cient. Furthermore, the per-
formance query provides means to specify a trade-o↵ between prediction accuracy and
time-to-result, indicating if the query result needs to be available very fast at the expense
of prediction accuracy or if a longer prediction process with higher overhead is accept-
able. To define the notion of a performance query, DQL provides a declarative interface
to performance prediction techniques that simplifies and automates the process of using
architecture-level software performance models for performance analysis.

Based on a given performance query, the performance prediction process selects a suitable
model abstraction level and model solving technique, and returns the requested perfor-
mance metrics. The prediction process uses existing model solving techniques based on
established stochastic modeling formalisms. The process decides which concrete model
solving technique to apply, and it also selects suitable configuration options of the applied
model solving technique with the goal of tailoring the solution method to the specific per-
formance query. Therefore, for each model solving technique and its configuration options,
it is important to understand how it a↵ects the performance prediction in terms of specific
predictable metrics, prediction accuracy, and prediction overhead.

DQL has been developed in the master’s thesis of Gorsler (2013) and published in Gorsler
et al. (2014, 2013). The investigation of the trade-o↵ between prediction accuracy and
time-to-result is published in Brosig et al. (2014).

6

1.4. Approach and Contributions of this Thesis 7

Methods for the Integration of Architecture-Level Performance Models and
System Environments

For online performance prediction and proactive system adaptation, it is essential to keep
the performance model in sync with the modeled system. Otherwise, once a performance
model of the system is built, the performance model may quickly become outdated and
would thus not be representative of the real system anymore.

Our approach is to tie the performance model to the system environment, i.e., to contin-
uously adapt the model during system operation. In this thesis, we describe methods to
ensure that the model is a “causally connected self-representation of the associated sys-
tem”(Blair et al., 2009) such that it constantly mirrors the performance-relevant structure
and behavior of the system. Models are thus kept up-to-date and provide exact informa-
tion about the system to enable accurate performance predictions. As part of this thesis,
we propose methods to integrate architecture-level performance models and system en-
vironments. The integration is realized by: (i) a technique to extract model instances
semi-automatically based on monitoring data, and (ii) a technique to automatically main-
tain the extracted instances at run-time. The latter includes an interface between the
performance model instance and the monitoring data that encapsulates the monitoring
infrastructure and provides a clear separation of concerns. In each case, we distinguish
between static structural information about the system environment (e.g., involved com-
ponent types) and dynamic parameters (e.g., resource demands) that are reflected in the
models.

Our approach is in line with Woodside et al. (2007) where a convergence of performance
monitoring, modeling and prediction as interrelated activities is advocated. As the system
components are implemented and deployed in the target production environment, the pro-
posed techniques obtain representative estimates of the various model parameters taking
into account the real execution environment. Moreover, model parameters are continu-
ously adjusted to iteratively refine their accuracy. Performance-relevant information is
monitored and described at the component instance level and not only at the component
type level as typical for performance models at design-time. During operation, there is no
possibility to run arbitrary experiments since the system is in production and is used by
real customers issuing requests. In such a setting, monitoring has to be handled with care,
keeping the monitoring overhead within limits such that system operation is not disturbed.

The contributions discussed above were published in Brosig et al. (2011, 2009, 2013a).

1.4.3 Evaluation

The contributions are evaluated with regard to the success criteria formulated in Sec-
tion 1.4.1. In two case studies of two representative enterprise software systems, we
show that the proposed architecture-level modeling abstractions are suitable to model the
performance-relevant behavior of component-based software systems in an online context.
The case studies are of realistic size and complexity. One case study uses the SPECjEnter-
prise2010 benchmark. It is a benchmark designed to serve as a representative application
of today’s enterprise Java systems. The other case study is a real-life enterprise software
system from a large Software-as-a-Service (SaaS) provider.

In the SPECjEnterprise2010 case study, the attained prediction accuracy in various realis-
tically-sized deployment environments under di↵erent workload mixes and load intensities
was within 5% error for resource utilization, and mostly within 10% to 20% and not ex-
ceeding 30% error for response time predictions which is considered acceptable for capacity
management. The prediction capabilities were used as a basis for implementing an auto-
nomic performance-aware resource management technique. The e↵ects of changes in user

7

8 1. Introduction

workloads as well as the impacts of reconfiguration actions could be predicted with su�-
cient accuracy to avoid SLA violations and ine�cient resource usage. In the case study
with the SaaS provider, the attained prediction accuracy for resource utilization was within
5% error. For service response times, the relative prediction error was mostly within 20%.
This applies both to average service response times as well as to the 90th percentile re-
sponse times, i.e., the response time distributions are also captured in a representative
way.

With these case studies, we demonstrated: i) that the proposed performance abstractions
lend themselves well to describe architecture-level performance models that are represen-
tative in terms of the performance properties of the modeled systems, ii) that the proposed
prediction mechanisms can be e↵ectively used to derive performance predictions from the
performance models, and iii) that the proposed model extraction and maintenance meth-
ods are suitable to extract and maintain performance model instances that provide an
acceptable accuracy.

The results of the evaluation were published in Brosig et al. (2013b, 2012, 2011); Huber
et al. (2011a). The SaaS provider case study has not been published yet.

1.5 Application Scenarios

The developed performance modeling and prediction approach has been designed to be
applicable in di↵erent scenarios. In this section, we provide an overview of possible ap-
plication areas. Starting with separate scenarios for online capacity planning and impact
prediction for workload changes and system adaptations, we present the application area
of autonomic resource management, which is the most sophisticated area since it includes
all of the previously mentioned scenarios.

Online Capacity Planning

Enterprise software systems should be scalable and provide the flexibility to handle di↵er-
ent workloads. Classical performance analysis would require costly and time-consuming
load testing for evaluating the system performance in di↵erent deployments. The de-
veloped modeling and prediction approach presented in this thesis enables performance
engineers and system administrators to evaluate the system performance in heterogeneous
hardware environments and to compare di↵erent deployment sizes in terms of their perfor-
mance and e�ciency. Given that model parameters are characterized using representative
monitoring data collected at run-time, the prediction results exhibit higher accuracy than
predictions obtained through design-time modeling approaches. The developed techniques
help to answer the following questions that arise frequently during operation:

• What would be the average utilization of system components and the average service
response times for a given workload and deployment scenario?

• How many servers are needed to ensure adequate performance under the expected
workload?

• How much would the system performance improve if a given server is upgraded?

Impact Analysis of Workload Changes

In general, the workload intensity of enterprise software systems varies over time. The
workload intensity may follow certain trends or patterns, e.g., a weekly pattern with low
intensity over the weekend. In addition, there can be situations where it is foreseeable that
the workload will double within the next month. Using workload forecasting approaches

8

1.5. Application Scenarios 9

developed in our group in Herbst et al. (2014, 2013), it is possible to forecast future work-
load intensity trends. Based on the latter, our approach allows performance engineers and
system administrators to anticipate performance problems. System behavior and perfor-
mance can be easily evaluated for di↵erent workloads. In contrast to performance tests,
the model-based approach allows evaluating the system without setting up a representative
testbed. The prediction process allows both determining the maximal system throughput
as well as detecting potential bottlenecks. The questions that arise in this scenario and
that can be answered by applying the modeling and prediction techniques developed in
this thesis are:

• What maximum load level can the system sustain for a given resource allocation?

• How does the system behave for the anticipated workload behavior?

• Which component or resource is a potential bottleneck for a certain workload sce-
nario?

Impact Analysis of Service Recompositions and Reconfigurations as well as
System Adaptations

Today’s enterprise software systems running on modern application platforms allow per-
forming comprehensive online reconfigurations and adaptations, without service disrup-
tion. Applications can be customized, new services can be composed and deployed on-the-
fly, service configuration parameters can be changed. To provide an illustrative example,
assume the default setting of the rowsPerPage parameter of a frequently accessed list view
is changed, e.g., doubled from 25 to 50. The impact of such a reconfiguration may have a
severe impact on the database server or application server utilization and/or a significant
influence on the end-to-end service response times. With our approach to capturing prob-
abilistic parameter dependencies, the impact of such a reconfiguration can be assessed in
advance without conducting performance tests in a representative testbed. Questions that
can be answered using the approach presented in this thesis are:

• How does the system behave if a new service is deployed?

• What is the performance impact of changing a certain configuration parameter?

• Does a service re-composition improve the perceived service response time?

• What would be the performance impact of changing a third party external service
provider?

Autonomic Resource Management at Run-time

The concepts and methods presented in this thesis provide a solid basis for developing
model-based autonomic performance and resource management techniques that proac-
tively adapt the system to dynamic changes at run-time with the goal to satisfy perfor-
mance objectives while at the same time ensuring e�cient resource utilization.

State-of-the-art industrial mechanisms for automated performance and resource manage-
ment generally follow a trigger-based approach when it comes to enforcing application-level
SLAs concerning availability or responsiveness. Custom triggers can be configured that fire
in a reactive manner when an observed metric reaches a certain threshold (e.g., high server
utilization or long service response times) and execute certain predefined reconfiguration
actions until a given stopping criterion is fulfilled (e.g., response times drop) (VMware,
2006; Amazon Web Services, 2010). However, application-level metrics, such as avail-
ability and responsiveness, normally exhibit a highly non-linear behavior on system load
and they typically depend on the behavior of multiple servers across several application

9

10 1. Introduction

tiers. Hence, it is hard to determine general thresholds of when triggers should be fired
given that the appropriate triggering points are typically highly dependent on the archi-
tecture of the hosted services and their workload profiles, which can change frequently
during operation. The inability to anticipate and predict the e↵ect of dynamic changes
in the environment, as well as to predict the e↵ect of possible adaptation actions, renders
conventional trigger-based approaches unable to reliably enforce SLAs in an e�cient and
proactive fashion.

PLAN

KNOWLEDGE BASE

Refine/Calibrate
Models

ANALYZEEXECUTE

Anticipate/Detect
Problem

Problem
resolved

Problem
persists

* SLA Violations
* Inefficient Resource
 Usage

Adapt System

MONITOR

Monitor
System and
Workload

* Resource Utilization
* SLAs

Online System Models

Adapt System
Model

Predict Adaptation
Impact

Figure 1.1: Model-Based System Adaptation Control Loop (Huber, 2014)

To overcome the mentioned shortcomings of current industrial approaches, Huber applied
the methods presented in this thesis to develop a framework for autonomic performance-
aware resource management (Huber, 2014). Figure 1.1 shows the control loop that is cen-
tral to that framework. It consists of four main phasesMonitor, Analyze, Plan and Execute.
In addition, the figure depicts a Knowledge Base that is used by all mentioned phases.
The knowledge base is realized with DML. Our work is used to conduct performance
predictions on the model level to anticipate performance problems and to find suitable
adaptation actions. DQL serves as interface between the management framework and our
prediction facilities. Given that our performance prediction facilities support detailed im-
pact analyses, e.g., workload intensity and usage profile changes, service (re-)compositions
or deployment changes, the adaptation mechanisms can quickly converge to an e�cient
target system configuration (Huber et al., 2013). The tailored prediction process allows the
adaptation mechanism to trigger predictions for multiple di↵erent configuration scenarios
within a controllable period of time. The prediction results are su�ciently accurate since
the models are maintained up-to-date based on representative monitoring data obtained
at run-time.

Huber (2014) evaluates the framework end-to-end in two di↵erent representative case stud-
ies (beyond the ones considered in this thesis), demonstrating that it can provide significant
e�ciency gains of up to 50% without sacrificing performance guarantees, and that it is
able to trade-o↵ performance requirements of di↵erent customers in heterogeneous hard-
ware environments. Furthermore, it is shown that the approach enables proactive system
adaptation, reducing the amount of SLA violations by 60% compared to a trigger-based
approach. The results of the case studies in Huber (2014) show that it is possible to apply

10

1.6. Thesis Organization 11

architecture-level performance models and online performance prediction to perform auto-
nomic system adaptation on the model level such that the system’s operational goals are
maintained. Di↵erent adaptation possibilities can be assessed without having to change
the actual system.

1.6 Thesis Organization

The thesis is structured as follows.

In Chapter 2, we present the foundations. It describes di↵erent existing approaches to per-
formance prediction that di↵er in the employed abstraction levels, the phases of the system
lifecycle they are targeting, and the input parameter space they consider when conducting
performance predictions. In particular, we describe predictive performance models based
on stochastic analysis and simulation techniques, and descriptive architecture-level perfor-
mance models. Furthermore, we provide an overview of monitoring approaches currently
used in industry and academia to collect performance-relevant measurements at run-time.

Chapter 3 reviews related work, focusing on the research area of online performance pre-
diction. Moreover, the chapter also reviews existing approaches to performance model
extraction and maintenance.

Chapter 4 presents the proposed novel architecture-level performance modeling abstrac-
tions for online use. The proposed performance abstractions reflect the application archi-
tecture, the deployment of services in a resource landscape, as well as the application’s
usage profile, thus making it possible to predict the impact of workload changes, software
adaptations, or changing resource allocations.

Chapter 5 describes how to conduct online performance predictions using the performance
modeling abstractions described in Chapter 4. It presents the detailed concepts of the
tailored prediction process. This involves a model composition step, parameterization and
resolution of relationships between parameters as well as the actual model solving step.
Furthermore, the notion of a performance query is formalized in this chapter.

Chapter 6 presents methods to integrate architecture-level performance models and system
environments with the goal to keep the models up-to-date as the system evolves during
operation. The monitoring capabilities that are prerequisites to use those methods are
formulated. We present the semi-automatic extraction of architecture-level performance
models based on system request tracing, model structure maintenance in the context of
an autonomic resource management process, as well as the derivation of model param-
eter values. Moreover, it is discussed how architecture-level performance models can be
calibrated and adjusted at run-time with the goal to increase their accuracy.

Chapter 7 first presents evaluation goals covering both the modeling and prediction capa-
bilities of our approach. Then, the chapter describes two representative case studies. The
first case study is a real-life enterprise software system from a SaaS provider. The second
case study uses the SPECjEnterprise2010 benchmark. The case studies demonstrate that:
(i) the proposed performance abstractions lend themselves well to describe architecture-
level performance models that are representative in terms of the performance properties of
the modeled systems, (ii) that the proposed prediction mechanisms are capable of deriving
performance predictions in online scenarios based on the performance model instances,
and (iii) that the proposed model extraction and maintenance methods are suitable to
extract and maintain performance model instances that provide an acceptable accuracy.

Finally, Chapter 8 concludes the thesis. It gives a summary of the thesis’ scientific contri-
butions and their benefits. Moreover, the chapter gives directions for future work.

11

2. From Design-Time to Online
Performance Models

Performance is a critical factor for successful software projects (Glass, 1998). Although
hardware speed is continuously increasing, software performance problems are common
since software system complexity and size are also growing at a fast pace (Woodside et al.,
2007). A widespread misconception is that performance problems can be addressed by
simply throwing enough hardware at the system (Kounev, 2005), also denoted as “kill it
with iron” approach (Smith and Williams, 2002). Adding additional hardware resources
can only resolve a performance problem if the existing resources are not su�cient. If the
performance problem stems from a software bottleneck that is inherent in the software
design, additional hardware resources may mitigate the problem, but will not solve it.

To avoid performance problems, it is important to analyze the expected performance char-
acteristics of systems during all phases of their life cycle. The discipline Software Perfor-
mance Engineering (SPE) focuses on methods and tools to address this challenge. SPE is
described as a “systematic, quantitative approach to the cost-e↵ective development of soft-
ware systems to meet performance requirements” (Smith and Williams, 2002). SPE helps
to estimate the level of performance a system can achieve and provides recommendations
to realize the optimal performance level (Menascé et al., 2004b).

In this work, the term performance is understood as the degree to which a software system
meets its objectives for timeliness and the e�ciency with which it achieves this (Smith,
2002). Timeliness is measured in terms of meeting response time or throughput require-
ments and scalability goals. Scalability is understood as the ability of the system to
continue to meet its objectives for response time and throughput as the demand for the
services it provides increases and resources are added (Smith, 2002). Hence, performance
involves both timing behavior as well as resource e�ciency. Minimizing the application’s
resource demands while keeping the application’s timing behavior at the required level is
of increasing importance, in particular for energy-e�cient computing (Barroso and Hölzle,
2007; Murugesan, 2008).

To ensure that a software system meets its performance requirements, the ability to predict
its performance under di↵erent configurations and workloads is highly valuable throughout
the system life cycle. During the design phase, performance prediction helps to evaluate
di↵erent design alternatives. At deployment time, it facilitates system sizing and capacity
planning. During operation, predicting the e↵ect of changes in the workload or in the
system configuration is crucial for an e�cient resource management.

13

14 2. From Design-Time to Online Performance Models

An alternative to performance prediction can be an expert’s educated guess, or conducting
performance measurement experiments. For a measurement experiment, the system needs
to be deployed in an environment that reflects the configuration of interest, and needs
to be stressed with the workloads of interest. Such experiments, however, are normally
very expensive and time-consuming and therefore often not economically viable. To en-
able performance prediction, we need an abstraction of the real system that incorporates
performance-relevant data, i.e., a performance model. Based on such a model, performance
analysis of the system can be carried out.

This chapter describes di↵erent existing approaches to performance prediction. They di↵er
in the employed abstraction levels, the phases of the system lifecycle they are targeting,
and the input parameter space they consider when conducting performance predictions.

• We start with black-box approaches that abstract the system at a very high level
without knowing any details about the internal system structure (Section 2.1). They
use monitoring data to infer mathematical models, for example, systematic mea-
surements (Westermann et al., 2012) serve as input to derive interpolations based on
statistical regression models (e.g., Eskenazi et al. (2004)), Kriging models (Gambi
et al., 2013), or other learning-based approaches (e.g., Elkhodary et al. (2010)).
However, all such models only interpolate or extrapolate the measurements, a repre-
sentation of the system architecture is not extracted and thus predictions for service
composition changes and system reconfiguration scenarios cannot be obtained.

• Next, we describe predictive stochastic performance models that capture the tem-
poral system behavior using stochastic analysis methods (Section 2.2). Formalisms
such as (layered) Queueing Networks or Queueing Petri Nets are used to abstract the
system at a high level without explicitly taking into account its software architecture
and configuration. It is impossible to predict the impact of system reconfigurations
and service (re-)compositions as the connections between services are not reflected.
Instead, services are typically modeled as black boxes and many restrictive assump-
tions are often imposed such as a single workload class, single-threaded components,
homogeneous servers, or exponential request inter-arrival times and exponential ser-
vice demands.

• Finally, we describe descriptive architecture-level performance models that reflect the
architectural structure of a software system and its performance-influencing factors
(Section 2.3). They are detailed models that explicitly capture the software archi-
tecture and configuration, however, such models are intended for use at design-time
(e.g., Becker et al. (2009); Grassi et al. (2007); Bertolino and Mirandola (2004); Ob-
ject Management Group (OMG) (2006)). Models in this area are descriptive, i.e.,
software architecture models (e.g., based on UML) annotated with descriptions of
the system’s performance-relevant behavior.

Architecture-level performance models provide a powerful tool for performance prediction;
they are used at design-time to evaluate alternative system designs and/or predict the sys-
tem performance for capacity planning purposes. However, in Section 2.4 we argue that
there are fundamental di↵erences between o✏ine and online scenarios for performance pre-
diction. This leads to di↵erent requirements on the underlying performance abstractions
of the system architecture and the respective performance prediction techniques suitable
for use at design-time versus run-time. Section 2.4 summarizes the main di↵erences in
terms of goals and underlying assumptions driving the evolution of online models.

Moreover, in Section 2.5 we provide an overview of monitoring approaches that are cur-
rently used in industry and academia to collect performance-relevant measurements at
run-time.

14

2.1. Black-Box Approaches to Performance Prediction 15

2.1 Black-Box Approaches to Performance Prediction

Black-box approaches to performance prediction use measurements to infer mathematical
models of the performance behavior. They abstract the system at a very high level with-
out taking the structure of the system into account. The mathematical models interpolate
and extrapolate the measurements, but the behavior behind the measurements is not cap-
tured. Inferring functional relationships from measurements, i.e., statistical learning, is
an established research area (Hastie et al., 2001). In this section, we focus on approaches
to model functional relationships between workload or configuration parameters as in-
dependent variables, on the one hand, and performance metrics such as response time,
throughput or resource utilization as dependent variables, on the other hand.

Following the categorization proposed by Westermann (2013), black-box approaches di↵er
from each other in the following aspects: Some approaches derive the training data during
operation, i.e., without controlling the independent parameters. Other approaches vary
the independent parameters in a systematic fashion with the goal to representatively cap-
ture a large input space (e.g., Westermann et al. (2012)). In addition, some approaches
consider the trade-o↵ between the amount of training data and the accuracy of the in-
ferred function. Furthermore, the approaches di↵er in their assumptions about the form
of the actual functional dependency, e.g., whether there is a linear dependency or not.
While Westermann et al. (2012); Nadeem et al. (2006); Elkhodary et al. (2010); Gambi
et al. (2013) build black-box models intended to directly represent system performance
behavior, Courtois and Woodside (2000); Eskenazi et al. (2004) infer black-box models
that serve as input to an ad-hoc performance model.

Westermann et al. (2012) propose an automated, measurement-based inference approach
that is based on various strategies for iterative experiment selection and function infer-
ence. The focus is on deriving functional dependencies “with the least possible amount of
data” (Westermann et al., 2012). As statistical methods to obtain mathematical functions,
they apply Classification and Regression Trees (CART), Multivariate Adaptive Regression
Splines (MARS), Kriging models, and genetic programming. As methods to e�ciently
explore the input space, methods such as random breakdown, adaptive equidistant break-
down, and an adaptive random breakdown are applied. The methods are compared and
evaluated in two case studies based on benchmarks from SAP and from the Standard Per-
formance Evaluation Corporation (SPEC), respectively. The independent parameters are
di↵erent workload parameters and JVM configuration parameters, the dependent parame-
ter is the average service response time in the SAP case study and the average throughput
in the SPEC benchmark case study. The authors assume a representative testbed to be
available in order to apply the approach.

In (Nadeem et al., 2006), the goal is to predict application execution times in grid envi-
ronments. The predictions are used to make decisions about the e�cient usage of grid
resources. The authors suggest a two-layered training phase to minimize the training ef-
fort. Prediction functions obtained on a single grid resource are extrapolated to other
resources. As independent parameters, all performance-relevant input parameter values of
the application are considered. As dependent parameter, the application execution time is
observed. The number of experiments is reduced by a normalization of the grid resources,
assuming that the application’s performance behavior for the input parameter variations
is similar on the di↵erent grid resources. A performance prediction is based on a lookup
in the training data set searching for the nearest reference value. The approach is specific
to grid environments, the training phase is executed o✏ine.

In Elkhodary et al. (2010), a learning-based approach is used to implement a self-adaptive
software system. Instead of using an explicit model, the approach intends to “learn” the
impact of adaptation decisions concerning the system’s goals and use this knowledge for

15

16 2. From Design-Time to Online Performance Models

future adaptation decisions. The knowledge is iteratively refined in learning cycles. The
first learning cycle has to be performed o✏ine, before the system’s initial deployment.
The system is either simulated or executed in o✏ine mode, corresponding metrics are
collected serving as initial training data to induce a preliminary model of the system’s
behavior. The learning itself aims to discover relationships between so-called features and
application-level metrics. “A feature is a domain and platform independent method of
representing a particular system capability” (Elkhodary et al., 2010). The definition of
the set of features to be considered in the learning process requires an engineer’s domain
knowledge. Each relationship is represented as a function quantifying the impact of the
feature on a given metric. The function is characterized using a learning algorithm. While
the approach is not tied to a particular algorithm, the authors implement the machine
learning M5 model tree algorithm (Jordan and Jacobs, 1993) that eliminates insignificant
features automatically.

Gambi et al. (2013) apply Kriging models (also referred to as Gaussian process regression
or Kolmogorov Wiener prediction) to predict system behavior as part of an autonomic
cloud resource controller. A Kriging model serves as black-box model of the system that
evolves over time. The independent parameters are workload and system configuration
data, the dependent parameters are application-level performance metrics such as average
response times. The authors describe the benefits of applying Kriging models as follows:
“We propose Kriging models because [..] the controller can train them quickly enough to
apply them online, they don’t require that designers define their internal structure, they
provide good accuracy with small training datasets, and they can estimate the confidence
of their predictions” (Gambi et al., 2013). The approach is evaluated in a case study with
a non-disclosed application based on Sun Grid Engine middleware.

Courtois and Woodside (2000) uses controlled experiments to derive training data, i.e.,
to automatically infer functions that serve as performance prediction models. The var-
ied independent parameters are configuration and service input parameters of a software
component’s provided service. The considered dependent parameter is the service resource
demand. A case study showed that linear regression may not be su�cient to model the
performance behavior. Instead, the authors apply the MARS method to fit the observed
complex performance behavior. For that purpose, the authors use an experiment automa-
tion tool. Furthermore, the authors provide an estimation for the accuracy of the derived
function based on MARS. The also propose a heuristic approach how to select a minimum
number of experiments in order to reach a target accuracy level of the inferred function.
In summary, the work enables automated curve fitting of non-linear functions while con-
sidering the trade-o↵ between the amount of training data and the desired accuracy of the
mathematical model. A representative testbed has to be available to apply the approach.

In Eskenazi et al. (2004), the authors use statistical regression to obtain prediction models
for a component’s provided services. A prediction model is described as a function with a
service’s signature type (consisting of only performance-relevant parameters) as input and
the service’s resource demand as output. Via regression methods, a function is derived
from resource demand measurements conducted while the specific component service is
executed in a testbed in the context of representative use cases. The performance of a
system request is then computed by composing individual services’ performance functions
according to the control flow. Due to the required testbed, “factors a↵ecting the perceived
performance of a software component like influences by external services” (Becker et al.,
2007) are neglected in this approach. In addition, to ensure the measurements’ validity,
the testbed must be stable during the process.

All the mentioned black-box approaches use existing methods to obtain a function from
inputs to outputs, so that the function can return outputs for previously unseen inputs.

16

2.2. Predictive Stochastic Performance Models 17

This is called Supervised Learning (Mohri et al., 2012). We do not provide more details
about the applied methods here and instead refer to Hastie et al. (2001) and Izenman
(2009).

2.2 Predictive Stochastic Performance Models

In this section, we explain predictive stochastic performance models that capture the tem-
poral system behavior using stochastic analysis methods. Given that the model solving
approach presented in this thesis is based on predictive stochastic models, we explain such
models in more detail.

A number of di↵erent performance modeling formalisms have been developed. We provide
an overview of some of the most popular types of performance models. We start with
classical Queueing Networks (QNs), briefly describe Stochastic Petri Nets (SPNs), and
then introduce Queueing Petri Nets (QPNs) that can be understood as a merger of QNs
and SPNs (Bause, 1993; Kounev, 2005). We also describe Layered Queueing Networks
(LQNs) which are an extension of QNs, and Stochastic Process Algebras (SPAs). Note
that, for brevity, we refrain from formal definitions in this section.

Queueing Networks (QNs)

QNs provide a powerful method for modeling contention for processing resources, i.e.,
hardware contention and scheduling strategies. The core entity of a QN is a queue (some-
times also denoted as service station). As depicted in Figure 2.1(a), a queue consists of a
waiting line and a server. Requests arrive at the queue and are processed immediately at
the server unless it is already occupied by another request. In the latter case, the request
is put into the waiting line. If a request has been completely processed by the server, it
departs from the queue. Figure 2.1(a) shows a single server queue. There are also queues
consisting of multiple servers (denoted as multi-server queues), the semantics is similar:
Whenever a request arrives it is processed at a server that is currently free. If all servers
are occupied, the request is put into the waiting line.

In the following, we introduce some common terms used in queueing theory (Menascé
et al., 1994; Bolch et al., 1998; Trivedi, 2002). Requests may arrive at a queue at arbitrary
points in time. The duration between successive request arrivals is denoted as inter-arrival
time. The amount of requests per time unit is referred to as arrival rate, often denoted as
�. The time a server is occupied by a request is called service time. The time a request
spends waiting in the waiting line is referred to as queueing delay or simply waiting time.
The response time of a request is the total amount of time the request spends at the
queue, i.e., the sum of waiting time and service time. Whenever a server has completed
serving a request, another request waiting in the waiting line (if there is any) is scheduled
with respect to a certain scheduling strategy. Typical scheduling strategies include First-
Come-First-Served (FCFS), i.e., the first request in the waiting line is scheduled to be
processed, Processor-Sharing (PS), i.e., all requests in the queue are scheduled according
to an idealized round robin scheduling with an infinitely thin time slice, or Infinite-Server
(IS), i.e., all requests in the queue are scheduled immediately as if the queue had an
infinite number of servers. Scheduling strategy FCFS is typically used to model I/O
devices, scheduling strategy PS is typically used to model CPUs, and scheduling strategy
IS is typically used to model constant delays, e.g., average network delays.

There is a standard notation to describe a queue, referred to asKendall’s notation (Kendall,
1953). A queue is described by means of six parameters A/S/m/B/K/SD (Kounev, 2005),
where:

• A stands for the distribution of the inter-arrival time.

17

18 2. From Design-Time to Online Performance Models

Waiting Line Server

Queue

DeparturesArrivals

(a)

...

Multicore CPU
Disk

Network

0.2

0.8

Arriving
requests

Departing
requests

pleave

1-pleave

(b)

Figure 2.1: (a) Queue and (b) Queueing Network

• S stands for the distribution of the service time.

• m specifies the number of servers of the queue.

• B specifies the maximum number of requests that a queue can hold. If this parameter
is missing, B is assumed to be infinite.

• K specifies the maximum number of requests that can arrive at the queue, i.e., K
specifies the system population. If this parameter is missing, K is assumed to be
infinite.

• SD stands for the scheduling strategy.

Typical notations for the distribution parameters are:

• M = Exponential (Markovian) distribution.

• D = Deterministic distribution, i.e. constant times without variance.

• E
k

= Erlang distribution with parameter k.

• G = General distribution.

A deterministic distribution means that the respective times are constant. A general distri-
bution means that the distribution is not known, e.g., this is commonly used for empirical
distributions obtained from measurements if the underlying shape of the distribution is
unknown. Parameters B and K are usually considered infinite and thus often omitted in
a queue description.

Multiple queues can be connected to form a QN. Figure 2.1(b) shows an example with
three queues, one multi-server queue and two single server queues. The multi-server queue
represents a multicore CPU, the single server queues represent a disk and a network, re-
spectively. The connections between the queues illustrate how requests are routed through
the network of queues. An incoming request, after being processed by the CPU, is routed
either to the disk or the network. The routes are labeled with probabilities. With a prob-
ability of 80 percent, a request coming from the CPU is routed to the disk queue. With
a probability of 20 percent, a request coming from the CPU is routed to the queue rep-
resenting the network. If a request is completed at either the disk or the network queue,
the request either leaves the QN with a probability of p

leave

, or it is immediately routed
back to the CPU queue with a probability of 1� p

leave

. Apparently, a request may visit a
queue multiple times while circulating through the QN. A request’s total amount of service
time at a queue, added up over all visits of the queue, is called service demand or resource
demand of the request at the queue. In the following, we use the term resource demand.

18

2.2. Predictive Stochastic Performance Models 19

A QN where the requests come from a source that is external of the QN and leave the
QN after service completion is referred to as open network. A QN where there is no such
external source of requests and there are no departing requests, i.e., the population of
requests in the QN remains constant and is equal to the initial population, is denoted as
closed network. If a QN is open for some requests and closed for other requests, it is called
mixed.

Given a QN, metrics of interest are, e.g., response time, throughput, i.e., the number of
requests that are served per time unit, and utilization, i.e., the fraction of time where a
queue is busy processing one or more requests. In order to analyze a QN quantitatively, the
QN’s workload needs to be specified. To distinguish di↵erent types of requests, requests are
grouped into so-called request classes or workload classes. Requests of the same type are
considered to behave similarly in terms of resource demand, population, inter-arrival time,
and so on. For each workload class, the workload intensity as well as the resource demands
for each visited queue have to be specified. How the workload intensity is characterized
depends on whether it is a closed workload or an open workload. A closed workload is
characterized by an (initial) number of requests, an open workload is characterized by an
inter-arrival time of requests. A QN is said to be in steady state if the number of requests
arriving at the QN per time unit is equal to the number of requests departing from the QN,
i.e., the arrival rate is equal to the throughput. One very basic queueing theory law we use
throughout this thesis is the Utilization Law (Menascé et al., 1994). Given a QN together
with a workload specification, we can calculate the utilization U

i,r

of a queue/resource i
due to requests of workload class r using the relationship

U
i,r

= D
i,r

·X
i,r

where D
i,r

is the average resource demand and X
i,r

is the throughput of requests of
workload class r at resource i. Closed formulas to derive response times of requests are
not easy to derive, since they depend (amongst others) on the shape of the involved
distributions, i.e., the inter-arrival time distribution, and resource demand distributions.

There is a special class of QNs, namely QNs that have a product-form solution. The BCMP
theorem (of Baskett, Chandy, Muntz, Palacios) defines a set of conditions, i.e., a combi-
nation of service time distributions and scheduling strategies for which QNs with multiple
workload classes can be e�ciently solved using a product-form solution (Menascé et al.,
1994; Bolch et al., 1998; Trivedi, 2002). For instance, if a queue has a FCFS scheduling
strategy, then all service times at this queue need to be of the same exponential distri-
bution. In general, QNs with e�cient mathematical solutions are often based on strong
assumptions (Jain, 1991). Common assumptions include exponentially distributed inter-
arrival times and service time distributions. QNs with weaker assumptions are usually
mathematically intractable. Thus, they need to be simulated in order to derive perfor-
mance predictions.

Techniques to solve QNs are supported by, e.g., the SPEED tool (Smith and Williams,
1997), or the Java Modeling Tools (JMT) (Bertoli et al., 2009). Both tools support both
simulative solution as well as analytical solution techniques such as Mean Value Analysis
(MVA) (Bolch et al., 1998).

QNs provide a powerful method for modeling contention due to processing resources, i.e.,
hardware contention and scheduling strategies. For certain classes of QNs, there are e�-
cient analysis methods available. However, QNs are not suitable for representing blocking
behavior, synchronization of processes, simultaneous resource possession, or asynchronous
processing (Menascé et al., 1994; Kounev, 2005). There are extensions of QNs such as Ex-
tended QNs by Bolch et al. (1998) that provide some support to overcome the mentioned
drawbacks, but they are considered “rather restrictive and inaccurate” (Kounev, 2005).
For more details on QNs, we refer to (Jain, 1991; Bolch et al., 1998; Trivedi, 2002).

19

20 2. From Design-Time to Online Performance Models

Stochastic Petri Nets (SPNs)

Petri Nets (PNs) have been introduced by Petri (1962). An ordinary PN is a bipartite di-
rected graph. The vertices are either places, illustrated as circles, or transitions, illustrated
as bars. The (directed) edges connect a place and a transition, and are illustrated as arcs.
An initial marking of a PN is a function that describes for each place how many tokens the
place contains. A transition is enabled to fire, if each input place, i.e., a place for which
there is a directed connection from the place to the transition, contains at least one token.
The firing of the transition then destroys a token in each input place and creates a token
in all output places, i.e., places where there is a directed connection from the transition
to the place. Figure 2.2 illustrates an ordinary PN with four places and two transitions,
before and after the firing of a transition. Note that we described the default behavior of
a firing transition, generally, the number of tokens that are destroyed in the input places
and created in the output places is not restricted to one. For each transition, this number
configurable.

Place

t1 t2

Transition

p0

p1

p2

p3

Token

(a)

Place

t1 t2

Transition

p0

p1

p2

p3

Token

(b)

Figure 2.2: Ordinary Petri Net (a) Before Firing and (b) After Firing Transition t
1

In contrast to QNs, PNs are designed to model synchronization behavior of concurrent
requests via shared places. However, ordinary PNs do not provide means to model any
timing behavior. Hence, several extensions have been proposed to augment PNs with tim-
ing aspects (see Kounev (2005)). In particular, SPNs (Bause and Kritzinger, 2002) add an
exponentially distributed firing delay to each transition. The delay specifies the time the
transition waits after being enabled before it fires. There are also Generalized Stochas-
tic PNs (GSPNs) that introduce two types of transitions, namely immediate transitions
and timed transitions. Immediate transitions fire in zero time. If at a point in time more
than one immediate transition is enabled, the transition to fire next is chosen based on
configured firing weights. Timed transitions fire after an exponentially distributed delay
as in SPNs. For formal definitions of the above-mentioned extensions to PNs, we refer
to (Bause and Kritzinger, 2002).

While SPNs are a powerful tool to model blocking and synchronization behavior, it is

20

2.2. Predictive Stochastic Performance Models 21

di�cult to model waiting lines for processing resources with respect to typical scheduling
strategies such as FCFS.

Queueing Petri Nets (QPNs)

Bause (1993) introduces QPNs as a merger of QNs and SPNs. QPNs combine the advan-
tages of QNs and SPNs, and thus eliminate their respective disadvantages. Briefly, the
combination works as follows: The places of an SPN can be enriched by queues as they are
described as part of a QN. As a result, resources that are processed using certain schedul-
ing strategies as well as simultaneous resource possession, synchronization and blocking
can be easily modeled.

Ordinary
Place

Queueing
Place

Queue Depository

Figure 2.3: Queueing Place as Part of a Queueing Petri Net, cf. Kounev (2005)

Figure 2.3 depicts such a queueing place. In contrast to an ordinary place, a queueing place
consists of two parts, namely a queue and a depository for tokens that have completed
their service at the queue. Tokens entering a queueing place are passed to its queue,
tokens leaving a queueing place are taken from its depository. For a formal introduction of
QPNs, see Section 5.3.1. In that section, the formalization is needed to formally describe
transformations to QPNs.

Available tools for the analytical solution of QPNs are based on Markov chain analy-
sis (Bause and Kritzinger, 2002) and thus can su↵er from the state space explosion prob-
lem. “QPN models of realistic systems are too large to be analyzable using currently
available analysis techniques” (Kounev, 2005). SimQPN is a tool supporting the analysis
of QPNs by optimized discrete-event simulation (Kounev and Buchmann, 2006; Spinner
et al., 2012). In our work, we thus use SimQPN as QPN model solver.

Layered Queueing Networks (LQNs)

LQNs implement the concept of layered performance models (Franks, 1999). While clas-
sical QNs do not allow modeling simultaneous resource possession, LQNs belong to the
class of Extended QNs that support that feature. LQNs model layered systems consisting
of tasks and processors. Processors represent physical resources, such as CPUs or disk
drives. Tasks are the main interacting entities in LQNs, they can represent software enti-
ties, software resources, services of hardware resources, but also load generating users that
cycle in an endless loop and create requests for other tasks.

Tasks are arranged in a layered hierarchy. Both processors and tasks have a request queue
and a corresponding request scheduling strategy. A task may have one or more entries
modeling the services it provides. An entry either directly specifies a resource demand

21

22 2. From Design-Time to Online Performance Models

to the task’s (host) processor or the entry refers to a control flow graph consisting of
activities that issue resource demands. Entries and activities can also call other entries of
tasks that reside in lower layers. Such calls can be synchronous or asynchronous. Resource
demands are specified as mean values of exponential distributions. The control flow graphs
for activities support sequences, branches, loops, and forks where the branch probabilities
and loop iteration numbers are specified as constants. For details on LQNs, we refer to
Franks (1999).

LQNs have been applied in many case studies with, e.g., web servers (Dilley et al., 1997),
database systems (Sheikh and Woodside, 1997), Enterprise Java systems (Xu et al., 2005),
or telecommunication systems (Shousha et al., 1998). As LQN solver tools, there is a simu-
lator named lqsim (Franks et al., 2011) as well as an analytical solver based on approximate
MVA named LQNS (Franks et al., 2011; Franks, 1999).

Stochastic Process Algebras (SPAs)

As another formalism for performance modeling, SPAs were first proposed in Herzog
(1990). SPAs have explicit operators with formally defined semantics and thus o↵er a
formally defined compositionality which is in contrast to QNs and PNs. They extend
classical process algebras, e.g., CCS (Milner, 1989), with stochastic times and probabilis-
tic choice (Clark et al., 2007). For example, PEPA (Hillston, 1996) supports exponential
distributions as timing values. We do not go into detail here, since SPAs are not used in
the context of this thesis.

Summary

A survey of model-based performance prediction techniques was published in Balsamo et al.
(2004). A number of techniques utilizing a range of di↵erent performance models have been
proposed including (product-form) Queueing Networks (e.g., Menasce and Virgilio (2000)),
Extended Queueing Networks (e.g., Cortellessa and Mirandola (2000)), Stochastic Petri
Nets (e.g., López-Grao et al. (2004)), Queueing Petri Nets (e.g., Kounev (2006)), Layered
Queueing Networks (e.g., Franks (1999)), Stochastic Process Algebras (e.g, Gilmore et al.
(2005)) and general simulation models (e.g., Balsamo and Marzolla (2003)). Such models
capture the temporal system behavior and can be used for performance prediction by
means of analytical or simulation techniques.

However, these predictive performance models are normally used as high-level system per-
formance abstractions and as such they do not explicitly distinguish the degrees-of-freedom
and performance-influencing factors of the system’s software architecture and execution
environment. They are high-level in the sense that: i) complex services are modeled as
black boxes without explicitly capturing their internal behavior and the influences of their
deployment context, configuration settings and input parameters, and ii) the execution
environment is abstracted as a set of logical resources (e.g., CPU, storage, network) with-
out explicitly distinguishing the performance influences of the various layers (e.g., physical
infrastructure, virtualization, and middleware) and their configuration.

2.3 Descriptive Architecture-Level Performance Models

In this section, we present performance models that reflect the architectural structure of
a software system, referred to as descriptive architecture-level performance models. They
are detailed models that explicitly capture the software architecture and configuration.
Typically, they are software architecture models annotated with descriptions of the sys-
tem’s performance-relevant behavior. In general, architecture-level performance models

22

2.3. Descriptive Architecture-Level Performance Models 23

are built during system development and are used at design and deployment time to eval-
uate the performance behavior of alternative system designs and/or predict the system
performance for capacity planning purposes. For that purpose, the common goal is to
enable the automated transformation of such architecture models into prediction models
making it possible to predict the system performance and resource consumption for a fixed
workload and configuration scenario.

A number of architecture-level performance meta-models have been developed by the per-
formance engineering community in the last years. The most prominent examples are
the UML Profile for Schedulability, Performance and Time (UML-SPT) profile (Object
Management Group (OMG), 2005) and its successor the UML MARTE profile (Object
Management Group (OMG), 2006), both of which are extensions of the Unified Modeling
Language as the de facto standard modeling language for software architectures. Other
proposed meta-models include, e.g., CBML (Wu and Woodside, 2004), KLAPER (Grassi
et al., 2007), PCM (Becker et al., 2009), and ROBOCOP (Bondarev et al., 2004). A recent
survey of model-based performance modeling techniques for component-based systems was
published in Koziolek (2010).

The approaches di↵er from each other in the following aspects (Koziolek, 2010):

• The level of detail at which the meta-models support service behavior modeling.

• The flexibility of how model parameters such as resource demands can be specified.

• The capability to describe dependencies between service input parameters and model
parameters.

• The support for describing a component’s state.

In the following, we discuss these aspects for relevant approaches.

Bertolino and Mirandola (2004) present a performance analysis approach for component-
based systems, named Component-Based SPE (CB-SPE), based on the architecture-level
abstractions of UML-SPT (Object Management Group (OMG), 2005). In UML 2.0, a soft-
ware component is modeled as an extended class. Component service behavior can be mod-
eled with standard UML’s collaboration, sequence and activity diagrams. Performance-
related properties are annotated via the profile extension mechanism of UML. CB-SPE
transforms UML models to QN models. Component services are annotated with constant
resource demands that are parameterized with respect to platform parameters but inde-
pendent of service input parameters. Components are composed via sequence diagrams
that also determine the service control flow. The control flow is thus modeled component-
externally, i.e., outside the component boundaries. The approach does not support com-
ponents consisting of nested components, and each time a component is replaced with
a di↵erent component, the modeling steps of the involved sequence diagrams have to be
repeated. Given the complexity of UML and its “semi-formal” (Koziolek, 2010) seman-
tics, transformations of UML models to predictive performance models typically consider
only limited parts of UML. Furthermore, UML-based approaches are di�cult to apply in
a component-based development process because they do not naturally support replac-
ing components in the models. Moreover, UML lacks concepts to specify parameterizable
models, which are desired for software components.

Wu and Woodside (2004) present an extension of LQNs that allow modeling software
components. The approach is called Component-Based Modeling Language (CBML).
The concept of a task of an LQN is enriched by a so-called slot so that a task repre-
sents a component. A slot contains one or more interfaces describing services the compo-
nent provides, respectively requires. Components consisting of sub-components are sup-
ported. Component-internal control flow can be modeled in a fine-grained fashion with,

23

24 2. From Design-Time to Online Performance Models

e.g., branches or loops. Resource demands are specified only as exponential distributions.
Dependencies on service input parameters cannot be specified.

Hissam et al. (2001, 2002) and Wallnau and Ivers (2003) present an approach called Pre-
diction Enabled Component Technology (PECT). It is a framework to predict, e.g., service
response times for component-based software systems. It is a methodology describing how
to augment component technologies with analysis and prediction technologies. In Wallnau
and Ivers (2003), the authors use the Component Composition Language (CCL) that al-
lows describing “structural, behavioral and analysis-specific information about component
technologies” (Wallnau and Ivers, 2003). The structural description of a component con-
sists of provided and required services. The behavior of a service can be described with
a variation of a UML statechart. Both synchronous and asynchronous communication is
supported. Moreover, components containing inner components are also supported. How-
ever, Wallnau and Ivers (2003) does not mention flexible parameter characterization by,
e.g., observed distributions, or dependencies between parameters.

Grassi et al. (2007) present a method for the analysis of non-functional attributes of
component-based systems. A language named Kernel LAnguage for PErformance and
Reliability analysis (KLAPER) is described that aims to bridge the gap between design-
oriented (i.e., architecture-level) notations and analysis-oriented (i.e., predictive) forma-
lisms. KLAPER serves as intermediate model between those two types of notations. In-
termediate models cope with the problem of having of n input formats and m output
formats (N-to-M problem). Instead of defining n · m transformations for each pair of
architecture-level notation and predictive formalism, for each architecture-level notation a
transformation to KLAPER should be defined and for each predictive formalism a trans-
formation from KLAPER should be defined. Thus, only n+m transformations need to be
specified. For instance, in Grassi et al. (2007), a transformation from UML to KLAPER,
as well as a transformation from KLAPER to Extended QNs, is defined. The focus of
KLAPER is on performance and reliability prediction. The language does not distinguish
between hardware resources and software components. Software components containing
inner components cannot be described. Service behavior can be modeled using control
flow constructs such as branches, loops and forks. Dependencies between parameters are
not considered in KLAPER. Parameters can be characterized with observed distributions.

Bondarev et al. (2004) present an approach to performance prediction based on the ROBO-
COP component model. The approach aims to predict real-time properties such as re-
sponse time, blocking time and number of missed deadlines per task, already in the design-
phase of a component-based embedded real-time system. The ROBOCOP component
model supports the notion of provided and required interfaces. Components containing
nested components are not supported. Service control flow is modeled as a sequence of
synchronous or asynchronous tasks. The e↵ect of input parameters on service behavior
and resource usage is modeled explicitly, however, stochastic parameter characterizations
are not supported. Resource demands are described as constants. Moreover, the resource
model is very simple and is not suitable for distributed systems.

Sitaraman et al. (2001) propose a formal approach to enable compositional performance
predictions for component-based software systems. It is based on a variation of the RE-
SOLVE (Sitaraman and Weide, 1994) specification language for software components. The
authors aim at verifying the performance behavior of a component against a given spec-
ification. A component is specified by a list of service signatures together with pairs of
pre- and postconditions. Required interfaces of a component are not made explicit. Ser-
vice control flow is not modeled. Service execution times and memory consumptions of a
component service are specified in extended O-notation, parameterized by service input
parameters. Further dependencies between parameters are not considered. Moreover, the

24

2.3. Descriptive Architecture-Level Performance Models 25

resource model is implicit and fixed, e.g., it does not allow distinguishing di↵erent resource
types. Blocking behavior due to semaphores is also not considered.

Hamlet (2009) presents a formal testing-based theory to predict functional and non-
functional properties (performance and reliability) of a component-based software system.
The underlying component model imposes several restrictions on the notion of a compo-
nent in order to reduce the complexity of the compositional theory. A software component
is a mathematical function with input from floating point value domains. Components
may have local persistent state, represented by a single floating point value. The input
domain of a component is partitioned in subdomains. For each subdomain, the execution
time is determined. Furthermore, the call propagation needs to be determined, i.e., which
output maps to which input subdomains of connected components. Based on this infor-
mation, the execution time of the component-based system can be predicted. The theory
does not consider concurrency or blocking behavior. The resource model is implicit due
to the obtained execution times. Dependencies between parameters as well as stochastic
parameter characterizations are not supported.

Mos and Murphy (2002a,b) present a monitoring approach to derive performance pre-
dictions. It is a framework called COMPAS for the performance management of Java
Enterprise Edition (Java EE) applications. Performance data is extracted from a running
application and used to generate interaction models that describe the system behavior.
An explicit context model is not defined. In this approach, components are abstractions
of Enterprise JavaBeans (EJBs). The components are represented by UML models with
UML-SPT annotations. Service control flow is modeled according to the control flow that
is visible at the component boundaries, i.e., component-internals are not considered. The
implementation of COMPAS assumes synchronous invocation style, i.e., it considers session
beans and entity beans but no message-driven beans (Sriganesh et al., 2006). In order to
reduce the total overhead of monitoring, an adaptive monitoring concept is proposed that
keeps the amount of monitoring small while detecting performance anomalies. Parameter
dependencies are not considered.

Diaconescu and Murphy (2005) describe an extension of the COMPAS framework. The au-
thors develop an Automatic Quality Assurance (AQuA) framework that aims at adapting
component-based applications at run-time if a performance issue is observed. As adap-
tation action, the replacement of a component with a functionally equivalent component
with di↵erent performance behavior is considered. AQuA involves the observation of re-
sponse time requirements. A violation of such a requirement then triggers the adaptation
process. The adaptation process decides on the model level which component should serve
as replacement of a component that has been identified as bottleneck.

Becker et al. (2006) argue that current component models do not reflect the influence of
the deployment context on the component behavior su�ciently. The authors advocate
an explicit context model as part of the component specification that captures the depen-
dencies of functional and extra-functional properties on inter-component relationships, the
execution environment, the allocated hardware and software resources, as well as the usage
profile. A modeling notation based on extensions of UML-SPT is proposed by Koziolek
et al. (2006) allowing component developers to explicitly specify the influence of param-
eters on the component resource demands as well as on their usage of external services.
A parametric contract in the form of a so-called service e↵ect specification is specified
for each component service describing its behavior and control flow in an abstract and
parametric manner (Reussner, 2001).

The above approaches were combined in the Palladio Component Model (PCM), a domain-
specific modeling language for describing performance-relevant aspects of component-based
software architectures (Becker et al., 2009). It provides modeling constructs to capture the

25

26 2. From Design-Time to Online Performance Models

influence of the following four factors on the system performance: i) the implementation
of software components, ii) the external services used by components, iii) the component
execution environment, and iv) the system usage profile. These performance-influencing
factors are reflected in the above-mentioned explicit context model and parameterized
component specifications. Recent surveys (Becker et al., 2004; Koziolek, 2010) show that
the clear separation of these factors is one of the key benefits of PCM compared to other
architecture-level performance models such as the UML-SPT and MARTE profiles (Ob-
ject Management Group (OMG), 2006), CB-SPE (Bertolino and Mirandola, 2004), or
KLAPER (Grassi et al., 2007). PCM models are divided into five sub-models: The repos-
itory model consists of interface and component specifications. A component specification
defines which interfaces the component provides and requires. For each provided service,
the component specification contains a high-level description of the service’s internal be-
havior. The description is provided in the form of a so-called Resource Demanding Service
E↵ect Specification (RDSEFF). The system model describes how component instances
from the repository are assembled to build a specific system. The resource environment
model specifies the execution environment in which the system is deployed. The allocation
model describes the mapping of components from the system model to resources defined
in the resource environment model. The usage model describes the user behavior by cap-
turing the services that are called, the frequency (workload intensity) and order in which
they are invoked, and the input parameters passed to them.

Techniques to solve PCM models include the SimuCom simulator (Becker et al., 2009)
that implements a process-based discrete-event simulation. Technically, it is based on a
model-to-text transformation that maps PCM instances to Java code. The code is then
loaded by SimuCom and executed during a simulation run. As part of the SLAstic adap-
tation framework (van Hoorn et al., 2009), there is another simulator for PCM instances,
named SLAstic.SIM (von Massow et al., 2011). In contrast to SimuCom, it implements an
open workload simulation that is driven by workload traces that may have been generated
or recorded prior to the simulation. In addition, the simulator supports reconfiguration
operations during simulation, e.g., it supports the migration and (de-)replication of soft-
ware components as well as the (de-)allocation of resource containers. In SLAstic, these
capabilities are used to plan and execute system adaptations on the model-level in or-
der to support online capacity management of component-based software systems (van
Hoorn, 2014b). Given that it is based on PCM, the framework is not focused on perfor-
mance prediction at run-time. Another performance engineering approach based on PCM
is SimuLizar(Becker et al., 2013a). SimuLizar is a design-time modeling and prediction
approach for self-adaptive systems (Becker et al., 2013a). It aims at enabling performance
prediction of self-adaptive systems over their various configurations, allowing the analysis
of also the transient adaptation phases. Furthermore, SimuLizar enables a semi-automatic
analysis of whether non-functional requirements, formally specified using RELAX (Whit-
tle et al., 2009), are met or not. It can analyze the gradual fulfillment of requirements
during the simulation of the modeled system (Becker et al., 2013b). That way, it provides
feedback for software engineers at design-time, i.e., not at run-time, to iteratively improve
the design of self-adaptive systems.

Summary

Approaches that explicitly consider the influence of parameters in performance analysis are,
e.g., Becker et al. (2009); Bondarev et al. (2004); Wu and Woodside (2004); Bertolino and
Mirandola (2004). The approaches in Bertolino and Mirandola (2004); Wu and Woodside
(2004) lack expressiveness for capturing dependencies between parameters. For example,
they do not consider service input and output parameters, or limit the set of parame-
ters to, e.g., thread pool size or resource demand parametrization. The most advanced

26

2.4. Run-Time versus Design-Time Performance Prediction 27

approaches concerning parameter dependencies are Becker et al. (2009); Bondarev et al.
(2004). Components and their behavior can be specified in a parameterized way, con-
sidering the influence of input and deployment specific parameters on the component’s
resource demand, control flow, and so on. Orthogonal approaches tackling the challenge
of parametric dependencies in performance analysis are Hamlet (2009) and Hissam et al.
(2002). In contrast to the other approaches, they model the component’s internal state,
however, they do not di↵erentiate the execution time on di↵erent resources (CPU, HDD)
or omit the specification of required interfaces.

While PCM (Becker et al., 2009) provides a good basis to model the performance behavior
of a component in a parameterizable and compositional manner, it shares the same restric-
tion as the other architecture-level modeling approaches mentioned above: It is used at
design-time to evaluate alternative system designs and/or predict the system performance
for capacity planning purposes. However, as described in the next section, di↵erences be-
tween o✏ine and online scenarios for performance prediction lead to di↵erent requirements
on the underlying performance abstractions of the system architecture suitable for use at
design-time versus at run-time.

2.4 Run-Time versus Design-Time Performance Prediction

There are some fundamental di↵erences between o✏ine and online scenarios for perfor-
mance prediction. This leads to di↵erent requirements on the underlying performance
abstractions of the system architecture and the respective performance prediction tech-
niques. In the following, we summarize the main di↵erences in terms of goals and un-
derlying assumptions, driving the evolution of design-time models and run-time models,
respectively.

Evaluating Design Alternatives versus Evaluating Impact of Changes

At system design-time, the main goal of performance modeling and prediction is to evaluate
and compare di↵erent design alternatives in terms of their performance properties.

In contrast, at run-time, the system design (i.e., architecture) is relatively stable and the
main goal of online performance prediction is to predict the impact of dynamic changes in
the environment (e.g., changing workloads, resource allocations, service compositions).

Aligning the Model Structure to Developer Roles versus System Layers

Given the goal to evaluate and compare di↵erent design alternatives, design-time mod-
els are typically structured around the various developer roles involved in the software
development process (e.g., component developer, system architect, system deployer, do-
main expert), i.e., a separate sub-meta-model is defined for each role. In line with the
component-based software engineering paradigm, the assumption is that each developer
with a given role can work independently from other developers and does not have to
understand the details of sub-meta-models that are outside of their domain, i.e., there is
a clear separation of concerns. Sub-meta-models are parameterized with explicitly defined
interfaces to capture their context dependencies. Performance prediction is performed by
composing the various submodels involved in a given system design. To summarize, at
design-time, model composition and parameterization is aligned with the software devel-
opment processes and developer roles.

At run-time, an implemented and deployed system is already available and a strict sep-
aration and encapsulation of concerns according to the developer roles is no longer that
relevant. Instead, given the dynamics of modern systems, it is more relevant to be able to

27

28 2. From Design-Time to Online Performance Models

distinguish between static and dynamic parts of the models. The software architecture is
usually stable, however, the system configuration (e.g., deployment, resource allocations)
at the various layers of the execution environment (virtualization, middleware) may change
frequently during operation. Thus, in this setting, it is more important to explicitly distin-
guish between the system layers and their dynamic deployment and configuration aspects,
as opposed to distinguishing between the developer roles. Given that performance predic-
tion is typically done to predict the impact of dynamic system adaptation, models should
be structured around the system layers and parameterized according to their dynamic
adaptation aspects.

Type and Amount of Data Available for Model Parameterization and Calibra-
tion/Adjustment

Performance models typically have multiple parameters such as workload profile param-
eters (workload mix and workload intensity), resource demands, branching probabilities,
and loop iteration frequencies. The type and amount of data available as a basis for model
parameterization and calibration/adjustment at design-time versus run-time is substan-
tially di↵erent.

At design-time, model parameters are often estimated based on analytical models or mea-
surements if implementations of the system components exist. On the one hand, there
is more flexibility since in a controlled testing environment, one could conduct arbitrary
experiments under di↵erent settings to evaluate parameter dependencies. On the other
hand, possibilities for experimentation are limited since often not all system components
are implemented yet, or some of them might only be available as a prototype. Moreover,
even if stable implementations exist, measurements are conducted in a testing environ-
ment that is usually much smaller and may di↵er significantly from the target production
environment. Thus, while at design-time, one has complete flexibility to run experiments,
parameter estimation is limited by the unavailability of a realistic production-like testing
environment and the typical lack of complete implementations of all system components.

At run-time, all system components are implemented and deployed in the target pro-
duction environment. This makes it possible to obtain much more accurate estimates of
the various model parameters taking into account the real execution environment. More-
over, model parameters can be continuously calibrated to iteratively refine their accuracy.
Furthermore, performance-relevant information can be monitored and described at the
component instance level and not only at the type level as typical for design-time models.
However, during operation, we don’t have the possibility to run arbitrary experiments
since the system is in production and is used by real customers placing requests. In such a
setting, monitoring has to be handled with care, keeping the monitoring overhead within
limits (non-intrusive approach) such that system operation is not disturbed. Thus, at
run-time, while theoretically much more accurate estimates of model parameters can be
obtained, one has less control over the system to run experiments and monitoring must be
performed with care in a non-intrusive manner.

Trade-O↵ Between Prediction Accuracy and Overhead

Normally, the same model can be analyzed (solved) using multiple alternative techniques
such as analytical techniques providing exact results, numerical approximation techniques,
simulation and bounds analysis techniques. Di↵erent techniques o↵er di↵erent trade-o↵s
between the accuracy of the provided results and the overhead of the analysis in terms of
elapsed time and computational resources.

At design-time, there is normally plenty of time to analyze (solve) the model. Therefore,
one can a↵ord to run detailed time-intensive simulations to obtain accurate results with
certain confidence levels.

28

2.5. Monitoring Tools 29

At run-time, depending on the scenario, the model may have to be solved within seconds,
minutes, hours, or days. Therefore, flexibility in trading-o↵ between accuracy and overhead
is crucial. The same model is typically used in multiple di↵erent scenarios with di↵erent
requirements for prediction accuracy and analysis overhead. Thus, run-time models must
be designed to support multiple abstraction levels and di↵erent analysis techniques to
provide maximum flexibility at run-time.

Degrees-of-Freedom

The degrees-of-freedom when considering multiple design alternatives at system design-
time are much di↵erent from the degrees-of-freedom when considering dynamic system
changes at run-time such as changing workloads or resource allocations.

At design-time, one virtually has infinite time to vary the system architecture and consider
di↵erent designs and configurations. At run-time, the time available for optimization is
normally limited and the concrete scenarios considered are driven by the possible dynamic
changes and available reconfiguration options. Whereas the system designer is free to
design an architecture that suits his requirements, at run-time the boundaries within which
the system can be reconfigured are much stricter. For example, the software architecture
defines the extent to which the software components can be reconfigured and the hardware
environment may limit the deployment possibilities for virtual machines or services. Thus,
in addition to the performance influencing factors, run-time models should also capture
the available system reconfiguration options and adaptations strategies.

2.5 Monitoring Tools

In this section, we provide an overview of monitoring approaches that are currently used
in industry and academia to collect performance-relevant measurements at run-time. This
overview is relevant when it comes to the topics of model extraction and model maintenance
in Chapter 6.

A number of tools exist that aid in monitoring and correlating the performance of software
services with the consumption of software resources. Paradyn (Miller et al., 1995) is a per-
formance measurement tool for parallel and distributed programs that collects the data
through on-the-fly instrumentation of the application and kernel using POSIX1 thread
utilities. Tuning and Analysis Utilities (TAU) (Shende and Malony, 2006) gathers perfor-
mance information through code instrumentation of functions, methods, basic blocks, and
statements. The collected data can then be analyzed using the tool PerfExplorer2, which
provides visualizations, rule sets to interpret performance results, and other capabilities.
The Paraver toolkit (Barcelona Supercomputing Center, 2014) organizes the performance
data to focus the optimization e↵ort. This tool can be used to visualize and analyze event
trace files coming from a variety of sources, focusing on various parallel environments.
NetLogger (Gunter and Tierney, 2003) is a set of tools for performance analysis of dis-
tributed systems. It includes a library to aid in log generation, as well as visualization
and analysis tools, including a lifeline visualization that tracks a data object through time.
Host level monitoring in a virtualized environment has not been widely addressed in the
literature, and most of the tools focus on Xen technology. For instance, Xenmon (Gupta
et al., 2005) reports the resource usage of di↵erent Virtual Machines (VMs) and provides
an insight into shared resource access and resource scheduling in Xen.

Understanding the performance behavior of distributed applications and the intrinsic re-
lationships between them is fundamental to performance management. Anderson et al.

1
IEEE Std 1003.1-1988

29

30 2. From Design-Time to Online Performance Models

(2009) presents Chirp, a collection of techniques that tackle three of the main challenges of
tracing in distributed systems by including: i) a low-overhead tracing mechanism capable of
operating in large systems without impacting their behavior or performance, ii) a technique
for producing highly accurate time synchronization across hosts, surpassing the Network
Time Protocol (NTP) accuracy, and iii) scalable data processing techniques that assist in
the analysis of large traces in the order of billions of trace points. A highly cited work that
reports the development of an automatic tool that extracts system workload characteris-
tics is Magpie (Barham et al., 2004). Using low-overhead instrumentation, it first records
fine-grained events generated by kernel, middleware, and applications. Then, it correlates
these events to the control flow and to the resource consumption of the requests. However,
in contrast to Chirp, Magpie does not address cross-machine time calibration. Profiling
has proven to be very helpful for performance debugging of stand-alone programs. Call
graph profiling (Graham et al., 1982) and call path profiling (Hall, 1992) are two widely
used approaches to profiling stand-alone programs. Graham et al. (1982) introduces gprof,
a profiler that provides caller-context information, that is, the set of conditions and facts
that enclose an operation call. Software operation executions are embedded in sequences
of interacting operation executions that participate in replying to external service requests.
There are three models of the general calling-context approach that take into account dif-
ferent aspects of the execution, namely caller-context, stack-context, and trace-context.
Most modern profiling tools, such as Intel’s VTune Performance Analyzer follow the ap-
proach of gprof by providing caller-context information (Intel, 2013). The trace-context
analysis used in Kieker (Rohr et al., 2008) is an extension of the concept of caller-contexts.

In complex distributed applications, it is important for the monitoring to collect enough
information for measuring business transactions not just as experienced by the end user,
but in enough detail to identify sub-transactions executed by the di↵erent application com-
ponents, their dependencies, and their contribution to the overall response time. Control-
ling the monitoring overhead is of obvious importance to performance monitoring tools.
Overhead may result in non-responsive systems and failure to adhere to Service Level
Agreements (SLAs). There are several approaches to address this, from providing the
user with tools to control the monitoring level before or during the monitoring (Mos and
Murphy, 2002a), to cost systems that report the perturbation introduced by the instru-
mentation or control the level of instrumentation according to a predefined maximum
cost (Hollingsworth and Miller, 1996). A more subtle problem is that even relatively low
overhead may have disproportionate e↵ect on important performance metrics, having an
impact on the performance analysis (Mytkowicz et al., 2007). In addition to overhead
reduction, overhead compensation may alleviate those issues (Malony et al., 2007).

2.6 Summary

In this chapter, we presented di↵erent existing approaches to performance prediction.
They di↵er in the employed abstraction levels, the phases of the system lifecycle they
are targeting, and the input parameter space they consider when conducting performance
predictions.

We started with black-box approaches that abstract the system of interest at a very high
level, i.e., without taking any details about the internal system structure into account.
We then presented classical predictive performance models such as QNs or QPNs. Such
models capture the temporal system behavior and can be used for performance predic-
tion by means of analytical or simulation techniques. However, they are normally used
as high-level system performance abstractions and as such they do not explicitly distin-
guish the degrees-of-freedom and performance-influencing factors of the system’s software

30

2.6. Summary 31

architecture and execution environment. This is in contrast to the descriptive architecture-
level performance models we described in Section 2.3. Such models are software architec-
ture models annotated with descriptions of the system’s performance-relevant behavior.
Architecture-level performance models are typically built during system development and
are used at design and deployment time to evaluate alternative system designs and/or
predict the system performance for capacity planning purposes.

Architecture-level performance models provide a powerful tool for performance predic-
tion, but they are typically developed for use at design-time. We argued that there are
fundamental di↵erences between o✏ine and online scenarios for performance prediction.
This leads to di↵erent requirements on the underlying performance abstractions of the
system architecture and the respective performance prediction techniques suitable for use
at design-time versus run-time. In Section 2.4, we summarized the main di↵erences in
terms of goals and underlying assumptions driving the evolution of online models.

Finally, in Section 2.5, we provided an overview of current monitoring technologies and
tools that are used in industry and academia to collect performance-relevant measurements
at run-time. This is related to the e↵orts we present in Chapter 6 where we describe
methods to integrate architecture-level performance models and system environments with
the goal to keep models up-to-date during operation as the system evolves.

31

3. Related Work

The online performance prediction approach presented in this thesis is based on architecture-
level performance models. Thus, it is related to: (i) the research area of architecture-level
performance models as well as to (ii) the research area of online performance prediction.
Note that (i) has already been presented and discussed as part of the foundations in Sec-
tion 2.3 and Section 2.4, respectively. In this chapter, Section 3.1 focuses on (ii), i.e.,
approaches targeted at online performance prediction. Section 3.2 discusses related work
in the area of performance model extraction and maintenance.

Figure 3.1 illustrates the described structure. As depicted on the x-axis of the diagram,
approaches to performance prediction can be distinguished by the underlying modeling
approach, i.e., if the prediction approach uses black-box models, predictive stochastic
performance models, or descriptive architecture-level performance models. The y-axis of
the diagram depicts the application domains of design- and deployment-time performance
prediction as well as online performance prediction. While Chapter 2 focused on describing
the di↵erent types of performance models, in this chapter, the emphasis is on the domain
of online performance prediction.

Black-Box
Performance

Models

Predictive
Stochastic

Performance Models

Design- and
Deployment-Time

Performance
Prediction

RELATED WORK
(Sections 2.3 & 2.4)

RELATED WORK
(Section 3.1)

FOUNDATIONS
(Chapter 2)

APPROACH OF
THIS THESIS

Goal

Modeling
Approach

Online
Performance

Prediction

Descriptive
Architecture-Level

Performance Models

Figure 3.1: Related Work and Foundations

Besides related approaches concerned with performance prediction mechanisms, this chap-
ter also presents approaches that are related to the work we present in Chapter 6: The

33

34 3. Related Work

integration of performance models with the system environment relates to the area of
performance model extraction and maintenance. This is discussed in Section 3.2.

3.1 Online Performance Prediction

Many approaches to online performance prediction have been developed in the research
community over the past decade. They are mostly published as part of an online capacity
management approach. Such approaches are typically based on either black-box models,
such as control theory feedback loops and machine learning techniques (see Section 2.1 for
details), or predictive stochastic performance models such as Queueing Networks (QNs),
Layered Queueing Networks (LQNs), and Queueing Petri Nets (QPNs) (see Section 2.2).
In the following, we present some of the most prominent approaches and describe which
degrees-of-freedom they support for performance prediction, i.e., if the impact of service
re-compositions, changes of resource allocations, usage profile changes, or load-intensity
changes can be predicted, as formulated in the problem statement in Section 1.2.

3.1.1 Approaches Using Black-Box Models

Examples for approaches based on feedback loops and control theory are, e.g., Abdelzaher
et al. (2002); Almeida et al. (2010). Abdelzaher et al. (2002) uses classical feedback
control theory to achieve overload protection and satisfy service response time objectives.
Response times and throughputs can be predicted for load intensity changes. The same
applies for Almeida et al. (2010) where the technique is used to address resource allocation
and admission control problems in virtualized servers. Furthermore, Almeida et al. (2010)
claim that an approach using a control theory based feedbacks loop can normally guarantee
system stability by capturing the transient system behavior.

Examples of approaches based on machine learning techniques are, e.g., Tesauro et al.
(2006); Kephart et al. (2007); Elkhodary et al. (2010); Gambi et al. (2013); Shivam et al.
(2006); Mi et al. (2010); Jamshidi et al. (2014). Machine learning techniques may capture
the system behavior based on observations at run-time without the need for an a priori
analytical model of the system.

Tesauro et al. (2006) uses a knowledge-free trial-and-error methodology (reinforcement
learning) to learn resource valuation estimates and construct policies for allocation de-
cisions. In fact, it is a hybrid approach since both reinforcement learning and queueing
models are applied. O✏ine training is used, before the reinforcement learning module is
trained online, based on the consequences of its own decisions. The o✏ine training data is
collected while a queueing model policy makes management decisions in the system. The
approach only supports performance-aware scheduling of http requests to web servers.
Further allocation or configuration changes are not considered.

Kephart et al. (2007) uses reinforcement learning to learn black-box models that manage
the trade-o↵ between performance and power consumption. Like in Tesauro et al. (2006),
the approach aims at providing a scheduling mechanism that distributes http requests
to web servers. Service response time objectives should be met under energy e�ciency
considerations. The impact of, e.g., allocation or configuration changes cannot be analyzed
using the underlying models.

In Elkhodary et al. (2010), a reinforcement learning-based approach is used to implement a
self-adaptive software system. Instead of using an explicit model, the approach is intended
to learn the impact of adaptation decisions concerning the system’s operational goals such
that this knowledge can be used for future adaptation decisions. In the provided case
study, the approach learns dependencies where the independent variables are, e.g., request

34

3.1. Online Performance Prediction 35

arrival rate, authentication mechanism (per session vs. per request authentication), and
caching (on vs. o↵), and the dependent variable is the request’s response time. However,
resource allocations and resource utilization predictions are not considered.

Gambi et al. (2013) applies Kriging models to predict system behavior within a control
loop. The independent variables are workload and system configuration data, the depen-
dent variables are application-level performance metrics such as average response times.
The decision maker module of the control loop queries the Kriging models to predict the
anticipated performance evolution for a given workload and system configuration. By re-
querying the Kriging models, a target configuration is searched. In the case study, the
workload and system configuration data consists of the number of incoming and queued
jobs and the number of application server nodes. The dependent variable is the average
request response time. Fine-grained service reconfigurations or resource allocations are
not considered.

An active learning approach to resource allocation for simple batch workloads is proposed
in Shivam et al. (2006). This approach uses performance histories to build black-box
models/functions of frequently used applications. The approach, however, is focused on
compute batch tasks that run to completion without interruption. Request arrivals and
concurrency related behavior are not considered.

Mi et al. (2010) uses a genetic algorithm to reconfigure Virtual Machines (VMs) of a
virtualized data center while taking performance guarantees and resource e�ciency into
account. A chromosome in the genetic algorithm represents a reconfiguration candidate.
The fitness functions respect both resource utilization and power consumption. Service
response times are not considered. Instead, performance guarantees are defined using CPU
resource utilization caps.

Jamshidi et al. (2014) describes a resource provisioning approach that aims at providing
and releasing resources in an elastic fashion. The approach exploits fuzzy logic to enable
qualitative specification of elasticity rules in order to provide auto-scaling, i.e., adding and
removing resource on-the-fly as they are needed. It can be used without o✏ine training
because it takes advantage of online incremental learning. An explicit performance model
is not derived. In the experiments in Jamshidi et al. (2014), it is shown how the elasticity
controller handles unexpected spikes in the workload. However, the approach assumes all
involved computing nodes to be stateless.

In Balsamo et al. (2006), a di↵erent approach for the performance prediction of component-
based software systems is proposed. Asymptotic bounds for system throughput and re-
sponse time are derived from the software specification without deriving explicit perfor-
mance models. However, only coarse-grained bounds can be calculated. For instance,
concerning service response times in an open workload scenario, only lower bounds are
provided.

Furthermore, numerous approaches to resource allocation and performance management
in service-oriented Grid computing environments are available in the literature (Foster
and Kesselman, 2003; Ali et al., 2004; Othman et al., 2003). These approaches, however,
are mostly targeted at scientific computing and are not suitable for enterprise workloads.
Simple ad hoc procedures are used to map service requirements to resource requirements.
As such these mechanisms do not possess any sophisticated performance prediction capa-
bilities that are required to enforce SLAs.

3.1.2 Approaches Using Predictive Stochastic Performance Models

Predictive stochastic performance models are typically used in the context of utility-based
optimization techniques for resource management. They are embedded within optimization

35

36 3. Related Work

frameworks aiming at optimizing multiple criteria such as di↵erent Quality of Service (QoS)
metrics.

Mistral (Jung et al., 2010) is a resource management framework with a multi-level resource
allocation algorithm considering the following allocation actions: adapt a VM’s CPU ca-
pacity, add or remove a VM, live-migrate a VM between hosts, and shutdown or restart a
host. The approach considers power consumption, performance and transient costs in its
reconfiguration algorithm. However, the approach is based on a simple multi-tier appli-
cation with read-only transactions and a fixed web tier modeled by an LQN (Jung et al.,
2008) that is solved using simulation. Analytical solutions are not considered to be viable,
further details on the performance modeling approach are missing. The extensive evalua-
tion shows promising results, but it is restricted to four di↵erent instances of the RUBiS
benchmark and does not consider di↵erent types of services.

Verma et al. (2008) aims at a power-aware workload placement controller that distributes
applications to heterogeneous virtualized server clusters. When deciding where to place
an application, the approach takes performance benefits, power consumption as well as
migration costs into account. Details on the underlying performance model are not pro-
vided.

With the same goal as the above-mentioned approaches, Chen et al. (2005) uses QNs to
implement a performance prediction mechanism. The approach assumes a data center of M
identical servers. Each application running in the data center is modeled as a G/G/m queue
(in Kendall’s notation, see Section 2.2 for an explanation). Response time predictions
for the applications are derived using approximative analytical solution techniques from
Bolch et al. (1998). The latter are only applicable in steady-state situations. The system’s
transient dynamics is proposed to be captured in a control theoretic approach using a
feedback loop. However, the approach only considers the mapping of applications to
identical servers, further fine-grained reconfigurations are not considered.

Bennani and Menascé (2005) use analytically solved QNs to address the problem of deploy-
ing application environments in data centers so that performance and resource e�ciency
goals are satisfied. For online transaction applications, the average response time is com-
puted using the basic law R = D

(1�U)

(Bolch et al., 1998) where D is the resource demand

and U is the resource utilization. However, this law only applies for M/M/1 queues and is
thus not applicable in more complex environments. For batch processing applications, an
approximative mean value analysis is proposed as a model solving method. The proposed
mean value analysis also has the assumption of exponentially distributed service times and
arrival rates and is thus not generalizable.

In Zhang et al. (2007), the authors focus on resource provisioning for multi-tier applica-
tions. Each tier is modeled as a queue where the number of servers corresponds to the tier’s
multiplicity. Each application translates to a workload class. CPU demands are obtained
using regression-based approximation. The resulting QN is then solved analytically using
classical mean-value analysis.

Urgaonkar et al. (2007) also focuses on predicting performance behavior for multi-tier
applications using QN models. The structure of the QN is similar to the QN presented in
Zhang et al. (2007). The flow of requests is modeled in more detail so that replication at
tiers, load imbalances across replicas, caching e↵ects as well as concurrency limits at each
tier are captured. As solving algorithm, Urgaonkar et al. (2007) also uses approximative
mean-value analysis to derive average response times.

Abrahao et al. (2006) links a cost model and a performance model to provide an automated
Service Level Agreement (SLA)-driven capacity management. In contrast to the above-
described approaches, response time objectives are not formulated using average response

36

3.1. Online Performance Prediction 37

times but using the tails of the involved response time distributions. The performance
behavior is modeled using QNs. Two types of queues are investigated, namely M/M/1
and M/G/1 queues where the former runs First-Come-First-Served (FCFS) as scheduling
strategy and the latter runs Processor-Sharing (PS) as scheduling strategy. Three di↵erent
analytical approximations to predict bounds for response time percentiles are investigated.
However, complex application control flows over multiple tiers are not supported.

Li et al. (2009) uses LQNs as performance abstractions of applications deployed in a cloud
environment. The application layers are reflected in the layers of the LQN. However, the
paper does not provide any details about the model solving approach.

Further approaches using QNs are, e.g., Pacifici et al. (2005) and Menascé et al. (2005).
Both approaches focus on simple online performance models that are solved analytically,
e.g., QNs consisting of one queue. Underlying component architectures or configurations
are not taken into account. Similarly, in Menascé et al. (2007, 2004a), the di↵erence
between dedicated and non-dedicated resources, on the one hand, and between service
requests with di↵erent priorities, on the other hand, is not accounted for.

In Menascé and Bennani (2003); Bennani and Menascé (2004), methods for dynamic mon-
itoring and tuning of e-commerce sites based on online performance models are presented.
A performance controller is run periodically and it uses QNs together with combinatorial
search techniques to determine the best possible system configuration given its current
workload. However, the authors assume a single workload class and the configuration
parameters that are considered for tuning are limited to concurrency levels at servers and
maximum queue lengths. In Bennani and Menascé (2005), the same approach is applied
for resource allocation in data centers.

In Berbner et al. (2006); Song et al. (2005), methods for dynamic performance-aware
service selection and composition are presented. They use simple heuristic algorithms
based on static information about services. Dynamic service aspects such as usage profiles
and execution contexts are not taken into account.

The work of Kounev et al. (2007); Nou et al. (2009) proposes a framework for design-
ing autonomic resource managers that have the capability to predict the performance of
the Grid components they manage and allocate resources in such a way that SLAs are
respected. Dynamically composed QPNs are used to predict the Grid performance for a
given resource allocation and load-balancing strategy. However, the employed performance
prediction mechanism has limited scalability and is not applicable to realistically-sized en-
vironments because of the overhead incurred in generating and analyzing the models. No
mechanism currently exists for managing dynamic performance-relevant information about
the multi-layered and usually heterogeneous server environment.

3.1.3 Discussion

In summary, current approaches to performance and resource management at run-time
su↵er from several limitations. In general, the methods used for managing service per-
formance and resource reservations are based on simple models that cannot adequately
capture dynamic aspects of the services and their resource environment. The inability of
these methods to predict the end-to-end performance of a dynamically composed service is
one of the reasons why service composition is rarely done in an automated manner today.

Existing work in the area of online performance prediction mainly uses either models where
the system is abstracted as black box or predictive performance models that capture the
temporal system behavior but typically neglect the software architecture and configura-
tion. Thus, the mentioned approaches do not explicitly distinguish the degrees-of-freedom
and performance-influencing factors of the system’s software architecture and execution

37

38 3. Related Work

environment. Furthermore, they often do not capture important parameter dependen-
cies or blocking behavior due to software bottlenecks such as thread pools. Moreover,
the performance analyses often impose restrictive assumptions such as a single workload
class, single-threaded components, or homogeneous servers. Service demands and request
inter-arrival times are often limited to exponential distributions.

3.2 Performance Model Extraction and Maintenance

In Chapter 6, we present methods to integrate architecture-level performance models and
system environments with the goal to keep the models and the system synchronized dur-
ing operation. A semi-automatic extraction of architecture-level performance models based
on system request tracing, model structure maintenance in the context of an autonomic
resource management process, as well as the derivation of model parameter values, are de-
scribed in Chapter 6. Moreover, it is discussed how architecture-level performance models
can be calibrated and adjusted in order to increase their accuracy.

Such topics relate to the area of performance model extraction and maintenance. In the
following, we discuss relevant approaches.

3.2.1 Model Extraction Using Monitoring Data

This section gives a brief overview of existing approaches that monitor and process data
that can be used as input for performance model extraction. It considers model extraction
approaches from academia and industry.

Tools concerned with the automated identification of hardware and software resources in a
system environment are already available in industry. For instance, Hyperic (Hyperic,
2014) or Zenoss (Zenoss, 2014) provide functionalities for the automated discovery of
system, network and software properties both inside and outside of virtual machines.
However, such tools do not provide monitoring data at the application level. Dynatrace
Diagnostics (Rometsch and Sauer, 2008) is an industrial tool for performance and resource
management at the application level. It traces transactions of applications deployed in
distributed heterogeneous .NET and Java environments. Besides providing a call tree, it
also monitors method arguments and provides information about the system’s resource
utilization. However, an explicit architecture model including software components and
their behavior is not considered. Further industrial tools such as IBM Tivoli, CA Wiley
Introscope or AppDynamics share these restrictions.

Tools for automatic and adaptive monitoring at the application level proposed in the re-
search community include for example Carrera et al. (2003); Mos and Murphy (2002a);
Rohr et al. (2008). They are typically focused on monitoring Java applications, how-
ever, they do not provide means to generate performance abstractions. In Carrera et al.
(2003), an automatic monitoring framework covering the operating system, Java Virtual
Machine (JVM), middleware and application level is presented. After initially defining per-
formance objectives, it automatically traces the execution and collects performance data
that enables hotspot and bottleneck detection. In Mos and Murphy (2002b), an adaptive
monitoring and performance management framework called COMPAS is presented. This
tool is capable of extracting data from a running Enterprise Java application and gener-
ating system behavior models. It addresses performance issues related to the Enterprise
JavaBean (EJB) layer in Enterprise Java applications. However, generating performance
abstractions of application components or context information of scomponents is not con-
sidered.

Approaches directly targeting performance model extraction (from black-box models to
architecture-level models) are discussed in the following.

38

3.2. Performance Model Extraction and Maintenance 39

Approaches such as Westermann et al. (2012); Courtois and Woodside (2000); Zhang et al.
(2013) use systematic measurements to build black-box mathematical models that employ,
e.g., genetic optimization techniques. However, these approaches are purely measurement-
based, the models serve as interpolation of the measurements, and neither a representation
of the system architecture nor its performance-relevant factors and dependencies are ex-
tracted.

Approaches to automatically construct performance models, such as queueing networks, at
run-time have been proposed in, e.g., Menascé et al. (2007, 2005); Mos (2004). However,
these models are rather limited since they abstract the system at a very high level without
taking into account its architecture and configuration. Moreover, restrictive assumptions
such as a single workload class or homogeneous servers are often imposed. Further predic-
tive performance models are extracted for example in Kounev et al. (2011), where run-time
monitoring data is used to generate QPN models. However, the model structure is fixed
and preset, and only model parameters are obtained. Extraction of structural informa-
tion is considered in Briand et al. (2006); Hrischuk et al. (1999); Israr et al. (2007) where
LQNs are used as the target performance model. In Briand et al. (2006), UML sequence
diagrams are extracted from trace data which is obtained by aspect-oriented instrumen-
tation. In Hrischuk et al. (1999), special traces, called angio traces, are recorded. Each
distributed operation gets assigned with a unique angio dye id. For message ordering,
trace event timestamps are used. Once such traces are recorded, a graph representing the
message flow is generated. Using a rule-based graph analysis approach the graph is then
transformed into an LQN model whereby di↵erent interaction types such as synchronous
and asynchronous messaging are detected and represented accordingly. Since Israr et al.
claim that such “traces are di�cult to obtain in practice” (Israr et al., 2007), an approach
based on a less restricted trace data format is proposed. It “uses conventional trace data
which is available from many tracing tools” (Israr et al., 2007) and does not rely on an-
gio traces containing an angio dye id that is propagated through the system. Instead,
so-called eventInfo properties of message traces are used to achieve message correlation.
Here, eventInfo is not required to uniquely identify messages. However, it should provide
information that, together with observed timestamps, makes a robust message correlation
possible. Israr et al. (2007) generates LQN models considering di↵erent interaction types
using an “algorithm which scales up linearly for very large traces” (Israr et al., 2007), in
contrast to the algorithm presented in Hrischuk et al. (1999). Pattern matching on trace
data is used to di↵erentiate between asynchronous, blocking synchronous, and forwarding
communication. Performance model parameters such as resource demands are considered,
however, the system architecture and its layers, as well as parameter dependencies, are
not modeled explicitly.

In Chouambe et al. (2008), the authors present “ArchiRec”, a tool to extract components
and their interface boundaries based on static code analysis. Components and interfaces
are identified using heuristics that are based on code coupling metrics and a subsequent hi-
erarchical clustering. A related tool Java2PCM (Kappler et al., 2008) extracts component-
level control flow from Java code and generates instances of the Palladio Component Model
(PCM). Krogmann et al. (2010) proposes an approach to reverse engineer PCM instances
for Java applications using both static analysis and dynamic analysis. The component
architecture is obtained via ArchiRec and control flow abstractions are obtained by ap-
plying machine learning algorithms on run-time monitoring data (Krogmann et al., 2008).
By monitoring service call frequencies and parameter values at the interface level, the
black-box property of components is preserved. The monitoring data then serves as input
for genetic programming that aims at recovering intra-method control flow and explicit
parameter dependencies. With regard to obtaining resource demands, ByCounter (Ku-
perberg et al., 2008b) and microbenchmarks are used to abstract from concrete timing

39

40 3. Related Work

values (Kuperberg et al., 2008a). ByCounter instruments the application for “dynamic
counting of executed Java bytecode instructions” (Kuperberg et al., 2008b) and method
invocations. Combined with benchmarking target execution platforms at the bytecode in-
struction level, cross-platform performance predictions are possible. The behavior models
are extracted via static and dynamic analysis, however, in a controlled environment and
in an o✏ine setting requiring manual instrumentation to extract the application control
flow and data flow.

3.2.2 Model Maintenance Using Monitoring Data

In this section, we provide an overview of approaches that maintain online performance
models and performance model parameters using monitoring data. Some of the approaches
are focused on the topic of resource demand estimation.

An approach that integrates performance models with the system environment to enable
dynamic resource allocation is presented, e.g., in Adam and Stadler (2006). The authors
describe a decentralized architecture of a performance-aware middleware that dynamically
partitions resources within a large-scale cluster with the goal to optimize a global util-
ity function. The proposed architecture, however, assumes identical servers and a single
request class, the maintained model is thus very simplistic.

In Kounev et al. (2007); Nou et al. (2009), see also Section 3.1.2, the QPN performance
models that are part of the proposed autonomic resource managers are maintained by
continuously re-estimating their resource demands using response time approximations.
However, structural changes due to complex adaptation actions are not considered.

The estimation of resource demands to determine representative values can be a chal-
lenging and time consuming process given that normally they are not directly measurable
and have to be estimated from the available monitoring data (Lazowska et al., 1984).
Many approaches to resource demand estimation have been proposed over the years based
on di↵erent mathematical methods to infer resource demands from measurements on the
running system. They apply basic queueing theory laws (such as the Service Demand
Law (Menascé et al., 1994; Lazowska et al., 1984), regression techniques (Rolia and Vet-
land, 1995; Pacifici et al., 2008; Casale et al., 2007; Zhang et al., 2007), and stochastic
filtering (Zheng et al., 2008; Kumar et al., 2009a)), or formulate general optimization
problems (Menascé, 2008; Zhang et al., 2002; Kumar et al., 2009b). Approaches in this
area are investigated and classified as part of Section 6.4.3.

In Menascé et al. (1994), a conventional model calibration technique is introduced. It
is conventional in the sense that it is based on comparing the performance metrics (e.g.,
response time, throughput, and resource utilization) predicted by a performance model
against measurements collected in a controlled experimental environment varying the sys-
tem workload and configuration. Given the lack of control during operation over the
system workload and configuration, techniques of this type are not applicable for online
model calibration. In Liu et al. (2005), performance models are calibrated by application-
independent synthetic benchmarks. The approach uses middleware benchmarking to
extract performance profiles of the underlying component-based middleware. However,
application-specific behavior is not represented explicitly.

The applicability of tracking filters for continuously maintaining model parameters is inves-
tigated in Zheng et al. (2005, 2008). They conduct experiments on time-varying systems to
assess the ability of the Kalman filter to dynamically adapt its estimates to deterministic
and random changes in resource demands. The experiments consider only a single work-
load class. They conclude that the Kalman filter can adequately track changes in resource
demands (Zheng et al., 2005). Furthermore, they ran a set of experiments to determine

40

3.3. Summary 41

the influence of the initialization of the process noise covariance matrix and the measure-
ment covariance matrix, as well as the measurement interval length. It is concluded that
these parameters can be derived from common system monitoring data with reasonable
e↵orts (Zheng et al., 2005). Kumar et al. (2009a) extends the evaluation of Kalman fil-
ters to cases with multiple workload classes. The authors come to the conclusion that
the Kalman filter has convergence problems with multiple workload classes because of an
underdetermined equation system (Kumar et al., 2009a).

3.3 Summary

In this chapter, we described and discussed approaches that are related to the work pre-
sented in this thesis.

Approaches to online performance prediction are discussed in Section 3.1. Current ap-
proaches su↵er from several limitations. Existing work in this area mainly uses either
models where the system is abstracted as black box or predictive performance models that
capture the temporal system behavior but typically neglect the software architecture and
configuration. Thus, the mentioned approaches do not explicitly distinguish the degrees-
of-freedom and performance-influencing factors of the system’s software architecture and
execution environment. Moreover, the performance analyses often impose restrictive as-
sumptions such as a single workload class, single-threaded components, or homogeneous
servers. Service demands and request inter-arrival times are often limited to exponential
distributions.

Approaches for the extraction and maintenance of performance models using monitoring
data are discussed in Section 3.2. Most approaches extract only simple black-box or sim-
plistic predictive performance models, thus neglecting performance-relevant information
that is part of the software architecture. Approaches that extract architectural structures
exist. However, the extraction then uses dynamic and static analyses in a controlled en-
vironment and in an o✏ine setting, requiring manual instrumentation to obtain, e.g., the
application control flow and data flow.

41

4. Architecture-Level Performance
Abstractions for Online Use

Modern enterprise systems often have distributed application architectures composed of
many independent services running in a heterogeneous environment (Papazoglou et al.,
2007). In such systems, the applications are customized and new services are composed
and deployed on-the-fly subjecting the system resources to varying workloads. More-
over, existing services, given their loosely-coupled nature, can evolve independently of one
another. Managing the end-to-end application performance in such environments, i.e., sat-
isfying service performance objectives while utilizing system resources e�ciently, requires
to answer questions such as:

• What performance would a new service or application deployed in the system envi-
ronment exhibit and how much resources should be allocated to it?

• How should the workloads of the new service/application and existing services be
partitioned among the available resources so that performance requirements are sat-
isfied and resources are utilized e�ciently?

• What would be the performance impact of adding a new component or upgrading
an existing component as services and applications evolve?

• If an application experiences a load spike or a change of its workload profile, how
would this a↵ect the system performance? Which parts of the system architecture
would require additional resources?

• What would be the e↵ect of migrating a service or an application component from
one server to another?

Answering such questions requires the ability to predict online at system run-time the
performance impact of system configuration changes or workload changes. We refer to
this as online performance prediction. In general, requirements for online performance
prediction mechanisms are:

• The prediction mechanism should support metrics such as average resource utiliza-
tion, service response time and service throughput. The average resource utilization
is of interest for processing resources (e.g., CPUs) as well as for software resources
(e.g., thread pools). For a service response time, estimating the mean, variance and
distribution should be supported. The distribution is used to derive percentiles such

43

44 4. Architecture-Level Performance Abstractions for Online Use

as the 90th percentile, indicating an expected response time level for 90% of the
requests. Since “the 90% percentile response time is closer to what a user would per-
ceive in reality” (Liu, 2009), such percentiles are common metrics to reflect end-user
performance. Service throughput is of interest when analyzing closed workloads, i.e.,
if the system workload is defined by a number of concurrent users and their think
times.

• The prediction mechanism should support predicting the performance impact of
changing service compositions. Service compositions include deploying or removing
a service, replacing a service with another service implementation, and changes of
how the services are connected to each other.

• The prediction mechanism should support predicting the performance impact of
changes of resource allocations and system reconfigurations. Resource allocation
is the assignment of resources to software components. System reconfigurations
include adding or removing physical or virtual machines, and changing performance-
influencing system parameters such as thread pool sizes.

• The prediction mechanism should support predicting the performance impact of
di↵erent load-intensity levels and usage profiles. The load-intensity level is defined
either by the inter-arrival time of user requests or by the number of concurrent users
and their think times. The usage profile captures the services that are called, the
order in which they are invoked, and the input parameters passed to them.

• The trade-o↵ between prediction accuracy and time-to-result should be configurable.
An accurate fine-grained performance prediction comes at the cost of higher pre-
diction overhead and a longer prediction process. By using more coarse-grained
performance models one can speed up the prediction process.

• The prediction accuracy must be adequate to support reasoning about service com-
positions, resource allocations and system reconfigurations with the goal to increase
resource e�ciency. According to Menasce and Virgilio (2000), for capacity plan-
ning a prediction error of 30% concerning mean response times and 5% concerning
resource utilization is considered acceptable.

Existing architecture-level performance models provide a powerful tool for performance
prediction at design-time (see Chapter 2). However, as described in Section 2.4, there are
fundamental di↵erences between o✏ine and online scenarios for performance prediction.
This leads to di↵erent design decisions concerning the underlying performance abstractions
of the application architecture and concerning the respective performance prediction tech-
niques. In particular, the type and amount of data available as a basis for model param-
eterization and calibration/adjustment at system design-time versus run-time is di↵erent.
Furthermore, current approaches to modeling the component context in architecture-level
performance models are not suitable for use at run-time since they do not provide enough
flexibility in the way parameter and context dependencies can be expressed and resolved.

In this chapter, we propose new architecture-level performance abstractions for use in
online scenarios (Brosig et al., 2013b, 2012). This involves: (i) a new approach to model
performance-relevant service behavior at di↵erent levels of granularity, (ii) a new approach
to parameterize performance-relevant properties of software components, and (iii) a new
approach to model dependencies between parameters, specifically for use at run-time.

The presented modeling abstractions are part of the Descartes Modeling Language (DML),
a new modeling language for run-time performance and resource management of modern
dynamic IT service infrastructures. Figure 4.1 gives a high-level overview of DML. The
system architecture meta-model consists of the application architecture meta-model and

44

4.1. Application Architecture 45

System Architecture Model

Application Architecture Meta-Model

B
A

C

Resource Landscape Meta-Model

<<Container>>
Node1

<<Container>>
Node3

<<Container>>
Node2

Deployment

Usage
Profile

<<InternalAction>>
ResourceDemand

Figure 4.1: Structure of the Descartes Modeling Language (DML)

the resource landscape meta-model. The resource landscape meta-model allows modeling
the physical and logical resources (e.g., virtualization and middleware layers) provided
by modern dynamic data centers (Huber et al., 2012a). The application architecture
meta-model allows modeling the performance-relevant service behavior of the applications
executed in the resource landscape (Brosig et al., 2013b, 2012). These two meta-models are
connected with the deployment meta-model, which can be used to describe how software
components are deployed. The usage profile meta-model can be used to describe how users
access the hosted applications.

In addition, DML provides means to define so-called adaptation points to describe the
parts of the system architecture that are adaptable at run-time. The adaptation points
span the configuration space of the modeled system. They describe the valid states a
system can have at run-time. Furthermore, DML can be used to describe adaptation
processes (Huber et al., 2012b, 2013). The language is intended to describe scenarios such
as autonomic performance and resource management at run-time.

The remainder of this chapter is organized as follows: Section 4.1 introduces the application
architecture meta-model in detail. Section 4.2 shortly describes the resource landscape
and deployment meta-model. In Section 4.3, we introduce the usage profile meta-model.
Section 4.4 summarizes this chapter.

4.1 Application Architecture

The application architecture is modeled as a component-based software system. The per-
formance behavior of such a system is a result of the assembled components’ performance
behavior. In order to capture the behavior and resource consumption of a component, its
behavior abstractions have to be described.

The application architecture meta-model is described in several subsections. Subsec-
tion 4.1.1 describes the underlying component model. Subsection 4.1.2 introduces a run-
ning example that is used to motivate and illustrate the new modeling concepts. Subsec-
tion 4.1.3 introduces novel service behavior abstractions. In Subsection 4.1.4, we present
how the behavior abstractions are parameterized and in Subsection 4.1.5 we describe how

45

46 4. Architecture-Level Performance Abstractions for Online Use

InterfaceProvidingEntity InterfaceRequiringEntity

InterfaceProvidingRequiringEntity

InterfaceProvidingRole InterfaceRequiringRoleInterface
0..* 0..*

11

Signature
0..*

Figure 4.2: Components and Interfaces, cf. Becker et al. (2009)

InterfaceProvidingRequiringEntity

RepositoryComponent ComposedInterfaceProvidingRequiringEntity

ComposedStructure

BasicComponent
CompositeComponent SystemSubsystem

Figure 4.3: Component Type Hierarchy, cf. Becker et al. (2009)

we model probabilistic parameter dependencies specifically for use at run-time. An in-
terface used to obtain empirical characterizations of model parameters from monitoring
statistics is described in Subsection 4.1.6.

4.1.1 Component Model and System Model

The component model stems from the Palladio Component Model (PCM) (Becker et al.,
2009; Reussner et al., 2011). Software building blocks are modeled as components. In
the following, we describe how components are associated with interfaces they provide or
require, and how composite components can be assembled from other components.

Components and interfaces are modeled as separate model entities, i.e., components as well
as interfaces are first-class entities that can exist on their own. Consequently, a component
does not contain an interface, but it may provide and/or require some interfaces (Szyper-
ski et al., 2002). The connection between components and interfaces is specified using
so-called roles (Becker et al., 2009). A component can take two roles relative to an inter-
face. It can either provide and implement the functionality specified in the interface or
it can require that functionality. Figure 4.2 shows the corresponding meta-model. An
InterfaceProvidingEntity may have InterfaceProvidingRoles that refer to an Interface consist-
ing of one or more method Signatures. An InterfaceRequiringEntity is modeled accordingly
with InterfaceRequiringRoles. We refer to each method provided by a component as a ser-
vice. We thus refer to the methods of the provided interfaces of a component as provided
services, and refer to the methods of the required interfaces of a component as required
services or external services.

An InterfaceProvidingRequiringEntity is the supertype of di↵erent component types that
are shown in Figure 4.3. Basically, two types of components are distinguished. Basic-
Components, i.e., atomic components, and CompositeComponents both can require and
provide interfaces, and are stored in a component repository. Thus, they are subtypes of
InterfaceProvidingRequiringEntity and RepositoryComponent. A CompositeComponent also
inherits from type ComposedStructure, indicating that it is composed of other components.
A Subsystem is similar to a CompositeComponent, but treated di↵erently when it comes
to modeling the deployment of components. While a CompositeComponent is deployed as
a whole, the Subsystem is deployed by deploying all its child components. A System is

46

4.1. Application Architecture 47

AssemblyContext

ComposedStructure

InterfaceRequiringRoleInterfaceProvidingRole

InterfaceProvidingDelegationConnector InterfaceRequiringDelegationConnector

AssemblyConnector

11

0..*

1 1providing requiring

0..*

0..*0..*

11

1

encapsulated
Component

innerouter11 innerouter

RepositoryComponent

Figure 4.4: Component Composition, cf. Becker et al. (2009)

sys :System c1 :CompositeComponent c2 :CompositeComponent c3 :BasicComponent

a1c0 :AssemblyContext a1c2 :AssemblyContext a1c3 :AssemblyContext

a1c1 :AssemblyContext

contains encapsulates contains encapsulates

a2c1 :AssemblyContext

contains

c0 :BasicComponent

encapsulates

Figure 4.5: Example: System Instance as UML Object Diagram

similar to a CompositeComponent, the di↵erence is that a System is not part of a compo-
nent repository but a unique designated ComposedStructure. A System is the outermost
ComposedStructure representing the system boundary.

Figure 4.4 shows how a ComposedStructure is assembled. A ComposedStructure may con-
tain several AssemblyContexts which themselves each refer to a RepositoryComponent (re-
ferring to a Subsystem is only allowed if the parent ComposedStructure is of type System
or Subsystem). Each AssemblyContext thus represents a child component instance in the
composite. An AssemblyConnector connects two such child component instances with an
InterfaceRequiringRole and an InterfaceProvidingRole, representing a connection between
a providing role of the first component and a requiring role of the second component.
Connectors from a child component instance to the composite component boundary are
modeled using delegation connectors (InterfaceProvidingDelegationConnector and Interfac-
eRequiringDelegationConnector). The delegation connectors refer to a role of an inner child
component instance and to a role of the outer ComposedStructure.

Figure 4.5 shows an exemplary instantiation of a ComposedStructure. It shows a System
model as UML object diagram. The system instance sys contains three AssemblyContexts.
Two of them refer to the same CompositeComponent c1, one refers to BasicComponent c0.
Component c1 contains an AssemblyContext a1c2 that refers to another CompositeCompo-
nent c2 that itself encapsulates BasicComponent c3 via AssemblyContext a1c3. Figure 4.6
shows the same instance as component diagram. The outermost box represents System
sys. AssemblyContext a1c0 is connected to AssemblyContexts a1c1 and a2c1, e.g., it could
balance the load between the two instances of CompositeComponent c1.

Although there are only one AssemblyContext for component c2 and only one AssemblyCon-
text for component c3, the system diagram in Figure 4.6 illustrates that both components
must be instantiated twice, because there are two instances of their surrounding com-
ponent c1. Thus, an AssemblyContext is not equivalent to a component instance. An
AssemblyContext is only unambiguous within its direct parent composite structure.

An AssemblyContext refers to a component type. This allows modeling di↵erent instances

47

48 4. Architecture-Level Performance Abstractions for Online Use

 sys

a1c1
a1c2

a1c3

a2c1
a1c2

a1c3a1c0

<<System>>
<<Interface
ProvidingRole>>

<<Interface
RequiringRole>>

<<AssemblyConnector>>

<<AssemblyContext>>

<<InterfaceProviding
DelegationConnector>>

Figure 4.6: Example: System Instance

<<Composed
Structure>>

<<Composed
Structure>>

<<Basic
Component>>

<<AssemblyContext>>

<<Assembly
Context>>

. . .

(a)

sys

c1c0

a1c0

c1

c2c2

c3 c3

a1c1

a2c1

a1c2 a1c2

a1c3 a1c3

(b)

Figure 4.7: (a) Composition Tree Schema and (b) Example System Instance as Composi-
tion Tree

of the same component type, but in order to uniquely identify such an instance, an Assem-
blyContext is not su�cient. However, each component instance can be uniquely identified
by a sequence of AssemblyContexts.

To illustrate the composition hierarchy of a ComposedStructure instance, we describe it as
a composition tree G = (V,E) where V is a set of nodes and E is a set of ordered pairs
(v, v0) with v, v0 2 V , representing the set of links between the nodes.

• Each tree node v 2 V represents a component instance, denoted as instance(v).

• 8v 2 V :
(9e = (v, v0) 2 E
()
instance(v) has a child AssemblyContext that encapsulates instance(v0))

The inner nodes of G represent instances of ComposedStructures, the leaves of G represent
instances of BasicComponents. Figure 4.7(a) illustrates such a composition tree.

In a ComposedStructure cs, a component instance is uniquely identified by a path from
the node representing cs to the node representing the specific component instance. Fig-
ure 4.7(b) shows the example of Figure 4.5 as composition tree. The root of the tree is

48

4.1. Application Architecture 49

AssemblyContext

ComponentInstanceReference

0..* {ordered}

Figure 4.8: Component Instance Reference

WebShop
CatalogServlet

ShowDetails
Servlet

ShoppingCart
Servlet

JPAProvider
SQLDB

BrowseCatalog

ViewArticleDetails

Manage
ShoppingCart

EntityAccess
DataAccess

Delivery
ArticleDelivery

Figure 4.9: Running Example: WebShop

System sys. The two instantiations of CompositeComponent c1 are highlighted with dashed
lines. In the example, the two instances of BasicComponent c3 can thus be identified by
the path {a1c1, a1c2, a1c3} and the path {a2c1, a1c2, a1c3}, respectively.

A ComponentInstanceReference can thus be modeled as a sequence of AssemblyContexts as
shown in Figure 4.8. The di↵erence between a component type and its instances is of rel-
evance in Section 4.1.4 where we distinguish between parameterizations at the component
type level and at the component instance level.

4.1.2 Running Example

We introduce a running example to illustrate the novel modeling abstractions we propose
in the following sections. Figure 4.9 shows a simple online shop, consisting of a Web-
Shop composite component, and an SQLDB component. The WebShop consists of several
Java Servlet components, the entity data is accessed using a Java Persistence API (JPA)
provider component (JPAProvider). The CatalogServlet allows browsing the catalog of
available articles. The ShowDetailsServlet implements a view of the article details. The
ShoppingCartServlet provides a shopping cart including payment processing and requires
an external ArticleDelivery service that is implemented by the Delivery component.

4.1.3 Service Behavior Abstractions

This section introduces di↵erent service behavior abstraction levels. Section 4.1.3.1 pro-
vides the motivation for the new service behavior abstractions, Section 4.1.3.2 describes the
modeling approach and Section 4.1.3.3 describes the corresponding meta-model in detail.
In Section 4.1.3.4, we provide an illustrative example.

4.1.3.1 Motivation

In order to ensure Service Level Agreements (SLAs) while at the same time optimizing
resource utilization, the service provider needs to be able to predict the system perfor-
mance under varying workloads and dynamic system reconfigurations. The underlying
performance models enabling online performance prediction must be parameterized and

49

50 4. Architecture-Level Performance Abstractions for Online Use

Delivery

ArticleDelivery services:
getExpressDeliveryCost
getStandardDeliveryCost
createOrder

Figure 4.10: Example: Delivery Component

analyzed on-the-fly. Such models may be used in many di↵erent scenarios with di↵erent re-
quirements for accuracy and timing constraints. Depending on the time horizon for which
a prediction is made, online models may have to be solved within seconds, minutes, hours,
or days, and the same model should be usable in multiple di↵erent scenarios with di↵erent
requirements for prediction accuracy and analysis overhead. Hence, in order to provide
flexibility at run-time, our meta-model must be designed to support multiple abstraction
levels and di↵erent analysis techniques allowing to trade-o↵ between prediction accuracy
and time-to-result.

Explicit support for multiple abstraction levels is also necessary since we cannot expect
that the monitoring data needed to parameterize the component models would be available
at the same level of granularity for each system component. For example, even if a fine
granular abstraction of a component behavior is available, depending on the platform on
which the component is deployed, some model parameters might not be resolvable at run-
time, e.g., due to the lack of monitoring capabilities allowing to observe the component’s
internal behavior. In such cases, it is inevitable to use a more coarse-grained abstraction
of the component behavior that only requires observing the component’s behavior at the
component boundaries.

In the following, we describe three practical examples where models at di↵erent abstraction
levels are needed, based on the WebShop example introduced in Figure 4.9. The Delivery
component provides services to calculate the cost of a delivery and to create a delivery
order (see Figure 4.10). Two kinds of deliveries are supported: a standard delivery and an
express delivery.

Assume that the Delivery component is an outsourced service hosted by a di↵erent service
provider, the only type of monitoring data that would typically be available for the cre-
ateOrder service is response time data. In such a case, information about the component-
internal behavior or resource consumption would not be available and, from the perspective
of our system model, the component would be treated as a “black-box”.

If the Delivery component is a third party component hosted locally in our environment,
monitoring at the component boundaries including measurements of the resource con-
sumption as well as external calls to other components would typically be possible. Such
data allows to estimate the resource demands of each provided component service (e.g.,
using techniques presented in Section 6.4.3) as well as frequencies of calls to other compo-
nents. Thus, in this case, a more detailed model of the component can be built, allowing
to predict its response time and resource utilization for di↵erent usage scenarios.

Finally, if the internal behavior of the Delivery component including its control flow and
resource consumption of internal actions can be monitored, more detailed models can be
built allowing to obtain more accurate performance predictions including response time
distributions. Predicting response time distributions is relevant for example in situations
where SLAs with service response time limits defined in terms of response time percentiles
need to be evaluated.

In summary, it is important to support the modeling of service behavior at di↵erent levels
of abstraction and detail. The models should be usable in di↵erent online performance
prediction scenarios with di↵erent goals and constraints, ranging from quick performance
bounds analysis to accurate performance prediction. Furthermore, the modeled abstraction

50

4.1. Application Architecture 51

InterfaceRequiringEntityInterfaceProvidingEntity

InterfaceProvidingRequiringEntity

BasicComponent

BlackBoxBehavior

CoarseGrainedBehavior

FineGrainedBehavior

Signature
ServiceBehaviorAbstraction

1

0..*

0..*

0..*

InterfaceProvidingRole1

Figure 4.11: Di↵erent Service Behavior Abstractions

level depends on the information that monitoring tools can obtain at run-time, e.g., to what
extent component-internal information is available.

4.1.3.2 Modeling Approach

To provide maximum flexibility, for each provided service, our proposed meta-model sup-
ports having multiple (possibly co-existing) behavior abstractions at di↵erent levels of
granularity:

• Black-box behavior abstraction. A “black-box” abstraction is a probabilistic
representation of the service response time behavior. Resource demands are not
specified. This representation captures the view of the service behavior from the
perspective of a service consumer without any additional information about the
service’s behavior.

• Coarse-grained behavior abstraction. A “coarse-grained” abstraction captures
the service behavior when observed from the outside at the component’s boundaries.
It consists of a description of the frequency of external service calls and the overall
service resource demands. Information about the service’s total resource consump-
tion and information about external calls made by the service is required, however,
no information about the service’s internal control flow is assumed.

• Fine-grained behavior abstraction. A “fine-grained” abstraction captures the
performance-relevant service control flow which is an abstraction of the actual control
flow. Performance-relevant actions are component-internal computational tasks, the
acquisition and release of locks, as well as external service calls, thus also loops and
branches where external services are called. Furthermore, the ordering of external
service calls and internal computations may have an influence on the service perfor-
mance. The control flow is modeled at the same abstraction level as the Resource
Demanding Service E↵ect Specification (RDSEFF) of PCM (cf. Becker et al. (2009)),
however, there are significant di↵erences in the way model variables and parameter
dependencies are modeled. The details of these are presented in Section 4.1.4 and
Section 4.1.5. In contrast to the coarse-grained behavior description, a fine-grained
behavior description requires information about the internal performance-relevant
service control flow including information about the resource consumption of inter-
nal service actions.

4.1.3.3 Modeling Abstractions

Figure 4.11 shows the meta-model elements describing the three proposed service behavior
abstractions. Type FineGrainedBehavior is attached to the type BasicComponent, a com-

51

52 4. Architecture-Level Performance Abstractions for Online Use

ResourceDemand

CoarseGrainedBehavior

ExternalCallFrequency

ExternalCall CallFrequency

0..*

1 1

0..1

ProcessingResourceType
1

0..*

(a)

BlackBoxBehavior

ResponseTime
0..1

(b)

Figure 4.12: (a) Coarse-Grained and (b) Black-Box Behavior Abstractions

FineGrainedBehavior

AbstractAction

1 0..*

ExternalCallAction InternalAction LoopAction

ResourceDemand LoopIterationCount

synchronizationBarrier : Boolean
ForkAction BranchAction

BranchingProbabilities

ComponentInternalBehavior
{ordered}

forksbody

0..*

110..*

AcquireAction

ReleaseAction
0..*

1

1

0..1

{ordered}

PassiveResource

0..1 1

branch-
transitions

0..1 0..1 0..1

ExternalCall
1

Figure 4.13: Fine-Grained Behavior Abstraction, cf. Becker et al. (2009)

ponent type that cannot contain further subcomponents. The CoarseGrainedBehavior is
attached to type InterfaceProvidingRequiringEntity that generalizes the types System, Sub-
system, CompositeComponent and BasicComponent. Type BlackBoxBehavior is attached to
type InterfaceProvidingEntity, neglecting external service calls to required services. Thus,
in contrast to the fine-grained abstraction level, the coarse-grained and black-box behavior
descriptions can also be attached to service-providing composites, i.e., ComposedStructures.

The meta-model elements for the CoarseGrainedBehavior and BlackBoxBehavior abstractions
are shown in Figure 4.12. A CoarseGrainedBehavior consists of ExternalCallFrequencies and
ResourceDemands. An ExternalCallFrequency characterizes the type and the number of
external service calls. Type ResourceDemand captures the total service time required
from a given ProcessingResourceType. A ProcessingResourceType is, e.g., a CPU, HDD or
network. A BlackBoxBehavior, on the other hand, can be described with a ResponseTime
characterization.

Figure 4.13 shows the meta-model elements for the fine-grained behavior abstraction. A
ComponentInternalBehavior models the abstract control flow of a service implementation.
Calls to required services are modeled using so-called ExternalCallActions, whereas inter-
nal computations within the component are modeled using InternalActions, characterized
with ResourceDemands. Access to PassiveResources with semaphore semantics (e.g., thread
pools) can be modeled via AcquireAction to obtain the resource and ReleaseAction to re-
lease the resource. Nested control flow actions like LoopAction, BranchAction or ForkAction
are only used when they a↵ect calls to required services (e.g., if a required service is called
within a loop, a corresponding LoopAction is modeled; otherwise, the whole loop would
be captured as part of an InternalAction). The nested control flow actions contain further
ComponentInternalBehavior models, either as loop body, as forks, or as branch transi-
tions. LoopActions and BranchActions can be characterized with loop iteration counts and
branching probabilities, respectively. ForkActions can be modeled either with or without a
synchronization barrier. A barrier for the group of the ForkAction’s forks means that the

52

4.1. Application Architecture 53

ShoppingCart
Servlet

Required services:
getExpressDeliveryCost
getStandardDeliveryCost

Provided service:
calculateTotalCost

Delivery

Figure 4.14: Example: Delivery and ShoppingCartServlet

control flow only proceeds when all forks have reached the barrier.

Note that it is prohibited to model cycles of services, i.e., a service requiring external
services that themselves require that service.

Furthermore, a service can be modeled at di↵erent behavior abstraction levels, e.g., a ser-
vice can be described using both a coarse-grained abstraction and a black-box abstraction.
However, if a service is described by both a fine-grained behavior and a coarse-grained
behavior, the following must hold: The set of processing resource types of all resource
demands of the coarse-grained behavior must be a subset of the processing resource types
of all resource demands of the fine-grained behavior, i.e., all resource types used by the
coarse-grained behavior must also be used by the fine-grained behavior, if both behavior
descriptions exist. Furthermore, the set of called external services of the coarse-grained
behavior must be a subset of the called external services of the fine-grained behavior,
i.e., external service calls modeled in the coarse-grained behavior description must also be
modeled in the fine-grained description, if both behavior descriptions exist.

4.1.3.4 Example

In the WebShop example, the ShoppingCartServlet provides a service called calculateTo-
talCost that calculates the cost of all items in the shopping cart including delivery costs
(see Figure 4.14). To obtain the delivery costs depending on the user preferences, the
ShoppingCartServlet either calls service getExpressDeliveryCost or service getStandardDeliv-
eryCost. These two services are provided by the Delivery component. In this example, the
probability of standard delivery is 0.8, and 0.2 for express delivery.

A fine-grained model of service calculateTotalCost is depicted in Figure 4.15. The service
behavior reflects the service’s internal control flow. There is a branch action that either
leads to an external service call to getStandardDeliveryCost or an external service call to
getExpressDeliveryCost. The branching probabilities are annotated accordingly, with 0.8
for the first branch transition, and 0.2 for the second branch transition. Note that the
annotation EnumPMF[(‘Branch1’;0.8)(‘Branch2’;0.2)] is explained in Section 4.1.4.

A coarse-grained model of service calculateTotalCost is depicted in Figure 4.16. The ex-
ternal service calls to getStandardDeliveryCost and getExpressDeliveryCost are modeled as
they can be observed from the component boundary of component ShoppingCartServlet.
For each call to calculateTotalCost, a respective external service is either called once or not
at all. An external call to getExpressDeliveryCost has a frequency of 1 with a probability
of 0.2, and 0.8 otherwise. For external call getStandardDeliveryCost, the probabilities are
vice versa. The annotations of the form IntPMF[(0;0.2)(1;0.8)] are explained in Sec-
tion 4.1.4. However, the exclusive relationship between the two external service calls is not
reflected in the coarse-grained model. This leads to deviations when deriving the response
time distribution of service calculateTotalCost.

4.1.4 Parameterization

This section introduces the parameterization concept of the service behavior abstractions
described in the previous section. Section 4.1.4.1 provides the rationale, Section 4.1.4.2 de-

53

54 4. Architecture-Level Performance Abstractions for Online Use

<<FineGrainedBehavior>>

<<BranchAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getStandardDeliveryCost

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getExpressDeliveryCost

Branch transitions

BranchingProbabilities =
EnumPMF[(‘Branch1’;0.8)(‘Branch2’;0.2)]

Figure 4.15: Example: Fine-Grained Behavior Abstraction of Service calculateTotalCost
Provided by ShoppingCartServlet

<<CoarseGrainedBehavior>>

<<ExternalCallFrequency>> <<ExternalCallFrequency>>

CallFrequency =
IntPMF[(0;0.2)(1;0.8)]

<<ExternalCall>>
getStandardDeliveryCost

<<ExternalCall>>
getExpressDeliveryCost

CallFrequency =
IntPMF[(0;0.8)(1;0.2)]

Figure 4.16: Example: Coarse-Grained Behavior Abstraction of Service calculateTotalCost
Provided by ShoppingCartServlet

scribes the modeling approach and Section 4.1.4.3 describes the corresponding abstractions
in detail. In Section 4.1.4.4, we provide an illustrative example.

4.1.4.1 Motivation

The behavior abstractions described in Section 4.1.3 have to be parameterized with re-
source demands, response times, frequencies of external calls, loop iteration counts and
branching probabilities. In the context of online performance prediction, these param-
eters are typically characterized based on monitoring data collected at run-time. The
measurements are gathered at component instance level. Thus, the question arises if the
measurements, e.g., branching probabilities collected for an instance of a certain compo-
nent type, are representative for the corresponding branching behavior at another instance
of the same component type.

Assume theWebShop introduced in Section 4.1.2 is instantiated for di↵erent stores. For ex-
ample, one instance of the web shop serves as an online supermarket and another instance
of the web shop serves as a game store. See Figure 4.17 for an illustration. Technically, the
component implementation is the same, but the performance behavior may di↵er among
the two instances. One reason is the di↵erent usage behavior. While a supermarket client
typically buys many items at once, a client of the game store typically buys only few
items per order. Another reason is the di↵erent article database. The game store may
provide video sequences when showing article details, the supermarket may only show
static article images. When parameterizing a performance model, measurements of, e.g.,
ShowDetailsServlet, are likely to di↵er between the two shops. Although the shops use the
same component types, the underlying shop data is di↵erent. In enterprise software sys-
tems, model parameters depending on the state of the database are common (Fowler, 2002;
Rolia and Vetland, 1995). However, it is not appropriate to model this data dependency
explicitly, because it depends on internals of the database system.

54

4.1. Application Architecture 55

GameStore Supermarket

WebShop
WebShop<<AssemblyContext>>

<<Subsystem>>

Figure 4.17: Example: WebShops for a GameStore and a Supermarket

Whether the characterization of a model parameter is valid across component boundaries
thus depends on the specific considered parameter. For the same component type, there
can be parameters that are di↵erent for each component instance, or there might be model
parameters that can be treated as identical across all instances of the component type.
This is in contrast to design-time models such as PCM where representative monitoring
data is typically not available to distinguish such cases.

4.1.4.2 Modeling Approach

In order to tackle di↵erent characterizations of model parameters, we provide means to
specify so-called scopes of model parameters explicitly. A scope of a model parameter
specifies a context where the parameter is unique. This means, on the one hand, that
measurements of the parameter can be used interchangeably among component instances
provided that these instances belong to the same scope. On the other hand, it means
that measurements of the parameter are not transferable across scope boundaries. Thus,
if monitoring data for a given parameter is available, it should be clear based on its scope
for which other instances of the component this data can be reused.

If for a given model parameter of a component, the component developer is aware that
corresponding monitoring statistics are not reusable across di↵erent instances of the com-
ponent, the developer can define a scope for the model parameter to indicate that. Fur-
thermore, the developer of a composite component can define the composite component’s
boundary as scope for a contained model parameter, thus restricting the usage of monitor-
ing statistics for that model parameter to usage only within that composite component.
Note that the developer of the composite component cannot widen an existing scope of
a model parameter, but can restrict it to the composite’s boundary. In the running ex-
ample, for instance, the developer of composite component WebShop knows that di↵erent
instances of the component represent di↵erent tenants and thus di↵erent underlying shop
data, and hence can define composite component WebShop as scope of the involved model
variables.

In case a model parameter does not have a specified scope, i.e., in the default case, the
model parameter is globally reusable. Monitoring data from all observed instances of the
component can then be used interchangeably and treated as a whole. Moreover, once
a model parameter has been characterized empirically (e.g., “learned” from monitoring
data), it can be used for all instances of the component in any current or future system.

4.1.4.3 Modeling Abstractions

Figure 4.18 shows the possible ModelVariables of service behavior abstractions that have to
be parameterized. On the one hand, there are timing parameters such as ResourceDemand
(for coarse-grained and fine-grained service behavior abstractions) and ResponseTime (for

55

56 4. Architecture-Level Performance Abstractions for Online Use

ModelVariable

characterization : MVCharacterizationType
ResourceDemand

characterization : MVCharacterizationType
ResponseTime

characterization : MVCharacterizationType
ControlFlowVariable

BranchingProbabilities

LoopIterationCount

CallFrequency
0..1 0..1 0..1

ScopeSet Scope0..1 InterfaceProvidingRequiringEntity0..* 1

EMPIRICAL
EXPLICIT

«enumeration»
MVCharacterizationType

description : Expression
ExplicitDescription

Figure 4.18: Model Variables

black-box service behavior abstractions). On the other hand, there are control-flow related
parameters such as CallFrequency, LoopIterationCount and BranchingProbabilities.

There are two ways to characterize the mentioned model variables. Either EMPIRICAL (de-
fault) or EXPLICIT can be chosen as a characterization type. EMPIRICAL means that the
model variable has to be quantified using monitoring statistics, i.e., it is characterized using
empirical data that is accessed via an interface to the monitoring infrastructure. The inter-
face is presented in Section 4.1.6. EXPLICIT means that the model variable is characterized
explicitly. In this case, an ExplicitDescription can be used to specify a random variable by
means of the Stochastic Expression (StoEx) language proposed by Koziolek (2008). The
StoEx language allows characterizing discrete probability distributions with Probability
Mass Functions (PMFs), approximating continuous probability densities with samples, or
using common probability distribution functions such as the exponential distribution or
the binomial distribution. Furthermore, the expression language allows specifying random
variables “as a combination of several other random variables using arithmetic or boolean
operations” (Koziolek, 2008, p.66).

The model variables LoopIterationCount and CallFrequency are discrete random variables
defined on the sample space ⌦ = N

0

= N [{0}. A typical PMF for a loop is de-
scribed, e.g., with the expression IntPMF[(9;0.2)(10;0.5)(11;0.3)]. This PMF ex-
pressed as StoEx specifies that the loop body is executed 9 times with a probability of
0.2, 10 times with a probability of 0.5, and 11 times with a probability of 0.3. Model
parameter BranchingProbabilities is also described with a discrete random variable, how-
ever, its sample space ⌦ is the set of branch transitions of the corresponding BranchAc-
tion. The branch transitions are ordered, thus we can use their indexes as identifiers.
A PMF for the branching probabilities of a branch with two branch transitions is, e.g,
EnumPMF[(‘Branch1’;0.2)(‘Branch2’;0.8)], meaning that the transition with index 1
has a probability of 0.2, the transition with index 2 has a probability of 0.8.

The random variables of the remaining two model variables ResponseTime and ResourceDe-
mand are typically defined on the sample space ⌦ = R�0

, where ! 2 ⌦ is interpreted as
timing value. They are described by a Probability Density Function (PDF) that is either
approximated (see Koziolek (2008, p.67) for an illustration) or defined using common distri-
butions such as the exponential distribution. An exemplary approximation f

0
X

for a density
function f

X

(x) of a random variableX is DoublePDF[(10.0;0.0)(30.0;0.04)(32.0;0.1)],
meaning

f
0
X

(x) =

8
>>>><

>>>>:

0.0 x < 10.0,

0.04 10 x < 30.0,

0.1 30 x < 32,

0.0 32 x.

56

4.1. Application Architecture 57

An exponential distribution (with � = 1) as StoEx is denoted as Exp(1).

As shown in Figure 4.18, a Scope is modeled as a reference to an InterfaceProvidingRe-
quiringEntity. A ModelVariable may have several scopes, modeled as ScopeSet, because it
may be assembled in di↵erent ComposedStructures. In the following, the semantics of such
a ScopeSet is defined. Let v be a model variable, and cv the (composite) component or
(sub-)system where the model variable v resides. Let Sv = {sv

1

, . . . , sv
n

} denote the set of
(composite) components or (sub-)systems referenced as Scope of v. Let Sv

0

= Sv [{s
0

},
where s

0

represents the system. An instance of cv, as shown in Figure 4.8 in Section 4.1.1,
can be identified as a sequence of AssemblyContexts {a

1

, . . . , a
m

}. The container of As-
semblyContext a

1

is the system, and encapsulatedComponent(a
m

) = cv meaning that As-
semblyContext a

m

encapsulates cv. We then define

evalscopev({a
1

, . . . , a
m

})

=

8
><

>:
{a

1

, . . . , a
j

} ,
9j 2 {1, . . . ,m} : (encapsulatedComponent(a

j

) 2 Sv

0

^
8k 2 {j + 1, . . . ,m} : encapsulatedComponent(a

k

) 62 Sv

0

)

s
0

, otherwise.

Measurements of model variable v at instance {a
1

, . . . , a
m

} are then valid within instance
evalscopev({a

1

, . . . , a
m

}). Function evalscopev({a
1

, . . . , a
m

}) evaluates to a (composite)
component or (sub-)system instance whose type is in the set Sv

0

, namely the innermost in-
stance when traversing from the instance identified by {a

1

, . . . , a
m

} to the system s
0

. Note
that the scope of a variable is only considered if EMPIRICAL is chosen as a characterization
type.

4.1.4.4 Example

In theWebShop example, aModelVariable v whose scope is set to the surrounding composite
component WebShop is parameterized di↵erently for each instance of component WebShop.
Consequently, in Figure 4.17, the variable v has di↵erent values for the game store and
the supermarket instances. If the scope is omitted, the value of variable v is shared across
all component instances.

4.1.5 Probabilistic Parameter Dependencies

This section introduces the modeling concepts for describing probabilistic parameter de-
pendencies. Section 4.1.5.1 provides the rationale, Section 4.1.5.2 describes the modeling
approach and Section 4.1.5.3 describes the corresponding abstractions in detail. In Sec-
tion 4.1.5.4, we provide an illustrative example.

4.1.5.1 Motivation

Figure 4.19 shows how the CatalogServlet component in the WebShop example is connected
to the JPAProvider component. The servlet provides a service to list the articles of the shop.
The list is normally composed of multiple pages. By providing the argument pagenumber,
the user can choose which page to view. For each article in the list, the servlet shows a
preview image of the article. Preview images are loaded via the JPA provider. The JPA
provider itself issues a query to load a preview image, but only if the image is not already
available in the JPA cache.

We are now interested in the probability of calling issueNamedQuery previewImage because
it results in a costly database access. As illustrated in the fine-grained service behavior
in Figure 4.20, the probability of calling the database corresponds to a branch probability
in the control flow of the getArticlePreviewImage service. This probability depends on

57

58 4. Architecture-Level Performance Abstractions for Online Use

CatalogServlet JPAProvider

Provided service:
listArticles(int pagenumber)

Required/provided service:
getArticlePreviewImage(String articleId)

Required service:
issueNamedQuery_previewImage(String query)

Figure 4.19: Example: CatalogServlet and JPAProvider Components

<<FineGrainedBehavior>>

<<BranchAction>>

<<ComponentInternalBehavior>>

<<InternalAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
issueNamedQuery_previewImage

<<InternalAction>>

Figure 4.20: Example: Cache Miss or Cache Hit in Service getArticlePreviewImage

whether the article preview image is in the JPA cache or not. If the article (identified by
parameter articleId) is viewed frequently, the probability of a database call is low compared
to an article that is rarely shown to the users.

As discussed in Section 2.3, some architecture-level performance models for design-time
analysis allow modeling dependencies of the service behavior (including branching proba-
bilities) on input parameters passed over the service’s interface upon invocation. However,
in this case, the only parameter passed is articleId. Such a parameter does not allow mod-
eling the dependency because the branching probabilities depend on the state of the JPA
cache. Furthermore, the interface between the component and the cache is too generic to
infer direct parameter dependencies. This state-dependency is typical for modern business
information systems (Fowler, 2002; Rolia and Vetland, 1995). The behavior of compo-
nents is often dependent on the state of data containers such as caches or on persistent
data stored in a database. However, modeling the state of a cache and/or a database is ex-
tremely complex and infeasible to consider as part of the performance model. Thus, in such
a scenario, the approach of providing explicit characterizations of parameter dependencies
is neither applicable nor appropriate.

However, in the example illustrated in Figure 4.20, there is a dependency between the
branching probabilities and the service input parameter pagenumber of service listArticles
provided by CatalogServlet. Figure 4.21 shows the fine grained behavior abstraction of
the listArticles service. There is a loop where for each article of the requested page the
corresponding preview image is requested. Intuitively, one would assume the existence
of the following dependency: The higher the page number of the article list to show,
the higher the probability that the articles’ preview images are not in the JPA cache.
This dependency cannot be modeled using existing approaches such as PCM since, on
the one hand, two separate components are involved, i.e., the pagenumber parameter is
external to component JPAProvider, and on the other hand, an explicit characterization
of the dependency by a function is impractical to obtain. In such a case, provided that
the existence of the parameter dependency is known, monitoring statistics collected at

58

4.1. Application Architecture 59

<<FineGrainedBehavior>>

<<LoopAction>>

<<InternalAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
getArticlePreviewImage

<<InternalAction>>

Figure 4.21: Example: Behavior of listArticles Service Provided by CatalogServlet

run-time can be used to characterize the dependency probabilistically. At run-time, the
dependency between the values of influencing parameter pagenumber and the observed
relative frequency of the issueNamedQuery previewImage service calls can be monitored.
Using this data, the branching probabilities in Figure 4.20 can be characterized more
accurately as conditional probabilities, depending on values of parameter pagenumber of
service listArticles.

The parameter dependency in the example can be considered typical for enterprise software
systems. The behavior of software components is often dependent on parameters that are
not available as input parameters passed upon service invocation (Fowler, 2002; Rolia and
Vetland, 1995). Such parameters are often not traceable directly over the service interface
and tracing them requires looking beyond the component boundaries, e.g., the parameters
might be passed to another component in the call path and/or they might be stored in a
database structure queried by the invoked service. Furthermore, even if a dependency can
be traced back to an input parameter of the called service, in many practical situations,
providing an explicit characterization of the dependency is not feasible (e.g., using PCM’s
approach) and a probabilistic representation based on monitoring data is more appropriate.
This situation is common in business information systems and our modeling abstractions
must provide means to deal with it.

4.1.5.2 Modeling Approach

To allow the modeling of the above described parameter dependencies our architecture-
level performance abstractions support the definition of so-called influencing parameters.
In order to resolve parameter dependencies using monitoring data, such influencing pa-
rameters need to be mapped to some observable parameters that would be accessible at
run-time.

Figure 4.22 illustrates our modeling approach in the context of the presented example
from Figure 4.19. The branching probabilities of issuing a database query or not in the
getArticlePreviewImage service are represented as InfluencedVariable1. The component de-
veloper is aware of the existence of the dependency between the branch probability and
the frequency of the article to be listed. However, the developer does not have direct
access to the pagenumber parameter of the listArticle service and does not know where the
parameter might be observable and traceable at run-time. Thus, to declare the existence
of the dependency, the component developer first defines an InfluencingParameter1 named

59

60 4. Architecture-Level Performance Abstractions for Online Use

CatalogServlet JPAProvider

Provided service:
listArticles(int pagenumber)

Required/provided service:
getArticlePreviewImage(String articleId)

Required service:
issueNamedQuery_previewImage(String query)

DependencyRelationship
DependencyPropagationRelationship

InfluencingParameter2:
pagenumber

InfluencingParameter1:
article access frequency

InfluencedVariable1:
branching probabilities

Figure 4.22: Modeling Parameter Dependencies

article access frequency, representing a so-called shadow parameter, and provides a textual
description of that parameter’s semantics. Parameter article access frequency characterizes
how frequent the article with id articleId is accessed. The developer can then declare a
dependency relationship between InfluencedVariable1 and InfluencingParameter1.

The developer of composite component WebShop is then later able to link Influencing-
Parameter1 to the respective service input parameter pagenumber of the CatalogServlet
component, designated as InfluencingParameter2. He does not explicitly know how the
values of the page number relate to InfluencingParameter2, but he assumes that there is a
dependency. We refer to such a link as declaration of a dependency propagation relation-
ship between two influencing parameters. Having specified the influenced variable and the
influencing parameters, as well as the respective dependency and dependency propagation
relationships, the parameter dependency can then be characterized empirically. Our mod-
eling approach supports both empirical and explicit characterizations for both dependency
and dependency propagation relationships between model variables.

Note that an influencing parameter does not have to belong to a provided or required
interface of the component. It can also be an auxiliary model entity allowing to model
parameter dependencies in a flexible way. In that case, the influencing parameter is denoted
as shadow parameter.

If an influencing parameter cannot be observed at run-time, the component’s execution is
obviously not a↵ected, however, the parameter’s influence cannot be taken into account
in online performance predictions. The only thing that can be done in such a case is
to monitor the influenced variable independently of any influencing factors and treat it
as an invariant. It is important to note that parameter dependencies are intended to
improve the prediction accuracy when considering parameter variations, however, if they
cannot be characterized empirically using monitoring data, a performance prediction can
still be conducted. To provide maximum flexibility, it is also possible to map the same
influencing parameter to multiple other influencing parameters, some of which might not
be monitorable in the execution environment, others could be monitorable with di↵erent
overhead. Depending on the availability of monitoring data, some of the defined mappings
might not be usable in practice and others could involve di↵erent monitoring overhead.
Given that the same mapping can be usable in certain situations and not usable in others,
the more mappings are defined, the higher flexibility is provided for resolving context
dependencies at run-time.

60

4.1. Application Architecture 61

InfluencingParameter

CallParameter

ServiceBehaviorAbstraction

ResourceDemand ResponseTimeControlFlowVariable

InfluencedVariableReference

0..1 0..1

0..*0..*

0..1

name : String
description : String

ShadowParameter

ModelVariable

referencedModelVariable

Figure 4.23: Influenced Variables and Influencing Parameters

In the following, we present the meta-model elements for influenced variables, influencing
parameters, dependencies, and dependency propagations in more detail.

4.1.5.3 Modeling Abstractions

We first describe influenced variables and influencing parameters. Then we present the
modeling abstractions to model the di↵erent types of relationships between model variables
as they are shown in Figure 4.22. Then we describe how we characterize the introduced
relationships.

Influenced Variables and Influencing Parameters

As shown in Figure 4.23, an influenced variable is indicated by an InfluencedVariableRefer-
ence, referring to either a ControlFlowVariable, a ResourceDemand, or a ResponseTime.

An InfluencingParameter represents a parameter that has an influence on other model
variables. Such parameters are either CallParameters or ShadowParameters, modeled as
subtypes of InfluencingParameter.

A CallParameter, see Figure 4.24, is either a service input parameter, an external call pa-
rameter, or a return parameter of an external call. Given that in performance models,
a service call parameter is only modeled if it is performance-relevant (see Figure 4.25),
each modeled service call parameter can be considered to have a performance influence.
Furthermore, the proposed modeling abstractions support referring not only to a param-
eter VALUE, but also to other characterizations such as NUMBER OF ELEMENTS if the
referenced data type is a collection (cf. Becker et al. (2009)).

A ShadowParameter is an InfluencingParameter with a designated name and description.
These attributes are intended to provide a human-understandable description that could
be used by component developers, system architects, or performance engineers to identify
and model relationships between model variables. A ShadowParameter can be considered
as an auxiliary model entity allowing to model parameter dependencies in a flexible way.
In order to resolve parameter dependencies using monitoring data, ShadowParameters need
to be mapped to some observable parameters that are accessible at run-time.

Furthermore, note that both InfluencingParameters and InfluencedVariableReferences are
attached to the surrounding ServiceBehaviorAbstraction. InfluencingParameter is modeled
as a subtype of element ModelVariable.

Relationships: Dependency and Dependency Propagation

As shown in Figure 4.26, we distinguish the two types of relationships DependencyRe-
lationship and DependencyPropagationRelationship between model variables. The former

61

62 4. Architecture-Level Performance Abstractions for Online Use

CallParameter

ServiceInputParameter

InterfaceProvidingRole
1

ExternalCallReturnParameter

ExternalCall
1

ExternalCallParameter

ExternalCall

1

Figure 4.24: Call Parameter Hierarchy

name : String
Parameter

0..1

characterization : ParameterCharacterizationType
CallParameter

Signature

Interface

DataType
returnType

0..10..1
1

VALUE
NUMBER_OF_ELEMENTS

«enumeration»
ParameterCharacterizationType

parameters

1

0..*
0..*

Figure 4.25: Call Parameters

declares one influenced variable to be dependent on one or more influencing parameters
(the independent parameters). The latter connects one or more influencing parameters
(the independent parameters) with one influencing parameter (the dependent parameter))
declaring the existence of a dependency between them. Thus, an influencing parameter can
play the role of a dependent parameter in one relationship, while at the same time being an
independent parameter in another relationship. Both DependencyRelationship and Depen-
dencyPropagationRelationship are non-symmetric, one-directional, transitive relationships.
However, note that cycles of relationships are prohibited.

A Relationship is attached to the innermost InterfaceProvidingRequiringEntity, i.e., (com-
posite) component or (sub-)system, that surrounds the relationship. A dependency is
defined at the InterfaceProvidingRequiringEntity where the influenced variable resides, and
is specified by the corresponding developer. A dependency propagation is specified for a
ComposedStructure that is composed of several assembly contexts. Thus, both sides of the
dependency propagation need to be identified not only by the InfluencingParameters but
also by ComponentInstanceReferences indicating the specific component instances where
the influencing parameters reside. As depicted in Figure 4.8 in Section 4.1.1, we require

Relationship

DependencyRelationship

InfluencedVariableReference

InfluencingParameter

independent dependent

1

1..*
1..*

1

ComponentInstanceReference
1..* 1

InterfaceProvidingRequiringEntity

0..*

DependencyPropagationRelationship

surrounding
Entity

independent

dependent independent dependent

Figure 4.26: Relationships between Influenced Variables and Influencing Parameters

62

4.1. Application Architecture 63

characterization : RelationshipCharacterizationType
Relationship

ExplicitDescription
EMPIRICAL
EXPLICIT
IDENTICAL

«enumeration»
RelationshipCharacterizationType

0..1

Figure 4.27: Characterization of Relationships

the specification of a path of assembly contexts in order to unambiguously identify a certain
component instance from the perspective of a ComposedStructure.

Characterization of Relationships

A dependency or dependency propagation relationship is characterized via the model at-
tribute RelationshipCharacterizationType. The relationship represents a function that maps
the values of the relationship’s independent variable(s) to a characterization of the rela-
tionship’s dependent variable. In other words, a relationship with n independent variables
mv

1

, . . . ,mv
n

and one dependent variable d is characterized by a function that maps the n
values of the independent variables to a random variable representing the dependent vari-
able d. We distinguish three types of characterizations: (i) EMPIRICAL, (ii) EXPLICIT,
and (iii) IDENTICAL.

EMPIRICAL means that the relationship is characterized using monitoring statistics, i.e.,
the functional relation is determined using empirical data. The function is accessed via
an interface to the monitoring infrastructure. The interface is described in Section 4.1.6.
In this chapter, we focus on the modeling concepts at the meta-model level. For the
description of how the empirical characterizations can be derived from monitoring data,
i.e., how the mentioned interface to the monitoring infrastructure can be implemented, we
refer to Section 6.4.5.

EXPLICIT means that the relationship is characterized explicitly, i.e., with an explicit
function specified using PCM’s StoEx language. Such a characterization is suitable if an
expression of the functional relation between the involved variables is available, the expres-
sion is modeled using model entity ExplicitDescription that corresponds to the PCM model
element Expression (cf. Koziolek (2008, p.80)). Note that Scopes of involved ModelVariables
are not considered when evaluating EXPLICIT relationships.

IDENTICAL is a special case of EXPLICIT in order to simplify modeling common dele-
gations. It means that the independent variable of the relationship directly maps to the
dependent variable of the relationship. This characterization type is thus only allowed if
the relationship has exactly one independent variable.

Note that a model variable that is characterized as EXPLICIT can only be the dependent
variable in relationships that are characterized as EXPLICIT, too. The model variable’s
explicit description is then overwritten by the explicit description of the relationship. Fur-
thermore, if a model variable is the dependent variable in more than one relationship, the
following constraints hold. At most one of these relationships is allowed to be characterized
with type EXPLICIT. Otherwise, the explicit description would be ambiguous. If there is
such an EXPLICIT relationship, relationships with characterization type EMPIRICAL are
ignored. Thus, relationships whose characterization type is modeled as EXPLICIT take
precedence over relationships whose characterization type is modeled as EMPIRICAL.

63

64 4. Architecture-Level Performance Abstractions for Online Use

:InfluencedVariableReference

:DependencyRelationship

:BranchingProbabilities

:FineGrainedBehaviorAbstraction:FineGrainedBehaviorAbstraction

:DependencyPropagationRelationship

:RelationshipCharacterization
type=EMPIRICAL

:RelationshipCharacterization
type=EMPIRICAL

dependentindependentdependentindependent

refersTo

Behavior abstraction for service
getArticlePreviewImage

Behavior abstraction for service
listArticles

pagenumber:ServiceInputParameter
characterization=VALUE

articleAccessFrequency :ShadowParameter
description=“characterizing how frequent the
article with id articleId is accessed”

Figure 4.28: Example: Modeling Parameter Dependencies

4.1.5.4 Example

As example for parameter dependencies, we use the parameter dependencies as they are
illustrated in Figure 4.22. The service behavior abstraction of service getArticlePreviewIm-
age provided by the JPAProvider component contains an influenced variable. The influ-
enced variable refers to the branching probabilities of the branch reflecting whether the
requested data is in the cache or needs to be queried from the database (see Figure 4.20
for the branching behavior).

An excerpt of the object diagram is shown in Figure 4.28. There is a shadow param-
eter named articleAccessFrequency, also attached to the service behavior abstraction of
service getArticlePreviewImage. The shadow parameter and the influenced variable are
linked using a DependencyRelationship. The type of the RelationshipCharacterization is set
to EMPIRICAL. The parameter pagenumber of service listArticles, provided by component
CatalogServlet, is exposed as another InfluencingParameter. Then there is a Dependen-
cyPropagationRelationship with parameter pagenumber as independent parameter and the
articleAccessFrequency parameter as dependent parameter. This DependencyPropagation-
Relationship is also characterized with type EMPIRICAL.

ShadowParameter articleAccessFrequency cannot be directly monitored. Thus, the Depen-
dencyPropagationRelationship and the DependencyRelationship cannot be characterized sep-
arately. The two relationships rather indicate that there is a dependency between service
input parameter pagenumber and the branching probabilities of cache hit or miss. In
Section 5.2, we describe how we resolve such relationships automatically.

Figure 4.29 shows exemplary monitoring statistics showing how values of parameter pa-
genumber ranging from 1 to 12 relate to the probability of a cache miss. For instance,
for a pagenumber of 4, the probability of a cache miss is monitored to be 0.23 on aver-
age. Thus, for a pagenumber of 4, the BranchingProbabilities can be parameterized with
EnumPMF[(‘Branch1’;0.77)(‘Branch2’;0.23)] as PMF. For a pagenumber of 8, the
probability of a cache miss is monitored to be 0.9 on average, and the BranchingProbabil-
ities can be parameterized with EnumPMF[(‘Branch1’;0.1)(‘Branch2’;0.9)] as PMF.
For a description of how the empirical characterizations can be derived from monitoring
statistics, see Section 6.4.5.

64

4.1. Application Architecture 65

●
●

●

●

●

●

●

●

● ● ● ●

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pagenumber

P(
"c

ac
he

 m
is

s"
)

Monitoring Data

Figure 4.29: Example: Characterizing Parameter Dependencies

interface IApplicationLevelMonitor {

RandomVariable getCharacterizationForModelVariable(

ModelVariable modelVariable ,

ComponentInstanceReference compInstanceContainingMV);

RandomVariable getCharacterizationForParameterDependency(

List <ModelVariable > independentMVs ,

List <ComponentInstanceReference > compInstsContainingIndependentMVs ,

List <Literal > independentValues ,

ModelVariable dependentMV ,

ComponentInstanceReference compInstanceContainingDependentMV);

}

Listing 4.1: Monitoring Interface for the Application Level Model

4.1.6 Interface to Monitoring Infrastructure

The modeling abstractions for the application architecture level have ModelVariables and
Relationships that need to be parameterized. In case the MVCharacterizationType of a Mod-
elVariable, or the RelationshipCharacterizationType of a Relationship is set to EMPIRICAL,
the characterization of the corresponding ModelVariable or Relationship is not specified in
the application architecture model instance. Characterization type EMPIRICAL means
that the values need to be obtained from monitoring statistics. Thus, the monitoring in-
frastructure of the running system has to be capable of providing appropriate monitoring
statistics to characterize such ModelVariables and Relationships.

This section defines an interface named IApplicationLevelMonitor that needs to be imple-
mented by the monitoring infrastructure in order to parameterize an application archi-
tecture model instance. Listing 4.1 shows the monitoring interface in Java syntax. The
interface has two method signatures explained in the following.

The first method getCharacterizationForModelVariable returns the characterization for a
given ModelVariable mv and a given component instance where mv resides. The character-
ization is returned as a RandomVariable. For example, consider the BranchingProbabilities
of the BranchAction that is part of the fine-grained behavior depicted in Figure 4.15. The
behavior describes service calculateTotalCost that is provided by component Shopping-
CartServlet. For one component instance of ShoppingCartServlet, method getCharacteriza-
tionForModelVariable might return EnumPMF[(‘Branch1’;0.8)(‘Branch2’;0.2)], for a

65

66 4. Architecture-Level Performance Abstractions for Online Use

di↵erent component instance of ShoppingCartServlet, the method might return EnumPMF[

(‘Branch1’;0.6)(‘Branch2’;0.4)]. The implementation of the method needs to con-
sider the ScopeSet of the given ModelVariable when returning the characterization as a
RandomVariable. Note that a characterization of a model variable mv is assumed to be
available via the method getCharacterizationForModelVariable if mv is a resource demand,
a response time or a control flow variable, characterized as EMPIRICAL. If the charac-
terization is not available for such model variables, a performance prediction cannot be
conducted. If mv is an InfluencingParameter, however, the method may return NULL and
a performance prediction can still be conducted.

The second method getCharacterizationForParameterDependency returns the character-
ization for a given list of independent ModelVariables and one dependent ModelVariable.
The method is used to obtain a characterization of a parameter dependency, returned as
RandomVariable. A parameter dependency is determined by the method’s arguments:

• a list of references toModelVariablesmv
1

, . . . ,mv
n

that are the independent variables,

• a list of Literals v
1

, . . . , v
n

that are values for the above-mentioned variables,

• a list of ComponentInstanceReferences indicating where mv
1

, . . . ,mv
n

reside,

• a reference to a ModelVariable d that is the dependent variable,

• a reference to a component instance indicating in which component instance d resides.

Formally, the method’s arguments specify the signature of a n-ary function to be evalu-
ated at arguments v

1

, . . . , v
n

. The result of the function, returned as a random variable,
characterizes the dependent variable. The implementation of the method needs to con-
sider the ScopeSets of the involved ModelVariables when deriving a characterization for the
dependent variable. If n = 0, then getCharacterizationForParameterDependency has the
same semantics as getCharacterizationForModelVariable.

While this section described the methods of interface IApplicationLevelMonitor, Section 6.4
presents how the interface can be implemented.

4.2 Resource Landscape Model and Deployment Model

Having modeled the performance-relevant behavior of the software architecture as de-
scribed in Section 4.1, predicting the system performance requires information about the
execution environment (the resource landscape) where the software system is deployed.

Today’s IT execution environments implement abstraction layers based on virtualization
and middleware technologies. This promises benefits when reacting on changes of service
workloads by provisioning and allocating resources as they are needed. However, intro-
ducing new abstraction layers to increase flexibility comes at the cost of increased system
complexity. Existing model-based resource management and capacity planning techniques
such as Becker et al. (2009); Kounev (2006) are targeted at design-time Quality of Service
(QoS) analysis. In general, such approaches are not applicable at run-time because they
abstract the complex infrastructure architecture or do not consider the dynamic aspects
important for run-time system adaptation and resource management. For instance, the
virtualization overhead (Huber et al., 2011b) that a↵ects resource utilization and service
response times is typically ignored.

Current techniques do not provide means to model the layers of the component execution
environment (e.g., the virtualization layer) explicitly. The performance influences of the
individual layers, the dependencies among them, and the resource allocations at each
layer should be captured as part of the models. This is necessary in order to be able to

66

4.2. Resource Landscape Model and Deployment Model 67

Container

ofClass : RuntimeEnvironmentClasses
RuntimeEnvironmentComputingInfrastructure

ConfigurationSpecification
0..*

0..*

contains

containedIn0..1

HYPERVISOR
OS
OS_VM
PROCESS_VM
MIDDLEWARE
OTHER

«enumeration»
RuntimeEnvironmentClasses

0..1

DataCenter
0..*

ContainerTemplate

Figure 4.30: Hierarchical Run-time Environments in the Resource Landscape, cf. Huber
(2014)

predict at run-time how a change in the execution environment (e.g., modifying resource
allocations at the virtual machine level) would a↵ect the system performance. The resource
landscape meta-model, part of DML, allows modeling the physical and logical resources
(e.g., virtualization and middleware layers) as they are provided by modern data centers.

Based on Huber et al. (2012a), we briefly describe the modeling abstractions in the follow-
ing subsection. In Section 4.2.2, we provide an exemplary resource landscape where the
WebShop of the running example presented in Section 4.1.2 is deployed.

4.2.1 Modeling Abstractions

The resource landscape meta-model reflects the static view of a distributed execution envi-
ronment, i.e., it provides means to describe i) the computing infrastructure and its physical
resources, and ii) the di↵erent layers within the system that provide logical resources, e.g.,
virtual machines, virtual CPUs, and so on.

Here, we show the core of the DML resource landscape meta-model. A detailed descrip-
tion is provided in Kounev et al. (2014). Figure 4.30 depicts the part of the meta-model
describing the nested containment principle to model resource landscapes. For example,
imagine servers that contain a virtualization platform and Virtual Machines (VMs), again
containing an operating system, containing a middleware layer, and so on. This leads to a
tree of nested entities that can change at run-time (e.g., when a VM is migrated). The cen-
tral entity of this meta-model is the abstract entity Container. It is distinguished between
two major types of containers, the ComputingInfrastructure and the RuntimeEnvironment.
A ComputingInfrastructure forms the root element in our tree-like structure of containers
and corresponds to a physical machine. It cannot be contained in another container but
it can have nested containers. The RuntimeEnvironment is a generic model element to
build nested layers, i.e., it can be contained within a container and it might itself contain
further run-time environments. Each RuntimeEnvironment has a property to specify the
class of the RuntimeEnvironment. The possible classes are listed in the enumeration type
RuntimeEnvironmentClasses. The classes are HYPERVISOR for the di↵erent hypervisors of
virtualization platforms, OS for operating systems, OS VM for virtual machines emulating
standard hardware, PROCESS VM for virtual machines like the Java VM, MIDDLEWARE
for middleware environments, and OTHER for any other type. The consistency within the
modeled layers is ensured with Object Constraint Language (OCL) expressions.

Furthermore, the type Container has a property to specify its configuration. We distin-
guish three di↵erent types of configuration specifications: ActiveResourceSpecification, Pas-
siveResourceSpecification, and CustomConfigurationSpecification (see Figure 4.31 (a)). The
purpose of the ActiveResourceSpecification is to specify the active resources a Container
provides. Using the properties schedulingPolicy, processingRate and numberOfParallelPro-
cessingUnits, for example, a dualcore CPU can be specified with PROCESSOR SHARING
as schedulingPolicy, a processingRate of 2.4 GHz and a numberOfParallelProcessingUnits

67

68 4. Architecture-Level Performance Abstractions for Online Use

ConfigurationSpecification

capacity : Integer
PassiveResourceSpecification

schedulingPolicy : SchedulingPolicy
processingRate : Double
numberOfParallelProcessingUnits : Integer

ProcessingResourceSpecification

ProcessingResourceType

0..* processingResources

activeResourceType

1

CustomConfigurationSpecificationActiveResourceSpecification
ContainerRepository

ContainerTemplate

ConfigurationSpecification
0..*

0..*

0..1

Figure 4.31: Configuration Specification and Container Template Repository, cf. Huber
(2014)

of 2. The PassiveResourceSpecification can be used to specify properties of passive re-
sources. Passive resources can be, e.g., the main memory size or software resources such as
database connection thread pools. The attribute capacity is used to specify, e.g., the num-
ber of threads. In case a Container has an individual configuration that cannot be modeled
with the previously introduced elements, one can use the CustomConfigurationSpecification.
The semantics of this entity is described in Huber et al. (2012a).

With the meta-model concepts presented so far, it would be necessary to model each
container and its configuration explicitly. This can be very cumbersome, especially when
modeling clusters of several identical machines. The template concept depicted in Fig-
ure 4.31 (b) enables the di↵erentiation between container types and instances of these
types. A container type specifies the general performance properties relevant for all in-
stances of this type and the instances store the performance properties of each container
instance. The template concept is implemented using the ContainerTemplate entity. Config-
ured container templates are collected in the ContainerRepository. The ContainerTemplate
is similar to a Container since it also may refer to ConfigurationSpecification. A Container
in a resource landscape model instance might have a reference to a ContainerTemplate (see
Figure 4.30). The advantage of this template concept is that the general properties rele-
vant for all instances of one container type can be stored in the container template and the
relevant configuration specific for an individual container instance can di↵er. For example,
assume that a container instance has no individual properties and only a reference to a
template. Then, only the configuration specification of the template would be considered.
However, if the container instance has an individual configuration specification, then these
settings would override the properties of the template. The template mechanism is useful
in situations where, e.g., a VM is cloned (use template as configuration) and later changed
(individual configuration options possible).

After describing the execution environment, one must specify which services are executed
on which part of the resource landscape. We refer to this specification as deployment
captured in the deployment model. The deployment model, based on PCM’s allocation
model (Becker et al., 2009), is shown in Figure 4.32. A Deployment connects a model
instance of the software architecture (System) with a model instance of a resource landscape
(DataCenter). It consists of several deployment contexts that map an AssemblyContext
contained in the system model to a Container that is a model element of the resource
landscape.

4.2.2 Example

Figure 4.33 shows an exemplary deployment of the running example introduced in Sec-
tion 4.1.2 to a resource landscape model instance.

68

4.3. Usage Profile Model 69

Deployment

DeploymentContext

System

AssemblyContext Container

0..*

1 1

1

targetResource
Landscape

resourceContainer

DataCenter1

Figure 4.32: Deployment Model

<<ComputingInfrastructure>>
DatabaseServer

<<ComputingInfrastructure>>
ApplicationServer

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>

processingResourceType=CPU
processingRate=2.66 GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=2

<<ActiveResourceSpecification>>

<<ProcessingResourceSpecification>>

processingResourceType=CPU
processingRate=2.8 GHz
schedulingPolicy=PROCESSOR_SHARING
numberOfParallelProcessingUnits=8

<<AssemblyContext>>
WebShop

<<AssemblyContext>>
SQLDB

<<DeploymentContext>>

Figure 4.33: Example: WebShop Deployment

There is a datacenter that consists of two ComputingInfrastructures, namely an Application-
Server and a DatabaseServer. The servers’ CPUs are modeled as active resources. The CPU
of the ApplicationServer consists of two processing units at a processing rate of 2.66 GHz.
The DatabaseServer CPU has eight processing units at a processing rate of 2.8 GHz. The
WebShop instance is deployed on the ApplicationServer node, a SQLDB instance is deployed
on to the DatabaseServer node.

4.3 Usage Profile Model

Using the application architecture meta-model (Section 4.1) and the resource landscape
and deployment meta-models (Section 4.2), an architecture-level performance model can
be described. In order to conduct a performance prediction for a certain workload, the
workload needs to be specified. This is done using the usage profile meta-model, also part
of DML. The usage profile meta-model is based on PCM’s usage model (Becker et al.,
2009) and allows modeling user interactions with the system.

4.3.1 Modeling Abstractions

The modeling abstractions are shown in Figure 4.34. A UsageProfileModel consists of one
or more UsageScenarios and references a System. A UsageScenario refers to a description
of a WorkloadType (either an open workload or a closed workload (Schroeder et al., 2006))
and a ScenarioBehavior.

An open workload is characterized with an inter-arrival time specified as RandomVariable.
A closed workload is characterized with a client population and a client think time also
specified as RandomVariable.

69

70 4. Architecture-Level Performance Abstractions for Online Use

UsageProfileModel

UsageScenario ScenarioBehavior

WorkloadType

interarrivalTime : RandomVariable

OpenWorkloadType

population : Integer
thinkTime : RandomVariable

ClosedWorkloadType

AbstractUserAction

loopIterationCount : RandomVariable

LoopUserAction

delay : RandomVariable

DelayUserAction

branchingProbabilities : RandomVariable

BranchUserAction
SystemCallUserAction

name : String
characterization : ParameterCharacterizationType
value : RandomVariable

CallParameterSetting

0..*

{ordered}
0..*

1

body branch-
transitions

0..* {ordered}

0..1

0..1

0..1

1

0..*

System

0..1

InterfaceProvidingRole

Signature

1

1

Figure 4.34: Usage Profile Model, cf. Becker et al. (2009)

A ScenarioBehavior allows describing which services of the referenced System are called by
the user using so-called SystemCallUserActions. Such a SystemCallUserAction refers to a
service signature of an interface that is provided by the system. The input parameters
of the service signature can (but do not have to) be set using CallParameterSettings. A
CallParameterSetting consists of the name of the parameter, a parameter characterization
type (see Figure 4.25) and the value of the parameter as a random variable. The Sys-
temCallUserActions can be arranged in a control flow with delays, branches and loops.
Delays, as well as branching probabilities and loop iteration counts are described with a
RandomVariable.

Note that a RandomVariable is an atom of a stochastic expression (see Section 4.1.4.3).
It allows characterizing discrete probability distributions with PMFs, approximating con-
tinuous probability densities with samples, or parameterizing common PDFs such as the
exponential distribution or binomial distribution.

4.3.2 Example

An example of a usage profile model is illustrated in Figure 4.35. It is a usage profile for
the WebShop system presented in Section 4.1.2. It consists of one UsageScenario with an
open workload. The users have an inter-arrival time of Exp(1.0), i.e., an exponentially
distributed inter-arrival time with mean 1.0. The user behavior starts with a call of the
listArticles service, followed by a delay of 1000 and a service call to viewArticleDetails. The
value of the pagenumber parameter of the listArticles service is parameterized using a PMF.
With a probability of 0.5 each, either the first page or the second page is requested.

4.4 Summary

In this chapter, we described architecture-level performance abstractions for use in online
scenarios. The proposed performance abstractions reflect the application architecture, its
deployment to a resource landscape, as well as the application’s usage profile, thus making
it possible to predict the impact of workload changes, service (re-)compositions, software
configuration changes, or changing resource allocations.

In Section 4.1, we presented modeling abstractions for the performance-relevant factors
of a component-based application architecture (Brosig et al., 2013b, 2012), specifically
for use at run-time. This includes a new approach to model performance-relevant service
behavior at di↵erent levels of granularity (see Section 4.1.3), a new approach to parameter-
ize performance-relevant properties of software components (see Section 4.1.4) and a new

70

4.4. Summary 71

<<UsageProfileModel>>

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>

listArticles

<<CallParameterSetting>>
name=pagenumber
characterization=VALUE
value=IntPMF[(1;0.5)(2;0.5)]

<<DelayUserAction>>
delay=1000

<<SystemCallUserAction>>
viewArticleDetails

<<OpenWorkloadType>>
interarrivalTime=Exp(1.0)

Figure 4.35: Example: Usage Profile Model Instance

approach to model dependencies between parameters (see Section 4.1.5). The presented
modeling abstractions are part of the Descartes Modeling Language (Kounev et al., 2014),
a new modeling language for run-time performance and resource management of modern
dynamic IT service infrastructures.

Parts of DML that allow describing the resource landscape and the deployment are briefly
presented in Section 4.2. Modeling abstractions for the description of the system workload,
i.e., for the description how the system is used and with which intensity it is used, are
shown in Section 4.3.

71

5. Online Prediction Techniques

To ensure that a software system meets its performance requirements, the ability to predict
its performance under di↵erent configurations and workloads is highly valuable throughout
the system life cycle from the design phase to system operation.

At software design time, a software architect searches for a suitable assembly of compo-
nents to build a software system. Using an architecture-level performance model of the
system, the software architect can simulate di↵erent assemblies and configurations to pre-
dict the performance behavior. The predictions are not constrained to complete within
strict time bounds, but should allow qualitative comparisons of design alternatives with
high accuracy (Becker et al., 2009; Reussner et al., 2011). Furthermore, the software ar-
chitect may optimize compositions or configuration parameter settings on the model level.
At deployment time, a software deployer sizes the resource environment so that the system
on the one hand satisfies performance objectives and on the other hand does not waste re-
sources. Using a performance model, this system sizing and capacity planning step can be
facilitated. Expensive performance tests can be avoided, because di↵erent load situations
can be simulated on di↵erent resource settings.

A proactive online performance and resource management, however, aims at adapting
system configuration and resource allocations dynamically. Overload situations should be
anticipated, suitable reconfigurations should be found on the model level and triggered
before Service Level Agreements (SLAs) are violated (Thereska et al., 2005; Kounev et al.,
2010). Online performance predictions need to be conducted to answer questions such
as: What performance would a new service or application deployed on the infrastructure
exhibit and how much resources should be allocated to it? How should the workloads of the
new service/application and existing services be partitioned among the available resources
so that performance requirements are satisfied and resources are utilized e�ciently? What
would be the performance impact of adding a new component or upgrading an existing
component as services and applications evolve? If an application experiences a load spike
or a change of its workload profile, how would this a↵ect the system performance? Which
parts of the system architecture would require additional resources? What would be the
e↵ect of migrating a service or an application component from one physical server to
another? However, there is a trade-o↵ between prediction accuracy and time-to-result.
There are situations where the prediction results need to be available very fast to adapt the
system before SLAs are violated. An accurate fine-grained performance prediction comes
at the cost of higher prediction overhead and longer prediction durations. More coarse-
grained performance predictions can speed up the prediction process. Thus, in online

73

74 5. Online Prediction Techniques

scenarios, considering this trade-o↵ when conducting performance prediction is desirable.

In this chapter, we describe how to conduct performance predictions online using the per-
formance modeling abstractions described in the previous Chapter 4. Figure 5.1 provides a
high-level overview of the prediction process showing the individual steps and their inputs
and outputs.

Tailored Model Solving

Performance
Query Result

Tailored Model Composition

DML
Instance

Performance
Query

Composition
Mark Model

Parameter Dependency
Resolution & Model

Parameterization

Callstack Model Artefact

Process

Artefact

Legend:

input

output

Figure 5.1: Online Performance Prediction Process

We assume an architecture-level performance model including a usage profile model as
described in Chapter 4 to be available. The prediction process is triggered by a performance
query. A performance query specifies which performance metrics should be predicted, e.g.,
which service response times need to be predicted, if response time percentiles are requested
or average response times are su�cient, or for which resources the utilization should be
predicted. TheFurthermore, a performance query may include a specification of how to
trade-o↵ between prediction accuracy and time-to-result, indicating if the query result
needs to be available very fast at the expense of prediction accuracy or a longer prediction
process with higher overhead is acceptable.

The prediction process starts with a model composition step. The step marks those parts
of the performance model relevant for answering the query. These markings are kept
in a composition mark model which serves as input for the next step. For instance, if
a service is described with multiple service behaviors such as a fine-grained behavior, a
coarse-grained behavior, and a black-box behavior, the model composition step chooses a
description that provides adequate means to predict the requested performance metrics.
Since the model composition also takes the trade-o↵ specification of the given performance
query into account, we refer to it as tailored model composition.

Having determined those parts of the architecture-level performance model that have to
be considered for a performance prediction, the next step traverses the model starting with
the usage scenarios specified as part of the usage profile model. On the one hand, it resolves
involved parameter dependencies. On the other hand, it derives empirical characterizations
for model variables via the interface described in Section 4.1.6. The output is a call graph
with each involved model variable characterized by a random variable, represented as
callstack model. The callstack model furthermore determines how the performance model
has to be traversed for the performance prediction.

74

75

The next step is the tailored model solving step, i.e., it predicts the requested metrics
considering the given trade-o↵ specification. It uses existing model solving techniques
based on established stochastic modeling formalisms. The model solving decides which
concrete model solving technique to apply. In addition, model solving techniques also
come with their own configuration options and can also be tailored to the performance
query. Therefore, for each model solving technique and its configuration options, it is
important to understand how it a↵ects the performance prediction in terms of specific
predictable metrics, prediction accuracy, and prediction overhead.

• A fine-grained simulation can provide the best prediction accuracy but has the low-
est prediction speed compared to other solving techniques. Complex performance
metrics such as response time distributions can be provided. A simulation can be
accelerated by reducing the length of the simulation and/or the amount of collected
simulation log data to the minimum that is required to predict the requested met-
rics considering the desired prediction accuracy. For instance, in case only mean
value metrics are requested, the simulation can abstract from complex control flow
constructs such as branches or loops.

• Analytical model solvers typically have lower prediction overhead compared to sim-
ulation, but they are often restricted in terms of the predictable metrics and the as-
sumptions they make about the model input parameters. Analytical solvers such as
LQNS (Franks et al., 1996) often assume exponentially distributed service times and
request inter-arrival times (Balsamo et al., 2004), or have limited capabilities to ana-
lyze complex behavior such as blocking or simultaneous resource possession (Menasce
and Virgilio, 2000; Li et al., 2009; Gilmore et al., 2005).

As analytical solving techniques, we apply asymptotic bounds analysis (Bolch et al., 1998),
and make use of the analytical solver tool LQNS (Franks et al., 2011, 1996, 2009). A bounds
analysis can quickly provide asymptotic bounds for the average throughput and the aver-
age response time, but this comes at the cost of lower accuracy. However, the results can
still be accurate enough to make quick decisions when approximate performance results
are su�cient (Bolch et al., 1998; Menasce and Virgilio, 2000). The LQNS solver imple-
ments several analytical solving techniques such as Mean Value Analysis (MVA) (Bolch
et al., 1998) and combines the advantages of other existing analytical solvers, namely
SRVN (Woodside et al., 1995) and MOL (Rolia and Sevcik, 1995). Given that LQNS is a
solver for Layered Queueing Networks (LQNs), a transformation to LQNs has to be pro-
vided. As simulation technique, we transform the performance model to a Queueing Petri
Net (QPN) (Kounev, 2006) and simulate it using the SimQPN simulation engine (Spinner
et al., 2012). Both the transformation itself and the simulation are tailored to the given
performance query.

The results of the tailored model solving step, i.e., the predicted performance metrics, are
then returned to the query issuer.

The remainder of this chapter is organized as follows: Section 5.1 presents the tasks of
the model composition step. Section 5.2 describes how the parameter dependencies and
empirical characterizations introduced in Section 4.1.5 are handled. Section 5.3 formally
presents model solving techniques. The tailoring mechanisms balancing the trade-o↵ be-
tween prediction accuracy and prediction overhead, both for the model composition step
as well as for the model solving step, are described in Section 5.4. Section 5.5 formalizes
the notion of a performance query and introduces the Descartes Query Language (DQL),
a language to express requested performance metrics as well as the goals and constraints
in a specific prediction scenario.

75

76 5. Online Prediction Techniques

5.1 Model Composition

The usage profile model described in Section 4.3 consists of one or more ScenarioBehav-
iors. A ScenarioBehavior describes which system services are called. A system service call
translates to a service behavior abstraction that itself may refer to further service behavior
abstractions via service calls denoted as external calls. Thus, the usage profile’s Scenari-
oBehaviors determine those parts of the architecture-level performance model that have to
be considered in a given performance prediction scenario.

However, using the model abstractions described in Section 4.1.3), for one service behav-
ior there can be up to three di↵erent behavior descriptions of di↵erent granularity. A
service behavior may be described by the three abstraction levels FineGrainedBehavior,
CoarseGrainedBehavior, and BlackBoxBehavior. This ambiguity is resolved by the tailored
model composition step. The decision which service behavior should be selected depends
on the performance query, more specifically, on the specified trade-o↵ between prediction
accuracy and prediction overhead. The selected service behaviors are then marked in a
so-called composition mark model. Figure 5.2 summarizes the input and the output of the
model composition step.

Tailored Model
Composition

Architecture-Level
Performance Model

Performance Query

Composition Mark
Model

input

input

output

Figure 5.2: Input and Output of Model Composition

This section only presents the tasks of the model composition step. The tailoring mecha-
nism itself is described later in Section 5.4.

5.2 Parameter Dependency Resolution and Model Parame-
terization

The Relationships as presented in Section 4.1.5 describe the performance-relevant behavior
of a service’s implementation depending on input parameters passed directly or indirectly
upon service invocation. However, with common predictive performance models (see Sec-
tion 2.2) such as Queueing Networks (QNs) it is not possible (i) to annotate individual
requests with parameter settings, and (ii) to re-calculate influenced model parameters
such as resource demands with, e.g., arithmetic expressions. Thus, Relationships cannot
be directly translated to such modeling formalisms.

Since we want to apply model solving techniques based on established stochastic modeling
formalisms, a pre-processing step needs to be introduced. The pre-processing step has
two goals: (i) It resolves relationships between parameter dependencies. (ii) It derives
empirical characterizations for unknown model variables via the interface described in
Section 4.1.6. Starting with the usage profile model, parameter settings are propagated
across relationships. As a result, the model variables are characterized with concrete
probability distributions, obtained using empirical monitoring data, taking into account
possible influencing parameters.

5.2.1 Input and Output

The input of the pre-processing step, as depicted in Figure 5.3, is an architecture-level
performance model together with a mark model indicating which parts of the performance

76

5.2. Parameter Dependency Resolution and Model Parameterization 77

model need to be considered. The mark model stems from the preceding model composition
step.

Parameter Dependency
Resolution & Model

Parameterization

Architecture-Level
Performance Model

Composition
Mark Model

Callstack Model

input

input

output

Figure 5.3: Input and Output of the Parameter Dependency Resolution and Model Pa-
rameterization Step

The output is modeled as a callstack model in form of a typical stack frame layout (Sil-
berschatz et al., 2008). One stack frame represents one called ServiceBehaviorAbstraction.
Values for the model variables of the ServiceBehaviorAbstraction are stored as part of the
stack frame. The values are random variables characterized as concrete probability distri-
butions taking into account possible influencing parameters. The purpose of the callstack
model is twofold. On the one hand, it determines how the performance model has to be
traversed for the performance prediction. On the other hand, it provides values for the
involved model variables.

Figure 5.4 depicts the stack frame layout of the callstack model. Each called service
provided by a component instance is represented by a StackFrame. A StackFrame provides
information about the values of ModelVariables as ValueMapEntries. A ValueMapEntry
assigns a RandomVariable to a ModelVariable. In case the ValueMapEntry is related to
other ModelVariables, for each such ModelVariable there is a reference to a corresponding
ValueMapEntry of that particular ModelVariable. Furthermore, a StackFrame refers to its
predecessor StackFrame and to its successor StackFrames. For each ExternalCall, there is
one successor StackFrame.

parent

valueMap

0..*

0..*

key : ModelVariable
value : RandomVariable

ValueMapEntry

externalCall : ExternalCall
Successor

serviceBehavior : ServiceBehaviorAbstraction
instance : ComponentInstanceReference

StackFrame
0..*

successors
0..1 nextStackFramepredecessor0..1

Figure 5.4: Stackframe Model

Koziolek (2008, p.134) describes a DependencySolver that solves the explicit parameter
dependencies as they are used in Palladio Component Model (PCM). The Dependency-
Solver propagates service input parameters that are passed from a requiring service to the
provided service as well as the service output parameters that are passed from a provided
service back to the requiring service. However, in our case, using the modeling abstractions
described in Section 4.1, parameter dependency resolution involves parameter propagation
across given Relationships and finding their transitive hull, as described in the next sec-
tion. Furthermore, in our case, model variables as well as relationships can be empirically

77

78 5. Online Prediction Techniques

characterized, making it necessary to access monitoring data via the interface described in
Section 4.1.6.

5.2.2 Relationship Resolution

This section provides a description how relationships are resolved and the model is param-
eterized. The architecture-level performance model is traversed starting with the usage
profile model (see Section 4.3). For each SystemCallUserAction of a UsageScenario, the
target service’s behavior description is obtained. Given the markings of the composition
mark model, the target service behavior is always unambiguous. Then, for a service behav-
ior model, all containing ModelVariables are processed, i.e., values of the ModelVariables
are determined taking Relationships into account. If a service behavior model contains
calls to other services, i.e., ExternalCalls, their target services are traversed as well. While
traversing the architecture-level performance model, the callstack output model is filled
accordingly.

Before describing the process in detail, we use the running example of Chapter 4 to illus-
trate the inputs and outputs, tasks and challenges. The usage profile model instance is
depicted in Figure 4.35, calling two services listArticles and viewArticleDetails. Assume the
requested metrics of the given performance query are the average response times for the
two services as well as the average CPU utilization of the application server and database
server as they are shown in the deployment in Figure 4.33. Figure 4.22 shows parameter
dependencies in the context of service listArticles, propagating parameter pagenumber of
service listArticles to model variable BranchingProbabilities of the service behavior of ser-
vice getArticlePreviewImage (see Figure 4.20 for the fine-grained behavior description of
service getArticlePreviewImage). Model variable BranchingProbabilities indicates whether a
database query is issued or not. The parameter dependency is modeled using a Dependen-
cyProgagationRelationship between parameter pagenumber and a ShadowParameter named
article access frequency, and a DependencyRelationship between the ShadowParameter and
model variable BranchingProbabilities.

In this example, the pre-processing step of parameter dependency resolution and model
parameterization has to do the following:

• In order to make a performance prediction, values for involved ControlFlowVariables,
ResourceDemands or ResponseTimes need to be available. Thus, such model variables
need to be characterized for all involved service behaviors. Characterizing a model
variable means obtaining a random variable via interface IApplicationLevelMonitor
(see Section 4.1.6) if the variable’s characterization type is modeled as EMPIRICAL,
or calculating the random variable from the stochastic expression that is attached to
the variable if the variable’s characterization type is modeled as EXPLICIT.

In the example, this includes the fine-grained behavior of service listArticles (see
Figure 4.21), the fine-grained behavior of service getArticlePreviewImage (see Fig-
ure 4.20), as well as behavior descriptions for services issueNamedQuery previewImage
and viewArticleDetails. Note that for the latter two services, illustrations of their be-
havior descriptions are not provided.

• In case a model variable is modeled to be dependent on an influencing parameter
via relationships, the parameter dependency should be considered, i.e., the random
variable characterizing the model variable should reflect a conditional probability
distribution. If the dependency cannot be resolved, as a fallback the model variable
can still be characterized without considering the dependency. The method getChar-
acterizationForParameterDependency of interface IApplicationLevelMonitor is called
to obtain a conditional probability distribution, while the method getCharacteriza-
tionForModelVariable is used in the fallback case.

78

5.2. Parameter Dependency Resolution and Model Parameterization 79

In the example, the DependencyRelationship and the DependencyPropagationRelation-
ship need to be transitively resolved to reveal the dependency between input pa-
rameter pagenumber of service listArticles and the BranchingProbabilities of service
getArticlePreviewImage. In the usage profile model, the value of the pagenumber pa-
rameter of the listArticles service is parameterized using a Probability Mass Function
(PMF). With a probability of 0.5 each, either the first page or the second page is
requested. The characterization of the BranchingProbabilities should thus be a con-
ditional probability distribution, taking the information about the pagenumber into
account. As shown in Figure 4.29, for a small pagenumber, the probability of a cache
access is much higher than for a large pagenumber.

Algorithm 1 to Algorithm 5 describe the process in pseudocode. Note that we use the
expression propertyname(inst) to denote property propertyname of a type instance inst.
In case the property has multiplicity > 1, propertyname(inst) evaluates to a set. For
example, let f be an instance of type StackFrame, then expression valueMap(f) ;
means that an empty set is assigned to property valueMap of f .

5.2.2.1 Model Traversal

First, we describe how the architecture-level performance model is traversed and stack
frames of the callstack model are created.

We start with the traversal of a UsageScenario’s user actions. Method Solve in Algorithm 1
is called whenever a SystemCallUserAction is reached. The method has a SystemCallUserAc-
tion as input parameter. For the system call, first the target service behavior is obtained,
then the parameter settings are processed: Each CallParameterSetting of the SystemCal-
lUserAction translates into a value map entry of the stack frame that is initialized for the
target service. In other words, method Solve prepares a stack frame for the next service
behavior and injects parameter settings as they are specified in the usage scenario. After-
wards, the model traversal proceeds with traversing the target service behavior by calling
the method described in Algorithm 2.

1 Solve(sc : SystemCallUserAction)
2 begin
3 t target service behavior abstraction for sc
4 f initialize new stack frame for t
5 foreach call parameter setting s of sc do
6 p influencing parameter referenced by sc and s
7 e new value map entry e with
8 key(e) p and value(e) value(s)
9 parent(e) ;

10 valueMap(f) valueMap(f) [{e}
11 end
12 Solve(t, f)
13 return f

14 end

Algorithm 1: Traversal Starting with SystemCallUserAction

Algorithm 2 shows method Solve with a ServiceBehaviorAbstraction and its corresponding
stack frame as input. The ServiceBehaviorAbstraction is processed in two steps. First,
the model variables are processed. Then, calls to external services (i.e., ExternalCalls) are
followed. For each call to an external service, the target service behavior is obtained and
its stack frame is initialized as successor. Note that the traversal is independent of the

79

80 5. Online Prediction Techniques

component-internal control flow of the ServiceBehaviorAbstraction. Even if an external call
is modeled within a loop of a FineGrainedBehavior description, the external call is processed
only once.

1 Solve(sb : ServiceBehaviorAbstraction, f : StackFrame)
2 begin
3 ProcessModelVariables(sb, f)
4 foreach external call e in sb do
5 t target service behavior abstraction for e
6 f 0 initialize new stack frame for t
7 predecessor(f 0) f
8 s new successor s with
9 externalCall(s) e and nextStackFrame(s) f 0

10 successor(f) successor(f) [{s}
11 Solve(t, f 0)

12 end
13 return f

14 end

Algorithm 2: Traversal of ServiceBehaviorAbstractions

5.2.2.2 Processing Model Variables

Processing the model variables of a service behavior means obtaining values for the model
variables and storing them in the corresponding stack frame. Relationships between model
variables need to be resolved and empirical characterizations for the model variables need
to be derived. As a result, the values of the model variables are characterized with concrete
probability distributions taking into account possible influencing parameters.

The processing of model variables is described in Algorithm 3. Method ProcessModel-
Variables has a service behavior and a corresponding stack frame as input. The method
processes all model variables that are located in the given service behavior. For each model
variable, the method obtains a value and creates a corresponding value map entry in the
given stack frame, unless there is already a corresponding value map entry in the stack
frame available.

For each InfluencingParameter p, the method searches for the set of dependency propa-
gation relationships that refer to p as dependent parameter. This set is then processed
by method ProcessModelVariableWithRelationships, using the model variable p, the set of
referring relationships, the stack frame of the current service behavior, and a boolean flag
nullValuesAllowed, as input. Setting the boolean flag to TRUE indicates that null values
are allowed for p (see Algorithm 4). Note that an InfluencingParameter may have a null
value when triggering a performance prediction which is in contrast to ControlFlowVari-
ables, ResourceDemands or ResponseTimes (see Figure 4.18).

For each InfluencedVariableReference v, the method ProcessModelVariables searches for the
set of dependency relationships that refer to v as dependent variable. The model variable
v is referring to is then also processed by method ProcessModelVariableWithRelationships.
This time, the boolean argument is set to FALSE indicating that null values are not
allowed since v can only point to a ControlFlowVariable, ResourceDemand or ResponseTime
(see Figure 4.23).

Having processed all model variables that are dependent variables of Relationships, the
remaining model variables of the given service behavior are then processed. The value

80

5.2. Parameter Dependency Resolution and Model Parameterization 81

1 ProcessModelVariables(sb : ServiceBehaviorAbstraction, f : StackFrame)
2 begin
3 foreach influencing parameter p in sb do
4 if value map entry e in f with
5 key(e) = p and value(e) 6= NULL already exists then
6 break
7 end
8 R all dependency propagation relationships
9 with p as dependent parameter

10 ProcessModelVariableWithRelationships(p, f,R,TRUE)

11 end
12 foreach influenced variable reference v in sb do
13 m referencedModelVariable(v)
14 if value map entry e in f with
15 key(e) = m and value(e) 6= NULL already exists then
16 break
17 end
18 R all dependency relationships with v as dependent variable
19 ProcessModelVariableWithRelationships(m, f,R,FALSE)

20 end
21 foreach model variable m in sb not yet processed do
22 if value map entry e in f with
23 key(e) = m and value(e) 6= NULL already exists then
24 break
25 end
26 e new value map entry e with key(e) m
27 if characterization(m) = EMPIRICAL then
28 value(e) getCharacterizationForModelVariable(m)
29 else
30 value(e) description(explicitDescription(m))
31 end
32 parent(e) ;
33 valueMap(f) valueMap(f) [{e}
34 end

35 end

Algorithm 3: Processing the ModelVariables of a ServiceBehaviorAbstraction

81

82 5. Online Prediction Techniques

for such a model variable is obtained using monitoring method getCharacterizationFor-
ModelVariable introduced in Section 4.1.6, if the model variable’s characterization type is
EMPIRICAL. If the characterization type is modeled as EXPLICIT, the value is read from
the ExplicitDescription attached to the model variable. Note that the value of a model
variable m is assumed to be always available via the monitoring interface if m is a resource
demand, a response time or a control flow variable, characterized as EMPIRICAL. If m is
an InfluencingParameter, the monitoring interface can return NULL, see Section 4.1.6 for
more details.

As a result of method ProcessModelVariables, for each model variable contained in the
given service behavior there is a value map entry in the given stack frame.

For the sake of simplicity, we omitted information about component instances in the pseu-
docode representations of the algorithms. However, as depicted in Figure 5.4, each Stack-
Frame has a property instance that represents the current component instance.

Algorithm 4 describes method ProcessModelVariableWithRelationships. It has four input
parameters: a model variable m, a stack frame, a set of relationships that refer to m as
dependent variable, and a flag indicating if it is allowed to assign null values to model
variable m or not. The method obtains a value for the given model variable m, taking the
relationships R that may influence m into account. Relationships whose characterizations
are modeled as EXPLICIT take precedence over relationships whose characterizations are
modeled as EMPIRICAL (see Section 4.1.5). Furthermore, at most one relationship with
characterization EXPLICIT is allowed for a model variable.

Starting with a relationship of EXPLICIT characterization if available, method ProcessMod-
elVariableWithRelationships looks for values of the relationship’s influencing parameters
(denoted as independent parameters). This lookup is done in the value map entries of
the given stack frame and its predecessors. If the lookup is successful, the resulting value
of model variable m is calculated. The calculation of arithmetic operations on the ran-
dom variables translates to convolutions of the probability distributions, for details we
refer to Koziolek (2008, Section 3.3.6). Having calculated the result, a new value map
entry e for m is created. Furthermore, property parent is set: each independent variable
of the relationship is added to e as parent. Since only one relationship with EXPLICIT
characterization is allowed, the method returns when a value map entry has been created.

In case there is no relationship of characterization EXPLICIT or no result could be calcu-
lated for such a relationship, the method processes relationships with EMPIRICAL char-
acterization. First, it collects all independent parameters of all EMPIRICAL relationships.
Then, it obtains value map entries for such parameters from the given stack frame and
its predecessors. For this set of value map entries, method ResolveNullValuesTransitively
is called. For value map entries with a null value, this method traces back existing de-
pendency propagation relationships in order to search for independent parameters where
non-null values are available. The method is described in Algorithm 5 and explained in
detail later.

Using the result set T 0 of method ResolveNullValuesTransitively, method getCharacter-
izationForParameterDependency (see Section 4.1.6) is called to get a value for model
variable m. We use the notation getCharacterizationForParameterDependency(T 0,m) to
denote a call to getCharacterizationForParameterDependency where m is the dependent
variable and value map entries T 0 represent the set of independent parameters together
with their independent values. If this is not successful, the result is NULL. This means,
that no relationship between the influencing parameters and m can be monitored. If the
result is NULL and the method input parameter nullValuesAllowed is FALSE, the value
for m is obtained using method getCharacterizationForModelVariable, i.e., without consid-
ering any influencing parameters. The value for m is then stored in a new value map entry

82

5.2. Parameter Dependency Resolution and Model Parameterization 83

1 ProcessModelVariableWithRelationships(
2 m : ModelVariable, f : StackFrame,
3 R : Set(Relationship),nullValuesAllowed : Boolean)
4 begin
5 foreach r 2 R with characterization(r) = EXPLICIT do
6 T value map entries of influencing parameters independent(r)
7 in the stack frame of f and its predecessors
8 if T 6= ; then
9 res Calculate(r, T)

10 e new value map entry e with
11 key(e) m and value(e) res
12 parent(e) T
13 valueMap(f) valueMap(f) [{e}
14 return

15 end

16 end

17 R
emp

 { r 2 R with characterization(r) = EMPIRICAL }
18 if R

emp

6= ; then
19 S

S
r2Remp

independent(r)

20 T value map entries of influencing parameters S
21 in the stack frame of f and its predecessors
22 T 0 ResolveNullValuesTransitively(T)
23 res getCharacterizationForParameterDependency(T 0,m)
24 // result may be NULL, meaning that no relationship can be

found to characterize the model variable

25 V = ;
26 if nullValuesAllowed = FALSE and res = NULL then
27 // fallback: try characterization without any relationship

28 res getCharacterizationForModelVariable(m)

29 else
30 V T 0

31 end
32 e new value map entry e with
33 key(e) m and value(e) res
34 parent(e) V
35 valueMap(f) valueMap(f) [{e}
36 end

37 end

Algorithm 4: Processing a ModelVariable with Relationships

83

84 5. Online Prediction Techniques

whose parent attribute is set accordingly, i.e., set to an empty set if m has been character-
ized without influencing parameters, or set to the value map entries T 0 if the value for m
was successfully obtained using method getCharacterizationForParameterDependency.

After method ProcessModelVariableWithRelationships has been executed, the following
postcondition holds: For the given model variable m there is now one value map entry
e in the given stack frame. The parent property of e is initialized, but may refer to an
empty set. Note that Algorithm 4 does not consider characterization type IDENTITY for
relationships. This characterization type is a simple special case of characterization type
EXPLICIT and therefore omitted.

In the following, we describe method ResolveNullValuesTransitively shown in Algorithm 5.
As mentioned above, for value map entries with a null value, this method traces back ex-
isting dependency propagation relationships in order to search for independent parameters
where non-null values are available.

1 ResolveNullValuesTransitively(C : Set(ValueMapEntry))
2 begin
3 T C
4 while true do
5 if ¬9t 2 T : (value(t) = NULL) then
6 return T
7 else
8 D ;
9 A ;

10 foreach t 2 T with value(t) = NULL do
11 D D [{t}
12 /* ValueMapEntries with value = NULL stem only from

DependencyPropagationRelationships with EMPIRICAL

characterization. Jump to their origin and check if

the origin has a non-null value. */

13 A A [parent(t)

14 end
15 T (T \D) [A
16 if A = ; then
17 return T

18 end

19 end

20 end

21 end

Algorithm 5: Traversal of Relationships with EMPIRICAL Characterization

The method starts with an initialization of helper set T with method input parameter V
which is a set of value map entries. A loop follows. In case the helper set contains only
non-null value map entries, the loop terminates and the helper set is returned as result.
Otherwise, each value map entry t 2 T with value NULL is removed from T and each
value map entry in parent(t) is added to T . If no value map entry is added to T , the loop
terminates and T is returned as result.

The loop always terminates because cycles of relationships are not allowed (see Sec-
tion 4.1.5.3). The loop terminates at the latest if T contains value map entries of all
InfluencingParameters whose number is finite. Then, a loop iteration cannot add more
value map entries to T and the loop termination condition in line 16 of Algorithm 5 holds.

84

5.2. Parameter Dependency Resolution and Model Parameterization 85

5.2.2.3 Example

The following example illustrates how relationships are resolved and how model variable
characterizations are obtained. Figure 5.5 shows three components with influencing param-
eters and several relationships. Component instance A provides a service a with influencing
parameters a1 and a2. It requires two component external services namely service b with
influencing parameter b1 and service c with influencing parameter c1, provided by com-
ponent instances B and C, respectively. B again requires service c with parameter c1. The
service behavior model of service c contains an influenced variable referring to a resource
demand rd. Note that the service behavior models for the provided services are omitted
in the diagram. We denote the service behaviors in the following as sba a,sba b and sba c
for service a, b and c.

C
A

B

Required service:
c(c1)

Refers to resource demand:
rd

Required services:
b(b1)
c(c1)

Provided service:
c(c1)

Provided service:
a(a1,a2)

InfluencingParameter

InfluencedVariableReference

DependencyRelationshipsource destination

DependencyProgagationRelationshipsource destination

Notation:

Figure 5.5: Example: Dependency Relationship Solving

The figure furthermore shows how the influencing parameters are connected with each
other. There are dependency propagation relationships between a1 and b1, b1 and c1 as
well as between a2 and c1. There is a dependency relationship between c1 and the influ-
enced variable reference that refers to rd. We assume that all mentioned relationships are
characterized as EMPIRICAL. For the meta-model of relationships between model variables
and their characterization, see Section 4.1.5.3.

For the pre-processing, we assume there is a call to service a that injects a value x for
influencing parameter a1. Furthermore, we assume that monitoring method getCharacter-
izationForModelVariable provides characterizations for resource demands, response times
and control flow variables. Otherwise, a performance prediction would not be possible.
For influencing parameters it returns NULL.

In the following, it is described how value x of parameter a1 is propagated through the
components in order to obtain a value for resource demand rd depending on value x.
The process is described by showing the output model step-by-step. The output model
is a callstack, an instance of the meta-model shown in Figure 5.4. We illustrate stack
frame instances using the notation depicted in Figure 5.6. A StackFrame is shown as a
box consisting of three compartments: (i) The lower compartment shows the value of
property serviceBehavior of a modelStackFrame, (ii) the compartment in the middle shows
the ValueMapEntries belonging to a StackFrame, and (iii) the upper compartment shows
the Successors of a StackFrame. Associations from a Successor to another StackFrame as

85

86 5. Online Prediction Techniques

serviceBehavior=servBehav1
key=mv1, value=randomVar1
key=mv2, value=randomVar2

externalCall=extCall1
externalCall=extCall2

serviceBehavior=servBehav2
key=mv3, value=randomVar3

externalCall=extCall3

serviceBehavior=servBehav3

successors

valueMap

. . .

nextStackFrame

<<ValueMapEntry>>

parent

<<Successor>>

<<StackFrame>>

Figure 5.6: Notation for Stack Frame Instances

well as associations from a ValueMapEntry to another ValueMapEntry are shown as arrows
referring to the corresponding StackFrame respectively ValueMapEntry.

Figure 5.7 shows the process of parameter dependency resolution and model parameter-
ization in six steps. The process is invoked by calling method Solve of Algorithm 2 for
sba a with a stack frame as parameter that contains an injected value map entry for a1.

• Figure 5.7a shows the result when all model variables of sba a have been processed.
The value of influencing parameter a1 is assumed to be x. The value of influencing pa-
rameter a2 is obtained using method call getCharacterizationForModelVariable(a2)
which returns NULL. Then, the first external call in sba a leads to an invocation of
method Solve for sba b.

• Figure 5.7b shows the result when all model variables of sba b have been pro-
cessed. The value of influencing parameter b1 is tried to be resolved using the
relationship between a1 and b1, but method call getCharacterizationForParameter-
Dependency({a1 = x}, b1), where {a1 = x} represents the value map entry for a1
in the first stack frame, returns NULL. Then, the external call in sba b leads to an
invocation of method Solve for sba c.

• Figure 5.7c shows the stack frames when influencing parameter c1 has been pro-
cessed. Note that there are two relationships pointing to c1. The independent
parameters of the two relationships between a2 and c1 as well as b1 and c1 both
have the value NULL, however, method ResolveNullValuesTransitively finds out that
the value map entry for b1 refers to a parent value map entry with a non-null value.
Given that the involved relationships are marked as empirically characterized, c1 and
a1 are considered to be related. The value for c1 is tried to be obtained by calling
getCharacterizationForParameterDependency({a1 = x}, c1) which returns NULL.

• Figure 5.7d shows the stack frame state when model variable rd has been processed.
Following the relation between rd and c1, and between the value map entries of c1
and a1, the value for rd is tried to be obtained with getCharacterizationForParame-
terDependency({a1 = x}, rd). This time, the function evaluates to y which is stored
as value in the third stack frame.

Having all model variables in sba c processed, the methods Solve for sba c and Solve for
sba b end. Thus, the external call in service behavior sba a to service b is processed, too.
However, method Solve for sba a has another external call to service c which is processed

86

5.2. Parameter Dependency Resolution and Model Parameterization 87

Step Calls to Interface IApplicationLevelMonitor Result
1 getCharacterizationForModelVariable(a2) NULL
2 getCharacterizationForParameterDependency({a1 = x}, b1) NULL
3 getCharacterizationForParameterDependency({a1 = x}, c1) NULL
4 getCharacterizationForParameterDependency({a1 = x}, rd) y
5 getCharacterizationForModelVariable(c1) NULL
6 getCharacterizationForModelVariable(rd) y0

Table 5.1: Example: Calls to Monitoring Infrastructure

afterwards. Therefore, a new stack frame is created and method Solve is called for service
behavior sba c. Note that there are now two stack frames for sba c, one stack frame for
each call path to service c.

• Figure 5.7e shows the stack frames when influencing parameter c1 has been pro-
cessed in the second stack frame of service behavior sba c. Since the value map
entry of a2 and all of its parents have a NULL value, the value for c1 is ob-
tained using getCharacterizationForParameterDependency({}, c1) which is equiva-
lent to getCharacterizationForModelVariable(c1) and evaluates to NULL.

• Figure 5.7f shows the state when model variable rd has been processed. This time, the
value for rd is obtained using getCharacterizationForParameterDependency({}, rd) =
getCharacterizationForModelVariable(rd) which evaluates to y0.

Note that model variable rd has two values, depending on the call path. For the call path
from sba a to sba b to sba c, the relationships with empirical characterization are tran-
sitively resolved which results in the value y = getCharacterizationForParameterDepen-
dency(rd, {a1 = x}), where y is the conditional probability distribution for rd depending
on value x. For the call path from sba a to sba c, no relationships can be used for a char-
acterization, and thus the fallback value y0 = getCharacterizationForModelVariable(rd) is
used.

Overall, the algorithm issues a list of calls to the monitoring infrastructure via interface
IApplicationLevelMonitor as shown in Table 5.1. The monitoring infrastructure thus returns
only values for requests where resource demand rd is involved. The other way round, if
a value for a1 is injected and the solving algorithm is triggered, the monitoring infras-
tructure can notice that the only parameter dependencies that need to be monitored are
the parameter dependencies where the dependent variable is either a resource demand,
a response time, or a control flow variable. In the example, there is such a parameter
dependency between rd and a1. Thus, to determine the relevant parameter dependencies,
the monitoring infrastructure does not need to search the model instance for relationships
itself, it is the solving algorithm that can be used to obtain the relevant parameter depen-
dencies that need to be observed. This approach is used later in Chapter 6, where it is
described how model parameters as well as parameter dependencies are monitored.

5.2.3 Complexity

In the following, we estimate the complexity of the described algorithms in Big-O-Notation.

Method ResolveNullValuesTransitively in Algorithm 5 has a complexity of

O(ResolveNullValuesTransitively) = totalN
inflP

,

since in the worst case the loop may iterate until the result set equals to the total number
of influencing parameters totalN

inflP

in the model instance.

87

88 5. Online Prediction Techniques

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL

(a) Step 1

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL
externalCall=b

serviceBehavior=sba_b
key=b1, value=NULL

(b) Step 2

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL
externalCall=b

serviceBehavior=sba_b
key=b1, value=NULL

externalCall=c

serviceBehavior=sba_c
key=c1, value=NULL

(c) Step 3

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL
externalCall=b

serviceBehavior=sba_b
key=b1, value=NULL

externalCall=c

serviceBehavior=sba_c
key=c1, value=NULL

key=rd, value=Monitoring(rd,{a1=x})

(d) Step 4

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL
externalCall=b
externalCall=c

serviceBehavior=sba_b
key=b1, value=NULL

externalCall=c

serviceBehavior=sba_c
key=c1, value=NULL

key=rd, value=Monitoring(rd,{a1=x})

serviceBehavior=sba_c
key=c1, value=NULL

(e) Step 5

serviceBehavior=sba_a
key=a1, value=x

key=a2, value=NULL
externalCall=b
externalCall=c

serviceBehavior=sba_b
key=b1, value=NULL

externalCall=c

serviceBehavior=sba_c
key=c1, value=NULL

key=rd, value=Monitoring(rd,{a1=x})

serviceBehavior=sba_c
key=c1, value=NULL

key=rd, value=Monitoring(rd,{})

(f) Step 6

Figure 5.7: Example: Resolution of Relationships Step-By-Step

88

5.2. Parameter Dependency Resolution and Model Parameterization 89

Method ProcessModelVariableWithRelationships in Algorithm 4 consists of two parts. The
first part deals with relationships with characterization EXPLICIT, the second part deals
with relationships with characterization EMPIRICAL. In both parts, the number of influ-
encing parameters that are independent parameters of the processed relationships have an
influence on the part’s complexity. Obviously, this number is bounded by the total number
of influencing parameters TotalN

inflP

. For each influencing parameter, the corresponding
value map entry has to be found in the path of stack frames whose maximum length is
denoted as maxlength

callpath

. For the first part, recall that at most one explicitly charac-
terized relationship may point to a designated model variable, the worst-case complexity
is then given by

totalN
inflP

⇤maxlength
callpath

+O(Calculate(totalN
inflP

)),

where O(Calculate(totalN
inflP

)) = totalN
inflP

⇤O(klog(k)) and O(klog(k)) is the complexity
for a discrete convolution using Fast Fourier transformation, where k is “the number of
sampling points in the involved distribution function” (Koziolek, 2008, p.141). For the
second part, the worst-case complexity is given by

totalN
inflP

⇤maxlength
callpath

+O(ResolveNullValuesTransitively)
+O(getCharacterizationForParameterDependency(totalN

inflP

)).

Thus, for one method call ProcessModelVariableWithRelationships, the worst-case com-
plexity is

totalN
inflP

⇤ (2 ⇤maxlength
callpath

+O(klog(k)) + 1)
+O(getCharacterizationForParameterDependency(totalN

inflP

)).

Assuming that k � maxlength
callpath

, we can simplify the expression in Big-O-Notation to

totalN
inflP

⇤O(klog(k)) +O(getCharacterizationForParameterDependency(totalN
inflP

)),

in other words, the complexity is dominated by the calculation and the monitoring data
access to obtain the resulting value dependent on multiple influencing parameters.

For one method call ProcessModelVariables (see Algorithm 3), an upper bound for the
complexity is

totalN
inflP

⇤ (totalN
rel

+O(ProcessModelVariableWithRelationships)) + totalN
mv

where totalN
mv

is the total number of model variables and totalN
rel

the total number of
relationships.

Method ProcessModelVariables is called whenever method Solve is invoked on a service be-
havior abstraction. A minimal bound for the number of Solve invocations is totalN

extCall

,
the total number of external calls. The upper bound is theoretically of exponential com-
plexity, because the number of call paths can be of exponential complexity. Assume an
artificial example that consists of concatenations of the component compositions depicted
in Figure 5.5, i.e., there are several component triples A

i

, B
i

, C
i

connected like the com-
ponents A,B,C; and C

i

is connected to A
i+1

via an external call. Then the number of
call paths is in O(2totalNextCall) because each component triple has two di↵erent paths from
A

i

to C
i

, namely A
i

to B
i

to C
i

as well as A
i

directly to C
i

. However, note that this is
an artificial example. In our case studies in Chapter 7, paths in component compositions
were typically unique, leading to a linear dependency between the number of external calls
and calls to method Solve.

89

90 5. Online Prediction Techniques

5.3 Model Solving

The tailored model solving step shown in Figure 5.1 uses existing model solving techniques
based on established modeling formalisms. In this section, the focus is on the model solving
techniques. The tailoring mechanisms are described in Section 5.4.

There are basically two types of model solving techniques, namely simulative and ana-
lytical solving. A simulation can provide the best prediction accuracy but has the lowest
prediction speed compared to other solving techniques. Complex performance metrics such
as response time distributions can be provided. Analytical model solvers typically have
lower prediction overhead compared to simulation, but they are often restricted in terms of
predictable performance metrics and also model input parameters. Analytical solvers such
as LQNS (Franks et al., 1996) are often restricted to exponentially distributed resource
demands, delays and inter-arrival times (Balsamo et al., 2004), or have limited capabilities
to analyze blocking behavior or simultaneous resource possession (Menasce and Virgilio,
2000; Woodside et al., 2006; Gilmore et al., 2005). Since in our context, model variables
are typically characterized with empirical distributions obtained from monitoring data,
the assumptions of exponentially distributed service times and inter-arrival times often do
not hold. However, analytical solving techniques using exponential distributions instead
of empirical distributions can still provide approximate results.

As simulation technique, we transform a Descartes Modeling Language (DML) instance
to a QPN (Bause, 1993) and simulate it using the simulation engine SimQPN (Kounev
and Buchmann, 2006) (see Section 5.3.3). QPNs have been used successfully to model
several di↵erent classes of distributed systems (Kounev, 2006; Kounev et al., 2011, 2008;
Nou et al., 2009). SimQPN is an established simulator for QPNs (Kounev and Buchmann,
2006; Spinner et al., 2012) that provides fine-grained options to control what type and
amount of data is logged during the simulation run. The more data is logged, the longer
the simulation run takes. Hence, the logging configuration can be used to tailor the
simulation to the given performance query.

As analytical solving technique, we make use of the established analytical solver tool
LQNS (Franks et al., 2011, 1996, 2009). The LQNS solver implements several analytical
solving techniques such as MVA (Bolch et al., 1998) and combines the advantages of other
existing solvers, namely SRVN (Woodside et al., 1995) and MOL (Rolia and Sevcik, 1995).
Given that LQNS is a solver for LQNs, transformations from DML instances to LQNs have
to be provided.

Furthermore, we apply an analytical solving technique called asymptotic bounds analy-
sis (Bolch et al., 1998) (see Section 5.3.1). Bounds analysis is fast because it works with
several approximations that cause inaccuracies, however, it can be good enough to make
quick decisions, when approximative performance results are su�cient (Menascé et al.,
1994; Bolch et al., 1998; Menascé et al., 2004b).

5.3.1 Transformation to Queueing Petri Nets

5.3.1.1 Queueing Petri Nets

Queueing Petri Nets (QPNs) can be seen as a combination of a number of di↵erent exten-
sions to conventional Petri Nets (PNs) along several di↵erent dimensions. In this section,
we briefly discuss how QPNs have evolved from PNs. A more detailed discussion including
formal definitions can be found in Bause (1993).

An ordinary PN is a bipartite directed graph composed of places, drawn as circles, and
transitions, drawn as bars (Bause and Kritzinger, 2002). Di↵erent extensions to ordinary

90

5.3. Model Solving 91

PNs have been developed in order to increase the modeling convenience and/or the mod-
eling power. Colored PNs (CPNs) allow a type (color) to be attached to a token. A color
function assigns a set of colors to each place, specifying the types of tokens that can reside
in the place. In addition to introducing token colors, CPNs also allow transitions to fire
in di↵erent modes (transition colors).

Other extensions to ordinary PNs allow temporal (timing) aspects to be integrated into
the net description. In particular, Stochastic Petri Nets (SPNs) attach an exponentially
distributed firing delay to each transition, which specifies the time the transition waits
after being enabled before it fires. Generalized Stochastic PNs (GSPNs) allow two types
of transitions to be used: immediate and timed. Once enabled, immediate transitions
fire in zero time. If several immediate transitions are enabled at the same time, the
next transition to fire is chosen based on firing weights (probabilities) assigned to the
transitions. Timed transitions fire after a random exponentially distributed firing delay as
in the case of SPNs. The firing of immediate transitions always has priority over that of
timed transitions. Combining CPNs and GSPNs leads to Colored GSPNs (CGSPNs).

While CGSPNs have proven to be a very powerful modeling formalism, they do not provide
any means for direct representation of queueing disciplines (scheduling strategies). The
attempts to eliminate this disadvantage have led to the emergence of QPNs which add
queueing and timing aspects to the places of CGSPNs. This is done by allowing queues
(service stations) to be integrated into places of CGSPNs. A place of a CGSPN that has
an integrated queue is called a queueing place and consists of two components, the queue
and a depository for tokens which have completed their service at the queue. The queue is
defined by its scheduling strategy, number of servers and service time distribution where
the latter can be specified on a per token color basis.

The behavior of the net is as follows: tokens, when fired into a queueing place by any
of its input transitions, are inserted into the queue according to the queue’s scheduling
strategy. The time tokens spend in the queue includes the time spent waiting for service
and the time receiving service which depends on the queue’s service time distribution.
While residing in the queue, tokens are not available for output transitions of the queueing
place. After completion of its service at the queue, a token is immediately moved to the
depository, where it becomes available for output transitions of the place. This type of
queueing place is called timed queueing place.

In addition to timed queueing places, QPNs also introduce immediate queueing places,
which allow pure scheduling aspects to be described. Tokens in immediate queueing places
can be viewed as being served immediately. The rest of the net behaves like a normal
CGSPN. QPNs also support so-called subnet places that contain nested QPNs. Figure 5.8
shows the notation used for ordinary places, queueing places, and subnet places.

We use the following formal definition of QPNs which is based on Bause (1993); Kounev
and Buchmann (2006). For this definition of QPNs, with the Queueing Petri Net Model-
ing Environment (QPME) tool chain (Spinner et al., 2012) there is mature tool support
available. Note that we omit the concept of timed transitions, because timed transitions
can be replaced with immediate transitions and immediate queueing places.

Definition. A QPN is an eight-tuple (P, T,C,Q, F, I,D,W) where:

1. P = {p
1

, . . . , p
k

} is a finite set of places.

2. T = {t
1

, . . . , t
l

} is a finite set of transitions, P \ T = ;.

3. C = {c
1

, . . . , c
m

} is a finite set of colors.

4. Q = {q
1

, . . . , q
n

} is a finite set of queues.

91

92 5. Online Prediction Techniques

Queueing Place Subnet Place

Queue Depository

Ordinary Place

Nested QPN

cc c c c c

Timed
Transition

Multiple tokens
of color ‘c’

c
c c

Immediate
Transition

Figure 5.8: QPN Notation (Meier et al., 2011)

5. F = (F
M

, F
C

, F 0

C

) where

• F
C

2 [P ! P(C)]1 is a function that assigns a set of colors to each place,

• F
M

is a function that assigns a finite set of modes M
t

to each transition t 2 T ,
i.e., 8t 2 T : F

M

(t) = M
t

= {m
t,1

, . . . ,m
t,tn}. Each mode is assigned to a

unique transition, i.e., 8t
i

, t
j

: t
i

6= t
j

=) F
M

(t
i

) \ F
M

(t
j

) = ;,

• F 0

C

is a function defined on P describing the initial marking,
such that F 0

C

(p) 2 F
C

(p)
MS

2.

6. I = (I�, I+) where I� and I+ are the backward and forward incidence functions
defined on P ⇥ T ,
such that I�(p, t), I+(p, t) 2 [F

M

(t)! F
C

(p)
MS

], 8(p, t) 2 P ⇥ T .

7. D = (Q̃
1

, Q̃
2

, Q̃
P

, D
Q

) where

• Q̃
1

✓ P is the set of timed queueing places,

• Q̃
2

✓ P is the set of immediate queueing places, Q̃
1

\ Q̃
2

= ;,

• Q̃
P

2 [Q̃
1

[Q̃
2

! Q] is a function that assigns a queue to a queueing place p,

• D
Q

is a function that assigns a queue description3 to a queue q 2 Q. The
queue description D

Q

(q) has to take all colors F
C

(p) into consideration where
Q̃

P

(p) = q. In the following, we use the expression (D
Q

(q))(demand(c)) to
denote the service demand for tokens of color c for queue q 2 Q.

8. W is a function on T that assigns each transition tinT a function W (t) 2 [F
M

(t)!
R+] such that 8m 2 F

M

(t) : (W (t))(m) 2 R+ is interpreted as a firing weight
specifying the relative firing frequency of mode m in transition t.

Queueing places are normally used to model system resources, e.g., CPUs, disk drives, or
network links. Tokens in the QPN are used to model requests or transactions processed
by the system. Arriving tokens at a queueing place are first served at the queue and then

1P denotes power sets. P(C) denotes the set of all subsets of C.

2
The subscript MS denotes multisets. FC(p)MS denotes the set of all finite multisets of FC(p).

3
In the most general definition of QPNs, queues are defined in a very generic way allowing the specification

of arbitrarily complex scheduling strategies taking into account the state of both the queue and the

depository of the queueing place (Bause, 1993). We use conventional queues as defined in queueing

network theory (Bolch et al., 1998).

92

5.3. Model Solving 93

Model Transformation

Architecture-Level
Performance Model

Callstack Model

QPN Model

input

input

output

Figure 5.9: Input and Output of Transformation to QPNs

they become available for firing of output transitions. When a transition fires it removes
tokens from some places and creates tokens at others. Usually, tokens are moved between
places representing the flow-of-control during transaction processing. QPNs have been
used successfully to model several di↵erent classes of distributed systems (Kounev, 2006;
Kounev et al., 2011, 2008; Nou et al., 2009).

5.3.1.2 Transformation

In this section, we describe how we transform the service behavior models presented in
Chapter 4 to QPNs. As shown in Figure 5.9, the input of the transformation is the
architecture-level performance model itself and the callstack model, which is the output
of the pre-processing step described in Section 5.2. The callstack model indicates the
sequence of service behaviors together with values of contained model variables. Here, we
first describe the transformation. The tailoring strategy is described later in Section 5.4.

The transformation starts with the usage profile model (see Section 4.3) and then traverses
the application architecture guided by the callstack model.

• For each UsageScenario the transformation traverses the ScenarioBehavior.

• Traversing the ScenarioBehavior means transforming each user action to a QPN repre-
sentation. Whenever a SystemCallUserAction is reached, the callstack of stack frames
is used to navigate to the corresponding ServiceBehaviorAbstraction.

• The traversal of a ServiceBehaviorAbstraction is similar. Each behavior abstraction
is transformed to a QPN representation. Whenever an ExternalCall is reached, the
stack frames are used to navigate to the next ServiceBehaviorAbstraction. Whenever
a ModelVariable is accessed, its value can be read from the current stack frame.

The traversal involves the transformation of the following modeling constructs:

• Open workload (model entity OpenWorkloadType)

• Closed workload (model entity ClosedWorkloadType)

• Calls (model entities SystemCallUserAction, ExternalCall)

• Branches (model entities BranchUserAction, BranchAction)

• Loops (model entities LoopUserAction, LoopAction, ExternalCallFrequency)

• Forks with and without synchronization barrier (model entity ForkAction)

• Acquire and release passive resource (model entities AcquireAction and ReleaseAction)

• Response Times (model entity ResponseTime and DelayUserAction)

• Resource Demands (model entity ResourceDemand)

93

94 5. Online Prediction Techniques

Here we do not distinguish between FineGrainedBehavior, CoarseGrainedBehavior and Black-
BoxBehavior but consider individual modeling constructs. For instance, model entity
ResourceDemand can be found in both the FineGrainedBehavior and the CoarseGrained-
Behavior abstractions. For each of the listed modeling constructs, we now describe its
transformation to QPNs. The transformation is initialized with an empty net output =
(P, T,C,Q, F, I,D,W) with P := ;, T := ;, C := ;, Q := ;. All queues q 2 Q shall accept
general distributions as resource demands. Given that in our context, we obtain resource
demands and response times as empirical distributions from monitoring data, assumptions
about their distributions would not hold.

The transformation is based on the informal description presented in Meier et al. (2011);
Meier (2010) and the more in-depth analysis in Brosig et al. (2014). We provide a for-
malization of the transformation using the definition of QPNs given above. In Koziolek
(2008), there is a transformation from PCM Resource Demanding Service E↵ect Specifi-
cations (RDSEFFs) to “an extended form of QPNs which is not supported by available
tools. It uses tokens that carry arbitrary properties instead of just a color value.” (Meier
et al., 2011, p.2). Thus, tokens of the same color code can be distinguished which is not
possible in standard QPNs as defined here and supported by available modeling tools.

Open Workload

An open workload represents incoming requests that arrive with a specified inter-arrival
time. See Figure 5.10 for an illustration of how an open workload is modeled in as QPN.

A request is translated to a token of color c that is unique for this request type, i.e., unique
for a ScenarioBehavior. There is an immediate queueing place Client-Place that serves as
token generator for tokens of color c. The initial number of tokens in the Client-Place is set
to one, the service demand of c at the Client-Place is set to the request inter-arrival time
specified in the usage profile model. Transition Client-Entry has a mode that fires a token
from the Client-Place to the Behavior-Begin-Place, and furthermore adds a new token of
color c to the Client-Place. Transition Client-Entry consumes a token of color c from the
Behavior-End-Place but does not propagate it, i.e., the transition destroys a token of color
c. The two places Behavior-Begin-Place and Behavior-End-Place denote the begin and end
of client behavior descriptions.

Client-Place

Client-Exit

Behavior-Begin-
Place

c
c c

c Behavior-End-
Place

Client-Entry

Figure 5.10: QPN Representation of Open Workload, cf. Meier (2010)

94

5.3. Model Solving 95

Formally, an open workload is transformed to a QPN with:

P = P [{p
Client-Place

, p
Behavior-Begin-Place

, p
Behavior-End-Place

}, Q̃
2

= Q̃
2

[{p
Client-Place

}
T = T [{t

Client-Entry

, t
Client-Exit

}
C = C [{c}
Q = Q [{q}
F
C

(p
Client-Place

) = {c}, F
C

(p
Behavior-Begin-Place

) = {c}, F
C

(p
Behavior-End-Place

) = {c}
F
M

(t
Client-Entry

) = {m
t

Client-Entry

,1

}
F
M

(t
Client-Exit

) = {m
t

Client-Exit

,1

}
F 0

C

(p
Client-Place

) = {c}
MS

(I�(p
Client-Place

, t
Client-Entry

))(m
t

Client-Entry

,1

) = {c}
MS

(I+(p
Client-Place

, t
Client-Entry

))(m
t

Client-Entry

,1

) = {c}
MS

(I+(p
Behavior-Begin-Place

, t
Client-Entry

))(m
t

Client-Entry

,1

) = {c}
MS

(I�(p
Behavior-End-Place

, t
Client-Exit

))(m
t

Client-Exit

,1

) = {c}
MS

Q̃
P

(p
Client-Place

) = {q}
(D

Q

(q))(demand(c)) = request inter-arrival time

Closed Workload

A closed workload represents a fixed number of clients that repeatedly issue system requests
with a certain think time between two requests. An illustration of how a closed workload
is modeled in a QPN is shown in Figure 5.11.

A request is translated to a token of color c that is unique for the type of the request,
i.e., unique for a ScenarioBehavior. There is an immediate queueing place Client-Place that
serves as repository for tokens of color c. The initial number of tokens in the Client-Place
is set to the specified number of clients, the service demand of c at the Client-Place is set
to the specified think time. Transition Client-Entry has a mode that propagates a token
from the Client-Place to the Behavior-Begin-Place. Transition Client-Exit has a mode that
propagates a token from the Behavior-End-Place back to the Client-Place.

Client-Place

Client-Entry

Client-Exit

c

c

c

c

Behavior-Begin-
Place

Behavior-End-
Place

Figure 5.11: QPN Representation of Closed Workload, cf. Meier (2010)

Formally, a closed workload is transformed to a QPN with:

95

96 5. Online Prediction Techniques

P = P [{p
Client-Place

, p
Behavior-Begin-Place

, p
Behavior-End-Place

}, Q̃
2

= Q̃
2

[{p
Client-Place

}
T = T [{t

Client-Entry

, t
Client-Exit

}
C = C [{c}
Q = Q [{q}
F
C

(p
Client-Place

) = {c}, F
C

(p
Behavior-Begin-Place

) = {c}, F
C

(p
Behavior-End-Place

) = {c}
F
M

(t
Client-Entry

) = {m
t

Client-Entry

,1

}
F
M

(t
Client-Exit

) = {m
t

Client-Exit

,1

}
F 0

C

(p
Client-Place

) = { c, . . . , c| {z }
number of clients

}
MS

(I�(p
Client-Place

, t
Client-Entry

))(m
t

Client-Entry

,1

) = {c}
MS

(I+(p
Behavior-Begin-Place

, t
Client-Entry

))(m
t

Client-Entry

,1

) = {c}
MS

(I�(p
Behavior-End-Place

, t
Client-Exit

))(m
t

Client-Exit

,1

) = {c}
MS

(I+(p
Client-Place

, t
Client-Exit

))(m
t

Client-Exit

,1

) = {c}
MS

Q̃
P

(p
Client-Place

) = {q}
(D

Q

(q))(demand(c)) = think time

Calls

A call, e.g., a SystemCallUserAction or an ExternalCall can be represented in a QPN as
depicted in Figure 5.12. The source of the call is represented by two places Call-Begin-Place
and Call-Exit-Place. The target of the call is a ServiceBehaviorAbstraction whose start and
end is represented by the places Behavior-Begin-Place and Behavior-End-Place, respectively.
Transition Call-Entry propagates a token from the Call-Begin-Place to the Behavior-Begin-
Place. Transition Call-Exit then propagates a token from the Behavior-End-Place to the
Call-End-Place.

Call-Entry

c

c

c

c

Behavior-Begin-
Place

Behavior-End-
Place

Call-Begin-
Place

Call-End-
Place

Call-Exit

Figure 5.12: QPN Representation of Calls, cf. Meier (2010)

Formally, a call in the source model is transformed to a QPN with:

P = P [{p
Call-Begin-Place

, p
Call-End-Place

, p
Behavior-Begin-Place

, p
Behavior-End-Place

}
T = T [{t

Call-Entry

, t
Call-Exit

}
F
C

(p
Call-Begin-Place

) = {c}, F
C

(p
Call-End-Place

) = {c}
F
C

(p
Behavior-Begin-Place

) = {c}, F
C

(p
Behavior-End-Place

) = {c}
F
M

(t
Call-Entry

) = {m
t

Call-Entry

,1

}
F
M

(t
Call-Exit

) = {m
t

Call-Exit

,1

}
(I�(p

Call-Begin-Place

, t
Call-Entry

))(m
t

Call-Entry

,1

) = {c}
MS

(I+(p
Behavior-Begin-Place

, t
Call-Entry

))(m
t

Call-Entry

,1

) = {c}
MS

(I�(p
Behavior-End-Place

, t
Call-Exit

))(m
t

Call-Exit

,1

) = {c}
MS

(I+(p
Call-End-Place

, t
Call-Exit

))(m
t

Call-Exit

,1

) = {c}
MS

Branches

Figure 5.13 shows a branch modeled in a QPN. The begin of the branch is represented by
the place Branch-Begin-Place, the end of the branch is represented by the place Branch-End-

96

5.3. Model Solving 97

Place. For each of the N branch transitions (not to be confused with a QPN transition)
there is a place for the begin and end of the transition’s behavior. Place Behaviori-Begin-
Place denotes a transition’s begin while Branch-End-Place is the same end place for all
transitions. QPN transition Branch-Entry implements the actual branching behavior. It
takes a token of color c from Branch-Begin-Place and propagates it to a branch behavior i
with the probability specified for branch transition i. Note that all branching probabilities
need to sum up to 1.0.

c

Branch-Entry

c

c

. . .

Behavior1-
Begin-Place

Branch-Begin-
Place

Branch-End-
Place

BehaviorN-
Begin-Place

c

Figure 5.13: QPN Representation of a Branch, cf. Meier (2010)

Formally, a branch with N branch transitions and branching probability pr i for branch
transition i is transformed to a QPN with:

P = P [{p
Branch-Begin-Place

, p
Branch-End-Place

, p
Behavior1-Begin-Place

, . . . , p
BehaviorN-Begin-Place

}
T = T [{t

Branch-Entry

}
F
C

(p
Branch-Begin-Place

) = {c}, F
C

(p
Branch-End-Place

) = {c}
F
C

(p
Behavior1-Begin-Place

) = {c}, . . . , F
C

(p
BehaviorN-Begin-Place

) = {c}
F
M

(t
Branch-Entry

) = {m
t

Branch-Entry

,1

, . . . ,m
t

Branch-Entry

,N

}
8i 2 {1, . . . , N} : (I�(p

Branch-Begin-Place

, t
Branch-Entry

))(m
t

Branch-Entry

,i

) = {c}
MS

(I+(p
Behavior1-Begin-Place

, t
Branch-Entry

))(m
t

Branch-Entry

,1

) = {c}
MS

,
. . . , (I+(p

BehaviorN-Begin-Place

, t
Branch-Entry

))(m
t

Branch-Entry

,N

) = {c}
MS

8i 2 {1, . . . , N} : (W (t
Branch-Entry

))(m
t

Branch-Entry

,i

) = pr i

Loops

Figure 5.14 shows a loop transformed to a QPN representation. The loop iteration number
is specified as PMF where each possible loop iteration count n

i

2 {n
1

, . . . , n
l

} ⇢ N is
specified with a probability pr

i

2 {pr
1

, . . . , pr
l

} ⇢ R�0

. Thus, there are l 2 N
0

di↵erent
loop iteration counts. The begin and the end of the loop are represented by the places
Loop-Begin-Place and Loop-End-Place.

Transition Loop-Entry takes a token of color c and puts a token of color c0
i

in place Loop-Pool
with probability pr

i

. Color c0
i

represents a loop iteration count of n
i

. Transition Loop-
Inner-Entry then takes a token of color c0

i

and puts (i) one token of color c in place Loop-
Body-Begin as well as (ii) one token of color c0

i

in place Loop-Inner-ColorCode-Place. The
places Loop-Body-Begin and Loop-Body-End represent the loop body behavior. Place Loop-
Inner-ColorCode-Place is intended to save the color code c0

i

while the loop body behavior is
processed. Transition Loop-Inner-Exit takes a token of color c from place Loop-Body-End
and a token of color c0

i

from place Loop-Inner-ColorCode-Place, and puts a token of color c0
i

in place Loop-Depository. Transition Loop-Exit takes a token from place Loop-Depository
and decides based on token color c0

i

if the loop body is iterated again (putting a token of
color c0

i

back to the Loop-Pool) or if the loop is terminated (putting a token of color c to
place Loop-End-Place). The decision can be made based solely on the color code c0

i

. Thus,
di↵erent tokens of the same color code cannot be distinguished. This is why it cannot

97

98 5. Online Prediction Techniques

be guaranteed that the loop is processed exactly n
i

times. Instead, the loop iteration
counts are handled probabilistically. For a token of color code c0

i

, the Loop-Exit transition
terminates the loop with a probability of 1/n

i

and re-enters the loop with a probability
of 1 � (1/n

i

). The decision whether the loop is re-entered thus behaves like a Bernoulli
random variable. Therefore, each loop iteration count n

i

is modeled with a geometric
distribution with an expected value of n

i

.

c

Loop-Entry

Loop-Exit

Loop-Inner-
Entry

Loop-Inner-
Exit

Loop-Pool

Loop-Depository

Loop-Inner-
ColorCode-

Place

c'i c'i

c
c'i

c

c'i

c'i

c'ic

c'i

Loop-Begin-
Place

Loop-End-
Place

Loop-
Body-Begin

Loop-Body-
End

Figure 5.14: QPN Representation of a Loop, cf. Meier (2010)

Formally, a loop with l loop iteration counts {n
1

, . . . , n
l

} with probabilities {pr
1

, . . . , pr
l

}
is transformed to a QPN with:

P = P [{p
Loop-Begin-Place

, p
Loop-End-Place

, p
Loop-Pool

, p
Loop-Depository

,
p
Loop-Body-Begin

, p
Loop-Body-End

, p
Loop-Inner-ColorCode-Place

}
T = T [{t

Loop-Entry

, t
Loop-Exit

, t
Loop-Inner-Entry

, t
Loop-Inner-Exit

}
F
C

(p
Loop-Begin-Place

) = {c}, F
C

(p
Loop-End-Place

) = {c},
F
C

(p
Loop-Body-Begin

) = {c}, F
C

(p
Loop-Body-End

) = {c},
F
C

(p
Loop-Pool

) = {c0
1

, . . . , c0
n

},
F
C

(p
Loop-Depository

) = {c0
1

, . . . , c0
l

},
F
C

(p
Loop-Inner-ColorCode-Place

) = {c0
1

, . . . , c0
l

}
F
M

(t
Loop-Entry

) = {m
t

Loop-Entry

,1

, . . . ,m
t

Loop-Entry

,l

}
F
M

(t
Loop-Exit

) = {m
t

Loop-Exit

,1

, . . . ,m
t

Loop-Exit

,l

,

m
t

Loop-Exit

,l+1

, . . . ,m
t

Loop-Exit

,2l

}
F
M

(t
Loop-Inner-Entry

) = {m
t

Loop-Inner-Entry

,1

, . . . ,m
t

Loop-Inner-Entry

,l

}
F
M

(t
Loop-Inner-Exit

) = {m
t

Loop-Inner-Exit

,1

, . . . ,m
t

Loop-Inner-Exit

,l

}
8i 2 {1, . . . , l} : (I�(p

Loop-Begin-Place

, t
Loop-Entry

))(m
t

Loop-Entry

,i

) = {c}
MS

8i 2 {1, . . . , l} : (I+(p
Loop-Pool

, t
Loop-Entry

))(m
t

Loop-Entry

,i

) = {c0
i

}
MS

8i 2 {1, . . . , 2l} : (I�(p
Loop-Depository

, t
Loop-Exit

))(m
t

Loop-Exit

,i

) = {c0
i

}
MS

8i 2 {1, . . . , l} : (I+(p
Loop-Pool

, t
Loop-Exit

))(m
t

Loop-Exit

,i

) = {c0
i

}
MS

8i 2 {l + 1, . . . , 2l} : (I+(p
Loop-End-Place

, t
Loop-Exit

))(m
t

Loop-Exit

,i

) = {c}
MS

8i 2 {1, . . . , l} : (I�(p
Loop-Pool

, t
Loop-Inner-Entry

))(m
t

Loop-Inner-Entry

,i

) = {c0
i

}
MS

8i 2 {1, . . . , l} : (I+(p
Loop-Body-Begin

, t
Loop-Inner-Entry

))(m
t

Loop-Inner-Entry

,i

) = {c}
MS

8i 2 {1, . . . , l} : (I+(p
Loop-Inner-ColorCode-Place

, t
Loop-Inner-Entry

))(m
t

Loop-Inner-Entry

,i

) = {c0
i

}
MS

8i 2 {1, . . . , l} : (I�(p
Loop-Body-End

, t
Loop-Inner-Exit

))(m
t

Loop-Inner-Entry

,i

) = {c}
MS

8i 2 {1, . . . , l} : (I�(p
Loop-Inner-ColorCode-Place

, t
Loop-Inner-Exit

))(m
t

Loop-Inner-Entry

,i

) = {c0
i

}
MS

8i 2 {1, . . . , l} : (I+(p
Loop-Depository

, t
Loop-Inner-Exit

))(m
t

Loop-Inner-Entry

,i

) = {c0
i

}
MS

8i 2 {1, . . . , l} : (W (t
Loop-Entry

))(m
t

Loop-Entry

,i

) = pr
i

8i 2 {1, . . . , l} : (W (t
Loop-Exit

))(m
t

Loop-Exit

,i

) = 1� (1/n
i

)
8i 2 {l + 1, . . . , 2l} : (W (t

Loop-Exit

))(m
t

Loop-Exit

,i

) = 1/n
i

98

5.3. Model Solving 99

Fork-Split

c

c

c

c
c

. . .

Fork-Begin-
Place

Fork-End-
Place

Behavior1-
Begin-Place

Behavior1-
End-Place

BehaviorN-
Begin-Place

BehaviorN-
End-Place

c

c

c
Fork-Consume

(a) QPN Representation of a Fork without Synchronization Barrier

Fork-Split

c

Fork-Consume

c

c

c

c

c

c

c

. . .

Fork-Begin-
Place

Fork-End-
Place

Behavior1-
Begin-Place

Behavior1-
End-Place

BehaviorN-
Begin-Place

BehaviorN-
End-Place

(b) QPN Representation of a Fork with Synchronization Barrier

Figure 5.15: QPN Representation of a Fork, cf. Meier (2010)

Forks

We distinguish forks with and without a synchronization barrier. Figure 5.15 shows a
fork of N di↵erent behaviors represented as a QPN. The begin and end of the fork are
represented by the QPN places Fork-Begin-Place and Fork-End-Place. The forked behav-
iors are represented by pairs of places Behavior1-Begin-Place and Behavior1-End-Place to
BehaviorN-Begin-Place and BehaviorN-End-Place. Transition Fork-Split splits the N be-
haviors by taking a token of color c from the Fork-Begin-Place and putting a token of
color c in each place Behavior1-Begin-Place to BehaviorN-Begin-Place. If there is no syn-
chronization barrier, transition Fork-Split furthermore propagates a token of color c to
Fork-End-Place. Transition Fork-Consume collects tokens of color c from places Behavior1-
End-Place to BehaviorN-End-Place. In case there is no synchronization barrier, the tokens
are not propagated, i.e., they are destroyed. In case there is a synchronization barrier,
transition Fork-Consume propagates a token of color c to the Fork-End-Place.

Formally, a fork of N behaviors is transformed to a QPN with:

99

100 5. Online Prediction Techniques

P = P [{p
Fork-Begin-Place

, p
Fork-End-Place

,
p
Behavior1-Begin-Place

, . . . , p
BehaviorN-Begin-Place

,
p
Behavior1-End-Place

, . . . , p
BehaviorN-End-Place

}
T = T [{t

Fork-Split

, t
Fork-Consume

}
F
C

(p
Fork-Begin-Place

) = {c}, F
C

(p
Fork-End-Place

) = {c}
F
C

(p
Behavior1-Begin-Place

) = {c}, . . . , F
C

(p
BehaviorN-Begin-Place

) = {c}
F
C

(p
Behavior1-End-Place

) = {c}, . . . , F
C

(p
BehaviorN-End-Place

) = {c}
F
M

(t
Fork-Split

) = {m
t

Fork-Split

,1

}
F
M

(t
Fork-Consume

) = {m
t

Fork-Consume

,1

}
(I�(p

Fork-Begin-Place

, t
Fork-Split

))(m
t

Fork-Split

,1

) = {c}
MS

(I+(p
Behavior1-Begin-Place

, t
Fork-Split

))(m
t

Fork-Split

,1

) = {c}
MS

,
. . . , (I+(p

BehaviorN-Begin-Place

, t
Fork-Split

))(m
t

Fork-Split

,1

) = {c}
MS

(I�(p
Behavior1-End-Place

, t
Fork-Consume

))(m
t

Fork-Consume

,1

) = {c}
MS

,
. . . , (I�(p

BehaviorN-End-Place

, t
Fork-Consume

))(m
t

Fork-Consume

,1

) = {c}
MS

If there is a synchronization barrier, the following forward incidence function needs to be
added:

(I+(p
Fork-End-Place

, t
Fork-Consume

))(m
t

Fork-Consume

,1

) = {c}
MS

.

If there is no synchronization barrier, the following forward incidence function needs to be
added:

(I+(p
Fork-End-Place

, t
Fork-Split

))(m
t

Fork-Split

,1

) = {c}
MS

.

Acquire/Release Passive Resources

Figure 5.16 illustrates how one can transform AcquireActions and ReleaseActions to QPNs.
The corresponding PassiveResource is modeled as tokens of new color p that are deposited
in the Passive-Resource-Place. The capacity of the PassiveResource is mapped to the initial
number of tokens of color p in place Passive-Resource-Place. An AcquireAction is represented
by two places Acquire-Begin-Place and Acquire-End-Place. Transition Acquire-Resource re-
quires a token of color p from place Passive-Resource-Place to propagate a token of color c
from Acquire-Begin-Place to Acquire-End-Place. A ReleaseAction in turn is represented by
two places Release-Begin-Place and Release-End-Place. Transition Release-Resource takes
a token of color c from the Release-Begin-Place and puts both a token of color c in the
Release-End-Place as well as a token of color p back in the Passive-Resource-Place.

Acquire-
Resource

Passive-Resource-
Place

c

c

p

p

c

c

Acquire-Begin-
Place

Acquire-End-
Place

Release-Begin-
Place

Release-End-
Place

Release-
Resource

Figure 5.16: QPN Representation of Acquire/Release Actions, cf. Meier (2010)

100

5.3. Model Solving 101

Formally, a pair of Acquire- and ReleaseActions is transformed to a QPN with:

P = P [{p
Acquire-Begin-Place

, p
Acquire-End-Place

, p
Release-Begin-Place

, p
Release-End-Place

p
Passive-Resource-Place

}
T = T [{t

Acquire-Resource

, t
Release-Resource

}
C = C [{p}
F
C

(p
Acquire-Begin-Place

) = {c}, F
C

(p
Acquire-End-Place

) = {c}
F
C

(p
Release-Begin-Place

) = {c}, F
C

(p
Release-End-Place

) = {c}
F
C

(p
Passive-Resource-Place

) = {p}
F
M

(t
Acquire-Resource

) = {m
t

Acquire-Resource

,1

}
F
M

(t
Release-Resource

) = {m
t

Release-Resource

,1

}
F 0

C

(p
Passive-Resource-Place

) = { p, . . . , p| {z }
capacity of passive resource

}
MS

(I�(p
Acquire-Begin-Place

, t
Acquire-Resource

))(m
t

Acquire-Resource

,1

) = {c}
MS

(I�(p
Passive-Resource-Place

, t
Acquire-Resource

))(m
t

Acquire-Resource

,1

) = {p}
MS

(I+(p
Acquire-End-Place

, t
Acquire-Resource

))(m
t

Acquire-Resource

,1

) = {c}
MS

(I�(p
Release-Begin-Place

, t
Release-Resource

))(m
t

Release-Resource

,1

) = {c}
MS

(I+(p
Passive-Resource-Place

, t
Release-Resource

))(m
t

Release-Resource

,1

) = {p}
MS

(I+(p
Release-End-Place

, t
Release-Resource

))(m
t

Release-Resource

,1

) = {c}
MS

Response Times

The model entity ResponseTime is translated to a QPN as shown in Figure 5.17. It
is represented by the two places ResponseTime-Begin-Place and ResponseTime-End-Place.
Transitions RT-Entry and RT-Exit propagate the response time delay to the immediate
queueing place Delay-Place via tokens of new color r. The service demand of tokens of
color r is set to the specified response time value, given as a RandomVariable.

Delay-Place

RT-Exit

ResponseTime-
Begin-Place

c
r

cResponseTime-
End-Place

RT-Entry

r

Figure 5.17: QPN Representation of Model Entity ResponseTime

Formally, a ResponseTime characterized with value response time of type RandomVariable
is transformed to a QPN with:

P = P [{p
ResponseTime-Begin-Place

, p
ResponseTime-End-Place

, p
Delay-Place

}
T = T [{t

RT-Entry

, t
RT-Exit

}
C = C [{r}
Q = Q [{q}, Q̃

2

= Q̃
2

[{q}
F
C

(p
ResponseTime-Begin-Place

) = {c}, F
C

(p
ResponseTime-End-Place

) = {c}, F
C

(p
Delay-Place

) = {r}
F
M

(t
RT-Entry

) = {m
t

RT-Entry

,1

}
F
M

(t
RT-Exit

) = {m
t

RT-Exit

,1

}
(I�(p

ResponseTime-Begin-Place

, t
RT-Entry

))(m
t

RT-Entry

,1

) = {c}
MS

(I+(p
Delay-Place

, t
RT-Entry

))(m
t

RT-Entry

,1

) = {r}
MS

(I�(p
Delay-Place

, t
RT-Exit

))(m
t

RT-Exit

,1

) = {r}
MS

(I+(p
ResponseTime-End-Place

, t
RT-Exit

))(m
t

RT-Exit

,1

) = {c}
MS

Q̃
P

(p
Delay-Place

) = {q}
(D

Q

(q))(demand(r)) = response time

101

102 5. Online Prediction Techniques

Resource Demands

The model entity ResourceDemand is translated to a QPN as shown in Figure 5.18. It
is represented by the two places ResourceDemand-Begin-Place and ResourceDemand-End-
Place. Transitions RD-Entry and RD-Exit propagate the demand via token of new color
r to a QPN subnet representing the target resource type of the Container where the Re-
sourceDemand is issued.

Processing-
Resource-
Place

RD-Exit

ResourceDemand-
Begin-Place

c
r

cResourceDemand-
End-Place

RD-Entry

r

Figure 5.18: QPN Representation of Model Entity ResourceDemand

In the following QPN formalization, the processing resource is assumed to be mapped to
a queueing place with description processing resource description. Then, a ResourceDe-
mand characterized with value resource demand of type RandomVariable is transformed
to a QPN with:

P = P [{p
ResourceDemand-Begin-Place

, p
ResourceDemand-End-Place

, p
Processing-Resource-Place

}
T = T [{t

RD-Entry

, t
RD-Exit

}
C = C [{r}
Q = Q [{prq}, Q̃

1

= Q̃
1

[{prq}
F
C

(p
ResourceDemand-Begin-Place

) = {c}, F
C

(p
ResourceDemand-End-Place

) = {c}
F
C

(p
Processing-Resource-Place

) = {r}
F
M

(t
RD-Entry

) = {m
t

RD-Entry

,1

}
F
M

(t
RD-Exit

) = {m
t

RD-Exit

,1

}
(I�(p

ResourceDemand-Begin-Place

, t
RD-Entry

))(m
t

RD-Entry

,1

) = {c}
MS

(I+(p
Processing-Resource-Place

, t
RD-Entry

))(m
t

RD-Entry

,1

) = {r}
MS

(I�(p
Processing-Resource-Place

, t
RD-Exit

))(m
t

RD-Exit

,1

) = {r}
MS

(I+(p
ResourceDemand-End-Place

, t
RD-Exit

))(m
t

RD-Exit

,1

) = {c}
MS

Q̃
P

(p
Processing-Resource-Place

) = {prq}
D

Q

(prq) =processing resource description
(D

Q

(prq))(demand(r)) = resource demand

5.3.2 Transformation to Layered Queueing Networks

As in the transformation to QPNs, for the transformation from DML instances to LQNs
the following abstract modeling constructs need to be considered.

• Open workload (model entity OpenWorkloadType)

• Closed workload (model entity ClosedWorkloadType)

• Calls (model entities SystemCallUserAction, ExternalCall)

• Branches (model entities BranchUserAction, BranchAction)

• Loops (model entities LoopUserAction, LoopAction, ExternalCallFrequency)

• Forks with and without synchronization barrier (model entity ForkAction)

102

5.3. Model Solving 103

• Acquire and release passive resource (model entities AcquireAction and ReleaseAction)

• Response Times (model entity ResponseTime and DelayUserAction)

• Resource Demands (model entity ResourceDemand)

Koziolek (2008) describes a transformation from PCM instances to LQN. Since PCM
also contains modeling constructs for calls, branches, loops, and so on, we can make use
of the developed transformation concepts. The above-mentioned modeling constructs are
transformed to the LQN concepts of tasks and processors (see Section 2.2) briefly described
as follows: Each service behavior model is mapped to a LQN task. The control flow
behavior can be mapped to the corresponding counterparts in LQN task activity graphs.
Service calls are realized by calling other LQN task entries. The tasks that are created for
service behavior models run on dummy processors. Service demands are sent to separate
LQN tasks with processors that represent the target resources (e.g., application server
CPU). Such LQN processors are defined by M/M/n queues, i.e., limited to exponentially
distributed service times. Moreover, the inter-arrival times of open workloads are also
limited to exponential distributions. For details of the transformation, we refer the reader
to Koziolek (2008).

5.3.3 Bounds Analysis

In this section, we describe how we conduct an asymptotic bounds analysis based on
the modeling abstractions presented in Chapter 4. An asymptotic bounds analysis is
a technique to calculate performance bounds such as lowest average response time and
highest possible throughput for an underlying system. Bounds analysis is fast because it
works with several approximations that cause inaccuracies, however, it can be good enough
to make quick decisions, when approximative performance results are su�cient (Menascé
et al., 1994; Bolch et al., 1998; Menascé et al., 2004b). As shown in Figure 5.9, the input of
the bounds analysis is the architecture-level performance model and the callstack model,
which is the output of the pre-processing step described in Section 5.2.

Bounds Analysis

Architecture-Level
Performance Model

Callstack Model

Performance Bounds:
 average response time
 throughput

input

input

output

Figure 5.19: Input and Output of Bounds Analysis

The analysis starts with the usage profile model (see Section 4.3) and then traverses the
application architecture model. A bounds analysis is conducted per UsageScenario, i.e.,
multiple UsageScenarios are not considered. Thus, the lowest average response time as well
as the highest possible throughput are calculated for one UsageScenario. Response times
of individual service calls cannot be considered.

Starting with a UsageScenario, the corresponding ServiceBehavior is traversed. Whenever
the traversal reaches a SystemCallUserAction, the callstack of stack frames is used to navi-
gate to the corresponding ServiceBehaviorAbstraction. Whenever an ExternalCall is reached,
the stack frames are used to navigate to the next ServiceBehaviorAbstraction. Whenever
a ModelVariable is accessed, it is read from the current stack frame. The traversal for a
UsageScenario USc has the following two goals:

1. Identification of the set of di↵erent resources Res that are stressed by USc,

Res = {Res
0

, Res
1

, . . . , Res
n

}.

103

104 5. Online Prediction Techniques

We denote Res
0

as the delay resource, i.e., where all DelayUserActions and Respon-
seTimes are scheduled.

2. Calculation of the mean resource demands D for the n identified resources for one
traversal of USc,

D = {D
0

, . . . , D
n

}.

More specifically, we distinguish between resource demands that are issued in an
asynchronous context, i.e., as part of a ForkAction, or in a synchronous context.
Hence, we distinguish Dasync and Dsync with D = Dasync +Dsync.

When traversing the performance model, the following modeling constructs are considered:

• Branches (model entities BranchUserAction, BranchAction),

• Loops (model entities LoopUserAction, LoopAction, ExternalCallFrequency),

• Calls (model entities SystemCallUserAction, ExternalCall),

• Forks without a synchronization barrier (model entity ForkAction),

• Resource Demands (model entity ResourceDemand),

• Response Times (model entity ResponseTime and model entity DelayUserAction).

Note that AcquireActions, respectively ReleaseActions, are ignored. The asymptotic bounds
analysis neglects passive resources. For the same reason, forks with a synchronization
barrier are ignored, too.

We now describe how Res andD are derived. We navigate the tree of behavior abstractions
using a depth first traversal. Algorithm 6 shows the traversal in pseudo-code. We choose
an iterative pre-order depth-first approach (Cormen et al., 2009) with a helper stack (not
to be confused with the callstack model). During the traversal, we keep track of (i) the
current behavior abstraction denoted with variable behavior, (ii) the mean number of visits
of the current behavior denoted with variable visits, and (iii) a flag indicating whether
the current behavior is processed as part of an asynchronous fork or not, denoted with
variable isAsync.

The algorithm is initialized with D = ; and Res = ;, and invoked with the method call
ComputeDAndRes(startbehavior, 1.0,FALSE). The method iterates through the actions
of a behavior abstraction and handles the individual actions as follows:

• When a branch is reached, each branch transition is traversed. The mean number of
visits of each branch transitions is calculated taking the branching probability into
account.

• When a loop is reached, the loop body is traversed. The mean number of visits of the
loop body is calculated using the given probabilities for the loop iteration numbers.

• When a call is reached, the target behavior of the call is traversed.

• When a fork without synchronization barrier is reached, each forked behavior is
traversed, marking the behavior as asynchronously processed.

• When a resource demand is reached, on the one hand the target resource Res
i

is
resolved. The target resource is obtained dependent on (i) the specified ResourceType
of the resource demand and (ii) the Container where the current behavior is deployed
on. On the other hand, the mean resource demand D

i

is updated. The product of
the expected value of the given random variable and the mean number of visits of
the current behavior is added to D

i

. Depending on flag isAsync, either Dasync

i

or
Dsync

i

is set.

104

5.3. Model Solving 105

1 ComputeDAndRes(behavior, visits, isAsync)
2 begin
3 helperStack empty stack
4 while not helperStack.isEmpty() or behavior <> NULL do
5 foreach action a in behavior do
6 if a is Branch with branch transitions {t

1

, . . . , t
N

}
7 with probabilities {pr

1

, . . . , pr
N

} then
8 for i 1 to N do
9 helperStack.push(Tuple(t

i

, visits ⇤ pr
i

, isAsync))
10 end

11 if a is Loop with loop body b and loop iteration numbers {n
1

, . . . , n
l

}
12 with probabilities {pr

1

, . . . , pr
l

} then

13 helperStack.push(Tuple(b,
P

l

k=1

(n
k

⇤ pr
k

), isAsync))
14 if a is Call with target behavior t then
15 helperStack.push(Tuple(t, visits, isAsync))
16 if a is Fork with forked behaviors {f

1

, . . . , f
N

}
17 without synchronization barrier then
18 for i 1 to N do
19 helperStack.push(Tuple(f

i

, visits,TRUE))
20 end

21 if a is ResourceDemand with value v and resource type t then
22 helper resource of type t in container deploymentContainer(a)

23 Res Res [{helper}
24 i index of helper in Res
25 if isAsync then Dasync

i

 Dasync

i

+ visits ⇤mean(v)
26 else Dsync

i

 Dsync

i

+ visits ⇤mean(v)

27 if a is ResponseTime with value v then
28 if isAsync then Dasync

0

 Dasync

0

+ visits ⇤mean(v)
29 else Dsync

0

 Dsync

0

+ visits ⇤mean(v)

30 end
31 Tuple(behavior, visits, isAsync) helperStack.pop()

32 end

33 end

Algorithm 6: Compute Mean Resource Demands D for Resources Res

105

106 5. Online Prediction Techniques

• When a response time is reached, D
0

is set accordingly as a resource demand for
delay resource Res

0

.

The algorithm terminates because cycles of service behaviors are not allowed (see Sec-
tion 4.1.3). Having sets Res and D identified, we now describe how we apply asymptotic
bounds analysis. We first describe how we obtain an upper bound for the throughput X
of the system and then explain how a lower bound for the average response time R of the
considered UsageScenario can be derived. We extend the approaches presented in Menascé
et al. (1994); Bolch et al. (1998); Menascé et al. (2004b) since we di↵erentiate between
Dasync and Dsync. The bounding behavior is determined by the bottleneck resource, i.e.,
the resource with the highest utilization.

Using the Utilization Law U
i

= D
i

⇤X
i

whereX
i

is the throughput, D
i

is the mean resource
demand and U

i

is the utilization at resource Res
i

, we obtain

X
i

=
U
i

D
i

 1

D
i

.

An upper asymptotic bound for X is thus

X min
0in

⇢
1

D
i

�
= min

1in

⇢
1

D
i

�
.

Using Little’s Law (Little, 1961) and R �
P

n

i=0

Dsync

i

, we obtain

N = R ⇤X �

nX

i=0

Dsync

i

!
⇤X () X NP

n

i=0

Dsync

i

,

where N is the number of concurrent users in the system. The number of users is limited
by the number of clients in case of a closed workload. In case of an open workload N is
unknown. As upper asymptotic bounds for the throughput we formulate

X min

⇢
NP

n

i=0

Dsync

i

,min
1in

⇢
1

D
i

��
.

These bounds are then used together with Little’s Law to derive a lower asymptotic bound
for the average response time R, if N is known:

R =
N

X
� max

(
nX

i=0

Dsync

i

, N ⇤max
1in

{D
i

}
)
.

Furthermore, for an open workload with an arrival rate � of usage scenario USc, if � < X
then we can estimate the utilization of the resources using the utilization law with

U
j

= D
j

⇤ �.

The asymptotic bounds analysis cannot consider software bottlenecks as well as load-
dependent resource demands. However, it o↵ers a quick approximation of the lowest
average response time and highest possible throughput for a given UsageScenario.

106

5.4. Tailoring 107

5.4 Tailoring

The prediction process is tailored to a performance query (see Figure 5.1). A performance
query specifies which performance metrics of which entities are of interest for the perfor-
mance prediction. For instance, when triggering a performance prediction, the user may
ask for the average response time of a specific service or for the utilization of a specific
resource such as the database server. Furthermore, given that the focus is on performance
prediction techniques applied during system operation, the speed of the performance pre-
diction itself, i.e., the time-to-result of a performance prediction, is of importance. In
case the performance prediction is intended to be used to find a system configuration that
provides a certain level of service performance and resource e�ciency for an upcoming
workload scenario, the results of the performance prediction have to be available before
the expected workload scenario stresses the system. The prediction process we propose
takes these time constraints into account. We provide the option to trade-o↵ between
prediction speed and prediction accuracy. In situations where the prediction speed is crit-
ical, the prediction process provides the option to speed up the prediction, however, this
speed up comes at the cost of prediction accuracy. To sum up, the prediction process is
tailored to the requested performance metrics as well as to a given specification of how to
trade-o↵ between prediction accuracy and time-to-result (Thereska et al., 2005; Kounev
et al., 2010). Both the demanded performance metrics and the trade-o↵ specification form
the performance query that triggers the performance prediction.

Section 5.4.1 describes the supported performance metrics. Section 5.4.2 formalizes how
the trade-o↵ between prediction accuracy and time-to-result can be specified. Section 5.4.3
describes the degrees-of-freedom of the prediction process, i.e., its configurations options.
Section 5.4.4 and Section 5.4.5 describe the tailoring mechanisms for the model composition
step and the model solving step, respectively.

5.4.1 Performance Metrics

Performance metrics are considered for two types of performance-relevant model entities.
We distinguish metrics for service calls and metrics for resources. For service calls, we
consider end-user metric types such as response time, i.e., elapsed time between request
and response, and throughput. For resources, we consider their utilization. We furthermore
provide di↵erent characterizations of the response time distribution. We characterize the
resulting response time distribution by a sample set, by its percentiles or by its mean value.

Location Metric Aggregation
Service Calls Response Time Sample set

Percentile
Average

Throughput Average
Resources Throughput Average

Utilization Average

Table 5.2: Performance Metrics And Aggregations Considered for Tailoring

The model solving approach highly depends on the level of detail of the requested perfor-
mance metrics. For instance, predicting average response times does not require the same
abstraction level as providing a representative sample set to characterize a response time
distribution. Table 5.2 lists the metrics and aggregations that are supported by the tailored
prediction process. A set of demanded metrics can be formalized as DM = {dm

1

, . . . , dm
n

}

107

108 5. Online Prediction Techniques

where dm
i

is a tuple (l
i

,m
i

, a
i

) with l
i

denoting a location, m
i

a metric name and a
i

an
aggregation as shown in Table 5.2.

5.4.2 Trade-O↵ Between Prediction Accuracy and Time-To-Result

As mentioned previously, in situations where the prediction speed is critical, the prediction
process provides the option to speed up the prediction at the expense of prediction accu-
racy. Note that in this context, prediction accuracy refers to the accuracy of the model
solving approach, i.e., not to the representativeness of the considered models’ themselves.
It is not intended to specify real-time constraints for the prediction process but to allow
specifying how to trade-o↵ between prediction accuracy and time-to-result.

There are generic trade-o↵ weights that are ranked in an ordinal scale, they are defined
as an ordered set W = {w? := w

1

, . . . , w
K

=: w>}. Weight w> has the semantics of
fastest prediction speed compared to the other weights w 2 W . Weight w? has the
semantics of highest prediction accuracy compared to the other weights w 2W . A trade-
o↵ specification is then given by a selected weight dw 2W that is chosen by the issuer of
the performance query.

Based on the trade-o↵ specification, i.e., a selected trade-o↵ weight dw, the prediction
process is tailored within its degrees-of-freedom that are described in the next section.

5.4.3 Degrees-of-Freedom

The performance prediction process is triggered by a performance query. It is tailored to
a set of demanded performance metrics DM as well as to a given specification dw of how
to trade-o↵ between prediction accuracy and time-to-result. The underlying performance
model is an architecture-level performance model as described in Chapter 4. This section
provides a general overview of the degrees-of-freedom of the prediction process.

As shown in Figure 5.1, both of the steps model composition and model solving are tailored.
In the model composition step, it is decided which parts of the source model, i.e., which
parts of the architecture-level performance model, are considered for the performance
prediction. In the model solving step, it is decided which model solving technique is
applied. Furthermore, each model solving technique itself comes with its own degrees-
of-freedom. Hence, the applied model solving technique itself can also be tailored to the
performance query.

Given DM and dw, the model composition and model solving steps have to be configured
to return results for the demanded metrics taking the trade-o↵ specification into account.
Thus, for each configuration, it is important to understand how it a↵ects the performance
prediction process in terms of predictable performance metrics, prediction accuracy, and
prediction speed.

• A fine-grained simulation can provide the best prediction accuracy but at the cost
of lowest prediction speed. Complex performance metrics such as response time
distributions can be provided. In case only mean value metrics are demanded, the
simulation can abstract from complex control flow constructs such as branches or
loops.

• Analytical model solvers typically are of lower prediction overhead compared to
simulation, but they are often restricted in terms of predictable performance metrics
and model input parameters. Analytical solvers such as LQNS (Franks et al., 1996)
are often restricted to exponentially distributed resource demands, delays and inter-
arrival times (Balsamo et al., 2004), or have limited capabilities to analyze blocking
behavior or simultaneous resource possession (Menasce and Virgilio, 2000; Woodside
et al., 2006; Gilmore et al., 2005).

108

5.4. Tailoring 109

The goal of the tailored prediction process is to find a balance between prediction accuracy
and overhead. The next two sections (Section 5.4.4 and Section 5.4.5) describe how model
composition and model solving can be tailored, using the model abstractions of Chapter 4
as a source model and the solving techniques of Section 5.3.

5.4.4 Tailored Model Composition

As described in Section 5.1, the usage profile model’s ScenarioBehaviors determine those
parts of the architecture-level performance model that have to be considered for a perfor-
mance prediction. However, using the model abstractions described in Section 4.1.3), one
service may be described by up to three behavior abstraction levels FineGrainedBehavior,
CoarseGrainedBehavior and BlackBoxBehavior. This ambiguity is resolved in the tailored
model composition step.

A FineGrainedBehaviormodel provides information about component-internal, performance-
relevant control flow including its resource consumption. Loops, branches, forks with or
without synchronization barriers, as well as blocking behavior with semaphore seman-
tics can be described. Hence, complex response time distributions can be modeled in a
representative manner. A CoarseGrainedBehavior model also provides information about
resource demands and the frequency of external service calls, however, the internal service
control flow is not modeled. Thus, response time distributions are approximated, but there
is no loss in accuracy if response time averages or average resource utilization are to be
predicted. A BlackBoxBehavior model provides information about service response times
but no information about resource demands. Thus, information about resource utilization
cannot be derived.

In the following, we describe how the selection of an appropriate service behavior model
is done. The performance query is given as a set of demanded metrics DM and a trade-
o↵ specification dw. The selection consists of three steps: initialization, weighting, and
truncation. For the description of the three steps, we introduce two helper functions.
Assuming each service has a marked service behavior, for a service s we define

calledServices(s) := set of services that are directly or indirectly triggered by s,

where the called services are derived from the marked service behaviors via model element
ExternalCall. Based on calledServices(s), we also define

resources(s) :=
[

s

02calledServices(s)

set of passive and active resources stressed by s0,

i.e, the set of passive and active resources that is stressed when service s and its subsequent
services are processed. The three steps are described in the following:

• Initialization. Using the ordering FineGrainedBehavior > CoarseGrainedBehavior >
BlackBoxBehavior, for each service, the service behavior marking is set to the most
fine-grained available service behavior. For instance, for a service with two available
service behaviors FineGrainedBehavior and CoarseGrainedBehavior, FineGrainedBehav-
ior is marked.

• Weighting. The trade-o↵ specification dw = w
i

2 W = {w? = w
1

, . . . , w
K

=
w>} determines the target service behavior level. Mapping function w

i

7! ((i �
1) div dK/3e) maps dw = w

i

to the levels fine-grained (= 0), coarse-grained (= 1)
and black-box (= 2). If the target level is fine-grained, we proceed directly with
the truncation step. If the target level is coarse-grained, for all services where both
behavior descriptions FineGrainedBehavior and CoarseGrainedBehavior are available,
CoarseGrainedBehavior is marked. If the target level is black box, the following ap-
plies:

109

110 5. Online Prediction Techniques

Tailored Model Solving

Architecture-Level
Performance Model

Performance Query Performance Query
Result

input

input output

Callstack Model input

Figure 5.20: Input and Output of Model Solving

– For all services s where a BlackBoxBehavior description is available, BlackBoxBe-
havior is marked (i) if 8s0 2 calledServices(s) : ¬9dm

i

= (l
i

,m
i

, a
i

) 2 DM : s0 =
l
i

, i.e., if the service call path starting with s does not contain a service for
which a metric is requested in DM, and (ii) if 8r0 2 resources(s) : ¬9dm

i

=
(l
i

,m
i

, a
i

) 2 DM : r0 = l
i

, i.e., if s does not stress a resource for which a metric
is requested in DM.

– For all services s where only a FineGrainedBehavior and a CoarseGrainedBehavior
is available, CoarseGrainedBehavior is marked.

• Truncation. System calls within a UsageScenario that do not involve services or
resources that a↵ect a demanded metric can be truncated in the performance pre-
diction. Such calls do not contribute to the result of the performance query and
can therefore be omitted. Let S be the set of called system services of the Us-
ageScenarios of the UsageProfileModel. We partition S in two sets S0 := {s 2 S :
8s0 2 calledServices(s) : ¬9dm

i

= (l
i

,m
i

, a
i

) 2 DM : s0 = l
i

} and S
DM

:= S \ S0,
i.e., S0 denotes the set of services called by a UsageScenario whose call paths do
not include a demanded metric and S

DM

denotes the set of services called by a Us-
ageScenario whose call paths do include a demanded metric. Each s0 2 S0 where
expressions 8r0 2 resources(s0) : ¬9dm

i

= (l
i

,m
i

, a
i

) 2 DM : r0 = l
i

and 8s
DM

2
S
DM

: resources(s0) \ resources(s
DM

) = ; hold can then be truncated.

The complexity of the initialization step is O(n) where n is the number of services in
the given architecture-level performance model, the complexity of the weighting step is
O(n ⇤m+ n ⇤ r) where m is the number of demanded metrics DM and r is the number of
resources in the given architecture-level performance model. The truncation step also has
a complexity of O(n ⇤m+ n ⇤ r + n ⇤ r) = O(n ⇤m+ n ⇤ r).

The output of the model composition step is a mark model indicating which service be-
havior models should be considered for a performance prediction tailored to the given
performance query. The decision which service behavior abstraction level is marked de-
pends on the given trade-o↵ specification dw and considers the set of demanded metrics
DM.

5.4.5 Tailored Model Solving

Figure 5.20 shows the input and output of the model solving step. As input, there is the
architecture-level performance model, a performance query consisting of demanded met-
rics DM and a trade-o↵ specification dw (see Section 5.4.1 and Section 5.4.2) as well as
a callstack model as described in Section 5.2. The output of the model solving step are
the predicted results for the demanded metrics DM. While Section 5.3 describes di↵erent
model solving techniques, in this section the focus is on tailoring the solving techniques

110

5.4. Tailoring 111

to the given performance query. On the one hand, it is decided which of the available
model solving techniques is appropriate for the performance query. On the other hand,
each model solving technique itself comes with its own configuration options and thus
itself can be tailored to the query. The following tailored process is based on three model
solving techniques, namely: (i) bounds analysis (Section 5.3.3), (ii) transformation to LQN
(Section 5.3.2) where the resulting LQN is solved with the analytical solver LQNS (Franks
et al., 2011; Franks, 1999), and (iii) transformation to QPN (Section 5.3.1) where the re-
sulting QPN is solved by simulation with SimQPN (Kounev and Buchmann, 2006; Spinner
et al., 2012).

As described in Section 5.3.3, a bounds analysis provides quick asymptotic bounds for av-
erage throughput and average response time, but comes at the cost of prediction accuracy.
Furthermore, in case of an open workload, a utilization prediction can be quickly derived.
Thus, let UsgSc1 be the only instance of UsageScenario in the given usage profile model,
the criteria to decide between (i) and (ii), (iii) are then given by:

• If dw = w>, and UsgSc1 has a closed workload, and only the average response time
and/or throughput of UsgSc1 is requested, choose bounds analysis.

• If dw = w>, and UsgSc1 has an open workload, and only the average response time
and/or throughput of UsgSc1 and/or resource utilization is requested, choose bounds
analysis.

• If UsgSc1 has an open workload, and only resource utilization is requested, choose
bounds analysis.

• In all other cases proceed with the other model solving techniques (ii), (iii).

As described in Section 5.3.2, LQNS is limited to exponentially distributed service times
and inter-arrival times. Furthermore, the support for analyzing blocking behavior is lim-
ited (Brosig et al., 2014). While approximations of service times are considered acceptable
for mean-value analysis (e.g., Menascé et al. (1994)), approximations of the inter-arrival
time distribution in case of an open workload may easily lead to considerable prediction
errors (see, e.g., Section 7.2). In other words, LQNS’s blocking behavior limitation and
its limitation to exponentially distributed inter-arrival times are considered to introduce
more significant inaccuracies than the limitation to exponentially distributed service times.
Thus, the criteria to decide between (ii) and (iii) are then given by:

• If for all requested response times only their average is requested, and the per-
formance model does not contain any acquire and release actions to model soft-
ware contention, and UsgSc1 has a closed workload, and mapping function w

i

7!
((i � 1) div dK/3e) maps dw = w

i

to a value greater or equal to 1, then choose
LQNS.

• If for all requested response times only their average is requested, and the perfor-
mance model does not contain any acquire and release actions to model software
contention, and UsgSc1 has an open workload with an exponentially distributed
inter-arrival time, and mapping function w

i

7! ((i� 1) div dK/3e) maps dw = w
i

to
a value greater or equal to 1, then choose LQNS.

• If for all requested response times only their average is requested, and mapping
function w

i

7! ((i� 1) div dK/3e) maps dw = w
i

to a value equal to 2, then choose
LQNS.

• In all other cases proceed with model solving technique (iii).

While, e.g., the bounds analysis does not have additional degrees-of-freedom, the transfor-
mation to QPN and solving with SimQPN provides multiple configuration options. These

111

112 5. Online Prediction Techniques

configuration options can be used to further tailor the performance prediction to the given
query DM and dw.

• SimQPN provides fine-grained options to control what type and amount of data is
logged during the simulation run. The more data is logged, the longer the simulation
run takes. The logging configuration can be used to tailor the simulation to the
demanded metrics DM. For each place, SimQPN allows the specification of a so-
called stats-level. The stats-level indicates what statistics are collected at that place.
Five levels are distinguished:

– Level “no statistics”. No statistics are collected at the place.

– Level “throughput”. Per token color, throughput statistics are collected at the
place.

– Level “utilization”. If the place is a queueing place, the queue’s average utiliza-
tion is obtained.

– Level “mean residence time”. Per token color, mean token residence times are
collected at the place.

– Level “residence time distribution”. Per token color, the empirical distribution
of the residence time is collected at the place.

• SimQPN allows configuring various simulation stopping criteria. These criteria de-
termine, e.g., at which confidence level the simulation stops. Thus, the stopping
criteria provide an important degree-of-freedom that can be considered to tailor the
solving technique to the given trade-o↵ specification dw.

In the following, we describe how the above-mentioned degrees-of-freedom are used for
tailored model solving. Figure 5.21 shows how SimQPN logging options are chosen de-
pending on DM. For a dm

i

= (l
i

,m
i

, a
i

) 2 DM, there is a decision tree showing which
stats-level to select. The first decision depends on demanded metric m

i

. The tree supports
the metric types response time, throughput and utilization.

• If a di↵erent metric type is requested, the stats level of the QPN place corresponding
to l

i

is set to level “no statistics”.

• If utilization is requested, l
i

has to refer to a resource. The QPN places representing
this resource are then annotated with level “utilization”.

• If throughput is requested, the places representing l
i

– which can be a resource or a
service – are set to level “throughput”.

• If a service response time is requested, the stats-level to choose depends on the ag-
gregation a

i

. If the average response time of a service is requested, a dedicated
measurement place is introduced. Figure 5.22 illustrates the integration of a mea-
surement place in the QPN resulting from a transformation of a call to l

i

(see also
Figure 5.12). Transition Call-Entry does not only fire tokens of color c to Behavior-
Begin-Place but also to the newly introducedMeasurement-Place. Transition Call-Exit
may only fire a token to the Call-End-Place if both the Behavior-End-Place and the
Measurement-Place contain a token of color c. In addition to the formal descrip-
tion of the call transformation in Section 5.3.1, the formal description of the added
Measurement-Place is:

P := P [{p
Measurement-Place

}
F
C

(p
Measurement-Place

) := {c}
(I+(p

Measurement-Place

, t
Call-Entry

))(m
t

Call-Entry

,1

) := {c}
MS

(I�(p
Measurement-Place

, t
Call-Exit

))(m
t

Call-Exit

,1

) := {c}
MS

.

112

5.4. Tailoring 113

Handle demanded
metric dmi=(li,mi, ai)

mi

is response time
?

mi

is throughput
?

mi

is utilization
?

ai

is average
?

no

no

yes

Add
probe for li,

stats level “residence
time distribution”

stats level
“throughput”

stats level
“utilization”

Metric not
supported,

stats level “no
statistics”

End

no

yes

yes

no

Introduce
measurement place at li,

stats level “mean
residence time”

yes

Figure 5.21: Decision Tree for Tailoring the SimQPN Configuration

Call-Entry

c

c

c

c

Behavior-Begin-
Place

Behavior-End-
Place

Call-Begin-
Place

Call-End-
Place

Call-Exit

Measurement-
Place

c

c

Figure 5.22: Measurement Place for a Call in a QPN

113

114 5. Online Prediction Techniques

The mean residence time for tokens of color c at the Measurement-Place then corre-
sponds to the average response time of service l

i

.

If a percentile of the response time or the empirical distribution characterized as
sample set are requested, the simulation needs to track requests, respectively tokens,
as they are propagated through the QPN. For this purpose, SimQPN implements a
so-called probe feature. A probe allows the tracking of tokens of a specified token
color between a start and an end place. A token receives two additional proper-
ties, a timestamp and a probe identifier. The timestamp indicates the time when
the token entered the start place. At the end place, the di↵erence between the to-
ken’s timestamp and the timestamp when the token entered the end place can be
logged. In addition to the grouping per token color code the probe feature thus
allows grouping tokens per probe id. However, note that individual tokens still do
not have an identity. Using probes and annotating them with stats-level “residence
time distribution”, the service response time distribution can be approximated with
the distribution of the measured probes.

Furthermore, SimQPN’s simulation stopping criteria are configured to reflect trade-o↵
specification dw. SimQPN uses non-overlapping batch means (Schmeiser, 1982) for esti-
mating the variance of mean residence times and stops when a certain confidence level is
reached. The significance level and the desired width of the confidence interval are con-
figurable. The significance level is set to ↵ = 0.05%, the width of the confidence interval
is set relative to the mean value, i.e., as relative precision of the estimate. The relative
precision is varied depending on the trade-o↵ specification dw. The higher the precision,
the higher the prediction accuracy, but also the longer the prediction run. For dw = w>
(trade-o↵ weight with highest accuracy), the relative precision is set to 5%. For dw = w?
(trade-o↵ weight with fastest prediction speed), the relative precision is set to 30%. In
capacity planning, prediction errors of up to 30% are considered acceptable (Menasce and
Virgilio, 2000). Accordingly, a trade-o↵ specification dw = w

i

2W then maps to a relative
precision of (K � i) ⇤ (30� 5)/K + 5 percent.

The output of the model solving step are the predictions for the demanded metrics. The
prediction itself is tailored to the given performance query in order to provide the demanded
metrics in accordance with the given specification of how to trade-o↵ between prediction
accuracy and time-to-result. Accurate predictions are obtained using detailed simulation.
To optimize the prediction speed, the simulation stopping criteria as well as type and
amount of simulation log data are configured appropriately. Faster predictions, however,
are obtained using established analytical solvers such as LQNS, or analytical techniques
such as approximative bounds analysis.

5.5 Performance Queries

In this section, we generalize the notion of a performance query and provide a declarative
interface to performance prediction techniques to simplify and automate the process of
using architecture-level software performance models for performance analysis. The pro-
posed language named DQL provides means to express the demanded performance metrics
for prediction as well as the goals and constraints in a specific prediction scenario (Gorsler
et al., 2014). It is not limited to online scenarios; it constitutes a useful tool also for
querying design-time performance models.

5.5.1 Requirements

We investigate common usage scenarios in performance engineering (see introduction to
Chapter 5) to derive user stories as requirements for our language for expressing perfor-
mance queries. It is distinguished whether performance queries are issued in an online or

114

5.5. Performance Queries 115

o✏ine context, i.e., if the system is at run-time during operation or if the system is in the
development or deployment phase. The following user stories (Cohn, 2004) are formulated
as requirements for the query language.

As a user,

• I want to issue queries independent of the underlying performance modeling formal-
ism.

• I want to list the modeled services of a selected performance model instance.

• I want to list the modeled resources of a selected performance model instance.

• I want to list the variable parameters of a selected performance model instance.

• I want to list supported performance metrics for selected services and resources.

• I want to conduct a prediction of selected performance metrics of selected services
and resources.

• I want to aggregate retrieved performance metrics by statistical means.

• I want to control the performance prediction by specifying a trade-o↵ between pre-
diction speed and accuracy.

• I want to conduct a sensitivity analysis for selected parameters in defined parameter
spaces.

• I want to query revisions of model instances.

We emphasize that the query language needs to be independent of a specific performance
modeling formalism. Predictable performance metrics may vary from model instance to
model instance and model solver to model solver, so the query mechanism needs to include
means to evaluate the underlying model and list supported performance metrics to the
user. For each performance modeling formalism, the query language requires a Connector
to bridge the mentioned gaps. Furthermore, queries should be user-friendly to write, e.g.,
there should be a text editor with syntax highlighting and auto-completion features.

5.5.2 Performance Query Language

In this section, we present the concepts of the performance query language. We use syntax
diagrams to describe the most relevant parts of the language grammar. Details can be
found in the master’s thesis of Gorsler (2013) that has been supervised by the author.
Figure 5.23 shows the uppermost grammar rule as a syntax diagram also referred to as
railroad diagram. In general, there are two query classes: (i) AModelStructureQuery is used
to analyze the structure of performance models. It can provide information about available
services and resources, performance metrics as well as model variation points. (ii) A
PerformanceMetricsQuery is used to trigger actual performance predictions. Both query
classes are followed by a ModelAccess part that refers to a performance model instance.

Figure 5.23: Query Classes of Descartes Query Language (DQL)

115

116 5. Online Prediction Techniques

5.5.2.1 Model Access

The query language is independent of a specific performance modeling formalism. Thus,
to issue a query on a performance model instance, both the location of the model instance
as well as a DQL Connector needs to be specified. A DQL Connector is specific for a
performance modeling formalism and bridges the gap between the performance model and
DQL. Figure 5.24 shows the model access initiated by the keyword USING. The nonterminal

Figure 5.24: Model Access

ModelFamily refers to an identifier that serves as a reference to a DQL Connector. The DQL
Connector has to be registered in a central DQL Connector registry (see Section 5.5.3).
The ModelLocation is a reference to a model instance location.

5.5.2.2 Model Structure Query

The user can request information about which services or resources are modeled, and
for which model entities the referenced model instance can provide which performance
metrics. In DQL notation, a model entity is either a resource or a service. Figure 5.25

Figure 5.25: Model Structure Query

shows a ModelStructureQuery initiated by the keyword LIST. Using terminals ENTITIES,
RESOURCES, SERVICES the user can query for respective entities, resources or services.
The result is a list of entity identifiers that are unique for the referenced model instance.
Listing 5.1 illustrates a simple query example.

LIST ENTITIES

USING connector@location;

Listing 5.1: List all Modeled Entities

Besides querying for services and resources, the user can also query for supported perfor-
mance metrics. We denote a performance metric as available if the performance metric
can be derived from the performance model instance. For example, for a CPU resource
of an application server, the average utilization is typically available. Since the available
performance metrics may di↵er from entity to entity, the user has to specify for which
entity the available performance metrics should be listed. For that purpose, the user has
to provide an EntityReferenceClause. An EntityReferenceClause is a comma-separated list
of EntityReferences whose syntax is illustrated in Figure 5.26.

An entity reference thus starts with a keyword identifying the entity type (RESOURCE or
SERVICE) followed by an entity identifier and an optional AliasClause. Listing 5.2 shows a
corresponding query example. In the example, the user queries for available metrics of a

116

5.5. Performance Queries 117

Figure 5.26: Entity Reference

resource with identifier ‘AppServerCPU1’ and a service with identifier ‘newOrder’. Alias
r is assigned to the resource and alias s is assigned to the service.

LIST METRICS

(RESOURCE ’AppServerCPU1 ’ AS r, SERVICE ’newOrder ’ AS s)

USING connector@location;

Listing 5.2: List available Performance Metrics

Furthermore, DQL allows querying for model variation points, also denoted as Degrees-of-
Freedom (DoFs). The query result then is a list of DoF identifiers. The way how model
variation points are modeled is independent from DQL, it depends on the DQL Connector.
We provide an example of DoF queries in Section 5.5.2.3.

5.5.2.3 Performance Metrics Query

A PerformanceMetricsQuery is used to trigger performance predictions. Figure 5.27 shows
the syntax. First, we explain the parts of the query that are obligatory to write basic
queries. For optional extensions such as query constraints, evaluations of DoFs and model
revisions, we refer to subsequent paragraphs.

Figure 5.27: Performance Metrics Query

A user can specify the performance metrics of interest using a wildcard ‘*’ (all available
performance metrics) or via the nonterminal MetricReferenceClause. MetricReferenceClause
is a comma-separated list of MetricReferences shown in Figure 5.28. A MetricReference
either refers to a single metric or to an aggregated metric. A single metric is described
by an EntityIdOrAlias followed by a dot and a MetricId or wildcard. Listing 5.3 shows a
corresponding example where the utilization of an application server CPU and the average
response time of a service is requested.

A specification of an aggregated metric consists of two parts. The first part (nonterminal
AggregateFunction) selects an aggregate function. The set of supported aggregate functions
is based on the descriptive statistics part of Apache Commons Math4 and provides common
statistical means, e.g., arithmetic and geometric mean, percentiles, sum and variance. The
second part describes the list of performance metrics that should be aggregated. A wildcard
(‘*’) can be used to iterate over all entities where a specific performance metric is available.
An exemplary use of an aggregated metric is shown in Listing 5.4, where the mean value
of two application server utilization rates is computed. Note that the computation of the
aggregate is provided by the DQL Query Execution Engine (QEE) (see Section 5.5.3) and

4
http://commons.apache.org/proper/commons-math/

117

http://commons.apache.org/proper/commons-math/

118 5. Online Prediction Techniques

Figure 5.28: Metric Reference

SELECT r.utilization , s.avgResponseTime

FOR RESOURCE ‘AppServerCPU1 ’ AS r, SERVICE ‘newOrder ’ AS s

USING connector@location;

Listing 5.3: Trigger Basic Performance Prediction

is not part of the DQL Connector. The DQL Connector only needs to support querying
individual metrics.

Constraints

As motivated in Section 5.4, in online performance and resource management scenarios,
controlling performance predictions by specifying a trade-o↵ between prediction accuracy
and time-to-result is important to act in time (Thereska et al., 2005; Kounev et al., 2010).
DQL enables the specification of such constrained performance queries. The syntax of the
corresponding ConstraintClause is shown in Figure 5.29. The ConstraintIDs are DQL Con-
nector specific and are intended to control the behavior of the underlying model solving
process. For instance, a DQL Connector might support a constraint named ‘FastRe-

sponse’ to trigger fast analytical mean-value solvers, or a constraint named ‘Detailed’

to trigger a full-blown simulation that may take a significant amount of time simulating,
e.g., fine-grained OS-specific scheduling behavior (Happe et al., 2010). Listing 5.5 shows
a corresponding example.

Degrees-of-Freedom

If the user wants to optimize service compositions or configuration parameter settings, an
automated design and parameter space exploration covering defined DoFs is helpful (Kozi-
olek and Reussner, 2011; Koziolek et al., 2013; Huber et al., 2012a). DoFs specify how
entities in a performance model can be varied and thus span the space of valid configura-
tions and parameter settings. Depending on the size of the configuration space and the
space exploration strategy, the time-to-result of a single performance prediction gains in
importance. Otherwise, the exploration might take too long to be feasible.

To evaluate DoFs, DQL provides several optional language constructs. Figure 5.30 shows
the syntax diagram of nonterminal DoFClause. A DoFClause refers to DoFs (nonterminal
DoFReferenceClause) and an optional exploration strategy.

A DoFReferenceClause is a comma-separated list of nonterminal DoFReference that is shown
in Figure 5.31. It starts with a DoF identifier (with an optional alias) and is followed
by DoFVariationClause that provides optional parameter settings (see Figure 5.32). In
its current version, DQL supports lists of parameter values of type Integer or Double

as well as interval definitions of type Integer. Listing 5.6 shows an example with two
DoFs. On the one hand, we vary the inter-arrival time of the open workload (values

118

5.5. Performance Queries 119

SELECT MEAN(r1.utilization , r2.utilization)

FOR RESOURCE ‘AppServer1 ’ AS r1, RESOURCE ‘AppServer2 ’ AS r2

USING connector@location;

Listing 5.4: Query with Aggregated Metric

Figure 5.29: Constraint Clause

0.1, 0.2, 0.3), on the other hand, we vary the size of the database connection pool from
10 to 30 in steps of 5. Without an explicitly defined exploration strategy, the default
exploration strategy is considered to be a full exploration. In the example, this means
that 3⇥ 5 = 15 performance predictions are triggered. The query result set is then a list
of 15 prediction results. Each prediction result contains the prediction for performance
metrics r.utilization and s.avgResponseTime.

Using the optional ExplorationStrategyID, together with user-defined configuration proper-
ties (see Figure 5.33), it is possible to trigger an alternative exploration strategy provided
that the DQL Connector supports it. This is necessary for, e.g., DoFs representing mi-
grations of Virtual Machines (VMs) from a physical host machine to another physical
host machine. In these cases, it is the DQL Connector that needs to provide means to
iterate the configuration space. An integration of complex exploration strategies, e.g.,
multi-attribute Quality of Service (QoS) optimization techniques to derive Pareto-optimal
solutions (Koziolek et al., 2013), is thus supported. Listing 5.7 shows a query example with
an explicit exploration strategy. The query has one DoF, namely the physical machine
where the application server VM is deployed. The configuration space, a set of two phys-
ical machines, is described as String value of property targets. Note that the semantics
of the configuration properties are specific for the DoF and the exploration strategy, i.e.,
the properties are not interpreted by DQL.

Temporal Dimension

As additional feature for Performance Metrics Queries, DQL o↵ers facilities to access
di↵erent revisions of a performance model. The assumption is that the model instances
are annotated with a revision number and/or a timestamp, i.e., that there is a chronological
order.

In particular, if the performance models are used in online scenarios, queries that allow the
user to ask about performance metrics in the past, the development of performance metrics
over time, or (together with a workload forecasting mechanism (Herbst et al., 2013)) the
anticipated development of performance metrics, are desirable. In online scenarios, perfor-
mance model instances are typically part of a performance data repository that integrates
revisions of calibrated model instances and performance monitoring data (Kounev et al.,
2010).

DQL allows to express the temporal dimension in di↵erent ways: (i) with a time frame
defined by a start and end time, and (ii) with a time frame starting or ending with the cur-
rent time and a time delta. Alternative (i) is used in the example in Listing 5.8. Resource
utilization and service response time are queried for a specific time frame of one day. The
results are sampled groups of one hour, possibly read from historical monitoring data, thus
leading to a set of 24 result sets. The example shown in Listing 5.9 uses alternative (ii).

119

120 5. Online Prediction Techniques

SELECT r.utilization , s.avgResponseTime

CONSTRAINED AS ‘FastResponse ’

FOR RESOURCE ‘AppServerCPU1 ’ AS r, SERVICE ‘newOrder ’ AS s

USING connector@location;

Listing 5.5: Constrained Query

Figure 5.30: DoF Clause

Figure 5.31: DoF Reference

SELECT r.utilization , s.avgResponseTime

EVALUATE DOF

VARYING

‘DoF_OpenWorkload_InterarrivalTime ’ AS dof1 <0.1, 0.2, 0.3>,

‘DoF_JDBCConnectionPool_Size ’ AS dof2 <10..30 BY 5>

FOR RESOURCE ‘AppServerCPU1 ’ AS r, SERVICE ‘newOrder ’ AS s

USING connector@location;

Listing 5.6: DoF Query

Figure 5.32: DoF Variation Clause

Figure 5.33: DoF Configuration Property

SELECT s.avgResponseTime

EVALUATE DOF

VARYING ‘DoF_AppServerVM_Migration ’ AS dof1

GUIDED BY ‘MyExplorationStrategy ’

[dof1.targets = ‘‘PhysicalMachineA ,PhysicalMachineB ’’]

FOR SERVICE ‘newOrder ’ AS s

USING connector@location;

Listing 5.7: DoF Query with Exploration Strategy

120

5.5. Performance Queries 121

The query requests the application server CPU utilization for the next two hours, sampled
in twelve groups of ten minutes length each. This query triggers performance predictions,
provided that a workload forecast for the next two hours is available.

SELECT r.utilization , s.avgResponseTime

FOR RESOURCE ‘AppServerCPU1 ’ AS r, SERVICE ‘newOrder ’ AS s

USING connector@location

OBSERVE

BETWEEN ‘2013-10-09 08:00:00 ’ AND ‘2013-10-10 08:00:00 ’

SAMPLED BY 1h;

Listing 5.8: Performance Metrics Over Time

SELECT r.utilization

FOR RESOURCE ‘AppServerCPU1 ’ AS r

USING connector@location

OBSERVE

NEXT 2h SAMPLED BY 10M;

Listing 5.9: Anticipated Resource Utilization

5.5.3 Architecture

Based on the query language as described in the previous sections, we propose an imple-
mentation of DQL based on an extensible software architecture. The component-based

DQL Language
& Editor

DQL Query
Execution Engine

DQL
Connector Registry

DQL
Connector

<<register>>

<<submit query>>

Model-specific
External Toolchain

Figure 5.34: DQL System Architecture, cf. Gorsler et al. (2014)

architecture of the DQL approach is shown in Figure 5.34.

The first component, DQL Language & Editor, provides the interface to users and o↵ers an
Application Programming Interface (API). The component provides a DQL query parser
and represents statements in a model of the abstract syntax tree. For convenience, a text
editor is also part of DQL. It provides code assistance to obtain identifiers of model entities
or available performance metrics. Furthermore, users can issue queries and visualize query
results. The second component, DQL Query Execution Engine (QEE), provides the main
execution logic in the DQL system architecture. Here, all tasks that are independent of
specific performance modeling formalisms and prediction techniques are implemented. The
DQL QEE selects an adequate DQL Connector to access the requested model instance, to
execute the query, and to provide the results to the user. The DQL QEE also calculates
aggregation functions if requested and performs the necessary pre- and post-processing
steps. The third component, a DQL Connector, provides functionality that is specific to
the employed performance modeling formalism and prediction technique. This includes
accessing performance models, triggering the prediction process and providing additional

121

122 5. Online Prediction Techniques

information, e.g., about the model structure and the available performance metrics. To
integrate di↵erent approaches for performance prediction in a DQL environment, multiple
DQL Connectors can be deployed. As each DQL Connector comes with a unique identifier
that needs to be referenced in a DQL query together with a model location, the DQL
QEE can select a suitable DQL Connector to execute the query. To find a suitable DQL
Connector, the DQL Connector Registry is used which maintains an index of available
DQL Connectors and their support for query classes.

The proposed architecture allows to integrate various di↵erent performance modeling ap-
proaches and prediction techniques. Extensions of the DQL environment are primarily
possible by contributing additional DQL Connectors. Note that DQL Connector imple-
mentations, due to the modular language structure, do not need to implement the entire
feature set of DQL, i.e., it is allowed to implement approaches that are not capable of all
DQL features.

There is a DML Connector providing performance prediction functionality for the per-
formance modeling abstractions described in Chapter 4. The performance metrics the
connector supports are depicted in Section 5.4.1, the allowed constraints correspond to
the trade-o↵ specifications introduced in Section 5.4.2.

5.6 Summary

This chapter showed how to conduct online performance predictions using the performance
modeling abstractions that are described in Chapter 4. Figure 5.35 provides an overview
of the prediction process showing the individual steps and their inputs and outputs. We
assume an architecture-level performance model to be available. The actual prediction
process is triggered by a performance query. The query indicates which performance met-
rics are to be predicted and includes a specification of how to trade-o↵ between prediction
accuracy and prediction overhead.

The model composition step marks those parts of the architecture-level performance model
that need to be considered to answer the query. These markings are kept in a composition
mark model which serves as input for the pre-processing step where parameter dependen-
cies are solved and model variables are characterized. This step, described in Section 5.2,
(i) resolves the probabilistic parameter dependencies introduced in Section 4.1.5 and (ii) pa-
rameterizes the performance model on-the-fly using the monitoring interface introduced in
Section 4.1.6. The output is a callstack model that keeps the call graph together with the
corresponding model parameter values. The call graph determines how the performance
model has to be traversed for the performance prediction.

The subsequent step is the tailored model solving step that solves the performance model,
i.e., predicts the requested metrics under consideration of the given trade-o↵ specifica-
tion. We use existing model solving techniques based on established modeling formalisms,
namely bounds analysis (Menasce and Virgilio, 2000), LQNs (Franks et al., 2009), and
QPNs (Kounev and Buchmann, 2006) (Section 5.3). The challenge is to find a balance
between prediction accuracy and prediction overhead (Section 5.4). The results of the
tailored model solving step are then returned to the query issuer.

The chapter concluded with Section 5.5 where the notion of a performance query is formal-
ized. It provided a generic declarative interface to performance prediction techniques to
simplify and automate the process of using architecture-level software performance models
for performance analysis. The proposed DQL is a language to express the demanded per-
formance metrics for prediction as well as the goals and constraints in a specific prediction
scenario.

122

5.6. Summary 123

Tailored Model Solving

Performance Query
Result

Tailored Model
Composition

Architecture-Level
Performance ModelPerformance Query

Composition Mark
Model

Parameter Dependency
Resolution & Model

Parameterization

Callstack Model

Bounds Analysis

Tailored Model
Transformation

QPN Model

Tailored Simulation

Artefact

Process

Artefact

Legend:

input

output

Model Transformation

LQN Model

Mean-Value-Analysis

Figure 5.35: Online Prediction Process

123

6. Integration of Architecture-Level
Performance Models and System
Environments

For online performance predictions, it is essential to keep the performance model in sync
with the modeled system. Otherwise, once a performance model of the system is built,
the performance model can quickly become outdated and would thus not be representa-
tive of the real system anymore (Brosig, 2011). Configuration and deployment changes
are common in modern enterprise system environments. For instance, new services are
deployed on-the-fly, service compositions are changed, virtual machines are migrated or
servers are consolidated during operation (Kounev et al., 2010). If the system changes,
the performance model representations must also be updated.

Our approach is to tie the performance model to the system environment, i.e., to contin-
uously adapt the model during system operation. The model should provide up-to-date
and exact information about the system to enable accurate performance predictions. In
the terms of the models@runtime community (Blair et al., 2009), the model should be a
“causally connected self-representation of the associated system” (Blair et al., 2009) such
that it constantly mirrors the performance-relevant structure and behavior of the system.

In order to achieve such a mirroring, we follow the proposal of Woodside et al. (2007) of a
convergence of performance monitoring, modeling and prediction as interrelated activities.
At run-time, the system components are implemented and deployed in the target produc-
tion environment. This makes it possible to obtain representative estimates of the various
model parameters taking into account the real execution environment. Moreover, model
parameters can be continuously adjusted to iteratively refine their accuracy. Furthermore,
performance-relevant information can be monitored and described at the component in-
stance level and not only at the type level as typical for performance models at design-time.
However, during operation, we do not have the possibility to run arbitrary experiments
since the system is in production and is used by real customers issuing requests. In such a
setting, monitoring has to be handled with care, keeping the monitoring overhead within
limits such that system operation is not disturbed.

In this chapter, we develop methods to integrate architecture-level performance models and
system environments. The integration is realized by: (i) a technique to extract model in-
stances semi-automatically based on monitoring data, and (ii) a technique to automatically
maintain the extracted instances at run-time. In each case, we distinguish between static

125

126 6. Integration of Architecture-Level Performance Models and System Environments

structural information of the system environment (e.g., involved component types) and
dynamic parameters (e.g., resource demands) that are reflected in the models. Figure 6.1
illustrates the concept. Both semi-automatic extraction as well as model maintenance use
monitoring data collected at run-time as input to extract/maintain an architecture-level
performance model.

Semi-Automatic Model
Extraction

Monitoring Data

Architecture-Level
Performance Model

Model Structure
Maintenance

Model Parameter
Maintenance

Figure 6.1: Extraction and Maintenance of Architecture-Level Performance Models

The chapter is structured as follows: Section 6.1 describes required monitoring capabilities
of the monitoring infrastructure. Section 6.2 describes the semi-automatic extraction of
architecture-level performance models based on monitoring data. Section 6.3 describes
how the model structure is maintained. In Section 6.4, the important question of how to
obtain model parameter values is answered. Section 6.4 describes how model parameters
such as resource demands can be maintained and how parameter dependencies can be
probabilistically characterized. Section 6.5 discusses how architecture-level performance
model parameters can be calibrated and adjusted in order to increase their accuracy.
Section 6.6 gives a summary of this chapter.

6.1 Monitoring Capabilities

In this section, we describe which specific capabilities the underlying monitoring infras-
tructure needs to support in order to be able to integrate architecture-level performance
models and system environments.

Besides common monitoring features such as monitoring resource utilization, the moni-
toring infrastructure should allow the tracking of system requests (see Section 6.1.1) and
provide facilities to control the overhead incurred by the monitoring operations (see Sec-
tion 6.1.2).

Furthermore, given that measurement data is used to characterize model parameters such
as response time, control flow or resource demand descriptions, it should be possible to
aggregate measured empirical distributions in a compact fashion. For instance, it is not
feasible to characterize a loop iteration count distribution with thousands of measurement
samples. Instead, the distribution should be abstracted in a Probability Mass Function
(PMF) that is manageable in a performance prediction process as described in Section 5.
Techniques to aggregate measurement data are shown in Section 6.1.3.

6.1.1 Call Path Tracing

System requests can be tracked using a technique we denote as call path tracing, as de-
scribed in the following. An executed system request translates into a path through a

126

6.1. Monitoring Capabilities 127

control flow graph whose edges are basic blocks (Allen, 1970), i.e., an edge represents a
portion of code within an application with only one entry point and only one exit point.
A path through the control flow graph can be represented by a sequence of references to
basic blocks. For the sake of simplicity, requests with forking behavior are neglected, such
requests would translate to a tree in the control flow graph.

We assume we can instrument the system to monitor so-called event records.

Definition. An event record is defined as tuple e = (l, t, s) where l refers to the begin or
end of a basic block, t is a timestamp and s identifies a system request. The event record
indicates that l has been reached by s at time t.

In order to trace individual system requests, a set of event records has to be obtained at
run-time. The set of gathered event records then has to be (i) partitioned and (ii) ordered.
The set of event records is partitioned in equivalence classes [a]R according to the following
equivalence relation:

Definition. R is a relation on event records: Let a = (l
1

, t
1

, s
1

), b = (l
2

, t
2

, s
2

) be event
records obtained through instrumentation. Then a relates to b, i.e., a ⇠R b, if and only if
s
1

= s
2

.

Ordering the event records of an equivalence class in chronological order then leads to
a sequence of event records, and thus can be used to derive a call path trace. We refer
to Briand et al. (2006); Hrischuk et al. (1999); Israr et al. (2007); Anderson et al. (2009)
where call path traces are transformed to, e.g., UML sequence diagrams.

6.1.2 Overhead Control

We use monitoring data to semi-automatically extract architecture-level performance mod-
els and to keep them up-to-date during system operation. However, the monitoring over-
head has to be kept low for two reasons: First, given that the system is observed during
operation, measurements must not cause significant performance degradations. Second,
the monitoring overhead may disturb model parameter maintenance in a way that, e.g.,
estimated resource demands are inaccurate and biased (see Section 6.4.3).

To reduce the overhead of monitoring system requests, in general there exist two orthogo-
nal concepts: (i) quantitative throttling : throttling the number of requests that are actually
monitored, (ii) qualitative throttling : throttling the level of detail the requests are moni-
tored at. Existing work on (i) is presented, e.g., in Gilly et al. (2009). The authors propose
an adaptive time slot scheduling for the monitoring process. The monitoring frequency
depends on the load of the system. In phases of high load, the monitoring frequency is
throttled. Concerning (ii), the monitoring approach presented in Ehlers and Hasselbring
(2011) allows an adaptive monitoring of requests, i.e., monitoring probes can be enabled
or disabled depending on what information about the requests should be monitored.

6.1.3 Empirical Characterizations

Sets of measurement samples are used to characterize model parameters such as response
time, control flow or resource demand descriptions. The descriptions are modeled as
RandomVariables, each of them represented by a probability distribution over the sample
space. Given that the sample spaces of response times, loop iteration counts, and resource
demands are infinite, and in case of response times and resource demands also continuous,
a PMF attributing each observation an individual probability is infeasible if a large number
of samples is on hand. Instead of using a PMF to characterize the random variable, one

127

128 6. Integration of Architecture-Level Performance Models and System Environments

has to approximate a probability density function. An exemplary approximation f
0
X

for a
density function f

X

(x) of a random variable X is, e.g.,

f
0
X

(x) =

8
>>>><

>>>>:

0.0 x < 10.0,

0.04 10 x < 30.0,

0.1 30 x < 32,

0.0 32 x.

As Stochastic Expression (StoEx) this is denoted as DoublePDF[(10.0;0.0)(30.0;0.04)
(32.0;0.1)] (see Section 4.1.4.3).

In other words, given a set of measurement samples, a histogram representing the empirical
density function needs to be build. The number of histogram bins and their sizes need to
be chosen in order to simplify the representation of the distribution on the one hand, while
still providing a representative shape of the density function on the other hand. Many ap-
proaches to build histograms are available. One common application area are databases:
“Database systems maintain histograms to summarize the contents of relations and permit
e�cient estimation of query result sizes and access plan costs” (Poosala et al., 1996). There
are approaches that base the bin sizes on the range of the measurement samples (Sturges,
1929), build the histogram under the assumption of a normal distribution (Scott, 1979), or
are distribution-independent and based on the range of quartiles (Freedman and Diaconis,
1981). Furthermore, we distinguish between static histograms, i.e., the underlying sample
set has to be available at the beginning of a histogram’s construction, and dynamic his-
tograms, i.e., a histogram can be iteratively refined as new measurement samples become
available (Gibbons et al., 2002). For an overview of histogram types and a histogram
taxonomy we refer to Poosala et al. (1996).

6.2 Semi-Automatic Model Extraction

The goal is to automate the process of building performance models by observing the
system behavior at run-time. Performance-relevant abstractions and parameters should
be automatically extracted using monitoring data with as little human intervention as
possible. This section is based on the work presented in Brosig et al. (2011) and focuses
on extracting the architecture-level performance abstractions introduced in Chapter 4.
More specifically, we provide a technique to extract the application architecture described
in Section 4.1. Information about how to extract information about the resource landscape
(see Section 4.2) can be found in Huber et al. (2011b, 2010). Usage profile extraction from
log data is covered in Hoorn et al. (2008); van Hoorn (2014a).

The process we employ to extract performance-relevant abstractions of the application
architecture includes four main steps depicted in Figure 6.2. First, the e↵ective application
architecture (Israr et al., 2007) is extracted, i.e., the set of components and connections
between components that are e↵ectively used at run-time. Second, the service behavior
abstractions are extracted. Third, performance model parameters are extracted. Fourth,
the resulting model is iteratively adjusted until it provides an acceptable accuracy. The
set of methods to extract the model parameters is equivalent to the methods that are used
for parameter maintenance and are thus presented in Section 6.4. Model calibration and
adjustment as well as the notion of acceptable accuracy are discussed in Section 6.5.

In the following, we describe how the e↵ective application architecture is extracted. Given
a component-based application, extracting its architecture requires identifying its building
blocks and the connections between them. Given that we use run-time monitoring data
for the extraction, we consider only those parts of the architecture that are e↵ectively

128

6.2. Semi-Automatic Model Extraction 129

Extract Component
Connections

Acceptable
accuracy? yesno End

Extract Service
Behavior Abstractions

Extract Model Parameters

Calibrate/Adjust
Performance Model

Figure 6.2: Model Extraction Process

used at run-time. Parts of the application architecture for which there is no run-time
monitoring data available are thus neglected. This is in contrast to existing approaches
for automated architecture-level performance model extraction such as Krogmann et al.
(2010). Krogmann et al. (2010) extracts behavior models via dynamic and static analysis
and relies on manual instrumentations.

6.2.1 Extraction of Component Connections

Componentization is the process of breaking down the considered application architecture
into components. It is part of the mature research field of software architecture recon-
struction (Tonella et al., 2007). Component boundaries can be obtained in di↵erent ways,
e.g., specified manually by the system architect or extracted automatically through static
code analysis (e.g., Chouambe et al. (2008)). The granularity of the identified components
determines the granularity of the work units whose performance needs to be characterized,
and hence the granularity of the resulting performance model. In the context of automated
model extraction, a component boundary is specified as a set of software building blocks
considered as a single entity. For instance, this can be a set of classes or a set of Java
Servlets.

Once the component boundaries have been determined, the connections between the com-
ponents can be automatically identified based on monitoring data. We determine the
control flow between the identified components using call path tracing (see Section 6.1.1).
Given a list of call paths and the knowledge about component boundaries, the list of
e↵ectively used components, as well as their actual entries (provided services) and exits
(required services) can be determined (Brosig et al., 2011; Brosig, 2009; Brosig et al., 2009).
Furthermore, for each component’s provided service one can determine the list of external
services that are called. Obviously only those paths that are exercised can be captured.

In terms of the application architecture meta-model presented in Section 4.1), we extract
model entities Component, Interface, InterfaceProvidingRole and InterfaceRequiringRole. For
a Component, its provided services constitute an Interface. This interface is then referred
by the component via an InterfaceProvidingRole. Similarly, a component’s required service
induces an InterfaceRequiringRole, connecting the component to the Interface that contains
the required service.

129

130 6. Integration of Architecture-Level Performance Models and System Environments

6.2.2 Extraction of Service Behavior Abstractions

After extracting the components and the connections between them, the service behavior
abstractions introduced in Section 4.1.3 need to be extracted. We distinguish the three
abstraction levels BlackBoxBehavior, CoarseGrainedBehavior and FineGrainedBehavior. The
three levels require di↵erent types of monitoring data to be extracted.

Black Box Behavior

A BlackBoxBehavior captures the view of the service behavior from the perspective of
a service consumer without any additional information about the service behavior. A
BlackBoxBehavior model can be extracted by parameterizing it with a measured response
time (see Section 6.4).

Coarse-Grained Behavior

A CoarseGrainedBehavior captures the component behavior when observed from the outside
at the component boundaries. A CoarseGrainedBehavior can be extracted by parameteriz-
ing the frequency of external service calls and the overall service resource demands (see
Section 6.4). Thus, we require information about the service’s total resource consumption,
however, no information about the service’s internal control flow is assumed.

Fine-Grained Behavior

To describe a FineGrainedBehavior, we require information about the performance-relevant
(component-internal) service control flow. The performance-relevant control flow consists
of the service’s internal resource demanding behavior, on the one hand, and information
about how it makes use of external service calls, on the other hand. Obviously, it makes a
di↵erence if an external service is called once or, e.g., ten times within a loop. Furthermore,
the ordering of external service calls and internal computations of the provided service
may have an influence on the service performance. The FineGrainedBehavior model we
aim to extract is an abstraction of the actual control flow. Performance-relevant actions
are internal computational tasks and external service calls, hence also loops and branches
where external services are called.

The set of call paths derived in the previous step (see Section 6.2.1) provides information
on how a provided component service relates to external service calls of the component’s
required services. Formally, let XC be the set of provided services of component C and
Y C = yC

1

, . . . , yC
m

C the set of its required services. For compactness, we omit the index
C from now on. Then, the observed call paths constitute a function G : x 7! S

x

with
x 2 X,S

x

✓ S where S = {(l
1

, . . . , l
k

)|k 2 N, l
i

2 Y }. G maps x to S
x

that represents the
set of sequences of observed external service calls for provided service x. For instance, if
there is a provided service x such that 8s

x

2 G(x) : s
x

= (y
1

) _ s
x

= (y
2

) holds, then one
could assume that service x has a control flow where either y

1

or y
2

is called, i.e., that
there is a branch between two external calls to y

1

and y
2

.

Multiple approaches exist for determining the performance-relevant control flow constructs,
e.g., in Kappler et al. (2008); Krogmann et al. (2010). By instrumenting the performance-
relevant control flow constructs inside the component explicitly, the control flow can be
directly extracted from the obtained call paths (Brosig, 2009; Brosig et al., 2009, 2011).

Scopes of Model Variables

Having extracted the service behavior abstractions, the scopes of the identified ModelVari-
ables can be set (see Section 4.1.4). In case a ModelVariable does not have a specified scope,

130

6.3. Model Structure Maintenance 131

which is the default case, the ModelVariable is globally unique. Monitoring data from all
observations of the ModelVariable can then be used interchangeably among all instances of
the component type that contains the ModelVariable.

The scope can be restricted by manually providing an appropriate ScopeSet, as described
in Section 4.1.4.2. An automated extraction of a model variable’s scope requires a top-
down cluster analysis (Izenman, 2009) based on the observed values of the model variable.
The goal is to find a clustering so that values observed at one component instance can be
assigned to exactly one cluster. One cluster for all observed values corresponds to an empty
ScopeSet of the model variable. One cluster for each component instance corresponds to
a ScopeSet of the model variable that contains the variable’s parent component type.

Influencing Parameters and Relationships

Furthermore, parameter dependencies can be added to the model. We propose to provide
Relationships indicating parameter dependencies between InfluencingParameters and Mod-
elVariables manually. Depending on whether a parameter dependency can be explicitly
characterized, or should be just marked to be characterized empirically based on obser-
vations, its RelationshipCharacterizationType has to be configured (see Section 4.1.5). An
automated detection of relevant parameter dependencies requires a sensitivity analysis of
all involved parameters. Given that the set of all involved parameters contains all service
input parameters and all ModelVariables, we consider an automated detection without a-
priori knowledge to be infeasible. In particular, because during system operation we do
not have the possibility to run arbitrary experiments (Kounev et al., 2010).

It is important to note that parameter dependencies are intended to improve the prediction
accuracy when considering parameter variations, however, if they cannot be characterized
or even if they are not explicitly modeled, a performance prediction can still be conducted.

6.3 Model Structure Maintenance

The performance model instance should be maintained during system operation, i.e., the
instance should be kept up-to-date as the system evolves. If the system changes, the
performance model representations must also be updated. In the terms of the mod-
els@runtime community (Blair et al., 2009), the model should be a “causally connected
self-representation of the associated system” (Blair et al., 2009) such that it constantly
mirrors the performance-relevant structure and behavior of the system.

In this section, we assume an architecture-level performance model instance to be avail-
able, and assume the instance to be representative for the modeled system in terms of
its performance abstractions. Following the definition of Swanson (1976), we distinguish
three types of possible system changes, namely corrective changes, adaptive changes and
perfective changes. Briefly, corrective changes have the goal to correct software defects.
Adaptive changes are performed to adapt the software system to changes in the environ-
ment such as new revisions of external libraries, frameworks or new hardware. Perfective
changes are applied to implement new or changed (functional or extra-functional) require-
ments, e.g., changed requirements on quality attributes such as performance (Swanson,
1976; Lientz and Swanson, 1981).

We provide a list of possible changes and a↵ected models in Table 6.1. We consider
each of the listed changes to be possible during system operation. For example, in an
application server cluster, physical machines can be replaced without system down-time.
System changes can be performed either manually, or automatically in the context of
an autonomic performance-aware resource management (see Section 1.5). Automatically

131

132 6. Integration of Architecture-Level Performance Models and System Environments

Corrective Change A↵ected Model
replace component Application Architecture

Deployment
re-compose components Application Architecture

Deployment
Adaptive Change A↵ected Model
replace component Application Architecture

Deployment
re-compose components Application Architecture

Deployment
replace (parts of) execution environment Deployment

Resource Landscape
replace hardware Deployment

Resource Landscape
Perfective Change A↵ected Model
replace component Application Architecture

Deployment
re-compose components Application Architecture

Deployment
replace hardware Deployment

Resource Landscape
replace (parts of) execution environment Deployment

Resource Landscape
add/remove hardware Deployment

Resource Landscape
change resource allocation Deployment

Table 6.1: List of Possible Changes

132

6.4. Model Parameter Maintenance 133

performed changes can be adaptive changes if the system should be adapted to chang-
ing workloads, or perfective changes, if the system should satisfy changing performance
objectives such as Service Level Agreements (SLAs).

In case of a change, the a↵ected models have to be maintained. In each of these changes,
the model’s structure needs to be adapted. We denote a model change to be structural,
if model entities are removed/added/replaced or associations between model entities are
altered. Changes of model parameter values are thus not considered as structural changes.

If the system change is triggered automatically as part of an autonomic resource man-
agement process, model changes must also be automatically performed. Figure 6.3 shows
the implementation components of the control loop introduced with Figure 1.1, cf. Huber
(2014). Within the control loop, the ModelAdaptor component is responsible for perform-
ing the changes on the model level while the SystemAdaptor performs the system changes.
If the system change is triggered manually, the ModelAdaptor can also be used to perform

PLAN

ModelAdaptorPerformanceEvaluator

AdaptationController

ANALYZEEXECUTE

MONITOR

<<triggers>> <<triggers>><<triggers>>

KNOWLEDGE BASE

ModelRepositoryPerformanceData
Repository

<<queries>> <<adapts>>

<<storesResults>>
<<analyses>>

<<triggers>>

<<triggers>>

<<updates>><<updates>>

<<queries>>

ModelAnalyzer

<<triggers>>

WCF

<<queries>>
<<uses>>

System
Adaptor

Figure 6.3: Components Constituting Huber’s Adaptation Framework (Huber, 2014)

model changes in a convenient way.

6.4 Model Parameter Maintenance

We assume an architecture-level performance model instance whose structure is represen-
tative for the modeled system to be available. We propose to observe the model parameter
continuously during system operation. On the one hand, model parameters need to be
updated if the model structure changes. On the other hand, model parameters need to
be updated over time in order to reflect (i) changes due to changing workloads and (ii)
changes due to the evolving system state. For instance, in an enterprise software sys-
tem the data stored in an underlying database system evolves over time. Given that the
performance model approximates the database state using empirical observations, these
observations need to be updated over time. In summary, the model parameters should be
kept up-to-date as the system evolves.

133

134 6. Integration of Architecture-Level Performance Models and System Environments

As model parameters we denote instances of model entity ModelVariable, see Figure 4.23.
These are control flow variables such as branching probabilities, loop iteration counts, call
frequencies as well as resource demands, response times and call parameters. This section
describes techniques how these variables can be parameterized using run-time monitoring
data. Section 6.4.1 describes such techniques for control flow variables, Section 6.4.2 is
about measuring response times, Section 6.4.3 presents approaches to estimate resource
demands, and Section 6.4.5 deals with the question of how probabilistic parameter de-
pendencies can be characterized. The presented techniques can be used to implement
the monitoring interface described in Section 4.1.6. The first method getCharacteriza-
tionForModelVariable returns the characterization for a given model variable and a given
component instance where the variable resides. The characterization is returned as a ran-
dom variable. The second method getCharacterizationForParameterDependency returns
the characterization for a probabilistic parameter dependency. The characterization is also
returned as a random variable.

6.4.1 Control Flow Statistics

When obtaining control flow statistics, we are interested in obtaining branching probabil-
ities, loop iteration counts and call frequencies (see Section 4.1.3) from monitoring data.
Such parameters can be derived from observed event records.

Let E = {e
i

= (l
i

, t
i

, s
i

)} be the set of monitored event records and E/R the corresponding
set of equivalence classes for relation R (see the definitions of event record and R in
Section 6.1.1). An equivalence class [x]R 2 E/R is the set of event records belonging to
one system request. Thus, we can denote a system request as [x]R. In the following, we
describe how the control flow statistics can be derived from the set of monitored event
records E.

Branching Probabilities

There is a branch b with N branch transitions. If the entry of the branch, denoted as
entry(b), as well as the entries of branch transitions bt

j

, denoted as entry(bt
j

), can be
monitored, the branching probability pr

j

for branch transition bt
j

can be derived. The set
of event records that represent an entry of branch b is defined as

E
b

:= {e
i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(b)}.

The set of event records that represent an entry of branch transition bt
j

is defined as

E
btji := {e

i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(bt
j

)}.

Then, for j = 1, . . . , N , the branching probabilities are calculated as

pr
j

=
#E

btj

#E
b

,

where symbol # denotes the cardinality of the sets. Since
P

N

j=1

#E
btj = #E

b

holds, the

branching probabilities pr
j

sum up to 1.0, i.e.,
P

N

j=1

pr
j

= 1.0.

Loop Iteration Counts

There is a loop lp with loop body lb. If the entry of the loop, denoted as entry(lp), as
well as the entry of the loop body, denoted as entry(lb), can be monitored, the average
loop iteration count can be derived. Note that we di↵erentiate between entering the loop

134

6.4. Model Parameter Maintenance 135

and entering the loop body. The set of event records that represent an entry of loop l is
defined as

E
lp

:= {e
i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(lp)}.

The set of event records that represent an entry of loop body lb is defined as

E
lb

:= {e
i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(lb)}.

Then, the average number of loop iteration counts is calculated as #Elb
#Elp

.

However, in order to derive the PMF of the loop iterations that is characterized by the
set of loop iteration counts N := {n

1

, . . . , n
l

} together with their probabilities P :=
{pr

1

, . . . , pr
l

}, call path tracing needs to be applied. As described in Section 6.1, the
equivalence class [x]R 2 E/R is the set of event records belonging to one system request.
To calculate whether request [x]R enters loop lp or not, a helper function is defined:

loopentry([x]R) := #{e
i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= entry(lp)}.

Without loss of generality, it is assumed that a system request enters lp at most once.
If not, equivalence class [x]R would need to be further partitioned so that each partition
enters the loop at most once, i.e., so that each partition consists of at most one loop entry
and loop exit. The helper function loopentry([x]R) thus evaluates to 1 if system request
[x]R enters loop lp, or evaluates to 0 if lp is not entered. To count the number of loop
body iterations of [x]R, we calculate:

loopcount([x]R) :=

(
#{e

i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= entry(lb)} loopentry([x]R) = 1,

undefined loopentry([x]R) = 0.

Note that it is distinguished whether loop lp is entered or not. If the loop is not entered,
we set loopcount([x]R) to undefined. Thus, system requests that do not access loop lp
are ignored. Note that we do not ignore loop iteration counts of 0, which is the case when
system request [x]R enters the loop but not the loop body.

The set of observed loop iteration counts N is then defined by

N = {n 2 N
0

| 9 [x]R 2 E/R : loopcount([x]R) = n}.

We thus set l = #N and provide the formula for loop iteration count probability pr
i

with
i 2 {1, . . . , l}:

pr
i

=
#{[x]R 2 E/R | loopcount([x]R) = n

i

}
#{[x]R 2 E/R | loopentry([x]R) = 1} .

Sets N and P define a PMF that characterizes the distribution of loop iteration counts of
loop lp. If l is large, e.g., l > 10, histograms can be used to approximate the loop iteration
count distribution, see Section 6.1.3.

Call Frequencies

For a coarse-grained service behavior s, the call frequency of external call ec is obtained in
a similar way to the distribution of loop iteration counts. The entry of service s, denoted
as entry(s), corresponds to the entry of a loop. The entry of external call ec, denoted
as entry(ec), corresponds to the entry of a loop body. If entry(s) and entry(ec) can be
monitored, the call frequency of ec can be derived.

The set of event records that represent an entry of service s is defined as

E
s

:= {e
i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(s)}.

135

136 6. Integration of Architecture-Level Performance Models and System Environments

The set of event records that represent an entry of external call ec is defined as

E
ec

:= {e
i

= (l
i

, t
i

, s
i

) 2 E | l
i

= entry(ec)}.

Then, per service s, the average number of external calls ec, is calculated as #Eec
#Es

.

However, if the set of di↵erent counts of external call ec per service s, denoted as N :=
{n

1

, . . . , n
l

}, together with their probabilities P := {pr
1

, . . . , pr
l

} has to be calculated,
call path tracing needs to be applied. As described in Section 6.1, the equivalence class
[x]R 2 E/R is the set of event records belonging to one system request. To calculate
whether [x]R enters the service s or not, a helper function is defined:

serviceentry([x]R) := #{e
i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= entry(s)}.

Without loss of generality, it is assumed that a system request enters service s at most
once. If not, equivalence class [x]R would need to be further partitioned so that each
partition enters service s at most once, i.e., so that each partition consists of at most one
service entry and service exit. The helper function serviceentry([x]R) thus evaluates to 1
if system request [x]R enters service s or evaluates to 0 if s is not entered. To count the
number of external calls ec for [x]R, we calculate:

callcount([x]R) :=

(
#{e

i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= entry(ec)} serviceentry([x]R) = 1,

undefined serviceentry([x]R) = 0.

Note that it is distinguished whether service s is entered or not. If the service is not
entered, we set callcount([x]R) to undefined. Thus, system requests that do not access s
are ignored. Note that external call counts of 0 are not ignored, which is the case when
system request [x]R enters s but not external call ec.

Set N then is defined by

N = {n 2 N
0

| 9 [x]R 2 E/R : callcount([x]R) = n}.

We thus set l = #N and provide the formula for external call count probability pr
i

with
i 2 {1, . . . , l}:

pr
i

=
#{[x]R 2 E/R | callcount([x]R) = n

i

}
#{[x]R 2 E/R | serviceentry([x]R) = 1} .

Sets N and P define a PMF that characterizes the call frequency of external call ec per
service call s. Again, if l is large, e.g., l > 10, histograms can be used to approximate the
call frequency, see Section 6.1.3.

6.4.2 Response Times

For a black-box service behavior s, the service response time can be measured using event
records if the entry of the service call, denoted as entry(s), and the exit of the service call,
denoted as exit(s), can be monitored. Since we need to identify pairs of entries and exits,
call path tracing needs to be applied.

Let E = {e
i

= (l
i

, t
i

, s
i

)} be the set of monitored event records and E/R the corresponding
set of equivalence classes for relation R. As described in Section 6.1.1, the equivalence
class [x]R 2 E/R is the set of event records belonging to one system request. Without
loss of generality, it is assumed that a system request calls service s at most once. If not,
equivalence class [x]R would need to be further partitioned so that each partition calls
service s at most once, i.e., each partition consists of at most one service entry and service
exit.

136

6.4. Model Parameter Maintenance 137

To determine whether [x]R calls service s or not, two helper functions are defined:

serviceentry([x]R) := #{e
i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= entry(s)},
serviceexit([x]R) := #{e

i

= (l
i

, t
i

, s
i

) 2 [x]R | l
i

= exit(s)}.

The helper function serviceentry evaluates to 1 if the request calls service s and 0, other-
wise. Furthermore, for each request [x]R, serviceentry([x]R) = serviceexit([x]R) holds.

For an individual request [x]R, the response time is then calculated as

responsetime([x]R) :=

(
t
j

� t
i

serviceentry([x]R) = 1,

undefined serviceentry([x]R) = 0,

where e
i

= (l
i

, t
i

, s
i

) 2 [x]R : l
i

= entry(s) and e
j

= (l
j

, t
j

, s
j

) 2 [x]R : l
j

= exit(s).

Calculating the response time for each [x]R 2 E/R then leads to an empirical distribu-
tion of the response time of service s. This empirical distribution consisting of a set of
measurement samples then needs to be approximated as described in Section 6.1.3.

6.4.3 Resource Demand Estimation

Both coarse-grained service behavior models as well as fine-grained service behavior models
allow characterizing a service’s resource demanding behavior. To characterize the resource
demanding behavior of a component’s provided service, the resource demands of its internal
computations need to be quantified. Determining resource demands involves identification
of the resource type (e.g., CPU, HDD I/O, Network I/O) used by the service and quan-
tification of the amount of time spent using these resources. The resource demand of a
service is its total processing time at the considered resource not including any time spent
waiting for the resource to be made available (see also Section 2.2).

Resource demands typically cannot be directly measured, they are estimated based on
measurements of other metrics. Resource demand estimation is an established research
area. Typically, resource demands are estimated based on measured response times or
resource utilization and throughput data (Menascé et al., 1994; Rolia and Vetland, 1995).
Most approaches focus on CPU and I/O resources, i.e., memory accesses are normally not
considered explicitly. We provide an overview of existing techniques to resource demand
estimation based on the master’s thesis of Spinner (2011) that has been supervised by
the author. Each technique comes with its own advantages and disadvantages in terms of
accuracy, robustness and applicability. For instance, there are notable di↵erences in the
type and amount of measurement data that is required as method input. The overview is
concluded by a classification categorizing the existing techniques to support the decision
which technique to apply in which context.

We use the notation presented in Table 6.2 for the description of the di↵erent approaches.
Note that in order to conform with the notation that is established in the area of resource
demand estimation, in the remainder of this section we refer to resource demands of
workload classes instead of resource demands of services. In the following, resources are
denoted with the index i and workload classes are denoted with the index c.

Furthermore, the Flow Equilibrium Assumption (Menasce and Virgilio, 2000) is assumed
to hold, i.e., that over a su�ciently long period of time the number of request arrivals
equals to the number of request completions. As a result, the arrival rate �

c

is assumed
to be equal to the throughput X

c

.

137

138 6. Integration of Architecture-Level Performance Models and System Environments

D
i,c

average resource demand of requests
of workload class c at resource i

U
i,c

average utilization of resource i
due to requests of workload class c

U
i

average total utilization of resource i

�
c

average arrival rate of workload class c
X

c

average throughput of workload class c
R

c

average response time of workload class c
I total number of resources
C total number of workload classes

Table 6.2: Metrics for Resource Demand Estimation Techniques

Approximation with Response Times

The measured response time of a request at a resource is the sum of the waiting time and
the resource demand. If one can assume that the waiting time is insignificant compared
to the resource demand and the measured response time does not include significant time
spent at other resources, the measured response time can be used to approximate the
resource demand (Nou et al., 2009; Urgaonkar et al., 2007; Brosig et al., 2009).

This approximation allows the estimation of average resource demands as well as the esti-
mation of the empirical distribution of resource demands. The latter is particularly helpful
if the actual resource demand has a large variance and/or has a multi-modal distribution.

Service Demand Law

The utilization at resource i due to requests of workload class c can be derived using the
Utilization Law (e.g., Menascé et al. (1994)). Solving for the resource demand leads to the
Service Demand Law (e.g., Menascé et al. (1994)):

D
i,c

=
U
i,c

X
i,c

.

This relationship can be used to determine average resource demands based on measured
utilization and throughput data. In cases where requests of di↵erent workload classes
arrive at the system of interest simultaneously, a measured total utilization U

i

needs to be
apportioned appropriately among the di↵erent workload classes. This can be done by ratios
obtained from additional per-class metrics provided by the operating system (Lazowska
et al., 1984; Menascé et al., 2004b) or from workload class response times (Brosig et al.,
2009).

Linear Regression

A common way to infer resource demands is based on linear regression (Bard and Shatzo↵,
1978; Rolia and Vetland, 1995; Pacifici et al., 2008; Casale et al., 2007; Zhang et al., 2007;
Kelly and Zhang, 2006; Stewart et al., 2007). Given a workload consisting of multiple
workload classes, the linear model is usually defined based on the Utilization Law:

U
(j)

i

=
CX

c=1

�(j)

c

D
i,c

,

where index (j) denotes measurement samples obtained in time window j. For the regres-
sion to be meaningful, we need to obtain at least N simultaneous measurement samples,
where N is the number of resource demands to estimate.

138

6.4. Model Parameter Maintenance 139

Commonly, non-negative Least Squares (LSQ) regression is used to solve the model (Rolia
and Vetland, 1995; Pacifici et al., 2008). However, the following issues can arise: i) re-
source demands are stochastically distributed, thus estimating mean resource demandsD

i,c

may lead to significant estimation errors (Rolia and Vetland, 1995); ii) close correlations
between the control variables (multicollinearity) may cause non-unique and unstable solu-
tions and therefore should be avoided (Pacifici et al., 2008). Ad-hoc techniques to reduce
the influence of multicollinearity are presented in Pacifici et al. (2008). Further techniques
increasing the robustness of the regression to cope with multicollinearity, outliers and
discontinuities due to software or hardware upgrades include Least Absolute Di↵erences
(LAD) regression (Stewart et al., 2007) or Least Trimmed Squares (LTS) regression (Casale
et al., 2007, 2008).

Kalman Filter

A Kalman filter estimates the hidden state of a dynamic system (Simon, 2006). The
authors in Zheng et al. (2008); Kumar et al. (2009a); Wang et al. (2012) apply it for
resource demand estimation. The following filter description is based on Kumar et al.
(2009a). The system state vector is defined as:

x =
�
D

1

· · · D
C

�
T

.

Without any a-priori knowledge about the system state dynamics, the system state model
that describes how the system state evolves over time is reduced to

x
k

= x
k�1

+w
k

,

where index k denotes discrete time steps. A process noise term w
k

is assumed to be
normally distributed with zero mean. The relationship between system state x

k

and
measurements z

k

at time step k is denoted as measurement model. If the resource can
be represented by a M/M/1 queue (for Kendall’s notation describing queues, see Kendall
(1953)), the measurement equation can be described by:

z = h(x) =

0

BB@

R
1

· · ·
R

C

U

1

CCA =

0

BB@

D1
1�U

. . .
DC
1�U

⌃C

c=1

�
c

D
c

1

CCA .

The measurement equation is of non-linear nature. To derive a linear measurement model
for the measurements z

k

, the extended Kalman filter design (Simon, 2006; Kumar et al.,
2009a) can be used:

z
k

= Hx
k

+ v
k

,where H =
@h

@x
,

where v
k

is the observation noise, which is assumed to be white gaussian noise with zero
mean. In Zheng et al. (2005, 2008), the authors give recommendations on how to choose
filter configurations such as initial state vectors or covariance matrices of process and
observation noise.

Optimization

In this paragraph, we describe estimation approaches that are defined as optimization
problems and solved with mathematical programming methods. In contrast to the pre-
sented linear regression approaches, the estimation approaches described here are based
on more general objective functions.

139

140 6. Integration of Architecture-Level Performance Models and System Environments

In Liu et al. (2003); Wynter et al. (2004); Liu et al. (2006); Kumar et al. (2009b), the
objective function aims at reducing the prediction error of response times and resource
utilization:

min

CX

c=1

p
c

(R
c

� R̃
c

)2 +
IX

i=1

(U
i

� Ũ
i

)2
!
,

where R̃
c

denotes the measured response time of workload class c and Ũ
i

the measured
utilization of resource i. Expressions of R

c

and U
i

are derived from standard queueing
formulas (Menascé et al., 1994; Bolch et al., 1998). The factor p

c

weights the response time
errors, e.g., with the proportion of the number of requests of workload class c, p

c

= �cPC
d=1 �d

.

The authors in Kumar et al. (2009b) describe an optimization approach that supports the
estimation of load-dependent resource demands, requiring a-priori knowledge of the type
of function, e.g., polynomial, exponential or logarithmic, that best describes the relation
between workload and resource demand. An approach using series of experiments to
increase robustness to noisy measurements and outliers is described in Liu et al. (2006).
The optimization does not only consider the current optimal solution but the set of all
optimal solutions since the first experiment.

The work in Menascé (2008) formulates an optimization problem that depends only on
response time and arrival rate measurements:

min
CX

c=1

(R
c

� R̃
c

)2 with R
c

=
IX

i=1

D
i,c

1�
P

C

d=1

�
d

D
i,d

subject to D
i,c

� 0 8i, c and
CX

c=1

�
c

D
i,c

< 1 8i.

Other Approaches

Kraft et al. (2009) use Maximum Likelihood Estimation (MLE) to estimate resource de-
mands. MLE allows infering statistics of a random variable by determining the probability
of observing a certain sample path. The authors use MLE with measured response times
R1

i

, . . . , RN

i

and queue lengths that were seen on arrival of a request. They then search
for the resource demands D

i,1

, . . . , D
i,C

so that the probability of observing the measured
response times is maximized.

Rolia et al. (2010a) propose a technique for estimating the aggregate resource demand of a
workload mix, called Demand Estimation with Confidence (DEC). This technique assumes
that a set of benchmarks utilizing di↵erent functions of an application is available. Based
on measured demands for the individual benchmarks, DEC can estimate the aggregate
resource demand of a given workload mix.

Kalbasi et al. (2011) consider the use of Support Vector Machines (SVMs) (Smola and
Schölkopf, 2004) for estimating resource demands. They compare it with results from
LSQ and LAD regression and show that it can provide better resource demand estimates
depending on the characteristics of the workload.

Classification

After having presented existing approaches to resource demand estimation with their ad-
vantages and disadvantages, the list is summarized in Table 6.3. The most common tech-
niques use response time approximation, the Service Demand Law, or linear regression
based on the Utilization Law. Further techniques apply Kalman filtering, formulate gen-
eral optimization problems, or apply MLE.

140

6.4. Model Parameter Maintenance 141

Class Variant Approach (identi-
fied by authors)

Response time ap-
proximation

Single resource Brosig et al. (2009)

Multiple resources
Nou et al. (2009)
Urgaonkar et al.
(2007)

Service Demand Law Brosig et al. (2009)
Lazowska et al.
(1984)

Linear regression
LSQ

Rolia and Vetland
(1995, 1998)
Pacifici et al. (2008)
Kraft et al. (2009)

LAD Zhang et al. (2007);
Stewart et al. (2007)

Robust regression Casale et al. (2007,
2008)

Kalman filter Single workload class Zheng et al. (2005,
2008)

Multiple workload
classes

Kumar et al. (2009a)

Optimization Menascé (2008)
Zhang et al. (2002)

Inferencing Liu et al. (2003);
Wynter et al. (2004);
Liu et al. (2006)

Enhanced Inferencing Kumar et al. (2009b)
MLE Kraft et al. (2009);

Perez et al. (2013)
DEC Rolia et al. (2010a,b)

Table 6.3: List of Approaches to Resource Demand Estimation, cf. Spinner (2011)

We showed that there are notable di↵erences in the type and amount of measurement
data that is required as input for the approaches. Table 6.4 provides an overview. Pa-
rameters common to all estimation approaches, such as the number of workload classes
and the number of resources, are not included. Most linear regression approaches are
based on the Utilization Law. They require the total utilization of a resource and the
throughput of each workload class. In contrast, the linear regression approach described
by Kraft et al. (2009) depends on the measured response time and the queue length seen
upon arrival. For the Kalman filter, varying definitions are in use. Zheng et al. (2008)
propose to use a subset of: throughput, end-to-end response time, total delay at a re-
source, total utilization of a resource or the mean number of requests at a resource. The
DEC approach (Rolia et al., 2010a) is based on per-class throughput and per-resource visit
counts. Additionally, it is assumed that a set of benchmarks stressing di↵erent parts of
the system is available. Some of the estimation approaches also depend partly on resource
demands that are known beforehand. Menascé (2008) suggests how to calculate missing
resource demands from a set of given resource demands. The given resource demands can
come from other estimation approaches. Another approach that requires partial resource
demands for each workload class is described by Lazowska et al. (1984). It is assumed

141

142 6. Integration of Architecture-Level Performance Models and System Environments

that the resource demands are measured with an accounting monitor. Such an accounting
monitor, however, does not include the system overhead caused by a workload class. The
system overhead is defined as the work done by the operating system when processing
a request. Lazowska et al. describes a way to distribute unattributed computing time
between the workload classes. Thus, we can obtain improved resource demand estimates
that take into account the system overhead. Some of the optimization approaches require
information about the scheduling strategy of the involved resources. The description of
the optimization problems used by the estimation approaches of Zhang et al. (2002), Liu
et al. (2003); Wynter et al. (2004); Liu et al. (2006) and Kumar et al. (2009a) depend
on the scheduling strategies of a corresponding queueing model. In addition to the types
of input parameters required by an estimation approach, some approaches also provide a
rule of thumb regarding the number of required measurement samples. Approaches based
on linear regression (Rolia and Vetland, 1995, 1998; Pacifici et al., 2008) need at least
K + 1 linear independent equations to estimate K resource demands. When using robust
regression methods, significantly more measurements might be necessary (Casale et al.,
2007). In Kumar et al. (2009a), the authors give a formula to calculate the number of
measurements required by their optimization-based approach. Yet, these are only mini-
mum bounds for the number of measurements. A lot more measurements are typically
required to obtain good estimates (Stewart et al., 2007).

The approaches to resource demand estimation are typically used to determine the mean
resource demand of requests of a workload class at a resource. However, resource de-
mands cannot be assumed to be deterministic (Rolia et al., 2010a), e.g., they typically
depend on the data processed by an application or on the current state of the system
or application (Rolia and Vetland, 1995). In certain scenarios, e.g., if Dynamic Voltage
and Frequency Scaling (DVFS) or hyperthreading techniques are activated (Kumar et al.,
2009b), resource demands may be load-dependent. In such cases, the mean resource de-
mands are not constant, but a function that may depend, e.g., on the arrival rates of the
workload classes (Kumar et al., 2009b).

Thus, the estimated mean value may not be su�cient in some situations. More information
about the confidence of estimates and the distribution of the resource demands can be
valuable. Estimates of higher moments of the resource demand can also be useful to
determine the shape of their distribution. We distinguish between point and interval
estimators of the real resource demands. Confidence intervals help to assess the reliability
of resource demand estimates, if the underlying statistical model is valid.

Point estimates of the mean resource demand are provided by all considered approaches.
Confidence intervals can be determined with the approaches based on response time ap-
proximation, linear regression (Rolia and Vetland, 1995; Kraft et al., 2009) and with the
DEC approach (Rolia et al., 2010a). The MLE approach (Kraft et al., 2009) and the opti-
mization approach described by Zhang et al. (2002) are also capable of providing estimates
of higher moments. This additional information comes at the cost of a higher number of
required measurements. Furthermore, all of the presented estimation approaches are capa-
ble of estimating load-independent mean resource demands. Additionally, the Enhanced
Inferencing approach (Kumar et al., 2009b) also supports the estimation of load-dependent
resource demands, assuming a given type of function.

6.4.4 Resource Demand Estimation in Virtualized Environments

The techniques presented in Section 6.4.3 are independent of the type of execution envi-
ronment. However, in virtualized execution environments, the virtualization layer makes
the estimation of resource demands di�cult and inaccurate (Brosig et al., 2013a). Most
of the mentioned approaches require the measured total resource utilization as input (see

142

6.4. Model Parameter Maintenance 143

Estimation approach Measurements Others

U
ti
li
za
ti
on

R
es
p
on

se
ti
m
e

T
h
ro
u
gh

p
u
t

A
rr
iv
al

ra
te

Q
u
eu
e
le
n
gt
h

V
is
it
co
u
nt
s

R
es
ou

rc
e
d
em

an
d
s

S
ch
ed
u
li
n
g
st
ra
te
gy

Response time approx.
- Brosig et al. (2009) 7
- Urgaonkar et al. (2007) 71 7
- Nou et al. (2009) 7 7
Service Demand Law
- Brosig et al. (2009) 7 7 7
- Lazowska et al. (1984) 7 72

Linear regression
- Kraft et al. (2009) 7 7
- Rolia and Vetland (1995, 1998) 7 7
Kalman filter
- Zheng et al. (2005, 2008) 7 7
- Kumar et al. (2009a) 7 7 7
Optimization
- Menascé (2008) 7 73

- Zhang et al. (2002) 7 7 7
- Inferencing (e.g., Liu et al. (2003)) 7 7 7 7 7
- Enhanced Inferencing (Kumar et al., 2009b) 7 7 7 7
MLE (e.g., Kraft et al. (2009)) 7 7 7
DEC (Rolia et al. (2010a,b)) 7 7
1
Response time per resource.

2
Measured with accounting monitor. System overhead is not included.

3
A selected set of resource demands is known a priori.

Table 6.4: Input Measurements of Estimation Approaches, cf. Spinner (2011)

Table 6.4). However, given that in virtualized environments resources are shared, this met-
ric is often not available or inaccurate (Wood et al., 2008). Thus, the existing techniques
neglect the virtualization overhead.

In Section 6.4.4.1, we provide an example to illustrate the inaccuracy and show that the
virtualization overhead has a significant performance influence. Section 6.4.4.2 outlines
the problem of quantifying the virtualization overhead. Section 6.4.4.3 and Section 6.4.4.4
describe approaches to obtain the virtualization overhead, depending on the type and
amount of available monitoring data.

6.4.4.1 Example

Table 6.5 shows an example illustrating the influence of the virtualization overhead on
application-level performance metrics from Brosig et al. (2013a). We compare the perfor-
mance of an operation CreateVehicleEJB of the SPECjEnterprise20101 benchmark in two

1
SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corp. (SPEC). The SPEC-

jEnterprise2010 results or findings in this publication have not been reviewed or accepted by SPEC,

therefore no comparison nor performance inference can be made against any published SPEC result.

The o�cial web site for SPECjEnterprise2010 is located at http://www.spec.org/jEnterprise2010.

143

http://www.spec.org/jEnterprise2010

144 6. Integration of Architecture-Level Performance Models and System Environments

Throughput Native AppServer Virtualized AppServer
X U

AppServer

R
Avg

U
AppServerVM

R
Avg

35 14.9% 26ms 15.8% 32ms
65 24.8% 27ms 27.2% 39ms
100 35.7% 28ms 40.0% 48ms
154 53.2% 31ms 60.7% 100ms

Table 6.5: Example: Response Times in Native versus Virtualized Setup

di↵erent deployment scenarios. In the first scenario, the benchmark is deployed in a native
application server without use of virtualization. In the second scenario, the benchmark
is deployed in a Xen-virtualized2 application server on an identical physical machine with
one CPU core. We investigate the operation’s average response times and the utilization of
the application server under four di↵erent load conditions. Throughput X is varied so that
the application server CPU has utilization U

AppServer

in the range of 15% to 60%. The
application server Virtual Machine (VM) is the only guest VM hosted by the hypervisor.
In the four load scenarios, the utilization of the application server (U

AppServer

) does not
vary significantly. The virtualized application server (U

AppServerVM

) has a slightly higher
utilization than the native one. The average response times denoted as R

Avg

, however, are
significantly higher in the virtualized setup. Looking at the growth rate of the response
times in the virtualized setup leads to the assumption that the virtualized application
server is already severely utilized, although the VM shows a utilization of only 61%. Obvi-
ously, the virtualization overhead plays an important role when investigating performance
properties in virtualized systems.

The deployed Xen hypervisor (version XenServer 5.5) is an open source bare-metal hy-
pervisor (type-I). With the Xen hypervisor, multiple para-virtualized or full-virtualized
virtual machines (guest domains) can be executed on a single server sharing the physical
resources. A scheduler, integrated in the hypervisor, schedules the access of all domains
to the available physical CPUs. For access to other devices and for managing the guest
domains, Xen uses a privileged control domain (denoted as Domain-0). Domain-0 contains
the device drivers to access the physical devices. All communication of the guest domains
with the physical devices goes through Domain-0. This causes additional management
overhead in terms of CPU consumption. For example, if a guest domain sends a disk I/O
request, Domain-0 requires CPU time to process the request on behalf of the guest do-
main. Although other virtualization solutions such as VMware ESX3 implement a di↵erent
architecture, the problem of additional overhead in the virtualization layer remains.

To obtain more detailed monitoring data from the Xen-virtualized system, we use Xen-
mon (Gupta et al., 2005; Wood et al., 2008). Xenmon collects monitoring data both from
the hosted guest VMs and from Domain-0. Reported metrics include CPU utilization,
network tra�c and disk I/O accesses. Xenmon reports resource usage (CPU, network
I/O, disk I/O) of physical resources as well as resource usage at the virtualization layer
issued by guest VMs and Domain-0. When it comes to quantifying the virtualization over-
head, the resource utilization attributed to Domain-0 becomes of interest. The monitoring
data in Table 6.6 shows the same scenario as in Table 6.5 with added information on
the measured utilization accounted to Domain-0, reported by Xenmon. The utilization of
Domain-0 (U

Domain0

) ranges from 12% to 31%, depending on the load level. For instance,
at the highest load level, the utilization of Domain-0 is half of the utilization measured
directly at the application server VM. This explains the highly increased response times

2
The Xen Project, http://www.xen.org/

3
VMware, http://www.vmware.com/

144

http://www.xen.org/
http://www.vmware.com/

6.4. Model Parameter Maintenance 145

Throughput Virtualized AppServer
X U

Domain0

U
AppServerVM

R
Avg

35 11.6% 15.8% 32ms
65 18.9% 27.2% 39ms

100 25.2% 40.0% 48ms
154 30.6% 60.7% 100ms

Table 6.6: Example: VM Utilization versus Domain-0 Utilization

of CreateVehicleEJB. The system is already heavily utilized, i.e., > 90%. Recall that the
application server VM is the only running guest VM in that scenario and thus the only
one responsible for the observed Domain-0 load.

6.4.4.2 Problem Formulation

In terms of Xen, it is unclear to what extent each guest VM causes load in Domain-0.
The pie chart in Figure 6.4 illustrates the resource utilization of a Xen-virtualized physical
resource. The utilization is divided among three guest VMs (VM

1

�VM
3

) and Domain-0.
The utilization accounted to Domain-0 again has to be partitioned and accounted to
VM

1

� VM
3

. When considering the physical resource utilization caused by a specific
VM, the corresponding Domain-0 partition has to be added to the utilization obtained at
the VM level. Note that the illustration does not consider the system overhead, which is
regarded as noise that should be equally distributed among all partitions.

idle

VM2

VM1

VM3

 Domain0

VM1

VM2

VM3

Figure 6.4: Resource Utilization of a Virtualized Resource

More general, assume a hypervisor is running on a physical machine hosting n virtual
machines VM

1

, . . . ,VM
n

, where VM
i

processes workload classes w
i,j

, j 2 {1, . . . , k
i

}. The
virtual machines and the hypervisor share the available physical resources. As shown
in Huber et al. (2011b); Lu et al. (2011), with modern virtualization solutions, CPU-
intensive workloads inside the VMs have a negligible overhead of lower than one percent.
Network and disk I/O tra�c of the VMs, however, induce significantly higher processing
overhead. The overhead furthermore depends on the configuration of each hosted VM
such as the number of assigned virtual CPUs or parameters such as core a�nity and
shares (Huber et al., 2011b).

Metric of interest is the resource utilization of the physical and virtual machines. The CPU
utilization of the physical machine is denoted as U

phys

. The CPU utilization of VM
i

is
denoted as U

VMi and refers to the utilization as measured inside the VM, i.e., the incurred
virtualization overhead is not included. The question is how the virtualization overhead
of workload class w

i,j

can be obtained.

145

146 6. Integration of Architecture-Level Performance Models and System Environments

D
wi,j Mean resource demand of workload

class w
i,j

without the virtualization
overhead.

O
wi,j Virtualization overhead factor for

workload class w
i,j

.
X

wi,j Throughput of workload class w
i,j

.

Table 6.7: Parameterizing Virtualization Overhead

In the next sections, di↵erent ways are described to obtain the virtualization overhead,
depending on the type and amount of available monitoring data. Table 6.7 shows the
parameters that are relevant in the following. The resource demands D

wi,j indicate the
mean resource demand without the virtualization overhead. They can be derived using
existing techniques as presented in Section 6.4.3. The challenge is to estimate the virtual-
ization overhead factors O

wi,j . There are di↵erent ways to obtain the relevant overhead,
depending on the type and amount of available monitoring data.

6.4.4.3 Global Overhead Factors and O↵sets

One option to approximate the virtualization overhead is to make use of a set of bench-
marks. The set of benchmarks is then used to characterize the target virtualization in-
frastructure for di↵erent types of workloads such as CPU-bound, memory-intensive, disk
I/O- or network I/O-intensive workloads. Selected benchmarks are, e.g., Passmark Per-
formanceTest4, SPEC CPU 20065, and Iperf6 (Huber et al., 2011b, 2010). Huber et al.
(2011b, 2010) propose an automated experimental analysis approach to derive the bench-
mark result deltas between a native and a virtualized system. The benchmark result deltas
are then used to calculate virtualization overhead factors for the di↵erent types of work-
loads. The virtualization overhead factors O

wi,j are chosen according to the most similar
workload type corresponding to workload class w

i,j

.

6.4.4.4 Application-Specific Overhead Portions

If the application is available for performance testing, the virtualization overhead factors
can be estimated based on a more precise workload profile of the application. First, a set
of microbenchmarks is used to parameterize an overhead model for di↵erent I/O activities
such as disk or network I/O accesses. Then, a resource access profile of the software system
is obtained. Applying the overhead model to the application’s resource access profile one
can estimate the virtualization overhead factors.

The authors in Wood et al. (2008); Gupta et al. (2005) use this approach to estimate the
resource requirements of applications when they are migrated from a native to a virtualized
environment. They execute microbenchmarks on a machine both in a virtualized and a
native deployment. They build a regression model with resource access metrics collected
in the native environment together with CPU utilization metrics (for Domain-0 and the
VM) collected in the virtualized environment. The result is a model with a resource access
profile as input, and CPU utilization for Domain-0 and the VM as output. Motivated
by Wood et al. (2008), Lu et al. (2011) identifies the metrics in Table 6.8 as su�cient
to parameterize an overhead model for I/O activities in Xen 3.3.1. The Domain-0 CPU
overhead issued by network accesses has a“clear linear relationship with the packet sending
and receiving rates, but not with the network throughput in bytes” (Lu et al., 2011). The

4
http://www.passmark.com/products/pt.htm

5
http://www.spec.org/cpu2006/

6
http://iperf.sourceforge.net/

146

6.4. Model Parameter Maintenance 147

Network accesses Disk accesses
M

1

:= Received packets/sec M
3

:= Read blocks/sec
M

2

:= Sent packets/sec M
4

:= Write blocks/sec

Table 6.8: Resource Utilization Metrics Characterizing I/O Activities

same applies to the disk read/write block rates, which have a linear relationship to the
Domain-0 CPU overhead generated by disk accesses. In contrast to I/O, virtual CPU
accesses and memory accesses do not impose a significant CPU overhead on Domain-0 (Lu
et al., 2011).

In the following, the work of Lu et al. (2011) and Wood et al. (2008) is combined to an
approach to estimate virtualization overhead factors (Brosig et al., 2013a). To measure the
overhead, resource-specific microbenchmarks are executed in a single VM on a physical ma-
chine collecting statistics about resource accesses and Domain-0 utilization. SysBench (Lu
et al., 2011) can be used as a disk I/O microbenchmark and Netperf (Lu et al., 2011) as a
network I/O microbenchmark. For di↵erent time intervals of microbenchmark executions,
equation

U
Dom0

= p
0

+
4X

l=1

p
l

⇤M
l

(6.1)

is formulated. The Domain-0 utilization is thus a linear combination of the above men-
tioned metrics. To solve the set of equations, established regression techniques such as LSQ
regression can be applied. The output of the regression are overhead factors for specific
I/O activities. An approximation of the Domain-0 utilization is computed as

Û
wi,j

Dom0

:= p
0

+
4X

l=1

p
l

⇤Mwi,j

l

where M
wi,j

l

are the average access rates of workload class w
i,j

. These average access
rates can be obtained together with metric U

wi,j

phys

from a native deployment. Note that
the machine should be identical or similar to the machine where the microbenchmarks
are executed; for cross-platform overhead models we refer to Wood et al. (2008). The
approximate overhead factors are then computed as

O
wi,j = 1 + Û

wi,j

Dom0

/U
wi,j

phys

.

If the application is running in a virtualized environment, the virtualization overhead can
be obtained from Domain-0 utilization measurements:

O
wi,j = 1 + U

wi,j

Dom0

/U
wi,j

VMi
,

where U
wi,j

VMi
is the measured utilization of VM

i

due to w
i,j

and U
wi,j

Dom0

is the measured
Domain-0 utilization partition induced by w

i,j

. However, when running more than one
VM, the latter Domain-0 partition has to be approximated.

The authors in Lu et al. (2011) describe a method that partitions the Domain-0 utilization
in di↵erent blocks, where each block can be assigned to a guest VM that caused the uti-
lization. As input, the method requires VM monitoring data of disk I/O, network I/O and
CPU usage for each guest VM as well as for Domain-0. The output is an approximation of
the per-VM physical resource utilization. The method uses a regression model like Equa-
tion 6.1 as a starting point, and calibrates/adjusts the model using run-time monitoring
data of I/O metrics (Table 6.8) as well as resource utilization metrics for Domain-0 and

147

148 6. Integration of Architecture-Level Performance Models and System Environments

for the guest VMs. The regression model estimation error is continuously observed and
triggers an adjustment process when a certain threshold is reached. This way, the model
reflects workload dynamics that may be caused by changes in workload patterns. The
authors propose a guided regression as an adjustment approach, for details we refer to Lu
et al. (2011).

The evaluation scenarios for partitioning CPU utilization presented in Lu et al. (2011)
exhibit a relative error of lower than 10%, mostly around 5%. The experimental evalu-
ation in Wood et al. (2008) exhibits comparable error rates: After a model refinement
step that includes post-processing the training data (to eliminate or re-run erroneous mi-
crobenchmark runs) and rebuilding the regression model, 90% of the overhead estimations
for Domain-0 are within 5% accuracy, and within 10% for estimating the VM CPU uti-
lization.

6.4.5 Probabilistic Characterization of Parameter Dependencies

The measurement and estimation of the model parameters described in the previous four
sections (Section 6.4.1 to Section 6.4.4) is done independently of other parameters. How-
ever, a model parameter of a service behavior can depend on one or more input parameters
passed when invoking the service. For instance, a branch probability might heavily depend
on the value of an input parameter. In such cases, it is desirable to be able to quantify
such dependencies. By monitoring service input parameters and relating observed pa-
rameter values with the observed service control flow, probabilistic models of parameter
dependencies can be derived.

If no a priori information about the existence of parametric dependencies is available, their
automatic discovery based on monitoring data alone is a challenging problem that requires
the use of complex correlation analysis or machine learning techniques (Krogmann et al.,
2010). An automatic detection method has to cope with high degrees-of-freedom: Each
control flow construct might depend on multiple input parameters and the possible de-
pendencies are not restricted to parameter values, other parameter characterizations such
as the length of an array might also have an influence. For these reasons, we consider
the automatic discovery of parametric dependencies at run-time based on monitoring data
alone to be impractical. It is assumed that information about the existence of poten-
tial performance-relevant parameter dependencies is available a priori, defined using the
modeling abstractions presented in Section 4.1.5.

This section describes how the monitoring method getCharacterizationForParameterDe-
pendency of the monitoring interface introduced in Section 4.1.6 can be implemented. The
method returns the characterization for the dependent variable of a parameter dependency.
A parameter dependency is determined by the method’s arguments:

• a list of references toModelVariablesmv
1

, . . . ,mv
n

that are the independent variables,

• a list of Literals v
1

, . . . , v
n

that are values for the above-mentioned variables,

• a list of ComponentInstanceReferences indicating where mv
1

, . . . ,mv
n

reside,

• a reference to a ModelVariable d that is the dependent variable,

• a reference to a component instance indicating in which component instance d resides.

Formally, the parameters specify the signature of a function to be evaluated at arguments
v
1

, . . . , v
n

. The result of the function, returned as a random variable, characterizes the
dependent variable. If n = 0, then getCharacterizationForParameterDependency has the
same semantics as getCharacterizationForModelVariable.

148

6.4. Model Parameter Maintenance 149

The evaluation of the function is based on monitoring data. The function is defined by
observations of an n-tuple of independent variable values and an observation of a depen-
dent variable value, i.e., the observations serve as training data for the function. In the
research area of machine learning, this is called Supervised Learning (Mohri et al., 2012).
A supervised learning algorithm tries to generalize a function from inputs to outputs, so
that the function can return outputs for previously unseen inputs.

However, the method of the monitoring interface is kept generic, but it is not intended
to observe each parameter dependency between possible independent and dependent vari-
ables. In Section 6.4.5.1, we discuss how to obtain the set of parameter dependencies to
be observed. Section 6.4.5.2 describes how observations respectively training data of a pa-
rameter dependency are collected. Finally, Section 6.4.5.3 presents appropriate supervised
learning algorithms.

6.4.5.1 Parameter Dependencies to Monitor

Performance-relevant parameter dependencies are indicated by Relationships that are de-
fined in Section 4.1.5. Two kinds of Relationships are distinguished: There are Depen-
dencyRelationships connecting one or more InfluencingParameters with one InfluencedVari-
ableReference and there are DependencyPropagationRelationships connecting one or more
InfluencingParameters with another InfluencingParameter.

In order to obtain the parameter dependencies to monitor, there are several options:

• One option is to monitor each Relationship. A Relationship consists of one or more
references to ModelVariables as independent variables, and one reference to a Model-
Variable as dependent variable. However, an involved InfluencingParameter can be a
ShadowParameter, i.e., an InfluencingParameter that is not observable. If the depen-
dent variable of a Relationship is such a non-observable parameter, the Relationship
cannot be monitored and has to be ignored. If one of the independent variables of
the Relationship is a non-observable parameter, the Relationship can be monitored
ignoring that variable in case it is not the only independent variable.

• Another option is to make use of the fact that the relationship solving algorithm (see
Section 5.2) calls the monitoring interface to resolve Relationships and to parameter-
ize the model. When a performance prediction is triggered by a performance query
as described in Chapter 5, relationship solving leads to those calls of the monitor-
ing interface that are actually relevant to answer the performance query. Thus, to
determine the relevant parameter dependencies, the monitoring infrastructure does
not need to search the model instance for relationships itself, it is the relationship
solving algorithm that can be used in a dry run to obtain the relevant parameter
dependencies that need to be observed.

In the example in Section 5.2.2, the monitoring interface is called multiple times (see
Table 5.1). However, the monitoring methods only need to return non-null values
if either a resource demand, a response time, or a control flow variable has to be
characterized. The other calls to the monitoring interface stem from intermediate
steps required to transitively resolve the relationships. Hence, whenever monitoring
method getCharacterizationForParameterDependency is called and the dependent
variable is one of the above-mentioned types, the parameter dependency determined
by the independent variables is considered to be monitored.

A precondition to obtain the relevant parameter dependencies using the relationship
solving algorithm in a dry run is that a UsageProfileModel with UsageScenarios is
already available. Furthermore, a performance query has to be formulated to trigger
the performance prediction and thus the solving algorithm. If a set of possible

149

150 6. Integration of Architecture-Level Performance Models and System Environments

performance queries is known beforehand, they can be used to obtain the minimal
amount of parameter dependencies to monitor. If no queries are known beforehand,
an artificial query that requests to return all available metrics can be constructed.
This artificial query can then be used to obtain the set of parameter dependencies
to monitor.

Irrespective of the chosen option, the result is a set of parameter dependencies to monitor.
A parameter dependency is defined by a list of independent variables and one dependent
variable, together with a component instance reference indicating where the variables to
monitor reside.

6.4.5.2 Training Data

Having identified a parameter dependency to monitor, this section describes how training
data for the probabilistic characterization of the dependency is collected.

The independent variables of the parameter dependency are denoted as mv
1

, . . . ,mv
n

.
The dependent variable is denoted as d. Let E = {e

i

= (l
i

, t
i

, s
i

)} be the set of monitored
event records and E/R the corresponding set of equivalence classes for relation R (see the
definitions of event record and R in Section 6.1.1). Call path tracing needs to be applied
in order to map observed values of independent variables to a value of the dependent
variable. As described in Section 6.1, the equivalence class [x]R 2 E/R is the set of
event records belonging to one system request. In the following, we describe how a tuple
(obs(mv

1

), . . . , obs(mv
n

), obs(d)) can be derived from E, where obs(mv
1

), . . . , obs(mv
n

) are
the observed values for mv

1

, . . . ,mv
n

and obs(d) is the corresponding observed value for
d. The tuple can then be used as training data.

Independent variables are of type CallParameter, i.e., they are either service input param-
eters, external call parameters or external call return parameters (see Figure 4.25). Thus,
independent variables are attached to entries or exits of service calls respectively external
calls. If the entries and exits can be monitored together with the actual parameter values
(input parameter values or return parameter values), for a request [x]R 2 E/R the values
obs(mv

1

), . . . , obs(mv
n

) can be derived and attached to [x]R as payload.

The dependent variable d is either a set of branching probabilities, a loop iteration count,
a call frequency, a response time, a resource demand or another call parameter.

• Branch probability: If d represents the branching probabilities of branch b with
branch transitions bt

1

. . . , bt
N

, then obs(d) = branchtransition([x]R) where

branchtransition([x]R) :=

(
j 9e

i

= (l
i

, t
i

, s
i

) 2 [x]R : l
i

= entry(bt
j

),

undefined otherwise.

Thus, the observation is the index of the executed branch transition.

• Loop iteration count: If d is the loop iteration count of a loop, then obs(d) =
loopcount([x]R) (see Section 6.4.1 for the definition of function loopcount).

• Call frequency: If d is the call frequency of an external call, then obs(d) is set to
callcount([x]R) (see Section 6.4.1 for the definition of function callcount).

• Response time: If d is the response time for a service call, then obs(d) is set to
responsetime([x]R) (see Section 6.4.1 for the definition of function responsetime).

• Resource demand: If d is a resource demand, it is required to di↵erentiate. If the
resource demand is estimated using response time approximation, obs(d) can be set
to the response time of the respective call, monitored within request [x]R. However,

150

6.4. Model Parameter Maintenance 151

if the resource demand is estimated using a di↵erent approach (see Section 6.4.3), a
resource demand sample cannot be obtained from a single observation of [x]R. In that
case, a multi-dimensional histogram has to be built using approaches as presented
in Bruno et al. (2001); Gunopulos et al. (2000): The n independent variables translate
into n dimensions. Each histogram bucket then defines a workload class in terms of
resource demand estimation. The resource demands are then estimated for each of
these workload classes separately.

• Call parameter: If d is a call parameter whose actual parameter value can be moni-
tored, obs(d) is set to that value.

For a request [x]R 2 E/R, the monitored tuple (obs(mv
1

), . . . , obs(mv
n

), obs(d)) may be
incomplete, meaning that some elements of the tuple are undefined. The tuple can be
used as training data, if obs(d) as well as at least one of the values obs(mv

i

) is defined.
Obtaining the tuple for all requests [x]R 2 E/R then leads to a training data set.

6.4.5.3 Supervised Learning

A supervised learning algorithm tries to generalize a function from inputs to outputs, so
that the function can return outputs for previously unseen inputs (Mohri et al., 2012).
In others words, the function serves as predictive model that maps observed inputs to a
target output.

In the literature there exist already many such techniques, applied in research areas such
as data mining and machine learning. The predictive model is typically represented by a
decision tree. Common names for decision trees are also classification trees or regression
trees (Breiman et al., 1984). The di↵erence between a classification tree is the domain of
the target output. The outcomes of a classification tree analysis are of a discrete finite
domain. Regression tree analysis is applied if the predicted outcome can be considered as
a continuous number.

In the following, we describe an example to illustrate a decision tree analysis. Figure 6.5
shows a data set of 200 training data tuples for which a decision tree should be build.
There are two input variables x

1

and x
2

, each with values between 0 and 100. The output
variable has two possible outcomes, either ‘x’ or ‘o’. Figure 6.6 shows the partitions on the

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●
●

●

0 20 40 60 80 100

0
20

40
60

80
10
0

X1

X2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

Figure 6.5: Example: Data Set for Classification Tree

data set as they are built by binary recursive partitioning (Breiman et al., 1984). Note
that the R statistics tool7 provides implementations of common decision tree analysis

7
The R Project, http://www.r-project.org/.

151

http://www.r-project.org/

152 6. Integration of Architecture-Level Performance Models and System Environments

methods. In this simple example, there are five partitions. Each partition is labelled with
a probability of observing outcome ‘x’ for a given input of x

1

and x
2

. The probability
is just the sample mean of observing ‘x’ in the partition. For instance, in the lower left
partition as well as in the upper right partition, the probability of observing outcome ‘x’ is
higher than the probability of observing outcome ‘o’. Figure 6.7 shows the actual decision

0 20 40 60 80 100

20
40

60
80

10
0

X1

X2

0.829

0.312

0.000

0.111

0.737

Figure 6.6: Example: Partitions

tree that corresponds to the partitions shown in Figure 6.6. Each tree leaf represents one
partition.

|X1 < 30.5001

X2 < 50.2563 X1 < 60.3237
X2 < 70.0644

0.8286 0.3125 0.0000

0.1111 0.7368

Figure 6.7: Example: Classification Tree

As presented in the previous Section 6.4.5.2, in our context, the training data set consists of
tuples of the form (obs(mv

1

), . . . , obs(mv
n

), obs(d)). The target output is either a branch
transition index, a loop iteration count, a call frequency, a response time, or a resource
demand. Note that the branch transition index is the only target domain that is finite and
discrete. The domains of the input variables depend on the datatype of the model variables
mv

i

, i.e., the datatype of the CallParameter mv
i

represents. Applying Classification and
Regression Tree (CART) analysis (Breiman et al., 1984) on the training data set allows
predicting a constant estimate given observations (obs(mv

1

), . . . , obs(mv
n

). Using CART
predictive models have the following advantages:

• A decision tree analysis uses both (i) locality within the input space as well as
(ii) locality within the output space to build the partitions. Two tuples of the
training data set are likely to end in the same partition, if (i) the input variables
(obs(mv

1

), . . . , obs(mv
n

) are similar and (ii) the outcome is similar.

152

6.5. Model Calibration and Adjustment 153

• There are established algorithms available to learn a tree. The algorithms are highly
configurable to influence tree building. If a tree becomes too complex because of
“over-training”, there are also pruning algorithms to simplify the tree (Breiman et al.,
1984; Hastie et al., 2001).

• If some input variables are missing, it is still possible to obtain a prediction. One
might not be able to go all the way down a decision tree to a leaf, but one can still
obtain a prediction by averaging the leaves in the reachable sub-tree.

However, CART predictive models only provide a single value. Depending on the type
of variable d, CART methods allow the prediction of a single branch transition, loop it-
eration count, call frequency, response time or resource demand. The characterizations
of interest, however, are random variables respectively their probability distributions (see
Section 4.1.4). For instance, instead of returning the most probable branch transition, the
outcome should be a PMF with the set of possible branch transitions as domain. Simi-
larly, instead of returning a loop iteration count, the outcome should be a loop iteration
count distribution characterized as a PMF over the observed loop iteration counts. A
leaf in the decision tree should thus not be only represented by the sample mean of the
observed outcome in the partition that corresponds to the leaf. Instead, a partition should
be characterized by an empirical distribution derived from the observed outcomes in the
partition. For this purpose, one can use the same aggregation methods as they are pre-
sented in Section 6.1.3. If a partition is characterized using a PMF, the decision tree can
be kept simple, i.e., the number of partitions can be small.

6.5 Model Calibration and Adjustment

In capacity planning, prediction errors of up to 30% concerning the average response time
and 5% concerning the resource utilization are considered acceptable (Menascé et al., 1994;
Menasce and Virgilio, 2000). If a performance model does not provide such an acceptable
accuracy, the performance model needs to be calibrated and adjusted.

First, we clarify the meaning of the term calibration. According to the discipline of metrol-
ogy (Bureau International des Poids et Mesures, 2005), calibration is understood as the
operation to quantify the deviance of an instrument to a reference. Calibration explicitly
does not mean adapting the instrument. Calibration is the prerequisite of the adjustment
which is understood as the operation of adapting the instrument to reduce the observed de-
viance. Normally, an adjustment is followed by a re-calibration to check if the adjustment
was successful. Transferred to the context of model representativeness, calibration refers
to the operation of determining the deviance between the model and the modeled entity
itself, whereas adjustment refers to the operation of adapting the model to reduce that
deviance. However, in the context of performance prediction (Menascé et al., 1994), model
calibration is often understood as the process of adapting the models to improve their ac-
curacy. In other words, in the literature of performance engineering, model calibration
and model adjustment are often used synonymously, i.e., are not distinguished.

6.5.1 Model Calibration

In this thesis, calibrating a performance model means comparing the model predictions
with measurements of the modeled entity, e.g., a software system. To compare predictions
with measurements, the context and conditions of model prediction and system measure-
ment have to be comparable. For instance, a performance model prediction is made for a
specific workload and usage scenario, respectively. Thus, to compare the prediction with a
measurement, the measurement has to be obtained during a phase where the same specific
workload is actually executed. Considering a system at run-time, the challenge of model

153

154 6. Integration of Architecture-Level Performance Models and System Environments

calibration is to obtain measurements when the system is in a clearly defined state so that
the measurements can be used as a reference.

6.5.2 Model Adjustment

In this thesis, adjusting a performance model means improving the model accuracy. Given
an observed deviation between measurements and predictions as part of a previous cali-
bration step, in general there are two ways of adjusting a performance model:

• One approach is to increase the model’s granularity by changing the model’s struc-
ture, i.e., refining the model. For instance, one may integrate a representation of a
thread pool usage or introduce further parameter dependencies. Adapting specific
model entities obviously requires detailed insight about which specific model entities
to touch. This knowledge is hard to gain automatically and typically requires manual
investigations.

• The other possibility of adjusting a performance model is the adaptation of model
parameters. In that case, the granularity of the model does not change. As described
in Section 6.4, continuous maintenance of model parameters is an option.

If the deviation determined in the calibration step is systematic, improving the model
accuracy is possible without having detailed knowledge about the modeled system. In the
following, we describe when and how systematic deviations allow an automatic adjustment
of the model parameters (i.e, increasing the resource demands of a performance model) or
the predicted metrics (i.e., adding a constant o↵set to service response time predictions).
The result of the adjustment is an increased prediction accuracy.

Algorithm 7 shows when and how resource demands can be automatically adjusted. Let
Res = {Res

0

, Res
1

, . . . , Res
n

} be the set of resources stressed by a given workload. Let
S
Resi be the set of services that are deployed on Res

i

, and for each s 2 S
Resi , let

resourcedemands(s,Res
i

) be the set of resource demand descriptions of s that stress

Res
i

. Furthermore, for a resource Res
i

, let Umsrd

Resi
and Upred

Resi
be the measured (msrd)

and predicted (pred) utilization, respectively. For a service s, let Rmsrd

s

and Rpred

s

be the
measured and predicted average service response time, respectively. The prerequisite for
the adjustment is that the predictions of average response time and resource utilization
metrics deviate in the same direction, e.g., all the predictions are underestimated. The
goal is to adjust the resource demands in a way that the deviations of the resource uti-
lization predictions as well as the deviations of the average response time predictions are
reduced. The minimum of the relative deviation of average response time predictions and
the relative deviation of utilization predictions is used to obtain a factor that adjusts the
resource demands. The factor is calculated for each pair of resource Res

i

and service s
stressing the resource. The resource demand to be adjusted stems from service s. This
algorithm increases model accuracy if the estimated resource demands are biased by a
systematic estimation error, e.g., due to the influence of measurement or system overhead.

Another option is to directly adjust the predicted response time metrics, i.e., adapt the
results after the predictions to add a delay o↵set. This is useful, e.g., if system requests
get delayed until they enter the system boundaries where the measurement sensors are
injected. The latter can be the case if the considered component-based software system
runs on a complex middleware stack. Let S be the set of called services at the system
boundary, i.e., the set of services that are called via a SystemCallUserAction as part of a
UsageScenario. If 8s 2 S : Rpred

s

�Rmsrd

s

< 0 holds, then the delay o↵set for the response
times of S is computed as min

s2S(R
pred

s

�Rmsrd

s

). This delay o↵set is then added to each

154

6.6. Summary 155

1 CalibrateAndAdjustResourceDemands
2 begin
3 foreach Res

i

2 Res do

4 if (Upred

Resi
� Umsrd

Resi
< 0 ^ 8s 2 S

Resi : R
pred

s

�Rmsrd

s

< 0)

5 _ (Upred

Resi
� Umsrd

Resi
> 0 ^ 8s 2 S

Resi : R
pred

s

�Rmsrd

s

> 0) then

6 deviation
Resi

|Upred
Resi

�U

msrd
Resi

|

U

pred
Resi

7 foreach s 2 S
Resi do

8 deviation
s

 |Rpred
s �R

msrd
s |

R

pred
s

9 mindeviation min(deviation
Resi , deviations

)

10 if Upred

Resi
� Umsrd

Resi
< 0 then factor 1 +mindeviation

11 else factor 1�mindeviation
12 foreach rd 2 resourcedemands(s,Res

i

) do
13 rd rd ⇤ factor
14 end

15 end

16 end

17 end

Algorithm 7: Calibration and Adjustment of Resource Demands

Rpred

s

with s 2 S. The result is that the deviation of the average service response time
predictions from the measured values is reduced.

Note that the described two approaches assume load-independent resource demands. If
measurements with di↵erent load intensities reveal load-dependent resource demands, then
the approaches have to consider the di↵erences between measurements and predictions
from low load scenarios up to high load scenarios. If all involved load-dependent resource
demands increase with the load intensity, considering di↵erences between measurements
and predictions from only a low load scenario is su�cient.

6.6 Summary

This chapter presented methods to integrate architecture-level performance models and
system environments with the goal to keep them up-to-date during operation as the system
evolves. Section 6.1 described monitoring capabilities that are prerequisites to use the
presented methods. Section 6.2 described the semi-automatic extraction of architecture-
level performance models based on system request tracing, while Section 6.3 described
how the model structure can be maintained as part of an autonomic resource management
process. Approaches to derive model parameter values are presented in Section 6.4, ranging
from the extraction of branching probabilities to the estimation of resource demands, also
in virtualized environments. Finally, in Section 6.5, we discussed how architecture-level
performance models can be calibrated and adjusted in order to increase their accuracy.

155

7. Validation

The main goal of the work presented in this thesis is to enable online performance predic-
tion for component-based software systems based on architecture-level performance mod-
els. This chapter presents the evaluation of the proposed architecture-level performance
modeling abstractions (presented in Chapter 4), the model extraction and maintenance
methods (presented in Chapter 6), and the performance prediction mechanisms (presented
in Chapter 5).

In Section 7.1, we describe the goals we pursue in the evaluation. The goals are aligned
with the success criteria we formulated in Section 1.4.1. Section 7.2 provides an analysis of
the trade-o↵ between prediction accuracy and time-to-result of the performance prediction
process. Section 7.3 presents a real-world case study with a Software-as-a-Service (SaaS)
provider, demonstrating that our approach is applicable to component-based software sys-
tems of realistic size and complexity and that the modeling and prediction techniques
provide su�ciently accurate performance predictions. Section 7.4 presents evaluation sce-
narios with the industry-standard SPECjEnterprise20101 Enterprise Java benchmark, a
representative software system executed in a realistically sized environment. We investi-
gate multiple application scenarios (see Section 1.5) including a scenario where the predic-
tion capabilities are used as a basis to implement an automatic performance-aware resource
management approach.

7.1 Evaluation Goals

It is not possible to prove that the performance abstractions described in Chapter 4 enable
accurate performance predictions for any component-based software system. Recall that
a performance model is an abstract representation of the system’s performance-relevant
properties. The model may neglect important performance properties of the real sys-
tem, rendering the performance predictions derived from the model inaccurate. Thus, the
presented performance abstractions cannot guarantee a certain prediction accuracy. The
accuracy varies from scenario to scenario.

1
SPECjEnterprise2010 is a trademark of the Standard Performance Evaluation Corporation (SPEC).

The SPECjEnterprise2010 results or findings in this publication have not been reviewed or accepted by

SPEC, therefore no comparison nor performance inference can be made against any published Standard

Performance Evaluation Corporation (SPEC) result. The o�cial web site for SPECjEnterprise2010 is

located at http://www.spec.org/jEnterprise2010.

157

http://www.spec.org/jEnterprise2010

158 7. Validation

The goal of the evaluation presented in this chapter is to demonstrate that, aligned with
the success criteria identified in Section 1.4.1, (i) the proposed performance abstractions
lend themselves to describe architecture-level performance models that are representative
in terms of the performance behavior of the modeled systems, (ii) the prediction mechanism
of Chapter 5 is capable of deriving performance predictions in online scenarios, and (iii)
that the model extraction and maintenance methods described in Chapter 6 are suitable
to extract and maintain performance model instances that provide an acceptable accuracy.

In the following, these goals are broken down into several specific evaluation questions to
be answered. In Section 7.1.1, we investigate evaluation aspects concerning the modeling
capabilities of our approach. Section 7.1.2 describes evaluation aspects concerning the
prediction capabilities of our approach.

7.1.1 Modeling Capabilities

An important aspect of the evaluation is whether the proposed architecture-level modeling
abstractions are suitable to model the performance-relevant behavior of enterprise software
systems in an online context. The question to answer is whether the modeling abstractions
have the expressiveness to model the architectural structure and the behavior abstractions?
Is it possible to model parameter dependencies as they occur in modern enterprise software
systems?

The evaluation of these questions is addressed in two selected case studies. In the first
case study we investigate a real-life enterprise software system from a large SaaS provider.
Given that the system is of realistic size and complexity, the suitability of our model-
ing approach can be evaluated in a representative way. The second case study uses the
SPECjEnterprise2010 benchmark, a benchmark developed by SPEC’s Java subcommittee
for measuring the performance and scalability of Java Enterprise Edition (Java EE) based
application servers. Given that SPEC is a “non-profit corporation formed to establish,
maintain and endorse a standardized set of relevant benchmarks” (SPEC, 2014) with par-
ticipation of many industrial and academic partners, we consider the benchmark to be
representative of an enterprise software system in terms of its performance behavior. In
this case study, we evaluate fine-grained modeling abstractions.

7.1.2 Prediction Capabilities

When evaluating prediction techniques, the attained accuracy of the predicted metrics is
crucial. In capacity planning, prediction errors of up to 30% concerning the average re-
sponse time and 5% concerning the resource utilization are considered acceptable (Menascé
et al., 1994; Menasce and Virgilio, 2000). In addition to evaluating the prediction accu-
racy, it is important to investigate if the online performance predictions provide su�cient
information to serve as input for autonomic performance-aware resource management. Fur-
thermore, an analysis of the trade-o↵ between prediction accuracy and prediction overhead
should be provided.

Another evaluation question is whether the semi-automatic model extraction and parame-
ter estimation techniques described in Chapter 6 provide representative models, i.e., if the
predictions based on the extracted models have acceptable accuracy. As further aspects of
the prediction capabilities, a sensitivity analysis for parameter variations should be pro-
vided as well as an evaluation whether the performance impact of software reconfigurations,
deployment changes, or changes in the resource landscape can be predicted.

In the first case study with the real-life SaaS provider, we investigate the prediction ac-
curacy in several evaluation scenarios varying, amongst others, the load intensity, user
behavior, and database state. In the second case study with SPECjEnterprise2010, we

158

7.2. Trade-O↵ Between Prediction Accuracy and Prediction Overhead 159

cover all the mentioned evaluation aspects. We deploy SPECjEnterprise2010 in a repre-
sentative resource landscape and evaluate multiple variations in our testbed. To assess
the prediction accuracy, we compare predicted performance metrics with measured per-
formance metrics, both for response times and resource utilization, in varying scenarios.
Variations include the load intensity, the user behavior, the deployment and the resource
landscape. Furthermore, in collaboration with Nikolaus Huber, the extracted performance
models have additionally been applied in a resource allocation algorithm for dynamic re-
source allocation in virtualized environments (Huber et al., 2011a; Huber, 2014).

7.2 Trade-O↵ Between Prediction Accuracy and Prediction
Overhead

In this section, we evaluate the tailored performance prediction process (Chapter 5) by
analyzing the trade-o↵ between prediction accuracy and time-to-result. Based on a given
performance query (Section 5.5), the performance prediction process selects a suitable
model abstraction level and model solving technique, and returns the requested perfor-
mance metrics.

The tailored process is based on three model solving techniques, namely: (i) bounds analy-
sis (Section 5.3.3), (ii) transformation to Layered Queueing Network (LQN) (Section 5.3.2)
where the resulting LQN is solved with the analytical solver LQNS (Franks et al., 2011),
and (iii) transformation to Queueing Petri Net (QPN) (Section 5.3.1) where the resulting
QPN is solved by simulation with SimQPN (Kounev and Buchmann, 2006; Spinner et al.,
2012). The latter model solving technique is the only considered solving technique that
supports all modeling features we described in Chapter 4. For instance, it is the only
solving technique that supports the prediction of percentile response times. To compare
the prediction accuracy and prediction overhead of all three solving techniques, we choose
an evaluation scenario where all three techniques are applicable. The evaluation has the
goal to reveal the individual characteristics of the employed solving techniques, and to
analyze if the tailoring mechanism is capable of trading-o↵ between prediction accuracy
and prediction overhead. Further evaluation scenarios of that kind are described in Brosig
et al. (2014).

Note that in this section the focus in on quantitatively comparing the di↵erent model
solving techniques, i.e., in this section we do not evaluate the accuracies of the models
themselves. For the application of our modeling and prediction approach in real-world
case studies, see Section 7.3 and Section 7.4.

7.2.1 Context and Experiment Setup

For the evaluation scenario in this section, we consider a two-tier system as described in
the following. An application running on an application server provides a service called
processOrder. The service is either processed at the application server tier or is delegated
to the database. The application server and the database server are each represented by
a M/M/1 queue with processor sharing as scheduling discipline.

We provide two service behavior models for processOrder, a fine-grained service behavior
model and a coarse-grained behavior model. The fine-grained service behavior model is
shown in Figure 7.1. There is a branch with two branch transitions, each branch tran-
sition is accessed with a probability of 0.5. One branch transition calls database service
processDBS, the other branch transition contains an internal action that includes a resource
demand to the application server.

159

160 7. Validation

<<FineGrainedBehavior>>

<<BranchAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
callDBS

<<ComponentInternalBehavior>>

<<InternalAction>>

Branch transitions

BranchingProbabilities =
EnumPMF[(‘Branch1’;0.5)(‘Branch2’;0.5]

<<ResourceDemand>>

<<ExplicitDescription>>
Exp(1/50)

Figure 7.1: Fine-Grained Behavior Model of Service processOrder

Figure 7.2 shows the coarse-grained service behavior model of service processOrder. It
captures the service behavior as observed from the outside of the service providing com-
ponent. The call frequency of external service processDBS is thus described to be 0 with a
probability of 0.5, and 1 with a probability of also 0.5. The characterization of the resource
consumption of service processOrder is also part of the coarse-grained behavior model.

<<CoarseGrainedBehavior>>

<<ResourceDemand>> <<ExternalCallFrequency>>

<<ExplicitDescription>>
Exp(1/25)

<<ExternalCall>>
callDBS

CallFrequency =
IntPMF[(0;0.5)(1;0.5)]

Figure 7.2: Coarse-Grained Behavior Model of Service processOrder

In the considered evaluation scenario, the distributions of the resource demands are ap-
proximated with exponential distributions. The internal action of the fine-grained behavior
is characterized with an exponential distribution with a mean of 50 milliseconds. For the
coarse-grained behavior, the mean of the resource consumption is thus 25 milliseconds, and
also approximated with an exponential distribution. The service behavior of processDBS
is modeled as coarse-grained behavior with an exponentially distributed resource demand
with a mean of 30 milliseconds. Note that it is common to assume resource demands
to be exponentially distributed (e.g., Menascé et al. (1994)). In particular, if resource
demands are estimated using techniques that are based on the Service Demand Law (see
Section 6.4.3), only mean values are estimated that are typically used to characterize
exponential distributions.

We use Descartes Query Language (DQL) to specify a performance query. Listing 7.1
shows a query where the resource utilization of the application server, the resource uti-
lization of the database server, and the average response time of service processOrder is
requested. In the listing, the query specifies a trade-o↵ between prediction accuracy and

160

7.2. Trade-O↵ Between Prediction Accuracy and Prediction Overhead 161

prediction overhead using the constraint ‘fast’. In this evaluation, three di↵erent trade-o↵s
are investigated. We use the notation ‘fast’, ‘balanced’, ‘accurate’ for the trade-o↵ weights
as they are introduced in Section 5.4.2, i.e., the number of di↵erent trade-o↵ weights K is
set to K = 3 where w> = w

3

maps to ‘fast’, w
2

maps to ‘balanced’ and w? = w
1

maps to
‘accurate’.

SELECT s.avgResponseTime , app.utilization , dbs.utilization

CONSTRAINED AS ‘fast ’

FOR RESOURCE ‘ApplicationServer ’ AS app , RESOURCE ‘DBServer ’ AS dbs ,

SERVICE ‘processOrder ’ AS s

USING connector@location;

Listing 7.1: Performance Query “Fast”

We investigate a usage scenario where service processOrder is called in an open workload.
We consider two di↵erent inter-arrival times. The inter-arrival time with a mean of 1/30
seconds (i.e., 30 requests per second on average) corresponds to a high load scenario. The
inter-arrival time with a mean of 1/15 seconds corresponds to a low load scenario. For the
evaluation, both inter-arrival time distributions are characterized by a normal distribution
with a standard deviation of 0.01. For the two load scenarios, we issue performance queries
as shown in Listing 7.1, in each load scenario with the three di↵erent trade-o↵ specifications
‘fast’, ‘balanced’, and ‘accurate’. Thus, in total, six di↵erent performance queries need to
be answered.

All experiments executing the analysis and simulation tools were conducted with an Intel
Core2Duo CPU at 2.53 GHz. LQNS was available in version 4.3, SimQPN was part
of QPME version 2.0.1. For SimQPN, we used the simulation settings as described in
Section 5.4.5. For LQNS, the default settings were used: convergence = 0.001, iteration
limit = 50, and underrelaxation = 0.5.

7.2.2 Results

The tailored performance prediction process involves a model composition step where the
ambiguity of multiple service behavior models for one service is resolved. In the considered
scenario, the model composition step has to choose between the coarse-grained behavior
and the fine-grained behavior of service processOrder. As described in Section 5.4.4, for the
two trade-o↵ specifications ‘fast’ and ‘balanced’, the coarse-grained behavior is selected.
For the trade-o↵ specification ‘accurate’, the model composition step selects the fine-
grained behavior.

Table 7.1 shows the results for the six di↵erent performance queries. To compare the
di↵erent model solving techniques, i.e., bounds analysis (BA), LQNS and SimQPN, the
six performance queries are answered by each of the three model solving techniques. Ta-
ble 7.2 shows the reference results that are obtained using a “gold” SimQPN simulation.
For the gold SimQPN simulation, SimQPN’s stopping criteria is set to 1% relative pre-
cision, i.e., the simulation is not stopped before enough data is collected to provide a
confidence interval for the response time with a half width not exceeding 1% percent of
the corresponding mean response time. In the following we first investigate the prediction
accuracy, then investigate the prediction overhead, and finally describe the results of the
tailoring mechanism.

Prediction Accuracy

As described with the performance query in Listing 7.1, we investigate the average re-
sponse time of service processOrder (R), the utilization of the application server (U

App

),

161

162 7. Validation

Trade- Load Compo- BA LQNS SimQPN
o↵ sition R[ms] U

App

U
Dbs

R[ms] U
App

U
Dbs

R[ms] U
App

U
Dbs

fast low coarseg. 40 0.375 0.225 59 0.375 0.225 43 0.37 0.23
balanced low coarseg. 40 0.375 0.225 59 0.375 0.225 44 0.38 0.23
accurate low finegr. 40 0.375 0.225 59 0.375 0.225 48 0.38 0.22
fast high coarseg. 40 0.75 0.45 118 0.75 0.45 86 0.75 0.45
balanced high coarseg. 40 0.75 0.45 118 0.75 0.45 86 0.75 0.46
accurate high finegr. 40 0.75 0.45 118 0.75 0.45 101 0.75 0.45

Table 7.1: Prediction Results of Di↵erent Model Solving Techniques

Trade- Load Compo- SimQPN (gold)
o↵ sition R[ms] U

App

U
Dbs

accurate low finegr. 49 0.375 0.225
accurate high finegr. 96 0.75 0.45

Table 7.2: Reference Results

and the utilization of the database server (U
Dbs

). The prediction results show the following:
Bounds analysis can be used to derive accurate utilization predictions in open workload
scenarios. However, it can only provide lower bounds for the average response time since it
neglects contention e↵ects in open workload scenarios. The results obtained with bounds
analysis are independent of the shape of underlying resource demand or inter-arrival time
distributions. LQNS provides accurate utilization predictions but in the considered sce-
nario, it overestimates the response time. This is because LQNS is limited to exponentially
distributed resource demands and inter-arrival times. The deviance in the response time
prediction stems from the inter-arrival time distribution. LQNS approximates the given
normal distribution with an exponential distribution with the same mean. This leads to
an overestimation of the contention e↵ects and thus to an overestimation of the response
times. Furthermore, we can observe that the average response time prediction provided
by LQNS is independent of whether the fine-grained behavior or coarse-grained behavior
is selected. SimQPN provides accurate utilization predictions and nearly accurate average
response time predictions. The best accuracy is attained where the trade-o↵ specification
prefers prediction accuracy to prediction overhead.

Prediction Overhead

The prediction overhead of the individual model solving techniques is obtained by measur-
ing their analysis and simulation times, respectively. Each prediction has been repeated
30 times to obtain an average execution time for each prediction scenario. Bounds anal-
ysis provided results within 10ms. The average execution times of LQNS were between
324ms and 339ms in the considered prediction scenarios. The average execution times
of SimQPN ranged between 400ms for the ‘fast’ prediction scenarios and 634ms for the
‘accurate’ prediction scenarios.

Figure 7.3 shows SimQPN execution times for a prediction scenario where the fine-grained
service behavior of service processOrder is simulated. For the purpose of a sensitivity
analysis, SimQPN is executed with three di↵erent simulation stopping criteria settings,
corresponding to the trade-o↵ specifications ‘fast’, ‘balanced’, and ‘accurate’ as described
in Section 5.4.5. The box plots shown in Figure 7.3 illustrate that in the considered scenario
the di↵erent stopping criteria settings —with regard to prediction overhead— well reflect
the trade-o↵ specifications.

In Brosig et al. (2014), we investigated the prediction overhead also with large performance
models in realistic environments. For instance, for the performance model instances as they

162

7.2. Trade-O↵ Between Prediction Accuracy and Prediction Overhead 163

●

●

fast balanced accurate

20
0

60
0

10
00

14
00

SimQPN Configuration

Si
m

ul
at

io
n

Ti
m

e
[m

s]

Figure 7.3: Scenario Fine-Grained High Load: Simulation Time with Di↵erent SimQPN
Settings

are considered in the case study with SPECjEnterprise2010 in Section 7.4, the execution
time of LQNS was 0.5 seconds whereas the execution time of SimQPN was 3.8 seconds.

Tailoring

The highlighted cells in Table 7.1 show the results that are provided by the tailored pre-
diction process. For ‘fast’ performance predictions, bounds analysis is chosen as model
solving technique. It provides quick results, accurate utilization predictions, but only a
lower bound for the average service response time. For ‘accurate’ performance predictions,
SimQPN is chosen with a corresponding stopping criteria configuration. The utilization
predictions are accurate. The results for the average response time predictions are accurate
within a prediction error of 5%. For ‘balanced’ performance predictions, again SimQPN
is chosen with a corresponding stopping criteria configuration. Here, the results for the
response time are accurate within a prediction error of 10%. Thus, in the considered eval-
uation scenario, LQNS is not chosen. This is because the inter-arrival time distribution
is not exponentially distributed. As shown, an approximation with an exponential distri-
bution as done by LQNS may lead to considerable errors. This is why, in such cases, the
tailoring mechanism described in Section 5.4.5 does not consider LQNS as a ‘balanced’
model solving technique. However, in case of exponentially distributed inter-arrival times
of open workloads, or in case of closed workloads, the tailoring mechanism considers LQNS
as a valid option for ‘balanced’ model solving.

7.2.3 Discussion

We evaluated the tailored performance prediction process (Chapter 5) by analyzing the
trade-o↵ between prediction accuracy and time-to-result in an exemplary scenario. The
considered evaluation scenario revealed individual characteristics of the solving techniques
and showed that the tailoring mechanism is capable of trading-o↵ between prediction
accuracy and prediction overhead. In particular, the influence of the shape of the inter-
arrival time distribution in open workloads is considered. Further evaluation scenarios
of that kind are described in Brosig et al. (2014). The prediction process both supports
fine-grained predictions as well as more coarse-grained predictions that come with lower
prediction overhead. The tailored performance prediction process encapsulates complex
domain knowledge on the employed model solving techniques. The selection of an appro-
priate model solving mechanism as well as its configuration is done by the performance
prediction process.

163

164 7. Validation

7.3 Software-as-a-Service Provider Case Study

For a case study in the field, we apply our online performance prediction techniques to a
leading SaaS provider. The considered application is part of a component-based large-scale
multi-tenant platform, i.e., the platform is shared among multiple customers (tenants).
The tenants di↵er in their size, their number of users, and their application configurations.
Providing an enterprise software instance where each day hundreds of thousands of tenants
access the same code base and hardware infrastructure requires reliable performance and
resource management mechanisms. Performance degradations may have a large impact
since they can a↵ect the system’s availability for the entire customer base.

In this context, we evaluate the suitability of our modeling abstractions and the capabilities
of our performance prediction techniques. The multi-tenant platform and application is
described in Section 7.3.1. Section 7.3.2 presents the experiment setup. In Section 7.3.3, we
describe the architecture-level performance model we use to derive performance predictions
in the scenarios that are explained in Section 7.3.4. Section 7.3.5 summarizes this case
study with a discussion.

7.3.1 Customer Relationship Management (CRM)

The considered application is a multi-tenant application sharing one application instance
among di↵erent customers. Operating only one application instance for multiple tenants
promises cost savings, e.g., in terms of hardware resources and maintenance costs (Krebs
et al., 2012a). However, the performance management of the single instance requires
highest attention, since the single instance represents a single point of failure. Furthermore,
the tenants should be able to use the application isolated from each other. Each tenant
has a negotiated Service Level Agreement (SLA) with the service provider about the
performance objectives the services should satisfy provided that the tenant’s workload is
within an agreed quota. Performance isolation means that tenants working within their
assigned quota should not su↵er from other tenants, even if other tenants exceed their
quotas (Krebs et al., 2012b).

The enterprise application we use in our case study is designed to serve hundreds of thou-
sands of customers, possibly at the same time. The application is a Customer Relationship
Management (CRM) system, intended to support a tenant’s sales department in manag-
ing contacts of existing customers as well as prospective new scustomers. This includes
managing accounts and contacts of organizations, managing campaigns, managing specific
tasks for the sales agents, managing the sales department itself, and so on. The application
is customizable, meaning that tenants may configure their own business objects, relations,
views and much more. Providing the application in a customizable fashion requires a
flexible data model. This imposes further challenges for providing the CRM in a scalable
manner with acceptable performance.

Figure 7.4 depicts a simplified architecture of the application. A tenant’s user request
is first sent to a login server (pool). The login process searches the data center where
the tenant’s data is located and verifies the user authentication. In case of a successful
authentication, the response contains a redirect so that all following requests of the user
session are sent to the target data center. Note that the authentication and distribution
of tenants to the target data center is not in the scope of this case study since it does not
induce a significant performance footprint.

In the data center, arriving requests are load balanced to the responsible tiers. The main
tiers are the application tier and the database tier. However, there are several other
servers that are responsible for specific tasks such as searching or providing content of
large size. Note that the illustration in Figure 7.4 is a simplification and hides much

164

7.3. Software-as-a-Service Provider Case Study 165

Login Server

Load Balancer

Search Tier

Search Server
 Search Server

 Search Server

Indexing Server
 Indexing Server

 Indexing Server

Database Tier

Database ServerDatabase ServerDatabase Server

Database
Storage

Application Tier

Search Server
 Cursor Server

Application ServerApplication ServerApplication Server

Batch Server

Content Provider Tier

Search Server

Content App
Server

Content Batch
Server

Search
Indexes

Data Center

Figure 7.4: Application Architecture

additional complexity, e.g., replica servers. A request is sent to the application tier to
be processed by an application server that is part of an application server cluster. It
is important to note that the application servers are stateless, i.e., adding or removing
application servers while the system is running is possible without any disruption. Thus,
scaling the application server cluster is easy. The request then typically translates into
database transactions. Since most of the requests involve database access, the database
tier is the most critical resource. The database tier is realized by a database cluster.
However, given that the database is stateful, the cluster is not used for a dynamic load
balancing among the database servers. Instead, the database cluster is used to improve
the system reliability. In case of a failure of a database server instance, other servers
of the cluster can take over the load. However, such a failover comes with additional
overhead since the database cluster needs to ensure data consistency. During normal
operation, the so-called interconnect tra�c between the database nodes is reduced to a
minimum. Typically, database requests belonging to one tenant are processed by the same
database server instance in the cluster. This makes an e�cient data organization (e.g.,
e�cient caching) of tenant-specific data within the database instance possible. For the
same reason, the data stored in a Storage Area Network (SAN) is partitioned by tenant
id.

However, given the high database load, there are many e↵orts to reduce the load on the
database. For instance, searching is performed by a separate search tier. The search
tier consists of indexing servers that create search indexes in the background and search
servers that actually process search queries. Furthermore, business data objects of large
size are not handled by the database servers but by separate content providers. Moreover,
a request’s database cursors (a database cursor represents a query result) are not stored in

165

166 7. Validation

the database, but on separate cursor servers. In general, processing tasks are attempted
to be split up in parts that need to be processed in a synchronous fashion and parts that
can be processed asynchronously. Asynchronous or background tasks are then processed
by additional batch servers.

To sum up the architectural overview, the SaaS provider tries to distribute tasks of the
database layer on several machines where possible. The data is partitioned by tenant id in
order to enable e�cient caching mechanisms. Furthermore, if possible, tasks are processed
preferably as bulk operations instead of single individual operations.

In the following, we describe an additional performance optimization that is relevant in the
considered evaluation scenarios. As explained, database performance is critical. Today’s
database servers typically apply query optimizations when a database query is issued. The
goal is to find a query execution plan that promises fast query processing. The optimiza-
tion is based on relevant statistics about the target table(s) and index data. However,
given that conventional databases are designed for single-tenant applications and do not
consider multiple tenants, the statistics delivered by the database servers are aggregated
over multiple tenants. Thus, a query optimization fails to account for the tenant’s data
characteristics, i.e., the optimization is not tailored to the tenant who issues the query.
Given that the tenants may largely di↵er in their sizes, considering a tenant’s data char-
acteristics yields promising performance optimizations.

To provide tenant-aware optimization statistics, the SaaS provider maintains its own set of
optimizer statistics. Optimizer statistics are kept for each data object. Gathered statistics
involve not only the tenant level but also the user group level as well as the user level.
This makes it possible to, e.g., consider the amount of data rows that the query issuing
user is allowed to access. Based on this information, the user query is preprocessed. The
output of the preprocessing is a database query that is tailored, amongst others, to the
corresponding tenant, possible filter criteria, and user group or user access rights. The
same query can thus be processed in di↵erent ways. The query’s filter selectivity and the
user’s access rights may in one case suggest to use an ordered hash join to access the data or
in another case suggest to use a filter-specific index. The preprocessing step is prepended
to the conventional query processing of the database. Obviously, the preprocessing incurs
additional overhead, but the performance gain predominates. Since the query processing
depends on parameters such as tenant id, user group and user access rights, the same
query can result in di↵erent performance behavior. This behavior should be considered
when building a performance model.

7.3.2 Context and Experiment Setup

For SaaS providers, a reliable performance and resource management requires the ability
to answer questions concerning capacity planning, admission control, SLA management,
and energy management. Performance predictions help to answer questions such as:

• How to adapt the size of the application server cluster to the weekly workload cycle?
How many application servers are needed for a certain workload intensity?

• Which data center and which database server instance should a new tenant be as-
signed to?

• Can a given SLA for a certain type of request be guaranteed in terms of response
time objectives?

• Can a tenant increase its request rate without a↵ecting the performance of other
tenants? Will there be an overload situation if the request arrival rate of the tenant
increases?

166

7.3. Software-as-a-Service Provider Case Study 167

• How will the application performance develop as the data volume of a tenant in-
creases over time?

In the following case study, we evaluate scenarios of the core CRM application. To stress
the database, we use scenarios representative of a large-scale tenant. Large-scale means
that the tenant has many users and large amounts of data, e.g., the largest business
object allocates approximately 500 Gigabytes in the database. We evaluate both read
and write workloads as well as bulk operations. To stress the application server, we use a
benchmark specific for the application tier. In addition, we evaluate several mixes of the
mentioned database intensive and application server intensive workloads. The search tier
or the content providing servers are not stressed. As part of the evaluation, we build an
architecture-level performance model, conduct predictions varying the workload intensity
and service input parameters, and compare the predictions with measurements on the real
system. In this way, we evaluate if the proposed modeling abstractions are suitable to
obtain accurate performance prediction in a representative online context.

To not disturb the productive environment, we cannot run experiments in the production
environment. Thus, experimentation requires a production-like experimental environment.
We consider an experimental environment to be production-like in terms of its performance
behavior, if the following holds:

• The hardware infrastructure of the experimental environment resembles the infras-
tructure that is used in production.

• The deployment of the application and the used software stack in the experimental
environment is the same as in the production environment.

• The state of the experimental environment, i.e., the database state, resembles a
production database state.

• The workload that stresses the system resembles production workload.

For performance testing purposes, the SaaS provider has several such production-like en-
vironments available. Furthermore, we use a performance testing framework that orches-
trates measurement experiments. The framework brings the experimental environment
in a defined state before performance measurements are conducted (ramp-up phase), it
configures and triggers the workload driver JMeter2, it configures and triggers the logging
infrastructure, and it is responsible for the ramp-down of the experiment. Moreover, it col-
lects and aggregates measurement results and log data from the involved server instances.
The logging infrastructure uses Splunk3. It is important to note that this is the same
logging system that runs in production. For our evaluation scenarios, it is important to
note that we do not introduce new log monitors or new instrumentation points, we work
with a log configuration that resembles the log configuration of the production environ-
ment. It is an explicit goal of this case study to work with the log configuration of the
production environment to evaluate how the existing monitoring data can be fit to the
provided modeling abstractions.

As mentioned, the database state needs to be in a representative state. However, due to
confidentiality policies it is not possible to use actual production data. We use synthetic,
anonymized production data instead. The anonymized data is representative with respect
to the number and kind of tenants that are served by the database server. Tenant data
di↵ers in the type and amount of data. For instance, it is important to not only provide
realistic numbers of business objects, but also realistic relations between the business
objects. For the purpose of performance testing, the SaaS provider has a representative

2
http://jmeter.apache.org/

3
http://www.splunk.com/

167

168 7. Validation

synthetic dataset available. The representativeness is verified on a regular basis using data
characteristics obtained with the logging infrastructure.

The resource environment is depicted in the following before we describe the architecture-
level performance model instance and how we built it. Afterwards, we compare perfor-
mance predictions provided by the model with measurements in the experimental environ-
ment considering di↵erent scenarios.

Resource Environment

For the evaluation, we conducted experiments in a production-like resource environment
as depicted in Figure 7.5. Note that the workloads that have been provided by the SaaS
provider do not stress the content provider tier or the search tier and thus, those tiers can
be neglected. Nevertheless, the two application server instances as well as the database
instance and the SAN were of the same type and configuration as the production system.
The database server has 48 CPU cores and runs an Oracle Database, the application server
instances each have 24 CPU cores where Jetty4 is running as application server. The load
balancer is an F5 load balancer5, the switch is from Juniper Networks6. Basically, the
experimental environment can be understood as a vertical slice of the production envi-
ronment, i.e., instead of ⇡ 20 application servers the experimental environment provides
2 application servers, and instead of eight database servers the experimental environment
provides one database server. Given that, as described in Section 7.3.1, the application
tier is stateless and the database tier is configured in a way that a tenant is served always
by the same database node, the experiment setup can provide measurement results that
are representative for production environments.

 Switch

Oracle Database
Server

SAN

Load Driver

Result Machine

Experiment
Controller

Application Servers

Load
Balancer

Figure 7.5: Resource Environment

The load driver machine running JMeter as well as the result machine are of the same
hardware characteristics as the application server instances. The experiment controller
that coordinates the measurement experiments is a workstation having a twelve core CPU.
The CRM system is deployed on the application servers and the database server as in
production. The database state resembles the production database state. However, the
data itself is anonymized due to confidentiality policies.

4
http://www.eclipse.org/jetty/

5
https://f5.com/

6
http://www.juniper.net

168

7.3. Software-as-a-Service Provider Case Study 169

7.3.3 Architecture-Level Performance Model

Two business scenarios derived from real-world problems of the SaaS provider are consid-
ered: On the one hand, we model the task management business scenario that involves
activity lists for sales agents where the sales agents are hierarchically structured in groups.
On the other hand, we model an integration service, a service to create and update business
objects that are concerned with the end-customers of a tenant. This includes the busi-
ness objects: household, account (representing an end-customer), as well as relationships
between accounts (i.e., if and how the customers are related with each other), sales agent
roles, and sales agent activities. An integration service is accessible via Simple Object Ac-
cess Protocol (SOAP), and allows to process several records per integration request. Thus,
the integration service implementation makes use of database bulk operations. Further-
more, we consider a benchmark that stresses specifically the application tier by generating
complex UI forms.

Figure 7.6 depicts a high-level overview of the structure of the architecture-level perfor-
mance model. The system model shows a load balancer that distributes incoming requests
to one of the two CRM instances that themselves need a database instance. A CRM
instance refers to a composite component that in turn consists of component instances
of, e.g., the component providing the integration service. Note that the Entry compo-
nent represents the entry point for the modeled services of the CRM system. In contrast
to the SPECjEnterprise2010 case study presented in Section 7.4.2, in this case study we
model the component services with coarse-grained behavior descriptions. Given that the
CRM services highly depend on meta-data that describes the tenants’ customizations, a
fine-grained service control flow is hard to model.

System Model

Entry
Component

Component Repository Model

Load Balancer

CRM Core
Instance1

CRM Core
Instance2

Database

CRM Core

Component

UIGenerator
Component

Integration

Component

Task
Management

Component

Composite

Entry
Task

Management

UIGenerator

Integration

Figure 7.6: Application Architecture Model

169

170 7. Validation

For the model parameter estimation, we use monitoring statistics as they are captured in
the production system. Thus, we do not inject additional monitoring overhead compared
to the production system. The resource demands were estimated during performance tests
executed with a steady state time of 900 seconds and a warm-up time of 600 seconds. CPU
resource demands are approximated using response time measurements (see Section 6.4.3)
that are obtained in a low load scenario, i.e., in a scenario where both the application server
CPU and the database server CPU load is below 20%. For each request, we measure the
CPU time on the application servers, the CPU time on the database server, and the I/O
delay as observed at the database.

7.3.4 Results

The target of this case study is to evaluate if the proposed modeling abstractions are
suitable to obtain accurate performance prediction in a representative online context. As
mentioned in Section 7.3.3, the investigated evaluation scenarios capture various entities
of the CRM core application. To stress the database, we use scenarios representative of a
large-scale tenant with large amounts of data. We consider both read and write workloads
as well as bulk operations. To particularly stress the application server, we use a specific
benchmark for the application tier.

In the scenarios of this case study, we vary the workload intensity, workload mixes, and
service input parameters. Deployment changes are not considered, as the SaaS provider
does not (yet) apply repetitive deployment changes in the context of dynamic performance
management. The performance metrics of interest are average response times, response
time percentiles, and average resource utilization of the application server CPUs (APP
CPU) and the database server CPU (DBS CPU). In each scenario, we parameterize as well
as calibrate and adjust the architecture-level performance model under low load conditions
(⇡ 20% CPU utilization), and then conduct predictions for medium load conditions (⇡
40%), high load conditions (⇡ 60%), and very high load conditions (⇡ 80%), comparing
the results with steady-state measurements on the real system. The measurements are
obtained during a steady-state time of 900 seconds, with a warm-up phase of 600 seconds
and a ramp-down phase of 300 seconds.

Scenario 1: Task management. As first scenario, we consider task management ser-
vices. The usage profile is shown in Figure 7.7. In an open workload, a sales agent logs-in
and browses through several activity lists. There are activity lists directly assigned to the
sales agent (MyActivities), lists assigned to the sales agent’s team (MyTeamsOpenActivi-
ties and MyTeamsClosedActivities), and a list of all activities (AllActivities). Note that all
the list views depend on the specific sales agent and his/her position in the hierarchy, i.e.,
the list of all activities may di↵er from sales agent to sales agent due to di↵erent visibility
settings. The JMeter load driver script of the task management workload ensures that the
usage profile is executed for di↵erent sales agents. Given that the login and logout requests
are insignificant compared to the list views, in the following, we focus on the response time
metrics of the activity list views.

Figure 7.8 a) shows the measured and predicted server CPU utilization for the di↵erent
load levels. The utilization of the DB server varies from 20% to 80%, the application
tier is only little utilized. The utilization predictions fit the measurements very well.
Figure 7.8 b) shows the average response times of the four activity list views for the four
load levels. The average response times vary between 200 and 2000 milliseconds, with list
view AllActivities having the slowest response time, and MyActivities the fastest response
time. As expected, the higher the load, the faster the response times increase. The lines
in the figure illustrate the gradients between the four load stages. Note that the y-axis
is of linear scale, but there is a gap between 700 and 1700 milliseconds. In Figure 7.8 c),

170

7.3. Software-as-a-Service Provider Case Study 171

<<UsageProfileModel>>

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<SystemCallUserAction>>
MyActivities

<<SystemCallUserAction>>
MyTeamsOpenActivities

<<SystemCallUserAction>>
MyTeamsClosedActivities

<<SystemCallUserAction>>
AllActivities

Figure 7.7: Scenario 1: Task Management Usage Profile Model

the relative error of the average response time predictions is shown. It shows that the
relative error is below 20% across all load levels. The error is computed relative to the
measurements, e.g., a measurement of 100ms and a prediction of 90ms would result in a
relative error of 10%.

In the low load scenario, the prediction error is zero since the model is calibrated and
adjusted with the measurements of this scenario. The calibration and adjustment for each
service works as follows: As o↵set, we compute the di↵erence between measured average
service response time and predicted average service response time in the low load scenario.
This o↵set represents the connection overhead introduced by, e.g., network delay, and is
then added as constant o↵set to the predictions for each load level.

Figure 7.9 a) shows the 90th percentile response time for the di↵erent load levels. The
trend of the percentiles from low load to very high load is similar to the trend of the
average response times shown in Figure 7.8 b). As expected, the 90th percentiles are
higher than the average response times. In case of service MyActivities, the di↵erence
between the average response time and the 90th percentiles is small. Apparently, the
average service response time of MyActivities is biased by few longer-lasting requests.
However, the predictions of the percentiles fit the measurements with an error of mostly
below 20% as depicted in Figure 7.9 b). The largest prediction error is observed for service
MyActivities.

Figure 7.10 a) shows the empirical distribution of the response time of service AllActivities,
measured at the high load level. The histogram clearly exhibits multi-modality, indicating
the complexity of the AllActivities service. The multi-modality stems from the fact that
di↵erent sales agents have di↵erent permissions with regard to the question which activities
they are allowed and which activities they are not allowed to see. The performance model
does not explicitly model the di↵erent permissions because of their underlying complexity,
but given that the resource demands are estimated using response time approximation, the
predicted distribution of service AllActivities, depicted in the histogram in Figure 7.10 b),
reflects the measured behavior quite well.

Scenario 2: Integration services. In the next scenario, we consider the integration
services which are needed in order to keep business objects of the CRM system up-to-date
with an external Enterprise Resource Planning (ERP) system. The considered integration
services capture the business objects Household, HouseholdMember, Account, AgentRole
and Relationship. Each of the business objects has an external id, representing the object’s
identity in the external ERP system. The ERP system acts as source, the CRM is the

171

172 7. Validation

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 a) Utilization measurements and predictions

low medium high very high

Legend
App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

●
●

●

●

workload

M
ea

su
re

d
Re

sp
on

se
 T

im
e

[m
s]

low medium high very high

25
0

50
0

17
50

20
00

b) Measured average response times

●

Legend
MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

●

●

●

●

0
5

10
15

20
25

30

workload

Re
la

tiv
e

Re
sp

. T
im

e
Pr

ed
ict

io
n

Er
ro

r i
n

%

low medium high very high

●

●

●

●

●

Legend
MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

c) Relative error of response time predictions

Figure 7.8: Scenario 1: Measurements, Prediction Results and Prediction Errors

172

7.3. Software-as-a-Service Provider Case Study 173

● ●

●

●

workload

90
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e
[m

s]

low medium high very high

25
0

50
0

75
0

10
00

25
00

27
50

a) Measured response time percentiles

●

Legend
MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

●
●

●

●

0
5

10
15

20
25

30

workload

Re
la

tiv
e

90
th

 P
er

ce
nt

ile
 R

T
Pr

ed
. E

rro
r i

n
%

low medium high very high

●
●

●

●

●

Legend
MyActivities
TeamsOpenActivities
TeamsClosedActivities
AllActivities

b) Relative error of response time (RT) predictions

Figure 7.9: Scenario 1: Measurements and Prediction Errors of 90th Percentile Response
Times

173

174 7. Validation

Measured response time distribution AllActivities [ms]

Pr
ob

ab
ilit

y

500 1000 1500 2000 2500 3000 3500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Predicted response time distribution AllActivities [ms]

Pr
ob

ab
ilit

y

500 1000 1500 2000 2500 3000 3500

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Figure 7.10: Scenario 1: Measurement and Prediction of AllActivities Response Time Dis-
tribution for the High Load Level

174

7.3. Software-as-a-Service Provider Case Study 175

destination. The usage profile is shown in Figure 7.11. For each business object there is
a separate usage scenario where the corresponding integration service is called in a loop.
The payload of the integration services is not modeled, it consists of a list of 200 records
describing the business objects to update. The usage profile serves as a load test for the
integration services. The JMeter load driver script ensures that the records to be updated
are di↵erent for each integration service call. Thus, in contrast to the workload considered
in Scenario 1, Scenario 2 is a scenario that stresses mostly database writes.

<<UsageProfileModel>>

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(10;1.0)]

<<SystemCallUserAction>>
HouseholdUpdate(records)

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(10;1.0)]

<<SystemCallUserAction>>
HouseholdMemberUpdate(record

s)

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(10;1.0)]

<<SystemCallUserAction>>
AgentRoleUpdate(records)

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(10;1.0)]

<<SystemCallUserAction>>
AccountUpdate(records)

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(10;1.0)]

<<SystemCallUserAction>>
RelationshipUpdate(records)

Figure 7.11: Scenario 2: Integration Usage Profile Model

Given that the login and logout requests are insignificant compared to the list views,
in the following, we focus on the response time metrics of the five integration services.
Figure 7.12 a) shows the measured and predicted server CPU utilization for the di↵erent
load levels. The utilization of the DB server varies from 20% to 80%, the application
tier is only little utilized. The utilization predictions fit the measurements quite well.
For the highest load level, the predictions underestimate the measured utilization by 7%.
Figure 7.12 b) shows the average response times of the five integration services for the
four load levels. The average response times vary between 700 and 2600 milliseconds,
with AccountUpdate having the slowest response time, and HouseholdUpdate the fastest
response time. As expected, the higher the load, the faster the response times increase.
The lines in the figure illustrate the gradients between the four load stages. Note that
the y-axis is of linear scale, but there is a gap between 1250 and 1900 milliseconds. In
Figure 7.12 c), the relative error of the average response time predictions is shown. The
relative error is below 20% across all load levels. As in Scenario 1, the error is computed
relative to the measurements, and in the low load scenario the prediction error is zero since
the model is calibrated and adjusted with the low load measurements.

In the integration workload above, the number of records per request is constantly set
to 200. Now we vary the number of records per request and investigate service response

175

176 7. Validation

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 a) Utilization measurements and predictions

low medium high very high

Legend
App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

workload

M
ea

su
re

d
R

es
po

ns
e

Ti
m

e
[m

s]

low medium high very high

50
0

10
00

20
00

25
00

● ●

●

●

b) Measured average response times

●

Legend
AccountUpdate
AgentroleUpdate
HouseholdUpdate
HouseholdmemberUpdate
RelationshipUpdate

0
5

10
15

20
25

30

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

● ●

●

●

●

Legend
AccountUpdate
AgentroleUpdate
HouseholdUpdate
HouseholdmemberUpdate
RelationshipUpdate

c) Relative error of response time predictions

Figure 7.12: Scenario 2: Measurements, Prediction Results and Prediction Errors

176

7.3. Software-as-a-Service Provider Case Study 177

times and resource utilization for these variations. For each integration service, there are
two parameter dependencies. There are dependencies between the service input parameter
records (more specifically, the number of elements of parameter records) and the service’s
resource demands at the application server and at the database server. This dependency
cannot be explicitly characterized, but empirically characterized using monitoring statis-
tics. The monitoring statistics that are used for characterizing the parameter dependency
are captured in workload runs under low load where the number of records per request
varies randomly between 25 and 200.

Table 7.3 shows two di↵erent variations of the number of records. In variation A, 40%
of the integration service requests have 25 records, 30% of the requests have 50 records,
20% of the requests have 100 records, and 10% have 200 records. Thus, requests with
small record counts dominate in variation A. In variation B, half of all integration service
requests have a record count of 200, 30% have a record count of 100, and 20% have a
record count of 50. The workload intensity in terms of request arrival rate is the same for
both variations.

records per request
variation 25 50 100 200

A 40% 30% 20% 10%
B 0% 20% 30% 50%

Table 7.3: Scenario 2: Parameter Variations

Figure 7.13 a) shows the measured and predicted server CPU utilization for the two vari-
ations. For both variations, the database resource is the dominant resource. As expected,
the utilization for variation B is higher than for variation A. The utilization predictions
fit the measurements within an error of 10 percent. This time, the predicted utilization
overestimates the measured utilization. Figure 7.13 b) shows the 90th percentile response
times of the five integration services for the two variations. The percentiles vary between
300 and 2300 milliseconds. Comparing the percentiles for the variations A and B, the
percentiles for variation B are more than two times the percentiles for variation A. Note
that the y-axis has a gap between 1200 and 1900 milliseconds. In Figure 7.12 c), the
relative error of the 90th percentile response time predictions is shown. The relative error
is mostly below 20%. Only service AccountUpdate has a prediction error of about 25%.
As in the other scenarios, the error is computed relative to the measurements.

Scenario 3: Application tier benchmark. In the next scenario we consider the appli-
cation tier benchmark, in the following also denoted as AppBench. AppBench is designed
to stress specifically the application tier by generating complex UI forms. The usage profile
is shown in Figure 7.14. Between a login and logout, two kinds of requests are repeat-
edly generated, namely Generate Get and Generate Post. The JMeter load driver script
randomly issues various form requests in order to stress the application server stack in
di↵erent ways.

Given that the login and logout requests are insignificant compared to the generated
Generate Get and Generate Post requests, in the following, we focus on the response time
metrics of the two AppBench requests. Figure 7.15 a) shows the measured and predicted
server CPU utilization for the di↵erent load levels. The utilization of the application
servers varies from 10% to 80%, the database server is only little utilized. The utilization
predictions fit the measurements only for low and medium load. In the high and very
high load levels, the predicted application server utilization clearly underestimates the
measured utilization. This indicates that there are load-dependent resource demands that
are not accurately represented in the performance model. Figure 7.15 b) shows the average

177

178 7. Validation

variation

C
PU

 U
til

iz
at

io
n

0.
0

0.
1

0.
2

0.
3

0.
4 a) Utilization measurements and predictions

A B

Legend
App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

variation

90
th

 P
er

ce
nt

ile
 R

es
po

ns
e

Ti
m

e
[m

s]

A B

25
0

50
0

75
0

10
00

20
00

22
50

●

●

b) Measured response time percentiles

●

Legend
AccountUpdate
AgentroleUpdate
HouseholdUpdate
HouseholdmemberUpdate
RelationshipUpdate

0
5

10
15

20
25

30

variation

R
el

at
ive

 9
0t

h
Pe

rc
en

til
e

RT
 P

re
d.

 E
rro

r i
n

%

A B

●

●

●

Legend
AccountUpdate
AgentroleUpdate
HouseholdUpdate
HouseholdmemberUpdate
RelationshipUpdate

c) Relative error of response time (RT) predictions

Figure 7.13: Scenario 2: Measurements, Prediction Results and Prediction Errors

178

7.3. Software-as-a-Service Provider Case Study 179

<<UsageProfileModel>>

<<UsageScenario>>

<<ScenarioBehavior>>

<<SystemCallUserAction>>
login

<<SystemCallUserAction>>
logout

<<LoopUserAction>>
loopIterationCount=IntPMF[(100;1.0)]

<<SystemCallUserAction>>
Generate_Get

<<SystemCallUserAction>>
Generate_Post

Figure 7.14: Scenario 3: Application Tier Benchmark Usage Profile Model

response times of the two considered requests for the four load levels. The average response
times vary between 40 and 170 milliseconds, withGenerate Get having the slowest response
time, and Generate Post the fastest response time. The lines in the figure illustrate the
gradients between the four load stages. While in the low load and medium load levels, the
response times increase only slowly, they are almost doubled in the high load and very high
load stages. In Figure 7.15 c), the relative error of the average response time predictions
is shown. For the high load and very high load levels, the relative error is up to 50%. The
high response time increase under high load is thus not predicted properly.

The reason for the high deviation of predictions and measurements is the load-dependent
performance behavior. An investigation of the application server monitoring statistics
reveals that the Java garbage collector (Hunt and John, 2011) runs many full garbage
collections in high load conditions. These full garbage collections, on the one hand, explain
the additional load on the application servers, on the other hand, they explain the delayed
response times. The garbage collector is not reflected in the performance model, and
is thus not considered in the performance prediction. We intentionally refrained from
providing a garbage collector model for the following two reasons. On the one hand, a
garbage collector model would be specific for a certain garbage collection algorithm with
a certain set of configuration parameters, and it can thus easily become outdated with,
e.g., an upgrade of the Java Virtual Machine (JVM). On the other hand, even if a garbage
collector model was available, in practice it is often infeasible to obtain the relevant input
parameters. A garbage collector model requires information about the state of the Java
heap as well as the requests’ presumed memory consumption. However, this detailed
information is typically not available at run-time. Nevertheless, situations where garbage
collection leads to significant performance degradations are to be avoided. Using our
utilization predictions for the application server together with a specified threshold for
the application server utilization (when garbage collection typically leads to performance
problems), such situations can still be anticipated.

Scenario 4: Workload mixes. In this scenario, we consider several workload mixes of
the task management, integration services and AppBench workloads investigated above.
This way, we combine database-intensive read and write workloads with an application
server-specific workload. Table 7.4 shows five examined workload mixes. The workload

179

180 7. Validation

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 a) Utilization measurements and predictions

low medium high very high

Legend
App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

● ●

●

●

workload

M
ea

su
re

d
R

es
po

ns
e

Ti
m

e
[m

s]

low medium high very high

50
10

0
15

0

b) Measured average response times

●

Legend
Generate_Get
Generate_Post

●

●

●
●

0
10

20
30

40
50

60

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

●

●

●
●

●

Legend
Generate_Get
Generate_Post

c) Relative error of response time predictions

Figure 7.15: Scenario 3: Measurements, Prediction Results and Prediction Errors

180

7.3. Software-as-a-Service Provider Case Study 181

intensity levels low, medium, high and very high correspond to the intensity levels analyzed
as part of Scenario 1, Scenario 2 and Scenario 3. For instance, workload mix 1 is a
combination of the three workloads at low load level. Workload mix 4 is a combination of
a low load task management workload, a high load integration workload, and a high load
AppBench workload.

Workload Intensities
Mix Task Management Integration AppBench
1 low low low
2 low high low
3 low low medium
4 low high high
5 medium medium low

Table 7.4: Scenario 4: Di↵erent Workload Mixes

Figure 7.16 a) shows the measured and predicted server CPU utilization for the di↵erent
workload mixes. The utilization of both the database server and application servers vary
from 20% to 80%. The utilization predictions for the database server fit the measurements
quite well. The highest deviation of 7% can be observed for workload mix 4. The utilization
predictions for the application servers have a prediction error comparable to the prediction
error observed in Scenario 3. In workload mix 4, where the AppBench workload runs at
high load, the relative prediction error is more than 25%. However, in workload mixes
where the AppBench workload runs at low to medium load, the relative prediction error
for the application server utilization is within 15%.

Figure 7.16 b) shows the relative error of the average response time predictions for the
five workload mixes. The relative prediction error for a workload type is the mean rela-
tive prediction error of the workload type’s services. For example, a relative prediction
error of 10% for the task management workload means that the mean relative error of
the average response time predictions of services MyActivities, MyTeamsOpenActivities,
MyTeamsClosedActivities and AllActivities is 10%. For workload mixes 1, 2, 3 and 5,
the prediction error is mostly below 20%. Only in workload mix 3, where the application
server utilization is 57%, the AppBench requests have a higher prediction error of 40%.
Considering workload mix 4, the prediction error of all workload types is higher than 30%.
Apparently, the highly utilized application server has a significant impact on all requests,
resulting in a significant slowdown. Whenever the application server is utilized below 40%,
the predictions fit the measurements accurately. This is also reflected in the production
environments of the SaaS provider: For the application servers, a utilization of more than
40% is tried to be avoided, given that the performance may degrade significantly for higher
utilization levels. Since the application server tier is kept stateless, adding or removing
application servers is easily possible during system operation without interruption.

Overall, the database scales very well, meaning that the utilization of the database grows
almost linearly with the load intensity and the service response times increase slowly
from low to high load levels. The CPU waiting time increases only slowly because of
the high number of CPU cores. Apart from the CPU contention, another reason for the
response time growth is contention for writing database logs. This contention is illustrated
in Tables 7.5 and 7.6. Each table shows an excerpt of an Oracle Automatic Workload
Repository (AWR) report (Kyte, 2005). Table 7.5 shows the top five wait classes and
events for a request, obtained during a scenario of low load. Table 7.6 shows the same
wait statistics obtained during a scenario where the load intensity is four times the load
intensity as in the low load scenario. The most important wait classes, ranked by total
wait time, are CPU time, system I/O and commit. A major factor for the commit waiting

181

182 7. Validation

workload mix

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 a) Utilization measurements and predictions

1 2 3 4 5

App CPU Utilization, measured
App CPU Utilization, predicted
DB Utilization, measured
DB Utilization, predicted

●

●

●

●

●

0
10

20
30

40
50

60

workload mix

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

1 2 3 4 5

●

●

●

●

●

●

Legend
Avg Error Task Management
Avg Error Integration
Avg Error App Bench

b) Relative error of response time predictions

Figure 7.16: Scenario 4: Measurements, Prediction Results and Prediction Errors

182

7.3. Software-as-a-Service Provider Case Study 183

time is the wait event log file sync. In the low load scenario, both commit and log file sync
exhibit a total wait time of 235 seconds. In the AWR report where the load intensity has
been quadrupled (Table 7.6), the important wait classes have a total wait time that is also
approximately quadrupled. For instance, system I/O has a total wait time of 297 seconds
in the low load scenario, and a total wait time of 1113 seconds in the high load scenario.
However, the total wait time due to commit increases non-linearly with the load intensity.
While it is 235 seconds in the low load scenario, it is 2071 seconds in the high load scenario,
dominated again by wait event log file sync. Hence, for the considered workload, syncing
Oracle’s redo logs is an important factor and can become a bottleneck when scaling the
intensity. This explains the moderate response time growth in high load scenarios besides
the increased CPU contention.

Wait Class Waits Total Wait Time [s] Average Wait [ms]
CPU time 14754
System I/O 183560 297 2
Commit 83464 235 3
User I/O 17600 9 1
Network 5800062 9 0

Event Waits Total Wait Time [s] Average Wait [ms]
log file sync 83464 235 3
log file parallel write 84557 150 2
db file parallel write 74425 107 1
log file sequential read 4136 30 7

Table 7.5: Oracle Automatic Workload Repository (AWR) Report, Low Load

Wait Class Waits Total Wait Time [s] Average Wait [ms]
CPU time 63429
Commit 341870 2071 6
System I/O 570897 1113 2
Concurrency 173645 117 1
Other 40087 73 2

Event Waits Total Wait Time [s] Average Wait [ms]
log file sync 341870 2071 6
log file parallel write 282797 553 2
db file parallel write 225846 390 2
log file sequential read 22204 174 8

Table 7.6: Oracle Automatic Workload Repository (AWR) Report, High Load

7.3.5 Discussion

The SaaS provider case study demonstrates the modeling and prediction capabilities of our
approach in the context of a real-life enterprise software system. The proposed modeling
abstractions allow describing the performance-relevant factors of the component-based
multi-tenant platform. The concept of probabilistic parameter dependencies proved to
be useful to strike a balance between the model’s abstraction level and its prediction
accuracy. The prediction accuracy is investigated under di↵erent workload types, di↵erent
workload intensities and di↵erent workload mixes. The achieved accuracy for the database
utilization predictions is within 5% error. For the application server tier, the utilization

183

184 7. Validation

predictions are accurate as long as the application servers operate at low to medium load
levels. Higher utilization is avoided in the production environment because the system
performance may degrade significantly due to the garbage collection overhead. For the
service response times, the relative prediction error is mostly within 20%. This applies
both to average service response times as well as to the 90th percentile response times.
Thus, even without using modeling abstractions at a high level of detail, the response
time distributions are captured in a representative way. The applied methods do not
require monitoring capabilities that go beyond the monitoring infrastructure running in
production.

7.4 SPECjEnterprise2010 Case Study

In our second case study, we apply the approach presented in this thesis in the context
of a representative platform for distributed component-based applications, namely the
Java EE platform, one of today’s major technology platforms for building enterprise sys-
tems. Java EE provides a framework for building distributed web applications. Amongst
others, it includes a server-side framework for component-based applications, the Enter-
prise JavaBean (EJB) architecture.

As application to evaluate, we chose the SPECjEnterprise2010 benchmark application
described in Section 7.4.1. The case study covers all evaluation questions mentioned in
Section 7.1. We investigate multiple application scenarios: Section 7.4.2 presents how
we semi-automatically extracted an architecture-level performance model of SPECjEnter-
prise2010. Section 7.4.3 evaluates certain service behavior abstractions and probabilistic
parameter dependencies of the benchmark application. Section 7.4.4 outlines a joint work
together with Nikolaus Huber, where the extracted performance models are used as a basis
for implementing an automatic performance-aware resource management approach (Huber
et al., 2011a; Huber, 2014).

7.4.1 SPECjEnterprise2010 Benchmark Application

We selected the SPECjEnterprise2010 benchmark application as a basis for our case study
since it models a representative state-of-the-art scalable system. It represents a classical
multi-tier business information system with an application server tier and a database
server tier. The benchmark is open source, thus it provides flexible instrumentation and
deployment options, in contrast to the real-world application considered in Section 7.3.
Previous versions of the benchmark have already been successfully applied for research
purposes (Kounev, 2006; Kounev and Buchmann, 2003).

SPECjEnterprise2010 is a Java EE benchmark developed by SPEC’s Java subcommittee
for measuring the performance and scalability of Java EE based application servers. The
benchmark workload is generated by an application that is modeled after an automo-
bile manufacturer. As business scenarios, the application comprises customer relationship
management (CRM), manufacturing, and supply chain management (SCM). The business
logic is divided into three domains: orders domain, manufacturing domain, and supplier
domain. To give an example of the business logic implemented by the benchmark, consider
a car dealer that places a large order with the automobile manufacturer. The large order
is sent to the manufacturing domain, which schedules a work order to manufacture the
ordered vehicles. In case some parts needed for the production of the vehicles are depleted,
a request to order new parts is sent to the supplier domain. The supplier domain selects a
supplier and places a purchase order. When the ordered parts are delivered, the supplier
domain contacts the manufacturing domain and the inventory is updated. Finally, upon
completion of the work order, the orders domain is notified.

184

7.4. SPECjEnterprise2010 Case Study 185

Emulator

JDBC

System Under Test

JMS

JMS

Java Application Server
Benchmark Driver

Suppliers

Browse,
Purchase,
Manage

CreateVehicleEJB,
CreateVehicleWS

Delivery

PurchaseOrder

Re
qu

isi
tio

n

De
liv

er
y

La
rg

eO
rd

er

Fu
lfi

lle
dO

rd
er

Web
Services

EJB / Web
Services

Servlets

Supplier Domain

Manufacturing
Domain

Orders DomainDealerships

Database

Database Server

Manufacturing Sites

Figure 7.17: SPECjEnterprise2010 Architecture, cf. SPEC (2010)

185

186 7. Validation

Figure 7.17 depicts the architecture of the benchmark as described in the benchmark doc-
umentation. The benchmark application is divided into three domains: orders domain,
manufacturing domain and supplier domain.The application logic in the three domains
is implemented using EJBs which are deployed on the considered Java EE application
server. The domains interact with a database server via Java Database Connectivity
(JDBC) using the Java Persistence API (JPA). The communication between the domains
is asynchronous and implemented using point-to-point messaging provided by the Java
Message Service (JMS). The workload of the orders domain is triggered by dealerships
whereas the workload of the manufacturing domain is triggered by manufacturing sites.
Both, dealerships and manufacturing sites are emulated by the benchmark driver, a sep-
arate supplier emulator is used to emulate external suppliers. The communication with
the suppliers is implemented using Web Services. While the orders domain is accessed
through Java Servlets, the manufacturing domain can be accessed either through Web
Services or EJB calls, i.e., Remote Method Invocation (RMI). As shown on the diagram,
the system under test spans both the Java application server and the database server.
The emulator and the benchmark driver have to run outside the system under test so that
they do not a↵ect the benchmark results. The benchmark driver executes five benchmark
operations. A dealer may browse through the catalog of cars, purchase cars, or manage
his dealership inventory, i.e., sell cars or cancel orders. In the manufacturing domain, work
orders for manufacturing vehicles are placed, triggered either per WebService or RMI calls
(createVehicleWS or createVehicleEJB).

7.4.2 Semi-Automatic Model Extraction and Model Parameterization

This section investigates the evaluation question of whether the semi-automatic model
extraction and parameter estimation techniques described in Chapter 6 provide repre-
sentative models, i.e., if the predictions based on the extracted models have acceptable
accuracy. First, we describe how the extraction method is implemented and processed and
how the SPECjEnterprise2010 benchmark is deployed in our experimental environment.
We then illustrate the extracted model instance and analyze its performance prediction
accuracy in various evaluation scenarios (for details see also Brosig et al. (2011)).

Context and Experiment Setup

As an application server implementing the Java EE specifications, we employ the Ora-
cle WebLogic Server (WLS). Oracle WebLogic Server (WLS) comes with an integrated
monitoring platform, namely the WebLogic Diagnostics Framework (WLDF). WLDF is
a monitoring and diagnostics framework that enables collecting and analyzing diagnostic
data for a running WLS instance. The two main WLDF features that we make use of are
the data harvester and the instrumentation engine.

The data harvester can be configured to collect detailed diagnostic information about a
running WLS and the applications deployed thereon. The instrumentation engine allows
injecting diagnostic actions in the server or application code at defined locations. In short,
a location can be the beginning or end of a method, or before or after a method call.
Depending on the configured diagnostic actions, each time a specific location is reached
during processing, an event record is generated. Besides information about, e.g., the time
when or the location where the event occurred, an event record contains a diagnostic
context id, which uniquely identifies the request that generated the event and allows to
trace individual requests as they traverse the system. If a request occurs within a database
transaction, an event record additionally supplies a transaction id (di↵erent from the diag-
nostic context id). Furthermore, the event records are identified with an auto-incrementing
event record id. Other features justifying our selection of WLDF as monitoring tool are
listed in the following: i) WLDF monitors that are injected during instrumentation can be

186

7.4. SPECjEnterprise2010 Case Study 187

enabled/disabled at run-time. ii) The amount of incoming requests that are traced can be
throttled. The monitoring frequency can be constrained by a throttle interval or a throttle
rate. iii) WLDF o↵ers a monitoring action that does not generate any event records but
makes response time measurements and aggregates them on-the-fly to metrics such as the
mean or standard deviation. Since the aggregated data is stored in memory, the overhead
of this action is very low.

We implemented the semi-automatic model extraction and model parameterization meth-
ods described in Chapter 6 to support EJBs, Java Servlets, and Java Server Pages (JSP),
as well as Message-Driven Beans (MDBs) for asynchronous point-to-point communication
using Java Message Service (JMS). In the following, we briefly describe the implementation
of the extraction process.

For the extraction of the component connections according to Section 6.2.1, the component
boundaries can be specified as groups of EJBs, Servlets and JSPs. Thus, WLDF is con-
figured to monitor entries/exits of EJB business methods, Servlet services (including also
JSPs) and JMS send/receive methods. As depicted in Figure 7.18, the WLDF diagnostic
context id uniquely identifies a request, but forked threads receive the same diagnostic
context id. Hence, to separate the di↵erent call paths from each other, the diagnostic con-
text id is not su�cient. In those cases, we make use of the transaction id. The ordering of
the event records is done via the event record id. Based on the set of observed call paths,

:C

:B
:A

synchCall

Same
diagnostic context id

transaction id 1

transaction id 2

transaction id 3

asynchCall

asynchCall

synchCall

Figure 7.18: Diagnostic Context Id and Transaction Ids During Asynchronous Messaging

the e↵ective connections among components can be determined, i.e., required interfaces of
components can be bound to components providing the respective services.

For the extraction of the fine-grained behavior abstractions according to Section 6.2.2,
we follow the approach described in Brosig et al. (2009). Performance-relevant actions
are made explicit by method refactorings. This is because of the lack of tool support for
in-method instrumentation. Current instrumentation tools including WLDF support only
method-level instrumentation. They do not support instrumentation at custom locations

187

188 7. Validation

other than method entries and exits. Control flow statistics are collected in parallel to the
extraction of the fine-grained behavior abstractions. The sending of asynchronous JMS
messages is modeled as fork action.

For the resource demand estimation of individual internal actions, we apply two ap-
proaches: i) in phases of low load we approximate resource demands with measured re-
sponse times, ii) in phases of medium to high load we estimate resource demands based
on measured utilization and throughput data with weighted response time ratios (see Sec-
tion 6.4.3).

For the evaluation, we applied the implemented semi-automatic model extraction method
to SPECjEnterprise2010. The resource environment is described in the following, before
describing the extracted architecture-level performance model. We then compare the per-
formance predictions provided by the extracted models with measurements on the real
system considering di↵erent execution scenarios.

Resource Environment

We installed the benchmark in the system environment depicted in Figure 7.19. The
benchmark application is deployed in an Oracle WebLogic Server (WLS) 10.3.3 cluster
of up to eight physical nodes. Each WLS instance runs on a 2-core Intel CPU with
OpenSuse 11.1. As a Database Server (DBS), we used Oracle Database 11g, running
on a Dell PowerEdge R904 with four 6-core AMD CPUs, 128 GB of main memory, and
8x146 GB SAS disk drives. The benchmark driver master, multiple driver agents, the
supplier emulator and the DNS load balancer were running on separate virtualized blade
servers. As operating system, the virtual machines execute CentOS 5.3 and are equipped
with two respectively four virtual CPUs. The blade servers are equipped with two 4-core
Intel CPUs and 32 GB of main memory. The machines are connected by a 1 GBit LAN,
the DBS is connected with 4 x 1 GBit ports.

1 GBit

... ...

Benchmark
Driver Agents Supplier

Emulator

Benchmark
Driver Master

DNS Load
Balancer

4 GBit

Gbit
Switch

Oracle WebLogic Servers

Oracle Database
Server

Figure 7.19: Experimental Environment for Semi-Automatic Model Extraction

188

7.4. SPECjEnterprise2010 Case Study 189

Extracted Architecture-Level Performance Model

We consider the entire benchmark application, i.e., including supplier domain, dealer do-
main, the web tier and the asynchronous communication between the three domains. We
deal with EJBs including MDBs for asynchronous point-to-point communication, web ser-
vices, Servlets and JSPs. Figure 7.20 depicts a high-level overview of the basic structure of
the extracted architecture-level performance model. The system model configuration shows
a load balancer that distributes incoming requests to replicas of the SPECjEnterprise2010
benchmark application which themselves need an emulator instance and a database in-
stance. A benchmark application instance refers to a composite component located in the
component repository. The composite component in turn consists of component instances,
e.g., a SpecAppServlet component or a PurchaseOrderMDB component. These components
reside in the repository as well. The performance model of the benchmark application con-
sists of 28 components whose services are described by 63 service behavior abstractions.
In total, 51 internal actions, 41 branch actions and four loop actions have been modeled.

ItemBrowser
SessionBean

Component

Supplier
SessionBean

Component
PurchaseOrder
MDB

Component

LargeOrderSender
SessionBean

Component

SpecApp
Servlet

Component

ItemBrowser
SessionBean

Component
Supplier
SessionBean

Component

PurchaseOrder
MDB

Component

LargeOrderSender
SessionBean

Component

SpecApp
Servlet

Component
ItemBrowser
SessionBean

Component
Supplier
SessionBean

Component

PurchaseOrder
MDB

Component

LargeOrderSender
SessionBean

Component

SpecApp
Servlet

Component

Database

EmulatorLoad
Balancer

SJE
Instance 1

SJE
Instance N

System Model

Component Repository Model

ItemBrowser
SessionBean

Component

Supplier
SessionBean

Component

PurchaseOrder
MDB

Component

LargeOrderSender
SessionBean

Component

SpecApp
Servlet

Component

SPECjEnterprise

Composite
Component

Composite

.

.

.

.

Figure 7.20: SPECjEnterprise2010 Model Structure

The resources we considered were the CPUs of the WLS instances (WLS CPU) and the
CPUs of the database server (DBS CPU). The network and hard disk I/O load could be
neglected. Note that we configured load-balancing via a Domain Name System (DNS)
server. The DNS server is only used at benchmark start-up.

In order to apportion CPU resource demands among the database server (DBS) and the
application server (WLS), we apply the following approximation: Looking at an EJB trans-
action, the transaction consists of a working phase and a commit phase. Processing times
in the working phase are apportioned to the WLS CPU. Processing times in the commit
phase are apportioned to the DBS CPU. The assumption is that the length of the working
phase is proportional to the WLS CPU resource demand whereas the length of the commit

189

190 7. Validation

phase is proportional to the DBS CPU resource demand. The approximation implies that,
when estimating resource demands for the DBS CPU, we overestimate database writes
and ignore database reads. However, given that Java Persistence API (JPA) implements
internal entity caches that reside in the WLS instance, database reads are not expected to
dominate the overall application performance. While processing times of working phases
can normally be measured directly, for container-managed transactions, processing times
of commit phases are not accessible with WLDF. To measure the length of the commit
phase of a transaction, we compute the di↵erence between method response times inside
the method and response times outside the method. For the former case, we introduce time
sensors after method entry and before method exit. For the latter case, the time sensors
are placed around the method call at the callee. In this way, we obtain the approximate
processing times of transaction commit phases.

To keep the overhead low, we separated the extraction step in which call paths are moni-
tored from the step in which resource demands are estimated. Both steps were conducted
with one single WLS instance. For the resource demand estimation, we use a WLDF
method instrumentation feature where individual measurements are aggregated online to
obtain statistics like, e.g., method invocation counts or average method response times.
Given that individual measurements are not required to be stored, the overhead of this
approach is an order of magnitude lower than the WLDF event record triggering approach.

The resource demands were extracted during a benchmark run with a steady state time
of 900 seconds and a WLS CPU utilization of about 60%. The same benchmark run
was then executed without any instrumentation in order to quantify the instrumentation
overhead factor and adjust the estimates of the WLS CPU resource demands. Further-
more, we measured the delay for establishing a connection to the WLS instance which
is dependent on the system load. With the knowledge of the number of connections the
individual benchmark operations trigger, the load-dependent delay is estimated and taken
into account in the predicted response times.

Results

The extracted models are evaluated by comparing the model predictions with measure-
ments on the real system. The usage profile representing the benchmark workload has
been provided manually. The five benchmark operations are modeled as individual usage
scenarios.

In the investigated scenarios, we vary the throughputs of the dealer and manufacturing
driver as well as the deployment configuration. Note that we extracted the performance
model on a single WLS instance whereas for validation, WLS clusters of di↵erent sizes
were used. As performance metrics, we considered the average response times of the
five benchmark operations as well as the average utilization of the WLS CPU and the
DBS CPU. In the cluster scenarios where several WLS instances are involved, we considered
the average utilization of all WLS cluster node CPUs. Note that the response times of
the benchmark operations are measured at the driver agents, i.e., the WLS instances run
without any instrumentation. For each scenario, we first predicted the performance metrics
for low load conditions (⇡ 20% WLS CPU utilization), medium load conditions (⇡ 40%),
high load conditions (⇡ 60%), and very high load conditions (⇡ 80%), and then compared
them with steady-state measurements on the real system.

Scenario 1: Cluster of two application server instances. For the first validation
scenario, we configured an application server cluster consisting of two WLS instances and
injected di↵erent workloads. The measured and predicted server utilization for the di↵erent
load levels are depicted in Figure 7.21 a). The utilization varies from 20% to 80%. The
utilization predictions fit the measurements very well, both for the WLS instances as well

190

7.4. SPECjEnterprise2010 Case Study 191

as for the DBS. Figure 7.21 b) shows the response times of the five benchmark operations
for the four load levels. The response times of the benchmark operations are in the range
of 10ms to 70ms. As expected, the higher the load, the faster the response times grow.
Compared to the other benchmark operations, Browse and Purchase have lower response
times, while CreateVehicleEJB and CreateVehicleWS take most time. In Figure 7.21 c),
the relative error of the response time predictions is shown. The error is mostly below
20%, only Browse has a higher error but still lower than 30%. The prediction accuracy
of the latter increases with the load. This is because Browse has a rather small resource
demand but includes a high number of round trips to the server translating in connection
delays (15 on average).

Scenario 2: Cluster of four application server instances. In Scenario 2, we con-
sidered a four node WLS cluster again at four di↵erent load levels. Figure 7.22 a) shows
the measurements and predictions of the server utilization. Again, the predictions are
accurate. However, one can identify a small deviation of the DBS CPU utilization that is
growing with the load.

Figure 7.22 b) depicts the relative response time prediction error for Scenario 2. Again, the
relative error is mostly below 20%. For the same reasons already mentioned in Scenario 1,
operation Browse stands out a little. However, its prediction error is still below 30%.

Scenario 3: Cluster of eight application server instances. For Scenario 3, we
deployed the benchmark in a cluster of eight WLS instances. As shown in Figure 7.23,
the server utilization predictions are very accurate. While the DBS utilization prediction
exhibits an error that grows with the injected load, it does not exceed 15%.

In cases of low to medium load, the accuracy of the predicted response times is comparable
to Scenarios 1 and 2 (Figure 7.23 b). However, in cases of high load, the prediction
error grows by an order of magnitude. This is because under this load level some of the
WLS cluster nodes were overloaded, i.e., the cluster was not load-balanced anymore. The
overloaded WLS instances then lead to biased response time averages. We assume that the
cluster is unbalanced due to DNS caching e↵ects that are not reflected in the performance
model. These e↵ects could not be observed in the setting with a single application server
node in which the model was extracted.

Summary

We evaluated the performance model that was extracted with the methods described in
Chapter 6 in various realistically-sized deployment environments under di↵erent workload
mixes and load intensities. Concerning the CPU utilization, the observed prediction error
for the WLS application server was below 5%. For the database server, the CPU utilization
prediction error was mostly below 10%. The response time predictions of the benchmark
operations mostly had an error of 10% to 20%. In the case of the eight node application
server cluster, the response time predictions were not accurate for higher loads. This
is because the cluster was not load-balanced correctly anymore. Nevertheless, the semi-
automatic model extraction and parameter estimation techniques provided a performance
model that is representative for most evaluation scenarios.

7.4.3 Service Behavior Abstractions and
Probabilistic Parameter Dependencies

In the previous section, only fine-grained behavior abstractions were considered. In this
section, using exemplary services of the SPECjEnterprise2010 benchmark, we: (i) show
how behavior descriptions at di↵erent levels of abstraction can a↵ect the performance

191

192 7. Validation

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

low medium high very high

a) Utilization measurements and predictions
Legend

WLS Utilization, measured
WLS Utilization, predicted
DBS Utilization, measured
DBS Utilization, predicted

10
20

30
40

50
60

workload

M
ea

su
re

d
R

es
po

ns
e

Ti
m

e
[m

s]

low medium high very high

●
●

●

●

b) Response times of benchmark operations

●

Legend
Browse
Purchase
Manage
CreateVehicleEJB
CreateVehicleWS

0
10

20
30

40
50

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

●

●

●

●

●

Legend
Browse
Purchase
Manage
CreateVehicleEJB
CreateVehicleWS

c) Relative error of response time predictions

Figure 7.21: Scenario 1: Measurements, Prediction Results and Prediction Errors

192

7.4. SPECjEnterprise2010 Case Study 193

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

low medium high very high

Legend
WLS Utilization, measured
WLS Utilization, predicted
DBS Utilization, measured
DBS Utilization, predicted

a) Utilization measurements and predictions

0
10

20
30

40
50

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

●

●

●

●

●

Browse
Purchase
Manage
CreateVehicleEJB
CreateVehicleWS

b) Relative error of response time predictions

Figure 7.22: Scenario 2: Utilization Measurements and Relative Errors

prediction accuracy, and (ii) investigate a probabilistic parameter dependency by means
of a sensitivity analysis (Brosig et al., 2013b, 2012).

For the measurement experiments, we use the same resource environment as in the previous
section. In this section, the benchmark application runs on one WLS instance.

Coarse-Grained Behavior versus Fine-Grained Behavior

In SPECjEnterprise2010, the supplier domain has a component PurchaseOrder, as shown
in Figure 7.24. It provides a service named sendPurchaseOrder that is responsible for
dispatching the purchase orders. The sending operation supports two modes of operation:
i) sending the order as an inline message without attachments, or ii) sending the order as
a message with attachment. In the benchmark application, the probability of an inline
message or a message with attachment each equals 0.5.

A fine-grained model of service sendPurchaseOrder is depicted in Figure 7.25. Internal ser-
vice behavior is taken into account by reflecting the service’s internal control flow. There
is a branch action that either leads to an external service call to processPurchaseOrderAt-
tachment or an external service call to processPurchaseOrderInline, both with a probability
of 0.5.

A coarse-grained model of service sendPurchaseOrder is depicted in Figure 7.26. The
external service calls to processPurchaseOrderAttachment and processPurchaseOrderInline
are modeled as they can be observed from the component boundary of component Pur-
chaseOrder. For each call to sendPurchaseOrder, a respective external service is either
called once or not called at all. For both cases, one observes a probability of 0.5. In
the model, this call frequency is described with the Probability Mass Function (PMF)

193

194 7. Validation

workload

C
PU

 U
til

iz
at

io
n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

low medium high very high

Legend
WLS Utilization, measured
WLS Utilization, predicted
DBS Utilization, measured
DBS Utilization, predicted

a) Utilization measurements and predictions

0
10

20
30

40
50

workload

R
el

at
ive

 R
es

p.
 T

im
e

Pr
ed

ic
tio

n
Er

ro
r i

n
%

low medium high very high

●

●

●

●

●

Legend
Browse
Purchase
Manage
CreateVehicleEJB
CreateVehicleWS

b) Relative error of response time predictions

Figure 7.23: Scenario 3: Utilization Measurements and Predictions and Relative Error of
Response Time Predictions

Provided service:
sendPurchaseOrder(..)

PurchaseOrder Required services:
processPurchaseOrderAttachment(..)
processPurchaseOrderInline(..)

Figure 7.24: Component PurchaseOrder

FineGrainedBehavior

<<BranchAction>>

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
processPurchaseOrderAttachment

<<ComponentInternalBehavior>>

<<ExternalCallAction>>
processPurchaseOrderInline

Branch transitions

BranchingProbabilities =
EnumPMF[(‘Branch1’;0.5)(‘Branch2’;0.5]

Figure 7.25: Fine-Grained Behavior Abstraction of PurchaseOrder#sendPurchaseOrder

194

7.4. SPECjEnterprise2010 Case Study 195

IntPMF[(0;0.5)(1;0.5)]. However, note that the exclusive relationship between the two
external service calls cannot be reflected in the coarse-grained model.

<<CoarseGrainedBehavior>>

<<ExternalCallFrequency>> <<ExternalCallFrequency>>

CallFrequency =
IntPMF[(0;0.5)(1;0.5)]

<<ExternalCall>>
processPurchaseOrderAttachment

<<ExternalCall>>
processPurchaseOrderInline

CallFrequency =
IntPMF[(0;0.5)(1;0.5)]

Figure 7.26: Coarse-Grained Behavior Abstraction of PurchaseOrder#sendPurchaseOrder

Figure 7.27(c) shows measurements of the response time of sendPurchaseOrder as a his-
togram. The measurements were obtained during a benchmark run under medium load
with a steady state time of 15 minutes. As expected, the measured response time distribu-
tion is multi-modal. We compare the measured response time distribution with predicted
response time distributions using the fine-granular model (Figure 7.27(a)) and the coarse-
grained model (Figure 7.27(b)). The resource demanding behavior of external service
processPurchaseOrderInline was described as exponential service time with a mean of 10ms.
Service processPurchaseOrderAttachment has a 30ms higher resource demand.

The fine-granular model reflects the bimodal distribution of sendPurchaseOrder better than
the coarse-grained model. This is because the interdependency between the two external
service calls is reflected in the fine-grained model through the branch action, while it
is ignored in the coarse-grained model. The latter obviously a↵ects the response time
distribution, however, the mean values of the response time predictions do not di↵er. Both
predictions indicate a mean of 26ms which well reflects the measured response time mean
of 29ms. If one is only interested in predicting the mean response time, the coarse-grained
abstraction in this case is su�cient. For a more representative response time distribution,
the fine-grained abstraction is more suitable.

Probabilistic Parameter Dependency

In the following, we analyze a probabilistic parameter dependency as it can be found in
SPECjEnterprise2010. Figure 7.28 shows the Manufacturing component that provides a
service scheduleManufacturing to schedule a new work order in the manufacturing domain
for producing a set of assemblies. A work order consists of a list of assemblies to be
manufactured and is identified with a workOrderId. In case the items needed to produce
the assemblies available in the manufacturing site’s warehouse are not enough, the purchase
service of component PurchaseOrder is called to order additional items.

We are now interested in the probability of calling purchase which corresponds to a branch
probability in the control flow of the scheduleManufacturing service. This probability will
depend on the number of assemblies that have to be manufactured and the inventory of
parts in the customer’s warehouse. The higher the number of assemblies, the higher the
probability of having to purchase additional parts.

To better understand the considered dependency, in Figure 7.29 we show that the Man-
ufacturing component is actually triggered by a separate Dealer component providing a
newOrder service which calls the scheduleManufacturing service. The newOrder service re-
ceives as input parameters an assemblyId and quantity indicating a number of assemblies
that are ordered by a dealer. This information is stored in the database in a data struc-
ture (see Figure 7.30) using workOrderId as a reference which is then passed to service
scheduleManufacturing as an input parameter.

195

196 7. Validation

Response Time [ms]

Pr
ob

ab
ilit

y

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

Predicted Response Time Statistics

(a)

Response Time [ms]

Pr
ob

ab
ilit

y

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Predicted Response Time Statistics

(b)

Response Time [ms]

Pr
ob

ab
ilit

y

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Measured Response Time Statistics

(c)

Figure 7.27: Response Time Statistics of sendPurchaseOrder : (a) Predicted using Fine-
Grained Behavior Abstraction (b) Predicted using Coarse-Grained Behavior
Abstraction (c) Measured

196

7.4. SPECjEnterprise2010 Case Study 197

Required service:
purchase(List demands)

Provided service:
scheduleManufacturing(String workOrderId)

Manufacturing

Figure 7.28: Manufacturing Component

Required service:
purchase(List demands)

Provided service:
newOrder(String assemblyId, int quantity)

ManufacturingDealer

Required/Provided service:
scheduleManufacturing(String workOrderId)

DependencyRelationship
DependencyPropagationRelationship

CallParameter:
quantity

ShadowParameter:
order size

InfluencedVariableReference:
BranchingProbabilities

Figure 7.29: Dealer and Manufacturing Components

workOrderId

WorkOrder

String: assemblyId

int: quantity

refers to

Figure 7.30: WorkOrder Data Structure

197

198 7. Validation

Intuitively, one would assume the existence of the following parameter dependency: The
more assemblies are ordered (parameter quantity of service newOrder of the Dealer com-
ponent), the higher the probability that new items will have to be purchased to refill stock
(i.e., probability of calling purchase in the Manufacturing component). This dependency
is modeled using probabilistic parameter dependencies as introduced in Section 4.1.5. We
model a ShadowParameter named order size. This parameter characterizes the size of the
incoming work order with id workOrderId. We add a dependency relationship between order
size and the branching probabilities determining whether service purchase is called or not.
Furthermore, we add a dependency propagation relationship between the call parameter
quantity of service newOrder and the shadow parameter order size of the Manufacturing
component. Knowing about the existence of the parameter dependency, we can use mon-
itoring statistics collected at run-time to characterize the dependency probabilistically.

Figure 7.31 shows monitoring statistics that we collected at run-time showing the depen-
dency between the influencing parameter quantity and the observed relative frequency of
the purchase service calls. For instance, if the quantity equals to 20, in roughly one out of
every four calls of scheduleManufacturing, service purchase was called.

●●

●

●

●
●

●

●
●
●

●

●

●
●●

●
●

●
●

●

●

●●

●

● ●

●

●

●
●
●
●● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●

●

●●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●●●●●

●

●

●●●●●

●

● ●●

●

●

●●● ●●●●

●●

●●●●●

●

●

● ●

●

●●●●●●●

●

●●●●● ●●●●

●

●●●●●●

●

●

●● ●●●● ●

●

●●●●●● ●●●● ●●●

●

●●●●

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

quantity

P(
"m

or
e

pa
rts

 a
re

 n
ee

de
d"

)

Monitoring Data

Figure 7.31: Measurement Statistics of scheduleManufacturing Service

Figure 7.32 shows how the dependency can be characterized probabilistically by considering
three ranges of possible quantities. For example, for quantities between 50 and 100, the
probability of a purchase call is estimated to be 0.67.

To illustrate the relevance of the considered parameter dependency, we conducted experi-
ments with an adapted scheduleManufacturing workload.

• In the first scenario, we called scheduleManufacturing varying the quantity parameter
at random in the range between 0 and 10.

• For the second scenario, we varied the quantity parameter between 0 and 200, while
keeping the workload intensity at the same level as in the first scenario.

The measurements were obtained in experiment runs with a steady state time of 15 min-
utes. Knowing the monitoring statistics in Figure 7.31, we expect the number of purchase
calls in the second scenario to be higher than in the first scenario. Given that schedule-
Manufacturing calls the purchase service asynchronously using point-to-point messaging
provided by JMS, the more frequent purchase calls in the second experiment should not
a↵ect the response time of scheduleManufacturing directly but result in a higher application
server utilization.

198

7.4. SPECjEnterprise2010 Case Study 199

quantity

P(
"m

or
e

pa
rts

 a
re

 n
ee

de
d"

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

< 0 50 100 > 200

Summarized Statistics 1

Figure 7.32: Aggregated Statistics of scheduleManufacturing Service

The results of the experiment runs are shown in Table 7.7. While in the first experiment
the average utilization of the Oracle WebLogic Server (U

WLS

) is approximately 17%, it
increases to 63% in the second experiment. The increased mean response time (R

avg

) of
service scheduleManufacturing is explained by the increased utilization.

Workload: Measurements Predictions
scheduleManufacturing U

WLS

R
avg

[ms] U
WLS

R
avg

[ms]

quantity in [0..10] 0.166 17.2 0.365 19.4
quantity in [0..200] 0.627 32.9 0.607 28.3

Table 7.7: Measurements and Predictions for the scheduleManufacturing Scenarios

Using a fine-grained behavior model with a characterization of the parameter dependency
as shown in Figure 7.32, we made predictions for both scenarios. Regarding the second
scenario, the utilization U

WLS

and the average response time R
avg

di↵er from the mea-
surements with a small, negligible error. However, concerning the first scenario, with
U

WLS

=0.365 the prediction particularly overestimates the server utilization. The overes-
timation is a result of the aggregated monitoring statistics. For the interval between 0 to
50, the model simplifies the probability of a purchase call to be 0.37.

Adapting the characterization of the parameter dependency as shown in Figure 7.33, the
prediction yields representative results: With U

WLS

=0.196 and R
avg

=16.8ms, the predic-
tions match the measurements also in the first scenario.

The evaluation shows the performance-relevance of the parameter dependency between
the influencing parameter quantity and the observed relative frequency of the purchase
service calls. It further shows that detailed monitoring statistics are of importance for a
representative characterization of probabilistic parameter dependencies.

Summary

We used scenarios from the SPECjEnterprise2010 benchmark application to evaluate if be-
havior descriptions at di↵erent levels of abstraction can be modeled, and how they a↵ect
the performance prediction accuracy. We showed that fine-grained models may reflect the
response time distributions in a more representative way than coarse-grained models. If
one is only interested in predicting the mean response time, coarse-grained abstractions are
su�cient. Furthermore, we showed how to model parameter dependencies as they occur in

199

200 7. Validation

quantity

P(
"m

or
e

pa
rts

 a
re

 n
ee

de
d"

)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

< 0 20 40 60 100 > 200

Summarized Statistics 2

Figure 7.33: Aggregated Statistics of the scheduleManufacturing Service

modern enterprise software systems. We provided a sensitivity analysis for a major proba-
bilistic parameter dependency within the manufacturing domain of SPECjEnterprise2010.
Characterizing the probabilistic parameter dependency in a representative fashion allowed
us to conduct accurate performance predictions for service input parameter variations.

7.4.4 Autonomic Performance-Aware Resource Management

We now use the extracted performance models of Section 7.4.2 and apply them in an
end-to-end SPECjEnterprise2010 case study realizing an automatic performance-aware
resource management approach (Huber et al., 2011a; Huber, 2014). The experiments have
been conducted in collaboration with Nikolaus Huber.

Context and Experiment Setup

Highly variable workloads make it challenging to provide quality-of-service guarantees
while at the same time ensuring e�cient resource utilization (Kounev et al., 2010). To
avoid violations of SLAs or ine�cient resource usage, resource allocations have to be
adapted continuously during operation to reflect changes in application workloads. For
an end-to-end case study on autonomic performance-aware resource management, Huber
et al. use the performance models of Section 7.4.2 to predict the e↵ects of changes in user
workloads, as well as to predict the e↵ects of respective reconfiguration actions, performed
to avoid SLA violations or ine�cient resource usage.

Briefly, the resource allocation mechanism consists of two phases: a PUSH phase and a
PULL phase. The PUSH phase allocates additional resources until all client SLAs are
satisfied. The PULL phase optimizes the resource e�ciency by deallocating resources that
are not utilized e�ciently (Huber et al., 2011a). The phases are conducted on the model
level, i.e., without applying any changes on the real system until an adequate resource
allocation is found.

Resource Environment

In contrast to the resource environment shown in Section 7.4.2, we use virtualized blade
servers for the application server cluster. Each blade server is equipped with two Intel
Xeon E5430 4-core CPUs running at 2.66 GHz and 32 GB of main memory. The machines
are connected by a 1 GBit LAN. Figure 7.34 shows the resource environment. We run
Xen Server as the virtualization layer. As operating system, the VMs execute CentOS 5.3.

200

7.4. SPECjEnterprise2010 Case Study 201

Oracle Database Server Supplier
Emulator

Oracle WebLogic
 Server Nodes

Load
Balancer

Benchmark
Driver Agents

GBit LAN

Xen Xen Xen Xen

Xen Xen

Benchmark
Driver Master

Figure 7.34: Experimental Environment for Autonomic Performance-Aware Resource
Management, cf. Huber et al. (2011a)

The load balancer is haproxy 1.4.8 using round-robin as load balancing strategy, i.e., not
a DNS load balancing as used in Section 7.4.2. The database is an Oracle 11g database
server instance deployed on a Virtual Machine (VM) with eight virtual Central Processing
Units (vCPUs) on a separate blade server running Windows Server 2008.

The SPECjEnterprise2010 benchmark application is deployed in a cluster of WLS nodes.
For the evaluation, we considered reconfiguration options concerning the WLS cluster and
the vCPUs the VMs are equipped with: WLS nodes are added to or removed from the
WLS cluster, vCPUs are added to or removed from a VM. These reconfigurations are
applicable at run-time, i.e., can be applied while the benchmark application is running.

Results

Several evaluation scenarios are investigated. The resource management approach is eval-
uated if it continuously keeps the system in a state such that SLAs are satisfied and
resources are utilized e�ciently.

Scenario 1: Adding a new service. The first scenario is intended to evaluate the results
of the approach when a new service is deployed in the environment on-the-fly. Assume
that there are four services executed in the environment running on one node with two
vCPUs (denoted as default configuration c

0

). The four running services are as follows:
CreateVehicleEJB (abbreviated to EJB), Purchase, Manage and Browse. Their SLAs and
their mean response times in configuration c

0

are depicted in Figure 7.35.

Now a new service (service CreateVehicleWS abbreviated as WS) with a corresponding
SLA is added. To ensure that all SLAs are still maintained after deployment of the new
service, the resource allocation mechanism is triggered. After adding the new service to the
model, it predicts SLA violations for the services CreateVehicleWS and Purchase. Hence,
the PUSH-Phase of the reconfiguration algorithm starts and suggests a capacity increase
by one, adding an additional vCPU to the existing node (configuration c

1

). After this

201

202 7. Validation

Service Name

M
ea

n
R

es
po

ns
e

Ti
m

e
[s

]

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

EJB WS Purchase Manage Browse

default configuration (c0)
new service (c0)
after reallocation (c1)

Figure 7.35: Scenario 1: Response Times and Respective SLAs (denoted by O) of the Five
Benchmark Operations, cf. Huber et al. (2011a)

change, the simulation indicates satisfied SLAs, hence the algorithm enters the PULL-
Phase and tries to reduce the overall amount of used resources considering all workload
classes, but fails because then the SLAs of CreateVehicleWS and Purchase are again vi-
olated. Therefore, the resulting configuration proposed by the algorithm consists of one
node with three vCPUs.

The above behavior was confirmed in our experiments depicted in Figure 7.35. The mea-
surements show that with the default resource allocation the SLA for service CreateVehi-
cleWS and Purchase cannot be sustained. However, after applying the resource allocation
proposed by our algorithm, all SLAs are satisfied.

Note that we show an excerpt of the case study results here. For Scenario 2 and Scenario 3,
where the resource allocation mechanism handles increasing user workload, respectively
decreasing user workload, we refer to Huber et al. (2011a).

Scenario 4: Resource usage and e�ciency. To show the benefits of the resource
management approach, imagine a workload trend over seven days like the one depicted in
Figure 7.36. In a static scenario, one would assign three dedicated servers to guarantee
SLA compliance for the peak load. However, with the resource management approach
one can dynamically assign the system resources. In the static scenario, one would use
7 · 3 = 21 servers, whereas the approach needs only 1 + 2+ 3+ 2+ 3+ 1+ 1 = 13 servers.
Hence, in such a scenario, only 62% of the resources of the static assignment are needed
and thereby almost 40% of the available resources can be saved.

Summary

We explored the use of architecture-level performance models as a means for online perfor-
mance prediction allowing to predict the e↵ects of changes in user workloads, as well as to
predict the e↵ects of respective reconfiguration actions, performed to avoid SLA violations
or ine�cient resource usage. In this experiment, SPECjEnterprise2010 is deployed in a
virtualized cluster environment. The case study serves as a proof-of-concept showing the
feasibility of using architecture-level performance models at run-time and the benefits they
provide.

202

7.5. Summary 203

Workload

As
si

gn
ed

 C
ap

ac
ity

 (V
C

PU
s)

0
5

10
15

day1
1x

day2
4x

day3
6x

day4
4x

day5
6x

day6
2x

day7
1x

0
1

2
3

4

static assignment

capacity
servers

As
si

gn
ed

 S
er

ve
rs

Figure 7.36: Assigned Capacity and Servers for an Exemplary Workload Trend, cf. Huber
et al. (2011a)

7.4.5 Discussion

As part of the presented SPECjEnterprise2010 case study, all the evaluation goals estab-
lished in Section 7.1 were considered. The proposed modeling abstractions allow describing
the performance-relevant factors of the software architecture of SPECjEnterprise2010. Pa-
rameter dependencies can be modeled and probabilistically characterized. Furthermore,
we successfully applied the semi-automatic model extraction and parameter estimation
techniques that we presented in Chapter 6.

The attained prediction accuracy in various realistically-sized deployment environments
under di↵erent workload mixes and load intensities was below 5% error for the application
server CPU utilization, and mostly within 10% to 20% and not exceeding 30% error for
response time predictions. The prediction capabilities served as input for an autonomic
performance-aware resource management. E↵ects of changes in user workloads, e↵ects of
reconfiguration actions with the goal to avoid SLA violations or ine�cient resource usage
could be predicted with su�cient accuracy.

Given that the SPECjEnterprise2010 benchmark application is designed to be represen-
tative of enterprise software systems using Java EE, we consider the results of the case
study to be externally valid for other enterprise software systems that implement a typical
multi-tier architecture.

7.5 Summary

Section 1.4.1 identified several characteristics as essential success criteria for any model-
based prediction approach. The evaluation goals presented in Section 7.1 are formulated
with respect to these characteristics. The evaluation goals specifically address the modeling
and prediction capabilities of the proposed modeling abstractions, model solving methods,
and model maintenance methods.

For the evaluation in a realistic context, we selected two representative case studies. The
first case study is a real-life enterprise software system from a large SaaS provider. The

203

204 7. Validation

second case study uses the SPECjEnterprise2010 benchmark. It is a benchmark designed
to serve as a representative application of today’s enterprise Java systems.

In the SaaS provider case study, we demonstrated that our approach is applicable to
component-based software systems of realistic size and complexity and that the model-
ing and prediction techniques provide su�ciently accurate performance predictions. The
prediction accuracy is investigated under di↵erent workload types, di↵erent workload in-
tensities, and di↵erent workload mixes. The attained accuracy for the database utilization
predictions was within 5% error. For the application server tier, the utilization predictions
were accurate as long as the application servers are operated at a low to medium load
level. Higher utilization is avoided in production environments because the application
performance may degrade significantly due to garbage collection overhead. For the service
response times, the relative prediction error was mostly within 20%. This applies both to
average service response times as well as to the 90th percentile response times, i.e., the
response time distributions are captured in a representative way.

In contrast to the SaaS provider case study where the most stressed resource is the
database server tier, in the SPECjEnterprise2010 case study we considered mostly ap-
plication server-intensive workloads. We evaluated the proposed semi-automatic model
extraction and parameter estimation methods. We investigated multiple application sce-
narios (see Section 1.5), including a scenario where the prediction capabilities were used as
a basis for implementing an automatic performance-aware resource management approach.
The achieved prediction accuracy in various realistically-sized deployment environments
under di↵erent workload mixes and load intensity levels was below 5% error for the ap-
plication server CPU utilization, and mostly within 10% to 20% and not exceeding 30%
error for response time predictions. The e↵ects of changes in user workloads as well as
the e↵ects of reconfiguration actions with the goal to avoid SLA violations or ine�cient
resource usage could be predicted with su�cient accuracy.

In this chapter, we demonstrated that: (i) the proposed performance abstractions lend
themselves well to describe architecture-level performance models that are representative
in terms of the performance properties of the modeled systems, (ii) that the proposed
prediction mechanisms are capable of deriving performance predictions in online scenarios,
and (iii) that the proposed model extraction and maintenance methods are suitable to
extract and maintain performance model instances that provide an acceptable accuracy.

204

8. Concluding Remarks

This chapter provides a summary of the contributions presented in this thesis. Afterwards,
we discuss future related research topics, particularly in the area of Quality of Service (QoS)
prediction techniques at run-time.

8.1 Summary

This thesis proposed architecture-level performance models for online performance predic-
tion. The ability to predict the performance impact of changes in the system environment
as well as changes to the system configuration in an online setting provides the following
important benefits:

• It is possible to anticipate which changes in the system environment, e.g., changing
usage profiles or changing load intensities, would result in a performance degradation
leading to Service Level Agreement (SLA) violations.

• It is possible to assess which changes to the system, e.g., resource reallocations,
are suitable adaptation actions to ensure that the system’s operational goals are
maintained.

With our proposed modeling and prediction facilities, the above tasks can be performed
on the model level without disturbing system operation, i.e., without having to change the
running system in a trial-and-error approach. Performance questions about the impact
of workload changes or system reconfigurations can be answered without running exten-
sive performance tests in production-like test environments. Hence, our work provides a
solid basis for developing model-based autonomic performance and resource management
techniques that continuously adapt the system during operation in order to ensure that
performance objectives are satisfied while at the same time system resources are used
e�ciently.

As pointed out in Chapter 3, existing approaches to online performance prediction nor-
mally abstract the system at a high level without explicitly taking into account its soft-
ware architecture (e.g., flow of control and dependencies between software components)
and configuration. Many restrictive assumptions are often imposed such as a single work-
load class, single-threaded components, homogeneous servers, or exponential request inter-
arrival times and exponential service demands.

We developed architecture-level performance abstractions for component-based
software systems specifically designed for online use. The modeling abstractions

205

206 8. Concluding Remarks

are part of the Descartes Modeling Language (DML), a new modeling language for run-time
performance and resource management of modern dynamic IT service infrastructures.

The novel architecture-level performance abstractions involve: (i) a new approach to model
performance-relevant service behavior at di↵erent levels of granularity (Section 4.1.3), (ii)
a new approach to parameterize performance-relevant properties of software components
(Section 4.1.4), and (iii) a new approach to model dependencies between parameters, each
specifically designed for use at run-time (Section 4.1.5).

Service behavior can be modeled at di↵erent levels of abstraction and detail. The models
are usable in di↵erent online performance prediction scenarios with di↵erent goals and
constraints, ranging from quick performance bounds analysis to accurate performance
prediction. Furthermore, the modeled abstraction levels reflect the information that mon-
itoring tools can obtain at run-time, e.g., to what extent component-internal information
is available.

The service behavior models are parameterized with resource demands, response times,
frequencies of external calls, loop iteration counts, and branching probabilities. In the
context of online performance models, these parameters are typically characterized with
probability distributions based on monitoring data collected at run-time. Our modeling
abstractions allow specifying a so-called scope for model parameters that indicate if and
how monitoring data for a given parameter, collected at the component instance level, can
be aggregated with data collected at other component instances.

Furthermore, the modeling abstractions allow modeling relationships between parameters
that are to be probabilistically characterized using monitoring data. The behavior of
software components is often dependent on parameters that are not available as input
parameters passed upon service invocation. Moreover, the behavior of component services
may be dependent on the state of data containers such as caches or on persistent data
stored in a database. In many practical situations, providing an explicit characterization
of such a dependency is not feasible since modeling the state of a cache and/or a database
is extremely complex. This situation is common in business information systems and our
modeling abstractions provide means to deal with it.

The contributions discussed above were published in Brosig et al. (2013b, 2012); Brosig
(2011).

To enable online performance predictions with models described using the introduced
modeling language, we provided a performance prediction process that strikes a balance
between prediction accuracy and time-to-result. We provided a performance predic-
tion process that is tailored to a performance prediction request (Chapter 5). To
specify such a performance prediction request, referred to as a performance query, we in-
troduced the Descartes Query Language (DQL) (Section 5.5). It is a language to express
the demanded performance metrics for prediction as well as the specific goals and con-
straints in an online prediction scenario. In the context of online performance prediction,
there are situations where the prediction results need to be available very fast to adapt the
system before performance issues arise, and there are situations where a fine-grained pre-
diction is used to find an e�cient system configuration. However, an accurate fine-grained
performance prediction comes at the cost of higher prediction overhead. By using more
coarse-grained performance models one can speed up the prediction process.

Part of the prediction process is, on the one hand, the parameterization of involved model
parameters with current up-to-date monitoring data, and on the other hand, the char-
acterization of involved relationships between parameters, propagating the service input
parameters specified as part of the usage profile. The result is a performance model in-
stance where all model parameters (such as resource demands, response times, branching

206

8.1. Summary 207

probabilities, call frequencies and loop iteration numbers) required to answer the given
performance query are characterized with up-to-date monitoring data for a specific usage
context.

Based on the given performance query, the performance prediction process then chooses a
suitable model solving technique and abstraction level, and returns the performance met-
rics as requested. The prediction process uses existing model solving techniques based on
established stochastic modeling formalisms, namely bounds analysis, a transformation to
Layered Queueing Networks (LQNs), and a transformation to Queueing Petri Nets (QPNs)
(Section 5.3). The prediction process decides which concrete model solving technique to
apply. It also selects suitable configuration options of the applied model solving technique
with the goal of tailoring the solution method to the given performance query.

DQL has been developed in the master’s thesis of Gorsler (2013) and published in Gorsler
et al. (2014, 2013). Note that the use of DQL is not restricted to DML, it can also be
used as a generic interface to other performance prediction techniques. The investigation
of the trade-o↵ between prediction accuracy and time-to-result is published in Brosig et al.
(2014).

For online performance predictions, it is essential to keep the performance model in sync
with the modeled system. The model should provide up-to-date information about the
system to enable accurate performance predictions. We thus proposed methods to en-
sure that the model constantly mirrors the performance-relevant structure and behavior
of the system, that is, methods to integrate architecture-level performance mod-
els and system environments (Chapter 6). The integration has been realized by a
technique to extract model instances semi-automatically based on monitoring data and a
technique to automatically maintain the extracted instances at run-time. In each case, we
distinguish between structural information about the system environment (e.g., involved
software components) and model parameters (e.g., resource demands). Structural infor-
mation is extracted via monitoring traces, model parameters are characterized based on
monitoring data. At run-time, the system components are deployed in the target produc-
tion environment. This makes it possible to obtain representative estimates of the various
model parameters and to continuously adjust them to iteratively refine their accuracy.

We presented a classification of methods to obtain resource demand estimates (both in
native and virtualized environments), we described methods to obtain response time dis-
tributions, loop iteration numbers, call frequencies and branch probabilities. Moreover, we
described how relationships between model parameters can be characterized using moni-
toring data. However, in an online setting, monitoring has to be handled with care. Hence,
we presented techniques to keep the monitoring overhead within limits such that system
operation is not significantly disturbed.

Moreover, we presented a technique to calibrate and adjust an architecture-level perfor-
mance model in order to increase its accuracy. In this thesis, calibrating a performance
model means comparing the model predictions with measurements on the real system. If
the deviation between performance predictions and measurements are observed to be sys-
tematic, improving the model accuracy is possible by automatically adjusting the model
parameters without having detailed knowledge about the modeled system. The result of
the adjustment is an increased prediction accuracy.

The contributions of Chapter 6 were published in Brosig et al. (2011, 2009, 2013a).

To validate the contributions of this thesis, we conducted multiple case studies (Chap-
ter 7). We presented case studies with the SPECjEnterprise2010 benchmark, a benchmark
designed to serve as a representative application of today’s enterprise Java systems, as well

207

208 8. Concluding Remarks

as a case study with a real-life enterprise software system from a large Software-as-a-Service
(SaaS) provider.

In the SPECjEnterprise2010 case study, the attained prediction accuracy in various realis-
tically-sized deployment environments under di↵erent workload mixes and load intensities
was below 5% error for resource utilization, and mostly within 10% to 20% and not ex-
ceeding 30% error for response time predictions which is considered acceptable for capacity
management. The prediction capabilities were used as a basis for implementing an auto-
nomic performance-aware resource management technique. The e↵ects of changes in user
workloads as well as the impacts of reconfiguration actions have been predicted with su�-
cient accuracy to avoid SLA violations or ine�cient resource usage. In the SaaS provider
case study, we investigated the prediction accuracy under di↵erent workload types, di↵er-
ent workload intensities and di↵erent workload mixes. The attained prediction accuracy
for resource utilization was within 5% error. For the service response times, the relative
prediction error was mostly within 20%. This applies both to average service response
times as well as to the 90th percentile response times, i.e., the response time distributions
are also captured in a representative way.

The case studies demonstrated: i) that the proposed performance abstractions lend them-
selves well to describe architecture-level performance models that are representative in
terms of the performance properties of the modeled systems, ii) that the proposed pre-
diction mechanisms can be e↵ectively used to derive performance predictions in online
scenarios, and iii) that the proposed model extraction and maintenance methods are suit-
able to extract and maintain performance model instances that provide an acceptable
accuracy.

The results of the evaluations were published in Brosig et al. (2013b, 2012, 2011); Huber
et al. (2011a). The SaaS provider case study has not been published yet.

Our approach is the first approach to online performance prediction that uses architecture-
level performance models. The performance prediction process facilitates flexible model-
based predictions at run-time, combining the strength of simulative as well as analytical
model solving techniques in a novel tailored process. The models are kept up-to-date using
monitoring data, making manual error-prone parameter estimation unnecessary. The pro-
posed approach o↵ers a solid basis for implementing model-based autonomic performance
and resource management techniques that continuously adapt the system during opera-
tion in order to ensure that performance objectives are met while e�ciently using system
resources. The vital benefit of employing models for system adaptation is that the per-
formance models provide relevant information for what-if analyses and thus can drive the
autonomic decision-making process. It is possible to search for valid and suitable system
configurations on the model level and thus, unnecessary and possibly costly adaptations
of the system can be avoided.

For example, the thesis of Huber (2014) is built directly on our approach, implementing
a framework for autonomic performance-aware resource management. Huber (2014) eval-
uated the framework end-to-end in two di↵erent representative case studies (beyond the
ones considered in this thesis), demonstrating that it can provide significant e�ciency gains
of up to 50% without sacrificing performance guarantees. Furthermore, it is shown that
the approach enables proactive system adaptation, reducing the amount of SLA violations
by 60% compared to a conventional trigger-based approach. The results of the case studies
in Huber (2014) showed that it is possible to apply architecture-level performance models
and online performance prediction to perform autonomic system adaptation on the model
level such that the system’s operational goals are maintained.

Other ongoing dissertation projects are going to use DML as a basis. Moreover, the work
is already used in active collaborations with the industry applying it to real-life systems.

208

8.2. Open Questions and Future Work 209

8.2 Open Questions and Future Work

The results of this thesis provide a basis for several areas of future work. In the following
overview, we provide pointers for research extending our work.

Integration of Black-Box Performance Models

We presented existing work on black-box models in Section 2.1. There are many ap-
proaches in the literature that implement sophisticated extrapolation and interpolation
techniques such as Classification and Regression Trees (CART), Multivariate Adaptive
Regression Splines (MARS), Kriging models, or genetic programming. These techniques
can be integrated to further improve the characterization of response times as part of our
black-box behavior models or to improve the characterization of resource demands as part
of our coarse-grained and fine-grained behavior models. The idea is to re-use existing
work in order to provide further flexibility for parameter characterization. For instance,
the application of MARS to characterize a response time distribution may allow further
reducing the monitoring overhead, since the MARS method provides good approximations
with only few data points.

Load-Dependent Resource Demands

In classical performance engineering, resource demands are typically assumed to be load-
independent. However, modern processors implement Dynamic Voltage and Frequency
Scaling (DVFS) mechanisms that adapt the processor speed depending on the current
load. Thus, resource demands may appear to be load-dependent. To further increase
the prediction accuracy, this load-dependency should be considered. Current versions
of established model solvers such as SimQPN for QPNs or LQNS for LQNs are lacking
support for solving performance models with load-dependent resource demands. Given
that our performance prediction process builds on existing model solvers, this shortcoming
is inherited. Hence, in order to support load-dependent resource demands, one should
first extend the existing model solvers and then integrate the notion of a load-dependent
resource demand in our model abstractions and resource demand estimation approaches.

Event-Based Systems

The work in Rathfelder (2013) describes how event-based interactions in component-based
architectures can be modeled. It furthermore provides a generic approach how the devel-
oped modeling abstractions can be integrated into an architecture-level performance model.
This approach can be applied to extend DML in order to add support for modeling event-
based interactions such as point-to-point connections or decoupled publish/subscribe in-
teractions. Platform-specific details about the event processing within the communication
middleware are encapsulated.

Performance Data Repository

In Chapter 6, we described several techniques to integrate architecture-level performance
models with system environments. However, an encompassing framework providing a
performance data repository to store revisions of architecture-level performance models,
run-time monitoring data, issued performance queries and corresponding prediction re-
sults would be valuable. Following the ideas of Woodside et al. (2007), the performance
data repository shall aim at the convergence of performance monitoring, modeling and
prediction as interrelated activities. With the techniques presented in Chapter 6 and
Chapter 5, the prediction and model maintenance facilities are already provided as part
of this thesis. Nevertheless, a performance data repository could improve the applicability
and extendability of our work.

209

210 8. Concluding Remarks

Automated Extraction of Performance Influences of Virtualization Platforms

As already discussed in Section 6.4.4, virtualization platforms present many challenges
compared to native environments. There are many complex performance e↵ects and in-
fluences in virtualized environments (e.g., mutual influences of the fine-granular system
components and layers such as operation system, virtualization, middleware, application
logic, I/O subsystem, caching and communication protocols). To improve the prediction
accuracy in virtualized environments, such e↵ects need to be better understood. Such
e↵ects are only observable during system operation when the system is running in the
real production environment under real production workloads as opposed to running in a
controlled testing environment with artificial workloads or synthetic benchmarks. Thus,
the most promising approach to deal with the challenge of capturing the non-linear and
multidimensional performance influences and interactions in the virtualization platform is
to conduct the model (parameter) extraction process, possibly as part of the virtualization
platform itself, at system run-time.

Integration of Specialized Resource Modeling Approaches

As part of ongoing research projects, suitable modeling abstractions for network infras-
tructures (Rygielski and Kounev, 2014) and storage systems (Noorshams et al., 2014) are
under development. Given that these modeling approaches focus on network models re-
spectively storage models, they aim to support: (i) more accurate performance analysis
than what is possible with coarse-grained resource models, and (ii) further degrees-of-
freedom when evaluating fine-granular configuration options of network infrastructures or
storage systems. To obtain performance predictions, these specialized performance mod-
els require detailed workload profiles as input. Using DML, such workload profiles can be
derived from the modeled application layer and the corresponding usage profile. These
specialized modeling approaches should be integrated in DML, on the one hand, to in-
crease the modeling capabilities of DML, on the other hand, to simplify the applicability
of the specialized models.

QoS Properties Beyond Performance

The presented approach is focused on performance prediction, however, the general mod-
eling approach developed in this thesis is not limited to performance. In future work,
DML could be extended to support the analysis of further QoS properties. For instance,
architecture-based reliability analysis (Brosch et al., 2011) could be integrated in DML
in order to support evaluations of trade-o↵s between performance and reliability. For
example, database transactions failed due to optimistic locking can be retried multiple
times. This may increase reliability at the cost of performance. Other system properties
such as power consumption and operating costs are gaining in importance. In particular,
adding cost estimates to DML would allow multi-criteria optimizations trading-o↵ between
performance and costs (cf. Koziolek et al. (2013)).

Self-Aware Computing Systems

The long-term vision of the Descartes Research Project — the research project that funded
this thesis — is to develop new methods for the engineering of self-aware computing sys-
tems. The latter are designed with built-in online QoS prediction and self-adaptation
capabilities used to enforce QoS requirements in a cost- and energy-e�cient manner. Self-
awareness, in this context, is defined by the combination of the following three proper-
ties (Kounev, 2011):

• Self-reflective: i) aware of their software architecture, execution environment and
the hardware infrastructure on which they are running, ii) aware of their operational

210

8.2. Open Questions and Future Work 211

goals in terms of QoS requirements, SLAs and cost- and energy-e�ciency targets,
iii) aware of dynamic changes in the above during operation,

• Self-predictive: able to predict the e↵ect of dynamic changes (e.g., changing service
workloads or QoS requirements) as well as predict the e↵ect of possible adaptation
actions (e.g., changing service deployment and/or resource allocations),

• Self-adaptive: proactively adapting as the environment evolves in order to ensure
that their QoS requirements and respective SLAs are continuously satisfied while at
the same time operating costs and energy-e�ciency are optimized.

The concepts presented in this work as well as in the thesis of Huber (2014) lay the founda-
tion for this vision. In the future, self-aware computing systems should be designed from
the ground up with built-in self-reflective, self-predictive, and self-adaptive capabilities.
Furthermore, the overall approach should be applied in industrial cooperations to show-
case the applicability of our approach and thereby establish the vision of the self-aware
computing paradigm.

211

List of Acronyms and Abbreviations

API Application Programming Interface.
AQuA Automatic Quality Assurance.
AWR Automatic Workload Repository.
CBML Component-Based Modeling Language.
CCL Component Composition Language.
CGSPN Colored GSPN.
CPN Colored PN.
CRM Customer Relationship Management.
DBS Database Server.
DML Descartes Modeling Language.
DNS Domain Name System.
DoF Degree-of-Freedom.
DQL Descartes Query Language.
DVFS Dynamic Voltage and Frequency Scaling.
EJB Enterprise JavaBean.
ERP Enterprise Resource Planning.
FCFS First-Come-First-Served.
GSPN Generalized Stochastic PN.
IS Infinite-Server.
Java EE Java Enterprise Edition.
JDBC Java Database Connectivity.
JMS Java Message Service.
JPA Java Persistence API.
JSP Java Server Pages.
JVM Java Virtual Machine.
KLAPER Kernel LAnguage for PErformance and Reliability

analysis.
LAD Least Absolute Di↵erences.
LQN Layered Queueing Network.
LSQ Least Squares.
MARS Multivariate Adaptive Regression Splines.
MDB Message-Driven Bean.
MLE Maximum Likelihood Estimation.
MVA Mean Value Analysis.
OCL Object Constraint Language.
PCM Palladio Component Model.
PDF Probability Density Function.
PECT Prediction Enabled Component Technology.

213

214 Acronyms

PMF Probability Mass Function.
PN Petri Net.
PS Processor-Sharing.
QEE Query Execution Engine.
QN Queueing Network.
QoS Quality of Service.
QPME Queueing Petri Net Modeling Environment.
QPN Queueing Petri Net.
RDSEFF Resource Demanding Service E↵ect Specification.
RMI Remote Method Invocation.
SaaS Software-as-a-Service.
SAN Storage Area Network.
SLA Service Level Agreement.
SOAP Simple Object Access Protocol.
SPA Stochastic Process Algebra.
SPE Software Performance Engineering.
SPEC Standard Performance Evaluation Corporation.
SPN Stochastic Petri Net.
StoEx Stochastic Expression.
SVM Support Vector Machine.
UML Unified Modeling Language.
UML-SPT UML Profile for Schedulability, Performance and

Time.
vCPU virtual Central Processing Unit.
VM Virtual Machine.
WLDF WebLogic Diagnostics Framework.
WLS Oracle WebLogic Server.

214

List of Figures

1.1 Model-Based System Adaptation Control Loop (Huber, 2014) 10

2.1 (a) Queue and (b) Queueing Network . 18
2.2 Ordinary Petri Net (a) Before Firing and (b) After Firing Transition t

1

. . 20
2.3 Queueing Place as Part of a Queueing Petri Net, cf. Kounev (2005) 21

3.1 Related Work and Foundations . 33

4.1 Structure of the Descartes Modeling Language (DML) 45
4.2 Components and Interfaces, cf. Becker et al. (2009) 46
4.3 Component Type Hierarchy, cf. Becker et al. (2009) 46
4.4 Component Composition, cf. Becker et al. (2009) 47
4.5 Example: System Instance as UML Object Diagram 47
4.6 Example: System Instance . 48
4.7 (a) Composition Tree Schema and (b) Example System Instance as Com-

position Tree . 48
4.8 Component Instance Reference . 49
4.9 Running Example: WebShop . 49
4.10 Example: Delivery Component . 50
4.11 Di↵erent Service Behavior Abstractions . 51
4.12 (a) Coarse-Grained and (b) Black-Box Behavior Abstractions 52
4.13 Fine-Grained Behavior Abstraction, cf. Becker et al. (2009) 52
4.14 Example: Delivery and ShoppingCartServlet 53
4.15 Example: Fine-Grained Behavior Abstraction of Service calculateTotalCost

Provided by ShoppingCartServlet . 54
4.16 Example: Coarse-Grained Behavior Abstraction of Service calculateTotal-

Cost Provided by ShoppingCartServlet . 54
4.17 Example: WebShops for a GameStore and a Supermarket 55
4.18 Model Variables . 56
4.19 Example: CatalogServlet and JPAProvider Components 58
4.20 Example: Cache Miss or Cache Hit in Service getArticlePreviewImage 58
4.21 Example: Behavior of listArticles Service Provided by CatalogServlet 59
4.22 Modeling Parameter Dependencies . 60
4.23 Influenced Variables and Influencing Parameters 61
4.24 Call Parameter Hierarchy . 62
4.25 Call Parameters . 62
4.26 Relationships between Influenced Variables and Influencing Parameters . . 62
4.27 Characterization of Relationships . 63
4.28 Example: Modeling Parameter Dependencies 64
4.29 Example: Characterizing Parameter Dependencies 65
4.30 Hierarchical Run-time Environments in the Resource Landscape, cf. Huber

(2014) . 67

215

216 List of Figures

4.31 Configuration Specification and Container Template Repository, cf. Huber
(2014) . 68

4.32 Deployment Model . 69
4.33 Example: WebShop Deployment . 69
4.34 Usage Profile Model, cf. Becker et al. (2009) 70
4.35 Example: Usage Profile Model Instance . 71

5.1 Online Performance Prediction Process . 74
5.2 Input and Output of Model Composition 76
5.3 Input and Output of the Parameter Dependency Resolution and Model

Parameterization Step . 77
5.4 Stackframe Model . 77
5.5 Example: Dependency Relationship Solving 85
5.6 Notation for Stack Frame Instances . 86
5.7 Example: Resolution of Relationships Step-By-Step 88
5.8 QPN Notation (Meier et al., 2011) . 92
5.9 Input and Output of Transformation to QPNs 93
5.10 QPN Representation of Open Workload, cf. Meier (2010) 94
5.11 QPN Representation of Closed Workload, cf. Meier (2010) 95
5.12 QPN Representation of Calls, cf. Meier (2010) 96
5.13 QPN Representation of a Branch, cf. Meier (2010) 97
5.14 QPN Representation of a Loop, cf. Meier (2010) 98
5.15 QPN Representation of a Fork, cf. Meier (2010) 99
5.16 QPN Representation of Acquire/Release Actions, cf. Meier (2010) 100
5.17 QPN Representation of Model Entity ResponseTime 101
5.18 QPN Representation of Model Entity ResourceDemand 102
5.19 Input and Output of Bounds Analysis . 103
5.20 Input and Output of Model Solving . 110
5.21 Decision Tree for Tailoring the SimQPN Configuration 113
5.22 Measurement Place for a Call in a QPN . 113
5.23 Query Classes of Descartes Query Language (DQL) 115
5.24 Model Access . 116
5.25 Model Structure Query . 116
5.26 Entity Reference . 117
5.27 Performance Metrics Query . 117
5.28 Metric Reference . 118
5.29 Constraint Clause . 119
5.30 Degree-of-Freedom (DoF) Clause . 120
5.31 DoF Reference . 120
5.32 DoF Variation Clause . 120
5.33 DoF Configuration Property . 120
5.34 DQL System Architecture, cf. Gorsler et al. (2014) 121
5.35 Online Prediction Process . 123

6.1 Extraction and Maintenance of Architecture-Level Performance Models . . 126
6.2 Model Extraction Process . 129
6.3 Components Constituting Huber’s Adaptation Framework (Huber, 2014) . . 133
6.4 Resource Utilization of a Virtualized Resource 145
6.5 Example: Data Set for Classification Tree 151
6.6 Example: Partitions . 152
6.7 Example: Classification Tree . 152

7.1 Fine-Grained Behavior Model of Service processOrder 160

216

List of Figures 217

7.2 Coarse-Grained Behavior Model of Service processOrder 160
7.3 Scenario Fine-Grained High Load: Simulation Time with Di↵erent SimQPN

Settings . 163
7.4 Application Architecture . 165
7.5 Resource Environment . 168
7.6 Application Architecture Model . 169
7.7 Scenario 1: Task Management Usage Profile Model 171
7.8 Scenario 1: Measurements, Prediction Results and Prediction Errors 172
7.9 Scenario 1: Measurements and Prediction Errors of 90th Percentile Re-

sponse Times . 173
7.10 Scenario 1: Measurement and Prediction of AllActivities Response Time

Distribution for the High Load Level . 174
7.11 Scenario 2: Integration Usage Profile Model 175
7.12 Scenario 2: Measurements, Prediction Results and Prediction Errors 176
7.13 Scenario 2: Measurements, Prediction Results and Prediction Errors 178
7.14 Scenario 3: Application Tier Benchmark Usage Profile Model 179
7.15 Scenario 3: Measurements, Prediction Results and Prediction Errors 180
7.16 Scenario 4: Measurements, Prediction Results and Prediction Errors 182
7.17 SPECjEnterprise2010 Architecture, cf. SPEC (2010) 185
7.18 Diagnostic Context Id and Transaction Ids During Asynchronous Messaging 187
7.19 Experimental Environment for Semi-Automatic Model Extraction 188
7.20 SPECjEnterprise2010 Model Structure . 189
7.21 Scenario 1: Measurements, Prediction Results and Prediction Errors 192
7.22 Scenario 2: Utilization Measurements and Relative Errors 193
7.23 Scenario 3: Utilization Measurements and Predictions and Relative Error

of Response Time Predictions . 194
7.24 Component PurchaseOrder . 194
7.25 Fine-Grained Behavior Abstraction of PurchaseOrder#sendPurchaseOrder . 194
7.26 Coarse-Grained Behavior Abstraction of PurchaseOrder#sendPurchaseOrder 195
7.27 Response Time Statistics of sendPurchaseOrder : (a) Predicted using Fine-

Grained Behavior Abstraction (b) Predicted using Coarse-Grained Behavior
Abstraction (c) Measured . 196

7.28 Manufacturing Component . 197
7.29 Dealer and Manufacturing Components . 197
7.30 WorkOrder Data Structure . 197
7.31 Measurement Statistics of scheduleManufacturing Service 198
7.32 Aggregated Statistics of scheduleManufacturing Service 199
7.33 Aggregated Statistics of the scheduleManufacturing Service 200
7.34 Experimental Environment for Autonomic Performance-Aware Resource

Management, cf. Huber et al. (2011a) . 201
7.35 Scenario 1: Response Times and Respective SLAs (denoted by O) of the

Five Benchmark Operations, cf. Huber et al. (2011a) 202
7.36 Assigned Capacity and Servers for an Exemplary Workload Trend, cf. Huber

et al. (2011a) . 203

217

List of Tables

5.1 Example: Calls to Monitoring Infrastructure 87
5.2 Performance Metrics And Aggregations Considered for Tailoring 107

6.1 List of Possible Changes . 132
6.2 Metrics for Resource Demand Estimation Techniques 138
6.3 List of Approaches to Resource Demand Estimation, cf. Spinner (2011) . . 141
6.4 Input Measurements of Estimation Approaches, cf. Spinner (2011) 143
6.5 Example: Response Times in Native versus Virtualized Setup 144
6.6 Example: Virtual Machine (VM) Utilization versus Domain-0 Utilization . 145
6.7 Parameterizing Virtualization Overhead . 146
6.8 Resource Utilization Metrics Characterizing I/O Activities 147

7.1 Prediction Results of Di↵erent Model Solving Techniques 162
7.2 Reference Results . 162
7.3 Scenario 2: Parameter Variations . 177
7.4 Scenario 4: Di↵erent Workload Mixes . 181
7.5 Oracle Automatic Workload Repository (AWR) Report, Low Load 183
7.6 Oracle Automatic Workload Repository (AWR) Report, High Load 183
7.7 Measurements and Predictions for the scheduleManufacturing Scenarios . . . 199

219

Bibliography

Abdelzaher, T., Shin, K., and Bhatti, N. (2002). Performance guarantees for web server
end-systems: a control-theoretical approach. Parallel and Distributed Systems, IEEE
Transactions on, 13(1):80–96.

Abrahao, B., Almeida, V., Almeida, J., Zhang, A., Beyer, D., and Safai, F. (2006). Self-
adaptive sla-driven capacity management for internet services. In Network Operations
and Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 557–568.

Adam, C. and Stadler, R. (2006). A Middleware Design for Large-scale Clusters O↵ering
Multiple Services. IEEE electronic Transactions on Network and Service Management,
3(1).

Ali, R. A., Amin, K., von Laszewski, G., Rana, O., Walker, D., Hategan, M., and Zaluzec,
N. (2004). Analysis and Provision of QoS for Distributed Grid Applications. Journal of
Grid Computing, 2(2).

Allen, F. E. (1970). Control flow analysis. SIGPLAN Not., 5(7):1–19.

Almeida, J., lio Almeida, V., Ardagna, D., Cunha, Ã., Francalanci, C., and Trubian, M.
(2010). Joint admission control and resource allocation in virtualized servers. Journal
of Parallel and Distributed Computing, 70(4):344 – 362.

Amazon Web Services (2010). Amazon auto scaling. http://aws.amazon.com/

documentation/autoscaling/. Last visit: 2014-03-22.

Anderson, E., Hoover, C., Li, X., and Tucek, J. (2009). E�cient tracing and performance
analysis for large distributed systems. In Modeling, Analysis Simulation of Computer
and Telecommunication Systems, 2009. MASCOTS ’09. IEEE International Symposium
on, pages 1–10.

Armbrust, M., Fox, A., Gri�th, R., Joseph, A. D., Katz, R. H., Konwinski, A., Lee, G.,
Patterson, D. A., Rabkin, A., Stoica, I., and Zaharia, M. (2009). Above the clouds:
A berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS
Department, University of California, Berkeley.

Balsamo, S., Di Marco, A., Inverardi, P., and Simeoni, M. (2004). Model-Based Perfor-
mance Prediction in Software Development: A Survey. IEEE Transactions on Software
Engineering, 30(5).

Balsamo, S. and Marzolla, M. (2003). A simulation-based approach to software perfor-
mance modeling. SIGSOFT Softw. Eng. Notes, 28(5):363–366.

Balsamo, S., Marzolla, M., and Mirandola, R. (2006). E�cient performance models in
component-based software engineering. In Software Engineering and Advanced Applica-
tions, 2006. SEAA ’06. 32nd EUROMICRO Conference on, pages 64–71.

Barcelona Supercomputing Center (2014). Paraver: a flexible performance anal-
ysis tool. http://www.bsc.es/computer-sciences/performance-tools/paraver/

general-overview. Last visit: 2014-04-10.

221

http://aws.amazon.com/documentation/autoscaling/
http://aws.amazon.com/documentation/autoscaling/
http://www.bsc.es/computer-sciences/performance-tools/paraver/general-overview
http://www.bsc.es/computer-sciences/performance-tools/paraver/general-overview

222 Bibliography

Bard, Y. and Shatzo↵, M. (1978). Statistical Methods in Computer Performance Analysis.
Current Trends in Programming Methodology, III.

Barham, P., Donnelly, A., Isaacs, R., and Mortier, R. (2004). Using magpie for request
extraction and workload modelling. In Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages 18–18,
Berkeley, CA, USA. USENIX Association.

Barroso, L. A. and Hölzle, U. (2007). The case for energy-proportional computing. Com-
puter, 40(12):33–37.

Bause, F. (1993). Queueing Petri Nets˜- A formalism for the combined qualitative and
quantitative analysis of systems. In Proceedings of the 5th International Workshop on
Petri Nets and Performance Models, Toulouse, France, October 19-22.

Bause, F. and Kritzinger, F. (2002). Stochastic Petri Nets˜- An Introduction to the Theory.
Vieweg Verlag, second edition.

Becker, M., Becker, S., and Meyer, J. (2013a). SimuLizar: Design-Time Modelling and
Performance Analysis of Self-Adaptive Systems. In Proceedings of Software Engineering
2013 (SE2013), Aachen.

Becker, M., Luckey, M., and Becker, S. (2013b). Performance analysis of self-adaptive sys-
tems for requirements validation at design-time. In Proceedings of the 9th International
ACM Sigsoft Conference on Quality of Software Architectures, QoSA ’13, pages 43–52,
New York, NY, USA. ACM.

Becker, S., Grunske, L., Mirandola, R., and Overhage, S. (2004). Performance prediction
of component-based systems - a survey from an engineering perspective. In Architecting
Systems with Trustworthy Components.

Becker, S., Happe, J., and Koziolek, H. (2006). Putting Components into Context: Sup-
porting QoS-Predictions with an explicit Context Model. In Reussner, R., Szyperski,
C., and Weck, W., editors, Proceedings 11th International Workshop on Component
Oriented Programming (WCOP’06), pages 1–6.

Becker, S., Koziolek, H., and Reussner, R. (2007). Model-based performance prediction
with the palladio component model. In Proceedings of the 6th International Workshop
on Software and Performance, WOSP ’07, pages 54–65, New York, NY, USA. ACM.

Becker, S., Koziolek, H., and Reussner, R. (2009). The Palladio component model for
model-driven performance prediction. Journal of Systems and Software, 82:3–22.

Bennani, M. N. and Menascé, D. (2004). Assessing the robustness of self-managing com-
puter systems under highly variable workloads. In ICAC ’04: Proceedings of the First In-
ternational Conference on Autonomic Computing, pages 62–69, Washington, DC, USA.
IEEE Computer Society.

Bennani, M. N. and Menascé, D. (2005). Resource allocation for autonomic data centers
using analytic performance models. In ICAC ’05: Proceedings of the Second Interna-
tional Conference on Automatic Computing, pages 229–240, Washington, DC, USA.
IEEE Computer Society.

Berbner, R., Spahn, M., Repp, N., Heckmann, O., and Steinmetz, R. (2006). Heuristics
for QoS-aware Web Service Composition. In ICWS ’06: Proceedings of the IEEE In-
ternational Conference on Web Services, pages 72–82, Washington, DC, USA. IEEE
Computer Society.

Bertoli, M., Casale, G., and Serazzi, G. (2009). Jmt: performance engineering tools for
system modeling. SIGMETRICS Perform. Eval. Rev., 36(4):10–15.

222

Bibliography 223

Bertolino, A. and Mirandola, R. (2004). CB-SPE Tool: Putting Component-Based Per-
formance Engineering into Practice. In Proceedings of the 7th International Symposium
on Component-Based Software Engineering (CBSE 2004), Edinburgh, UK, volume 3054
of LNCS, pages 233–248.

Blair, G., Bencomo, N., and France, R. (2009). Models@run.time. Computer, 42(10):22–27.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K. S. (1998). Queueing Networks and
Markov Chains: Modeling and Performance Evaluation with Computer Science Appli-
cations. Wiley-Interscience, New York, NY, USA.

Bondarev, E., Muskens, J., With, P. d., Chaudron, M., and Lukkien, J. (2004). Predict-
ing real-time properties of component assemblies: A scenario-simulation approach. In
EUROMICRO, pages 40–47.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and
Regression Trees. Chapman & Hall, New York, NY.

Briand, L., Labiche, Y., and Leduc, J. (2006). Toward the reverse engineering of uml se-
quence diagrams for distributed java software. Software Engineering, IEEE Transactions
on, 32(9):642–663.

Brooks, C. (2011). Cloud SLAs the next bugbear for enterprise
IT. http://searchcloudcomputing.techtarget.com/news/2240036361/

Cloud-SLAs-the-next-bugbear-for-enterprise-IT. Last visit: 2014-03-20.

Brosch, F., Koziolek, H., Buhnova, B., and Reussner, R. (2011). Architecture-based reli-
ability prediction with the palladio component model. Transactions on Software Engi-
neering, 38(6).

Brosig, F. (2009). Automated Extraction of Palladio Component Models from Running
Enterprise Java Applications. Master’s thesis, Universität Karlsruhe (TH), Karlsruhe,
Germany.

Brosig, F. (2011). Online performance prediction with architecture-level performance mod-
els. In Reussner, R., Pretschner, A., and Jähnichen, S., editors, Software Engineering
(Workshops) - Doctoral Symposium, February 21–25, 2011, volume 184 of Lecture Notes
in Informatics (LNI), pages 279–284, Bonn, Germany. GI.

Brosig, F., Gorsler, F., Huber, N., and Kounev, S. (2013a). Evaluating Approaches
for Performance Prediction in Virtualized Environments. In Proceedings of the IEEE
21st International Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS 2013).

Brosig, F., Huber, N., and Kounev, S. (2011). Automated Extraction of Architecture-Level
Performance Models of Distributed Component-Based Systems. In 26th IEEE/ACM
International Conference On Automated Software Engineering (ASE).

Brosig, F., Huber, N., and Kounev, S. (2012). Modeling Parameter and Context Depen-
dencies in Online Architecture-Level Performance Models. In Proceedings of the 15th
ACM SIGSOFT International Symposium on Component Based Software Engineering
(CBSE 2012), June 26–28, 2012, Bertinoro, Italy.

Brosig, F., Huber, N., and Kounev, S. (2013b). Architecture-Level Software Performance
Abstractions for Online Performance Prediction. Elsevier Science of Computer Pro-
gramming Journal (SciCo).

Brosig, F., Kounev, S., and Krogmann, K. (2009). Automated Extraction of Palladio
Component Models from Running Enterprise Java Applications. In Proceedings of the

223

http://searchcloudcomputing.techtarget.com/news/2240036361/Cloud-SLAs-the-next-bugbear-for-enterprise-IT
http://searchcloudcomputing.techtarget.com/news/2240036361/Cloud-SLAs-the-next-bugbear-for-enterprise-IT

224 Bibliography

1st International Workshop on Run-time mOdels for Self-managing Systems and Appli-
cations (ROSSA 2009). In conjunction with Fourth International Conference on Perfor-
mance Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa, Italy, October
19, 2009. ACM, New York, NY, USA.

Brosig, F., Meier, P., Becker, S., Koziolek, A., Koziolek, H., and Kounev, S. (2014). Quanti-
tative Evaluation of Model-Driven Performance Analysis and Simulation of Component-
based Architectures. IEEE Transactions on Software Engineering. Accepted for publi-
cation.

Bruno, N., Chaudhuri, S., and Gravano, L. (2001). Stholes: A multidimensional workload-
aware histogram. SIGMOD Rec., 30(2):211–222.

Bureau International des Poids et Mesures (2005). International vocabulary of metrology
— Basic and general concepts and associated terms (VIM). http://www.bipm.org/

utils/common/documents/jcgm/JCGM_200_2008.pdf. Last visit: 2014-02-17.

Carrera, D., Guitart, J., Torres, J., Ayguade, E., and Labarta, J. (2003). Complete
instrumentation requirements for performance analysis of Web based technologies. In
Intl. Symp. on Perf. Anal. of Syst. and Softw.

Casale, G., Cremonesi, P., and Turrin, R. (2007). How to Select Significant Workloads in
Performance Models. In CMG Conference Proceedings.

Casale, G., Cremonesi, P., and Turrin, R. (2008). Robust Workload Estimation in Queue-
ing Network Performance Models. In 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 183–187.

Chen, Y., Das, A., Qin, W., Sivasubramaniam, A., Wang, Q., and Gautam, N. (2005).
Managing server energy and operational costs in hosting centers. In Proceedings of the
2005 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’05, pages 303–314, New York, NY, USA. ACM.

Chouambe, L., Klatt, B., and Krogmann, K. (2008). Reverse engineering software-models
of component-based systems. In Software Maintenance and Reengineering, 2008. CSMR
2008. 12th European Conference on, pages 93–102.

Clark, A., Gilmore, S., Hillston, J., and Tribastone, M. (2007). Stochastic process algebras.
In Proceedings of the 7th International Conference on Formal Methods for Performance
Evaluation, SFM’07, pages 132–179, Berlin, Heidelberg. Springer-Verlag.

Cohn, M. (2004). User Stories Applied: For Agile Software Development. Addison Wesley
Longman Publishing Co., Inc., Redwood City, CA, USA.

Compuware (2008). Application Performance Management Survey. http://www.docstoc.
com/docs/425507/Application-Performance-Management-Survey-by-Compuware.
Last visit: 2014-05-12.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition.

Cortellessa, V. and Mirandola, R. (2000). Deriving a queueing network based perfor-
mance model from uml diagrams. In Proceedings of the 2Nd International Workshop on
Software and Performance, WOSP ’00, pages 58–70, New York, NY, USA. ACM.

Courtois, M. and Woodside, M. (2000). Using regression splines for software performance
analysis. In Proceedings of the 2Nd International Workshop on Software and Perfor-
mance, WOSP ’00, pages 105–114, New York, NY, USA. ACM.

224

http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
http://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2008.pdf
http://www.docstoc.com/docs/425507/Application-Performance-Management-Survey-by-Compuware
http://www.docstoc.com/docs/425507/Application-Performance-Management-Survey-by-Compuware

Bibliography 225

Diaconescu, A. and Murphy, J. (2005). Automating the Performance Management of
Component-Based Enterprise Systems through the use of Redundancy. In ASE ’05:
Proceedings of the 20th IEEE/ACM international Conference on Automated software
engineering, pages 44–53, New York, NY, USA. ACM Press.

Dilley, J., Friedrich, R., Jin, T., and Rolia, J. (1997). Measurement tools and modeling
techniques for evaluating web server performance. In Marie, R., Plateau, B., Calzarossa,
M., and Rubino, G., editors, Computer Performance Evaluation Modelling Techniques
and Tools, volume 1245 of Lecture Notes in Computer Science, pages 155–168. Springer
Berlin Heidelberg.

Ehlers, J. and Hasselbring, W. (2011). Self-adaptive software performance monitoring. In
Software Engineering, GI.

Elkhodary, A., Esfahani, N., and Malek, S. (2010). Fusion: A framework for engineer-
ing self-tuning self-adaptive software systems. In Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE ’10,
pages 7–16, New York, NY, USA. ACM.

Eskenazi, E., Fioukov, A., and Hammer, D. (2004). Performance Prediction for Component
Compositions. In Proceedings of the 7th International Symposium on Component-based
Software Engineering (CBSE7).

Foster, I. and Kesselman, C. (2003). The Grid 2: Blueprint for a New Computing Infras-
tructure. The Elsevier Series in Grid Computing. Elsevier Science.

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

Franks, G. (1999). Performance Analysis of Distributed Server Systems. PhD thesis, De-
partment of Systems and Computer Engineering, Carleton University,Ottawa, Ontario,
Canada.

Franks, G., Majumdar, S., Neilson, Petriu, D., Rolia, J., and Woodside, M. (1996). Perfor-
mance analysis of distributed server systems. In In Proceedings of the 6th International
Conference on Software Quality, pages 15–26.

Franks, G., Maly, P., Woodside, M., Petriu, D. C., Hubbard, A., and Mroz, M. (2011). Lay-
ered Queueing Network Solver (LQNS) software package. http://www.sce.carleton.
ca/rads/lqns/. Last visit: 2014-03-20.

Franks, G., Omari, T., Woodside, C. M., Das, O., and Derisavi, S. (2009). Enhanced mod-
eling and solution of layered queueing networks. IEEE Trans. on Software Engineering,
35(2):148–161.

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator:l 2 theory.
Zeitschrift fuer Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57(4):453–476.

Gambi, A., To↵etti, G., Pautasso, C., and Pezze, M. (2013). Kriging controllers for cloud
applications. Internet Computing, IEEE, 17(4):40–47.

Gibbons, P. B., Matias, Y., and Poosala, V. (2002). Fast incremental maintenance of
approximate histograms. ACM Trans. Database Syst., 27(3):261–298.

Gilly, K., Alcaraz, S., Juiz, C., and Puigjaner, R. (2009). Analysis of burstiness monitoring
and detection in an adaptive web system. Comput. Netw., 53(5):668–679.

Gilmore, S., Haenel, V., Kloul, L., and Maidl, M. (2005). Choreographing Security and
Performance Analysis for Web Services. In EPEW and WS-FM, LNCS.

225

http://www.sce.carleton.ca/rads/lqns/
http://www.sce.carleton.ca/rads/lqns/

226 Bibliography

Glass, R. L. (1998). Software Runaways. Lessons learned from Massive Software Project
Failures. Prentice Hall.

Gorsler, F. (2013). Online Performance Queries for Architecture-Level Performance Mod-
els. Master’s thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5,
76131 Karlsruhe, Germany.

Gorsler, F., Brosig, F., and Kounev, S. (2013). Controlling the palladio bench using
the descartes query language. In Becker, S., Hasselbring, W., van Hoorn, A., and
Reussner, R., editors, Proceedings of the Symposium on Software Performance: Joint
Kieker/Palladio Days (KPDAYS 2013), number 1083 in CEUR Workshop Proceedings,
pages 109–118, Aachen, Germany. CEUR-WS.org.

Gorsler, F., Brosig, F., and Kounev, S. (2014). Performance queries for architecture-level
performance models. In Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE 2014), New York, NY, USA. ACM.

Graham, S. L., Kessler, P. B., and Mckusick, M. K. (1982). Gprof: A call graph execution
profiler. In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction,
SIGPLAN ’82, pages 120–126, New York, NY, USA. ACM.

Grassi, V., Mirandola, R., and Sabetta, A. (2007). Filling the gap between design and
performance/reliability models of component-based systems: A model-driven approach.
Journal of Systems and Software, 80(4):528–558.

Gunopulos, D., Kollios, G., Tsotras, V. J., and Domeniconi, C. (2000). Approximat-
ing multi-dimensional aggregate range queries over real attributes. SIGMOD Rec.,
29(2):463–474.

Gunter, D. and Tierney, B. (2003). Netlogger: a toolkit for distributed system performance
tuning and debugging. In Integrated Network Management, 2003. IFIP/IEEE Eighth
International Symposium on, pages 97–100.

Gupta, D., Gardner, R., and Cherkasova, L. (2005). XenMon: QoS monitoring and per-
formance profiling tool. Technical Report HPL-2005-187, HP Labs.

Hall, R. J. (1992). Call path profiling. In Proceedings of the 14th International Conference
on Software Engineering, ICSE ’92, pages 296–306, New York, NY, USA. ACM.

Hamlet, D. (2009). Tools and experiments supporting a testing-based theory of component
composition. ACM Trans. Softw. Eng. Methodol., 18(3):12:1–12:41.

Happe, J., Groenda, H., Hauck, M., and Reussner, R. (2010). A prediction model for
software performance in symmetric multiprocessing environments. In 2010 Seventh In-
ternational Conference on the Quantitative Evaluation of Systems (QEST), pages 59–68.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA.

Herbst, N. R., Huber, N., Kounev, S., and Amrehn, E. (2013). Self-Adaptive Workload
Classification and Forecasting for Proactive Resource Provisioning. In Proceedings of the
4th ACM/SPEC International Conference on Performance Engineering (ICPE 2013),
pages 187–198, New York, NY, USA. ACM.

Herbst, N. R., Huber, N., Kounev, S., and Amrehn, E. (2014). Self-Adaptive Workload
Classification and Forecasting for Proactive Resource Provisioning. Concurrency and
Computation - Practice and Experience, Special Issue with extended versions of the best
papers from ICPE 2013, John Wiley and Sons, Ltd.

226

Bibliography 227

Herzog, U. (1990). Formal description, time and performance analysis a framework. In
Härder, T., Wedekind, H., and Zimmermann, G., editors, Entwurf und Betrieb verteilter
Systeme, volume 264 of Informatik-Fachberichte, pages 172–190. Springer Berlin Heidel-
berg.

Hillston, J. (1996). A Compositional Approach to Performance Modelling. Cambridge
University Press, New York, NY, USA.

Hissam, S. A., Moreno, G. A., Sta↵ord, J., and Wallnau, K. C. (2001). Packaging pre-
dictable assembly with prediction-enabled component technology. Technical report,
Carnegie Mellon University.

Hissam, S. A., Moreno, G. A., Sta↵ord, J. A., and Wallnau, K. C. (2002). Packaging
Predictable Assembly. In CD ’02: Proceedings of the IFIP/ACM Working Conference
on Component Deployment, pages 108–124, London, UK. Springer-Verlag.

Hollingsworth, J. K. and Miller, B. (1996). An adaptive cost system for parallel program
instrumentation. In Bouge, L., Fraigniaud, P., Mignotte, A., and Robert, Y., editors,
Euro-Par’96 Parallel Processing, volume 1123 of Lecture Notes in Computer Science,
pages 88–97. Springer Berlin Heidelberg.

Hoorn, A. V., Rohr, M., and Hasselbring, W. (2008). Generating probabilistic and
intensity-varying workload for web-based software systems. In Performance Evaluation –
Metrics, Models and Benchmarks: Proceedings of the SPEC International Performance
Evaluation Workshop (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science
(LNCS, pages 124–143. SPEC, Springer. ISBN.

Hrischuk, C., Murray Woodside, C., and Rolia, J. (1999). Trace-based load characteriza-
tion for generating performance software models. Software Engineering, IEEE Transac-
tions on, 25(1):122–135.

Huber, N. (2014). Autonomic Performance-Aware Resource Management in Dynamic IT
Service Infrastructures. PhD thesis, Karlsruhe Institute of Technology (KIT). To be
published.

Huber, N., Brosig, F., and Kounev, S. (2011a). Model-based Self-Adaptive Resource
Allocation in Virtualized Environments. In 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2011), pages 90–99, New
York, NY, USA. ACM.

Huber, N., Brosig, F., and Kounev, S. (2012a). Modeling Dynamic Virtualized Resource
Landscapes. In Proceedings of the 8th ACM SIGSOFT International Conference on
the Quality of Software Architectures (QoSA 2012), pages 81–90, New York, NY, USA.
ACM.

Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., and Kounev, S. (2012b). S/T/A: Meta-
Modeling Run-Time Adaptation in Component-Based System Architectures. In Pro-
ceedings of the 9th IEEE International Conference on e-Business Engineering (ICEBE
2012), pages 70–77, Los Alamitos, CA, USA. IEEE Computer Society.

Huber, N., van Hoorn, A., Koziolek, A., Brosig, F., and Kounev, S. (2013). Modeling
Run-Time Adaptation at the System Architecture Level in Dynamic Service-Oriented
Environments. Service Oriented Computing and Applications Journal (SOCA).

Huber, N., von Quast, M., Brosig, F., and Kounev, S. (2010). Analysis of the Performance-
Influencing Factors of Virtualization Platforms. In The 12th International Symposium on
Distributed Objects, Middleware, and Applications (DOA 2010), Crete, Greece. Springer
Verlag.

227

228 Bibliography

Huber, N., von Quast, M., Hauck, M., and Kounev, S. (2011b). Evaluating and Mod-
eling Virtualization Performance Overhead for Cloud Environments. In International
Conference on Cloud Computing and Service Science, CLOSER’11.

Hunt, C. and John, B. (2011). Java Performance. Java Series. Pearson Education.

Hyperic (2014). Hyperic. http://www.hyperic.com. Last visit: 2014-04-14.

Intel (2013). Intel VTune Amplifier XE 2013. http://software.intel.com/en-us/

articles/intel-vtune-amplifier-xe. Last visit: 2014-04-10.

Israr, T., Woodside, M., and Franks, G. (2007). Interaction tree algorithms to extract
e↵ective architecture and layered performance models from traces. Journal of Systems
and Software, 80(4):474–492.

Izenman, A. (2009). Modern Multivariate Statistical Techniques: Regression, Classifica-
tion, and Manifold Learning. Springer Texts in Statistics. Springer.

Jain, R. (1991). The Art of Computer Systems Performance Analysis: Techniques for Ex-
perimental Design, Measurement, Simulation, and Modeling. Wiley Professional Com-
puting. Wiley.

Jamshidi, P., Ahmad, A., and Pahl, C. (2014). Autonomic resource provisioning for cloud-
based software. In Proceedings of the 9th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems, SEAMS 2014, pages 95–104, New
York, NY, USA. ACM.

Jordan, M. and Jacobs, R. A. (1993). Hierarchical mixtures of experts and the em algo-
rithm. In Neural Networks, 1993. IJCNN ’93-Nagoya. Proceedings of 1993 International
Joint Conference on, volume 2, pages 1339–1344 vol.2.

Jung, G., Hiltunen, M., Joshi, K., Schlichting, R., and Pu, C. (2010). Mistral: Dynam-
ically managing power, performance, and adaptation cost in cloud infrastructures. In
Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on,
pages 62 –73.

Jung, G., Joshi, K., Hiltunen, M., Schlichting, R., and Pu, C. (2008). Generating adap-
tation policies for multi-tier applications in consolidated server environments. In Auto-
nomic Computing, 2008. ICAC ’08. International Conference on, pages 23–32.

Kalbasi, A., Krishnamurthy, D., Rolia, J., and Richter, M. (2011). MODE: Mix Driven On-
line Resource Demand Estimation. In Proceedings of the 7th International Conference
on Network and Services Management, pages 1–9.

Kappler, T., Koziolek, H., Krogmann, K., and Reussner, R. H. (2008). Towards Auto-
matic Construction of Reusable Prediction Models for Component-Based Performance
Engineering. In Software Engineering 2008, volume 121 of Lecture Notes in Informatics,
pages 140–154, Munich, Germany. Bonner Köllen Verlag.

Kelly, T. and Zhang, A. (2006). Predicting performance in distributed enterprise applica-
tions. Technical report, HP Labs Tech Report.

Kendall, D. G. (1953). Stochastic Processes Occurring in the Theory of Queues and their
Analysis by the Method of the Imbedded Markov Chain. The Annals of Mathematical
Statistics, 24(3):338–354.

Kephart, J., Chan, H., Das, R., Levine, D., Tesauro, G., Rawson, F., and Lefurgy,
C. (2007). Coordinating multiple autonomic managers to achieve specified power-
performance tradeo↵s. In Autonomic Computing, 2007. ICAC ’07. Fourth International
Conference on, pages 24–24.

228

http://www.hyperic.com
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe

Bibliography 229

Kounev, S. (2005). Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction. Shaker Verlag, Ph.D. Thesis,
Technische Universität Darmstadt, Germany.

Kounev, S. (2006). Performance Modeling and Evaluation of Distributed Component-
Based Systems using Queueing Petri Nets. IEEE Transactions on Software Engineering,
32(7):486–502.

Kounev, S. (2011). Engineering of Self-Aware IT Systems and Services: State-of-the-
Art and Research Challenges. In Proceedings of the 8th European Performance Engi-
neering Workshop (EPEW’11), Borrowdale, The English Lake District, October 12–13.
(Keynote Talk).

Kounev, S., Bender, K., Brosig, F., Huber, N., and Okamoto, R. (2011). Automated
simulation-based capacity planning for enterprise data fabrics. In Proceedings of the
4th International ICST Conference on Simulation Tools and Techniques, SIMUTools
’11, pages 27–36, ICST, Brussels, Belgium, Belgium. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

Kounev, S., Brosig, F., and Huber, N. (2014). Descartes Modeling Language (DML).
Technical report, Karlsruhe Institute of Technology (KIT). To be published.

Kounev, S., Brosig, F., Huber, N., and Reussner, R. (2010). Towards self-aware perfor-
mance and resource management in modern service-oriented systems. In Proceedings of
the 7th IEEE International Conference on Services Computing (SCC 2010), July 5-10,
Miami, Florida, USA. IEEE Computer Society.

Kounev, S. and Buchmann, A. (2003). Performance Modelling of Distributed E-Business
Applications using Queuing Petri Nets. In Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software˜- ISPASS2003, Austin,
Texas, USA, March 20-22.

Kounev, S. and Buchmann, A. (2006). SimQPN - a tool and methodology for analyzing
queueing Petri net models by means of simulation. Performance Evaluation, 63(4-5):364–
394.

Kounev, S., Nou, R., and Torres, J. (2007). Autonomic QoS-Aware Resource Management
in Grid Computing using Online Performance Models. In 2nd International Conference
on Performance Evaluation Methodologies and Tools (VALUETOOLS 2007), October
23th-25th, Nantes, France, ISBN: 978-1-59593-819-0.

Kounev, S., Sachs, K., Bacon, J., and Buchmann, A. (2008). A Methodology for Perfor-
mance Modeling of Distributed Event-Based Systems. In 11th IEEE Intl. Symposium
on Object Oriented Real-Time Distributed Computing (ISORC), pages 13–22.

Koziolek, A., Ardagna, D., and Mirandola, R. (2013). Hybrid multi-attribute QoS op-
timization in component based software systems. Journal of Systems and Software,
86(10).

Koziolek, A. and Reussner, R. (2011). Towards a generic quality optimisation framework
for component-based system models. In Crnkovic, I., Sta↵ord, J. A., Bertolino, A., and
Cooper, K. M. L., editors, Proceedings of the 14th international ACM Sigsoft symposium
on Component based software engineering, CBSE ’11, pages 103–108, New York, NY,
USA. ACM, New York, NY, USA.

Koziolek, H. (2008). Parameter Dependencies for Reusable Performance Specifications of
Software Components. PhD thesis, University of Oldenburg, Germany.

229

230 Bibliography

Koziolek, H. (2010). Performance Evaluation of Component-based Software Systems: A
Survey. Performance Evaluation, 67(8):634–658.

Koziolek, H., Happe, J., and Becker, S. (2006). Parameter dependent performance spec-
ifications of software components. In Hofmeister, C., Crnkovic, I., and Reussner, R.,
editors, Quality of Software Architectures, volume 4214 of Lecture Notes in Computer
Science, pages 163–179. Springer Berlin Heidelberg.

Kraft, S., Pacheco-Sanchez, S., Casale, G., and Dawson, S. (2009). Estimating service re-
source consumption from response time measurements. In VALUETOOLS ’09: Proceed-
ings of the Fourth International ICST Conference on Performance Evaluation Method-
ologies and Tools, pages 1–10.

Krebs, R., Momm, C., and Kounev, S. (2012a). Architectural Concerns in Multi-Tenant
SaaS Applications. In Proceedings of the 2nd International Conference on Cloud Com-
puting and Services Science (CLOSER 2012). SciTePress.

Krebs, R., Momm, C., and Kounev, S. (2012b). Metrics and Techniques for Quantifying
Performance Isolation in Cloud Environments. In Buhnova, B. and Vallecillo, A., edi-
tors, Proceedings of the 8th ACM SIGSOFT International Conference on the Quality of
Software Architectures (QoSA 2012), pages 91–100, New York, USA. ACM Press.

Krogmann, K., Kuperberg, M., and Reussner, R. (2008). Reverse Engineering of Paramet-
ric Behavioural Service Performance Models from Black-Box Components. In Ste↵ens,
U., Addicks, J. S., and Streekmann, N., editors, MDD, SOA und IT-Management (MSI
2008), pages 57–71, Oldenburg. GITO Verlag.

Krogmann, K., Kuperberg, M., and Reussner, R. (2010). Using genetic search for reverse
engineering of parametric behavior models for performance prediction. IEEE Trans.
Softw. Eng., 36(6):865–877.

Kumar, D., Tantawi, A., and Zhang, L. (2009a). Real-time performance modeling for
adaptive software systems. In VALUETOOLS ’09: Proceedings of the Fourth Inter-
national ICST Conference on Performance Evaluation Methodologies and Tools, pages
1–10.

Kumar, D., Zhang, L., and Tantawi, A. (2009b). Enhanced inferencing: estimation of
a workload dependent performance model. In VALUETOOLS ’09: Proceedings of the
Fourth International ICST Conference on Performance Evaluation Methodologies and
Tools, pages 1–10.

Kuperberg, M., Krogmann, K., and Reussner, R. (2008a). Performance Prediction for
Black-Box Components using Reengineered Parametric Behaviour Models. In Proceed-
ings of the 11th International Symposium on Component Based Software Engineering
(CBSE 2008), Karlsruhe, Germany, 14th-17th October 2008, volume 5282 of LNCS,
pages 48–63. Springer, Heidelberg.

Kuperberg, M., Krogmann, M., and Reussner, R. (2008b). ByCounter: Portable Runtime
Counting of Bytecode Instructions and Method Invocations. In Proceedings of the 3rd
International Workshop on Bytecode Semantics, Verification, Analysis and Transforma-
tion, Budapest, Hungary, 5th April 2008 (ETAPS 2008, 11th European Joint Confer-
ences on Theory and Practice of Software).

Kyte, T. (2005). Expert Oracle Database Architecture. Expert’s voice in Oracle. Apress.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quantitative
system performance: computer system analysis using queueing network models. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

230

Bibliography 231

Li, J., Chinneck, J., Woodside, M., Litoiu, M., and Iszlai, G. (2009). Performance model
driven QoS guarantees and optimization in clouds. In Proceedings of the 2009 ICSE
Workshop on Software Engineering Challenges of Cloud Computing, CLOUD ’09, pages
15–22, Washington, DC, USA. IEEE Computer Society.

Lientz, B. P. and Swanson, E. B. (1981). Problems in application software maintenance.
Commun. ACM, 24(11):763–769.

Little, J. D. C. (1961). A proof for the queuing formula: L= � W. Operations Research,
9(3):pp. 383–387.

Liu, H. H. (2009). Software Performance and Scalability: A Quantitative Approach. Wiley
Publishing.

Liu, Y., Fekete, A., and Gorton, I. (2005). Design-level performance prediction of
component-based applications. IEEE Trans. Softw. Eng., 31(11):928–941.

Liu, Z., Wynter, L., Xia, C. H., and Zhang, F. (2006). Parameter inference of queue-
ing models for IT systems using end-to-end measurements. Performance Evaluation,
63(1):36–60.

Liu, Z., Xia, C. H., Momcilovic, P., and Zhang, L. (2003). AMBIENCE: Automatic Model
Building using IferENCE. Technical report, IBM Research.

López-Grao, J. P., Merseguer, J., and Campos, J. (2004). From uml activity diagrams to
stochastic petri nets: Application to software performance engineering. In Proceedings of
the 4th International Workshop on Software and Performance, WOSP ’04, pages 25–36,
New York, NY, USA. ACM.

Lu, L., Zhang, H., Jiang, G., Chen, H., Yoshihira, K., and Smirni, E. (2011). Untangling
mixed information to calibrate resource utilization in virtual machines. In Int. Conf. on
Autonomic Computing.

Malony, A. D., Shende, S., Morris, A., and Wolf, F. (2007). Compensation of measurement
overhead in parallel performance profiling. International Journal of High Performance
Computing Applications, 21(2):174–194.

Meier, P. (2010). Automated Transformation of Palladio Component Models to Queueing
Petri Nets. Master’s thesis, Karlsruhe Institute of Technology (KIT).

Meier, P., Kounev, S., and Koziolek, H. (2011). Automated Transformation of Palla-
dio Component Models to Queueing Petri Nets. In In 19th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011).

Menascé, D. (2008). Computing missing service demand parameters for performance mod-
els. In CMG Conference Proceedings, pages 241–248.

Menascé, D. and Bennani, M. (2003). On the use of performance models to design self-
managing computer systems. In Proceedings of the Computer Measurement Group Con-
ference (CMG), Dallas, Texas, pages 7–12.

Menascé, D., Bennani, M. N., and Ruan, H. (2005). Self-Star Properties in Complex
Information Systems, volume 3460 of LNCS, chapter On the Use of Online Analytic
Performance Models in Self-Managing and Self-Organizing Computer Systems. Springer
Verlag.

Menascé, D., Ruan, H., and Gomaa, H. (2004a). A framework for QoS-aware software
components. SIGSOFT Softw. Eng. Notes, 29(1):186–196.

231

232 Bibliography

Menascé, D., Ruan, H., and Gomaa, H. (2007). Qos management in service-oriented
architectures. Performance Evaluation, 64(7-8):646–663.

Menascé, D. A., Almeida, V. A. F., and Dowdy, L. W. (1994). Capacity Planning and
Performance Modeling - From Mainframes to Client-Server Systems. Prentice Hall,
Englewood Cli↵s, NG.

Menascé, D. A., Almeida, V. A. F., and Dowdy, L. W. (2004b). Performance by Design.
Prentice Hall.

Menasce, D. A. and Virgilio, A. F. A. (2000). Scaling for E Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition.

Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., and Yuan, L. (2010). Online self-
reconfiguration with performance guarantee for energy-e�cient large-scale cloud com-
puting data centers. In Services Computing (SCC), 2010 IEEE International Conference
on, pages 514–521.

Miller, B. P., Callaghan, M. D., Cargille, J. M., Hollingsworth, J. K., Irvin, R. B., Kar-
avanic, K. L., Kunchithapadam, K., and Newhall, T. (1995). The paradyn parallel
performance measurement tool. Computer, 28(11):37–46.

Milner, R. (1989). Communication and Concurrency. Prentice Hall International Series
in Computer Science. Prentice Hall International.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learning.
The MIT Press.

Mos, A. (2004). A Framework for Adaptive Monitoring and Performance Management of
Component-Based Enterprise Applications. PhD thesis, Dublin City University, Ireland.

Mos, A. and Murphy, J. (2002a). A framework for performance monitoring, modelling and
prediction of component oriented distributed systems. In WOSP ’02: Proceedings of
the 3rd international workshop on Software and performance, pages 235–236, New York,
NY, USA. ACM Press.

Mos, A. and Murphy, J. (2002b). Understanding performance issues in component-oriented
distributed applications: The compas framework. In Seventh International Workshop
on Component-Oriented Programming (WCOP) of the 16th European Conference on
Object-Oriented Programming (ECOOP), Malaga, Spain.

Murugesan, S. (2008). Harnessing Green IT: Principles and Practices. IT Professional,
vol. 10, no. 1:24–33.

Mytkowicz, T., Diwan, A., Hauswirth, M., and Sweeney, P. (2007). Understanding mea-
surement perturbation in trace-based data. In Parallel and Distributed Processing Sym-
posium, 2007. IPDPS 2007. IEEE International, pages 1–6.

Nadeem, F., Yousaf, M., Prodan, R., and Fahringer, T. (2006). Soft benchmarks-based
application performance prediction using a minimum training set. In e-Science and
Grid Computing, 2006. e-Science ’06. Second IEEE International Conference on, pages
71–71.

Noorshams, Q., Reeb, R., Rentschler, A., Kounev, S., and Reussner, R. (2014). Enriching
Software Architecture Models with Statistical Models for Performance Prediction in
Modern Storage Environments. In Proceedings of the 17th International ACM Sigsoft
Symposium on Component-Based Software Engineering, CBSE ’14. (Paper accepted for
publication).

232

Bibliography 233

Nou, R., Kounev, S., Julia, F., and Torres, J. (2009). Autonomic QoS control in enterprise
Grid environments using online simulation. Journal of Systems and Software, 82(3):486–
502.

Object Management Group (OMG) (2005). UML-SPT: UML Profile for Schedulability,
Performance, and Time, v1.1.

Object Management Group (OMG) (2006). UML Profile for Modeling and Analysis of
Real-Time and Embedded systems (MARTE).

Othman, A., Dew, P., Djemamem, K., and Gourlay, I. (2003). Adaptive Grid Resource
Brokering. In Proceedings of the 2003 IEEE International Conference on Cluster Com-
puting, pages 172–179.

Pacifici, G., Segmuller, W., Spreitzer, M., and Tantawi, A. N. (2008). Cpu demand for
web serving: Measurement analysis and dynamic estimation. Performance Evaluation.

Pacifici, G., Spreitzer, M., Tantawi, A., and Youssef, A. (2005). Performance Management
of Cluster-Based Web Services. IEEE Journal on Selected Areas in Communications,
23(12):2333–2343.

Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann, F. (2007). Service-oriented
computing: State of the art and research challenges. Computer, 40(11):38–45.

Perez, J. F., Pacheco-Sanchez, S., and Casale, G. (2013). An o✏ine demand estimation
method for multi-threaded applications. In Proceedings of the 2012 IEEE 20th Interna-
tional Symposium on Modeling, Analysis & Simulation of Computer and Telecommuni-
cation Systems (MASCOTS).

Petri, C. (1962). Kommunikation mit Automaten. Schriften des Rheinisch-Westfälischen
Institutes für Instrumentelle Mathematik an der Universität Bonn. Rhein.-Westfäl. Inst.
f. Instrumentelle Mathematik an der Univ. Bonn.

Poosala, V., Haas, P. J., Ioannidis, Y. E., and Shekita, E. J. (1996). Improved histograms
for selectivity estimation of range predicates. SIGMOD Rec., 25(2):294–305.

Rathfelder, C. (2013). Modelling Event-Based Interactions in Component-Based Archi-
tectures for Quantitative System Evaluation, volume 10 of The Karlsruhe Series on
Software Design and Quality. KIT Scientific Publishing, Karlsruhe, Germany.

Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A., Koziolek, H.,
Krogmann, K., and Kuperberg, M. (2011). The Palladio Component Model. Technical
report, KIT, Fakultät für Informatik, Karlsruhe.

Reussner, R. H. (2001). The use of parameterised contracts for architecting systems
with software components. In Proceedings of the Sixth International Workshop on
Component-Oriented Programming (WCOP’01.

Rohr, M., Hoorn, A., Giesecke, S., Matevska, J., Hasselbring, W., and Alekseev, S. (2008).
Trace-context sensitive performance profiling for enterprise software applications. In
Kounev, S., Gorton, I., and Sachs, K., editors, Performance Evaluation: Metrics, Models
and Benchmarks, volume 5119 of Lecture Notes in Computer Science, pages 283–302.
Springer Berlin Heidelberg.

Rolia, J., Kalbasi, A., Krishnamurthy, D., and Dawson, S. (2010a). Resource demand
modeling for multi-tier services. In WOSP/SIPEW ’10: Proceedings of the first joint
WOSP/SIPEW international conference on Performance engineering, pages 207–216.
ACM.

233

234 Bibliography

Rolia, J., Krishnamurthy, D., Casale, G., and Dawson, S. (2010b). BAP: a benchmark-
driven algebraic method for the performance engineering of customized services. In
Proceedings of the first joint WOSP/SIPEW international conference on Performance
engineering, pages 3–14. ACM.

Rolia, J. and Sevcik, K. (1995). The method of layers. Software Engineering, IEEE
Transactions on, 21(8):689–700.

Rolia, J. and Vetland, V. (1995). Parameter estimation for performance models of dis-
tributed application systems. In Proceedings of the 1995 Conference of the Centre for
Advanced Studies on Collaborative Research, CASCON ’95. IBM Press.

Rolia, J. and Vetland, V. (1998). Correlating resource demand information with ARM data
for application services. In Proceedings of the 1st international workshop on Software
and performance, pages 219–230. ACM.

Rometsch, F. and Sauer, H. (2008). Dynatrace Diagnostics: Performance-Management
und Fehlerdiagnose vereint. iX, 9/2008.

Rygielski, P. and Kounev, S. (2014). Data Center Network Throughput Analysis using
Queueing Petri Nets. In 34th IEEE International Conference on Distributed Computing
Systems Workshops (ICDCS 2014 Wokrshops). 4th International Workshop on Data
Center Performance, (DCPerf 2014). (Paper accepted for publication).

Schmeiser, B. (1982). Batch size e↵ects in the analysis of simulation output. Operations
Research, 30(3):pp. 556–568.

Schroeder, B., Wierman, A., and Harchol-Balter, M. (2006). Open versus closed: a cau-
tionary tale. In Proceedings of the 3rd conference on Networked Systems Design &
Implementation - Volume 3, NSDI’06, Berkeley, CA, USA. USENIX Association.

Scott, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3):605–610.

Sheikh, F. and Woodside, M. (1997). Layered analytic performance modelling of a dis-
tributed database system. In Distributed Computing Systems, 1997., Proceedings of the
17th International Conference on, pages 482–490.

Shende, S. S. and Malony, A. D. (2006). The tau parallel performance system. Int. J.
High Perform. Comput. Appl., 20(2):287–311.

Shivam, P., Babu, S., and Chase, J. S. (2006). Learning application models for utility
resource planning. In ICAC ’06: Proceedings of the IEEE International Conference on
Autonomic Computing, pages 255–264.

Shousha, C., Petriu, D., Jalnapurkar, A., and Ngo, K. (1998). Applying performance mod-
elling to a telecommunication system. In Proceedings of the 1st International Workshop
on Software and Performance, WOSP ’98, pages 1–6, New York, NY, USA. ACM.

Silberschatz, A., Galvin, P. B., and Gagne, G. (2008). Operating System Concepts. Wiley
Publishing, 8th edition.

Simon, D. (2006). Optimal state estimation : Kalman, H. [infinity] and nonlinear ap-
proaches. Wiley-Interscience, Hoboken, NJ.

Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W. F., and Reddy, A. L. N. (2001). Perfor-
mance Specification of Software Components. SIGSOFT Softw. Eng. Notes, 26(3):3–10.

Sitaraman, M. and Weide, B. (1994). Component-based software using resolve. SIGSOFT
Softw. Eng. Notes, 19(4):21–22.

234

Bibliography 235

Smith, C. U. (2002). Encyclopedia of Software Engineering, chapter Software Performance
Engineering, pages 1545–1562. John Wiley & Sons, 2nd edition.

Smith, C. U. and Williams, L. G. (1997). Performance engineering evaluation of object-
oriented systems with spe*ed. In Computer Performance Evaluation, pages 135–154.

Smith, C. U. and Williams, L. G. (2002). Performance Solutions˜- A Practical Guide to
Creating Responsive, Scalable Software. Addison-Wesley.

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222.

Song, H. G., Ryu, Y., Chung, T. S., Jou, W., and Lee, K. (2005). Metrics, Methodology,
and Tool for Performance-Considered Web Service Composition. In Proceedings of the
20th International Symposium on Computer and Information Sciences (ISCIS 2005),
Istanbul, Turkey, October 26-28, volume 3733 of LNCS, pages 392–401. Springer.

SPEC (2010). SPECjEnterprise2010 Design Document. http://www.spec.org/

jEnterprise2010/docs/DesignDocumentation.html. Version 2010-05-20. Last visit:
2014-03-07.

SPEC (2014). Standard Performance Evaluation Corporation (SPEC). http://www.spec.
org/. Version 2014-02-14. Last visit: 2014-03-07.

Spinner, S. (2011). Evaluating Approaches to Resource Demand Estimation. Master’s
thesis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe,
Germany.

Spinner, S., Kounev, S., and Meier, P. (2012). Stochastic Modeling and Analysis using
QPME: Queueing Petri Net Modeling Environment v2.0. In Haddad, S. and Pomello,
L., editors, Proceedings of the 33rd International Conference on Application and Theory
of Petri Nets and Concurrency (Petri Nets 2012), volume 7347 of Lecture Notes in
Computer Science (LNCS), pages 388–397, Berlin, Heidelberg. Springer-Verlag.

Sriganesh, R., Brose, G., and Silverman, M. (2006). Mastering Enterprise JavaBeans 3.0.
John Wiley & Sons.

Stewart, C., Kelly, T., and Zhang, A. (2007). Exploiting nonstationarity for performance
prediction. SIGOPS Oper. Syst. Rev., 41(3):31–44.

Sturges, H. A. (1929). The Choice of a Class Interval. Journal of the American Statistical
Association, 21(153).

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2Nd Inter-
national Conference on Software Engineering, ICSE ’76, pages 492–497, Los Alamitos,
CA, USA. IEEE Computer Society Press.

Szyperski, C., Gruntz, D., and Murer, S. (2002). Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley, New York, NY, 2 edition.

Tesauro, G., Jong, N. K., Das, R., and Bennani, M. N. (2006). A hybrid reinforcement
learning approach to autonomic resource allocation. In ICAC ’06: IEEE International
Conference on Autonomic Computing, pages 65–73.

Thereska, E., Narayanan, D., and Ganger, G. (2005). Towards self-predicting systems:
What if you could ask ”what-if”? In Database and Expert Systems Applications, 2005.
Proceedings. Sixteenth International Workshop on, pages 196–200.

Tonella, P., Torchiano, M., Du Bois, B., and Systä, T. (2007). Empirical studies in
reverse engineering: State of the art and future trends. Empirical Software Engineering,
12(5):551–571.

235

http://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
http://www.spec.org/jEnterprise2010/docs/DesignDocumentation.html
http://www.spec.org/
http://www.spec.org/

236 Bibliography

Trivedi, K. S. (2002). Probability and Statistics with Reliability, Queuing and Computer
Science Applications. John Wiley & Sons, Inc., second edition.

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., and Tantawi, A. (2007). Analytic
modeling of multitier internet applications. ACM Trans. Web, 1(1).

van Hoorn, A. (2014a). Model-Driven Online Capacity Management for Component-Based
Software Systems. PhD thesis, Faculty of Engineering, Kiel University. To be published.

van Hoorn, A. (2014b). Online Capacity Management for Increased Resource E�ciency
of Component-Based Software Systems. PhD thesis, University of Kiel, Germany.

van Hoorn, A., Rohr, M., Gul, A., and Hasselbring, W. (2009). An adaptation framework
enabling resource-e�cient operation of software systems. In Proceedings of the Warm
Up Workshop for ACM/IEEE ICSE 2010, WUP ’09, pages 41–44, New York, NY, USA.
ACM.

Verma, A., Ahuja, P., and Neogi, A. (2008). pmapper: Power and migration cost
aware application placement in virtualized systems. In Proceedings of the 9th ACM/I-
FIP/USENIX International Conference on Middleware, Middleware ’08, pages 243–264,
New York, NY, USA. Springer-Verlag New York, Inc.

VMware (2006). Resource Management with VMware DRS. http://www.vmware.com/

pdf/vmware_drs_wp.pdf. Version 2006-06-05. Last visit: 2014-04-30.

von Massow, R., van Hoorn, A., and Hasselbring, W. (2011). Performance simulation
of runtime reconfigurable component-based software architectures. In Software Archi-
tecture: Proceedings of the 5th European Conference on Software Architecture (ECSA
2011), pages 43–58. Springer Berlin/Heidelberg.

Wallnau, K. C. and Ivers, J. (2003). Snapshot of ccl: A language for predictable assem-
bly. Technical Note CMU/SEI-2003-TN-025, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, Pennsylvania.

Wang, W., Huang, X., Qin, X., Zhang, W., Wei, J., and Zhong, H. (2012). Application-
Level CPU Consumption Estimation: Towards Performance Isolation of Multi-tenancy
Web Applications. In Proceedings of the 2012 IEEE Fifth International Conference on
Cloud Computing, pages 439 –446.

Westermann, D. (2013). Deriving Goal-oriented Performance Models by Systematic Ex-
perimentation. PhD thesis, Karlsruhe Institute of Technology (KIT).

Westermann, D., Happe, J., Krebs, R., and Farahbod, R. (2012). Automated inference of
goal-oriented performance prediction functions. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2012, pages 190–
199, New York, NY, USA. ACM.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B., and Bruel, J. (2009). Relax: Incor-
porating uncertainty into the specification of self-adaptive systems. In Requirements
Engineering Conference, 2009. 17th IEEE International, pages 79–88.

Wood, T., Cherkasova, L., Ozonat, K., and Shenoy, P. (2008). Profiling and model-
ing resource usage of virtualized applications. In Issarny, V. and Schantz, R., editors,
Middleware 2008, volume 5346 of Lecture Notes in Computer Science, pages 366–387.
Springer Berlin Heidelberg.

Woodside, C., Neilson, J., Petriu, D., and Majumdar, S. (1995). The stochastic rendezvous
network model for performance of synchronous client-server-like distributed software.
Computers, IEEE Transactions on, 44(1):20–34.

236

http://www.vmware.com/pdf/vmware_drs_wp.pdf
http://www.vmware.com/pdf/vmware_drs_wp.pdf

Bibliography 237

Woodside, M., Franks, G., and Petriu, D. (2007). The Future of Software Performance En-
gineering. In Future of Software Engineering (FOSE’07), pages 171–187, Los Alamitos,
CA, USA. IEEE Computer Society.

Woodside, M., Zheng, T., and Litoiu, M. (2006). Service System Resource Management
Based on a Tracked Layered Performance Model. In Proceedings of the 2006 IEEE
International Conference on Autonomic Computing, pages 175–184.

Wu, X. and Woodside, M. (2004). Performance Modeling from Software Components. In
WOSP ’04: Proceedings of the fourth International Workshop on Software and Perfor-
mance, volume 29, pages 290–301, New York, NY, USA. ACM Press.

Wynter, L., Xia, C. H., and Zhang, F. (2004). Parameter inference of queueing models
for IT systems using end-to-end measurements. In Proceedings of the joint international
conference on Measurement and modeling of computer systems, pages 408–409.

Xu, J., Oufimtsev, A., Woodside, M., and Murphy, L. (2005). Performance modeling and
prediction of enterprise javabeans with layered queuing network templates. SIGSOFT
Softw. Eng. Notes, 31(2).

Zenoss (2014). Zenoss Software. http://www.zenoss.com. Last visit: 2014-04-14.

Zhang, L., Xia, C. H., Squillante, M. S., and Iii, W. N. M. (2002). Workload Service
Requirements Analysis: A Queueing Network Optimization Approach. In Proceedings
of the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, page 23↵.

Zhang, L., Zhang, B., Pahl, C., Xu, L., and Zhu, Z. (2013). Personalized quality prediction
for dynamic service management based on invocation patterns. In Basu, S., Pautasso,
C., Zhang, L., and Fu, X., editors, Service-Oriented Computing, volume 8274 of Lecture
Notes in Computer Science, pages 84–98. Springer Berlin Heidelberg.

Zhang, Q., Cherkasova, L., and Smirni, E. (2007). A Regression-Based Analytic Model
for Dynamic Resource Provisioning of Multi-Tier Applications. In Proceedings of the
Fourth International Conference on Autonomic Computing, page 27↵.

Zheng, T., Woodside, C., and Litoiu, M. (2008). Performance Model Estimation and Track-
ing Using Optimal Filters. Software Engineering, IEEE Transactions on, 34(3):391–406.

Zheng, T., Yang, J., Woodside, M., Litoiu, M., and Iszlai, G. (2005). Tracking time-
varying parameters in software systems with extended Kalman filters. In CASCON ’05:
Proceedings of the 2005 conference of the Centre for Advanced Studies on Collaborative
research, pages 334–345. IBM Press.

237

http://www.zenoss.com

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Current Approaches
	1.4 Approach and Contributions of this Thesis
	1.4.1 Success Criteria
	1.4.2 Contributions
	1.4.3 Evaluation

	1.5 Application Scenarios
	1.6 Thesis Organization

	2 From Design-Time to Online Performance Models
	2.1 Black-Box Approaches to Performance Prediction
	2.2 Predictive Stochastic Performance Models
	2.3 Descriptive Architecture-Level Performance Models
	2.4 Run-Time versus Design-Time Performance Prediction
	2.5 Monitoring Tools
	2.6 Summary

	3 Related Work
	3.1 Online Performance Prediction
	3.1.1 Approaches Using Black-Box Models
	3.1.2 Approaches Using Predictive Stochastic Performance Models
	3.1.3 Discussion

	3.2 Performance Model Extraction and Maintenance
	3.2.1 Model Extraction Using Monitoring Data
	3.2.2 Model Maintenance Using Monitoring Data

	3.3 Summary

	4 Architecture-Level Performance Abstractions for Online Use
	4.1 Application Architecture
	4.1.1 Component Model and System Model
	4.1.2 Running Example
	4.1.3 Service Behavior Abstractions
	4.1.3.1 Motivation
	4.1.3.2 Modeling Approach
	4.1.3.3 Modeling Abstractions
	4.1.3.4 Example

	4.1.4 Parameterization
	4.1.4.1 Motivation
	4.1.4.2 Modeling Approach
	4.1.4.3 Modeling Abstractions
	4.1.4.4 Example

	4.1.5 Probabilistic Parameter Dependencies
	4.1.5.1 Motivation
	4.1.5.2 Modeling Approach
	4.1.5.3 Modeling Abstractions
	4.1.5.4 Example

	4.1.6 Interface to Monitoring Infrastructure

	4.2 Resource Landscape Model and Deployment Model
	4.2.1 Modeling Abstractions
	4.2.2 Example

	4.3 Usage Profile Model
	4.3.1 Modeling Abstractions
	4.3.2 Example

	4.4 Summary

	5 Online Prediction Techniques
	5.1 Model Composition
	5.2 Parameter Dependency Resolution and Model Parameterization
	5.2.1 Input and Output
	5.2.2 Relationship Resolution
	5.2.2.1 Model Traversal
	5.2.2.2 Processing Model Variables
	5.2.2.3 Example

	5.2.3 Complexity

	5.3 Model Solving
	5.3.1 Transformation to Queueing Petri Nets
	5.3.1.1 Queueing Petri Nets
	5.3.1.2 Transformation

	5.3.2 Transformation to Layered Queueing Networks
	5.3.3 Bounds Analysis

	5.4 Tailoring
	5.4.1 Performance Metrics
	5.4.2 Trade-Off Between Prediction Accuracy and Time-To-Result
	5.4.3 Degrees-of-Freedom
	5.4.4 Tailored Model Composition
	5.4.5 Tailored Model Solving

	5.5 Performance Queries
	5.5.1 Requirements
	5.5.2 Performance Query Language
	5.5.2.1 Model Access
	5.5.2.2 Model Structure Query
	5.5.2.3 Performance Metrics Query

	5.5.3 Architecture

	5.6 Summary

	6 Integration of Architecture-Level Performance Models and System Environments
	6.1 Monitoring Capabilities
	6.1.1 Call Path Tracing
	6.1.2 Overhead Control
	6.1.3 Empirical Characterizations

	6.2 Semi-Automatic Model Extraction
	6.2.1 Extraction of Component Connections
	6.2.2 Extraction of Service Behavior Abstractions

	6.3 Model Structure Maintenance
	6.4 Model Parameter Maintenance
	6.4.1 Control Flow Statistics
	6.4.2 Response Times
	6.4.3 Resource Demand Estimation
	6.4.4 Resource Demand Estimation in Virtualized Environments
	6.4.4.1 Example
	6.4.4.2 Problem Formulation
	6.4.4.3 Global Overhead Factors and Offsets
	6.4.4.4 Application-Specific Overhead Portions

	6.4.5 Probabilistic Characterization of Parameter Dependencies
	6.4.5.1 Parameter Dependencies to Monitor
	6.4.5.2 Training Data
	6.4.5.3 Supervised Learning

	6.5 Model Calibration and Adjustment
	6.5.1 Model Calibration
	6.5.2 Model Adjustment

	6.6 Summary

	7 Validation
	7.1 Evaluation Goals
	7.1.1 Modeling Capabilities
	7.1.2 Prediction Capabilities

	7.2 Trade-Off Between Prediction Accuracy and Prediction Overhead
	7.2.1 Context and Experiment Setup
	7.2.2 Results
	7.2.3 Discussion

	7.3 Software-as-a-Service Provider Case Study
	7.3.1 Customer Relationship Management (CRM)
	7.3.2 Context and Experiment Setup
	7.3.3 Architecture-Level Performance Model
	7.3.4 Results
	7.3.5 Discussion

	7.4 SPECjEnterprise2010 Case Study
	7.4.1 SPECjEnterprise2010 Benchmark Application
	7.4.2 Semi-Automatic Model Extraction and Model Parameterization
	7.4.3 Service Behavior Abstractions and Prob. Parameter Dependencies
	7.4.4 Autonomic Performance-Aware Resource Management
	7.4.5 Discussion

	7.5 Summary

	8 Concluding Remarks
	8.1 Summary
	8.2 Open Questions and Future Work

	Acronyms
	List of Figures
	List of Tables
	Bibliography

