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Abstract

We consider Stochastic Fluid Programs under the average cost criterion. These models
have been introduced in Bauerle (1999) and are of the following type: suppose (Z;) is a
continuous-time Markov chain with finite state space. As long as Z; = z, the dynamics
of the system at time ¢ are given by a linear function b*(a(-)), where a is a control we
have to choose. A convex cost rate function c is given, depending on the state and the
action. We want to control the system in such a way as to minimize the expected average
cost. Such models typically appear in production and telecommunication systems. Using
a vanishing discount approach and a discretization technique, we show that the relative
value function satisfies a HJB equation and derive a verification theorem. Last but not

least we apply our results to manufacturing systems and network problems.
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1 Introduction

In this paper we investigate so-called Stochastic Fluid Programs (SFP) under the average
cost criterion. SFP have been introduced in Béuerle (1999). They consist of an uncon-
trollable stochastic process and a controllable deterministic drift. The stochastic process
is called environment process and influences the dynamics of the system. An informal
description is as follows. Suppose S C IR¥ is the state space of the system and yy € S the
initial state. The environment process (Z;) is assumed to be a continuous-time Markov
chain with finite state space Z. We denote by (7),) the sequence of (partially virtual)
jump times of the uniformized process (Z;). As long as Z; = z, the system evolves ac-
cording to y; = yo + fot b*(as) ds, where a € A := {a : IRy — U | a measurable} is a
control and b% : U — S is a given linear function. We assume U C IR". Controls a € A
have to be chosen at the time points (7},) with the restriction that y, € S for all t > 0.
Moreover, a cost rate function ¢ : S x Z x U — IR, is given and we want to minimize
the average cost of the system. Models of this type appear in particular in manufac-
turing and telecommunications (see e.g. Akella/Kumar (1986), Bilecki/Kumar (1988),
Presman et al. (1995), Rajagopal (1995), Rajagopal et al. (1995), Sethi et al. (1997,
1998), Bauerle/Rieder (1999)). An example is a single-machine, single-product manufac-
turing system with random breakdowns of the machine. In this case (Z;) determines the
production capacity A(z) of the machine. If we have a constant demand rate u for the
product, then given Z; = z, the dynamics of the system is y; = yo—l—fot A(z)as—pds, where
as € U =[0,1] is the production rate we can choose. S = IR in the model with backlog
or S = IR; in a model without backlog. Thus SFPs are a special class of piecewise
deterministic Markov processes (see e.g. Davis (1993)) with one exception: in our model
we allow for constraints on the actions and the process can move along the boundary of
the state space. In the literature there are not many papers about the problem of average
cost for piecewise deterministic Markov processes or related models. Most of them deal
with S-discounted cost functions or as far as the average cost are concerned with special
models. One of the first papers in this area is Bilecki/Kumar (1988). However, their
manufacturing system is very special and the analysis relies on the fact that they are

able to compute the value function explicitely. In Sethi et al. (1997, 1998) we can find



more general - but yet specific production models under the average cost criterion. A
similar model has been investigated by Veatch/Caramanis (1999) who characterize the
optimal control by switching sets. Hordijk/Van der Duyn Schouten (1983) have dealt
with the average cost problem for Markov decision drift processes. In contrast to our
model they allow to control the stochastic jumps and not the deterministic drift. Our
aim now is to derive conditions for the general SFP which imply the validity of a HJB
equation and to derive solution methods. As usual, we use a vanishing discount approach.
The discounted cost problem has been solved in Béauerle (1999) and we cite the results
which we need here.

In Section 2 we will first introduce the mathematical model and give a definition of the
average cost. We approach the problem by looking at the discrete-time problem. The
advantage of this procedure is that we can use the results of Schal (1993) to solve the
average cost problem. The assumptions, which we need to establish our main theorem
go back to Sennott (1989a) who used them for problems with a countable state space.
Thus we can formulate our main theorems (Theorem 4 and 5) in Section 3. Theorem 4
states the validity of an average cost optimality equation in the time-discrete setting. In
Theorem 5 a) we show that the relative value function together with the minimal average
cost satisfy a HJB equation. Part b) is a verification theorem and part c) states that
under some further conditions an average cost optimal feedback rule can be obtained as a
limit of S-discounted optimal decision rules. Since the assumptions of the main theorems
are hard to verify directly, we give in Section 4 sufficient conditions for them. Mainly
these assumptions imply positive Harris-recurrence of the state processes. Finally, in
Section 5 we apply our results to manufacturing systems and scheduling problems in

open multiclass queueing networks.

2 Definition of Average Cost for Stochastic Fluid Programs

SFP have been introduced in Bauerle (1999). Here, we will give the specific formulation
which we will use for the investigation of the average cost problem. Suppose (Z;) is

an irreducible, continuous-time Markov chain with finite state space Z and generator Q).



(Z;) is the environment process which influences the dynamics of the system. We suppose
that (Z;) is given as a uniformized process, i.e. let ¢ > max,cz g, and P = [ + %Q. Then
(Z;) can be constructed from a sequence of jump times (7},), where the random variables
(Ths1—Ty), n € IN are independent and exponentially distributed with parameter ¢ and
from a Markov chain (A,) with transition matrix P as follows. Let Ay := Zy, Tp := 0
and ¢t > 0. Then

Zy=A,, U T,<t<Thi

is in distribution equal to a Markov chain with generator Q. Let S C RX. F:=Sx Z
is called state space of the system. A state x € F is denoted by x = (y, z). At each jump
time point 7T}, a function of the action space A = {a : Ry — U | a measurable} has to
be chosen, depending on the state X7, of the system, where U C IR". For fixed z € Z,

the mapping b* : U — S gives the dynamics of the system. Let a € A, then

t
bi(z,a) = y—i—/o b*(as) ds

together with z is the state of the system at time ¢ under control a, as long as Z; = z.

The set of admissible actions in state x is given by
D(z) :={a€ A| ¢i(x,a) € S,Vt > 0}.

F:={f:FE — A| f measurable } is called the set of decision rules and © = (f,), where
fn € F is called a policy. In applications it is more convenient to deal with feedback
rules. However, in general it is not clear whether the optimal policy can be described
as a feedback rule. A feedback rule ¢ : E — U is a measurable mapping such that the
equation

t
be(m ) =y + / b (s (3, 0), 2)) ds

has a unique solution ¢;(z, ), t > 0 and ¢ (z,p) € S for all £ > 0. Last but not least,
a measurable cost rate function ¢ : E x U — IR is given. For a fixed policy 7 = (f,)
there exist a family of probability measures {P] | x € E} on a measurable space (2, F)

and stochastic processes (X;) = (Y, Z;) and (7)) such that for 0 =Ty < Ty <Th < ...

(tha Zt) = (¢t—Tn (XTnafn(XTn))azTn)a T = fn(XTn)(t) for Tn S t < Tn+1

and



(i) PT(Xo =)= P™(Ty = 0) = 1 for all « € E.
(i) PT(Toir —Tp >t | To, X1y, o, Ty X7,) = €7,
(iii) PT(Xr,,, € B x {2'} | To, X1y, X1, Tus1) =
PZr, 2 1B (11— (X130, fr( X7, ) (T — Ti))) for 2’ € Z and B € B(S).

If the policy 7 is stationary, i.e. # = f°°, we write ow , if ™ can be represented by a

feedback rule ¢ we write P¥. The average cost are now defined in the following way.

Definition 1:

Let a SFP be given and let 7 be a policy. For z € E define

a) the average cost under policy m, starting the system in x by

1 t

Gr(z) =limsup - ET [/ c(Xs,ms) ds] .
t—oo T 0

b) the minimal average cost, starting the system in x by

G(z) = inf Gr(z).

c) = is called average optimal, if it attains the infimum in b) for all z € E.

Now suppose a feedback rule ¢ is given. An important role in the following analysis plays
the extended generator A, of the state process (X;). According to Davis (1993) Theorem
26.14 the domain D(A,) is given by (cf. also Rolski et al. (1999) Theorem 11.2.2)

D(A,) = {v:E — IR|v measurable ,t — v(¢(z,¢),2) is absolutely

continuous for all = € E}

and a version of the extended generator itself is defined for v € D(A,) as

Ago() = lim + (BE0(X0)] = 0(2)) = 5(2) + 4 pew (0ly, #) — 0(a))

where v : E — IR is such that
t ~
Wl 0).2) = v(e) = [ B(gul.0).2) ds.
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In particular it holds for v € D(A,) that

BE(X0] (o) = B¢ [ [ Ao (x)ds). 1)

ForueU(z):={ueU|30>0: y+tb*(u) € S, 0 <t <4} the generator A, is defined
by Ayv(z) = Apv(z) with ¢(y +tb%(u)) = u for 0 < ¢ < §. Note that if v is convex, A,v
is always well-defined, since directional derivatives exist in this case.

In view of the time-discretization which we need in section 3, we define now by

Clo,a) = [ " e ey, a), 7 ap)dt

the expected cost between two jumps of the environment process, when the state after

the last jump is 2 € E and action a € D(x) is taken. The probability
o
Pl Bx{2}) = qpas [ g (dulo,0)) dt
0

gives the one-step probability of getting from state 2z € E under action ¢ € D(z) in a

state in B x {2’} after one transition of the environment process.

3 A HJB Equation

In this section we will prove the validity of an average cost optimality equation in discrete
time, the validity of a HJB equation and a verification theorem. We use the vanishing
discount approach to derive our results. Therefore, we define for an interest rate g >
0,z e E
o
VA(x) = inf ET [ / e Ple(Xy, my) dt]
™ 0
as the minimal expected discounted cost, starting in . It has been shown in Bauerle

(1999) that under the following Assumption 1 the S-discounted cost optimality equation
holds, i.e. for all xt €

VP(z) = min l/ooo e~ (ot {C(¢t(x,a),z,at) +qy poaV’ (¢t(:1:,a),z')} dt] (2)

aeD(zx) B

and a (-discounted stationary optimal policy exists. (Indeed, the assumptions presented

in Bauerle (1999) are even weaker).



Assumption 1:

(i) S=R" or S = R and U is convex and compact w.r.t. the usual Euclidian norm.
(ii) w > b*(u) is linear, (y,u) — c(y, z,u) is convex and continuous for all z € Z.

iii) For all B > 0, there exists a policy 77 such that V2 (z) < oo for all z € E and if
7['5

S = IRE, VF(y,2) is increasing in y.

For fixed ¢ € E we will now define
W) =VP(@)=VP() and p(B)=BVP(),

where h? is called relative value function. Under the following assumptions we will derive
a HJB equation and a verification theorem. Assumption 2 has essentially been established

by Sennott (1989a) for Markov decision processes with a countable state space.

Assumption 2:

(i) There exists a policy m such that G, (z) < oo for all z € E.
(i) There exist constants L € IR, # > 0 and an upper semicontinuous function M :
E — IR, with
L < (z) < M(x)

forallz € E and 0 < 8 < f and [ M(2')p(z,a;dz’) < oo for all z € E, a € D(z).

In the sequel we summarize auxiliary statements before proving our main theorems. The
following Tauber Theorem will be a useful tool. A version of it can be found e.g. in

Hordijk/Van der Duyn Schouten (1983) (Lemma 4.5).

Theorem 1:

For all policies 7 and # € E we obtain: limsupg, BV (z) < Gr(z).

Applying the Tauber Theorem we immediately obtain the following lemma (cf. Herndndez-

Lerma/Lasserre (1996) sec.5).



Lemma 2:

Suppose Assumption 2 is valid.

a) There exists a sequence of interest rates (3, | 0 such that for all z € E
0< lim B,V (2) = lirgfouw(ﬁ) < 0.
b) For all policies m and = € E it holds: limsupg, p(8) < Gr(z).

Lemma 3:

Suppose that Assumptions 1 and 2 hold.

a) The relative value functions h?(y, z) are convex in y for all z € Z.

b) Every sequence (3, | 0 has a further subsequence f3,,, | 0 such that h%m (z) — h(z)

uniform on compact sets and h(y, z) is convex in y for all z € Z.

Proof: Part a) follows from Bauerle (1999) Lemma 5. For part b) we show that for
every sequence 3, | 0, the sequence (hﬁ") is uniformly locally Lipschitz-continuous, i.e.
for z € Z and every y,y' € S with ||y||,||'|| < r, there exists a constant C = C(z,r)

independent of 8 such that
B (y, 2) = (', 2)] < Clly — /||

for all 0 < § < f. This implies that the sequence (h®") is equicontinuous. Since
hP(z) < M(z) for 8 small enough, the assertion follows with the Arzela-Ascoli Theorem.
The convexity of h follows directly from the convexity of %, B > 0.
Now fix z € Z. Suppose first that S = RE and let 3,9/ € S with [jy|,||%|| < r and
€ > 0. Define

. €

Ji=y+ (-9

ly — ¢/l

Then [|g]] < |ly]l + € < r + e. Since M is upper semicontinuous we have that for all

gl <7 +eand 0 < B < B:

~ ~

|hﬁ(§,z)| < max M(y,z) =:C =C(z,r +¢).
llyl|<r—+e



Moreover, since

ly =o'l . £ ,

y = g y
ly =yl +¢ ly =yl +¢

and due to the convexity of h® we obtain

Ko (y, z)
and therefore
17 (y,2) =P (y, 2)| < i

for all 0 < B < 6.

Ty =yl +e

ly — o'l R £
| A | N ) = KB
( ,Z) ||y_y,|| +e (y,Z)

ly =yl 5,- B, ly =yl .~ _ 2C ,
T |h7(9,2) =7 (y', 2)| £ 7————=2C < —|ly =¥l
y—yll+e I €

y—yll+e

If S = IRY we proceed as follows. Define an extension of h¥ on IR¥ as: ho(y,z) =

hP(y v 0,z), where y V4 denotes the componentwise maximum of y and 3 € IR, It

obviously holds that h?(y, z) = hP(y, z) for ally € S and hP(y, z) is increasing in y due to

Assumption 1. The functions y — h° (y, z) are again convex on IR¥ since for y,y' € IR¥

and A € [0, 1]:

WOy +1-Ny,2) <

<

ROy V0)+ (1 =Ny V0),2) =
WP My v 0) + (1= XNy V0),2) <

APy V0, 2) + (1= NP (Y v 0,2) = MNPy, 2) + (1 = NP (Y, 2)

As before we can conclude that (h?) is equicontinuous on IR¥ which implies that (h?) is

equicontinuous on S and the assertion follows. O

Now we are able to prove the main theorems of this section.

Theorem 4: (Average cost optimality equation)

Suppose that Assumptions 1 and 2 hold. Then

a) There exists a constant p > 0 and a convex function h : E — IR such that the

average cost optimality equation holds, i.e. for all x € £

C(x,a)—l—/Eh(ac')p(ac,a;dx') .

(3)



b) There exists a minimizer f° of (3) (i.e. f°(z) attains the minimum on the right-

hand-side of (3) for 2z € E) and a sequence [, | 0 such that
flw) = lim_fo(z),

where f#m is an optimal decision rule in the 8,,-discounted model.

Proof: Define p = limsupg, p(3) > 0 which is finite because of Lemma 2 a). Take f3,, as
the subsequence such that p = lim,, o, p(5y). From Lemma 3 we know that there exists

a further subsequence (for convenience still denoted by /,,) such that

h(z) := lim AP (z)

n—o0

uniform on compact sets and A is convex. Using the validity of the S-discounted cost

optimality equation we proceed as in Schél (1993) Theorem 3.8 to obtain

B+h()>C:1:f —)—/h (7);dz’) > mln[ xa-i—/h p(z,a;d ')
q a€D

where f0(z) is an accumulation point of a certain sequence {f%(z)} with 3, | 0 for
m — o0o. On the other hand we have from the discounted optimality equation for all

x € E,a € D(x)

@4—}@6”(:5) = min [/oo ~(Bnto)t { (e(x,a), 2,0 +quzz W (i, a), 2 )} dt]

a€D(z) o

< C(z,a) +/ ~(Bnta) qZp WP (i, a), 2') dt

Taking n — oo we obtain with Assumption 2 (ii) and Dominated Convergence
Ly h(z) < C(x,a) +/ h(z")p(x,a;d x")
q E

for all z € E, a € D(z). Altogether we have now shown equation (3) and that the

decision rule f° attains the minimum on the right-hand-side. O

Theorem 5: (HJB equation)

Suppose that Assumptions 1 and 2 hold. Then

10



a) p>0and h: E — IR of Theorem 4 satisfy the following HJB equation for all x € E

p= ug{l}a) le(z,u) + Ayh(z)]. (4)

b) Every feedback rule ¢ which satisfies
p > c(@, () + Aph(z)

for all z € E where t — h(¢(z, ), z) is differentiable at t = 0, is average optimal

and p are the minimal average cost.

c¢) Suppose fO of Theorem 4 b) is given by a feedback rule ©° and either c(z,u) is
independent of u or the set of discontinuity points of ¢ — ©°(3?) is of measure zero.

Then ¢° is average optimal and p are the minimal average cost.

Proof: For z € E,u € U let us define G(z,u) := c(x,u) + q¢> s p.orh(y, 2'). Written in a

slightly different form, equation (3) reads

h(z) = min) {/000 e (G (ps(x,a), ar) — p)dt]

aeD(z

_ /0‘”6qt(th(m,so"),so“wt(m,so“)))—p)dt-

With the usual arguments we can show that the Bellman principle holds, i.e. for T > 0

T
h(z) = min) l/ﬂ e (G (¢(x,a),ar) — p)dt + eth(¢T(:Jc,a),z)] .

a€D(z

Thus, we obtain for a € D(z) with a; =u, 0 <t <T
1 T

1 (h(ac) - e*th(¢T(gc,a),z)) <z

T e "(G(¢y(z,a),u) — p)dt.

Note that G(z,u) is continuous in y (cf. Lemma 3) and since h(y,z) is convex in y,

Ayh(z) is well-defined. Thus, we obtain with 7' — 0
p < c(z,u) + Ayh(z).

Therefore, p < min,ecy(y) [e(z,u) + Ayh(r)]. Now suppose for e > 0, p < c(z,u) +
Auh(z) + ¢ for all w € U(z). Thus for any a € D(z) due to the continuity of the

11



right-hand-side expression in 2 (note that the convexity of h implies that the directional

derivatives are continuous, see Theorem 25.4 in Rockafellar (1972)), it holds that
p< c(¢t($7 a’)a at) + Aath(¢t(x7 a’)a Z) + EI
for ¢ small enough (t < T) and ¢ > 0 . Thus, we get

[ e G a),) )it + T higr(aa),2) >

> /OT e~ (qh(pu(z, ), 2) — hiy, (B(2,a), 2)dt + e h(¢r(z,a),2) + " = h(z) + £,
where Rl (z) := limyo 1(h(y + tb(u),2) — h(y,2)) is the directional derivative along
direction b(u) and €” > 0. The last equation follows from the Dynkin formula for
convex functions (cf. Sethi/Zhang (1994), p.74). Taking the infimum over all a €
D(z) gives h(z) > h(z). Hence, our assumption was false and we obtain now p =
min,crr(y) [¢(7, u) + Ayh(z)]. For part b) suppose a feedback rule ¢ is given which satis-

fies p > c(z, () + Ayh(z). Integrating over ¢ from 0 to T gives us
T T
o7 2 [ el o)t + [ Ah(X)de,
0 0

where (X;) is the state process induced by ¢. Hence with Assumption 2 and formula (1)

we obtain
1 T 1 1
p > fE;f [/0 c( Xy, p(Xy))dt +5E}0[h(XT)] - fh(ﬂﬂ) >
> Ly [ / " (X p(X)dt| + =~ L)
T 0 T T

Taking limsupy_, ., yields p > G, (). Since we always have p < G,(z) due to Lemma
2 the assertion follows. For part c¢) we show first in the same way as part a) that
p = c(z,u) + Ayoh(z) for almost all z € E which lie on the path generated by ¢°. Part
b) implies then the result. 0

4 Verifying the Assumptions

Assumption 2 is often difficult to verify directly. However, we can give some sufficient
conditions which will prove extremely useful in our applications. For the next lemma

suppose that ¢ > 1, otherwise replace ¢ by ¢ + 1.

12



Lemma 6:
Suppose that Assumption 1 is valid and that there exists a decision rule f € F' and a

state ¢ € E with
Te
E! U c(Xt,m)dt} < o0 (5)
0

for all z € E, where 7¢ = inf{t > 0| X; = ¢}. Then there exist a constant 3 > 0 and a
function M : E — IR, such that for allz € E and 0 < 8 < f8

W (z) = VP(x) — VP(¢) < M(x)

and Gy(z) < oo forall z € E.

Proof: Let 7% = (f?, f5,...) be the optimal stationary policy for the 8-discounted model
and denote by (Wf ) the process of the optimal control, starting in £. (m) is the process

of the control starting in z under policy 7. Now define for ¢ > 0

m Lift <7

=1
Rl

71'?_7_6 Jift > 7

For arbitrary 8 > 0 we obtain for x € E
e
Vi) < Vi(o) < BL | [ elXim) dt] +VA(©)
0

Hence we can define M (z) := EJf [ o8 o Xy, mp) dt] which is finite due to our assumption.

From Theorems 4.3, 7.1 in Meyn/Tweedie (1993) we obtain G f(x) < oco. 0

The assumption that L < hP(z) for 0 < 8 < B, = € E is clearly fulfilled, if we have
monotonicity, i.e. VP(z) > VA(¢) for all z € E and 0 < 8 < . Another important case

where this condition is fulfilled emerges when the cost rate function is coercive (see e.g.

Kitaev/Rykov (1995)).

Definition 2:
The cost rate function ¢: E x U — IR, will be called coercive when the set B, := {z €

E | infycp c(z,u) <r} is compact for all r € R,

13



Remark 1:
Since c¢ is continuous and U compact (Assumption 1), we obtain that z — miny,cy c(z, u)
is continuous and hence B, is closed. Therefore, under Assumption 1, a growth condition

on c like the one in Assumption 3 is sufficient for the coercivity of c.

Assumption 3:

There exist constants £ € IN and C1,Cy € IR, such that forall z€ Zyju €U andy € S

C(yazau) > CIHka - CZ‘

Lemma 7:

Suppose that Assumptions 1 and 2 (i) hold and let 8 > 0. Assume that there exists an
upper semicontinuous function M : E — IRy such that —M(z) < h?(z) < M(z) for all
z € E and 0 < 8 < B. If the cost rate function satisfies Assumption 3 , then there exists

a constant L € IR such that forallz € E, 0 < 8 < f8

L < hP(x).

The proof uses ideas of Sennott (1989b) Proposition 3.

Proof: Define p = limsupg|op(8). Note that p is finite due to Assumption 2 (i) and
Theorem 1. Choose r > max{p + €, min, c¢({,u)} for € > 0. Hence ¢ € B,. Since B, is
compact, M upper semicontinuous and V? lower semicontinuous due to our assumptions

(cf. Bauerle (1999) Theorem 3) we can define
—L=max M(z), VP’)= min V().

TEB, rEB,

From our assumptions we have
—M(z) <V(xz) = VP(£) < M(x)
for all 0 < 8 < B and z € E. Hence for all z € B,
BV (z) > B (~M(2) +VP(©)) > B (L+VP(©)) (6)

14



BVP () < B (M=) +VP(©) < B(-L+VP(©))
and limsupg o B(—L + VB (€)) = p. Therefore, we can conclude that there exists a > 0
such that fVP(z) < p+eforallz € B,, 0 < 8 < B. In particular V5 (2#) < p + € if
0 < B < . Now suppose © ¢ B, and 0 < 8 < § and define 7 := inf{t > 0 | X; € B,}

where (X;) is the state process induced by the S-discounted optimal policy wf . Thus

V@) > B { /0 eﬁtc(Xt,wtﬁ)dt—i-eﬁTVB(mﬁ)]
_ e B

1 T
7; + e BTYB(2P)

Notice, that the statement is true even if 7 = 0o. Hence we have for x € B, from (6)

that VA (z) — VP(¢) > L and for = ¢ B,

B’

T

Y

(p+e) > VB (zP).

VA(z) —VFP(€) > VP(a?) - VF() > L

which implies the statement. O

5 Applications

In this section we apply our results to a multi-product manufacturing system and multi-

class queueing networks.

A) Manufacturing systems

The example is taken from Sethi et al. (1998) (cf. also Sethi/Zhang (1994)). We have a
number of parallel machines for manufacturing which are subject to random breakdown
and repair. Each machine is capable of producing any of K different products. The vector
y = (y1,...,yx) gives the inventory/backlog of each product and we assume S = RX.
Az) € R4,z € Z gives the production capacity of the system that is available. The
vector u € U = {u € [0,1]¥ | E]K:1 uj < 1} gives the percentages of the production
capacity that are assigned to each of the products. If we denote by u € IRf the constant

demand rate, the dynamics of the system are given by
b*(u) = M2)u — p.
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The function ¢ : IR?) — IR, denotes the surplus (inventory/backlog) and production
cost. In order to apply our results, we have to impose the following assumption on the

cost rate function

Assumption 4:

(i) (y,u) — c(y, z,u) is convex for all z € Z.

(ii) there exist constants k € IN and Cy € IR such that for all z € Z, u,u’ € U and

y,y' €8
le(y, z,u) — et/ z,4')| < Co(L+ |yl + Iy IF) (ly = ¥/l + [lu — o).

(iii) there exist constants [ € IN and C),Cy € IRy such that for all z € Z, u € U and
yes
C(y7 Z,U) > CIHyHZ — .

Moreover, we need the following stability condition

Assumption 5:
Suppose that v is the stationary distribution of the environment process (Z;), i.e. v > 0

satisfies vQ) =0, Y., v, = 1. Then we assume ), A\(z)v, > E]K:l [hj.

It is easy to see that in this model our Assumption 1 is fulfilled. Since the state trajec-
tory can grow at most linear and the cost rate function is bounded by a polynom (see
Assumption 4 (iii)), the average cost as well as V,?(x) are finite for all policies. In Sethi
et al. (1998) Theorem 3 (cf. also Sethi et al. (1997) Theorem 3.3) it has been shown that
with £ = (0,0) € E (w.l.o.g. suppose 0 € Z) we have

|h7(2)] < Co(L + lyll**?) =: M(y)

for all x € E,5 > 0, where Cy € IR, is independent of 3. Since the assumptions of
Remark 1 are fulfilled, we obtain with Lemma 7 that h®(z) > L. Hence altogether
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Assumption 2 is fulfilled and Theorems 4 and 5 are valid.

Let us finally look at the special case of a one-product system, i.e. we have K = 1. In
this case it is possible to show that a threshold policy is optimal (see e.g. Sethi et al.
(1997)). In addition we show that the optimal threshold is a limit of thresholds which
are optimal in the discounted models as the discount factor approaches zero. We need

one further assumption:

Assumption 6:

The cost rate function is of the form c(y, z,u) = ¢1(y) + éu with ¢ € RE.

For the (-discounted problem it is possible to show (cf. Sethi et al. (1997)) that the
optimal policy is given by a threshold feedback control ¢? : E — U, i.e. there exists a
function S? : Z — IR such that

1, y < Sﬂ(z)
¢¥(z) = ¢ min{l, 75}, y=5°(2)
0, y > S8 (2).

If |Z] = 2, the function S%(z) can be computed explicitely. This has been done in
Akella/Kumar (1986). For arbitrary Z it is possible to derive monotonicity properties of
S8(2). In Sethi/Zhang (1994) one finds statements if (Z;) is a birth-and-death process.
For a more general concept using stochastic orderings, see Rajagopal et al. (1995). In

the average cost case we obtain now

Corollary 8:
Assume further that K = 1 and that assumptions 4, 5 and 6 hold. Then the optimal
policy in the c-average cost model is given by a threshold feedback control ¢, i.e. there

exists a function S : Z — IR such that

1, y < S(2)
plz) = min{l, 35}, y=5(2)
0, y > S(2).
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Moreover, there exists a sequence 3, — 0 such that S#7(z) — S(z) for z € Z, where

SPm is the optimal threshold function in the S,,-discounted model.

Proof: We can choose in the proof of Theorem 4 a subsequence {f,,, } of {#,} such that
SBrm (2) — S(z) for all z € Z and m — oo (cf. also Schiil (1993) section 4). Next we have
to verify that f»m () — f(z) for m — oo, where f is constructed from a feedback control
¢ with threshold function S. Theorem 5 then implies the statement. For the convergence
result fPmm () is interpreted as an element in R := {r : R, — IP(U) | r measurable},
where IP(U) is the set of all probability measures on U. To prove convergence r, — T,

for r,,r € R we have to show that

Amﬁwmm%mﬁ%AmLMWmmwﬁ

for all measurable functions ¢ : IR, X U — IR such that u +— (¢, ) is continuous for all
t >0 and [ sup,crr [1(t, u)|dt < oo. In our case this makes it necessary to distinguish
between several cases. We will only look at the case A(z) > p and y > S(z) € IR. We

have to show

Amﬁ¢@wﬁm@WJMﬁeA®L¢QMﬂMQMMt

for all measurable functions ¢ with the preceding properties. W.l.0.g. suppose y — S(z) >
2e for € > 0. Choose Ny(€) big enough such that for all m > Ny(e):

|57 (2) = S(2)| < e

and thus y > §%m (z) for all m > Ny(e). Hence we obtain with t,,(z) := (y— S5 (2))/p

o [t - [T o [T i <
0 , i) A2) 0 ’ tm(z)  Az)| T
tm(w) tm(m) ,U
< / |¢(ta0)|dt+/ |(t, —)|dt — 0 for m — oo,
i(z) i() A2)
since t,,(x) — t(x) for m — oo which implies the statement. 0
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B) Stochastic multiclass fluid networks

A special case of SFPs are stochastic multiclass fluid networks (see e.g. Dai (1995)). They
consist of J service stations, each with a single server and K > J fluid classes. C(j) C
{1,...,K} are the fluid classes which have to be processed at station j. The external
inflow rate of class k at time ¢ is given by ay(Z;), where (Z;) is our environment process.
We suppose that (Z;) is such that (a(Z;)) is an irreducible continuous-time Markov
chain itself and the processes (a1(Z;)),. .., (ax(Z;)) are stochastically independent of
each other. This is e.g. fulfilled, if (Z;) = (Z1(t),..., Zk(t)), where (Z1(¢)),...,(Zk(t))
are independent and ay(Z;) = ax(Zk(t)). The state process (Y;) = (Yi(¢),...,Yk(t))
describes the buffer contents of the different classes over time. We suppose that S =
ZRf . The set U consists now of all possible server allocations to the classes, i.e. U :=
{u € [0,1]% | Ykecyuk <1, j =1,...,J}. For u € U, uy gives the fraction of the
responsible server which is assigned to class k. The potential service rate of class k is
i > 0. Thus, if the server allocation u € U is chosen, the outflow rate of class k is
prug. A fraction pg; of the fluid which is leaving class k is routed to class i. Therefore,
Zszl Priltpug 18 the internal inflow rate of class 7. Throughout we will suppose that
the routing matrix P = (pg;) is transient, i.e. P" — 0 for n — oo. This implies in
particular that (I — P)~! =322/ P" > 0, where I is the identity matrix. If we denote
A :=diag(p)(I — P), the drift of the network is given by

b*(u) = a(z) — uA.

For the cost rate function we take linear holding cost, i.e. ¢(z,u) = 2,5:1 cpyr with
¢ > 0. The optimization problem is now to find a server allocation such that the
average holding cost in the system are minimized. We assume that the network is such
that V#(y, z) is increasing in y. We will show that Assumptions 1 and 2 of Section 3 are
satisfied for this model. Assumption 1 is obviously fulfilled. It is easy to see that every
policy 7 satisfies V.% () < oo for all z € E, > 0. As far as Assumption 2 is concerned,
we need a further stability condition. Suppose that A(z) = (A1(2),...,Ak(z)) is the
nominal total arrival rate to the different classes, i.e. A(z) is the solution of the equation

Xi(2) = a;(2) + 2K, M (2)pri. In matrix notation this gives A(z) = a(z) + A(z)P. Since
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P is transient we obtain

AMz) = a(z)(I — P)~".

The traffic intensity p;(z) at station j is then defined by

pi(z) = > Au(z)

kec(j) Mk

We will now assume that the usual traffic conditions are satisfied on average, i.e.

Assumption 7:
Suppose that v is the stationary distribution of the environment process (Z;). Then we

assume y_ .., pj(2)v, <lforj=1,...,J.

W.l.o.g. we assume that 0 € Z and a4(0) < >, c v.0p(2), k=1,...,K. Hence (0,0) €

E is the state, where all buffers are empty and the environment process is in state 0.

Lemma 9:

Suppose that Assumption 7 is valid. Then there exists a decision rule f € F such that

Ef

x

7(0,0) 2
/ Yydt| < C(1+ |ly)?)
0

for all z € E, where C' is independent of y.

Proof: Since Y; can grow at most linear, there exists a constant ¢ € IR, such that

7(0,0) 7(0,0)
Eg[/ OOCY}dt} < B! {/ °°ay+5tdt}
0 0

1.
= Bl [T(0,0)] + §CE£ [7(20,0)]-

Thus, we have to show that E{[T(O,O)] < C@1+ ||ly||>) and E{[T(QO,O)] < C(1+ ||ly||>). The
first inequality has been shown in Bauerle (2000) Theorem 6. For the second inequality
we proceed in the same way. The proof contains ideas of Sethi et al. (1997), Lemma 3.1.
From Béuerle (2000) we know that under the stability assumption, there exists a decision

rule f € F such that Ef[r2] < Co(1+|jy||?) for all z € E, where 7, = inf{t > 0| Y; = 0}.
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Let Z:={z€ Z | ay(z) <X, cyvrar(?'), k=1,...,K}. Note that Z # () since 0 € Z.

Let us now define the following sequence of stopping times:
oy:=inf{t >n |72 ¢ Z}

T := inf{t > o, | Y(¢) = 0}

op=nf{t >, | Z ¢ Z}.

Then 0 <71 <01 <...<7, <o,and Y, =0 for t € [r,,0), n € IN. Moreover, since

(Z;) is positive recurrent

(1) P{(Zs #0, 1, <s<o0,) <§<1,forallnec IN.

(ii) Ef[(on — )% < Cy, foralln € IN, z € E.
From (i) we conclude that

P{(T(o,o) >0,) = P;Z(T(o,o) > Opy- 5 T(0,0) > 01) = P{(T(O,O) > o | T(0,0) > On—1)

e P{(T(O,O) > 02 | T(0,0) > O'l)Pa{(T(O,O) >o0p) <"

From (ii), the Cauchy Schwarz inequality and max, E(f0 »

)[(Tn - Un—1)2] < Oy we get
El2)=El(n+ (o1 —1) +(m—01) + ... + (1 — 00_1))?] < n2C3(1 + ||y||?)

where C} is independent of z and n. Altogether we obtain now

00 00 Tn
Bl = 2 /0 Pl (rpgy > ) dt =2 B / tP (ri0.0) > 1) dt| <
n=1 Tn—1
(o0} Tn
< Elrf]+2) E] [/ tPl(70,0) > On2) dt| <
n=2 Tn—1
0
< G+ Iyl + Y "Bl [ — ] <
n=2
0
< Co(L+llyll®) + D Can®" (1 + [lyl1?) < Cs5(1 + [lylI*)
n=2
and the assertion follows. O

Thus, according to Lemma 7 we get the upper bound for A% (z) = V#(z) — V#(0,0) and
that G¢(z) < co. The lower bound follows since the discounted value functions V7 (y, 2)

are increasing in y. In particular V5 (y,z) > V5(0, 2).
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Altogether we have shown that the assumptions of Section 3 are valid under the stability
Assumption 7 for this model. Hence, there exists in particular an average optimal deci-
sion rule. Moreover, it has been shown in Bauerle/Rieder (2000) and Béuerle/Stidham
(2000) that for the single-server model, i.e. J = 1 a priority index rule minimizes the
B-discounted cost. More precisely, it is possible to compute indices I, k =1,..., K for
each class such that it is optimal to drain the buffers according to the priority given by
the indices, from highest to smallest. The indices I; are independent of the interest rate
B. Thus, we obtain with Theorem 4 ¢) that the index rule is also optimal for the average

cost problem.
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