

 Karlsruhe Reports in Informatics 2014,16
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

On the Usability of a Break-the-Glass
Annotation Language for Process Models

Silvia von Stackelberg, Klemens Böhm, Stefan Grabatin, Jürgen Wäsch

 2014

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197537947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

On the Usability of a Break-the-Glass
Annotation Language for Process Models

Silvia von Stackelberg1, Klemens Böhm1, Stefan Grabatin1, Jürgen Wäsch2

1 Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
2 Hochschule Konstanz University of Applied Sciences, Germany

Abstract. Business process design for real-world applications often re-
quires modelling languages of a certain complexity, interweaving several
process perspectives, such as the data and the organizational one, and
taking contextual process information into account. Ensuring that such
languages are indeed usable is not trivial. This paper describes a us-
ability study for a modelling language with those characteristics. More
specifically, the so-called BTG! language features the security concept
Break the Glass (BTG) that allows to specify exceptional access to data.
We investigate usability characteristics of BTG! such as learnability, ef-
ficiency, errors, and satisfaction. Our study has helped to increase the
usability of the language significantly. To illustrate, we have replaced the
language terms with more intuitive ones and have extended the language
with some frequently desired features. Our experiences can be applied to
process modelling languages that are similarly comprehensive.

Keywords: Business process modelling, process perspectives, usability study

1 Introduction

Motivation: Business processes have a functional, a behavioral, a data, an
organizational, and an operational perspective [3]. In addition, many applica-
tions call for support of further perspectives, such as security. However, various
process modelling languages focus on the functional and the behavioral perspec-
tive/aspect, leaving aside other specific needs of the application. One such need
is the necessity to specify access rights for process participants, to give an exam-
ple. Extensions for process modelling languages [11] covering these other aspects
have been proposed. However, specifying several aspects in combination largely
continues to be an open issue. But this is important because aspects interleave
with each other.

The following short example illustrates the complexity of such hybrid speci-
fications: One might want to specify access rights to data for a role holder (i.e.,
referring to the organizational, the data and the security aspect) contingent on
execution of a certain task (i.e., functional and behavioral perspective). – As hy-
brid specification languages are complex, studying their usability is an important
issue. In other words, the questions are: How usable are languages covering sev-
eral perspectives of business processes?, and: How to improve? There currently

is a lack of usability studies on process modelling languages interweaving several
perspectives. Existing work in turn focuses on the functional and the behavioral
aspects (c.f. Chapter 4). A usability study for one specific hybrid language is
expected to not only be of interest to its designers, but also to those of other
hybrid languages. This paper is such a study.

Usability studies typically address the issues learnability, efficiency, memo-
rability, errors, and satisfaction of users [15]. Frequently, few probands allow
to already detect important usability issues [15]. This renders usability tests an
economic way to improve a product.

This paper focuses on a hybrid specification language called BTG! [21].
BTG! features an important security concept. The concept is Break the Glass
(BTG), i.e., providing flexible data access in exceptional situations [2], [6]. BTG
is a metaphor of breaking the physical glass which protects a fire alarm but-
ton against misuse. To illustrate, a fireman might require exceptional rights for
accessing ground plan data of buildings for an emergency situation, which he
cannot access in the regular case. To provide some control, his supervisor acti-
vates the exceptional situation by consenting to that access to the data. As a
consequence, the fire brigade must inform the owner of the house on this ex-
ceptional data access later on (a so-called obligation in the BTG context). This
example shows the complexity of the BTG concept: It requires flexible access
control mechanisms, several role holders might be involved, and an exceptional
access might require subsequent actions (obligations).

BTG! allows to specify powerful BTG features in business processes, tightly
interwoven with the actual process model, in an abstract, descriptive way, with-
out having to be familiar with its realization. Supporting BTG in business pro-
cesses provides flexibility on authorizations for data access. Another important
advantage is that process designers can interleave the security aspect with the
execution context of a process. To illustrate, one can specify that an obligation
must start after a particular task, and the system can take contextual informa-
tion into account (e.g., the affiliation of a particular house owner) when executing
the obligation. BTG! accounts for an important preference of process designers,
namely to model constraints declaratively [22].

Challenges: Configuring and performing the usability study envisioned for
BTG! is not trivial. This is because there do not exist any publications sharing
experiences on how to perform a study for hybrid process specification lan-
guages. It also is challenging to select appropriate usability methods among the
numerous ones that are well-known [15], in order to cover a broad set of relevant
usability aspects of the language.

Contributions: This paper makes the following contributions:
Configuration of a usability study: We describe the design of a usability study

for BTG! we have composed from well-known usability methods. Our study
focuses on the usability criteria learnability, efficiency, errors, and satisfaction.
We explain and justify our design decisions as well as the evaluation criteria we

have chosen. We do not compare BTG! with any competitors, mainly because
we are not aware of any. By learning how to identify and to eliminate prominent
usability problems in our specific case, the hope is to arrive at insights that are
valuable in similar contexts as well.

Realization of the study: We have performed a usability study for BTG!,
which consists of three workshop iterations (phases), with 13 participants. As
the main goal has been to detect problems around BTG! itself, we perform
a paper and pencil study. We have identified problems many participants had
encountered and then have adapted the language as well as our teaching ma-
terial accordingly. We describe some of these modifications and how they have
improved the usability of the language.

Lessons learned: We describe our experiences on performing such a study
(e.g., feedback of participants issued during tutorials and moderated discus-
sions).

Paper overview: Section 2 reviews the annotation language. Section 3 de-
scribes our usability study. Section 4 discusses related work. Section 5 concludes.

2 The BTG! Annotation Language

We first describe the general concept of the annotation language for process
models. We then introduce the language constructs by means of examples.

2.1 Interleaving Security and Application Functionality

The rationale behind BTG! is as follows: Application-independent process frag-
ments, which are available in a repository, carry out security-relevant BTG tasks.
Such a fragment reflects the control flow of BTG tasks (e.g., to ask for BTG,
to agree, to access data). Now think of an application designer who wants to
extend his/her application processes with such BTG functionality. To do so, in a
nutshell, he/she comes up with parameter values that specify the embedding of
the fragments into the application process and their configuration, such as who
is authorized to ask for BTG, or which conditions must hold to enable BTG. In
other words, this specification is declarative. See [20] for more details.

2.2 Example Annotation Language

We now summarize the concepts of BTG! by means of examples.

Example Process. Think of a process for final exams at universities. There
are three roles: lecturer, student, and clerk of a service unit. First, a student
takes an examination, and a lecturer assesses the performance of the students.
If the student passes the exam, the lecturer confirms the exam result (task
confirmation) and sends it to the service unit. Otherwise, the student has to

repeat the exam. The clerk in turn generates a certificate and sends it to the
student. A student might need exceptional access to his exam results right after
the lecturer has confirmed that the exam has been passed, to start the job search
immediately. We now show how using BTG! can support ”Breaking the Glass”
in this context.

Core Language Features. A BTG annotation refers to a process task. This
means that BTG functionality, i.e., a given process fragment, is supposed to take
place after the execution of this task. An annnotation starts with the keyword
�BTG: and ends with�. It contains expressions from a predefined vocabulary of
the form parameter = "value". BTG! has mandatory and optional expressions.
Process designers must specify which rights rights="$right-types" the system
provides for which data objects objects="$objectnames" for the exceptional
case. Symbol $ denotes a variable. In its simplest variant, a BTG description, in
the form of an annotation of a process task, is as follows; this one means that
one has the right to read the assessment of an exam:
<<BTG: objects= "exam-assessment"

rights= "read">>

Role Holders for BTG Tasks. When the system carries out BTG function-
ality, certain process participants perform security-relevant tasks in addition to
the application tasks. To give authorizations for those tasks (e.g., asking for ex-
ceptional access, allowing for access, performing obligations to repair the glass),
BTG! allows the specification of security roles, namely BTG Accessor, BTG
Activator, and Compensator. In our example, a student as holder of role BTG
Accessor should have exceptional access to the data and thus have the autho-
rization to ask for BTG. In the introductory example, this has been the fire
man. The lecturer as BTG Activator has to agree and hence must be authorized
to do this activation task. This has been the supervisor of the fire man in the
introduction. A Compensator (the lecturer) is responsible for ”repairing the bro-
ken glass” by informing the clerk by email. In the example, a process designer
would assign process roles to the security roles as follows:
<<BTG: ... BTGAccessorRole= "student"

BTGActivatorRole= "lecturer" >>
BTG! foresees default settings for the role specifications as follows: If there is

no specification for BTGAccessor, role holders of the BTG-annotated activity get
the rights for exceptional access. If BTGAccessor is specified but BTGActivator is
not, BTGAccessor also is in charge of activating (i.e., deciding on) the exceptional
access.

Authentication Requirements for Role Holders. BTG! facilitates the
specification of authentication requirements for security-critical roles. For in-
stance, the expression AuthnBTGActivator-attr= "$avps, idp=$idp-address"
specifies that authentication is required for a BTG Activator. The parameter

AuthnBTGActivator-attr specifies information the system uses to authenti-
cate the holder of role BTG Activator. One can specify $avps, i.e., a list of
($attribute,$value)- pairs and, optionally, an Identity Provider (IdP). An at-
tribute is a property used for this authentication. A value specifies an identifier
for this attribute. For BTG Accessor and Compensator, the syntax is accord-
ingly.

In our scenario, the student has to identify himself with the attribute ma-
triculation number (mn), with the value for s-card-mn given on his student ID
card. This leads to:
<<BTG: ... BTGAccessorRole= "student"

AuthnBTGAccessor-attr="(mn,s-card-mn),idp=some.univ.edu">>

Conditions on the Process Execution Context. In the example so far, a
BTG annotation means that the process facilitates BTG functionality uncondi-
tionally right after the annotated process element. To specify other cases, BTG!
allows to formulate conditions for BTG by taking the functional, behavioral, or-
ganisational, operational, and data aspect of process instances into account (c.f.
[21]). These conditions are evaluated before an exceptional access is granted.

To illustrate, an exceptional access in our example scenario can only be
granted if the task confirmation has been executed, and the person who has
confirmed the grade is a professor. This is expressed as follows:
<<BTG: ... exec= "performer(’confirmation’) == professor"

start= "executed(’confirmation’)" ... >>
Process designers can formulate conditions on the context by specifying ex-

pressions using the parameters start and exec. The intention is to represent
when conditions on the context must hold for BTG to be enabled. The param-
eter exec specifies conditions for allowing BTG (i.e., executing the fragment)
that must hold right after the annotated process element. In contrast, the pa-
rameter start allows to represent that the application allows BTG as soon as
the condition is fulfilled. Thus, start typically specifies a condition which will
be fulfilled during process execution, and which implies a delay for facilitating
BTG. Regarding the realization, the choice of these parameters determines the
way how the Business Process Management System (BPMS) embeds BTG func-
tionality into the application process, namely in parallel to the process (with
start) or in sequence (with exec).

We refer to conditions such as "performer(’confirmation’)== professor"

and "executed(’confirmation’)" in start and exec expressions as business-
process-context constraint BP-CC. To support formulating these, BTG! provides
functions such as owner, executed, performer, data-access, start-time-

access, with specific arguments. These functions enable the specification of
associated entities, tasks, and data objects to be used for the representation of
temporal and causal constraints. Formally, a BP-CC is as follows:
BP-CC:: function | function s-Op value | BP-CC c-Op BP-CC

Here, s-Op and c-Op are operators provided by the language: s-Op are simple
ones, e.g., set operators, and c-Op are complex ones, e.g., boolean operators. A
BP-CC returns a boolean value.

Obligations. BTG! enables the specification of one or more obligation to repair
the glass. The expression Obligations="$obligation-IDs" is an assignment of
a list of obligation IDs, specifying process fragments to be executed. In the
university scenario, a lecturer as Compensator has to send an e-mail to the clerk
of the service unit after an exceptional data access. To express this, a process
designer first has to label the obligation as part of the BTG annotation. Next,
he/she must specify the obligation parameters in a separate annotation:
<<BTG: ... Obligations= "O1">>
<< Obligation:ID= "O1"

OGCompensator= "Lecturer"

pattern= "Send Email"

OGParameters= "((From, Lecturer),(To, Service Unit),

(Subject, Degree),(Body, has been confirmed))" >>
Note that the execution of an obligation does not necessarily have to take

place right after the glass has been broken.

3 Analyzing the Usability of BTG!

Our goal has been to find and to eliminate usability problems (i.e., pitfalls)
of BTG!. In general, there exist two variants of usability testing: comparing
against objectives and against alternatives. In line with our goal, we follow the
first option. This also is common practice in usability studies for software [15].
In the following, we first review requirements deduced from classical usability
criteria, and we describe the configuration of our usability study and the test
methods we have selected. Next, we describe the realization of the study, lessons
learned and open issues.

3.1 Overview

Requirements: We follow the approved way to quantify usability by taking
the classical usability criteria into account, namely learnability, efficiency, mem-
orability, errors, and satisfaction [15]. To do so, we first interpret these criteria
with respect to BTG!, which we list as requirements in the following.

R1: Learnability. In our context, learnability means that process designers
should be able to learn BTG! with little time effort, and they should be satisfied
with their learning process. After some hours of intensive learning, one should
be able to annotate BTG cases, possibly by using assisting material.

R2: Efficiency. BTG! is efficient if process designers can use BTG! very
quickly after they have been trained using it.

R3: Errors. Users should make only few errors when using BTG!, and users
should not make critical errors at all. Syntactical errors are less critical than
semantic ones. This is because one might avoid them by using an appropriate
tool.

R4: Satisfaction. Process designers should feel comfortable and confident and
should be satisfied by using BTG!.

R5: Memorability. Participants should be able to recapitulate their learned
knowledge quickly and to employ at least simple language concepts after not
having used BTG! for a while. A good time for tests on memorability is when
its usability regarding the other criteria is high. This study aims at solving these
problems first. In consequence, respective tests are future work and should be
performed between three and six months later.

Settings. We follow text-book knowledge on usability engineering, as follows.

Tutorial material. We have developed tutorial slides to train BTG!. We were
aware of the fact that the quality of the material as well as the way of present-
ing it affect learnability. An alternative to a tutorial would have been to ask
participants to study publications on BTG!. However, scientific publications are
rarely written didactically. Further, it is difficult to monitor the learning process
of participants who are reading. – We also prepared a two-page user manual
summarizing the syntax of BTG!.

Feedback. Our study consists of three phases, and in each phase we have
evaluated and improved BTG! and adapted the training material. However, we
did not let users decide on modifications of BTG!, because of its complexity.
Further, it is often difficult to find a consent among users’ opinions, cf. [15].

Low costs. We aimed at an economic run of the study, i.e., having a good
tradeoff of costs versus accuracy. In line with the literature [15], we work with
relatively few participants (13 in total). An alternative would have been to run
empirical studies, but at significantly higher costs. To keep costs low, we also
decided against hiring external process designers.

Profile of participants. We selected participants with knowledge in process
modelling, who ideally had some experience in using security annotations for pro-
cess models. Literature also suggests to have heterogeneous sets of participants
for the different test iterations. We follow this recommendation.

Paper and pencil tests. We decided for a paper and pencil test, to focus on
BTG! and to eliminate effects due to the quality of tools used.

Test Methods Selected. Established usability techniques are asking partic-
ipants (e.g., interviews, questionnaires) or observing them when doing certain
tasks (e.g., by measuring the performance and error rates). We now say how we
have addressed the usability criteria.

Asking Particpiants. To measure the user satisfaction, participants had to
fill out a questionnaire. Many sophisticated questionnaires for evaluating user
satisfaction exist. Among these tools, we decided for the System Usability Scale
(SUS) [1] questionnaire because it is widely used, its validity and reliability have
been demonstrated, and it is relatively short (ten item questions). We adapted a
German version [17] of the SUS questionnaire to our needs. Regarding interviews,
we decided not to interview participants explicitly. One goal was to support
an atmosphere in which participants did not feel observed. We however had
moderated discussions at the end of a workshop.

Observation. We collected the written solutions by participants for their
tasks. These solutions is the most relevant data we have collected for the anal-
ysis. By giving tutorials, we were able to actively observe the learnability of
BTG!. Our tutorial consists of several topics of BTG! (e.g., motivation, spec-
ification of BTG roles, obligations, etc.). Participants had to solve small tasks
during the tutorial, so-called training tasks. We had doubts whether users are
able to learn BTG! in short time. Thus, we measured the training time and
analyzed errors that had occurred when doing the tasks. After the tutorial, we
asked participants to solve complex annotation tasks (so-called expert tasks) for
various scenarios, to study the efficiency. Indicators for low efficiency are, for
example, unnecessarily complex language constructs. We also wanted to learn
which constructs participants do not use, although they would reduce the anno-
tation effort. Further, we tried to identify reasons for language problems from
questions issued. We analyzed the errors for both the training as well as the
expert tasks. This is to detect pitfalls for learning as well as for using BTG!. We
have protocolled participant questions and comments issued during the tutorial,
documented their learning behavior, and the atmosphere during the workshops.
Thus, we explicitly developed a presence tutorial, and not an online-based one.
We decided against any recording of the workshops, to keep the environment as
natural as possible.

As our focus was to make improvements, we did not measure usability criteria
(on a scale). Instead, we decided for a macro-analysis of observed data, i.e.,
address usability issues for problem categories. By doing so, we were able to
consider relationships between usability issues rather than evaluating them in
isolation.

3.2 Design and Preparation of Workshops

The core of the study have been three usability test phases, each consisting of
the steps preparation, running of workshop, and evaluation and improvement
of language and learning material. A workshop consists of a tutorial for BTG!,
followed by expert tasks, filling out questionnaires, and a moderated final dis-
cussion.

Development of Tutorial Material. The tutorial features the University
scenario from Section 2.2 with more examples for the language constructs. We
have striven to activate participants by letting them solve training tasks for each
concept. We further have presented a solution for each training task and have
motivated participants to ask questions, if any. We have scheduled the tutorial
for 1.5 hours with around 80 slides [10].

Expert Tasks. To test how trained users perform with the language, we have
developed expert tasks for three realistic scenarios [10]. To this end, we have
provided process models to the participants. These scenarios feature exceptional
situations with specific security needs where BTG annotations are convenient
for the specification, but are no emergency cases. The first scenario (S-ET-1)

aims at buying and issuing a preliminary season ticket for public transport. In
this context, a sales agent requires exceptional access to customer data to issue
a ticket. The second scenario (S-ET-2) is to request a book from a university
library which is already borrowed by someone else. Iff the loaner of the book
agrees, the library provides the requester of the book access to the contact data
of the loaner. The third one (S-ET-3) deals with a loan request at a bank, and
features BTG iff nobody has decided on the loan request within a time period. By
sketching the annotation tasks for these scenarios we aimed to cover all features
of the BTG language. To work on these expert tasks, we scheduled around 45
minutes altogether.

Classification of Errors. In line with literature, we have classified usability is-
sues into five categories: Category 1 refers to minor syntactic problems, issues of
Category 2 ask for syntactic or semantic clarifications. Category 3 refers to major
syntactic and semantic problems, and Category 4 contains conceptual misunder-
standings of the language which might necessitate major revisions. Category 5
is the wish list of participants regarding additional features.

Questionnaire. With the questionnaire we have asked for user satisfaction
regarding the BTG annotation language [10]. To identify pitfalls and dislikes for
particular language constructs, we have added four questions asking for the most
severe difficulties, feature wishes, proposals for improvements, etc. Participants
were encouraged to write free text answers. We have set aside 15 minutes to
complete the questionnaire.

Selecting and Incentivizing Participants. We have decided to acquire end
users, i.e., process designers, at our institution which match our user profile,
instead of hiring external process designers. The rationale has been that exter-
nal experts may have only little motivation to participate, the costs for their
participation are high, and there are few incentives for doing good work. We
looked for participants with solid computer science skills, who are familiar with
process modelling techniques, and are able to abstract. We do not explicitly ask
for specific programming skills, and participants must not know BTG!.

We now say how we have selected participants for the study.
Phase 1: Four computer scientists of our research group have participated in

the tutorial. All participants have met our profile, and no particular incentives
were necessary. We have scheduled this group for Phase 1 because we expected
fruitful discussions from it.

Phase 2: For the second phase, we have recruited six computer science or
information systems students, being in the last year of their master program.
Related work reports that such individuals have been good test persons [9],[8].
To ensure that participants have the required knowledge, we have selected only
students who had already passed their exam on Business Process Management
at our university. Some of them had some knowledge on the concepts of a generic
security annotation language, but BTG! was new for all of them. We have paid
them – according to regulations for student payment at our university – 10 Euro

per hour for participating in the workshop, which was scheduled for three hours
altogether. We have announced a bonus of 10 Euro for the participant issuing
the most constructive feedback.

Phase 3: Three experts on business processes have participated in this phase.
All of them were familiar with the Business Process Model and Notation (BPMN)
language and some security annotation languages, but they were not or only
marginally familiar with BTG!. We have scheduled this expert group for the last
phase, because these persons might identify problems which non-experts do not
see.

Organization of Workshops. We did not have any particular needs regarding
technical equipment, such as usability labs. To have a comfortable atmosphere
we have provided some drinks and snacks for the participants.

3.3 Study Results

Behavior Rules for Workshops. We have aimed for a good atmosphere so
that participants did not feel under pressure. Participants were allowed to ask
questions any time, and we have taken notes on questions raised. We have told
participants that there are no right or wrong answers. We also have said that
their solutions might be valuable information for us.

We now describe the realization of the three phases.

Phase 1. All in all, we have identified many usability issues in this phase.
Table 1 lists these issues. We now illustrate only some problems exemplarily.
After having detected the issues, we have modified the language accordingly.

Syntax: In general, we observed some uncertainty when using the syntax.
Some participants stated that it was too complicated (e.g., many quotation
marks) or confusing (e.g., listing several items as a parameter). Based on this
feedback we simplified the syntax.

Semantics: To illustrate some usability issues at this level, we briefly de-
scribe the expert task for the ’University library’ scenario (S-ET-2) first. For
this scenario, participants had to specify BTG to give the requester of a book
exceptional access to contact data of the current loaner of the book. The loaner
has to agree to this access. This asks for assigning the BTG roles Accessor

and Activator to requesters and loaners, for specifying the object to be ac-
cessed (the contact data of the loaner) and the access right for reading them.
We further required the requester to authenticate himself (i.e., authentication for
Accessor) by means of a student registration number (srn), using the University
Identity Provider (IdP) ’idp.some-univ.edu’. Further, we asked for an obligation
to inform the head of the library.

The following annotation would have been a correct solution:
<<BTG:objects= "loaner-data"

rights= "read"

BTGAccessor= "requester"

AuthnBTGAccessor-attr= "(srn, requ.srn),idp=idp.some-univ.edu"

BTGActivator= "loaner"

Obligations= "O1">>

Phase Usability Issue Category

1 Syntax for representation of lists (in part. authentication) 1
1 Syntax for variables 1
1 Order of specifications in annotation terms 1

1 Nonambiguous specification of rights 2
1 Default values for BTG roles 2
1 Usage of authentication parameters 2

1 (Assignment of) Compensator Role 3
1 (Assignment of) BTG Roles (Accessor, Activator) 3
1 Semantics of ’start’ and ’exec’ constraints 3
1 Semantics of authentication parameters 3

1 Usage of BP-CC 4
1 Declarative vs. functional notations for BTG and BP-CC 4

1 Possibility to use BTG role names in BP-CC 5
1 Supporting multiple Activators, Accessors and Compensators 5
1 More powerful rights (e.g., create and delete) 5
1 Specification of relationships between Obligations 5
1 Additional functions for BP-CC 5
1 Supporting BTG for exceptional performing of tasks 5

Table 1: Categorized Usability Issues of Phase 1

Authentication and Authorization: Participants felt uncomfortable when de-
scribing authentications. They were not familiar with attribute-value pairs an
IdP asks for. Some were confused by separating authentication and authoriza-
tion specifications for one role, see expressions for AuthnBTGAccessor-attr and
for BTGAccessor. Participants also found complex authorization specifications
(AuthnBTGAccessor-attr="(srn,requ.srn),idp=idp.some-univ.edu" in the
example) too complicated. We reacted to these issues as follows: First, we im-
proved our tutorial, to better explain how to use IdPs. Second, we modified the
parameter names BTGAccessor and AuthnBTGAccessor-attr to accessor.role

and accessor.authn respectively. We have chosen these parameter names be-
cause we explicitly decided against using a compact, more deeply structured
expression for both authorization and authentication in combination. Third, we
simplified the syntactical representation for authentication parameters, resulting
in accessor.authn:(srn, card, idp.some-univ.edu) for Scenario S-ET-2.

Business Process Context Constraints: We observed usability problems when
specifying BP-CC. Participants expressed their dissatisfaction with the mixture
of declarative and functional aspects in this context. To recapitulate, the lan-
guage requires an expression start= $BP-CC or exec= $BP-CC. The $BP-CC in
turn requires pre-defined functions, e.g., performer(’$task-name’). We now
illustrate this language aspect by means of the specification we asked for in the
scenario ’Purchasing a season ticket’ (S-ET-1): BTG is only allowed if the cus-
tomer is an adult, and the purchase date must be within the first five days of the
month. Next to others, the process model for this scenario contains the tasks buy
season ticket (performed by a customer) and prepare ticket contract (performed
by an agent).

The following specification would have been a correct solution:
<<BTG: objects= "customer-data"...

exec= "start-time(’prepare ticket contract’).day <= 5

∧ performer(’buy season ticket’).age >= 18">>
To account for participant dislikes for combinations of declarative and func-

tional aspects, we have evaluated several options to make the language constructs
unique. Finally, we have decided against fundamentally changing the conceptual
setup of BP-CC. The reason has been that both ways have their advantages and
disadvantages: Declarative assignments are intuitive and easy to learn, and func-
tional representations for BP-CC can easily handle many arguments. The later
is important to identify process elements in iterations, e.g., loops. Declarative
representations in turn would lead to specifications that are lengthy.

Another common pitfall for participants was to use role names for BP-CC
specifications, but the language does not foresee this. BTG! allows only functions
specifying role holders of process instances (e.g., performer(’$task-name’). We
have emphasized this in later tutorials.

Next, the names of the parameters start and exec were misleading: Partic-
ipants associated with the name start a BP-CC with temporal conditions, e.g.,
within ten days. But the intended meaning is that start-expressions may be a
delay for allowing BTG due to conditions that hold later. Accordingly, partic-
ipants associated the parameter exec with conditional constraints. Because of
this, participants were unaware of how both parameters imply the embedding of
BTG fragments into the process model. Consequently, we replaced the param-
eter name start by cond.anytime, i.e., the system starts BTG as soon as the
condition holds. We also renamed the parameter exec to cond.immediate, i.e.,
the condition must hold immediately after execution of the annotated process
element. Further, we provided more details in the tutorial.

Desired features: We also reviewed the wish list of participants (see Cate-
gory 5 in Table 1). In general, participants asked for new language features,
such as providing BTG not only for accessing data, but also for exceptional exe-
cution of tasks. Another desired feature was to allow several roles to be assigned
to a BTG role. But at this time, we decided against supporting any of these
features, because we aimed at addressing usability problems first. We were aware
of the fact that new features would make the language even more complex.

Due to intensive discussions, this workshop had taken longer than scheduled.
All in all, we have analyzed any usability problem we have detected. In conse-
quence, we have modified BTG! significantly by simplifying the syntax as well
as the semantics.

Phase 2. During the tutorial run, we had already gained the impression that
the usability of BTG! is better, compared to Phase 1. This is because par-
ticipants discussed issues less intensively, and they have asked fewer questions
regarding the training tasks. When analyzing solutions, we observed a signif-
icant improvement over Phase 1. Table 2 shows the issues detected and their
corresponding categories. Now many problems addressed in Phase 1 either were

not relevant any more at all, or participants had only little problems. Due to the
lower error rate, we have put them into a lower problem category (e.g., usage of
BP-CC, semantics of authentication parameters). The improvement shows that
our modifications had been appropriate. Interestingly, participants have not been
confused by using declarative and functional assignments any more, although we
had not modified this characteristic of the language, only the respective syntax.
Again, participants proposed new language features (see Category 5 in Table 2),
a subset of the ones from Phase 1.

Phase Usability Issue Category

2 Semantics of authentication 2
2 Default values for rights 2
2 Assignment of BTG roles 2

2 Usage of BP-CC 3

2 Specification of relationships between Obligations 5
2 Supporting multiple Activators, Accessors and Compensators 5

Table 2: Categorized Usability Issues of Phase 2

Open usability issues and language modifications. We identified few usability
problems in this phase. The most relevant ones were that participants still were
slightly unconfident when using BP-CCs, and one participant was uncertain
in assigning BTG roles appropriately. Further, the semantics of authentication
was slightly unclear, and participants were not always familiar with the default
settings for rights. Consequently, we did some minor changes on the language
and the tutorial, addressing exactly these issues.

Desired features. Participants proposed new language features similar to the
ones from Phase 1. For instance, they asked to allow several roles to be as-
signed to a BTG role. To illustrate, both loaners and heads of library might take
over the role of an BTGActivator in the library scenario. In line with this, we
changed the syntax of assigning process roles to the accessor to: accessor.role:
list($rolename). Accordingly, the other role assignments correspond to this
syntax. We delayed the other desired features for future work. This is because
their realization would require further investigation of the language and regard-
ing its usability.

Phase 3. As the participants in this phase have been process modelling experts,
we have run the tutorial slightly faster. First of all, many usability problems iden-
tified in Phase 1 and Phase 2 were not relevant any more. Participants performed
very well in doing the tasks, and participants were generally satisfied with the
language. To illustrate, they always used the parameters cond.immediate and
cond.anytime correctly. Their few critical comments referred to some details
regarding the specification of BP-CC. Table 3 shows the results from Phase 3.
We now exemplarily explain two points in more detail.

Phase Usability Issue Category

3 Weak points of some BP-CC functions 2
3 Operator usage for BP-CC 2

3 Need for using functions in BP-CC unclear 3

3 Supporting conditions and relationships for BTG Role Assignments 5

Table 3: Categorized Usability Issuess of Phase 3

Need for functions in BP-CC. Regarding usability, our expert users have not
been concerned that one must use pre-defined functions to specify performers in
BP-CC. Indeed, using pre-defined functions for BP-CC is more verbose, but this
restriction is on purpose, to distinguish performers of process instances and roles.
To illustrate, the term performer(’$task-name’) with a pre-defined function
stands for a distinct performer at process execution, while specifying only roles
(e.g., student) might be ambiguous. This is because at process execution, there
might be several performers of a particular role, student in our example. But it
had slightly confused the participants that the language allows to use process
roles when specifying a data object, but does not allow this for BP-CC (see
Section 2.2). We decided to explain that there is no ambiguity for objects in the
later case in future tutorials.

Desired features. Participants suggested new features. They proposed spec-
ifying conditions for BTG Role Assignments, e.g., to constrain the assignment
if the BTG Accessor is an adult or not. They also proposed allowing to specify
relationships between role assignments, such as separation of duties for BTGAc-
cessor and BTG Activator.

User Satisfaction. We have already discussed implicit factors of user satis-
faction, emerging from comments participants have issued. We now focus on
results obtained by measuring satisfaction explicitly, using the SUS question-
naire [10]. Although - due to the small number of participants - the results do
not give empirically solid insight, they do support some of our modifications of
the language.

To analyze the results, we first have transformed the natural language scale
of the questionnaire into numbers. For every question, 5.0 is optimal regarding
usability, and 3.0 is the value in the middle of the scale. Table 4 lists the results
for all phases (Q1: regular usage of BTG! likely, Q2: language too complex,
Q3: convenience of using language, Q4: further support required, Q5: BTG! has
required functionality, Q6: too many inconsistencies, Q7: easy to learn for process
modellers, Q8: working with language too laborious, Q9: firm in it, Q10: learning
effort).

Due to the heterogeneity of the participants in the three phases, results have
to be taken with care. Most values measured in Phase 1 were slightly above the
middle of the scale. We concluded that BTG! generally satisfies users but still
needs improvements. While the low learning effort (Q10: 4.0) obtained by users

Phase Average Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1 3.18 3.8 3.0 3.3 3.0 2.8 2.5 3.8 3.3 2.5 4.0
2 3.75 4.0 4.2 3.7 2.7 3.2 4.0 4.3 4.2 3.2 4.0
3 3.73 3.7 3.3 3.3 4.3 4.3 3.0 4.3 3.3 3.7 4.0

Table 4: User Satisfaction of Phase 1, Phase 2, and Phase 3

is remarkable, inconsistencies (Q6: 2.5) and uncertainty in use (Q9: 2.5) unfolded
problems we have tried to specifically address with our modifications.

As we had modified BTG! significantly after Phase 1, many ratings are no-
tably higher in Phase 2, indicating that the changes have improved the usability.
The remarkably low complexity (Q2: 4.2) as well as simple usage of the language
(Q8: 4.2) and the, once again, good learnability (Q10: 4.0) point towards a good
general usability. However the results also showed some uncertainty (low values
for Q4 and Q9). Thus our main focus after Phase 2 has been more clarity.

In Phase 3, the average of the values is approximately the same as for Phase 2.
Further, we get a result of 4.3 on user satisfaction regarding the functionality
(Q5). This is significantly higher than the values for Phase 1 (2.8) and for Phase 2
(3.2).

By comparing the satisfaction of Phase 1 with the average values of Phase 2
and Phase 3, we see that the language adaptations after Phase 1 have increased
the overall satisfaction. The value for learnability has always been high. This
confirms our design decision to run a presence tutorial with a step-wise training
of BTG concepts, as well as to activate participants to perform training tasks
during the tutorial.

Summary. By having organized a first workshop, we have identified various
usability problems. Our modifications of BTG! however have led to significantly
fewer problems. The positive feedback from of the last workshop with exeri-
enced participants has shown that the usability of BTG! is good. In general, the
concept of BP-CC have lead to the most usability problems in any phase. This
has not been surprising after all, because this concept is complex, and BTG!
provides a comprehensive vocabulary for functions.

All these points hold in the light of usability engineering, namely that a
usability study always yields a snapshot of (selected) users for particular tasks
for the configuration chosen [15].

3.4 Lessons Learned

We summarize some of our lessons learned when performing a usability study in
the process-design context, and for improving a process-specification language
which interleaves several aspects.

Performing a Usability Study. Recruiting students as participants. When
planning the study, we were unsure about hiring students as participants. One
reason for this concern was that our institution does restrict the amount of
payment, making a participation financially less attractive than jobs in industry.
However, all invited students agreed to participate. Secondly, we were aware that
students might cancel their participation. Colleagues had a drop out rate of 15 to
20 percent in similar setting. This means that we had to calculate accordingly.
Although students’ participation was not obligatory for their studies (e.g., to
get a bonus), all students were extremely reliable. We think that this is because
all students were known to our research group and were interested in the topic.
Thus, we propose to recruit students from carefully selected groups, as opposed
to announcing such job offers widely and openly.

Collecting opinions. In our setting, we have observed an open discussion
culture to be very productive in the first phase. However, these participants
were not very motivated to fill out the questionnaire after long discussions. On
the other hand, student participants did not discuss issues as openly as computer
scientists of our institution. Thus, in such constellations we for our part have
benefitted from using questionnaires. Consequently, the way how opinions are
collected should be adapted to the target group with care.

Evaluation. As opposed to similar studies referred to in the section on related
work which mainly were quantitative in nature, our study was a qualitative one.
Both variants have been in a way useful in the past. We for our part have
been able to make significant improvements and to detect many issues with the
qualitative variant.

Few participants. In our constellation, few participants were sufficient to im-
prove usability significantly. Interestingly, we were able to eliminate most prob-
lems in Phase 1. Consequently, we propose to put effort into the training material
and the profiling of participants, as opposed to recruiting large numbers of them.

Heterogeneous participants. The first group made many helpful comments
regarding general issues. This confirms our rationale to start with participants
which are used to discuss issues regularly. The second group in turn gave good
feedback on the modifications of the language after Phase 1. The expert group
has been very helpful to detect specific problems. Consequently, we recommend
to work with heterogeneous participants in similar studies.

Tutorial. One experience has been that a well-thought-out tutorial is very
helpful to detect usability problems of a hybrid process annotation language.
Some participants have even commented on the good, step-wise way to train the
concepts of BTG! explicitly. We for our part conclude that it has been worth
the effort for preparing the material. However, we also are aware of dependencies
between quality of training material and learnability of BTG!.

Increased Usability. Language re-design. Important modifications of the lan-
guage have been changes in its syntax and in the wording for expressions. We
have not made any conceptual changes of the language. For instance, omitting a
BTG role has been an option. By observing and reacting to the problems issued,

our well-reflected modifications of the syntax have increased the usability of the
language significantly. This shows that syntactical issues should receive much
attention when designing a hybrid language.

Proposals by Participants. Participants had many good ideas for new lan-
guage features. Mainly because any new feature affects usability, we realized
only few of them. To illustrate, supporting BTG for task execution would imply
major extensions of BTG!. On the other hand, participants were satisfied with
the new features we had introduced based on earlier suggestions. Here, the chal-
lenge is to find a good trade-off between feasability and more powerful features.
We conclude for ourselves that suggestions for new features should be taken
seriously, but without leaving aside potential consequences.

4 Related Work

A lot of related work aims at the design of graphical notations, or compares
modelling paradigms, languages, or notations. Our intention in turn has been
a stepwise improvement of the usability of an existing language. Next, while
we address several usability criteria, related studies focus on specific usability
issues, or they rely on specific restricted test methods, such as questionnaires
[18]. Nevertheless, the experiences reported there have affected our study. We
now describe these approaches, grouping them by their intension and goals.

Usability studies for design. [12] is a user study aiming to find appropriate
icons/drawings representing security concepts for process modeling. Our focus
is different, namely the usability of a language, not its visualization.

Usability studies for comparisons. To our knowledge, studies on the usability
of process modelling languages and their modifications do not choose a non-
empirical approach for improving a language, as we have done. Instead, they
either compare realizations or focus on specific hypotheses with empirical re-
sults. [4] compares iterative and declarative modelling languages, but without
usability tests. The respective study is [16], where the authors present hypothe-
ses on strengths and weaknesses of imperative and declarative languages. In
contrast to us, their setting is offline, i.e., unsupervised, and they use the results
to validate hypotheses. Other research has focused on finding good labels for
activities, a challenge similar to choosing the terminology for BTG!. [14] dis-
cusses activity labelling and supporting the understandability of process models
with good icons. [13] is a usability study with a focus on textual labels. These
studies focus on establishing guidelines for labelling, but do not actually improve
existing ones.

Other work on the usability of BPMN introduces more intuitive icons and a
simplified version of BPMN, e.g., there is only one gateway type, called SBPMN
[5]. In their workshops the authors first introduced SBPMN, to enable partici-
pants to solve tasks with it. The motivation has not been to improve SBPMN
but to collect evidence that ”SBPMN is better than BPMN”. [8] is another study
on comparing notations of modelling languages (BPMN, EPC, UML, YAWL).
[7] has investigated routing symbols in these languages. Both studies use a setup

similar to ours, including a tutorial and expert tasks. Their results were ex-
clusively used for comparisons and conclusions on which notations or routing
symbols serve which purpose best.

[7] compares the usability of different modeling languages. Like in our work,
the authors define quality criteria for modelling languages, and how these criteria
have to be applied. They do not conduct any user studies, nor are we aware of
any study using their approach. Just like we have done, [19] consists of tutorial-
based workshops with questionnaires and moderated discussions. They wanted
to find out what professionals think about declarative process modelling.

5 Conclusions

A real-world process requires a comprehensive specification that interweaves sev-
eral process aspects, such as the data and organizational one. Hybrid modelling
languages support this, but their usage is significantly more involved than the
one of using conventional languages which focus on only few aspects. This asks
for usability studies aiming to do away or at least alleviate language issues. This
paper has described the design and realization of a study for a hybrid language
BTG! and has shown how we have improved its usability.

References

1. J. Brooke. SUS: A quick and dirty usability scale. http://www.tbistafftraining.
info/smartphones/documents/b5_during_the_trial_usability_scale_v1_

09aug11.pdf, 1996. accessed Dec. 2014.
2. A. D. Brucker and H. Petritsch. Extending Access Control Models with Break-

glass. In SACMAT, 2009.
3. M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business

Process Management. Springer, 2013.
4. D. Fahland, D. Lübke, J. Mendling, H. Reijers, B. Weber, M. Weidlich, and S. Zu-

gal. Declarative versus Imperative Process Modeling Languages: The Issue of Un-
derstandability. Enterprise, Business-Process and Information Systems Modeling,
29, 2009.

5. H. Fernández-Fernández, E. Palacios-González, V. Garcia-Diaz, B. C. P. Garcia-
Bustelo, O. S. Martinez, and J. M. C. Lovelle. SBPMN - an easier business process
modeling notation for business users. Computer Standards & Interfaces, 32, 2010.

6. A. Ferreira. Modelling Access Control for Healthcare Information Systems: How
to control access through policies, human processes and legislation. PhD thesis,
October 2010.

7. K. Figl, J. Mendling, and M. Strembeck. Towards a Usability Assessment of Process
Modeling Languages. volume 554 of EPK Workshop, Nov. 2009.

8. K. Figl, J. Mendling, and M. Strembeck. The Influence of Notational Deficiencies
on Process Model Comprehension. J. AIS, 14(6), 2013.

9. K. Figl, J. Recker, and J. Mendling. A study on the effects of routing symbol
design on process model comprehension. Decision Support Systems Journal, 54(2),
2013.

http://www.tbistafftraining.info/smartphones/documents/b5_during_the_trial_usability_scale_v1_09aug11.pdf
http://www.tbistafftraining.info/smartphones/documents/b5_during_the_trial_usability_scale_v1_09aug11.pdf
http://www.tbistafftraining.info/smartphones/documents/b5_during_the_trial_usability_scale_v1_09aug11.pdf

10. S. Grabatin. Documents BTG Usability Study. http://dbis.ipd.kit.edu/2134.php.
accessed Dec. 2014.

11. M. Leitner and S. Rinderle-Ma. A systematic review on security in Process-Aware
Information Systems - Constitution, challenges, and future directions. Information
and Software Technology, 56, March 2014.

12. M. Leitner, S. Schefer-Wenzl, S. Rinderle-Ma, and M. Strembeck. An Experimental
Study on the Design and Modeling of Security Concepts in Business Processes. In
PoEM, 2013.

13. J. Mendling, J. Recker, and H. A. Reijers. Activity labeling in process modeling:
Empirical insights and recommendations. Information Systems, 35, 2010.

14. J. Mendling, J. Recker, and H. A. Reijers. On the Usage of Labels and Icons in
Business Process Modeling. IJISMD, 1(2), 2010.

15. J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.
16. P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers. Imper-

ative versus Declarative Process Modeling Languages: An Empirical Investigation.
In BPM Workshops. Springer, 2012.

17. M. Rauer. Quantitative Usablility-Analysen mit der System Us-
ability Scale (SUS). http://blog.seibert-media.net/2011/04/11/

usablility-analysen-system-usability-scale-sus/, april 2011. accessed
Dec. 2014.

18. J. Recker. Continued use of process modeling grammars: the impact of individual
difference factors. EJIS, 19(1), 2010.

19. H. A. Reijers, T. Slaats, and C. Stahl. Declarative Modeling-An Academic Dream
or the Future for BPM? In Business Process Management, 2013.

20. S. von Stackelberg, K. Böhm, and M. Bracht. Embedding ’Break the Glass’ into
Business Process Models. Technical Report Faculity of Computer Science, KIT
2011,38, December 2011.

21. S. von Stackelberg, K. Böhm, and M. Bracht. Embedding ’Break the Glass’ into
Business Process Models. In OTM Conferences (1), 2012.

22. B. Weber, H. A. Reijers, S. Zugal, and W. Wild. The Declarative Approach to
Business Process Execution: An Empirical Test. In CAiSE, 2009.

http://blog.seibert-media.net/2011/04/11/usablility-analysen-system-usability-scale-sus/
http://blog.seibert-media.net/2011/04/11/usablility-analysen-system-usability-scale-sus/

	2014,16_Titelbl.pdf
	UsabilityBTG-9
	On the Usability of a Break-the-Glass Annotation Language for Process Models

