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Referent: Prof. Dr. Rudi Studer

Korreferent: Prof. Dr. Sebastian Rudolph
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Abstract

This thesis presents Distributional Tensor Space Model (DTSM) of natural

language semantics.

Vector-based distributional models of semantics have proven useful and ad-

equate in a variety of natural language processing tasks, however most of

them lack at least one of the following two key requirements: (1) sensitivity

to structural information such as word order and (2) linguistically justified

operations for semantic composition. Especially the problem of composi-

tionality of natural language has been gaining in importance in the scientific

community since 2008.

The currently predominant methods are based on matrices, that is 2nd-order

tensors. We propose a novel approach that offers a potential of integrat-

ing both aspects by employing 3d-order tensors that accounts for order-

dependent word contexts and assigns to words characteristic matrices such

that semantic composition can be realized in a linguistically and cognitively

plausible way.

The DTSM was evaluated on the existing reference datasets as well as on the

self-initiated benchmarks that were provided for competitions at workshops

co-located with top conferences in computational linguistics. The proposed

model achieves state-of-the-art results for important tasks of linguistic se-

mantics by using a relatively small text corpus, without any sophisticated

preprocessing and ambitious parameter optimization.



Zusammenfassung

In der Dissertation wird ein distributionelles tensorbasiertes Modell für die

Semantik natürlicher Sprache vorgestellt.

Distributionelle Semantik ist einer der erfolgreichsten Formalismen der

Sprachsemantik. Dabei wurden mindestens zwei Probleme solcher Modelle

bis vor kurzem grötenteils ignoriert: die Wichtigkeit der Wortreihenfolge im

Text sowie die Notwendigkeit, Kompositionalität der Sprache linguistisch

plausibel abzubilden. Vor allem der letztere Aspekt der Kompositionalität

wird erst seit circa 2008 in der Forschungsgemeinschaft als wissenschaftliche

Herausforderung zunehmend anerkannt.

Die zurzeit dominierenden Verfahren bauen auf Matrizen, d.h. Tensoren

vom Grad 2, auf. In der vorliegenden Arbeit wird ein Modell vorgeschlagen,

welches eine Lösung für beide Problempunkte der distributionellen Seman-

tik anbietet. Hierfür wird das Konzept der Tensor-Räume (mit Tensoren

vom Grad 3) verwendet, welche es erlauben, sowohl die Reihenfolge der

Wörter im Text im Modell zu beachten, als auch eine Matrix-basierte distri-

butionelle Wortrepräsentation zu gewinnen. Matrizen anstelle von Vektoren

als Wortrepräsentationsformalismus bietet uns die Möglichkeit, die Kompo-

sitionalität der Sprache linguistisch und kognitiv adäquat darzustellen.

Das Modell wurde anhand existierender Referenzdatensätze sowie mit Hilfe

der selbst initiierten Benchmarks evaluiert und erzielte Resultate, die dem

gegenwärtigen ”state of the art” entsprechen; mit dem Vorteil dass der en-

twickelte Ansatz keine anspruchsvolle Vorverarbeitung erfordert, auf einem

kleinen Text-Corpus basiert und in der Lage ist, die meisten Aufgaben der

linguistischen Semantik anhand von einmal erzeugten Modellen zu bewälti-

gen, ohne weitere Parameteroptimierung.
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1

Introduction

Remember ”The Hitchhiker’s Guide to the Galaxy”, where a supercomputer with a

profound name ”Deep Thought” was built to calculate ”the Answer to Life, the Uni-

verse, and Everything”. It took the computer 7,5 million years to respond with just

one word - ”42”. Seeing the human’s dissatisfaction with the answer, the computer

wondered suddenly, what the question was actually about. Nowadays, computers need

only fractions of seconds to respond to our inquiries, and we turn to search engines

to find out any kind of information ranging from business to private questions, be it

the newest events in politics, the opinions on the last election campaign, the weather

tomorrow or even how to dress for the New Year’s party.

The speed of computers has increased immensely and it is not necessary to wait

for millions of years to get any information, but the quality of automatically returned

information in natural language still leaves much to be desired.

One of the most prominent problems on the way for the computer to pass the

”Turing Test”1 is the problem of natural language representation, i.e., how English,

German or any other language in the world can be described in such a way, that a

computer can interpret it and the semantics of corresponding languages is correctly

reflected in such a representation. Currently it primarily concerns written language, as

we are dealing with huge amounts of textual information available in the digital form.

1The famous Turing test, proposed by Alan Turing in 1950, is about evaluating machine intelligence

by means of parallel communcation with a machine and a human in written natural language. When a

human cannot differentiate between a human and a machine answer, then the machine has passed the

Turing intelligence test.

1



1. INTRODUCTION

Vector space models (VSM) [Salton et al., 1975] of meaning are arguably one of

the most successful paradigms in computational meaning modeling. VSM embody

the distributional hypothesis of meaning, best described by the famous slogan widely

attributed to the English linguist John Rupert Firth [1957] that ”a word is known

by the company it keeps”.

However, this idea was first mentioned as early as 1884 by Gottlob Frege [Frege,

1884]; and it is known as the context principle. Frege suggested that one should

”never ask for the meaning of a word in isolation, but only in the context of a sentence”.

Following Gottlob Frege, the context principle is manifested in early works of

Ludwig Wittgenstein, an Austrian-British philosopher and logician, who recapitulates

that ”an expression has meaning only in a proposition” [Wittgenstein, 1922, 1953].

Almost at the same time, a Russian-American structural linguist and mathematical

syntactician Zellig Sabbettai Harris suggests that the degree of semantic similarity

between two linguistic expressionsA andB is a function of the similarity of the linguistic

contexts in which A and B can appear [Harris, 1954].

These ideas experienced revival through vector space models with the development

of computer science and especially information retrieval [Salton et al., 1975; Deerwester

et al., 1990].

The second birth of distributional semantics in the original linguistic sense was due

to the works of Schütze [1992, 1993, 1998] in computational linguistics as well as the

work of Landauer and Dumais [1997] in cognitive psychology.

Thereafter, the vector space model and its variations, such as Word Space Models

[Schütze, 1993], Hyperspace Analogue to Language [Lund and Burgess, 1996], or Latent

Semantic Analysis [Deerwester et al., 1990], have become the mainstream for meaning

representation in natural language processing.

Later, the idea was taken up in cognitive science by Peter Gärdenfors [Gärdenfors,

2004], where conceptual spaces based on vector space models were suggested as a

bridge between formal and connectionist approaches for human concept formation.

Vector Space Model (VSM). The meaning of a word in VSM is defined by contexts

in which it occurs in a given text collection. The contexts can be either local, e.g., just

the word’s immediate neighbours or the sentence it occurs in, or global, e.g., a paragraph
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[Landauer and Dumais, 1997] or a whole document like a Wikipedia article [Gabrilovich

and Markovitch, 2007].

Typically, a global, i.e. a bigger, context is used for modeling words’ meanings

in information retrieval. To do this, a term-document matrix is constructed and the

meaning of the terms is defined by the documents they co-occur in. Table 1.1 shows

an example of such a space that consists of three documents and 5 key terms.

document1 document2 document3

raining 2 0 1

cats 2 2 0

dogs 2 3 0

animals 0 1 0

weather 1 0 1

Table 1.1: Vector Space Model (VSM)

Thus, if you would be looking for information about ”cats”, you would obtain links

to the documents 1 and 2; and if a search engine would offer you related keywords, it

may suggest ”dogs” as both words co-occur in the same documents.

In computational psychology, Latent Semantic Analysis (LSA) [Deerwester et al.,

1990] is an extension of a vector space model that uses a word-by-document matrix,

like above, and additionally techniques for dimensionality reduction.

In contrast, research in computational linguistics concentrated mostly on modelling

local contexts in that word-by-word matrices are built from text collections. The most

famous examples of the latter are Hyperspace Analogue to Language (HAL) [Lund and

Burgess, 1996] and Word Space Model (WSM) [Schütze, 1993].

Here, the meaning of a word is modelled as an n-dimensional vector, where the

dimensions are defined by the co-occurring words within a predefined context window

(w). Such a context window can be defined, for example, by 5 words to the left and

to the right of the target word. Table 1.2 shows an example of such a model for three

sentences: ”Paul kicked the ball slowly. Peter hit the ball slowly.”

Let the context w be equal to 2 words to the left and 2 words to the right. Presuming

prior stop words removal, we are left with a vocabulary of 6 words 〈Peter, Paul, kick,

hit, ball, slowly〉. Taking into account sentence boundaries, we obtain the following

〈6× 6〉 distributional matrix for the above sentences (see Table 1.2).

3
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Peter Paul kick hit ball slowly

Peter 0 0 0 1 1 0

Paul 0 0 1 0 1 0

kick 0 1 0 0 1 1

hit 1 0 0 0 1 1

ball 1 1 1 1 0 2

slowly 0 0 1 1 2 0

Table 1.2: Word Space Model (WSM)

The matrix shows, e.g., that the word ball co-occurs with slowly in 2 cases and with

Peter, Paul, kick and hit once in the given text within a context of 2 words to the left

and to the right.

Often, dimensionality reduction techniques, like singular value decomposition

(SVD), are applied to such matrices as they are very sparse, i.e. the majority of values

in such a matrix is zero. SVD is a low-rank approximation of the original vector space

matrix. By rank reduction, we cut off the dimensions that do not contribute a lot to the

meaning of terms. Some information is lost, but the most important one is preserved

and emphasized. Therefore, similar words (hit and kick in our example in Table 1.2)

get closer to each other in vector spaces, although the connections between them may

not have been explicitly present in the original data. Thereby second-order, or latent,

representations are achieved. This kind of dimensionality reduction has been shown to

improve performance in a number of text-based domains [Berry et al., 1999].

Applications. Distributional methods in semantics have proven to be very efficient

in tackling a wide range of tasks in natural language processing, e.g., word similarity,

synonym identification, or relation extraction, as well as in information retrieval, such

as clustering and classification, question answering, query expansion, textual advertise-

ment matching in search engines and so on and so forth (see Turney and Pantel [2010]

for a detailed overview).

In spite of their practical viability for a lot of NLP tasks, it is unclear, to what

extent a semantic space model in its current form can serve as a model of

meaning.
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1.1 Research Questions

1.1 Research Questions

In spite of a quick propagation and success of vector space models in many applied

areas, it has been long recognized that these models are too weak to represent natural

language to a satisfactory extent.

The main question is therefore whether the currently predominating matrix-based

semantic space model with vector-based word meaning representation is appropriate as

a model of natural language semantics. In the following, we describe three issues that

make us believe that there is a need for novel paradigms.

Word Order. With VSM, the assumption is usually made that word co-occurrence

is essentially independent from the word order; and all the co-occurrence information

is fed into one vector per word. The following example shows, why it is inadequate.

Suppose, our background knowledge corpus consists of one sentence: Peter kicked

the ball. Assuming prior ”stop words” removal, such as the or the dot, lemmatization

of the words as well as a context window of size three, i.e. one word to the left and one

word to the right of the target word, Table 1.3 shows the resulting word space model

for this sentence.

Peter kick ball

Peter 0 1 0

kick 1 0 1

ball 0 1 0

Table 1.3: Word Space Model for ”Peter kicked the ball”

It follows that the distributional meanings of both Peter and ball would be in a

similar way defined by the co-occurring kick which is insufficient, as ball can only be

kicked by somebody but not kick itself; in case of Peter, both ways of interpretation

should be possible.

The Problem of Compositionality. The next big challenge of distributional se-

mantics is that it has been predominantly used for meaning representation of single

words. The question of representing meaning of more complex language units, such
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as phrases or sentences, has been until recently ignored by the community. Currently

there is a quickly emerging and spreading interest in exactly this topic.

In contrast, symbolic or logical approaches to semantics, following the traditions

of Montague’s semantics and known in the linguistics community as compositional se-

mantics [Dowty et al., 1981], were concerned prevalently with composition of individual

units into sentences and not with the meaning of those individual units. Within this

logical tradition of semantics, the meaning of a sentence ”Peter kicked the ball” could

be represented as: kick(Peter, ball) that can be obtained by the composition of the

constituents λxλy.kick(x, y), Peter and ball extracted word-wise from the original sen-

tence. This expression can be interpreted in the following way: there is some x and

some y such that x kicked y and in this case x is Peter and y is the ball.

Such constructions are good at conveying the structural or grammatical properties

of language, but unfortunately they do not tell us anything about the meaning of

individual units. We still may have no idea though, what a ball is, or how kicked is

different from caught. It is just assumed that there is a referent in the external world

or in the speaker’s mind. Lexicon is much more empirical than grammar; and it is

therefore harder to formalize [Widdows, 2008]. According to Jones and Sinclair [1974],

”one of the troubles with studying lexis was making a start somewhere”’, and a brilliant

start was made by vector space models.

It just took a while until it became obvious, that distributional semantics need not

be fixed only on the lexical word meaning; and that there should be means of modelling

composition of words into phrases and sentences within this paradigm.

Word Representation. Last but not least, current paradigms seem to be insufficient

even for word meaning representation. More and more researchers come up with the

ideas to express word semantics, e.g., by several vectors instead of one.

Hence, we’ve identified three critical points of meaning representation with vector

space models so far:

1. (non-)sensitivity to structural information such as word order;

2. lack of linguistically justified operations for semantic composition and

3. word meaning representation by means of a single vector.
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1.2 Thesis Structure

Making use of word space models, a novel paradigm that is called Distributional

Tensor Space Model for representing meaning by introducing a third dimension into

traditional matrix-based vector spaces is proposed. The latter allows us to integrate

word order information without extra effort and to assign to words character-

istic matrices such that semantic composition can be later realized in a natural

way via matrix multiplication and partially matrix addition.

Currently predominating distributional semantics models in computational linguis-

tics are based on two-way tensors, i.e. matrices. Most information can be conveyed,

however, by three elements. There are a number of theories that confirm this intuition.

Semantic web is one of those, where the whole modelling is based on triples of infor-

mation. Therefore, we believe that a three-way tensor should be sufficient for modelling

most of straightforward information. However, we do not restrict the tensor model per

definition to three dimensions. It is just for the purpose of the current work and due

to certain computational restrictions that we make use of only three dimensions.

1.2 Thesis Structure

After we have identified the main challenges of the current distributional semantics

paradigm, we proceed in the following way.

Chapter 2 gives a brief introduction to some aspects of linear algebra that are needed

to understand the suggested model. In particular, the mathematical concepts of vectors,

matrices, tensors, linear mappings, permutations, tensor decomposition methods as well

as similarity measures in vector spaces are introduced.

Chapter 3 introduces a formalization of semantic space models as defined by Lowe

[2001]. Further, it offers a thorough review of the most influential models that we

group according to the way that is used to extract context dimensions. In order to

avoid the confusion between different definitions and their connotations, we will use

a generic term semantic space models as a superordinate concept, as it is used by

Lowe [2001]. Last but not least, present approaches to the problem of compositionality

within the distributional semantics paradigm are discussed.

Motivated by the ideas of distributional semantics and the mathematics behind it,

we propose a novel Distributional Tensor Space Model in Chapter 4. We postulate

it in terms of the formalism suggested by Lowe [2001] and show the theoretical and
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practical advantages of our model. Further, a novel type of generic compositional

models based on matrix multiplication, called Compositional Matrix Space Model, is

introduced. We show its algebraic, linguistic and neurological plausibility as natural

language compositionality model. Moreover, we prove that it subsumes most linear-

algebra-based operations that have been proposed to model composition in language

models as well as formal approaches.

Chapter 5 gives an overview of the datasets that we use, the evaluation metrics

as well as the utilised computational resources and corpora. The procedure of tensor

construction and deployment is also described in this chapter.

Chapters 6 and 7 report detailed evaluation results for the proposed model in respect

to the two aspects of meaning modelling: the word meaning per se and the construction

of compositional meaning for phrases and simple sentences. The model is evaluated

on a number of the standard benchmarks in distributional semantics as well as on

additional self-constructed resources that have been missing and that will hopefully

become benchmarks for the community in the future.

Finally, we recap our contributions, summarize findings as well as give an outlook

for future research in Chapter 8.

1.3 Relevant Publications

The research underlying this thesis was published in a number of conference publi-

cations. Moreover, it was substantially motivated by our previous work in Katz and

Giesbrecht [2006].

The material of Chapter 7.1 was published in Giesbrecht [2009]. Giesbrecht [2010]

introduces the proposed model which forms the basis of Chapter 4.1 as well as describes

the experiment on free word associations which is the subject matter of Chapter 6.1.

Most of the material in Chapter 4.2 on Compositional Matrix Space Model is the

topic of Rudolph and Giesbrecht [2010].

Furthermore, two international competitions were initiated and partially co-organized

at the top conferences in computational linguistics; both resulted in datasets that are

used currently by the researchers interested in compositionality models as well as by

those concerned with the computational models for idiomatic language.
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1.3 Relevant Publications

The first dataset for graded compositionality of phrases was offered at the self-

organized Distributional Semantics and Compositionality (DiSCo-2011) workshop, co-

located with the ACL conference. The dataset, the participating systems as well the

results of evaluation of Distributional Tensor Space Model on this dataset is the major

topic of Chapter 7.2.

The second dataset was constructed as part of SemEval-2013 competition. It de-

termines the content of Chapter 7.3.
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2

Mathematical Preliminaries

In this section, we recap some aspects of linear algebra to the extent needed to grasp

the suggested model that is described in detail in Chapter 4 as well as the related work

in Chapter 3.

For a more thorough treatise we refer the reader to a linear algebra textbook such

as Strang [1993].

Vectors. Given a natural number n, an n-dimensional vector v over the reals can

be seen as a list (or tuple) containing n real numbers r1, . . . , rn ∈ R, written v =

(r1 r2 · · · rn). Vectors will be denoted by lowercase bold font letters and we will

use the notation v(i) to refer to the ith entry of vector v. As usual, we write Rn to

denote the set of all n-dimensional vectors with real entries. Vectors can be added

entry-wise, i.e., (r1 · · · rn) + (r′1 · · · r′n) = (r1+r′1 · · · rn+r′n). Likewise, the

entry-wise product (also known as Hadamard product) is defined by (r1 · · · rn) �

(r′1 · · · r′n) = (r1 · r′1 · · · rn · r′n).

Matrices. Given two real numbers n, m, an n×m matrix over the reals is an array

of real numbers with n rows and m columns. We will use capital letters to denote

matrices and, given a matrix M we will write M(i, j) to refer to the entry in the ith

row and the jth column:
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2. MATHEMATICAL PRELIMINARIES

M =



M(1, 1) M(1, 2) · · · M(1, j) · · · M(1,m)

M(2, 1) M(2, 2)
...

...
...

M(i, 1) M(i, j)
...

...
...

M(n, 1) M(1, 2) · · · · · · · · · M(n,m)



The set of all n×m matrices with real number entries is denoted by Rn×m. Obvi-

ously, m-dimensional vectors can be seen as 1×m matrices. A matrix can be transposed

by exchanging columns and rows: given the n ×m matrix M , its transposed version

MT is a m× n matrix defined by MT (i, j) = M(j, i).

Linear Mappings. Beyond being merely array-like data structures, matrices corre-

spond to certain type of functions, so called linear mappings, having vectors as in- and

output. More precisely, an n × m matrix M applied to an m-dimensional vector v

yields an n-dimensional vector v′ (written: vM = v′) according to

v′(i) =
m∑
j=1

v(j) ·M(i, j) (2.1)

Linear mappings can be concatenated, giving rise to the notion of standard matrix

multiplication: we write M1M2 to denote the matrix that corresponds to the linear

mapping defined by applying first M1 and then M2.

Permutations. Given a natural number n, a permutation on {1 . . . n} is a bijection

(i.e., a mapping that is one-to-one and onto) Φ : {1 . . . n} → {1 . . . n}. A permutation

can be seen as a “reordering scheme” on a list with n elements: the element at position

i will get the new position Φ(i) in the reordered list. Likewise, a permutation can be

applied to a vector resulting in a rearrangement of the entries. We write Φn to denote

the permutation corresponding to the n-fold application of Φ and Φ−1 to denote the

permutation that “undoes” Φ.

Given a permutation Φ, the corresponding permutation matrix MΦ is defined by
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Figure 2.1: Graphical Representation of a Tensor with d = 3

MΦ(i, j) =

{
1 if Φ(j) = i,
0 otherwise.

(2.2)

Then, obviously permuting a vector according to Φ can be expressed in terms of

matrix multiplication as well as we obtain for any vector v ∈ Rn:

Φ(v) = vMΦ (2.3)

Likewise, iterated application (Φn) and the inverses Φ−n carry over naturally to the

corresponding notions in matrices.

Tensors. First, given d natural numbers n1, . . . , nd, a (real) n1×. . .×nd tensor can

be defined as a function T : {1, . . . , n1}× . . .×{1, . . . , nd} → R, mapping d-tuples of

natural numbers to real numbers. Intuitively, a tensor can best be thought of as a

d-dimensional table (or array) carrying real numbers as entries. Thereby n1, . . . , nd

determine the extension of the array in the different directions. Obviously, matrices

can be conceived as n1×n2-tensors and vectors as n1-tensors.

In our setting, we will work with tensors where d = 3 which can be represented

graphically as a cube (cf. Figure 2.1).

Our work employs higher-order singular value decomposition (HOSVD), which gen-

eralizes the method of singular value decomposition (SVD) from matrices to arbitrary

tensors.
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Tensor Decompositions. Several tensor decomposition algorithms have been sug-

gested for dimensionality reduction in three dimensions. Tucker [Tucker, 1966] and

CANDECOMP/PARAFAC [Harshman, 1970; Carroll and Chang, 1970] models are

the most influential ones. The latter was suggested twice at the same time and re-

ceived different names by its two proposers emphasizing varying features of the model:

canonical decomposition (CANDECOMP) [Carroll and Chang, 1970] and parallel factor

analysis (PARAFAC) [Harshman, 1970]. Therefore, it obtained a double name - the

CANDECOMP/PARAFAC (CP) model [Kiers, 2000].

Given an n1×n2×n3 tensor T , its (three-way) Tucker decomposition for given

natural numbers m1, m2, m3 consists of an m1×m2×m3 tensor G and three matrices

A,B, and C of formats n1×m1, n2×m2, and n3×m3, respectively, such that:

T (i, j, k) =

m1∑
r=1

m2∑
s=1

m3∑
t=1

G(r, s, t)·A(i, r)·B(j, s)·C(k, t) + E(i, j, k). (2.4)

E(i,j,k) denotes error. Figure 2.2 demonstrates a visualisation of Tucker decomposition.

Figure 2.2: Visualisation of Tucker Decomposition [Kolda, 2007]

The idea here is to represent the large-size tensor T by the smaller “core” tensor

G. The matrices A, B, and C can be seen as linear transformations “compressing”

input vectors from dimension ni into dimension mi. Note that a precise representation

of T is not always possible, that is, where the error E becomes zero. Rather one

may attempt to approximate T as good as possible, i.e. find the tensor T ′ for which a

Tucker decomposition exists and which has the least distance to T . Thereby, the notion
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of distance is captured by ‖T − T ′‖, where T − T ′ is the tensor obtained by entry-wise

subtraction and ‖ · ‖ is the Frobenius norm defined by

‖M‖ =

√√√√ n1∑
r=1

n2∑
s=1

n3∑
t=1

(M(r, s, t))2.

Given an n1×n2×n3 tensor T , its (three-way) Parafac model for given natural

number m consists of three matrices A,B, and C of formats n1×m, n2×m, and n3×m,

respectively and a diagonal core λ(r), such that:

T (i, j, k) =

m∑
r=1

λ(r)A(i, r)·B(j, r)·C(k, r) + E(i, j, k). (2.5)

Consequently, all component matrices have the same number of columns (m). λ(r)

is a diagonal core which is in this case a vector (not a 3d tensor as in the Tucker model)

and E(i, j, k) stands for residual error, similarly to Tucker. A visualization of CP model

is shown in Figure 2.3.

Figure 2.3: Visualisation of Parafac Decomposition [Kolda, 2007]

Non-negative tensor factorization (NTF) [Lee and Seung, 2000] is a relatively

recently suggested method for dealing with multi-way data. NTF is a generalization of

non-negative matrix factorization (NMF). Formally, it is an extension of the CANDE-

COMP/PARAFAC model with non-negative constraints on the factors. The version of

NTF that is employed in this thesis uses multiplicative updates from the NMF algo-

rithm of Lee and Seung [2000].

In fact, the above described ways of approximating a tensor are called dimension-

ality reduction.
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Figure 2.4: Cosine (θ) and Euclidean (d) Similarity Metrics in a Vector Space

Number of Factors. When speaking about dimensionality reduction, one of the

most prickling questions is what number of dimensions, or factors, is reasonable to

reduce to. Usually the rank of the matrix or the tensor is considered to be equal to the

optimal number of factors.

The rank of a matrix is the number of linearly independent row or column vectors

of the matrix. The rank of the tensor T is the least number n of rank 1 tensors, the

sum of which results in T .

The number of factors may have a decisive role in factor analysis and in the inter-

pretation of the results [Harshman, 1970]. A number of ways have been suggested to

determine the best approximation rank mathematically. However, this fact is mostly

ignored by non-mathematicians. Usually it is tested empirically what kind of model

performs best. We will follow the same procedure in this work and leave the mathe-

matical justification for the best number of factors for future work.

Similarity Measures in Vector Spaces A wide range of similarity measures can

be used to measure the similarity between two elements of a vector space1. Two most

popular of them are cosine similarity and Euclidean distance (cf. Figure 2.4).

Cosine corresponds for normalized unit vectors to a scalar product of those [Man-

ning and Schütze, 1999] (see Equation 2.6).

cos(−→x ,−→y ) = −→x · −→y (2.6)

A normalized vector has a unit length of 1 and is defined as:

1See Lee [1999] for an overview.
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|−→x | =

√√√√ n∑
i=1

x2
i = 1 (2.7)

In this metric, two expressions are taken to be unrelated if their meaning vectors

are orthogonal (the cosine is 0) and synonymous if their vectors are parallel (the cosine

is 1).

Euclidean distance is the distance between two vectors that measures how far

they are in a vector space from each other:

|−→x −−→y | =

√√√√ n∑
i=1

(xi − yi)2 (2.8)

The lower the distance, the higher the similarity.

In spite of apparent differences between the two metrics, they result in similar

similarity rankings when applied to high dimensional and normalized vectors [Manning

and Schütze, 1999; Qian et al., 2004].

Manning and Schütze [1999, cf. 8.44] show why it happens:

(|−→x −−→y |)2 =
n∑
i=1

(xi−yi)2 =
n∑
i=1

x2
i−2

n∑
i=1

xiyi+
n∑
i=1

y2
i = 1−2

n∑
i=1

xiyi+1 = 2(1−−→x ·−→y )

We choose to use the cosine similarity metrics for this work.

Cosine measure can also be used for the comparison of two matrices or two three-way

tensors.

Cosine between matrices M and M ′ of size n1× n2 is defined by

∑n1
r=1

∑n2
s=1M(r, s)·M ′(r, s)
‖M‖ · ‖M ′‖

(2.9)

and can take values between −1 and 1.

Similarly, cosine between three-way tensors T and T ′ is defined by

∑n1
r=1

∑n2
s=1

∑n3
t=1 T (r, s, t)·T ′(r, s, t)
‖T‖ · ‖T ′‖

(2.10)
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Compositional Operations on Matrices. Furthermore, we shortly recap the no-

tion of matrix multiplication and matrix addition.

Given a n1×n2 matrix A and an n2×n3 matrix B, the matrix product AB is

defined as the n1×n3 matrix C with

C(i, k) =

n2∑
r=1

A(i, r)·B(r, k). (2.11)

Note that the matrix product is associative ((AB)C = A(BC)) but not commuta-

tive (AB = BA does not hold in general, i.e., the order matters), hinting at matrix

multiplication as a suitable candidate for representing compositional semantics of sub-

sequent words.

Matrix addition is defined in straightforward way, by adding entries with the

same indices:

C(i, k) = A(i, k)+B(i, k) (2.12)

Matrix addition is, similar to addition for real numbers and vectors, associative and

commutative. However, we decide to evaluate this operation on matrices, as vector

addition turned out to achieve very good results in a number of computational tasks

in spite of its counter-intuitive way of handling composition. A matrix holds in any

case more information than vectors, so that matrix addition may still turn out to be a

valuable operation.
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Related Work

A number of vector space models has been suggested since the 1990s. In order to avoid

confusion between different definitions and their connotations, we will use a generic

term semantic space models, similarly to Lowe [2001], as a superordinate concept.

Semantic space models are, from the perspective of distributional semantics, models

of distributional behaviour of words. Meaning is modelled here as an n-dimensional

vector, derived from word co-occurrence counts for the expression in question.

In the following, we briefly review the most influential works on semantic space

models and demonstrate the differences between those on a simple example sentence:

The minister copied from his supervisor. (3.0.1)

We start with the formalism for semantic models suggested by Lowe [2001] and then

proceed by mapping of the existing approaches, as far as possible, to this formalism as

well as by demonstrating the transformation of the example sentence 3.0.1 into semantic

space models according to the corresponding algorithms.

3.1 Formalization of Semantic Space Models

A semantic space model has been formalized by Lowe [2001] as a quadruple 〈B,A, S,M〉

where:

B: defines a set of basis, or context, elements;
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B can be interpreted in at least two ways: as a concrete list of context elements,

or as a definition of the way how these context elements are determined. In the

following, we will use the second understanding.

A: is a functional mapping of co-occurrence counts between basis elements and target

words in the language that need to be represented;

A is often named as a weighting function. A can be defined by pure frequency

co-occurrences or by lexical association measures1.

S: is a similarity measure in a vector space;

Typically either Euclidean distance or cosine similarity is used.

M: is a possible transformation of semantic space, e.g., by reducing its dimensionality.

M can also be just an identity mapping.

Some researchers leave this transformation out; the others make use of singular

value decomposition or other dimensionality reduction techniques.

3.2 Review of Semantic Space Models

3.2.1 Word-Based Models

Word Space Model (WSM). A word space model was suggested in Schütze

[1993, 1998] as analogue to a vector space model in information retrieval [Salton et al.,

1975; Salton and McGill, 1983].

A Word Space is a symmetrical vector space where the dimensions, or contexts, are

defined by the co-occurring words within a certain window, for example, 25 words to

the left and to the right of the word [Schütze, 1998]

To formalize WSM of, for example, Schütze [1998] in terms of the above described

framework of Lowe [2001]:

B: is defined by 25 words to the left and to the right, of which only a certain number

(e.g., 1000) most frequent neighbours are used as context words;

Thus, a 1000× 1000 matrix is constructed.

1Lexical association measures are a variety of statistical measures for identifying lexical associations

between words, that range from pure frequency counts to information theoretic measures and statistical

significance tests [Evert and Krenn, 2001].
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A: is determined either just by word frequencies or is smoothed by log inverse document

frequency used in information retrieval1;

S: is cosine similarity;

M: SVD transformation is applied to the semantic space.

For our example (3.0.1), taking two words to the left and to the right as context

resulting in a window of size 5 together with a target word, we will get the following

matrix:



the minister copied from his supervisor
the 0 1 1 0 0 0

minister 1 0 1 1 0 0
copied 1 1 0 1 1 0
from 0 1 1 0 1 1
his 0 0 1 1 0 1

supervisor 0 0 0 1 1 0


(3.2.1)

Hyperspace Analogue to Language (HAL). HAL model was suggested in Lund

and Burgess [1996].

In HAL, a semantic space model is a matrix where the rows contain left neighbours

and the columns contain right neighbours of the word. The weight in the corresponding

matrix cell is defined by the distance between the words, the closer the words the

bigger is the weight. Thus, for our example sentence ((3.0.1)) minister and copied are

immediate neighbours, so this connection will get a maximum weight of 5. The general

formula of the weight calculation for the word at position X and its neighbouring word

at position X-Y is the following: window size− (X − Y ) + 1.

The HAL model for our example (3.0.1), with a window of size 5 where four neigh-

bours before the target word define the context, would result in the following matrix:

1ai = log(N/ni) where ni is the number of documents that a word occurs in and N is the total

number of documents
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the minister copied from his supervisor
the 0 0 0 0 0 0

minister 4 0 0 0 0 0
copied 3 4 0 0 0 0
from 2 3 4 0 0 0
his 1 2 3 4 0 0

supervisor 0 1 2 3 4 0


(3.2.2)

In order to get a vector for the word copied, the row- and the column-vectors for

copied are combined into one vector: (4, 5, 0, 0, 0, 0; 0, 0, 0, 0, 5, 4, 3).

HAL in terms of the formalism of Lowe [2001] is thus defined in the following way:

B: is specified by a context window of 10 words (in the original paper), whereas rows

contain only left neighbours and columns consist of the right contexts;

Lund and Burgess [1996] make use of Usenet news groups corpus containing 160

million words, of which they used 70.000 words that occur at least 50 times in

the corpus.

A: is defined by the distance between the words;

S: is Minkowski similarity measure, e.g., Euclidean distance;

M: dimensionality reduction is achieved by variance.

Words with low variance are discarded. 100 to 200 most variant vector elements

have been used for the experiments in the original paper of Lund and Burgess

[1996].

Correlated Occurrence Analogue to Lexical Semantics (COALS). Rohde

et al. [2006] suggested COALS that was basically an extension of WSM and HAL

models. The matrix is built similarly to WSM, i.e. both left and right contexts of the

word are used, but the words’ co-occurrences are weighted according to distance as in

HAL but also smoothed by Pearson correlation.

22



3.2 Review of Semantic Space Models

Thus, the initial matrix in COALS, before smoothing, for our example sentence

(3.0.1) would look like this:



the minister copied from his supervisor
the 0 2 1 0 0 0

minister 2 0 2 1 0 0
copied 1 2 0 2 1 0
from 0 1 2 0 2 1
his 0 0 1 2 0 2

supervisor 0 0 0 1 2 0


(3.2.3)

The corresponding formal semantic space quadruple in terms of Lowe [2001] is the

following:

B: is specified by a context window of 4 words using both left and right contexts,

similar to WSM;

Usually, only the most frequent open class words are used for the matrix con-

struction (14000 in the original paper).

A: is defined by the distance between the words;

The closer the words are located to each other, the bigger weight they receive.

S: is normalized by correlation between the vectors as a measure of semantic similarity

between two words.

The counts in the matrix are converted into Pearson correlations and the negative

values are set to zero while the positive ones are squared.

M: optionally, dimensionality reduction by means of SVD can be done.

In this case, dimensionality reduction produces better results.
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3.2.2 Randomized methods

Semantic space models have been mostly hampered by the problems of size and sparsity.

In order to avoid those, usually dimensionality reduction techniques, like SVD, have

been suggested. However, SVD has turned out to be not feasible for huge text collections

in many cases. A further problem with SVD is that it is computed once after an

initial matrix is constructed. After that, it is not quite trivial to add new data to

the model without re-computing SVD from scratch and without losing the quality of

approximation for the new information [Sahlgren, 2005].

Random Indexing. In order to avoid a-priori construction of huge matrices with

the following computationally expensive dimensionality reduction, Kanerva [1988] and

Kanerva, Kristoferson, and Holst [2000] suggest a technique of Random Indexing for

the construction of word space models.

Random Indexing consists basically of two steps:

1. An index vector containing randomly distributed values of (1, -1, 0) of length D

is assigned to every context (or basis) word or document. D defines a desired

dimensionality of context, i.e. the number of columns in the matrix.

Let all the words in our example sentence (3.0.1) get randomly assigned 3-

dimensional index vectors:

the [0 0 0]
minister [1 0 1]
copied [0 1 0]

from [0 0 -1]
his [1 0 0]

supervisor [1 0 -1]

2. Assuming the window size of, i.e. 2 words before and 2 words after the target

word, we process the text and add up the index vectors of co-occurring words to

the target word.

The latter results in the following matrix:

the [1 1 1]
minister [1 1 0]
copied [2 1 0]

from [3 1 -1]
his [2 1 -2]

supervisor [2 0 -2]
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Thereby, we achieve an incremental and scalable way to construct a semantic space.

Incremental Semantic Analysis (ISA). Baroni et al. [2007] suggested a new way

of combination for word index vectors in random indexing, in order to integrate the

learning effect over the time. They call it Incremental Semantic Analysis. In con-

trast to the original Random Indexing, where the target word’s vector is incremented

by the same non-changing index vector of the context word every time they co-occur,

ISA also considers distributional histories of context words. Every time a target

word t co-occurs with a context word c, its distributional history vector (ht) is updated

as follows: ht+ = i × (mchc + (1 −mc)sc) where sc is the signature, or index, vector

of the context word; i is the impact rate; mc is the factor determining the influence of

the distributional history of the context word on the target word; it is realized in ISA

as a function of the frequency - the more frequently a word occurs, the less informative

it is.

By capturing the history of distributions, ISA is supposed to reproduce second order

effects like SVD, e.g., car and automobile may act as similar context words with time

as they are likely to have similar distributions in texts over the time.

BEAGLE. In BEAGLE (Bound Encoding of the Aggregate Language Environment),

proposed by Jones and Mewhort [2007], words are also represented as D-dimensional

random vectors, but they differentiate between two aspects of word meaning represen-

tation: context information about word co-occurrence and word order information. The

former is aggregated through vector addition and the latter through vector convolution

when processing text sentence-by-sentence.

Every word gets assigned a so-called random environmental vector ei, initiated at

random from a Gaussian distribution with µ = 00 and σ = 1/
√
D with D being vector

dimensionality. Similarly to index vectors in Random Indexing (cf. Sahlgren [2005]),

these environmental vectors do not change over time while the word’s memory vector

mi, like distributional history vectors in Baroni et al. [2007], is updated every time

a word is encountered. The memory vector consists of the word’s context vector ci,

which is the sum of the environmental vectors of the other words it co-occurs with in

a given sentence, and the order vector oi.
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Coming back to our example (3.0.1): we randomly initialize 3-dimensional envi-

ronmental vectors from a Gaussian distribution with mean 0.0 and standard deviation

1/
√

3 = 0.577:

the [0.43 0.59 0.15]
minister [0.13 -0.49 0.78]
copied [-0.05 -0.034 0.53]
from [-0.12 0.69 -0.23]
his [-0.69 0.5 -0.530]

supervisor [ 0.27 -0.07 0.66]

If we ignore stop words the, from and his, the context vector for copied ccopied will

be equal to the sum of environment vectors for minister eminister and supervisor

esupervisor:

ccopied = ccopied + [0.40 − 0.56 1.44]

The order vector is the sum of all directional circular convolutions (~) for all n-

grams in the sentences containing the target word, though the size of n-grams is usually

restricted due to computational reasons. In the paper, the maximal number of words’

neighbours was limited to seven. Furthermore, no stop word list is used in this case as

function words are important for syntax. By means of example, consider reproducing

the order information for the word minister in 3.0.1, where Φ denotes the position of

the target word.

Bigrams minister1 = ethe ~ Φ
minister2 = Φ ~ ecopied

Trigrams minister3 = ethe ~ Φ ~ ecopied
minister4 = Φ ~ ecopied ~ efrom

Quadgrams minister5 = ethe ~ Φ ~ ecopied ~ efrom
minister6 = Φ ~ ecopied ~ efrom ~ ehis

Tetragrams minister7 = ethe ~ Φ ~ ecopied ~ efrom ~ ehis
minister8 = Φ ~ ecopied ~ efrom ~ ehis ~ esupervisor

Pentagram minister9 = ethe ~ Φ ~ ecopied ~ efrom ~ ehis ~ esupervisor

Φ is initiated in the same way as the word’s environmental vector and it is fix.

The order vector for minister ominister is then the sum of all above Σj=n
j=1ministerj .
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ominister = minister1+minister2+minister3+minister4+minister5+minister6+

minister7 +minister8 +minister9

The final combined memory vector is then the sum of ci and oi.

Word Order by Permutation. Sahlgren et al. [2008] propose a computationally

lighter alternative to convolution and suggest to incorporate word order information

into context vectors by means of permutation.

He ignores sentence boundaries and uses a context window of two neighbours to the

left and to the right. Context vectors here are built in the same way as in BEAGLE.

Thus, for our example (3.0.1), a context vector for copied, assuming the elimination of

function words, would be: ccopied = 0 +minister + 0 + 0 + 0.

Word order can be encoded in two different ways:

1. by differentiating between the preceding (using the inverse permutation Π−1) and

the following words (Π);

Such vectors are called direct vectors. The latter correspond to the direction-

sensitive HAL representations.

2. by permuting the vector n times (Πn) depending on the distance between the

target and the basis word.

The order information for the word copied in our example, with window size equal

to the whole sentence, would be encoded like this:

ocopied = (Π−2the) + (Π−1minister) + 0 + (Πfrom) + (Π2his) + (Π3supervisor).

These vectors are called order vectors.

Unlike Jones and Mewhort [2007], Sahlgren et al. [2008] ignore stop words, or

words with frequency more than 15000 occurrences, not only for construction of

context vectors but also for order and direction vectors as this improves

drastically the results.

Permutations are computationally less expensive than convolution and can be used

with any kind of random vectors including the ones of Jones and Mewhort [2007].

All in one, random indexing is a good alternative to heavy SVD-based methods in

cases, where the speed of processing is more important than a slight loss of accuracy.
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3.2.3 Dependency-Based Semantic Space Models

In contrast to word-based approaches, there are models that incorporate syntax infor-

mation into the process of semantic space construction.

Grefenstette [1994] and Lin [1998] use syntactic parsers - SEXTANT and MINI-

PAR [Lin, 1993, 1994] respectively - to extract dependency triples from text. A de-

pendency triple contains two words and a grammatical relation between them, e.g.,

(minister, det, the), (the, det−of,minister), (copied, subj,minister), (minister, subj−
of, copied).

The following would be a semantic space in style of Lin [1998] for our example sen-

tence (3.0.1), if we restrict the model to the three basic relations subject, predicate,

object.


(subj,minister) (pred, copied) (obj, supervisor)

minister 0 1 0
copied 1 0 1

supervisor 0 0 0

 (3.2.4)

Both Grefenstette and Lin pay attention to the direction of the graph and they

differentiate, for example, between a subject and an object position of the same word.

Thus, there could exist minister as a subject and minister as an object as context

elements.

In more recent work, Padó and Lapata [2007] build on the above work and use a

dependency-parsed corpus for the construction of their semantic space. They interpret

a dependency parse as an undirected graph. A further difference of their model from

the previous ones is that they allow a dependency path length of more than one, i.e.

for longer constructions, and thereby integrate indirect semantic relations.

Padó and Lapata [2007] generalize their semantic space model by extending the

formal model of Lowe [2001] to a quintuple with an additional element and three pa-

rameters < T,B,M, S,A, cont, µ, υ > where:

T: - the extension - is the set of target words;

T can contain either word types or word tokens.

B: is the set of basis elements;
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Basis elements are restricted by the allowed syntactic relations, e.g., only subject,

predicate and object relations may be considered. Padó and Lapata [2007] ex-

plicitely define this function as a separate parameter (see below).

M: is the matrix M = B × T ;

A: is the lexical association function;

S: is the similarity measure;

The parameters are:

• cont : T → 2Π is the content selection function;

A content, or context, selection function maybe a function that considers only

subject and object relations:

cont(t) = π ∈ Πt|l(π) ∈ [V, subj,N ], [V, obj,N ]∗

• µ is the basis mapping function.

Unlike the above mentioned models of Grefenstette [1994] and Lin [1998], the

basis elements in Padó and Lapata [2007] can be mapped, e.g., to their terminal

words, using the terminology of the graph theory. This kind of mapping would

make the matrix look like word-based models (see the matrix (3.2.5)).

• υ is the path value function.

An example of the path value function would be a function that gives a numer-

ical value of 1 to the path length of one and otherwise is the value inversely

proportional to the path length.


minister copied supervisor

minister 0 1 0.5
copied 1 0 1

supervisor 0.5 1 0

 (3.2.5)
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3.2.4 Distributional Memory Framework

Baroni and Lenci [2010] introduce a syntactically enriched model of a somewhat differ-

ent nature than the above approaches - the Distributional Memory Framework.

Weighted triple structure T is the expected input to the model. A weighted triple

structure is a ternary tuple or triple in the similar sense as Grefenstette [1994]; Lin

[1998]; Padó and Lapata [2007] use it:

T ⊆W1 × L×W2

These are tuples of two arguments W1 and W2 ordered by relations L that can

be expressed in different ways. Two assumptions are made for the given moment:

W1 = W2 and for any link l there exists an inverse link l−1 for the same two arguments.

Baroni and Lenci [2010] suggest three different types of models defined by different

types of relations:

1. DepDM

2. LexDM

3. TypeDM

DepDM. Here, links are dependency relations that are obtained through dependency

parse, similarly to the dependency - based semantic space models. Prepositions are

represented by their lexical label.

For example: < minister, SBJ INTR, copy >, < minister, V ERB, supervisor >,

< supervisor, FROM, copy >.

Every triple also receives an inverse link: < copy, SBJ INTR−1,minister >, <

supervisor, V ERB−1,minister >, < copy, FROM−1, supervisor >.

Local Mutual Information (LMI)1 is used as a weighting function. All negative val-

ues are turned into 0. The resulting DepDM tensor has 30693×796×30693 dimensions

and density2 of 0.0149%.

1LMI = Oijklog
Oijk
Eijk

where Oijk is the co-occurrence count of the triple and Eijk is the expected

count under independence.
2the proportion of non-zero entries
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LexDM is motivated by lexico-syntactic patterns in the work of Hearst [1992]. Rela-

tions are expressed here by complex links combining the dependency relation as in DepDM

or, by frequent words, their lexical forms with suffixes encoding part of speech and mor-

phological form in the following manner: < minister, SBJ INTR+ n− the, copy >.

Similarly to DepDM, LexDM contains also inverse links and the weighting function is

LMI. LexDM has a dimensionality of 30693× 3352148× 30693 with density 0.00001%.

TypeDM. The third model is TypeDM, which has a size of 30693 × 25336 × 30693

and a density of 0.0005%. Links here are defined by types of realizations not by their

surface forms. Thus, the links are adopted here from the patterns of LexDM and the

suffixes of the patterns are used to count the surface forms of the links: e.g., copied from

the minister, copied from a minister, copied from ministers, copied from ADJ ministers

and so on will turn into < copy, FROM,minister > with a count of 4 in this case.

This model is at closest to the one suggested in this thesis, except that we do not

assume any preprocessing and restriction to only certain kinds of links1.

Similarly to the model suggested in this thesis, the triples are saved in a third-order

tensor. The crucial difference, however, is that the tensor is used only as a placeholder

for the semantic space model; while we use the tensor in the first line for further

semantic processing.

All the semantic operations on the distributional memory in Baroni and Lenci [2010]

are still performed with matrices. For that, different semantic spaces are constructed

from the tensor by means of labeled matricization. Matricization rearranges a third-

order tensor into a matrix (Dunlavy et al. [2011]). Thereby four semantic spaces can

be gained:

1. word by link-word (W1× LW2)

2. word-word by link (W1W2× L)

3. word-link by word (W1L×W2)

4. link by word-word (L×W1W2)

1Both models, the one of Baroni and Lenci [2010] and Giesbrecht [2010] have been suggested at

the same time.
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All further operations on matrices and semantic tasks are accomplished here in the

similar way as in matrix-based approaches.

3.2.5 Tensor Approaches

Early attempts to apply higher-order tensors instead of vectors to text data came from

research in information retrieval. Among them is the work of Liu et al. [2005] who

show that a tensor space model is consistently better than a vector space model for text

classification. Cai et al. [2006] suggest a 3-dimensional representation for documents

and evaluate the model on the task of document clustering on Reuters-21578 corpus1.

The above as well as a couple of further activities in this area in information retrieval

research are less interested in the question of an adequate conversion of natural language

text into the tensor. Most of them still use a vector-based representation as the basis

and then mathematically convert vectors into tensors, without linguistic justification

of such a transformation; or they use metadata as a third dimension. For example, Sun

et al. [2006] employ an author × keyword × date tensor, or Chew et al. [2007]

use a tensor-based model for cross-language information retrieval, with language as the

third dimension. Franz et al. [2009] model semantic RDF graphs by a 3-dimensional

tensor that enables the seamless representation of arbitrary semantic links for authority

ranking in Semantic Web applications.

However, the use of matrix- and tensor-based representation for modeling meaning

does not necessarily count as a semantic space model. The main defining property

of the latter as defined in this work is that the values of matrix entries are directly

determined from word distribution patterns in text without using external metadata.

Turney [2007] is one of the few to study the application of tensors to semantic space

models. However, the emphasis of that work was more on the evaluation of different

tensor decomposition methods for such spaces than on the model of text representation

in three dimensions per se. However, he suggests in this paper a three-dimensional

tensor having words and their connecting patterns as dimensions2.

Van de Cruys [2009, 2010] uses a dependency parsed Dutch corpus and builds a

three dimensional tensor consisting of subjects, verbs and direct objects for the

concrete task of determining words’ selectional preferences. This work is indeed at

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2LexDM in Baroni and Lenci [2010] is similar to Turney’s model of 2007.
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closest in the suggested approach to ours; even though the original motivation is quite

different and the ideas emerged in parallel.

3.2.6 Summary

Lots of different semantic space models have been suggested since the 1990s. In this

chapter, we’ve offered an overview of the most influential models. A semantic space

model per se has been formalized by Lowe [2001] as a quadruple, consisting of the

basis elements that define the context (< B >), a mapping between basis and target

elements (< A >), a similarity measure (< S >) and a possible transformation of the

original co-occurrence matrix (< M >).

The components < A,S,M > are used interchangeably in the meanwhile and have

been tested in all possible combinations with lots of forms of semantic space models. A

deeper analysis of the influence of weighting schemes as well as the choice of similarity

measure, the chosen transformation, the number of dimensions and other factors that

can influence the performance of such models is out of the scope of this thesis and there

is a lot of literature offering these insights [e.g. Nakov et al., 2001, 2003].

All in one, word-based and syntactically-enriched models differ mostly in the way

in which the original matrix is built (< B >) which is either a WSM- or a HAL-way,

i.e. in one direction or in both ways, with many possible context window sizes and with

possible use of filtering in the form of stop words or syntax.

In 2009 and 2010, three-way tensor-based approaches started gaining in importance

in computational linguistics.

Baroni and Lenci [2010] suggested to use a tensor as a placeholder and unifying

framework for distributional models, so that there is a ”one-fits-all” model that can

be mathematically transformed into different kinds of matrices depending on the task.

Hence, there is no need any more to build separate distributional models for different

tasks, as it is traditionally done in this kind of research.

The work of Van de Cruys [2009], applying a tensor model, is indeed inspired by

a concrete task - selectional preferences - and the tensor model itself is not further

elaborated except for the task in question.

In both cases, the model is created from a syntactical or pattern-based preprocess-

ing. Furthermore, only Van de Cruys [2009] uses tensor-based operations for semantic

processing.
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The model suggested in this thesis and defined in Chapter 4 does not need any

explicit preprocessing except for the purpose of reducing the computational demands.

It is based completely on the traditions of early distributional semantics. Nevertheless,

it offers a linguistically adequate framework for representing semantics by integrating

word order information, like HAL-based models, and at the same time allowing for

including more structural information into the model by representing words by means

of matrices instead of vectors. Furthermore, having represented words as matrices, we

can apply a matrix multiplication operator to compose words into phrases or sentences.

The definition of the problem of compositionality in vector spaces as well as a review

of existing approaches is following in the next section.

34



3.3 Compositionality in Semantic Space Models

3.3 Compositionality in Semantic Space Models

The principle of compositionality, commonly atributed to Frege [1884] and first for-

malized by Montague [1974], claims that the meaning of a phrase or a sentence is

determined by its structure and the meaning of its components where the meaning is

interpreted as the notion of truth [Szabó, 2012].

Compositionality has traditionally been an issue in formal approaches to natu-

ral language. Symbolic or logical approaches to meaning, following the traditions of

Montague’s semantics, have been concerned prevalently with functional composition of

individual units into sentences and not with the meaning of those individual units.

The semantic space models, in contrary, were predominantly used for meaning rep-

resentation of single words and thereby have been the mainstream of interest in lexical

semantics since the 90s. Until recently, little attention has been paid to the way of

modelling more complex conceptual structures with such models, which is a crucial

barrier for semantic vector models on the way to model language [Widdows, 2008]).

As a consequence, an emerging area of research that receives more and more atten-

tion among the advocates of distributional models are the methods, algorithms and

evaluation strategies for modeling of compositional meaning within the framework of

distributional semantics.

To summarize, according to the principle of compositionality the meaning of a

phrase or a sentence is defined by:

1. the meaning of component words that are represented as distributional vectors

in semantic space models and

2. the way they are combined.

Word representation. In respect to word meaning modeling, there are two general

trends (cf. Baroni et al. [2013]): constructing ”word meaning in context” [see Erk and

Padó, 2008] versus picking out the right word meaning in the process of composition

[see Mitchell and Lapata, 2008].

The works of Erk and Padó [2008]; Thater et al. [2010, 2011] belong to the first

group of approaches. Dinu, Thater, and Laue [2012] offer an overview of these methods

and prove that they are conceptually equivalent in that they component-wise multiply
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the second order vector of one word (be it a target or a context word) with the first

order vector of another word.

Such approaches use composition as a kind of auxiliary means to restrict word’s

meaning. This topic per se is out if the scope of our current work and can be seen as

complementary.

There are two ways to address word meaning representation within both of these

trends. Words can be represented as types or lemmas summing up all the occurrences

in one representation [cf. Mitchell and Lapata, 2008]. This kind of approaches is often

called type-based. Another way would be to differentiate between single concrete uses

of words. This kind of methodology is usually defined as token-based.

Works of Schütze [1998]; Katz and Giesbrecht [2006]; Erk and Padó [2010]; Reisinger

and Mooney [2010]; Reddy, Klapaftis, McCarthy, and Manandhar [2011] provide ex-

amples of token-based approaches.

Schütze [1998]; Reisinger and Mooney [2010]; Reddy, Klapaftis, McCarthy, and

Manandhar [2011] cluster words’ contexts to produce groups of similar contexts in

order to build a ”prototype” vector of each cluster which is its centroid.

Erk and Padó [2010]; Reddy et al. [2011] furthermore give up the one-vector-per-

word paradigm and turn to an ”exemplar-based model” motivated by cognitive psy-

chology research. Here a word is represented by sets of similar context examples instead

of one prototype that is ”representative” for this set. Reisinger and Mooney [2010] call

those multi - prototype vectors.

Similarly to our initial idea, it has been recognized by the above approaches that

a single vector is not enough to represent word meaning, some of them realized it

by ”exemplar-based approaches” within a token-based word meaning representation

paradigm [Erk and Padó, 2010; Reddy, Klapaftis, McCarthy, and Manandhar, 2011];

the others, such as Erk and Padó [2008]; Thater, Fürstenau, and Pinkal [2010] by

adding vectors for the words selectional preferences to represent the word type.

We argue, similarly to Erk and Padó [2008], that single vectors are too weak to

represent the word meaning as a vector can encode only a limited and fixed amount of

structural information, and it is difficult to foresee how deeper semantic or syntactic

structures, like predicate-argument, can be encoded into a vector.

To summarize, the above arguments leave us with two open questions in respect

to word meaning representation. The first one is whether there should be a single

36



3.3 Compositionality in Semantic Space Models

representation per word (type-based) or whether multiple representations are allowed

(token-based). The second problem is whether a vector is good enough to ”model”

word’s meaning.

Interestingly, the question of word representation, especially of polysemous words,

in the brain is also still an open issue in cognitive research. Most meaningful words

in natural language are polysemous to some degree, and according to Zipf’s law [Zipf,

1935] the more frequent words are, the more polysemous they tend to be [Pylkknen

et al., 2006].

Consequently, a question arises: are (wedding) rings and (boxing) rings represented

by one lexical entry in the mental lexicon, or how many banks are there? Ring would

be an example of polysemy in natural language, i.e. when different meanings of a word

are still related in some way, and bank would be a homonym, i.e. a word having several

unrelated meanings, e.g., bank as a financial institute and bank of the river.

Pylkknen et al. [2006] show empirical results from a combination of behavioral

and magnetoencephalographic (MEG) measurements on experiments with polysemous

words and demonstrate that such words, i.e. words having multiple related meanings

and identical lexical representations, form part of a single lexical entry. Concerning

homonyms, the researchers favour more the opposite hypothesis, i.e., that they are

represented by several entries in the mind. For example, Tamminen et al. [2006] show

by means of the Psychological Refractory Period (PRP) logic in an auditory lexical

decision study that ”the ambiguity between unrelated meanings is being resolved at

an early stage, the ambiguity between related senses is resolved at a later stage”.

Such findings motivated researchers (e.g., Rodd et al. [2004]) to build computational

models of meaning where homonyms are represented by several representations for their

different meanings.

Still both options are realistic and open in the end, so we can currently just assume

that it is one way or another. Until then, both ways of exploration are perfectly valid.

Operator for composition. Concerning the second aspect of compositionality mod-

els, i.e. the way of combination, two tendencies have established themselves among the

advocates of distributional semantics: the early efforts have concentrated on finding an

optimal mathematical operation to reproduce compositionality within a purely distri-
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butional paradigm; the later trends are turning back to formal semantics and the ways

to combine formal approaches and distributional semantics.

Until recently, the ”bag-of-words” (BOW) approach has been used as a default

to get the meaning of phrases and sentences in vector spaces (Landauer and Dumais

[1997], Deerwester et al. [1990]). BOW consists of simply adding up the individual

vectors of the words independent of their representation in the word space to get the

meaning of a phrase or a sentence. Thus, with such approaches two sentences - ”The

student copied from his supervisor” and ”The supervisor copied from his student” -

would mean the same. Vector summation operations can not serve as an adequate

means of semantic composition, as word order information is ignored and the meaning

of the whole is an average of its parts. Presumably, one of the few statements on which

most researchers would indeed agree is that compositional meaning is not purely an

average of its component meanings.

Cruse [2000] postulates two main modes of meaning composition: additive and in-

teractive. An example of additive combination would be in a sentence like: ”A teacher

and five students were in the classroom”. An interactive mode of combination im-

plies that one of the components’ semantics is changed through composition. Here two

variants are possible: the resulting meaning is similar to one of the components (a big

boy is a kind of boy), or it becomes completely unrelated to any of the parts, as in

idioms for example.

Hopefully, in the traditions of cognitive science, computational models of meaning

and compositionality will help to understand the ways, human brain is performing the

operation of word meaning combination.

Within every of the mentioned trends, several computational approaches have been

suggested that will be briefly reviewed in the following sections.

3.3.1 Mathematical Compositionality Operators

Since the problem of modeling compositionality has become more announced in dis-

tributional semantics, the researchers have come up with a number of mathematical

models for linguistic composition. Those can be classified into four main groups [Gies-

brecht, 2009].

Let w1w2 denote the composition of two vectors w1 and w2. The estimated com-

positional meaning vector w1w2 is calculated by taking it to be:
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1. the sum of the meaning vectors of the parts, i.e., the compositional meaning of

an expression w1w2 consisting of two words is taken to be sum of the meaning

vectors for the constituent words w1 and w2 : (w1w2)i = w1i + w2i;

Thus, the ”compositional” vector for yellow press in this case would be the sum

of the vectors for yellow and press.

2. the simplified multiplicative model as it is defined in Mitchell and Lapata [2008]:

under the assumption that only the ith component of w1 and w2 contribute to

the ith component of w1w2, we can formulate vector multiplication operation as:

(w1w2)i = w1i · w2i;

The multiplication model seems to be more linguistically adequate by ”allowing

the content of one vector to pick out the relevant content of the other” [Mitchell

and Lapata, 2008].

3. the tensor product: if the vector of the word w1 has components w1i and the

vector of the word w2 has components w2j , then the tensor product (w1 ⊗ w2)

is a matrix whose ijth entry is w1iw2j (cf. Widdows [2008]);

The first usage of a tensor product as a means of vector composition is usually

attributed to Smolensky [1990]. Many researchers see the problem in the dimen-

sionality of the resulting product of two vectors which is a matrix. That is why

circular convolution has been proposed.

4. the convolution product, which is also a kind of vector multiplication that results

in the third vector of dimensionality (m + n − 1). Given two vectors w1 =

[w11, w12, w1..., w1m] and w2 = [w21, w22, w2..., w2n], their convolution (w1∗w2)

is defined as (w1w2)i =
∑

j w1jw2i−j+1.

Circular convolution (Holographic Reduced Representations) was first suggested

by Plate [1991, 1995] as a means of compositional distributed representation.

The most cited work for this class of approaches, which deserves to be mentioned

separately here, is the work of Mitchell and Lapata [2008], further elaborated in Mitchell

and Lapata [2010], who present a framework for compositionality representation with

distributional vector space model. They propose several variations of multiplicative

and additive models that are generalized in the following formula:
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p = f(u, v,R,K)

- where p stands for a composed vector from u and v connected by some syntactic

relation R, and K represents any available additional knowledge which may be relevant

for the process for composition.

If we fix R to a certain relation, e.g., an adjective-noun phrase, and ignore aditional

knowledge K that may or may not be available, the above formula is reduced to a

binary function p = f(u, v). Assuming that f is a linear function they end up with two

major classes of composition:

additive models : p = Au+Bv where A and B are matrices that define the contri-

bution of u and v to p.

multiplicative models : p = Cuv where C is a tensor of rank 3 that projects a tensor

product of u and v into p.

Both A, B and C components allow to integrate the influence of syntax into the

model. If those factors are ignored and symmetry is allowed, we end up with simple

addition and multiplication models which are both commutative.

In order to avoid the drawback of components with zero values in multiplicative

models, they also suggest to combine a multiplicative and additive model, e.g., in the

following way: pi = αui + βvi + γuivi where α, β and γ are weighting constants.

3.3.2 Integrating Formal and Distributional Semantics

A further class of approaches to modeling compositionality is motivated by formal

semantics [Montague, 1974].

Clark and Pulman [2007] suggest to combine symbolic representation of a sentence

(e.g. a parse tree or a dependency graph) with distributional word vectors by means of

a tensor product. For example, such a representation for a sentence A boy kicked the

ball could look like this:

kick ⊗ subj ⊗ boy ⊗ obj ⊗ ball

- where ⊗ stands for tensor product. The question of obtaining vectors for depen-

dency relations, like subject or object, is left open here.
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They extend and formalize this framework in Clark et al. [2008] using Lambek’s

pregroup semantics [Lambek, 1999].

Coecke et al. [2010] proposes a mathematical model for composition that unifies

distributional vectors and a compositional theory of grammatical types based on cate-

gory theory, and the compositional meaning of a sentence is also modeled as a function

of tensor products on distributional vectors.

Clarke [2012] suggests a context-theoretic framework aiming at a combination of

formal semantics and vector-space models of word representation. This work was in-

tended as a purely theoretical framework that is restrictive in respect to the set of

possibilities a theory of meaning need to hold.

Functional Approaches

In formal semantics, the meaning of certain classes of words is modelled as a func-

tion, e.g., the meaning of attributive adjectives, like large table can be modelled as an

intersection of adjectives and nouns:

[large table] = {large objects}
⋂
{tables}

Combining this view of composition as in formal semantics and the way to represent

word meaning as in distributional semantics, the compositional distributional meaning

of an adjective-noun pair ”large table” can be learnt from the corpus of text data by

considering distributional noun and adjective vectors for table and large respectively

as well as the vector for the phrase large table as a whole [Guevara, 2010].

Such approaches use machine learning, in particular regression analysis, to model

compositionality. Thus, Guevara [2010]; Baroni and Zamparelli [2010] use regression

analysis to model the compositionality of adjective-noun (AN) constructions. Later,

Guevara [2011] extends his approach to further verb-noun combinations. Baroni et al.

[2013] model nouns, determiner phrases and sentences as vectors, whereas, for example,

adjectives, verbs, determiners, prepositions are modeled as functions on those vectors.

Regression analysis is a way to model the influence of one or more independent

variables onto a dependent variable. In case of natural language semantics, words are

independent variables and phrases or sentences are dependent variables.
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Thus, the compositional meaning of a phrase can be computed by means of multi-

variate multiple linear regression: Av1+Bv2 = v3 (Guevara [2010, 2011]), where v1 and

v2 are input distributional vectors of component words, and A and B are weight ma-

trices that are supposed to map the contribution of input components to the resulting

phrase. Regression is used to estimate the weight matrices.

In Baroni and Zamparelli [2010], nouns are represented as distributional vectors and

adjectives are linear functions encoded as matrices. Like Guevara [2010], they estimate

the values in the weight matrix by partial least squares regression. The difference is that

Baroni and Zamparelli [2010] use only distributional vectors of the component nouns as

input for training the model, or in terms of regression analysis as independent variables,

whereas the target phrase vectors are outputs, or dependent variables. Furthermore,

in contrast to Guevara [2010], separate models are trained for each adjective and for

the same adjective in different grammatical positions, e.g., in attributive or predicative

position.

Grefenstette and Sadrzadeh [2011a]; Grefenstette et al. [2011]; Grefenstette and

Sadrzadeh [2011b] implement the theory suggested in Coecke et al. [2010] and also

state that not everything can be a vector in a semantic space; some objects, like verbs,

are functions that can be modeled by tensors. Here, as in all formal semantics driven

approaches, syntax determines the composition. Tensors, i.e. functions, are learnt from

the corpus, similarly to Guevara [2010] and Baroni and Zamparelli [2010].

Grefenstette and Sadrzadeh [2011b] demonstrate this functional approach on in-

transitive and transitive verbs, while Baroni and Zamparelli [2010]; Guevara [2010] for

adjective-noun constructions.

Baroni, Bernardi, and Zamparelli [2013] extend the functional approach to the rep-

resentation of simple intransitive (”The fire glowed”) and transitive senteces (”Table

shows results”) and generalize their framework of compositional distributional seman-

tics by means of multi-step regression learning for tensors of rank 3 and more.

By means of example from Baroni, Bernardi, and Zamparelli [2013]: in order to

estimate a tensor for eat first the matrices for eat meat and eat pie are learnt by

regression from corpus examples (”Dogs eat meat. Cats eat meat.”) and a matrix for

eat pie from examples like ”Boys eat pie. Girls eat pie.”. The tensor for eat is then

estimated by regression from the vectors for meat and pie as input and the matrices

for eat meat and eat pie as output.
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Socher et al. [2012] propose, unlike the above mentioned work, to use non-linear

functions and present a novel recursive neural network model for computing semantic

compositionality. Within this framework every word is represented by a vector and a

matrix, where a vector contains the meaning of a word and the matrix reproduces how

a word modifies the meaning of the other words it combines with.

Turney [2012] suggests a dual-space model that consists of a space for measuring

domain similarity and another one for measuring function similarity.

3.4 Conclusion and Outlook

Chapter 3 offers a brief overview of existing semantic space models as well as presents

approaches to the problem of compositionality within the distributional semantics

paradigm.

Many of the above discussed works claim to present general frameworks for either

distributional semantics or for compositionality.

However, most of the available models in distributional semantics have been op-

timized or constructed specifically for one of the above tasks, except for the work of

Baroni and Lenci [2010]. It is worth mentioning, that the latter was published at the

same time as our work on matrices [Giesbrecht, 2010; Rudolph and Giesbrecht, 2010].

As the review of the related literature shows, a number of models has been suggested

to solve either the problem of word order integration or the task of compositionality.

The models of compositionality including advanced linguistic preprocessing, such as

dependency parsing, automatically solve the problem of word order, but require good

performance of computational methods for these preprocessing steps. The state-of-the-

art1 accuracy for automatic dependency parsing is below 90% for English and even

worse for other languages, if available at all2.

Furthermore, these methods need many training instances per phrase to get reliable

results, and usually separate training is required for every kind of expression or combi-

nation of those. Due to the productivity3 of natural language, it is hardly imaginable

to foresee that such training examples can be always available.

131.December 2013
2The model that is developed in this thesis is language-independent.
3Productivity is the ability to create unlimited number of word combinations and sentences that

may have been never heard before.
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We argue that a matrix-based representation allows us to integrate contextual in-

formation as well as model compositionality in a more general manner.

Our goal is not to get an optimal performance on a certain task. We are more

after a linguistically and mathematically adequate model of semantics that reflects the

insights from cognitive research and that is equally suited for most of the semantic

processing tasks. We perfectly realize, that this is an ambitious task and we do not

aim at claiming that our current model can do it all; but it offers a promising venue.
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4

Distributional Tensor Space

Model (DTSM)

In the following we describe the Distributional Tensor Space Model as well as theoretical

foundations of Compositional Matrix Space Model.

We first formulate DTSM in terms of the formalism presented by Lowe [2001]. Fur-

thermore, we extend this formalism from a quadruple to a sextuple: 〈A,B, S,M, T,C〉
where C is a compositionality operator and T is the representation of target words1.

Traditionally it has been assumed that T is just a vector. Since recently it has been

recognized that one vector is not enough.

4.1 Three-Way Model of Distributional Semantics

Motivated by the ideas of distributional semantics and the mathematics behind it,

we propose a novel approach that offers a potential of both integrating syntax and

a mathematically and linguistically justified composition operation into vector space

models by employing a 3-dimensional model that accounts for order-dependent word

contexts and assigns to words characteristic matrices such that semantic composition

can be later realized in a natural way via matrix multiplication.

For this, we introduce a third dimension that allows us to separate the left and right

contexts of the words. As we process text, we accumulate the left and right word co-

1Padó and Lapata [2007] also extended Lowe’s definition by adding T (target words) and a number

of further parameters. However, for them T is just a set of target words. See Chapter 3.2.3 for more

details.
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occurrences on different axes, in contrast to 2-dimensional models, in order to represent

the meaning of the current word.

Formally, given a corpus K, a list L of tokens, and a context width w, we de-

fine its tensor representation TK by letting TK(i, j, k) be the number of occurrences of

L(j) s L(i) s′ L(k) in sentences in K where s, s′ are (possibly empty) sequences of at

most w − 1 tokens.

For example, suppose our corpus consists of three sentences: ”Paul kicked the ball

slowly. Peter kicked the ball slowly. Paul kicked Peter”. Assuming a context window

w = 3 and the prior stop words removal, we obtain a 5 × 5 × 5 tensor. It would be

hardly comprehensible if we visualize all three axes with all the contexts on a piece of

paper, so we reproduce two middle (Y ) slices of the resulting tensor in Tables 4.1 and

4.2.

KICK Peter Paul kick ball slowly

Peter 0 0 0 1 0

Paul 1 0 0 1 0

kick 0 0 0 0 0

ball 0 0 0 0 0

slowly 0 0 0 0 0

Table 4.1: Slice for target word KICK

BALL Peter Paul kick ball slowly

Peter 0 0 0 0 0

Paul 0 0 0 0 0

kick 0 0 0 0 2

ball 0 0 0 0 0

slowly 0 0 0 0 0

Table 4.2: Slice for target word BALL

The first table shows the middle matrix for the word KICK and the second table is

the matrix for the word BALL. The words on the left (rows) display the left contexts of

KICK or BALL; those on the right - the right contexts correspondingly. The interpre-

tation is straightforward: everywhere, where there is an entry other than zero in the ta-

ble, there exists a triple co-occurrence in the text - 〈Peter, kick, ball〉, 〈Paul, kick, ball〉,
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〈Paul, kick, Peter〉 in the KICK -Table occur just once, and 〈kick, ball, slowly〉 (BALL-

Table) occurs twice in the text.

Note that this 3-dimensional representation allows us to integrate word order in-

formation into the model in a completely unsupervised manner as well as to achieve a

richer word representation as a matrix instead of a vector.

Similarly to traditional vector-based distributional models, dimensionality reduction

needs to be performed in three dimensions either, as the resulting tensor is even sparser

than its two-way analogues (see the examples of KICK and BALL). To this end, we

employ an analogue of singular value decomposition for three dimensions, as introduced

in Section 2.

It is irrelevant for the moment which of the three tensor decomposition methods

we employ. We leave a more thorough exploration of the effects of concrete dimen-

sionality reduction algorithms as well as finding out a mathematically sound number

of dimensions to future research. In this work we follow the traditions of empirical

research and fix an optimal number of dimensions by means of the algorithms perfor-

mance on concrete tasks. We test all three methods defined in Chapter 2 on a small

portion of a corpus and make a decision in the end in favour of non-negative tensor

factorization (NTF) as a major decomposition method for this work.

Following the formalism suggested by Lowe [2001], we can define our models as a

sextuple 〈A,B, S,M, T,C〉:

B is defined by words to the left and to the right within a predefined context window

and constrained by sentence boundaries, of which only a certain number (e.g.,

2000 or 5000) are filtered;

Filtering may be realized either by most frequent words in the corpus, or by

middle frequency words, or by using only certain parts of speech, or any other

heuristics.

For example, B in Tables 4.1 and 4.2 would be Peter, Paul, kick, ball, slowly.

A is a weighting function from target to basis words;

After evaluating three weighting functions, such as frequency of occurrence, boolean

and pointwise mutual information (PMI), we choose to use the later as the best

performing one.
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PMI is a measure of association between (usually) two variables in statistics or

two words in linguistics. In our case, we need to generalize PMI as follows for

triples:

pmi(x, y, z) = log
Ox,y,z
Ex,y,z

where Ox,y,z is the number of co-occurrence of words x, y, z in the corpus and

Ex,y,z is the expected frequency.

In our case, Ex,y,z is computed by multiplying the occurrences of the left word

in the triple in all left contexts in the corpus, the middle word in the triple in

all middle contexts in the corpus, and the right word in the triple in all right

contexts in the corpus.

In our reference Tables 4.1 and 4.2, A is simple frequency, that is, how often the

words co-occur.

S is determined by a cosine similarity measure between matrices as defined in Chapter

2;

M is represented by tensor decomposition; in our case it is non-negative tensor factor-

ization (NTF);

C is matrix multiplication (cf. Section 4.2) and, additionally, matrix addition;

T is a matrix consisting of the left and right word co-occurrences.

For example, two matrices for target words KICK and BALL are presented in

Tables 4.1 and 4.2

Hence, we extend the original quadruple to the sextuple; with two additional ele-

ments C (compositionality framework) and T (the representation of target words).

4.2 Compositional Matrix Space Model (CMSM) as a Frame-

work for Language Compositionality

The underlying principle of compositional semantics is that the meaning of a sentence

(or a word phrase) can be derived from the meaning of its constituent tokens by applying

a composition operation. More formally, the underlying idea can be described as follows:
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given a mapping [[ · ]] : Σ → S from a set of tokens (words) Σ into some semantical

space S (the elements of which we will simply call “meanings”), we find a semantic

composition operation ./: S∗ → S mapping sequences of meanings to meanings such

that the meaning of a sequence of tokens σ1σ2 . . . σn can be obtained by applying ./ to

the sequence [[σ1]][[σ2]] . . . [[σn]]. This situation qualifies [[ · ]] as a homomorphism between

(Σ∗, ·) and (S, ./) and can be displayed as follows:

σ1

[[ · ]]

��

concatenation ·

''
σ2

[[ · ]]

��

((
· · · σn

[[ · ]]

��

((
σ1σ2 . . . σn

[[ · ]]

��
[[σ1]]

composition ./

66
[[σ2]]

55
· · · [[σn]]

44
[[σ1σ2 . . . σn]]

A great variety of linguistic models are subsumed by this general idea ranging from

purely symbolic approaches (like type systems and categorial grammars) to rather

statistical models (like vector space and word space models). At the first glance, the

underlying encodings of word semantics as well as the composition operations differ

significantly. However, we argue that a great variety of them can be incorporated –

and even freely inter-combined – into a unified model where the semantics of simple

tokens and complex phrases is expressed by matrices and the composition operation is

standard matrix multiplication.

More precisely, in Compositional Marix-Space Models (CMSM) [Rudolph and Gies-

brecht, 2010], we have S = Rn×n, i.e. the semantical space consists of quadratic matri-

ces, and the composition operator ./ coincides with matrix multiplication as introduced

in Chapter 2.

In the following, we will provide diverse arguments illustrating that CMSMs are

intuitive and natural.

4.2.1 Algebraic Plausibility – Structural Operation Properties

Most linear-algebra-based operations that have been proposed to model composition

in language models are associative and commutative. Thereby, they realize a multiset
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(or bag-of-words) semantics that makes them insensitive to structural differences of

phrases conveyed through word order.

While associativity seems somewhat acceptable and could be defended by point-

ing to the stream-like, sequential nature of language, commutativity seems way less

justifiable, arguably.

As mentioned before, matrix multiplication is associative but non-commutative,

hence we propose it as more adequate for modeling compositional semantics of language.

4.2.2 Neurological Plausibility – Progression of Mental States

From a very abstract and simplified perspective, CMSMs can also be justified neuro-

logically.

Suppose the mental state of a person at one specific moment in time can be encoded

by a vector v of numerical values; one might, e.g., think of the level of excitation of

neurons. Then, an external stimulus or signal, such as a perceived word, will result in a

change of the mental state. Thus, the external stimulus can be seen as a function being

applied to v yielding as result the vector v′ that corresponds to the person’s mental

state after receiving the signal. Therefore, it seems sensible to associate with every

signal (in our case: token σ) a respective function (a linear mapping, represented by

a matrix M = [[σ]] that maps mental states to mental states (i.e. vectors v to vectors

v′ = vM).

Consequently, the subsequent reception of inputs σ, σ′ associated to matrices M

and M ′ will transform a mental vector v into the vector (vM)M ′ which by associativ-

ity equals v(MM ′). Therefore, MM ′ represents the mental state transition triggered

by the signal sequence σσ′. Naturally, this consideration carries over to sequences

of arbitrary length. This way, abstracting from specific initial mental state vectors,

our semantic space S can be seen as a function space of mental transformations rep-

resented by matrices, whereby matrix multiplication realizes subsequent execution of

those transformations triggered by the input token sequence.

4.2.3 Psychological Plausibility – Operations on Working Memory

A structurally very similar argument can be provided on another cognitive explanatory

level. There have been extensive studies about human language processing justifying

the hypothesis of a working memory [Baddeley, 2003]. The mental state vector can
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be seen as representation of a person’s working memory which gets transformed by

external input. Note that matrices can perform standard memory operations such as

storing, deleting, copying etc. For instance, the matrix Mcopy(k,l) defined by

Mcopy(k,l)(i, j) =

{
1 if i = j 6= l or i = k, j = l,
0 otherwise.

applied to a vector v, will copy its kth entry to the lth position. This mechanism of

storage and insertion can, e.g., be used to simulate simple forms of anaphora resolution.

4.2.4 CMSMs Encode Vector Space Models

In VSMs numerous vector operations have been used to model composition [Widdows,

2008], some of the more advanced ones being related to quantum mechanics. We

show how these common composition operators can be modeled by CMSMs.1 Given

a vector composition operation ./: Rn × Rn → Rn, we provide a surjective function

ψ./ : Rn → Rn′×n′ that translates the vector representation into a matrix representation

in a way such that for all v1, . . .vk ∈ Rn holds

v1 ./ . . . ./ vk = ψ−1
./ (ψ./(v1) . . . ψ./(vk))

where ψ./(vi)ψ./(vj) denotes matrix multiplication of the matrices assigned to vi and

vj .

4.2.4.1 Vector Addition

As a simple basic model for semantic composition, vector addition has been proposed.

Thereby, tokens σ get assigned (usually high-dimensional) vectors vσ and to obtain a

representation of the meaning of a phrase or a sentence w = σ1 . . . σk, the vector sum

of the vectors associated to the constituent tokens is calculated: vw =
∑k

i=1 vσi .

This kind of composition operation is subsumed by CMSMs; suppose in the original

model, a token σ gets assigned the vector vσ, then by defining

ψ+(vσ) =


1 · · · 0 0
...

. . .
...

0 1 0

vσ 1


1In our investigations we will focus on VSM composition operations which preserve the format (i.e.

which yield a vector of the same dimensionality), as our notion of compositionality requires models that

allow for iterated composition. In particular, this rules out dot product and tensor product. However

the convolution product can be seen as a condensed version of the tensor product.
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(mapping n-dimensional vectors to (n+ 1)× (n+ 1) matrices), we obtain for a phrase

w = σ1 . . . σk

ψ−1
+ (ψ+(vσ1) . . . ψ+(vσk)) = vσ1 + . . .+ vσk = vw.

Proof. By induction on k. For k = 1, we have vw = vσ = ψ−1
+ (ψ+(vσ1)). For k > 1,

we have

ψ−1
+ (ψ+(vσ1) . . . ψ+(vσk−1)ψ+(vσk))

= ψ−1
+ (ψ+(ψ−1

+ (ψ+(vσ1) . . . ψ+(vσk−1)))ψ+(vσk))

i.h.
= ψ−1

+ (ψ+(
∑k−1

i=1 vσi)ψ+(vσk))

=ψ−1
+




1 · · · 0 0
...

. . .
...

0 1 0∑k−1

i=1
vσi(1)· · ·

∑k−1

i=1
vσi(n) 1




1 · · · 0 0
...

. . .
...

0 1 0

vσk (1)· · ·vσk (n) 1




=ψ−1
+


1 · · · 0 0
...

. . .
...

0 1 0∑k

i=1
vσi(1)· · ·

∑k

i=1
vσi(n) 1

=
k∑
i=1

vσi

q.e.d.1

4.2.4.2 Component-wise Multiplication

On the other hand, the Hadamard product (also called entry-wise product, denoted by

�) has been proposed as an alternative way of semantically composing token vectors.

By using a different encoding into matrices, CMSMs can simulate this type of

composition operation as well. By letting

ψ�(vσ) =


vσ(1) 0 · · · 0

0 vσ(2)
...

. . . 0
0 · · · 0 vσ(n)

 ,

we obtain an n× n matrix representation for which ψ−1
� (ψ�(vσ1) . . . ψ�(vσk)) = vσ1 �

. . .� vσk = vw.

4.2.4.3 Holographic Reduced Representations

Holographic reduced representations as introduced by Plate [1995] can be seen as a

refinement of convolution products with the benefit of preserving dimensionality: given

1The proofs for the respective correspondences for � and ~ as well as the permutation-based

approach in the following sections are structurally analog, hence, we will omit them for space reasons.
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two vectors v1,v2 ∈ Rn, their circular convolution product v1 ~ v2 is again an n-

dimensional vector v3 defined by

v3(i+ 1) =
n−1∑
k=0

v1(k + 1) · v2((i− k mod n) + 1)

for 0 ≤ i ≤ n− 1. Now let ψ~(v) be the n× n matrix M with

M(i, j) = v((j − i mod n) + 1).

In the 3-dimensional case, this would result in

ψ~(v(1) v(2) v(3)) =

 v(1) v(2) v(3)
v(3) v(1) v(2)
v(2) v(3) v(1)


Then, it can be readily checked that

ψ−1
~ (ψ~(vσ1) . . . ψ~(vσk)) = vσ1 ~ . . .~ vσk = vw.

4.2.4.4 Permutation-based Approaches

Sahlgren et al. [2008] use permutations on vectors to account for word order. In this

approach, given a token σm occurring in a sentence w = σ1 . . . σk with predefined

“uncontextualized” vectors vσ1 . . .vσk , we compute the contextualized vector vw,m for

σm by

vw,m = Φ1−m(vσ1) + . . .+ Φk−m(vσk),

which can be equivalently transformed into

Φ1−m(vσ1 + Φ(. . .+ Φ(vσk−1
+ (Φ(vσk))) . . .)

)
.

Note that the approach is still token-centered, i.e., a vector representation of a token

is endowed with contextual representations of surrounding tokens. Nevertheless, this

setting can be transferred to a CMSM setting by recording the position of the focused

token as an additional parameter. Now, by assigning every vσ the matrix

ψΦ(vσ) =


0

MΦ
...
0

vσ 1
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we observe that for

Mw,m := (M−Φ )m−1ψΦ(vσ1) . . . ψΦ(vσk)

we have

Mw,m =


0

Mk−m
Φ

...
0

vw,m 1

 ,

hence ψ−1
Φ

(
(M−Φ )m−1ψΦ(vσ1) . . . ψΦ(vσk)

)
= vw,m.

4.2.5 CMSMs Encode Symbolic Approaches

Now we will elaborate on symbolic approaches to language, i.e., discrete grammar

formalisms, and show how they can conveniently be embedded into CMSMs. This

might come as a surprise, as the apparent likeness of CMSMs to vector-space models

may suggest incompatibility to discrete settings.

4.2.5.1 Group Theory

Group theory and grammar formalisms based on groups and pre-groups play an im-

portant role in computational linguistics [Dymetman, 1998; Lambek, 1958]. From the

perspective of our compositionality framework, those approaches employ a group (or

pre-group) (G, ·) as semantical space S where the group operation (often written as

multiplication) is used as composition operation ./.

According to Cayley’s Theorem [Cayley, 1854], every group G is isomorphic to a

permutation group on some set S. Hence, assuming finiteness of G and consequently

S, we can encode group-based grammar formalisms into CMSMs in a straightforward

way by using permutation matrices of size |S| × |S|.

4.2.5.2 Regular Languages

Regular languages constitute a basic type of languages characterized by a symbolic

formalism. We will show how to select the assignment [[ · ]] for a CMSM such that the

matrix associated to a token sequence exhibits whether this sequence belongs to a given

regular language, that is if it is accepted by a given finite state automaton. As usual

(cf. e.g., Hopcroft and Ullman [1979]) we define a nondeterministic finite automaton
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A = (Q,Σ,∆, QI, QF) with Q = {q0, . . . , qn−1} being the set of states, Σ the input

alphabet, ∆ ⊆ Q × Σ × Q the transition relation, and QI and QF being the sets of

initial and final states, respectively.

Then we assign to every token σ ∈ Σ the n× n matrix [[σ]] = M with

M(i, j) =

{
1 if (qi, σ, qj) ∈ ∆,
0 otherwise.

Hence essentially, the matrix M encodes all state transitions which can be caused by

the input σ. Likewise, for a word w = σ1 . . . σk ∈ Σ∗, the matrix Mw := [[σ1]] . . . [[σk]]

will encode all state transitions mediated by w. Finally, if we define vectors vI and vF

by

vI(i) =

{
1 if qi ∈ QI,
0 otherwise,

vF(i) =

{
1 if qi ∈ QF,
0 otherwise,

then we find that w is accepted by A exactly if vIMwvTF ≥ 1.

4.2.5.3 The General Case: Matrix Grammars

Motivated by the above findings, we now define a general notion of matrix grammars

as follows:

Definition 1 Let Σ be an alphabet. A matrix grammar M of degree n is defined

as the pair 〈 [[ · ]], AC〉 where [[ · ]] is a mapping from Σ to n × n matrices and

AC = {〈v′1,v1, r1〉, . . . , 〈v′m,vm, rm〉} with v′1,v1, . . . ,v
′
m,vm ∈ Rn and r1, . . . , rm ∈ R

is a finite set of acceptance conditions. The language generated by M (denoted by

L(M)) contains a token sequence σ1 . . . σk ∈ Σ∗ exactly if v′i[[σ1]] . . . [[σk]]v
T
i ≥ ri for all

i ∈ {1, . . . ,m}. We will call a language L matricible if L = L(M) for some matrix

grammar M.

Then, the following proposition is a direct consequence from the preceding section.

Proposition 1 Regular languages are matricible.

However, as demonstrated by the subsequent examples, also many non-regular and

even non-context-free languages are matricible, hinting at the expressivity of our gram-

mar model.
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Example 1 We define M〈 [[ · ]], AC〉 with

Σ = {a, b, c} [[a]] =


3 0 0 0

0 1 0 0

0 0 3 0

0 0 0 1



[[b]] =


3 0 0 0

0 1 0 0

0 1 3 0

1 0 0 1

 [[c]] =


3 0 0 0

0 1 0 0

0 2 3 0

2 0 0 1


AC = { 〈(0 0 1 1), (1 −1 0 0), 0〉,

〈(0 0 1 1), (−1 1 0 0), 0〉}

Then L(M) contains exactly all palindromes from {a, b, c}∗, i.e., the words d1d2 . . . dn−1dn

for which d1d2 . . . dn−1dn = dndn−1 . . . d2d1.

Example 2 We define M = 〈 [[ · ]], AC〉 with

Σ = {a, b, c} [[a]]=



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 1



[[b]]=



0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1


[[c]]=



0 0 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 2


AC = { 〈(1 0 0 0 0 0), (0 0 1 0 0 0), 1〉,

〈(0 0 0 1 1 0), (0 0 0 1 −1 0), 0〉,
〈(0 0 0 0 1 1), (0 0 0 0 1 −1), 0〉,
〈(0 0 0 1 1 0), (0 0 0 −1 0 1), 0〉}

Then L(M) is the (non-context-free) language {ambmcm | m > 0}.

The following properties of matrix grammars and matricible language are straight-

forward.
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Proposition 2 All languages characterized by a set of linear equations on the letter

counts are matricible.

Proof. Suppose Σ = {a1, . . . an}. Given a word w, let xi denote the number of

occurrences of ai in w. A linear equation on the letter counts has the form

k1x1 + . . .+ knxn = k
(
k, k1, . . . , kn ∈ R

)
Now define [[ai]] = ψ+(ei), where ei is the ith unit vector, i.e. it contains a 1 at he

ith position and 0 in all other positions. Then, it is easy to see that w will be mapped

to M = ψ+(x1 · · · xn). Due to the fact that en+1M = (x1 · · · xn 1) we can

enforce the above linear equation by defining the acceptance conditions

AC = { 〈en+1, (k1 . . . kn − k), 0〉,
〈−en+1, (k1 . . . kn − k), 0〉}.

q.e.d.

Proposition 3 The intersection of two matricible languages is again a matricible lan-

guage.

Proof. This is a direct consequence of the considerations in Section 4.2.6 together with

the observation, that the new set of acceptance conditions is trivially obtained from

the old ones with adapted dimensionalities. q.e.d.

Note that the fact that the language {ambmcm | m > 0} is matricible, as demon-

strated in Example 2 is a straightforward consequence of the Propositions 1, 2, and

3, since the language in question can be described as the intersection of the regular

language a+b+c+ with the language characterized by the equations xa − xb = 0 and

xb − xc = 0. We proceed by giving another account of the expressivity of matrix

grammars by showing undecidability of the emptiness problem.

Proposition 4 The problem whether there is a word which is accepted by a given

matrix grammar is undecidable.

Proof. The undecidable Post correspondence problem [Post, 1946] is described as

follows: given two lists of words u1, . . . , un and v1, . . . , vn over some alphabet Σ′, is there

a sequence of numbers h1, . . . , hm (1 ≤ hj ≤ n) such that uh1 . . . uhm = vh1 . . . vhm?
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We now reduce this problem to the emptiness problem of a matrix grammar.

W.l.o.g., let Σ′ = {a1, . . . , ak}. We define a bijection # from Σ′∗ to N by

#(an1an2 . . . anl) =
l∑

i=1

(ni − 1) · k(l−i)

Note that this is indeed a bijection and that for w1, w2 ∈ Σ′∗, we have

#(w1w2) = #(w1) · k|w2| + #(w2).

Now, we define M as follows:

Σ = {b1, . . . bn} [[bi]] =

 k|ui| 0 0

0 k|vi| 0
#(ui) #(vi) 1


AC = { 〈(0 0 1), (1 − 1 0), 0〉,

〈(0 0 1), (−1 1 0), 0〉}

Using the above fact about # and a simple induction on m, we find that

[[ah1 ]] . . . [[ahm ]] =

 k|uh1
...uhm | 0 0

0 k|vh1
...vhm | 0

#(uh1 . . .uhm) #(vh1 . . .vhm) 1


Evaluating the two acceptance conditions, we find them satisfied exactly if #(uh1 . . . uhm) =

#(vh1 . . . vhm). Since # is a bijection, this is the case if and only if uh1 . . . uhm =

vh1 . . . vhm . Therefore M accepts bh1 . . . bhm exactly if the sequence h1, . . . , hm is a so-

lution to the given Post Correspondence Problem. Consequently, the question whether

such a solution exists is equivalent to the question whether the language L(M) is non-

empty. q.e.d.

These results demonstrate that matrix grammars cover a wide range of formal

languages. Nevertheless some important questions remain open and need to be clarified

next:

Are all context-free languages matricible? We conjecture that this is not the case.1

Note that this question is directly related to the question whether Lambek calculus can

be modeled by matrix grammars.

1For instance, we have not been able to find a matrix grammar that recognizes the language of all

well-formed parenthesis expressions.
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Are matricible languages closed under concatenation? That is: given two arbitrary

matricible languages L1, L2, is the language L = {w1w2 | w1 ∈ L1, w2 ∈ L2} again ma-

tricible? Being a property common to all language types from the Chomsky hierarchy,

answering this question is surprisingly non-trivial for matrix grammars.

In case of a negative answer to one of the above questions it might be worthwhile

to introduce an extended notion of context grammars to accommodate those desirable

properties. For example, allowing for some nondeterminism by associating several

matrices to one token would ensure closure under concatenation.

How do the theoretical properties of matrix grammars depend on the underlying

algebraic structure? Remember that we considered matrices containing real numbers

as entries. In general, matrices can be defined on top of any mathematical structure that

is (at least) a semiring [Golan, 1992]. Examples for semirings are the natural numbers,

boolean algebras, or polynomials with natural number coefficients. Therefore, it would

be interesting to investigate the influence of the choice of the underlying semiring on

the properties of the matrix grammars – possibly non-standard structures turn out to

be more appropriate for capturing certain compositional language properties.

4.2.6 Combination of Different Approaches

Another central advantage of the proposed matrix-based models for word meaning is

that several matrix models can be easily combined into one. Again assume a sequence

w = σ1 . . . σk of tokens with associated matrices [[σ1]], . . . , [[σk]] according to one specific

model and matrices ([σ1]), . . . , ([σk]) according to another.

Then we can combine the two models into one {[ · ]} by assigning to σi the matrix

{[σi]} =



0 · · · 0

[[σi]]
...

. . .

0 0

0 · · · 0
...

. . . ([σi])
0 0
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By doing so, we obtain the correspondence

{[σ1]} . . . {[σk]} =



0 · · · 0

[[σ1]] . . . [[σk]]
...

. . .

0 0

0 · · · 0
...

. . . ([σ1]) . . . ([σk])
0 0


In other words, the semantic compositions belonging to two CMSMs can be executed

“in parallel.” Mark that by providing non-zero entries for the upper right and lower

left matrix part, information exchange between the two models can be easily realized.

Hence, we have shown that CMSM is not only algebraically, neurologically and

psychologically plausible, but also subsumes the most widespread vector composition

operations suggested in other works (see Chapter 3).
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Evaluation Procedure

In the next chapters of the thesis, we evaluate the Distributional Tensor Space Model

presented in 4.1 on a number of standard data sets that are typically used for mea-

suring the quality of distributional models. Further, two novel benchmarks have been

suggested. The latter were offered at the workshops that were (partially) co-organized

by the author of this thesis.

5.1 Datasets

The enumeration of the evaluated datasets is given here for an overview; the detailed

description follows in the corresponding sections. The datasets include:

1. Free Word Associations: a shared task from the ESSLLI’2008 Workshop1;

2. Similarity Judgements [Rubenstein, 1965]: estimation of attributional similar-

ity ;

3. Selectional Preferences or Thematic Fit [Bicknell et al., 2010; Lenci, 2011]:

tendency for certain words or word categories (grammatical or semantic) to co-

occur with certain other words or categories;

4. Multiword Units (MWU) [Evert and Krenn, 2001; Katz and Giesbrecht,

2006]: automatic classification of MWU in compositional, that is literal, or non-

compositional, that is, figurative;

1http://wordspace.collocations.de/doku.php/workshop:esslli:task
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5. DiSCo Shared Task [Biemann and Giesbrecht, 2011]: phrase compositionality

detection, containing adjective-noun, verb-object and subject-verb constructions;

6. SemEval 2013, Task 5b [Korkontzelos et al., 2013]: distinguishing between

figurative and literal usages of a phrase in context;

7. Phrase Similarity Dataset [Mitchell and Lapata, 2010]: containing adjective-

noun, verb-object and noun-noun pairs;

8. Transitive Sentence Similarity Task [Grefenstette and Sadrzadeh, 2011b]:

predicting similarity for sentences consisting of subjects, verbs and direct objects.

5.2 Evaluation Metrics

The measures used for the evaluation of the tasks include the following:

• ”Information Retrieval” measures

Accuracy:
true positives+ true negatives

true positives+ true negatives+ false positives+ false negatives

Precision (P): P =
true positives

true positives+ false positives

Recall (R): R =
true positives

true positives+ false negatives

F-measure (F): F1 = 2× P ×R
P +R

• Statistical correlations

Correlation measures the degree of relationship between two variables. It can

take values between −1 and 1. 0 indicates no relationship between the variables.

1 or −1 indicates a linear relationships, such that if one variable is known, the

second can be accurately predicted. Positive correlation shows that if one variable

increases, the other should grow either. A negative coefficient means that if one

variable increases, the other decreases. Pearson’s r and Spearman’s ρ are the

most widespread correlation measures.
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Pearson’s r quantifies a linear relationship between given numbers (Xi and

Yi), if any exists.

r =

∑
i(Xi −X)(Yi − Y )√∑
i(Xi −X)2(Yi − Y )2

Spearman’s ρ is used for measuring rank correlations; that is, the resulting

scores Xi and Yi are transformed to ranks xi and yi and then the correlation is

computed in a similar way as for the Pearson coefficient.

ρ =

∑
i(xi − x)(yi − y)√∑
i(xi − x)2(yi − y)2

In order to find the correlation or compute the accuracy, we need reference data

that present the ”truth”.

Gold Standard is an important notion in any evaluation exercise. It is usually a

manually constructed benchmark that is used to measure the performance of the auto-

matic algorithm. Ideally at least two human annotators construct such a dataset and

the level of agreement between the annotators is called inter-annotator agreement.

The latter is considered to be ”the upper bound” for algorithm’s performance.

5.3 Computational Resources and Frameworks

All experiments in this thesis, concerning Distributional Tensor Space Model, were

conducted on Red Hat 4.1.2 server operating system running on Intel Core 4 Xeon

@ 2.33 GHz CPU with 10 GB RAM; the task of detecting non-compositionality for

multiword units (cf. Section 7.1) as well as the task of measuring free words associations

(cf. Section 6.1) were performed on a regular 2.53 GHz Intel Core i5 laptop with 8 GB

RAM.

Text corpora used for evaluation include the following:

• UK Web as Corpus (ukWaC) [Ferraresi et al., 2008] - for free word associations;

• an excerpt of Süddeutsche Zeitung (SZ) corpus for 2003 - for multiword units

detection;
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• British National Corpus (BNC1).

The majority of experiments in this thesis are based on the British National Cor-

pus (BNC), a 100 million word collection of written and spoken English collected

from a wide range of sources. The corpus contains 100,106,008 words in 4124 texts

consisting of 6.25 million sentences. The corpus is lemmatized and part-of-speech

tagged.

Following Tools have been used or implemented for this work:

• Semantic Vectors package [Widdows and Ferraro, 2008];

• MATLAB Tensor Toolbox for tensor decomposition [Bader et al., 2012];

The Tensor Toolbox supports operations for sparse tensors that we deal with. We

use a sparse implementation of Tucker, PARAFAC and NMF algorithms.

• Self-implemented tensor manipulation framework in Java, using frameworks and

libraries Spring2, Hibernate3, Colt4 and Ant5.

5.4 Construction of Distributional Tensor Space Model

For all of the experiments, except for one concerning multiword units (Section

7.1), we proceed in the following way:

1. build a Distributional Tensor Space Model from one of the above listed

corpora;

For this, we possibly fix in advance a number of parameters (context win-

dow size, number and choice of context dimensions, number of factors for

decomposition) or experiment with those.

2. extract either vectors (tensor fibers) or matrices (tensor slices) representing

words from the resulting 3d tensor;

1http://www.natcorp.ox.ac.uk
2http://www.springsource.org/
3http://www.hibernate.org/
4http://acs.lbl.gov/software/colt/
5http://ant.apache.org/
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3. for phrases and sentences: compose component word matrices by means of

matrix addition and multiplication;

4. compute cosine similarity for extracted or composed vectors and matrices;

5. calculate either precision or correlations for the resulting similarity scores.

Here, we follow the tradition of vector space models where cosine is usually used

for measuring semantic relatedness. One of the future direction in matrix-based

meaning representation is to investigate further matrix comparison metrics.

In the traditions of distributional models, we avoid the so-called stop words to

be included into the model. Below is an example of a stop word list that was

used:
a, able, about, across, after, all, almost, also, am, among,

an, and, any, are, as, at, be, because, been, but, by, can,

cannot, could, dear, did, do, does, either, else, ever,

every, for, from, get, got, had, has, have, he, her, hers,

him, his, how, however, i, if, in, into, is, it, its, just,

least, let, like, likely, may, me, might, most, must, my,

neither, no, nor, not, of, off, often, on, only, or, other,

our, own, rather, said, say, says, she, should, since, so,

some, than, that, the, their, them, then, there, these,

they, this, tis, to, too, twas, us, wants, was, we, were,

what, when, where, which, while, who, whom, why, will, with,

would, yet, you, your

5.5 Tensor Exploitation

A tensor allows a number of usages.

Having three axes, we can decide which of the axis should be used as a reference

point for a word matrix initialization. Consequently, we can extract the X, Y or

Z slices of the tensor that refer to different kinds of contexts (see Figures 5.1, 5.2,

5.3). In the general case, we will use the Y slice of the tensor which corresponds

to the middle context words; thereby the corresponding matrix contains the left

and the right contexts of the target concept (cf. Experiments in Chapter 6 (6.1

and 6.2) and Chapter 7 (7.2, 7.3, 7.4 and 7.5)).
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Figure 5.1: X-Slice of Tensor

Figure 5.2: Y-Slice of Tensor
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Figure 5.3: Z-Slice of Tensor

Figure 5.4: Intersection of two slices: row vector, or fiber, extraction
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Figure 5.5: Intersection of three slices: finding point values

Further, in some cases we may need to extract a vector at the intersection of two

slices, i.e., matrices (see Figure 5.4).

The third way to deploy the tensor is to find a concrete point at the intersection

of three slices (cf. Figure 5.5). This methodology is relevant, for example, for the

exercise of determining selectional preferences (Chapter 6 (6.3)).
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Experimental Part I: Model

Evaluation

This chapter describes the evaluation of the proposed model on a number of

datasets that have established themselves as benchmarks for measuring the per-

formance of semantic space models.

Traditionally, distributional semantics methods have been used for a number of

tasks on automatic discovery of semantic relatedness between words, like TOEFL

synonymy test [e.g. Rapp, 2003] or detection of analogical similarity [e.g. Turney,

2006].

The performance of corpus-based state-of-the-art methods1 for TOEFL synonymy

task has achieved in the meantime the perfection of 100% [Bullinaria and Levy,

2012], which is even above a possible human performance on this task; and there

is nothing more that can be done in respect to this task.

A related exercise that turned out to be much more sophisticated is the task

of finding out to what extent (statistical) similarity measures correlate with free

word associations (see Section 6.1).

Another widespread benchmark is the dataset of Rubenstein [1965] (see Section

6.2) where graded similarity values were assigned to the pairs of concepts.

1http://aclweb.org/aclwiki/index.php?title=TOEFL Synonym Questions (State of the art)
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An important task in many practical applications is the task of selectional prefer-

ences. The latter play significant role in many application areas, such as question

answering, ontology construction, query answering, paraphrasing; in computa-

tional linguistics research - for parsing, word-sense disambiguation, metaphor

recognition; in cognitive science - for understanding of the organization of mental

lexicon and knowledge in the brains. Following Lenci [2011], we use the dataset

of Bicknell et al. [2010] to evaluate DTSM on the task of selectional preferences.

In the following, we describe the corresponding datasets and present the evalua-

tion results for the Distributional Tensor Space Model.

6.1 Free Word Associations Task

Free associations are the words that come to the mind of a native speaker when

he or she is presented with a so-called stimulus word. The percent of test subjects

that produce certain response to a given stimulus determines the degree of a free

association between a stimulus and a response. Examples of free associations are:

mattress - bed, reflection - mirror, cat - dog, etc. These associations do

not correspond to just one kind of semantic relation, that is why they are called

free. The latter makes their computational analysis difficult as there is up-to-

now no unified computational theory for analysing all possible kinds of semantic

relations and new models are built for every task.

The free word association task was suggested as a shared task for the evaluation

of word space modelsat Lexical Semantics Workshop at ESSLLI 2008, and it is

freely available1. For this task, workshop organizers proposed three subtasks, one

of which - discrimination - we evaluate here.

Discrimination task includes a test set of overall 300 word pairs that were classified

according to three classes of association strengths:

– first - strongly associated word pairs as indicated by more than 50% of test

subjects as first responses (e.g., girl - boy);

1http://wordspace.collocations.de/doku.php/workshop:esslli:task
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– hapax - word associations that were produced by a single test subject (e.g.,

cafe - fish);

– random - random combinations of words (e.g., digital - revolt).

To collect the three-way co-occurrence information, we experiment with the ukWaC

corpus as suggested by the workshop organizers in order to get comparable re-

sults. As ukWaC is a huge Web-derived corpus consisting of about 2 billion

tokens, it was impossible to process the whole corpus. As the sub-sections of

ukWaC contain randomly chosen documents, one can train the model on any of

the sub-sections.

We limited out test set to the word pairs for which the constituent words occur

more than 50 times in the test corpus. Thereby, we ended up with a test set

consisting of 222 word pairs.

6.1.1 Procedure

We proceed in the following way - for each pair of words:

1. gather N -sentences for each of the two component words;

2. build a 3-dimensional tensor from the subcorpus obtained in (1), given a

window size w (here: w = 10, i.e. 5 words to the left and 5 words to the

right of the target word);

3. reduce 5 times the dimensionality of the tensor obtained in (2) by means of

Tucker decomposition using Matlab Tensor Toolbox Bader and Kolda [2006];

4. extract two matrices of both constituents of the word pair and compare those

by means of cosine similarity.

6.1.2 Results

Tables 6.1 and 6.2 show the resulting accuracies for the training and test sets.

th denotes cosine threshold values that are used for classification of the results.

Here, th is taken to be the function of the dataset size. Thus, given a training

set of size s = 60 and 3 classes, de define an ”equally distributed” threshold
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th1 = 60/3 = 20 (Table 6.1) and a ”linearly growing” threshold th2 =
1

4
,
1

3
, rest

(Table 6.2).

It is not apparent yet, how and if a ”universal” threshold for differentiating be-

tween the groups should and can be determined. The results from Tables 6.1 and

6.2 show that the final cosine similarity threshold is dependent on the corpus and

experiment settings. Maybe, in the same way as the measure of similarity cannot

be easily defined by humans, so the threshold for geometric models of meaning

cannot be just fixed.

TRAIN TEST

FIRST 12/20 (60%) (th1 = 0.022) 25/74 (33%) (th1 = 0.078)

HAPAX 7/20 (35%) (th1 = 0.008) 35/74 (47%) (th1 = 0.042)

RANDOM 8/20 (40%) 23/74 (31%)

Total (F/H/R) 27/60 (45%) 83/222 (37.4%)

FIRST/HorR1 44/60 (73.33%) 125/222 (56.3%)

Table 6.1: Free word associations: Accuracies for equally distributed threshold

TRAIN TEST

FIRST 9/15 (60%) (th2 = 0.0309) 20/55 (36.4%) (th2 = 0.09)

HAPAX 8/20 (40%) (th2 = 0.0101) 39/74 (52.7%) (th2 = 0.047)

RANDOM 10/25 (40%) 24/93 (25.8%)

Total (F/H/R) 27/60 (45%) 108/222 (48.6%)

FIRST/HorR2 43/60 (71.60%) 113/222 (50.9%)

Table 6.2: Free word associations: Accuracies for linear growing threshold

In contrast to the analogue LSA-based model that was reported by Wandmacher

et al. [2008] to obtain good results for random associations but the lowest results

for the first, i.e. strongest associations, our model was more accurate for the

first, i.e. strongly associated, word pairs.

The overall results (ca. 50% to 73% accuracy depending on the task setting)

seem not to be quite optimal at this stage. However, the reported results have

been obtained based on very small corpora, containing basically 100 sentences

per iteration (cf. Wandmacher et al. [2008] use a corpus of 108M words to train

their LSA-Model).
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Another important issue with free association norms is that they are inherently

sensitive to quite a number of factors: social, economic, political and cultural

background - all influence the kind of associations people make. These are all the

factors that need to be considered in the future by choosing the training corpus

and test data.

6.2 Similarity Judgements

The dataset of Rubenstein [1965] contains 65 noun pairs that were manually

rated for similarity on a 0-4 scale by 51 subjects. The average of these ratings is

reported as a similarity value in the dataset: e.g., car-automobile has a score of

3.92, mid and noon - 3.94 and noon and string - 0.04.

Similarly to the others [Padó and Lapata, 2007; Baroni and Lenci, 2010], we use

Pearson’s r to evaluate the correlation between the scores of our system and the

ones from the gold standard. Rubenstein [1965] report inter-annotator correlation

of r = 0.85. This score can be thought of as an upper bound for computational

methods.

The resulting correlations for words that occurred within collected triples in the

BNC corpus more than 5 times are presented in Table 6.3. Obviously, better

results are achieved with bigger context window. Using more decomposition factors

brings further improvement, especially with less context dimensions. Thus, we’ve

achieved the currently best result with 2000 dimensions, 100 factors and max.

13 neighbours per side taking into consideration sentence boundaries.

Recall is reported in parenthesis in Table 6.3. We take recall to be less important

in this case, as we can always achieve it with more data; the latter is obvious

from Table 6.4 which shows that the recall of one is achieved for this dataset if

we just take all triples into account without penalizing for frequency.

Table 6.5 shows the result of the so far best DTSM model and three further state-

of-the-art results; two of which (TypeDM and WIN) are based on much bigger

corpora (ukWaC + Wikipedia). DV-cosine is the only method that was tested

on the same corpus as our model, i.e. the BNC.
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number of dimensions factors neighbours per side Pearson’s r (Recall)

5000 50 5 0.29 (0.62)

50 13 0.42 (0.68)

100 5 0.44 (0.62)

100 13 0.43 (0.68)

2000 50 5 0.36 (0.58)

50 13 0.50 (0.68)

100 5 0.36 (0.67)

100 13 0.54 (0.68)

Table 6.3: Rubenstein and Goodenough (1965): Pearson correlations for DTSM, (recall

in parenthesis)

DTSM 2000, f100 min1 min5

nn = 5 0.49 (1.0) 0.44 (0.585)

nn = 13 0.51 (1.0) 0.54 (0.68)

Table 6.4: Rubenstein and Goodenough (1965): Pearson correlations for DTSMbest with

varying minimum triple occurrences

DTSM 0.54

TypeDM [Baroni and Lenci, 2010] 0.82

WIN 0.65

. . . . . .

DV-cosine [Padó and Lapata, 2007] 0.47

Table 6.5: Rubenstein and Goodenough (1965): Pearson correlations for DTSM and

state-of-the-art models of similar background
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For comparability, we mention here only the results of the models that come from

the similar line of research, i.e. purely distributional semantics based approaches.

TypeDM is here representative for all distributional memory group of approaches

as the one with the best performance [Baroni and Lenci, 2010].

Pearson’s correlation of 0.47 for dependency vector model in Table 6.5 is reported

for the model of Padó and Lapata [2007] that uses cosine similarity, 2000 basis

elements and the log-likelihood association function. Padó and Lapata [2007]

report also a much better correlation of 0.62 which is, however, due to the other

similarity measure [Lin, 1998] that was used instead of cosine. As this is one of

the tunable parameters that can also be applied to our model, we compare to the

setup that is used in our model, i.e., using the same similarity measure, namely

the cosine.

DTSM is performing worse than TypeDM; the latter can be explained, first of

all, by the corpus size and type - BNC versus ukWaC, that is, 100 million

word collection containing highly standardized newspaper, fiction and similar

text genres versus 2 billion word corpus constructed from the Web.

Furthermore, it may be the case that vector-based approaches are more suited

than a more sophisticated matrix approach for this type of similarity that is

asked for in this dataset, as well as other word similarity tasks where the notion

of similarity is rather arbitrary defined, in the sense that it is mostly independent

of the structural effects that present the added value of the third dimension that

is offered by our model.

6.3 Thematic Fit, or Selectional Preferences

All of the benchmarks, described so far, have been suggested and are widely used

for the evaluation of the semantic tasks on the word level. In this section we

address one of the most important and ”unsolved” tasks in NLP - the task of

selectional preferences - where word order information matters.

The topic of selectional preferences (in computational linguistics), also known

as thematic fit (in (psycho-)linguistics), is an important aspect for human sen-

tence processing [McRae et al., 1998; Lenci, 2011]. On the psycholinguistic side,
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knowing selectional preferences helps us to tell plausible sentences from implau-

sible ones. In cognitive science, understanding thematic fit reveals insights into

human concept formation and mental lexicon organization.

Selectional preferences, or selectional constraints, are restrictions on the appli-

cability and plausibility of certain word combinaitions, e.g., if ”green grass” is

absolutely natural, ”green cow” is unlikely but conceivable, ”green idea” is both

unlikely and unimaginable [Resnik, 1996]. This topic has long roots in the for-

mal truth-theoretic semantics and there has been a number of approaches for

automatic acquisition of such preferences from text, since Resnik [1993, 1996]

formalized the first computational model of selectional preferences1.

Usually, this task is associated with selectional preferences for verbs in computa-

tional linguistics, i.e. with automatic extraction of plausible arguments (subject

and objects) for a predicate.

In psychology and cognitive science, it has been shown that verbs activate expec-

tations about nouns occurring as their arguments, e.g. when hearing prepare, one

may think of dinner or speech, and vice versa, if you remember that you have to

give a speech tomorrow, you will probably speculate about preparing it [McRae

et al., 1998, 2005]. Furthermore, nouns also activate expectations in the brains

about other nouns occurring as co-arguments in the same event, like key - door

or politician - speech [Hare et al., 2009].

Bicknell et al. [2010] demonstrate an even more complex view of verb-argument

expectations, showing the three-way dependencies between verbs and both of its

arguments. For instance, if the agent noun is chef, the probable patient for the

verb to prepare may be, e.g., dinner ; while if it is a politician, then the patient of

prepare is more likely to be speech. Consequently, thematic fit is also sensitive to

the way other roles of the same verb are filled, i.e., it is a three-way dependence.

Lenci [2011] was the first to address the issues of thematic fit and compositionality

by means of distributional semantic models together as one task. For this, he

uses Distributional Memory framework (TypeDM, W1 × LW2 space), described

in Section 3.2.4 to compute expectations of agent-verb pairs for corresponding

1See, for example, Resnik [1996] and Erk et al. [2010] for an overview of theoretical discussions and

computational approaches correspondingly.
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patients. The thematic fit of the potential patient is measured by the cosine

between its TypeDM vector and the ”prototype” vector which is obtained out of

the top-k objects of the agent+verb pair:

EXPA(〈nAG, v〉) = f(EX(nAG), EXPA(v)) (6.3.1)

- with f being SUM or PRODUCT and where EX(nAG) is the set of TypeDM

tuples of the form 〈nAG, verb, nj〉 and EXPA(v) is the set of TypeDM tuples of

the form 〈ni, obj, v〉.

For example, EX(mechanic) could be tuples 〈mechanic, verb, car〉, 〈mechanic,
verb, oil〉, 〈mechanic, verb, engine〉 and so on. EXPA(check) could be repre-

sented by 〈mistake, obj, check〉, 〈engine, obj, check〉, etc.

Similar to Lenci [2011], we use the dataset of Bicknell et al. [2010] (bicknell.64)

to evaluate the performance of our model for selectional preferences. The dataset

contains 64 contrastive triples of word pairs, each sharing the same verb, but

differing for the agent and patient nouns, e.g.:

journalist - check - spelling

mechanic - check - brake

Patients in each triple were produced by 47 subjects as the prototypical (congru-

ent) arguments of the verbs given a certain agent. The patient noun in one triple

is incongruent with another triple with the same verb but a different agent: e.g.,

brake is an incongruent patient for the journalist - check pair but congruent for

the mechanic - check combination.

6.3.1 Procedure

Our Distributional Tensor Space Model allows to extract such dependencies in a

completely unsupervised manner from text in a straightforward way.

For all the congruent and incongruent triples, we extract a value from the tensor

at the intersection of corresponding X, Y and Z indices for subject, verb and

object. For example, for the pair journalist - check - spelling we identify the
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index of journalist on the X-axis, the index of check on the Y-axis and spelling

on the Z-axis. Then the intersection of the three slices results in a number (cf.

Figure 5.5). The same is done for the incongruent pair. The triple that gets a

bigger number is considered as congruent.

6.3.2 Results

We report here precision values for this experiment. We consider precision to be

more important in this case, as recall can be remedied with more data. Compared

to Lenci [2011], we use a relatively small corpus (BNC) for this proof of concept.

There are two ways how we can interpret congruency evaluation in this case:

taking either agents or patients as points of reference. Lenci [2011] uses the

former (agents); i.e., he measures the precision by means of comparing cosine

(f(journalist, check), spelling) and cosine(f(mechanic, check), spelling). In

this case, if the first is bigger, the answer of the system is interpreted as cor-

rect; otherwise fail. Table 6.6 reports the corresponding numbers for our DTSM

model.

Rather high precision that we achieve (0.72) is the second best, compared to

the results reported in Lenci [2011]. It is worth reminding that we use text

collection of the size at most
1

10
th of the corpus used in the original experiment.

Furthermore, we do not invent any special way to treat this exercise that is

optimized only for the given task; we use the model as it is and achieve very high

precision. All of the evaluated settings of DTSM are better than the baseline1,

except for one; and they are better than the second best model of Lenci [2011].

We also report the precision for patients given the same agent, i.e., we compare

cosine(journalist, check, spelling) and cosine(journalist, check,break) (cf. Ta-

ble 6.7). Even better results are achieved for the second verb argument, i.e., pa-

tient. However, no results for the patient argument were reported in Lenci [2011],

so we cannot directly compare our results to any other system in this case except

for baseline.

1Baseline here is the probability of choosing one of the two available variants, which is 50%
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# context words # factors # neighbours Precision

2000 50 5 0.61

13 0.68

100 5 0.66

13 0.55

150 5 0.65

13 0.61

5000 50 5 0.44

13 0.61

100 5 0.5

13 0.61

150 5 0.38

13 0.61

10000 50 5 0.47

13 0.57

100 5 0.63

13 0.68

150 5 0.58

13 0.72

Baseline 0.50

Lenci [2011] best model 0.84

Lenci [2011] 2nd best model 0.41

Table 6.6: Precision of DTSM on bicknell.64 dataset for triples with minOcc=5 and

modifying agents

All in one, the results show that the model can successfully predict the thematic

fit, or selectional preferences, for both agent and patient verb argument posi-

tions without any task-specific optimization.
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# context words # factors # neighbours accuracy

2000 50 5 0.66

13 0.75

100 5 0.65

13 0.635

150 5 0.66

13 0.68

5000 50 5 0.48

13 0.57

100 5 0.57

13 0.77

150 5 0.65

13 0.63

10000 50 5 0.6

13 0.76

100 5 0.64

13 0.62

150 5 0.6

13 0.70

Baseline 0.50

Table 6.7: Precision of DTSM on bicknell.64 dataset for triples with minOcc=5 and

modifying patients
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7

Experimental Part II:

Evaluation of Compositionality

This chapter describes the experiments we performed in order to evaluate the

Distributional Tensor Space Model in terms of its ability to reproduce semantic

compositionality, i.e. the ability to reconstruct the meaning of a phrase from the

meanings of its parts. Any NLP system that does semantic processing has to

handle the issue of compositionality of natural language.

Compositionality, as we have seen in Chapter 3.3, is a controversial and much

discussed issue in language research. In the same way, there is no consensus on

the best way to evaluate the models of compositionality as nobody can truely

measure this rather abstract concept.

Several ways of evaluation have been suggested. The early approaches started

with evaluation of models of compositionality by means of the opposite, i.e. by

trying to figure out if we can automatically measure the non-compositionality

of certain multiword expressions (MWEs), also called multiword units (MWUs).

Multiword expressions are ”idiosyncratic interpretations that cross word bound-

aries”. They cause troubles for both semantic and syntactic processing as they

cannot be interpreted by means of direct combination of the meanings of the

component words [Sag et al., 2002].

Automatic identification or classification of multiword expressions was recognized

as an important task in computational linguistics long before the issue of com-
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positionality in distributional semantics came up. Distributional approaches to

MWEs started to gain in importance at the beginning of the 2000s [Schone and

Jurafsky, 2001; Baldwin et al., 2003].

It has been empirically shown in Katz and Giesbrecht [2006], that vector simi-

larity between distribution vectors associated with a multiword unit as a whole

and those associated with its constituent parts can serve as a good measure of

the degree to which the multiword unit is (non-)compositional. However, a num-

ber of issues were left open in the end; among them, the question if a better

mathematical approximation for simulating compositional meaning, other than

addition, would improve the algorithm.

The first part of compositionality evaluation builds upon this line of research

on multiword units. Section 7.1 describes a continuation of our previous work,

started in Katz and Giesbrecht [2006], by testing different mathematical opera-

tions, introduced in Section 3.3.1, on the task of multiword unit identification,

making use of Random Indexing [Sahlgren, 2005].

Sections 7.2 presents the shared task that was offered at the Distributional Se-

mantics and Compositionality (DiSCo) workshop. It addresses the problem of

graded instead of binary compositionality classification that has been notoriously

ignored in the computational semantics community [Bannard et al., 2003; Katz

and Giesbrecht, 2006]. The task consists in letting computational systems auto-

matically assign compositionality scores to phrases instead of simply classifying

them as compositional or non-compositional. The dataset contains MWUs with-

out sentence contexts.

Due to the huge interest of the community to the original contexts, in which the

phrases occurred, as well as in order to evaluate the promising results of Katz and

Giesbrecht [2006] on using local contexts, Task 5b1 at SemEval (Semantic Evalu-

ation) 2013 competition was suggested. SemEval consists of a number of shared

tasks for evaluation of computational semantic systems that are organized within

a 1-2 day workshop that is usually co-located with one of the major conferences

in computational linguistics. SemEval replaced in 2007 the Senseval Word Sense

Disambiguation workshop series that had been conducted since 1998.

1http://www.cs.york.ac.uk/semeval-2013/

82



7.1 Non-Compositionality Detection for Multiword Units

Section 7.3 describes the SemEval shared task which offers a further extension

of MWU classification into compositional, i.e. literal, versus non-compositional,

i.e. idiomatic, phrases; but this time they are given in context. We evaluate the

Distributional Tensor Space Model on this dataset too.

Both of the shared tasks, described in Section 7.2 and in Section 7.3, were initiated

and co-organized by the author of this thesis and present extensions of work

done in Katz and Giesbrecht [2006] and Giesbrecht [2009] on compositionality

detection.

Another way of evaluating compositional word space models of meaning is fol-

lowing the ideas of traditional distributional semantics similarity tasks in that

two pairs of phrases or sentences, instead of simple words, are compared for sim-

ilarity. A number of datasets has been suggested for this exercise, and they are

used as benchmarks in the meanwhile. The task is basically to evaluate distribu-

tional models of composition in terms of their ability to predict similarity ratings

for simple phrases, i.e. a natural extension of word level similarity tasks, like

synonymy or associations tasks.

This evaluation setup was suggested by Kintsch [2001]. However, he demon-

strated his algorithm only on a few selected examples; the latter was criticized

in literature [Frank et al., 2008]. Nevertheless, the idea suggested by Kintsch

[2001] was taken up by many researchers later and extended to large and proper

evaluation datasets.

The dataset of Mitchell and Lapata [2008, 2010] is one of those (Section 7.4). It

consists of pairs of adjective-noun, verb-object and compound noun phrases.

Last but not least, Grefenstette and Sadrzadeh [2011b] assembled a dataset of

transitive sentences containing subjects, verbs and direct objects, motivated by

the methodology of Mitchell and Lapata [2010]. We take a chance to test DTSM

also on this dataset in the last step (Section 7.5).

7.1 Non-Compositionality Detection for Multiword Units

A multiword unit (MWU) is defined here as a connected sequence of neighbour-

ing words whose exact and unambiguous meaning cannot be derived from the
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meaning of its components [Schone and Jurafsky, 2001]. Spill the beans or hot

dog are examples of such MWUs. Therefore, a MWU either has a completely

opaque meaning, or its constituent words acquire some other nuance of meaning

when they are used together, thereby making the expression as a whole non-

compositional. Thus, spill co-occurring with the beans has nothing to do with

slopping but rather with revealing (secrets). In contrast, buy a ticket is about

buying and ticket together, and it is perfectly compositional. Figurative, i.e. non-

compositional, MWUs have always posted a problem for compositional theories of

language and have been used as an objection to the principle of compositionality

of human language within symbolic approaches.

There is a long-living tradition within the research community working on multi-

word units to automatically identify MWUs in text corpora using statistical asso-

ciation measures [Evert and Krenn, 2001; Evert, 2004; Lin, 1999] or by means of

Latent Semantic Analysis [Schone and Jurafsky, 2001; Baldwin et al., 2003; Katz

and Giesbrecht, 2006].

Schone and Jurafsky [2001] and Katz and Giesbrecht [2006] explored detection of

non-compositional phrases by means of comparing the co-occurrence signatures of

a multiword unit as a whole and those of the composed vectors of its constituents.

The main assumption in all similar experiments is that compositional MWUs

appear systematically in contexts more similar to those in which their component

words appear than do non-compositional MWUs.

Figure 7.1 illustrates such a vector space in two dimensions. Note that the mean-

ing vector for the MWU yellow press is quite similar to that for gossip but distant

from yellow, while the meaning vector for yellow banana would be much closer

to yellow in contrast. Indeed yellow press is a non-compositional idiom meaning

’newspapers that publish gossip about celebrities’.

Katz and Giesbrecht [2006] showed that the local context of a MWU could reliably

distinguish idiomatic uses of MWU from non-idiomatic uses. It was shown that

LSA vectors for compositional and non-compositional uses of an idiom (manually

annotated) were orthogonal, i.e., unrelated.

However, both of the above mentioned works define the estimated compositional

meaning vector by taking it to be the sum of the component vectors, i.e., the
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Figure 7.1: Two-dimensional word space

compositional meaning of the expression yellow banana is taken to be the sum of

the vectors for the corresponding words vector(yellow) + vector(banana). They

recognize that the composed vector is clearly nowhere near a perfect model of

compositional meaning, but it proved to be just enough to test the hypothesis.

We build here upon the work of Katz and Giesbrecht [2006] and explore more ad-

vanced mathematical operations on vectors, suggested by Widdows [2008], as an

approximation of ”semantic composition” by adopting their evaluation paradigm.

In particular, we are looking for an answer to the question whether simply ap-

plying more advanced mathematical operations on vectors would be enough to

achieve better models of the semantic compositionality in vector spaces.

7.1.1 Compositional Models

Let w1w2 denote the composition of two vectors w1 and w2. In the following, we

define the operations for vector compositionality models that we test later. The

estimated compositional meaning vector w1w2 is calculated by taking it to be:

1. (+) the sum of the meaning vectors of the parts, i.e., the compositional

meaning of an expression w1w2 consisting of two words is taken to be sum
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of the meaning vectors for the constituent words w1 and w2 : (w1w2)i =

w1i + w2i;

Thus, the ”compositional” vector for yellow press in this case would be the

sum of the vectors for yellow and press.

2. (·) the simplified multiplicative model as it is defined in Mitchell and La-

pata [Mitchell and Lapata, 2008]: under the assumption that only the ith

component of w1 and w2 contribute to the ith component of w1w2, we can

formulate vector multiplication operation as: (w1w2)i = w1i · w2i;

3. (⊗) the tensor product: if the vector of the word w1 has components w1i

and the vector of the word w2 has components w2j , then the tensor product

(w1⊗ w2) is a matrix whose ijth entry is w1iw2j [cf. Widdows, 2008];

4. (∗) the convolution product, which is also a kind of vector multiplication

that results in the third vector of dimensionality (m + n − 1). Given two

vectors w1 = [w11, w12, w1..., w1m] and w2 = [w21, w22, w2..., w2n], their

convolution (w1 ∗ w2) is defined as (w1w2)i =
∑

j w1jw2i−j+1.

For computing meaning similarity for vector addition, component multiplication

and convolution, we use the standard measure of cosine of the angle between two

vectors (the normalized correlation coefficient) as a metric [Schütze, 1998; Baeza-

Yates and Ribeiro-Neto, 1999], which corresponds for normalized unit vectors to a

scalar product of those. In this metric, two expressions are taken to be unrelated

if their meaning vectors are orthogonal (the cosine is 0) and synonymous if their

vectors are parallel (the cosine is 1). For the tensor product, the natural similarity

measure is the inner product on tensors and is defined as the product of the

similarities of the constituents: (w11 ∗ w21) × (w12 ∗ w22) [cf. Widdows, 2008].

The quantitative interpretation of this metric corresponds to that of a scalar

product, i.e., the higher the similarity score, the more related the components.
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Thus, our task is to compare the actual vector of a multiword unit with that of the

”composed” vector of its constituents, whereas the ”composed vector” is defined

by four models of compositionality described above. Figure 7.2 exemplifies the

idea behind the overall procedure.

Figure 7.2: Composition operations on MWU in a 2-dimensional word space

7.1.2 Experimental Setup

In this work we make use of the Word Space Model (WSM) [Schütze, 1993] where

the meaning of a word is modelled as an n-dimensional vector with dimensions

being its co-occurrence signature derived via Random Indexing [Sahlgren, 2005].

We build our WSM on the excerpt of a local German newspaper corpus1. As

our MWU test set we use a database of German (Preposition)-Noun-Verb (PNV)

pairs available as an example data collection in the UCS-Toolkit2. From this

database only word combinations with frequency of occurrence more than 30 in

the corpus were considered.

The Semantic Vectors package [Widdows and Ferraro, 2008] was used to build

the context vectors of reduced dimensionality. We use a context window of 15

words and limit the dimensionality to 100, resulting in 100 dimensional ”mean-

ing” - vectors for each word. In our experiments, MWUs as a whole also got

1Süddeutsche Zeitung (SZ) corpus for 2003 with about 42 million words.
2www.collocations.de.
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assigned such meaning vectors using the same procedure. The meaning vectors

for component words were always computed from contexts in which they appear

alone, that is, not in the local context of the other constituent, in order to exclude

the biasing contribution of the latter. Table 7.1 illustrates a possible resulting

matrix, which indicates that, e.g., the words gossip and celebrity occur 20 times

with yellow press within a distance of 7 words before or 7 words after the yellow

press.

dim1=gossip dim3=celebrity dim4=banana ... dim100=resources

yellow 0 0 20 ... 0

press 1 3 0 ... 15

yellow press 20 20 0 ... 1

Table 7.1: An example of a word space containing MWU

To evaluate the method, we use the manually annotated collocations database de-

scribed by Evert and Krenn [2001] as our gold standard. This collection includes

collocations that have been manually classified into Support Verb Construc-

tions(SVC), figurative expressions, or neither of the two. SVC are (preposition-

)noun-verb constructions where a noun provides the main semantic contribution

to the meaning of the whole phrase, like in ”Peter took a walk”, or an example

in German could be ”Peter hat das Problem in Angriff genommen”. The whole

word combination in the case of SVC is neither non-compositional nor can it be

called compositional. To be on the safe side, the current evaluation is based solely

on the phrases annotated as figurative, as they are per se non-compositional. The

latter constitute 19% of our test set (19 out of 100).

The idea behind our evaluation strategy is to use these non-compositional collo-

cations to compare how reliable different vector composition models can identify

them. This should give us a clue whether using a more advanced mathematical

operator could be good enough to reproduce semantic composition in language.

7.1.3 Results

The resulting vector similarity values for tensor product range from -0.009 to 0.55;

for vector sum, the cosine values are between 0.04 and 0.79; the products range
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from -0.009 to 0.03; and finally, convolution ranges from -0.04 to 0.661. Since we

cannot directly compare the values between the different composition operations,

important are the comparisons within the individual models.

In computational linguistics, one straightforward way of doing this is by means

of precision and recall.

Precision is defined in this case as the proportion of true multiword units under

the given cosine similarity threshold. Recall is the proportion of multiword units

under the cosine threshold out of all given MWUs. As there is generally a trade-off

between the two measures, the F-measure [Manning and Schütze, 1999] is often

used instead, which is a weighted harmonic mean of precision and recall. Table

7.2 gives an overview of precision, recall and F-score values for different cut-offs

of a similarity value for the evaluated composition models.

ADDITION < 0.2 < 0.3 < 0.4 < 0.5

Precision 0.125 0.28 0.29 0.25

Recall 0.05 0.53 0.84 0.88

F-measure 0.09 0.37 0.43 0.40

MULTIPLICATION < 0.001 < 0.01 < 0.02 < 0.03

Precision 0.19 0.20 0.19 0.19

Recall 0.47 0.79 0.89 1.00

F-measure 0.27 0.39 0.31 0.31

TENSOR < 0.03 < 0.05 < 0.1 < 0.15

Precision 0.21 0.29 0.31 0.28

Recall 0.16 0.37 0.84 1.00

F-measure 0.18 0.325 0.45 0.44

CONVOLUTION < 0.01 < 0.1 < 0.2 < 0.26

Precision 0.22 0.20 0.22 0.25

Recall 0.26 0.47 0.79 1.00

F-measure 0.24 0.28 0.35 0.40

Table 7.2: MWU dataset: similarity values for evaluated compositionality models

The precision - recall diagram (Figure 7.3) demonstrates that tensor product

does a consistently better job at recognizing non-compositional multiword units.

1The biggest possible value is 1.0. Remember, the higher the similarity score, the more related the

components.
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Figure 7.3: Precision-recall diagram

Though the precision of all the models seems to be rather small at first sight, it is

worth mentioning that it is still significantly better than expected by chance alone

for almost all models. The outcomes of other methods are rather dispersed in the

vector space, especially those of vector addition. Our results are in line with those

of Widdows [2008] who showed only on a couple of examples the predominance

of tensor product.

Our findings show, on one side, that using a more advanced compositional oper-

ator, like tensor product, can lead to better results than vector addition, which

is still the most common operator for vector composition. On the other side, it

is obvious that just using a different mathematical operator with the same single

vector-based models of word meaning representation is not sufficient. The latter

motivated us to put in question the existing word space model paradigm in its

current matrix-based form in respect to its ability to represent word meaning,

and it pushed us to third-order tensors.
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7.2 Graded Compositionality

Though the task of classifying phrases into compositional and non-compositional

has long roots in computational linguistics, the problem that a binary classifi-

cation may not be sufficient in many cases and that compositionality comes in

degrees has been astonishingly ignored [Bannard et al., 2003].

Katz and Giesbrecht [2006] suggest that the technique for identifying non - com-

positional phrases by using vector space models provides a means, if rather a

blunt one, for quantifying the degreee of compositonality of an expression.

The shared task, organized at the Distributional Semantics and Compositionality

(DiSCo1) workshop, collocated with ACL-20112, addressed exactly this problem.

The workshop attracted researchers interested in extracting non-compositional

phrases from large corpora by applying distributional models that assign a graded

compositionality score to a phrase as well as researchers interested in expressing

compositional meaning with semantics space models.

Such a compositionality score is meant to denote the extent to which the com-

positionality assumption holds for a given expression. The latter can be used,

for example, to decide whether the phrase should be treated as an idiom in the

applications.

It is often the case that compositionality of a phrase depends on the context.

Though we used the sentence context in the process of construction of the DiSCo

gold standard, it was decided not to provide it with the dataset; thus, a single

compositionality score per phrase was requested from the participating systems.

To the best of our knowledge, this task had not been addressed in the community

until DiSCo-2011. It was the first attempt to offer a dataset and a shared task

that allows to explicitly evaluate the models of graded compositionality.

1http://disco2011.fzi.de
2http://www.acl2011.org
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7.2.1 Shared Task Dataset Description

For the shared task, we collected frequent phrases from the freely available WaCky1

web corpora [Ferraresi et al., 2008]. They were already automatically sentence-

split, tokenized, part-of-speech tagged and lemmatized, which reduced the load

on both organizers and participants that decide to make use of these corpora.

We restricted candidate phrases to certain grammatical constructions to make

the task more tangible.

Specifically, we use word pairs in the following relations:

– ADJ NN: adjective modifying a noun, e.g. ”red herring” or ”blue skies”

– V SUBJ: noun in subject position and verb, e..g. ”flies fly” or ”people

transfer”

– V OBJ: noun in object position and verb, e.g. ”lose keys”, ”play song”.

The target phrases were extracted semi-automatically from corpora by using part-

of-speech patterns and sorting by frequency. Then the selected multiword units

were manually evaluated for their validity as well as balanced for the presence of

non-compositional phrases, as the latter are less spread than typical compositional

phrases. If the candidates were completely randomly selected, an overwhelming

number of compositional phrases would have biased the task for high composi-

tionality.

After a candidate list was compiled, five sentences per candidate phrase were

randomly selected and then manually filtered from the corpus. Figure 7.4 shows

the sentences for ”V OBJ: buck trend” as an example output of this procedure.

The resulting dataset was manually annotated for compositionality with the help

of crowdsourcing.

Amazon Mechanical Turk2 is the pioneer of the crowdsourcing trend and offers

a great possibility to construct manually annotated datasets quickly and at low

cost in spite of certain disadvantages of crowdsourcing compared to manual an-

notations done by professional annotators. The latter include the possibly lower

1http://wacky.sslmit.unibo.it
2https://www.mturk.com/
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– I would like to buck the trend of complaint !

– One company that is bucking the trend is Flowcrete Group plc located in Sandbach ,

Cheshire .

– ” We are now moving into a new phase where we are hoping to buck the trend .

– With a claimed 11,000 customers and what look like aggressive growth plans , including

recent acquisitions of Infinium Software , Interbiz and earlier also Max international , the

firm does seem to be bucking the trend of difficult times .

– Every time we get a new PocketPC in to Pocket-Lint tower , it seems to offer more features

for less money and the HP iPaq 4150 is n’t about to buck the trend .

Figure 7.4: Sample of the data for V OBJ: buck trend [Biemann and Giesbrecht, 2011]

quality of annotations, the non-comparability of annotators1 and the rather high

complexity of communicating complex tasks.

Using the experience of previous work [Biemann and Nygaard, 2010], the quality

of annotations was guaranteed by a two-phase procedure. In the first step, a

small data sample was annotated by a large number of so-called ”workers”2, who

were asked to provide reasons for their decisions. Based on these explanations

and the performance quality on this small dataset, a number of ”workers” were

chosen for the ”real” final dataset, used in the shared task. In the second step, the

selected annotators judged the phrases for their compositionality. Every phrase

was annotated by 4 Amazon ”workers”, and every ”worker” gave a score of 0 to

10 to every presented sentence. The scores of all annotators were averaged per

phrase and normalized to the range of 0 to 100.

In the end, every phrase in the dataset received a compositionality score between

0 and 100, e.g., an adjective-noun phrase little girl has got a score of 93, a verb-

object phrase raise bar - 9 and an adjective-noun word combination second hand

- 14.

As too fine-scaled classification may indeed be ”frustratingly hard”[Johannsen

et al., 2011] and such a granularity may not be needed for the majority of practical

applications, we provided a mapping of scores to three classes of compositionality,

differentiating between low (0-25), medium (38-62) and high (scores of 75-100)

1It is rather tricky to compute inter-annotator agreement on such data.
2”Workers” are people accomplishing tasks on Amazon Mechanical Turk.
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compositionality. We deliberately eliminated the ”borderline” cases to make the

distinction more clear-cut. In contrast to the precise numerical scores, we define

these scores as ”coarse”.

7.2.2 Dataset Statistics

Datasets for English and German were constructed for the shared task. Only one

participant submitted results for German.

Following most of the workshop participants and in order to provide compara-

ble results, we concentrate on the English data for our current evaluation and

report the numbers only for English1. Table 7.3 summarizes the English dataset

quantitatively: with numbers in the cells denoting the amount of phrases in the

numerical dataset and in brackets for the coarse set.

Per relation, the data was randomly split in approximatively 40% training, 10%

validation and 50% test.

EN ADJ NN V SUBJ V OBJ all

Train 58 (43) 30 (23) 52 (41) 140 (107)

Validation 10 (7) 9 (6) 16 (13) 35 (26)

Test 77 (52) 35 (26) 62 (40) 174 (118)

All 145 (102) 74 (55) 130 (94) 349 (251)

Table 7.3: DiSCo English dataset: number of target phrases (with coarse scores) [Biemann

and Giesbrecht, 2011]

7.2.3 Evaluation Measures

Two official evaluation measures that were used for measuring the performance

of the systems include the following:

1. for numerical scores: a score difference between the gold standard and a

system’s response scores for corresponding target phrases;

1However, our approach is absolutely language independent and in the future we plan to evaluate

it for further languages. Currently, it is out of the scope of this thesis.
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For system’s scores S = {starget1, starget2, ...stargetN} and gold standard

scores G = {gtarget1, gtarget2, ...gtargetN}:

NUMSCORE(S,G) =
1

N

∑
i=1..N

|gi − si|

Missing values in the system scores got assigned a default value of 50. A

perfect score in this setup would be 0; indicating that there was no difference

between system responses and the gold standard.

2. for coarse scoring: precision of coarse label predictions was used;

COARSE(S,G) =
1

N

∑
i=1..N

{ si == gi : 1
otherwise : 0

As with numerical scoring, missing system responses received a default value,

in this case ’medium’. A perfect score would be 1.00, meaning a complete

congruence of gold standard and system response labels.

3. additionally, two correlation values were provided for the evaluation of the

participants score at the workshop: Spearman’s rho and Kendall’s tau.

As in the end they are more or less linearly connected, we use just Spearman’s

rho for the detailed evaluation of parameters of DTSM in this section.

7.2.4 Participants of DiSCo and Official Results

Seven teams participated in the shared task. Table 7.4 summarizes the partici-

pants and their systems. Four of the teams - the University of Minnesota (Du-

luth), the University of York (UoY), the Jadavpur University (JUCSE) and the

Trinity College Dublin (SCSS-TCD) - submitted three runs for the whole English

test set. The team from Gavagai participated with two systems, one of which was

for the entire English dataset (submission-ws) and another one included entries

only for English V SUBJ and V OBJ relations (submission-pmi). The team from

95



7. EXPERIMENTAL PART II: EVALUATION OF
COMPOSITIONALITY

the UNED provided scores solely for English ADJ NN pairs. The team from Uni-

versity of Copenhagen (UCPH) was the only one that delivered results for both

English and German.

Systems Institution Team Approach

Duluth-1 Dept. of Computer Science, Ted Pedersen statistical

Duluth-2 University of Minnesota association measures:

Duluth-3 t-score and pmi

JUCSE-1 Jadavpur University Tanmoy Chakraborty, mix of statistical

JUCSE-2 Santanu Pal, Tapabrata association measures

JUCSE-3 Mondal, Tanik Saikh,

Sivaju Bandyopadhyay

SCSS-TCD:conf1 SCSS, Alfredo Maldonado-Guerra, unsupervised WSM,

SCSS-TCD:conf2 Trinity College Dublin Martin Emms cosine similarity

SCSS-TCD:conf3

submission-ws Gavagai Hillevi Hägglöf, random indexing

submission-pmi Lisa Tengstrand association measure

UCPH-simple.en University of Copenhagen Anders Johannsen, support vector regression

Hector Martinez, with COALS-based

Christian Rishøj, endocentricity features

Anders Søgaard

UoY: Exm University of York; Siva Reddy, exemplar-based WSMs

UoY: Exm-Best Lexical Computing Ltd. Diana McCarthy,

UoY: Pro-Best Suresh Manandhar, prototype-based WSM

Spandana Gella

UNED-1: NN NLP Group at UNED Guillermo Garrido, syntactic VSM,

UNED-2: NN Anselmo Peñas dependency-parsed

UNED-3: NN corpus, SVM classifier

Table 7.4: Participants of DiSCo-2011 Shared Task [Biemann and Giesbrecht, 2011]

Systems can be split into approaches based on statistical association measures

and approaches based on word space models. On top, some systems used a

machine-learned classifier to predict numerical scores or coarse labels.

The results of the official evaluation for English are shown in Tables 7.5 and 7.6.

Table 7.5 reports the results for numerical scoring. UCPH-simple.en performed

best with the score of 16.19. The second best system UoY: Exm-Best achieved

16.51, and the third was UoY:Pro-Best with 16.79.

The outcome of evaluation for coarse scores is displayed in Table 7.6. Here,

Duluth-1 performs highest with 0.585, followed closely by UoY:ExmBest with

0.576 and UoY: ProBest with 0.567. Duluth-1 is an approach purely based on

association measures.
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Both tables also report ZERO-response and RANDOM-response baselines. ZERO-

response means that, if no score is reported for a phrase, it gets a default value

of 50 (fifty) points in numerical evaluation and ’medium’ in coarse evaluation.

Random baselines were created by using random labels from a uniform distribu-

tion. Most systems beat the RANDOM-response baseline, only about half of the

systems are better than ZERO-response.

Apart from the officially announced scoring methods, we provide Spearman’s rho

and Kendall’s tau rank correlations for numerical scoring. Rank correlation scores

that are not significant are noted in parentheses. With correlations, the higher

the score, the better is the system’s ability to order the phrases according to their

compositionality scores. Here, systems UoY: Exm-Best, UoY: Pro-Best / JUCSE-

1 and JUCSE-2 achieved the first, second and third best results respectively.

Overall, there was no clear winner for the English dataset. However, across dif-

ferent scoring mechanisms, UoY: Exm-Best was the most robust of the systems.

The UCPH-simple.en system had the best performance in numerical evaluation

overall and a very good performance on V OBJ pairs but apparently uses a sub-

optimal way of assigning coarse labels. The Duluth-1 system, on the other hand,

is not able to produce a numerical ranking that is significant according to the

correlation measures, but does the best in the coarse scoring.
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numerical scores responses ρ τ EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 174 77 35 62

0-response baseline 0 - - 23.42 24.67 17.03 25.47

random baseline 174 (0.02) (0.02) 32.82 34.57 29.83 32.34

UCPH-simple.en 174 0.27 0.18 16.19 14.93 21.64 14.66

UoY: Exm-Best 169 0.35 0.24 16.51 15.19 15.72 18.6

UoY: Pro-Best 169 0.33 0.23 16.79 14.62 18.89 18.31

UoY: Exm 169 0.26 0.18 17.28 15.82 18.18 18.6

SCSS-TCD: conf1 174 0.27 0.19 17.95 18.56 20.8 15.58

SCSS-TCD: conf2 174 0.28 0.19 18.35 19.62 20.2 15.73

Duluth-1 174 (-0.01) (-0.01) 21.22 19.35 26.71 20.45

JUCSE-1 174 0.33 0.23 22.67 25.32 17.71 22.16

JUCSE-2 174 0.32 0.22 22.94 25.69 17.51 22.6

SCSS-TCD: conf3 174 0.18 0.12 25.59 24.16 32.04 23.73

JUCSE-3 174 (-0.04) (-0.03) 25.75 30.03 26.91 19.77

Duluth-2 174 (-0.06) (-0.04) 27.93 37.45 17.74 21.85

Duluth-3 174 (-0.08) (-0.05) 33.04 44.04 17.6 28.09

submission-ws 173 0.24 0.16 44.27 37.24 50.06 49.72

submission-pmi 96 - - - - 52.13 50.46

UNED-1: NN 77 - - - 17.02 - -

UNED-2: NN 77 - - - 17.18 - -

UNED-3: NN 77 - - - 17.29 - -

Table 7.5: Numerical evaluation scores for English @ DiSCo: average point difference

and correlation measures; non-significant values are in parentheses

coarse values responses EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 118 52 26 40

zero-response baseline 0 0.356 0.288 0.654 0.250

random baseline 118 0.297 0.288 0.308 0.300

Duluth-1 118 0.585 0.654 0.385 0.625

UoY: Exm-Best 114 0.576 0.692 0.500 0.475

UoY: Pro-Best 114 0.567 0.731 0.346 0.500

UoY: Exm 114 0.542 0.692 0.346 0.475

SCSS-TCD: conf2 118 0.542 0.635 0.192 0.650

SCSS-TCD: conf1 118 0.534 0.64 0.192 0.625

JUCSE-3 118 0.475 0.442 0.346 0.600

JUCSE-2 118 0.458 0.481 0.462 0.425

SCSS-TCD: conf3 118 0.449 0.404 0.423 0.525

JUCSE-1 118 0.441 0.442 0.462 0.425

submission-ws 117 0.373 0.346 0.269 0.475

UCPH-simple.en 118 0.356 0.346 0.500 0.275

Duluth-2 118 0.322 0.173 0.346 0.500

Duluth-3 118 0.322 0.135 0.577 0.400

submission-pmi - - - 0.346 0.550

UNED-1-NN 52 - 0.289 - -

UNED-2-NN 52 - 0.404 - -

UNED-3-NN 52 - 0.327 - -

Table 7.6: Coarse evaluation scores for submitted results @ DiSCo
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7.2.5 DTSM Evaluation with DiSCo Dataset

We evaluate the Distributional Tensor Space Model model on the DiSCo dataset

and describe the procedure, the tested parameters and the detailed results in this

section. After a thorough evaluation of the model parameters, we compare the

achieved results of the DTSM to the DiSCo workshop participating systems.

7.2.5.1 Procedure

In order to build and evaluate the model, we proceed in the following way:

1. we build several DTSM models from the BNC corpus, which is much smaller

than the ukWaC corpus that was used by the workshop participants (cf.

Section 5.3);

The models include all phrases, represented as single units, from the DiSCo

dataset that were found in the BNC.

2. extract word matrices for component words as well as matrices for the com-

plete phrases as a whole, using two ways of tensor interpretation - only the

middle matrix or all three axes;

For example, for the word pair ”ref herring” we extract in the first case

middle Y− matrices for ”red” and herring, as well as the Y− matrix for the

phrase as a whole ”red herring”.

In the second case, we would extract the X− and Y− slices for ”red” and

herring correspondingly and only the Y− slice for ”red herring”.

3. compute addition and multiplication for component word matrices obtained

in the previous step, e.g.,

addComposition(red herring) = matrix (red) + matrix (herring)

multComposition(red herring) = matrix (red) x matrix (herring)

4. compare the latter by means of cosine to the matrix of the expression used

as a whole;

add = cosine(addComposition(red herring),matrix(red herring))

mult = cosine(multComposition(red herring),matrix(red herring))
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5. additionally to the numerical normalized score, we map the scores for the

coarse values as well as calculate Spearman’s ρ correlation for numerical

scoring.

7.2.5.2 Parameters of the Model

The following modifiable parameters of Distributional Tensor Space Model have

been thoroughly evaluated in this section:

1. choice of vocabulary for context dimensions;

2. number of context dimensions (dim);

3. context window size, or number of neighbours per side (nn);

context window size := nn× 2 + 1

4. number of decomposition factors (f);

5. weighting function (boolean, frequency, pmi);

6. compositional functions: addition (add) or multiplication (mult);

7. minimum number of triple occurrences (min);

8. tensor manipulation: using 〈X,Y, Z〉 slices instead of only Y (〈X,Y, Z〉);

The numerical scores are computed straightforward within DTSM framework;

for coarse scores we decide to map the resulting values between 0-32 to ”low”,

33-65 to ”medium” and 66-99 to ”high” in these preliminary parameter tuning

experiments.

We successively test the influence of these parameters on the DiSCo dataset by

means of fixing all the parameters except for the one that is under evaluation.

For the sake of compactness, we will use the above enumerated abbreviations for

the correspondingly fixed parameters in most cases.

By means of example, we will use a formulation like DTSM with dim = 2000,

min = 5, nn = 2, f = 50 and varying compositional functions; which means

that we build Distributional Tensor Space Model for the given experiment with

2000 context dimensions; minimum triple occurrence of 5 in the corpus; number

of neighbours per side being 2 - that results in the context window size of 5; 50
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decomposition factors and test it with different compositional functions (add and

mult).

7.2.5.3 Results

In this following we present the results of the evaluation of DTSM with parameters

listed in the previous section on the DiSCo shared task.

Choice of vocabulary for context dimensions. First, we evaluate the choice

of words for context dimensions. We use DTSM with dim = 5000, min = 5,

nn = 6 weighting function pmi and f = 100 for the test.

The context words were defined in the following 4 ways:

(I) all words in the context window that occur in the corpus more than 5 but

less than 50 times except for stop words were used; OGDEN’s1 Basic English

vocabulary list was added to the extracted list;

(II) the context word list is gained as in (I) but we restrict it to adjectives,

adverbs, common and proper nouns;

For this, part of speech information, that is available with the BNC corpus,

is used.

(III) same as [II] but with verbs and prepositions from the corpus;

(IV) only OGDEN Basic English vocabulary is used for context dimension.

numerical scores responses ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

I 167 0.17 21.63 22.30 21.88 20.67

II 167 0.17 21.69 22.39 22.48 20.40

III 167 0.19 21.08 20.91 22.61 20.45

IV 55 0.11 20.56 20.82 24.33 18.92

Table 7.7: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 5000, min = 5, nn = 6, pmi, f = 100 and add for different choices of context

words

Table 7.7 reveals that using some linguistic preprocessing, like part of speech

annotations, may overall slightly improve the performance of DTSM in its current

1http://ogden.basic-english.org/
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form; however, not in all cases. Thus, using the basic vocabulary of simple

English OGDEN (IV) without any part of speech information achieves the best

numerical results in all categories except subject−verb phrases. Obviously, using

just basic school vocabulary for ”English as a second language” of 850 words is

enough to achieve very good performance for adjective−noun and verb− object
constructions, but not good enough for subject− verb combinations. Adding to

OGDEN (IV) the words of middle range frequency occurring 5 - 50 times in the

corpus (I) drastically improves the result for subject−verb phrases but decreases

for the other grammatical types.

It is important to mention that we measure here the performance for the phrases

that exist in the model and ignore the non-existing ones, as our interest is in the

quality of the model and not in the winning of this special competition. Using

only OGDEN vocabulary, only 55 phrases have got a compositionality score; the

rest was not existing in the model. Evaluating OGDEN following the strategy

that was used for the DiSCo workshop, i.e. by assigning missing values the score

of 50, we receive the best correlation out of four tested setups for this parameter

(ρ = 0.23 versus 0.11 for only found phrases, cf. Table 7.7).

To sum up, we observe that:

1. using certain context word vocabulary (here: OGDEN) may significantly

improve the results for adjective− noun and verb− object phrases but de-

teriorate the performance on subject− verb constructions;

2. part of speech filtering enhances the success for adjective − noun units,

decreases for subject − verb combinations and doesn’t seem to play a big

role for verb − object phrases; especially subject − verb constructions are

following different rules than the other grammatical types;

3. usage of possible all contexts without filtering is better for subject − verb
expressions.

Choice of vocabulary for context dimensions has surely immense impact on the

model. However, this point needs further deeper explorations that are out of the

scope of the current work.
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Number of context dimensions (dim) and context window size (nn).

Tables 7.8 and 7.9 show the results for two tested values for context dimensions

(dim = 2000 and dim = 5000) as well as with three variations of context window

size, i.e. with 1, 3 and 6 neighbours per side, resulting in context windows of size

3, 7 and 13.

We consider 2000 dimensions in analogy to the most successful matrix - based

approaches [e.g. Mitchell and Lapata, 2010]. 5000 dimensions is an arbitrary

chosen size for a bigger context.

We observe that the performance of the model gets better with more context

dimensions and larger context windows; with a small deviation for verb− object

pairs for numerical scoring only.

Context window size is even more important than the number of context dimen-

sions. The explanation could be that more ”context” words get a chance to be

considered with a larger context window.

numerical scores responses ρ τ EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 174 77 35 62

2000, nn = 1 165 0.04 0.03 29.35 30.32 26.89 29.25

5000, nn = 1 165 0.04 0.03 29.04 30.14 26.68 29.00

2000, nn = 3 165 0.14 0.10 25.02 25.46 23.87 25.13

5000, nn = 3 165 0.13 0.09 24.76 25.14 23.34 25.08

2000, nn = 6 168 0.13 0.09 21.77 22.05 22.91 20.77

5000, nn = 6 168 0.18 0.13 21.41 20.59 21.65 22.29

Table 7.8: DiSCo dataset: average point difference and correlation measures for DTSM

with min = 5, pmi, f = 100 and add for varying context dimensions and context window

sizes

coarse values responses EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 118 52 26 40

2000, nn = 1 111 0.212 0.140 0.300 0.250

5000, nn = 1 111 0.271 0.211 0.269 0.350

2000, nn = 3 111 0.457 0.538 0.269 0.475

5000, nn = 3 111 0.483 0.577 0.308 0.475

2000, nn = 6 113 0.517 0.596 0.308 0.550

5000, nn = 6 113 0.534 0.615 0.346 0.550

Table 7.9: DiSCo dataset: coarse evaluation scores for DTSM with min = 5, pmi, f = 100

and add for varying context dimensions and context windows
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Table 7.10 shows a similar tendency for matrix multiplication, i.e., the bigger the

context window, the better the performance.

numerical scores ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

dim = 2000, nn = 5 0.11 25.20 27.38 20.61 25.05

dim = 2000, nn = 13 0.14 21.73 23.16 17.88 22.05

Table 7.10: DiSCo dataset: average point difference and correlation measures for DTSM

with min = 5, pmi, f = 100, mult and varying context window sizes

Number of decomposition factors. We further test the influence of the num-

ber of factors (f = 50/100/200) used for tensor decomposition as well the quality

of the model without using dimensionality reduction.

numerical scores ρ τ EN all EN ADJ NN EN V SUBJ EN V OBJ

no decomposition 0.13 0.10 62.35 64.17 55.94 63.72

50 factors 0.21 0.14 20.74 20.15 24.34 19.43

100 factors 0.18 0.13 21.41 20.59 21.65 22.29

200 factors 0.15 0.10 23.49 21.91 20.94 26.90

Table 7.11: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 5000, min = 5, nn = 6, pmi, add and f = 50/100/200 or without decomposi-

tion

It is obvious from Tables 7.11 and 7.12 that tensor decomposition brings about

significant improvement in performance compared to using no decomposition,

when matrix addition as compositionality operation is used. However, more de-

composition factors are not per se better.The best result was obtained for 5000

dimensions with only 50 factors; however, there seem to be differences in the

influence of factor number on different types of grammatical relations: the less

factors, the better for adjective − noun and verb − object phrases; with the op-

posite tendency for subject− verb phrases.

Furthermore, Table 7.13 shows that using less factors brings about better per-

formance for all kinds of grammatical constructions when using matrix multipli-

cation. Decomposition is important also with matrix multiplication as otherwise

too few results are found (55 out of 174) and the numerical score difference is

more than twice as big (55.25 versus 24.53).
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coarse values EN all EN ADJ NN EN V SUBJ EN V OBJ

no decomposition 0.068 0.077 0.00 0.100

50 factors 0.542 0.635 0.308 0.575

100 factors 0.534 0.615 0.346 0.550

200 factors 0.415 0.423 0.461 0.375

Table 7.12: DiSCo dataset: coarse evaluation scores for DTSM with dim = 5000, min =

5, nn = 6, pmi, add and f = 50/100/200 or w/t decomposition

numerical scores responses ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

no decomposition 55 (0.003) 55.25 55.14 52.00 56.58

50 factors 163 0.10 24.53 27.46 16.67 25.45

100 factors 163 0.08 28.37 29.84 21.36 30.52

Table 7.13: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 5000, min = 10, nn = 13, pmi, mult and f = 50/100 or without decomposition

Weighting functions. We evaluate here three weighting functions that are

often used with word space models: boolean, simple frequency count and associ-

ation measure pointwise mutual information (PMI).

numerical scores responses ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 174 77 35 62

boolean 168 (-0.004) 23.99 21.92 26.43 25.18

frequency 168 (-0.08) 24.43 22.00 27.03 25.65

PMI 168 0.18 21.41 20.59 21.65 22.29

Table 7.14: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 5000, min = 5, nn = 6, f = 100, add and using boolean, frequency and pmi

weighting functions

Tables 7.14 and 7.15 provide evidence that PMI is the best weighting function

out of the three tested ones in numerical evaluation as well as in accuracy and

correlation.

Compositional functions. In the next step, we evaluate matrix composition-

ality operations of addition and multiplication for varying sizes of context win-

dows and context dimensions.

Tables 7.16 and 7.17 reveal that for a bigger context window (nn = 6) matrix

multiplication is very close to matrix addition in correlation values (rho = 0.16
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coarse values responses EN all EN ADJ NN EN V SUBJ EN V OBJ

boolean 113 0.474 0.557 0.307 0.475

frequency 113 0.459 0.564 0.304 0.425

PMI 113 0.534 0.615 0.346 0.550

Table 7.15: DiSCo dataset: coarse evaluation scores for DTSM with dim = 5000, min =

5, nn = 6, f = 100, add and using boolean, frequency and pmi weighting functions

numerical scores responses ρ τ EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 174 77 35 62

mult, nn = 1 165 0.05 0.03 35.54 38.77 27.13 36.23

add, nn = 1 165 0.04 0.03 29.04 30.14 26.68 29.00

mult, nn = 3 165 0.05 0.03 30.65 32.52 22.83 32.74

add, nn = 3 165 0.13 0.09 24.76 25.14 23.34 25.08

mult, nn = 6 168 0.16 0.11 24.85 27.48 18.80 25.00

add, nn = 6 168 0.18 0.13 21.41 20.59 21.65 22.29

Table 7.16: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 5000, min = 5, f = 100, pmi and add or mult

and rho = 0.18 correspondingly). However, multiplication is consistently better

for subject − verb constructions than addition, except for the smallest context

window of 3 (with nn = 1); while addition performs better for adjective− noun
and verb− object phrases.

coarse values responses EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 118 52 26 40

mult, nn = 1 111 0.237 0.192 0.423 0.175

add, nn = 1 111 0.271 0.211 0.269 0.350

mult, nn = 3 111 0.322 0.269 0.538 0.250

add, nn = 3 111 0.483 0.577 0.308 0.475

mult, nn = 6 113 0.381 0.327 0.461 0.400

add, nn = 6 113 0.534 0.615 0.346 0.550

Table 7.17: DiSCo dataset: coarse evaluation scores for DTSM with dim = 5000, min =

5, f = 100, pmi and add or mult

Number of triple occurrences A further parameter that we test is the min-

imum number of triple occurrences, i.e., the minimum number of times a triple

has to occur in the corpus in order to be included into the model. Tables 7.18
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and 7.19 demonstrate that using the minimum of 5 occurrences is better for cor-

relation results than using 3 or 10. The numerical difference does not show any

particular preference, except that the minimum of 10 is generally worse. How-

ever, we should treat this outcome with caution. It may be the case, that many

contexts do not pass the bigger threshold for the triple occurrence with such a

relatively small corpus (BNC); thereby causing worse performance. This param-

eter should be further evaluated with a bigger corpus, like ukWaC (cf. Section

5.3).

numerical scores responses ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 174 77 35 62

min = 3 174 0.11 20.20 20.23 24.72 17.64

min = 5 174 0.18 19.68 19.57 21.12 19.02

min = 10 167 0.08 22.11 21.05 25.45 21.58

Table 7.18: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 2000, f = 100, nn = 13, pmi, add and using varying minimum triple occur-

rences size

numerical scores ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

2000, min = 3 0.07 19.72 22.16 18.15 17.76

2000, min = 5 0.14 21.73 23.16 17.88 22.05

2000, min = 10 0.05 28.29 30.43 20.03 30.18

Table 7.19: DiSCo dataset: average point difference and correlation measures for DTSM

with dim = 2000, f = 100, nn = 13, pmi, mult and using varying minimum triple

occurrences size

Tensor Manipulation. Last but not least, we examine 3d - structure of the

tensor by extracting not only the ”middle” Y slice (cf. Figure 5.2) matrix but

also the ”left” X slice (cf. Figure 5.1) and the ”right” Z slice (cf. Figure 5.3)

matrices for word representation in certain grammatical constructions.

To be precise:

– for subject-verb and adjective-noun phrases, we extract the X and Y slices

to get subject/adjective and verb/noun matrices correspondingly;

– for verb-object phrases, we extract the Y and Z slice matrices.
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〈X,Y, Z〉 row in Table 7.20 shows the results for this way of tensor manipulation

for DiSCo dataset with the so far best performing DTSM. We have evaluated

this setting with a number of further parameter modifications, i.e. varying dim,

nn and f parameters. However, they all show similar tendencies: the numerical

score difference for all kinds of grammatical constructions is significantly worse

in the 〈X,Y, Z〉 setting compared to using only the middle matrix. However,

the Spearman’s ρ coefficient is higher for adjective − noun and verb − subject
combinations when using X and Y axes.

Furthermore, we report the score of the heuristics (”mixed”) based on the previ-

ously described evaluations. ”Mixed” means that matrix multiplication is used for

subject-verb constructions and matrix addition for adjective-noun and verb-object

units. ”Mixed” rule achieves the currently best correlation for DTSM without

differentiating between grammar types.

composition model all (ρ) ADJ NN (ρ) V SUBJ (ρ) V OBJ (ρ)

dim = 5000 add 21.33 (0.15) 20.23 (0.18) 27.03 (-0.09) 19.5 (0.29)

mult 19.04 (0.12) 21.25 (0.20) 15.94 (0.11) 18.12 (0.10)

mixed 19.09 (0.26)

dim = 5000 add 35.87 (0.05) 36.58 (0.24) 29.58 (0.25) 38.48 (-0.29)

〈X,Y, Z〉 mult 46.84 (0.09) 50.69 (0.15) 44.18 (-0.29) 43.75 (0.14)

mixed 38.80 (0.02)

Table 7.20: DiSCo: average point difference and correlation measures using 〈X,Y, Z〉
slices with dim = 5000, min = 5, nn = 13, f = 50, pmi and different compositionality

models (add, mult, mixed)

Qualitative Insight. We further evaluate the numerical score difference on

the coarse dataset. As a quick reminder, the coarse dataset contains only those

phrases that received scores between 0-25 (low), 38-62 (medium) and 75-100

(high) in the process of manual annotation. If we restrict the numerical evalua-

tion to this smaller and more carefully chosen dataset, the system’s performance

gets significantly better, especially for correlation.

We show that on two example runs: with 2000 dimensions and with 5000 dimen-

sions. Best overall numerical or correlation results are marked bold and simply

best result within each of the runs is italicized in Table 7.21.
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Apparently, the ”borderline” cases of compositionality, that were eliminated for

the coarse dataset, decrease the performance of the computational system sub-

stantially. Maybe, the first (numerical) dataset should have been cleaned from

these phrases for ”cleaner” evaluation.

Another observation from these two tests that is worth mentioning is that with

smaller number of dimensions (here: dim = 2000) and smaller context window

(here: nn = 2) matrix multiplication achieves better results for all kinds of gram-

matical constructions than addition. Vice versa, matrix addition works better

with bigger number of dimensions (dim = 5000) and bigger context window

(nn = 6) as well as given more occurrences in corpus (min = 5).

min nn composition all (ρ) ADJ NN (ρ) V SUBJ (ρ) V OBJ (ρ)

2000 2 2 add 22.15 (0.11) 20.16 (0.20) 29.69 (-0.09) 20.52 (0.39)

coarse mult 18.67 (-0.03) 19.92 (0.12) 17.39 (0.06) 17.8 (-0.08)

mixed 19.81 (0.33)

2000 2 2 add 22.31 (0.12) 24.125 (0.05) 21.88 (0.21) 20.31 (0.32)

num mult 27.18 (0.05) 33 (0.06) 17.36 (0.14) 25.53 (0.10)

mixed 21.40 (0.17)

5000 5 6 add 20.72 (0.27) 19.62 (0.38) 21.4 (-0.26) 21.76 (0.42)

coarse mult 32.63 (0.19) 35.28 (0.26) 24.28 (-0.09) 34.70 (0.37)

mixed 21.37 (0.35)

5000 5 6 add 21.08 (0.19) 20.91 (0.18) 22.61(-0.26) 20.45 (0.34)

num mult 24.40 (0.11) 26.76 (0.20) 19.76 (0.04) 24.05 (0.11)

mixed 20.51 (0.25)

Table 7.21: DiSCo: average point difference and correlation measures for the ”coarse”

dataset compared to the ”numerical dataset”; with f = 100 and weighting function PMI

Obviously, more data and decomposition compensates somehow the obvious the-

oretical advantages of multiplication in such a model.

Table 7.22 lists a number of phrases from the dataset with their grammatical roles

(column 1) and their gold scores (column 3). These are the phrases where the

difference in numerical score assigned by the system and the gold standard score

is bigger than 40. Phrases from Group I are highly compositional expressions

that got small compositionality scores by DTSM and, vice versa, a relatively few

low compositional phrases received high scores from the system (Group II).

High error rate for highly compositional phrases may be due to the fact, that

these phrases as well as their components are so wide spread that their contexts
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are no more distinctive per se. Presumably, a more sophisticated strategy for

context word choice is needed in this case.

gram. type phrase gold standard score

Group I

EN V SUBJ event occur 92

EN V SUBJ error occur 85

EN ADJ NN panoramic view 82

EN V SUBJ child want 91

EN ADJ NN broad range 85

EN ADJ NN rechargeable battery 96

EN V SUBJ evidence show 60

EN V OBJ obtain information 93

EN ADJ NN high mountain 92

EN V OBJ help people 97

EN ADJ NN civil war 80

EN V OBJ provide training 90

EN V OBJ develop methods 91

EN V OBJ help children 90

EN V OBJ find way 86

EN V OBJ promote excellence 81

Group II

EN V OBJ lose sight 19

EN V OBJ take plunge 15

EN ADJ NN social capital 46

EN ADJ NN red tape 11

EN V OBJ foot bill 15

EN V OBJ raise bar 9

EN ADJ NN second hand 14

Table 7.22: DiSCo dataset: excerpt of phrases where numerical score difference between

gold standard and system is bigger than 40

7.2.6 Summary

Table 7.23 summarizes our observations from the above results.

In order to avoid over-generalization, we use concrete numbers from the exper-

iments; i.e. instead of claiming that more dimensions are generally better, we

say that the model with 5000 dimensions performed better than the one with

2000 dimensions based on the evaluations described in this section. It does not

necessarily mean, that a model with 10000 dimensions would be better than the

one with 5000. Consequently, to say that more dimensions are always better may
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Multiplication Addition

context size (dim) not significant dim = 5000 > dim = 2000

neighbours per side (nn) nn = 13 > nn = 5||2 nn = 6 > nn = 1||3
decomposition factors (f) decomposition > no decomposition decomposition > no decomposition

f = 50 > f = 100 f = 50 better for ADJ N and V OBJ

for all constructions f = 200 better for V SUBJ

weighting function PMI PMI

composition operation better for V SUBJ better for ADJ N and V OBJ

usage of 〈X,Y, Z〉 slices worse numerical results worse numerical results

Table 7.23: Summary of DTSM Evaluation on DiSCo Dataset

turn out to be false. We use in some cases the sign ” > ” for ”better” in the

summary table.

We’ve attested with the above-described experimental setup that:

– the number of context dimensions is especially important when using matrix

addition;

– the context window size matters for both operations: bigger window is bet-

ter;

– decomposition brings about better correlation and better recall;

– smaller number of factors seems to affect matrix multiplication in a positive

way; when using addition - less factors appears to be profitable for adjective-

noun and verb-object while more factors are better for subject-verb phrases;

– matrix multiplication is consistently better for subject-verb constructions;

while addition favours more adjective-noun and verb-object objects;

– tensor manipulation by using X and Z slices additionally to middle Y ma-

trices didn’t improve the model.

We leave the question of how many examples per target word or phrase is needed

to train a model as well as the choice of context words open for future research.

Based on the above tests, we compare the performance of the so-far best DTSM

model to the results of the DiSCo shared task participants. Our best model

includes 5000 context dimensions, a context window of size 27, minimum 5 triple

occurrences in corpus, 50 factors for decomposition and compositional operations
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numerical scores ρ EN all EN ADJ NN EN V SUBJ EN V OBJ

DTSMadd 0.15 21.33 20.23 27.03 19.5

DTSMmult 0.12 19.04 21.25 15.94 18.12

DTSMmixed 0.26 19.09

0-response baseline - 23.42 24.67 17.03 25.47

random baseline (0.02) 32.82 34.57 29.83 32.34

UCPH-simple.en 0.27 16.19 14.93 21.64 14.66

UoY: Exm-Best 0.35 16.51 15.19 15.72 18.6

UoY: Pro-Best 0.33 16.79 14.62 18.89 18.31

UoY: Exm 0.26 17.28 15.82 18.18 18.6

SCSS-TCD: conf1 0.27 17.95 18.56 20.8 15.58

SCSS-TCD: conf2 0.28 18.35 19.62 20.2 15.73

Table 7.24: DTSMbest (dim = 5000, min = 5, nn = 13, f = 50, pmi) compared to the

best DiSCo participating systems: numerical scores and overall correlation

of addition for ADJ − NN and V − OBJ as well as simple multiplication for

V − SUBJ (see Table 7.24).

Based on the development set, we optimized the parameters for mapping from

numerical to coarse scores: the values between 0-20 are mapped to ”low”, 21-77

to ”medium” and 78-100 to ”high” similarity groups (Table 7.25).

coarse values responses EN all EN ADJ NN EN V SUBJ EN V OBJ

number of phrases 118 52 26 40

DTSMbest 113 0.61 0.58 0.68 0.61

zero-response baseline 0 0.356 0.288 0.654 0.250

random baseline 118 0.297 0.288 0.308 0.300

Duluth-1 118 0.585 0.654 0.385 0.625

UoY: Exm-Best 114 0.576 0.692 0.500 0.475

UoY: Pro-Best 114 0.567 0.731 0.346 0.500

UoY: Exm 114 0.542 0.692 0.346 0.475

SCSS-TCD: conf2 118 0.542 0.635 0.192 0.650

Table 7.25: DTSMbest compared to DiSCo participating systems: coarse scores

Our system is better than both baselines, but achieves only the seventh place

based on the overall numerical evaluation (Table 7.24). Still, DTSM is the second

best for subject− verb constructions and only insignificantly worse than the best

DiSCo system for this kind of grammatical construction: 15.94 (DTSM) versus
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15.72 (UCPH-simple.en). As a quick reminder, UCHP is a machine learning

system, based on support vector regression. The UoY and SCSS systems are

based on word space models. Duluth is based on statistical association measures,

i.e. on ”first-order” statistics of word co-occurrence.

Thus, DTSM achieves the second best results for subject − verb phrases among

word space models and comparable results for other constructions, taking into

consideration that we’ve used a much smaller corpus for our experiments than the

other participants (BNC with hundred million versus ukWaC with two billion

words) and that the original dataset was based on the ukWaC. The latter may

have offered a little bias for competing systems, apart from the fact that the size

of the corpus is particularly important for distributional models. Another notable

fact is that we’ve obtained the best overall result in the coarse evaluation

setup (Table 7.25); mostly due to the brilliant scores for subject−verb (the best)

but also very good results for verb− object (third best) phrases.

All-in-one, Distributional Tensor Space Model seems to offer a new perspective

for sentential composition. We prove it here mostly by means of very good re-

sults for subject− verb composition but also positive outcomes for verb− object
constructions. The former are not particularly explored so far, as the majority

of research on compositionality has been concentrated on adjective − noun or

noun− noun combinations.

7.3 Semantic (Non-)Compositionality in Context

SemEval-2013, Task 5b1, was a further evaluation campaign co-organized by

the author of this thesis. It was an extension of the ideas that emerged within

the evaluation efforts described in the previous two sections.

The task was to let computational systems decide whether a target phrase is used

in its literal or figurative meaning in a given context. For example, ”big picture

might be used literally as in ”Click here for a bigger picture” or figuratively

as in ”To solve this problem, you have to look at the bigger picture”. Another

example could be an expression ”carve in stone” in ”reliefs carved in stone”

1http://www.cs.york.ac.uk/semeval-2013/task5/
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142847 carve in stone figuratively This is complete nonsense .

Marriage and the family are not institutions <b>carved</b> <b>in</b>

<b>stone</b> throughout the ages . Their forms have undergone radical

change at various points in history.

4288 carve in stone literally On an exterior wall above the main

entrance. Description : 3 square reliefs <b>carved</b> <b>in</b>

<b>stone</b>, each depicting a scene representing an aspect of

childhood and learning.

Figure 7.5: Example of SemEval, Task 5b, Dataset

versus ”Marriage and the family are not institutions carved in stone throughout

the ages”.

The dataset consists of real usage examples of such phrases from the ukWaC

corpus, with target units marked by html bold tag < b > (see Figure 7.5).

Each phrase in the dataset is offered in at most 5 different contexts. For each

context, the task is to decide whether the target phrase is used literally or figura-

tively here. There are two subtasks within this task. Both of them are structured

in a similar way: there is a training, development and test set. Training set is

used for model construction or ”training”, depending on the method. Develop-

ment set is usually used for parameter optimization of the ”trained” model; and

test set is used for model evaluation.

The difference is in the choice of phrases: while in the first subtask the same

phrases are being used in the train, development and test sets, different phrases

are used in the second subtask.

Therefore, there are two datasets:

1. ”unknown phrases setting” (called by the organizes ”all words” in analogy

to machine learning terminology) - where one set of phrases with their literal

and figurative uses is included in the training set and another set of phrases

in the development and test sets;
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2. ”known phrases task” (defined as ”lexical sample” in the task) - where the

same phrases are in the training and test sets.

The task of classifying unknown phrases is more difficult per se, as the systems

can not train models on known examples. These two tasks address, therefore,

supervised and unsupervised systems at the same time.

7.3.1 Procedure

In the ”all words” setup, we proceed in the same way as in the previous experi-

ments. For each target phrase:

1. we collect 200 examples for each of the component words from the ukWaC

corpus,

2. build the DTSM model from these example sentences, ignoring stop words,

3. extract word matrices for component words,

4. compute addition and multiplication for word matrices,

5. if the result is bigger than a certain threshold, defined on the training set,

than a phrase is classified as literal ; otherwise as figurative.

For the second dataset type (”lexical sample”) , we combine the training and

development sets and use both for training of literal or figurative contexts, in the

same way as Experiment I was conducted in Katz and Giesbrecht [2006]. We

calculate the literal and idiomatic vectors for every multiword unit on the basis

of the training and development data and calculate the cosine between a phrase

in the target context and these two vectors. If the cosine of the target phrase

vector with the literal vector is bigger, then the system classifies it as literal and

vice versa.

The performance is measured by means of precision, which is in this case defined

as follows:

P =
number of correctly classified phrases

all phrases in the test set
(7.3.1)
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7.3.2 Results

We’ve done a qualitative check of the model by comparing the average score as-

signed by the model to literal and figurative vectors. As Table 7.26 testifies,

our DTSM model consistently and correctly assigns bigger values for literal us-

ages and smaller ones for figurative; with a more clear cut difference for matrix

multiplication.

Another observation is that parameter modification, such as the number of di-

mensions (2000 versus 3000) and the size of the context window (nn = 5/13), does

not seem to make a big difference for the addition operation; while it matters a

lot for multiplication. The average values vary between 47 − 58 for the literal

usage and 46− 56 for the figurative one when using addition; for multiplication:

17− 41 and 13− 37 correspondingly.

parameters addlit addfig multlit multfig

dim = 2000, nn = 5, f = 50 58 56 41 37

dim = 2000, nn = 13, f = 50 56 53 30 25

dim = 2000, nn = 13, f = 100 48 46 18 13

dim = 3000, nn = 13, f = 100 51 50 24 19

dim = 3000, nn = 13, f = 200 47 46 17 13

Table 7.26: SemEval 2013 Task 5b: Average cosine similarity values for literal and

figurative vectors

Similarly to the other tasks, we report here the precision for both experiments

using different model parameters. Figure 7.27 displays the results for two sizes

of context dimensions (2000 and 3000), two context windows (with number of

neighbours per side 5 and 13) and three varying numbers for decomposition factors

(50, 100 and 200).

Similarly to the results obtained with other datasets so far, we observe that for

unattested contexts:

– for matrix addition: the results get consistently better with more dimensions,

more decomposition factors and bigger context window;
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# of dimensions # of nn per side factors Pall words Plex sample

ADD MULT

2000 5 50 0.55 0.45 0.58

2000 13 50 0.55 0.60 0.63

2000 13 100 0.59 0.42 0.56

3000 13 100 0.62 0.66 0.62

3000 13 200 0.62 0.67 0.60

Table 7.27: SemEval 2013 Task 5b: DTSMresults

– matrix multiplication is not linearly improving with bigger parameter sizes,

but we manage to achieve the best results here with matrix multiplication,

3000 dimensions, max. 13 neighbours per side and 200 decomposition fac-

tors.

For ”known” contexts, we get the best precision with 2000 dimensions, max. 13

neighbours and 50 factors.

Table 7.29 shows the performance of our currently best model compared to the

top systems of SemEval (Task 5b) contest.

Baseline MFC (”Most Frequent Class”), provided by the organizers, simply

assigns the most frequent class; in this dataset it is ”figurative”.

UNAL [Jimenez et al., 2013], the ”winner” system for the unseen phrases is

a machine learning approach where a logistic classifier, based on part-of-speech

tags, stylistic features and distributional statistics, is used. Machine learning

approaches are out of the scope of this work; so we do not go into further details

here.

IIRG Run3 [Byrne et al., 2013] is the so-called ”word overlap” method, where a

simple bag-of-words is created for each target phrase. Only nouns that occurred

more than twice in the context of the phrase were recorded and labelled as figura-

tive or literal. This approach is ”distributional” in its nature but it is based only

on superficial first-order contexts. Therefore, IIRG didn’t submit any runs for

the setting with ”unseen phrases” as it can be used only as long as the previously

attested phrases as well as similar contexts are used.

The most successful run from IIRG that did the best in differentiating between

figurative and literal usages includes only nouns as contexts. Therefore, we test
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# of dimensions # of nn per side factors Pall words Plex sample

ADD MULT

2000, 5-50 13 100 0.64 0.67 0.59

2000, nouns 13 100 0.60 0.65 0.60

2000, all 13 100 0.59 0.42 0.56

Table 7.28: SemEval 2013 Task 5b: evaluating DTSM for different context choices

System Pall words Plex sample

ADD MULT

DTSMbest 0.64 0.673 0.63

Baseline MFC 0.503 0.616

SemEval Best System for known: IIRG – 0.779

SemEval Best System for unseen: UNAL 0.668 0.754

Table 7.29: SemEval 2013 Task 5b: DTSMbest versus other models

also this setup with DTSM, i.e. we restrict our context words to nouns except

that we add words from the test set (see row ”2000 nouns” in Table 7.28). Table

7.28 shows the precision of DTSM for three different context dimension strategies:

1. 5-50 - only words that occur between 5 and 50 times in the corpus are taken

as context dimensions;

2. nouns - only nouns build the contexts;

3. all - all words that co-occur with target phrases are considered; except for

stop words.

All variations of our model are better than the baseline. Though the task for

classification of unseen phrases is more difficult, it is not the case for our system.

Our approach seems to work even better for the unknown contexts. The DTSM

multiplicative model using words that occur 5-50 times in the corpus as context

words achieves the best result of all the systems in this setup.

The performance for the known phrases is worse than that of the participating

systems. The latter is most probably due to a very small number of ”training”

contexts, at most 5 per literal and figurative usage which is too small for distribu-

tional models; but obviously enough for participating machine learning systems,

mostly because they use lexicalised contextual clues.
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7.4 Phrasal Semantics

Apart from self-constructed evaluation resources, we perform experiments on the

datasets that have become more or less benchmarks for compositional distribu-

tional models.

The dataset1 of Mitchell and Lapata [2008, 2010] contains pairs of adjective-noun,

verb-object and compound noun phrases, and the task is to compare two phrases

or simple sentences for their similarity. This evaluation setup was suggested by

Kintsch [2001]. However, Kintsch himself demonstrated his algorithm only on

a few selected examples; this way of evaluation was later criticized in literature

[Frank et al., 2008]. Nevertheless, the idea suggested by Kintsch [2001] was taken

up later and extended to larger and proper evaluation datasets.

In Mitchell and Lapata [2010], the participants were asked to rate similarity

between each pair of phrases on a 1-7 scale. The following example shows that

participant 1 gave a similarity score of 5 to the verb-object combination ”use

knowledge” and ”exercise influence”, and a score of 1 to ”begin career” and

”suffer loss”:

participant1 verbobjects 2 use knowledge exercise influence 5

participant1 verbobjects 2 begin career suffer loss 1

Adjective-Noun Noun-Noun Verb-Object

Mean SD SE Mean SD SE Mean SD SE

High 3.76 1.926 0.093 4.13 1.761 0.085 3.91 2.031 0.098

Medium 2.50 1.814 0.087 3.04 1.732 0.083 2.85 1.775 0.085

Low 1.99 1.353 0.065 2.80 1.529 0.074 2.38 1.525 0.073

Table 7.30: Descriptive statistics for Mitchell and Lapata [2010] dataset: Human perfor-

mance

The aim was to collect phrases that were representative for three coarse classes

of similarity: high, medium and low. The high-similarity items were chosen from

phrases occurring more than 100 times in the BNC. The reliability of collected

1The dataset can be obtained here: http://homepages.inf.ed.ac.uk/s0453356/share
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items was evaluated by testing if difference in the subjects’ ratings was significant

(p < .01) and by measuring mean, standard deviation and standard error for the

similarity ratings for items within each of the three groups: high, medium and

low similarity. Table 7.30 shows that the mean ratings demonstrate at least the

correct ordering of manual scores from high to low.

7.4.1 Procedure

For this exercise, we proceed in the similar way as in graded compositionality

and semantic (non-)compositionality tasks described in the previous two

sections:

1. build the DTSM model from the BNC corpus;

2. extract word matrices for component words as well as phrases, using two

ways of tensor interpretation - only the middle matrix or all three axes;

For example, for two word pairs - ”knowledge use” and ”influence exer-

cise” - that the system should assign a similarity score to, we extract in

the first experiment middle Y− matrices of ”knowledge, use, influence and

exercise”, as well as middle matrices for multiword units (mwu) as a whole

”use knowledge” and ”exercise influence”.

In the second experiment, for noun1-noun2 (compound nouns) and adjective-

noun phrases, X and Y slices are extracted for noun1 or adjective and

nouns2 or nounmatrices correspondingly; for verb-object phrases, we extract

the Y - and Z- slice matrices. This setting is defined as ”xyz” in Tables 7.33

and 7.34.

3. compute addition and multiplication for component word matrices obtained

in the previous step;

addComposition1 = matrix (use) + matrix (knowledge)

addComposition2 = matrix (exercise) + matrix (influence)

mulComposition1 = matrix (use) x matrix (knowledge)

mulComposition2 = matrix (exercise) x matrix (influence)

4. compare those by means of cosine;
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score1 (add) = cosine (addComposition1, addComposition2)

score2 (mult) = cosine (mulComposition1, mulComposition2)

score3 (mwu) = cosine (mwu1, mwu2);

5. calculate Spearman’s ρ correlation between the resulting three scores and

the gold standard.

7.4.2 Results

Similarly to Mitchell and Lapata [2010], we measure first the reliability of our sys-

tem’s classification by measuring mean, standard deviation and standard error for

the similarity ratings for items within each of the three groups: high, medium and

low similarity on the example of DTSM model with 2000 dimensions, maximum

13 neighbours per side, 50 decomposition factors and minimum triple occurrence

of 5 (see Table 7.31). DTSM is capable to order the similarity groups correctly:

the average score for ”low” similarity items is smaller than for ”medium” and

”medium” is smaller than ”high” for all three measures (add, mult and mwu).

add mult mwu

Mean SD SE Mean SD SE Mean SD SE

high 5.12 1.24 0.03 4.11 2.16 0.04 4.57 1.68 0.04

medium 3.83 1.45 0.03 1.88 1.90 0.04 2.71 1.59 0.04

low 3.35 1.47 0.03 1.34 1.74 0.04 2.29 1.56 0.04

Table 7.31: Descriptive statistics for DTSM on Mitchell and Lapata (2010) dataset

We further evaluate the main parameters of the model, similarly to the other

experiments, such as:

– context word choice: using words occurring in the corpus 5-50 times as

representative for middle frequency words versus using the most frequent

words as contexts (Table 7.32);

– context window size: (Table 7.33);

– number of factors (Table 7.34)

– using all three axes of the tensor instead of one (Tables 7.33 and 7.34).
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We follow the strategy suggested in the original paper [Mitchell and Lapata, 2010]

in that we correlate every single human score for each of the phrases with the

system’s output; i.e., if participant 1 gave a similarity score of 4 to the sentence

pairs ”Figure show increase” and ”Figure picture increase”, participant 2 gave a

core of 1 and the system assigned 3, then both score pairs (〈4, 3〉 and 〈1, 3〉) are

evaluated separately for correlation.

Additionally to the Spearman’s correlation between humans and the system, we

report correlation between score1 (addition) and score2 (multiplication) of the

components and score3 (mwu) of the phrase itself as it is used in the corpus.

This way of evaluation was suggested implicitly in Experiment I in Katz and

Giesbrecht [2006] and it was explicitly proposed as a means of evaluation of such

models by Guevara [2010]. Figure 7.6 visualizes the idea behind this type of

evaluation in two dimensions (for simplicity).

Figure 7.6: Visualization of cosine for addition, multiplication and MWU in two dimen-

sions

This way of evaluating correlation may be a more objective way to measure true

performance of the model and compositionality operators as it is independent

of the corpus choice and further subjective factors that may have been relevant

in constructing the dataset but that are not available for computational systems

at this point. An example of such a factor could be world knowledge that is

used by human annotators when estimating similarity between the phrases. The

automatic system in its current form has only the training corpus (here: BNC)

as background knowledge.

The conclusions from Tables 7.33 and 7.34 can be summarized as follows:

122



7.4 Phrasal Semantics

all

add mult mwu

5-50 occurrences 0.23 0.28 0.22

ρ with mwu 0.42 0.48 -

10-10000 0.19 0.27 0.25

ρ with mwu 0.42 0.50 -

Table 7.32: Mitchell and Lapata [2010] dataset: Spearmans ρ for DTSM for dim = 2000,

min = 5, nn = 2, f = 50 and varying context dimension choice

all adj-noun noun-noun verb-object

add mult mwu add mult mwu add mult mwu add mult mwu

nn = 2 0.19 0.27 0.25 0.35 0.39 0.35 0.21 0.25 0.25 0.12 0.19 0.08

ρ with mwu 0.42 0.50 - 0.40 0.47 - 0.50 0.56 - 0.35 0.37 -

xyz 0.25 0.22 - 0.31 0.30 - 0.27 0.26 - 0.40 0.13 -

ρ with mwu 0.37 0.42 - 0.31 0.42 - 0.40 0.37 - 0.38 0.48 -

nn = 13 0.33 0.37 0.35 0.39 0.44 0.34 0.37 0.41 0.43 0.29 0.32 0.35

ρ with mwu 0.81 0.88 - 0.84 0.87 - 0.75 0.85 - 0.83 0.90 -

xyz 0.32 0.35 - 0.38 0.37 - 0.37 0.44 - 0.31 0.30 -

Table 7.33: Mitchell and Lapata [2010] dataset: Spearmans ρ for DTSM for dim = 2000,

min = 5, f = 50 and varying context window size

– for adjective-noun pairs: the deployment of further tensor slices other than

Y does not bring any improvement with a current model; multiplication is

generally better than addition;

– for noun-noun phrases: using X and Y slices instead of only Y leads to

better precision; multiplication is in overall better than addition for smaller

number of factors (50);

all adj-noun noun-noun verb-object

add mult mwu add mult mwu add mult mwu add mult mwu

no decomp. 0.30 31 0.32 0.32 0.25 0.35 0.41 0.49 0.40 0.22 0.30 0.34

ρ with mwu 0.62 0.68 - 0.63 0.645 - 0.56 0.65 - 0.65 0.72 -

50 factors 0.33 0.37 0.35 0.39 0.44 0.34 0.37 0.41 0.43 0.29 0.32 0.35

ρ with mwu 0.81 0.88 - 0.84 0.87 - 0.75 0.85 - 0.83 0.90 -

xyz 0.32 0.35 - 0.38 0.37 - 0.37 0.44 - 0.31 0.30 -

100 factors 0.32 0.35 0.32 0.37 0.44 0.35 0.39 0.40 0.40 0.31 0.30 0.34

ρ with mwu 0.80 0.90 - 0.80 0.87 - 0.74 0.90 - 0.80 0.91 -

xyz 0.32 0.34 - 0.37 0.38 - 0.39 0.43 - 0.31 0.29 -

Table 7.34: Mitchell and Lapata [2010] dataset: Spearmans ρ for DTSM for dim = 2000,

min = 5, nn = 13 and varying factors size
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– for verb-object constructions: usage of Y and Z slices with a smaller con-

text window (nn = 2) improves the results significantly, in all other cases -

only marginally; multiplication here is better than addition only when using

the middle Y slice for both words and addition is better when using Y and

Z slices - here we achieve the precision up to 0.40 which is the best out of

all reported in Mitchell and Lapata [2010].

– generally, the bigger context window brings about significantly better results;

– Spearman’s correlation with true usages of phrases in the corpus (mwu) is

significantly higher for multiplication than for addition;

– there is a very positive correlation between the system’s predicted scores

and the observed scores of multiword units as they are used in the corpus

for all kinds of phrases with a bigger context window (nn = 13); the latter

confirms the quality of the system’s output, independent of the correlation

level with human scores.

Table 7.35 presents the comparison of so far DTSMbest to the other models from

the corresponding paper. DTSMbest model consists of 2000 dimensions, maximum

13 neighbours per side and minimum triple occurrences of 5.

The row ”human” in Table 7.35 presents inter-annotator agreement that was

measured by correlating each subject’s ratings with the others and then averaging

over subjects. Relatively low inter-annotator agreement of 0.49-0.55 reveals the

difficulty of the task even for human annotators, which may serve as an indicator

that such a dataset may not be the best way to assess the quality of automatic

systems. Inter-annotator agreement is usually interpreted as an upper bound for

performance of automatic systems.

In general, DTSM variation that is using matrix multiplication and middle matri-

ces performs better than other parameter modifications. It achieves second best

result for adjective−noun combinations (together with two reported methods in

the paper); its non-decomposed multiplication variant shares the first place for

noun−noun phrases with the multiplicative model of Mitchell and Lapata [2010].

A deeper insight into the dataset sheds light on the performance of our model. It

catches one’s eye, that the notion of similarity is not clearly defined here. Mitchell
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model adjective-noun noun-noun verb-object

DTSMbest 0.44 0.49 0.32

rho mult-mwu 0.87 0.90 0.91

human 0.52 0.49 0.55

multiplicative model 0.46 0.49 0.37

dilation 0.44 0.41 0.38

weighted additive 0.44 0.41 0.34

target unit 0.43 0.34 0.29

head only 0.43 0.17 0.24

tensor product 0.41 0.36 0.33

additive 0.36 0.39 0.30

Table 7.35: Spearmans ρ for DTSM (dim = 2000, nn = 13, min = 5), models from

Mitchell and Lapata [2010] and human similarity ratings

and Lapata [2010] regard in the corresponding paper ”semantically equivalent

phrases” as the ones that ”can be generally substituted for one another in the same

context without great information loss” [Mitchell and Lapata, 2010, p. 1407].

Thus, the concept of similarity is vague defined.

For example, a phrase pair early stage and long period has got a value of similarity

5 (out of 7) from four annotators and equally a value of 1 from another four and

further values in-between:

Line 56: participant2 adjectivenouns 0 early stage long period 3

Line 92: participant3 adjectivenouns 0 early stage long period 5

Line 1315: participant37 adjectivenouns 0 early stage long period 5

Line 1351: participant38 adjectivenouns 0 early stage long period 5

Line 1423: participant40 adjectivenouns 0 early stage long period 1

Line 1495: participant42 adjectivenouns 0 early stage long period 1

Line 1639: participant46 adjectivenouns 0 early stage long period 2

Line 1746: participant49 adjectivenouns 0 early stage long period 2

Line 2431: participant68 adjectivenouns 0 early stage long period 3

Line 2466: participant69 adjectivenouns 0 early stage long period 2

Line 2576: participant72 adjectivenouns 0 early stage long period 3

Line 3403: participant95 adjectivenouns 0 early stage long period 1

Line 4231: participant118 adjectivenouns 0 early stage long period 3

Line 4412: participant123 adjectivenouns 0 early stage long period 5
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Line 4519: participant126 adjectivenouns 0 early stage long period 3

Line 4628: participant129 adjectivenouns 0 early stage long period 2

Line 5456: participant152 adjectivenouns 0 early stage long period 1

Line 5527: participant154 adjectivenouns 0 early stage long period 2

One more example is good place and high point that got assigned high similarity

values between 4 and 6 by most annotators, but also 1 and 2 by some of them:

Line 52: participant2 adjectivenouns 0 good place high point 5

Line 88: participant3 adjectivenouns 0 good place high point 6

Line 1311: participant37 adjectivenouns 0 good place high point 5

Line 1333: participant38 adjectivenouns 0 good place high point 4

Line 1405: participant40 adjectivenouns 0 good place high point 2

Line 1477: participant42 adjectivenouns 0 good place high point 5

Line 1621: participant46 adjectivenouns 0 good place high point 5

Line 1742: participant49 adjectivenouns 0 good place high point 3

Line 2413: participant68 adjectivenouns 0 good place high point 6

Line 2449: participant69 adjectivenouns 0 good place high point 4

Line 2578: participant72 adjectivenouns 0 good place high point 5

Line 3399: participant95 adjectivenouns 0 good place high point 1

Line 4213: participant118 adjectivenouns 0 good place high point 5

Line 4393: participant123 adjectivenouns 0 good place high point 3

Line 4521: participant126 adjectivenouns 0 good place high point 4

Line 4609: participant129 adjectivenouns 0 good place high point 4

Line 5437: participant152 adjectivenouns 0 good place high point 4

Line 5509: participant154 adjectivenouns 0 good place high point 6

In both cases, as well as in most other ones in this dataset, ”similarity” is rather

arbitrary defined: in the case of ”early stage - long period” it is ontological (be-

longing to the super-concept of time (period); for ”good place - high point” it is

highly contextual; in ”new situation - different kind” it may be analogical and so

on.

These observations make us believe that measuring the Spearman’s correlation

between our compositional models (addition and multiplication) and the phrase

usage in the corpus as it is (mwu in Tables 7.34 and 7.35) is more reliable and
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participant20 provide family home supply 4 HIGH

participant20 provide family home leave 1 LOW

participant24 provide family home supply 5 HIGH

participant24 provide family home leave 1 LOW

participant25 provide family home supply 5 HIGH

participant25 provide family home leave 2 LOW

Table 7.36: An example of Grefenstette and Sadrzadeh [2011b] dataset

indicative of the model’s quality than the manual scores. The latter values are

indeed double as good1 showing very good correlations.

7.5 Predicting similarity judgments on transitive sen-

tences

Grefenstette and Sadrzadeh [2011b] constructed a dataset of transitive sentences,

i.e., sentences consisting of subjects, verbs and direct objects under similar

conditions as Mitchell and Lapata [2008, 2010]. The dataset consists of 200

sentence pairs; therefore of a total of 400 sentences.

25 subjects rated each sentence pair for similarity. Table 7.36 shows an excerpt

of the dataset. ”Family provide home” and ”family supply home” would be an

example of a high-similarity pair of sentences; whereas ”family provide home”

and ”family leave home” is a low-similarity pair.

The task is to let a computational system assign a similarity score to two sentence

pairs, similarly to the previous experiments.

7.5.1 Procedure

The ”compositional way” of treating this problem is similar to the previous

exercise for Phrasal Semantics (Section 7.4).

The necessary processing steps include the following:

1. we build the DTSM model from the BNC corpus;

1Unfortunately, we cannot compare those values to the other systems here.
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2. extract word matrices for component words, using two ways of tensor inter-

pretation - only the middle matrix or all three axes;

For example, for two sentences - ”family provide home” and ”family supply

home” - that the system should assign a similarity score to, we extract in the

first experiment the middle Y matrices of ”family, provide, supply, home”.

In the second experiment, X slice is extracted for subjects (e.g., ”family”),

Y for verbs (e.g., ”provide” or ”supply”) and Z for objects (e.g., ”home”).

This setting is defined as ”XYZ” in Tables 7.37, 7.38 and 7.39.

3. compute addition and multiplication with component word matrices ob-

tained in the previous step;

addComp_s1 = matrix(subject1) + matrix(verb1) + matrix(object1);

addComp_s2 = matrix(subject1) + matrix(verb2) + matrix(object1);

multComp_s1 = matrix(subject1) x matrix(verb1) x matrix(object1);

multComp_s2 = matrix(subject1) x matrix(verb2) x matrix(object1);

4. compare those by means of cosine;

score1(add) = cosine(addComposition_s1, addComposition_s2)

score2(mult)= cosine(multComposition_s1, multComposition_s2)

5. calculate Spearman’s ρ correlation between the resulting two scores and the

gold standard.

7.5.2 Results

Similarly to all previously described experiments, we test a number of parameters

for this dataset, such as the number of context dimensions, the minimum number

of triple occurrences, the number of decomposition factors, the choice of decompo-

sition method as well as matrix addition and multiplication on non-decomposed

matrices.
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GS 2011 add mult add (direct) mult (direct)

2000 dimensions (-0.03) 0.12 (0.02) 0.22

XYZ (-0.03) (0.03) (0.01) 0.12

5000 dimensions (-0.00) 0.09 (0.02) 0.24

XYZ (-0.01) (0.02) (0.0) (-0.01)

Table 7.37: Grefenstette and Sadrzadeh [2011b] dataset: Spearman’s ρ for DTSM with

min = 5, nn = 13, f = 50 and varying context dimensions size; insignificant values are in

parenthesis (with p > 0.05)

GS 2011 add mult add (direct) mult (direct)

50 factors (-0.00) 0.09 (0.02) 0.24

XYZ (-0.01) (0.02) (0.0) (-0.01)

100 factors (-0.01) 0.07 (0.02) 0.24

XYZ (-0.02) (0.03) (0.00) (-0.01)

Table 7.38: Grefenstette and Sadrzadeh [2011b] dataset: Spearman’s ρ for DTSM with

dim = 5000, min = 5, nn = 13 and varying number of decomposition factors; insignificant

values are in parenthesis (with p > 0.05)

Similarly to the previous experiment, the Spearman’s correlation coefficient ρ

between human and system’s scores is computed following the same strategy;

that is, we correlate every single human score for each of the phrases with the

system’s output; i.e., if participant 1 gave a similarity score of 4 to the sentence

pairs ”Figure show increase” and ”Figure picture increase”, participant 2 gave a

score of 1, and the system assigned 3; then both score pairs (〈4, 3〉 and 〈1, 3〉) are

evaluated separately for correlation.

The results of this evaluation are in Tables 7.37, 7.38, 7.39 and 7.40.

To sum it up, the best performing setup (ρ = 0.24) of DTSM model in this ex-

ercise is the one without decomposition and using matrix multiplication

GS 2011 add mult add (direct) mult (direct)

min = 5 (-0.01) 0.07 (0.02) 0.24

XYZ (-0.02) (0.03) (0.00) (-0.01)

min10 (-0.03) (0.03) (0.00) 0.16

XYZ (0.02) 0.08 (0.03) (0.01)

Table 7.39: Grefenstette and Sadrzadeh [2011b] dataset: Spearman’s ρ for DTSM with

dim = 5000, nn = 13, f = 100 and varying minimum triple occurrences; insignificant

values are in parenthesis (with p > 0.05)
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GS 2011 add mult

nmu (0.00) 0.09

cp als (0.02) (-0.02)

tucker me (0.02) (-0.02)

no decomposition (0.02) 0.24

Table 7.40: Grefenstette and Sadrzadeh [2011b] dataset: Spearman’s ρ for DTSM with

dim = 5000, min = 5, nn = 13, f = 50 and varying tensor decomposition methods;

insignificant values are in parenthesis (with p > 0.05)

DTSMbest 0.24 Multiply.nmf 0.23

Humans 0.62 Add.svd 0.12

Regression.svd 0.32 Verb.svd 0.08

Regression.nmf 0.29 Add.nmf 0.07

Kronecker.nmf 0.25 Verb.nmf 0.04

Table 7.41: DTSM Spearman’s correlation compared to state-of-the-art methods [Grefen-

stette et al., 2013]

as compositionality operator. Using three axes instead of one does not bring

any improvement (Tables 7.37, 7.38, 7.39). From all the decomposition meth-

ods, the only one that results in positive correlation is the non-negative tensor

factorization; still the best result is without using decomposition at all (Table

7.40).

The setup of DTSM that uses matrix multiplication, with or without decom-

position, is the only one that elicits positive and significant rank correlation.

Table 7.41 shows the performance of the models reported by Grefenstette et al.

[2013] versus our best result. Humans is inter-annotator correlation. Compared

to other models, we are currently 4th placed; but again it is worth mentioning

that we just use the model as it is, without any parameter optimization.
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8

Summary of Contributions and

Outlook

In this thesis, we presented a Distributional Tensor Space Model of natural lan-

guage semantics. The proposed model offers a solution to two important chal-

lenges of the existing state-of-the-art distributional semantics approaches, namely,

word order integration and a linguistically plausible compositionality operation.

Existing models that address both issues simultaneously are few. They require

advanced preprocessing or sophisticated training of the model parameters. Fur-

thermore, predominating current semantic space models are based on 2nd order

tensors, i.e., matrices. Therefore, the amount of information that can be encoded

by two describing dimensions is rather limited.

The major question that we pose in this thesis is whether the currently pre-

dominating matrix-based semantic space model with vector-based word meaning

representation is appropriate as a model of natural language semantics. At least,

three issues make us believe that there is a definite need for novel paradigms.

The first challenge we address is the question of word meaning representation.

Currently predominating vector-based word semantics seems to be not enough.

More and more researchers come to the conclusion that a single vector is too weak

to represent word meaning.

The second problem of distributional semantics methods is the integration of

word order information into such models. Word order is traditionally taken into
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consideration in matrix-based approaches by using HAL-way of modelling (cf.

Chapter 3.2.1), that is by putting only left contexts on one axis and only right

contexts on the other axis. Another popular way of treating this topic is by means

of using dependency parsed corpora as a basis for the model construction, i.e.,

they require advanced linguistics preprocessing.

The third important issue is the problem of compositionality of natu-

ral language and the lack of appropriate plausible compositionality methods for

semantic space models.

As the review of the related literature shows, a number of models has been sug-

gested to solve either the problem of word order integration or the task of com-

positionality. The models of compositionality including advanced linguistic pre-

processing, such as dependency parsing, automatically solve the problem of word

order, but require good performance of computational methods for these prepro-

cessing steps. The state-of-the-art accuracy for automatic dependency parsing is

below 90% for English and even worse, if available at all, for further languages.

Furthermore, these methods need a lot of training instances per phrase to get reli-

able results, and usually separate training is required for every kind of expression

or combination of those, which is natural language full of.

In this thesis, we suggest a general and intuitive model that offers an all-in-one

solution to all three above mentioned topics of concern. Distributional Tensor

Space Model that is based on 3d order tensors naturally allows to represent

words by matrices. We argue that a matrix-based word representation allows

us to integrate contextual information as well as to model compositionality in a

more general manner.

We solve the problem of word order integration by making use of three

dimensions instead of two that makes it possible to include triples of infor-

mation into the model, which in its turn has a positive co-effect of encoding

three-way dependencies directly.

The word representation by means of the matrix makes its possible, to use

matrix multiplication as compositionality operator. We show that the approach

of realizing compositionality via matrix multiplication is mathematically,
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linguistically, psychologically and neurologically plausible. Moreover, it was en-

tirely original at the time of publication [Rudolph and Giesbrecht, 2010]; and it

is gaining in importance currently.

This combination of exploiting the advantages of the tensor structure together

with word representation as a matrix and usage of matrix multiplication as a

compositionality operator constitutes the major novelty of this work.

Our goal currently is not to get an optimal performance on any certain task. We

are looking for a linguistically, mathematically and cognitively adequate model

of semantics that is equally suited for most of the semantic processing tasks.

8.1 Conclusions from Evaluation

In order to evaluate the model, we proceeded in the following way. First, the

model was assessed on two word similarity benchmarks of distributional semantics

(Chapter 6).

The performance of DTSM on these similarity datasets achieves average results.

In both cases, the word similarity is rather arbitrary defined and can be better

described using the name of one of the datasets as free associations. This kind

of similarity depends on many external factors, such as social, cultural and so

on, so that using a very structured 3d model based purely on the available text

collection does not bring any improvement per se.

However, we have detected that DTSM performed better for strongly associated

words than the competing semantic space model that was based on latent semantic

analysis (LSA) (Chapter 6.1). The LSA model was significantly predominant

for random associations, thereby achieving better overall accuracies. The latter

makes us believe that matrix-based approaches that do not preserve any text

structure are indeed better suited for random or free similarity tasks.

For Rubenstein dataset (Chapter 6.2) we achieve better results than another

state-of-the-art model with advanced preprocessing that is trained on the same

training corpus as ours (BNC). Other models have used much bigger corpora,
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more sophisticated preprocessing and partly other parameter choices, e.g. a dif-

ferent similarity measure than cosine, so that the results are not directly compa-

rable.

We further evaluated DTSM on the task of selectional preferences, one of the

advanced natural language processing tasks where word order information matters

(Chapter 6.3). Here, DTSM achieves second best result, compared to the ones

reported in the corresponding paper, whereas the best model is based on complex

preprocessing that is configured specifically for this one task; while our model

offers an intuitive simple treatment without any further preprocessing.

Concerning the problem of compositionality, the Distributional Tensor Space

Model was evaluated on a number of the standard benchmarks in distributional

semantics as well as on self-initiated datasets which may become benchmarks for

graded compositionality of phrases and for identification of idiomatic meaning in

context.

The conclusions we may draw from our compositionality evaluation campaigns is

that DTSM seems to offer a new perspective for sentential composition (Sections

7.2 and 7.5 of Chapter 7). We prove it here mostly by means of very good

results for subject − verb composition with a given experimental setup and for

given subject−verb combinations. However, we are far from postulating that the

suggested model is generally good for all imaginable phrases of any grammatical

construction. Semantic compositionality is a too complex concept to be treated

by just one universal method in any kind of semantic space. Hence, our findings

will be one of the steps towards a better understanding of this task.

For example, as discussed in Chapter 3.3, there are at least two modes of meaning

composition: additive and interactive. Until now, these theoretical distinctions

have been ignored in the computational models of compositionality. We leave this

issue for future research.

To summarize, DTSM achieves good results for important tasks of linguistic se-

mantics by using a relatively small text corpus, without any sophisticated pre-

processing and ambitious parameter optimization; unlike the currently predomi-

nating models, most of which are optimized or constructed specifically for certain

tasks. Moreover, the model is completely language independent.

134



8.2 Outlook

It is important to keep in mind, that this is a corpus-based approach, and it can

be only as good as the corpus is.

The advantage and the elegance of the DTSM model is straightforward; we can

use one and the same formalism and operate on 3D-tensors in different ways

without any further model transformations: extracting tensor slices, fibres or

just values at the intersection of three dimensions.

8.2 Outlook

DiSCo experiments have shown that our model attains very good results for

subject − verb constructions; obviously other grammatical constructs follow dif-

ferent rules. Notoriously, there is a number of efforts aimed at learning matrices

for adjective − noun units [e.g. Baroni and Zamparelli, 2010; Guevara, 2010].

Thus, our model seems to be complementary to existing functional approaches

to composition. This line of further research, together with the extension of the

model with the insights from theoretical linguistics, seems to be very promising.

From the computational perspective, we consider ”random tensor indexing” - in

the style of random indexing methods for matrix space models - as an alternative

to currently rather expensive tensor processing and manipulation.

Concerning the Distributional Tensor Space Model itself, further thorough inves-

tigations are necessary, especially:

– on the influence of the context dimensions;

– the exact effects of tensor factorization and the number of decomposition

factors;

– possibly other matrix similarity measures, apart from cosine.

We were rather limited in our experiments in the possibilities to experiment on

the first two points due to restricted computational resources. However, they can

be decisive for model’s performance.
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8.3 Recap of Contributions

Hence, the major contributions of this work can be briefly summarized as follows:

1. Distributional Tensor Space Model was proposed as a model of distri-

butional meaning representation;

2. Matrix consisting of left and right word co-occurrences was sug-

gested as a means of word meaning representation;

3. Compositional Matrix Space Model was defined as a novel type of

generic compositional models for syntactic and semantic aspects of natural

language, based on matrix multiplication.
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regular and inverse selectional preferences. Computational Linguistics, 36(4):

723–763, December 2010. 76

Stefan Evert. The statistics of word cooccurrences: word pairs and collocations.

Doctoral Dissertation, Institut für maschinelle Sprachverarbeitung, Universität

Stuttgart, 2004. 84

Stefan Evert and Brigitte Krenn. Methods for the qualitative evaluation of lex-

ical association measures. In Proceedings of the 39th Annual Meeting of the

Association for Computational Linguistics, pages 188–195, 2001. 20, 61, 84, 88

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini. Intro-

ducing and evaluating ukWaC, a very large Web-derived corpus of English. In

Proceedings of the WAC4 Workshop (WAC-4), 2008. 63, 92

John Rupert Firth. A synopsis of linguistic theory 1930-55. Studies in Linguistic

Analysis, pages 1–32, 1957. 2

Stefan L. Frank, Mathieu Koppen, Leo G. M. Noordman, and Wietske Vonk.

World knowledge in computational models of discourse comprehension. Dis-

course Processes, 45(6):429–463, 2008. 83, 119

Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. TripleRank: Rank-

ing Semantic Web data by tensor decomposition. In Proceedings of the 8th In-

ternational Semantic Web Conference, pages 213–228. Springer-Verlag, 2009.

32

Gottlob Frege. The Foundations of Arithmetic: A Logico-mathematical Enquiry

Into the Concept of Number. B. Blackwell, 1884. 2, 35

Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness

using Wikipedia-based Explicit Semantic Analysis. In Proceedings of the 20th

141



REFERENCES

International Joint Conference on Artifical Intelligence, pages 1606–1611, San

Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc. 3

Peter Gärdenfors. Conceptual Spaces: The Geometry of Thought. MIT Press,

Cambridge/London, 2004. ISBN 0-262-57219-2. 2

Eugenie Giesbrecht. In Search of Semantic Compositionality in Vector Spaces.

In Proceeding of the 17th International Conference on Conceptual Structures

(ICCS), pages 173–184, 2009. 8, 38, 83

Eugenie Giesbrecht. Towards a matrix-based distributional model of meaning.

In Proceedings of the NAACL HLT Student Research Workshop, pages 23–28.

Association for Computational Linguistics, 2010. 8, 31, 43

Jonathan S. Golan. The theory of semirings with applications in mathematics

and theoretical computer science. Addison-Wesley Longman Ltd., 1992. ISBN

0-582-07855-5. 59

Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimenting with transitive

verbs in a DisCoCat. In Proceedings of the GEMS 2011 Workshop on GEomet-

rical Models of Natural Language Semantics, pages 62–66, Stroudsburg, PA,

USA, 2011a. Association for Computational Linguistics. 42

Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimental support for a

categorical compositional distributional model of meaning. In Proceedings of

the Conference on Empirical Methods in Natural Language Processing, pages

1394–1404, Stroudsburg, PA, USA, 2011b. Association for Computational Lin-

guistics. xiv, 42, 62, 83, 127, 129, 130

Edward Grefenstette, Mehrnoosh Sadrzadeh, Stephen Clark, Bob Coecke, and

Stephen Pulman. Concrete sentence spaces for compositional distributional

models of meaning. In Proceedings of the Ninth International Conference on

Computational Semantics, pages 125–134, Stroudsburg, PA, USA, 2011. Asso-

ciation for Computational Linguistics. 42

Edward Grefenstette, Georgiana Dinu, Yao-Zhong Zhang, Mehrnoosh Sadrzadeh,

and Marco Baroni. Multi-step regression learning for compositional distribu-

tional semantics. ARXIV Preprint:1301.6939, 2013. xiv, 130

142



REFERENCES

Gregory Grefenstette. Explorations in Automatic Thesaurus Discovery. Springer,

1994. ISBN 0792394682. 28, 29, 30

Emiliano R. Guevara. A regression model of adjective-noun compositionality

in distributional semantics. In Proceedings of the Workshop on GEometrical

Models of Natural Language Semantics, GEMS, pages 33–37, Stroudsburg, PA,

USA, 2010. Association for Computational Linguistics. 41, 42, 122, 135

Emiliano R. Guevara. Computing semantic compositionality in distributional

semantics. In Proceeding of the International Conference on Computational

Semantics, pages 135–144, 2011. 41, 42

Mary Hare, Michael Jones, Caroline Thomson, Sarah Kelly, and Ken Mcrae.

Activating event knowledge. Cognition, 111(2):151–167, May 2009. 76

Zellig Sabbettai Harris. Distributional Structure. In Word, volume 10, pages

146–162, 1954. 2

Richard A. Harshman. Foundations of the PARAFAC procedure: Models and

conditions for an” explanatory” multi-modal factor analysis. UCLA Working

Papers in Phonetics, 16, 1970. 14, 16

Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

Proceedings of the 14th Conference on Computational Linguistics, pages 539–

545. Association for Computational Linguistics, 1992. 31

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979. ISBN 0-201-02988-X. 54

Sergio Jimenez, Claudia Becerra, and Alexander Gelbukh. UNAL: Discriminating

between literal and figurative phrasal usage using distributional statistics and

POS tags. In Second Joint Conference on Lexical and Computational Semantics

(*SEM), Volume 2: Proceedings of the Seventh International Workshop on

Semantic Evaluation (SemEval 2013), pages 114–117, Atlanta, Georgia, USA,

June 2013. Association for Computational Linguistics. 117

143



REFERENCES

Anders Johannsen, Hector Martinez, Christian Rishøj, and Anders Søgaard.

Shared task system description: Frustratingly hard compositionality predic-

tion. In Proceedings of the Workshop on Distributional Semantics and Com-

positionality, pages 29–32, Portland, Oregon, USA, June 2011. Association for

Computational Linguistics. 93

Michael N. Jones and Douglas J.K. Mewhort. Representing word meaning and

order information in a composite holographic lexicon. In Psychological Review,

volume 114, pages 1–37, 2007. 25, 27

Susan Jones and John Sinclair. English lexical collocations. In Cahiers de Lexi-

cologie, volume 24, pages 15–61. 1974. 6

Pentti Kanerva. Sparse distributed memory. The MIT Press, 1988. 24

Pentti Kanerva, Jan Kristoferson, and Anders Holst. Random Indexing of text

samples for Latent Semantic Analysis. In Proceedings of the 22nd Annual Con-

ference of the Cognitive Science Society, pages 103–6. Erlbaum, 2000. 24

Graham Katz and Eugenie Giesbrecht. Automatic identification of non-

compositional multi-word expressions using Latent Semantic Analysis. In Pro-

ceedings of the Workshop on Multiword Expressions: Identifying and Exploiting

Underlying Properties, pages 12–19. Association for Computational Linguistics,

2006. 8, 36, 61, 82, 83, 84, 85, 91, 115, 122

Henk A. L. Kiers. Towards a standardized notation and terminology in multiway

analysis. Journal of Chemometrics, 14:105–122, 2000. 14

Walter Kintsch. Predication. Cognitive Science, 25(2):173–202, April 2001. ISSN

03640213. 83, 119

Tamara G. Kolda. Tensor decompositions, the MATLAB tensor toolbox, and

applications to data analysis. Available online, April 2007. URL http://www.

ima.umn.edu/industrial/2006-2007/kolda/kolda.pdf. ix, 14, 15

Ioannis Korkontzelos, Torsten Zesch, Fabio Massimo Zanzotto, and Chris Bie-

mann. SemEval-2013 Task 5: Evaluating phrasal semantics. In Second Joint

144

http://www.ima.umn.edu/industrial/2006-2007/kolda/kolda.pdf
http://www.ima.umn.edu/industrial/2006-2007/kolda/kolda.pdf


REFERENCES

Conference on Lexical and Computational Semantics (*SEM), Volume 2: Pro-

ceedings of the Seventh International Workshop on Semantic Evaluation (Se-

mEval 2013), Atlanta, Georgia, USA, June 2013. Association for Computa-

tional Linguistics. 62

Joachim Lambek. The mathematics of sentence structure. The American Math-

ematical Monthly, 65(3):154–170, 1958. 54

Joachim Lambek. Type grammar revisited. In Selected Papers from the Second In-

ternational Conference on Logical Aspects of Computational Linguistics, LACL

’97, pages 1–27, London, UK, 1999. Springer-Verlag. ISBN 3-540-65751-7. 41

Thomas K. Landauer and Susan T. Dumais. A solution to Plato’s problem: The

Latent Semantic Analysis Theory of Acquisition, Induction, and Representation

of Knowledge. In Psychological Review, volume 104, pages 211–240, 1997. 2,

3, 38

Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative matrix fac-

torization. In Proceeding of the Neural Information Processing Systems (NIPS),

pages 556–562. MIT Press, 2000. 15

Lillian Lee. Measures of distributional similarity. In Proceedings of the 37th

Annual Meeting of the Association for Computational Linguistics, pages 25–

32, Stroudsburg, PA, USA, 1999. Association for Computational Linguistics.

16

Alessandro Lenci. Composing and updating verb argument expectations: a dis-

tributional semantic model. In Proceedings of the 2Nd Workshop on Cognitive

Modeling and Computational Linguistics, pages 58–66, Stroudsburg, PA, USA,

2011. Association for Computational Linguistics. 61, 70, 75, 76, 77, 78, 79

Dekang Lin. Principle-based parsing without overgeneration. In Proceedings of

the 31st Annual Meeting on Association for Computational Linguistics, ACL,

pages 112–120, Stroudsburg, PA, USA, 1993. Association for Computational

Linguistics. 28

145



REFERENCES

Dekang Lin. Principar - an efficient, broad-coverage, principle-based parser.

In Proceedings of the International Conference on Computational Linguistics

(COLING), pages 482–488, 1994. 28

Dekang Lin. Automatic retrieval and clustering of similar words. In Proceedings of

the International Conference on Computational Linguistics (COLING), pages

768–774. Association for Computational Linguistics, 1998. 28, 29, 30, 75

Dekang Lin. Automatic identification of non-compositional phrases. In Proceed-

ings of the ACL Conference. Association for Computational Linguistics, 1999.

84

Ning Liu, Benyu Zhang, Jun Yan, Zheng Chen, Wenyin Liu, Fengshan Bai, and

Leefeng Chien. Text representation: From vector to tensor. In Proceedings

of the Fifth IEEE International Conference on Data Mining, pages 725–728,

Washington, DC, USA, 2005. IEEE Computer Society. 32

Will Lowe. Towards a theory of semantic space. In Proceedings of the 23rd

Conference of the Cognitive Science Society, pages 576–581, 2001. 7, 19, 20,

22, 23, 28, 33, 45, 47

Kevin Lund and Curt Burgess. Producing high-dimensional semantic spaces from

lexical co-occurrence. Behavior Research Methods, Instrumentation, and Com-

puters, pages 203–220, 1996. 2, 3, 21, 22

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural

Language Processing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-

13360-1. 16, 17, 89

Ken McRae, Michael J. Spivey-Knowlton, and Michael K. Tanenhaus. Modelling

the influence of thematic fit (and other constraints) in on-line sentence com-

prehension. Journal of Memory and Language, 312(38):283–312, 1998. 75,

76

Ken McRae, Mary Hare, Jeffrey L. Elman, and Todd Ferretti. A basis for gener-

ating expectancies for verbs from nouns. Memory and Cognition, 33(7):1174–

1184, 2005. 76

146



REFERENCES

Jeff Mitchell and Mirella Lapata. Vector-based models of semantic composition.

In Proceedings of the 46th Annual Meeting of the Association for Computational

Linguistics, pages 236–244, Columbus, Ohio, 2008. Association for Computa-

tional Linguistics. 35, 36, 39, 83, 86, 119, 127

Jeff Mitchell and Mirella Lapata. Composition in distributional models of seman-

tics. Cognitive Science, 34(8):1388–429, November 2010. xiii, xiv, 39, 62, 83,

103, 119, 121, 122, 123, 124, 125, 127

Richard Montague. Universal grammar. In Richmond H. Thomason, editor,

Formal Philosophy: Selected Papers of Richard Montague, number 222–247.

Yale University Press, New Haven, London, 1974. 35, 40

Preslav Nakov, Antonia Popova, and Plamen Mateev. Weight functions impact

on LSA performance. In Proceedings of Recent Advances in Natural Language

Processing, pages 187–193, 2001. 33

Preslav Nakov, Elena Valchanova, and Galia Angelova. Towards deeper under-

standing of the LSA performance. In Proceeding of Recent Advances in Natural

Language Processing, pages 311–318, 2003. 33
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