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Abstract

Flexibility is considered a multifaceted, domain-specific, and difficult to generally de-
fine concept. Systems can better adapt to a changing environment if flexibility poten-
tials are available. In service systems consumer flexibility may readily be available, but
requires careful dispatch to balance the interests of service providers and consumers.
This thesis is concerned with efficient dispatch of consumer flexibility in smart-grid
and car-sharing systems, instances of energy and mobility services.

The proliferation of renewable energy sources introduces both uncertainty and
volatility to the supply side of electric power systems. Novel economic coordina-
tion approaches leveraging flexibility potentials based on smart grid technology re-
quire appropriate incentive design. In particular, incentives should dynamically re-
flect scarcity. We consider the case of demand-shifting and shedding, and design two
dominant-strategy incentive-compatible online mechanisms. The first model-free
mechanism coordinates between flexible demand and uncertain supply from renew-
ables. The second model-based mechanism employs a more elaborate model of de-
mand, and can additionally resort to conventional generation. Furthermore, it relies
on algorithms from online stochastic combinatorial optimization, which are modified
to achieve thruthfulness.

Future multi-modal mobility systems need to orchestrate heterogeneous mobility
services to provide consumers with fast, reliable and sustainable mobility options.
Car-sharing schemes may gain in importance and assume the role of system enablers
by providing the building block of individual mobility. In order to efficiently coordi-
nate capacity utilization, consumer flexibility with respect to location, time, or vehi-
cle type may be leveraged. We develop an online optimization algorithm that lever-
ages spatial flexibility and advance reservation information to improve the economics
of car-sharing. Interestingly, diversity in usage requirements enables adoption of di-
verse technologies, each suited to a different part of the demand spectrum. Parts of
this spectrum may be served by electric vehicles. To explore this potential, we ex-
amine the economics of electric vehicle adoption in car-sharing fleets. We find that
consumer flexibility can greatly improve the prospects of electrification.

This work is anchored in the fields of online optimization and online mechanism
design and presents applications thereof in energy and mobility service systems. It
contributes towards a better understanding of the value and limitations associated
with consumer flexibility in online settings in both fields.
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Chapter 1

Introduction

This dissertation addresses service-oriented micro-transactions in two domains, elec-
tric power and mobility. Both domains exhibit asset perishability and uncertainty as
central aspects, introducing interesting economic coordination challenges. We aim
to meet these challenges by focusing on efficiently employing consumer flexibility,
the overarching topic of this thesis. In the spirit of Jordan and Graves (1995), we ar-
gue that small amounts of flexibility may be sufficient to foster significantly improved
economic outcomes. To this end, Information and Communication Technology (ICT)
provides the technical infrastructure for semi-automated or assisted decision mak-
ing. The addition of ICT in the power systems domain enables monitoring and con-
trol and turns power distribution networks into smart grids. Shared mobility systems
rely on ICT to ensure smooth information exchange between users and providers, fos-
tering efficient system control. Our application of interest in the mobility domain is
station-based car-sharing. We formulate optimization problems and design online
mechanisms that rely on ICT infrastructure with the objective of efficiently harness-
ing dispersed demand-side flexibility.

This chapter first presents an overview of the relationship between uncertainty and
flexibility, with incentives providing the necessary link between the two. We then out-
line the research questions in the smart grid and mobility domains, and finally present
the overall dissertation structure.

1.1 Uncertainty, Flexibility, and Incentives

Decision makers perpetually face uncertainty in almost all areas of business and eco-
nomics. Often, forecasting methods (Hyndman and Athanasopoulos, 2013) are used
to reduce uncertainty, enabling better decisions. Uncertainty in smart grids, or power
systems, respectively, has mainly temporal character, i.e., quantity forecasts (of both,
supply and demand) may err with respect to two dimensions: Phase and amplitude
(Giebel et al., 2011). Besides research on quantity forecasts, a large body of literature
is concerned with modeling and forecasting electricity prices (cf. Conejo et al., 2005;
Banal-Estañol and Micola, 2009; Keles et al., 2012). In the mobility domain, both tem-
poral and spatial demand uncertainty play an important role. To complicate matters,
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4 Introduction

we are concerned with decision making under incomplete information about the fu-
ture, i.e., online decision making.

The negative aspects of uncertainty, however, may be alleviated by means of con-
sumer flexibility. In both domains, we assume that consumers can, to a varying de-
gree, be considered flexible with respect to non-functional service requirements. An
important question therefore concerns the efficient utilization of available flexibil-
ity, i.e., “how much flexibility should be provisioned by each consumer?” A second
question concerns incentive design: How can consumers’ flexibility be elicited and
“used”? Flexibility comes in a rich variety of flavors: In the smart grid setting, tempo-
ral flexibility is of paramount importance to efficiently integrate large shares of supply
from volatile Renewable Energy Sources (RES). While shifting demand to a later time
can alleviate the burden on conventional generation, demand-side flexibility is not a
perfect substitute for supply capacity. Conventional generation is still required even
if all customers are flexible, when total quantity demanded exceeds renewable sup-
ply throughout an extended period of time. In (station-based) car-sharing, we place
special emphasis on consumers’ spatial flexibility to compensate for fluctuating and
uncertain demand patters over space and time. In other words, the corresponding
non-functional service requirement concerns flexibility with respect to the stations at
which the desired type of vehicle is stationed.

Flexibility often exhibits a convex cost structure: Provision of a limited amount of
flexibility may be near-costless, while requesting very high flexibility may be, in con-
trast, extremely costly. In this vein, Kwon and Østergaard (2014) show that up to one
quarter of total demand in power systems is flexible within a 2 hour time frame while
only 7% of demand could be shifted by a whole day, indicating a convex structure re-
garding the cost of flexibility provision. Hence, it may be more economical to leverage
micro-flexibilities from a large set of agents compared to large amounts of flexibilities
from a small set of agents (cf. Tang and Tomlin, 2008). This may be in particular true if
transaction costs (communication, computation, and automation) are negligible due
to ICT adoption. For portfolios of small flexibilities to attain significant value, efficient
composition, i.e., chaining a la Jordan and Graves (1995) is essential.

The value of optimization in many applications is indisputable. However, all-too-
often engineers designing service systems neglect the question of incentive design in
distributed systems involving self-interested agents. Rational agents cannot be ex-
pected to facilitate systems performance at their own expense. Instead, incentives for
flexibility revelation and provision need to be established. Incentive design must en-
sure that revelation of agents’ flexibility type renders them better off, i.e., provide ben-
efits relative to non-disclosure. Then, individual agents can align behavior and incen-
tives and thereby maximize individual utility. In short, Individual Rationality (IR) must
be ensured for agents to participate in the mechanism. Furthermore, given the small
value attached to individual transactions in the domains under consideration, spe-
cial emphasis should be placed on ensuring Incentive Compatibility (IC) of the corre-
sponding mechanisms. Mechanisms that are IC prevent agents from strategizing on
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their type to increase payoffs from trade, and thus reduce complexity.1 Briefly, “[..] in
a [Bayesian-Nash] incentive-compatible mechanism, each individual can maximize
his expected utility by reporting his true valuation, given that the other is expected to
report honestly” (Myerson and Satterthwaite, 1983).

Achieving IC in the presence of competing design desiderata (Myerson and Sat-
terthwaite, 1983) may be challenging. Accordingly, the design of sustainable markets
requires economists to adopt engineering perspectives, understand issues of compu-
tational complexity, and have a solid foundation in the main results of mechanism
design literature (cf. Roth, 2002) to avoid market failures. The market engineering
framework (Weinhardt et al., 2003) structures the market design process into mutually
exclusive subtasks that, as a whole, take a holistic approach towards the establishment
of ICT-based markets. Hence it may serve as a structured blueprint for the design of
markets and incentive schemes. We argue that incentives pose an essential building
block towards effective flexibility provision by consumers in service systems.

1.2 Smart Grids

After the recent unprecedented growth in renewable generation capacity, RES are sup-
plying up to 25.3% of total load in Germany (2013)2. The proliferation of RES with
the goal of establishing more sustainable power systems, will have two major conse-
quences: First, RES will inject additional uncertainty and volatility into power systems
(Varaiya et al., 2011). Second, in contrast to traditional power systems architecture,
low energy density of RES forces generation to be spread geographically (Smil, 2010),
requiring upgrades of transmission and distribution networks that have historically
been designed for centralized supply. Such decentralization renders maintaining the
balance between supply and demand at all times increasingly difficult. In distribu-
tion networks, fluctuating power generation may additionally lead to serious power
quality problems (voltage, jitter, etc.), and must be addressed appropriately.

Smart grid adoption, in contrast to traditional capacity over-provisioning, relies on
(i) ICT upgrades to the existing power (distribution) networks (Farhangi, 2010), and,
(ii) establishment of economic coordination schemes, potentially along the market
engineering framework (Weinhardt et al., 2003; Weinhardt, 2012). On a related note,
Bichler et al. (2010) coin the term “smart markets”, which are supposed to facilitate the
alignment of conflicting interests by means of electronic market-based coordination
schemes. To foster acceptance of these coordination schemes in complex environ-
ments, such as the smart grid, the introduction of decision support systems guiding

1Nevertheless, compact type representation in combinatorial settings remains an inherently complex
task.

2http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/
Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html, accessed
October 2, 2014

http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
http://www.erneuerbare-energien.de/EE/Navigation/DE/Service/Erneuerbare_Energien_in_Zahlen/Zeitreihen/zeitreihen.html
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human decision making may be required. Importantly, our interpretation of the smart
grid as a techno-economic system (Nolden et al., 2013; Flath, 2013) reaches beyond a
perspective that is solely concerned with the technical side (Amin and Wollenberg,
2005; Gellings, 2009), and, following Chassin and Kiesling (2008), focuses on the eco-
nomics of demand-side activation.

Demand-side Flexibility and Energy Services To compensate fluctuating renew-
able supply, demand-side flexibility may be an economic alternative to storage. At
low penetration levels of RES, flexibility of conventional supply may be sufficient and
can be re-dedicated to offset novel fluctuations due to RES (Strbac, 2008). However,
guaranteeing reliability of supply without curtailing demand or shedding excess re-
newable generation becomes increasingly costly at higher RES penetration levels.

The expected rise of Electric Vehicles (EVs) has, hence, provided an interesting re-
search avenue into novel charging coordination approaches. The literature on price-
based EV charging coordination has, to a large extent, been shaped by approaches
to circumvent over-coordination and herding effects. Flath et al. (2013), for instance,
propose spatial price differentiation in order to efficiently integrate distribution net-
work constraints into charging regimes. Schuller et al. (2014) highlight the empirical
savings potential resulting from smart EV charging and feeding energy from the vehi-
cle back into the power grid (V2G).

In order to face the challenges associated with the current energy transition, eco-
nomic coordination potentials associated with EV charging alone may be insuffi-
cient. Consequently, leveraging demand-side flexibility through so-called Demand
Side Management (DSM) has received attention from academia and industry alike.
This approach entails a paradigm shift in power system operations: DSM aims to
shape demand to follow supply through shedding, shifting, curtailment, etc. Clearly,
including demand-side flexibility opens up the search space and enables more favor-
able economic outcomes compared to an isolated reliance on supply side flexibility
only. Implementing DSM requires a careful understanding of the associated costs and
benefits on the individual customer level in order to efficiently reap DSM benefits.
For instance, customers may be required to specify the extent to which their demand
is temporally flexible and whether it can be shedded. The notion of energy services
may assist in encapsulating the temporal aspects of energy consumption and there-
with reduce cognitive overhead and transaction costs.

Traditionally, the term energy service is understood as “serving the need for electri-
cal energy” (Sioshansi, 1995). In contrast, the energy services we refer to in this work
are inspired by the seminal work of Schweppe et al. (1988):

“Customers have no desire for electric energy per se (although people can
get a charge out of it). Customers do desire the services provided by elec-
tric energy.”
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More specifically, customers do not value a certain amount of energy, but attach value
to clean dishes, clean clothing, a well tempered home, or a sufficiently charged EV
to provide mobility. The utility associated with functional service delivery might be
influenced by non-functional characteristics, such as privacy, response time and reli-
ability, thus introducing a notion of QoS. If service delivery is not required immedi-
ately, or the appliance providing the service can be modulated, the associated flexibil-
ity may be operationalized as a restricted form of storage.3 Relative to physical storage
devices (e.g., batteries) flexibility may be more cost-efficient.

In novel retail market designs, a QoS approach including reliability and timeliness
of power service may play an important role in determining both allocation and pay-
ments. Due to the heterogeneity of QoS requirements for different demand classes, a
granular approach is required. Then, customers are empowered to decide on the level
of individual energy services regarding immediate or postponed service.

The Role of Information and Incentives Efficient integration of RES via DSM re-
quires economic coordination between a large number of stakeholders, i.e., network
operators, generators, and consumers in the smart grid. The basic infrastructure
building block for such economic coordination is the smart meter, which currently
is introduced to the market. By means of complex pricing schemes it may convey ac-
curate (in time and space) scarcity signals to consumers, and accordingly give rise to
improved allocative efficiency. Nevertheless, in order to avoid over-coordination and
herding effects from price signals, bidirectional communication and automation are
required. The latter in particular requires a good understanding of individual prefer-
ences. Thus, information flow can be separated into two stages: From the consumer
to an agent acting on his behalf, closely aligned with the individual consumer’s pref-
erences, and from the agent to a coordinating instance, e.g., a market.4

Given sufficiently developed automation technology, providing flexibility may be
associated with low transaction costs, fostering the integration of even marginal
amounts of flexibility. Similar to the manufacturing domain where small amounts of
process flexibility can yield high value (Jordan and Graves, 1995), even small amounts
of flexibility in the power system may significantly improve economic outcomes. Us-
ing flexibility efficiently requires not only information on flexibility endowments, but
also the appropriate incentive and coordination structures.

Appropriate incentive structures need to be developed for the smart grid (Dash
et al., 2003; Ramchurn et al., 2012), as self-interested consumers require compen-
sation for flexibility provision. Simple posted price schemes may be quite efficient
in static environments. However, at higher RES penetration levels and constrained

3For a discussion of qualities of demand-side flexibilities, see Petersen et al. (2013).
4A notable example of novel approaches regarding the first stage can for instance be seen in NEST’s

smart thermostats to control Heating, Ventilation and Air-Conditioning (HVAC) more efficiently
(https://nest.com/). The information when consumers are at home, may prove beneficial
in efficiently deciding on energy usage.

https://nest.com/
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networks, this might no longer hold true: Static pricing rules cannot cope with the
dynamism of fluctuating generation, possibly wasting large parts of readily available
welfare-enhancing flexibility potentials. Hence, this work proposes the application
of online mechanism design (Parkes, 2007) to bridge the gap between the dynamism
present in modern power systems and the appropriate incentives to include demand-
side flexibility in power system operations.

Research questions Our first research question is concerned with the value of flex-
ibility in a smart grid setting, where stochastic RESs are the only supply source. We
employ a simple representation of demand and allow for limited demand shedding
and shifting.

Research Question 1: What is the value of flexibility under single-unit sheddable and
shiftable demand in a local smart grid setting?

Besides the potential value of flexibility, we are particularly interested by how much
economic performance deteriorates in the presence of self-interested agents, i.e., un-
der an incentive-compatible online mechanism.

Research Question 2: What is the cost of ensuring IC in terms of social welfare?

Our contribution to the literature is the adaption of the canonical online mecha-
nism, presented in (Parkes, 2007), to the smart grid domain. More specifically, we
introduce a generic supply model that captures realistic uncertainty attributes of RES,
e.g., wind generators.

Expanding upon the results of these questions, we examine to what extent both, the
introduction of a model of the future, and a slightly more complex model of demand,
affect economic performance in Chapter 5. To this end, we consider multi-unit and
non-preemptive demand. Hence, jobs can be shifted in time, but may not be inter-
rupted after they have been started. Clearly, in the absence of conventional, dispatch-
able generation, poor scheduling decisions would lead to infeasible schedules. There-
fore, we augment uncertain supply from RES with costly conventional generation to
answer the following research question:

Research Question 3: What is the value of shiftable and sheddable non-preemptive de-
mand under uncertain future supply from RES in the presence of costly conventional
supply?

However, as mentioned before, the answer to the previous question is only an indi-
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cator of the value of flexibility, which presumably cannot be achieved, as the proper
incentives to reveal flexibility are lacking. To ensure IC, further constraints are added
that reduce the set of feasible solutions, hence reducing overall welfare. We are inter-
ested in the cost associated with these IC constraints.

Research Question 4: To what extent does flexibility affect the welfare gap between
an online planner and an online mechanism ensuring IC with multi-unit, non-
preemptive demand in the model-based case?

Additionally, we explore the value of information with respect to both, overall wel-
fare and the cost of IC:

Research Question 5: To what extent can more accurate information regarding future
uncertainty, e.g., a larger number of scenarios and longer scenario horizon, contribute
to higher efficiency and reduce the cost of IC?

Our contribution in Chapter 5 is twofold: First, we adapt the Expectation (Chang
et al., 2000a) and Consensus (Bent and Van Hentenryck, 2005) algorithms from online
scheduling to the multi-machine setting, such that multiple jobs may now be allo-
cated at the same (discrete) time. Second, based on these adapted algorithms, we de-
sign a novel incentive-compatible online mechanism for allocating flexible demand
to fluctuating renewable supply under uncertainty at high efficiency. To ensure IC the
mechanism is organized in two stages. An initial consensus stage, that ensures mono-
tonicity in allocation decisions through “pre-commitment” (cf. Gerding et al., 2011)
and thus renders revelation of flexibility a dominant strategy, and a second stage con-
cerned with improving economic efficiency, subject to the allocation decision fixed
before. Importantly, arrival and flexibility do not affect allocation decisions, but do
affect payments. Ceteris paribus, payments from conusmers to the mechanism are
monotonously decreasing in flexibility.

1.3 Mobility Systems

Multimodal approaches to passenger transportation have received a great amount of
attention in the recent academic literature (cf. Nobis, 2006, 2007; Kuhnimhof et al.,
2012). Situation-based usage of the most appropriate means of transportation can
assist in overcoming congestion, poor air-quality, accidents and other externalities
of individual transportation. Not surprisingly, in the presence of a well-developed
public transportation scheme, the relevance of personal vehicles is often driven by
the need for sporadic access to individual transportation (think of shopping trips or
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weekend travel). Hence, an important building block of multi-modal transportation
solutions is access to point-to-point connectivity in order to be able to complete such
individual trips. For example, mobility consumers may be satisfied to board suburban
trains, trams, or buses for their everyday commute, but may sporadically require a
different means of transport. The proliferation of ICT may attach the convenience
commonly associated with ownership, to service solutions (which separating usage
and ownership), and hence foster adoption of multimodal mobility services.

Car-sharing The neighborhood rental of vehicles with automated vendor interac-
tion, i.e., car-sharing, is suited to economically provide such sporadic point-to-point
connectivity and hence may serve as an ideal complement to public transportation.
Alternatively, car-sharing may provide mobility to families instead of forcing owner-
ship to cover sporadically arising mobility needs. The economics of car-sharing are
in favor for low intensity users of individual transportation, as fixed and maintenance
costs are distributed over a larger user base. Improved information access via con-
nected mobile devices reduces transaction costs and allows for easier resource shar-
ing. Hence, it may render novel, more dynamic forms of sharing possible that so far
encountered prohibitive transaction costs.

Improving Fleet Utilization Similar to the case of energy services, mobility services
require multi-dimensional characterization. Customers may be flexible with respect
to the exact type of vehicle to use for the trip under consideration, the time of service
delivery, the station used for vehicle pick-up and drop-off, or a combination thereof.
As we will see, customers’ spatial flexibility turns out to be decisive with respect to
achieving high-quality economic outcomes in the dimensions of fleet utilization and
quality-of-service for customers, at least in the particular instance of car-sharing exa-
mined in Chapter 7.

An interesting intersection of the two domains of power and mobility systems can
be found in electrified car-sharing. We will explore this topic towards the end of this
thesis.

Based on a unique car-sharing data set, we examine the value of temporal and spa-
tial flexibility and derive potential fleet size reductions due to customer flexibility in
the offline case. We demonstrate that flexibility induces pooling effects which may be
leveraged to improve operations efficiency. Accordingly, we pose the following ques-
tion.

Research Question 6: To what extent can consumer flexibility improve the economics
of car-sharing?

Our contribution is an adaptation of the widely known bin-packing problem (cf.
Nemhauser and Wolsey, 1988) that we employ to determine the minimal number of
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vehicles required to serve all customer requests. Consumer flexibility enlarges the set
of vehicles a reservation can be assigned to and hence allows to reduce overall fleet
size through denser scheduling of reservations on fewer vehicles.

In the online case, given an exogenously defined fleet of reduced size, we employ
flexibility to improve QoS, i.e., the shares of reservations served. In this case, the chal-
lenge lays in assigning reservations to vehicles in such a way as not to block future
reservations assignments5, hence we ask:

Research Question 7: What is the value of spatial consumer flexibility in terms of QoS?

To answer this question, we present an Expectation-inspired (Hentenryck and Bent,
2009) online planner which trades-off QoS and consumer walkways and thereby out-
performs greedy benchmarks selecting either the closest (on a First Come First Served
(FCFS) basis) or the historically least-utilized station.

Fostering Sustainability EVs are, due to the high cost of batteries, more expensive to
purchase, but, in exchange, offer reduced operating expenses. This combination calls
for intensive usage in order for EVs to be economically justified. Thus, it nicely maps
into the scenario of car-sharing, where frequent vehicle utilization and mostly short
distance trips renders EVs an interesting complement. As EVs are locally emission-
free, they provide an additional advantage for passenger transportation in densely
populated urban areas. In shared mobility scenarios, drivers can avoid the issue of
range anxiety (Eberle and von Helmolt, 2010) by adapting the choice of vehicle tech-
nology to trip distance.

First, we ask to what extent reservations can be satisfied from range-restricted elec-
tric vehicles. By giving customers the choice for a vehicle for each trip, a more diverse
range of technologies can be employed. The availability of multiple technologies may
accredit sharing schemes with tangible advantages relative to more traditional indi-
vidual ownership schemes. In the latter, the corresponding vehicle must be designed
such that even the most extreme mobility demands (e.g., range, number of seats) can
be met by the vehicle, often dominating other aspects of mobility choice. As reser-
vation distance and duration are distributed heterogeneously, a significant amount
of reservations may be served using EVs. Again, we are interested in the impact of
consumers’ spatial flexibility on fleet size, if EVs are to be included.

Research Question 8: To what extent enables (spatial) consumer flexibility electrifica-
tion of car-sharing fleets?

5The online planner is effectively trading-off efficiency and robustness.



12 Introduction

To answer this question, we present a hybrid optimization model along the lines
of a Generalized Assignment Problem (GAP) that combines EV charging constraints
with both, scheduling constraints and non-overlap constraints. Our objective is the
minimization of total cost of fleet operations using both technologies.

Beyond car-sharing as it is implemented already today, the advent of self-driving
cars might render the concept of car-ownership obsolete to larger portions of urban
population. In particular, it may strengthen the relevance of both, shared mobility
approaches and solutions to corresponding economic coordination problems.

1.4 Structure

This section provides a short outline of the thesis structure (see Figure 1.1). Chapter 2
introduces the concept of flexibility and presents a broad literature overview in adja-
cent fields that the remainder of the thesis relies upon. Thereafter, the two main parts
of the thesis follow.

Part II focuses on smart grids and online mechanism design. Chapter 3 presents
the related work and fundamentals in the field of smart grids. Chapter 4 adapts the
canonical online mechanism (Parkes, 2007) to the smart grid, including a rich eval-
uation in multiple dimensions, including market power, payments and allocations.6

Thereafter, in Chapter 5, Online Mechanism Design (OMD) is again applied to a richer
demand model with the main focus on allocative efficiency. Furthermore, special em-
phasis is placed on the value of more accurate information about the future.7

Part III examines the value of flexibility in car-sharing using empirical data and
both, offline and online optimization approaches. In Chapter 6, the role of car-
sharing in future mobility systems is introduced, along with specific information on
the dataset used in the subsequent two chapters for evaluation purposes. Chapter 7
presents offline and online optimization models leveraging consumer flexibility for
fleet size minimization (offline) or QoS maximization (online). In Chapter 8 we sound
out the prospects of EVs in car-sharing.

Finally, Part IV summarizes the main results and presents an outlook into avenues
of promising future research.

6An earlier version was circulated as Ströhle et al. (2012)
7An earlier version was presented at AAMAS, 2014 (Ströhle et al., 2014).
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Chapter 2

On Flexibility

This chapter presents an introduction to flexibility in different domains and aims to
outline the boundaries of the broad concept of flexibility. There exists a vast body
of literature on flexibility in the microeconomics and management science literature
alone, which renders the definition of flexibility a challenging task. Therefore, we fo-
cus on fields and aspects that we deem most relevant for this work.

Flexibility in general is considered valuable if uncertainty and change are present
in the considered system. Its value can be derived from all levels of decision making,
from operational to strategic.1 We introduce the literature on flexibility in roughly
chronological order and begin with the field of manufacturing, starting on the micro-
scopic level with flexibility in scheduling, continuing with operational and strategic
flexibilities. Thereafter, we review the literature on flexibility between multiple firms,
i.e., in supply chains and supply networks and compile a comprehensive literature
review of flexibility in Operations Management (OM). We pay particular attention to
process and structural flexibility (Jordan and Graves, 1995) and finally arrive at strate-
gic flexibility. Based on these prerequisites, we provide details on flexibility in the
realm of electric power systems and car-sharing, the two domains of interest in this
work. We conclude with a discussion of flexibility and its relationship to the work at
hand.

2.1 Flexibility in Manufacturing

The general concept of flexibility in manufacturing systems has been studied inten-
sively and along many dimensions in the literature of past decades (Sethi and Sethi,
1990; Browne et al., 1984; Mandelbaum, 1978). Firms perpetually face uncertainty
with respect to market conditions and technological change. More specifically, de-
creasing lead times in production and shorter product life cycles due to competition
require flexibility on multiple decision levels. A firms’ ability to adapt to both, chang-
ing environments and fluctuating demand, is increasingly valuable and possibly crit-
ical for sustained success in the market place.

1 “Flexibility is not just an adaptive response to an uncertain environment. It has a proactive function
in creating uncertainties that competitors can not deal with.” (Gerwin, 1993).

15
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Flexibility, however, comes at a cost in the form of larger engineering efforts or more
expensive machinery, and hence, determining the optimal amount of flexibility is an
interesting question. While the drivers for the value of flexibility are coarsely under-
stood, an exact and universally accepted definition of flexibility itself is lacking. This
section provides an overview of the literature on flexibility in the manufacturing and
adjacent domains.

Qualitative Flexibility Concepts Gupta and Somers (1992) borrow from Sethi and
Sethi (1990) to repeat that “manufacturing flexibility is a complex, multidimensional
and difficult-to-synthesize concept.” The central role of flexibility is acknowledged as
it provides a “critical measure of total manufacturing performance.” They conducted
both literature review and a questionnaire survey with responses from 269 firms at the
chief executive level to cast (manufacturing) flexibility into nine constructs. Those
constructs were validated through additional data collected from 113 firms (Gupta
and Somers, 1992), and include volume, programming, process, product and produc-
tion, market, machine, routing, material handling, as well as expansion and market
flexibilities (Gupta and Somers, 1992, Fig. 2).

A comprehensive overview of concepts and measurement of flexibility in manufac-
turing systems is given in the overview paper of Gupta and Goyal (1989). The authors
of a review article on manufacturing flexibility (Beach et al., 2000), following the lit-
erature, define flexibility as "the ability of the system to quickly adjust to any change
in relevant factors like product, process, loads and machine failure". A simpler and
more general definition is given with "the ability to change or react with little penalty
in time, effort, cost or performance" (Upton, 1994).

Beach et al. (2000) synthesize manufacturing flexibility from most of the literature
presented so far and place special emphasis on its interplay with uncertainty “from a
largely operational perspective.” They interpret manufacturing flexibility to be valu-
able in both, proactive and reactive uses. The latter is more relevant on a operational
level, while the former use of flexibility relates more closely to a firm’s strategic objec-
tives. Eventually, Beach et al. (2000) posit that "any measurement of flexibility must,
because of its nature, be user or situation specific."

A manufacturing plant is considered flexible (volume flexibility) if average cost of
goods produced is rather flat over the quantity produced (p. 291 Sethi and Sethi, 1990,
referring to Stigler 1939). However, "flexibility will not be a free good". A plant de-
signed to accommodate large volume uncertainty and thereby remain profitable will
likely have higher per unit cost than a plant operating at nameplate capacity. As Sethi
and Sethi put it, the value of flexibility increases in the variation (variance) of the mar-
ket price of the good and the "ability to predict market prices before making output
decisions". Hence, manufacturing flexibility is not an end in itself, but rather required
in order to successfully face change and uncertainty on the demand side.2

2 A compact flexibility overview in lean manufacturing is provided in Herrmann (2013, pp. 25–28).
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Zelenović (1982) highlights the trade-off involving operational manufacturing flex-
ibility and productivity. On the other side, Zelenović highlights the perception that
flexibility in the production process allows employees to make decisions on their own,
which would be impossible in a rigid, inflexible system. Hence, as he expresses it, flex-
ibility aids in “raising the level of humanization of work.”

From deduction and literature studies, however, the introductory remark in Sethi
and Sethi (1990) must be emphasized: "Flexibility is a complex, multidimensional,
and hard-to-capture concept." The authors show by means of a literature review that
at least 50 different terms exist that all describe various types of manufacturing flex-
ibility. The common denominator in all of them (Sethi and Sethi, 1990) seems to be:
"With flexible manufacturing, it becomes possible to bring the efficiency of mass pro-
duction to batch production of multiple products."

Formal Flexibility Measures Kumar (1987) develops formal measures for manufac-
turing flexibility that must be acknowledged as interesting, simple and elegant. First,
seven essential and eight desirable axioms are outlined. A good measure for man-
ufacturing flexibility must (should, in the case of the desirable axioms) satisfy those
axioms. Thereafter, Kumar introduces the well-known information-theoretic mea-
sure of entropy as already defined by Shannon in 1948 into the manufacturing con-
text. The only drawback of this measure is its lack of parametrization possibilities.
Subsequently, three additional measures are introduced to alleviate this shortcoming.
Unfortunately, neither of them fulfills all requirements introduced before, but the dif-
ferent measures may be applicable depending on the situation. In particular, these
measures can be tailored to the situation under consideration by adjusting the corre-
sponding parameter values appropriately.

Brill and Mandelbaum (1989) first outline the literature on flexibility in manufac-
turing to continue with the introduction of formal definitions of flexibility for both,
individual machines and groups of machines with respect to a specific task. Regard-
ing the latter, they introduce optimistic and pessimistic measures of flexibility, and a
wide array of measures from in-between those two. The notion of optimistic and pes-
simistic flexibility measures demonstrates the complementary character of flexibility
and uncertainty.

Dimensions of Flexibility Browne et al. (1984) characterize flexibility in the manu-
facturing context and aim to highlight when exactly a manufacturing system should
be termed “flexible”. In their description, a Flexible Manufacturing System (FMS) can
encompass flexibility in eight different dimensions: First and foremost machine flex-
ibility, i.e., the “ease of making the changes required to produce a given set of part
types”, process flexibility, i.e., extending machine flexibility to different materials and
different ways of production, product flexibility, the “ability to changeover to produce
a new (set of) product(s) very economically and quickly.” Routing flexibility describes
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a situation in which the production process actually or potentially involves different
routes and is thus less susceptible to individual machine breakdowns. Volume flexi-
bility relates to the “ability to operate a flexibility manufacturing system at different
production volumes.” Expansion flexibility is a measure on how easily and modularly
a manufacturing system can be extended, which is intricately linked to the concept of
routing flexibility. Operation flexibility concerns the possibility to reorder operations
for each part type. By deliberately refraining from fixed process steps on predeter-
mined machines, the decision which machine to use for each step can be based on
system state and thus enhance performance. Finally, production flexibility incorpo-
rates all previously mentioned types of flexibility and is, following Browne et al. (1984)
measured in the set of part types a FMS can produce. Notably, Browne et al. reach be-
yond the mere description of flexibility and propose tangible measures for each kind
of flexibility. Those involve, for example, machine set-up times, changes in produc-
tion rate in case of machine breakdowns, or minimum profitable production volume.

Ideally, a FMS incorporates all eight kinds of flexibility; however, depending on the
situation, it might be economical to include only subsets thereof. Historically, ge-
ographic location and type of industry have had a large influence on the composi-
tion of flexibility types for specific manufacturing applications. Browne et al. out-
line a range of flexible systems, ranging from micro-flexibility on a machine level, to
macro-flexibility on a multi-line level. Bernardes and Hanna (2009), referring to an-
other study from 1989, for example, define manufacturing flexibility as "the quickness
and ease with which plants can respond to changes in market conditions."

Sethi and Sethi (1990) heavily rely on preceding work (Browne et al., 1984), and
identify eleven, types of flexibility. Moreover, they emphasize the importance of an
“appropriate organizational structure” which can be interpreted as an advance to the
later article by Jordan and Graves published in 1995 introducing and examining the
concept of structural flexibility. The flexibility categories identified are identical to
those by Browne et al. (1984), apart from material handling, program and market flex-
ibility. Material handling flexibility seems to have been included in process flexibil-
ity, while program flexibility captures the reliability of a production process, i.e., for
how long production can continue untended (without manual intervention). The lat-
ter, market flexibility, includes a marketing perspective and aims to include modifica-
tions to the product that can later, after production facilities have been put in place,
be leveraged. Furthermore, it enables “frequent product changes”. Interestingly, they
find “microprocessor technology” to be essential to successfully implement flexibility
in manufacturing, as it avoids sacrificing efficiency (Zelenović (1982) uses the term
productivity to express the same construct). The problem of defining flexibility is ex-
acerbated by the various temporal levels (operational, tactical, strategic) on which it
is examined.
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2.2 Scheduling Flexibility

Definition and Objective Pinedo (2012) defines scheduling as “a decision-making
process that is used on a regular basis in many manufacturing and service industries.
It deals with the allocation of resources to tasks over given time periods and its goal is
to optimize one or more objectives.”

The most common objective in scheduling is makespan minimization.3 To this end,
the tasks are assigned to resources such as workers and machinery, which perform the
necessary steps of each task. In this process, flexibility may arise in two ways. First,
the order of individual tasks to achieve the overall goal may be flexible, i.e., different
sequences in which the project tasks are completed may be admissible. Second, re-
sources may exhibit flexibility in that they can be assigned to more than a single task.
For example, workers may be trained to perform more than a single task (Iravani et al.,
2005). Such flexibilities can be leveraged to improve the desired objective, e.g., reduce
the makespan, increase profits, reduce costs or improve reliability.

A rich overview of scheduling problems, algorithms and systems is presented in
Pinedo (2012). The presented models are coarsely grouped into deterministic and
stochastic and ordered with respect to their complexity. Because this work is con-
cerned with scheduling tasks on multiple resources in parallel under uncertainty, the
stochastic, parallel machine models are most closely related (Pinedo, 2012, Ch. 12,13).

Scheduling of Pre-emptive Jobs Federgruen and Groenevelt (1986) show that paral-
lel machine scheduling problems can be efficiently solved using maximum-flow tech-
niques if the jobs can be interrupted, i.e., if jobs are preemptive. Preemption effec-
tively dissolves the combinatorial character of the original problem. In this setting,
flexibility is a result of the jobs’ preemption property. Their work helped in overcom-
ing computational complexity in scheduling in a wide array of applications. Hence, as
a larger number of schedules can be computed in the same time frame, the applica-
bility of stochastic scheduling is broadened and more frequent re-planning in online
scheduling is enabled.

On-line Scheduling Chang et al. (2000b) propose an on-line scheduling algorithm
for the case when a model of future arrivals is available, i.e., the distribution, but not
the actual realization of future arrivals is known. They apply their model to schedule
network packets under transfer capacity constraints.

Bent and Van Hentenryck (2004) build on this work and trade-off economic effi-
ciency for reduced computational complexity. In more detail, they substitute costly
computation of the expected value of a schedule, used by Chang et al. (2000b), with

3Makespan is the difference between the date at which a set of tasks is completed and the start time
of the project.
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a faster consensus-based approach. Their algorithm is applicable in highly time-
constrained settings, but suffers, as the authors admit, from elitism.4

Hentenryck and Bent (2009) give an overview of online scheduling where, in the
spirit of both, Chang et al. (2000b) and Bent and Van Hentenryck (2004), discarding
jobs is allowed. Their objective corresponds to maximizing the weight (or value) of
the schedule. Jobs are assigned heterogeneous weights and which counts towards the
objective if a job is completed in time, i.e., before its deadline.

Herroelen and Leus (2005), who focus on project scheduling under uncertainty,
treat flexibility and robustness of schedules as closely related terms and simply con-
sider a schedule as being flexible if it “can easily be repaired”. However, the authors do
not define “easily”.

On-line Scheduling with Self-Interested Agents The literature presented so far as-
sumed that the planner deciding on the respective schedules has access to truthful
information. If, however, self-interested agents submit information to the planner, as
is the case in distributed systems, they may be willing to exploit the planner’s deci-
sion by strategically manipulating information.5 This is true if the agents can improve
their payoff by misreporting. To avoid such inefficient outcomes, additional con-
straints need to be introduced to ensure monotonicity in allocation decisions (Parkes,
2007). Grid and cloud computing present a realistic use case for such concerns. Self-
interested agents, armed with private information, pose serious incentive problems
to conventional, off-the-shelf scheduling approaches.

Stößer et al. (2010) highlight the cost of manipulation by strategic agents in grid
markets. The scheduling problem they consider is a GAP in which a large number
of heterogeneous jobs need to be matched to heterogeneous machines (computa-
tional nodes). Additionally, jobs can be migrated between nodes of a grid, compli-
cating both, problem formulation and computational complexity, but adding realism.
Due to its complexity, the problem cannot be solved to optimality within the corre-
sponding time constraints (due to the online character of the problem), and hence
requires heuristic solution approaches. The main contribution of Stößer et al. (2010)
is less geared towards improving the quality of the solutions found, but comprises a
scalable allocation and pricing heuristic that preserves incentive compatibility on the
buyer side, the main design desiderata.

4Basing a decision on its expected value may yield more fine-grained information than on a majority
vote of scenarios of the future, as is the case in consensus-based approaches. For example, taking
action a1 may be the better choice in two out of three scenarios. However, the losses from choosing
a1 in the third scenario may be such that choosing a2 actually has higher expected value. It is in
such situations that expectation (Chang et al., 2000b) and consensus-based approaches (Bent and
Van Hentenryck, 2004) diverge in their respective decisions.

5Consider a scenario where decisions are made based on urgency of individual agents. In the absence
of a truth-enforcing payment rule (Parkes, 2007), each agent has an incentive to misreport his type
to receive preferential treatment.
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2.3 Supply Chain Flexibility

Recent research has shifted the focus from factory-level flexibility towards more
strategic aspects, i.e., flexibility on the supply chain level (Stevenson and Spring,
2007). In more detail, a hierarchy of flexibilities in the supply chain is established,
ranging from the shop-floor level over tactical and strategic level (plant and firm lev-
els) to the network level, i.e., supply chain flexibilities. Irrespective of the broad lit-
erature context which the authors provide, they urge caution in measuring flexibility;
for a measure to be be meaningful, it needs to be defined adequately (Stevenson and
Spring, 2007, p.693). Measuring flexibility becomes increasingly complex, or virtu-
ally impossible, if the scope of the measurement not only includes the actual level of
flexibility of a supply chain, but also difficult-to-quantify hypothetical flexibility po-
tentials.

Information Sharing One focal point of the literature review is concerned with
information sharing, involving Information Systems (IS’s) spanning multiple firms
(Stevenson and Spring, 2007). Firms are – at least theoretically – interested in informa-
tion sharing across corporate boundaries if doing so is beneficial to the firm. Benefits
of information sharing may comprise improved “mix, volume, and new product flexi-
bility” (Stevenson and Spring, 2007, p. 695).

Shared information can include demand or sales forecasts, inventory levels, lead
times, quality (to increase trust between partners), and further dimensions. While
it is found that all the studies cited report positive results from information sharing,
some critical questions, revolving around individual incentives to take part in infor-
mation sharing schemes, remain unanswered.6 In particular, the question on how the
arising benefits are distributed between participating firms is central to the success of
information sharing. Beyond attribution of success and distribution of benefits, the
question of how much flexibility to provide at what node in the supply chain is not
trivially answered. Moreover, IS’s facilitating inter-firm information sharing might
imply a more rigid, less agile supply chain structure. This can be explained by the
cost involved in setting up inter-firm links supported by IS’s, as White et al. (2005) ob-
serve in a case-study on supply chain agility. While they do not doubt the benefits of
cross-firm integration, White et al. (2005) also note that integration and flexibility on
the supply-chain level are inversely related due to the cost of linking separate supply
chain entities.

Flexibility to Create or Mitigate Uncertainty The relationship between flexibility
and uncertainty in the context of supply chains has received special attention in the
academic literature. Both, Upton (1994) and White et al. (2005) consider flexibility as

6The inclined reader is referred to the chapter on supply chain coordination and information sharing
in Cachon and Terwiesch (2009, p.377).
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a means to overcome uncertainty. This again highlights the complementary charac-
ter of flexibility and uncertainty. However, other studies highlight another interesting
aspect of flexibility: Gerwin (1993), for example are concerned with the strategic cre-
ation of uncertainty directed at creating additional cost towards a firm’s competitors.
Thus, flexibility may not only be used to cope with uncertainty, but instead to create
additional uncertainty for competitors.

2.4 Flexibility in Operations Management

Operations management, according to the mission statement of the Manufacturing
& Service Operations Management journal7 is concerned with “the development of
enduring knowledge that can lead to more efficient and effective processes for the
creation and delivery of goods and services.” Simchi-Levi (2013) gives an excellent
overview of interesting problems in the field over the last two decades. These prob-
lems range from vehicle routing over manufacturing problems to revenue manage-
ment and queuing problems faced by online retailers and ATM operators. Notably,
the overview by Simchi-Levi includes an accessible intuition to the corresponding so-
lution approaches.

Differentiating Agility, Flexibility and Responsiveness Bernardes and Hanna
(2009) summarize the various views on flexibility within the manufacturing and op-
erations management literature, and make the differing perspectives on the concept
of flexibility clearer. In particular, they differentiate the terms agility, flexibility and
responsiveness. They find flexibility to be an inherent system property and operat-
ing characteristic and define it as the “ability of a system to change status within an
existing configuration (of pre-established parameters)”. Agility, on the other hand is
understood by Bernardes and Hanna to describe the “ability of the system to rapidly
reconfigure”. Responsiveness, in turn, is defined as the “propensity for purposeful and
timely behavior change in the presence of modulating stimuli.” Hence, agility can
be seen as an approach to organize a system, responsiveness as the “outcome” of a
system’s organization and operations, and flexibility to be a lower-level “operating”
characteristic (Bernardes and Hanna, 2009).

Revenue Management Early work in the field of Revenue Management (RM) has as-
sumed prices as given and managers were only concerned with protecting or opening
capacity of different fare classes in airline and hotel operations. Later on, due to both,
the possibility of instantaneous comparisons between competitors, and decreasing
costs of price-changes (so-called re-labelling costs), price has become an equally im-
portant control variable. Simchi-Levi (2013) outline the problem of price-based rev-

7http://pubsonline.informs.org/journal/msom#

http://pubsonline.informs.org/journal/msom#
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enue management for an online retailer in the form of a case study. Therein, price de-
cisions are subject to the exploration-exploitation trade-off which is well known from
reinforcement learning (Sutton and Barto, 1998): Demand for new products is initially
unknown. Through price modifications, the seller learns about demand (exploration),
and can henceforth set revenue-maximizing prices (exploitation). Historically, the air-
line industry has been at the forefront of revenue management (Talluri and Van Ryzin,
2005) using computer-aided price and capacity control. Ideally, revenue management
succeeds in maximizing capacity utilization, especially in the presence of fluctuating
demand. Beyond the airline industry, revenue management finds application in hotel
and car-rental industries, but also grid- and cloud-computing. While the services sold
in this manner are highly heterogeneous, they share common characteristics such as
time, location, and above all else, perishability.

Flexible Products Gallego and Phillips (2004) present a study on flexible products.
They define a flexible product (flexible from the perspective of the seller) as “a set of
two or more alternatives serving the same market such that a purchaser of the flexible
product will be assigned to one of the alternatives by the seller at a later date.” They
present slightly different flight dates on the same day as an example for flexible prod-
ucts. The buyer can choose from either of the fixed alternatives, the flexible product,
or not buying at all. The benefit to the supplier lies in observing demand up to the de-
cision time point and hence, more efficient allocation decisions via reduced demand
uncertainty. Gallego and Phillips introduce examples for flexible products in the area
of air cargo, online advertising, but also hotel operators with multiple properties in
close proximity, and, the field of opaque fares (such as Priceline8 and Hotwire 9) in
general. Marketing such flexible (or opaque) products requires trading-off extra rev-
enue from a highly price-sensitive clientele with the cannibalization of high-valued
full-fare demand.

2.5 Structural Flexibility

As we have seen in previous sections, flexibility is a topic of central importance in
manufacturing, supply chain management OM, but also other areas that we have not
covered. Jordan and Graves (1995) coin the concept of “structural flexibility” and show
that the addition of even minor amounts of flexibility to a system can lead to results
virtually equivalent to fully flexible systems. In the automobile industry, according to
Jordan and Graves (1995), “investment and tooling decisions” related to the assign-
ment of products to plants are made at least one year prior to the begin of produc-
tion. However, sales forecasts at that time are still subject to uncertainty, hence, an

8www.priceline.com
9www.hotwire.com

www.priceline.com
www.hotwire.com


24 On Flexibility

Figure 2.1: Process flexibility, from Simchi-Levi (2013)

inflexible system with a rigid 1:1 mapping of product to plant (Fig. 2.1, left side) would
regularly experience underutilization or leave some demand unserved.

Flexibility vs. Capacity This problem can be coped with through the introduction
of process flexibility with respect to “product assignment decisions, i.e., decisions on
which products are to be built at which plants or on which lines”(Jordan and Graves,
1995, p.577). Then, the question is “how much process flexibility is needed?” Jordan
and Graves (1995) use (costly) flexibility in a sparse fashion, i.e., they propose adding
a small amount of flexibility to each plant, such that a flexible plant is able to produce
two products instead of a single one. This approach nicely contrasts with naïve, more
costly approaches which would augment each plant with the flexibility to manufac-
ture multiple products (illustrated in Fig. 2.1, right side). The decision which kind of
flexibility to add to a specific plant is guided by the goal of constructing “flexibility
chains”. For maximum flexibility in such flexibility chains, it is important to “close
the chain”, i.e., to install capabilities regarding product A at plant 5 (Fig. 2.1, center).
With such flexibility, production shifts through the chain from one plant to another
become possible without installing the costly capability to produce every product at
every plant (Cachon and Terwiesch, 2009).

If demand for specific products is uncertain, flexibility can act as a substitute for
capacity (Jordan and Graves, 1995). Fig. 2.2 illustrates the relationship between ex-
pected sales and capacity utilization if demand for different products is negatively
correlated.10 The dotted lines indicate different capacity levels, the lower solid line
illustrates the case of no-flexibility, i.e., dedicated plants, while the upper solid line
represents the case of one-chain flexibility. Clearly, depending on the relative cost of
flexibility and capacity, different system configurations are optimal. Flexibility, how-
ever, is most valuable in settings with balanced overall supply and demand, but where
product-specific demand might vary. This corresponds to points D and E in Fig. 2.2.
In the extreme cases of low capacity, high capacity utilization is achieved even without

10Jordan and Graves (1995) assume a correlation coefficient of −0.5.
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Figure 2.2: Gain from process flexibility under uncertain, negatively correlated demand for
multiple products (Jordan and Graves, 1995). The largest improvement can be achieved in
systems where quantity demanded is equal to capacity installed (D → E).

flexibility (lower right in Fig. 2.2). At excessive capacity, flexibility is of little value as
well: Each plant (manufacturing a single product) is able to cope with fluctuations in
demand by itself. Cachon and Terwiesch (2009) confirm this observation. Moreover,
Graves and Tomlin (2003) show that one single “long” chain, i.e., a chain involving a
large number of plants, is more valuable than several smaller, independent chains.

Formalization of Structural Flexibility Motivated by the above goal of creating
more efficient processes and aiming to better comprehend the underlying essential
components of structural flexibility, Iravani et al. (2005) build on the seminal work by
Jordan and Graves and formalize the concept of structural flexibility. They aim at pro-
viding strategic insights for the design of manufacturing and service operations. They
develop a variety of indices “that quantify the ability of a system to respond to vari-
ability in its environment.” Compact information representation in the form of scalar
indices representing structural flexibility (Iravani et al., 2005) enables improved man-
agerial decisions at the strategic level regarding manufacturing processes. In more
detail, structural flexibility in a graph of supply and demand vertices, differentiated by
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the product that can be manufactured or consumed, is defined as the “number of non-
overlapping paths a system can use to respond to a particular change in demand.” The
graph structure can be encoded into a structural flexibility matrix whose elements are
obtained by solving the corresponding max flow problems between the set of demand
vertices. Intuitively, the more connected the graph, the more flexibility can be ex-
pected from the manufacturing process. However, the authors stress the importance
of intelligently adding flexibility to the corresponding process. Their results show that
systems with lower flexibility can provide a superior response to changes in demand
relative to a more connected system, if the edges in the graph are installed with struc-
tural flexibility in mind. The authors propose the Mean and the Eigenvalue indices
and find that both are well-suited to express structure-inherent flexibility. These in-
dices are attractive from a managerial point of view, as they allow the expression of
flexibility as a single scalar. Hence, Iravani et al. show that flexibility with regard to
system structure can indeed be measured and therefore be taken into account when
deciding on system structure on a strategic level, i.e., at the time of system creation.
In a way, their work is thus related to the entropic flexibility measures proposed by
Kumar (1987) and introduced before. Both approaches feature a tractable formal def-
inition of flexibility that is based on flexibility graphs.

2.6 Strategic Flexibility

On the one hand, flexibility may serve as a level to induce uncertainty for compet-
ing firms through corresponding investment decisions that retain product or volume
flexibility for subsequent tactical and operational decisions. Besides obvious benefits
in coping with uncertainty, flexibility can also have a strategic value that may open
or close certain trajectories for a firm’s future. For example, product (as well as plant
configuration and plant location choices), can be made with the focus of gaining a
long-term competitive advantage by allowing a greater set of options contingent on
the decision today or simply to increase competitors’ uncertainty (Sethi and Sethi,
1990; Beach et al., 2000).

Thereby, strategic decisions in the face of uncertainty may aim to increase flexibility,
i.e., enlarge the space of states that are attainable after a certain decision is made. This
section focuses on the latter, sequential decisions and, naturally arising thereof, real-
options.

Sequential Decisions Sethi and Sethi, referring to Marschak and Nelson (1962),
present an ordinal measure for flexibility in sequential / staged decisions. A first stage
decision a1 is more flexible than another decision a2 if the set of states reachable as
a consequence of choosing a1 is a superset of the set of states reachable as a conse-
quence of choosing a2.
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Benjaafar et al. (1995) give a detailed treatise on the strategic value of flexibility re-
garding manufacturing performance and formalize the concept of flexibility in (se-
quential) decision making under uncertainty. They attribute flexibility to an action
that retains “future decision making freedom” (Benjaafar et al., 1995, p.444). Intu-
itively, flexibility can be understood as a property that “allows [decision makers] to
change their minds once an initial action is taken.” For ease of expositions Benjaa-
far et al. treat an artificial two-stage decision processes, which they claim “can [. . . ]
easily [be] extended to multi-stage situations.” They posit the value of an action to
be a function of initial uncertainty, initial estimate of expected value, expected future
information, and expected future flexibility. In general, the authors show that “in situ-
ations where future system states cannot be easily predicted, control strategies should
attempt to maximize future system flexibility.” Remarkably, this is in line with the de-
cision strategy proposed by (Petersen et al., 2012), which aim to maximize agility in
the face of uncertainty and on-line decision making. It is also in line with the entropy-
based flexibility measures of Kumar (1987).

Real Options Following the seminal work of Black and Scholes in 1973 on option
pricing, there have been efforts to apply their method to value real-world flexibil-
ity. Academic research has, for example, modeled investment decisions under un-
certainty (Dixit, 1994), giving rise to the notion of real options. Notably, Sethi and
Sethi (1990) ignored an important aspect of strategic flexibility: The flexibility to de-
fer investment or to even abandon a project. In contrast, Bengtsson (2001) present a
broad overview at the intersection of manufacturing flexibility, in the sense of Sethi
and Sethi (1990), and real option theory. Thereby they emphasize flexibility in the
realm of project postponement and abandoning. The authors concede, however, that
the particular type of strategic flexibility must remain rather simple (e.g., two-product
firms) in order to allow for analytical solutions. A central question regarding the ba-
sic machine and routing flexibility remains unanswered, as it is not clear which type
of distributions/underlying stochastic process should be assumed. This poses an im-
portant obstacle to practical application, as valuation results and corresponding deci-
sions might be directly driven by flawed assumptions, and hence be highly unreliable.
Extending previous work, Bengtsson and Olhager (2002) present a model to value
product mix flexibility and evaluate it empirically through a case study. Clearly, results
on the economic value of flexibility require careful conditioning on the model and
domain under consideration. Based on the model, however, Bengtsson and Olhager
(2002) are able to determine the optimal level of automation, involving automatic and
semiautomatic manufacturing resources. Furthermore, they derive the value of extra
capacity, which can provide additional (volume) flexibility.
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2.7 Flexibility in Electric Power Systems

The electric power system has peculiar characteristics: First, both sides of the system
must be balanced at all times to ensure safe system operation. However, as the cost of
storing electrical energy is prohibitively high, supply (and demand) must be actively
controlled and hence decided upon to achieve the system’s goal. Second, the “trans-
portation” of electrical energy from the location of generation to the final consumer
is bound to the power grid. In order to retain a functioning system, flexibility at each
stage can be leveraged to improve the economics of systems operation. Accordingly,
the following sections introduce flexibility concepts on the sides of generation, grid
operation and consumption.

Supply-Side Flexibility

The most fundamental constraint of power system operations concerns the equal-
ity of quantities supplied and demanded at all times. This constraint arises from the
non-storability condition of electrical energy.11 In power systems dominated by con-
ventional generation, demand is forecast, while generation is controlled and adjusted
to follow consumption, and thus a balanced power-system is achieved.

Dispatch Flexibility Deciding which part of the generation park to activate with the
goal of minimizing system cost while retaining safe and reliable system operations is a
computationally hard problem. This so-called unit-commitment problem has histor-
ically received wide attention, as better solutions directly affected system efficiency
(Happ, 1977).

After liberalization, however, the constraints for the individual firm have changed:
Instead of ensuring safe and reliable system operation, the generating firm is required
to meet contractual obligations. More recently, uncertainty from both, controllable
loads and increasing volatility from renewable generators has been examined in the
context of dispatch flexibility and unit commitment (Damousis et al., 2004; Bertsimas
et al., 2013). Solving the unit-commitment problem to optimality is, for typical in-
stance sizes challenging. Therefore, mixed-integer programs are complemented with
meta-heuristic approaches in practice. While these approaches do not guarantee op-
timality of the solution, they are able to find good-enough solutions within accept-
able time periods (Mantawy et al., 1999; Kazarlis et al., 1996). On shorter time scales
(i.e., on the seconds to 15 minute level) deviations from a balanced system state are
typically resolved through the dispatch of different types of ancillary services, differ-
entiated by the time required for them to come online. These ancillary services are

11Electricity is storable in other forms of energy (potential, chemical, mechanical), but this comes at
high cost.



On Flexibility 29

typically provided for by conventional generation capacities.12 To this end, the sys-
tem operator can declare some generation capacities either as “must run” to provide
the necessary control capacity, or, depending on the market design, generators taking
part in the Day-Ahead Market (DAM).13

Ramping Flexibility In the wake of increasing contributions of volatile and difficult-
to-predict RES to the supply side, new challenges for safe and efficient system op-
erations arise. First, ramping of conventional generators will be observed more fre-
quently to compensate for fluctuations of RES. Second, conventional generators are
replaced by their renewable counterparts, which depend on natural supply (wind,
sunshine), reducing the control capabilities on the generation side of the system over
time. The challenge in system operations will be (or already is) to provide acceptable
quality of supply on decreasing amounts of control capacities. Projecting this trend
into the more distant future, a paradigm shift on power system operation is neces-
sary where the demand side is expected to take on a more active role. Otherwise, the
promise of sustainability through integration of RES might turn out to be improvident.

Grid Flexibility The power network has two original roles: First, providing a (phys-
ical) connection between the demand and supply sides. Second, enhancing supply
reliability, system resilience, and overall economics of the power system through un-
certainty and flexibility pooling. By means of uncertainty pooling (Cachon and Terwi-
esch, 2009), unexpected, random changes in demand by one consumer are, to a large
extent, offset by other consumers’ opposing changes, without requiring adjustment
on the supply side.

Flexibility on the grid level can be mostly categorized into volume flexibility, i.e.,
the power network can easily be operated at different levels of intensity. However,
if the power network is equipped with active control equipment, its topology can be
adjusted to reflect the current supply and demand situation by power switches and
increase the system’s transfer capacity. Such flexibility to disconnect individual lines
and hence shape the network’s morphology, allows to trade-off transfer capacity for
power losses, hence providing an additional level to shape volume flexibility.

Demand-Side Flexibility

After introducing flexibility from a generation and grid perspective, we now turn our
attention to demand-side flexibility. First, we provide a macro-perspective of eco-
nomic flexibility potentials, continue with a taxonomy for different kinds of flexibility

12The inclined reader is referred to (Rebours et al., 2007a,b) for more detail on the technical and eco-
nomic aspects of ancillary services.

13A comprehensive review of concepts of DAMs is provided in http://content.caiso.com/
training/Day-Ahead_Market_Overview/index.html (accessed September 4, 2014)

http://content.caiso.com/training/Day-Ahead_Market_Overview/index.html
http://content.caiso.com/training/Day-Ahead_Market_Overview/index.html
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and their interrelationship, to eventually arrive at portfolios of flexible loads.

Economic Potential of Flexible Loads In order to quantify the economic benefits of
DSM, standards that facilitate fair evaluation and comparison between competing ap-
proaches are required. However, as Strbac (2008) state “[. . . ] a lack of methodologies
for the quantification of cost and benefits” renders the task, at least so far, challenging.
Nevertheless, Strbac present the (admittedly coarse) intuition that the value of DSM
may be increasing in system load, i.e., higher in systems that are close to requiring
system expansion. Still, the authors abstain from estimating monetary values.

A more specific use case concerning co-generation and heat pumps is examined in
(Fehrenbach et al., 2014). Assuming a macro-perspective but relying on a bottom-
up large-scale optimization model, the economic potential of virtual power plants
consisting of micro-cogeneration plants, heat pumps and thermal storage for private
households is estimated. They show that by combining “thermal and electric load
management” significant flexibility potentials in Germany can be established, which
in turn allow for better integration of RES into the power system. They identify two
drivers for overall proliferation of heat-pumps (which are responsible for additional
demand-side flexibility). First, the share of renewable generation in the power sys-
tem, and second, the price of fossil fuels. Both factors are estimated to have a positive
impact on the adoption of heat-pumps. Larger shares of RES reduce the cost of the
main factor of production for heat-pumps. Micro-cogeneration, on the other hand, is
negatively affected from higher fuel prices. Somewhat surprisingly, Fehrenbach et al.
show that under their model assumptions, electrical heat pump capacity may account
for up to 50% of peak system load in 2050. Furthermore, their results indicate that
“the electrical capacities of heat pumps available for load management are consis-
tently and significantly higher than those of micro-Combined Heat and Power (CHP)
for flexible generation.” This statement underlines the importance of demand side
flexibility in future power systems relative to flexible generation.

Taxonomy for Flexibility The term “demand-side flexibility” is mostly used in a con-
text that relates to deferring loads in time (Strbac, 2008). Gottwalt et al. (2011), for ex-
ample, outline to what extent home automation in the context of smart homes could
provide load flexibility by basing operation decisions on price signals. Their earlier
results indicate that the work of Fehrenbach et al. (2014) is directed towards the most
promising part of demand side flexibility, i.e., the part offering the largest economic
potential: Water and space heating. Both parts are excellent candidates for load defer-
ral as most consumption takes place during nighttimes, i.e., there is virtually no loss
in comfort from shifting the heating period to an earlier point in time, as the systems
offer sufficient amounts of thermal storage.

In any case, demand side flexibility may be of heterogeneous quality. Compared to
power systems exclusively controlled via generation capacities, classifying and quan-
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tifying the quality of flexibility is a novel problem. Petersen et al. (2012) put it as fol-
lows:

“In a traditional energy system, where flexibility is provided by power
plants, the quality of a given flexible resource can be determined fairly un-
ambiguously by activation time, length of reservation period and capacity.
In a Smart Grid system, flexibility should be provided by flexible consumer
appliances, which are not created for power management. Determining
the quality and value of a flexible resource therefore becomes far more
multifaceted, since additional performance constraints such as storage
capacity, minimum runtime, temporal constraints (deadlines), ramp rates
etc. must be considered.”

In order to generically classify different qualities of flexibility, (Petersen et al., 2013)
present a taxonomy for modeling demand side flexibility in smart grids. Depending
on the device under examination (for example EVs or Heating, Ventilation and Air
Conditioning), different qualities of flexibility can be provided to the system. Some-
what flexibly, Petersen et al. describe “flexibility as the ability to deviate from the plan”.
The main focus of their article is on establishing a taxonomy that relies on classifying
devices, and therefrom arising flexibility potentials, according to operating regimes.
Regimes are differentiated by power capacity, energy capacity, energy level at a spe-
cific deadline and minimum runtime. In particular, the authors derive three quality
levels of demand-side flexibility, illustrated in Fig. 2.3 in the following order:

1. Buckets are the highest quality source of flexibility. They are constrained by only
two restrictions: Energy and power capacity. HVAC as the prime example of this
segment ensures indoor temperature to be within a predetermined energy level
(indicated via dashed lines in Fig. 2.3). Power of heating and cooling is limited,
hence the power capacity constraint.

2. Batteries are Buckets that are additionally constrained by a deadline and energy
level. EVs are good examples as they require a certain State-of-Charge (SoC) at
a certain time, in addition to being restricted in both dimension of energy and
power.

3. Bakeries are Batteries with the additional constraint of having fixed power con-
sumption over time and a fixed run time. The corresponding example relates
to non-preemptive household appliances where the only decision, similar to
Gottwalt et al. (2011) concerns the start date.

Flexibility Portfolios Real-world power systems feature heterogeneous consumers
(devices), and hence, a heterogeneous flexibility potential. To complicate matters fur-
ther, the cost associated with leveraging flexibility might be heterogeneous, and be
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Figure 2.3: Buckets, Batteries, and Bakeries (Petersen et al., 2013, p.3)

only partially related to the quality flexibility, but rather with the amount of flexibility
provided. In (Petersen et al., 2014), the authors strive for low waste of energy from
RES and minimal use of conventional generation by means of different control algo-
rithms for heterogeneous consumer portfolios. They show that one of the developed
greedy algorithms (named “GRASPsorted”) overall performs quite well in shaping the
demand curve over time as close as possible to generation from RES. The authors
stress the fact that algorithms that rely on fast sorting algorithms instead of solving
more involved Mixed-Integer-Program (MIP) problems might yield sub-optimal solu-
tions, but are very fast, and thus applicable to large-scale DSM scenarios. Neverthe-
less, for cases where there is only a limited amount of high-quality flexibility available,
the tracking error increases considerably. Therefore, entities aiming to provide ancil-
lary services based on flexible demand must ensure to have access to a well-balanced
portfolio of sufficiently high quality.

Interestingly, the issue of incentives for consumers to provide their flexibility in the
first place to a controlling entity is not elaborated on. Instead, it seems most authors
believe that flexibility will be provisioned by consumers in an altruistic manner.

One exception is Gärttner et al. (2014); Gärttner et al. (2014) which focus on port-
folio composition from the perspective of a utility. Selecting customers that offer the
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appropriate kind of flexibility at an acceptable price, utilities can leverage consumer
heterogeneity to their own advantage instead of procuring costly balancing power to
offset fluctuations from RES. While the cost of consumer flexibility in their model is
determined exogenously, it could perspectively be substituted by values derived from
empirical customer research and hence provide valuable decision support to utilities
in composing their customer portfolios.

He et al. (2013) take the temporal aspect of energy consumption into account when
referring to demand side flexibility, but, in general, pursue a broader view than Pe-
tersen et al. (2013). Further they provide an engaging overview into the “matching
between demand response services and contracts”, differentiated by contract fea-
tures and response requirements. As Fig. 2.4 illustrates, the load mix can be divided
into storable and non-storable load. The non-storable part can further be separated
into (non-) shiftable load, which can be further segmented into curtailable and non-
curtailable load. At the very core of the illustration lays base load, that may not be
modified in any way. Relative to the taxonomy provided by Petersen et al. (2013),
storable load concerns both, Buckets and Batteries, while Bakeries are mostly iden-
tical to shiftable load. Interestingly, He et al. (2013) add the segment of curtailable
load (i.e., “load that cannot be shifted without affecting the end-use service, but the
service can be interrupted instantly”) to the spectrum of flexibility.

Beyond the segmentation of demand according to flexibility, they concentrate on
the segment of small private consumers for two reasons: Those are able to provide the
level of decentralization that is most valuable in future power systems, and, in contrast
to larger consumers such as manufacturing firms, they face more market barriers and
transaction costs. Hence, such small, dispersed consumers are ideally suited to bene-
fit from utilities’ intermediary offerings and provide valuable flexibility to the system.
He et al. showcase the need for diverse contract types to account for consumer het-
erogeneity. However, they acknowledge that distorted incentives for intermediaries
might preclude the offering of a diverse range of contracts, limiting the potential of
demand side flexibility.

2.8 Flexibility in Transportation Systems

Transportation systems oftentimes suffer from congestion, delay and breakdowns.
However, in most systems different kinds of flexibility are present that allow to alle-
viate the negative repercussions. This section presents a brief overview and pointers
into the literature for transportation system-related flexibilities.

Routing Flexibility Routing flexibility allows the individual traveler to adjust initial
travel plans in the wake of congestion or unexpected events. Through re-planning
the traveler can avoid congested segments on his way and hence reduce overall travel
time, often termed “latency” in the transportation literature. On a macroscopic level,
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Figure 2.4: Load flexibility, adapted from He et al. (2013).

routing flexibility may be employed to reduce overall latency, i.e., increase social wel-
fare.

Fundamental research concerned with exploiting routing flexibility can be traced
back to the seminal traffic assignment problem in Beckmann et al. (1956). The au-
thors considered a problem where the cost of congestion on an edge depends on the
flow along that edge. In equilibrium, no vehicle can improve its travel times through
unilaterally deviating from the chosen route.14 Clearly, drivers on road networks are
assumed flexible with respect to their route.

In logistics, routing flexibility may be leveraged through online updating of route
plans, for example in Traveling Salesman Problems (TSPs), to better cope with un-
expected changes to the network topology (e.g., accidents and construction sites) or
congestion. As UPS has demonstrated through its widely known approach of avoid-
ing left-hand turns for its delivery truck fleet, routing flexibility can be exploited in
logistics to achieve better economic outcomes.15

Interestingly, the idea of pricing the use of a (public) good based on the negative
externalities caused by usage were developed when William Vickrey was concerned
with congestion pricing in transportation networks (Vickrey, 1955). More recently,
Roughgarden (2005) has focused on the “price of anarchy”, i.e., situations where self-
ish agents choose their travel paths in equilibrium, while there is assignment that
achieves lower overall latency. The difference in social welfare between the optimal
and the equilibrium assignment is termed the “price of anarchy”. This line of work is
closely related to the Braess Paradox, which states that the addition of an edge to a

14The inclined reader is referred to Sheffi (1985) for an excellent overview of transportation problems
and equilibrium analysis.

15http://priceonomics.com/why-ups-trucks-dont-turn-left/

http://priceonomics.com/why-ups-trucks-dont-turn-left/ 
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congested network may result in decreased overall performance (Braess, 1968).
Another strand of research in computer science, is concerned with fast route com-

putation on continental-size road networks (Geisberger et al., 2008). Such algorithmic
advances enable novel applications, i.e., ride-sharing. Here, the economic matching
of drivers and riders demands for teaming travelers with similar routes within short
time spans. In this spirit, Abraham et al. (2013), for example, present an efficient algo-
rithm for finding alternative, reasonable paths in road networks, which may be suited
for both, re-routing and ride-sharing.

Temporal Flexibility Travelers may be flexible with respect to the time of departure
and arrival of a certain trip. They may also accept a variety of travel durations, if longer
travel times are compensated in another dimension. Further, there may be certain
preferences regarding the expected travel time and the expected risk of choosing a
specific travel option. Accordingly, travelers may be willing to accept longer travel
times in exchange for more frequent service (which may constitute a proxy for reliabil-
ity). Small (1982) employs time-dependent demand functions to model “scheduling
of discrete activity directly at the individual level.” He finds that there is considerable
difference in the marginal rates of substitution of travel times and being late to work
between white and blue collar workers. Thereby, blue collar workers are significantly
more averse to being late than their white collar colleagues. Also, workers living in
single households are less willing to give up leisure time to be at work on time. This
seminal study has sparked a number of interesting research directions. One of them
(Fosgerau and Karlström, 2010), estimates the value of reliability in public transport,
which maps nicely into the previously mentioned trade-off between travel-time and
travel frequency.

Multi-modal Mobility and Flexibility Transportation systems offer various options
for reaching one’s destination. Depending on the distance and the origin-destination
pair under examination, different mobility technologies are most appropriate. On the
one hand side, flexibility with regard to the means of transportation may be used to
increase transportation capacity in a multi-modal network. Additionally, it may also
be used to enable certain origin-destination pairs, which, if flexibility was lacking,
would be infeasible. Furthermore, such flexibility is the basic prerequisite for multi-
modal mobility.

Orchestrating multiple modes of transportation to serve an origin-destination pair
both creates flexibility for the traveler, but also requires flexibility on his behalf, i.e.,
the traveler must be willing to switch the means of transportation en route. While this
may induce a cost in terms of time or inconvenience, it may also add numerous links
to a space-time transportation network, hence augmenting its flexibility potential. In
particular, dynamic reassignment between different means of transportation may en-
hance the reliability of the overall network. The potentially largest benefit from multi-
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modal travel, compared to travel by car alone, may lie in more relaxed travel, reduced
uncertainty regarding time of arrival and cost of travel, but also improved safety.

A critical building block in convincing travelers to use public transport options may
be easily accessible and timely information on the current state of the system. This
may include forecast arrival times, including detailed, yet accessible (probabilistic)
information on future delays. Such information may foster consumers’ perception
that customers are indeed in charge and not at the mercy of the service provider. This
is especially important for multi-modal mobility systems, where delays can quickly
compound, negating the concept’s positive potentials.

One technology may be particularly helpful in introducing multi-modal transporta-
tion systems: The self-driving car (Thrun, 2010). Such vehicles may pose serious com-
petition to established taxi services, on both, long and short distance travel routes. In
particular, self-driving cars may consolidate the taxi and car-sharing businesses in the
long run. Important past and current problems, such as the vehicle-routing problem
and its numerous variations may enjoy increasing attention due to the corresponding
mobility evolution.

2.9 Discussion

Flexibility was, is, and will be a concept difficult to define and hence measure due to its
ambiguity. This chapter provides a broad outline of flexibility in various domains in-
volving different classifications and measurement approaches. In this work it serves
as a foundation regarding the treatment of flexibility in settings involving the Smart
Grid and Car-Sharing. The concept of structural flexibility established by Jordan and
Graves (1995) and subsequently enhanced and formalized by Iravani et al. (2005) is
closely related to this work. They showed that small amounts of flexibility may be suf-
ficient to achieve outcomes closely matching the results achievable in a fully flexible
system. Applied to car-sharing this may imply, that few, appropriately selected flex-
ible customers are sufficient to achieve close-to-optimal results. The same holds for
the smart grid domain: In power systems dominated by RES not all demand must be
flexible; instead, relatively small amounts of flexibility may again be sufficient to ef-
fectively integrate RES into the power system. Clearly, the value of flexibility in either
application depends to what extent flexibility can be formed into “long” chains.

Compared to most established literature on the treatment of flexibility, the work
at hand is specifically interested in highlighting the difference between online and
offline decision making in the spirit of Chang et al. (2000b) and Bent and Van Hen-
tenryck (2004). This separation allows us to quantify the value of information, i.e.,
the extent to which a good manager (planner) can improve operations. Beyond the
optimization perspective, we are interested in designing mechanisms that make can
be applied in the presence of self-interested agents with private information (this has
been briefly introduced in section 2.2).
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Chapter 3

Smart Grid Fundamentals

Large-scale proliferation of RES and the associated decentralization of the power sys-
tem introduces a novel, significant source of uncertainty into power system opera-
tions. Volatile and intermittent output from RES, in particular, poses a serious chal-
lenge to security of supply. To cope with this challenge, various measures to shape
consumption according to generation have been proposed (Sioshansi, 1995; Strbac,
2008). These efforts mostly rely on the establishment of an appropriate information,
communication and control infrastructure. The envisioned “Smart Grid” infrastruc-
ture enables robust economic control of large quantities of dispersed consumers, thus
“activating” the demand side of power systems. Therewith, efficient integration of
large amounts of RES may be achievable.

In this chapter, we establish the foundations for subsequently introduced economic
coordination mechanisms in the smart grid, and provide both relevant and necessary
background information concerning the smart grid.

The structure of this chapter is as follows. First, we introduce fundamentals of
power system operations, including a brief overview of restructuring efforts in global
key markets to gain a better understanding of how the current situation came into ex-
istence, and the current state of the electricity markets as well as technical constraints
of grid operations. We continue with the smart grid concepts, followed by “smart mar-
kets”, a conceptual separation introduced by the German Bundesnetzagentur to foster
more precise communication.1 Thereafter, motivated by the growing importance of
RES in power systems, we present insights regarding the interplay of sustainability and
uncertainty. Finally, we devote one section on DSM, which, as we will see later on, will
play an essential role in economic coordination within smart grids. We conclude with
a brief discussion.

1In their perception, the smart grid should be concerned with the network view, while the smart mar-
ket side should be concerned with economic allocation and pricing decisions for which a function-
ing technical smart grid infrastructure is the necessary prerequisite.

39
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Economic efficiency

Reliability/
Security of
supply

Sustainability

Figure 3.1: The energy trilemma. Power system design and operation must trade-off between
ecological sustainability, economic efficiency, and reliability.

3.1 Power System Fundamentals

Germany’s 2013 primary energy consumption, which includes the electric power
sector, is dominated by oil (33.4%), natural gas (22.3%), anthracite (12.8%), lignite
(11.7%), and nuclear fuel (7.6%). The share of renewables accounted for 11.5%; over-
all primary energy consumption amounted to 13,908 PJ2. While the electric power
systems relies to a large extent on fossil fuels, it is in the midst of transformation, both
physically, and economically, with RES gaining in importance. This section first in-
troduces background information on technical constraints in power system opera-
tions. Thereafter, we present the restructuring process most power systems under-
went within the last two decades, and which led to the emergence of a classic value
chain in power systems. Finally, the current market architecture and traded products
on European energy markets are introduced.

3.1.1 Technical Constraints in Power System Operations

Power system operations are subject to numerous technical constraints which en-
sure safe service provision and hence differentiate this sector from others. However,
a number of constraints are actually soft constraints, i.e., slack, or flexibility, can be
leveraged to achieve more favorable objectives in another dimension.

Frequency System frequency is determined by the speed at which rotating genera-
tion capacities are operated. System frequency amounts to 50H z in European power
systems, i.e., 50 phase cycles per second.3 If quantities supplied exceed (fall short of)
quantities demanded, frequency increases (decreases). Frequency is a global property

2http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=
ageb_pressedienst_02_2014_jahresbericht.pdf accessed on 2014/09/01.

3North-American power systems are operated at 60H z.

http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_pressedienst_02_2014_jahresbericht.pdf
http://www.ag-energiebilanzen.de/index.php?article_id=29&fileName=ageb_pressedienst_02_2014_jahresbericht.pdf


Smart Grid Fundamentals 41

of the power system, hence the entire power system is synchronized to the exact same
frequency. To avoid damage to equipment and machinery connected to the power
network, frequency must be held within narrow admissible corridors.

In case of deviations from the frequency set point, automatic control mechanisms
based on negative feedback in the sense of control theory are executed and return the
power system to the desired state. Most often, this involves re-adjusting the steam
valves in thermal generation units. In cases where short term control measures are
insufficient to achieve the desired effect, minute reserves are called upon, i.e., the
system operator asks additional capacities to come on-line or to be shut down.4

Voltage Voltage of an electrical current determines the amount of useful work that
can be performed, i.e., it determines the power that is transferred via the current. To
ensure efficient, and more importantly, safe operation of electrical equipment, volt-
age is kept within (compared to system frequency to somewhat less restricted) ±10%
limits5.

Voltage increases at the point of in-feed and decreases at the point of consumption.
A major challenge in today’s power networks relates to a lack of monitoring (and hence
control), that is to be alleviated through smart grid adoption.

Line Limits and Power Flow Formally, the flows of electric current can be modelled
according to Kirchhoff’s laws. Flows along the edges between two nodes A and B in a
power network are split between connecting lines according to their respective con-
ductance (Stoft, 2002).6 This property sets the problem of modelling power flows apart
from transportation / transshipment problems. Power flows between supply and con-
sumption nodes in the power network are inversely proportional to the impedance of
the connecting paths. The first consequence of this property is that not every loca-
tion requires the same amount of generation for its demand to be satisfied, as losses
vary between locations. Second, while aggregate network transfer capacity might be
sufficient to cover demand at node B from supply at node A, the edge C B might be
overloaded, requiring local supply at higher cost. Thus, the marginal cost of service
differs depending on the node location in the graph of the power network.

Skånlund et al. (2013) analyzed historical price and power flow data for Germany
and concluded

“[. . . ] that prices in Germany do not seem to reflect local balances suf-
ficiently. [. . . ] prices in northern Germany seem to be too high in some

4For a more detailed treatise into regulation services, see for example Eßer-Frey (2012, p.38ff) and
Weidlich (2008, p.11ff)

5cf. DIN EN 50160:2011-02
6The European commission has commissioned a study on loop flows which is available at
http://ec.europa.eu/energy/gas_electricity/studies/doc/electricity/
201310_loop-flows_study.pdf, accessed on September 10, 2014.

http://ec.europa.eu/energy/gas_electricity/studies/doc/electricity/201310_loop-flows_study.pdf
http://ec.europa.eu/energy/gas_electricity/studies/doc/electricity/201310_loop-flows_study.pdf
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Technology Hard coal Lignite CCGT GT

Load Gradient %PN /min 1.5 1 2 8
Minimum load %PN 40 60 50 50

Start-up times hot (< 8h) h 3 6 1.5 0.1
Start-up times cold (> 48h) h 10 10 4 0.1

Table 3.1: Ramping and minimum load constraints of selected conventional power generation
technologies in today’s power systems. PN represents nameplate capacity.8

instances, not only triggering “wrong” generation in Germany, but also
triggering “wrong” cross-border flow and generation abroad, which po-
tentially amplifies the challenges associated with unscheduled flows. ”

Clearly, increasing RES capacities, in particular wind power generation capacities,
pose a growing challenge for both, efficient grid operations and price determination
due to lacking transmission capacities and volatile feed-in.

Ramping constraints Power system flexibility is largely due to (conventional) gener-
ators’ ramping flexibility, i.e., the ability to quickly adjust output up and down, accord-
ing to system’s needs. Different generation technologies exhibit various constraints on
ramping. Typically, nuclear power plants are slow to adjust output, while gas turbines
are considered to have most advanced ramping capabilities. Table 3.1 presents a de-
tailed overview of ramping and minimum load constraints in today’s power system,
including historic generation capacities. Gas Turbines (GTs) can adapt their output
by approximately 8% per minute, while power plants fueled by hard coal are con-
strained to 1.5% per minute. Compared to GT technology alone, utilizing waste heat
from the gas turbines via Combined Cycle Gas Turbine (CCGT) technology achieves
higher thermal efficiency, at the price of stricter ramping constraints. GT technology
has also superior start up times, from either hot or cold state, of approximately 5 min-
utes.7

However, fast ramping capacities are usually more costly to operate than their
slower-ramping peers. Hence, for efficient power system operations, the appropriate
mix of both, low cost and flexible generation is important. With growing RES penetra-
tion, on the one hand, larger amounts of flexible generation are required for safe sys-
tem operations. On the other hand, market prices are insufficient to cover the higher

7Values presented are representative for the installed generation park. Current state of technology for
new installations is (slightly) better.

8http://www.effiziente-energiesysteme.de/fileadmin/user_upload/
PDF-Dokumente/Veranstaltungen/Workshop_Retrofit/3_SIEMENS_
Feldmueller.pdf

http://www.effiziente-energiesysteme.de/fileadmin/user_upload/PDF-Dokumente/Veranstaltungen/Workshop_Retrofit/3_SIEMENS_Feldmueller.pdf
http://www.effiziente-energiesysteme.de/fileadmin/user_upload/PDF-Dokumente/Veranstaltungen/Workshop_Retrofit/3_SIEMENS_Feldmueller.pdf
http://www.effiziente-energiesysteme.de/fileadmin/user_upload/PDF-Dokumente/Veranstaltungen/Workshop_Retrofit/3_SIEMENS_Feldmueller.pdf
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cost of flexible generation. This so called “missing money problem” (Cramton and
Ockenfels, 2012) motivates the discussion about capacity markets to a large extent.

3.1.2 Liberalization

In the late 1980’s governments began liberalization of the power sector in order to im-
prove the sector’s efficiency through competition. As large parts of the system were
no longer considered natural monopolies, formerly vertically integrated entities un-
derwent unbundling.9

Transmission continues to be considered a natural monopoly, while distribution,
i.e., marketing and billing were liberalized. Consumers, similar to the telecommuni-
cations sector, were able to choose from a variety of competing retailers, often only
differentiated by price and billing interval.

On this note, generation was liberalized, different market forms for exchanging en-
ergy established, and both, benefits and shortfalls of liberalized generation discov-
ered.10 As Sioshansi (2006) argues, borrowing from an article by Paul Joskow, “[. . . ] in
nearly all cases, the initial introduction of reforms has led to ’reform of the reforms’
and in most cases to ’hybrid’ markets, with significant challenges for policymakers.”
Clearly, separation of functions in the value chain that to this time were served by
the same entity has oftentimes had unanticipated consequences. In some cases, for
example Brazil, parts of Canada, and the Russian Federation initial public support
waned in the aftermath of noticeable price increases. Beyond reversing political de-
cisions, some European states have initially been rather reluctant to market compe-
tition, fearing the demise of strategically important energy champions among other
reasons (Sioshansi, 2006). A prime example is the lack of creating additional cross-
border transmission capacities to alleviate bottleneck situations. The general take-
away of the article is that “hybrid markets” have begun playing a significant role, as
“textbook prescriptions” on how exactly markets should be implemented have led to
disastrous failures. This is in line with an earlier remark by Sioshansi that “[. . . ] dereg-
ulation is essentially a misnomer. No electricity market has been (or, in fact, can be)
fully deregulated.”

California Electricity Market Reform The case of the California market reform has,
due to its spectacular failure with rolling blackouts in 2000 and 2001, received special
attention in both, the academic literature and general media. Besides problems from
poorly implemented and monitored incentive schemes in the transmission network,
issues related to the (mis-)use of market power led, among other consequences, to the

9Unbundling describes the separation of once vertically integrated (energy) companies into separate
entities responsible for a single component of the value chain.

10For a compact representation of key electricity market reform in 15 world regions, the inclined reader
is referred to Table 2 in Sioshansi (2006).
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bankruptcy of Enron. Shortly before the deregulation of the California electricity mar-
ket, large utilities had divested important parts of their generation portfolio (Bushnell,
2004). This, counterintuitively, increased in ownership concentration in southern Cal-
ifornia. However, Bushnell argues that market failure was only to a minor extent due
to lackluster competition, but rather should be attributed to poor installation of long-
term supply schemes, concentrating trading activities on short-term market venues,
such as DAM.

Misuse of market power to increase profits is a recurring theme in the literature
(Joskow, 2008), albeit not the only one. For instance, JP Morgan Ventures Energy Cor-
poration (JPMVEC) were accused of fraudulently exploiting an incentive scheme be-
tween 2010 and 2012 installed by the California ISO (CAISO), which resulted in severe
penalties and the eventual sale of the business. In more detail, JPMVEC exploited
uplift payments “which provide additional compensation to generators when mar-
ket revenues would not cover what is called the ’bid cost’ of a resource the ISO has
committed.” As JPMVEC could reliably predict future congestion, it leveraged this
information and profited from the necessary re-dispatch to alleviate congestion via
excessive, bid-dependent uplift payments.11

Reform in the Russian Federation The electricity market reforms in the Russian
Federation are outlined in Gore et al. (2012). Unbeknown to most researchers in the
field, this reform can be considered to be the worlds “most ambitions” by most met-
rics, including electricity usage and covered geographic area. Gore et al. are able to
show that due to concentration in most market regions during times of peak demand
(as measured via the Herfindahl-Hirshman Index), market power might pose a seri-
ous threat to efficient market outcomes and hence foster above-competitive prices.
Other challenges in this (geographically) vast market concern congestion and lack of
generation capacities in the European part of the country.12

Reform in Germany As Ilg (2014, p.13f) notes, electricity market reform in Germany
has mainly been driven by European regulation. Directive 96/92/EC meant the be-
ginning of electricity market liberalization and placed special emphasis on introduc-
ing more competition through improved cross-border transmission capacities. This
process was continued with directive 2003/54/EC whose main focus was on network
access and opening of national markets, but also giving consumers greater freedom
in choosing their supplier. The most recent directive, 2009/72/EC13, is again con-
cerned with increasing cross-border transmission capacities and in particular with

11http://www.ferc.gov/CalendarFiles/20130730080931-IN11-8-000.pdf ac-
cessed on September 10, 2014

12These may have been partially addressed in the meantime through a round of mandatory invest-
ments by the wholesale generators.

13http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:
32009L0072&from=EN accessed on September 11, 2014

http://www.ferc.gov/CalendarFiles/20130730080931-IN11-8-000.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0072&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0072&from=EN
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Generation Transmission Distribution Consumption

Figure 3.2: Post-liberalization, pre-Smart Grid Power System Value Chain

rolling network expansion planning with a long-term horizon (ten years). In Germany,
this directive has been implemented in national law in August 2011 as part of the En-
ergiewirtschaftsgesetz14. Currently, energy market reform in Europe has, according to
the European Commission’s energy strategy, five priorities:15

1. limiting energy use in Europe;

2. building a pan-European integrated energy market;

3. empowering consumers and achieving the highest level of safety and security;

4. extending Europe’s leadership in the development of energy technology and in-
novation;

5. strengthening the external dimension of the EU energy market.

3.1.3 The Power System Value Chain

Before liberalization, the power sector was a strictly regulated natural monopoly and
exhibited low innovation and high prices. Security of supply was considered crucial
and, hence, fairly high. In order to overcome the drawbacks of monopolistic indus-
tries, electric power systems in the western world underwent liberalization, some-
times termed restructuring, beginning in the late 1980s. After liberalization, the elec-
tricity sector can conceptually be structured into a value chain consisting of genera-
tion, transmission, distribution and consumption (Fig. 3.2).

Generation Historically, relatively few, high-powered generators are located in close
proximity to population centers, their generation adapting to fluctuating demand.
Demand in power systems varies with high regularity over the time of the day, over

14EnWG – Energy Industry Act
15http://europa.eu/legislation_summaries/energy/european_energy_

policy/en0024_en.htm

http://europa.eu/legislation_summaries/energy/european_energy_policy/en0024_en.htm 
http://europa.eu/legislation_summaries/energy/european_energy_policy/en0024_en.htm 
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the week and over the year; it exhibits so-called complex seasonalities.16 Due to elec-
tric energy being a perishable good, fluctuating demand must be compensated via
adjustments in generation (cf. Bertsimas et al., 2013). More recently, RES, such as
wind, solar and biomass have gained an increasing share of the market, aggravating
the control challenge.

Transmission Transmission connects generation and consumption. We refer to the
high-voltage echelon of the power system as transmission. However, the growing im-
portance of RES, which are characterized by reduced power density, and are, thus, by
definition decentralized (Smil, 2010), changes this situation.

Electrical power is not routable. In contrast to data packages on the internet, which
can be routed along specific edges in the connection graph, electrical current flows
over all edges connecting supply and demand (Schweppe et al., 1988; Keshav and
Rosenberg, 2011). The physical laws of power flow have important implications re-
garding network congestion, which have been faced historically through locational
pricing in the form of zonal or nodal pricing (Stoft, 2002).

Distribution Distribution System Operators (DSOs) are responsible for supplying
electrical energy to consumers via extensive networks at low voltage (400V to 22kV in
Western Europe). Following liberalization in Germany, DSOs are required to provide
infrastructure access to competing suppliers at a regulated price.

Historically, power distribution networks were built for unidirectional power flows.
Due to a lack of deployed sensors and communication capabilities, network opera-
tors barely had information on the state of the network (Ipakchi and Albuyeh, 2009).
To avoid capacity scarcity on the distribution level, (at least in Germany) excess dis-
tribution network capacity, e.g., lines and transformers, was erected.

However, with the advent of both, fluctuating, uncertain generation from RES and
flexible, controllable loads, such as EVs, over-provisioning of capacity becomes in-
creasingly costly and economically unsustainable (Schuller et al., 2014; Flath et al.,
2013). Accordingly, recent research has focused on (local) economic coordination
schemes to leverage demand-side flexibility instead of creating a “copper-plate” to
accommodate increasing variation and uncertainty.

Consumption In the past, electricity consumption has mostly been assumed inelas-
tic, i.e., inflexible and non-controllable in the short run, hence the need to optimize
generation. As transaction costs related to frequent metering dominated the benefits
of a controllable demand side, prices were in practice mostly flat. Clearly, scarcity in
time and space cannot be reflected by means of such non-informative prices.

16 De Livera et al. (2011), for instance, presents impressive examples of complex seasonalities including
non-standard calendar effects in the Turkish electricity market regarding both, price and quantity.
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Smart grid proponents (Ipakchi and Albuyeh, 2009; Palensky and Dietrich, 2011)
argue that smart grid adoption may significantly reduce transaction costs associated
with adjusting behavior to scarcity signals, establishing the demand side as a control
variable equally important as supply side control.

3.1.4 European Electricity Markets: Products and Structure

After the liberalization of the electricity sector, competition on the generation level
commenced within newly designed electricity markets.

Market and product structure Energy trading can be separated into Over-the-
counter (OTC) and exchange traded products. OTC offers high flexibility through in-
tegration of trading-partner specific clauses. Moreover, OTC trading allows for con-
fidential trading. According to Judith et al. (2011), traded volume in OTC markets is
significantly larger than on exchange-based markets, and is currently estimated at ap-
proximately 3000 TWh, while consumption amounts to approximately 600 TWh, both
on an annual basis. Hence, electricity is bought and sold about five to six times before
actual consumption takes place, via OTC contracts, alone.

Exchange trading, on the other hand, fosters price discovery and liquidity, but is
restrained by the specific standardized trading products established by the exchange.
Effectively, exchange-based trading provides price signals and benchmarking for OTC
contracts and is thus relevant beyond the immediate trading that takes place on the
platform.

The spot market is used to trade short-term contracts, e.g., contracts with delivery
on the same or the next day. Typically, physical settlement is used. EPEXSpot, the
result of a merger of German EEX and French PowerNEXT is the largest electricity spot
market in Europe and provides standardized products for Germany, France, Austria
and Switzerland on the DAM and intraday market. Monthly trading volume on the
DAM has grown from roughly 6.5 TWh in 2005 to 22.5 TWh in 2014.17

The derivatives market offers the opportunity for hedging up to six years into the
future using futures and options. Contract types include weekly, monthly, quarterly
and yearly futures typically with financial settlement.18

Temporal market structure Traded products in exchange based trading are differ-
entiated with respect to the time remaining until delivery. Schuller (2013, p.33) inte-

17http://www.ise.fraunhofer.de/de/downloads/pdf-files/data-nivc-/
folien-electricity-spot-prices-and-production-data-in-germany-2014-engl.
pdf, p.8, accessed September 11, 2014

18A detailed overview of European Energy Exchange (EEX)’s Contract Specifications is presented
in http://www.eex.com/blob/78218/d5899ea991b80d022df3b3ca048fb9d7/
20140731-eex-contract-spezifications-0040c-e-final-pdf-data.pdf

http://www.ise.fraunhofer.de/de/downloads/pdf-files/data-nivc-/folien-electricity-spot-prices-and-production-data-in-germany-2014-engl.pdf
http://www.ise.fraunhofer.de/de/downloads/pdf-files/data-nivc-/folien-electricity-spot-prices-and-production-data-in-germany-2014-engl.pdf
http://www.ise.fraunhofer.de/de/downloads/pdf-files/data-nivc-/folien-electricity-spot-prices-and-production-data-in-germany-2014-engl.pdf
http://www.eex.com/blob/78218/d5899ea991b80d022df3b3ca048fb9d7/20140731-eex-contract-spezifications-0040c-e-final-pdf-data.pdf
http://www.eex.com/blob/78218/d5899ea991b80d022df3b3ca048fb9d7/20140731-eex-contract-spezifications-0040c-e-final-pdf-data.pdf
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grates trading venues’ structure based on Judith et al. (2011) with the corresponding
temporal aspects.

OTC trading typically takes place years and months before delivery. Trading on EEX’
power derivatives market ranges from years to weeks before delivery. The day ahead
market covers trading up to two weeks in advance of the delivery date, while intraday,
takes place on the very same day, up to 45 minutes prior to delivery (Keles, 2013, p.12–
16). Ancillary services are called upon with lead times of up to one hour, but usually
on shorter notice. Ancillary services may be divided into primary and secondary re-
serve, as well as minute reserve power (Keles, 2013, p.16), in increasing order of lead
time. The former must answer within 30 seconds of being requested, while secondary
reserve may have a latency of up to five minutes. Short lead times require generation
to already be on-line when it is called upon. This is in contrast to the minute reserve
which guarantees delivery within 15 minutes and can hence be provided from non-
spinning reserves.19

Capacity Markets The successful proliferation of RES has had three major conse-
quences for operators of conventional generation capacities. First, it led to reduced
operating hours. Second, supply gluts during traditional high-price periods (midday
peak periods) lowered prices, reducing economic attractiveness. Third, higher price
volatility led to increasing cycle counts, which in turn have inflated maintenance and
repair costs. All three developments together negatively affected profitability of con-
ventional generation capacities and have led as far as generators threatening to shut
down and mothball even newly erected gas-fired power plants. They argue that under
current circumstances prices are insufficient to generate profits, or at least cover vari-
able costs. Safe system operation, however, requires sufficient availability of reserve
capacities, either to alleviate congestion in the power network, or to offset fluctua-
tions in generation and consumption. The desire of generators to reduce fixed costs
via capacity reductions is scrutinized by regulators and often denied.20 Current mar-
ket design, unfortunately, does not reward available capacity, relying on payments for
energy only. To remedy this shortcoming, the incumbent generators have proposed
establishing capacity markets with the goal of providing both, system security, and
profits.

Interestingly, Cramton and Ockenfels (2012) indeed argue that capacity mar-
kets may improve economic coordination and functioning of power systems (which
should not, given the financing of the study21 by RWE – one of the large four incum-
bent generators in Germany – come as a surprise), but, at the same time urge great
caution before introducing capacity markets.

19Detailed information on the procurement of ancillary services, for Germany, is provided at https:
//www.regelleistung.net/

20See, for example, https://www.enbw.com/unternehmen/presse/
pressemitteilungen/presse-detailseite_51008.html.

21The authors disclosed financing information in the article.

https://www.regelleistung.net/
https://www.regelleistung.net/
https://www.enbw.com/unternehmen/presse/pressemitteilungen/presse-detailseite_51008.html
https://www.enbw.com/unternehmen/presse/pressemitteilungen/presse-detailseite_51008.html
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They present five major impediments to the successful introduction of capacity
markets. First, political forces, playing a decisive role in market design decisions may
foster theoretically flawed approaches, leading to potentially disastrous outcomes.
Second, the time horizons underlying a rational adoption of capacity markets is on
the order of decades, as they mainly concern long-term investment decisions while
the political mindset in the aftermath of the decision to phase-out nuclear generation
is more concerned with short-term solutions, such as avoiding blackouts. Third, ca-
pacity markets are a blunt knife in the face of political uncertainty, and might turn out
to be a costly experiment. Fourth, a capacity market should include locational signals
to avoid construction of generation capacities in congested locations. Finally, aligning
the goals of a capacity market with existing subsidisation schemes for RES poses chal-
lenges that should be addressed “[. . . ] before a capacity market is adopted”. Cramton
and Ockenfels prefer the creation of a “[. . . ] stable and reliable political, and a sound
market framework” (Cramton and Ockenfels, 2012, p.33) in order to reduce (politi-
cal) uncertainty instead of patching the existing system with an additional capacity
market. Furthermore, they propose, among other measures, improved, i.e., market-
based RES integration and transmission expansion. Interestingly, they highlight the
importance of addressing the far-reaching fundamental market failure in today’s elec-
tric power systems: “[T]he absence of a robust demand side”. Accordingly, once the
mentioned issues are resolved to a satisfactory degree, capacity markets can “unfold
[their] complementary value in assuring resource adequacy”.

3.2 Smart Grids

Recent and future expected changes to the power grid require upgrades to the exist-
ing infrastructure in order for it to cope with the challenge of decentralization, ef-
ficiency, transparency, robustness, and sustainability. Upgrades towards the smart
grid, according to Gellings (2009) may comprise “sensors, communications, compu-
tational ability and control in some form to enhance the overall functionality of the
electric power delivery system.” Ipakchi and Albuyeh (2009) argue for the transition
to a smart grid to be successful, it must be evolutionary. The main drivers, according
to Ipakchi and Albuyeh (2009), for smart grid adoption, may be summarized as fol-
lows: First, proliferation of intermittent resources on the transmission and distribu-
tion level and, second, adoption of electric vehicles. The smart grid is set to improve
energy efficiency and to increase engagement of so far passive consumers (Farhangi,
2010). It aims towards establishing decentralized control and develop a robust infras-
tructure for a sustainable power system via pervasive control and monitoring. At the
same time, it should help to reduce over-investment into additional generation and
transmission capacity, guaranteeing higher cost-efficiency (Joskow, 2012). The smart
grid is based on ubiquitous bidirectional information and communication technol-
ogy, advanced metering and monitoring systems. Information is thus the backbone of
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the smart grid. Automation activates the distribution network and taps into currently
dormant flexibility potentials on the demand side. Ramchurn et al. (2012) argue that
one main objective of future smart grids is the mitigation of uncertainty arising from
fluctuating generation by means of flexible loads.

Coordination efforts in future power system require information technology and
automation to play a key role in interconnecting the parts of the system at low trans-
action costs. Integration of volatile renewable energy sources and reduced operating
cost are expected to drive technology adoption. The European Smart Grid Technology
Platform (European Commission, 2012, p.27) defines the smart grid to be “an electric-
ity network that can intelligently integrate the actions of all users connected to it –
generators, consumers and those that do both – in order to efficiently deliver sustain-
able, economic and secure electricity supplies.”

3.2.1 Smart Meters and Advanced Metering Infrastructure

Smart meters measure, store, and communicate consumer’s consumption data in (rel-
atively) high temporal resolution, i.e., in 15 minute or hourly intervals (Siano, 2014).
Ideally, the roll-out of smart meters are accompanied by energy management or De-
mand Response (DR) applications. Advanced Metering Infrastructure (AMI) is con-
sidered an essential prerequisite to the roll-out of the smart grid and the next step fol-
lowing historically installed electromechanical meters and one-way automated meter
reading (Farhangi, 2010, Fig. 6). It provides the basis for bi-directional communica-
tion and hence enables novel business models by means of controlling consumption.
In particular, it foots on the roll-out of smart meters and enables all the concepts sub-
sumed DSM. In effect, through analysis of logged data, operations, cost and customer
service can be optimized. Furthermore, AMI through bidirectional communication,
may provide timely feedback on outages and power quality, supporting further mea-
sures regarding grid automation (Siano, 2014).

3.2.2 Information and Communication Technology

Smart grid ICT standards are outlined in Gungor et al. (2011) where GSM, GPRS, 3G,
WiMAX, PLC, and ZigBee are compared along data rate, coverage range, applications
and known limitations. Depending on requirements, different technologies may be
optimal. For instance, wired technologies are more costly to deploy on a large scale,
but offer the possibility for improved “communications capacity, reliability and se-
curity.” Wireless technologies are “constrained [by] bandwidth and security options”,
but offer reduced installation expenses. Communication requirements are outlined
as well and comprise security, reliability and robustness, scalability, quality-managed
communication between supplier and customer, to ensure low-latency communica-
tion for smart grid control purposes (Gungor et al., 2011).
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The diversity of smart grid stakeholders requires exchange of information in an au-
tomated fashion over clearly defined and accepted interfaces. Gungor et al. (2011)
provide an extensive overview of standardization efforts and existing norms that have
come into existence through collaboration of various institutions and professional
bodies (IEEE, ISO, NIST, ANSI, and others). Standards presented cover areas such
as Home Area Networks (HANs), AMI, EVs, energy management systems and inter-
control center communications (Gungor et al., 2011, Table 2). An alternative discus-
sion of smart grid standards is provided in Farhangi (2010).

3.2.3 Smart Markets

The German Bundesnetzagentur, responsible for overseeing competition and regu-
lation in network industries such as natural gas, electricity, telecommunications and
mail, has issued a report in 2011 offering a definition and separation of terms concern-
ing the “Smart Grid” on one side and “Smart Markets” on the other (Bundesnetzagen-
tur, 2011). The Bundesnetzagentur defines “Smart Grids” as conventional power net-
works extended via information and control technology. In more detail (Bundesnet-
zagentur, 2011, p.11)

“The conventional electricity network turns into a ‘Smart Grid’ through
its extension with components regarding communication, measurement,
control and automation technology. ‘Smart’ reflects both, capturing net-
work state in real-time, and existence of means for controlling the network
to fully utilize existing network capacity.”

Hence, the “Smart Grid” is supposed to render power networks controllable and
more reactive and therewith improve provision of transmission capacity. The power
grid remains a natural monopoly and thus requires appropriate regulation. The defi-
nition of what belongs to the smart grid accordingly predefines which parts require
regulatory oversight. The “Smart Market”, in contrast, should, according to Bun-
desnetzagentur (2011), focus on trading of energy and abstract from capacity con-
cerns. Innovation is expected to take place on the side of liberalized markets, where
the forces of competition create a creative environment for economic experimenta-
tion.

This separation is partially in line with Bichler et al. (2010), who propose smart mar-
kets, i.e., algorithmically supported markets that enable novel forms of exchange, un-
likely to happen in a traditional environment. One prime example of smart markets
is the trading agent competition in the domain of supply chain management . Bich-
ler et al. (2010) focus on combinatorial market design and outline both, perspective
research avenues and hurdles to adoption of smart market adoption in reality.

Through smart markets, it may become possible to reach beyond optimization-
based markets as proposed in Gallien and Wein (2005) and include aspects of game
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theory, behavioral sciences, mechanism and organizational design (Bichler et al.,
2010, p.688f). Smart markets are considered a key building block to encapsulate com-
plexity and attain improved economic outcomes. However, transfer of theoretical re-
sults into practice often fails as the underlying assumptions required to apply game-
theoretic solution concepts do not hold. Clearly, smart markets in the domain of elec-
tricity require smart grid infrastructure for monitoring, control and enforcement.

Deadline-differentiated pricing (Bitar and Xu, 2014) may be interpreted as a par-
ticular perspective on smart markets. The originally homogeneous good electricity
may be separated into different quality classes and hence be priced separately. “The
longer a consumer is willing to defer, the larger the reduction in price” (Bitar and
Xu, 2014). The authors simplify preference expression to a three-dimensional type
(price, quantity, deadline) possibly at the expense of efficiency that may be achieved
through more complex type representation. The advantage of this approach lies in its
simplicity, robustness and, most importantly, incentive compatibility for the demand
side. Complexity is solely found on the supplier’s side, who must decide on both, the
pricing/quantity regime and execute an operating strategy, i.e., decide when to serve
which demand. In this context, Woo et al. (2014) provide an in-depth review of elec-
tricity differentiation, including a reliability perspective, which may be employed to
reach better operating, as well as system expansion planning decisions. Hence, dif-
ferentiation may be considered an important building block of a reliable, sustainable
and efficient power system with large shares of uncertain RES.

3.3 Sustainability, Uncertainty and Forecasting

RES render a power system more sustainable, but introduce uncertainty regarding fu-
ture generation. Forecasting generation from RES yields higher accuracy, the larger
the portfolio of generators under consideration. In order to cope with volatile gen-
eration in constrained power networks, however, either fast-ramping generators, a
flexible demand side, or a combination of both is necessary.

3.3.1 Demand Forecasts

Forecasting demand has historically been an active field of research (cf. Taylor et al.,
2006, and the references therein), as better forecasts translated into better optimiza-
tion decisions, and more efficient systems operation. Gould et al. (2008) propose a
novel method of forecasting aggregate power demand based on state-space models.
Interestingly, their contribution is a novel way of comfortably including complex sea-
sonalities. De Livera et al. (2011) extend the previous approach to also include multi-
ple complex seasonalities (i.e., daily, weekly, and monthly periods) but is more robust
to parameter overfitting. Moreover, the new method includes “non-integer” period,
and, for the first time, dual-calendar effects. One of the application examples notably
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includes Turkish electricity demand data over a period of nine years that exhibits dual-
calendar behavior as well as the usual complex patters of electricity demand.

3.3.2 Wind Power Forecasts

Forecasting volatile output of RES is a rather novel field of research intricately linked
to meteorology. With growing shares of sustainable energy sources, accurate forecasts
are valuable and decisive in achieving satisfactory commitment decisions for conven-
tional generation to cover residual load. Imprecise forecasting may lead to expensive
re-scheduling decisions and, if market design allows, negative prices.

Giebel et al. (2011) provide an extensive literature review on short-term wind power
prediction that spans more than 350 journal and conference papers, including phys-
ical and statistical forecast models, or hybrids thereof. Statistical model yields, by
definition, the uncertainty associated with forecast results. Physical models require
additional processing to include uncertainty in forecasts (Giebel et al., 2011, p.63).
Clearly, longer forecasting horizon is associated with reduced forecasting accuracy
(Giebel et al., 2011, Figures 4, 21). An interesting fact the authors mention is that “pre-
dictability” may influence wind farm siting decisions. Forecasting models can err in
two dimensions, namely, level and phase. The former “misjudges the severity of the
storm, while a phase error misplaces the onset and peak of the storm in time.”(Giebel
et al., 2011, p.8) Evaluation of forecasts’ errors, i.e., essentially judging their quality
is not trivial, with different measures, such as the popular Root Mean Squared Er-
ror (RMSE) and Mean Absolute Error (MAE) not reflecting different parts of the error
information. Today’s state of the art for comparing wind power forecasts includes
bias, MAE, RMSE, coefficient of determination R2, skill score (forecast error relative
to a baseline forecasting model), and the histogram of the error distribution (Giebel
et al., 2011, p.9). To conclude, including wind turbine shut-off events is of high impor-
tance to reduce the risk of outages during storms (Giebel et al., 2011, p.20,21). Pinson
and Madsen (2012) employ Markov-chains and autoregressive approaches to model
offshore wind power variation that explicitly include regime switches. Moreover, they
allow for time-varying model coefficients. The authors highlight that offshore wind
farms, in contrast to their on-shore peers, are usually densely packed, which yields
highly fluctuating output and renders accurate forecasting a challenge. To account
for uncertainty appropriately, they evaluate their model with respect to “point, inter-
val and density forecasts” (Pinson and Madsen, 2012, p.4).

3.3.3 Solar Generation Forecasts

Reikard (2009) compare AutoRegressive Integrated Moving Average (ARIMA) models,
transfer functions (which are ARIMA models augmented with causal variables), neu-
ral networks and hybrid models (ARIMA and neural network) on time scales from
one to four hours on hourly data and from five to thirty minutes on high-frequency
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data (minute basis). They find ARIMA models to yield best forecast accuracy. This
is quite interesting, as adding further explanatory variables in the majority of cases
deteriorates forecast accuracy traced back by the authors to variation in the causal
variables themselves. However, with increasing sampling frequency of the underly-
ing data, regression and neural net models may beat ARIMA models, as they are more
suited to reflect short term fluctuations. The ARIMA models (Reikard, 2009, p.348), in
contrast, owe their superior performance at lower data resolution to precisely reflect-
ing the diurnal solar cycle. Marquez and Coimbra (2013) improve the very-short term
(3-15 minutes) solar power generation forecast by explicitly taking cloud cover into
account. To this end, they develop sky image processing techniques with minute res-
olution. Their article introduces the algorithmic details and processing steps to arrive
at meaningful forecasts. They find their approach to outperform naïve persistence
models, with the largest improvement in forecast accuracy at the 5-minute ahead pe-
riod.

3.4 Management of Flexible Demand

3.4.1 Demand Side Management

The umbrella term DSM summarizes a variety of approaches to leverage demand flex-
ibility potentials (see Palensky and Dietrich, 2011; Strbac, 2008). Generally speaking,
DSM aims to adapt current consumption to current generation. In an early work,
(Gedra and Varaiya, 1993) refer to DSM as “proposals [. . . ] to reduce system load in an
efficient manner”. Clearly, in 1993, volatile RES played only a minor role in the power
system. Accordingly, the concept of DSM was mostly concerned with reducing peak
load and increasing infrastructure utilization, and only to a lesser extent with the effi-
cient integration of RES into power system operations. However, in recent years, DSM
is understood to be able to significantly assist in the integration of RES. (Vardakas
et al., 2014), for instance, state “DSM [to] include all activities which target to the al-
teration of the consumer’s demand profile in time and/or shape, to make it match the
supply, while aiming at the efficient incorporation of renewable energy resources.”
The notion of “energy services” is central in this context: Schweppe et al. (1989) note,
“[that] an end use device uses electric energy to provide a service to the customer." This
differentiated view on electricity consumption paves the way for DSM approaches that
adapt energy consumption to external signals such as availability of renewable gener-
ation, prices, system frequency or even temperature (Albadi and El-Saadany, 2008). A
significant subfield of DSM is DR: According to Siano (2014, referring to further stud-
ies), “DR refers to ’changes in electric usage by end-use customers from their normal
consumption patterns in response to changes in the price of electricity over time, or to
incentive payments designed to induce lower electricity use at times of high wholesale
market prices or when system reliability is jeopardized.”’
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As of today, DR implementations in practice are mostly limited to direct load con-
trol for industrial customers, heating control (night setback) and Time-of-Use (ToU)
rate structures (Wang et al., 2010b). The benefits of DR are, according to Siano (2014),
bill savings (for both, responding and non-responding customers), reliability benefits,
prevention of market power exercise, improved choice for customers, system secu-
rity through additional degrees of freedom to meet contingencies.22 Spees and Lave
(2007) as well as Siano (2014) argue that such ToU rate structures may render both, re-
sponsive and non-responsive consumers better off: The responsive consumers shift
consumption to low-price periods, non-responsive consumers enjoy reduced rates
during peak times. Going forward, smart homes and electric vehicle charging may
emerge as novel flexible load types (Ramchurn et al., 2012; Hu et al., 2012). The emer-
gence of these new flexibility potentials will also foster the notion of quality-of-service
in power markets in lieu of more traditional DSM categorizations like “shifting” or
“shedding”: Retail electricity will no longer be a homogeneous good but will rather be
differentiated with respect to reliability, delivery time or power quality (Faruqui et al.,
2010).

According to the European Commission23, incorporating demand side flexibility
through measures of DSM into electricity markets is a win-win situation. First, flex-
ibility on the demand side can substitute supply side flexibility. Hence, it can act as
a replacement for both, storage and generation capacities. Second, by making the
supply chain more efficient, lower energy costs and eventually better prices for con-
sumers can be realized.

The Smart Grid, which, to a large extent, comprises of upgrading existing power
system infrastructure on the distribution level with information and communication
technology (Farhangi, 2010), will play a key role in enabling the transition towards
a decentralized and ecologically more sustainable power systems architecture. It is
furthermore expected that smart grid infrastructure will serve as an enabler of DSM,
or DR, to achieve the goal of safe, sustainable and efficient power system operations.

To this end, a better understanding of the different types of demand side flexibility
has been established in numerous recent publications (Albadi and El-Saadany, 2008;
Gottwalt et al., 2011). The motivation behind gaining a better understanding of flex-
ibility potentials is obvious: Through appropriate control mechanisms, stability on
short time horizons and economic efficiency of the power system might be achiev-
able at reduced cost compared to keeping costly flexible generation capacity online.
Beyond better, i.e., more granular control of flexibility on either side of the system,
economic incentives are required for flexibility potentials to be revealed to any deci-
sive instance (Mohsenian-Rad et al., 2010).

22(Flath et al., 2012, Appendix B) and Siano (2014) provide a compact overview of DSM benefits.
23http://ec.europa.eu/energy/gas_electricity/doc/com_2013_public_

intervention_swd07_en.pdf, accessed on 2014/09/03.

http://ec.europa.eu/energy/gas_electricity/doc/com_2013_public_intervention_swd07_en.pdf
http://ec.europa.eu/energy/gas_electricity/doc/com_2013_public_intervention_swd07_en.pdf
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Figure 3.3: Heterogeneity in valuation and quality requirements for different services in the
smart grid. Establishing heterogeneous quality classes opens up new applications for the ho-
mogeneous good electricity.

3.4.2 Scheduling of Flexible Loads

Quality Differentiation and Automation Quality requirements for individual en-
ergy services are heterogeneous and vary by customer, device, time of day, and day
of week. Such demand heterogeneity may be leveraged to align demand and supply
in a smart grid. Fig. 3.3 abstractly illustrates the diapason of quality (q) and valuation
(v) for an energy service. Current power systems, however, do not allow for differ-
entiation by quality and valuation, but provide immediate service at a specific price
per unit of energy p̂, and a certain quality q̂ (illustrated by the red dot in the center).
“Quality” of energy services may comprise curtailing, deferral, interruption, and re-
liability in general. To avoid excessive transaction costs, a corresponding smart grid
infrastructure is necessary to offer consumers a choice, which quality/reliability to
subscribe to. Ideally, this differentiation should be possible on a very granular, i.e., on
a per-device level. For behavioral changes to materialize, the associated benefits from
more system-compliant behavior must be attributed, at least to some extent, to the
stakeholder changing his behavior.24

Load Scheduling Leveraging the potentials of flexible loads requires active dispatch
of these assets. To this end, scheduling approaches for flexible, i.e., deferrable, loads
have attracted significant research activity. Parvania and Fotuhi-Firuzabad (2010)
schedule both flexible loads as well as decentral generation assets to minimize whole-
sale electricity costs. Using a mixed-integer programming framework, Sou et al. (2011)

24This is in contrast to DR, which historically let utilities collect a large fraction of benefits.
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determine cost-minimizing power profiles which satisfy complex constraints such as
non-interruptible and sequential operations, while Bosman et al. (2012) propose co-
ordinated scheduling of combined heat and power plant (CHP) fleets. Relying on dif-
ferent scheduling routines, Subramanian et al. (2013) show that efficient demand side
coordination can already be achieved with modest load flexibility endowments. Scott
et al. (2013) present a comprehensive framework for scheduling different flexible loads
in the presence of multiple sources of uncertainty. Recognizing the central connection
of generation uncertainty and load deference, Papavasiliou and Oren (2014) develop
solution techniques for large scale stochastic unit commitment problems in the pres-
ence of flexible loads. Varaiya et al. (2011) present “risk-limiting dispatch”, a proba-
bilistic approach to scheduling conventional generation in the presence of stochastic
generation to eventually meet operating constraints regarding both, generation and
transmission. While the authors interpret DR to increase stochasticity of the con-
trol problem, the demand side may as well be commissioned to alleviate uncertainty
through appropriately engineered scheduling algorithms.

Petersen et al. (2013) present two heuristic algorithms, “predictive” and “agile” that
control a virtual power plant of heterogeneously flexible load. The objective is to min-
imize residual load, defined as the absolute difference between generation from RES
and scheduled demand. They find their heuristic (causal) agile control algorithm
to yield suboptimal results, but to beat its predictive counterpart under short fore-
cast horizons. The latter relies on integer programming, is therefore computation-
ally more involved, and less applicable to real world large-scale flexible load dispatch
problems. The agile algorithm, in contrast, leverages sorting to greedily dispatch the
least-flexible devices and retain flexibility of the aggregate portfolio. The intuition to
retain as much flexibility as possible within the unscheduled portfolio is reminiscent
of the approach of Kumar (1987).

3.4.3 Pricing Regimes

Price-based incentives are intended to activate the demand side and hence assist in
balancing supply and demand (Borenstein et al., 2002). The particular design deci-
sions may follow a multitude of considerations, including complexity, risk (for con-
sumers and utilities), and revenue considerations.

Constant rates, a constant price per unit of energy (Wh), is the most simple and
common pricing regime for electric power is consumed. It is popular due to its low
complexity, both for the consumer as well as with regard to metering complexity. Boi-
teux (1960) and Schweppe et al. (1988) present a detailed treatise on the pitfalls of
constant energy prices (and argue in favor of real-time pricing). Their most signifi-
cant downside is that scarcity is not reflected in prices and hence consumers have no
incentive to adjust behavior to system state. Often, constant rate tariffs require the
consumer to pay capacity-dependent connection charges.
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Temporal Pricing ToU differentiated prices vary over the day with at least two dif-
ferent prize zones, i.e., high and low price. Prices and zone lengths are published in
advance and are static in nature, that is, they do not take dynamic system state into
account. The goal of ToU is to defer load to low-load times, e.g., nighttimes, reduce
overall peak load and increase system utilization factor. This regime adds consumer
incentives, but clearly fails to dynamically reflect system state. Hence, while it has
been successfully applied in the past (Borenstein et al., 2002, p.5), its successful appli-
cation in power systems with strong penetration by RES is doubtful. Reference? Crit-
ical Peak Pricing (CPP) programs combine attributes from Real-Time Pricing (RTP)
and interruptible programs. They feature time-varying prices as in ToU programs,
augmented with an additional rate that can be called upon on short notice, but only a
limited number of times, by the utility (Borenstein et al., 2002). Accordingly, CPP dom-
inate ToU programs through better tracking of wholesale power prices, and hence lead
to more efficient outcomes.

(Schweppe et al., 1980, 1988) comprehensively introduced the concept of RTP long
before the advent of inexpensive communication means such as the internet. The
authors argued that the power system’s operating efficiency could be improved, cap-
ital investments reduced, and customers would be given a choice with respect to the
reliability (we prefer to say quality) of purchased electricity. The utility benefits from
reduced costs and improved capacity utilization as well, as some peak-load consump-
tion is curtailed. Allcott (2011), however, demonstrate that the benefit of RTP to the
consumer is rather small in their examined setting.

Locational Pricing By adding a locational component prices can be further differ-
entiated and include localized scarcity signals. This again may be important for both,
investment and operation’s decisions. (Bohn et al., 1984) argues in favor of locational
pricing to foster efficient allocations, both, in the short and long run. “With spot pric-
ing (a different price for each customer location at each moment), the utility can in-
duce socially optimal behavior by each customer and avoid system overload without
having to resort to collective or individual rationing schemes.” 25

3.4.4 Incentives and Mechanism Design in Smart Grids

Due to the distributed nature of smart grid systems (see Tanenbaum and Van Steen,
2002), the optimal dispatch as determined by a central scheduler cannot be directly
implemented in practice. The information required to determine the schedule (i.e.
willingness-to-pay and flexibility endowments, Fig. 3.3) are private information of in-
dividual system participants. Therefore, these inputs are not directly available to a
central planner but rather need to be elicited from the distributed agents. Price-based

25 We refer the inclined reader to Ilg (2014, Chapter 3.3) for an overview of the literature on electricity
pricing.
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DSM programs facilitate a decentralized decision paradigm by directly incentivizing
customer behavior changes (Albadi and El-Saadany, 2008). However, purely price-
based coordination (without feedback) typically cannot internalize hard operational
constraints (Wang et al., 2010a). A typical phenomenon is the occurrence of new load
spikes due to herding effects (Ramchurn et al., 2012). Using simultaneous bidding
over a complete planning horizon, Mohsenian-Rad et al. (2010) show that competing
distributed agents can converge to an optimal schedule in a distributed fashion.

However, every task needs to be scheduled, i.e. there is no consideration of
quality-of-service differentiation. The combination of job admittance decisions, on-
line decision-making and incentive-compatible pricing and allocation rules leads to
the literature on online mechanism design: Friedman and Parkes (2003) outline the
design challenges of such mechanisms and establishes the central assumptions like
limited misreports. Ideally, algorithmic mechanisms must be designed such as to
achieve monotonicity in their solutions (Parkes, 2007) and hence enable incentive
compatibility.26 Careful incentive design deserves special attention as the demand
side may be actively engaged with system control. Here, poorly designed, widely de-
ployed algorithms might lead to catastrophic system failures.

Vytelingum et al. (2010) propose a trading mechanism (and a set of trading strate-
gies) for electricity in the presence of self-interest agents based on the Continuous
Double Auction (CDA) that “degrades well” under increasingly constrained power net-
work capacity.27 Gerding et al. (2011) apply online mechanism design in the smart
grid, addressing the coordination of plug-in hybrid vehicle charging decisions. They
develop a model-free online mechanism for perishable goods in a discrete-time set-
ting with multi-unit demand and decreasing marginal valuation. Focusing on non-
decreasing valuations, Stein et al. (2012) introduce the concept of pre-commitment
in combination with model-based online scheduling techniques to create an online
mechanism for coordination of charging requests of pure electric vehicles. Gerding
et al. (2013) propose a two-sided market for advance reservation EV charging relying
on cost and availability information from the sellers and preferences regarding charg-
ing location and time by buyers. Again, to account for the dynamism in the model,
the authors rely on principles of online mechanism design. The designed mecha-
nisms allow trading-off price volatility and budget balance at high efficiency, while
the benchmark mechanism suffers from low efficiency and a significant deficit.

26A wonderful exposition on market and incentive design is provided in Kalagnanam and Parkes (2004,
Chapter 2).

27While the mechanism itself is not incentive-compatible, the underlying CDA has been shown to at-
tain high efficiency.





Chapter 4

Model-free Online Mechanism Design
for Scheduling Preemptive Jobs

4.1 Introduction

Today’s energy system is experiencing transition from mainly fossil-fueled power gen-
eration towards greater shares of renewable energy sources (RES). While these new
energy sources are clean and have quasi-zero marginal cost, they are highly fluctuat-
ing and feature a lower energy density than fossil fuels. This challenges conventional
wisdom in power system planning: The future system topology will be much more
decentralized with significant generation capacities being located on the distribution
grid level. Furthermore, system operators need to be able to cope with much higher
variability levels on the supply side. Recent experiences in power systems around the
world suggest that traditional procedures will have to be adapted in light of these new
challenges. For example, Subramanian et al. (2013) note, that “the current operating
paradigm [...] works at modest penetration levels, but fails when 30% or more of total
energy generation comes from renewables.” Similar observations were made in Ger-
many where the share of power generation from renewables increased between 2009
and 2013 from 15.9% to 23.4%. However, over the same period the number of days
with exceptional RES shedding events in Germany’s northeastern transmission grid
increased from 4 to 142 — what used to be a rare event had become the norm.1, 2

Acknowledging the central role of the underlying stochastics of RES generation,
Varaiya et al. (2011) claim that power grid operations will need to fundamentally
change in a similar manner as the manufacturing industry did when it adopted IT-
based just-in-time supply chain management. The research on demand side man-
agement (DSM) so far is generally based on variable, yet pre-announced, electricity
prices. This resonates well with traditional forward power markets for conventional
generators, but seems ill-suited to describe a RES-dominated power system which
is characterized by quasi-zero marginal cost supply and limited reliability. A possi-
ble remedy is to introduce quality differentiation with respect to reliability and adopt

1www.50hertz.com/en/file/50Hertz-Almanac-2012-EN.pdf
2www.bdew.de
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value-based pricing. Then, payments and realization of energy delivery are not spec-
ified a priori, but rather arise endogenously from heterogeneous customer valuations
and flexibility endowments. Designing such a quality-differentiated market requires
the explicit consideration of incentive-compatibility with respect to load flexibility.

We consider a geographically highly restricted smart grid market for direct and in-
stant matching of flexible loads with volatile generation. We envision this market plat-
form as a parallel, secondary marketplace for excess RES generation which can no
longer be integrated into the primary wholesale market at reasonable costs. Conse-
quently, demand side applications can choose which market to engage in, and highly
flexible, non-mission-critical demand may be attracted by lower costs on the local
flexibility market. Similar to Bitar and Low (2012), we apply a generic model to explore
the general implications of such a secondary marketplace with differentiated service
quality. Unlike most prior research, we do not make a distinction between shiftable
and sheddable loads but consider demand flexibility on a job level. This means that
individual jobs have freedom with respect to their execution time (shifting character-
istic) and furthermore may not be executed at all (shedding characteristic). We com-
plement this micro-founded demand model by an online mechanism which yields
truthful revelation of jobs’ preferences with respect to both value and temporal flex-
ibility. Furthermore, the proposed mechanism is weakly budget-balanced under the
mild assumption of homogeneous reservation prices on the supply side. Our analysis
provides a quantitative assessment of the potentials to match renewable generation
to a flexible demand side in a decentral smart grid. We find that, for a plausible range
of the relevant parameters (generation capacity, demand side flexibility endowment),
the cost of ensuring IC in a smart grid market is relatively small. This suggests that
local matching of demand and supply can be organized in a decentral manner in the
presence of a sufficiently flexible demand side.

This chapter addresses decentral coordination of flexible loads to balance increas-
ing levels of generation uncertainty in the power system. Recently, demand side man-
agement and flexible loads have attracted increased research activity both from a
technical as well as an economic perspective. Besides these directly related research
strands, this chapter relates to the theory on (online) mechanism design and formal
modeling of operational flexibility. Furthermore, we also connect to the literature on
operational flexibility. Graphs play a central role in formally expressing flexibility. For
instance, (Jordan and Graves, 1995) already demonstrated in their seminal paper that
limited flexibility endowments can typically accrue a large share of maximal bene-
fits achievable under full flexibility which may be represented through complete bi-
partite graphs. Borenstein (2000) presents precedence constraints and corresponding
process flexibility in the manufacturing domain via directed acyclic graphs, enabling
efficient representation of routing flexibility at various levels of detail. Kranton and
Minehart (2001) focus on issues in strategic network formation. They use bipartite
graphs to model trade relationships. The more links an agent establishes, the more
flexible he becomes in his sourcing decisions. Chou et al. (2010) highlight the impor-
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tance of separating between range and response in process flexibility, modeled via
bipartite graphs. They conclude that in most cases improving response, i.e., the rate
at which a system is capable of reacting to change, is more valuable than improving
range, “the extent to which a system can adapt”. More recently, Chou et al. (2011) com-
pare “highly connected but sparse graphs”with complete graphs regarding their worst
case performance over a large set of objective functions under uncertain and fluctu-
ating demand. They propose an heuristic for the design of flexible process structures
without information on uncertainty. This approach yields comparable efficiency rel-
ative to customized structures that rely on information about demand distributions.
To summarize, graph theoretic approaches are common in modeling flexibility in eco-
nomic systems. We follow this tradition by leveraging this technique to model load
flexibility in smart grids.

An earlier version of this chapter was circulated as Ströhle et al. (2012).

4.2 Scenario and Model Description

We consider a local market mechanism for continuous matching of discrete supply
and demand jobs close to real-time. With “local” we refer to a setting where par-
ticipants on both market sides are situated within spatial proximity of each other.
Continuous matching, in contrast to fixed clearing intervals, fosters liquidity and ef-
ficiency on geographically bounded markets. The argument for shortening predic-
tion horizons combined with frequent re-adaption of generation and consumption
through intraday markets is reiterated in (Bitar et al., 2012). The presented market is
used exclusively ex-ante to sell uncertain, unexpected and thus excess quantities of
locally generated renewable energy to customers exhibiting different kinds of flexible
demand. In general, electricity markets can be categorized according to their con-
tracting time frame, geographical area, and market organization. Using the taxonomy
presented by (Ramos Gutierrez et al., 2013; Botterud et al., 2009), the market (mecha-
nism) is situated on the intraday market without leadtimes in a restricted geographi-
cal area. The way the market decides on allocation is closely related to the generalized
assignment problem, which (in contrast to the ordinary assigment problem) allows
for unused supply and unserved demand to be discarded with the problem remaining
feasible. The major contribution in this work lies in solving this problem online and
in the presence of strategic agents/jobs on the demand side.

4.2.1 Problem Description

In power markets with large shares of renewable generation capacity, the market de-
sign might allow for trading uncertain quantities of renewable generation on the reg-
ular market at a discounted price (due to its inherent uncertainty). Alternatively, only
a secure equivalent of the uncertain generation can be traded on the regular mar-
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ket, with excess quantities shedded or traded on specialized, complementary market
venues. Our market mechanism serves as such a complementary market for energy
available on short notice, where ad-hoc availability reflects local RES intermittency.
Therefore, at some times excess supply will be available that, under traditional mar-
ket rules (Botterud et al., 2009), would be shedded (thereby adversely effecting social
welfare). Under the proposed market mechanism, however, excess renewable gener-
ation would be assigned to queued, flexible demand on short notice, enhancing so-
cial welfare. This contrasts with related literature, where load is mostly considered an
exogenously given constraint and sophisticated RES forecasting is used to reduce un-
certainty in unit commitment problems. As local RES forecasting is highly uncertain,
we focus on providing incentives to the demand side that, combined with smart grid
technologies, might provide large amounts of rather inexpensive flexibility for local
supply-demand matching.

4.2.2 Demand Model

Demand is modeled as in the canonical demand model used in online mechanism de-
sign literature (Parkes, 2007). Each job has a type θ which consists of a tuple including
its arrival time a, departure time d , temporal flexibility f , and the job’s value v .

θ =< a,d , f , v > (4.1)

In our model, each job requires one unit of energy to be successfully completed. Jobs
arrive at time a and remain available until their latest possible start date a + f , which
coincides with their departure date d . If job j is assigned a unit of supply, j is consid-
ered served and both, the corresponding supply order and j are discarded from the
order book. While this model is highly generic and cannot capture the peculiarities
of quantities demanded, it lends itself to tractable analysis. Moreover, the general-
ity of the model allows diverse demand such as energy storage, data centers, HVAC,
agricultural pumping and so on (Bitar and Low, 2012) to be be described within this
model.

The formulation of demand in discrete jobs is motivated by the idea of energy ser-
vices (Schweppe et al., 1989): A consumer usually has limited information about the
quantity of electrical energy consumed by a certain job, but she might be able to quan-
tify utility she receives from a particular service that consumes electrical energy as
its input. Additionally, the user may not be concerned when exactly a service is per-
formed (in an unusable intermediate state) but when the service’ end product be-
comes available. For simplicity it is assumed that the user’s utility from a service is
independent of when the service is provisioned, provided it is before the end of the
job’s deadline. Formally, if the job is allocated and thus matched between arrival and
departure (ai ≤ mi ≤ di ), resulting utility is the difference between valuation and pay-
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ment, and zero otherwise.

ui (mi ) =
{

vi −pi if ai ≤ mi ≤ di

0 else
(4.2)

4.2.3 Supply Model

In our supply model, offers are modeled as discrete energy “packets” of unit size
matching the unitary energy demands of the jobs on the demand side. Supply jobs
(offers) remain available in the supply queue only for a very limited timespan before
they are matched or discarded (shedded). We denote the period during which the sup-
ply jobs are available for matching with α, and set it to a constant value for all supply
jobs.

We instantiate our generic supply model with real-world generation data from a
wind farm in Sotavento, Spain (cf. López et al., 2002). For the purpose of the dis-
crete job model, we derive the arrival of supply jobs from hourly mean generation
data g (t ). Briefly, wind generation data of the year 2012 are normalized by installed
capacity C of the wind park, which we assume to equal the maximum mean hourly
generation observed throughout the year, i.e. C = maxt (g (t )). The resulting utilization
levels of the wind park g ′(t ) = g (t )/C are cumulated over time to form the continuous,
monotonously increasing function G .

G(t ) = ∑
i∈{t0,..,btc}

g ′(i )+ t −btc
dte−btc · g ′(btc) (4.3)

G represents capacity-normalized generated energy in the period [t0, t ]. Different
scaling factors regarding the supply side (i.e., installed capacities) are captured by the
factor β in eq. (4.4). The arrival time of supply job k is then defined by ak , the scaled
inverse function of G .

ak = 1

β
G−1(k) (4.4)

Parameter β is set such that total quantities demanded and supplied balance each
other in the long run3. Based on empirical (hourly) measurements of wind speed and
derived turbine output, we construct the arrival times of supply jobs. Intuitively, in-
terarrival time of supply jobs is decreasing in wind speed. The generic supply model
and the derivation of jobs’ arrival times easily generalizes to fluctuating power sources
other than wind.

3Average utilization of the Sotavento wind farm in 2012 was approximately 0.2, thus β= 1
0.2 = 5.
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4.2.4 Load Flexibility Matching

Applied to the power systems domain this implies that not all demand must be served,
and thus excess demand can be discarded, providing a lever to efficiently balance sup-
ply and demand. Clearly, this presents a major departure from conventional proce-
dures in power systems operations. However, we argue that a radical change of the
system structure warrants a radical change of operational paradigms.

Structures that formalize flexibility in assignment and scheduling problems are fre-
quently formulated as bipartite graphs (sec. 2.5). As we are interested to what ex-
tent temporal flexibility improves achievable social welfare, temporal overlap between
supply and demand jobs is encoded in bipartite graphs. The presence of edges indi-
cates temporal overlap, i.e., possible assignments. Demand jobs are characterized
by valuation, supply jobs by their reservation price r . The goal of maximizing social
welfare (difference between valuations and reservation prices) is equal to finding the
maximal weighted matching, where weights represent marginal contribution to social
welfare from the corresponding assignment. The task is complicated by information
on the graph becoming availabe only over time (online), and possibly being strategi-
cally misreported (valuation, edges). Starting from an offline formulation using full
information, we address both challenges in the next section.
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Figure 4.1: The generalized assignment problem as a bipartite graph. Edges between supply
and demand jobs indicate temporal overlap. Demand jobs feature valuation v , while supply
jobs are characterized by a (homogeneous) reservation price r .

4.3 Allocation Procedure – Planners and Mechanism

The task of any planner lies in identifying welfare-maximizing assignments. While off-
the-shelf solutions are available for the offline case of full information, partial infor-
mation on the graph in an online setting and strategic misreporting by self-interested
agents (mechanism design) add interesting facets to the problem.
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In power systems, continuously retaining the balance of supply and demand and
providing near-constant power quality (with respect to frequency and voltage) con-
strains the decision space available to any coordinating instance. As the contribution
of RES to total generation grows larger, keeping the necessary conventional spinning
reserve capacities online to react to its unexpected fluctuations becomes an increas-
ingly costly effort (Bitar et al., 2012). Therefore, we develop an approach that focuses
on the demand side, mainly by introducing incentives to operationalize jobs’ flexi-
bility, which in turn reduces the cost of power system operations through improved
integration of RES.

A clairvoyant (offline) planner serves as an offline benchmark that, given true
information about consumers’ preferences and suppliers’ costs, computes welfare-
maximizing allocations. For the online case we present a greedy model-free plan-
ner. However, such allocation designs suffer from incentive problems (Sioshansi
et al., 2008) which we address through online mechanism design (Parkes, 2007). All
three approaches ensure continuously balanced supply and demand, achieved by two
means: First, unmatched supply jobs are discarded from the system at the end of their
availability period d . Second, we assume that consumption rates of matched jobs are
similar in a sense that individual disparities will not cause imbalances in the system
during physical settlement.

4.3.1 Benchmark Offline Planner

Solving the NP-hard generalized assignment problem (Roth and Sotomayor, 1992,
ch. 8) yields the maximally achievable social welfare under perfect knowledge if types
θ are not misreported.4 It thus constitutes an intuitive benchmark for alternative allo-
cation procedures that might operate online or take incentives into account. Techni-
cally, our formulation deviates from standard formulation of the GAP as not every job
on either side is compatible with all jobs on the opposite side, i.e., some jobs do not
overlap temporally.

max
x

∑
j∈J

∑
i∈I

(v j − vi ) ·xi j (4.5)

The optimization objective in Equation (4.5) is to maximize social welfare by selecting
feasible matches between supply offers i ∈ I and demand requests j ∈ J . The deci-
sion variables xi j indicate whether supply job i and demand job j are matched. The
optimization decisions constrained as follows: Each request and offer can only be

4We use Gurobi 5.6, a standard industry solver for optimization problems.
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matched once at most (Eq. 4.6 and 4.7).∑
j∈J

xi j ≤ 1 ∀i ∈ I (4.6)∑
i∈I

xi j ≤ 1 ∀ j ∈ J (4.7)

Constraint (4.8) ensures that allocation takes place only between those requests and
offers that have some overlap in time. Correspondingly, if there is no such overlap,
matching becomes impossible.

xi j ∈ {0,1} ∀(i , j ) ∈ {(i , j ) ∈ I × J |ai ≤ a j ≤ di ∨a j ≤ di ≤ d j } (4.8)

Note that in contrast to the (ordinary) assignment problem, the number of jobs on
one side of the market may differ from the corresponding number on the other market
side, i.e., |I | 6= |J | is possible in a generalized assignment problem.

4.3.2 Online Planner

Leaving the benchmark case behind, we are primarily interested in how well the gen-
eralized assignment problem can be solved in an online setting, i.e., under uncertainty
regarding future arrivals of supply and demand jobs. For ease of exposition, we restrict
ourselves to the model-free case, i.e., we assume no information on future arrivals of
either kind of job. However, we argue that this is a reasonable assumption for the case
of small, local markets, where forecasting is especially unreliable and might yield only
little benefit.

The proposed online welfare maximization heuristic has the same goal as the of-
fline planner, i.e., maximization of social welfare. However, in contrast to the offline
planner, the online planner has no information on future release and due dates as well
as valuations. Therefore, in order to utilize as much information as possible, supply
and demand jobs are matched at the end of their respective active period, i.e., at the
point in time when maximum information is available while making decisions is still
possible (see Fig. 4.2). In our case of unit quantities, this reduces to checking whether
a job is available on the other side of the order book on the considered job’s due date.

When job j reaches its deadline d j = t , virtual market clearing of all currently avail-
able jobs (demand and supply) Ψ = { j | j ∈ I ∪ J ∧ ja ≤ t ≤ jd ∧ jm = ;} is performed.
To this end, first the corresponding matchings of a greedy (with respect to valuation)
double auction is performed. If j is allocated in this virtual market clearing, i.e.,
jm = t , it is effectively allocated and removed fromΨ.

Deciding as late as possible does not pose an optimal decision policy, but it reduces
decision uncertainty in our model-free setting via postponement. A potential pitfall
can be found in ignorance of situations, where an expiring supply job is allocated to
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Figure 4.2: Comparing allocation decisions by the offline, online planner as well as the online
mechanism. Increasing flexibility creates additional competition (‘high’ treatment - job c is
more flexible) and lets the online planner and mechanism make better decisions. Resulting
social welfare in top left corner of each subgraph.

the highest active demand job with a large remaining active period at the allocation
date. A competing demand job with only slightly smaller valuation, but very little
remaining active period is not allocated and remains eventually unallocated, likely
reducing economic efficiency. A model of the future could improve decisions by the
naïve, model-free online heuristic. Allocation decisions could be based on greedily
computed opportunity cost of each allocation decision. If marginal social welfare
from allocation were to exceed marginal cost, the respective job would be allocated. 5

4.3.3 Online Mechanism

Reporting one’s true type information under both planning approaches is not a domi-
nant strategy: In some instances allocation might be facilitated by inflating flexibility,
while in other instances the job is (in an online setting possibly repeatedly) pushed to
later points in time for allocation, and eventually discarded as higher-valued demand
jobs arrive. Thus, in order to prevent type manipulation by the jobs and induce truth-
fulness, allocation decisions by the planners must be both, modified to induce mono-
tonicity in allocation decisions (Parkes, 2007) and supplemented with payments. Un-
der a corresponding mechanism, single-unit demand consumers are incentivized to

5 The computation of opportunity costs is straightforward, if future arrivals are known (as in the of-
fline case). Under uncertainty, the future could be sampled from a model based on historical infor-
mation. Then, the opportunity cost of a decision is the weighted average of the scenario-specific
opportunity cost.
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truthfully reveal their job valuation v and flexibility f on arrival a. The mechanism
has the property of dominant-strategy incentive compatibility (DSIC). Suppliers, on
the other hand, post generation offers at which they are willing to supply as soon as
supply becomes available.6 The mechanism continuously matches jobs on either side
of the market based on participants’ reported information, i.e., it computes alloca-
tions and payments. To qualify as an economic mechanism it should satisfy individual
rationality (IR), incentive-compatibility (IC) and budget-balance (BB). However, pur-
suing these design goals does not permit maximization of economic efficiency any
longer (cf. Myerson and Satterthwaite, 1983).

Allocation and pricing rule

To achieve incentive-compatibility in single-valued domains, both the allocation and
pricing rule must take monotonous decisions (cf. Parkes, 2007). To this end, our on-
line mechanism employs a greedy allocation rule, i.e., any newly incoming demand
job is matched on-arrival to the lowest active offer. On the other hand, a newly ar-
riving supply job is matched to the highest-valued active demand job, irrespective of
their due dates and characteristics of competing orders.

If matching is not possible immediately, jobs are enqueued and either assigned at
some later point in their active period or, in case of too fierce a competition on the
respective side of the market, eventually discarded without assignment. Allocation
and pricing decisions take place at two distinct points in time, i.e., payments are de-
termined only at the end of the active period of the respective demand job (similar to
Friedman and Parkes, 2003), while allocation decisions are made until the latest start
date of the job. To avoid issues with jobs misreporting their departure date, access to
the good (in case of successful allocation) is granted only at the reported due date of
the job.7

Formally, the assignment decisions on either side of the order book are given by

i ( ji ) =
{

argmini∈I ( ji ){vi } if vi < v j

; el se
(4.9)

j (i j ) =
{

argmax j∈J (i j ){vb} if vi < v j

; el se
(4.10)

where I ( ji ) is the set of supply jobs active on the arrival of demand job ji and J (i j )
is the set of demand requests active on arrival of supply request i j . In case of equal
valuations v , tie breaking is employed such that jobs with later deadlines, earlier ar-

6Supply is assumed non-strategic as it can easily be inspected ex-post and thus is not private infor-
mation.

7Friedman and Parkes (2003) show that this prevents agents from inflating their flexibility endow-
ments.
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riving jobs and higher valued jobs receive preferential treatment. Under this greedy
allocation rule, we can ensure incentive-compatibility ex-post by use of critical value
payments (Nisan, 2007). 8

Mechanism properties

The online mechanism achieves three out of the four desired economic properties: In-
dividual rationality, incentive compatibility (regarding the demand side), and budget
balance (under an additional weak assumption). We rely on the standard assumption
of online mechanism design that early release and late due dates cannot be reported,
(see Friedman and Parkes, 2003).

Proposition 1. Participation in the online mechanism is individually rational for all
jobs.

Proof. Demand side jobs are either allocated or not: Due to the pricing rule, the job
payment is always bounded by its reported valuation and thus a non-negative payoff
in ensured. In case of non-allocation, the payment is zero and again, job payoff is
non-negative.

Supply jobs (offers) are remunerated at a price greater or equal to marginal cost.

Proposition 2. The online mechanism is incentive-compatible with respect to job time
reporting.

Proof. Assume the true type of a job is characterized by a release date a and a due
date d . We then consider two possible types of job time misreports — (i) reporting a
later release â > a and (ii) reporting an earlier due date d̂ < d .

(i) If a job is not allocated under the true release report, he will neither be allocated
under the misreported later release. When the job declares a release date later
than the actual release, there can be three outcomes:

a) If the allocation under the true type takes place at t > â, the job is allocated
under the misreported release date â at the same price, or

b) if the original allocation took place in the interval [a, â),

• the job may no longer be allocated (no matching arises over the new
active period), or

• the job may be allocated at a price greater or equal the price under
truth-telling.

Clearly, in none of these cases can the job improve its payoff.

8We provide a complete characterization of the payment rule in the appendix.
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(ii) The same reasoning applies for the reported due date: Declaring an earlier due
date cannot result in reduced payments, but may induce non-allocation (orig-
inal allocation takes places in the interval

(
d̂ ,d

]
) or payments greater or equal

the payments under truth-telling (original allocation takes places in the interval[
a, d̂

]
).

Therefore, a job cannot profit from misreporting arrival and departure times which
proves the proposition.

Proposition 3. The online mechanism is incentive-compatible with respect to valua-
tion reports.

Proof. As noted above, payments are chosen such that they correspond to the jobs’
critical value. The combination of greedy allocation with critical values in our setting
with single-item interesting sets ensures IC (Parkes, 2007).

Proposition 4. The online mechanism is budget-balanced under the restriction of ho-
mogeneous reservation prices.

Proof. For the case of homogeneous reservation prices (all supply jobs are offered at
the same price) the payments received from the demand side are exactly balanced by
the payments made to the supply side. Thus, the mechanism does not require outside
subsidies and is budget balanced in the strong sense, that is it neither runs a deficit
nor generates a profit.

Note that the mechanism’s property of budget-balance does not hold under het-
erogeneous reservation prices: Consider a demand job i which is matched to a supply
offer with reservation price p at time t < di . At a later point in time t ′, t < t ′ < di ,
a supply offer becomes available with p ′ < p. To retain the monotonicity property
of the payment rule (and thus incentive compatibility with respect to demand job
timing) the job’s payment obtains as p ′ which is insufficient to cover the reservation
price p. This problem arises from the online nature of our problem combined with
heterogeneous reservation prices. However, we primarily focus on a setting where
supply is provided by renewable generators for which marginal costs of supply close
to zero seem warranted.9 In summary, the proposed online mechanism satisfies the
IR, IC, and BB requirement under mild restrictions. To assess the applicability of the
proposed mechanism, we evaluate the achievable efficiency through numerical sim-
ulation studies.

9For completeness, we investigate the impact of (homogeneous, constant) non-zero reservation
prices on welfare later on.
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4.4 Evaluation

Evaluating the mechanism, we isolate the role of flexibility in the context of both, eco-
nomic efficiency and market power, from individual jobs’ incentives. To this end, re-
sults in sections 4.4.1 and 4.4.2 are based on homogeneous demand flexibility. The
value of flexibility is examined in a QoS context in section 4.4.3, naturally relying on
heterogeneous flexibility. In the following, we introduce the main parameters used
throughout the economic evaluation of the proposed mechanism. The length of the
period during which jobs on both sides of the market are available is central to the at-
tainable quality of any assignment solution. For supply jobs we set this availability to
the constant value of five minutes.10 For demand jobs, flexibility is one of the central
evaluation criteria and therefore varies with average values between one and thirty
minutes.

In order to account for different market sizes (and respective liquidity), settings with
20 (small) and 120 (large market) demand jobs arriving per hour are evaluated for a
period of 24 hours. Valuations of demand jobs are drawn from a uniform distribution,
i.e., v ∼U [0,1]. Furthermore, installed renewable generation capacity is set such that
hypothetical yearly demand and supply would be balanced. Note that this still allows
for instances of scarce or excess supply. As we are also interested in incentives for the
supply side, (homogeneous) reservation prices are varied in steps of 0.1 between 0.0
and 0.9. Finally, our results are based on N = 150 simulation runs for each parameter
combination.

4.4.1 Efficiency

The central question concerning local and dynamic matching of demand side flexibil-
ity using an online mechanism circles around the attainable (relative) social welfare.
We investigate both the effect of the market structure (size and flexibility) as well as the
allocation procedure. In comparison to the social welfare under the clairvoyant plan-
ner (Sec. 4.3.2), both, the online planner and mechanism, can by design achieve only
reduced results. To structure our analysis, we consider two efficiency gaps: (i) The
cost of information given by the efficiency gap between offline and online planner. (ii)
The cost of decentralization, i.e., the welfare gap between online planner and online
mechanism. Clearly, these welfare gaps can be engineered to be arbitrarily large. Yet,
for an assessment of the practical relevance of local matching of variable generation,
we apply the scenario described in Section 4.2 and discuss the effects of allocation
procedure, market size and demand side flexibility on social welfare. Using numerical
evaluation, we can characterize and assess the magnitude under non-adversarial set-

10Smaller values deteriorate economic efficiency slightly. Larger values would be more likely to violate
the elecrical engineering constraint of balanced supply and demand in small markets.
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tings.11 Figure 4.3 depicts both normalized welfare (upper panel) as well as the welfare
gaps from incomplete information and decentral decision-making.
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Figure 4.3: Social welfare and welfare gap over demand flexibility with zero reservation price,
differentiated by supply scenario (scarce, medium and high supply from RES) and market size
(number of supply jobs per hour). Supply jobs are assumed to be available for five-minutes.

Market size and flexibility Liquidity limitations are considered a central obstacle
on the way towards more local, intraday electricity trading. Therefore, we are also
interested in the effect of “localness" (i.e., liquidity or market size) on economic effi-
ciency. Intuitively, the larger the market, the smaller the risk that orders remain un-

11Generation from RES can be assumed to be non-adversarial, i.e., driven by nature and not by a ratio-
nal opponent.
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matched due to a lack of temporal overlap between supply and demand jobs. How-
ever, physical grid limitations restrict possible market size. Interestingly, the analysis
results indicate that demand flexibility can act as a substitute for market size: In the
absence of demand side flexibility, small markets achieve the lowest relative welfare
levels. For higher flexibility values, relative welfare approaches unity for all market
sizes. At the same time, these results also suggest that in small markets larger flex-
ibility endowments are necessary than in larger markets. In larger markets, already
a minor amount of flexibility is sufficient to achieve near-maximum welfare. In small
markets, marginal welfare from flexibility in low-flexibility scenarios is large, while the
resulting welfare level is still significantly smaller relative to larger markets. More flex-
ibility is required to secure significant total efficiency gains. This is a relevant finding
for policy-makers who need to acknowledge that ensuring efficiency in heterogeneous
market sizes will require heterogeneous flexibility endowments.

Effect of allocation procedure The gap between the offline and the online planner
is primarily governed by the level of demand side flexibility. Generally speaking, situa-
tions with more demand flexibility enable the online planner to make better decisions.
This is due to the cost of poor allocation decisions being limited by a larger number of
competing demand jobs. On the other hand, the cost of decentral decision-making
is not only shaped by demand side flexibility, but also by market size and supply-
demand imbalances, i.e., supply scenarios.

Interestingly, the effect of demand side flexibility on the price of IC is not
monotonous: In the small market considered, the average gap between online plan-
ner and mechanism at zero flexibility is around 3%. For increasing demand side flex-
ibility, the gap widens and reaches its peak of 6 % at five minutes of flexibility. For
larger flexibility values this trend reverses and the gap again reduces to around 2 %.
Furthermore, the larger the market, the quicker the welfare gap’s decay over flexibil-
ity. Additionally, there is an interaction between flexibility and market size. For small
markets with little demand side flexibility, the gap is small. Intuitively, this is a setting
in which only few options are available and thus allocation decisions are easy to make.
For larger markets the gap at zero flexibility is significantly larger and can exceed 12 %
in the examined settings. It is in such settings (large market, low supply) where the
value of flexibility is largest.

In summary, our results suggest that incentive-compatible coordination of flexible
loads can be achieved at low cost (in terms of social welfare). Most notably, for non-
zero flexibility levels, the welfare gap between the planning approaches and the IC
mechanism never exceeds ten percent in total. Furthermore, for sufficiently flexible
demand, market size becomes a factor of limited importance concerning the achiev-
able social welfare.
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4.4.2 Market Power

So far we assumed suppliers to post reservation prices equal to their marginal cost of
generation, i.e., zero. We now depart from this assumption and examine the welfare
effect of varying reservation prices for different demand flexibility levels, supply sce-
narios, and market size. Given the absence of clearing prices in the planner scenarios,
this analysis solely focuses on social welfare as a result of the respective allocation de-
cisions made by the mechanism. To assess the economic incentives for generators, we
also consider the effect of non-zero reservation prices on supplier profits. This aids in
understanding the economic sustainability of the proposed local marketplace.

Strategic suppliers will set reservation prices in a profit-maximizing manner. A de-
parture from zero reservation prices will reduce the allocated volume as low-valued
demand cannot be matched to available generation despite zero marginal costs. At
the same time, this may increase allocation rates for higher valued demand. Conse-
quently, welfare effects of strategic generator pricing are ambiguous.

Besides affecting the allocation results, strategic pricing of suppliers can also affect
the mechanism’s budget balance. This would be the case if suppliers were quoting
heterogeneous reservation prices, as in the following example.

Example 1. Suppose there are two jobs j1, j2 with consumption rates and total con-
sumption ri = qi = 1,∀i ∈ {1,2}. Reservation price r is initially at zero. Both jobs are
released in period t0. j1 is allocated immediately, while j2 is to be allocated in period
t1. However, the reservation price is raised to r > v2 in t1. For efficiency reasons j2

should no longer be allocated (as its value is less than the cost it incurs). However, in
order to maintain incentive compatibility, it still must be allocated at the exact same
price as the identical job j1. Thus, IC in combination with varying reservation prices
leads to settings in which BB is violated.

To retain the property of budget balance, our strategic pricing analysis thus as-
sumes homogeneous reservation prices.12 Figure 4.4 illustrates the economic effects
of strategic pricing for different supply scenarios as well as varying flexibility levels.
Non-zero reservation prices mostly lead to reduced social welfare. The only exception
are settings with scarce supply and little flexibility. Here, competition between de-
mand jobs is particularly low and myopic decision making yields reduced social wel-
fare. While supplier profit benefits from non-zero reservation prices, profit maximiz-
ing reservation prices exceed the welfare maximizing ones. The goal of increased sup-
plier profits (and thus a more attractive market venue for suppliers) can be achieved
either through the setting of reservation prices or through additional flexibility on the
demand side. Interestingly, even in scenarios of excess supply, suppliers benefit from
additional flexibility as it enforces competition on the demand side and therewith
increases critical value payments. Furthermore, supplier profits are strictly positive

12Exploring which supplier motives and characteristics yield heterogeneous pricing decisions is an
interesting opportunity for future research.
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Figure 4.4: Trade-off between Profits and Efficiency

even under zero reservation prices. Naturally, increased competition on the demand
side has positive effects on the profit of suppliers. Such competition can either be
obtained through a larger, geographically more comprehensive market (which might
require extra investment into physical assets such as transmission and distribution
capacity) but also by means of a more flexible demand side. While the flexibiliza-
tion of demand might convert so-far high-valued inflexible into flexible demand and
thus lead to cannibalization of supplier revenues on the traditional primary energy
market, it also increases competition on the presented market for excess renewable
supply, raising revenues there, moderating the initially adverse effect for suppliers.

In addition to these desirable properties of the mechanism, it forms an interesting
way of allowing suppliers to share quantity risk with consumers (this is in contrast
to more traditional market designs where all demand needs to be served), similar to
(Bitar and Low, 2012). Besides higher profits through increased flexibility, suppliers
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benefit from reduced shedding of renewable supply in cases of excess supply.

4.4.3 Quality-of-Service and Individual Incentives

So far we assumed homogeneous flexibilities over all demand jobs. In this section, we
focus on the effect of individual flexibility on probabilities of allocation and payments,
and therefore introduce heterogeneous demand flexibility. More specifically, we draw
flexibility f from an exponential distribution with parameterλ, i.e., f ∼ E xp(λ), where
1
λ amounts to the settings studied so far (1, 5, 15, 30 minutes). The resulting job het-
erogeneity allows for detailed insights into the interplay of job valuation and flexibility
on payments and allocation probabilities. On a job level, we are particularly interested
in the payments and how they relate to a job’s flexibility. To this end we apply the no-
tion of service levels and quality-of-service in the smart grid context (Oren and Smith,
1993). Different from most of the literature, were customers exogenously declare their
preferred combination of service-level and price, we let service levels arise endoge-
nously from jobs’ valuation and flexibility.

The binary decision for a job to get served or not depends on system state (demand
and supply) and job valuation v and flexibility f . The notion of a service level, i.e., the
probability of successful allocation given its flexibility and valuation, can only be de-
fined meaningfully for a set of similar jobs. With similar, we refer to jobs that exhibit
akin valuations and flexibility, and define QoS as the probability of successful alloca-
tion for similar jobs given v and f , i.e., QoS(v , f ) =P (allocation|v , f ), a metric that is
increasing in both valuation and flexibility.

Accordingly, job flexibility facilitates reliable service under unreliable supply
regimes. Flexibility and valuation can act as both, complementary and substitutive at-
tributes, while the value of flexibility for individual jobs is two-fold: Higher flexibility
both increases service levels and reduces payments (critical value payments decrease
monotonously in flexibility), thereby increasing job i ’s expected utility

E (ui ) = (vi −pi )∗P(allocation|θi )

from allocation. Using this property, jobs can effectively choose in which currency,
valuation or flexibility, to pay for reliable supply.

Fig. 4.5 illustrates aggregate results on the relationship between flexibility, valuation
and expected utility at reservation price r = 0 and average jobs flexibility f of one
minute.

The results indicate that market size (rows) has barely any influence on expected
utility. On the other hand, the scarcer supply, the smaller the expected utility of a job.
This is a natural consequence of critical value payments, which are increasing in com-
petition on the demand side. For scenarios with rather limited supply, the substitutive
character of flexibility and valuation becomes obvious, regardless of overall reduced
utility due to increased competition on the demand side.
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Figure 4.5: Contour plot of average job utility differentiated by valuation and flexibility quan-
tiles. Expected utility increases in supply (columns from left to right). Market size (rows) has
only litte influence on expected job utility. Through provision of flexibility, jobs increase ex-
pected utility. (r = 0, f = 1)

4.5 Discussion

Renewable energy sources are providing increasing amounts of energy to electrical
power systems globally and introduce change to power systems on both short and
long time scales. The uncertainty in generation from these energy sources poses a sig-
nificant problem to (future) power grid operations. The use of even limited amounts
of flexibility on the demand side can play a vital role to facilitate grid integration of
fluctuating generation. Leveraging demand side flexibility may reduce network and
storage expansion required for safe power system operations and thus assist the tran-
sition towards economically and ecologically more sustainable power systems.

Previous research has mostly focused on applying (online) optimization techniques
to optimize the dispatch of flexible loads. However, we argue that for the vision of
flexible demand in smart grids to materialize, incentives regarding the provision of
flexibility on the level of the individual consumer must be taken into account: A fu-
ture grid can greatly benefit from tapping into demand side flexibility by establishing
incentive-compatible allocation and pricing rules. To this end, we present an online
mechanism and apply it in a realistic smart grid setting with emphasis on local match-
ing of flexible demand and uncertain supply from renewable generation. As informa-
tion on demand side flexibility and its distribution over consumers (or even classes of
devices) is scarce, our evaluation relies on simple, yet plausible assumptions regarding
the demand side. For the supply side we instantiate a generic model with empirical
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wind farm generation data.
Under this truthful mechanism, it is the dominant strategy for jobs to report their

true type with respect to valuation and temporal flexibility, independent of other jobs’
reports. This is because flexibility is valuable in two ways to the individual job: It
reduces payments and increases the probability of allocation. Leaving an individ-
ual job’s perspective, demand side flexibility is also valuable to the power system as a
whole: We show that flexibility on the demand side reduces shedding of excess supply
and thus increases the number of served jobs, positively affecting social welfare. Our
evaluation indicates that in settings with reasonable flexibility levels, the price of in-
formation (i.e. the welfare gap between offline and online planners) is rather small (on
average below 5%). Thus, we conclude that demand flexibility can substitute market
size, rendering even small markets surprisingly efficient. While this is an encouraging
result, we advance beyond online optimization and include incentives. Our results in-
dicate that the price of incentive compatibility, or gap between the online planner and
mechanism, respectively, is even smaller, and amounts in most settings to approxi-
mately 2%. Moreover, suppliers profit from flexibility as it increases competition and
corresponding critical value payments, but also that it reduces the amount of shedded
supply from renewable sources. In combination, this poses a powerful argument for
fostering demand side flexibility as its (individual and global) value increases in the
presence of greater levels of fluctuating generation.

For future work we see a number of worthwhile research avenues. The first con-
cers the effect of different distributions of flexibility endowments over jobs on social
welfare. What kind of general flexibility distributions are particularly valuable given
different compositions of the generation side? Extending the presented model frame-
work, a further interesting topic touches upon optimal investment in both renewable
and conventional generation capacity on the one side and flexibility on the other.
This question is also closely related to equilibrium prices on smart-grid markets with
quality-differentiated products. Here, it would be interesting to see how matching
on short-horizon markets affects outcomes on related markets. Finally, the trade-off
between budget-balance and efficiency in conjunction with time-varying reservation
prices is an interesting topic worthy of further exploration. As we have shown for small
markets in low-flexibility settings, forgoing budget balance through non-zero reserva-
tion prices can ameliorate social welfare. There might be situations where abandon-
ing budget balance in favor of higher efficiency is advantageous.



Chapter 5

Model-based Online Mechanism Design
for Scheduling Non-Preemptive Jobs

5.1 Introduction

The availability of electrical energy from renewable sources such as wind and solar
has been increasing rapidly in the past years, and is expected to significantly increase
even further in the near future.1 However, electricity generation from many renew-
able sources cannot be easily controlled and is often difficult to predict. Therefore,
balancing demand and supply in the power system becomes increasingly challeng-
ing when solely relying on the ramping capabilities of conventional generators (e.g.,
CCGT). Alternatively, this problem can be addressed by introducing more flexibility
on the demand side and allowing loads to be deferred. Thus, a major challenge in
energy systems given both uncertain future demand as well as uncertain supply from
RES lies in online scheduling of flexible loads.

To meet this challenge, we introduce and evaluate several novel algorithms for on-
line scheduling of deferrable loads. These algorithms take into account probabilistic
information about future supply and demand. Furthermore, we use a mechanism de-
sign approach to incentivize agents on the demand side to be truthful about their flex-
ibility and the value of the loads. Specifically, we consider the problem of scheduling
multiple non-preemptive loads (i.e., loads that, once started, cannot be interrupted)
with a fixed load profile (i.e., power consumption rate of a load is an unalterable func-
tion of time from the starting point of the load) and uncertain supply from relatively
cheap or even free renewable energy.

Our algorithms extend existing single machine scheduling algorithms called expec-
tation (Chang et al., 2000a) and consensus (Hentenryck and Bent, 2009), which take
uncertainty about future jobs into account. These algorithms generate scenarios from
a probability distribution, and the scheduling problem is solved for each of these sce-
narios using an offline scheduling algorithm. Under the expectation algorithm deci-

1In Germany, 22.9% of electricity was supplied from renewable sources in 2012 (Sawin, 2013), up from
12% in 2006. The UK government has committed to ensure that 30% of electrical energy will be
supplied from renewable sources by 2020 (DECC, 2011).
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sions are based on the expected utility (over all scenarios) of scheduling a certain job
immediately, whereas in the consensus approach, decisions are based on the num-
ber of votes by the scenarios to decide which job to schedule first. We extend both
algorithms to not only cope with uncertainty on the demand side, but to also apply
in settings with variable, uncertain supply where multiple, heterogeneous jobs, can
run simultaneously. Furthermore, we use the concept of pre-commitment to convert
these algorithms into truthful mechanisms.

Recently, consensus was applied in a smart grid setting with a specific focus on the
context of energy allocation for the charging of electric vehicles (Stein et al., 2012).
While that work addresses the problem of uncertain future demand, the model is re-
stricted to deterministic future energy supply with constant marginal cost. We specif-
ically focus on the problem of uncertain supply. More precisely, we assume that there
are two sources of electricity: renewable supply, which is uncertain but free, and con-
ventional generation, which is always available but costly. Another marked difference
to Stein et al. (2012) is the consideration of non-preemptive loads. Stein et al. (2012)
restrict their attention to preemptive loads, such as electric vehicles, which reduces
the problem’s complexity. However, in many real life settings jobs requiring electricity
are non-preemptive (i.e., they cannot be easily interrupted and restarted).2

Our work is also related to Subramanian et al. (2012), who similarly consider the
problem of scheduling deferrable loads. However, there are some important differ-
ences regarding the model and algorithms they consider. First, the predictive ap-
proach they employ, a simple point prediction of renewable supply, is incapable of re-
flecting uncertainty. Furthermore, their approach does not take (auto-)correlation of
generation into consideration, which is common in renewable supply (e.g., if it is cur-
rently windy, it is likely that the following hour will be windy as well, similar with sun-
shine). In contrast, our consensus based approach considers several scenarios which
are sampled from the distribution, and (auto-)correlation is taken into account when
generating such scenarios. Another important difference is that they assume loads
to be preemptive, as requiring a certain total amount of energy, and as being charac-
terised by a flexible power consumption rate. In contrast, we assume non-preemptive
loads with a fixed load profile and require that started loads need to be completed.
Finally, unlike Subramanian et al. (2012) and similar to Stein et al. (2012), we assume
that loads have monetary values, and our aim is to maximise the difference between
the value of allocated loads and the cost of using non-renewable energy, i.e., to max-
imise social welfare.

Recently, researchers in the multi-agent community have begun looking at adapt-
ing online scheduling heuristics to deal with strategic agents. Such agents may mis-
report the value, arrival time or deadline for their jobs if, through such a misreport,
they can get a better allocation or pay less. In order to ensure that an online schedul-

2Examples include washing machines, in a domestic setting, and a variety of heavy duty electrical
machinery in an industrial setting.
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ing heuristic is truthfully implementable with strategic agents a key criterion to be
satisfied is monotonicity (Parkes, 2007): if a job has a type that is better in any of its
dimensions than another (e.g., higher value, lower consumption rate, shorter length,
earlier arrival or later deadline), and no worse in any other dimension, then its alloca-
tion must not be worse.

There are two main approaches to ensure monotonicity of online allocations. One
approach is output ironing (Parkes and Duong, 2007; Constantin and Parkes, 2009), or
cancelling that part of the allocation that breaks monotonicity constraints. While this
is a principled approach, often a large part of the final allocation may need to be can-
celled, and computing the ironing decisions can be intractable in realistically-sized
settings. Another approach, which we follow here, is to partially pre-commit to serv-
ing jobs of sufficiently high value in the future, irrespective of future arrivals (Stein
et al., 2012). This approach can limit efficiency, because it imposes additional con-
straints on future schedules. Yet, it has the advantage that it prevents strategic agents
from misreporting.

Specifically, our main contributions are as follows:

• We consider, for the first time, the problem of online scheduling non-
preemptive jobs and uncertain supply of resources.

• We present and compare several variants of two new algorithms for this setting:
an extension of the consensus approach (Hentenryck and Bent, 2009) and an
extension of the expectation approach (Chang et al., 2000a) to deal with both
selecting multiple jobs at each time step and variable supply.

• We apply mechanism design to produce truthful variants of these algorithms by
adopting the concept of pre-commitment.

This Chapter is structured as follows. First, we formalise the online scheduling
problem. Then, we explain how we extend both consensus and the expectation-based
approach to deal with possibly selecting multiple jobs at each time step, followed by a
description of the issues and solutions to make these methods incentive-compatible.
We conclude with an experimental validation and a discussion.The main parts of this
chapter have been published in (Ströhle et al., 2014).

5.2 Problem Formulation

Our online scheduling problem with non-preemptive loads is characterised by de-
mands of different values and requirements, which arrive online, and supply from
two sources: an uncertain future amount of low-cost power from renewables, and
controllable amounts of costly conventional generation. The decision of the sched-
uler concerns which of the incoming loads to schedule at what time with the goal
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of maximizing expected social welfare (defined below). It should be noted that the of-
fline version of the problem (with perfect knowledge of demand and supply) is already
of combinatorial complexity, as finding the optimal schedule requires a combinato-
rial number of subsets to be evaluated and compared (Hentenryck and Bent, 2009).
Hence, approximation algorithms are needed. Before we present the algorithms, we
detail the formal definition of demand, supply, and the schedule.

5.2.1 Demand

We consider a setting where jobs arrive over a fixed finite time span (e.g., a day), mod-
elled by a set of discrete time steps T = {1, . . . ,T }. A job j ∈ J , where J is the set of
all jobs, is characterised by a type 〈v j ,r j , l j , a j ,d j 〉, which comprises its value v j ∈R+,
consumption rate r j ∈ R+ (the amount of supply needed per time step), job length
l j ∈ T , arrival time a j ∈ T , and departure time or deadline d j ∈ T . Given this, we de-
note the total amount of energy required to serve a job as q j = l j · r j .3 A job j cannot
start before a j , must end before d j , and is non-preemptive, i.e., once it is started, it
must continue running for l j time steps (which we assume to be bounded by a con-
stant maximum length). Thus, the latest start time for a job is d j − l j . A job’s temporal
flexibility can thus be expressed as d j − l j −a j . We assume that the set of jobs J is not
known a-priori, but is only revealed online as jobs arrive in the system. However, the
scheduler can access samples of future jobs and their properties, e.g., valuation and
length, and thus approximate the underlying probability distributions.

5.2.2 Supply

Electricity is supplied from two sources with different properties, renewable and con-
ventional:

• Renewable sources, such as wind or solar power, are characterised by negligi-
ble marginal cost but also uncertain availability. For simplicity, we assume that
costs for renewable energy are zero (although the algorithms carry over to set-
tings where the marginal cost is constant, and can easily be generalised to other
cost functions). Furthermore, we assume that the available renewable power
is given by a stochastic process XT = (X1, . . . , XT ), whose realisation xt ∼ X t

only becomes known at t . In order to allow for auto-correlated supply over time
(which means that realisations at time t provide information about future sup-
ply), we encode the properties of this stochastic process via a Hidden Markov
Model (HMM).

3 For reasons of simplicity, we restrict our attention to jobs with constant power consumption. Gen-
eralization to more realistic power profiles is straightforward.
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• Conventional generation, on the other hand, is characterised by unlimited out-
put and a deterministic cost function c which is non-decreasing in the amount
of power supplied at time t . In particular, we take these costs to be described by
a linear function (constant marginal cost), i.e., c(p) = b ·p, b > 0.

We acknowledge that supply is perishable, i.e., electrical energy that is not immedi-
ately consumed, cannot be stored and consumed in the future.

5.2.3 Schedule Determination

The solution to the online scheduling problem is a schedule s = 〈s1, s2, . . . , sT 〉, which
defines for every time step t a set of jobs st ⊆ J to start at that time. A feasible schedule
s must fulfill the following requirements , for all times t ∈ T and for all jobs j started
at time t , i.e., j ∈ st :

• j cannot start before its arrival, i.e., t ≥ a j ,

• j must finish by its deadline, i.e., t ≤ d j − l j ,

• j can be started at most once, i.e., ∀t , t ′ ∈ T : if j ∈ st ′ and j ∈ st then t = t ′.

We use s = 〈〉 to denote the empty schedule, i.e., where st = ; for all t ∈ T . Fur-
thermore, given a schedule s and a time t , we denote the set of running jobs by
Rt (s) = { j | j ∈ st ′ , t ′ ≤ t < t ′+ l j }. The net profit (or social welfare) w(s) of a sched-
ule s is then defined by the value of all scheduled jobs minus the cost of conventional
generation. Formally,

w(s) = ∑
t∈T

( ∑
j∈st

v j − c
(

max
{ ∑

j∈Rt (s)
r j −xt ,0

}))
(5.1)

which is the value we aim to maximise.

5.2.4 Strategic Behaviour

When designing the algorithms, we also need to consider strategic behaviour of de-
mand side agents/jobs. Since the types of the jobs constitute private information,
we would like to incentivize agents to reveal their types truthfully. Otherwise, agents
could speculate and the scheduler might take suboptimal decisions based on incor-
rect/manipulated information. Specifically, the aim is to design a mechanism, i.e.,
a scheduling algorithm and corresponding payments, which is dominant-strategy
incentive-compatible, i.e., reporting truthfully maximises an agent’s utility, regardless
of the behaviour of other agents. To guarantee this property, we assume that each
job is owned by a different agent. Additionally, we require individual rationality, i.e.,
the required payment never exceeds a job’s value, and is zero if a job is not run. In
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Section 5.4 we return to these issues in detail, focusing first on the online scheduling
problem.

5.2.5 Offline Optimal: Clairvoyant Offline Scheduler

Online decision-making, i.e., under incomplete information, typically leads to subop-
timal solutions. To illustrate the problem, consider the following example.

Example 2. Consider a setting with two time steps t1 and t2 and two jobs { j1, j2}, each
requiring exactly one unit of energy. The value of j1’s job is v1 = 7, and it can run during
either t1 or t2, while j2 has a job which has value v2 = 5, but only during t1. At t1 one
unit of renewable supply is available with associated costs c = 0. For t2, the scheduler
expects one unit of renewable supply to be available, but there is a very small chance
that this is not realised and then the alternative from conventional generation will be
very expensive, i.e., c = 10. Moreover, the mechanism expects, with high probability, no
further arrivals, but there is a small chance job j3 with a high value (7 < v3 < 10) will
enter the market at t2. At t1 the expected optimal allocation is to allocate j2 (which has
an earlier deadline), and postpone j1. Now assume that j3 enters the market at t2. This
leads to j1 being discarded at t2, and j3 being allocated. With hindsight (i.e., offline
optimal), however, it would have been better to discard j2, allocate j1 at t1, and j3 at t2.

Assuming full information on the realization of supply and demand (hindsight, or
perfect foresight, respectively), resolution of the following mixed-integer progamming
(MIP) formulation yields the offline-optimal benchmark schedule. In this formula-
tion, the previously introduced schedule s is replaced by multiple decision variables:
If job j is running at time t , α j ,t = 1. Accordingly, β j ,t = 1, if job j is started at t , γ j ,t

encodes finishing of a job, φ j ,t describes whether j is served and thus included in the
schedule, and κ j ,t represents the consumed amount of supply by the respective job in
period t .

Constraints As indicated in Section 5.2.3, a valid schedule respects a number of con-
straints, which are expressed as follows.
First, any job can be started (β) and, accordingly, completed (γ) only once.∑

t∈T
β j ,t ≤ 1 ∀ j ∈ J (5.2)∑

t∈T
γ j ,t ≤ 1 ∀ j ∈ J (5.3)

Second, a job is active (α) if it has been started in a preceding or the current time step
and is not yet completed. Furthermore, stopping a job is only possible, if it has been
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active before.

α j ,t =β j ,t ∀ j ∈ J , t = 1 (5.4)

α j ,t =α j ,t−1 +β j ,t −γ j ,t ∀ j ∈ J , ∀t ∈ {2, ..,T } (5.5)

γ j ,t ≤α j ,t−1 ∀ j ∈ J , ∀t ∈ {2, ..,T } (5.6)

Fourth, starting a job obviously is only possible after its arrival. Fifth, for the job to be
included in the schedule, it must be started before the latest possible start time and
completed by the time of departure.∑

t∈T
β j ,t · t ≥ a j ·φ j ∀ j ∈ J (5.7)∑

t∈T
β j ,t · t ≤ (d j − l j ) ·φ j ∀ j ∈ J (5.8)∑

t∈T
γ j ,t · t ≤ d j ·φ j ∀ j ∈ J (5.9)

Moreover, a job is characterized as being active over its entire length l . The job’s rate of
energy consumption κmust be greater or equal to the job’s consumption rate r during
the job’s active time steps.

φ j · l j ≤
∑
t∈T

α j ,t ∀ j ∈ J (5.10)

κ j ,t ≥α j ,t · r j ∀ j ∈ J ,∀t ∈ T (5.11)

Conventional generation can only be greater or equal to zero at any time, i.e., xCG ∈
R+. Finally, aggregate supply from both sources must be equal or greater than total
consumption of served jobs.

xCG
t +xt ≥

∑
j∈J
κ j ,t ∀t ∈ T (5.12)

Objective Function The objective function represents social welfare, the aggregate
difference between sum of served jobs’ valuation and the corresponding cost due
to using conventional generation. Other objectives, i.e., maximizing the number of
served jobs, minimizing the aggregate curtailment of renewable energy, or minimiz-
ing the use of conventional generation could substitute this objective. Formally, based
on the notation introduced so far, the objective function can be expressed as follows:

w(α,β,γ,κ,φ) = ∑
j∈J

v j ·φ j −
∑
t∈T

c ·xCG
t (5.13)

This objective function is equivalent to Equation (5.1), but expressed in a different
set of decision variables. We denote the objective value of the optimal solution to this
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Algorithm 1: Greedy offline scheduler.

1 Algorithm: GREEDY-OFFLINE (J , x, s, t )

2 J ′ ← { j ∈ J | j 6∈ s,d j ≥ t + l j }
3 for j ∈ SORT(J ′) do
4 tmi n ,cmi n ← COSTMINIMALSTARTTIME( j , x, s, t )
5 if cmi n < v j then
6 stmi n ← stmi n ∪ { j }
7 return s

program by w∗. We maximize the objective through appropriately setting the decision
variables, i.e.,

w∗ = max
α,β,γ,κ,φ

w (5.14)

Due to the problem’s combinatorial complexity this formulation is exclusively used for
(economic) benchmarking purposes. In the online setting, where time-to-solution is
critical, and, more importantly, there is incomplete information on future demand
and supply, we will rely on greedy heuristics for efficient schedule construction.

5.3 Model-based Online Scheduling

In this section, we present our extensions of the online algorithms due to Hentenryck
and Bent (2009). Similar to their work, our algorithms deal with uncertainty by sam-
pling multiple future scenarios using an appropriate model of the system (in our case,
sampled realisations of the future supply of renewable energy). Then, at each time
step, an offline algorithm is used to solve each of these scenarios, and the resulting
schedules are combined to yield the best decision to take in the current time step.
However, unlike previous work, our algorithms are able to schedule multiple jobs per
time step (rather than a single one), deal with uncertain future supply (rather than
assuming this to be deterministic), and incorporate costs of exceeding the available
supply (by using conventional generation).

As our algorithms rely on solving instances of an offline version of the schedul-
ing problem, we first detail the corresponding algorithm in Section 5.3.1. Then,
we provide a generic online algorithm that all our approaches follow, and conclude
this section with two novel online scheduling algorithms: m-CONSENSUS, and m-
EXPECTATION.

5.3.1 Offline Scheduling Algorithm

In the offline variant of our scheduling problem, we assume that all jobs J and the
realization of the supply x are known in advance. However, finding an optimal sched-
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ule even in this case is known to be computationally hard, as it is a generalisation
of the NP-hard parallel machine scheduling problem Pinedo (2012). Following Dunke
(2014), wo argues that solving scenarios – referred to as snapshots – to optimality, loses
its “[..] efficacy once the situation [changes] upon arrival of new input elements” on
one side, and aiming to maximize the information collected from the set of available
realizations (Hentenryck and Bent, 2009, p.23) on the other, we use a greedy schedul-
ing heuristic and refer to this as GREEDY-OFFLINE (Algorithm 1).

This algorithm has, besides the set of jobs to schedule J and renewable supply x two
more arguments, s and t , which are used by our online algorithms later to encode past
(and fixed) scheduling decisions (s) as well as the current time (t ), which is the earliest
time at which new jobs may be scheduled.4 If not noted otherwise, the algorithm first
sorts the available jobs J by decreasing value density v j /q j . Tie breaking is based
on job size q with larger jobs receiving preferrential treatment.5 For each job in this
order, the function COSTMINIMALSTARTTIME then computes the starting time tmi n ∈
T , tmi n ≥ t , that minimises the additional cost incurred by adding job j to st . If the
net marginal welfare contribution from including j in the schedule is positive, i.e., the
associated minimum cost, cmi n , is less than the value of the job, the job is included in
the schedule s. The scheduler thus effectively performs two operations for each job:

• First, deciding whether to include the respective job in the schedule, and if so

• at what time to schedule it.

For n jobs, the computational complexity of this scheduler is O
(
n logn

)
for sort-

ing (Skiena, 2011) , plus O (nT ) for finding the best start times for all jobs. In general,
it can be bounded by O (nT ) because T is typically much larger than logn.

5.3.2 Online Scheduling Algorithms

In online settings, new information is revealed over time, requiring sequential deci-
sion making. We consider two algorithms that are executed in the following context.

First, a set of N scenarios is created that serve as samples of the future, each rep-
resenting one possible trajectory of the future. Technically, each scenario i ∈ {1, ..,N }
consists of the tuple 〈J i , xi 〉, where J i is a randomly sampled realisation of future de-
mand which we refer to as the set of “virtual jobs”, and xi is a sampled realisation of
supply based on a probabilistic supply model (or historical data).

Then, at every time point t , the online algorithm is invoked with the following ar-
guments: the currently startable jobs (not scheduled so far) Jr , the realisation of the
renewable supply x up until and including t , as well as the schedule so far. (Note that
past scheduling decisions can have consequences beyond the current time point t ,

4For now, these are set to s = 〈〉 and t = 1.
5Larger jobs are decided upon first, such that smaller jobs can be scheduled into possibly remaining

gaps.
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as jobs cannot be preempted, and the schedule can thus no longer be altered once a
job is started.) To better incorporate the concept of limited foresight, the scenarios
include future demand within the boundaries of horizon h, i.e.,

J i (t ) = { j | j ∈ J i where t +1 ≤ a j ≤ t +h}.

Supply is included in a similar fashion. However, jobs have length l ≥ 1, and therefore,
in order for the algorithm to make sensible acceptance decisions, the horizon regard-
ing future supply h′ is extended to h′ = h +max{l ( j )| j ∈ J i }. Future supply in scenario
i can then be expressed as follows.

xi (t ) = 〈xt , xi
t+1, xi

t+2, . . . , xi
min(t+h′,T )〉

The online algorithm returns the set of jobs to start next, st , which iteratively defines
the full schedule s. We name the following two new online algorithms for selecting a
set of non-preemptive jobs multi-machine expectation and multi-machine consensus.

Multi-Machine Expectation Multi-machine m-EXPECTATION (Algorithm 2) relies on
sampled scenarios and uses these to explicitly compute each job’s marginal welfare
contribution. m-EXPECTATION keeps starting jobs at time step t , until the best action
is to no longer start jobs (line 13). To this end, in each scenario i ∈ {1, ..,N }(line 4),
|Jr |+1 schedules are constructed: One for each j ∈ Jr , where j is started at the current
time t and one additional schedule with no additional job being started. From this
set of hypothetical schedules the job corresponding to the schedule with the largest
marginal contribution to social welfare j∗ is selected. Note that this can also be the
empty job ⊥. The selected job is then added to the schedule to be executed at the cur-
rent time step t . As mentioned before, this procedure is repeated until the best action
is to not add another job to the schedule s. This approach promises high efficiency, as
the expected welfare directly represents the value we wish to maximize. However, it
also incurs high computational cost, as we evaluate each scenario |Jr |+1 times (once
for each available job, and once to evaluate the case where no job is started). Ac-
cordingly, computational complexity of m-EXPECTATION (for a single time step t ) is
O

(
n3N T

)
. Following Hentenryck and Bent (2009), cubic complexity in the number

of jobs under consideration in each time step prevents this algorithm from applica-
tion in online domains with tight deadlines. By avoiding explicit computation of each
scenarios’ potential welfare, the following algorithm, m-CONSENSUS, succeeds in nec-
essary complexity reduction.

Multi-Machine Consensus The multi-machine consensus or m-CONSENSUS algo-
rithm, is given in Algorithm 3. The algorithm solves the offline problem (line 5) for
each scenario once and then schedules the job that is selected to be started immedi-
ately in the weighted largest number of scenarios (or none, if more scenarios do not
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Algorithm 2: Schedule the jobs from Jr at t that have the highest added value.

1 Algorithm: m-EXPECTATION (Jr , x, s, t )

2 repeat
3 Reset counters f (with −ε for f (⊥))
4 foreach scenario 〈J i , xi 〉 do
5 f (⊥) ← f (⊥)+w(GREEDY-OFFLINE(J i (t )∪ Jr , xi (t ), s, t +1))
6 for j ∈ Jr do
7 s′ ← s
8 s′t ← s′t ∪ { j }
9 f ( j ) ← f ( j )+w(GREEDY-OFFLINE(J i (t )∪ Jr \ { j }, xi (t ), s′, t ))

10 j∗ ← argmax j∈Jr f ( j )
11 if j∗ 6= ⊥ then
12 Jr ← Jr \ { j∗}; st ← st ∪ { j∗}
13 until j∗ =⊥
14 return s

start a new job). This is repeated iteratively, adding one additional job to the schedule
at a time, until no more jobs are started. This repetition occurs at most n times (but
usually much less frequently), 6 and so including the O (nT ) per call to the offline al-
gorithm, the computational complexity of m-CONSENSUS (for a single time step t ) is
O

(
n2N T

)
.

Compared with m-EXPECTATION, m-CONSENSUS is computationally more favor-
able, but might suffer from its elitism (Hentenryck and Bent, 2009): Decisions are
based on votes, instead of the more decisive, but computationally more expensive
social welfare criterion. For example, consider a setting with three scenarios: Con-
sensus might schedule a job in two of the three scenarios, and accordingly, the job
ends up being added to the eventual schedule. Expectation, on the other hand, has
more fine-grained information and decides to reject the job, as it barely adds to the
objective in the two scenarios, and considerably worsens the objective in the third
scenario. In this example, the drawback of basing decisions on voting instead of the
actual objective becomes evident.

5.3.3 Scenario Sampling

While the true distribution of future supply (or demand) is unknown, we assume the
availability of a black box sampler, which returns independent scenarios from the dis-
tribution of future demand and supply. Hence, the true distribution can be approxi-
mated by sampling repeatedly.

Ideally, at each time point t ∈ T these scenarios are updated to account for novel

6In addition, the offline scheduling problem gets smaller by 1 job in every iteration.
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Algorithm 3: Schedule the jobs from Jr at t that occur in the most scenarios.
Scheduling the empty job is denoted by ⊥.

1 Algorithm: m-CONSENSUS (Jr , x, s, t )

2 repeat
3 Reset counters f (with −ε for f (⊥))
4 foreach scenario 〈J i , xi 〉 do
5 s′ ← GREEDY-OFFLINE(J i (t )∪ Jr , xi (t ), s, t )
6 if s′t = st then
7 f (⊥) ← f (⊥)+1
8 else
9 for j ∈ Jr ∩ s′t do

10 f ( j ) ← f ( j )+1
11 j∗ ← argmax j∈Jr f ( j )
12 if j∗ 6= ⊥ then
13 Jr ← Jr \ { j∗}; st ← st ∪ { j∗}
14 until j∗ =⊥
15 return s

information. However, due to the nature of the proposed mechanism, which irre-
versibly fixes decisions during the pre-commitment phase, updating scenarios poses
specific challenges. In detail, the shorter the interval between decision time points
(the higher the decision frequency), the more likely the occurence of constellations
where a majority of scenarios are overly optimistic, i.e., characterized by high supply
from RES and few and/or low-valued future jobs. As a consequence, the mechanism,
relying on resampled scenarios, would decide to allocate all jobs active at time t , i.e.,
overcommit, crowd out future jobs with higher value, and hence achieve only reduced
social welfare. The converse case with undercommittment eroding efficiency might
also take place. The consequences, however, would be less severe: The corresponding
decisions could be corrected at the next time step by committing to more jobs. To mit-
igate this undesirable re-sampling effect, we abstain from regular, rolling resampling
and propose to sample only infrequently, i.e., once per day.

5.4 Online Mechanism Design

Classic optimization does not take incentives into account. We are, however, espe-
cially interested in creating allocation schemes, that render thruthtelling the domi-
nant strategy for the individual agent/job. To this end, we depart from the scheduling
paradigm and introduce an incentive-compatible (IC) mechanism. A mechanism can
only be IC if allocation is monotonic, i.e., it must be impossible that a job reporting a
lower type (i.e., a lower valuation, later arrival, earlier departure, or longer job require-
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ment) is allocated instead of an job reporting a higher type (Parkes, 2007).
In order to ensure monotonicity, we take the approach first proposed by Stein

et al. (2012). Here, the mechanism is split into two phases at each time step: pre-
commitment and allocation. During the pre-commitment phase, the mechanism
evaluates which jobs (might) contribute to a schedule’s welfare given current commit-
ments, as well as current and scenarios’ future arrivals. If a job is deemed to increase
social welfare, the mechanism commits to allocating supply to it before its deadline,
regardless of the values and demands of future arrivals. Thus, an job has no incen-
tive to misreport its type, e.g., via an earlier deadline or later arrival, because once
pre-committed, the mechanism guarantees it to be allocated in the future.

During the allocation phase, the actual execution schedule is computed. The focus
of this phase is on efficiency only, because incentives issues have already been dealt
with during the pre-commitment phase. Note that, although for computing the al-
location we can use the algorithms presented in the preceding section, all resulting
schedules must respect the constraints from the pre-commitment decisions. So, for
example, jobs which have been pre-committed and are flexible can be delayed, but
once their deadline approaches, they must be scheduled, regardless of subsequent
arrivals. In the following, we discuss these phases in separate sections.

5.4.1 Precommitment

In the pre-commitment phase, the mechanism needs to decide which of the jobs to
commit from those that have already arrived in the system (Jr ), and to what extent
to retain spare (renewable) capacity for potential future arrivals. In order to ensure
monotonicity (and hence IC), jobs that are precommitted must be scheduled before
their deadline, regardless of future arrivals, thus precommitments may reduce flexi-
bility of future allocations. In the worst case, i.e., if future arrivals are underestimated
and future supply is overestimated, ensuring IC through precommitment may yield
negative welfare (situations in which the cost of serving demand is more costly than
the aggregated value of served demand). Hence, as the mechanism makes irreversible
decisions, the quality of forecasting is of high importance to achieve high efficiency.

Example 3. Assume the situation described in Example 2 and also assume that either
the high-value job j3 arrives or supply is not realised. Then, j1 will not be allocated at
t2 and monotonicity of the allocation would be violated, because if j1 reported an ear-
lier deadline (i.e., only being available at t1) he would always be allocated, whereas if
he reports his availability throughout both t1 and t2 truthfully, then there is a chance
of non-allocation. The mechanism will precommit to allocate j1 at t2, irrespective of
the realisation of future supply or future arrivals. In these cases, with small probabil-
ity, the allocation may be inefficient or the mechanism could make a loss, but, more
importantly, monotonicity is guaranteed and incentive compatibility ensured.
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As discussed in Stein et al. (2012), in order to guarantee monotonicity, an additional
serialization constraint needs to be imposed on the allocation in the pre-commitment
phase. Jobs are first ordered by a monotonicity-respecting criteria, and the pre-
commitment decision is taken by considering jobs sequentially, following this order.
Specifically, possible orders that ensure monotonicity in this setting include: decreas-
ing value, increasing length, increasing arrival time (i.e., earlier jobs first), decreasing
deadline (i.e., later departures get priority), an increasing rate, as well as combinations
of these, such as value density ( v

r ·l = v
q ). Tie-breaking rules must also use criteria that

guarantee monotonicity.
Essentially, the mechanism considers each job, taken in this order, and considers

whether it can fit in a schedule, i.e., increase social welfare of the resulting schedule,
or not, given the previously pre-committed jobs. The procedure is formally defined
in Algorithm 5: We use decreasing value density, and in case of ties, give preference
to earlier arrival time (FCFS). Each unscheduled active job is pre-committed in this
order, if the sum of scenarios in which the job is scheduled, is greater or equal to N

2 .
The scheduling algorithm used is an adaption of the offline scheduler called GREEDY-
OFFLINE-PC (Algorithm 4). This algorithm guarantees that all pre-committed jobs
(denoted by argument P ) are scheduled.

Theorem 1. The allocation procedure defined in Algorithm 4 and 5 is monotonic, given
an assumption of “no early arrivals or late departure"’ misreports.7

The proof of monotonicity by Stein et al. (2012) applies, with some modifications.
Informally, the proof considers each dimension making up a job’s type, and shows
that a job’s allocation is not worse than under another type which is identical in all
dimensions, but is strictly worse in that dimension. So, for example, the allocation
of a job with a given value, required amount of electricity and arrival time, but with
a later deadline cannot be worse than the allocation of a job with exactly the same
parameters, but reporting an earlier deadline.

5.4.2 Payments

Critical value payments are used to ensure truthfulness of the jobs. The critical value
of a job in an online mechanism is the minimum value necessary for pre-commitment
given the set of jobs active over the active period of the respective job j (Parkes, 2007,
p.418). For a job j with value v j which is pre-committed, its payment p( j ) is thus
defined as follows.

p( j ) = min{v j ′ | j ′ ∈ schedule s′},

where s′ is the schedule produced by the same algorithm in case j is replaced by j ′

(with value v j ′).8 The payment thus is not just based on demand and supply at the

7This is a standard assumption in online mechanism design, cf. Friedman and Parkes (2003).
8Note that truthfulness (and individual rationality) entails p( j ) ≤ v j .
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Algorithm 4: GREEDY-OFFLINE-PC heuristically schedules all pre-committed jobs
(P ) and value-adding unscheduled future jobs (J ′).

1 Algorithm: GREEDY-OFFLINE-PC (P , J , x, s, t )

2 for j ∈ SORT(P ) // by decreasing job size, i.e., l*r
3 do
4 tmi n ,cmi n ← COSTMINIMALSTARTTIME( j , x, s, t )
5 stmi n ← stmi n ∪ { j }
6 J ′ ← { j ∈ J | j 6∈ s,d j ≥ t + l j }
7 for j ∈ SORT(J ′)// by decreasing value density
8 do
9 tmi n ,cmi n ← COSTMINIMALSTARTTIME( j , x, s, t )

10 if cmi n < v j then
11 stmi n ← stmi n ∪ { j }
12 return s

moment of pre-commitment, but also at later times (until its latest starting time).
This is required, since otherwise a job could report a later arrival time and reduce
its payment. A consequence of this approach is that under specific conditions there
is a chance that the received payments are not sufficient to cover the cost of conven-
tional generation (e.g., in case of insufficient renewable supply, despite an optimistic
forecast ) incurred by the mechanism. The lack of budget balance can be mitigated
through the use of reservation prices. Then, however, low valued jobs that could
be served from renewable generation are not accepted, and, correspondingly, effi-
ciency suffers. This dilemma cannot be remedied without harming the efficiency of
the schedule.

5.4.3 Allocation

As long as all pre-committed jobs are scheduled, we are free to use any algorithm
in the allocation phase, including the algorithms described in Section 5.3. To force
scheduling of all jobs in P in Algorithm 6 , we replace the offline scheduler by GREEDY-
OFFLINE-PC, and only select jobs from P to schedule at t .

While pre-commitment establishes constraints that render the mechanism IC, its
introduction does not necessarily lead to worse results. This is illustrated in the fol-
lowing example.

Example 4. We consider a situation without flexibility and compare the choices made
by the mechanism to those by multi-machine consensus (the scheduler, Algorithm 3).
Suppose t = 0, the following three active jobs have the current time as arrival time, a
consumption rate of 1, and the following lengths l j and values v j . (The deadline then
is exactly equal to the length l j .)
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Algorithm 5: m-CONSENSUS-Precommitment pre-commits jobs that received
votes of at least half of the scenarios.

1 Algorithm: m-CONSENSUS-Precommitment(Jr , x, s, t )

2 for j ∈ SORT(Jr ) do
3 f ← 0
4 foreach scenario 〈J i (t ), xi (t )〉 do
5 s′ ← GREEDY-OFFLINE-PC(P , J i (t )∪ Jr , xi (t ), s, t )
6 if j ∈ s′ then
7 f ← f +1

8 if f ≥ N
2 then

9 P ← P ∪ { j }
10 return P

jobs scenarios

j v j l j v j /l j a j

1 9 3 3 0
2 1 1 1 0
3 3 2 3/2 0
4 4 2 2 1

i t = 0 t = 1 t = 2

1 2 2 0
2 2 2 0
3 2 2 1
4 2 2 2

Suppose there are four scenarios, which all include the current supply of 2, and in
some cases slightly different future supplies in t = 2. Additionally, each scenario in-
cludes a virtual job (j = 4) of value 4 and length 2, to be expected at t = 1. We assume
the cost of conventional generation to be 10 per unit of power flow per period.

The decision for m-CONSENSUS is made by repeatedly scheduling all jobs in all sce-
narios (with a greedy heuristic, based on value density), and in each iteration starting
the active job that occurs in most schedules. In this example, j = 1 is scheduled in sce-
narios 3 and 4, j = 2 is scheduled in scenario 1,2, and 4 (in the latter because the virtual
job can then be included), and j = 3 is scheduled in scenario 1,2, and 3. Therefore jobs
2 and 3 are scheduled by m-CONSENSUS, for a total value of 4 and an expected value of
6 (there is a 50% chance that virtual job 4 can be executed).

The decision by m-CONSENSUS-Precommitment is done per job, heuristically ordered
by value density. A job is pre-committed if at least half of the scenarios would schedule
it. Job 1 meets this criterion and thus is committed first; job 3 then follows. This sched-
ule has a value of 12, but a 50% chance of a cost of 10, which gives it an expected value
of 7. This exceeds the value of the m-CONSENSUS schedule. Similar examples can be
constructed as long as conventional generation is more expensive than any value den-
sity.
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Algorithm 6: Schedule the pre-committed jobs P at t that occur in the largest
number of scenarios, under the condition that they all are eventually allocated.

1 Algorithm: m-CONSENSUS-Allocation(P , x, s, t )

2 repeat
3 Reset counters f (with −ε for f (⊥))
4 foreach scenario 〈J i (t ), xi (t )〉 do
5 s′ ← GREEDY-OFFLINE-PC (P , J i (t ), xi (t ), s, t )
6 if s′t = st then
7 f (⊥) ← f (⊥)+1
8 else
9 for j ∈ P ∩ s′t do

10 f ( j ) ← f ( j )+1
11 j∗ ← argmax j∈P f ( j )
12 if j∗ 6= ⊥ then
13 P ← P \ { j∗}
14 st ← st ∪ { j∗}
15 until j∗ =⊥
16 return s

5.5 Evaluation

This section presents the empirical evaluation of the algorithms. Our goal lays in
quantification of the algorithms’ and mechanisms’ economic performance relative to
a clairvoyant , and therefore optimal, scheduler.9 The objective function is given in
Equation 5.1. To this end, we vary

• the number of scenarios,

• the scenarios’ horizon, and, most importantly,

• job flexibility.

Furthermore, by comparing algorithms and mechanisms, we quantify efficiency
losses due to ensuring truthfulness via pre-commitment. The gap between schedul-
ing algorithm and mechanism can be interpreted as an expected price of incentive
compatibility.10 Finally, we verify the computational complexity of the algorithms.

9We use Gurobi 5.6 to compute the offline-optimal benchmark with a 1% MIP gap.
10 Due to the disadvantageous computational complexity of the presented Expectation-based algo-

rithms, we abstain from evaluating them empirically and focus on the Consensus-based mecha-
nism. We argue that for realistic problem sizes, Expectation-based approaches cannot be applied in
the online setting.
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5.5.1 Experimental Setup

We consider settings with 1,5 and 30 scenarios and limit the available uncertain in-
formation about the future by using horizons of 0,1,2 and 4 periods for the demand
side and, as explained in Section 5.3.2, correspondingly longer horizons on the supply
side. Based on this setup, we are able to illustrate the effect of varying forecast horizon
length and number of scenarios on the economic outcome. We use the models below
to generate both the scenarios as well as the actual realisation independently.

Demand As introduced in Section 5.2.1, jobs j ∈ J are characterised by
〈v j ,r j , l j , a j ,d j 〉. For simplicity, the consumption rate is set to r j = 1,∀ j ∈ J in the

experiments. Job length l is sampled from a uniform distribution over {l , . . . , l } with

l = 1, l = 4. Job valuations v are drawn from a uniform distribution over the real inter-
val [v , v] with v = 1, v = 10.

The set of jobs in each instance (and the instances’ corresponding scenarios) is cre-
ated such as to closely follow a deterministic load curve over a time span of 24 periods
as it is typically observed in electric power systems. Note that we use integer valued
quantities demanded (eq. 5.15) by rounding a sinusoidal load profile to the closest
integer value in each time step.

D(t ) =
⌊

5.5+3sin(
2π

24
t )

⌋
(5.15)

We first create a set of jobs including their valuation v and length l . Thereafter, it-
erating over all jobs in order of decreasing job size, we set their start dates such that
aggregate consumption closely follows D(t ). So far, we have not considered the cen-
tral control paramter job flexibility, which is defined as f j = d j −a j − l j . We set all jobs
to be equally flexible, and vary flexibility between 0 (no flexibility case) and 5 time
steps.

Renewable Supply To realistically model uncertain supply of renewable energy, we
use publicly available historical wind data from the Sotavento wind farm in Gali-
cia, Spain.11 This wind farm consists of 24 turbines, with a combined output of up
to 17.56MW. However, in order to scale the available supply in our experiments, we
model only the wind speed and derive the corresponding power supply using a sig-
moid power curve that is based on the installed turbine technology (Robu et al., 2012):

pr (wt ) =C · (1+e6− 2
3 wt )−1 (5.16)

11This data is available fromwww.sotaventogalicia.com, and we use hourly data from May 2008
to 2013.
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where pr (wt ) is the available power from wind generation given the wind speed wt at
time t . Here, C is a factor that we use to scale supply and that corresponds to capacity
of the installed wind generators. Specifically, in each experiment installed capacity
C is scaled such that total supply from wind equals the total amount of energy de-
manded (Subramanian et al., 2012), i.e.,

∑
t pr ,t = ∑

j∈J q j . We scale supply to match
aggegate demand, because the problem instances are most interesting, i.e., challeng-
ing to the algorithms, when there is almost sufficient renewable supply for all jobs.
We use the wind data in two ways — to generate the actual supply available during
that run, and second, to train a generative probabilistic model entering our schedul-
ing mechanisms to generate new scenarios.12 In more detail, we use a hidden Markov
model (Juang and Rabiner, 1991) with ten hidden states as our generative model, as
this yields good results in practice on the wind data.

Conventional Generation Conventional Generation (CG) as a source of reliable
backup generation is necessary in order for the non-preemptive and pre-committed
jobs to be served even in the case of an unanticipated shortfall of renewable gener-
ation. We employ the simplifying assumption that CG is characterised by constant
marginal cost, i.e., cc (pc ) = b · pc , and we set b to a value approximately 30% above
average job value density. With this cost parameter, low-valued jobs should not be
served if there is insufficient renewable generation. On the other hand, if there is
some, but insufficient renewable generation to serve a job from renewable genera-
tion fully, social welfare benefits if the remaining part is served from CG instead of
rejecting the job. As job flexibility increases, the amount of CG used by the algorithms
should decrease.

5.5.2 Results

Our main experimental results are illustrated in Figure 5.1. We vary job flexibility be-
tween zero and five time steps (hours) and normalize social welfare by the result of
offline-optimal under zero job flexibility. The reported results are the mean normal-
ized social welfare and corresponding standard errors. We separate our results of 100
repetitions by the number of scenarios (columns) and horizon length. The solid line
represents the mechanism’s results. Our gold-standard, offline-optimal, is depicted in
green. Figure 5.1 illustrates the following: In the presence of five hours of flexibility
for all jobs, offline-optimal social welfare increases by approximately 21% compared
to the zero flexibility case. However, without information on future demand (i.e., zero
horizon length, top row), neither the schedulers nor the mechanism can take advan-
tage of this flexibility welfare potential. If there is only a single scenario of future sup-

12The probabilistic model could also be leveraged to iteratively update scenario weights based on sce-
narios’ likelihood as new information becomes available. In practice, however, with resampling
forbidden, we weight scenarios uniformly.
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Dimension values

Job flexibility f [0,..,5]
Job valuation v [1,10]
Consumption rate r 1
Job length l {1,2,3,4}
Number of experiments 100
Number of scenarios N {1,5,30}
Scenario horizon h {0,1,2,4}
Specific cost of conventional generation c 1.3 · v̄

q̄

Table 5.1: Evaluation Parameters for Multi-unit Demand

ply available (which might not correspond to the actual realization), performance of
the first-come first-serve scheduler even decreases over flexibility on the demand side
(top left panel). Interestingly, increasing the number of scenarios (left to right), while
retaining the zero horizon length on the demand side, does not improve the economic
outcome.

However, adding even comparably short forecasting horizons (top to bottom) of
one or two time steps (i.e., hours), the online schedulers can effectively harness de-
mand side flexibility. Thereby, in case of a single scenario, the schedulers perform
better than the mechanism. Both, the algorithms’ and the mechanism’s performance
can be improved by increasing the number of scenarios. The mechanism’s perfor-
mance, although constrained by the incentive compatibility property, is on-par, and
sometimes even better than the FCFS-based scheduling algorithm. This underlines
the value of more advanced algorithms (Hentenryck and Bent, 2009).

To formulate the main results:

• First, social welfare initially increases with flexibility for all algorithms, given
even a very short forecasting horizon. Furthermore, the mechanism achieves
only slightly reduced welfare compared to the extended algorithms. Most no-
tably, the average gap in social welfare, i.e., the cost of incentive compatibility
in our settings does not exceed 4–5%. At flexibility equal to five periods, the
online scheduler achieves results 15%-20% short of the offline optimal bench-
mark, depending on the number of scenarios and horizon. The corresponding
mechanism achieves slightly lower values, with an additional reduction in social
welfare in the range of 1%-5%. However, and importantly, these scheduling al-
gorithms assume non-strategic, cooperative agents/jobs. An in-depth analysis
of the results reveals that median performance of the mechanism is again nearly
on par with the value-density based scheduler, and mostly better than the FCFS
scheduler (Fig. 5.2). Evidently, average performance is skewed by outliers on
the low end of the welfare spectrum. Notably, these outliers have an especially
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strong presence for the mechanism, skewing average social welfare as the main
performance metric.

• Second, a longer forecasting horizon (top to bottom, Fig. 5.1) can only very
marginally improve economic performance of both, schedulers and mecha-
nism. For the mechanism, maximum social welfare is achieved at horizons of
one or two periods and remains constant beyond. Possibly, longer horizons
provide stronger competition for currently active jobs, which may then end up
without allocation. The forecasted jobs that never arrive, effectively pave the
way for poor pre-commitment decisions. Regarding the number of scenarios,
FCFS-based scheduling by design cannot benefit from a larger number of sce-
narios, while the mechanism and value-density based scheduler benefit signif-
icantly.

• Our results in Figure 5.3 show that computation time increases sub-linearly in
job flexibility and linearly in the number of scenarios. The sub-linear increase of
computation time in job flexibility can be attributed to decreasing marginal use
of flexibility: The decision whether to include a more flexible job in the sched-
ule is not repeated for all possible start dates, but only as long as the job is not
included in a past schedule. Besides this interesting and useful result, the value-
density based scheduling algorithm is the least expensive algorithm: For a hori-
zon of 1 period, relying on 30 scenarios and assuming flexibility of five periods,
construction of a schedule over 24 periods assuming the inputs from Tab. 5.1
takes 23 seconds with our implementation, i.e., ∼ 1 second per period. The
FCFS-based algorithm clocks in at slightly higher 25 seconds. The mechanism is
more involved at about 48 seconds on average. The larger computational effort
for the mechanism can be explained by the two-phase decision making, which
approximately doubles runtime. Nevertheless, runtime in each time step is ap-
proximately 2 seconds, and thus acceptable for our online setting.

5.6 Conclusion

We extend the Expectation and Consensus algorithms to cope with multi-unit, non-
preemptive demand under uncertainty on both, supply and demand side. Specifi-
cally, to deal with uncertain supply, we employ scenarios sampled from the underlying
distribution. Furthermore, in order to apply the principles of these algorithms to set-
tings with self-interested agents, we apply the pre-commitment approach to achieve
monotonicity and thus incentive compatibility for the demand side. Finally, non-
preemptive jobs and pre-commitments can only be scheduled if there are guarantees
in terms of the availability of future supply. To deal with this problem, we consider
two supply sources: low cost/free, but uncertain renewables, and costly but unlimited
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Figure 5.1: Average normalized social welfare and corresponding standard errors. Normalizing
factor is the offline optimal given zero flexibility. Columns represent number of scenarios,
rows indicate forecast horizon.
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conventional energy. This way jobs can be committed, even if supply is uncertain. The
algorithms are designed to take into account the risk of using the costly alternative.

Our empirical evaluation shows a number of interesting results. First, as expected,
social welfare increases in job flexibility. Second, model-free online schedulers and
mechanism are easily improved using a model of the future involving rather moder-
ate numbers of scenarios (to capture uncertainty) and comparably short horizons.
This is an encouraging result, as the algorithms lend themselves to application in
online settings with tight time constraints. Third, the cost of achieving truthfulness
(i.e., by requiring pre-commitment) is very low and only approximately 4-5%. Eco-
nomic performance of both, schedulers and mechanism could potentially be further
improved using expectation-based approaches. The corresponding economic gain,
however, would come at additional computational cost. We note that our evaluation
of the mechanism is placed in the context of the electrical power domain. However, it
could be applied to other settings where jobs are non-preemptive and there is a source
of free (or cheap), expiring resources and costly backup supply.

In future work we intend to explore the trade-off between economic efficiency and
budget deficits for the mechanism. Using the currently proposed mechanism, the
system may run a loss when the payments it receives are low (e.g., due to lack of com-
petition on the demand side), while incurring more than expected costs on the supply
side. By under-committing, the mechanism could achieve budget balance (in expec-
tation) at the cost of reduced efficiency as less of the free resource might be used.





Part III

Future Mobility Systems: Leveraging
Consumer Flexibility





Chapter 6

Car-sharing Fundamentals

This chapter outlines the role of car-sharing in future mobility systems where the sig-
nificance of inter-modal trips can be expected to increase. It also describes the dif-
ferent kinds of car-sharing that exist, presents an introduction into related literature
including existing work in the car-sharing domain, but also covering related sharing
concepts. Thereafter, we outline the various kinds of flexibility that might be valuable
in the operations of car-sharing fleets and, finally, describe the data set that we base
our evaluation on in the following chapters.

6.1 Future Mobility Systems

Multimodal Mobility We employ the term multimodal mobility to describe passen-
ger trips that make use of at least two modes of transport, such as train and car, or
car and public transport in general. On a side note, the related term intermodal trans-
port is used to describe the use of at least two different means of transport (e.g., truck
and train) to transport goods (not passengers) from origin to destination. The com-
bination of different modes of transport to satisfy travel demand is widely expected
to gain in importance in future mobility systems. With mobility-related information
becoming increasingly accessible, complex mobility chains and complex mobility ser-
vices can be designed and offered. Such information access allows for the composi-
tion of both, ad-hoc and complex trips, potentially consisting of multiple legs and
using different modes of transportation (multimodal transport). Car-sharing may be
one of these modes, thereby to some extent relying on electric vehicles. The efficient
integration of EVs, however, requires elaborate information and communication in-
frastructure beyond what would be necessary for Internal Combustion Engine (ICE)
propelled vehicles.

Clearly, the sole availability of information does not render composition of com-
plex trip patterns a self-fulfilling prophecy. Users’ desire to select the best, or at least
an appropriate combination of trip components from a plethora of options creates
massive cognitive overhead. This complexity might create demand for Decision Sup-
port Systems (DSSs), as exemplified in Daimler’s smart phone application “moovel”.
Internet-enabled DSSs might reach beyond the smart visualization of all available al-
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ternatives, ordered, for example, greedily by one dimension. Instead, individual user’s
preferences could be taken into account when presenting information to the eventual
decision maker, relieving him of unwanted clutter and thus assist in turning the vision
of seamless multi-modal mobility into reality.

In shared mobility systems, economic coordination is of paramount importance to
achieve acceptable economic outcomes. Except for the pathological case of excess
transportation capacity, scarce capacity will have to be managed through efficient al-
location decisions. In contrast to today’s individual mobility sector, where decisions
are made on longer time-scales, decisions granting access to mobility will be made
more frequently but for shorter time horizons, adding complexity to decision mak-
ing on the one hand, but also opening up new possibilities and associated economic
potential.

Fig. 6.1 illustrates a simplified decision-making process where three alternatives
{a1, a2, a3} are available. In the mobility domain, ownership decisions regarding a per-
sonal car are made once every couple of years, i.e., the user chooses one alternative (in
red) and sticks with this far-reaching decision for a prolonged period. In the future,
this might change to more frequent, short-term decisions, i.e., for each trip the ap-
propriate mobility means is chosen. Hence, a larger number of small decisions might
replace one single, important decision. With respect to Fig. 6.1 this implies that the
time between decisions is reduced in a shared-mobility scenario. The individual user
benefits from more appropriate offers, as the vehicle chosen for each trip is more ap-
propriate than a vehicle that is required to satisfy a wider range of mobility requests ;
on the other hand, he bears the additional cognitive overhead when making repeated
decisions and might, depending on the design of the car-sharing system, be faced with
the risk of lacking service. Interestingly, car-sharing also provides individual mobility
to those that do not own a personal vehicle. For those users, car-sharing might be a
welcome and highly valuable addition to their personal mobility portfolio and enable
trips that otherwise would have been impossible to conduct.

Choice Between Alternative Modes of Transport Choosing between modes of trans-
port is a classic example of discrete choice models. Consumers select from a finite
set of alternatives (e.g., bus, train, taxi, car) the one alternative that maximizes their
individual utility. Mode choices were the motivating problem for the eventual forma-
tion of discrete choice models based on random utility models These models were
developed by McFadden and colleagues in the 1960s and 70s who received the Nobel
Price in economics in 2000 for his contribution (McFadden, 2001). A seminal contri-
bution to the development and application of discrete choice models was in forecast-
ing the use of transportation alternatives in the period surrounding the introduction
of Bay Area Transportation in the 1970s in California. Assuming utility-maximizing
agents, observed user choices allow derivation of the values of different attributes of
the choice process, e.g., the value of time, the value of spending time alone in a car vs.
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Figure 6.1: Alternatives and Decisions in Mobility Choices.

spending it in means of public transport, number of transfers, etc.
Historically, most trips in developed countries are conducted using a single mode

of transport, most often using the automobile (Streit et al., 2013). While we do not
expect this structure to change massively in the foreseeable future, car-sharing can
function as an enabler of richer multimodal travel chains. This is especially true for
the case of one-way car-sharing (e.g., car2go or DriveNow, to name currently popu-
lar choices). Accordingly, the availability of car-sharing offers might enable trips that
otherwise would either not be undertaken or be undertaken via different modes. Ce-
teris paribus, adding one more accessible alternative to the menu of choices increases
users’ attainable utility. Clearly, the more accessible such novel mobility offers are rel-
ative to established means, the more likely users will choose them from their menu of
mobility options.

We conjecture that the most important consequence of the introduction of car-
sharing might be that families must no longer ensure that even the last bit of peak
demand can be covered through their owned vehicle. Instead, one future possible de-
velopment might be that only the base demand for individual mobility is covered via
an owned vehicle. The remaining demand for individual mobility can then be covered
through shared systems, of which station-based car-sharing might assume an impor-
tant role.

Choice in Station-based Car-sharing Besides choice concerning the mode of trans-
portation, the users must make further decisions, if car-sharing is chosen to be a com-
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ponent of his travel plans. In particular, he must choose from the set of vehicles and
locations, and potentially adapt his desired reservation duration with the time the ve-
hicle is available (at least in the case of station-based car-sharing with advance reser-
vation). Thereby, the utility-maximizing alternative might not be available, hence, the
customer must next-best options. Presumably, in some instances, the loss in utility
from lacking availability might be negligible, and the consumers are virtually indiffer-
ent between alternatives. These are the cases, in which consumers can offer flexibility
to the operator of the car-sharing fleet, without sacrificing their own utility. Further-
more, if the consumer is adverse to making detailed decisions, he might even welcome
the recommendation of a vehicle that is close-enough to the actual utility-maximizing
assisted by the reservation system. In some cases, trading-off complexity with slightly
worse service can actually turn out to be beneficial for the user, especially if the pre-
sumed allocation decisions is bound to monetary incentives. In situations, where
there are numerous alternatives available that are nearly on-par with each other, i.e.,
in dense station networks, the basic idea of hidden markets, as brought forward in
(Seuken, 2010) poses an interesting avenue for further research.

Following the theory on random utility models we posit that consumers’ revealed
preference in the form of time, station and vehicle choice might be the best available
option. This however, does not imply that consumers would not be willing to choose
different alternatives, given the originally chosen ones were not available.

Reservation Process and Efficient Operations Today’s car-sharing reservation pro-
cess typically is fully managed by the customer. For example, in typical station-based
car-sharing operations, the customer decides, based on a highly transparent system
state, exactly which vehicle to reserve for a clearly defined time span.1

The implicit assumption underlying human-computer interface design in car-
sharing as in Fig. 6.2 seems to stem from the perception that car-sharing customers
can indeed easily translate their preferences into well defined and strong choices (re-
garding type of vehicle, time, duration, and location). We argue that such reserva-
tion system design can have detrimental effects with respect to the efficiency of car-
sharing operations, that could be avoided through better system design.

Fig. 6.3 illustrates the typical reservation process in station-based car-sharing. First,
the user inserts the reservation from the set of available alternatives (i ). Each reser-
vation has a begin and end date (b and e). The period during which the vehicle is
actually in use lasts from pick-up at b′ to drop-off at time e ′.

In addition to this standard process, users can modify their reservations during the
course of the reservation, i.e., insert an earlier return date, or, if the vehicle is available
has not been reserved by another user, a later return date as well. Due to penalties
regarding late returns, users typically reserve the vehicle for a longer period than the

1In one-way rental systems, the user usually only selects a vehicle and drops it off at the desired loca-
tion, without specifying the return date in advance.
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Figure 6.2: Typical customer reservation interface in station-based car-sharing. Customers
can choose from the temporal view on the system (default) and a spatial view that reveals
further information after clicking on the respective station.
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Figure 6.3: Reservation Process in station-based car-sharing.

actual usage period b′−e ′. Hence, e −b < e ′−b′ holds for most reservations.
Each individual reservation can have negative externalities on other users, mostly

through reduced vehicle availability. For example, by placing a reservation on a par-
ticular vehicle, other users might no longer be able to fully serve their demand for
mobility. Beyond crowding out other users, selfish users might place reservations in
the system such that the time between reservations on the same vehicle is too short to
accommodate an additional reservation. The user placing the reservation, however,
can be nearly sure, not to be affected from potential late returns. System efficiency
can be adversely affected by such reservation behavior.

Following these thoughts, the consequences of naively implemented transparency
with respect to system state, as in today’s reservation systems, are two-fold: First, it
might prevent potential customers from participating (fearing the risk of low QoS) or,
second, participating customers are forced to use other, less favorable modes of trans-
port in order to satisfy their travel demands (due to a lack of vehicle availability). Con-
sequently, the described reservation approach can lead to inefficient outcomes, with
potential customers not joining the system and some customers being denied ser-
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vice due to inefficient scheduling from distributed, self-interested customers. Clearly,
there is potential in drafting alternative reservation schemes, however, they must be
thoroughly evaluated before being rolled-out into the wild.

6.2 Shared Mobility Literature

The relevant related research contributions on car-sharing operations stem from both
the literature on shared mobility systems as well as general insights from the oper-
ations management literature, especially on scheduling, fleet assignment as well as
revenue and capacity management.

As noted before, there has been a recent and current trend towards an increasingly
shared usage of mobility options. Consequently, the number of scholarly publica-
tions addressing strategic and operational challenges of such systems have recently
become more numerous. Besides studies on car-sharing operations, there has been a
great amount of research on bike sharing systems which face somewhat similar chal-
lenges. While not essentially considered a “sharing industry”, car rental operations
have in the past encountered and experienced a host of the challenges car-sharing
operators are faced with as well. One particularly important problem in transporta-
tion research is the dial-a-ride problem, a special variant of the pickup and delivery
problem (Savelsbergh and Sol, 1995). For future mobility systems, where autonomous
(self-driving) vehicles could provide an important addition to the existing mobility
spectrum, this problem and modifications thereof might receive renewed interest
from both academia and industry. Clearly, shared mobility systems require economic
coordination to manage and mitigate the adverse effects of scarcity on user accep-
tance. One point that has not been addressed in existing research on shared mobility
systems concerns the design of incentives to truthfully reveal users’ preferences. By
basing economic allocation decisions on users’ true preferences, efficiency can be im-
proved. However, the trade-offs between economic benefits and privacy risks associ-
ated with the revelation of sensitive personal data must be addressed in design of the
corresponding service designs; otherwise, user acceptance might suffer.

Car-sharing Looking at typical car-sharing structures around the globe Barth and
Shaheen (2002) establish a taxonomy for classifying such systems. System integra-
tion with public transit, the possibility of inter-nodal travel and the primary customer
segment (residential vs. business) are identified as central aspects for classifying car
sharing systems.

A large share of current car-sharing organizations do not facilitate inter-nodal travel
(Shaheen and Cohen, 2007). Still, the optimization literature concerned with car-
sharing has almost exclusively focused on mitigation strategies for the vehicle relo-
cation challenge arising in systems with inter-nodal travel.
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Kek et al. (2006) develop a simulation model to identify relocation techniques that
can enhance service levels. Based on a data set from a local car-sharing company they
demonstrate significant savings with respect to car lots, staffing levels and operational
costs by using inventory balancing techniques. Kek et al. (2009) extend this work and
develop a three-phase optimization-trend-simulation decision support system. This
tool allows operators to determine a near-optimal manpower and operating parame-
ters for the vehicle relocation problem. To the same end, Nair and Miller-Hooks (2011)
propose a stochastic, mixed-integer program with joint chance constraints. This facil-
itates the generation of least-cost vehicle redistribution plans for shared-vehicle sys-
tems such that a proportion of all near-term demand scenarios are met. The potential
of redistribution approaches is evaluated using a real-world application scenario in
Singapore. Similarly, Correia and Antunes (2012) present an mixed-integer program-
ming model to determine depot location in one-way car-sharing systems. The bene-
fits of the approach are illustrated by means of a case study.

These research contributions focus on the operational side of car-sharing with real
data sets being used to obtain representative booking streams for the model valida-
tion. Steininger et al. (1996) take a user-centered perspective and by means of a survey
and a controlled experiment try to characterize car-sharing users and their adoption
behavior. Morency et al. (2007) also aim at characterizing the behavior of car-sharing
customers. Using data mining techniques on a transaction-level data set they are able
to identify distinct customer clusters and day types. They argue that this type of anal-
ysis can help improve the efficiency of car-sharing operations.

Shaheen et al. (2012) conducted personal expert interviews to investigate the devel-
opment of personal car-sharing, which they see as the next step in car-sharing. Rela-
tive to station-based car-sharing, personal car-sharing lowers the barriers to entry and
usage, giving consumers greater choice in making mode-of-transportation decisions.

Bike-sharing Another recent shared mobility trend is the establishment of bike-
sharing systems in many cities around the globe. Given the lower cost of bicycles,
these systems reach much larger scale than car-sharing operations. Typically, inter-
nodal travel is the standard case in these systems and there has been a host of very
recent papers on optimizing balancing and repositioning operations: Both Chemla
et al. (2012) and Raviv et al. (2012) characterize the static bike repositioning problem
and discuss different solution approaches. Raviv and Kolka (2013) introduce an in-
ventory model to address the dynamic variant of this problem. They provide a numer-
ical solution method as well as structural properties concerning the convexity of the
model. Nair et al. (2013) present a quantitative analysis of a large-scale bicycle sharing
system. They address several operational aspects (e.g., system characteristics, utiliza-
tion patterns, and flow imbalances between stations) and present fleet-management
strategies to deal with this asymmetry. Lin et al. (2011) provide a formal hub location
inventory model formulation for the case of bike-sharing, where the design variables
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reach as far as the creation of bicycle lanes between stations. They consider travel
costs, bicycle inventory costs, facility costs (stations and lanes) as well as service lev-
els in their objective.

Car Rental Unlike car- and bike-sharing which can still be considered somewhat re-
cent phenomena, car rental operations have been around for a fairly long time. Given
this greater level of industry maturity, car rental operations is a well-explored research
field. Many of the identified solution approaches could in principle be transferred to
car sharing operations as well.

Focusing on a concrete decision support system implementation, Carroll and
Grimes (1995) provide an overview of a rental car company yield management sys-
tem which facilitates optimized control of availability and pricing for different car
rental product combinations (car type, rental period, pickup and return location) over
time. This helps to solve the closely-related problems of pricing, fleet planning, and
fleet deployment. Savin et al. (2005) consider optimal rental capacity allocation poli-
cies. Using dynamic programming they determine properties of the optimal policy.
Furthermore, they propose and evaluate a novel threshold heuristic. Finally, they
consider the joint problem of fleet sizing and allocation. Similar to inter-nodal car-
sharing systems, car rental companies also need to determine efficient vehicle reloca-
tion schemes. Fink and Reiners (2006) address this problem using a network flow opti-
mization. They account for real-world constraints (e.g., country-wide network, partial
substitutability across car types) and evaluate their approach using a real-world data
set. Gans and Savin (2007) develop a stochastic control problem to address the op-
timal pricing and allocation approach when handling heterogeneous customer seg-
ments (fixed price contracts vs. walk-in demand).

Related problems in transportation research One standard problem of transporta-
tion research is the Dial-a-Ride problem. Its objective is to “find vehicle routes and
schedules for multiple users that specify pickup and drop-off requests between ori-
gins and destinations” (Cordeau and Laporte, 2007) while minimizing costs. The
problem is due to its combinatorial characteristics computationally challenging and
can be solved exactly for small problem instances only. Due to its importance in, for
example, taxi and ambulance routing, a wide array of solution approaches has been
developed and a large number of case studies on modifications of the original prob-
lem has been conducted (Jain and Hentenryck, 2011; Häll et al., 2009; Hanne et al.,
2009).

Ride sharing, a research topic enjoying increased attention in the recent past (Ka-
mar and Horvitz, 2009; Kleiner et al., 2011; Agatz et al., 2012; Coltin and Veloso, 2013) is
also related to the Dial-a-ride problem. The major departure from the standard prob-
lem can be found in uncertain availability of drivers and different depot locations for
each driver.
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Electric mobility Electric mobility has recently received great attention, but its most
prominent technology, Battery Electric Vehicle (BEV), suffers from limited range. Con-
sequently, test users of BEVs have expressed range anxiety, the “concern, or even fear,
of becoming stranded with a discharged battery in a limited-range vehicle, away from
the electric infrastructure” (Eberle and von Helmolt, 2010). In the case of private own-
ership, the corresponding vehicle must be able to satisfy a wide spectrum of mobil-
ity requests of its user, e.g., ranging from the weekly short-distance shopping trip to
the annual long-distance holiday trip. As a consequence, individuals are reluctant to
forego the flexibility offered by conventionally fueled vehicles even if there are eco-
nomic aspects that made the purchase and use of electric vehicles favorable (Stein-
hilber et al., 2013). Via separation of ownership and use, e.g., by means of car-sharing,
Users can choose the most appropriate means to achieve their goals – but on a trip-
by-trip basis. Hence, car-sharing might be able to play a significant role in fostering
electrification of individual mobility in general and adoption of BEVs in particular.
However, literature on electrified car-sharing so far is sparse. Some authors propose
to provide a fleet of conventional vehicles for buyers of BEVs, allowing the owners to
use this fleet for more extensive trips, instead of adding electric vehicles to the fleet
(King et al., 2013). A study on the potential uptake of electric vehicles of 2011 pro-
vided disappointing results. However, these results (Doll et al., 2011) might be in large
part due to poor assumptions and (poor) heuristics. In particular, the assignment of
reservations to vehicles was following a pure FCFS approach, ignoring additionally
available information. With the goal of the study in mind (better understanding of the
economics of electrified car-sharing), the study’s worst-case approach is difficult to
comprehend.

6.3 Flexibility in Car-Sharing

Increasing popularity of various forms of car-sharing has paved the way to increas-
ingly dense station networks of classic station-based car-sharing operators. A denser
station network and an increasing number of available vehicles reduces the risk of
remaining without service (i.e., without access to a vehicle) for the individual user,
rendering car-sharing even more attractive. Traditionally, reservations requests are
mostly inserted into the operator’s system through the users themselves and begin-
ning and end times are treated as hard constraints. However, consumers might be
satisfied with slightly modified service relative to what they initially requested, but,
in today’s reservation system, are not able to express this flexibility approximately. In
this work we focus on two types of consumer flexibility: Temporal and spatial flex-
ibility. Each type can be used by the car-sharing operator to achieve more efficient
outcomes, given consumers are willing to reveal their flexibility to the operator.
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Temporal Flexibility Users might have an earliest start date and latest end date for
their reservations that does not coincide with the reserved period, i.e., reservations
can be postponed or advanced in time. By shifting reservations in time within con-
sumers’ flexibility limits as illustrated in the top right part of Fig. 6.4 , fleet size re-
ductions can be achieved while still serving all reservations. Instead of reducing fleet
capacity while still serving all reservations, temporal flexibility can be leveraged to in-
crease the number of served reservations while retaining original fleet capacity.

temporal 

spatial 
V1 V2 

Inflexible consumer 

Flexible consumer 

temporal 

spatial 
V1 V2 

temporal 

spatial 
V1 V2 

Figure 6.4: Spatial and temporal flexibility can be leveraged for more efficient fleet utilization

Spatial Flexibility Consumers located in between two stations, might be rather in-
different, at which station their reservation is served. Hence, consumers might be
flexible regarding the location of their pick-up and drop-off station. This is especially
true as the station network available grows denser over time, reducing the associated
inconvenience from retrieving a vehicle at a neighboring station. Fig. 6.4 (bottom left)
illustrates in a minimal example how spatial flexibility can be leveraged to achieve
higher capacity utilization. By assigning a spatially flexible reservation to a vehicle
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Data Unit Median 10% quantile 90% quantile

Reservations 62698
Clients 7615
Vehicles 206
Distance per reservation km 30 8 220
Reservation duration h 4.50 1.77 16.5
Effective usage duration h 3.63 1.08 14.82
Lead-time h 3.42 0.16 76.53

Table 6.1: Car-sharing data set descriptives

located at a neighboring station, the newly arriving reservation can be served suc-
cessfully.2

Vehicle Class Flexibility Besides temporal and spatial flexibility, consumers might
be flexible with respect to vehicle class. More specifically, a user might be satisfied
with a smaller (larger) vehicle than originally reserved. For the provider in certain
situations it might be beneficial to bump reservations to a higher vehicle class, (This
might be troublesome with incentive compatibility.) instead of expanding the fleet in
the lower vehicle class.

6.4 Data Selection

The car-sharing data set we employ in subsequent studies is parted into reservation
stream and station data. The latter consists of the latitude/longitude information of
each car-sharing station. The former, i.e., the reservation stream of 2012 contains ap-
proximately 63.000 reservations within city boundaries in the most important vehicle
class “small”, mostly comprised of Opel Corsas and Ford Fiestas. In more detail, each
observation (reservation) comprises the following information: Anonymized user id,
the date and time at which the reservation was inserted into the system, start of reser-
vation, end of reservation, start of usage, end of usage, distance travelled, and sta-
tion. Table 6.1 documents descriptive statistics of the reservation stream, comprising
reservations of 7615 clients. Note that this data set includes reservations of the single
vehicle class “Small”.

Consumers can interact with the reservation system multiple times regarding a sin-
gle reservation: Reservations can be inserted initially, modified, cancelled or ended
before the end of the initially booked reservation period (case of early return). Un-

2In subsequent evaluations regarding the value of spatial flexibility, we use the Euclidean distance (see
Section 7.2.4 for details).
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fortunately, the data set available includes only the last interaction of the user with
system and not the entire interaction history. As a consequence, the insert date is
modified upon each interaction and loses its semantics. For example, in the case of
early return, the insert date of a reservations will be later than the respective start date.
Hence, computation of lead-times, the time between insertion and begin of a reser-
vation, based on incorrect data yields insensible results.

Filters We applied the following filters to the data: First, reservations beyond admin-
istrative city boundaries are discarded. This allows to focus on a smaller and more
homogeneous data set, allowing for easier and more robust inference. Second, we fo-
cus on a single class of vehicles only, again to foster robustness and interpretability of
results. Furthermore, we discard reservations with incomplete data. By focusing on
a single vehicle class within city boundaries, approximately half of total reservation
data is discarded. Further, approximately 10% of reservation data are removed due to
incompleteness.

Duration and Distance of Reservations Fig. 6.5 depicts the empirical distribution of
reservation duration and travel distance. The mass of the distribution is in the lower
left corner, indicating that smaller vehicles are mostly used for short periods and dis-
tances. Interestingly, there are numerous reservations where the use of traditional
car rental offers would have been more economical to the user. We suspect that con-
sumers prefer the convenience of pick-up and drop-off stations in proximity to their
homes. Furthermore, they might be deriving value from knowing the vehicle type
with certainty in advance3. Another explanation might be that the cost of spending
time on picking up and dropping of vehicles at distant car-rental stations more than
outweighs the additional cost from using the more convenient car-sharing offer.

Fig. 6.6 illustrates the distribution of reservation distances. Clearly, most reserva-
tions are rather short (also see Tab. 6.1), i.e., approximately 85% of reservations do not
exceed a distance of 100 km. However, only about 35% of total distance driven is due
to trips shorter than 100 km. The dashed line in Fig. 6.6 illustrates the share of total
distance that could be served by a range-constrained vehicle. For example, to serve
more than half of the distance traveled with a BEV, its range would have to exceed
170 km, assuming there were no other constraints.

Lead Time The lead time with which customers are reserving vehicles is of special
interest, as it reveal information how much ahead of time customers are reserving
vehicles. Fig. 6.7 illustrates the overall distribution of reservation lead times.

Interestingly, approximately half of the reservations are booked with a lead time of
four hours or less. Furthermore, in excess of 75% of reservations are inserted into the
system within 24 hours before the beginning of the reserved period. Thus, assignment

3Except for rare cases, reservations are not reassigned to different stations or vehicle classes.
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Figure 6.5: Sampled distribution of reservation distance and duration for vehicle class “small”.

decisions are highly dynamic, and reservations enter the system mostly during a short
time window before vehicle usage commences. Accordingly, one might suspect that
reservations entering the system on short notice are rather flexible, either in time,
space, or both, leaving room for optimization.

Fleet Utilization An analysis and discussion concerning fleet utilization is available
in Appendix B.
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Figure 6.6: Distribution of reservation distances. Most trips are shorter than the typical EV
range.
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Figure 6.7: Distribution of reservation lead time. More than half of the reservations are booked
with a lead time of four hours or less.



Chapter 7

Leveraging Consumer Flexibility in
Station-based Car-sharing

This chapter is concerned with leveraging consumer flexibility to achieve improved
economic outcomes in station-based car-sharing. Specifically, we examine to what
extent consumer flexibility in space and time can be harnessed to increase fleet uti-
lization or to improve QoS to consumers.

The intuition behind leveraging consumer flexibility is that of “opaque selling”, a
practice applied in revenue management for perishable assets (Fay, 2008; Jerath et al.,
2010). In the hotel industry, for example, business guests might have a higher val-
uation for staying at a specific location (for the convenience of being close to their
eventual destination). Tourists, on the other hand, might be willing to not know the
exact location of their hotel in advance in exchange for a lower payment. By selling
hotel rooms opaquely in a specific part of a city, but without information on the exact
location, hotels can appeal to different market segments without cannibalizing their
premium product. Effectively, the suppliers are able to enforce price-differentiation
via quality-differentiated products. We follow the same idea of adding opacity to a ser-
vice product and thus improve both capacity utilization, and revenues by attracting
customer groups that otherwise would not use the service. In the case of car-sharing,
opacity could translate into reservations on a city-district level instead of reserving a
vehicle at a specific station.

The structure of this chapter is as follows. First, we introduce the problem definition
and research questions, thereafter, we propose an offline optimization model that,
serving all reservations, under perfect knowledge, minimizes fleet size. This model
yields the value of consumer flexibility with respect to fleet size. Third, we introduce
different online optimization approaches which aim to capture a large share of the
value of flexibility in the online case, and present detailed results. Thereafter, we dis-
cuss the results and derive managerial implications for a car-sharing fleet operator.
Finally, we conclude and provide an outlook into perspective future research avenues.

123



124 Leveraging Consumer Flexibility in Station-based Car-sharing

7.1 Problem Definition and Research Questions

Car-sharing operators are faced with the problem of trading-off fleet utilization and
customer satisfaction. On the one hand, (prospective) customers value low utiliza-
tion (high availability) of the vehicle fleet, while the operator is interested in high uti-
lization in order to maximize profits, assuming that prices are given. As illustrated
in Fig. 7.1, the outcome of economic coordination in car-sharing operations is deter-
mined by the following factors:

• Exogenously defined consumer flexibility determines the minimal fleet size
necessary to serve all requests in the offline case.

• Fleet size and consumer flexibility are defined exogenously in the online case,
while one of either lead time or QoS (dark circles) arises endogenously.

For ease of exposition we assume homogeneous fleets, i.e., both fixed and operating
costs are identical for all vehicles.1

Offline We posit that consumers are to some degree flexible in time and space, en-
abling ideas of the “opaque selling” kind (Gallego and Phillips, 2004). In the offline
case, under perfect information, assignment decisions can be optimized within cus-
tomers’ flexibility constraints and higher fleet utilization may be achieved. Accord-
ingly, the fleet size necessary to serve all reservations is minimized in the offline case,
which also translates into minimal cost for the car-sharing operator.

The offline optimization reveals historically existing optimization potential. How-
ever, it is a rather theoretic construct that may serve as a baseline, but, due to uncer-
tainty and imperfect forecasts, cannot be transferred to practice.

Online To circumvent the shortcomings of offline optimization and outline an opti-
mization alternative that may be applicable in practice, we introduce online optimiza-
tion approaches that do not require information about the future. In the online case,
the focus of the operator is on providing service to customers after the fleet size has
been determined and thus can no longer be adapted to meet demand (or decrease
costs). Moreover, there is no (or only limited information) on future demand in the
online case.

We leverage an empirical dataset introduced in section 6.4 for our evaluation. If
not noted otherwise, decisions taken by each of the online planners require access to
retrospective data in the form of a reservation stream only, but can cope with a lack of
foresight. This empirical reservation stream contains different aspects of reservation
data, including

1We argue for this to be a reasonable simplification, as we restrict our attention to a single, homoge-
neous class of vehicles within the overall car-sharing fleet.
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• the time when the reservation was entered into the system by the user

• beginning and

• end of the reservation period,

• actual beginning and

• end of the usage period,

• distance traveled.

The goal of the operator is maximization of the number of served reservations,
given a stream of reservation data and assuming a specific, fixed fleet composition
(number of vehicles, stations and stationing decisions) defined beforehand. Let QoS
Q be defined as the ratio of served reservations and total amount of reservations in
the reservation stream for the time frame under examination.

Q = Nserved

N
(7.1)

We posit the share of served reservations to be a reasonable proxy for the QoS the
consumer eventually experiences.2

Research Question For the purpose of increasing fleet utilization and QoS, we are
interested in the value of consumer flexibility in station-based car-sharing.

As Fig. 7.1 indicates, flexibility may be a key factor regarding economic performance
of car-sharing operations. In the offline case we focus on the interaction between fleet
size and consumer flexibility (Fig. 7.1(a)).

In the online case, the situation is slightly more complicated: Three of the four
levers that affect economic performance can be chosen exogenously, the fourth will
arise endogenously. As indicated in Fig. 7.1(b), Quality-of-service, lead time and flexi-
bility all affect the consumer, while the provider bears the cost of fleet provision. Note
that by assuming consumers to be satisfied that allocation decisions are finalized only
at the very latest possible moment before a reservation’s period begins we take an op-
timistic approach to lead time. In practice, this might be unacceptable and decrease
solution value. In order to quantify the value of different types of flexibility in the do-
main of car-sharing in detail, we pose the following questions.

Research Question 9 – OFFLINE VALUE OF FLEXIBILITY: What is the value of spatial
and temporal flexibility in terms of fleet size in the offline case?

2For clarity and simplicity we restrict attention to a single evaluation metric. Still, fleet utilization
(time or distance, or combination thereof) could pose another interesting metric for service quality.
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Figure 7.1: Levers for optimizing car-sharing operations. Exogenous variables are depicted in
red, their endogenous counterparts in blue.

Research Question 10 – ONLINE VALUE OF SPATIAL FLEXIBILITY: What is the value of
spatial flexibility in the online case in terms of QoS?3

We answer these questions based on empirical data, described in Section 6.4.

7.2 Offline Optimization

We introduce an offline optimization model that relies on perfect knowledge regard-
ing reservations, i.e., has access to all reservations and is required to serve all reser-
vations. We henceforth pursue minimization of total cost by means of fleet size min-
imization, subject to hard constraints on consumer flexibility as a valid optimization
objective. Besides cost minimization, multi-criteria objectives involving both, op-
erating costs and consumer inconvenience are promising objective candidates, but
require careful weighting of the conflicting goals. Maximizing the number of served
reservations (or distance/time covered) subject to an exogenously defined fleet is pos-
sible as well, but critically hinges on the exact specification of the fleet, i.e., the num-
ber of vehicles at each station. As we are interested in the value of customer flexibility,
we let both size and configuration of the fleet arise as the result of optimization, while

3An alternative formulation could focus on the relationship between QoS and consumer inconve-
nience in the form of walkways.
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introducing an upper bound on customer flexibility.
Solving the offline problem is possible in reality only ex-post (i.e., in hindsight) and

thus, the value of the solution is limited concerning practical applications. However,
reservation data exhibit recurring seasonalities over time. Therefore, an optimal fleet
computed now may also be valuable in the future. Based on those patterns, com-
putation of optimal fleets is valuable on strategic and tactical levels concerned with
location or vehicle assignment planning.

Algorithmically, the problem of assigning reservations can be traced back to the
GAP (Voudouris et al., 2010) which has the objective of profit-maximization.4 In the
special case in which any assignment of a reservation to a vehicle is equally costly, we
are interested in minimizing the number of vehicles in use. This corresponds to the
classic Bin-Packing Problem (Nemhauser and Wolsey, 1988).

7.2.1 Common Optimization Elements in Car-sharing

In our problem, multiple reservations must be assigned to a single vehicle in such
a way that the resulting allocation is feasible, i.e., different reservations on the same
vehicle do not overlap, each reservation is served by exactly one vehicle, and each
vehicle in use serves at least one reservation.5

A reservation r is a tuple containing begin time, end time, and station, i.e., (tb , te ,σ).
The set of all reservations is denoted as R and the set of vehicles as V . The relation σ
maps vehicles V and reservations R to the corresponding stations S .

σ : {V }∪ {R} 7→S (7.2)

Decision Variables Decisions concerning the assignment of reservation r ∈R to ve-
hicle v ∈ V , are expressed via the binary decision variable xr ,v (7.3), which is the deci-
sion variable of central importance.

xr ,v ∈ {0,1} ∀r ∈R,∀v ∈ V (7.3)

First, we require all reservations r ∈ R in the system to be assigned to exactly one
vehicle v ∈ V , formally∑

v∈V

xr ,v = 1 ∀r ∈R. (7.4)

4Assuming that any possible reservation-vehicle assignment decision is equally costly and the fleet
was given exogenously, the problem could be further reduced to the Multiple-Knapsack Problem
(Chekuri and Khanna, 2005).

5Otherwise it clearly should not be in use.
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The second decision variable u incorporates the decision which vehicle to eventually
include in the fleet. A vehicle v is in use if it is assigned to at least one reservation.

uv ≥ xr ,v ∀r ∈R,∀v ∈ V (7.5)

Fleet size N is defined by the number of vehicles in use.∑
v∈V

uv = N (7.6)

7.2.2 Modeling Temporal Flexibility

With complete information on all reservations, i.e., hindsight, vehicle-reservation as-
signment decisions can be optimized and the minimal fleet able to serve all reserva-
tions can be identified. In this section we develop the corresponding constraints of
the mathematical optimization model that formalize customers’ temporal flexibility,
which is in turn leveraged to minimize both fleet size and total cost.

Decision Variable Besides encoding reservation-vehicle assignment decisions in x,
and usage of vehicle v via uv , an additional decision variable θ is required to model
temporal shifting of individual reservations. Furthermore, for auxiliary purposes we
introduce the binary decision variable ωa,b that encodes that a and b have temporal
overlap, with b starting at a later point in time than a.

Objective Function Minimal cost is achieved through fleet size minimization. Ac-
cordingly, we define the objective function to comprise of the number of vehicles used
(7.6), which is then minimized via all three (assignment, vehicle in use, temporal shift-
ing) decision variables, i.e.,

min
x,u,θ

N . (7.7)

Note that the number of vehicles in use at zero flexibility can be extracted from a reser-
vation stream of sufficient length in a straight-forward manner.

Temporal Flexibility Constraints This model does not include spatial flexibility,
hence, reservations must be served at the originally desired station. The station ex-
pressed in the original reservation r is indicated by σr . Accordingly, the following
equality sets x to zero for infeasible reservation-vehicle combinations, i.e., combina-
tions where the station of the vehicle and the reservation diverge. Formally,

xr ,v = 0 ∀{(r , v) ∈R×V |σr 6=σv } (7.8)

We denote the non-negative temporal shifting of an reservation r by θr . Overlap be-
tween two reservations r1 and r2b in the case that r1 has earlier begin time than r2, i.e.,
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r1tb
< r2tb

, is encoded in ωr1,r2 = 1. Correspondingly, ωr1,r2 6=ωr2,r1
6. This is relevant as

we only allow postponement of reservations. Shifting of reservations in time may not
exceed a certain value, i.e.,maximum temporal shifting is constrained by θ̄.

0 ≤ θr ≤ θ̄ ∀r ∈R (7.9)

For analysis and interpretation we assume homogeneous temporal flexibility over
all reservations. In an alternative problem formulation, temporal shifting may be ele-
vated from being a constraint to being part of the objective function. However, doing
so requires appropriate weights for customers’ valuation of time, similar to Heinonen
(2004), which we do not readily have access to. Therefore, we opt for including tem-
poral shifting via constraints and forgo its inclusion in the objective.

In order to elegantly represent further constraints involving temporal overlap, we
introduce the set of overlapping reservations Z . It represents the set of two-tuples of
reservations that are

1. placed at the same station, i.e., σr1 =σr2 ,

2. have temporal overlap, i.e., ωr1,r2 = 1 or ωr2,r1 = 1, and

3. are distinct, i.e., r1 6= r2.

Formally, Z is defined as follows:

Z = {(r1,r2) ∈R×R|(σr1 =σr2 )∧ (ωr1,r2 = 1∨ωr2,r1 = 1)∧ (r1 6= r2)} (7.10)

Intuitively, for each tuple (r1,r2) ∈Z , one of the two reservations needs to be shifted in
order to ensure feasibility of the schedule. We constrain temporal shifting to be non-
negative, i.e., reservations can only be postponed, but not brought forward. However,
advancing reservations in time may be sensible in some settings.

Let θr1,r2
represent the required shifting of r2 in order to accommodate both reser-

vations, r1 and r2 on the same vehicle (cf. Fig. 7.2). If overlapping reservations r1,r2

are to be assigned to the same vehicle, the reservation with the later start time can
be shifted at most by 0 ≤ θ ≤ θ̄. Reservations with temporal overlap (r1,r2) ∈ Z can
be assigned to the same vehicle if one (or both) of the two reservations is shifted, i.e.,
postponed by at least as much as the difference in start and end time θr1,r2

(or θr2,r1
)

of the overlapping reservations.
Formally, we restrict overlaps between different reservations to be possible only in

one direction, i.e., postponement. In order to assign two overlapping reservations
(r1,r2) ∈Z to the same vehicle v , at least one of the two (auxiliary) decision variables
ωr1,r2 ,ωr2,r1 must be set to one (7.11).

6Except for pathological cases where beginning and end of both reservations r1,r2 are identical, and
hence the exact definition is inconsequential.
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Figure 7.2: Illustration of temporally overlapping reservations r1 and r2. Shifting reservation
r2 by θr1,r2

allows to assign both reservations to the same vehicle. In this example ωr1,r2 = 1,
indicating the later start of reservation r2 relative to r1.

If there is temporal overlap, the relative shifting of reservations r1 and r2 (expressed
via θr2 −θr1 ) must at least be as large as the minimal required amount of shifting θr1,r2

(7.13) (and (7.14), for reasons of symmetry).

xr1,v +xr2,v ≤ 1+ωr1,r2 +ωr2,r1 ∀v ∈V ,∀(r1,r2) ∈Z (7.11)

ωr2,r1 +ωr1,r2 ≤ 1 ∀(r1,r2) ∈Z (7.12)

θr1,r2
·ωr1,r2 ≤ (θr2 −θr1 ) ·ωr1,r2 ∀(r1,r2) ∈Z (7.13)

θr2,r1
·ωr2,r1 ≤ (θr1 −θr2 ) ·ωr2,r1 ∀(r1,r2) ∈Z (7.14)

Applying this formulation, we restrict our attention to the cost incurred by the
provider, while foregoing inclusion of costs on the consumers’ side. Clearly, costs
related to shifting reservations in time could be included in the objective, yielding a
multi-criteria optimization problem. However, to come up with meaningful decisions
via such an optimization approach, the weights of both sides need to be adequately
specified – a task we leave for future research.

7.2.3 Modeling Spatial Flexibility

Let us now shift our attention from temporal to spatial consumer flexibility. We as-
sume that some (not necessarily all) reservations are spatially flexible, i.e., flexible
with respect to the station they are assigned to (in the spirit of “opaque selling” and
“flexible products”).

Technically, we add spatial flexibility to reservations by enlarging the set of stations
Sr a reservation r can be assigned to. Accordingly, reservations are no longer to be
served by vehicles located at their original station only, but also by vehicles located at
adjacent stations within the defined perimeter of spatial flexibility.

Fig. 7.3 illustrates the potential of spatial flexibility based on real-world data. The
more flexible a reservation, the larger the set of stations it can be assigned to besides



Leveraging Consumer Flexibility in Station-based Car-sharing 131

|E|=0 |E|=92

|E|=321 |E|=621

0.0 0.5

1.0 1.5

Longitude

La
tit

ud
e

Figure 7.3: Increasing the solution space via spatial consumer flexibility (facet labels in km).
Total flexibility potential is expressed in terms of valid inter-station edges.

the original station. The number of edges that arise between stations clearly increases
in flexibility. Starting at zero edges, the number of edges |E | increases to 92 at spatial
flexibility of 0.5 km, 321 at 1.0 km and 621 at spatial flexibility of 1.5 km. Intuitively, the
larger the number of edges between the stations, the more reservations can be moved
to adjacent stations, potentially yielding better economic outcomes, but possibly also
requiring increasing walkways from consumers.

The walkway wr a consumer incurs when implementing reservation r is equal to
the distance between the originally reserved pickup-station σr and the station of the
assigned vehicle σv – conditional that r is assigned to vehicle v stationed within the
flexibility perimeter of reservation r , i.e., xr ,v = 1. Formally,∑

v∈V
d(σr ,σv ) · xr ,v = wr ∀r ∈R (7.15)

Assignments that violate the upper bound w̄ on the admissible distance between
original and actual station are excluded.

0 ≤ wr ≤ w̄ ∀r ∈R (7.16)

Let the set of competing reservations Rcomp comprise the reservations originating
from neighboring stations that have temporal overlap (7.17). In contrast to the pre-
vious set of temporally overlapping reservations Z , the set of competing reservations
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Rcomp includes reservations originating from adjacent stations, and is thus a superset
of Z . Formally, we define this set

Rcomp = {(r1,r2) ∈R×R|d(σr1 ,σr2 ) ≤ w̄ ∧ (ωr1,r2 = 1∨ωr2,r1 = 1)∧ (r1 6= r2)} (7.17)

Then, the no-overlap condition of two reservations on the same vehicle is expressed
as

xr1,v +xr2,v ≤ 1 ∀v ∈V ,∀(r1,r2) ∈Rcomp (7.18)

Based on sufficient empirical reservation data, the number of vehicles of each type
at each station can be determined reliably. Let |V ′(s)| encode the number of vehicles
at station s based on empirical data. To coarsely retain the station size structure after
optimization, we constrain the number of vehicles at each station not to exceed the
number of vehicles stationed at station s by a factor of two.7

V (s) = {v ∈ V |σv = s ∧uv > 0} (7.19)

V (s) ≤ 2 · |V ′(s)| ∀s ∈S (7.20)

This last constraint completes our MIP formulation.

7.2.4 Results

In this section we describe results from solving the optimization problems with the
objective of minimizing fleet size under perfect information (offline). We begin with
temporal flexibility, followed by the effect of spatial flexibility on fleet size.

Temporal Flexibility The results in Fig. 7.4 show that temporal customer flexibil-
ity improves fleet utilization, or decreases minimal fleet size, respectively. For clarity,
results for each week are connected by dashes; optimization leads to slightly differ-
ent results for each week (mostly due to seasonal patterns spanning over the entire
yearly in the reservation data), but the overall decreasing tendency is clearly visible.
However, the effect of temporal flexibility is meager at best. For example, even at six
hours of temporal flexibility, fleet size reductions are on average 6 %, i.e., virtually
non-existent.

Initially, this is a surprising, yet plausible, discouraging result: Even elevated lev-
els of temporal flexibility allow fleet size to be reduced only marginally. Nevertheless,
this is a plausible result. Due to the fleet structure, which is characterized by a large

7By constraining station size, we forgo part of the optimization potential from pooling effects. How-
ever, by following a rather cautious approach involving a larger number of mid-sized stations in-
stead of few large-sized stations, user acceptance can be expected to be higher.
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Figure 7.4: Fleet reduction over temporal consumer flexibility. Reservations of one week have
been used. Sole use of temporal flexibility does not lead to significant fleet reductions.

number of small stations, and peaking demand at one single day of the week, tempo-
ral flexibility is only of little utility to the provider.8 Under fleets with fewer, but larger
stations, temporal flexibility might yield greater value, as it may enable more effective
pooling of demand. However, under current fleet configurations, temporal flexibility
is virtually useless for fleet optimization purposes.

Spatial Flexibility In contrast to the small gain from temporal flexibility, its spatial
counterpart may yield significant improvements. Fig. 7.5 illustrates relative optimal
fleet size at levels of 0, 0.5, 1.0, and 1.5 km spatial consumer flexibility (airline dis-
tance9). For example, assuming a flexibility level of 1.5 km fleet size can be reduced
by up to 30% and approximately 18% on average.10 Vice versa, under the given fleet,
a similar amount of reservations could additionally be served assuming spatial cus-
tomer flexibility of 1.5 km. Correspondingly, as all reservations are served in the de-
scribed optimization model, fleet utilization increases by means of reducing fleet size.

The results so far highlight the importance of spatial customer flexibility in car-
sharing operations. However, a conclusive test of flexibility’s value requires an eval-

8Assume a station with two vehicles. With large probability at least two reservations are characterized
by having temporal overlap in excess of customers’ temporal flexibility. Consequently, neither of the
vehicles can be decommissioned; the positive aspects of temporal flexibility cannot unfold.

9 We compute airline distance in the Euclidean space as follows: d(p1, p2) =
40.000

360

√
(x1 −x2)2 + (y1 − y2)2

10Note that limited station size has adverse effects on economic performance. If station size could
be modified beyond current station sizes, further pooling of reservations could be achieved. This,
however, comes at the price of consumer acceptance.
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Figure 7.5: Relative size of optimized fleets over consumers’ spatial flexibility. For example,
assuming spatial flexibility of 1.5 km (airline distance), approximately 16% of the fleet could
be retired.

uation in the online case, where access to future information is limited.

7.3 Online Optimization

In realistic, i.e., online, scenarios, the decision making process is complicated by im-
perfect information, with decisions being made as time unfolds and new informa-
tion is revealed. However, there is only little information available on future arrival of
reservations. In particular, reservations that arrive in the future cannot be included
in assignment decisions that are taken now. In different words, decisions are made as
time unfolds and new information is revealed. Based on the encouraging results in the
preceding section on offline optimization, we focus on spatial flexibility, ignoring the
potential of temporal flexibility in the online case. Naturally, the online attainable ob-
jective value, compared to offline optimization, is reduced. Fortunately, some knowl-
edge about the future is readily available from the system state in the car-sharing do-
main. This allows for the construction and evaluation of different reservation-vehicle
assignment policies.

First, reservations can be assigned to vehicles in the temporal order they arrive in
the system (FCFS), with decisions being made at the very moment a reservation enters
the system. The advantage of such an approach lies in its low complexity and ease of
implementation on the one hand, and fairness and transparency as well as immediate
feedback to the consumer on the other. The disadvantage of such a rather simple
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approach might lie in low assignment success expressed in terms of QoS, and inflated
consumer walkways.

Alternatively, assignment decisions can be postponed to the point in time when
the reservation starts (or shortly before, leaving enough time to guide the consumer
to the assigned station). By doing so, more information can be leveraged and better
outcomes can be achieved.

Fundamentally, one can differentiate between designs that inform the customer
about the acceptance of a reservation and the exact vehicle assignment immediately
(on entering the reservation into the system), and those designs where acceptance
and assignment decisions are communicated at different points in time. The former
may enjoy higher user acceptance due to simplicity, the latter, however, may yield bet-
ter performance by allowing the system operator to re-plan and re-optimize as more
information about the future becomes available.11 Obviously, leveraging information
on currently active reservations whose vehicle assignment so far has not been decided
upon, can foster improvements in both, fleet utilization and QoS. The later the cus-
tomer needs to be informed about the eventual vehicle to be assigned for his reserva-
tion, the higher the bound for aggregate system performance be. However, customer
acceptance may limit how late exactly feedback can be given to the customer.

7.3.1 First-Come First-Served

A FCFS approach requires no information on the future. Earlier arrival of a reservation
in the system (relative to the time of desired execution) has two-fold consequences.
First, it increases the probability of allocation as remaining capacity diminishes over
time, and second, in case of assignment at a neighboring station, the distance be-
tween desired and assigned station may be reduced. On the one hand, consumers
have an incentive to enter information concerning their reservation intention as early
as possible, on the other hand, earlier information revelation may conflict with uncer-
tainty on the level of the individual consumer.

Upon arrival of a reservation, the FCFS algorithm traverses the list of available vehi-
cles, sorted by distance from the originally desired station σr in ascending order and
assigns the reservation under consideration to the closest (i.e., first) available vehicle.
Due to its simplicity and similarity to today’s assignment process, we choose FCFS to
be the benchmark for later evaluations. Admittedly, this simple heuristic may deliver
relatively poor results (low share of served requests, inflated walkway distances) when
vehicles are scarce, as externalities of individual assignment decisions are ignored.

11Besides immediate and late feedback approaches, re-planning is of interest as well. The idea here
is to immediate return information on the assigned vehicle. Changing the assigned vehicle (and
more importantly, the corresponding station) later on results in a penalty. Hence, the planner will
only implement changes regarding re-planning into the assignment decisions, if doing so yields
significant benefits.
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7.3.2 Least-Utilized Station First

Our next approximation heuristic, Least Utilized Station First (LUSF) requires no in-
formation on the future, but leverages historic data in order to achieve better QoS. The
heuristic assigns, as its name implies, reservation r greedily to the historically least-
utilized station within the flexibility constraints of the reservation’s originally desired
station σr . On the positive side, QoS is maximized if current and past observations
are correlated, i.e., expose the same or similar patters in time and space. However, on
the negative side, mechanically assigning reservations to least-utilized stations may
induce (i) longer-than-necessary walkways, and (ii) reduced utilization of the initially
preferred stations. Nevertheless, we argue, and this is in-line with the literature on
machine scheduling (Jain and Elmaraghy, 1997; Aspnes et al., 1997) that assigning
newly arriving reservations to the historically least utilized station poses a promis-
ing approach and often performs very well in practice. This is especially true, if QoS is
defined in terms of reservations served, ignoring walkways, as in our case.

7.3.3 Leveraging Advance Information

Customers mostly reserve vehicles some time in advance of using them (Fig. 6.7). If
the assignment decision is not made immediately upon arrival of the reservation in
the system (as is the case in FCFS), some information on future vehicle usage is read-
ily available via look-ahead and can be leveraged to improve assignment decisions for
reservations that are due at the current point in time (cf. Dunke, 2014). In contrast
to the heuristics in sections 7.3.1 and 7.3.2, GREEDY indeed leverages additionally in-
formation available on future reservations. GREEDY tries to maximize the (expected)
number of reservations served while retaining reasonable walkways for consumers.
For instance, if assigning a reservation evokes unreasonably large aggregate walkways
(i.e., exceeding the upper bound on spatial consumer flexibility ω̄), the corresponding
reservation remains without allocation. At its core, it relies on a greedy offline assign-
ment algorithm that is executed at each time step t ∈T , i.e., the points in time when
assignment decisions need to be completed.12

GREEDYOFFLINE Both the GAP and the Multiple Knapsack Problem are NP-hard.
Determining the optimal assignment decisions given a homogeneous fleet of cars on
the one hand and a set of reservations on the other can be reduced to the Multiple
Knapsack Problem and hence is also NP-hard. We avoid the complexity associated
with determining the optimal schedule at each time step t ∈T by introducing an of-
fline heuristic which we name GREEDYOFFLINE (Alg. 7).13 It takes as input a schedule

12For instance, half-hourly time blocks used in car-sharing may serve as decision times.
13Only for very small problem sizes can the optimal solution be computed within reasonable time

limits. For medium and large-sized problems we approximate the optimal schedule using a greedy
heuristic and thus trade-off solution quality for a complexity reduction.
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s, the fleet V , and a set of reservations R.
In order to assign reservations to available vehicles, the algorithm iterates over the

sorted list of reservations R in the first step(line 1). To this end, sorting reservations
by their length (in decreasing order) has empirically yielded good results. Initially, the
empty vehicle (also: non-allocation decision) represented by ⊥ is assigned to v∗. In
the next step (line 3), we iterate over all vehicles in the fleet that are within the admis-
sible spatial distance from the reservation’s originally desired station. Thereby, the set
of vehicles is sorted by increasing distance from the originally desired station σr (of
reservation r ). If the vehicle under consideration v isavailable to serve reservation r
given schedule s, v∗ is assigned v and GREEDYOFFLINE breaks the loop begun in line 3;
thereafter, r is added to the schedule of vehicle v∗ (line 8). Otherwise, if the vehicle
under consideration is not available to serve r given schedule s, we iterate through all
potential vehicles in increasing order of their distance to r . If no vehicle is available,
i.e., v∗ =⊥ still holds in the final iteration, r is discarded from the schedule.

Computational complexity for GREEDYOFFLINE is log(|R|)+|R| · (log(|V |)+|V |), in-
cluding sorting of both, reservations and vehicles, and assuming that the subroutine
isavailable requires constant time (e.g., via hash maps). However, complexity is typi-
cally much less since the size of the set of vehicles V can be limited by spatial flexibility
to neighboring stations only. Furthermore, for most reservations, only a small subset
of vehicles need to be iterated over before an available vehicle is found. In total, com-
plexity is defined by the product of reservations and fleet size, i.e., O (|R||V |).

Algorithm 7: GREEDYOFFLINE

Input: s,V ,R
Output: A schedule s

1 for r ∈ sorted({R}) do
2 v∗ =⊥
3 for v ∈ sorted({v ∈ V | d(σv ,σr ) ≤ w̄}) do
4 if i savai l abl e(s,r , v) then
5 v∗ ← v
6 break
7 if v∗ 6= ⊥ then
8 s(v∗) ← s(v∗)∪ r
9 return s

Greedy The GREEDY algorithm is given in Algorithm 8, and relies on GREEDYOFFLINE

to quickly compute schedules based on look-ahead information (Dunke, 2014) avail-
able at the time of invocation.

GREEDY is invoked at every decision time step and takes as inputs the current
schedule s, the fleet of vehicles V , reservations currently being active Rt , i.e., the set of
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Algorithm 8: GREEDY

Input: s,V ,Rt ,Rt+

Output: A schedule s
1 for r ∈ sorted({Rt }) do
2 Reset f (v) = 0 ∀v ∈ V

3 s′ ← s
4 s′ ← GREEDYOFFLINE(s′,V , {Rt }∪ {Rt+} \ {r })
5 f (⊥) ←Ω(s′)+π
6 for v ∈ {v ∈ V | d(σv ,σr ) ≤ w̄} do
7 s′ ← s
8 s′(v) ← s′(v)∪ {r }
9 s′ ← GREEDYOFFLINE(s′,V , {Rt }∪ {Rt+} \ {r })

10 f (v) ←Ω(s′)
11 v∗ = argminv f (v)
12 if v∗ 6= ⊥ then
13 s(v∗) ← s(v∗)∪ {r }
14 return s

reservations that require assignment decisions during the current invocation, as well
as future reservations that have already been entered into the system Rt+ and will
only be served in upcoming periods (look-ahead). The algorithm returns a schedule s
after each invocation.

First, we iterate over the set of reservations requiring assignment decisions in the
current invocation of GREEDY (r ∈ Rt ), sorted in decreasing order of the duration of
the reserved period (line 1). GREEDY caches solution quality of competing assign-
ment decisions internally via an appropriate data structure f . We reset the dictionary
f (line 2), and assign the current schedule s to a temporary schedule s′. Next (line 4),
the temporary schedule based on all available information except for the reservation
currently under consideration r , is computed. The quality of the corresponding solu-
tion, the sum of consumer walkways as derived byΩ(s′) and a penalty π for the poten-
tial failure to allocate a reservation to a vehicle, is stored in f (⊥), where ⊥ represents
the no-allocation (alternatively: empty vehicle) case.

The same procedure, but including r , is repeated from line 6 on. Note that sorting
the set of vehicles at this point with respect to distance can be omitted, as we need
to evaluate all admissible reservation-vehicle decisions and thus sorting will not yield
performance improvements. The difference in each iteration of the for-loop concerns
the assignment decision of r and v , i.e., we begin the construction of a temporary
schedule s′ via the inclusion of r , assigned to a different vehicle in each iteration (line
8).
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Solution quality is measured in aggregate walkways, i.e.,

Ω(s′) = ∑
v∈V

∑
r∈s′(v)

d(σv ,σr )

and the algorithm greedily selects the vehicle v∗ with the highest solution quality
(line 11) for the assignment decision in line 13.

Hence, if the assignment of a reservation to a vehicle causes excessive walkways
(in future assignment decisions), it may be advantageous to discard that particular
reservation and instead include other reservations. Furthermore, in order to avoid the
pathological case in which maximal solution quality would be achieved by not allocat-
ing any reservation at all, we penalize discarding a reservation by a certain amount of
artificial walkways (line 11) expressed via π. 14

Clearly, overall complexity of GREEDY (including GREEDYOFFLINE) is higher than
for both, FCFS and the LUSF heuristic. In more detail, GREEDY calls GREEDYOFFLINE

|Rt | · (|V |+1) times, accordingly, overall complexity amounts to O
(|R′|2 · |V |2), where

R′ includes currently active and future reservation, i.e., R′ = {Rt }∪ {Rt+}.15

7.3.4 Results

Compared to the offline setting, we adapt the evaluation context as follows in the on-
line setting. Instead of minimizing fleet size while serving all reservations as we did
before, we now consider the problem of maximizing the number of served reserva-
tions given a particular, fixed fleet. This fleet is the result of the offline optimiza-
tion problem (sec. 7.2.3) leveraging spatial flexibility. The fleet under consideration
is held constant, and was reduced by approximately 14% relative to the no-flexibility
setting.16 We chose this particular summer week as it required a rather extensive fleet
to serve demand. Hence, due to the relatively large fleet size, satisfactory performance
in the online setting could be expected.

We argue that retaining the same fleet for all evaluations both fosters comparabil-
ity and interpretability of results. Furthermore, it nicely fits with the situation a car-
sharing provider faces: The reservation stream changes over time, while the fleet is
fixed for an extended period of time. In the following, we describe the results in more
detail. Fig. 7.6 illustrates both, average weekly walkways and QoS, including the cor-
responding standard errors, on the ordinate and spatial consumer flexibility on the
abscissa, differentiated by (left to right) algorithm in use. Note that all subsequent

14We setπ= w̄ , indicating that the scheduler should prefer discarding reservations that cause excessive
consumer walkways.

15Again, actual complexity is much lower, as the admissible set of vehicles is usually only a fraction of
the whole fleet.

16 In more detail, this fleet is based on data of the reservation stream of calendar week 33/2012 assum-
ing spatial flexibility of ω̄= 1.5 for all reservations. Selecting reservation data of a different week as
input to the optimization, we expect quantitatively different, but qualitatively similar results.
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Figure 7.6: QoS and walkways differentiated by algorithm and consumer flexibility.

results were achieved under one single fleet configuration. This fleet was derived by
assuming consumer flexibility to be 1.5km for all reservations in a given week. Ac-
cordingly, the size of this optimized fleet is, relative to the actual fleet in use, reduced.
Clearly, walkways are zero if consumers exhibit zero flexibility for all algorithms while
the associated QoS is low (approximately only 70%).

Our general observations are as follows: First, and following intuition, attainable
service levels are increasing in the share of flexible consumers. Second, FCFS and
LUSF exhibit similar performance regarding QoS overall. Depending on the share of
flexible reservations, LUSF and FCFS achieve up to 98% of served reservations. How-
ever, this positive result is achieved at the cost of significant consumer inconvenience
in the form of relatively extensive walkways. LUSF, for example, on average requires
walkways close to 0.8km per served reservation in order to achieve the described
high QoS. The last-introduced GREEDY algorithm, in contrast, succeeds in serving
all reservations under the assumption of high spatial flexibility and the assumption of
all reservations to be flexible (compared to only a fraction being flexible). It also shows
superior performance with respect to QoS and consumer inconvenience at lower lev-
els of flexibility. More specifically, GREEDY serves virtually all reservations at average
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Figure 7.7: Empirical computational complexity

normalized walkways at values slightly in excess of 100m. Hence, GREEDY, leveraging
available information, makes better decisions and delivers superior economic perfor-
mance. The downside to such performance lies in the reliance on all available in-
formation and the associated cost of additional computation. Our observations re-
garding the algorithms’ runtime confirm the theoretical complexity analysis. Fig. 7.7
presents average empirical computation time (and the associated standard errors)
for computing the assignments for one week of reservations. As we do not vary the
look-ahead length, spatial flexibility translates into larger available fleets for the cor-
responding reservation. Computational effort, as presented at the end of Section 7.3.3
grows supralinearly in fleets size. This is confirmed in Fig. 7.7. Interestingly, GREEDY

requires longer run-times than its benchmarks even if spatial flexibility is absent. This
effect can be attributed to GREEDY leveraging pooling flexibility present on the level of
individual stations (cf. leftmost panel of Fig. 7.8), outperforming both FCFS and LUSF,
which return decisions near-instantaneously. GREEDY requires, on current hardware,
up to one second to return the assignment decision for a single reservation. Runtime
of the GREEDY algorithm increases in consumer flexibility and the number of reser-
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Figure 7.8: QoS differentiated by the share of flexible reservations and their spatial flexibility.
Service quality is increasing in flexibility. Greedy assignment leverages all available informa-
tion and thus achieves better QoS. Note that higher QoS does not entail increasing consumer
inconvenience under the GREEDY algorithm (Fig. 7.9).

vations in the system at the time of decision.17 By reducing the set of reservations
that is considered when deciding upon assignments, run time can be reduced at the
expense of economic performance. Altogether, the economic outcomes are encour-
aging: Leveraging advance reservation data in the system via appropriate algorithms
such as GREEDY, may render significant fleet size reductions possible in practice.

Let us now turn towards inter-algorithm performance comparison, as illustrated in
Figures 7.8 and 7.9. Both figures illustrate the range of values for QoS and consumer
walkways, differentiated by share of flexible reservations (abscissa), upper bound of
spatial flexibility (panels) and the algorithm in use (color coded). Overall, FCFS and
LUSF yield comparable QoS. LUSF, by design, clearly yields highest walkways. FCFS,
in contrast, avoids excessive walkways. For instance, the median walkway per served
reservation at spatial flexibility of ω̄ = 1.5 is 0.8 km for LUSF; FCFS requires only

17We deem such response times to be acceptable in the context of web applications. However, should
the need arise, there is certainly still room for optimization.
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Figure 7.9: Walkways at different levels of spatial flexibility and share of flexible reservations.
GREEDY achieves lower walkways per served reservation than its naïve competitors.

0.23 km, a difference of more than 200%. GREEDY beats both its competitors, LUSF
and FCFS. Average walkways are only 0.1km for the corresponding parameter combi-
nation, an impressive 8-fold decrease over LUSF. This result is of high importance, as
consumer convenience is a critical factor upon which the success and acceptance of
algorithmically modified reservation-vehicle assignment decisions hinges critically.

In general, our results indicate that reducing fleet size comes at reasonable costs in
terms of QoS and consumer inconvenience. We thus conclude that customer flexi-
bility can be leveraged not only theoretically under perfect information (offline), but
also in the practically relevant online case with access only to imperfect information.

Accompanying higher utilization and smaller fleet size, Fig. 7.10 illustrates the
change in vehicle utilization over flexibility, with the algorithms color coded. Again,
panels indicate reservations’ spacial flexibility while the share of flexible reservations
is given on the abscissa. Adding spatial flexibility increases the number of served
reservations; as the number of vehicles is fixed, fleet utilization increases in parallel.
In line with the results on served reservations, GREEDY yields highest fleet utilization.
This result is especially pronounced for low levels of spatial flexibility. In these situa-
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Figure 7.10: Served reservations per vehicle and week over share of flexible reservations dif-
ferentiated by maximum spatial flexibility per reservation (panels). Flexibility increases fleet
utilization. Similar to previous results, GREEDY can leverage flexibility better than its competi-
tors.

tions, careful evaluation of assignment decisions is especially worthwhile.

7.4 Discussion

Our results on fleet size reduction by means of consumer flexibility are based on an
offline optimization problem (Section 7.2.3), which assumes perfect knowledge of all
reservations. In the more realistic online setting not all reservations can be served
due to the reduced fleet, and lack of information about the future. Nevertheless, Sec-
tion 7.3.4 documents the realistic potential in the online case. Here, it is interesting
to see that the economic potential of customer flexibility can be leveraged effectively
by intelligently assigning reservations to vehicles. On the one hand, this allows to sig-
nificantly reduce fleet sizes in the first place. On the other hand, our results illustrate
that service quality to consumers is not degraded tangibly under reduced fleets, po-
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tentially fostering user acceptance of the proposed fleet adaptations.
The online optimization models presented so far rely on different information sets.

FCFS and LUSF only require information on reservations that must be served at the re-
spective point in time. GREEDY, in contrast, requires information on reservations that
have been entered into the system, but have not been decided upon, yet. Fortunately,
in the car-sharing domain, consumers make their intended actions known to the sys-
tem before-hand. Advanced reservation provides a valuable information source that
can immediately be used to the advantage of the fleet operator. Thus, relying on avail-
able information only a la GREEDY seems not to be affecting performance in a pro-
nounced way. A challenge that we have left for future research concerns the inclusion
of uncertain information regarding future reservations. The main challenge, identi-
fied in extensive testing, is to either develop accurate models of future reservations
that include complex spatio-temporal relationships or, simply rely on past reserva-
tions for predicting the future (known as “back casting”). The issue of appropriately
blending both, scenarios of uncertain future (virtual) reservations and deterministic
reservations that have already arrived in the system, poses a special challenge in this
context. In particular, the corresponding algorithm must be designed such that the
inclusion of uncertain future (i.e., virtual) reservations in the decision making process
improves outcomes. In particular, special emphasis should be placed on avoiding the
preemption of actual reservations.

Adaptation of Optimal Fleets As mentioned before, our results should be taken with
caution: The reservation information on which the reference fleet is optimized in the
offline case is a snapshot of demand for a very limited period of time. Depending on
which period to optimize the fleet structure for, i.e., a period of low/high demand, re-
sults on QoS and walkways might differ. Nevertheless, the car-sharing provider has
the opportunity to adapt fleet size and stationing decisions over time, controlling the
adverse effect of demand variation on system performance. By doing so, he can make
granular decisions regarding the trade-off between fleet utilization and the inconve-
nience faced by consumers. In other words, leeway on the strategic and tactical de-
cision level provides the car-sharing operator with the opportunity to continuously
balance short term (e.g., profit) and long term (growth and market share) goals.

Parking Spaces and Capital Expenditures Finally, by leveraging consumer flexibil-
ity intelligently, better service and vehicle availability can be provided to consumers.
The implications might be far reaching: Increased fleet utilization effectively allows
to circumvent the historically most significant bottleneck to operations – the lack of
parking spaces. Accordingly, smarter assignment decisions and higher fleet utiliza-
tion provide a means to instantaneous growth without major capital expenditures for
operators. This reason alone might serve as a powerful incentive to re-think current
practices.
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Flexibility regarding Vehicle Class In the work so far, we have deliberately ignored
one additional lever for car-sharing operations optimization, i.e., customer flexibility
with respect to vehicle class. For fleet operators offering only one class of vehicle, this
restriction is clearly not of interest. However, in typical station-based car-sharing set-
tings, multiple vehicle classes are offered. On the one hand side, vehicle-class flex-
ibility could provide another means to achieve more efficient vehicle assignments
(reducing fixed costs due to reduced fleet size at the expense of increased variable
costs). This is especially attractive from an operation’s point of view if vehicle usage
was complementary during the course of the week, i.e., high utilization of larger ve-
hicles throughout the week, i.e., for business purposes such as corporate travel, and
high utilization of smaller vehicles on the weekend, i.e., for shopping purposes, or
vice versa. On the other hand, leveraging inter-class vehicle flexibility might intro-
duce more pronounced incentive issues if self-interested customers are assumed.18

Without appropriate allocation and payment rules, customers might try to gamble the
system by strategically misreporting their true preferences, i.e., reserving a “small” ve-
hicle when in fact a “large” vehicle is what the customer is speculating on. The cost
of fuel is included in the reservation price. Hence, upgrading reservations to higher
vehicle classes is, from the perspective of the operator (relative to classical car-rental)
costly.

Nevertheless, through appropriately designed incentives, flexibility regarding vehi-
cle class can provide an additional lever to improve the economics of car-sharing. In
any case, the design of economic mechanisms (not only in car-sharing) with the goal
of improving upon existing, possibly simpler, mechanisms, must anticipate strategic
consumer behavior and either limit or deal with it in such a manner that reporting
one’s true preferences becomes a dominant strategy (Parkes, 2007).

Retrospective Data The work at hand is limited in a sense that it relies on reserva-
tions that have actually taken place only (based on retrospective data), but does not
take into account intended reservations that were never carried out (e.g., due to a lack
of available vehicles). The observability of "out-of-stock" situations (Verbeke et al.,
1998) as well as consumer-reaction to it is a common problem in retailing and OM,
hence, we do not focus on challenges associated with it. However, we suspect that
in the context of car-sharing and web-based user interfaces, data on consumer inter-
action with the reservation interface could yield valuable insights in how consumers
cope with lack of vehicle availability, e.g., postponing their reservation to a later time,
switching vehicle classes, or switching to nearby stations where the originally desired
instance of mobility can be provisioned successfully. The resulting insights could as-
sist in making efficient fleet expansion decisions on the strategic decision level as well.

18With car-sharing becoming main-stream, incentive-compatibility of allocation mechanisms based
on private information should receive additional attention, as the average customer may increas-
ingly be self-interested, and less attached to the original goal of sustainable transportation.
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Beyond out-of-stock situations, we also do not deal with the influence of differing lead
time on consumer decisions and the operational flexibility arising from different lev-
els of lead time (Hua et al., 2010).

Imprecise Data Furthermore, one drawback of the data used in this study concerns
the lack of actual consumer location (home, work, etc.), or desired pickup location
data, respectively. Instead, in all of our analyses, we rely on the location of the station
at which the customer chose to reserve a vehicle (revealed preferences). As a con-
sequence of this imprecise data, larger (or smaller) amounts of consumer flexibility
might be necessary to achieve the described economic outcomes. While we suspect
these deviations not to be material, our results should nevertheless be treated with
caution.

7.5 Extensions and Managerial Implications

Building upon our results in an established car-sharing environment characterized by
a dense station network, we claim that (mostly spatial) consumer flexibility should be
incentivized and utilized in order to achieve more efficient reservation-vehicle assign-
ments. Our results serve as a first step towards broader adoption of car-sharing.

We formulate three recommendations to the car-sharing operator to partly utilize
the described potential:

Adaptation of the Reservation Interface One avenue for improvement might be as
simple as adapting the reservation interface. Instead of letting the consumer make
assignment decisions, the least detrimental (with respect to system performance) as-
signment given the current state of the system (including advance reservations) could
be recommended. If the consumer is not content with the recommendation, she
can always choose to deviate from the recommendation and choose a more conve-
nient, i.e., situated in closer proximity, vehicle. Thus we are not proposing to force the
system-optimal choices on the customer, but give her a (slightly) biased initial choice
upon which she can improve at the expense of system efficiency.

Implementation of a Reservation-Vehicle Assignment (Software) Layer Condi-
tional on the introduction of an additional software layer, customers no longer make
decisions only by themselves, but rather submit abstract reservation requests (time
frame, vehicle class, preferred station, e.g., “small vehicle in the city center”) that are
efficiently assigned to the vehicle fleet by an online planner. Following the idea of
“opaque” selling, the downside of such an additional software layer is that the cus-
tomer loses control over the details of the specific assignment. Thus this variant could
be more invasive than the adaption of the reservation interface. Hence, this approach
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requires a careful design in order not to harm customer acceptance of car-sharing in
general.

Introduction of an Augmented Payment Structure A third, and more involved way
of leveraging customer flexibility in car-sharing could be to base payments on the
amount of flexibility the consumer offers. The payments could be designed to ac-
count for flexibility either in a static way or in a dynamic way. In the former, monthly
member fees could be adapted with respect to the customer class the customer
self-selected. Flexible consumers could for example be rewarded through reduced
monthly membership fees. In the latter case the change in payment due to flexibility
could be based on time of day (similar to time-of-use rates in modern electric power
systems), or, more advanced, on real-time demand for vehicles in immediate and
neighboring areas. Potentially, the payment of a consumer could be determined by
the externalities she is causing to the system, i.e., in terms of crowded-out/postponed
competing reservations. Here, special attention must be payed to ensure that con-
sumers are not encouraged to gamble the system, as this might lead to reduced system
efficiency through low utilization and reliability.

7.6 Conclusion and Outlook

Based on our results we conclude that moderate levels of spatial consumer flexibility
in car-sharing are sufficient to significantly reduce fleet size (e.g., between 10%−25%
at spatial flexibility of w̄ = 1.5km). High QoS can be achieved even in the online case
(> 95%) at massively reduced fleet sizes, while retaining reasonable average consumer
walkways (≤ 0.2km). Here, the choice of algorithm attains high importance, as it is
the deciding factor to achieve both, high QoS and low walkways. Temporal flexibil-
ity, on the other hand, is virtually useless in order to foster higher fleet utilization in
car-sharing. Furthermore, we posit that periodic re-adjustments of fleet size might
attain an economically more favorable balance of supply and demand under varying
seasonal demand patterns (Ehrenthal et al., 2014).

We are of the opinion that the most interesting question for future research, in dif-
ferent directions and research communities in the domain of (traditional) car-sharing,
are as follows:

• The question of user-interface adaption and associated user acceptance alone
poses a wide array of interesting research questions. Most notably, leveraging
consumer flexibility will not come at zero cost. Therefore, it will be interesting
to explore consumers’ willingness to provide flexibility and the associated reim-
bursement required.

• A further extension concerns the impact of varying lead times on solution qual-
ity. The rational here is as follows: The later a user must be informed about
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the eventual vehicle assignment decision of her reservation, the larger the so-
lution space that can be used by the car-sharing operator. The gain from noti-
fying users at a later time must be carefully weighted against acceptance issues
that might arise from such late-notification schemes. One possible variation
could involve immediate notification of the vehicle after entering the reserva-
tion intention into the system. However, this initial decision could be altered to
account for unexpected reservations entering the system at a later time. By re-
optimizing the schedule via re-assignments of reservations to vehicles, econom-
ically preferable outcomes can be achieved. Clearly, to avoid nervous schedules,
parameters involving the number and associated penalty of re-optimization
must be set carefully.

• The questions how to exactly design incentives requires careful design and
evaluation. The allocation mechanism could (and in our opinion should) be
adapted in order to achieve incentive compatibility, i.e., for users it should be
the best strategy to reveal their (potentially complex) private information with
respect to flexibility and valuation. To enable such a mechanism, the objective
would have to be modified to, for example, include social welfare or provider
profit, departing from treating reservations uniformly. The modified mecha-
nism would require users to reveal information regarding their willingness to
pay for service at a specific location, time and vehicle class, and thus introduce
additional complexity. Again, any such change should be carefully designed and
tested, before considering a broad roll-out.

The vision of self-driving cars (Thrun et al., 2006; Thrun, 2010) might lead to
fundamental repercussions with car-ownership as well as operations of car-sharing
providers. The introduction of self-driving cars, might further enhance the car-
sharing experience for consumers and reduce the importance of consumers’ spa-
tial flexibility regarding more efficient operations. However, the central issue of eco-
nomics, i.e., scarcity and the efficient allocation of goods and services, will continue
to pose interesting economic problems. Data-driven decision-making may be of high
value in propelling this idea from a vision state towards an actually sustainable addi-
tion to individual transportation. On this path, classic research questions concerning
the related dial-a-ride problem (Cordeau and Laporte, 2003) and related questions
might receive renewed attention: Where should vehicles be stationed? Which vehicle
to use to serve a specific request? Which routes should be used? What is the optimal
fleet size given a projection of demand? What is the value of being able to relocate
vehicles? Beyond the questions concerning the assignment of single reservations to
vehicles, interest might be sufficiently sparked to also cover questions concerning the
related domain of ride-sharing, i.e., which riders to pick up on what path.

Irrespective of technological advances that might enable self driving cars and other
innovations, the associated economic questions of interest will change but neverthe-
less can be expected to retain importance.





Chapter 8

Leveraging Consumer Flexibility in
Electrified Car-Sharing

Car-sharing operations based on ICE-propelled vehicles constitute a first step towards
more sustainable, urban transportation. Further improvements may be found in (lo-
cally) emission-free fleets of EVs that pose both an ecologically sustainable and eco-
nomically viable complement to existing means of urban passenger transportation.

In this chapter we focus on the role EVs may assume in car-sharing fleets. In more
detail, we examine the trilemma that a designer of electrified car-sharing systems
faces: It involves trading-off required consumer flexibility, QoS and operating costs.
To this end, we employ a subset of the empirical dataset introduced in Chapter 6 and
examine the economics of electrified car-sharing in the presence of spatial consumer
flexibility.

This chapter is structured as follows: We first describe the scenario, then we formu-
late the problem as modification of the Multi-Knapsack Problem (MKP) (Nemhauser
and Wolsey, 1988), present evaluation results and discuss them, and provide a brief
outlook into promising future research.

8.1 Problem Formulation

Optimizing car-sharing fleets comprised entirely of conventionally propelled vehicles,
we aimed, in the previous chapter, to minimize fleet size, which poses a good proxy for
minimizing total cost.1 To this end, we adapted the bin-packing problem and, hence,
minimized the number of bins (vehicles) to serve all reservation requests.

In the wake of EVs, however, modifications to the problem formulation become
necessary, as not all (sequences of) reservations are compatible with the constraints
imposed by EV technology (time required for re-charging, sufficient SoC to complete
trips). On the one hand, the introduction of EVs can facilitate more competitive fleet
operations through reduced operational expenses. On the other hand, the operator

1Assuming a single vehicle technology and the constraint that any reservation must be served, finding
a cost-minimal fleet is equivalent to minimizing fleet size.
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Figure 8.1: Decision trilemma in electrified car-sharing

may find itself with a less potent fleet, no longer able to fully serve peak demand, and
hence, be forced to discard some reservations. The arising decision trilemma of a car-
sharing fleet operator, involving cost, QoS, and walkways, is depicted in Fig. 8.1.

If consumers are flexible, fleet operators may be able to achieve both, improved
utilization, which entails lower cost, through appropriate flexibility dispatch, and high
QoS. In this vein, EVs may pose an interesting complement to fleets in shared mobility
settings. Accordingly, we aim to answer the following question in this chapter:

Research Question 11: To what extent does spatial consumer flexibility enable eco-
nomically efficient electrification of car-sharing fleets?

In order to determine the cost-minimal fleet serving all reservations in the reser-
vation stream, consisting of both, conventional and electric vehicles, a computation-
ally involved GAP (Cattrysse and Van Wassenhove, 1992; Roth and Sotomayor, 1992)
would have to be solved. The solution comprises decisions on

• the number of vehicles in use,

• the type of each vehicle in use (conventional or electric),

• the stationing of each vehicle,

• the assignment of reservations to vehicles, as well as

• when to charge each EV.

The problem of finding the optimal solution to a GAP is NP-complete (Nemhauser
and Wolsey, 1988). Solving the problem to optimality, irrespective of recent advances
in MIP, is impractical for realistically sized instances, especially under higher levels of
spatial flexibility. Therefore, we refrain from describing this model in detail and turn
to a different formulation in which we aim to separate the problem into its strategic,
tactical, and operative layers, and apply heuristics on the top two layers to reduce
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computational complexity. The three layers we will refer to in the following are as
follows:

1. Strategic – the number and types of vehicles in use,

2. Tactical – the vehicle-station assignment decision, and

3. Operational – the reservation-vehicle assignment decisions as well as the charg-
ing decisions.

By means of this separation, we trade-off optimality for reduced complexity. while still
retaining meaningful, and valuable results for realistically sized problem instances.

8.2 Reservation Assignment as a Multi-Knapsack
Problem

If strategic and tactical fleet composition decisions are taken care of beforehand, the
remaining reservation-vehicle assignment problem clearly constitutes a problem of
reduced complexity. Each vehicle can then be interpreted as a knapsack and the plan-
ner seeks to maximize the number of reservations placed into multiple knapsacks by
appropriate assignment decisions. Accordingly, we model the assignment of reser-
vations to vehicles as a MKP. Optimizing the corresponding performance criterion,
the optimal solution yields information on reservations-vehicle assignment decisions
leveraging spatial consumer flexibility. Usually, the problem is formulated with the
objective of profit maximization. However, the profit is not easily defined in our set-
ting; we, hence, require a different measure for meaningful optimization, and opt
for a multi-objective criterion including three, in our opinion highly relevant, crite-
ria (Fig. 8.1) of QoS (Q), consumer walkways (W ) and cost (C ).

8.2.1 Fleet Determination

In order to compute reservation-vehicle assignments in the MKP, fleet configurations
need to be established first. Vehicles constitute the essential constraints of the prob-
lem, serving as knapsacks in the MKP. Before solving the problem, we derive plausi-
ble fleet sizes and configurations, starting with the minimally required fleet under the
assumption of zero spatial customer flexibility. Thereafter, we reduce fleet size and
increase EVs’ share (Fig. 8.2).

Initial Fleet First, we determine the minimally sized fleet consisting of conventional
vehicles only. This fleet is able to serve all reservations in the absence of consumer
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Figure 8.2: Determination of mixed fleets on the strategic decision level.

flexibility. Fleet information comprises number and stationing of vehicles. In our sub-
sequent economic evaluations, we examine the implications of substituting conven-
tional vehicles with EVs. This initial fleet serves as the starting point to the derivation
of the following fleets.

Substituting Conventional by Electric Vehicles In a first modification step, parts of
the existing fleet need to be converted into EVs (Fig. 8.2). To this end, the question
arises, which particular vehicles to “convert” to EVs. Interestingly, the requirement
to convert an integer number of vehicles from conventional to electric, yields a prob-
lem similar to the problem of assigning parliamentary seats to parties. Therefore, we
leverage the Sainte-Laguë Algorithm (Alg. 9) to convert the desired share of vehicles
from the initial fleet into electric vehicles.

The total number of EVs (Ξ) can be interpreted as the number of seats in the parlia-
ment; stations then are the equivalent of parties (P ), while EVs at a particular station
are the members of the corresponding fraction. Votes per party (Θ) coincide with the
number of vehicles originally stationed at the corresponding station. Hence, all fleet
adaptation decisions are based on original fleet and station size.

Our choice of the Sainte-Laguë algorithm stems from its property of “proportional-
ity” (Lijphart, 2003), i.e., the number of seats assigned to a party is considered closer
to proportionality than under different regimes, such as d’Hondt.2

Fleet Size Reduction and EV Substitution As illustrated in Fig. 8.2, besides pure sub-
stitution of conventional vehicles by EVs, we are interested in the (joint) effect of fleet
size reduction and EV substitution. Both, reduction and substitution are performed
according to Alg. 9. Thereby, fleet size is reduced in a first step. In a second run of
the algorithm, the number of EVs at each station is determined. Thereby, the com-

2The algorithm has received growing attention in worldwide parliamentary elections, including Ger-
man federal elections. For instance, it is used to determine the number of fractions’ seats in the
lower house of the German federal parliament.
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Algorithm 9: SAINTE-LAGUË; Computes seats per party θp ,∀p ∈ P from votes per
party Θ and total number of available seats in the parliament Ξ. Used to assign
parliamentary seats to parties in municipal, state, and federal elections.

Input: P ,Θ, Ξ
Output: θ

1 θp ← 0 ∀p ∈ P
2 while

∑
p∈P θ(p) <Ξ do

3 for p ∈ P do
4 qp =Θp /(2θp +1)
5 p∗ = argmaxp q
6 θp∗ = θp∗ +1
7 return θ

puted, intermediate number of vehicles per station serves as input to EV stationing
decisions.

8.2.2 Decision Variables

The optimization program decides on the assignment of reservations r ∈R to vehicles
v ∈ V . To this end, we again make use of the formulation established in Section 7.2.3
regarding the decision variable xr ,v . For each problem instance, the number, tech-
nology and stationing of vehicles of the fleet is determined exogenously. For the sake
of more accessible modeling, we partition the set of vehicles V into disjoint sets of
electric and conventional vehicles, i.e., V = Ve ∪ Vc , where Ve ∩ Vc = ;. Inspired by
the problem formulation in (Schuller et al., 2014; Flath et al., 2013) we partition time
into T discrete periods of equal length. Beyond assignment decisions, further charg-
ing decisions are formally expressed via the continuous decision variable φv ,t ∈ [0,1].
Note that we express charging in terms (of fractions) of battery capacity C . However,
vehicle charging is restricted to times when the vehicle is at its station, modeled via the
binary variable κ ∈ {0,1}. Furthermore, the battery is discharged during driving, which
we model via the continuous decision variable γ ∈ [0,1], again in terms of capacity C .

8.2.3 Objective

Assigning a well-defined profit measure to individual reservations is not a straightfor-
ward task. On the one hand, consumers value vehicle availability. On the other hand,
excessive fleet provisioning incurs high costs, contrary to the operator’s interest. Pure
cost minimization, however, leads to low service quality and might in the long term
deter consumers from using the service at all.

There are, however, several possible ways to formulate the objective function in
the multi-objective case (Marler and Arora, 2004). One possibility for removing di-
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mensionality lies in normalizing the objective functions. If the planner’s preferences
are known, multi-objective optimization problems can be converted into ordinary,
single-objective optimization problems, involving, for instance, weighted sums.

In order to circumvent additional complexity, we apply the classic weighted sum
method (Marler and Arora, 2004). The individual criteria are

• QoS (share of reservations served), expressed via Q,

• cost to the operator (monetary), formally C , and

• cost to the consumer (in terms of walkways), formally W .

As we would like to explore the trade-off between provider cost, consumer inconve-
nience and QoS (see also Sec. 8.2), this approach arguably constitutes a reasonable
choice. We believe that reasonable assumptions regarding the relative weights of cri-
teria yields tractable, valuable insights into the economics of electrified car-sharing.
Hence, the objective function can be formulated as

max
x,φ,κ,γ

Γ=α ·Q−βW −C (8.1)

where α ∈ R and β ∈ R are the corresponding exogenously defined weights regarding
QoS and walkways.

8.2.4 Constraints

In order to obtain valid solutions, the decision variables must be constrained appro-
priately.

Reservation-Vehicle Assignment Assignment decisions are binary, eq. (7.3). Each
reservation may be assigned to a single vehicle, only, as each reservation is served
only once, or not at all. Note the inequality, which differentiates this constraint from
(7.4). ∑

v∈V

xr ,v ≤ 1 ∀r ∈R (8.2)

Further, a reservation can only be served by vehicles at the desired and adjacent sta-
tions, i.e., stations within the perimeter of spatial flexibility, i.e., d(σr ,σv ) ≤ w̄ , where
the distance between two points is denoted by d . Correspondingly, other reservations
are made impossible via the following constraint.3

xr ,v = 0 ∀(r , v) ∈ {(R,V )|d(σr ,σv ) > w̄} (8.3)

3For efficient implementation, it may be advisable not to create the corresponding variables in the
first place. We choose this presentation for ease exposition.
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Section 7.2.3 includes an alternative formulation for valid assignment decisions lever-
aging the idea of sets of competing reservations (Rcomp ).

Scheduling In order to achieve valid schedules, only a single reservation may be
served by a vehicle at any time. This constraint is formalized in inequality (7.18).

Electric Vehicle Charging If EVs are present in the fleet under consideration, i.e.,
{Ve 6= ;}, recharging between reservations is required. A vehicle can only be charged
during times of inactivity, i.e., when it is not in use. Due to vehicles being shared,
trips (reservations) are not tied to specific vehicles. Therefore, the assignment of any
reservation r to vehicle v during time t renders the vehicle non-chargeable (κr ,v = 0).
For modeling purposes, let B be a matrix of dimensions |R| × |T |. An element br ,t

of this matrix assumes value one, if reservation r is active during time t , and zero
otherwise. Accordingly,

κv ,t =
∑

r∈R

1− (br ,t · xr ,v ) ∀v ∈ Ve ,∀t ∈ {1, ..,T } (8.4)

This vehicle-availability condition constrains possible charging patterns. Further-
more, the maximum possible charge-rate cmax as well as SoC from the previous period
constrain EV charging and require adequate modeling.

φv ,t ≤ cmax ·κv ,t ∀v ∈ Ve ,∀t ∈ {1, ..,T } (8.5)

φv ,t ≤ (1−SOCv ,t−1) ·κv ,t ∀v ∈ Ve ,∀t ∈ {2, ..,T } (8.6)

Discharging of electric vehicles’ batteries takes place only during driving.4 Given the
set of reservations R and the characteristics of a specific vehicle technology (e.g., Ta-
ble 8.1) the (average) amount of energy required for driving purposes in each period
R, in terms of battery capacity C , can be computed in a straightforward manner. Dis-
tance of reservation r is encoded in dr . Electric vehicles’ fuel efficiency in kW h

km is
denoted via ηe .

Rr ,t =
1

C
· br ,t∑

t Br ,t
·dr ·ηe (8.7)

Equation 8.8 constrains the amount of energy discharged from vehicle v in period t to
a value no less than the amount of energy required for reservation r , iff r is assigned
to v (hence the product constraint). Discharge of vehicle v at time t is denoted γv ,t .

γv ,t =
∑

r∈R

Rr ,t · xr ,v ∀v ∈ Ve ,∀t ∈ {1, ..,T } (8.8)

4We do not explicitly allow for feeding energy from a vehicle back into the power grid. However, under
time-varying electricity prices, this may pose an interesting extension.



158 Leveraging Consumer Flexibility in Electrified Car-Sharing

To achieve continuity over time regarding SoC, we introduce the following constraint.

SOCt = SOCt−1 +φt −γt ∀t ∈ {2, ..,T } (8.9)

Furthermore, SoC must be constrained to technically valid values.

0 ≤ SOCt ≤ 1 ∀t ∈ {1, ..,T } (8.10)

For easier comparability, we require a fully charged battery at the initial and final pe-
riod under consideration.5

SOCv ,1 = 1 ∀v ∈ V (8.11)

SOCv ,T = 1 ∀v ∈ V (8.12)

Walkways,QoS, and Cost Flexible consumers may be required to walk for a certain
distance to the assigned vehicle. This walkway is equals the distance between the
initially chosen station and the allocated station and is modelled as follows.

wr =
∑

v∈V

d(σr ,σv ) · xr ,v ∀r ∈R (8.13)

Aggregate walkways are the sum of walkways over all reservations.

W = ∑
r∈R

wr (8.14)

The achieved QoS is modelled via the share of served reservation.

Q = 1

|R|
∑

r∈R

∑
v∈V

xr ,v (8.15)

Total cost of service provision by the operator is jointly determined by fixed and
variable costs. Fixed costs are mainly due to the depreciation of the investment
charged to the period under consideration (H ). To this end, Pe and Pc denote the
price of a new electric or conventional vehicle, respectively. Variable costs arise from
operation of the vehicle and are directly related to assignment decisions. The price of
gasoline (per litre) is denoted pg , that of electricity pe . Fuel efficiency of conventional
vehicles is represented via ηg .

5Note that this may lead to artifacts in charging patters towards the end of the period under consider-
ation. However, as this is not the main focus of this study, we accept this shortcoming.
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C = ∑
t∈{1,..,T }

∑
r∈R

∑
v∈Ve

(xr ,v ·Rr ,t ·pe )

+ ∑
r∈R

∑
v∈Vc

(xr ,v ·dr ·ηg ·pg )

+ 1

H
· (| {Ve } | ·Pe +| {Vc } | ·Pc )

(8.16)

8.3 Evaluation

This section first presents and provides the rationale for the chosen input parameters.
Thereafter, optimization results are presented and discussed.

8.3.1 Input Parameters

Input to the optimization are the technical characteristics of the Nissan Leaf Visia, a
compact-class EV available on the market for purchase (Table 8.1). We assume a de-
preciation period of six years for both, conventional and electric vehicle. Range is a
limiting factor only for the electric vehicle, hence the missing value for the conven-
tional model. In order to compensate for overly optimistic fuel efficiency by manu-
facturers, we deviate from the official technical data on fuel efficiency and assume
6.8 l/100km, instead of the manufacturing data listed in Tab. 8.1, roughly a 40% in-
crease. On the other hand, we assume fast-charging to be possible; at cmax = 1, the
vehicle’s battery is fully recharged within one hour. The price of gasoline is assumed
to be 1.55 EUR/l, the price of electricity is set to 0.22 EUR/kWh.

Furthermore, we set the weight assigned to QoS in the objective function (8.16) to
be α = 200 per reservation, while one km of walkways is weighted at β = 10. We as-
sume all consumers to exhibit homogeneous spatial flexibility.6 Furthermore, to avoid
excessive solving times, we set the MIP-gap to one percent.

The reservation stream, as well as the station locations, are taken from one week in
May 20127 from city center stations. Reservations’ distance and duration heterogene-
ity is illustrated in Fig. 8.3.

Fig. 8.3(a) presents a standard empirical Cumulative Distribution Function (CDF)
(upper black line) and a distance-weighted CDF (lower blue line). While more than
80% of reservations are used to cover distances smaller than 100 km (Fig. 8.3(a)), half
of total distance driven is due to long-distance reservations, i.e., reservations with dis-
tances exceeding 200 km.

6This is in contrast to the previous section. We do not, however, expect the introduction of heteroge-
neous flexibility to qualitatively alter our results

7The dataset contains all active reservations (including partially active ones) during the time of May 7
and May 14, 2012
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Dimension unit notation Nissan Leaf Visiaa Nissan Note Visiab

Range km 160
Battery capacity kWh C 24
Charging speed kW

kW h cmax 0.125
Specific consumption η 0.125 kWh

km 4.8 l
100km

Price e P 29690 13990
Depreciation horizon a H 6 6

Table 8.1: Vehicle specifications based on (Nissan, 2014). For added realism, we deviate from
the charging speed and fuel consumption data as inputs to the optimization, see the text for
details.

ahttp://www.nissan.de/DE/de/vehicle/electric-vehicles/leaf/
prices-and-equipment/prices-and-specifications.html, last accessed Octo-
ber 2014

bhttp://www.nissan.de/DE/de/vehicle/city-cars/note/
prices-and-equipment/prices-and-specifications.html, last accessed Octo-
ber 2014

Fig. 8.3(b) similarly illustrates reservations’ duration heterogeneity. More than 90%
of reservations are shorter than 12 hours, illustrated by the upper black line.The me-
dian reservation duration of this particular dataset is slightly below 3 h. Long-duration
reservations, i.e., exceeding periods of 8 hours, are responsible for approximately half
of temporal fleet utilization. Fig. 8.3(c) presents both reservation distance and dura-
tion jointly.

Furthermore, we rely on the historically established station network as the underly-
ing spatial structure to the fleet of vehicles. Hypothetical fleets that serve our evalua-
tion needs are determined via the Sainte-Laguë algorithm, introduced in Section 8.2.1.
For example, the number of vehicles in the fleet is varied between 70 and 100% of the
necessary fleet size in the no-flexibility case. Moreover, we examine the impact of dif-
ferent EV penetration levels, ranging between purely conventional fleets on one side
and including up to 30% electric vehicles on the other. For instance, if fleet size is not
reduced, and an EV-level of 30% is assumed, fleet size will be 64 vehicles, including 19
electric vehicles. Further details are documented in Table 8.2.

8.3.2 Optimization Results

We first present results regarding the objective function’s components, i.e., cost C ,
walkways W , and QoS Q. In a second step, implications on fleet utilization and details
of the assignment decisions are revealed.

http://www.nissan.de/DE/de/vehicle/electric-vehicles/leaf/prices-and-equipment/prices-and-specifications.html
http://www.nissan.de/DE/de/vehicle/electric-vehicles/leaf/prices-and-equipment/prices-and-specifications.html
http://www.nissan.de/DE/de/vehicle/city-cars/note/prices-and-equipment/prices-and-specifications.html
http://www.nissan.de/DE/de/vehicle/city-cars/note/prices-and-equipment/prices-and-specifications.html
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Figure 8.3: Distance and duration characteristics of evaluation data

Cost, QoS, and Walkways Our result illustrations are faceted by consumers’ spatial
flexibility w̄ , varying EV penetration levels use of different line types.

Fig. 8.4 illustrates the cost of fleet operations, differentiated into fixed, variable and
total costs. Clearly, variable costs are decreasing in EV penetration level due to rela-
tively low operating cost of EVs. The opposite, however, is true for fixed costs. More-
over, variable costs exhibit a slight decreasing tendency in fleet size F for w̄ ∈ {0.5,1}.
However, as EVs are more expensive to purchase, increasing the associated deprecia-
tion amount, the effect of lower operating cost is overcompensated, yielding increas-
ing total cost in EV penetration level.

Total costs are also increasing in spatial consumer flexibility. While counterintuitive
at first sight, spatial flexibility – given our objective – allows a larger set of reservations
to be served (thus increasing QoS), correspondingly increasing variable costs (but also
payments to the provider). Interestingly, the difference in total cost between a purely
conventional fleet and a fleet featuring approximately 30% EVs does not exceed 10%
under the selected input parameters.

Fig. 8.5 illustrates an evaluation dimension not explicitely included in the objective,
i.e., relative driving distance served. At zero spatial flexibility (w̄ = 0), higher EV pen-
etration translates into lower service quality, i.e., some reservations can no longer be
served. At w̄ = 1, there is virtually no difference between different fleet compositions.
While less than 70% of total distance requested is served under zero flexibility (left
facet) only, this value increases to approximately 95% in the case of w̄ = 1 (right facet).
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Fleet size
relative F 70% 80% 90% 100%

absolute 44 51 57 64

EV-level

0% 0 0 0 0
10% 4 5 5 6
20% 8 10 11 12
30% 13 15 17 19

Table 8.2: Fleet composition, number of electric vehicles

Judging from these results, the influence of spatial consumer flexibility appears more
pronounced than effects that can be traced back to fleet modifications.

Fig. 8.6 depicts QoS over fleet size. Again, we find only little influence of fleet size on
this performance criterion, while spatial flexibility is the decisive lever for achieving
high QoS. For instance, at w̄ = 0, only approximately 85% of reservations are served,
whereas EV penetration slightly reduces performance. At w̄ = 1, service levels in ex-
cess of 98% are consistently achieved. These results indicate that spatial flexibility
is a valuable lever to control customer satisfaction and fleet utilization in the case of
electrified car-sharing.

Fig. 8.7 illustrates walkways per served reservation, i.e., the additional cost incurred
by a flexible consumer. Clearly, at w̄ = 0 walkways must be zero. At w̄ = 0.5, aver-
age walkways per reservation fluctuate around 0.08 km, with EV penetration yielding
slightly higher average walkways, and walkways of 0.16 km at w̄ = 1. Accordingly, only
a small fraction of the assumed flexibility potential is actually employed. Note that
these essentially “flat” curves of walkways over fleet size may in large part be due to the
chosen combination of weights α and β. If the sole objective was cost-minimization,
and walkways were not penalized, larger fleets may foster reduced walkways. In the
current formulation, however, all “profitable” reservations, i.e., reservations that aug-
ment the objective value, are served. The penalty arising from walkways in the objec-
tive does not change the mechanics of the problem, especially if this penalty, weighted
through β, is homogeneous over all reservations.

Assignment Decision Details Fig. 8.8 illustrates the distance covered by technology.
Clearly, the bulk of total distance traveled is assigned to conventional technology

in our solution. Furthermore, the share of distance traveled electrically is increasing
in EV penetration level and customer flexibility. Combining the insights from Fig. 8.8
with the data in Table 8.2, weekly average driving distance of EVs after optimization
ranges between 400 and 550 km, well within the operating range of EVs. For instance,
in the case of w̄ = 1 and no reduction in fleet size (top right facet), around one third of
total distance traveled is served electrically.

Fig. 8.9 pursues a different perspective in that it illustrates the number of served
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Figure 8.4: Fixed, variable, and total cost C over fleet size for different EV penetration levels
and fleet sizes

reservations per vehicle. Under spatial flexibility, EVs serve more reservations per ve-
hicle than their conventional counterparts. In the most extreme case, 14 reservations
per week are served per electric vehicle, while conventional vehicles are only assigned
9 reservations.8

Fig. 8.10 illustrates the total number of reservations assigned to vehicles of either
technology. Naturally, a larger share of EVs enlarges the share of reservations served
electrically. For instance, around 50% of reservations are served electrically under
fleets of the original size, 30% EVs, and w̄ = 1.

8.4 Discussion

Our optimization results indicate that, under quite conservative assumptions regard-
ing the cost of EVs, up to half of reservations could be served electrically, thereby only
marginally increasing costs to the provider. This finding stands in contrast to results
reported in the literature so far, which are more pessimistic about the use of electric
vehicles in car-sharing (cf. Doll et al., 2011). More optimistic results could be obtained,
if the cost of EVs was to further decrease. Nevertheless, we find consumer flexibility

8Case of reduced fleet size F = 0.7, w̄ = 1, and 10% share of EVs.



164 Leveraging Consumer Flexibility in Electrified Car-Sharing

w = 0 w = 0.5 w = 1

0.7

0.8

0.9

0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1.0
Relative fleet size

Q
oS

 [r
el

at
iv

e 
dr

iv
in

g 
di

st
an

ce
]

EV−level 0 0.1 0.2 0.3

Figure 8.5: QoS in terms of distance driven over fleet size, differentiated by EV penetration
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Figure 8.7: Walkways over fleet size, differentiated by EV penetration level and fleet size
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to foster electrification to a surprising extent. Accordingly, car-sharing might provide
a near-ideal starting ground for the widespread adoption of electric mobility: First,
the distribution of driving distances (Fig. 8.3(a)) maps nicely into the technical con-
straints of EVs. Second, it allows consumers to gain first-hand, risk-free experience
with this new technology.

Car-sharing and EVs – Complementary Goods? In summary, we find EVs in car-
sharing fleets not to be competitive currently. Interestingly, range restrictions of the
adolescent EV technology do not pose effective obstacles to EVs adoption in car-
sharing fleets. Rather, high capital expenditures9 render EVs an inferior alternative
to conventional vehicles. Given the weekly vehicle utilization in terms of distance
described in Section 8.3.2, and if we assume aggregate daily distances driven to be
distributed approximately uniform over the week (cf. Fig. B.1), range and recharging
limitations do not pose major constraints to EV adoption. Accordingly, we posit the
presented results not to be driven by the assumed – relatively high – battery charging
rate cmax .

Two conflicting factors regarding the evaluation should be noted: On the one hand,
both the fleet composition and stationing decision used as inputs to the optimiza-
tion model may not be optimal, rendering our results rather conservative. On the
other hand, the offline planner has access to relevant information for the entire pe-
riod under consideration, yielding rather optimistic results. In realistic situations, un-
certainty with respect to future reservations may deteriorate economic performance.

In this study we do not provide for a detailed variation regarding vehicle parame-
ters. Nevertheless, we suspect that decreasing vehicle costs, possibly due to learning
effects may pivot the overall situation in the near future. Employing vehicles with
smaller batteries may provide a viable path in order to decrease vehicle costs. Pre-
sumably, but this is subject to further examination, smaller batteries may be able to
serve similar parts of reservations.10

Appropriateness of the Optimization Objective In the definition of our objective
function, we linearly incorporate cost, walkways and QoS. However, the distribution
of walkways may be bimodal, raising the question of fairness on the one side, and
compensation and incentives on the other. A more uniform distribution of walkways
over consumers may be achieved by including individual walkways quadratically in
the objective. Furthermore, the driving distance of served trips enters the objective
only via the cost term.Long (costly) trips affect the overall objective adversely, hence,
the optimal solution does not include them. Clearly, this is a problem of our objective

9We ignore interest on capital employed in our simple model.
10Determining the optimal technical parameters of EVs in car-sharing applications may pose a promis-

ing research endeavour.
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formulation and deserves further exploration and, possibly, more appropriate formu-
lations.

Imprecise Distance and Flexibility Assumptions Importantly, we lack access to the
users’ most desired geographic starting point regarding each reservation. Instead, we
rely on the (possibly erroneous) assumption that the chosen station equals the most
desired pick-up location, and consumers are, centered at this point in space, equally
flexible in each direction. Additionally, customer flexibility so-far has been based on
airline-distance only, which is clearly an abstraction from reality. A technically more
involved model could rely on actual, real-world distances.

8.5 Outlook

This section aims to provide a brief overview of promising research directions in the
field of electrified car-sharing.

Solution Technique and Optimal Fleets Due to the complexity associated with de-
riving cost-minimal fleets from reservation data, we formulated the problem at hand
as a MKP. The field of metaheuristics (cf. Glover and Kochenberger, 2003; Raidl, 2006),
however, provides a rich set of applicable solution approaches that may successfully
assist in overcoming complexity of the related GAP. Alternatively, better decisions on
the strategic and tactical level, i.e., number and type of vehicles, as well as their sta-
tioning, may be achieved via application of different centrality measures from graph-
theory and social-network analysis (Freeman, 1978; Borgatti, 2005).

Modeling the Demand Process Future work will be concerned with modeling and
simulating synthetic reservation streams that exhibit the main characteristics of the
empirical demand data. To this end, capturing latent relationships in reservation data
over time and space via graphical models (Koller and Friedman, 2009) may provide
further insights. Model-based online optimization may in particular benefit from a
synthetic model of reservation streams.

Online Optimization Spatial flexibility may be a potent substitute for both battery
capacity and maximum charging rate. On the one hand, reduced vehicle cost may fos-
ter car-sharing electrification. On the other hand, poor decision making may become
more costly as reducing battery capacity effectively removes part of the operator’s flex-
ibility. In the case of online optimization, spatial flexibility may be crucial in enabling
acceptable QoS-levels.
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Mechanism Design Optimization approaches are unable to introduce appropriate
incentives to consumers regarding the revelation of private information, such as driv-
ing distances and spatial flexibility. Online Mechanism Design may render truthful
information revelation the best strategy for consumers and thus lead to more in-
formed decisions, improved efficiency and, potentially, proliferation of (electrified)
car-sharing schemes.
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Chapter 9

Conclusion

Demand-side flexibility in both the smart grid and car-sharing domains, is the topic
overarching this thesis. We present optimization and mechanism design-based ap-
proaches that leverage consumer flexibility to achieve more efficient outcomes. In
the smart grid settings we focus on temporal flexibility, i.e., shifting and shedding, to
better integrate volatile supply from RES and enable more sustainable power systems.
Flexibility revelation by consumers, however, requires the establishment of appropri-
ate incentive schemes in the first place. To this end, we propose incentive-compatible
online mechanisms that achieve high efficiency. In the domain of car-sharing, we
examine to what extent (mostly spatial) consumer flexibility may be employed to im-
prove fleet utilization. Higher fleet utilization, in turn, may enable efficient electrifi-
cation of car-sharing fleets. This work, hence, positions consumer flexibility as a pow-
erful lever to align both, power and mobility systems. This conclusion summarizes
the main findings and limitations of the presented work and provides a brief overview
of prospective research avenues.

9.1 Summary and Contribution

Smart Grid Demand-side flexibility and demand-side management have been top-
ics of considerable interest in smart grid research (cf. Strbac, 2008, and the references
therein). So far, however, most research lacks the decisive factor – incentives. Rather,
engaging consumers in DSM is mostly motivated by utilities’ expected savings due to
improved operations and reduced investment. Consumers, on the other hand, are
mostly assumed to be willing to accept centrally-controlled allocation decisions igno-
rant of individuals’ preferences.1

Part II of this thesis closes this gap and extends the state-of-the-art with respect to
incentive design for consumers in the smart grid. In more detail, we establish simula-
tion models for shiftable and sheddable demand in order to derive the value of flexi-
bility under uncertainty, and, more importantly, with incentives taken into account.

Chapter 4 introduces a model of single-unit shiftable and sheddable demand and
stochastic supply from RES. For the corresponding (offline and online) planners and

1Gerding et al. (2011); Stein et al. (2012) on EV charging coordination are relevant exceptions.
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an incentive-compatible online mechanism, the model provides the necessary inputs.
Although the demand model and the corresponding mechanism rely on a set of strong
assumptions, the results remain interesting and encouraging. On the macroeconomic
level, we are able to demonstrate the price of IC in terms of welfare to be rather small.
Demand-side flexibility, i.e., shifting and shedding, may hence pose an important
lever to facilitate economically efficient integration of stochastic supply from RES into
the power system. Moreover, even small amounts of flexibility can significantly im-
prove integration of RES. On the microeconomic level, we show that, ceteris paribus,
more flexible loads enjoy higher allocation probabilities. Critical-value payments are
monotonously decreasing in flexibility, completing incentives for flexibility provision-
ing.

Chapter 5 extends the demand model to allow for shiftable and sheddable multi-
unit demand (jobs) that may not be interrupted after having been started, i.e., are non-
preemptive. Different to the setting described before, we introduce costly conven-
tional generation to support the case that jobs have been started, but supply from RES
only is insufficient. Again, we establish the upper bound of the value of flexibility by
means of an offline planner; it serves as a benchmark for online planners and mech-
anisms. Here, our contribution lies in the adaptation of existing packet scheduling
algorithms (Chang et al., 2000a; Bent and Van Hentenryck, 2004) to allow for uncer-
tain supply and demand. In the discrete time setting employed, allocation of multiple
jobs at each point in time constitutes an additional contribution. Furthermore, we
provide a Dominant Strategy Incentive Compatible (DSIC) online mechanisms that
relies upon the Consensus idea of (Bent and Van Hentenryck, 2004) for allocation de-
cisions, which we name, following Gerding et al. (2011), the pre-commitment stage. In
the subsequent second stage we find Consensus to yield high economic efficiency.

Car-sharing Part III explores the value of flexibility in car-sharing. In particular, we
employ both, temporal and spatial characteristics, to reduce fleet size and, hence,
raise fleet utilization. We formulate and solve a modified version of the bin-packing
problem (Nemhauser and Wolsey, 1988), packing reservations on vehicles. Reserva-
tions, however, can only be assigned to a subset of all vehicles, i.e., either to vehicles
at exactly the same station only (in the case of temporal flexibility), or to the vehicles
at the originally desired station, as well as neighbouring stations (in the case of spa-
tial flexibility). By enlarging the set of admissible vehicles, we are able to significantly
reduce the overall number of used vehicles. Interestingly, temporal flexibility barely
reduces fleet size for reasonable values of temporal flexibility. Spatial flexibility, on
the other hand, is highly valuable and allows fleet size reductions of up to 30% during
selected weeks, under spatial flexibility of 1.5km (airline distance). Median fleet size
reduction amounted to 16% with spatial flexibility set to 1.5km, while ninety percent
of all observations ranged between reductions of 8 and 26%. Note that only few con-
sumers were required to provide their full flexibility potential, while most were served
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at their desired station.
Besides uncovering the fleet reduction potential, we are particularly interested in

more realistic, i.e., online settings. To this end, we hold the fleet of vehicles fixed
and make allocation decisions online, with limited information on future reserva-
tions.2 In more detail, we design an online planning algorithm incorporating look-
ahead (cf. Dunke, 2014) on future reservations, to make informed assignment deci-
sions. This approach clearly outperforms two naïve assignment schemes, both in
terms of walkways and QoS/capacity utilization. Although computational effort is
more pronounced, our novel algorithm yields results in typcial settings fast enough
for practical application. Accordingly, we consider our algorithm to be a valuable tool
for car-sharing operators interested in improving fleet utilization.

Improved fleet utilization in combination with a large share of short distance reser-
vations draws our attention towards (partial) electrification of car-sharing fleets. In
Chapter 8 we present a Multi-Knapsack optimization problem with additional EV-
charging constraints. We systematically vary fleet size and composition and solve the
corresponding Multi-Knapsack problem. Under the examined parameters, our results
indicate that EVs are not (yet) economically viable for car-sharing operations. How-
ever, the additional cost of EV adoption to operators appears rather small. Reduced
EV costs may render electrification of car-sharing fleets economically efficient in the
foreseeable future.

9.2 Outlook

This thesis provides novel insights into the use and value of demand side flexibility
in future power systems and car-sharing. Research is never complete, therefore, we
identify drawbacks of the work so far and provide an overview into prospective re-
search avenues.

Smart Grids Chapters 4 and 5 have been concerned with the engineering of incen-
tives in the smart grid. However, this work abstracts from power network constraints.
Future research in the field of online mechanism design in smart grids should take
those constraints into account (cf. Vytelingum et al., 2010). In this vein, dynamic
adaptation of market size to current and expected supply and demand constellations
may be an interesting research direction.

In the setting described in Chapter 5 we trade-off budget-balance for efficiency. A
more detailed understanding of the solution space, however, may be valuable in as-
sisting the design of market places a la Weinhardt et al. (2003) that are sustainable in
the long run. Hence, we deem the trade-off between economic efficiency and budget
balance (cf. Gershkov and Moldovanu, 2009) worthy of further research.

2Reservations are typically entered into the system before the begin of the corresponding usage pe-
riod. Hence, some information on future reservations is available in advance.
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One question we have abstracted from in this work concerns the handling of shed-
ded demand. So far, we assume shedded demand to be removed from the system in
its entirety. However, other approaches may be imagineable as well. Stochastic mod-
els and queuing theory may offer interesting methodological approaches to further
explore this question.

Throughout this thesis, we assumed distinct agents for each job submitted to the
mechanisms. In reality, however, agents may submit multiple jobs, representing a
multitude of devices, to the mechanism. Then, mechanism design must ensure that
revelation of one’s private information regarding flexibility on a job level remains the
dominant strategy (or at least the best strategy in expectation), and that by submit-
ting additional jobs, allocation decisions cannot be manipulated to the benefit of an
individual agent.

From a regulatory perspective it may be worthwhile to evaluate the economics of
flexibility and efficiency in more detail. Thereby, it may be interesting to determine
the conditions under which either flexibility or system efficiency should be expanded.
In particular, it may be interesting to examine to what extent presence of flexibil-
ity may lead to counterintuitive results such as increasing use of emission-intensive
base-load technologies (lignite and coal), and diminishing value of fast ramping ca-
pacities.

Finally, understanding and elicitation of preferences require more attention. For in-
stance, leveraging both historical and smartphone sensor data may enable forecast-
ing energy service consumption on the user level with high accuracy, hence, reliev-
ing the user to a large extent of the mundane task of specifying temporal flexibility.
The challenge of accurate preference elicitation may require an interdisciplinary ap-
proach involving methods from machine learning, statistics, operations research, and
microeconomics. In order to repeatedly make accurate decisions and efficiently inte-
grate user feedback, methods from the field of active learning (c.f. Tong and Koller,
2002; Shann and Seuken, 2013) may prove valuable.

Car-sharing Future work with the objective of improving the operational efficiency
of car-sharing fleets may focus on two directions. Inclusion of uncertain information
about future reservations may further improve online decision making and also be
relevant to online mechanism design approaches.

Supply can, in contrast to power systems with significant shares of RES, be assumed
fixed. Hence, methods from RM may find useful application in this field. Regardless
of the direction pursued, a better understanding of consumers’ preferences regarding
the provision of flexibility is necessary. So far, empirical literature on car-sharing user
behavior is, to the best of our knowledge, lacking. Methods from experimental eco-
nomics, such as surveys along the lines of discrete choice theory, should therefore be
employed to develop a fine-grained understanding of consumer behavior and flexi-
bility. In particular, we deem a more precise estimate of the disutility from flexibility
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provision in general, and the trade-offs between spatial and temporal flexibility, in
particular, valuable.

Beyond consumer flexibility in non-electrified car-sharing, online planning and
mechanism design approaches may receive more attention in electrified car-sharing.
Here, according to our offline evaluation, consumer flexibility facilitates electrifica-
tion of shared vehicle fleets. Hence, the provision of appropriate incentives in online
settings may turn out decisive to (i) foster sustainability in mobility systems and (ii) to
eventually link both, electric power and mobility systems.

In summary, the integration of consumer flexibility in smart grids and mobility sys-
tems on one side, and provision of appropriate incentives to consumers on the other,
raises a number of interesting research questions. This thesis points out the benefits
of an activated demand side in both domains. However, the presented OMD-based
approaches may turn out to be of disproportionate complexity to consumers. Hence,
simpler approaches involving (static) product and price differentiation on the basis
of consumer segmentation may be more attractive and thus easier to introduce into
retail markets. It will be interesting to see, to what extent a reduction in complexity
negatively affects economic efficiency. At this point, we leave the task of exploring the
efficiency-complexity trade-off for future research.





Appendix A

Online Mechanism Design Details

This appendix provides the technical details of the model-free online mechanism pre-
sented in Chapter 4.

Mechanism Properties

• Online decision making. Decision must be made online, i.e., as time is pro-
gressing and no information on future events can be assumed.

• Incentive compatibility1 (IC). In an IC mechanism, it is a (weakly) dominant
strategy for any job to reveal its true type to the mechanism. This basic property
is of paramount importance, as only based on true job types can the alloca-
tive/economic efficiency of a mechanism be determined. Incentive compatibil-
ity in all dimensions for demand jobs must be ensured to avoid strategic actions,
as such behavior can have adverse effects on social welfare.

• Budget-balance (BB). A budget-balanced mechanism requires neither external
subsidies (notion of weak BB) nor does it accumulate payments (if BB in the
strong sense), i.e.,

∑
i pi = 0

• Individual rationality (IR). Through participation, the job can only improve its
utility. IR is achieved by making jobs pay only for goods in case of allocation.

Payment rule: A critical value approach

For the definition of a payment rule that renders the described allocation rule IC, we
establish the sets of directly and indirectly competing demand jobs as well as non-
competing supply jobs. These sets need to be defined to determine a demand job’s
critical value, which ensures IC (Nisan, 2007, cf. p. 229).

1Incentive compatibility is also referred to as truth-telling, truthfulness, or strategy proofness.
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Directly Competing Demand Jobs We name the set of demand jobs DC D(x) that are
active (both matched and unmatched) at allocation time m of demand job x directly
competing with x.

DC D(x) = {
j ∈ J \ {x}|a( j ) ≤ m(x) ≤ d( j )

}
(A.1)

Note that directly competing demand jobs can eventually end up non-allocated.

Indirectly Competing Demand Jobs We name a demand job j indirectly competing
(ICD) with demand jobs x if it is being allocated during the active period of x; in order
for a request j to be ICD, it does not have to be directly competing (at allocation time)
with x.

IC D(x) = {
j ∈ J \ {x}|(a(x) ≤ m(b) ≤ d(x))

}
(A.2)

We will see shortly, how the valuation of such indirectly competing demand jobs be-
comes relevant for determining the payment associated with the allocation of x. Indi-
rectly and directly competing demand jobs differ in two aspects: Eventual allocation
(ICD are allocated) and time of competition (DCD are competing at allocation time,
while IDC might be competing earlier or later). Accordingly, an element of DC D(x)
may also belong to the set of IC D(x), i.e. the two sets are not necessarily subsets of
each other.

Non-competing Supply Jobs We name a supply job non-competing (NCS) if it is ei-
ther non-allocated or only allocated after its release date (i ) and if it is active at some
point during the active period of x. The set of non-competing supply jobs is formally
defined by

NC S(x) ={i ∈ I |(Øm(i )∨a(x) < m(i ))∧ AnyOver l ap(x, i )} (A.3)

where

AnyOver l ap(x, i ) =a(i ) < d(x)∧d(i ) > a(x) (A.4)

Furthermore, we define an order on these sets of jobs, where the following holds:

bi ≺ b j ≡ (v(bi ) < v(b j )) ∀bi ,b j ∈ B ∀bi ,b j ∈ A (A.5)

The price a job eventually pays for successful allocation is formally determined by
the job’s critical value:

p(x) = v(min{max(DC D(x)),min(IC D(x)),min(NC S(x))}) (A.6)
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More specifically, the individual components are given by:

• the highest valuation of directly competing demand jobs at allocation time
v(max(DC D(x))) (this is always less than the valuation of the allocated request),

• the lowest valuation of demand jobs allocated during the active period of the
respective job x, i.e., v(min(IC D(x))),

• the lowest reservation price observed during the active period if the demand
job has remained without any competing job for any duration of the respective
supply job during its active period, i.e., v(min(NC S(x))).

The critical value’s monotonicity renders the mechanism incentive compatible. Ac-
cordingly, the more flexible a demand job (i.e., the longer the active period between
release and due date), the lower the payment.





Appendix B

Car-sharing Fleet Utilization

A fraction of approximately 10 percent of the fleet’s small vehicles is in use at any given
time, forming the base-load for the car-sharing system. Peak-load can easily be ob-
served once per week with distinct peaks in the usage patterns. However, taking a
macroscopic view on aggregate fleet utilization over the period of a whole calendar
year renders recognition of robust patterns a difficult exercise. Accordingly, to derive
a better understanding on the existence and nature of patterns, we embrace a micro-
perspective on aggregate reservation behavior.

Fig. B.1 decomposes fleet utilization by month (each box represents one month)
and by week (lines in different colors represent different weeks). At this level of de-
tail, patterns can be identified visually . First, there is a pronounced 24-hour pat-
tern with peak utilization during daytimes and low utilization at night. Second, the
largest weekly peak can be found on Saturdays, followed by Sundays. The largest ex-
ception can be found in December, around Christmas time. Generally, peaks in fleet
utilization can be traced back to public and school holidays. In particular, a larger-
than-usual share of vehicles is used overnight, presumably to visit family, friends and
relatives during Christmas-holidays without returning the vehicles at night to their
stations. Maximal fleet utilization is observed on the Pentecost weekend at the end of
May and the beginning of August, which coincided with the end of the summer holi-
days in the state of Baden-Wuerttemberg. Hence, from visual inspection of Fig. B.1 we
can infer that recurring utilization patterns do in fact exist. Recognizing these regular
patters, they might be useful for better economic decision making. Here, the inter-
esting part is that knowledge of these patters can effectively mitigate uncertainty on
future fleet utilization, at least on a macroscopic level.

The untypical reservation behavior around Christmas time stands out clearly from
the rest of the data.

In Fig. B.2, fleet utilization by station is depicted. There are stations for which fleet
utilization assumes values in excess of 40%. The low utilization of some other sta-
tions (i.e., < 20%) clearly demonstrates that there is potential in optimizing the cur-
rent reservation scheme.
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Figure B.1: Seasonalities of car-sharing usage: Significant daily and weekly usage patterns are
present.
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