
 

 Karlsruhe Reports in Informatics 2015,2 
Edited by Karlsruhe Institute of Technology,  
Faculty of Informatics   

 ISSN 2190-4782 
 
 
 
 

 
 

 

Incremental and Compositional 
Probabilistic Analysis of Programs 

 

 
 

 
Fouad ben Nasr Omri, Safa Omri, and Ralf Reussner 

 

  

 

 

 

 

 

 

 

 

 

 

 
 
 2015 
 

 

KIT –  University of the State of Baden-Wuerttemberg and National 

Research Center of the Helmholtz Association  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197536048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

  
   

  
 
 
 
 
 
 
 
 
 

Please note: 
This Report has been published on the Internet under the following 
Creative Commons License: 
http://creativecommons.org/licenses/by-nc-nd/3.0/de. 



c© F. Omri, S. Omri & R. Reussner
This work is licensed under the
Creative Commons Attribution License.

Incremental and Compositional Probabilistic Analysis of
Programs under Uncertainty

Fouad ben Nasr Omri Safa Omri Ralf Reussner
Software Design and Quality

Institute for Program Structures and Data Organization, Faculty of Informatics
Karlsruhe Institute of Technology, Germany

fouad.omri@kit.edu safa.omri@student.kit.edu ralf.reussner@kit.edu

Symbolic execution has been applied, among others, to check programs against contract specifica-
tions or to generate path-based test suites. We propose to adapt symbolic execution to perform a
probabilistic reasoning about possible executions of a program. We present a compositional and
incremental approach to approximate the probability of a program path.

1 Introduction

Uncertainty is a common aspect of modern software systems. The growing complexity of interaction
with third-party components, the heterogeneity of the behavior of users and the possible external and en-
vironmental disturbances (e.g., operating with sensor errors, robotic manipulators, etc.,) are introducing
an uncertainty about the behavior of a program. Understanding the behavior of a program is essential
to test it. In most cases, the tester is interested in knowing whether a behavior or a target event (e.g.,
invocation of a certain method, access to confidential data, uncaught exceptions, etc.,) can happen or not.
However, we believe that we can better understand a program behavior when we know how probable
a behavior can occur. We also believe that the uncertainty in the program inputs should be considered
when analyzing a program’s behavior.

Static analysis techniques aim at obtaining information about the possible behavior of a program,
without running it on concrete inputs. A program behavior is one or more program paths executed with
input values from the programs input domain. A program path is a sequence of statements. Each program
path has an input and an executed output which usually depends on the input. Each program path defines
an equivalence class on the input values which can execute it. Symbolic execution is a static analysis
technique for grouping program inputs which produce the same symbolic output. The output of symbolic
execution is a set of path conditions. A path condition is a set of constraints on the program inputs. The
satisfaction of the constraints lead to the execution of the program path represented by the path condition.
The constraint solving techniques return usually a single solution to each path constraint. The solution
to the constraint is used to execute the program along the solved path.

We propose to combine symbolic execution with constraints solution space quantification in order to
compute probabilities for program paths. We present an incremental and compositional approach to com-
pute the probability of a path condition. Our approach handles both numeric constraints as well as heap
constraint (i.e., constraint defined over data structures). In order to estimate the probability of numeric
constraints, we extended existing interval branch-and-prune algorithms with a Monte Carlo technique
which integrates both stratified sampling and importance sampling. This allows us to handle complex
nonlinear constraints with controlled accuracy. We evaluated our approach on a set of benchmarks from
robotic and medicine domains. The preliminary results show the efficiency of our approach compared to
recent research approaches.

http://creativecommons.org
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2 Probabilistic Analysis of Programs under Uncertainty

2 Motivating Example

Consider the code in Figure 1. Assume we want to estimate the probability of not reaching line 9, where
an exception can arise. Assume the input variables x and y range over the integer domain [1...100]. The
input domain is then 102× 102 = 104 possible input values. The input domain can be much larger in
practice.

Figure 1: Illustrative example and its symbolic execution tree

Consider the symbolic execution tree in Figure 1. Each node in the tree is a branch constraint. We
count for each branch constraint the number of values form the input domain that satisfy that constraint
(the counter is in bracket under each constraint). Assume that the inputs are uniformly distributed within
the input domain. The probability of hitting line 9 is then: 6/10000+ 1454/10000 = 1460/10000 =
0.146. The low probability of hitting line 9 means that a large number of random tests should be executed
before detecting it.

3 Background

3.1 Symbolic Execution

Our approach bases mainly on the ability to symbolically execute the code under consideration. Al-
gorithm 1 shows an abstract procedure of our symbolic execution. For a given program starting with
statement s and an initial update U0, the call of symExe(U0,s, true, /0) will return the path conditions of
all feasible paths of the program. Until a branching condition is found the procedure accumulates the
state changes in form of update expressions (lines 5-7). In the case of a branching statement a new path
condition is constructed for each branch outcome based of the current path condition Φ and the branch
conditions (cond(s) and ¬cond(s)). Only if a constructed path condition is satisfiable, the corresponding
branch code is further proceeded (lines 8-11).

For example, the constraint solver can decide that the following constraint is satisfiable: (x ≥ 10)∧
((x < 5)∨ (x > 90)). The constraint solver can found a solution, e.g., x = 95. The found solution can
serve as an input value in a test case. When the program path is executable, i.e., the corresponding path
condition is satisfiable, one can ask how many possible input values satisfy the path condition. Generally,
the more inputs satisfy the path condition, the more probable the path can be executed. We discuss this
intuition in the next section.
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Algorithm 1: An abstract symbolic execution procedure – symExe
Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>
Result: PCs : Set<Formula>

1 begin
2 if s = /0 then
3 PCs← PCs∪Φ

4 else
5 while ¬branch(s) do
6 U ← U ◦update(s)
7 s← next(s)

8 if SAT(Φ ∧{U}cond(s)) then
9 symExe(U ,first(s),Φ ∧{U}cond(s),PCs)

10 if SAT(Φ ∧{U}¬cond(s)) then
11 symExe(U ,next(s),Φ ∧{U}¬cond(s),PCs)

12 return PCs

3.2 Constraints Solution Space Computation

When solving a constrained problem, one is usually interested in finding one solution or assessing that
there is no solution at all. However, knowing the number of solutions can give a new perspective on the
constrained problem. In mathematics, a set of linear inequalities form a bounded geometric object. A
solution to the set of inequalities is one point in the geometric object. The number of possible solutions
is the volume of the geometric object. In the context of program analysis, each branch predicate is
represented as a Boolean combination of numeric constraints. Knowing the volume of predicates allows
to do fine-grained analysis of the possible program behavior.

3.3 Interval Branch-and-Prune Algorithms

Consider a vector x = (x1, . . . ,xn) ∈ Rn of unknowns. A constrained problem is defined by a set C =
{c1, . . . ,cl} of l constraints and a bounded domain Dx =Dx1× . . .×Dxn where xk ∈ Dxk := {r ∈ R|ak ≤
r ≤ bk},k = 1, . . . ,n.

A constraint may contain nonlinear expressions which can be not differentiable. Each variable is
bounded in a closed interval. The Cartesian productDx is called a box. The solution set of the constrained
problem defined by the constrains set C is the set of tuples from x that satisfy all the constraints in C.

Interval Branch-and-Prune Algorithms generate a set of n−dimensional boxes whose union define
the solution set of a constrained problem. A Branch-and-Prune Algorithm alternates iterativ branch
and prune tasks to generate boxes from the initial bounded domain. The algorithm stops when a fixed
precision is reached. The pruning task eliminates inconsistent values and hence reduces the size of a box.
The branch task splits the box into smaller boxes.
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4 Compositional Path Condition Solution Space Computation

We consider the problem of efficiently computing the solution space of an individual path condition.
A Path condition is a conjunction of a set of branching constraints. In real world applications, a path
condition can be very large (i.e., include a large number of branching constraints). We propose to split
a path condition into disjoint sets of branching constraints whose solution space can be determined
independently from each other.

Each branching condition defines a relation between its variables. Each variable has a definition
domain. A condition ranges over a given definition domain and specifies which values from the domain
of its variables are compatible to the relation. More formally, we introduce the following definitions.

Definition 4.1 (Branching Constraint). A branching constraint c is a triple <Vc,Bc,Rc>, where Vc is a
set of l variables <v1,v2, . . . ,vl>, Bc is the Cartesian product I1× I2, . . .× In with Ik the definition domain
of variable vk, andRc the constraint relation defined as:

Rc ⊆ {<i1, i2, . . . il>|i1 ∈ I1, i2 ∈ I2, . . . , il ∈ Il}

Rc is a subset of the Cartesian product I1× I2, . . . Il with Ik the definition domain of variable vk and ik a
possible value for variable vk.

The definition of a path condition follows from the definition of a branching condition as follows:

Definition 4.2 (Path Condition). A path condition Φ is a triple <VΦ ,BΦ ,CΦ> where VΦ is a set of n
variables <v1,v2, . . . ,vn>, BΦ (a box) the Cartesian product I1× I2, . . .× In of the variables definition
domains where each variable vi ranges over the interval Ii, and CΦ is a finite set of branching constraints
expressed as linear or nonlinear equations or inequalities on subsets of the variables V . Consequently,
a path condition can be defined as Φ =

∧
ci∈CΦ

ci = <VΦ ,BΦ ,CΦ>.

Now we move to the definition of the solution space of a path condition. We start with defining a
solution to a branching constraint:

Lemma 4.1 (Branching Constraint Solution). A solution of a branching constraint c = <Vc,Bc,Rc>, is
a tuple sc ∈Rc where sc ⊆ Bc.

Our ultimate goal is to characterize the complete set of solutions:

Lemma 4.2 (Branching Constraint Solution Space). The solution space of a branching constraint c =
<Vc,Bc,Rc>, is a set of tuples Sc ⊆ Bc where:

• ∀ s ∈ Sc : s ∈Rc (only solutions inside the set)

• ∀b∈Bcb 6∈ Sc : b 6∈ Rc (no solutions outside the solution space)

We propose to split a path condition into a set of disjoint branching constraints that have input vari-
ables in common. We define dependent constraints as follows:

Definition 4.3 (Dependent Branching Constraints). Two branching constraints ci = <Vci ,Bci ,Rci> and
ck = <Vck ,Bci ,Rck> are called dependent if: Vci ∩Vck 6= /0.

We introduce now a dependency relation among the constraints of a path condition:

Definition 4.4 (Constraint Dependence Relation). The constraint dependence relation DEP : C ×C →
Boolean, where C a set of constraints, is recursively defined as follows:
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• ∀c ∈ C :DEP(c,c) = true

• ∀ci,c j ∈ C, if Vci ∩Vck 6= /0, then DEP(ci,c j) = true

• ∀ci,c j,ck ∈ C, if DEP(ci,c j) = true∧DEP(c j,ck) = true, then DEP(ci,ck) = true

Intuitively, two constraints are dependent if they share at least one input variable.

Lemma 4.3 (Independent Branching Constraint Solution Space). The solution space of the conjunction
of two independent branching constraints ci and c j is S(ci∧c j) = Sci ∪Sc j .

The dependency relation allows us to split a path condition in a set of disjoint sets containing inde-
pendent constraints.

Definition 4.5 (Path Condition Split). We can split the formula of a path condition Φ =
∧

ci∈C ci =
<VΦ ,BΦ ,CΦ> into mutually exclusive and collectively exhaustive sets of constraints (or sub-formulas)
based on the constraint dependence relation DEP as follows:

• CΦ = ∪i∈{1,...,m}Cs
i

• For i 6= j, the sets Cs
i and Cs

j are disjoint: Cs
i ∧Cs

j = /0.

• ∀ci,c j ∈Cs
k: DEP(ci,c j) = true

• ∀ci ∈Cs
i and ∀c j ∈Cs

j: DEP(ci,c j) = f alse

The splitted path condition Φ is defined then as: Φsplit = Φ1 ∧Φ2 ∧ . . .∧Φm, where Φi =
∧

ck∈Cs
i
ck =

<VΦi ,BΦi ,C
s
i >.

Note that the dependency relation (see Def. 4.4) is by construction an equivalence relation over the
set of constraints. Note also that for two independent constraints c1 and c2, the satisfaction of c1 is
independent from the satisfaction of c2. Additionally, for two independent constraint sets C1 and C2, the
satisfaction of the constraints in C1 is independent form the satisfaction of the constraints in C2.

Lemma 4.4 (Path Condition Solution Space). The solution space of a path condition Φ =
∧

ci∈C ci =
<VΦ ,BΦ ,CΦ> is a set of tuples SΦ ⊆ BΦ where:

• ∀S∈SΦ
∀s∈S∀c ∈ C : s ∈Rc (only solutions for all path constraints inside the set)

• ∀B⊂BcB 6⊂ SΦ : ∃b∈B b 6∈ Rc (no solutions outside the solution space)

• SΦ = SΦsplit = ∪i∈{1,...,m}SΦi

Remarks. The composition of the solution space of a path condition allows us to split the quantification
of the solution space of a large path condition into the analysis of smaller and simpler constraints. This
allows to parallelize the quantification procedure of the solution space. It also allows us to reuse already
quantified constraints (i.e., caching).

5 Solution Space of Constraints over Finite Floating Domains

We consider now the problem of counting the solution space of constraints defined over finite floating
domains. Counting the number of solution of constraints defined over continuous domains involves
computing an integral over the geometric object formed by the constraints. However, the constraints
may contain nonlinear expression which are not differentiable. For this reason, we approximate the
solution space of a conjunction of dependent constraints with a set of boxes that cover the exact solutions
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of the constraints. The union of the boxes is an over-approximation of the solution space but never an
under-approximation.

The boxes representing the solution space are extracted using constraint propagation techniques [14].
Constraint propagation techniques implement local reasoning on constraints to eliminate inconsistent
values from the definition domains of the constraints variables. Such techniques prune and subdivide the
definition domain of the constraints until a stopping criteria is satisfied. Note that the definition domain
of the constraints as a Cartesian product of intervals is a set of boxes (See Def. 4.2 and Def. 4.1).

Definition 5.1 (Consistency). A setB⊆BΦ is consistent with a path condition Φ =
∧

ci∈C ci = <VΦ ,BΦ ,CΦ>

iff it contains at least one solution of Φ . Otherwise, it is called inconsistent.

In order to eliminate input values that do not satisfy a constraint, a projection function is associated
with each constraint:

Definition 5.2 (Projection Function). For a path condition Φ =
∧

ci∈C ci = <VΦ ,BΦ ,CΦ>, a projection
πc of a constraint c ∈ CΦ with a solution space Sc, is a mapping between the subsets of BΦ where
∀B ⊂ BΦ :

• πc(B)⊆ B
• ∀b∈B b 6∈ πc(B) : b 6∈ Sc

Usually the implementation of projection functions relies on interval analysis methods (e.g., the
interval newton method). The set of projection functions associated with the constraints are then used
to eliminate values from the definition domain that do not satisfy the constraints. The pruning of a box
is done using constraint propagation. When a projection function eliminates a value of a variable, this
information is propagated to the other constraints depending on that variable. This process terminates
when the projection functions cannot further eliminate values (i.e., reduce the boxes).

Definition 5.3 (Constraint Propagation). For a path condition Φ =
∧

ci∈C ci = <VΦ ,BΦ ,CΦ>, let πCΦ
be

the set of projections for all the constraints CΦ . Constraint propagation CP defines a mapping between
the the subsets of BΦ where ∀B ⊂ BΦ :

• CP(B)⊆ B (contractance)

• ∀b∈B b 6∈ CP(B) : ∃c ∈ CΦ b 6∈ Sc (correctness)

• ∀π∈πCΦ
π(CP(B)) = CP(B) (fixed point)

The pruning level we can achieve using constraint propagation is dependent on the ability of the
projection function to identify value combinations that do not satisfy the analyzed constraint [4]. How-
ever, projection functions do not miss any solution [4]. In order to further prune the result boxes, the
boxes are subdivided and constraint propagation is applied to each sub-box. Such algorithms are called
branch-and-prune algorithms. Such algorithms terminate when for example the box is judged too small
to be considered for branching.

Constraint reasoning techniques do not loose any solution during the process of approximating the
solution space of a set of constraints. Consequently, using such techniques, we get a safe enclosure for
the solution space of a constraint.

Constraint reasoning techniques maintain two coverings for the solution space SΦ of path condition
Φ . We assume that the variables VΦ are defined over R, i.e., BΦ ⊆ R|VΦ |

Definition 5.4 (Outer Box Cover). An outer box cover of SΦ is a set of disjoint boxes S�
Φ
= {B1, . . . ,Bn}

where:
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• ∀i∈{1,...,n}Bi ⊆ BΦ ∧ vol(Bi)> 0

• ∀i, j∈{1,...,n}∧i6= j vol(Bi∩B j) = 0

• SΦ ⊆
⋃n

i=1 Bi

vol(Bi) is computed as the product of the intervals forming the box Bi.
Complementary to the concept of outer box cover, we define the concept of inner box cover.

Definition 5.5 (Inner Box Cover). An inner box cover of SΦ is a set of disjoint boxes S�
Φ
= {B1, . . . ,Bn}

where:

• ∀i∈{1,...,n}Bi ⊆ BΦ ∧ vol(Bi)> 0∧Bi ⊆ SΦ

• ∀i, j∈{1,...,n}∧i6= j vol(Bi∩B j) = 0

•
⋃n

i=1 Bi ⊆ SΦ

The solution space SΦ of the path condition Φ is approximated with a joint cover of S�
Φ
= <S�

Φ
,S�

Φ
>

of the outer and inner cover box where S�
Φ
⊆ S�

Φ
.

Constraints over Integer Domains and Mixed Domains: The presented approach works also for
integer domains and mixed integer constrains (i.e., constraints which contain both integer and floating
variables). As suggested in [5], we can handle integer variables as floating variables when each domain
modification is followed by rounding the computed bounds to the nearest integer inside the interval
domain. The resulting integer value is represented as a point interval to be conform to the definitions
above of the solution space enclosure.

Disjunctive Domains: Consider the case when a variable x is defined over the union of intervals
[−100,2]∪ [7,100]∪ [200,500]. We can define the variable x over the interval [−100,500] and add
the constraint min(x−2,min(max(7−x,x−100),500−x))≤ 0. Note that such operations are not differ-
entiable. However, constraint reasoning techniques need only that the operations can be evaluated over
the intervals.

6 Solution Space of Constraints Over Data Structures

The computation of the solution space for constraints over data structures deserves special interest. Such
constraints are called heap constraints. The solution space in the case of data structure variables is
discrete. Quantifying the solution space means counting the model formed by the constraints. As before,
we restrict ourselves to finite input domains. Consequently, the number of possible heap nodes in the
input domain is finite.

We propose to use Korat [7] to count the input data structure that satisfy a constraint over data struc-
tures within pre-defined bounds. Korat is a framework for the constraint-based generation of structurally
complex inputs for Java programs. Korat provides also efficient counting of input data structures. Korat
generates the inputs by solving constraints written as a boolean method called repOk. The body of such
a method can contain any arbitrary complex predicate. The scope of the input domain is specified using
specific Korat methods. Scope methods are used to specify bounds on the size of the input data structures
and bounds on the definition domain of the primitive fields of the data structure.

We encode the constraints we obtain from symbolic execution as a predicate in the repOk methods.
Korat counts then the data structures that satisfy the constraint for a given scope.
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Example: Consider the Java code in Listing 1 for swapping a node in a linked list. The field element

represent the integer value of the node. The field next represent the next node in the list. The method
swapNode updates the input list which is referenced by the parameter this. The update is done through
a nonlinear condition on the nodes n and next.

1 class Node {
2 int element;
3 Node next;
4
5 Node swapNode () {
6 if (next!=null ) {
7 if (element > next.element) {
8 // location to analyze
9 Node n = next ;

10 next = n.next ;
11 n.next = this ;
12 return n;
13 }
14 }
15 return this ;
16 }
17 }

Listing 1: Example swapping a node in a linked list

We illustrate now the use of Korat to count the data structure models. First of all we scope our
domain, and assume that the nodes can take the values 1 or 2. Additionally, we bound the size of the
linked list to 2 nodes. These bounds are passed to Korat via its scope methods.

The path condition to reach the body of the second branching condition in the swapNode (i.e., the
location at line 8) is:

node!=null ∧ node.next!= null ∧ node.next!=node ∧ node.element>node.next.element

We pass the path condition to the repOk method of Korat. The total number of of valid input data
structures that satisfy the path condition under the specified scope is 17. This means, there is 17 possible
inputs to reach the location at line 8 of the code in Listing 1.

Remark: Constraints over numerical domains that contain transitive dependencies on the data structure
encoded by the heap constraints are also counted by Korat.

7 Probability of Satisfying a Path Condition

The theory of probability is a classical model to deal with uncertainty. A probabilistic model is defined
by a set of random variables and a set of events. A random variable is a function from the sample space
to the real numbers. An event is an assignment of values to all the variables of the model.

We want to compute the probability of satisfying a path condition. In our case here, the model is the
path condition and the random variables are the variables of the path condition. An event is an assignment
of values to the variables such that the path condition is satisfied.

In order to specify a probabilistic model, a full joint probability distribution should be explicitly or
implicitly used. This distribution assigns a probability measure to each possible event. Such distributions
can be provided by on Operational Profile (OP). As defined by Musa [15] ”an Operational Profile is a
quantitative characterization of how a (software) system will be used”.

OP Example: Consider a method with a single input variable x defined over a floating domain. A pos-
sible OP can be of the form OP = {(x ∈ [1,10],0.3),(x ∈ [20,30],0.7)}. This means that the probability
that the variable x takes values from the interval [1,10] is 0.3 and that it takes values from [20,30] is 0.7.
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More formally, an OP can be defined as OP = {(Ci, pi)|i ∈ {1, ...,L},∑L
i=1 pi = 1}: it is a set of

pairs (Ci, pi) where Ci represents constraints over the definition domain to describe a possible operational
scenario, and pi is the probability that an operational input belongs to Ci.

7.1 Probability of a Path Condition over Data Structures

For heap path conditions, we use model counting as described in Section 6. Let #(ci) denotes the function
which counts the number of elements from a definition domain D, which satisfy ci. The probability of ci

is then: P(ci) = #(ci)/#D.
Consider we have the following operational profile, OP = {(Ci, pi)|i ∈ {1, ...,L},∑L

i=1 pi = 1}. For
a path condition Φ , it follows from the law of total probability: P(Φ |OP) = ∑

L
i=1P(Φ |Ci).pi. Further-

more, it follows from the definition of conditional probability: P(Φ |Ci) = P(Φ ∧Ci)/P(Ci). Conse-
quently, we obtain: P(Φ |Ci) = ∑

L
i=1

#(Φ∧Ci)
#(Ci)

.pi.

7.2 Probability of a Path Condition over Numeric Domains

Definition 7.1 (Probability of a Path Condition) The probability of a path condition Φ = <VΦ ,BΦ ,CΦ>

given the indicator function 1SΦ
(x) : R|VΦ |→{1,0} defined as follows:

1SΦ
(x) =

{
1, if x ∈ SΦ

0, if x 6∈ SΦ

is defined as:

P(Φ) =
∫
BΦ

1SΦ
(x). fVΦ

(x)dx

where fVΦ
is a full joint probability density function (p.d.f) over the path constraint variables VΦ , SΦ the

solution space of the path condition and BΦ the definition domain of the path condition.

Generally, the multidimensional integral in Def. 7.1 may have no closed form solution since the
constraints of a path condition may define a complex nonlinear integration boundary. Our approach
approximates the solution space of a path condition with a joint cover S�

Φ
= <S�

Φ
,S�

Φ
>.

Monte Carlo methods provide an approach to approximate the value of multidimensional integrals by
randomly sampling N points in the multidimensional definition space and averaging the integral values
at the samples.

Definition 7.2 (Monte Carlo Integration) Let SΦ ⊆R|VΦ |, and B a |VΦ |−dimensional box. If we sample
uniformly N random values {x1, . . . ,xn} inside B, then by the law of large numbers it follows:

∫
B
1SΦ

(x). fVΦ
(x)dx u ÎSΦ

(B, fVΦ
) =

∑
N
i=11SΦ

(xi). fVΦ
(xi)

N
.vol(B)

where vol(B) the volume of the box B.

By the central limit theorem, one can estimate the uncertainty in the approximation of the Monte
Carlo integration.
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Definition 7.3 (Standard Deviation of the Estimate) The standard deviation of the approximation of the
integral ÎSΦ

(B, fVΦ
) follows from the central limit theorem as follows:

σ(ÎSΦ
(B, fVΦ

)) =
vol(B)

N

√
N

∑
i=1

(1SΦ
(xi). fVΦ

(xi))2− (∑N
i=1(1SΦ

(xi). fVΦ
(xi))2

N

The standard deviation describes a statistical estimate of the error on the integral approximation.

Definition 7.4 (Approximate Probability of a Path Condition) Given a joint box cover S�
Φ
= <S�

Φ
,S�

Φ
>

of the solution space of a path condition Φ , an approximation for the probability of satisfying Φ is given
by:

[P(Φ)] = ∑
Bi∈S�

Φ

[
∑

N
i=11SΦ

(xi). fVΦ
(xi)

N
.vol(Bi)

]
Monte Carlo Integration may suffer from a slow convergence rate especially when the approximated

integral gets close to zero. One may need a large number of random samples N to approximate the
probability to some given confidence. Stratified sampling and importance sampling are well-know tech-
niques to reduce the variance of Monte Carlo integration methods. We integrate these techniques in our
approximation as follows:

Definition 7.5 (Approximate Probability of a Path Condition) Given a joint box cover S�
Φ
= <S�

Φ
,S�

Φ
>

of the solution space of a path condition Φ , an approximation for the probability of satisfying Φ is given
by:

[P(Φ)] = ∑
Bi∈S�

Φ

[
∑

N
i=11SΦ

(xi). fVΦ
(xi)

N
.P(Bi)

]
= ∑

Bi∈S�
Φ

[
p̂i.P(Bi)

]

The scheme ∑Bi∈S�
Φ

[
p̂i.P(Bi)

]
integrates both stratified sampling and importance sampling. Each

box Bi can be written as the Cartesian product of intervals: Bi : [a1,b1]× [a2,b2]× . . .× [ai,bi]. P(Bi) is
defined then as: P(Bi) =Px1([a1,b1]).Px2([a2,b2]) . . .Pxi([ai,bi]) withPxi([ai,bi]) =

∫ bi
ai

fi(xi)dxi and fi

the probability distribution function over the variable xi. Such a distribution can be specified in an OP.

8 Looping Constructs: Incremental Probabilistic Analysis

Usually a bound on the exploration depth is set when executing a program symbolically. Instead of set-
ting a static bound, we introduce a probabilistic bound Pdepth. Given an OP, the user may be interested
in only exploring program paths which have a probability of occurrence higher than Pdepth. Algorithm 2
sketches our extension to symbolic execution to incrementally compute the path condition probabilities.
Algorithm 2 returns a list of path conditions together with their computed probabilities. All the returned
path conditions have a probability higher than Pdepth. Algorithm 3 computes the probability of a conjunc-
tion of constraints. Algorithm 3 splits the conjunction (line 1) as defined in Def. 4.5. It then computes
the probability of Φ as described in Section 7.

At each branch condition, algorithm 2 decides whether it should further explore the path or abandon
it (lines 9-13).
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Algorithm 2: An abstract incremental probabilistic symbolic execution procedure – IncProb-
SymExe

Data: U : Update, s : Statement, Φ : Formula, PCs : Set<Formula>
OP = {(Di, pi)|i ∈ {1, ...,L}, ∑

L
i=1 pi = 1}, Pdepth

1 begin
2 if s = /0 then
3 PCs← PCs∪Φ

4 else
5 while ¬branch(s) do
6 U ← U ◦update(s)
7 s← next(s)

8 P(Φ ∧{U}cond(s))← computeProbs(OP,Φ ,{U}cond(s))
9 if P(Φ ∧{U}cond(s))≥ Pdepth then

10 symExe(U ,first(s),Φ ∧{U}cond(s),PCs)

11 P(Φ ∧{U}¬cond(s))← computeProbs(OP,Φ ,{U}¬cond(s))
12 if P(Φ ∧{U}¬cond(s))≥ Pdepth then
13 symExe(U ,first(s),Φ ∧{U}¬cond(s),PCs)

14 return <PCs,Probabilities>

Algorithm 3: Compute formula probability and search depth – computeProbs

Data: OP = {(Di, pi)|i ∈ {1, ...,L}, ∑
L
i=1 pi = 1},

Φ : Formula,c : Formula
1 begin
2 <Φdep,Φnotdep>= split(Φ ,c)
3 P(Φ)←P(Φ(notdep)) //Previously computed and in cache
4 P(Φ)←P(Φ)+P(Φdep|OP)
5 return P(Φ)

9 Implementation and Experiments

We describe in this Section the implementation and the evaluation of the ideas we presented so far.

Implementation: Our prototype implementation uses the symbolic execution engine of the KEY sys-
tem [11]. In order to split a path condition into disjoint sets of dependent constraints (see Def. 4.5),
we model the constraints of each path condition as an undirected graph. The nodes of the graph are
the constraints and the edges encode a dependency between the constraints: when constraints share the
same input variable, an edge is added between the corresponding nodes. The computation of the con-
nected components of the graph delivers us the split. In order to approximate the solution space of the
constraints in boxes, we base our implementation on a cheap interval branch-and-prune constraint prop-
agation framework, RealPaver [10]. The original RealPaver defines a user defined stopping criteria for
the branch-and-prune algorithm by specifying (i) a maximal time budget per query, or (ii) the number
of boxes reported per query, or (iii) lower bound on the size of box eligible for branching. We extended
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RealPaver by introducing a new stopping criteria which is more suitable to our probabilistic setting. Our
goal when approximating the solution space of a path condition is the accurate computation of the prob-
ability of occurrence of that path condition. The stopping criteria we introduced to the branch-and-prune
algorithm imposes a used defined accuracy to the probability enclosure computed with Monte Carlo in-
tegration over the outer box cover. This allows us to control the branching part toward the boxes with
the highest uncertainty in their computed probability. Consequently, we can efficiently reduce the un-
certainty on the computed probability. In the case that the user required accuracy is too sharp and the
required accuracy cannot be reached (because of the accumulation of rounding errors), the branch-and-
prune algorithm stops when the lower bound on the size of the boxes reached (there are no more eligible
boxes).

All the following experiments are executed on an Mac Pro 2.66 Ghz with 8Gb of memory running
OSX 10.9.
Experiments: Constraints over finite floating domains The following experiment evaluates how our
approach compares with recently developed techniques, VolComp [3, 16] and qCoral [2, 6]. VolComp
and qCoral are both recent techniques to approximate the probability of constraints. We use the built-in
method NProbability (with the default parametrization) of the mathematical tool Mathematica [1] as a
baseline for comparison. NProbability computes numerical integrals over predicates and probabilities
and terminates when default accuracy requirements are met and notifies when the accuracy requirements
are not met.

VolComp bounds the solution with an interval. qCoral as well as our approach report the approxi-
mated solution and a standard deviation of the approximation. Our approach was configured as follows:
(i) for the Monte Carlo integration, we use N = 1000 random samples, (ii) we set the lower bound on
the size of the boxes eligible for branching to 10−5 and (iii) we set the required accuracy to 0.005 (the
stopping criteria of our approach). We used the same configuration for qCoral, except the accuracy
stopping criteria, since qCoral do not provide such a feature. Both our approach and qCoral implement
randomized algorithms. We report averaged estimate and standard deviation over 20 runs.

To compare the three approaches, we selected benchmarks from the publicly available VolComp

benchmarks [3]. The comparison subjects are: (i) ARTRIAL: the Framingham artial fibrillation risk
calculator, (ii) CORONARY: the Framingham hypertension risk calculator, (iii) PACK: a model of a robot
packing objects with varying weights and (vi) VOL: controller for filling a tank with fluid at certain
rates. The path conditions for these programs are produced using VolComp. Table 1 summarizes the
comparison between our approach and VolComp and qCoral. The first column of Table 1 state the
program event whose probability is computed. The second column #PCs states the number of path
conditions that reach the event.

In summary, our approach was always faster than qCoral, VolComp and NProbability. Note that
the performance of NProbability depends usually on advanced settings. The tuning of such settings
requires a deep understanding of the mathematical properties of the function to integrate. Such an under-
standing may not be derived from the code during the analysis. The efficiency of our approach compared
to qCoral can be explained by the fact that we apply Monte Carlo Integration only on the outer box cover
of the approximated solution space. However, qCoral samples randomly over the whole approximated
solution space. Our approach required more than 30 minutes to compute the Vol event count ≥ 20. This
is caused by the accumulation of rounding errors. Rounding errors accumulation magnifies when the
quantified probability is close to 1. The rounding errors increase the uncertainty an the estimate. More
uncertainty means more sampling.

We notice that the estimates computed by our approach as well as the estimates computed by qCoral
fall within the bounds extracted by VolComp. The estimates delivered by our approach were closer to the



F. Omri, S. Omri & R. Reussner 13

exact solutions delivered by NProbability than the estimates produced by qCoral and VolComp. The
precision of our approach is due to the integration of importance sampling and stratified sampling which
reduce the uncertainty of the estimate. In addition, we control the branching step of the interval branch-
and-prune algorithm toward branching the boxes with the highest uncertainty. This should decrease the
overall uncertainty.

We observe that our approach as well as qCoral were equal slow for the benchmark PACK. The
reason for that is that RealPaver generated only an outer box cover for the solution space. This means
we sampled randomly over the whole solution space. This reduces the impact of our sampling strategy.

Table 1: Comparison of NProbability, VolComp, qCoral and our approach

Event #PCs NProbability VolComp qCoral our approach

solution time(s) bound time(s) avg.estimate avg.σ avg. time(s) avg.estimate avg.σ avg.
time(s)

ARTRIAL

score ≥ 10 442 0.1343 476 [0.1343,0.1343] 341 0.1343 0 183 0.1343 0 117
err ≤ 5 2260 0.9467 3879 [0.9387,9573] 1390.24 0.9389 2.80e-04 685 0.9464 1.26e-04 344

CORONARY

err ≥ 5 320 0.0006 3.44 [0,0.0172] 23 0.00047 3.29e-06 7.205 0.00051 1.87e-06 3.301

VOL

count ≥ 20 24 1.0005 1538.9 [0,1] 1842 1.0003 2.72e-05 1864 1.0003 7.82e-03 1856

PACK

totalWeight ≥ 4 1132 0.95051 54 [0.95051,1] 24 0.95038 1.00e-06 126.2 0.95046 1.12e-06 123.89

Experiments: Constraints over data structures The following experiments are conducted on a Bi-
nary Search Tree implementation adapted from [9]. The implementation can be found in the Appendix.
We used our approach to compute the probability of reaching different branches in the code implementing
the two methods add(n) and delete(n). Both methods take integer values as input. We bounded the
scope input domain to data structures with 3 nodes with increasing data value ranges [1 . . .10], [1 . . .50]
and [1 . . .100]. We compute for different branches in the code all path conditions that reach the branch as
well as their probabilities. The probability of the branch is approximated by the sum of the probabilities
of the path conditions reaching it. The results are presented in Table 2. The probabilities are rounded
for presentation purposes. The Branch Location column indicates the location in the code, # PCs refers
to how many path conditions reach the branch and the three following columns show the computed
probability to reach the branch. The parameter values are chosen uniform randomly from the intervals.

Table 2: Probability for covering branches in a Binary Search Tree

Method Branch Location # PCs [1 ... 10] [1 ... 50] [1 ... 100]

add

1
2
3
4

7
10
7
10

6.1218 ×10−2

3.3261 ×10−1

6.1218 ×10−2

3.3261 ×10−1

6.4499 ×10−2

3.5542 ×10−1

6.4499 ×10−2

3.5542 ×10−1

6.8939 ×10−2

3.7677 ×10−1

6.8939 ×10−2

3.7677 ×10−1

delete

5
6
7
8

7
14
14
1

4.3999 ×10−1

3.5834 ×10−1

5.3759 ×10−2

0.9399 ×10−6

4.7931 ×10−1

3.7464 ×10−1

5.7464 ×10−2

2.4310 ×10−7

4.9165 ×10−1

3.8802 ×10−1

6.1537 ×10−2

1.3728 ×10−9

First observation to make is that there is no correlation between the number of path conditions reach-
ing a branch and the probability of covering that branch. For example, the branch at location 7 of method
delete is reached by 14 PCs and the probability to cover it is smaller than the branch at location 7 which
is reached by only 7 PCs.

Considering the implementation code of the method add, the branches at locations 1 and 3 as well
as the branches at location 2 and 4 are symmetric around the check whether the value to add is less or
greater than current root value. This code aspect is captured by our probabilistic approach.
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Next observation we can make is that for some branches the probability to reach them increases when
the range of value increases. For example, adding values to the binary tree is easier when the range of
values to select from is larger: it is less likely to select and add a value that is already in the binary tree.

The branch at location 8 in the method delete is the least likely to be reached. This event becomes
more rare when the range of allowed input values increases. Based on the implementation code, this
branch corresponds to the case when we try to delete the root node when the tree is empty. This is an
unlikely behavior since it simulates deleting an element from an empty tree.

Scalability Remarks: Korat enumerates each possible data structure including all input values. Such
an enumeration can be very expensive especially when the range of possible input values increases.
For counting data structure models with values in [1 . . .10], Korat took less than 2 seconds on average.
However, for values in the range [1 . . .50] Korat took 17 minutes and more than 2 hours on average for
values in the range [1 . . .100].

10 Related Work

The presented work is related to many areas including statistical model checking [12], analysis of prob-
abilistic programs [13], and integration methods over polyhedras [8].

We compute the probability of a path condition or more generally a set of path conditions that lead
to a program behavior of interest. The techniques for the probability computation of the path conditions
differ in the approach used to approximate the solution space, the distribution type of the input variables
and the linearity of the constraints.

Geldenhuys et al. [9] present an approach that considers only uniform distributed input variables and
linear integer arithmetic constraints. They used LattE Machiato [8] to count the solution space of the
path conditions. One main difference between this work and ours is that we support complex nonlinear
constraints and we use constraint propagation techniques to approximate the solution space. In addition
our approach is not restricted to uniform distribution.

Sankaranarayanan et al. [16] recently proposed a technique to remove the restriction of uniform
distribution by developing an algorithm for the under and over-approximation of probabilities. They use
Linear Programming solvers to compute the over-approximations and heuristics to compute the under-
approximation. However, their approach is limited to linear constraints. More recently, Borges et al. [6]
proposed an approach for handling nonlinear constraints based on interval constraint propagation tech-
niques and Monte Carlo integration. One main technical difference between this approach and our work
is that our approach is incremental and computes probabilities at each branching constraint which allows
for better scalability of symbolic execution. The approach of Borges et al. computes the probabilities
after symbolic execution finishes. In addition, our work extends interval constraint propagation by al-
lowing to control the efficiency of the solution space approximation. The approximation procedure is
controlled based on a user-defined accuracy parameter on the computed probability of a target program
behavior. Furthermore, our work makes use of the joint box cover structure computed by the interval
constraint propagation techniques and applies Monte Carlo integration only on the outer cover. Borges
et al. apply Monte Carlo integration on the whole approximated solution space. Consequently, their
approach as shown in our experiments may require more samples to compute the probabilities with a
given accuracy. Moreover, our work supports constraints over data structure which is not supported by
Borges et al.
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11 Conclusion

We have developed an incremental and compositional approach for the approximation of the solution
space of complex nonlinear constraints. We also presented an approach for counting the solution space
of constraints over data structures. This allows us to extend symbolic execution to perform a probabilistic
analysis - the computation of path condition probabilities. We also allowed adding uncertainty about
the input values of the analyzed program and take such uncertainty into account when computing the
probability of a path condition. Our initial experiments are promising, however our approach has same
scalability issues especially when counting solutions for constraints over data structures. We plan to
explore optimization schemes to its performance. We also plan to open source our tool.
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APPENDIX This appendix presents the code for the Binary Search Tree example used in this paper.

A Implementation Code of the Method add

1
2 public void add(int x) {

3 Node current = root;

4
5 if (root == null) {

6 root = new Node(x);

7 return;

8 }

9
10 while (current.value != x) {

11 if (current.value > x) {

12 if (current.left == null) {

13 //Location 1

14 current.left = new Node(x);

15 } else {

16 //Location 2

17 current = current.left;

18 }

19 } else {

20 if (current.right == null) {

21 //Location 3

22 current.right = new Node(x);

23 } else {

24 //Location 4

25 current = current.right;

26 }

27 }

28 }

29 }

B Implementation Code of the Method delete

1
2 public boolean delete(int x) {

3 // Algorithm note: There are four cases to consider:

4 // 1. The node is a leaf.

5 // 2. The node has no left child.

6 // 3. The node has no right child.

7 // 4. The node has two children.

8
9 //initialize parent and current to root

10 Node current = root;

11 Node parent = root;
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12
13 boolean isLeftChild = true;

14
15 if (current == null)

16 return false;

17
18 //while loop to search for node to delete

19 while(current.value != x) {

20 //assign parent to current

21 parent = current;

22 if(current.value > x) {

23 //Location 5

24 isLeftChild = true; //current is a left child

25 current = current.left; //make current’s left child the current node

26 }

27 else {

28 //Location 6

29 isLeftChild = false; //current is a right child

30 current = current.right; //make current’s right child the current node

31 }

32 if(current == null) { //data can’t be found, break from loop

33 //Location 7

34 return false;

35 }

36 }

37 // test for a leaf

38 if(current.left == null && current.right == null)

39 {

40 if(current == root) {//tree has a single node, make root null

41 //Location 8

42 root = null;

43 }

44 else if(isLeftChild) { //current is a left child so make its parent’s left

null

45 parent.left = null;

46 }

47 else {

48 parent.right = null; //current is a right child so make its parent’s right

null

49 }

50 }

51 // test for no right child

52 else if(current.right == null)

53 if(current == root) { //current is root so make root point to current’s left

54 root = current.left; //old root gets deleted by garbage collector

55 }

56 else if(isLeftChild) { //current is a left child so make its parent’s left

point to it’s left child

57 parent.left = current.left;

58 }

59 else { //current is a right child so make its parent’s right point to it’s

left child
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60 parent.right = current.left;

61 }

62 // test for no left child

63 else if(current.left == null)

64 if(current == root) { //current is root so make root point to current’s right

65 root = current.right; //old root gets deleted by garbage collector

66 }

67 else if(isLeftChild) { //current is a left child so make its parent’s left

point to it’s right child

68 parent.left = current.right;

69 }

70 else { //current is a right child so make its parent’s right point to it’s

right child

71 parent.right = current.right;

72 }

73 // there are two children:

74 // retrieve and delete the inorder successor

75 else {

76
77 Node successor = getSuccessor(current); //get successor

78
79 if(current == root) {

80 root = successor;

81 }

82 else if(isLeftChild) {

83 parent.left= successor; //set node to delete to successor

84 }

85 else {

86 parent.right = successor;

87 }

88 // attach current’s left to successor’s left since successor has no left child

89 successor.left = current.left;

90 }

91 return true;

92 }
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