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Summary: In this paper we examine a model for the landing procedure of aircrafts at an
airport. The characteristic feature here is that due to air turbulence the safety distance between
two landing aircrafts depends on the types of these two machines. Hence, an efficient routing of
the aircraft to two runways may reduce their waiting time.

First, we use M/SM/1 queues (with dependent service times) to model a single runway. We give
the stability condition and a formula for the average waiting time of the aircrafts. Moreover, we
derive easy to compute bounds on the waiting times by comparison to simpler queuing systems.
In particular we study the effect of neglecting the dependency of the service times when using
M/G/1-models.

We then consider the case of two runways with a number of heuristic routing strategies such
as coin flipping, type splitting, Round Robin and variants of the join-the-least-load rule. These
strategies are analyzed and compared numerically with respect to the average delay they cause.
It turns out that a certain modification of join-the-least-load gives the best results.
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1 Introduction

In this paper we examine the queuing process of aircrafts arriving at an airport and its implica-
tions for the capacity of the airport.

The particular feature of this process is the character of the safety distances between consecutive
landing operations. An aircraft causes an air turbulence that endangers the stability of trailing
aircrafts. The strength of the turbulence depends on the type (size, weight) of the leading
aircraft. On the other hand, the type of the trailing aircraft determines its susceptibility to
turbulence. Hence the required separation times between consecutive landing operations depend
on the types of the two aircrafts involved.

This problem can be modeled as a special queuing system. The incoming planes are customers
of different types and the service starts when the landing operation begins and it ends after
the separation time has expired. Hence the service time depends also on the type of the next
customer and we therefore do not have independent service times as it is assumed in standard
queuing systems.

We are interested in stability results and bounds for the average waiting times of the aircrafts
on a single runway as well as in the case where there are two runways available to which one
arriving aircrafts have to be assigned.

We use the general assumption that the arrival times of aircrafts at the airport can be modeled
by a Poisson process. This is in accordance with standard models in aircraft literature (see
e.g. [5] and [8], Chapt. 8) and reflects the experience that in practice the flight schedule is
disturbed by many independent external sources like weather or technical delays such that a
Poisson model is sufficient for the type of average analysis intended here. The single runway
problem can therefore be modeled as an M/SM/1 queuing model (see e.g. [6], [10],[11] and [12]).

For a single runway, we can use these results to derive the stability condition and to give an
analytic formula for the expected stationary waiting time of the aircrafts which can be evaluated
numerically. Moreover, simple bounds are derived by comparison to M/G/1 and M/D/1 models.
We examine the bias introduced when the dependencies of the service times are neglected and
simple M/G/1-models are used for the estimation of the average waiting time (which has been
done for example in [5]). It is shown, that under heavy traffic this leads to a constant over- or
underestimation of the average waiting time depending on the correlation of consecutive service
times.

In the case of two runways we are interested in good heuristic routing strategies which make
the average waiting time of the aircrafts small. Note that we do not address the problem of
optimal assignment of aircrafts to runways here (see [1] for a qualitative result in that direction).
Instead we only consider easy to implement heuristics like coin flipping, type splitting, Round
Robin and variants of join-the-least-load. Type splitting is a randomized allocation of types to
runways and allows to use the analytic results from the single runway case. It turns out that a
certain modification of join-the-least-load performs quite well in our numerical example.

A possible extension of the model to include departing flights is sketched in the conclusion.

The scheduling of aircrafts has been treated before by different approaches, see e.g. [3] for an
overview. The authors of [3] use a non-stochastic model in which they minimize waiting time
related costs for a fixed set of planes by a mixed-integer approach. [4] presents an approach that
tries to take the dynamics of the arrivals into account. A queuing approach is given in [5] where
several strategies are compared and simulated. The authors use M/D/n and M/M/n queuing
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models that do not take into account the dependence of the service times. It is shown in Section
4 below, that estimates of waiting times based on these models may have a serious bias.

The paper is organized as follows. We first concentrate on the single server case. The model is
described in Section 2 and a few results on the single server waiting times are collected in Section
3. In Section 4 we consider simple M/G/1 and M/D/1 models and compare the average waiting
time of these models. The remaining sections deal with the case of two runways. In Section 5
we summarize some reasonable routing heuristics and compare their performance numerically
in Section 6.

2 The Model for a Single Runway

2.1 Arrivals

We assume that the arrival times (Sn)n≥1 of the aircrafts form a renewal process with i.i.d.
interarrival times Tn := Sn − Sn−1, n ≥ 1, and S0 = T0 = 0. Let λ := (E T1)−1 > 0 denote the
intensity of the arrival process and (Nt)t≥0 the number of arrivals up to time t. Assume that
the first aircraft arrives at time T1 = S1.

Let J be the finite set of possible types of aircrafts. We assume that a fraction pj ∈ (0, 1) of
all arrivals is of type j ∈ J and that the types show up independently of each other and of the
arrival process, i.e. if Jn denotes the type of the n-th arriving aircraft, n ≥ 1, then we assume

P [Jn = i | T1, . . . , Tn, J1, . . . , Jn−1] = pi. (2.1)

p := (p1, , . . . , p|J |) is the traffic mix and is assumed to be fixed.

Note, that if the arrival process is a Poisson process then it may be viewed as a superposition
of independent Poisson processes (Nt,j)t≥0, j ∈ J, each with intensity λj := pjλ.

2.2 Separation times

An aircraft of type i ∈ J causes an air turbulence that forces any trailing aircraft of type j ∈ J
to keep a minimal distance expressed by the separation time b(i, j). That means in particular,
that the touch-down of the trailing aircraft must be separated by at least b(i, j) time units from
the touch-down of the leading aircraft.

We assume that the matrix C := (b(i, j))i,j∈J of separation times is given.

2.3 Service times

If we model the aircrafts as customers, we obtain as service time of the n−th customer:

Bn := b(Jn, Jn+1). (2.2)

Note that the service of the n−th aircraft starts with its touch-down and ends after time
b(Jn, Jn+1), where Jn+1 is the type of the next aircraft which may not even have arrived at
that point of time.

From (2.1) it follows that the service times (Bn)n≥1 are identically distributed and form a sta-
tionary process but they will in general not be independent. They may not even form a Markov
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chain. However, the interarrival times (Tn)n≥1 and the service times (Bn)n≥1 are independent
from each other.

We define the traffic intensity on the runway as usual by

% :=
EB1

E T1
. (2.3)

2.4 Waiting times

The waiting time of an aircraft is now defined as the time spent between its arrival at the airport
until the beginning of the landing operation (touch-down). Then the waiting time Wn of the
n−th customer on the runway is given as usual recursively by

W1 := 0;

Wn+1 := [Wn + Bn − Tn+1]+ , n ≥ 1.
(2.4)

Our main interest is in the average waiting time

lim sup
N→∞

1

N

N∑

n=1

Wn. (2.5)

2.5 Stability

The sequence of waiting times (Wn)n≥1 is said to be stable if there is a non-negative, real valued
random variable W∞ such that

lim
n→∞

Wn = W∞. (2.6)

in distribution. Given the separation times, stability of the waiting times obviously depends
on the arrival intensity λ. We are interested in the supremum λ̄ over all λ that allow stable
waiting times. λ̄ is called the ultimate capacity of the runway. It serves as an additional, simpler
criterion in cases where we cannot determine the waiting times explicitly.

3 Waiting Time and Capacity for a Single Runway

We first collect a few results on the stationary waiting time in a queue with dependent service
times from [9] and [12]. Let D be the |J | × |J |-matrix with entries d(i, j) := pipjb(i, j). Then

EB1 = E b(J1, J2) =
∑

i,j∈J
pipjb(i, j) = 1TD1 (3.1)

where 1 is the vector of dimension |J |, containing 1’s only. Hence with

E T1 =
1

λ
(3.2)

we obtain
% = λ1TD1. (3.3)

3.1 Lemma
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a)
(Wn)n≥0 is stable iff % < 1. (3.4)

b) If % < 1, the sequence (Wn)n≥0 is stochastically increasing, convergent in first mean
and has, with W∞ as in (2.6)

W := EW∞ < ∞, (3.5)

lim
N→∞

1

N

N∑

n=1

Wn = W (P− a.s.) (3.6)

and

lim
N→∞

1

N

N∑

n=1

EWn = W . (3.7)

Proof : The proof follows essentially from Loynes [9]. To be more specific, let Un = Bn −
Tn+1, n ≥ 1, then

Wn+1 = [Wn + Un]+, n ≥ 1,

where (Un)n≥1 is a stationary sequence and (Tn)n≥1 and (Bn)n≥1 are independent. From Loynes
[9], Corollary 1 we obtain that % < 1 iff (Wn)n≥0 is stable. Moreover we see from [9], Theorem
3 and Lemma1 , that if % < 1, then there is a stationary sequence of a.e. finite, non-negative
real valued random variables Mn, n = . . . − 1, 0, 1, . . . that forms a minimal solution of

Mn+1 = [Mn + Un]+, n ≥ 1.

It also follows that the distribution function P(Wn ≤ t) converges for each t ≥ 0 monotonically
against P(M0 ≤ t). Therefore, (2.6) holds with W∞ := M0. As the sequence P(Wn ≤ t) is
monotonically decreasing, Wn is stochastically increasing and convergence in the first mean
follows. Hence also (3.7) follows. Lemma 3.2 below shows that we have EW∞ <∞ under our
condition % < 1. But then, the Strong Law of Large Numbers may be applied to the stationary
sequence Mn yielding

lim
N→∞

1

N

N∑

n=1

Mn = EM0 = EW∞ (P− a.s.). (3.8)

It is also shown in Loynes [9], p. 503, that

lim
n→∞

(Mn −Wn) = 0 (P− a.s.)

hence

lim
N→∞

1

N

N∑

n=1

(Mn −Wn) = 0 (P− a.s.),

which together with (3.8) proves (3.6).

From Lemma 3.1 a) we see that the ultimate capacity of the single runway is given by

λ̄ := 1/1TD1. (3.9)
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If the arrival process is a Poisson process, then a single runway forms an M/SM/1 queue where
the types of services together with their duration form a semi-Markov process. These models
have been intensively studied by M. Neuts e.g. in [13], and we can derive the following Lemma
from [12].

3.2 Lemma

If the interarrival times are exponentially distributed with parameter λ and if % < 1 then
the expected stationary waiting time in the queue is given by

W = B̃ − EB1 +
λ

2(1 − %)

(
EB2

1 + 2 cov(B1, B2)
)

(3.10)

where B̃ is the stationary mean service time of the first aircraft after the runway becomes
empty.

Note that for independent service times B1, B2 we have B̃ = EB1 and cov(B1, B2) = 0, hence
(3.10) reduces to the Pollazcek-Khintchine formula for the M/G/1-model (see (4.7) below). Note
also, that in (3.10) the only term depending on λ is λ/(2(1− %)). (3.10) is used in Theorems 4.2
and 4.3 below to compare W to the waiting time of the corresponding M/G/1 model.

Proof : The results in [12] are more general than needed here. The semi-Markov kernel for
the service process is given by

Ai,j(x) := P(B1 ≤ x, J2 = j | J1 = i) = pj 1[0,x](b(i, j)). (3.11)

Eq. (88) in [12] states that Little’s law holds for the M/SM/1 system and eq. (70) gives a
formula for the stationary mean number L of customers in the system. Let α and α(2) be the
vectors with components

α(i) := E [B1 | J1 = i] =
∑

j∈J
pj b(i, j), i ∈ J ; (3.12)

α(2)(i) := E
[
B2

1 | J1 = i
]

=
∑

j∈J
pj b

2(i, j), i ∈ J, (3.13)

and let p = (pi)i∈J . Then we obtain from Eq. (70) in [12]

W =
L− %
λ

= gTα− %

λ
+

1

2λ(1 − %)
·
[
−2%2 + λ2

(
pTα(2) − 2pT Â′(0+)α

)] (3.14)

where the first derivative of the Laplace transform of the semi-Markov kernel A is a |J | × |J |
matrix with elements

Â′ij(0+) = −E
[
B1 · 1{j}(J2) | J1 = i

]
= −b(i, j)pj . (3.15)

g = (gi)i∈J is the stationary distribution of the J -valued embedded Markov chain (Ym)m≥1

where Ym is the type of the aircraft that starts the m−th busy cycle on the runway. Note
that in general this will be different from p as this type has influenced the service time of the
preceding aircraft and may therefore depend on the preceding busy cycle. Though we cannot
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give the explicit form of g, its existence is guaranteed whenever % ≤ 1 as noted in [12], see also
[11]. Hence inserting (3.12) and (3.13) into (3.14) we obtain

W = gTα − %

λ
+

λ

2(1 − %)

[
− 2

(%
λ

)2
+ EB2

1 + 2E (B1B2)
]

(3.16)

With B̃ := gTα =
∑

i,j∈J gib(i, j)pj the assertion follows.

A numerical procedure for the approximation of g as used in the proof above is given in Sect.
2.3 and 3.6 of [13]. In our case, let Gi,j be the conditional probability, that given there is exactly
one aircraft in the system and given the next one will be of type i ∈ J that then at the first
instance where the system becomes empty, the next type (that determined the service time just
finished) will be of type j ∈ J. For % < 1, G = (Gi,j)i,j∈J is a |J | × |J |-matrix that fulfills (cp.
[13], Eq. (2.3.3))

G =

∞∑

n=0

A(n)Gn (3.17)

where A(n) is another |J | × |J |− matrix with

A(n)i,j := e−λb(i,j)
(λb(i, j))n

n!
pj

for n ≥ 0, i.e. A(n)i,j is just the probability that exactly n aircrafts arrive during the service
of an aircraft of type i followed by one of type j. As is pointed out in [13], G can be obtained
from (3.17) by successive approximation. Finally, g is the stationary distribution of G, which is
guaranteed to exist for % < 1. g(i) is the stationary probability, that after an empty period, the
next arrival will be of type i ∈ J. Using this approximation in Lemma 3.2, W = EW∞ can be
evaluated numerically for each λ. This approach is used in the numerical example in Section 6
below.

In the next Section we use Lemma 3.2 to compare W to results of other, simpler models.

4 Waiting Times in Simplified Models

In the aircraft literature (see [5]and [8]), often grossly simplified models are used. In particular,
the waiting process is modeled as M/G/1 or even M/D/1 system, neglecting the dependencies
between consecutive service times Bm = b(Jm, Jm+1) and Bm+1 = b(Jm+1, Jm+2). However, as
we will see, an M/G/1-model may be a very bad approximation to the real situation.

In this Section we assume that the arrivals form a Poisson process with intensity λ > 0. Let us
first compare our model to two M/D/1 systems. Let W̃ be the average waiting time when the
service times are given by the constant

b̃ := EB1 =
∑

i,j∈J
pipjb(i, j) (4.1)

and let W be the average waiting time for constant service times

b := max{b(i, j) | i, j ∈ J, pipj > 0}. (4.2)

Note that by Lemma 3.1, stability in the case (4.1) holds iff % < 1, whereas for (4.2) we have to
assume b < λ. We have the following simple result.

4.1 Theorem
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For % < 1 resp. b < λ we have
W̃ ≤W ≤W. (4.3)

Proof : From (2.4) it follows for the n-th waiting time that

Wn = Φn(B1, . . . , Bn−1, T2, . . . , Tn) (4.4)

where (b1, . . . , bn−1) 7→ Φn(b1, . . . , bn−1, t2, . . . , tn) is an increasing, convex (and even supermod-
ular) function, see also [2]. From Jensen’s inequality we therefore obtain for all n ≥ 2

E [Wn|T2 = t2, . . . , Tn = tn] = E Φ(B1, . . . , Bn−1, t2, . . . , tn)

≥ Φ(EB1, . . . ,EBn−1, t2, . . . , tn)

= E [W̃n|T2 = t2, . . . , Tn = tn]

(4.5)

from which we conclude EWn ≥ E W̃n. Now, from Lemma 3.1 we have W = limn→∞E Wn

and W̃ = limn→∞E W̃n which proves the first inequality. The second follows in a similar way
from the monotonicity of Φ.

Next let us consider a more realistic M/G/1 model in which the i.i.d. service times B̂n, n ≥ 1,
have the same marginal distribution as the original Bn, i.e.

P(B̂1 ≤ x) = P(B1 ≤ x) =
∑

i∈J

∑

j∈J
pipj1[0,x](b(i, j)). (4.6)

Using this model means to simply drop the dependency between the service times. As E B̂1 =
EB1, stability holds in this model iff % < 1. For the corresponding mean stationary waiting time
Ŵ the classical Pollazcek-Khintchine formula holds:

Ŵ =
λ E (B̂2

1)

2(1− λ E B̂1)
. (4.7)

The next Theorem gives upper and lower bounds for W in terms of Ŵ . In addition to (4.2) we
define

b := min{b(i, j) | i, j ∈ J, pipj > 0}

4.2 Theorem

Let % < 1, then
b + C ≤ W − Ŵ ≤ b + C, (4.8)

where

C :=
λ

1− % cov(B1, B2) − EB1. (4.9)

Note that the difference between upper and lower bounds in (4.8) is b − b, which is inde-
pendent of the arrival rate λ.
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Proof : From Lemma 3.2 and (4.7) we have at once

W = B̃ − EB1 + Ŵ +
λ

1− % cov(B1, B2) = B̃ + Ŵ + C.

As B̃ is a particular expected service time we have b ≤ B̃ ≤ b. From this the assertion follows.

The next Theorem shows, that depending on the correlation of the service times, the simple
M/G/1 model constantly over- or underestimates the true waiting times on the runways for
heavy traffic and that the approximation error can get arbitrarily large.

4.3 Theorem

a) If cov(B1, B2) > 0 then for % ↑ 1, W > Ŵ and W − Ŵ tends to ∞.

b) If cov(B1, B2) < 0 then for % ↑ 1, W < Ŵ and W − Ŵ tends to −∞.

Proof : Note that EB1 and cov(B1, B2) are independent of λ. Hence in (4.8), as % ↑ 1, we see
that C tends to +∞ or −∞ depending on the sign of cov(B1, B2), which proves the Theorem.

5 Assigning Aircrafts to Two Runways

After examining a single runway, we now turn to the full model where incoming aircrafts have
to be assigned to one of two available runways, named I and II, by a routing policy δ.

Now, T1, T2, . . . are the interarrival times of aircrafts arriving at that spot where the assignment
decision is taken. p = (p1, . . . , p|J |) is the traffic mix of the arriving stream. This stream is split
into two separate streams for the two runways by a routing policy. Let the interarrival times of
the stream at runway a ∈ {I, II} be T a1 , T

a
2 , . . .. We denote all local terms that refer to runway

a ∈ {I, II} by an upper index a as indicated by Figure 1 below, so e.g. on runway I we have
service times BI

m, waiting times W I
m and W I

∞ (if it exists), λI := 1/E T I1 and traffic rate %I if
the interarrival times T I1 , T

I
2 , . . . are i.i.d. . Note that in Ba

m,W
a
m, etc the lower index m is a

local counter that counts the arrivals at runway a only.

We assume here that the interarrival times T1, T2, . . . are i.i.d. and exponentially distributed,
i.e. the arrival process at the airport is a Poisson process (Nt)t≥0 with arrival rate λ.

In [1] the problem of minimizing the average waiting time of aircrafts being routed to two
runways is formulated as a Markov decision program with discounted costs (it is mainly a
technical question to extend these results to the average waiting times). Markovian routing
policies δ are considered that assign aircrafts depending on the state of the runways and the
type of the incoming aircraft. As it turned out, the structure of the model is quite involved,
even simple monotonicity properties need not hold and there seems to be no simple analytic way
to find optimal policies.

However, for practical purposes we are seeking policies that are simple to implement and are
transparent to non-expert users. We therefore examine some simple types of policies first.
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δ

λII , T IIm , JIIm , BIIm , . . .

runway I

runway II

λ, Tn, Jn

λI , T Im, J
I
m, B

I
m, . . .

Figure 5.1: The incoming stream of aircrafts is split into two streams that arrive at the runways

5.1 Random Split Policies

First, we consider policies that only depend on the incoming type and ’split’ the traffic mix
between the two runways in a random way.

Let ∆ denote the set of randomized decision rules δ = (δj)j∈J where

δj ∈ [0, 1] (5.1)

is the probability for an aircraft of type j to be assigned to runway I and 1−δj is the probability
to be assigned to runway II , j ∈ J . Let An, n ≥ 1 denote the decision for the n−th arrival, i.e.

P(An = I | Jn = j) = δj , j ∈ J, n ≥ 1.

Then the An, n ≥ 1 are i.i.d.

The main technical advantage of restricting decision rules to ∆ lies in the fact, that we ob-
tain two independent queues at the runways. Applying decision rule δ ∈ ∆ splits the arrival
process (Nt)t≥0 into two independent Poisson arrival processes (N I

t )t≥0 and (N II
t )t≥0 on the

corresponding runways (”thinning”). Their intensities are

λI := λ
∑

j∈J
pjδj = λpT δ (5.2)

where p := (pj)j∈J and λII := λ(1 − pT δ). We assume that pT δ ∈ (0, 1), i.e. λI > 0, λII > 0.
Thus, the queues on each of the two runways are independent and behave as before in the single
runway model. The probability that an aircraft arriving at runway I is of type i ∈ J is now
given by

pIi :=
piδi
pT δ

and by pIIi :=
pi(1− δi)
pT (1− δ)

for runway II. pI and pII are the two ’local traffic mixes’. Let Ba
m denote the service time of

the m−th plane on runway a ∈ {I, II}, then we have

EBI
m =

∑

i,j∈J
pIi p

I
jb(i, j) =

δTDδ

(pT δ)2
and EBII

m =
(1− δ)TD(1− δ)

(1− pT δ)2
. (5.3)

The (local) traffic intensities %I and %II on runway I and II, respectively, are hence given by

%I = λ
δTDδ

pT δ
and %II = λ

(1− δ)TD(1− δ)
1− pT δ . (5.4)
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Thus, the following Corollary to Lemma 3.1 gives a condition for the simultaneous stability on
both runways.

5.1 Corollary

Under a routing policy δ = (δi)i∈J ∈ ∆, an arrival rate λ leads to stability on both runways
simultaneously iff

λ < λ̄(δ) := min
{ pT δ

δTDδ
,

pT (1− δ)
(1− δ)TD(1− δ)

}

=
(

max{ pT δ EBI
1 , (1− pT δ) EBII

1 }
)−1

(5.5)

Proof : (3.9) is equivalent to max{%I , %II} < 1. Also, by (5.3)

δT p

δTDδ
= (pT δE BI

1)−1

and similarly for a = II.

In accordance with Subsection 2.5, we call λ̄(δ) as given in (5.5) the ultimate capacity of the
runways under policy δ. It may serve as a measure of performance for δ ∈ ∆. Numerical opti-
mization techniques can be used to determine a strategy δUltCap ∈ ∆ that maximizes δ 7→ λ̄(δ)
over ∆, see Section 6 below.

In the following Lemma, Wn denotes the waiting time of the n−th incoming aircraft, irrespec-
tively of the runway it is routed to, whereas W a

m is the waiting time of the m−th aircraft that
lands on runway a ∈ {I, II} with expected stationary waiting time W a as given in Lemma 3.1.

We now show that the average of Wn exists and is the weighted mean of the averages on the
two runways.

5.2 Lemma

Assume that λ < λ̄(δ). Then

lim
N→∞

1

N

N∑

n=1

Wn = pT δ ·W I + (1− pT δ) ·W II (P− a.s.)

=: G(δ, λ).

(5.6)

Proof : 1. As we assume λa > 0, a ∈ {I, II} we have limk→∞Na
Sk

= ∞ ( a.s.), where N a
Sk

is
the number of customers that have arrived at runway a up to the arrival time Sk of the k−th
customer in the system. But then from (3.6)

lim
k→∞

1

Na
Sk

Na
Sk∑

m=1

W a
m = W a (a.s). (5.7)
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and, as Na
Sk

=
∑k

n=1 1[An=a]

lim
k→∞

Na
Sk

k
= P(A1 = a) =

{
pT δ for a = I;

1− pT δ for a = II;
(a.s.). (5.8)

2. From (5.7) and (5.8) we now obtain

lim
k→∞

1

k

k∑

n=1

Wn = lim
k→∞

1

k

k∑

n=1

(
Wn1{I}(An) + Wn1{II}(An)

)

= lim
k→∞

1

k

( NI
Sk∑

m=1

W I
m +

NII
Sk∑

m=1

W II
m

)

= lim
k→∞

N I
Sk

k
lim
k→∞

1

N I
Sk

NI
Sk∑

m=1

W I
m + lim

k→∞

N II
Sk

k
lim
k→∞

1

N II
Sk

NII
Sk∑

m=1

W II
m

= pT δ W I + (1− pT δ) W II (a.s).

Bounds for G(δ, λ) can be obtained from Lemma 4.2. Using Lemma 3.2 and the approximation
procedure described there, G(δ, λ) may be evaluated numerically for all δ ∈ ∆ and λ < λ̄(δ).
Numerical optimization may then be applied to approximate optimal policies δSplit = δSplit(λ)
that minimize δ 7→ G(δ, λ) under the constraint λ̄(δ) > λ. Further, a maximal λ∗ can be found
such that the waiting time G(δSplit(λ∗), λ∗) stays below a given threshold.

Maximizing the ultimate capacity δ 7→ λ̄(δ) is much easier than minimizing δ 7→ G(δ, λ). The
numerical results given below in Section 6 indicate that a strategy δUltCap that maximizes the
ultimate capacity has waiting times G(δUltCap, λ) that are almost optimal under heavy traffic.

5.2 Coin Flipping

A particularly simple strategy is δCoin ∈ ∆ that flips a coin to assign an aircraft, i.e.

δCoini ≡ 1/2, i ∈ J.

In this case we have for i ∈ J

pIi =
1/2 pi∑
j∈J 1/2 pj

= pi = pIIi .

Also, pT δCoin = 1/2 = 1− pT δCoin and λI = λII = λ/2. Hence we see from (5.3) and (5.4) that

EBI
m = EBII

m = 1TD1 and %I = %II = λ1TD1/2. (5.9)

This leads to the ultimate capacity

λ̄(δCoin) =
2

1TD1
. (5.10)

Hence, strategy δCoin leads to an ultimate capacity that is twice the capacity of the single runway
that was given in (3.9). This is of course the least one would expect from a good assignment.
Simulation results below show, that δCoin is indeed a very bad choice for an assignment strategy
in terms of average waiting times.
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5.3 The Round Robin Policy

Another very simple routing policy is the ’round robin’ assignment δRRobin which assigns aircrafts
nos. 1, 3, 5, . . . to runway I and nos. 2, 4, 6, . . . to runway II.

Locally, on the two runways, we obviously have for m = 1, 2, . . .

T Im = T2(m−1) + T2m−1, T IIm = T2m−1 + T2m and

JIm = J2m−1, JIIm = J2m
(5.11)

where Jn is the type of the n−th aircraft arriving at the airport. Hence, the local arrival streams
on the two runways are again renewal sequences with identical Erlang-2-distributions, but they
are no longer independent of each other. Due to the i.i.d. -property of the types (Jn)n≥1, the
subsequences (J Im)m≥1 and (J IIm )m≥1 share the same distribution, in particular we have under
δRRobin

pIi = pIIi = pi, i ∈ J, and EBI
m = EBII

m = 1TD1 (5.12)

for all m ≥ 1. As the interarrival times T a1 , T
a
2 , . . . are i.i.d. and independent of the stationary

sequence Ba
1 , B

a
2 , . . . , Lemma 3.1 still holds, but as they are no longer Poisson streams, Lemma

3.2 need not hold. From Lemma 3.1 and the above we have that stability on runway a holds iff

1 > %a =
EBa

1

E T a1
=

EBa
1

E (T1 + T2)
= λ

1TD1

2
.

Hence we have the ultimate capacity

λ̄(δRRobin) =
2

1TD1
. (5.13)

This is the same result as for coin flipping policy δCoin, but as the simulation results below
indicate, δRRobin is much better with respect to average waiting times.

Note that for the independent and exponentially distributed service times, δRRobin was shown
to be optimal among all policies that do not take into account any information about the state
of the runways (see [7]). Our numerical results in Section 6 indicate that this is not the case in
our model as δRRobin is outperformed by δUltCap for heavy traffic.

5.4 Join-the-least-load Strategies

In [7] it was also shown that it is a good idea to try to balance the load of the two queues with
respect to the available information on the state of the queues. A natural ’state’ of runway a ∈
{I, II} at the arrival time of the n−th aircraft would be the remaining waiting time (workload)
Uan and the type ζan of the last aircraft waiting on runway a. If the runway is empty, then U a

n is
negative and gives the time that has elapsed since the touch-down of the last aircraft on that
runway.

In [1], the present authors formulated a complete dynamic programming model based on these
states. It is shown there, that if the available information is restricted to the states of the two
runways and nothing is known about the arriving type, then the optimal policy has a join-the-
least-load (JLL) property: if the types at the end of the two queues are identical, then any
optimal policy assigns the n−th aircraft to runway I if U I

n < U IIn and to runway II if U I
n > U IIn .

Surprisingly, this need no longer hold, if the assignment policy is allowed to take the type of the
arriving aircraft into account as is shown in [1] by a counterexample for finite horizon.
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In spite of this negative result, JLL is a useful principle for practical purposes. We define four
different JLL-strategies. Let the information available for the assignment be given as

(uI , iI , uII , iII ; k)

where ua is the present workload on runway a and ia the type of the last aircraft waiting on a
as described above. k is the type of the presently arriving aircraft that has to be assigned to
one of the runways.

We define the pure JLL-strategy δJLL by

δJLL(uI , iI , uII , iII ; k) :=

{
I if uI ≤ uII
II if uI > uII

. (5.14)

The extended JLL-strategy δJLL+ takes into account the type k:

δJLL+(uI , iI , uII , iII ; k) :=

{
I if uI + b(iI , k) ≤ uII + b(iII , k)
II if uI + b(iI , k) > uII + b(iII , k)

. (5.15)

The one-step-look-ahead JLL-strategy δJLL1StepLA looks one step ahead and takes into account
the estimated effect of the next aircraft. Given that the present aircraft of type k is routed
to runway I, and that the next aircraft is routed according to δJLL+, the expected additional
waiting times on runway I would be (for exponentially distributed interarrival times) :

[uI+b(iI , k)]+

+
∑

l∈J
pl

∫ ∞

0
min{[[uI + b(iI , k)]+ − t′ + b(k, l)]+, [uII − t′ + b(iII , l)]+}λe−λt

′
dt′.

(5.16)

This value is replaced by a crude estimate :

Load(I) := [uI + b(iI , k)]+ +min{[[uI + b(iI , k)]+−1/λ+α(k)]+, [uII−1/λ+α(iII)]+} (5.17)

where again α(i) =
∑

j∈J pjb(i, j) for i ∈ J. Similarly, we put

Load(II) := [uII+b(iII , k)]++min{[[uII+b(iII , k)]+−1/λ+α(k)]+, [uI−1/λ+α(iI)]+}. (5.18)

Now, δJLL1StepLA(ui, iI , uII , iII ; k) routes to runway I iff Load(I) < Load(II), i.e. iff

[uI + b(iI , k)]+ + min{[[uI + b(iI , k)]+ + α(k)]+, [uII + α(iII)]+}
< [uII + b(iII , k)]+ + min{[[uII + b(iII , k)]+ + α(k)]+, [uI + α(iI)]+}.

These three strategies turned out to be quite efficient in the simulation, see results below.
Additionally, we introduce δLinear which is another extension of the JLL idea. Under δLinear,
an arriving aircraft of type k is routed to runway I iff

A(iI , iII , k) uI + B(iI , iII , k) < uII . (5.19)

Here, the linear coefficients A,B may depend on the types iI , iII waiting at the end of the queues
and the arriving type k . The values of A(i, j, k), B(i, j, k), i, j, k ∈ {1, 2, 3} have to be chosen
appropriately. In our simulation in the next Section we have determined these values by an
intensive search using genetic algorithms and simulated annealing.
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6 A Numerical Example

To get an idea of how the strategies considered in the preceding Section might work in practice,
we have evaluated their performance for a realistic example. We assumed that there are three
different types of aircraft (’heavy’, ’medium’, ’light’). The matrix of separation times C =
(b(i, j))i,j∈J (in seconds) was extracted from [5]

C =




96 120 144
72 72 96
72 72 72


 .

The type mix p := (0.7, 0.2, 0.1) was also used in [5]. The resulting mean service time is
1TD1 = 96.

6.1 Ultimate Capacity

The coin flipping strategy has an ultimate capacity (see (5.10)) of

λ̄(δCoin) = 2/1TD1 = 2/96 = 0.02083 [aircrafts per second]

and corresponds to a capacity of 75 aircrafts per hour.

Maximizing the ultimate capacity λ̄(δ) as defined in (5.5) over all δ ∈ ∆ = [0, 1]3 numerically
approximately yields

δUltCap := (0.6965, 0, 0), λ̄(δUltCap) = 0.213166 [1/sec]

which corresponds to 76.74 aircrafts per hour. Here, δUltCap sends all medium and light aircrafts
to runway II and 69.65 % of the heavy ones to runway I.

6.2 Average Waiting Time G(δ, λ)

Numerical evaluation and minimization of δ → G(δ, λ), δ ∈ ∆ using the procedure of [13]
described above was done with a standard software tool. Optimal strategies δSplit and their
waiting times for some values of λ are given in the Table 1. For comparison, we also give the
waiting times of the strategy δUltCap for the different values of λ. The values of λ are chosen
such that the corresponding traffic intensity %̂ on a single runway that processes the aircrafts
with doubled speed is increasing to 0.9. Here

%̂ := λ
1TD1

2
= 48 λ.

The average number of aircrafts arriving under λ is given by 3600 λ.

As can be seen, the optimal strategy δSplit(λ) does not change very much with λ and is hardly
better than δUltCap which is much easier to obtain numerically.

6.3 Simulation Results

We compared the performance of different strategies by simulating their average waiting time

limN→∞ 1/N
∑N

n=1Wn. For each value of λ we took the average of N = 100000 random arrivals
and repeated this experiment 20 times. The resulting averages are shown in Figure 6.1 below
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λ 0.0125 0.0145 0.0166 0.01875

δSplit(λ) (7.085, 0.0, 0.0) (7.05, 0.0, 0.0) (7.0, 0.0, 0.0) (7.0, 0.0, 0.0)

G(δSplit(λ), λ) 66.506 99.877 165.325 342.216

G(δUltCap, λ) 66.594 100.015 165.528 342.782

%̂ 0.6 0.7 0.8 0.9

aircraft/h 45 52.1 59.76 67.5

Table 1: Some splitting strategies obtained by numerical optimization

for the coin flipping strategy δCoin, the round robin strategy δRRobin, the optimal splitting
strategy δSplit which was found to be optimal for λ = 0.01875 (see Table 1), the strategy δUltCap

maximizing the ultimate capacity and the join-the-least-load strategies δJLL, δJLL+, δJLL1StepLA

and δLinear. The strategy ’Linear’ used the following (3× 3× 3) coefficient matrices (see (5.19)),
which were determined by heuristic optimization:

A(’heavy, ·, ·) :=




2.074 0.164 1.316

−1.487 −2.408 −2.550

2.209 −0.103 −0.651


 A(’medium’, ·, ·) :=




0.578 0.908 −1.153

−1.966 −3.500 −3.255

2.057 1.320 1.096




A(’light’, ·, ·) :=




1.317 1.579 3.827

0.494 −1.520 0.626

2.595 1.526 1.108




and

B(’heavy, ·, ·) :=




0.825 0.178 0.052

3.583 0.197 0.069

5.228 0.027 0.044


 B(’medium’, ·, ·) :=




0.357 0.026 0.007

1.198 0.168 0.012

1.602 0.275 0.089




B(’light’, ·, ·) :=




0.081 1.148 0.371

4.004 0.486 0.011

4.522 0.015 0.045




The results in Figure 6.1 show that coin flipping is a very bad strategy. The strategies ’UltCap’
and ’Split’ are better, they can hardly be distinguished in the Figure, as was to be expected
by the results of Table 1. However, strategies that use some information on the system as the
JLL-strategies do perform much better. Here, the strategies ’JLL’ and ’RRobin’ perform almost
equally well. Both try to balance the workload on the two runways. Taking the present arrival
into account in ’JLL+’ improves the performance slightly. ’JLL1StepLA’, that estimates the
impact of the next arrival behaves poorly under light traffic and becomes increasingly better
with more arrivals per hour. The best strategy is the linear extension ’Linear’ of JLL.

This tendency is underlined by the results for heavy traffic which are given in Figure 6.2, where
we dropped the strategies ’Split’ and ’JLL’ as they continued to perform almost identically to
the simpler strategies ’UltCap’ and ’RRobin’, respectively.
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Figure 6.1: The simulated average waiting times of the strategies for light and medium traffic

Note that for strategies not in ∆, %̂ > 1 may still lead to a stable system, as can be seen in
Figure 6.2 for a number of aircraft/h of more than 75. Again the strategy ’Linear’ is best. For
increasing traffic intensity, the simple type split performed by ’UltCap’ becomes relatively better
and even beats ’RRobin’ and ’JLL+’ for values %̂ > 0.98 (corresponding to 74 aircraft/h). This
indicates that splitting, i.e. sorting the types outperforms balancing the workloads for heavy
traffic. The strategy ’Linear’ combines both aspects and is clearly better than both.

Similar pictures were obtained for different values of the separation matrix and different type
mixes.

7 Conclusion

Using results from M/SM/1-queueing systems, we have derived the stability condition and the
average waiting time for the single runway. We have shown that an approximation by simple
queuing systems like M/G/1 as it is used in the literature can be quite bad.

For the two runway case we studied several heuristic strategies analytically and experimentally.
It turned out that under medium traffic simple type splitting or short-sighted load balancing
are outperformed by more complex rules.

The model used in this paper may well be used to cover more general scenarios, e.g. if the
runways are to be used for arriving and departing aircrafts. We then have to assume that the
times at which aircrafts are ready to depart are sufficiently random such that the superposition
of arrival times and departure times can still be modeled by a Poisson process. We can then
extend the types of the aircrafts by an additional flag indicating whether this is an arrival or
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Figure 6.2: The simulated average waiting times of the strategies for heavy traffic.

a departure. The appropriate separation times have to be fixed and then the routing may be
treated as above.

In the same way other features of flights that influence the required separation time may be
included, like e.g. in which direction the runway is to be used or into what direction (air
corridor) a departing aircraft will turn.

Our future work will concentrate on more complex routing decisions as it has been started in [1]
and on different types of arrival patterns. Simulation should help to detect structures of optimal
decisions which could be proven analytically.
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