
Optimisation of LHCb Applications for
Multi- and Manycore Job Submission

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

bei der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

M.Sc. Nathalie Rauschmayr
aus Schweinfurt

Datum der mündlichen Prüfung: 24.10.2014
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Abstract

The Worldwide LHC Computing Grid (WLCG) is the largest Computing Grid and is used
by all Large Hadron Collider experiments in order to process their recorded data. It pro-
vides approximately 400k cores and storages. Nowadays, most of the resources consist of
multi- and manycore processors. Conditions at the Large Hadron Collider experiments
will change and much larger workloads and jobs consuming more memory are expected
in future. This has lead to a shift of paradigm which focuses on executing jobs as mul-
tiprocessor tasks in order to use multi- and manycore processors more efficiently. All
experiments at CERN are currently investigating how such computing resources can be
used more efficiently in terms of memory requirements and handling of concurrency. Until
now, there are still many unsolved issues regarding software, scheduling, CPU accounting,
task queues, which need to be solved by grid sites and experiments.

This thesis develops a systematic approach to optimise the software of the LHCb exper-
iment [84] for multi- and manycore processors. This implies optimisation at the levels
which are under control by LHCb’s Workload Management System. First, this thesis
analyses limitations of software and how to improve it by using intrusive and non intrusive
techniques. In this scope, it discusses the applicability of parallelization concepts regard-
ing High Energy Physics software. A parallel prototype is evaluated within extensive
benchmarks. These include measuring memory reduction, runtime, hardware performance
counters as well as tests on correctness of the output of data. Tools for automatic memory
deduplication and compression are evaluated in the context of non intrusive optimisation.
It also discusses how the change from 32- to 64-bit impacted LHCb software and how it
can profit from the new platform model x32-ABI.

Executing jobs as parallel tasks must be also supported by the grid sites. Until now, it
is an unsolved issue whether scheduling of multiprocessor tasks is subject to the Virtual
Organization (VO) [100] or the grid site. Since the Virtual Organization has the insight
into job parameters and past workloads, the thesis proposes a moldable job scheduler
which optimises the job throughput of VO’s task queues. Moldability implies that a job
can be executed with an arbitrary number of processes and it is up to the scheduler to
define the best value. Therefore, the thesis defines the scheduling problem which meets the
requirements of LHCb jobs and evaluates different local search methods. The Worldwide
LHC Computing Grid is a highly dynamic system which offers a large variety of differ-
ent computing resources. Additionally, experiment conditions and software often change
which have a significant impact on generated workloads. It is important, that a scheduler
learns over time these changing conditions. Consequently, the thesis undertakes a detailed
analysis of LHCb workloads and figures out how job requirements can be better predicted
by a supervised learning algorithm.
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Zusammenfassung

Das Worldwide LHC Computing Grid ist das größte Computing Grid und wird von
allen Large Hadron Collider Experimenten genutzt, um deren Datenmengen zu bear-
beiten. Es stellt ungefähr 400k Rechenkerne und Speicherressourcen zur Verfügung und
besteht heutzutage hauptsächlich aus Multi- und Manycore Prozessoren. Die Bedingun-
gen am Large Hadron Collider werden sich ändern und in Zukunft werden wesentlich
größerer Workloads und speicherlastige Jobs erwartet. Das hat zu einem Paradigmen-
wechsel geführt, bei dem es darum geht, Jobs als parallele Tasks auszuführen, um Multi-
und Manycore Prozessoren besser nutzen zu können. Alle Experimente am CERN unter-
suchen deshalb, wie solche Ressourcen bezüglich Speicher und konkurrierenden Zugriffe
besser genutzt werden können. Bis heute gibt es noch viele ungelöste Probleme bezüglich
Software, Scheduling, CPU Zeit Abrechnung, Prozess Warteschlangen. Diese Probleme
müssen von Seiten der Ressource Provider sowie von den Experimenten gelöst werden.

Diese Thesis entwickelt einen systematischen Ansatz um die Software des LHCb Exper-
iments [84] für Multi- und Manycore Prozessoren zu optimieren. Das impliziert, dass
Optimierung auf allen Leveln durchgeführt werden muss, die unter der Kontrolle von
LHCb’s Workload Management System stehen. Zunächst wird die Thesis die Software-
limits evaluieren und aufzeigen, wie Software durch intrusive und nicht intrusive Meth-
oden optimiert werden kann. Im Rahmen dessen wird diskutiert, wie verschiedene Par-
allelisierungsmodelle in Software für Hochenergiephysik angewendet werden können. Es
wird ein paralleler Prototyp vorgestellt, der in zahlreichen Benchmark-Tests evaluiert wird.
Diese Tests beinhalten Messungen für Speicherreduktion, Laufzeit, Hardware Performance
Counter so wie Tests auf Korrektheit der erzeugten Resultate. Im Kontext der nicht in-
trusiven Optimierung wird Speicherdeduplizierung und Komprimierung evaluiert. Es wird
ebenfalls diskutiert, inwiefern sich der Wechsel von 32- auf 64-bit auf LHCb Software
auswirkt und wie jene von der x32-ABI profitieren kann.

Die Ausführung von Jobs als parallele Tasks muss von Seiten der Ressource Provider un-
terstützt werden. Bis heute ist es ein ungelöstes Problem, ob das Scheduling von solchen
Tasks von der VO (Virtual Organization) [100] oder dem Ressource Provider übernommen
werden soll. Da die VO Kenntnis über Jobparameter und vorherige Workloads hat, schlägt
die Thesis einen moldable Jobscheduler vor, der die Prozess Warteschlangen einer VO hin-
sichtlich Jobdurchsatz optimiert. Moldable bedeutet, dass ein Job mit einer beliebigen
Anzahl an Prozessen ausgeführt werden kann und es ist Aufgabe des Schedulers die beste
Anzahl zu definieren. Hierfür, definiert die Thesis das Schedulingproblem, welches die
Anforderungen von LHCb Jobs repräsentiert, und evaluiert verschiedene lokale Suchmeth-
oden. Das Worldwide LHC Computing Grid ist ein hoch dynamisches System, welches aus
vielen verschiedenen Computersystemen besteht. Zusätzlich ändern sich häufig die Bedin-
gungen an den Experimenten sowie die Software, was schließlich eine große Auswirkung
auf die generierten Workloads hat. Es ist wichtig, dass ein Scheduler in der Lage ist, solche
Veränderungen zu erkennen und über die Zeit zu lernen. Deshalb werden in dieser Thesis
LHCb Workloads aus den letzten Jahren genau analysiert und es wird untersucht, wie
Jobanforderungen mit einem Lernalgorithmus besser vorhergesagt werden können.
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1. Introduction

The computing landscape can be characterized as an ever changing ecosystem with a wide
variety of design challenges and deep structural revolutions. Change’s pace outruns exper-
iment phases - however, experiments live longer. In the past decades, CPU manufacturers
were following the principle of increasing CPU performance by adding more transistors to
a chip or by increasing the clock frequency. Moore’s law [170] states that the number of
transistors doubles roughly every two years. During the first decade of the 21st century
a technical limit has been reached, meaning that it is not any longer feasible to further
increase CPU performance by rising the clock frequency. This limit is also known as the
power wall, which is according to [65] defined as:

”... difficulty of scaling the performance of computing chips and systems
at historical levels, because of fundamental constraints imposed by affordable
power delivery and dissipation.”

Generally speaking, CPU performance has met the point after which the power consump-
tion would grow super linearly as explained in [65]. This represents a major constraint on
a decade which rewards low consumption CPUs. Instead Moore’s law manifests itself in
increasing core counts. The multicore era started in the year 2001, when IBM released its
first dual core processor (Power4) [12]. Manufacturers, like Intel and AMD, followed in
2005.

The Worldwide LHC Computing Grid (WLCG) is the largest Computing Grid and it is
used by experiments at CERN in order to process the vast amounts of data that is for
instance generated at the Large Hadron Collider [21]. Nowadays, all its resources consist
of multicore CPUs because commodity hardware is deployed. In 2012, the most common
types have been Intel Xeon CPUs which typically feature 4 to 8 cores (Fig. 1.1).

In the past, single threaded applications could profit from new and faster CPUs. Users had
simply to buy the latest CPUs in order to speed up the execution of their software. Today
this is not the case any more. Software must be able to run in parallel in order to profit from
the latest processors. New problems arise, like concurrent accesses to computing resources
and hardware components, like disc, RAM, I/O interfaces and memory bandwidth that are
shared between cores. If accesses are not coordinated, it slows down overall performance
because concurrent processes have to wait for resources becoming available. Obviously,
such a coordination is not foreseen in single threaded applications. One of the main
problems will be the memory ratio on future systems. Currently, cores in the WLCG are
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2 1. Introduction

typically equipped with 2 to 3 GB [119]. But it will not be feasible to provide 300 GB of
RAM for a system with 100 cores. This problem is well described in [175]:

”... As the number of cores per socket increase, memory will become propor-
tionally more expensive and power consuming in comparison to the processors.
Consequently, cost and power-efficiency considerations will push memory bal-
ance (in terms of the quantity of memory put on each node) from the current
nominal level of 0.5 bytes of DRAM memory per peak flop, down below 0.1
bytes/flop (possibly even less than 0.02 bytes/flop).”

The number of cores on a die is limited by the memory wall [175] since bandwidth must be
shared between multiple cores. As a result, cores operating at a high frequency are limited
by slow memory accesses. The memory wall implies that multicore processors cannot
provide an arbitrary large number of cores. On top of that, core design is meanwhile more
driven by power than performance related aspects [175]. Consequently, manufacturers are
forced to simplify the core design in order to put more cores on a chip. Each core is
smaller, less powerful, contains less complex pipelines, but also consumes much less power.
This results in a performance loss for single threaded applications. Cores are grouped into
nodes where each one has its local memory. So in contrast to the core design, the overall
processor design becomes more complex.
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Figure 1.1: The 20 most common CPU types in the Worldwide LHC Computing Grid at
the Tier-1 level used by LHCb during reprocessing 2012

In summary, applications which are not able to run in parallel will see a performance
loss since single cores become less powerful. Software developers have to be aware of the
underlying micro architecture in order to fully exploit the performance. As explained in
[175], limitations in bandwidth as well as latency must be respected in the design of new
algorithms. Currently, the abstraction layer between software and such complex hardware
is missing. A large range of diverse computing resources is available nowadays: starting
from symmetric multiprocessors, multi-socket CPUs and multicore processors, to GPUs,
ARM for embedded and server systems and many more. This trend raises new questions,
which have not played an important role in the past. For instance: What will be the
memory ratio on manycore systems? How to handle concurrent access to RAM, caches
and I/O interfaces? How to reduce performance loss due to effects of non uniform memory
accesses (NUMA)?
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The risk of leaving large potential untapped, forces software developers to rethink soft-
ware models. Applications must be able to run in parallel on multiple cores with reduced
memory consumption, such that they can profit from new hardware architectures. This
is very challenging. In many cases, like in the LHCb experiment [171], a single threaded
software model has been well conceived 20 years ago in the era of ever increasing clock fre-
quency. The software framework itself has been developed over decades by many different
developers [84] and it consists of millions of lines of code. It will not be easy to re-engineer
the software and algorithms in order to make it scalable for large number of threads and
processes. Therefore, the main aim is to apply changes which allow a parallel execution
but do not require too many modifications at the core level of the software.

As a result the main research question of this thesis is, how multicore and
manycore systems can be used more efficiently at the example of the LHCb
experiment. The aim is to develop and evaluate techniques to adapt to the
changing hardware landscape.

1.1 Research Questions

Given the main research question the following subquestions can be derived.

1. What limits the software and the utilisation of computing resources?
Generally speaking, before undertaking any major decision on software paralleliza-
tion the question arises how new developments and technologies can be applied to
improve the single threaded applications. A deep understanding of the actual limi-
tations is necessary. The knowledge of what are the boundaries of the software and
what causes the bottlenecks becomes the baseline of the first part of the thesis.

2. What are the performance impacts of multi- and manycore CPUs?
As explained before, chip producers are moving towards multi and manycore CPUs
due to restrictions such as the power wall. The complexity of manycore CPUs is
rapidly growing, providing features such as advanced vector registers, hyperthread-
ing, Non Uniform Memory Access (NUMA), frequency scaling and many more. Each
of the features, a priori has as many advantages but also side effects if applied in-
cautiously. Therefore, knowing the baseline one could potentially apply the most
relevant features to improve the general performance of the software at hand. One
of the main drawbacks of manycore CPUs is the pressure on the memory resources,
given their low memory per core ratio. This is problematic for High Energy Physics
software which requires large memory footprints due to detector related data, com-
plexity of reconstruction algorithms, tree buffers and many more. Bottlenecks of
parallel software have to be understood and it must be evaluated how they can be
minimized or removed. Extensive benchmark tests are required in order to under-
stand performance differences between the various parallel software concepts and
between different micro architectures. Many monitoring tools provided by the op-
erating system do not allow a proper insight into hardware utilisation any longer
due to the complexity of manycore systems. Consequently, low level measurements,
based on hardware events, are required to understand limitations of software.

3. How to apply multicore job submission within the Worldwide LHC Com-
puting Grid?
Going from single- to multicore jobs is not an easy transition for the Worldwide LHC
Computing Grid, since scheduling is subject to multiple VOs (Virtual Organizations)
and grid sites with their quotas and shares. Consensus must be reached regarding
how to deal with such jobs. It must be evaluated whether it is worth leveraging the
scheduling at the level of the site or at the level of the VOs. Latter approach would
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allow VOs to use their own schedulers, based on the performance of their software
and not static quotas as it is currently the case.

1.2 Contributions

The thesis comprises the following new approaches and methods:

1. It presents the first systematic approach of optimising LHC experiment software
by taking performance limitations at many different levels into account [164], [151],
[152], [163]. Other LHC experiments are investigating as well improvements of their
resource usage. However, improvements mostly focus on one given level. But for
instance, studying the problem of multicore jobs must not neglect performance of
parallel software. The thesis shows detailed benchmarking tests in order to evaluate
and improve limitations of the parallel software prototype. It is still an unsolved
issue within the HEP community whether scheduling of multicore jobs is a site or
a VO (Virtual Organization) related problem. This work provides a scheduler for
multicore jobs which can be integrated in the Workload Management System of a
VO. It optimises schedules with respect to job throughput by taking into account
worker node, job specific and prior job information [162], [161].

2. Optimising scheduling problems by using the moldability of jobs has been studied
by [168], [82] and [169]. In contrast to these publications, the arrival and finish
time do not matter for Computing Grid jobs. Instead, high job throughput must be
guaranteed. Therefore the thesis has defined the scheduling problem and developed
algorithms to solve it by using the moldability of jobs [162], [161].

3. Estimating the runtime of jobs submitted to the Computing Grid has been studied
by many different research groups at CERN and collaborating institutes [174], [87].
A proper estimation is a precondition for multicore jobs. Since multi- and singlecore
jobs shall share the same computing resources, backfilling must be applied which
requires a proper runtime estimation [180]. This work analyses the impact of LHC
parameters on the runtime and memory requirements of jobs. Since the LHCb detec-
tor supports luminosity levelling [10], a stable luminosity value is ensured during a
LHC run. This means that the number of collisions per second remains stable during
a run. Given that, it has been proven that runtime prediction of reconstruction jobs
can be significantly improved [162], [161].

1.3 Structure of the Thesis

The structure of the thesis is the following:

Chapter 2: Scientific Computing in the LHCb Experiment

An overview of the LHCb experiment is presented in this chapter. It starts with an expla-
nation of the Large Hadron Collider and the LHCb detector. Before describing LHCb’s
software framework, the related data workflow with the main types of grid jobs is pre-
sented. An overview of the distributed computing infrastructures used by the LHCb
experiment is given as well as the workload scale is shown. This information is relevant
for the understanding of the conducted research.

Chapter 3: Related Work

The thesis faces problems from many different research areas and related work is given in
this chapter. It shows the attempts done by the HEP community to use multi- and many-
core CPUs more efficiently. One important factor is the reduction of memory requirements
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and the chapter shows related work for memory deduplication. The thesis also deals with
the problem of scheduling multiprocessor tasks and related work will be given in the end
of this chapter.

Chapter 4: Problem Description in Detail

In contrast to the introduction, this chapter focuses on the problem description from
the experiment’s point of view. The impacts of the LHC upgrade on the computing
requirements as well as the limitations of the current job model are illustrated. Afterwards,
a proposal for optimising the workflow is given that represents the baseline of this thesis.
The work touches different research areas and further details are in the following chapters.

Chapter 5: Optimisation with Non Intrusive Techniques

This chapter describes different techniques that optimise execution of software in a trans-
parent way. It shows this through the example of automatic memory deduplication and
memory compression. The chapter also presents how advantages of 32- and 64-bit appli-
cations can be combined and how this impacts LHCb software. This chapter deals mainly
with research question 1.

Chapter 6: Optimisation with Intrusive Techniques

As explained in research question 2, the impact of multi- and manycore CPUs must be
understood as well as the limitations of parallel software. This is shown in this chapter.
First, diverse parallelization principles and their usability with respect to HEP software
are discussed. Different prototypes are presented and evaluations of benchmark results are
shown.

Chapter 7: Optimisation at the Level of Workload Scheduling

This chapter focuses on research question 3. It evaluates the impact of multicore jobs
and the importance of non linear speedup. It proposes a moldable job model as part of
the VO’s Workload Management System. It defines the objective function and evaluates
how moldability can be used to optimise the scheduling. It shows how supervised learning
can be applied to improve estimation of memory and runtime requirements over time.
The chapter also evaluates the impact of input parameters on the scheduling decision. A
detailed workload analysis is given as well as a proposal for the handling of uncertainties.

Chapter 8: Conclusion

The conclusion summarizes the most important results and their technical impacts. An
outlook is given in the end.
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2. Scientific Computing in the LHCb
Experiment

The basics of the LHCb experiment and its data workflows are explained in this chapter.
The LHCb experiment is one of the Large Hadron Collider experiments at CERN [171].
Section 2.1 and 2.2 give an overview about the Large Hadron Collider (LHC), the LHCb
experiment and the related physics. Section 2.3 explains the data flow, starting from
collisions to the different processing steps until the first physics analysis. Section 2.4 gives
details about LHCb’s software framework. Section 2.5 shows the distributed computing
infrastructures used, in order to process the large amount of data. An overview about past
workloads is given in section 2.6.

2.1 The Large Hadron Collider

The Large Hadron Collider is a proton-proton collider [147], located near Geneva, 100
meters below ground of 27 km circumference. Its maximum design energy is 7 TeV per
beam (7·1012 eV), which results in a maximum center of mass energy of 14 TeV for proton-
proton collisions. Protons are pre-accelerated in previous steps and when they have an
energy of 450 GeV, they are injected into the large LHC ring to be further accelerated.
LHC consists of two beam lines: one circulating clockwise the other one anticlockwise.
Collisions take place in four interaction points, where the experiments ATLAS [83], CMS
[76], ALICE [51] and LHCb [171] are located (Fig. 2.1). In these points the beam lines
are focused and the smaller the cross section, the higher the probability that collisions will
take place. Protons are injected into the LHC in form of bunches and the intersections are
called bunch crossings. Due to the collisions the beam looses protons such that the rate
of collisions per bunch crossing will decrease over time. However, the LHCb experiment
applies mechanisms in order to keep this rate at a level of about 2 collisions per bunch
crossing [108]. When two protons collide new particles are produced and the larger their
colliding energy has been the more particles will be generated. Each beam consists of
about 1400 bunches of protons and a bunch crossing occurs every 50 ns. After the long
shut down 1 (LS1) this rate will be reduced to 25 ns with 2808 bunches. The LS1 started in
2013 and lasts until the end of 2014. During this time period the accelerator is upgraded,
so that it can run with its maximum design energy. In 2012, the LHC was running at a
center of mass energy of 8 TeV (4 TeV per beam).

In the optimal case the beam lines would collide frontally, which is difficult to achieve in
a ring accelerator like LHC. However, it is easier to reach large energies in an accelerator
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8 2. Scientific Computing in the LHCb Experiment

Figure 2.1: The four interaction points ATLAS, CMS, ALICE and LHCb (taken from [94])

where particles can increase their energy in each turn. Radially accelerated particles emit
the so called synchrotron radiation such that they loose energy: the larger the accelera-
tion the larger the loss. In order to keep this small, protons have to be used instead of
electrons and positrons. They are about 2000 times heavier and loose therefore less energy
due to synchrotron radiation. Nevertheless, the disadvantage of protons is that they are
not elementary particles, because they are made of quarks and gluons. Hence, from the
computing perspective it is more difficult to analyse and reconstruct such information.
This is the main reason, why research groups are working on the next concept of collider,
the International Linear Collider [41], in which electrons and positrons are accelerated
linearly.

2.2 LHCb Detector and Physics

The LHCb experiment explores the difference between matter and antimatter. For this it
analyses the difference between mesons that contain a b (beauty) quark and antimesons
that contain an anti-b quark. B quarks are used because their difference (asymmetry)
between quark and anti-quark is larger than with ordinary matter. Just after the big bang,
matter and antimatter were evenly distributed. When the universe started to expand, the
composition changed such that matter dominated. In order to find an explanation for this
process, energy density in the LHC collisions is the same that has existed a hundredth of
a billionth of a second after the Big Bang [42].

The LHCb detector is a forward spectrometer and measures consequently particles moving
only in one direction. It consists of many sub detector layers (Fig. 2.2), which are respon-
sible to find the properties and trajectories of particles. The sum of all information allows
the particle identification. A very detailed description of the detector can be found on the
official LHCb website [42]. The Vertex Locator (VELO) surrounds the collision point and
it is responsible for measuring the trajectories of particles close to the interaction point. It
allows the separation of primary and secondary vertices. A vertex is the point from where
particles are emerged, either from a collision (primary vertex) or from the decay of a short
lived particle like the B mesons. The Rich-1 detector is located behind the Vertex Locator
and allows to identify low-momentum particles. RICH stands for Ring Imaging Cherenkov.
Such detectors use the Cherenkov radiation of particles going through a dielectric medium
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Figure 2.2: LHCb detector and its elements (taken from [93])

which allows to determine the speed of particles. Rich-1 is followed by the Tracker Turi-
censis (TT) which is part of the Main Tracker and measures the transverse-momentum of
particles. The three Tracking Stations (T1-T3) which are also part of the Main Tracker
are located behind the large LHCb dipole magnet. They locate charged particle tracks
and can measure their momentum using the bending by the magnetic field. Another Rich
detector is located behind the Main Tracker and in contrast to Rich-1, it is responsible
to identify particles with high momentum. The next layer consists of the electromagnetic
and hadronic calorimeters (ECAL/HCAL), which stop particles and measure their energy.
The last layers are the Muon chambers, that identify Muons, the only charged particles
not stopped by the calorimeters. The detection of Muons is important since they are part
of many B meson decays.

The detector is specialised for B physics and the main goal is to search for CP violation in
B meson decays. B physics is term for the study of behaviour of B mesons. B stands for
Beauty (quark) and the assumption is that the difference between matter and anti-matter
can be understood by evaluating the differences between the beauty and its anti-beauty
quark. B mesons consist of a beauty, also known as bottom quark, and either an up-,
down-, strange- or a charm-quark. The LHCb detector is designed to record exactly these
kind of particles. CP stands for conjugation symmetry parity and it basically defines the
difference of behaviour between a particle and its anti-particle. The CP violation is the
broken symmetry between them. In 1964, James W. Cronin and Val L. Fitch were the first
ones who observed such a violated symmetry in the decay of strange particles (containing a
strange quark) [79]. They analysed neutral kaons, which were generated at the Alternating
Gradient Synchrotron in the Brookhaven Laboratory. They could observe that a certain
amount of kaons did not decay like predicted by the CP symmetry. In 1999, the KTEV
experiment at Fermilab [1] and the NA48 experiment at CERN [2] could also prove the
CP violation of neutral kaons. CP violation can also be observed for B mesons which are
heavier than kaons. In 2004, this has been proven the first time in the BaBar experiment
at the Stanford Linear Accelerator Center [13] and Belle experiment at KEK (Japan) [30].

2.3 Data Flow

The LHCb detector records several million collisions per second which correspond to an
amount of information of more than hundreds of GB per second. An efficient and fast
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10 2. Scientific Computing in the LHCb Experiment

computing is important, in order to deal with such an amount of information generated by
the detector. Due to limited capacities not all this information can be stored. Filter mech-
anisms are applied which discard collisions corresponding to well known physics processes.
This is done by a hardware and a software trigger. Latter one runs on a large computing
farm which provides 1300 nodes and about 26000 logical cores. It is also called the High
Level Trigger (HLT). It performs parts of reconstruction on the events in order to allow a
proper selection. The maximum output rate of the hardware trigger is limited to 1 MHz
[52] and is reduced to about 5 KHz by the software trigger. It means that about 5000
events per second are finally recorded in raw files [60]. An event contains the information
of the LHCb detector corresponding to a single beam crossing. It takes approximately 60
to 100 kB and normally contains detector responses that are result of more than one col-
lision. As next, raw files are created, which contain about 50k to 60k events and measure
up to 3 GB. The first step in the processing chain is the reconstruction of these raw events
[60]. An overview of the data workflow is shown in Fig. 2.3.

2.3.1 Reconstruction

The raw files contain digitized information from the electronic signals recorded by the
detector. One must reconstruct which particle has caused which particle trajectory and
which group of particles belong to a collision. The reconstruction consists of several steps
and a detailed description can be found in [92]. First the software is initialized and decodes
the raw buffers from the input file. In the next step, tracks must be found via pattern
recognition algorithms. Therefore, information from the Vertex Locator (Velo) and the
Main Tracker are collected. Track states are then identified, which are according to [145]
defined by the charge, the momentum, the (x,y) position and the tangent direction of
a particle. A final fit is applied on those track states, which is done via a Kalman filter
[103]. According to [145] five classes of tracks exist, which are long, upstream, downstream,
Velo and T tracks. Having a majority of certain tracks gives a hint on the event type.
The next step is the reconstruction based on the fitted tracks. Information obtained
from the Rich, Muon and Calorimeter systems is used in order to identify particles. The
Rich reconstruction is based on a likelihood method which determines the probability
distribution of finding hit pixels in the Rich detector. The observed hits are analysed and
a particle hypothesis is made which is then modified in order to maximize the likelihood.
During the muon reconstruction, tracks are simply extrapolated and observed hits in the
muon chambers are matched to the tracks which are the closest ones. Data obtained from
the calorimeter must be clustered and then hypothesis are made about the cluster origin.
The combination of all pieces of information allows the identification of particles. The
reconstruction software consists of about 200 different algorithms, whose computational
complexity vary a lot. Many of those algorithms are dependent on the output of other
algorithms. The complexity of reconstruction is correlated with the conditions at the LHC.
The larger the collision energy the more complex the reconstruction becomes because more
particles are generated. The complexity of reconstruction is also correlated to the number
of initial collisions taking place per bunch crossing. More detailed information can be
found in section 7.5.

2.3.2 Stripping

Each physics analysis is performed on a much smaller data sample than what is recorded.
Therefore a further data reduction is necessary, called stripping. That takes place after
the reconstruction step [60]. This procedure reduces the amount of data to roughly 106

to 107 events per year by selecting the reconstructed events into different physics analysis
streams for each type of analysis [146]. Several stripping lines being part of a stream
contain the sequence of selections in order to create candidates and filter out unimportant
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Figure 2.3: Workflow in the LHCb experiment (status 2012)

information. Such a reduction can be done, because certain decay products are more
relevant than others. The ones which are caused by well known physics can be discarded
without problems. Stripping jobs produce dozen output streams each grouping the events
with similar type.

2.3.3 Analysis

The output of stripping jobs is merged to larger files. These files are replicated and stored
at CERN, at different Tier-1 and special Tier-2 sites. These sites are computing sites
participating in the Worldwide LHC Computing Grid, that provide apart from computing
also disc storage facilities. More information about the different sites in the Worldwide
LHC Computing Grid can be found in section 2.5.1.1. The output of stripping jobs is used
by physicists in order to do their analysis. These analysis represent the user jobs [60]. These
jobs can only be executed at sites, which have all required input files. This is one reason,
why replication of data and distributed computing is necessary. It increases reliability and
it allows a better load balancing of user jobs which are submitted by physicists from all
over the world.

2.3.4 Simulation

Apart from information recorded by the detector, collisions can be also generated by
simulation [60]. Proton-proton collisions are simulated according to the known or expected
production models, generating new particles that are propagated through the detector.
Afterwards the response of the detector is simulated, events are triggered and stored.
Simulation helps to understand the experimental conditions, to compare results obtained
from real collisions with models and therefore to interpret them. In High Energy Physics
Monte Carlo methods (MC) are used, which are based on the law of large numbers. This
means that many simulations are required in order to numerically solve a problem. In
LHCb MC simulations are used for performance studies, explanation of unexpected effects
and as estimation of design choices [85].

2.4 Software Framework Gaudi

LHCb computing tasks are mainly based on the object-oriented software framework Gaudi
written in C++ and Python [59]. As explained in the Gaudi User Guide [73] the basic
requirements of physicists are to have tools for event data processing, analysis and visu-
alization which should be easily extendible. Therefore, a software architecture has been
developed which is based on components. These can interact with other components and
have interfaces provided by different methods. Fig. 2.4 shows the architecture of the soft-
ware framework. The main components are the algorithms, converters and data objects.
Algorithms are responsible for processing input data and generating new output data.
Therefore, they use services in order to receive and to store data. For example, the persis-
tency service facilitates the read and write access to disc. Other services are the messaging
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service, a configuration service analysing the job options, a service generating histograms
and many more. This software architecture allows a clear separation of algorithms and
data. Data are for example the recorded particles, the reconstructed tracks and detector
related information. They all are stored as objects in different data stores, like the tran-
sient event store. The framework is easily extendible in the sense that physicists can add
new components, for example new algorithms for reconstructing particle decays. At the
same time, the component based patterns have to be followed in order to ensure future
flexibility of the framework.

The job options are Python scripts which define the configuration of the application. They
define the actual processing chain, for instance which kind of Gaudi services and algorithms
have to be used. While the components are implemented in C++, configuration is done
via a Python interface that simplifies and abstracts the usage of the core software. Gaudi
consists of a large software stack, which includes many external, CERN specific and some
LHCb specific packages and each of them consists again of sub modules. Like many
other HEP experiments, LHCb also uses the ROOT framework, in particular for I/O,
histogramming and mathematical functions [35].

Figure 2.4: Gaudi Architecture (taken from [73])

2.5 Distributed Computing Infrastructure

In distributed systems, computing facilities are connected to construct a larger system.
These facilities are geographically distributed. Distributed computing is often applied in
areas that need to solve large computational tasks which can be split into subtasks.

2.5.1 Grid Computing

Grid Computing is a distributed computing system, where resources are located at geo-
graphically separated locations. These are normally loosely coupled which requires that
tasks do barely communicate with each other. Grid Computing is used in application areas
which deal with a lot of data and which cannot have all computer and storage units in one
location. Ian Foster proposes a three point check list, which defines Grid as [99]:

”A Grid integrates and coordinates resources and users that live within dif-
ferent control domains - for example, the user’s desktop vs. central computing;
different administrative units of the same company; or different companies; and
addresses the issues of security, policy, payment, membership, and so forth that
arise in these settings. Otherwise, we are dealing with a local management sys-
tem.”

”A Grid is built from multi-purpose protocols and interfaces that address
such fundamental issues as authentication, authorization, resource discovery,
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and resource access. [...] it is important that these protocols and interfaces
be standard and open. Otherwise, we are dealing with an application-specific
system.”

”A Grid allows its constituent resources to be used in a coordinated fashion
to deliver various qualities of service, relating for example to response time,
throughput, availability, and security, and/or co-allocation of multiple resource
types to meet complex user demands, so that the utility of the combined system
is significantly greater than that of the sum of its parts.”

A Grid allows to utilise resources located somewhere else and it provides a less expensive
solution compared to supercomputing [133]. Grid Computing can be divided in data and
computational Grid. First one serves as a distributed data storage where users can ac-
cess and modify large amounts of data. File naming conventions, a secure and efficient
data transport must be guaranteed as well as data must be replicated to allow better
load balancing. The main goal of computational Grids is to solve a large task by subdi-
viding it into smaller pieces and executing them at different computing elements. These
pieces do in general not require communication between each other. A Grid must provide
functionalities, protocols and interfaces, to allow a unified access for all users.

One of the first Grid Computing projects started in 1995. The aim of the I-WAY project
(Information Wide Area Year) was to connect and unify several supercomputer centres and
virtual environments [181]. It was later on adopted by the Globus toolkit [29], which is
nowadays the common standard for the development of Grid applications. Nowadays, Grid
Computing is not only applied in research but also in many other fields like finance, web
services and industry. For instance, the financial sector uses Grid Computing to execute
Monte Carlo simulations for pricing and scenario analysis [120].

Grid Computing increases reliability due to the non existence of a single point of failure. A
failing job can be simply send to a different worker node. Resources can be easily upgraded
without affecting the overall system because jobs just have to be executed at a different
site. Unlike a supercomputer, where this would lead to the impossibility of executing tasks.

2.5.1.1 Worldwide LHC Computing Grid

The LHC experiments generate in total 15 PB of data per year. At the time when ex-
periments have been designed, it has not been possible to process these amounts in one
large supercomputing center and it has been required to build a distributed computing
infrastructure. The recorded events are independent and can easily be computed in par-
allel. So jobs do not have to communicate with each other and can therefore be processed
at any place as long as the input files are provided. Distributed computing resources can
be used since universities collaborating with the experiments have access to computing
facilities. As a result, all available resources have been integrated into the Worldwide LHC
Computing Grid in 2002 [75]. The Grid also serves as storage for files, where multiple
copies are placed. This ensures that physicists from all over the world can access them in
near real-time.

The Worldwide LHC Computing Grid (WLCG) consists of three main layers, which are
the Tier-0, Tier-1, Tier-2 level. CERN’s data center represents the Tier-0 as the source
of all datasets from all LHC experiments. It is responsible for distributing and replicating
raw data. The following sites represent the Tier-1 level:

• TRIUMF (Canada)

• KIT (Germany)

• PIC (Spain)

13
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• IN2P3 (France)

• INFN (Italy)

• NDGF (North Europe)

• NIKHEF, SARA (Netherlands)

• ASGC (Taipei)

• RAL (UK)

• FNAL-CMS, BNL-ATLAS (US)

• RRC-KI, JINR (Russia)

CERN is connected via an optical fibre link to these sites and it provides a bandwidth of
10 GB/s to each of them. Files are transferred with the Grid File Transfer Service [3].
The Tier-1 level differs from the Tier-2 in the sense that the sites are also responsible
for providing tape storage facilities. As a result, reconstruction and stripping jobs are
generally executed at the Tier-1 sites since these jobs require input files and have to
store large output files. Tier-2 sites provide computing power and are typically used for
simulation and user analysis jobs. By the end of an experiment year, all experiments start
their reprocessing productions in which datasets from the whole year are re-reconstructed.
This normally produces very large workloads. In such circumstances Tier-2 sites are used
by LHCb as well in order to execute reconstruction and stripping jobs.

In order to access the distributed computing infrastructure users must acquire a certificate
issued by certification authorities. This is managed by subscribing to a Virtual Organiza-
tion (VO). A VO represents a group of people or institutes sharing resources like CPU and
storage [100]. The VO manages the rights of users, validates certificates, defines require-
ments and goals. A user has to obtain a certificate and transform it to a Grid certificate.
It allows, to create a proxy with a limited validity and to send jobs to the Computing
Grid.

The middleware is an abstraction layer between operating system and application. It is
the core element of a Computing Grid [46], since it provides basic services and protocols.
For example, WLCG uses middleware developed in Europe (gLite, EMI) or in US (OSG).
Unicore is a middleware which offers a wider range of services. It provides security and
workflow mechanisms, global data management and load balancing [50].

Pull versus Push Principle

One of the main challenges in Grid Computing is the scheduling of jobs. On one side there
are the Workload Management Systems of the experiments which create, monitor and send
jobs to the grid sites. On the other side there are the batch systems at the grid sites which
take care of scheduling and monitoring jobs on their worker nodes. The push principle
sends jobs directly to the scheduler which then allocates resources (early binding) (Fig. 2.5).
The pull principle sends pilot jobs. As soon as they are safely running on a computing
resource they request real jobs through a scheduler (late binding) (Fig. 2.5). The advantage
of the first approach is that the grid sites can control the workloads. However, once the job
is submitted it cannot change its priority in this model. Problematic is also, that failures
often occur during the start of a job which then requires a rescheduling. Late binding
minimizes this problem, because jobs will only be requested when the environment has
been set up on the worker node. It also allows a better load balancing, because jobs will
be picked which better match the allocated resources. Nowadays, most of the experiments
use the pilot job model which implements the pull principle. It allows the experiments to
control the match making of their tasks. However, it implies some problems in the context
of multicore jobs which will be explained in section 4.2.

14
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Job Scheduler Worker Node
Submission Allocation (Push)

Job Scheduler Worker Node
Submission Request (Pull)

Figure 2.5: Pull and Push principle

High Throughput Computing versus High Performance Computing

With increasing number of cores on modern CPUs, applications are facing problems which
are well known in the field of high performance computing (HPC). Supercomputers tightly
connect a large number of nodes, such that fast inter node communication can be facili-
tated. The aim is to perform large amounts of floating operations per second (FLOPS) for
executing compute intensive tasks [14], which cannot be executed anywhere else. There-
fore, data and/or tasks are separated and processed in parallel on different nodes. Appli-
cations need to scale well on a large number of processes.

Jobs executed within the LHC Computing Grid are mainly oriented on high throughput
computing (HTC). The main metric is the number of executed jobs per certain time period
[14]. In addition, jobs are loosely coupled and do in general not communicate with each
other. This allows using computing systems distributed over the whole world. While
HPC focuses on CPUs providing a lot of FLOPS, HTC relies on increasing the amount of
CPUs where each of them does not necessarily provide many FLOPS. In the context of
high throughput computing efficient scheduling strategies also play a major role. If a job
performs well but the remaining time of a schedule is not used at all, then the throughput
would not improve compared to a job which needs more time to be executed. The Grid is
a highly dynamic system with a lot of dissimilar resources. Each site can deploy its own
policies and can add/remove resources. As described in [148]:

”Such an environment has to employ opportunistic scheduling: Resources
are used as soon as they become available and applications are migrated when
resources need to be preempted. The applications that most benefit from op-
portunistic scheduling are those that require high throughput rather than high
performance. ”

[148] proposes and evaluates a matchmaking framework, in which requirements are matched
to resources. Requirements are defined by several attributes which can contain strings,
numbers or more complex expressions. Such matchmaking algorithms are used by batch
systems for High Throughput Computing, for instance HTCondor [34].

Since the start of the multicore era, paradigms from the field of HPC play a more important
role in HTC. The question is now, how applications can be parallelized in order to exploit
the full potential of multicore processors and what must be undertaken such that they can
scale on manycore systems as well.

HEP SPEC Benchmark

The Worldwide LHC Computing Grid provides a large variety of different computing
resources. These differ in the number of job slots, clock frequency, size of RAM, micro
architecture and they are produced by different CPU manufacturers. For the experiments it
is important to have a metric in order to compare different worker nodes. For this purpose,
HEP SPEC benchmarks have been defined which is a subset of the SPEC benchmark test
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HS06 Speed
(MHz)

L2+L3
cache (KB)

Cores
(runs)

RAM
(GB)

Mainboard
type

Site

213 2666 3072+24576 24 HT on 48 Dell C6100 (2
sockets)

DESY-HH

212 2666 3072+24576 24 HT on 72 Dell 0F0XJ6 KISTI

210 2666 3072+24576 24 HT on 48 Dell 0D61XP GRIF-
IRFU

207 2670 1536+12288 24 HT on 72 Dell C6100 CC-IN2P3

174 2666 3072+24576 12 HT off 24 HP ProLiant
BL460c G6

PIC

172 2667 3072+24576 12 HT off 24 Dell C6100 UVIC

161 2667 1536+12288 12 HT off 24 HP DL170e
G6

Australia-
ATLAS

Table 2.1: HEP SPEC values for Intel Xeon X5650 (taken from [9])

suite [9], [118]. SPEC stands for Standard Performance Evaluation Corporation which
defines a number of tests in order to evaluate the performance of a computing system. A
mix of diverse tests is necessary which stress different components, like I/O, bus rates,
memory, network, CPU etc. Additionally, compiler options and operating system impact
the runtime of tests as well. The higher the SPEC value, the more powerful a system is.
This value is also necessary to normalize CPU time and to compare similar tasks executed
at different systems.

However, the High Energy Physics community derived a subset of these tests, which better
reflects the needs of HEP software. The aim of these benchmarks is providing a measure
which scales with HEP software. Having such a normalization value is very important in
the Computing Grid since it provides a large variety of different resources. Pilot jobs must
indicate the required CPU time as HEP SPEC value and this allows a proper matching
by the grid site. When experiments evaluate their computing requirements for future
experiment years, they have to indicate their expected workloads in HEP SPEC seconds
(HS06.s), hours (HS06.h), years (HS06.y). Knowing the HEP SPEC value of a CPU allows
the grid sites to determine the amount of required CPUs for providing given computing
capacity. Tab. 2.1 shows results of the HEP SPEC benchmarks measured on Intel Xeon
X5650 CPUs. The final HEP SPEC value is influenced by many configurations, like the
size of cache, amount of RAM and hyperthreading. As Tab. 2.1 shows, the results differ
significantly ranging from 161 HS06 to 213 HS06.

2.5.1.2 Workload and Data Management System DIRAC

The LHCb experiment uses 6 Tier-1 sites and about 83 Tier-2 sites. A Workload Manage-
ment System is essential in order to submit jobs to different grid sites and monitor their
execution. The LHCb experiment is following the principle to use all possible computing
resources with minimal effort. Hence, a Distributed Infrastructure with Remote Agent
Control system (DIRAC) has been developed which is according to [24] a complete solu-
tion for workload and data management on computational grids. The LHCb experiment
uses this framework, but extends it with further functionalities. The key components are
(Fig. 2.6):

• Resources

• Services

• Agents
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• Interfaces

Resources present all computing elements provided by the Computing Grid, Cloud facili-
ties, dedicated CPU clusters or volunteer computing. BOINC is a platform for volunteering
computing, where one can subscribe and let jobs run on a conventional personal computer.
This has been made available for DIRAC in 2013 [22] and allows LHCb to use additional
CPUs. Within DIRAC resources can be also storage elements, which can be accessed
via protocols like gridftp, ftp and http. Services are used for reporting and retrieving
information that is generally stored in a database and can only be accessed by authorized
users. As an example: the job monitoring service tracks the status of all jobs and stores
changes in the database. The third element are the agents, which are processes running
closely together with services. While services track the state of something, agents are able
to perform different operations based on the information obtained from services. A job
agent is responsible to pull tasks from the central task queue and to run them on a worker
node. In addition, it has to ensure the correct execution of jobs. The last component are
the interfaces which allow to use DIRAC functionalities. This can be done via an API,
the command line or via a web interface. This allows to monitor the system status in an
easy way and to obtain an overview about currently running tasks. The framework itself
provides more components like configuration, monitoring and logging services. In addi-
tion, a protocol for secure communication is provided (DISET - DIRAC Secure Transport)
which allows authentication of users. DIRAC is based on the pull job scheduling paradigm

Figure 2.6: DIRAC Architecture (taken from [185])

which means that the computing resource is seeking for new jobs to be executed [67]. A
scheduler which only checks the availability of computing resources and directly sends a
job realises the push paradigm. In this situation all information about available resources
must be collected at one place and this can lead to scalability issues. The pull paradigm
does not have such a problem since a computing element simply has to request a new job
from the task queue. Hence, load balancing can be realised more easily since a powerful
resource will simply request more jobs. DIRAC uses pilot jobs in order to match jobs from
the task queues. Pilot jobs are python scripts, which are sent and executed on a worker
node. They represent empty resource reservation containers which ensure matching of ap-
propriate tasks on computing elements [70]. In addition, they do the setup of all required
components, they perform system checks and ensure that the environment is safe. In case
of problems, tasks will not be fetched and therefore they are not impacted. Incidents are
then reported to the Workload Management System. If tests have been successful, a pilot
job starts a Job Agent, which is responsible to pick tasks from the queue. For this purpose,
it connects to the central DIRAC service. The pilot job mechanism allows late binding of
jobs, such that tasks are chosen which are more suitable for a computing resource [70]. It
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18 2. Scientific Computing in the LHCb Experiment

also reduces failures because jobs are only picked when the pilots are safely running [70].
They also allow to run multiple payloads.

Before simulation, reconstruction and stripping jobs can be generated, the so called pro-
ductions must be created. They define the job options and the set of files to be processed.
Each job can run a different application or a sequence of applications with diverse config-
urations. The job options define the input files for a job, the amount of events, the name
of output files, the sequence of algorithms and many more. It is also possible to execute
several applications within a job, like it is the case for simulation jobs. First collisions
are created, simulated, then events are reconstructed and stripped. Jobs from the same
production have options and application version in common. The production manager is
responsible to create productions and to define its properties. When a production is ready,
grid jobs are created and sent to the task queue.

2.5.2 Cloud Computing

Cloud computing refers to a network of computing resources, which users can access via
services. The name cloud derives from the fact, that the complexity of IT infrastructure is
hidden by virtualization. This allows to execute applications within a virtual environment
which can be configured as required. The users do not need to take care about the
hypervisor’s operating system. Other components like network or storage are virtualized
as well. Users can request resources, but they don’t see where their data is actually stored
or which server their application is running on. They can just see it as a cloud. To request
resources, services are provided. These are [68]:

• Infrastructure as a Service (IaaS):
It provides access to hardware resources, like CPUs and storage. They offer func-
tionalities to run and stop operating system instances. For example, Amazon EC2
and OpenNebula offer such service.

• Platform as a Service (PaaS):
It provides access to computing platforms including an execution environment. It is
mostly used by developers, in order to implement software over the Internet.

• Software as a Service (SaaS):
It provides access to software which normally requires licenses. Instead of obtaining
the full license users pay on a per-use basis.

The LHCb experiment profits from the emerging so-called institutional Cloud Computing
infrastructures [31] [25], which sit in between public and private infrastructures. Some
members of the WLCG are becoming Cloud Computing providers and at this early stage
their resources are available for those who are ready to experiment with them. The ra-
tionale behind this movement at the WLCG is motivated by economic factors, since a
virtualized infrastructure allows a significant reduction in costs derived from headcount
and maintenance. This landscape represents a change of paradigm with many serious im-
plications as well as a shift of responsibilities. Out of those, the most outstanding one is
the fact that now the historical responsibility of troubleshooting the resources locally is
now with the experiments which have to monitor their resources. Where Grid resources
are best troubleshot in case of problems, the Cloud resources are cheaper if terminated
and re-instantiated.

At the present, traditional grid sites such as CERN, PIC, RAL, LAL provide IaaS. The
heterogeneity of resources present in the Grid was soon present on the Cloud, as the
different cloud platforms used by the sites. As an example, OpenStack is used by CERN
and RAL [32], OpenNebula is used by PIC and StratusLab by LAL. The LHCb experiment
via the VMDIRAC module, interacts with the different APIs provided EC2 for OpenStack
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framework and OCCI on a homogeneous manner. This module allows the experiments
to schedule VMs dynamically based in the load, pre-stablished temporal restrictions, and
downtimes.

2.5.3 Volunteer Computing

In 2013, LHCb investigated the usage of resources provided by volunteer computing [22].
Personal computing facilities like workstations and laptops are often idle and can be used
as additional resources by the experiment. This is most suitable for jobs requiring a lot
of CPU and generating only small data like for instance Monte Carlo productions. LHCb
uses the Berkeley Open Infrastructure for Network Computing (BOINC) platform which
takes care of initializing and executing applications [56]. In a first step, a user must
download the BOINC client. Jobs are executed within a virtual machine, which ensures
the correct software environment. This requires that in addition a hypervisor is installed by
the user. In volunteer computing many issues can occur because resources are unmanaged
and unreliable. Questions arise like how to monitor and account jobs [22] or what to do in
case the user switches off the system. Simulation jobs run normally for several hours since
they process up to 500 events. In order to reduce execution time, jobs executed on such
computing resources process only 50 events. Additionally, work is currently ongoing such
that simulation tasks automatically adapt their size and safely shut down if necessary.

2.6 Workload Scale

The larger the collision energy, the more particles are generated. This increases the size
of events, because more information is recorded. At the same time, the combinatorics of
reconstruction rise leading to a larger computational complexity. The energy of LHC is
increased each year, in order to search for new particles and physics processes.

Run 1

In 2011, LHC has been operating at a center of mass energy of 7 TeV, which corresponded
to a beam energy of 3.5 TeV. At LHCb an average collision multiplicity of about 1.5 has
been measured during the year. It means that about 1.5 collisions took place per bunch
crossing. The HLT trigger produced an output rate of 3 kHz and in total 600 TB of raw
files have been produced over the whole year. The mean event size was about 53 kB. In
addition, 10k simulation jobs were running permanently on average. Summing all jobs up,
a total workload of more than 130 kHS06.y has been generated in 2011. This corresponded
to about 12.000 required cores [111].

In 2012, the energy of LHC has been increased by 0.5 TeV leading to a beam energy of
4 TeV. The detector recorded about 20 million collisions per second. The average collision
multiplicity increased up to 1.7. Due to a novel triggering technique the HLT output rate
has improved up to 5 kHz. The LHCb experiment has recorded 2.06 PB of raw files, which
is significantly larger than the amount taken in 2011. According to [110], 39% of available
computing power has been used for Monte Carlo productions, 47% for real data processing
and 13% for user analysis. A total workload of 173 kHS06.y has been generated.

Fig. 2.7 shows how the workload evolved from 2011 until 2013. In 2011, Monte Carlo
simulations contributed with 74% to the workload. Since the amount of data was relatively
small, real data processing accounted only for 14.9% (6.3% for reconstruction, 5.6% for
reprocessing and 3.0% for stripping). Reprocessing takes place in the end of an experiment
year, which reprocesses data from the whole year. As it can be seen in Fig. 2.7, it normally
lasts from mid September until the end of December. In 2012, much more data has been
generated and as a result, the workload for reconstruction, stripping and reprocessing
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has significantly risen. In February 2013 the Large Hadron Collider has been shut down.
As Fig. 2.7 shows no reconstruction jobs have been submitted after mid of March 2013.
Simulation jobs contributed with about 80% to the total workload of 2013.

Run 2

In 2015, LHC will be restarted with 13 TeV center of mass and much larger workloads
are expected. As described in detail in [74] the HLT output rate will be increased up
to 12.5 kHz while 2.5 kHz will be directly reconstructed on the computing farm. Bunch
spacing will change from 50 ns to the nominal 25 ns. At LHCb an increase of up to
50% of luminosity is expected which also means that the HLT output rate will rise [72].
It is estimated that the rate will approximately double and will reach about 700 MB/s.
Furthermore, two output streams will be made available: one for data which must be
processed immediately and one for data which has to be parked and processed later when
resources are available. It is expected that after 2015 not enough computing resources will
be available in order to process immediately the larger amount of data. A workload of 185
kHS06.y is assumed for the year 2015.

Long Shutdown 2

The long shutdown 2 (LS2) will take place from 2018 until 2019 and the LHCb detector
will be upgraded during this time period. The main goal of the upgrade is to remove the
hardware trigger entirely [54]. This presents a large computing challenge, since the HLT
trigger needs to process a data rate of 40 MHz instead of 1 MHz. Sub detector elements
are upgraded, in order to cope with the higher data rate. As explained in [54] readout and
electronic systems will be completely redesigned, in order to provide 40 MHz to the HLT
trigger. The output rate of the software trigger will increase from 12.5 kHz to 20 kHz.
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Figure 2.7: LHCb jobs in 2011, 2012, 2013
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3. Related Work

As explained in section 2.5 efficient resource usage becomes more difficult since the start
of the multicore era and VOs face challenges from High Performance as well as from High
Throughput Computing. Consequently, the thesis touches topics from many different areas
and most of them have their origin in High Performance Computing, like estimation of
runtime, multicore usage in a node or moldable job scheduling. Related work is given
in the following sections. It starts with an overview of the computing ambitions within
the HEP community in section 3.1. Afterwards, section 3.2 presents related work for
memory deduplication. Section 3.3 focuses on related work in the area of scheduling of
multiprocessor tasks and improving estimation of job requirements.

3.1 High Energy Physics Applications in the Multi- and Many-
core Era

Multicore R&D Project

All experiments at CERN are facing the same challenge and several groups are working
towards better utilisation of multi- and manycore CPUs. This resulted in an R&D project
which started in 2009 [27]. The aim was to regularly discuss new technologies and concepts
between experts from different experiments. A summary of the whole project can be found
in [190]. As shown in this presentation, the Copy-On-Write principle is very promising in
the context of HEP software. It allows to automatically share read-only memory between
forked processes. This alleviates the problem that the throughput of HEP applications
might be limited by RAM size. As stated in [190], I/O presents another bottleneck, since
multiple processes write multiple output streams. The R&D project also discussed whole
node scheduling. As explained in [190] a new processing model requires a new model for
allocation of computing resources. The aim was to allocate resources, such that parallel
applications use all processing units on a system. However, providing a whole node or
only a subset of multiple cores is a decision made by the grid site [17]. The R&D project
also discussed the applicability of multithreaded software frameworks in HEP which aims
to run algorithms in parallel. More details will be discussed in section 6.1.

Concurrency Forum

After the R&D project had finished in 2011, the concurrency forum has been created
where the focus is much broader and not only relying on the parallelization of software
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[36]. Topics discussed in this forum are for example vectorizing code, new types of hard-
ware like Graphical Processing Units (GPUs) and CPUs for embedded systems like ARM,
multithreaded software frameworks, identification of software bottlenecks, new CPUs and
platform models. A status of the forum from 2013 can be found in [134]. As explained
in this presentation the computing resources will not follow with the increasing require-
ments of simulation and data processing. Consequently, software has to become faster.
Significant speedups can be achieved by using vectorized libraries and should be lever-
aged by HEP software. [134] also illustrates that a combination of several techniques will
be required in the long term future. For instance, combining multithreaded with multi-
processing approaches that makes use of vectorized libraries and profits additionally from
accelerators like GPUs. However, such efforts are only worthwhile if they will be supported
by the grid sites.

Multiprocessing Approaches

In the beginning many experiments were applying the multiprocessing approach, in order
to reduce memory consumption of jobs. The model of the parallel prototypes are different
since the underlying software frameworks are not the same. The ATLAS experiment has
developed a prototype [86], where each worker processes different events and they are
forked after the main loop has started. Therefore, it is necessary to restart the main loop
in order to reset event counters and histograms. They also investigated via simulation
how singlecore and multicore jobs can be scheduled on the same resources. However, they
assume in their simulations that the number of job slots is always the number of processes
which is required by the multicore job. CMS presents a multiprocessing approach in [123],
which is based on a similar principle. First the program starts the initialization and as soon
as forking is applied all files are closed and reopened. Before starting the child processes a
range of events is determined that has to be processed by each worker. They open then the
input file and process only a part of it. They make clear that a multithreaded framework
is necessary when latency and memory ratio shall be further optimised. Therefore, it will
be required to explore sub-event parallelism, where algorithms are executed in parallel.

Multithreaded Approaches

The CMS experiment focuses on a multithreaded version of its software framework. One of
the most computing intensive tasks is the tracking which determines the tracks of particles.
The main goal is to parallelize the track reconstruction. CMS uses several technologies,
like OpenCL [48], OpenMP [49] and Intel TBB [37] to run the tracking in parallel threads
[116] and nearly linear speedups have been achieved. However, they could also observe
that running such tasks on a GPU is very expensive due to the slow data transfer between
CPU and GPU. They evaluated that processing less than 10k tracks on a GPU is not
worth [19]. ATLAS and LHCb share the software framework, that is further developed
into a multithreaded software model. The aim is to run different algorithms in parallel
and to scale up to hundreds of cores [117]. More explanation about this model is shown
in section 6.3.

The 7 Performance Dimensions

[129] describes that modern processors provide seven performance dimensions (Fig. 3.1).
They can be distinguished in intra-core and extra-core dimensions.
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Figure 3.1: The 7 Performance Dimensions (taken from [129])

Single threaded applications can profit from features like pipelining, superscalar and SIMD/
Vector in order to increase their performance. Pipelining increases the instruction through-
put, since multiple operations (fetch, decode, execute, access and write back) can be per-
formed at the same time. Superscalar processors facilitate instruction level parallelism,
since pipelines are replicated and it allows to fetch, decode and execute several instruc-
tions at a time. SIMD stands for single instruction multiple data, and allows to execute
an instruction on multiple data. This is facilitated by vector units. SSE (Streaming SIMD
Extension) is an extension of the instruction set in order to perform SIMD operations and
to profit from a performance boost. Intel firstly introduced AVX (Advanced Vector Exten-
sion) with the Sandy Bridge micro architecture, where vector registers have been increased
from 128 to 256 bit. If a software consists of instructions that are executed several times
on different objects, then it can use vector units in order to perform these tasks faster. Ei-
ther developers must write intrinsics code or compilers must produce assembler code that
can profit from vector units. If a CPU provides 4-wide vector units then the maximum
speedup can be 4. Consequently, many LHC experiments are also focusing on vectoriza-
tion since this can give an additional performance boost for serial tasks [116], [97]. Such
optimisations become more difficult with the rising complexity of modern CPUs. Since
the start of the multicore era, new dimensions have been introduced, which are multi-core,
multi-socket, multiple nodes (Fig. 3.1). These require a parallel execution of applications.

WLCG Multicore Task Force

Executing jobs as multiprocessor tasks requires changes in the software but it must be also
supported at the grid sites. The complexity of resource configuration increases and this
can lower the CPU utilization [44]. Hence, the main objective is to define procedures for
managing and scheduling resources more appropriately and to derive metrics for proper
accounting of CPU usage. Especially, latter point plays a major role at certain grid sites,
since funding often depends on how efficiently the system has been utilised. If multicore
jobs decrease the CPU utilisation, this might lead to budget cuts. [44] also indicates that
scheduling multicore jobs is not only a site but also a VO problem. They must ensure an
internal dynamic scheduling of jobs with different requirements. The different approaches
proposed by the VOs are presented as introduction into chapter 7.

The goal of this thesis is to evaluate the applicability of different parallel concepts with
respect to HEP software. It is shown how to improve the multiprocessing prototype of the
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LHCb software framework which is currently a full working prototype. Optimisation is
applied with respect to memory footprint and limitations are evaluated within extensive
benchmarks.

3.2 Memory Deduplication

Section 4.1 shows, that the prime reason for executing jobs as multiprocessor task is
to reduce the overall memory footprint of HEP software mainly because memory to CPU
power ratio on future manycore CPUs will decrease. Since this is a common problem, many
different research groups are working on tools for automatic memory sharing and reduction.
For example, duplicated memory is a significant problem in the context of virtualization,
when several instances of an operating system are started loading similar libraries. A
duplicated memory page can be easily removed by storing only one copy in shared memory.
Since the start of the multicore era, memory deduplication is subject of research and
many tools have been developed by different communities which can significantly improve
memory performance [132]. As stated in [132]:

”... there is compelling evidence that exploiting similarities found in the
contents of system memory is a promising research approach for improving the
resilience and memory bandwidth of extreme scale systems.”

If the contents of two pages are identical, they will be shared. This is known as content
based page sharing. A hash function is applied on the data, in order to determine whether
two pages are identical. This mechanism is used by the Kernel Same Page Merging tool
(KSM) [58] and can significantly improve the overall memory footprint. [58] explains the
detailed implementation of that tool and they evaluate how many Mega Bytes per second
can be shared. It has been implemented for the hypervisor KVM but can also be used in
other contexts, like parallel applications. VMware ESX applies the same technique [191].
[63] proposes a novel technique of creating a mergeable cache, which applies a similar
technique. Equal memory blocks are automatically detected and merged. They show that
this reduces the amount of off-chip memory accesses and rises consequently application
performance. They have evaluated this for few benchmarks and they can show a speedup
of 2.5 on average.

This thesis evaluates how memory deduplication can be used to reach further improvements
in memory reduction and how it affects the runtime of the applications.

3.3 Job Scheduling

Batch systems coordinate and monitor tasks submitted by users. They allocate resources,
apply limits, manage the running environment and handle priority queues. Current batch
systems used by the grid sites are for instance HTCondor, SLURM, Univa Grid Engine
and Torque. [105] explains that Torque is suffering scalability problems if it has to handle
more than 4000 jobs and if a system provides large number of cores. SLURM is used at
many super computer centers because it can easily scale up to 65k worker nodes [105].
Additionally it supplies many scheduling functionalities. The Univa Grid Engine does
not show any scalability problems with 20k job slots [124]. HTCondor is a reliable batch
system, which could prove to scale up to 30k simultaneous jobs [124]. The core element
of a batch system is the scheduler which gives reservation to jobs waiting in a queue and
it defines their start date. Scheduling is subject to optimisation of certain performance
criteria like for instance:

• Makespan: Time required to process all jobs in the schedule.

• Turnaround Time: Duration of task submission to its finalization.

26



3.3. Job Scheduling 27

• Waiting Time: Duration of task submission to its start of execution.

• Job Throughput: Amount of jobs processed within a schedule.

• Utilisation: How much the CPU has been utilised.

Tasks have different properties, like core count, runtime, bandwidth and memory. For
instance, users can indicate a minimum and maximum number of processes and a scheduler
can modify this parameter in order to improve performance criteria. According to [95]
parallel tasks can be classified as evolving, rigid, malleable or moldable. In the first two
cases, it is not subject to the scheduler to change the number of processors required by
a job. In the latter two cases, the scheduler can modify this value in order to optimise
performance. Section 7.2 will explain the different types and their applicability on LHCb
jobs. Mechanisms for multitask scheduling must be provided by the pilots sent from the
VO when jobs are executed in parallel. The aim is to determine for each job the best
degree of parallelism. This is subject to moldable job scheduling.

3.3.1 Optimising Scheduling Performance by Using Moldability of Jobs

[168] proposes an iterative algorithm, which assigns an additional core to the job which
profits the most from it. The authors can prove that it always finds the minimum average
turnaround time (the time from submission until completion of a job). [127] applies the
same technique, however they treat jobs as malleable. This means that a job can change its
degree of parallelism during runtime and this is initiated by a scheduler. They implement
an agent-based distributed resource management scheme and compare it against a central-
ized resource management system. An agent assumes that applications are malleable and
it evaluates whether it is more beneficial for the overall gain in speedup when cores are
moved from one application to another one [127]. In other cases, makespan is the criteria
to optimise which leads to a two dimensional strip packing problem [187], [131]. The point
in time when the last job finishes shall be as early as possible.

[89] and [91] postulates that speedup curves are sufficient to determine the best degree of
parallelism for each job. [89] defines an average and variance in parallelism to describe
and predict speedup curves. This allows to determine the point when cores cannot be
used efficiently any longer such that an upper limit can be derived. They show that
strategies which respect either average in parallelism or variance in parallelism achieve
similar results. [91] evaluates the trade-off between efficiency and speedup which are
important parameters for processor allocation. They postulate that the knee of a speedup
curve is the point which maximizes the benefit per unit cost. They evaluate the exact
location of the knee by inferring the average parallelism of an application.

[82] and [81] propose to modify jobs at submit time because information about the current
system workload can be taken into account. Users specify certain properties which might
then be adapted by the scheduler if needed. They also show that most of the workloads
executed at supercomputing centers are moldable even though users tend to submit jobs
with partition sizes as a power-of-2. [81] presents a scheduling strategy based on the mold-
ability of jobs. They show that their strategy can significantly improve turnaround time
of jobs. They tested it in a variety of scenarios and could evaluate that the performance
of the strategy decreases with rising system load. Another metric for optimisation is the
stretch of tasks which is according to [169] the time a job spent in the system normalized
by its execution time. [169] infers from measurements that this allows a more efficient
usage of cluster systems. Many different metrics can be taken into account and depend
mainly whether user or system criteria play a major role.

It is part of this thesis to define the scheduling problem for LHCb jobs. In contrast to the
referred work, the problem is subject to high throughput computing. User metrics like
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waiting time or turnaround time, that play often a major role in supercomputing centers,
are less relevant in this context. The goal is to derive an optimisation algorithm based on
the moldability of jobs which meets the requirements of high throughput. In contrast to
other VOs the thesis proposes that scheduling of multicore jobs should be done by the VO
and it should take application and job specific parameters into account.

3.3.2 Runtime Prediction

Scheduling requires knowledge about runtime of jobs, which is typically not present up-
front [183]. Consequently, further optimisation can be undertaken by allowing the system
to learn over time. This is also known as supervised learning and represents a large research
area. A common technique is to group jobs based on certain similarities, for example tasks
submitted by different users. [179] and [106] define templates in order to detect similar
jobs. The novelty presented in [179] is the definition of search techniques in order to find
similarities. The right balance between number of categories and jobs must be found. As
explained in [179], if there are too many categories, each one will not contain a sufficient
amount of jobs. If there are only few categories they might be too generic and group
too many unrelated jobs. They construct a search space based on the given workloads
and evaluate different search techniques like, Greedy and Genetic algorithm, in order to
find good templates. Therefore, the algorithms compute the effectiveness of a template.
[179] tested this approach on diverse workloads obtained from 4 different supercomputing
centers. Their results show that this approach decreases the error in prediction by 14 to
49 percent compared to [106]. In [106] a historical profiler is proposed which estimates the
runtime of jobs and the related uncertainty. Therefore, they categorize jobs by user, name
and number of processors.

[130] proposes an approach that discovers correlations between parameters and runtime.
They derive a subset of historical data via filtering and apply linear regression. They record
for each job information like number of processors, average CPU load, average bandwidth
and latency. They show that runtime prediction can be significantly improved when data
is filtered beforehand. If many different features are involved more complex techniques
can be applied like neuronal networks [121]. A vector of features is transformed via several
hidden layers to an output value. [121] evaluates this on a large scale parallel benchmark
whose execution time could have been predicted within an error of 5 to 7%.

The CMS experiment at CERN is also investigating how to improve the estimation of
resources requested by user and reconstruction jobs as stated in [174] and [87]. Since user
estimates are normally not reliable, an automatized way must be provided. [174] shows
that pattern analysis can help in differentiating user behaviour. They propose that this can
be used to indicate a maximum job runtime with high confidence interval. [87] analyses
runtime estimation for reconstruction workflows. They show that the CMS experiment
sees a wide range of luminosity values during a LHC run, which leads to a wide range
of job lengths. Especially, jobs processing high luminosity data require a lot of time.
They developed a job splitting algorithm which estimates runtime per event based on the
luminosity. The splitting helps to achieve more uniform distributed job runtimes. Jobs
with high luminosity data will have less events to process than jobs with low luminosity
data.

The thesis investigates which kind of features are strongly correlated with job requirements.
In contrast to [179], where the authors have to define the similarity between jobs first, it can
be easily deducted for LHCb jobs since there are only three main types. Instead of focusing
on generic parameters like size of executable, staged file and many more, as proposed in
[179], this work focuses more on physics related job parameters. More features will be
evaluated than it is proposed in [87]. And in contrast to other publications, estimation
will not only be evaluated for runtime but as well for memory.
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3.3.3 Backfilling

A moldable job scheduler computes an efficient offline schedule, which might become invalid
when jobs finish earlier or later than estimated. Hence, mechanisms must be provided dur-
ing runtime for filling gaps. Backfilling techniques have become a very popular approach,
which allows to execute jobs out of order. They can significantly rise system’s utilisation.
A lot of research has been done in this field. The two types are [180]:

• Conservative backfilling: Jobs get a reservation which guarantees that no job in
the queue will be postponed. It ensures that only jobs will be backfilled which do
not postpone any tasks in the waiting queue.

• Aggressive backfilling: It only ensures that the first job in the queue will not be
delayed. This can lead to repetitive delays for less prioritized tasks in the queue.

Both rely on the fact that the backfilled job shall not postpone the first task in the queue.
EASY stands for Extensible Argonne Scheduling sYstem and is a scheduler that has been
developed for the IBM SP [143]. It uses a backfilling strategy that belongs to the second
category. It moves jobs ahead in the queue when resource utilisation can be improved
[177]. Since this favours smaller jobs, it might lead to longer delays for large tasks.

The conservative approach versus EASY backfilling is analysed in [193]. They can show
that system utilisation can be the same, but the estimation of time when a job can start is
more precise with the conservative algorithm. Many different variants exist which try to
select jobs depending on certain criteria, like for example Shortest Job Backfilled First or
First Come First Serve. Since backfilling is based on accurate user estimates, the impact
of wrong estimates is studied in [184]. They propose to automatically generate predictions
instead of relying on users. They show that the average wait time of EASY backfilling
can be improved by 25%. They also evaluate that using a Shortest Job Backfilled First
strategy can improve the average slowdown up to 47 percent. [78] also studies the impact of
runtime estimation on scheduling performance. They show that a more precise estimation
can improve average slowdown and wait time for short jobs. They also evaluate that jobs
with better prediction see a larger improvement in performance.

One can summarize that the major problem is the runtime prediction in scheduling and
backfilling. In many cases, runtime estimation is subject to an underlying distribution as
stated in [144]. Some values are more likely than others and the aim is to choose the one
with the highest probability. [144] evaluates a probabilistic backfilling which assumes a
certain distribution of runtime values. The aim is to backfill tasks if the probability is
minimal that the first job in the queue will be postponed. They use dynamic program-
ming in order to determine the overall probability of free slots and job completion times.
They show that this approach significantly improves system utilisation compared to EASY
backfilling.

This thesis undergoes a detailed workload analysis and can confirm in section 7.5 that the
required time per event fits a distribution. This allows to conclude that using a backfilling
strategy as proposed in [144] is the most suitable one. This thesis will evaluate how this
approach can be applied in the context of a moldable job model. A detailed overview of
the probabilistic backfilling strategy is given in section 7.6.
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4. Problem Description in Detail

After having described the LHCb experiment and its related data workflow in detail, the
aim of this chapter is to introduce the problem of multi- and manycore CPUs from the
perspective of LHCb computing. The upgrade of the Large Hadron Collider puts exper-
iments under pressure because larger data rates and more complex events are generated.
This is explained in section 4.1. The current job model supports a suboptimal utilisation
of resources which presents a limitation. Details are shown in 4.2. Finally, a proposal of
optimisations is given in section 4.3. It shows what can be undertaken, in order to improve
utilisation of multi- and manycore CPUs and it represents the baseline of the thesis.

4.1 Experiment Upgrade

The LHC experiments are not only facing problems related to future manycore CPUs but
also due to the upgrade of the LHC. In 2015, LHC will operate at a center of mass energy
of 13 TeV. At higher energies more particles are produced and therefore more information
must be stored within one event. The larger the event the more complex the reconstruction.
This results in larger amount of raw data as well as higher computational complexity.

Apart from that, an increase in the average multiplicity is expected. Multiplicity indicates
how many collisions took place per bunch crossing. The larger the total cross section of the
two beam lines, the more pile-up interactions are produced which indicate the number of
interactions in one event. The higher this value the more complex it becomes to compute
which particles belong to which decay and collision. Besides a larger computational com-
plexity, it also results in higher memory requirements. This becomes problematic when
facing at the same time a decreased memory ratio on future CPUs. In the worst case,
not all available processing units can be used or jobs suffer performance penalties due to
swapping memory pages to the file system. This has already become a problem in the
High Level Trigger, where due to the change from 32- to 64-bit the memory requirements
of the trigger software has significantly risen because the software uses millions of pointers.
Changes had been necessary in order to be able to run as many trigger instances as pro-
cessing units were available [102]. This problem also occurs with respect to certain LHCb
jobs executed in the LHC Computing Grid and it will aggravate in the near future.

Furthermore, the budget cuts taking place in many collaborating institutes as a conse-
quence of the financial crisis of 2007 are not negligible. At many Tier-1 and Tier-2 sites
capacity will only barely increase in the coming years as they operate at best at constant
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budget. This impacts the planned operations of WLCG [166]. Summing it up, it is more
important than ever to use available resources as efficiently as possible in order to be able
to process future workloads on modern manycore processors.

4.2 Current Job Model

The job model foresees to execute each job as a single threaded application on one pro-
cessing unit. Neither this model nor the software itself exploits the full potential of multi-
and manycore CPUs. However, scheduling is rather simple since just the time dimension
matters. Job requirements like memory and runtime are not automatically predicted. This
is done by hand and generally much more CPU time is requested than actually needed.
Runtime is a critical parameter, because a job will be interrupted by the batch system of
the grid site, when it does not meet the deadline. If it finishes too early, either another
job will be matched or the worker node will be released. In latter case, it is then up to
the grid site to backfill the node. Memory is less critical, since a job can still show good
performance as long as swapping is enabled at the grid site. If it is not supported, certain
sites interrupt jobs when they address more than 4 GB or require more than 2 GB of
physical memory. When this happens, jobs have to be restarted at sites which do not
apply these restrictions. As a result, there is a lot of room for improvement in the current
job model in order to use and request resources more appropriately.

A parallel execution of jobs can improve utilisation of multicore CPUs and lower the
overall memory footprint. Parallel tasks are able to share detector related information,
like detector description, run conditions, magnetic field map and job options. This data is
large and is accessed in read only mode. Since it can be shared, the total memory footprint
grows sublinearly with increasing number of parallel processes. Additionally, performance
impacts due to concurrent accesses to file system and network resources can be coordinated
when jobs are executed as multiprocessor tasks.

Multicore jobs are currently only allowed at certain grid sites, where queues have been set
up for testing purposes. Tests executed by the ATLAS and CMS experiment have clearly
shown, that the largest problem is the runtime estimation of jobs. The aim is to run multi-
and singlecore tasks on the same resources. The finishing time of jobs must be defined,
in order to reserve a multicore job slot (Fig. 4.1). Since time is in general significantly
overestimated, backfilling cannot be applied leading to degraded resource utilisation [90].

Figure 4.1: Single and multicore jobs (taken from [90])

Practically, grid sites can just see pilots running on their worker nodes, but not which
tasks have been picked by them. This leads to the problem, that the local batch system
cannot optimise its task queues since it does not know which job is going to be executed.
Consequently, the main problem of the current job model is, that only the experiments have
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knowledge about job specific parameters and are able to estimate workloads. However, the
grid sites providing the computing facilities rely on information given by the experiments.

Therefore, the thesis proposes a job model, which applies optimisation at different levels,
including parallel execution of LHCb jobs, scheduling mechanisms for multiprocessor tasks
and creating a history based estimation for job runtimes. It will be evaluated how job
requirements can be estimated more precisely by using information about prior jobs. This
is still an unsolved issue in many experiments. The LHCb experiment stores all metadata
and provenance information about jobs in databases, like the Bookkeeping [135] and the
DIRAC Accounting [71]. Much information is available, like for example the conditions
during an LHC run, the size of the input and output files, average luminosity and many
more. This can be used to find correlations between features and estimate future job
requirements.

4.3 Proposed Solutions

Optimisation has to remove several bottlenecks at the same time. There is no point
in having a good parallel software concept if throughput deteriorates due to under- or
overestimated job requirements. The same applies for the speedup of a job. Mechanisms
must be applied if an application does not scale beyond a certain degree. Imagine the case
that a worker node provides 10 cores, a job might be executed with 10 processes. Having
100 processing units, the software will likely not scale sufficiently well as it is shown in
section 6.5. Due to synchronization and serialization of objects, software does often not
scale linearly with the number of cores. On top of that, the Grid offers a high variety of
computing resources which differ in manufacturer, micro architecture, number of sockets,
job slots and many more. Each of them scales differently depending on configuration
and current workload. As it has been shown in section 2.5 (Tab. 2.1), identical CPUs
have quite different HEP SPEC values depending on their configurations. Section 6.5
evaluates parallel software on different multi-socket CPUs and depending on the number of
interconnects between sockets or features like frequency scaling software scales differently.
Besides, software modifications and experiment conditions have a large impact on runtime,
speedup and memory footprint of applications. These parameters can often change and
it implies that learning algorithms should be implemented. These are able to regularly
evaluate jobs and to adapt to new conditions. This is discussed and evaluated in section
7.5. Since the LHCb experiment runs 10k jobs every day, it is not feasible to do such
estimation by hand. Because of these issues, the thesis explores a workflow model where
optimisation takes place at many different levels (Fig. 4.2).

Intrusive Optimisation

The biggest challenge is the parallelization of software, such that the different jobs like
reconstruction, stripping and simulation can be executed with several processes. As it will
be evaluated in section 5.1, LHCb applications allocate a lot of memory, but access most
of it in read-only mode. As a result, memory can be shared between parallel instances. An
efficient technique to do so is the Copy-On-Write principle (COW) which keeps a memory
page in shared memory as long as no process writes to it [66]. It is the aim to use this feature
for lowering the memory requirement of the applications. This implies modifications within
the framework which are preferred such that the core software can remain the same. This
can guarantee that the key features of the software like transparency and flexibility are still
provided to the users. This is of course a trade off between the resulting scaling behaviour
and the impact on the software model. Different parallel concepts are evaluated in section
6.1 and the current status of the implementations is shown in section 6.5.
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Non Intrusive Optimisation

In addition, software can also be optimised in a non intrusive manner by using tools for
memory deduplication or compression. Especially in the context of cloud computing it is
worth profiting from such tools since virtual machines can be arbitrarily configured. In
the last years, many functionalities for memory reduction have been developed by different
communities. The most promising ones and related problems are shown in sections 5.1 to
5.3. Such tools do not only allow an improvement in memory requirement and/or runtime,
but also help to get a better understanding of the application’s behaviour.

Workload Scheduling Optimisation

As shown in Fig. 4.2, changes are also required at the level of scheduling. This deals with
the problem of mixing jobs in an appropriate way, such that efficiency does not significantly
decrease due to the non linear scaling of applications. Therefore, a scheduler must make
decisions (Fig. 4.2). Since VOs have knowledge about workloads and prior job runtimes,
such scheduling should be part of the VO’s Workload Management System. This will
be detailed in section 7.2. A scheduler can determine the degree of parallelism of each
job based on its properties and the state of the worker node and based on information
obtained from prior jobs. LHCb applications are moldable, which means that they can be
in principle executed with an arbitrary number of processes. This property can be used to
optimise scheduling decisions and therefore to increase the overall job throughput. This is
evaluated in section 7.4. A scheduler must predict requirements, like memory and runtime.
The aim is to use a history based estimation where information can be obtained from
databases, like Bookkeeping [135] and Accounting [43]. Though, it must be investigated
which job parameters have a large impact on its resulting memory and runtime. Data
mining techniques can be applied in order to model a hypothesis. However, for making
good decisions the scheduler has to learn over time how different software versions scale on
different micro architectures. Job meta data must be stored in the databases, they must
be measured and fed back to the algorithm. Optimisation can also be applied at this level,
since a better resource allocation improves throughput as well. This will be discussed and
evaluated in section 7.5.
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Figure 4.2: Optimisation at different levels

The status of the work has been regularly presented within the LHCb collaboration and
other HEP meetings, like LHCb Software and Analysis Week, the Forum on Concurrent
Programming Models and Frameworks, ROOT Users Workshop and LHCb Computing
Workshop [154], [155], [156], [157], [159], [153], [158], [162], [161]. Results of the work have
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also been published and presented in different symposia, workshops and conferences [160],
[164], [151], [152], [163].
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5. Optimisation with Non Intrusive
Techniques

This chapter will focus on how single tasks can be optimised by using external tools pro-
vided by the operating system or by the compiler. There is a large number of functionalities
and it would go beyond the scope of the thesis to evaluate all of them. The chapter will
focus on recent developments which are promising in the context of LHCb applications
with respect to memory. Since the start of the multicore era, many new tools have been
developed by different communities. In the current state of the Worldwide LHC Com-
puting Grid such technologies cannot be used in a straightforward way due to missing
support. Many tools require special kernel versions, configurations or root rights. Nev-
ertheless, a transition of paradigm is currently taking place leading from Grid to Cloud
Computing [64]. This opens new possibilities, since jobs are executed within a virtualized
environment where the job owner has full control over the virtual machine. Consequently,
the operating system within the virtual machine can be configured such that the software
profits the most from it.

Section 5.1 evaluates automatic memory deduplication. Section 5.2 discusses advantages of
32- and 64-bit LHCb applications with respect to memory and it shows how LHCb software
can profit from x32-ABI. Section 5.3 evaluates memory compression in the context of LHCb
jobs.

5.1 Memory Deduplication

Developers in the field of Cloud Computing share the same problems with respect to
required memory and future memory ratio. If several instances of the same operating
systems are created, many system and kernel libraries can be actually shared. Since they
are used in read only mode, they can be kept in shared memory and used by all instances
at the same time. This reduces significantly the overall memory footprint. It has lead to
the development of the Linux module KSM (Kernel Samepage Merging), which allows to
automatically detect and share equal memory pages [58]. It has been originally developed
for the hypervisor KVM but can also be used at the level of applications. The module
is based on the Copy-On-Write principle and as explained in section 6.1, pages remain in
shared memory as long as there is no process writing to it. It has been evaluated in the
context of LHCb applications because it allows to share memory without modifying the
software itself. Results have been presented in [164], [154] and this section mainly refers
to these publications.
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The KSM thread runs in background and scans regularly pages which must have the stan-
dard size of 4 kB. If it detects equal pages, one copy is kept in shared memory and the rest
is removed. The CPU consumption required by the KSM thread might become quite large
dependent on how frequently pages are scanned. It is worthwhile to tune this parameter
in order to avoid a slow down of the main applications. The parameters pages to scan and
sleep millisecs define the maximum merging rate, which can be computed as:

page size · pages to scan

sleep millisecs
.

By default these parameters are set to 100 pages and 20 ms which results in a merging
rate of 19.5 MB/s. A kernel interface allows to register pages which have to be scanned by
the KSM module. After this, a check sum is computed which later on allows to identify
whether the content has changed or not. If this is not the case, the content is then
bytewise compared with already registered pages. Two internal data structures facilitate
the handling of registered pages, the so called stable and unstable tree [58], which are
implemented as a red-black tree. Such trees support binary search and also allow an
efficient modification with a complexity of O(log2n), where n is the size of the dataset
[61]. Pages which have been shared by the KSM thread are registered in the stable tree.
Potential candidates for sharing are taken into account by the unstable tree, in case the
content of the memory page has not changed for a certain period of time.

Requirements

As already described in the previous subsection, memory pages must be registered. This
can be done via the madvise kernel interface, which is part of the Linux kernel since version
2.6.32 [125]. It is a tool for memory handling, which allows to indicate whether a page
is mergeable and must be scanned by the KSM thread. A page can then be measured as
follows:

• Sharing: The reduction of memory in number of pages

• Unshared: Presents the number of pages whose content is not equal to any of the
registered pages

• Shared: The amount of pages that are currently shared

• Volatile: Number of pages whose content changes too often and cannot be registered
within the stable nor unstable tree

An Example: A process allocates an array containing 107 zeros

Number of pages: (107 · sizeof (int)
1024 kB) · 1

4 kB
= 19531

Sharing: 19530 pages
Shared: 1 page

Since all pages have the same content, KSM has only to keep one single memory page
which is accounted as shared and 19530 pages can be removed. From this example, it can
be deducted that a high ratio between sharing to shared indicates a good efficiency.

In order to use KSM from within the software, madvise calls must be inserted. This can be
done directly inside the framework or via a malloc hook. Latter option intercepts malloc
calls from a process and allows to modify them. As a result, all allocated memory pages
would be accounted as mergeable and have to be scanned by the KSM thread. For testing
purposes, the merging rate must be adapted to the rate with which memory is allocated by
an application. Stripping jobs allocate for example about 40 MB/s during the initialization
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period. Having 8 workers leads to an allocation rate of 8 · 40 MB/s = 320 MB/s in the
case of forking subprocesses before the actual initialization. Within the tests, the values
have been set once to 20 ms and 3000 pages leading to a rate of 585 MB/s. Afterwards,
the rate has been risen up to 20 ms and 106 pages leading to 190 GB/s. All 4 different
categories of pages have been monitored during the execution of the tests and results are
shown in the following subsection.

Benchmark Results

The KSM module was tested on an Intel Xeon processor (L5520) with 8 physical cores
and hyperthreading disabled. The operating system was Scientific Linux 6 [18]. A version
of LHCb’s parallel prototype was used [137], in which subprocesses are forked before the
initialization. During the period of initialization many libraries and datasets are loaded
that can be shared between parallel processes. This can be achieved by using KSM and can
be compared later on with an improved implementation of the parallel prototype. Tests
have been executed with different number of 2, 4 and 8 worker processes.
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Figure 5.1: Results for simulation job running with 2 workers (taken from [164])

Fig. 5.1 shows the results for a parallel execution of a simulation job with 2 worker pro-
cesses. After the initialization period the parameters shared and sharing reach a stable
value. This is due to the fact that LHCb applications allocate hundreds of MBs in the
beginning but then do not modify it during the main loop. Datasets like detector descrip-
tion, magnetic field map and run conditions are used in read only mode. Such pages can
remain in the shared memory and this can consequently save up to hundreds of MBs. The
volatile and unshared pages’ parameters are counteracting, since a positive peak on one
side causes a negative peak on the other side. These fluctuations are caused by pages to
which tasks write quite often, but which cannot be merged due to frequently changing
content. It is likely that a single peak corresponds to a preallocated file buffer, which is
listed as volatile and is accounted as unshared afterwards. Pages accounted as volatile or
unshared do not reduce the overall memory footprint.

Reaching the stable value for shared memory is delayed when more worker processes are
initialized. Fig. 5.2 shows the same test case but executed with 8 workers. In contrast
to the 2 worker case, the stable value is now reached after 200 seconds and the number
of volatile pages rises significantly in the beginning (up to factor 5). This is related to
the larger amount of allocated pages, which KSM cannot handle at once. Consequently,
many pages are accounted as volatile before they are scanned and categorized as unshared.
Stripping jobs are in general memory bound, since they deal with several output streams
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serial mode 2 workers 8 workers

Simulation 183 MB (22%) 623 MB (33%) 2659 MB (48%)

Reconstruction 100 MB (8%) 448 MB (21%) 2297 MB (33%)

Stripping 165 MB (13%) 890 MB (26%) 3864 MB (32%)

Table 5.1: Memory reduction reached by memory deduplication in the different applica-
tions (taken from [164])
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Figure 5.2: Results for simulation job running with 8 workers (taken from [164])

at the same time. Fig. 5.3 shows how much memory can be actually reduced by KSM for
different parallel test cases of stripping jobs. Not only the initialization period lasts longer
for more workers but also the peak of volatile pages rises significantly. In serial mode
a stable value is reached after 80 seconds, with 4 worker processes after 200 and with 8
after 450 seconds. On top of that it has been evaluated whether results can be improved
when the merging rate is adapted. It has been set to two very different values (190 GB/s
and 585 MB/s). Fig. 5.4 shows that the maximum value of shared pages does not differ
significantly and can also not be reached earlier. Furthermore, the peak of volatile pages
still occurs and does not vary a lot. Consequently, setting the rate larger than the one at
which memory is allocated does not affect much the final result.

Evaluation of the Kernel Samepage Merging Tool

Memory deduplication can notably improve the memory footprint of LHCb applications
and Tab. 5.1 shows the results for the absolute and relative difference. As shown, many
pages can already be shared in a serial execution of the applications. This is caused by
empty file buffers, which are allocated but not used at all. Applications are analysed in
detail in order to determine a minimum value of memory sharing. During the execution
of an application, its malloc calls are intercepted. This allows to track the status of the
dynamically allocated memory, which is stored on the heap. Libunwind is used to allow
introspection of function calls and to resolve symbols [47]. Knowing the dependencies
between functions, a call graph can be derived (Fig. 5.5). It is a directed graph, where
each node represents a function. Fig. 5.5 shows an extract of the call graph obtained from
a simulation job. Knowing which objects are accessed in read only mode, one can deter-
mine the minimum amount of shared memory. For instance, elements from the conditions
database (CondDBAccessSvc) and all its subsequent items can be shared. They contain
information about the conditions of an LHC run. As shown in Fig. 5.5 this counts ap-
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Figure 5.3: Results for stripping jobs (taken from [164])

proximately 150 MB. Having the complete call graph allows to determine, which instance
requested how much memory and what can be in principal shared. An amount of about
230 MB has been evaluated. This results in about 230 MB · (n − 1) of data what can be
at least shared between n workers. Consequently, the more tasks the larger the reduction
becomes. As it can be seen in Tab. 5.1 the KSM tool reaches at least this minimum value,
which would be 230 MB for 2 workers and 1610 MB for 8 workers.

Comparing and sharing pages can be a CPU intensive task and might affect the perfor-
mance of other applications. However, it appeared that the impact is less than 5% when
an appropriate merging rate is configured. LHCb applications allocate most of memory
during the initialization period. Afterwards, they reach a steady state during which most
of the pages are accessed in read only mode.

It has been shown that the memory footprint can be reduced by a large factor and that the
impact on CPU time is relatively small. Since LHCb applications use most of the memory
pages in read only mode, it is worthwhile applying tools for memory deduplication. This
can be either enabled by the VO in case it has sufficient rights or by the grid sites.

5.2 The x32 Application Binary Interface

A significant increase in memory usage has been observed when LHCb software moved
from 32- to 64-bit applications. Nowadays, applications can be compiled as 32- or 64-bit,
since the x86-64 architecture supports both types. x86-64 is an extension of the old x86
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Figure 5.4: Comparison of the different merging rates 585 MB/s (continous line) and
190 GB/s (dotted line) (taken from [164])

Figure 5.5: Extract of the call graph of a simulation job

architecture which supported a word size of 32-bit. The addressable memory is limited
to 4 GB (232) which has become a problem with growing memory capacity of modern
computers. In order to allow a task to address more than 4 GB, the word size has been
extended to 64-bit. The new instruction set did not only provide a larger word size but
also supported hardware features of modern CPUs in a better way. As a result, 64-bit
applications can profit from faster system calls, better floating point performance and
larger CPU registers [107]. Larger registers allow a faster computation of 64-bit integer
values. As explained furthermore in [107], 64-bit applications return floating point values
via SSE registers instead of loading them into the x87 register [142].

In general, 64-bit applications can perform better, since they take advantage of modern
hardware features. However, if the memory footprint rises too much due to extended data
types it can have a negative impact as it is analysed and presented in [194]. Performance
can be decreased due to an increased number of cache misses, page faults, higher memory
contention or paging. Consequently, there has been a lot of research done on how to profit
from advantages of 32- and 64-bit application at the same time. One of these is the x32
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Application Binary Interface (x32-ABI) developed by [107]. In 2012, this platform model
has been officially introduced into the Linux kernel. It reduces the size of pointers and
C-data type long to 32-bit. It is based on x64 instruction set such that x32 applications
can profit from new hardware features in the same way. Since certain instructions use
pointers in memory, 28 out of 300 system calls had to be modified according to [107].
It has been tested in the context of several CERN related applications and results have
been presented in [151], [158] and [153]. This section mainly refers to this publication and
presentations.

Requirements

The Application Binary Interface x32 has been firstly introduced into Linux kernel 3.4,
but it is disabled by default. In order to use this platform model the kernel must be
recompiled with the flag CONFIG_X86_X32. This allows it to distinguish system calls made
by 64-, 32- and x32-applications. All these types can coexist on the same system, but
cannot be linked against each other. Each of them has a different ELF-header (Executable
and Linkable Format). The header of an x32-application looks like the following:

ELF 32-bit LSB shared object, x86-64, version 1 (SYSV)

It shows, that the binary uses 32-bit pointers but is based on the x86-64 instruction set.
Furthermore, compiler, related c-libraries and tools must support x32-ABI, in order to
generate such binaries. Support has been firstly introduced in glibc 2.16, gcc 4.7 and
binutils 2.22 [15], [20], [16].

Benchmark Results

The x32-ABI has been evaluated for LHCb’s reconstruction and stripping applications
with respect to memory and CPU time.
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Figure 5.6: Comparison of memory consumption within reconstruction jobs (taken from
[151])

Reconstruction

The memory requirements of reconstruction jobs increased by a factor of 1.6 due to the
change from 32- to 64-bit. Instead of requiring about 700 MB, they allocate at least
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Figure 5.7: Comparison of memory consumption within stripping jobs (taken from [151])

1.1 GB of physical memory. Fig. 5.6 shows that reconstruction jobs can reduce their
physical memory requirements by about 230 MB when they are recompiled as x32 binary.
This corresponds to a reduction of about 20%. As it will be explained in section 6.5.4
applications normally address by far more memory than actually needed and this can be
also seen in Fig. 5.6. Since virtual memory is limited to 4 GB at certain grid sites, it is
also important to decrease it. The reduction is about 28% compared to the correspondent
64-bit application. The impact of x32-ABI on the CPU time of reconstruction jobs is
minimal. Only a slight improvement of 2.7% has been observed (Tab. 5.2).

Stripping

The standard stripping case for 2012 data starts with 2.0 GB of physical memory consump-
tion that increases during the main loop of the application. As can be seen in Fig. 5.7
physical memory can be reduced by about 17% and virtual memory by 21%. Only 2.5 GB
of virtual memory are addressed instead of 3.2 GB. Physical memory consumption de-
creases from 2.0 GB to 1.65 GB during the main loop. CPU performance is 2.1% slightly
worse in the case of the x32-binary. However increasing the number of events shows that
this value can be reduced to 1.6% (Tab. 5.2).

Reconstruction Stripping

Number of Events 1000 1000 10000

Average Total Time (64) in [s] 580.91 554.85 3701.09

Average Total Time (x32) in [s] 565.05 566.59 3760.27

Difference in % 2.7 -2.1 -1.6

Table 5.2: Results for time measurements (taken from [151])

Evaluation of x32-ABI

Reduction of memory requirements comes for free with x32-ABI and in general x32-
applications run faster. But currently, there are still unsolved issues which might not
allow each task to profit from this interface [107]. This is for example due to loop un-
rolling. The x32-ABI currently fully unroll loops even though it is not necessary. On top
of that, data alignment changes, so if an application has been optimised for 64-bit it might
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show less performance in the case of x32. Some instructions require a zero extension of
pointers in the case of x32 in order to be 64-bit compatible. The Gnu C compiler does this
via an additional system call which is not very efficient. The x32-ABI is still under devel-
opment and future changes might solve these issues. The main disadvantage of x32-ABI
is that the addressable memory is limited to 4 GB. But it is not really an issue for jobs
executed in the Computing Grid, since the common rule is anyway not to address more
than that.

The main advantage of x32-ABI is that applications can profit from a performance boost
and memory reduction at the same time. This comes for free assuming that grid sites
provide the right kernel version and that software has been recompiled as x32 binary.
Problematic is the fact, that x32-ABI is currently not supported by Redhat and will
consequently not be part of a future Scientific Linux version [18].

5.3 Memory Compression

Another approach for reducing the memory footprint of applications is to compress pages.
ZRAM, initially called Compcache, is a tool that allows to do this [8]. It works as a
virtual swapping device and it uses the swapping mechanism. Instead of writing pages to
disc they are compressed and stored inside the RAM. However, this approach is mainly
a trade off between memory reduction and additional CPU time. Accessing compressed
pages requires a decompression and results in large delays.
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Figure 5.8: Difference in Memory and CPU time (in percentage)

Requirements

In order to use ZRAM, a virtual block device must be first generated, which is part of
the normal RAM. Swapping must be enabled for it, while it must be disabled for all other
devices. Cgroup can be used in order to limit task resources, like memory and CPU time
[33]. As long as a task does not reach the memory limit the allocated memory is counted
as proportional and resident set size. After the limit is reached pages are then accounted
as Swap and are automatically transferred to the corresponding ZRAM device. ZRAM
compresses the content of these pages and stores them inside the RAM.

45



46 5. Optimisation with Non Intrusive Techniques

Benchmark Results

ZRAM has been tested for serial stripping jobs, since it is the memory bounded application
of the LHCb experiment. The memory limit was set to 90%, 70%, 50%, 30%, 10% of the
maximal memory footprint. These values correspond to 2.07 GB, 1.61 GB, 1.15 GB,
0.69 GB and 0.23 GB. The actual reduction in memory can be defined as the difference
between the size of swapped pages and compressed memory. Fig. 5.8 shows the overall
average memory footprint reached during the runs of the different cases. The curve follows
a logarithmic shape which means the more pages are swapped out the larger the additional
CPU time becomes. It is then more likely that pages that have to be often accessed are
compressed. But it is remarkable that a significant amount of memory can be reduced in
return of only a small impact on the CPU time. So for example, about 50% can be saved
with an additional CPU time of only 5%. This leads to the conclusion that many pages
are actually not much used during the main loop of the application.
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Figure 5.9: Cumulated read and write accesses

Fig. 5.9 shows on the y-axis the cumulated read and write accesses of the test runs. The x-
axis indicates the time. It is obvious that read and write accesses increase linearly, when the
threshold is too low (10% of RSS). This indicates that certain pages have been swapped out,
which have to be accessed frequently in read and write mode. If for example, the detector
description is compressed performance will significantly degrade. This dataset is used by
all events and consequently it is quite often accessed. When stripping jobs write all output
streams an evident peak in memory occurs in the end. This happens because validation
takes place before files are finally written to disc. Consequently, memory footprint grows
by mutliple times. This can also be seen in Fig. 5.9. The lower the threshold, the larger is
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the processing time as it is indicated by the x-axis of Fig. 5.9 and the larger the cumulated
read and write accesses. It can be seen that more pages are written than actually read
when the threshold is lower. This is compatible with the assumption that many compressed
pages are actually not often accessed. The conclusion is that applying a hard memory limit
and forcing a process to simply swap pages to the disc would not have a large impact on
its performance. The main advantage of memory compression is that it allows a grid site
to arbitrarily reduce the memory requirements of jobs.

5.4 Summary

The chapter has shown that memory deduplication significantly reduces the overall memory
footprint. In the case of 8 worker processes up to 50% can be achieved. It has been
presented, that one of the major problems for LHCb software has been the transition from
32- to 64-bit. Memory requirements have risen by a factor of 1.6. However, the chapter
has proven that the new platform model x32-ABI helps to compensate this problem. A
reduction of up to 25% has been evaluated. Memory compression allows to apply an
arbitrary limit at the cost of additional CPU time. The chapter has evaluated the ratio
and unlike expected a large amount can be reduced with only a low overhead in CPU time.
For instance, up to 30% reduction has been achieved and at the same time the job required
only 5% more in runtime. This concludes, that a lot of allocated memory is actually not
used at all.

These results also help to understand applications’ behaviour. They show that there is still
plenty of room for improvement in the single threaded LHCb applications like for example
memory handling and data structure layout. As described in [112]:

” ... it is often possible to re-engineer codes to achieves significant speedup (2x
to 5x unoptimized speed) using simple program transformations. Parallelizing
sub-optimal serial codes often has undesirable effects of unreliable speedups and
misleading runtimes.”

That’s why, many more tools and compiler options are evaluated by different research
teams at CERN. For example, it could be also observed that different malloc implemen-
tations can improve run time of applications [138]. So the main question is not only how
to use multicore CPUs more efficiently, but also how to let single task applications per-
form better by using other performance dimensions like vector registers as explained in
section 3.
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Techniques

Using external tools or recompiling the software can notably change its execution time and
memory footprint, as it has been presented in the previous chapter. However, the largest
impact can be achieved by modifying the software itself. Section 6.1 discusses the main
paradigms like data and task parallelism in HEP software. Advantages of using threads or
processes are discussed as well. Prototypes and their perspectives are presented in section
6.2, 6.3 and 6.4. Detailed benchmarking results for a multiprocessing prototype are shown
in section 6.5 since this is currently a full working parallel prototype of the LHCb software
framework.

6.1 Parallelization Principles

The principle of parallel applications is to divide a large problem into smaller chunks and
to process them concurrently. This separation can be applied at different levels.

Data Parallelism

If an application is processing a large amount of data, the data can be split into sub datasets
[126]. Each task is operating on a different chunk of data. Data parallelism is commonly
used in the field of Computational Fluid Dynamics, where fluid problems are numerically
solved with methods like Finite Element (FEM), Finite Volume (FVM) or Finite Difference
(FDM) [195]. The input for these methods are geometrical representations of objects which
can be very large. In order to speed up the solving process, these objects are partitioned.
Such applications run highly parallel on supercomputers. Data parallelism can be also
applied in HEP software. For instance, a LHCb reconstruction job processes on average
50k events. Since events are independent, they can be easily distributed on different worker
threads. Each task executes the same set of algorithms but on different data (Fig. 6.1).

Task Parallelism

If an application executes a large set of independent algorithms, task parallelism can be
applied [126]. Each worker thread operates on the same data, but executes different al-
gorithms. It is often the case that there are dependencies between the input and output
of algorithms. A direct acyclic graph (DAQ) helps to determine such dependencies and
to calculate the concurrency level. HEP software consists of large set of algorithms. For
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Figure 6.1: Data parallelism in HEP software

instance, the LHCb reconstruction software contains about 200 algorithms [23]. However,
measurements in LHCb and CMS have shown that the number of data independent algo-
rithms is very small leading to a low concurrency level. Fig. 6.2 shows results from the
CMS experiment. They have evaluated, that the concurrency level ranges between 1 and
16 during the processing of one event. According to [123], the concurrency level is high
in the beginning because many calibrations algorithms can run in parallel. During the
tracking the level decreases due to the dependencies between the tracking algorithms. As
a result pure task parallelism in HEP software cannot achieve large speedups.

Figure 6.2: Algorithms Parallelism in CMS Software (taken from [123])

Instruction Level Parallelism

Modern micro processors provide several pipelines in order to fetch, decode and execute
instructions. This introduces another level of parallelism, the so called instruction level
parallelism (ILP) [150]. If a software provides an appropriate layout it can profit from
this parallelism. When instructions are independent they can be overlapped and executed
in parallel. Compiler optimises code in order to increase ILP. For instance, this can be
achieved by loop unrolling. However, HEP software suffers in general from a low ILP as
it is evaluated in section 6.5.

Processes versus Threads

Parallelizing the software can be achieved by using multiple processes, threads or a mixture
of both. The advantage of processes is that the address spaces are separated [149]. Shared
memory pages are automatically handled by the Copy-On-Write mechanism of the Linux
kernel [66]. However, communication must take place via sockets since a process cannot
directly access the memory space of another task. Even though there are possibilities to use
memory mapped files as shared memory between processes, few problem arise which will
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be discussed in section 6.2. Threads share the same address space and system resources.
Therefore, threads can communicate with each other via shared memory. However, locks
must be applied, when threads are accessing or modifying objects at the same time [149].
Consequently, all libraries included by an application must ensure thread safety.

Using threads or processes depends a lot on the user and software requirements. In general,
threads might scale better since they are more light weight and can use shared memory for
communication. When a context switch is performed, the virtual address space of a process
does not remain the same. However, for a thread it does. Context switches take place,
when a CPU is idle due to a pending task and another task is then placed [165]. Context
switches require more CPU cycles in the case of processes than in the case of threads.
Nevertheless, the speedup of a parallel program depends a lot on the implementation itself
and how many locks have to be applied.

6.2 Multiprocessing Approach

A parallel prototype for the software framework Gaudi has been developed (Fig. 6.3),
which is based on the multiprocessing approach (GaudiMP) [137] [152]. Since events are
independent they can be easily computed in parallel. As a result, data parallelism can be
applied where datasets are split and distributed on different processes. The main loop of
the application is split into several parts which are computed by different workers. The
processing of events represents the parallel part of the application. As a consequence, the
more events the larger the main loop. This implies that speedup improves because the
impact of serial parts like initialization and finalization becomes smaller. An evaluation is
given in section 6.5. The performance limiting part starts when events have been computed
and must be sorted and merged into a single output file. This is done by a single serial task,
the writer process. Events must be read from the disc which can be done by a separate
process in order to coordinate the access to data. Since reading goes rather quickly it does
not represent a performance bottleneck.

The main advantage of the multiprocessing approach is that it can be applied on the
software framework in a rather transparent way. Processes must be only configured differ-
ently, such that modifications at the core level of the software can be avoided. As shown
in Fig. 6.3 one reader, writer and several worker processes exist. All these tasks obtain
in the beginning the same Gaudi configuration, which is defined via the job options. Af-
terwards, they are reconfigured in order to keep just the relevant setup. Consequently,
worker processes have only knowledge about the algorithms but not about the output and
input streams.

Python’s Global Interpreter Lock

Since different configurations are applied via Python scripts within the software framework,
GaudiMP has been mainly implemented in this scripting language. However, this results
in another problem. Due to Python’s Global Interpreter Lock (GIL) [80] it is rather
difficult to run parallel Python threads. GIL is implemented as a mutex which means that
threads cannot access objects at the same time. This is necessary since Python’s memory
management is not thread safe. As explained in the official Python documentation [101], it
could happen that for example reference counters of objects are not correct when multiple
threads access them. In worst case an object will be deleted which is still required by
another thread. Consequently, the Global Interpreter Lock ensures that objects are locked.

Serialization and Deserialization

Using processes instead of threads results in the problem that communication cannot be
realised via shared memory. Since processes cannot share virtual tables, objects must
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Figure 6.3: Overview of GaudiMP (taken from [152])

be serialized and deserialized which is a time intensive task. Events are read as ROOT
TBuffer objects [35] and consist of virtual functions. If an object is created by process
1 in shared memory the virtual table points to the virtual address space of process 1,
which is not shared. Consequently, process 2 cannot access the information to which the
virtual table points. Serialization and deserialization is a function of the number of events
and it significantly impacts the speedup. One reconstruction job for example processes
around 50k events, which must be serialized and deserialized between reader and worker
and between worker and writer. This represents the main limitation in GaudiMP.

Late Forking

Executing applications in parallel impacts their overall memory footprint. Due to the
Copy-On-Write principle of Linux memory pages are automatically shared as soon as
child processes are forked [66]. When a process intends to write to a shared page this
area of memory is copied to its own address space. This results then in an increase of the
overall memory footprint. During the initialization of the applications a lot of datasets
are loaded which are accessed in read only mode during the main loop. This applies to:

• Detector description

• Magnetic fieldmap

• Conditions of the LHC run

• Configuration of the Gaudi framework

The overall memory footprint can be improved by forking child processes as late as possible.
This could be either done during the initialization or in the beginning of the application
main loop. The best result can be achieved when a few events have been already processed.
It can happen that condition datasets have to be reloaded during the processing of the
first event. However, if the main loop has already begun when the fork is applied (3rd red
arrow of Fig. 6.4), the application needs to be restarted. Otherwise, histograms would be
shared and contain wrong counters. It has been decided to fork first the reader, writer
and one worker processes in the beginning. The remaining subworkers are forked by the
main worker before event 0 has been loaded but after the initialization period. This is
indicated by the 2nd red arrow of Fig. 6.4. Consequently, they can share all data that has
been loaded during the initialization. This counts approximately 300 to 500 MB. With
increasing degree of parallelism the overall memory footprint grows sublinearly. An earlier
prototype of GaudiMP contained a fork before the initialization (1st red arrow of Fig. 6.4)
and consequently did not reach a significant memory reduction.

Even though a transparent usage is ensured in GaudiMP, few modifications were neces-
sary at the core level of the software in order to allow the full functionality of the different
applications. First, threads have to be joined and restarted after the fork of the subwork-
ers. During the initialization period of the applications, threads are created which are
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Figure 6.4: The main steps of Gaudi applications and possible options of forking subpro-
cesses

responsible to read files from databases. However, if new processes are forked, threads just
disappear and locks are not released.

Stripping

Stripping jobs require few modifications at the core level of the software, since they have to
split the input files into important and non relevant decay products. The algorithms ensure
the splitting procedure and forward the necessary information to the output streams. The
problem is that writer and worker processes are configured differently within GaudiMP.
Since the writer does not obtain the configuration of algorithms, it does not know which
events can be discarded. Consequently, the services had to be extended in order to store
and send this relevant information.

Simulation

The concept of reader changes in the simulation software since input files are not required.
Instead, the reader process serves as generator for random seeds, which guarantees repro-
ducibility and independent sets of random numbers. If random numbers were generated
within the workers, each of them would create the same numbers and therefore events
would be duplicated.

6.3 Multithreaded Approach

Few years ago, a new development was started which aims to parallelize the Gaudi frame-
work via threads (GaudiHive) [98]. The aim is to have a highly scalable software frame-
work. Instead of using only event parallelism, where datasets are split and distributed on
different workers, algorithms are running in parallel. This is also known as task parallelism,
where each thread executes different algorithms on the same data. If the dependencies be-
tween different algorithms are known beforehand, it is possible to execute independent
ones at the same time. Fig. 6.5 shows the architecture of GaudiHive, which aims to extend
the Gaudi framework in such a way that transparent usage is still guaranteed. The algo-
rithm scheduler is responsible for fetching instances from the pool of algorithms, taking
events and creating tasks. Furthermore, the AlgorithmPool facilitates the handling of non
thread safe resources. If such a case is identified within an algorithm, only one instance
is created as explained in [98]. This allows a lock free implementation, but guaranteeing
thread safety is still one of the major issues.

Creation of tasks is done via Intel Threading Building Blocks (TBB), which provides
an abstraction layer for modelling and scheduling tasks. Dependencies are defined via
Direct Acyclic Graphs (DAG), which allows to determine when new algorithms can be
launched [117]. As mentioned in section 2.3 LHCb’s reconstruction application consist of
about 200 different algorithms. However, analysis has shown that only up to 4 algorithms
might be able to run at the same time [117]. This requires that events and algorithms
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are duplicated in order to improve the scalability of the software. Replicating events is
managed by the Whiteboard service (Fig. 6.5) which contains according to [117] several
event stores. The execution context determines which event has to be read or written
and tracks the status of each duplicated event. Currently, GaudiHive supports a minimal
version of the reconstruction application consisting of only 20 algorithms. Many more
developments and changes are required in future [98].

Figure 6.5: Overview of GaudiHive (taken from [98])

6.4 Perspectives of the Different Concepts

The impact of these approaches on the software framework differs quite a lot, as stated
in the previous subsections. Even though, the aim is to keep a transparent usage and all
the key features of Gaudi, essential modifications will be necessary when the framework
shall scale on future manycore CPUs. [136] proposes to add concurrency at the level
of events, algorithms and subalgorithms and therefore to combine multiprocessing with
multithreaded approaches. This means to use data parallelism in order to split events on
different workers and within the workers multiple threads take care of a parallel processing
of different tasks. The third step, called subalgorithms parallelism, includes parallelism at
the level of I/O.

6.5 Evaluation of a Parallel Software Framework Prototype

This section will focus on an evaluation of the current parallel prototype in respect to
speedup, performance bottlenecks and comparison with single task jobs. Since the multi-
threaded approach does not work for real reconstruction and stripping jobs, the tests will
focus on GaudiMP. The section will mainly refer to results presented in [152], [154], [155],
[156] and [157].

6.5.1 Comparison with Serial Task Jobs

Currently, jobs are executed as serial tasks within the Worldwide LHC Computing Grid.
Parallel processing helps to overcome memory limitations but also impacts the efficiency.
It is difficult to achieve linear speedup due to serial parts, like initialization, finalization,
synchronization and communication. However, having a lot of uncoordinated serial tasks
rises concurrency and cause loss in performance. Consequently, the aim is to first evaluate
how much better GaudiMP scales compared to single task jobs with respect to memory
limitations. In the test each job has processed the same amount of events. The parallel
job has processed all events with 8 worker processes, while in the other case 8 separated
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Gaudi instances have been initialized, whereat each of them has processed 1
8th of the

input file. At the same time, the memory limit has been decreased step by step, in order
to evaluate when the parallel prototype provides an overall better scaling. Throughput
has been chosen as metric, which indicates how many events are processed within a given
time period.

Fig. 6.6 shows the results obtained from reconstruction and stripping jobs. In the first
case there is no significant difference in the throughput, as long as the limit is larger than
1 GB. Consequently, overhead due to serialization and deserialization does not have a
large impact on the overall performance. Beyond 1 GB per process GaudiMP scales by
far better since the overall memory footprint can be reduced via sharing. In the case of
stripping jobs the difference is more significant and beyond 1.5 GB GaudiMP can provide
better event throughput. If the memory limit is too low, the parallel prototype also looses
performance.
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Figure 6.6: Throughput depending on different memory thresholds (taken from [152])

6.5.2 Validation of Physics Results

A non negligible criteria is the correctness of output files. The generated results shall not
differ from the ones produced by a serial task execution. Tools have been implemented
which compare ROOT histograms and the so called DST-output files [178]. A reconstruc-
tion job generates a ROOT file, which contains general information recorded by each sub
detector element, like number of registered particles and clusters. These information are
stored as histograms. The reconstructed events are written to a DST file, which is a direc-
tory like data structure emulating the Transient Event Store of the Gaudi Framework. It
stores all information about the raw event and the decay products. Stripping jobs produce
several DST output streams.

It must be ensured that the generated ROOT and DST files are correctly produced within
a parallel execution. For the first case, histogram paths are evaluated and their entries
are compared. In the next step, a Kolmogorov-Smirnov test [176] is applied in order to
check whether the content of histograms match. It is a statistical test which compares
the empirical cumulative distribution functions (CDF) of two datasets. A CDF defines
the probability of a random variable X being smaller or equal than a certain value x. For
discrete random variables it is defined as [192]:

F (x) = P (X ≤ x) =
∑
xi<x

p(xi).
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An empirical CDF is an approximation to an unknown CDF. It calculates the number of
xi entries smaller than a certain value x and divides it by the number of observations. The
Kolmogorov-Smirnov test determines the maximum distance between the two empirical
CDFs F̂A and F̂B, which is defined as [173]:

M = max
x
|F̂A(x)− F̂B(x)|.

The user has to define the threshold for the maximum acceptable difference. A perfect
match is required for the histograms produced by a serial and a parallel reconstruction and
stripping job. Comparing DST files requires to rerun all the events for determining the
order. In a next step, events from a serial and parallel job are sorted and information are
transformed to ASCII format. Afterwards, event by event can be compared based on the
decrypted information. On top of that, file summary records have to be compared which
are basic counters stored additionally in the output files. These are information provided
by the HLT trigger, which indicate the occurrence of certain event types [6].

Figure 6.7: Results obtained from the Kolmogorov-Smirnov test

Differences should not occur, as long as histograms are produced in an additive manner.
Nevertheless, certain ones fail the Kolmogorov test as shown in Fig. 6.7. Histograms
containing timing results cannot be the same, since the runtime of parallel and serial
jobs differ. The same applies for memory values. But it appears that certain histograms
fail the test, like CaloMoniDst, Proto and OT. In these cases the problem occurs, that
the histograms are not summarized in an additive manner and therefore a correct result
cannot be produced. However, as long as the number of workers is known, the effect is
reproducible. The comparison of DST files did not show any discrepancies.

6.5.3 Speedup

The main metric for parallel processing is speedup, since it indicates how an application
scales with the number of cores [139]. It can be either sublinear, linear or superlinear.
In latter case an application would run more efficiently in parallel than in serial mode.
This can happen due to caching effects, which allow another thread to access data sets
faster since they have been preloaded by another task. Nevertheless, this case is very rare.
Linear speedup indicates, that an application scales exactly with the number of processes.
So, if a job runs with 4 processing units its runtime would be 1

4th of its serial time. In
many cases, applications show nearly linear speedup for small number of processes and
then speedup evolves sublinearly. In general, speedup can be calculated as [139]:

S(n) =
time(1)

time(n)
, (6.1)

where the serial runtime is divided by the time needed in parallel mode. Consequently,
efficiency can be defined as [139]:

E(n) =
S(n)

n
, (6.2)
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Processes Without With Difference in %

2 1.9833 1.9680 0.77

3 2.9007 2.8560 1.89

4 3.7806 3.7342 1.23

5 4.7419 4.4575 5.99

6 5.7120 5.2071 8.84

7 6.6551 6.0035 9.79

8 7.5271 6.7262 10.64

Table 6.1: Speedup values reached on different hardware configurations (with and without
Intel Turbo Boost)

where n indicates the number of used processing units and S(n) is the speedup. So if an
application runs on 10 cores but provides only a speedup of 5, then 50% of the efficiency is
lost. In this context it must be also respected which kind of time is measured on a CPU.
The three basic types are:

1. System time

2. User time

3. Wall clock time

The first value indicates how much time the CPU spent in kernel space for executing
system calls for example. User time shows how much time the CPU spent in user space
for executing the actual process. CPU time is the sum of both values. Wall clock time
is CPU time plus the time the processing unit was idle due to pending tasks or has been
blocked by other tasks. The Linux time module sums up the total CPU time required by
parent and forked subprocesses. Different time values can be chosen in order to measure
speedup of an application. If it is I/O-bound it is worth measuring it’s wall clock time,
since it takes I/O activities into account. On the other side, wall clock time can easily be
affected by other processes.

Furthermore, it is important to configure a CPU appropriately in order to obtain proper
benchmark results. Frequency scaling is a technique applied by many CPU manufactures
to let applications profit from a performance boost in case the overall workload on the
CPU is small. The Intel Turbo Boost technology defines a TDP-value (thermal design
power), which presents a global limit for all cores [38]. As long as this limit is not reached,
a core is allowed to increase its frequency, for example up to 3.4 GHz on an Intel Core i7.
Consequently, if a machine is idle a process can run with the maximum frequency. If there
is an high workload all processes have to lower their frequencies due to thermal effects.
Without switching off this technology measurements are influenced by the speedup of the
machine. In order to switch off Intel Turbo Boost on an Intel Core i7, the model specific
register 0x1a0 must be set to 0x4000850089. Tab. 6.1 shows the effect of frequency scaling
on the speedup values, which have been measured with a parallel reconstruction job. An
Intel Xeon (L5520) has been used, whereat Intel Turbo Boost can increase maximum
performance by 133 MHz for 4 and 3 cores and by 266 MHz for 1 and 2 cores. In the test
case in which Turbo Boost has been switched off, the frequency has been set to 2 GHz.
The higher the workload on the machine the lower the frequency and the worse the scaling.
In the case of 8 processes a significant difference of 10 percent can be observed, as Tab. 6.1
shows. Many different formulas exist, in order to obtain speedup curves and the most
common ones will be shown in the following subsections.
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Amdahl’s Law

The most famous law for parallel processing is Amdahl’s Law [55]. It basically says, that
the execution time of parallel applications is limited by their serial parts. It also expresses
that software can never be completely parallel since parts like initialization are always
required. Speedup is defined as:

S(n) =
1

s+ 1
n(1− s)

, (6.3)

where s is is the serial part of an application and n the number of used processing units.
Nevertheless, Amdahl’s Law is not applicable in certain contexts. For example, it does not
respect that a software might scale superlinearly. The best achievable speedup is linear
according to the law. It also ignores that the parallel part of an application might grow,
when more processing units are available. Consequently, the main objective of this law is
that an application cannot scale infinitely because the serial part will become dominating.

Gustafson’s Law

Gustafson’s Law is an extension of Amdahl’s Law and it expresses that a sufficiently
large problem can be parallelized in an efficient way [114]. It also implies that the same
application could run within the same amount of time but with a larger workload. It
defines speedup as:

S(n) = n+ (1− n) · s, (6.4)

where s denotes the serial part of an application. The more processing units are used
the larger the parallel part can become. It expresses the same like Amdahl’s Law but it
focuses on the parallel portion of an application.

Downey Speedup Model

Amdahl’s and Gustafson’s Law separate a program into its serial and parallel part. How-
ever, in many cases such a clear distinction is not easy to apply and as a result using these
laws is not appropriate [128]. The Downey speedup model tries to avoid these issues. It
defines an average parallelism of software based on measurement results. Consequently, it
helps to determine how efficiently an application can use processing units and when it is
not worth assigning more processes. The Downey speedup model distinguishes between
a high and a low variance model [88]. The variance indicates, how well a software scales
with the number of cores. A value of 0 presents linear speedup and infinite would be the
worst case. The low variance model, implies that the variance of speedup is smaller than
1 and the model is then defined as:

S(n) =



An
A+σ(n−1)/2 1 ≤ n ≤ A

An
σ(A−1/2)+n(1−σ/2) A ≤ n ≤ 2A− 1

A n ≥ 2A− 1,

(6.5)

where A is the average parallelism and σ the variance in parallelism. The high variance
model implies that σ is larger than 1 and it is determined as:

S(n) =


An(σ+1)

σ(n+A−1)+A 1 ≤ n ≤ A+Aσ − σ

A n ≥ A+Aσ − σ.
(6.6)
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Parameter A can be understood as an upper limit, beyond which an application does not
allow further scaling. This defines the point, when new technologies must be introduced
into the software framework in order to allow further improvements. Speedup values must
be obtained, in order to solve those equations. Finding proper values for the parameters
A and σ which fit best the set of given points, presents a two dimensional minimization
problem. Fig. 6.8 shows the predicted speedup curves for the different types of LHCb
jobs. The average parallelism is 43.0 for reconstruction, 21.93 for simulation, and 29.52 for
stripping. It means that simulation jobs can scale up to 21 cores. This shows, that new
parallelization concepts must be realized when the software framework shall scale beyond
20 processing units.
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Figure 6.8: Average parallelism and variance in parallelism (taken from [152])

6.5.4 Memory Reduction

Memory is another important metric for benchmarking the parallel prototype, since this
is the main reason for a parallel execution of jobs. Memory is handled by the operating
system and just a certain size of memory can be allocated. This is indicated by the page
size, which is normally 4 kB large [189]. Other sizes exist, the so called huge pages, which
measure generally a few Mega Bytes. This can increase performance since an application
can allocate large amount of memory with fewer overhead [189]. Normally, a process can
address much more memory than is actually provided by the system. Due to the change
from 32- to 64-bit a task would be able to address 264 bytes. Different memory values can
be monitored, which will be explained in the following subsections.
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Virtual Address Space

At compile time virtual addresses are sequentially assigned to a program [4]. The Trans-
lation Lookaside Buffer (TLB) is responsible for translating those addresses from virtual
to physical memory addresses, while a program is running. This concept has several ad-
vantages. A program can allocate continuous blocks of memory and does not have to
respect limitations of RAM size. Furthermore, each process has its own virtual space and
therefore they are encapsulated. When an application is running not all virtual addressed
memory is actually allocated within the RAM. This leads to the so called page faults: A
task tries to access a page which has not been mapped into physical memory yet. The
Linux call mmap allows for example to map a file into memory. Therefore, virtual memory
is requested but not physically allocated. Such calls are also used to extend automatically
the heap of an application.

Resident Set Size (RSS)

The resident set size indicates the amount of memory which a process has allocated inside
the RAM [4]. However, it does not take into account that certain libraries are shared
between several tasks. Consequently, the total RSS value might become larger than the
actual size of RAM. Especially, since the multicore era this parameter is not reliable any
longer. When a parallel application can share a significant amount of memory between
threads and tasks, it will not be respected by the RSS value.

Proportional Set Size (PSS)

Another value is the proportional set size, which solves the issue with shared pages [4]. If
a page is shared it is divided by the number of instances which share it. Consequently,
it allows to measure memory reduction of parallel applications. Furthermore, the total
PSS value cannot be larger than the actual size of the RAM. The following example shall
illustrate the 3 different parameters.

An Example: A 4 kB page is shared by 4 tasks. The values for task 1 would
be:
VSS: 4 kB
RSS: 4 kB
PSS: 1 kB

These values can be obtained from the smaps file which is located in the process directory
under Linux [4]. It shows all memory mappings and indicates the size of heap and stack.
In case, more memory must be allocated, the operating system can swap pages to the
disc. This results in a performance loss, since accessing the disc requires more CPU
cycles. Certain grid sites in the Worldwide LHC Computing Grid even disable swapping,
which means that jobs are automatically interrupted as soon as they run out of memory.
Currently, the memory peak of each job is monitored and stored in database. However,
virtual memory is counted which does not allow to draw many conclusions from. The
problem is that LHCb applications are designed such that they request normally much
more memory than actually needed as shown in section 5.2. This is then accounted in the
virtual but not in the physical memory. Consequently, LHCb jobs appear with a much
larger memory footprint. However, they can also run on machines which provide only a
fraction of memory.

Fig. 6.9 shows the overall memory footprint of reconstruction jobs in which the fork of
subprocesses has taken place at different time slots. If jobs are not executed in parallel,
no sharing can be achieved and the memory footprint will grow linearly. A slight memory
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Figure 6.9: Overall memory footprint of reconstruction jobs

overhead is introduced in the case of 1 worker compared to serial execution which is
caused by the reader and writer process. If processes are forked before the initialization
phase, memory consumption can be slightly improved about 18% in the 8 worker test
case. The best sharing can be achieved by forking subworkers after the main loop has
started, which results in 58% reduction in the case of 8 workers. As already explained
previously, many changes at the core level are required in order to reset counters and
histograms. Results achieved by forking processes after the initialization phase but before
the first event achieves a memory reduction of about 48% in the 8 worker case. It is a
significant improvement compared to the old prototype, which forks processes before the
initialization.

6.5.5 Determining Bottlenecks

It is important to determine the performance bottlenecks of GaudiMP in order to reach
further improvements. As already mentioned in section 6.2, serialization of objects limits
the speedup. Since it depends on the parallel part it cannot be easily optimised: the
more events are processed the more objects must be serialized. It could be improved by
applying a different writer concept. The ROOT framework provides a new functionality
which allows to write files in parallel. This allows according to [69], that each task can write
and store its part to local disc and in the end it is uploaded to a server, which merges the
content. As explained in [69] merging can be done in parallel to the processing by using
this functionality. This means that files could be written by the worker processes and
consequently the writer becomes unnecessary. This would skip the serialization of events
between workers and writer. Nevertheless, this approach requires many modifications at
the core level of the software and has not been applied yet.

The serial parts of the application present another bottleneck. First the main instance of
Gaudi has to be initialized, which forks the child processes. In a next step, these must start
the core services, apply the configuration and reconfigure themselves before the remaining
subworkers can be forked. This fixed serial part can be minimized by increasing the parallel
part of Gaudi. Fig. 6.10 shows the speedup of a parallel reconstruction job. The case, in
which 10k events are processed shows a better scaling than the one with 1k events. This is
due to the minimization of serial parts. Furthermore, an upper limit can be determined,
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by summing up only the time taken for processing events. This excludes any serial parts
like synchronization or finalization. As shown in Fig. 6.10 it does not represent linear
scaling. This is caused by concurrent accesses during the processing step.
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Figure 6.10: Speedup depending on the number of events (taken from [152])

Problematic is the compression of output files that can notably impact the overall perfor-
mance. Events are not compressed and written, before the main loop has finished. The
larger the compression factor the larger the overall processing time becomes (Fig. 6.11).
A case has been defined, in which each worker processes 1000 events. The number of
workers has been continuously increased such that the total number of events increased
up to 48k. This test case illustrates well the principle of Gustafson’s Law: Having more
processing units allows to process a larger amount of workload and speedup is linear when
runtime remains the same. An AMD Magny-Cours having 48 cores has been used as
testing environment. Fig. 6.11 shows that the overall runtime can remain similar in the
case of uncompressed files but not in the case of compressed files. In latter case, the
writer becomes a bottleneck because writing and compressing files is a serial task. The
more workers are initialized, the larger the processing time for compression becomes. The
workers cannot be joined before the writer has finished.

Performance Monitoring of Software

The complexity of CPUs has risen a lot in the past and the performance of software is
often limited by the underlying architecture. In order to better determine and understand
bottlenecks, manufacturers introduced the so called Performance Monitoring Unit (PMU)
[26]. It provides counters for basic operations like accessing the cache, RAM, fetching
and decoding instructions and many more. It allows to monitor the behaviour of a CPU
during program execution and to understand the limitations of software. Counters can
be measured in every CPU cycle but this causes a large overhead. Instead, the sampling
rate must be adjusted such that the PMU is only read after N occurrences of an event.
Furthermore, PMU events are CPU specific and the same hexcode might monitor different
events on different CPUs. On Intel Xeon Phi, events are indicated by an 8-bit umask and
an 8-bit event code. The first one determines the logic unit, while the latter one defines
the event itself. On an Intel Xeon Phi the number of executed instructions is for example
indicated by the hexcode 0x00 0x16.
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Figure 6.11: Total runtime while increasing the number of workers and events

Metrics

The most common metric for measuring performance is instruction per cycle (IPC) and its
counter metric cycle per instruction (CPI). It defines the number of completed instruction
per cycle and due to complex pipelining techniques on modern CPUs a value way larger
than one is possible [172]. Instructions go through several steps, before they are actually
executed. These steps are fetch, decode, execute and store. Instructions are preloaded
based on predictors (speculative execution) [172]. For instance, on conditional branches
it is unknown which branch will be taken. Consequently, it might happen that wrong
instructions are loaded, which is detected in the following steps and the pipeline must
then be emptied. Instructions that made it through all steps, are called retired. The
efficiency of software can be computed by counting the number of retired instructions and
unhalted CPU clocks:

IPC =
Retired instructions

CPU clocks
.

It shows, whether the overall performance of software is good and the distribution of CPI
values over the code helps to find code sections which require lot of computing time. As it
can be seen in Tab. 6.2 very small IPC values are reached. This is a well known phenomena
in HEP software which suffers normally a large number of load and store instructions and
10% of branches as stated in [122]. Branches occur due to conditional jumps, like switch
case statements. The CPU predicts a branch and preloads the instructions. If it turns
out during the decoding stage, that the wrong branch has been taken, the pipeline has
to be unloaded and CPU cycles are lost. If a software consists of too many branches, it
can lead to poor runtime. In HEP software branches are partly introduced due to poor
data layout, object hierarchy and inheritance [122]. The IPC value decreases with rising
number of worker processes which is the effect of the non linear scaling factor.

Another performance metric is memory bandwidth, which can be computed via the number
of DRAM accesses, the number of read and written bytes and the number of CPU clocks.
If the bandwidth is far below the system’s capacity, then an application must be optimised
in respect to how data is accessed, prefetched and streamed. However, this metric only
plays a major role in applications which are highly memory bound. A more important
metric for LHCb software is how often cache misses occur. Common datasets like detector
description and magnetic field map are accessed by each single event, but they are too
large to be stored in cache. L1 cache is divided into an instruction and a data cache.
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Good spatial locality implies that the data cache is quite often accessed and not many
misses occur. The data cache miss ratio is defined as [5]:

DC miss ratio =
DC misses

DC accesses
.

The data cache miss rate is determined by:

DC miss rate =
DC misses

Retired instructions
.

The L2 miss rate and ratio is not computed in the same way. First the number of accesses
must be determined, which is the sum of writebacks from L1, which occurs when data is
evicted from L1 to L2 and the number of requests. The L2 miss ratio is defined as [5]:

L2 miss ratio =
L2 misses

L2 requests+ L2 writebacks
.

And the L2 miss rate is [5]:

L2 miss rate =
L2 misses

Retired instructions
.

The L3 miss ratio can be defined as [5]:

L3 miss ratio =
L3 misses

L3 requests
.

The L3 data cache miss rate can be computed as [5]:

L3 miss rate =
L3 misses

Retired instructions
.

As Tab. 6.2 shows, the DC and L2 miss rate and ratio does not deteriorate when the
number of worker processes increases. The number of misses and accesses increases in a
linear manner, which results in a similar ratio. A DC miss rate of 0.014 implies that a
data cache miss occurs after every 71 (0.014−1) instructions, respectively every 161 in the
case of L2. The L3 miss rate and ratio significantly increases with the number of worker
processes. It is related to the fact that number of cache misses and requests scale with
different factors. This can be an effect related to the L3 cache being shared between 6
cores on the testing environment. This can lead to an increased cache pollution when the
number of workers becomes larger.

The DC, L3 and L2 ratio implies that out of all cache accesses only a small fraction have
been missed. This leads to the conclusion that the data inside the cache is accessed very
often. Since not all data fits inside a significant amount of misses still occurs. Many more

serial mode 8 workers 48 workers

IPC 0.89 0.74 0.72

DC miss ratio 0.02 0.02 0.02

DC miss rate 0.014 0.014 0.013

L2 miss ratio 0.16 0.15 0.14

L2 miss rate 0.007 0.007 0.007

L3 miss ratio 0.066 0.076 0.123

L3 miss rate 0.001 0.001 0.003

Table 6.2: Results obtained from the Performance Monitoring Unit

metrics are available to evaluate performance bottlenecks. However discussing all of them
would go beyond the scope of this thesis.
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Prototype 1 Prototype 2 Improvement in %

DC misses 1711 · 109 1611 · 109 6.2

L2 misses 967 · 109 907 · 109 6.6

L3 misses 28 · 106 27 · 106 3.7

Instructions 122 · 109 115 · 109 6.0

Table 6.3: Comparison of performance metrics between different parallel prototypes

Comparison of Different Parallel Prototypes

Section 6.2 has presented the multiprocessing prototype of the LHCb software framework.
An older version of GaudiMP only supported the creation of subprocesses before the
initialization period of the application (Prototype 1). The current prototype forks child
processes after the initialization finished but before the main loop starts (Prototype 2).
This impacts the amount of pages being shared between child processes and therefore it also
impacts performance metrics. A comparison is given in Tab. 6.3, where different versions
of GaudMP have been executed with 48 worker processes. Prototype 2 requires overall
less instructions since subprocesses are created later in runtime and an improvement of
6% has been observed. In addition, less cache misses occur due to better memory sharing.
DC misses decreased by 6.2%, L2 misses by 6.6% and L3 misses by 3.7%.

6.5.6 Benchmark Results on Current Manycore Systems

The scaling factor of an application is not only influenced by the way how software is
parallelized but also how the underlying micro architecture is designed and performs with
increasing workloads. As mentioned in the introduction Non Uniform Memory Accesses
(NUMA) occur on manycore systems and they can have a significant performance impact.
When multiple cores share the same resources, like bandwidth and memory, this can
become a limitation. Consequently, the core count cannot be very large. In order to
avoid this problem, the concept of Non Uniform Memory Access is applied which has its
origin in Symmetric Multiprocessors (SMP). SMPs are systems which contain multiple
independent processors. Each processor is assigned to a separate socket, but all them
share the same memory. In contrast to SMPs, multicore processors have the core logic
of a processor replicated multiple times on the same chip. Cores are located normally
on the same socket. SMPs and multicore processors face the same problem, namely that
memory becomes a limitation. Nowadays, multicore systems with large number of cores
are in general subdivided into different nodes and sockets.

NUMA systems consist of several nodes and each node has its own memory (Fig. 6.12).
Cores can access memory from other nodes, but the delay is larger than accessing the
local memory. A task can also access remote caches, load data and store it inside its
local cache. NUMA systems can be cache coherent (ccNUMA) or non cache coherent
(nccNUMA) [188]. In first case, controllers need to communicate changes of cache data in
order to guarantee coherence. This increases communication and can negatively impact
performance.

NUMA can notably degrade speedup of multithreaded applications when threads share
the same memory but run on different nodes. In such circumstances, disabling NUMA
can increase performance and minimize traffic between nodes. Context switches can also
have a negative impact. For instance, a process is executed on core 0 and all its data is
inside the local memory. If it is waiting for I/O, a context switch will be performed, such
that another task can run on core 0. Once the I/O request has been resolved, the process
can be restarted and this might happen on a different NUMA node. However, its data
still relies in the local memory of core 0. Consequently, it requires to access the memory
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in a non uniform way because the data is in a remote memory. In order to avoid such
performance loss, tasks must be pinned to a certain core or node. CPU affinity can notably
increase performance and this has been done for the following evaluations. GaudiMP has
been executed on different manycore systems in order to evaluate its speedup.

Core 0 Core 1

Core 2 Core 3M
em

o
ry

NUMA node 0

Core 0 Core 1

Core 2 Core 3

NUMA node 1

M
em

o
ry

Interconnect

Figure 6.12: System with 2 NUMA nodes

Intel Xeon with 8 cores

As already shown in the introduction, Intel Xeon E5 family and the 5000 sequence are
the most common server CPUs in the Worldwide LHC Computing Grid. A parallel recon-
struction has been executed on an 8-core Intel Xeon L5520 processor running at 2.26 GHz
which belongs to the 5000 sequence and is based on the Nehalem EP architecture [40].
This type of CPU has been released in the year 2009. The system provides 24 GB RAM,
two 32 kB L1 caches per core, one 256 kB L2 cache per core and one 8192 kB L3 cache per
node. Hyperthreading and frequency scaling are disabled in order to minimize side effects.
Fig. 6.13 shows the speedup curve obtained from these measurements. Accordingly, the
parallel reconstruction job does hypothetically not scale beyond 23 cores. For verification
purposes additional measurements on a system providing more than these number of cores
have to be undertaken.
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Figure 6.13: A and σ for parallel reconstruction jobs on an Intel Xeon (8 cores)

Intel Xeon with 40 cores

The same testcase has been executed on a 4 socket Intel Xeon E7-4870 system, where
each socket consist of 10 real cores. It belongs to the E7 family, is based on the Westmere
EX architecture and has been released in the year 2011 [39]. Executing GaudiMP with
40 processes results in a better speedup than estimated (Fig. 6.14). It is about 26.7, but
21.6 has been predicted by the speedup curve obtained in the previous subsection. Hence,
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better values for A and σ can be achieved on this machine than in the previous case.
Differences are mainly caused due to the underlying architecture. The main difference
between Nehalem EP and Westmere EX chips is the manufacturing process which is 45 nm
in the first case and 32 nm in the latter one. Nehalem EP chips are less power efficient,
which might result in poorer performance when workload is increasing. Furthermore, the
processors differ in their sockets. Intel Xeon L5520 uses a socket of type LGA 1366, which
is used in server systems with large RAM. Intel Xeon E7-4870 uses the improved version
LGA 1567, which provides more Quick Path Interconnect links. This also impacts the
overall performance.
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Figure 6.14: A and σ for parallel reconstruction jobs on an Intel Xeon (40 cores)

AMD Magnycours 48 cores

AMD already produced processors with large core counts in early years. However, due
to the missing hyperthreading technology processors are not more powerful than the Intel
variants with less cores. The AMD Magny-Cours has been released in the year 2010 and
can support up to 48 cores. It belongs to the 6100 series of AMD Opteron processors and
is also based on 45 nm manufacturing process. Running the same parallel reconstruction
job on this manycore system shows a slightly worse scaling than on the Intel 40 core
machine. An average parallelism of 27.12 and a variance in parallelism of 0.78 can be
achieved (Fig. 6.15). However, the speedup is better than the predicted curve obtained
from the 8 core Intel Xeon system. It estimates a speedup of 21 in case of 40 cores, while
the AMD test system reaches a speedup of 24. It becomes clear, that not only the software
itself matters but also the underlying micro architecture and its scaling behaviour.

CERN Cloud

CERN has its own cloud infrastructure, where experiments can run tests or production
jobs on [31] [62]. Since more than one core can be requested at a time, it allows to do
measurements with multicore jobs. Modifications in DIRAC have been necessary, such
that the job agent is able to execute a task in parallel. The job agent is running inside a
virtual machine and picks up the jobs which are assigned to the CERN cloud. The memory
footprint has been monitored over a wide range of jobs and Fig. [31] shows the results.
When a job finishes, the memory footprint becomes zero and the job agent has to pick
up the next job. As soon as it starts, the memory footprint increases and remains at a
certain level. The difference between PSS and RSS values indicate the memory saving due
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Figure 6.15: A and σ for parallel reconstruction jobs on an AMD Magnycours (48 cores)

to parallel software prototype (GaudiMP). It is obvious, that the range is nearly similar
in each job and the reduction is about 30%. Multicore jobs were executed with 4 worker
processes. Better results can be achieved when jobs are executed with a larger degree of
parallelism.
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Figure 6.16: Memory footprint of multicore jobs on the CERN cloud (Agent restarts indi-
cated by blue lines)

6.6 Summary

This chapter has discussed the main parallel concepts and their applicability on HEP soft-
ware. Two parallel prototypes and their limitations have been discussed. The main criteria
of the framework like flexibility and transparency are still provided within the multipro-
cessing prototype (GaudiMP) of the LHCb software framework. Impacts on the core level
of the software have been minimal, since the fork of subprocesses takes place before the
first event. The previous subsections have given an evaluation of this parallel prototype
with respect to memory reduction and speedup. It has been shown, that postponing the
creation of subprocesses can notably improve the overall memory footprint. A reduction
of about 50% has been evaluated with 8 worker processes. However, speedup deteriorates
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a lot when GaudiMP is executed with more than 20 worker processes. On top of that, the
parallel prototype has been tested on diverse multi-socket CPUs and it has been shown,
that speedup differs.

Consequently, the next step is to define the best degree of parallelism for a job. The
following chapter deals with the problem of scheduling multiprocessor tasks.
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7. Optimisation at the Level of Workload
Scheduling

Virtual Organizations (VOs) and grid sites need to find a solution on how to submit
multicore jobs to the Computing Grid such that CPU utilisation does not deteriorate. In
the beginning experiments were relying on whole node allocation [17]. However, studies
have shown that such an approach can lead to bad system utilisation. As explained in
[17] it causes resource partitioning because singlecore jobs would not be allowed to run on
nodes reserved for multicore tasks. From the perspective of a grid site it is worthwhile to
allow resource sharing between single and multicore jobs. It must be ensured that none of
these job types starves. It is still an unsolved issue, whether scheduling of multicore jobs
is subject to the VO or the grid site. The CMS experiment suggests an internal scheduling
[119] [90], while the ATLAS experiment relies on scheduling done by the grid site [86].
ATLAS proposes to execute their applications always with a certain number of processes
and to only request exactly this number of job slots. The aim of internal scheduling is to
simplify resource provision for grid sites. They supply arbitrary multicore job slots and
VOs need to handle the matching of their jobs on these job slots.

The aim of this work is to go beyond this scope by first characterizing the scheduling
problem and then to optimise it with respect to job throughput. It does not only matter
that jobs run in a shorter time period, but also how efficiently a job uses the CPU. As
shown in section 6.5 the parallel prototype of the LHCb software framework does not scale
linear with the number of cores. It reaches a certain degree, beyond which it cannot use
additional cores efficiently any longer. This complicates the scheduling, since jobs must
be limited in the number of processes they request. Even though it is easiest executing a
job with the number of cores provided by a grid site, throughput deteriorates when a job
is not able to scale sufficiently. This chapter will show the related problems and possible
solutions. It starts with an evaluation of the impact of multicore jobs with respect to total
throughput and this is presented in section 7.1. Section 7.2 discusses a new job model
and section 7.3 deduces the objective function. Section 7.4 illustrates methods for solving
efficiently the scheduling problem. Since an estimation of job requirements is necessary as
input for the solving procedure, section 7.5 discusses how this can be improved. Section
7.6 discusses the impact of wrong predictions and possible improvements.
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7.1 Impact of Multicore Jobs

Each type of job has other system requirements and scales differently. While stripping jobs
are normally memory bound, simulation jobs are CPU bound. Memory footprint as well as
run time of these jobs also differ and depend on many diverse parameters. Consequently,
mechanisms must be applied to automatically select the best degree of parallelism for each
job which can be done by a scheduler. Not limiting the number of processes can result
in a large loss in efficiency when a system provides many processing units. This can be
computed as:

1− S(n)

n
. (7.1)

In the case of linear scaling S(n) is equal n and the loss becomes zero. Applying this
formula on the speedup curves obtained from the different LHCb job types results in
values presented in Tab. 7.1. Assigning 30 processes nearly generates a loss up to 37% of
CPU time. Accordingly, throughput decreases drastically if jobs are not limited in their
degree of parallelism. Determining the best degree is mainly a trade off between efficiency
and the job requirements like memory requirements, runtime reduction and available job
slots.

Number of processes Reconstruction Stripping Simulation

10 11.1 8.5 12.3

20 20.8 16.4 22.8

30 27.4 23.4 37.1

Table 7.1: Loss in efficiency in % based on measured speedup curves

7.2 Moldable Job Model

[95] classifies parallel tasks depending whether a job can change its number of processes
and whether this is initiated by the system or user. They distinguish between the following
four types:

• Rigid: The degree of parallelism is fixed and it is determined by the user at the
submission time. Jobs cannot be executed with fewer or more processes.

• Evolving: The job modifies its degree of parallelism during runtime and this is
initiated by application’s requirements. The system must provide the additional
resources otherwise the job would interrupt.

• Moldable: An application can be executed with an arbitrary number of processes.
Before the job is finally started, a scheduler determines the best degree of parallelism.
The number of processes cannot change during the execution of the job.

• Malleable: A job can change its degree of parallelism during execution. Changing
the number of processes is requested by a scheduler.

The parallel prototype of the LHCb software framework (GaudiMP) does not support each
type. Currently, GaudiMP jobs can be rigid or moldable, since they can be executed with
an arbitrary number of processes. The implementation could possibly support malleable
jobs, too. This would require a signal handler, which notifies worker processes to finalize.
The most appropriate type is a moldable job scheduler because the number of processes
is defined by a scheduler and not by a user. Since 10k jobs are running each day, job
properties and the correspondent schedules must be determined in an automatic way.
This kind of scheduler has been proposed in [162] and details are shown in the following
sections.
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Aim of a Moldable Job Scheduler

The Workload Management System of DIRAC sets up task queues for each newly submit-
ted production. Productions can have different sizes, but they typically contain hundreds
to thousands of jobs. A moldable job scheduler can optimise such task queues based on the
moldability of jobs. Pilots sent to the worker nodes, set up the environment and pick up
tasks from the task queues. Accordingly, the pilot knows the properties of the worker node
like memory capacity, processing units and reserved time period. This information can be
forwarded to the moldable job scheduler which can then define job properties and optimise
schedules. This optimisation happens in an offline manner, because the whole schedule is
computed before the first job from the schedule is actually started. Parameters like exact
runtime are not known beforehand and must be estimated. Consequently, schedules must
be recomputed in an online scenario because jobs finish earlier or later than expected.
This will be subject of section 7.6.
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Figure 7.1: Total memory footprint of a parallel reconstruction job

Each job can be represented as a rectangle, where one dimension corresponds to the number
of processes and the other one is equal the expected runtime. Workload can be seen as
the product of both dimensions and it increases with rising degree of parallelism due to
non linear scaling. Assuming sublinear scaling, the optimal per job efficiency [168] is
reached when a job is executed with only one process. Even though, a job can be executed
with an arbitrary number of processes, a minimum degree exists which is defined by its
memory requirements. Knowing how much memory can be shared with rising partition
size (Fig. 7.1), the minimum number of required processes n can be computed as following:

Memory footprint

n
≤ Size of RAM

Number of job slots
.

Assuming a system which provides 40 cores with hyperthreading enabled and 80 GB of
RAM, then each logical process should not require more than 1 GB. Given the plot, shown
in Fig. 7.1, the job must be executed with at least 2 processes in order to meet this
requirement. Then, the total footprint is 1.8 GB, which is divided by 2 processes and
results in 900 MB for each. Currently, computer systems in the WLCG are on general
equipped with 2 to 3 GB per core.

Even there exists a minimum partition size for each job, it might be worthwhile to assign
more cores to a job if this can improve the overall throughput. This scheduling problem
presents a typical packaging problem, where the aim is to place as many items as possible
within a given container. The moldable job model has the following steps:
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1. The capacity of the worker node is estimated by computing the reserved time with the
number of cores. Jobs are picked from the queue until the estimated total workload
has exceeded the capacity of the worker node. Due to this overcommitment executing
all selected jobs within the schedule presents a non reachable optimum.

2. Memory requirements of each job is estimated and the minimum partition size is
computed.

3. A start schedule is defined.

4. Modifying the partition size of single jobs and redefining schedules. If overall through-
put has improved, the solution is kept.

5. Repeat step 4 until a certain amount of iterations has been reached or no further
improvement can be achieved.

It is actually irrelevant whether a task is scheduled in the very beginning or shortly before
the deadline, because its creation or submit time is not important. In fact, the production
as a whole matters and the production can be closed only when the latest job finishes.
Given that, tasks can be randomly placed inside a schedule. Certain rules can be applied
in order to define more compact schedules and accordingly increase throughput. Tasks
can be placed with large degree of parallelism first, since this allows to keep fragmentation
low (Fig. 7.2). In addition jobs can be placed in the lowest position and either oriented
on the right or the left side. In the following a heuristic is used which puts items in the
leftmost position [77].

(a) Sorted jobs (b) Unsorted jobs

Figure 7.2: Sorted versus unsorted jobs

7.3 Objective Function

The objective function is the mathematical representation of the scheduling problem. It
is used for the optimisation process. The main metric for LHCb jobs is high throughput
and the question is which parameters influence it. The aim is to process as many jobs
as possible within a certain time period and tasks which do not meet the deadline are
interrupted by the resource provider.

Gaps can occur in a schedule because of the unavailability of tasks, which are sufficiently
small. The loss can be computed by subtracting the sum of workloads from the total
capacity C. The workload of a job j can be computed as:

timej(1)

Sj(n)
· n, (7.2)
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where n is the number of processes, Sj(n) the correspondent scaling factor and timej(1)
its serial runtime. A job can run in shorter time, when it is executed on more cores. But
as a result it also requires more resources. The workload can even increase, if a job is
not able to scale with the number of cores. As already shown in the introduction of this
chapter, non linear scaling is one parameter which negatively affects throughput. It causes
loss of efficiency and consequently introduces overhead. This overhead can be computed
by multiplying the number of processes n with the difference of actual and ideal parallel
runtime. If a job j requires a serial runtime timej(1), it ideally requires a parallel runtime
timej(n)

n when it runs in parallel on n cores. But software rarely scales linear with the
number of cores due to synchronization between parallel processes and other factors. For

LHCb jobs the real parallel runtime is always larger than
timej(1)

n . This results into the
following objective function:

C −
J∑
j=1

timej(1)

Sj(n)
· n︸ ︷︷ ︸

Lost due to gaps

+

J∑
j=1

(
timej(1)

Sj(n)
− timej(1)

n

)
· n︸ ︷︷ ︸

Lost due to non linear scaling

, (7.3)

where Sj(n) is the speedup, n the number of cores a job j has used, timej(1) is the serial
runtime, J is the number of jobs in the queue and C defines the capacity of the worker
node. The first term computes the amount of gaps, which is the total capacity minus the
sum of workloads of all jobs. The second term calculates the amount of lost CPU time
due to non linear scaling. The aim is to minimize this function and it can be simplified as:

C −
J∑
j=1

timej(1). (7.4)

It looses the dimension presented by the numbers of processes. It shows that the through-
put does not change as long as the same jobs are set within a schedule independently from
their degree of parallelism. As an example: Assuming 10 jobs available and out of these
only job 1 to 5 fit inside the schedule. If the number of processes of each task is modified,
but still results in the fact that only the same 5 tasks can be placed, then the overall
throughput will not change. As a result, increasing throughput can only be achieved by
setting more or different combinations of jobs within the schedule. However, the latter
equation can violate the constraint, that each job has a minimum degree of parallelism and
that the number of job slots cannot be exceeded. The objective function has two extrema
which are presented by the following two cases (Fig. 7.3):

1. Jobs run with minimum partition size (n = 1)

2. Jobs run with maximum partition size (n = max)

As already described, executing a job on one core results in optimal per job efficiency [168].
This is the case for the first scenario. Throughput can only be decreased by fragmented
schedules and the second part of the objective function is zero:

J∑
j=1

(
timej(1)

Sj(n)
− timej(1)

n

)
· n = 0, (7.5)
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where n and Sj is equal 1. The second scenario results in a large loss due to non linear
scaling, but the schedule is barely fragmented. The following applies:

lim
n→∞

J∑
j=1

(
timej(1)

Sj(n)
− timej(1)

n

)
· n→∞ (7.6)

while n is equal the number of available cores. Both parts of the objective function are
counteracting and the aim is to find the best balance between both.

(a) n = 1 (b) n = 15

Figure 7.3: Minimal and maximal partition size

7.4 Solving the Objective Function

Scheduling multiprocessor tasks belongs to the class of NP-complete problems, as de-
scribed in [104]. NP is defined as a problem which can be solved by a non deterministic
Touring machine in polynomial time. Cases which are NP-complete, belong to the NP
and NP-hard problems. This means that the optimal solution cannot be found within a
reasonable amount of time. The larger the problems size the more complex it becomes to
find the optimum.

The described scheduling of LHCb jobs does not only face the difficulty of multiprocessor
task scheduling but in addition jobs can be executed with an arbitrary number of processes.
This results in an immense search space. The aim is, to find an optimisation algorithm
which can find good solutions within a reasonable amount of iterations. This section will
evaluate deterministic and probabilistic meta-heuristic local search methods and compare
them with results obtained from IBM ILOG CPLEX CP Optimizer [7].

Defined Testcases

This subsection will specify a few test cases, which are used to evaluate different optimi-
sation algorithms for the given scheduling problem. A worker node provides a particular
number of cores and is available for a certain period of time. Cases have been defined,
where the number of processing units vary from 8, 15, 30 to 50 cores. Time is indicated
by HEP SPEC seconds (HS06.s). The time interval has been set to 2.5 million HS06.s
for the first two cases and 1.5 million HS06.s for the last two cases. The reduction has
been necessary otherwise these tests would not be solvable with IBM ILOG CPLEX CP
Optimizer. The time limits of the test cases correspond to a value of about 69 hours
and 41 hours on an Intel Xeon CPU which typically provides about 10 HS06 per core (as
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previously shown in table 2.1). These are characteristic time values requested by the LHC
experiments for running their serial tasks.

Taking the last test case and assuming a task with a duration of 10k HS06.s requiring only
one core: there are p = 1.5 · 106 · 50 possibilities to start the job and p− (1 · 10 · 103 · 50) =
745 · 105 possibilities to place the job such that it finishes in time. Dependent on the
position of the first task, a second one has a reduced amount of possibilities. Given the
fact that a job can be in addition executed with an arbitrary number of processes, another
degree of freedom is introduced. This results in an immense search space. So one goal is, to
reduce the amount of possibilities and to find reasonable solutions with less overhead. One
way is for example to define the order in which jobs are placed inside the schedule. If jobs
with a defined property have to be placed in certain job slots, then this drastically reduces
the amount of possibilities. Given the above example and assuming that jobs requiring
one core have to be placed first, then this leads to only 1 · 50 = 50 possible permutations.
The job can be set at time 0 in one of the 50 slots.

The first step is to specify job properties as described in section 7.2. Memory and runtime
requirements can be predicted within a given range dependent on job type and options.
Therefore, a maximum likelihood estimation can be applied on values obtained from prior
similar jobs since the normalized time per event fits a Gaussian distribution (Fig. 7.4).
Given the HEP SPEC value of a worker node, runtime can be estimated by:

time =
Number of Events ·Maximum Likelihood

HEP SPEC Value
.

A more detailed description of estimating job requirements and related problems can be
found in section 7.5. Memory has been limited to 1.2 GB per process within the test cases.
This is a realistic value on CPUs with hyperthreading enabled which consequently provide
more logical than physical cores [182]. Therefore, the available memory per core decreases.
Typically, systems are overbooked by a factor of 1.5.
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Figure 7.4: Workload per event of reconstruction jobs

7.4.1 Local Search Methods

Solving scheduling problems belongs to the field of discrete optimisation. The three main
types of solving such problems are [186]:

• Local search

• Constraint programming
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• Integer programming

Local search starts in a random solution and then goes iteratively through the search
space seeking for better solutions. Such methods normally get stuck in local optima, but in
general reasonable results can be achieved within a few iterations. Constraint programming
constructs a tree with all possible solutions. Constraints must be defined which allow to
reduce the search space. This is done via constraint propagation which removes branches
violating constraints. This technique guarantees to find the global optimum, but dependent
on the problem size it results in a large computational complexity and memory footprint.
Integer programming is very similar to constraint programming, but more limited [140].
Integer programs allow only linear inequalities as constraints. The following subsection
shows a deterministic and non deterministic local search method for solving the given
objective function.

7.4.1.1 Iterative Deterministic Approach

A deterministic local search always ends up in the same solution when the identical start
point and search direction are chosen. Hill Climbing is such an algorithm, which randomly
launches a solution and goes from there to the next local optimum. Results can only
be improved by either selecting a different start point or directing the search else wise.
Therefore, the neighbourhood must be defined such that the algorithm can decide to which
neighbour solution it has to move. A solution presents a certain schedule and a better
result is found when the job throughput of a new schedule is better than the previous
one. Neighbour solutions are determined in the way how new schedules are generated.
This is achieved by altering the properties of jobs which can be done in many different
manners. Either one or several jobs at a time are modified and either one or several
additional processing units are assigned. Evaluating all possible modifications would go
beyond the scope of this work. Based on results presented in [168], this thesis proposes
to give in each iteration an additional processing unit to a single job and to select the
next candidate dependent on a certain order. The iterative deterministic approach has the
following steps:

1. Order the list of jobs

2. Create initial start solution

3. Pick the next job from the list of candidates and increase its partition size by one

4. Create new solution

5. If solution has improved accept it, if not remove the job from the list of candidates

6. Repeat step 3-5 until no better solution can be found

Different criterion are evaluated for step 1. The question is, which task will profit more
from an additional core and can improve job throughput at the same time. These might
be jobs which provide good scaling and therefore have a good efficiency ratio or large jobs
which can reduce their runtime the most. To investigate this, an inefficient start schedule
has been created. It is then evaluated which job order allows a faster convergence to the
final optimum. Jobs are sorted by the following criterion:

• Best Speedup

• Largest decrease in runtime

• Position in job list (FCFS)
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The first criterion considers only the scaling behaviour of different job types but not their
size. Jobs with high efficiency are chosen first. Since scaling normally grows sublinearly,
this criterion favours jobs with small partition size. The second metric respects the scaling
factor and the size of a job. If a job generates a large workload it will profit more from
an additional core. Tasks can also be chosen randomly, like in the order they arrived.
Fig. 7.5 shows results obtained from the Hill Climbing algorithm using different sorting
metrics. The y-axis indicates the loss in CPU time compared to the total CPU time
available. The aim is to reach the least loss with as little iterations as possible. It can be
seen that the local search converges more quickly, when tasks are chosen by their decrease
in runtime or scaling. As previously explained, jobs with large degree of parallelism are
placed first. Consequently, tasks which are not placed within the schedule have small
degree in parallelism and are selected first by such sorting metrics.
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Figure 7.5: Generated solutions by different sorting rules

Step 5 of the algorithm can be modified, in order to improve the local search. The question
is, when it becomes more reasonable to remove a candidate from the list and to not consider
it any longer for modifying its degree of parallelism. It might be that assigning one more
processing unit to a job does not improve the overall throughput, but it does with two
more units. If a candidate would be directly removed, the second solution cannot be found.
As Fig. 7.5 shows, modifying jobs with large partition size will most likely not affect the
overall throughput. Consequently, candidates will be removed when their modification did
not help to find a better solution and when their parallel time is less than 20% of their
serial time. So the following two criteria have been chosen:

• Remove the selected candidate directly (criterion 1)

• Keep it for a few more iterations (criterion 2)

Tab. 7.2 shows the results achieved by the Hill Climbing algorithm with different config-
urations. The column optimum shows the quality of the best schedule which could have
been generated with a certain configuration. It indicates the return value of the objective
function compared to the total capacity provided by the worker node: the smaller the bet-
ter it is. Criterion 1 stops the local search earlier and requires accordingly less amount of
iterations leading to worse final solutions. However, criterion 2 allows a better exploration
of the search space and reaches results up to 30% better. As an example, an optimum of
7.9%, 5.6% and 5.4% can be found for the test case with 50 cores and criterion 2. A solu-
tion of 25.1%, 41.5% and 42.1% is found with criterion 1. The column iteration indicates
when the optimum has been found. As previously discussed, sorting jobs by speedup and
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Sorted by Cores
Criterion 1 Criterion 2

Optimum Iteration Optimum Iteration

8 5.2 2 4.1 17

Position
15 3.5 38 2.7 24

in job list
30 10.5 78 8.6 125
50 25.1 119 7.9 219

8 5.2 2 3.5 81

Decrease in
15 3.5 4 3.3 4

runtime
30 10.4 23 4.5 84
50 41.5 86 5.6 147

Speedup

8 5.2 13 2.5 40
15 3.3 4 3.3 4
30 9.6 24 9.6 24
50 42.1 86 5.4 154

Table 7.2: Results found by different sorting metrics

decrease in runtime converges more quickly. It takes for example 125 iterations in the test
case with 30 cores and criterion 2 to find the optimum instead of 84 and 24 iterations like
in the other test cases. The different configuration impact the direction of the local search
and it does not result in the same optimum as can be seen in Tab. 7.2.

7.4.1.2 Probabilistic Meta-heuristic Approach

The main disadvantage of deterministic local search methods is, that they reach local
optima from where they cannot return. In order to overcome this issue, worse solutions
must be accepted in order to allow the algorithm to find different local optima. One
approach is Simulated Annealing, which is based on the concept that heated solids cool
down and reach a steady state which represents a minimum energy configuration. A very
detailed description can be found in [167], [113]. The slower the cooling process and the
higher the start temperature, the better the final solution. The key elements are:

• Start and end temperature

• Cooling function

• Randomness of solutions

• Number of generated solutions per temperature step

Temperature influences the acceptance probability: the higher the probability the more
likely it is that a worse solution will be accepted and the better the search space can be
explored. This is determined by:

p = e−(Enew−E)/θ,

where Enew represents the energy of the current iteration, E the energy of the last accepted
solution and θ the current temperature. The energy defines the quality of a solution and it
is defined by the objective function. If the start temperature and as a result the acceptance
probability are very high the search becomes a random search. If they are quite low the
algorithm cannot come out of local optima. As a result, choosing appropriate values is
quite important for the quality of the solution and the computational complexity of the
algorithm. The second condition is the cooling function. It determines how quickly the
search converges to a certain optimum. Commonly used is a geometric decrement like the
following:

t = α · t.
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The larger α the slower the system cools down and according to [113] values between 0.8
and 0.99 are appropriate. In the beginning the decrements will be larger than towards the
end. Randomness is another key parameter in Simulated Annealing. In each temperature
step random solutions must be generated. In the context of the given scheduling problem
randomness is applied at two levels:

• Choose a random job

• Assign a random number of processing units

The value must be greater than the requested minimum partition size and smaller than
the number of processing units. Another important parameter is the amount of generated
solutions per temperature step. In the given problem it is defined by the number of jobs
available.

The main challenge is defining appropriate values for the cooling function, the amount of
generated solutions and the start and final temperature [113]. It should be chosen such
that the computational complexity does not become an issue. Having 1000 jobs and 1000
temperature steps already leads to 1 million iterations. On top of that, the Simulated
Annealing algorithm can get stuck in a certain configuration, from where it cannot return
to a different state. This requires then a restart from the point, which has been found as
best solution so far.
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Figure 7.6: Test results with α = 0.9 and with restarts (blue lines)

If a better schedule can be found, the solution is accepted and in case it is worse, it will
be accepted with a certain probability. When the list of candidates is empty, the system
cools down and starts the next cycle. Fig. 7.6 presents results achieved by the Simulated
Annealing algorithm. A random start point is generated and a restart is performed as soon
as the algorithm got stuck in a certain state. This happens, when critical configurations
exist from where the algorithm cannot return such that it always produces the same
solution. If this occurs, the acceptance probability becomes one and the newly generated
solution which is the same like the previous one will be always accepted. This results in
an infinite loop. In order to avoid that, the algorithm must be reset to the last known
optimum when it has not generated a different solution after a certain number of iterations.
Such a scenario depends a lot on the formulation of the objective function. If the search
space contains many plateaus, it is more likely that a Simulated Annealing algorithm will
get stuck. Indeed, many restarts are required as shown in Fig. 7.6. This is related to
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Cores Loss in throughput Iterations Improvement

8 2.5% 18096 0%
15 2.3% 32246 0.4%
30 4.5% 32246 0%
50 4.6% 54681 0.8%

Table 7.3: Results found by the Simulated Annealing algorithm

the problem, how jobs are placed within the schedule. It has been previously shown that
more compact schedules can be generated when jobs with large partition size are placed
first. Assuming the scenario, all jobs are assigned the maximum number of processes: a
random modification of one single job will not impact the schedule any longer, since it
will be always the last item which is going to be placed. Since the task queue has been
slightly overcommitted, the randomly modified job will not be placed at all. Accordingly,
the same job throughput will be achieved in each iteration.

In order to solve this issue, the last optimum is memorized and used as restart configura-
tion. Fig. 7.6 shows that many worse solutions are randomly generated, going up to about
45% loss in throughput. After 1500 iterations the algorithm converges slowly to a final
state. After 4000 iterations it reaches the local optimum of 4.1%. The algorithm would
not easily find better solutions when no restarts are applied (Fig. 7.7). Too many worse
solutions are generated and the algorithm does not manage to converge quickly.
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Figure 7.7: Test results with α = 0.9 and without restarts

7.4.1.3 Combination

Better results can be reached when the deterministic and probabilistic approach are com-
bined. First, the Hill Climbing algorithm finds the best local optimum starting from a
certain initial solution. This state is then used by the Simulated Annealing algorithm as
a start and restart configuration. Applying this on the proposed moldable job scheduler
reaches the following results for the 4 test cases (Tab. 7.3). Slightly better solutions can
be found compared to the iterative algorithm, but at the same time more iterations are
required.

Simulated Annealing can find the global optimum when acceptance probability and number
of iterations are infinite. In the worst case, it requires more computational time than
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exhaustive search, which figures out all possible combinations. Randomness is the key
element, such that solutions are not reproducible as long as no random seeds are used.

7.4.2 IBM ILOG CPLEX CP Optimizer

As previously described, constraint programming is another technique to solve scheduling
problems and to find the optimal solution. One of the most efficient commercial tools
is IBM ILOG CPLEX CP Optimizer [7]. It builds a tree, which consist of all possible
combinations and where each leaf presents a certain schedule. Some combinations may
violate constraints and can therefore be removed from the tree. This is done via constraint
propagation which evaluates the feasibility of solutions and removes branches of the tree.
This helps to reduce the search space and to find the global optimum within less compu-
tational time. The scheduling problem generates an immense search space, since a job can
be arbitrarily placed within a schedule and can be executed with any number of processing
units. The throughput of a schedule can be improved by:

• Position of a job within a schedule

• Increasing/decreasing jobs’ partition size

The first approach is the most common one practically used [96]. It is the aim to evaluate
the global optimum found by IBM ILOG CPLEX CP Optimizer when the position of jobs
within a schedule is modified. First, constraints must be defined. The total workload
of jobs cannot exceed the capacity provided by the worker node. Consequently, the first
limitation can be expressed as:

J∑
j=1

timej(1)

Sj(n)
· n ≤ C. (7.7)

The number of processing units cannot be exceeded at any time. This presents the second
constraint:  J∑

j=1

n · jobj .running(t)

 ≤ nCores ∀t ∈ T : 0 ≤ t ≤ tmax. (7.8)

Executing the defined test cases with the given constraints results in an enormous search
space. Since the complete tree containing all combinations are kept in memory, it leads
to a memory consumption of more than 44 GB. The problem is, that the constraints do
not reduce the search space sufficiently enough. As a result, optimality cannot be proven
with IBM ILOG CPLEX CP Optimizer due to the hardware limitations. Therefore, the
best solution found so far must be accepted as the global optimum. Memory has been
limited to 23 GB of RAM and additional 5 GB of swap area. Results found by IBM ILOG
CPLEX CP Optimizer and the number of explored branches are presented in Tab. 7.4. As
it can be seen, many more iterations are necessary but at the same time better results can
be found. It requires several days to explore these amounts of branches. But the runtime
of the optimiser is basically limited by the hardware and it terminates when it runs out of
memory. The Hill Climbing approach requires only a few minutes to complete when it is
configured as presented in section 7.4.1. The runtime of the Simulated Annealing algorithm
can be more time consuming than exhaustive search dependent on the configuration of the
parameters. It is in any case worthwhile, to stop the algorithm when a result has been
found that can be considered as good enough.
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Cores Loss in throughput Explored branches

8 1.6% 25 · 109

15 1.5% 75 · 109

30 2.0% 43 · 109

50 1.7% 89 · 109

Table 7.4: Results found by IBM Cplex Optimizer

7.4.3 Summary

It is important, that schedules for jobs running in the Computing Grid are quickly gen-
erated. However, the quality of solutions depends mainly on the available computational
time. Even though results found by IBM ILOG CPLEX CP Optimizer are better, the cal-
culation period is large. A local search which combines a deterministic and probabilistic
method is the best approach in order to define how to schedule multicore jobs. As shown
in section 7.4.1 jobs with good efficiency ratio should be considered first for modifying
their degree of parallelism.

One of the most important steps of a moldable job scheduler is the estimation of job
requirements as explained in section 7.2. Scheduling decisions are based on the properties
like predicted runtime and memory. A bad estimate will have a negative impact on the
scheduling since tasks finish later or earlier than expected. Currently, such an estimation
is not provided by the Workload Management System. However, the generated workloads
must be better understood in order to optimise them. As a result, the question is not only
how to schedule jobs but also how to improve prediction and backfill schedules. This will
be discussed in the following sections.

7.5 History Based Estimation

The aim of a history based estimation is to analyse prior jobs and derive the meta data
that influences job requirements the most. Since the LHCb experiment runs ten thousands
of jobs each day, a lot of statistical information can be obtained. Especially, runtime of
reconstruction jobs is strongly correlated to physics related meta data. A moldable job
scheduler needs to estimate runtime, memory and the scaling factor of jobs. The scaling
factor (speedup) can be derived from runtime and the number of used cores.

Data Mining Methodologies

The research area of data mining explores data and tries to find patterns, like correlations
or groups of clusters [109]. Based on small training sets, certain information can be
deducted and applied on new data. Since this research area deals typically with large
amounts of information, statistical methods are often used, like for example histograms,
clustering, regression. More advanced techniques are neuronal networks, where an input
vector is mapped via several hidden layers on an output vector. Decision and classification
trees present another common technique [109]. They are used to learn decision rules and
to predict values. A branch is a combination of nodes and indicates the information flow
starting from the root node. Each leaf contains a decision criterion.

The complexity and the application of these techniques depend mainly on the problem
itself. For example, clustering techniques and decision trees are more appropriate for
classification problems, while statistical tools help to give a rough estimate of numerical
values. The following subsection will focus on the description of the feature space of LHCb
jobs.
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Figure 7.8: Overview of the different features of a production

7.5.1 Defining the Feature Space of LHCb Jobs

Within the LHCb experiment productions are created which contain a set of files and the so
called job options. Jobs based on a production are then created and sent to the Computing
Grid. A job can be defined and categorized by a lot of parameters and certain parameters
are again subdivided by more categories. The most important ones are explained in the
following and are shown in Fig. 7.8 and Fig. 7.12.

The two beam lines collide every 50 ns and about 2 to 3 collisions occur per bunch crossing.
This value is indicated by the average multiplicity. The detector registers the generated
particles and stores them as event. An event presents therefore a snapshot of the detector.
A well known correlation is: the larger the multiplicity the more complex the reconstruction
of an event [87]. This is caused by the fact that the combinatorial complexity increases.
This can be seen in Fig. 7.9a and Fig. 7.9b. They show the average multiplicity compared
to the normalized time per event from the year 2011 and 2012. In 2012 an increase of
the beam energy has taken place which resulted in a larger average multiplicity and more
complex events. As it can been seen in Fig. 7.9a and Fig. 7.9b the average multiplicity has
slightly increased from 1.5 to 1.8. The required processing time per event increased from
11 HS06.s to 17 HS06.s.

(a) 2011 (b) 2012

Figure 7.9: Multiplicity versus normalized time per event
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Not all information can be stored on tape, since several million collisions occur per second.
Therefore, a hardware and software trigger are responsible for filtering out less relevant
information. The configuration of the triggers are indicated by an ID which is the so called
trigger configuration key (TCK) [45]. It allows to determine which data set has been
recorded under which kind of trigger conditions. The database also stores information
about the output rate of the hardware trigger (avL0PhysRate)[45], the software trigger
(avHLTPhysRate)[45] and its software version (programVersion)[45]. Events are then
summed up to raw files, whose size is limited up to 3 GB. The larger the file size, the larger
the total processing time. Fig. 7.10 shows the total processing time compared to the size
of raw files. It can been seen that the file size is limited to 3 GB. Until this point the total
processing time shows nearly linear scaling to the file size. The dispersion is caused by the
different characteristics of each event: the smaller the file, the less events are stored inside
and the larger the impact of variations in processing time per event becomes.

Figure 7.10: File size versus processing time (2012)

LHC experiments require constant conditions for their analysis. But the density of the
beam decreases during an LHC fill. Experiments apply the concept of runs that subdivides
an LHC fill into smaller slots. It can be assumed, that the conditions at LHCb were stable
during a run. An LHCb run is stored in database as an ID (run number)[45]. It indicates,
when the data taking has been started and stopped and this might be up to one hour. Each
raw file belongs to a certain LHCb run. Average multiplicity and average luminosity
are stored in a database for each run [45]. Luminosity indicates the number of collisions
per second and is strongly correlated with the multiplicity. In general, the luminosity
decreases during a run since the beam looses protons. Nevertheless, it can be assumed
that the luminosity remains the same, because the overlap of the beam lines changes during
a run (luminosity levelling [53]). This technique is applied in the LHCb experiment, to
keep the luminosity at a certain level. Experiments like ATLAS and CMS do not support
it and Fig. 7.11 shows the instantaneous luminosity during a run.

During an LHC fill the magnet is configured such that the magnetic field has a certain
direction (up or down). This information is stored in the run database that contains
information about all runs. Further experiment conditions recorded in the database are
for example, the energy of the LHC and the Velo position. The Velo is moveable, such
that it can be positioned very close to the beam. When the beam is injected it is normally
opened and during a stable beam it is closed.

Productions contain a set of files, they define the job options and they are indicated by
a Production ID. Each file consist of a certain number of events and it allows a
rough estimate of the overall processing time. Jobs from the same production execute the
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Figure 7.11: Instantaneous luminosity for ATLAS, CMS, ALICE and LHCb (taken from
[10])

Jobs

Job Options Worker Node

Application/-version

Processing Chain

Input File

Memory

CPU Time

HEP SPEC Value

Figure 7.12: Overview of the different features of a job

equivalent processing chain with the same application version. The type of application
and its version is another category, since it allows to define whether a job is memory
or CPU bound. As soon as a pilot job is executed on a worker node, a normalization
factor is computed which is indicated by the HEP SPEC value. Normalized processing
time allows a fairer comparison of jobs running on different CPU types. Other worker
node specific information, like cache size, CPU type and grid site are stored as well in
the database. This allows for example to compare same CPU types between different grid
sites. The features of a job are presented in Fig. 7.12. Each job belongs to one production,
runs at a certain worker node and processes a certain set of files. As soon as a job has
finished its memory footprint and required runtime are stored in the database. These are
the values which have to be estimated for new submitted jobs.

Derived Features

In order to make jobs more comparable further features can be derived. The normalized
CPU time per event indicates the required processing time per event and it is the
product of the normalization factor and CPU time divided by the number of events. The
obtained probability density function of this feature corresponds normally to a Gaussian
distribution: some events are more computational complex, others are less complex. An-
other feature is the average event size which is the file size divided by the number of
events. It can give a rough estimate on the complexity of events: very small events are in
general less computational complex.
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7.5.2 Consideration of Single Feature

If no job meta data is available, requirements can be predicted by calculating the average
values taken from prior jobs. The most common technique is the maximum likelihood
estimation (MLE) which can also be used if only a few observations are available. It
maximises the likelihood function under the assumption of a certain distribution [115]. In
the case of runtime prediction a Gaussian distribution can be assumed and the likelihood
function can be expressed as:

n∏
i=1

1√
2πσ2

· e−
(µ−xi)

2

2σ2 , (7.9)

where µ is the mean of the distribution, σ is the standard deviation, xi corresponds to the
observations and n is the number of measurements. As described in section 7.4 runtime
can be predicted by taking the normalization factor of a CPU, the number of events and
the maximum likelihood into account.
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Figure 7.13: Required time per event for reconstruction jobs

Reconstruction

This has been computed on the reprocessing productions from the year 2011 and 2012
(Fig. 7.13). In such productions raw files from the complete experiment year are repro-
cessed with the same software version and job options. Fig. 7.13 shows that the maximum
likelihood has increased from about 11.71 HS06.s to 17.91 HS06.s and also the amount
of data has significantly increased. This is related to the different experiment conditions
in the year 2012. LHC has been running with higher energy and therefore more complex
events have been recorded at a larger data rate. The standard deviation is about 2.1 in
the year 2011 and about 2.7 in 2012. This means that runtime is on average wrongly
estimated by 2.7 HS06.s.

Fig. 7.14 shows that the memory requirements of reconstruction jobs do not fit a Gaussian
distribution any longer. Applying the maximum likelihood estimation under the assump-
tion of a Gaussian distribution might cause significant errors. Nevertheless, memory is not
as critical as runtime and an overestimation will not have any negative impact. Fig. 7.14
shows that the maximum likelihood is 1759 MB (1.7 GB) with a standard deviation of
about 45 MB. As a result, estimates are on average wrong by a value of 45 MB. The
standard deviation appears to be rather low and the main reason is that virtual memory
is recorded in the database instead of the physical memory consumption. Consequently,
correlations might not be visible, because LHCb applications address a lot of memory
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Figure 7.14: Memory requirements of reconstruction jobs

buffers which are sometimes not used at all. Many jobs appear therefore with the same
consumption, but the real physical memory consumption is much smaller.

Stripping

The computational complexity of stripping jobs has not significantly increased as shown
in Fig. 7.15. A slight increase from 5.26 HS06.s per event to 5.87 HS06.s can be observed
and this is mainly caused by different stripping options in the correspondent year. The
characteristics of events does not influence the computational complexity of these jobs
since they only separate the information and put them into different output streams. It
can be seen that more data has been processed by stripping jobs in the year 2012 compared
to 2011.

Fig. 7.15 also shows the memory requirements of stripping jobs from the year 2011 and
2012. The memory footprint has significantly increased from 2.1 to 3.3 GB and is mainly
related to different software versions and stripping options. Until the mid of 2011, LHCb
used its own service for writing objects to disc (POOL) which is based on ROOT data
structures [11]. However, due to changes in the ROOT framework this service has become
very inefficient in the context of I/O and memory usage [11]. Since the end of 2011, the
POOL service is no longer available and files are directly written via the ROOT framework.
Stripping jobs write several output streams and for each of them many internal buffers are
allocated during the application main loop. Due to a poor configuration of these buffers,
much more memory has been requested by stripping jobs than actually needed. This is
the main reason, why such an increase in memory was observed in 2012. A fix has been
applied in summer 2012 that solved this memory issue [28].

Simulation

The generated workload of simulation jobs depends on many more parameters that change
every year. They simulate only certain decays, while the real events present a mixture of
different decay products. Certain decays are rather complex and generate huge workloads
of hundreds of HEP SPEC seconds per event. Only a few hundred events can be simulated
compared to reconstruction and stripping tasks. Fig. 7.16 shows the maximum likelihoods
of each different event type. As it can be seen the majority of simulation jobs produces a
workload of 500 to 700 HS06.s per event. Apart from the event type, further job options
are relevant for the prediction of workload. Users can apply selection criteria that allow to
either choose all events or to extract only special ones. They can adjust the crossing angle
between the two beam lines or the energy of the protons. This can lead to larger number
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Figure 7.15: Memory requirements and generated workload of stripping jobs

of produced particles and it increases the time required to simulate the detector response.
As already explained previously, more than one collision normally occurs per bunch cross-
ing and that presents another parameter in simulation productions. Consequently, jobs
simulating the same event type might show a large difference in generated workloads due
to different job options.

Since some information like the applied job options cannot be easily retrieved from the
databases, it is not trivial to derive good estimates from prior jobs. The generated workload
does not necessarily fit a Gaussian distribution (Appendix 9.1). While Fig. 7.16 shows only
the maximum likelihoods for given simulation productions, the related distributions are
presented in the appendix. Even if jobs from the same production and therefore with
the same job options are chosen, several peaks might occur in the overall workload. This
has several reasons. The time required for generating events can significantly differ from
few seconds to hours. The distribution of random numbers also matters, and users are
actually allowed to choose any kind of distribution. In addition, simulating the physics
of events might also cause quite different workloads. This becomes even worse due to the
fact, that simulation jobs only process a minimal amount of events. If a job generates
a very complex event, then it requires much more time than another job from the same
production which did not produce a similar event. Since simulation jobs only process few
hundreds of events, the impact of such complex events on the overall runtime is large. As
a result, the underlying distribution of these runtime values is not necessarily Gaussian.
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Figure 7.16: Maximum likelihoods of simulation jobs (2011) with different event types and
from different productions

7.5.3 Consideration of Multiple Features

The last section focused on considering only runtime and memory requirements of prior
tasks. In the following it will be analysed how meta data can be used to optimise the
estimation of job requirements. Especially, physics related information like multiplicity
and luminosity form the characteristic of events and have therefore a large impact on the
runtime. The question is how they can be used to optimise the estimation.

Since the aim is to predict real continuous numbers, statistical tools like regression can be
applied. It is relevant to reduce the problem size on a small subset of features, in order
to avoid over fitting the problem. In the case of over fitting, the derived model fits very
well the training data and even outliers but it will badly predict new values. Only the
following features have been considered:

• File size

• Number of events

• Event Size

• HEP SPEC value of the worker node

• Average multiplicity

• Average luminosity

This represents a 6 dimensional search space where each axis correspond to one feature.
The aim of linear regression (LR) is to find the line within this search space which minimizes
the mean squared error [115]. All features have different units and must be normalized.
This can be done by computing the z-scores which are defined as:

Z =
x− µ
σ

, (7.10)

where x is the observation, µ the mean and σ the variance. If data is not normalized,
features with large numerical values will dominate. For instance, number of events or file
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size. Their impact would lead to wrong correlations. The aim is to fit training data and
derive a hypothesis from it that is used to estimate new data. With linear regression (LR)
the hypothesis can be expressed as [57]:

hθ = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4 + θ5x5 + θ6x6, (7.11)

where x1−6 are the normalized values for file size, number of events, event size, HEP
SPEC value, average multiplicity and luminosity. θ0−6 must be defined such that the
mean squared error is minimal. This can be done by minimizing the cost function via
gradient descent. The cost function can be defined as [57]:

J(θ) =
1

2m

m∑
i=1

(hθ(x
(i))− y(i))2, (7.12)

where m is the number of training data. In order to compare results an error vector can
be defined which contains the difference between predicted and real runtime values. In a
next step the root mean squared error (RMSE) can be computed on this vector, which is
determined by [192]:

RMSE =

√∑n
i=1 v

2
i

n
, (7.13)

where vi is an element of the error vector. The root mean squared error allows a fair
comparison between results obtained from linear regression and maximum likelihood esti-
mation.

Reconstruction

Linear regression has been applied on the reconstruction jobs obtained from the reprocess-
ing productions of the year 2012 and Tab. 7.5 shows the results for different combinations
of features. The first test has taken all features into account and reaches a mean squared
error of 2.16. Consequently, runtime is falsely estimated by 2.16 HS06.s. This is an im-
provement of 22% compared to the maximum likelihood estimation (MLE), which reaches
a value of 2.7 HS06.s as shown in section 7.5.2. The results also show, which features
have a large impact on runtime. It appears that the average luminosity and event size
have a low impact. When they are removed from the linear regression procedure the same
improvement can be achieved (Test 3). Removing important features like the file size,
HEP SPEC value or the number of events has a negative impact (Test 2). The estimation
of memory requirements cannot be improved much. This is related to the problem, that
the virtual memory value is stored in the database as previously discussed.

CPU time per event Memory

Test1 Test2 Test3 Test1

File size 0.80 - 1.05 7533.51

Event size 0.19 0.80 - -4906.07

HEP SPEC -0.97 - 0.97 2907.18

Number of events -1.33 - -1.55 348.36

Average multiplicity 0.67 0.98 0.59 11926.63

Average luminosity -0.08 -0.08 - 996.16

Offset 18.13 18.13 18.13 1763553.31

RMSE 2.16 2.46 2.16 44350

Improvement in
% over MLE

+22 +12 +22 +2

Table 7.5: Linear regression results for reconstruction jobs from the year 2012
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Stripping

Considering multiple features in the context of stripping jobs is more complicated since
there is not a 1 to 1 relation between jobs and files. A stripping job usually parses several
input files and the feature file size must represent the sum of all input files. Stripping jobs
simply collect and filter out events. As a result, parameters like file size and number of
events are strongly correlated with the memory requirements and runtime. Physics related
parameters have minor impact as shown in Tab. 7.6. It shows, that a root mean squared
error of 0.54 can be achieved which is a 25% improvement compared to the maximum
likelihood estimation which reaches a RMSE of 0.74. The memory footprint of stripping
jobs is strongly correlated with the file size. The larger the input file and the number of
events, the larger the stream buffers and therefore the larger the memory footprint. Taking
this important feature into account, can improve the estimate up to 6% compared to the
maximum likelihood estimation that reaches an RMSE of 45 MB. In order to avoid over
fitting the parameters average multiplicity and luminosity will be neglected in the further
evaluation. They are not strongly correlated with the runtime and memory requirements.

CPU time per event Memory

File size -0.19 19594

Event size 0.7 -4649

HEP SPEC 0.19 7116

Number of events 0.23 -11413

Average multiplicity -0.08 1360

Average luminosity 0.003 1863

Offset 5.93 3547736

RMSE 0.54 43073

Improvement in
% over MLE

+25 +6

Table 7.6: Linear regression results for stripping jobs from the year 2012

Simulation

It is rather difficult, to use multiple features in the context of simulation jobs. This
is related to the problem, that the job options matter a lot and they cannot be easily
obtained from the database. Even though the event type is known, it presents only a
category to which jobs belong. Consequently, there are no numeric values apart from the
runtime and memory which can be used for the linear regression.

7.5.4 Supervised Learning

The previous section has shown that estimation can be improved by taking more input
features into account. Assuming that a new production is created, the question would
be how to estimate the job requirements when only a small subset of training data is
available. This problem corresponds to supervised learning, which intends to create a
hypothesis on some provided training data. The training data contains jobs which have
already finished and consequently the input and output feature vectors are known. The
generated hypothesis is used to estimate the output vector of new data. They can have
an arbitrary output vector due to effects, which have not be seen in the training data.
The prediction model must be sufficiently general to also be applicable on unseen data.
Therefore the learning algorithm has to make a set of assumptions which is also known as
inductive bias [141]. In the category of unsupervised learning, data sets remain unlabelled
and the algorithm tries to find patterns. This can be used in order to define clusters
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Which type of job?

Jobs from same production?

Get regression formula Similar production?

Get regression formula Take any regression formula

Yes No

Yes No

Figure 7.17: Decision tree for obtaining a regression formula

and categories. Supervised learning is more appropriate in the context of estimating job
requirements.

The supervised learning algorithm has 4 steps. First, jobs from the same category must be
found in order to obtain information. This can be done by a decision tree as presented in
Fig. 7.17. If no similar jobs can be found, a regression formula from any other production
can be obtained. The false estimate will be quite large in the beginning. As soon as a
certain amount of jobs has been processed, the old formula can be discarded and a new
one can be computed. In general, the error of false estimates will be large in the beginning
due to the small amount of training data. However, the error will slowly improve over
time, when more jobs will have been processed. The question is now, whether linear
regression provides still better estimations compared to a maximum likelihood estimation.
The learning algorithm has the following steps:

1. Find prior jobs from same or similar category (production ID, application version)
and take formula

2. Predict requirements for the next k jobs, using either MLE or LR

3. When k jobs have finished, update formula with the new results obtained

4. Repeat step 2 and 3 until all jobs have finished

Reconstruction

In each step the error vector is extended with k values and the mean squared error is
computed. This can be understood as accumulated error over time and Fig. 7.18 shows
results obtained for reconstruction jobs. In the left plot k has been set to 100 and in
the right one equal 1000. The shape of the curves is still the same, which means that
the size of training data does not have a significant impact. Fig. 7.18 also shows, that
the supervised learning algorithm with a linear regression approach can give up to 20%
better estimates. The distribution of runtime per event values must be investigated in
more detail, in order to understand the shape of the curve and why the error is increasing
under certain circumstances. Fig. 7.19 shows the distributions sorted by the run numbers.
Large squares indicate the center of these distributions, small ones present the outliers.
The sum of all them yield the probability density function presented in Fig. 7.13. As it
can be seen in Fig. 7.19 the center of the distributions are fluctuating, which is related to
different conditions at the LHC and the detector in each run. Having such fluctuations
and only a small set of training data results consequently in a large error. By the end
of the year more outliers can be observed in Fig. 7.19, which is caused by performance
tests of different subdetector elements. This is normally done by the end of an experiment
year and requires different trigger configurations. As a result, events are recorded which
differ from events recorded during the year. This is the reason why the error of the MLE
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Figure 7.18: Accumulated error for the prediction of runtime per event (Reconstruction)

method increases after 250k jobs. However, the linear regression approach can estimate
those outliers better.

Figure 7.19: Normalized CPU Time per event of all reconstruction jobs from 2012 sorted
by run number

Fig. 7.20 presents the accumulated error for the prediction of memory and it can be
seen that the improvement of linear regression versus maximum likelihood estimation is
minimal with about 2%. As previously explained, it is related to the problem that virtual
memory is taken into account instead of the real physical memory footprint of the jobs.
The standard deviation of the obtained distribution as well as difference between MLE
and linear regression is small.

Stripping

Linear regression also provides better estimates in the case of stripping jobs. Since physics
related parameters like average multiplicity and luminosity do not have a large impact, they
have been neglected for the supervised learning algorithm. Fig. 7.21 shows the accumulated
error for the estimated run time per event. As already shown in the previous section,
modifying the number of training and predicted data does not influence the accumulated
error much. In the left plot k has been chosen equal 100, in the right one equal 1000.

Fig. 7.22 shows the accumulated error for the estimated memory. The error is quite large
in the beginning with a wrong estimate up to 6.2 · 104 kB. It decreases slowly until a large
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Figure 7.20: Accumulated error for the prediction of memory (Reconstruction)
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Figure 7.21: Accumulated error for the prediction of runtime per event (Stripping)

peak occurs. This is caused by outliers that cannot be correctly estimated neither by MLE
nor by LR. A large majority of stripping jobs has an equivalent memory footprint of about
2.2 to 3.4 GB. But if outliers occur, they are up to two times greater than the average.

7.5.5 Summary

Job requirements are currently estimated by production managers who are responsible for
creating and submitting new productions. Prediction is based on their user experience and
normally some extra time is added, to make sure that jobs definitely meet the deadline. The
previous sections have shown that this can be done in a more automatized way by retrieving
statistics from prior jobs. Since certain features are based on a Gaussian distribution,
maximum likelihood estimation is one applicable technique. It was also shown that taking
more input features into account can significantly improve estimation of reconstruction and
stripping jobs up to 25%. The estimation of simulation jobs is more complicated because
job options play a major role and cannot be retrieved from the database. Another problem
is, that virtual memory instead of physical memory is recorded and memory management
depends a lot on the configurations applied at the grid site. Different operating systems
or Linux kernels will handle memory pages differently. These might be the reason why no
strong correlation could be obtained between input features and memory requirements.
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Figure 7.22: Accumulated error for the prediction of memory (Stripping)

7.6 Handling Uncertainties

The scheduling of jobs is influenced by uncertainties which are caused by false predicted
memory and runtime. Instead of having a concrete value, a distribution of numbers is given,
each of them having a different probability of occurrence. Even though linear regression of
multiple features helps to improve estimation, there is still a certain error involved. First,
this section will show in terms of a concrete example, how such uncertainties might affect
scheduling decision. Results of this example have been presented in [163] and this section
will mainly refer to this publication. Probabilistic backfilling will be explained and how it
can be applied in this context as a further step of optimisation.

Impact of Uncertainties - An Example

Having 8 job slots and 3 jobs (simulation, reconstruction and stripping) each of them
can be executed with an arbitrary number of processes. The question arises, how to
choose the right combination such that the overall processing time is minimal. All possible
combinations have been evaluated, as shown in Fig. 7.23. Jobs can run either one after the
other, indicated by the combination (0,0) or two jobs start at a time which is presented
by the outer layer of the triangle. The inner layer shows combinations when all three
jobs start at a time, while the number of processes for the third job can be computed by
8− (x+ y). Each square shows the improvement in percentage compared to the reference
point (0,0) where each job runs with the maximum number of processes available. Since
jobs do not scale linearly with the number of cores, the overall CPU time slightly rises.
As Fig. 7.23 shows, an optimum of 18% improvement can be reached in (6,1), when 6
cores are assigned to the reconstruction, 1 to the stripping and 1 to the simulation job.
The question arises, whether this optimum can be predicted with the given probability
density function of prior jobs. This concrete example faces the objective of selecting jobs
dependent on the increase of overall CPU time. The job which raises the overall time the
least will be assigned another core. This can be expressed by:

min

(
timej(1)

s(n)
− timej(1)

n

)
,

where timej(1) is the serial run time of job j, n the number of processes job j is using and
s(n) its scaling factor. The scheduler goes iteratively through the list of available cores
and assigns them dependent on the evaluated minimum increase in CPU time. Runtime is
therefore predicted with the probability density function of prior jobs and the maximum
likelihood is taken.
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Figure 7.23: Different mixtures of three independent jobs (taken from [163])

Knowing the maximum likelihoods and the scaling behaviour of the different job types,
the following combination is found, presented in Fig. 7.24a. It presents the combination,
which will be most likely the best. Nevertheless, the real optimum is another one and it
shows, that taking the maximum likelihood as runtime estimate is a wrong assumption in
this example. The question is which confidence interval the real optimum fits into. It can
be expressed as:

timemin = Maximum Likelihood− x · σ

and

timemax = Maximum Likelihood + x · σ,

where σ is the standard deviation of the given distribution and x ·σ is equal the confidence
interval. Due to the variance an error is introduced which leads to a range of possible
decisions while each of them has a different probability of being the global optimum.
Choosing x = 2 results into a probability of ∼ 95%, that the actual runtime of the job will
be in the interval. Fig. 7.24b shows the scheduling decisions, when the confidence interval
2σ is chosen. Several combinations are found and the probability is large that one of them
presents the global one.

(a) Decisions found by taking into account max-
imum likelihoods and confidence interval of
0σ

(b) Decisions found by taking into account max-
imum likelihoods and confidence interval of
2σ

Figure 7.24: Decisions made by the scheduler (indicated in red) (taken from [163])

This section has just given an example on how scheduling decisions are influenced by the
standard deviation of runtime distributions. The result is, the larger the variance the more
decisions will be found and the more unlikely it will be to find the best one. This raises
the question which mechanism must be applied to still guarantee high job throughput
when jobs finish earlier or later than estimated. A backfilling method can be applied that
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respects such runtime distributions instead of relying only on a concrete runtime value for
each job. This will be explained in the following.

Probabilistic Backfilling

Section 7.4 has focused on how to solve the objective function in order to maximize job
throughput and minimize wasted CPU cycles due to gaps and non linear speedup. This is
done in an offline way, before jobs are actually started. In an online scenario two situations
might happen: a job finishes either too early or too late. Consequently, the whole schedule
becomes invalid because other jobs must be postponed. So the question is how to avoid
gaps and refill them when they occur. Many different backfilling techniques exist, which
compare predicted runtime of tasks and choose a certain one. Instead of having a concrete
value, estimation is subject to an underlying distribution of several possible runtime values.
[144] shows, that backfilling can be improved by respecting such kind of distributions and
they call this new method probabilistic backfilling. This method will be explained in detail
in this section. The basic idea is to backfill gaps when the probability of postponing the
next job is small. In the context of LHCb jobs runtime distributions can be easily obtained
from prior tasks. If a job finishes too early two options are possible:

• Start all consecutive tasks earlier

• Backfill gaps with another task

The first case is the easiest option since the number of computed jobs within the schedule
matters and not their start and end date. Problematic is the case when a job does not
meet the deadline. It is not an option to interrupt it, since this will decrease the overall
throughput. Consecutive tasks will be postponed and it must be evaluated whether they
will still be able to meet their deadlines or not. The technique described in [144] can be
applied, which determines the probability of a job being able to finish in a certain time
window.

[144] proposes to apply a uniform distribution on job runtimes whose peak is the time
indicated by the user. In the context of LHCb jobs the distribution of runtime is known
due to previous workloads and can be fitted by a Gaussian distribution. As described in
[144] a task will be started if its probability of not postponing the next job in the queue
is smaller than τ : ∫ ∞

t0

Pr(te)Pr(∃t ∈ (t0, te) : cq ≤ c(t) < c)dte < τ, (7.14)

where Pr(te) corresponds to the probability of a task to finish at te and Pr(∃t ∈ (t0, te) :
cq ≤ c(t) < c) determines the probability that at any time c processors are available. cq is
the number of processors required by the consecutive job and c the number of processes to
run both jobs at a time. Pr(te) is given by the Gaussian distribution which can be derived
from prior jobs and te corresponds to the unknown finishing time. The formula integrates
over all possible finishing times of a task as explained in [144] and can be used in order to
decide whether the backfilled job will not postpone the start date of the following task.

Calculating the probability that c processors are available at a certain point, can be
achieved by Dynamic Programming as explained in [144]. The following formula com-
putes the probability that tasks 1...n have released c processors:

Mt[n][c] = Mt[n− 1][c] + (Mt[n− 1][c− cn]−Mt[n− 1][c]) · Pt[n]. (7.15)

It is calculated recursively, where Mt[n − 1][c] is equal the probability that c processors
are already available without the termination of task n and Mt[n−1][c− cn]−Mt[n−1][c]
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Testcases 8 Cores 15 Cores 30 Cores 50 Cores

Offline Computed Optimum 2.5 2.3 4.5 4.6

Approach 1 22.8 33.1 30.2 31.6

Approach 2 11.9 15.7 13.5 15.9

Table 7.7: Comparison of different approaches for handling wrong estimates

corresponds to the likelihood that c processors become available when task n finishes [144].
The equation can be simplified as the following sum:∑

te

Pr(te) max
t∈(t0,te)

{Mt[n][cq]−Mt[n][c]} < τ. (7.16)

Since the scheduling problem is subject to discrete values, the integral becomes a sum.
The formula is a rough approximation to equation 7.14 and it computes the bottle neck
of processor availability in each step.

Evaluation of Probabilistic Backfilling

The moldable scheduler defines the task properties such that an optimal job throughput
can be achieved with respect to the available cores. The schedule constitutes the start and
end time of jobs. This has been evaluated based on 4 test cases that have been presented
in section 7.4. They will be reused in order to compare the offline computed optima with
the real loss in throughput. Different approaches for handling wrong estimated jobs can
be applied.

Approach 1: If jobs do not meet the defined deadline, they will be interrupted such that
the next job is not delayed. Since the scheduler has taken the maximum likelihoods of
runtime distribution into account, a large amount of jobs is underestimated. However,
jobs might also finish earlier than expected which allows to move other jobs ahead of time.
They get an earlier start date, but it matters that they finish before the old deadline. In
the predefined cases, this approach leads to a loss of throughput of up to 33% (Tab. 7.7).

Approach 2: Instead of interrupting jobs consecutive tasks will be simply postponed.
Probabilistic Backfilling can be applied, in order to estimate whether the delayed job is
still able to finish at its deadline or not. Since the maximum likelihood of distributions
is taken into account, the probability of finishing in time should be small. However, jobs
can move ahead of time such that delays might be compensated by jobs finishing earlier.
This approach is less aggressive and significantly improves loss in throughput as shown in
Tab. 7.7.

Since estimation of runtime is subject to an underlying distribution it is rather difficult to
generate the best scheduling decision. The larger the standard deviation of each distribu-
tion the larger the amount of solutions. Each of them might be the global optimum with
a certain probability. However, knowing the distribution can be also used to reach further
optimisations as it has been shown in this section.

7.7 Summary

As shown throughout this chapter scheduling of multiprocessor tasks faces several prob-
lems. As explained LHCb jobs based on the multiprocessing approach are moldable. If
their degree in parallelism is not limited, the overall throughput decreases. For 30 cores a
loss of up to 37% has been measured. The chapter has defined the objective function for
optimising job throughput.
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It has been shown that a deterministic local search method can be combined with a
probabilistic meta heuristic approach. This achieves quite good scheduling decisions which
are only a few percent worse than solutions found by the commercial IBM ILOG CPLEX
CP Optimizer. The solutions found by the deterministic local search are used as start and
restart solutions for the probabilistic meta heuristic approach.

Since scheduling requires runtime and memory estimates, a supervised learning algorithm
has been developed. It has been evaluated that taking experiment specific parameters into
account can drastically improve estimation up to 22% for reconstruction jobs. Estimation
of memory requirements cannot be much improved since virtual memory of jobs is currently
stored in the database.

The chapter concluded with the impact of wrong runtime estimates on scheduling decisions.
Currently, jobs which do not meet the predefined deadline are interrupted by the resource
provider. Applying the same methodology leads to a loss of throughput of up to 33%, since
maximum likelihoods are taking into account during the optimisation of the objective
function. Probabilistic backfilling developed by [144] has been presented. When a job
finishes too late, it can be evaluated how likely it is that the successive task can still finish
in time. The same steps undertaken by probabilistic backfilling algorithm can be applied
in this situation. In the predefined testcases, it has lead to only a loss in throughput of up
to 15.9%.
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8. Conclusion

This thesis concludes with a summary of the most important results and their impacts in
section 8.1 and it will give an outlook on possible future developments in section 8.2. The
main research question of this work was how multi- and manycore systems can be used
more efficiently at the example of the LHCb experiment. It has been shown throughout
the thesis that optimisation can be applied at many levels.

8.1 Summary

Impacts of Results presented in Chapter 5: Optimisation with Non Intrusive
Techniques

Research question 1 (”What limits the software and the utilisation of computing resources?”)
described that limitations of software must be known and new technologies can be applied
to improve software in a non intrusive way. This has been evaluated in this chapter.

It has been shown that many diverse techniques can be applied to reduce the memory
requirements of LHCb applications in a transparent way. It has been evaluated that
tools for automatic memory deduplication can achieve similar results as parallelizing the
software. Applying memory compression allows to reduce the footprint in any order and a
reasonable runtime can be still achieved by compressing 30% of allocated memory. These
results also indicate that there is still room to improve how LHCb software allocates and
uses memory.

Within the scope of the work, x32-ABI has been evaluated for HEP SPEC benchmarks,
the ROOT framework and the LHCb software framework. These tests were one of the
first large benchmarks executed as x32 binaries. Until now, there are many scepticism
within the Linux community, whether this new platform model can be beneficial or not
and as a result certain Linux distributions still do not support it. However, the results of
this work have shown that such scepticism are not justified. Results have been referenced
by different representatives from the Linux community and also motivated other research
groups to investigate it. With increasing number of supporters, x32-ABI may become
available in many more Linux distributions. The thesis has shown that x32-ABI helps
to gain in runtime and memory reduction at the same time. A memory reduction of up
to 25% has been achieved. Such techniques can be used in a transparent way without
modifying the software and the corresponding job model.
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Impacts of Results presented in Chapter 6: Optimisation with Intrusive Tech-
niques

Research question 1 and research question 2 (”What are the performance impacts of multi-
and manycore CPUs”) have been evaluated in this chapter. The main goal was to improve
the memory footprint of LHCb software, to coordinate concurrent accesses, to understand
performance impacts of hardware features and to determine software bottlenecks.

A much lower memory ratio and a larger concurrency is foreseen for future manycore
systems and consequently the execution of jobs via parallel tasks becomes necessary. The
thesis has shown that software can be parallelized in different ways. The parallel prototype
has been optimised such that for instance the memory footprint of a parallel reconstruction
job can be reduced by 50% when executed with more than 8 worker processes. Evaluations
have indicated that there is plenty of room for improvement within the single threaded
version of the LHCb software framework. Results have illustrated that much more memory
is addressed than actually required by the jobs. In general, this should not be problematic
since a process shows the same performance independently of its address space. However,
many grid sites incorrectly monitor and terminate jobs based on their virtual memory.

Consequently, more work must be undertaken to limit the size of buffers, which are ad-
ditionally allocated by processes but mostly not used at all. Performance counter mea-
surements have pointed out that LHCb applications do not use CPUs in an efficient way.
An IPC value (instruction per cycle) lower than one is clearly inadequate. It has been
evaluated how the parallel software framework prototype scales with the number of cores.
Benchmark tests have been executed on the latest manycore systems and results from dif-
ferent systems have been compared. It is indispensable that the corresponding job model
has to allow an efficient scheduling of multi- and manycore jobs. If this is not given, the
job throughput can decrease drastically due to non linear scaling of the parallel prototype.
A loss of up to 37% has been measured in the case a worker node provides 30 cores.

Impacts of Results presented in Chapter 7: Optimisation at the Level of Work-
load Scheduling

This chapter focused on research question 3 (”How to apply multicore job submission within
the Worldwide LHC Computing Grid?”). As stated in this research question, going from
single- to multicore jobs is not an easy transition, since scheduling is subject to multiple
VOs. The goal was to define a scheduler that can be part of VO’s Workload Management
System and that can take information about prior jobs into account.

It is still an unsolved issue, whether scheduling of multicore jobs is a grid site or VO related
problem. Grid sites want to avoid resource partitioning. As a result, mechanisms must be
applied that allow to run multi- and singlecore jobs on the same resources. As discussed,
the main issue is that requirements indicated by the experiments are not reliable and this
prevents the grid sites to increase their utilisation via backfilling.

This thesis has proposed a moldable job model, where scheduling is subject to the exper-
iment. The aim is to better estimate workloads and to have a scheduler which defines the
appropriate degree of parallelism for each job. The major advantage is that experiments
can control their pilot jobs and have knowledge about requirements of different job types.
Diverse optimisation algorithms have been implemented and it has been evaluated that
with less than a thousand of iterations good schedules can be found which are only a
few percent worse than the global optimum. In contrast to the ATLAS experiment [86],
this model proposes that scheduling is done by the experiment’s Workload Management
System. The grid site needs only to provide an arbitrary multicore job slot. The CMS
experiment also proposes an internal scheduling [119], however they do not take software
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characteristics like memory requirements and scaling factors into account. These parame-
ters are important for the proposed moldable job model.

Since the scheduler must estimate runtime and memory requirements of jobs, it has been
investigated which input features of a job are correlated with them. The thesis has under-
gone a detailed workload analysis. A supervised learning algorithm has been implemented,
which takes certain physics criteria like average luminosity, multiplicity and job specific
information like file and event size into account. Tests have shown that runtime of recon-
struction jobs can be improved by 22% compared to a maximum likelihood estimation.
Currently, the bad runtime prediction prevents grid sites from providing multicore job
slots without degrading utilisation. The thesis has proven that bad runtime estimates can
be avoided. In contrast to other LHC experiments like CMS or ATLAS, the LHCb experi-
ment supports luminosity levelling. The workload analysis, presented in section 7.5.2, has
shown that due to that no tails in effects in runtime can be observed like in CMS [87].

8.2 Outlook

Future developments have to focus on how software can better profit from hardware fea-
tures, like vector registers and hyperthreading. Therefore, data layouts must be changed
in order to allow SIMD (single instruction multiple data) operations. Analysing cache ac-
cess behaviour is another opportunity for optimisation, since this allows to improve data
locality and consequently faster access to data. Work might also focus on how performance
bottlenecks can be analysed in a more automatic way. The complexity of future manycore
systems is rapidly growing and as shown in this thesis, software scales differently on various
systems. In order to understand differences, metrics for automatic performance monitoring
must be defined and evaluated. Since LHCb is running 10k jobs each day, many statistics
from different CPU types can be obtained and analysed. The parallel prototype of the
LHCb applications can be further improved by applying parallel writers. This avoids that
the compression of files becomes a bottleneck. In addition, a combination of the multi-
threaded and multiprocessing approach can help to improve the scalability of software. It
is foreseen to use event level parallelism, where each task is processing different events and
within each task multiple threads execute algorithms in parallel.

Optimisation is a crucial task, since modifying one piece always impacts other parts. Many
possibilities have been illustrated throughout this thesis and optimisation has to be applied
on the whole workflow. The common idiom ’A chain is only as strong as its weakest link’
describes this very well. Assuming the case, that LHCb software would scale linearly
with the number of cores, but no mechanisms are applied to better estimate job runtimes,
then job throughput would be still limited by jobs failing due to underestimated runtimes.
Future workloads will be much larger and it is therefore quite important, to consider the
workflow as a whole.
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9. Appendix

9.1 Simulation Workloads MC11

The following plots show the workload generated by simulation jobs from the year 2011
(MC11). Productions have been selected, which contained at least more than 2000 jobs.
It is obvious that the generated workload does not necessarily fit a Gaussian distribution.
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