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Abstract 

The ability to control the coating of a given substrate with metal-organic frameworks (MOFs) is 

essential for developing advanced MOF applications. The studies for this thesis were focused on 

growing MOF thin films on modified substrate using liquid phase epitaxy (LPE) method. LPE is 

a layer-by-layer process that yields highly crystalline MOF thin films (SURMOFs) with 

controlled orientation and thickness. The aim was to construct functional SURMOFs, as well as, 

to tune their reactivity. 

Heteroepitaxy has been intensively studied for the growth of conventional materials such as 

metals and semiconductors. However, lattice constant difference of more than 2% between two 

materials still remains challenging. In this context, hierarchically organized MOF-on-MOF 

multilayer systems with huge lattice mismatch up to 20% using a particular liquid-phase epitaxy 

process were successfully realized. By collaborating with Prof. Thomas Heine and Dr. Binit 

Lukose, a thorough theoretical analysis of the MOF-on-MOF heterojunction structure and 

energetics allowed identifying two main reasons for this unexpected mismatch tolerance: the 

healing of vacancies with residual acetate and the low elastic constant of the MOF material. 

Post-synthetic modification (PSM) of MOFs allows producing new MOF configurations that 

cannot be obtained directly from the self-assembly synthesis process. In this thesis, two click 

reactions schemes, the Cu(I) catalyzed azide alkyne click reaction (CuAAC) and the strain 

promoted azide alkyne click reaction (SPAAC), were investigated and used to modify azide 

based pillar-layer SURMOF [Zn2(N3-bdc)2(dabco)]. The results demonstrated that the need of 

catalyst for the CuAAC in materials with nanoscale pore size is a drawback for effective 

conversion. Additionally, possible contaminations with cytotoxic Cu(I) ions after reaction would 

remain a substantial problem for biological and medical applications. Both problems could be 

overcome using SPAAC, where no catalyst is needed. After optimization of the reaction 

conditions, conversion yields of nearly 100% were achieved.  

Recently, the patterning of MOF thin films has attracted considerable attention because of their 

application in nano- or micro-devices. In this thesis, a bottom-up approach to grow patterned 

SURMOF [Zn2(N3-bpdc)2(dabco)] on patterned SAMs using robot dipping method combined 

with a ultrasonic cleaning process was firstly demonstrated. Uniform patterned MOF thin films 

of high crystalline quality were obtained in high yield. In addition, the azide group on the linker 

allowed the further PSM with alkyne terminated dye molecule. To obtain the functional 

patterning of monolithic SURMOFs, PSMs were used in a controlled fashion, where the 

functional group was grafted locally to the MOF structure by a UV induced reaction combined 

with a photo mask technique. Here, the azide-alkyne click reaction and thiol-yne click chemistry 

were used. The azide-alkyne click reaction was initiated by the photoreduction of Cu(II) to the 
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active Cu(I) catalyst, whereas the thiol-yne click chemistry was induced directly by the UV light. 

Furthermore, heteroepitaxial growth of multilayers systems (Cu-N3BPDC+Cu-BPDC+ Cu-

N3BPDC+Cu-BPDC+Cu-N3BPDC+Cu-BPDC) was also used to control the localization of 

subsequent PSM. The results demonstrated that the pattern functionalization of MOF thin film is 

not limited to the two dimensions of the mounting surface but is indeed possible in 3D. 

Defect-engineering in MOFs have also attracted considerable attention due to the additional 

reactivity of the defective sites and the possible applications in catalysis, gas adsorption, and gas 

separation. Here, the production of defective Cu(I) sites from a oriented, homogeneous and 

virtually defect-free (below 1 %) Cu(II) paddle wheel based UHM-3 SURMOFs was 

demonstrated using a postsynthetic thermal treatment. A quantitative analysis of the defect 

concentration in SURMOFs was carried out by CO adsorption and XPS measurements. The 

resulting defective Cu(I) sites were investigated for the adsorption of gas molecules such as CO 

and CO2. The interaction of CO and CO2 with the Cu(II) and Cu(I) sites were characterized 

thoroughly using XPS and IRRAS. The binding energies of these two species were determined 

using temperature-induced desorption. The interaction between the guest molecules and the Cu(I) 

and Cu(II) sites were also analyzed using density-functional theory (DFT, contributed by Prof. 

Thomas Heine, Dr. Andreas Mavrantonakis and Dr. Barbara Supronowicz). Surprisingly, both 

experiment and theory showed that the binding energy of CO2 to Cu(I) and Cu(II) sites are 

essentially identical, in pronounced contrast to CO, which binds much stronger to Cu(I).  
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Zusammenfassung 

Kontrollierte Beschichtungen gegebener Substrate mit metallorganischen Gerüstverbindungen (engl. 

metal-organic frameworks, MOFs) sind notwendig für die Entwicklung fortschrittlicher MOF-

Anwendungen. Die Untersuchungen zur vorliegenden Arbeit wurden an MOF-Dünnfilmen durchgeführt, 

welche auf modifizierten Substraten mittels Flüssigphasenepitaxie (eng. liquid-phase epitaxy, LPE) 

gewachsen wurden. LPE ist ein Schicht-für-Schicht-Verfahren, mit welchem hochkristalline MOF-

Dünnfilme (sogenannte SURMOFs) mit kontrollierter Orientierung und Dicke hergestellt werden können. 

Die Ziele dieser Arbeit waren die Herstellung funktioneller SURMOFs sowie das Einstellen ihrer 

Reaktivität. 

Heteroepitaxie wurde intensiv für das Wachstum von konventionellen Materialien wie Metalle und 

Halbleiter untersucht. Bei der Heteroepitaxie dieser Materialien sind Unterschiede der Gitterkonstanten 

von mehr als 2% allerdings immer noch eine große Herausforderung. In dieser Arbeit wurden 

hierarchisch aufgebaute MOF-auf-MOF-Schichtsysteme mit großen Gitteranpassungen von bis zu 20% 

erfolgreich unter Verwendung der Flüssigphasenepitaxie realisiert. Durch die Zusammenarbeit mit Prof. 

Thomas Heine und Dr. Binit Lukose wurde eine gründliche theoretische Analyse der MOF-auf-MOF-

Struktur ermöglicht und zwei Hauptgründe für diese unerwartet große Toleranz wurden identifiziert: 

ungebundenen Stellen können mit Rest-Acetat geheilt werden und die niedrige Elastizitätskonstante 

macht das MOF-Material flexibel. 

Post-synthetische Modifikationen (PSM) von MOFs ermöglichen die Herstellung neuer MOF-

Materialien, die nicht direkt synthetisiert werden können. In dieser Arbeit werden zwei Klick-

Reaktionsschemata, die Cu(I)-katalysierte Azid-Alkin-Klickreaktion (CuAAC) und die strain promoted 

Azid Alkin-Klickreaktion (SPAAC), untersucht und verwendet, um SURMOFs vom Typ [Zn2(N3-

bdc)2(dabco)] zu modifizieren. Die Ergebnisse zeigen, dass die Notwendigkeit des Katalysators für die 

CuAAC in Materialien mit Nanometer-großen Poren ein Nachteil für eine effektive Umwandlung 

darstellt. Zusätzlich sind mögliche Verunreinigungen mit zytotoxischen Cu(I)-Ionen, die nach der 

Reaktion im MOF verbleiben können, ein wesentliches Problem für biologische und medizinische 

Anwendungen. Beide Probleme können mit SPAAC, wo kein Katalysator benötigt wird, überwunden 

werden. Durch Optimierung der SPAAC-Reaktionsbedingungen wurden Ausbeuten von fast 100% 

erreicht.  

Für potentielle Anwendungen in mikroskopisch kleinen Geräten ist die Strukturierung der MOF-

Dünnschichten entscheidend. In dieser Arbeit wird ein Bottom-up-Ansatz zum Wachstum lateral 

gemusterter SURMOFs vom Typ [Zn2(N3-bpdc)2(dabco)] auf gemusterten SAMs genutzt. Diese 

SURMOFs wurden mit einem Roboter-gesteuerten Tauchverfahren in Kombination mit 

Ultraschallreinigung hergestellt und gleichmäßige, gemusterte MOF-Dünnfilme von hoher Kristallinität 

wurden erhalten. Darüber hinaus erlaubt die Azid-Gruppe des Linkers weitere PSM mit Alkin-

funktionalisierten Farbstoffmolekülen. Um funktionelle und strukturierte SURMOFs zu erhalten, wurden 

PSM in kontrollierter Weise angewandt, in dem die funktionellen Gruppen in der MOF-Struktur lokal 

mittels einer UV-induzierte Reaktion in Kombination mit einer Fotomaskentechnik modifiziert wurden. 
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Hier wurden die Azid-Alkin-Klickreaktion und Thiol-yne Klickreaktion verwendet. Die Azid-Alkin-

Klickreaktion wurde durch die Photoreduktion von Cu(II) in katalytisch aktives Cu(I) initiiert, während 

die Thiol-yne Klick-Reaktion direkt vom UV-Licht induziert wurde. Weiteres hetero-epitaktisches 

Wachstum von mehrlagigen Systemen (Cu-N3BPDC + Cu-BPDC + Cu-N3BPDC + Cu-BPDC + Cu-

N3BPDC + Cu-BPDC) wurde benutzt, um die Lokalisierung der nachfolgenden PSM zu steuern. Die 

Ergebnisse zeigen, dass die Funktionalisierung der MOF-Dünnschichten nicht nur auf beide laterale 

Dimensionen begrenzt ist, sondern tatsächlich 3-dimensionale Strukturierungen möglich sind. 

Die Defekt-Konstruktion in MOFs ist auf Grund der hohen Reaktivität der Fehlstellen sehr interessant, 

besonders in Hinblick auf mögliche Anwendungen in der Katalyse, Gasadsorption und Gastrennung. Hier 

wird die Herstellung von defektreichen Cu(I)-Gebieten aus einer nahezu defektfreien Cu(II)-basierend 

UHM-3-SURMOF-Struktur mittels Wärmebehandlung nach der Synthese gezeigt. Die resultierenden 

Cu(I)-Defektstellen wurden mittels Adsorption von Gasmolekülen wie CO und CO2 untersucht. Die 

Wechselwirkung  von CO und CO2 mit Cu(II)- und Cu(I)-Positionen wurde gründlich mit XPS und 

IRRAS charakterisiert. Die Bindungsenergien beider Spezies wurden mit temperaturabhängiger 

Desorption bestimmt. Die Interaktion zwischen den Gastmolekülen und den Cu(I)- und Cu(II)-Plätzen 

wurden mit Hilfe von Berechnungen mittels Dichtefunktionaltheorie (DFT, von Prof. Thomas Heine, Dr. 

Andreas Mavrantonakis und Dr. Barbara Supronowicz) analysiert. Theorie und Experiment zeigen 

überraschenderweise, dass die Bindungsenergie von CO2 zu Cu(I)- und Cu(II)-Plätzen im Wesentlichen 

identisch sind, was im deutlichem Kontrast zu CO steht, das viel stärker zu Cu(I) bindet.  
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the 1990s. At that time, Zaworotko, Yaghi, Kitagawa, and Férey, amongst other scientists, 

uncovered the huge opportunities offered by MOF materials and made pioneering contributions 

to the field. Notably, the term MOFs was first introduced by Yaghi in 1995 for the synthesis of 

the extended crystalline network, [Cu(4,4’-bipyridyl)1.5·NO3(H2O)1.25]
11. Soon afterwards, 

research efforts on MOF materials grew rapidly and led to extensive exploration of  applications 

in gas storage12, 13, separation14, catalysis15 and magnetism16.  

1.1.1 Design of MOFs 

The design of MOFs structure firstly focuses on the primary building blocks. The choice of metal 

ions and ligands is critical in targeting defined topological networks. A widespread strategy to 

guide in building the MOF structure relies on a “node and spacer” approach. The concept was 

firstly introduced by Wells in 1977,17 to simplify deal with complex structures. In the early 1990s, 

Robson applied this approach to produce coordination polymers18. With this method, the building 

blocks of the structure are simply modeled by nodes for the metal and by spacers for the organic 

linker. The appropriate interconnections represent nets. The sequential connection of the node by 

spacer forms a path and then a circuit can be built when the path starts and ends with the same 

node. A net can be viewed as the shortest connected circuit of node. The topology of a net 

depends on the number of nodes, which can be, for example, square, tetrahedral, octahedral. 

Additionally, a net represents the fundamental unit for the MOF structure and the connection of 

the nets forms the resulting MOF structure with a considerable degree of predictability. 

Furthermore, the geometric configuration also depends on the coordinative numbers of metal-

based nodes and organic linker-based spacers. 

Another concept that is commonly used for the design and the construction of MOFs is the 

secondary building units (SBUs). SBUs are geometric configurations of metal connecter in the 

MOF structure, which clearly depicts the possible coordinative sites for the organic ligands. 

Therefore, the knowledge of the probable SBUs structure of metal sources is of great help for the 

construction and synthesis of the target MOF configuration. Yaghi et al have contributed a 

review on SBUs, where the geometries of 131 SBUs are introduced19. 

1.1.2 Preparation of MOFs 

Numerous methods or techniques for the synthesis of MOF materials have been developed , such 

as hydro- and solvothermal method20, microwave synthesis21, ionothermal synthesis22, 

sonochemical synthesis23, electrochemical synthesis24, mechanochemical synthesis25. Among 

them, the hydro- and solvothermal synthesis is the most commonly used, as the self-assembly of 

the metal ions and the organic ligands is easily triggered in a liquid phase subjected to heating. 

Following this method, metal ions or metal clusters and organic ligands are mixed together with 
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excellent high porosity, versatile chemistry, elastic and flexible structure38-40. In general, the 

specificity of a material leads to the development of corresponding applications. In the following, 

some of the MOF properties and corresponding applications are presented. 

Porosity, one of the main properties of MOFs, is quantified standardly by a surface area density 

measure. Among all the MOF materials developed up to now, NU-110E (NU: Northwestern 

University), reported by Hupp and co-workers in 201241, exhibits the highest BET (Brunauer-

Emmett-Teller) surface area with 7140 m2 g-1. This is slightly higher than the value of 6240 m2 g-

1 reported by Yaghi and co-workers in 2010 for MOF-21042. Noteworthily, the highest BET 

surface area of the disordered and ordered structure are 3200 m2 g-1 for carbon aerogels43 and 

904 m2 g-1 for zeolite Y44 respectively. Obviously, MOF structure stands out over all the other 

porous materials. Such a high porosity allows many applications, also because the pores can be 

designed to host different guest molecules. Numerous studies have demonstrated that MOFs 

exhibits outstanding capacity for gas storage. Regarding the energy and environment sectors, 

MOFs attracts more and more interest considering the storage of gas molecule, such as H2
45, 

CH4
46, CO2

47, or CO48. Beside gas storage, MOF materials can also be used for the catalytic 

applications by incorporating metal nanoparticles into the pore or the channel 49. Furthermore, 

when loaded with drugs, peptides or proteins, MOFs can be used for medical applications50, 51. 

Another advantage of MOFs is the versatile chemistry to fabricate them which results from the 

flexibility and simplicity in choosing and assembling various metal connectors and countless 

number of organic linkers38. The targeted framework can be designed and prepared by choosing 

adequate metal ions and organic ligands; the pore size and shape of MOFs can also be controlled 

by adjusting the length of ligands52, 53, geometry of the ligands or metal sources as well as the 

functionality of MOFs can be controlled not only by using linkers with different functional 

groups54 during fabrication (Figure 1.3), but also by applying postsynthetic modifications 

(PSM)55. MOFs can be also tuned using the corresponding metal or linker connecters such that 

chiral ligands yield chiral MOFs for chiral catalysis, adsorption, and separation56-59; the ligands 

with special function groups can be incorporated in the MOF structure to improve the interaction 

with guest molecule for a high loading capacity54.  
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substrate as long as its surface is appropriately coated with extrinsic or intrinsic MOF 

coordinating functional groups. 

1.2.1.2 Surface functionalization of substrates 

The functionalization of substrate can be a chemical or physical process depending on which 

substrates are used and which functional groups are needed. For a metal substrate like gold, thiol 

based chemistry is the proven choice. The gold surface is soaked into an ethanol solution of 

thiol-terminated molecules such as 16-mercaptohexadecanoic acid (MHDA)103, (4-(4-

pyridyl)phenyl)-methanethiol (PP1)104 or 11-mercapto-1-undecanol (MUD). The thiol groups 

react covalently with gold to form a self-assembled monolayer (SAM) (RSH + Au → RS-Au + 

1/2H2). For some other nonmetallic materials, plasma treatment can be used to clean the surface 

as well as increase the density of surface hydroxyl groups. This can also be achieved by a 

chemical process (e.g. cleaning with piranha solution). To obtain carboxyl groups, the hydroxyl 

layer can be reacted with 11-(triethoxysilyl)undecanal. The now aldehyde groups presenting 

surface can be oxidized by potassium hypermanganate to form the carboxyl groups surface. 

1.2.1.3 Layer-by-layer growth of SURMOFs 

The layer-by-layer method allows growing multilayered thin film with a control over the 

thickness as well as the morphology of the film. This technique was firstly presented by 

Langmuir and Blodgett in 1937 for the fabrication of multilayer organic Langmuir and Blodgett 

(LB) films105. However, it had not received much attention until its reintroduction by Decher and 

co-workers in 1991 for the deposition of charged polymers106. It has since become one of the 

most preferred method for the deposition of a wide range of materials, including nanoparticles107, 

ionic polymers108, proteins109, DNA110 amongst others. It is based on a self-assembly process. 

Over the past seventy years, significant developments have been made to this technique and 

three categories can be distinguished: Langmuir-Blodgett (LB)105, electrostatic layer-by-layer 

assembly106 and covalent layer-by-layer assembly111.  

In 2007, Wöll and co-workers have implemented the layer-by-layer assembly method to prepare 

MOF thin films on SAMs modified substrates 101. The schematic diagram for this MOF thin film 

growth is displayed in Figure 1.5. The first MOF example employed for the study was HKUST-1. 

Copper(II) acetate [Cu(Ac)2] and 1,3,5-benzenetricarboxylic acid (BTC), are separately 

dissolved in ethanol, and the gold substrate is coated with MHDA-SAMs. The modified substrate 

is immersed into each solution alternatively. Each immersion is followed by a rinsing with pure 

ethanol to remove the uncoordinated metal or organic connectors. The repetition of these steps 

leads to the fabrication of MOF thin films. The synthesis of MOF materials in solution is a self-

assembly process. The coordinative bonding of a multivalent metal ion with a polydentate 
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organic ligand, forms a connection; the multiplication and addition of this event results in 

periodic interconnected structures, i.e.  metal-organic frameworks. However, the layer-by-layer 

method for the growth of SURMOFs directs this process by limiting only one reactant at a time 

to a confined coordinating surface (Figure 1.5). As a result, the SURMOF fabrication technique 

offers a huge advantage in controlling the thickness and morphology of the MOF thin films. For 

the past ten years, numerous types of MOF thin films have been grown with this method and the 

resulting studies have also been reviewed85, 112-114.  

1.2.2 Techniques and method for the growth of SURMOFs  

In order to optimize the synthesis condition, to reach better morphology and high-throughput 

fabrication, or to allow specific in-situ experiments, a number of techniques and methods have 

been developed. These include the dipping101, the spray100, and the pump methods115, and quartz 

crystal microbalance (QCM) system-based method116. 

1.2.2.1 Dipping method 

Originally, the first SURMOF (HKUST-1) sample was prepared using hand-dipping method by, 

then PhD student, Hui Wang in 2007101. Hand-dipping is a simple and easy method to grow 

SURMOFs. Only four containers and three solutions are needed (two containers for the metal 

source and the organic ligands, and two others of solvent for rinsing). The growth of SURMOFs 

is carried out using the following steps (here the synthesis of HKUST-1 SURMOFs on MHDA 

SAMs is taken for an example): 

• Four containers are filled with ethanol solution of copper acetate (1 mM), ethanol 

solution of 1,3,5-benzenetricarboxylic acid (BTC, 0.1mM) and twice with pure ethanol 

respectively. 

• The MHDA SAMs modified gold substrate is firstly dipped in the copper acetate solution 

for 30 min.  

• The sample was taken out and immersed in pure ethanol to remove the uncoordinated 

copper acetate. 

• Then the sample was immersed into the BTC solution for 60 min. 

• The sample was taken out and immersed in pure ethanol to remove the uncoordinated 

BTC. Note, there are two containers for pure ethanol, one work for cleaning copper 

acetate and another for cleaning BTC. 

• By subsequently repeating the upper steps using the same modified gold substrate to 

receive a thicker HKUST-1 MOF thin film. 
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also computer controlled. Compared to the hand-dipping method, this process allows an easy and 

accurate control of the dipping and rinsing times, and advantageously enhances the 

reproducibility of SURMOF syntheses.    

1.2.2.2 Spray method 

The automated spray method is a high-throughput technique, which can grow thick MOF films 

in a short time100. The schematic is displayed in Figure 1.7. It is also based on the layer-by-layer  

                           

                           

Figure 1.7: (top) A schematic diagram for the step-by-step growth of MOFs on SAMs using spray 

method: : (1) Gas supply, (2) gas flow controller, (3) three-way valve gas distributor, (4) (A, B, C) 

solutions storage containers, (5) sample holder, (6) dosing valves, (7) spray chamber, (8) PC, 

(Figure is taken from100 ). (bottom) The setup of spray technique. 
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process. Three separate solutions of metal ions and organic ligands are sprayed alternatively and 

repeatedly on the surface of a modified substrate with the pure solvent being used after each 

reactant spraying to rinse of the excess of metal ions or organic ligands.  

Compared to the dipping method that requires long immersion time (metal: 30 min and organic 

linker: 60 min), much shorter times (metal: 1 min and organic linker: 2 min) of spraying yield 

highly crystalline and orientated SURMOFs. A film thickness of 1 µm is achieved in only a few 

hours by using the spray method, whereas several days would be needed with the dipping 

method. Thick SURMOFs could be easily obtained using spray method. However, only a limited 

number of SURMOFs have been obtained successfully (e.g. HKUST-1 and SURMOF-2 series53) 

and further works are needed to optimize the synthesis condition. In more detail, the procedure 

for the growth of SURMOFs (e.g. HKUST-1) with the spray method can follow these steps: 

• The ethanol solution of copper acetate, ethanol solution of BTC and pure ethanol were 

filled into three distinct containers and then the containers were shut with lids. 

• The program parameters (growth cycles, pressure, spray time, idle time, etc) were 

appropriately set up, and then place the modified substrate on the target. 

• The modified substrate is first sprayed with the ethanol solution of copper acetate for 15 

seconds, then left 30 seconds. 

• The substrate is rinsed with pure solvent for 5 seconds to remove the excess of metal 

ions. 

• The substrate is sprayed with the ethanol solution of BTC for 30 seconds, then left 30 

seconds.  

• The substrate is again rinsed with pure ethanol for 5 seconds to remove the excess 

amounts of BTC. 

• By subsequently repeating these steps on the same gold substrate a thicker SURMOFs 

(HKUST-1) thin film is obtained. 

1.2.2.3 Pump method 

To control the temperature during the growth of SURMOFs, the pump method has been 

developed115. Similarly to the other methods, it is based on the layer-by-layer fabrication concept. 
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range of -20–100 °C is easily realized.  The pump method also requires long coordination times 

to grow thick SURMOFs. In detail, the procedure to fabricate SURMOFs (e.g. HKUST-1) can 

follow these steps: 

• The ethanol solution of copper acetate, ethanol solution of BTC and pure ethanol were 

filled into three distinct containers and the Teflon tubes were separately inserted to the 

container though the cover of containers. In this case, the solution in the container can be 

pumped out along the tubes.  

• Set up the computer programs with appropriate parameters (growth cycles, pumping 

press, rinsing time, waiting time, etc), and then place the modified substrate on into the 

sample cell. 

• Running the programs. 

• The ethanol solution of copper acetate was firstly pumped into the sample cell and then 

15 min was left for the coordination of copper acetate with the functional group on the 

substrate.  

• Then the copper acetate solution was completely pumped out and immediately, pure 

ethanol is pumped into the sample cell for 4 min and then was completely pumped out to 

remove the excessive amounts of metal ions. 

• In the following, the ethanolic solution of BTC was pumped into the sample cell, and 

then 30 min was left for the coordination of organic ligands to the metal source.  

• Then the BTC solution was completely pumped out and immediately, pure ethanol is 

pumped into the sample cell for 4 min and then was completely pumped out to remove 

the excessive amounts of BTC. 

• By subsequently repeating the upper steps using the same modified gold substrate to 

receive a thicker HKUST-1 MOF thin film. 

1.2.2.4 Quartz crystal microbalance (QCM) 

Quartz crystal microbalance (QCM) is a piezoelectricity based instrument that allows monitoring 

small mass changes. A mechanical stress results in a measurable electric modification on some 

materials, generally a quartz crystal as originally discovered by the Curie brothers in 1880117. 

QCM has been used for microgravimetry since 1959, when Sauerbray reported a linear 

relationship between the oscillation frequency of the piezoelectric crystal and the mass of a 

bound film118. When a molecule adsorbs on the electrodes, the inertial mass of the system is 

increased, and as a consequence, the harmonics of the piezoelectricity driven oscillator are 
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into the QCM cell. Again a mass increase is monitored, and reveals a reaction of the linkers with 

the copper ions bonded on the electrode surface. An equilibrium is reached after a few minutes. 

The cell is then cleaned with pure ethanol.  This forms a reaction cycle which is repeated to grow 

thicker MOF films. This QCM technique not only provides a method to grow the MOF with 

layer by layer, but also helps understand the growth mechanism of the MOF films. In the present 

work, a Q-sense E4 Auto was used, as shown in Figure 1.10. It is an automated real-time 

analytical instrument for the studies of molecular events occurring on the electrode surface. 

 

Figure 1.10: The setup of quartz crystal microbalance (QCM) technique. 

1.2.3 Advantages and applications of SURMOFs 

1.2.3.1 Control over the growth orientation 

SURMOFs represent a kind of highly crystalline and oriented thin film MOF. More precisely, the 

growth orientation of SURMOFs can be controlled by the SAMs coating the substrate. For this, 

the first deposition cycle is of great importance since the orientation of the metal ions will initiate 

and guide further the growth. For an example, copper paddle wheel structure (Figure 1.11 a) is 

one of the most popular metal source employed to fabricate MOFs. The copper paddle wheel 

structure comprises a Cu(II) dimer bonded to four carboxylate groups. The two sites at the dimer 

axial positions are unoccupied and can be coordinated by H2O, –OH and pyridyl groups. The –

COOH groups exposed by the substrate surface can coordinate with two Cu(II), and lead to a 

stand-up orientation (Figure 1.11 b), whereas –OH groups favor bonding on the axial sites, and 
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cycles. The study reported by Arslan et al have demonstrated that the thickness of HKUST-1 

SURMOFs, fabricated using spray method, increased linearly with the number of growth 

cycles100. SURMOFs with well-defined thickness allow for better quantitative analysis of guest 

molecule events. For example, the SURMOFs can be used to determine the diffusion 

coefficients121. Additionally, MOF films with well-defined thickness are suited for MOF based 

device applications84. 

1.2.3.3 Versatile chemistry 

As mentioned before, the versatility of the fabrication chemistry is one of the most important 

properties of MOFs, and is based on the possibility to realize the framework from numerous 

metal and countless organic connectors. Compared to the powder MOFs, the layer-by-layer 

assembly techniques used for SURMOFs allow even more combinations, because the organic 

ligands or the metal ions can be changed during the synthesis (the building blocks are 

successively and repeatedly deposited on the substrate). A study have shown that the epitaxial 

growth of [Zn2(NDC)2(Dabco)] on [Cu2(NDC)2(Dabco)] (NDC: naphthalene-2,6-dicarboxylic 

acid) can be realized by changing the copper source with zinc source during the synthesis 

process122. In another example, layer-selective incorporation of functional groups can also be 

achieved by changing the ligand during the synthesis process123. This versatile chemistry with 

SURMOFs opens new doors for smart and advanced applications.  Recently, Heinke et al124 

reported the optically triggered release of guest molecules. This is realized by extending a MOF 

[Cu2(BPDC)2(BiPy), (BPDC: 4,4’-biphenyldicarboxylic acid)] core with a MOFs [Cu2(AB-

BPDC)2(BiPy), (AB-BPDC: 2-azobenzene-4,4’-biphenyldicarboxylic acid, BiPy: 4,4’-

bipyridine)] layer, where the azobenzene functioned as a UV switched lock. 

Some other SURMOF applications such as in sensing125, gas separation126, photonic127, 

electrochemistry128, and conductivity129 have also been investigated since recently. 

1.3 Post-synthetic modification (PSM)  

Post-synthetic modification (PSM) is the modification or the functionalization of a material that 

does not alter its main structure and is applied after the material has been synthesized completely.  

PSM allows developing materials with a variety of functionalities. This strategy can be used with 

various types of materials, including zeolite, and of course, MOFs. 

1.3.1 PSM of MOFs 

For the past decade, PSM has proven to be a very elegant method to modify finished MOFs. It 

offers vast possibilities to functionalize by covalently reacting molecules into the framework by 
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1.4 Objectives of this thesis 

For the past two decades, MOFs have been extended studied for potential uses in gas storage, gas 

separation, heterogeneous catalysis and magnetism. Recently, MOFs have also been found smart 

properties, such as proton and ion conductivity, photonic and electronic properties, 

photoluminescence and non-linear optical properties, static dielectric and super-capacitance 

properties. This has open new doors to more advanced applications, in which MOFs could be 

used as key materials for fuel cell, photonic and electronic, display, laser, memory switching and 

supercapacitor devices. To this end, MOFs, bulkily synthesized, do not satisfy the requirements, 

and thin film fabrication alternatives have become highly important. 

A number of experimental methods have been developed for the direct deposition of MOF thin 

films on solid substrate. Though almost all of them produce uniform thin films, the SURMOF 

technique have showed greater potential by growing highly crystalline and oriented thin films 

ever since the first report of SURMOFs 2007 by Wöll and co-workers. After the introduction of 

SURMOFs, more studies have had the emphasis of developing new types of SURMOFs, as well 

as the understanding of their growth mechanism. In addition, a number of techniques and 

methods have been derived, and optimize the produced MOF quality and morphology. Since 

more recently, the MOF scientists have started to switch their focus on the versatile chemistry of 

SURMOFs to allow further applications.  

Principally, the aim of this work was to construct functional SURMOFs, as well as, to tune their 

reactivity. It relied on the fact that the versatile chemistry of the SURMOFs not only 

encompasses the one from bulk MOFs, but also have the advantages brought by the fabrication 

control of the LPE layer-by-layer assembly.  

Heteroepitaxial growth of MOF-on-MOF structures has been realized for bulk MOFs, and has 

great potential to produce filters or sieves for molecular absorption and separation. However, it is 

mostly relying on the crystals lattice parameters being similar between the different MOFs. The 

first objective of the presented study was then to build a multiheteroepitaxial MOF system with a 

lattice constant gradient since MOFs are flexible structures, and the SURMOF technique controls 

the assembly process layer-by-layer. These MOF systems could then be used for the size-

selective loading of the metal-nanoparticles or proteins, with the large pore MOF layers serving 

as containers, and the small pore layers as sieves. 

Functionalization of MOFs can be realized by using linkers with extra functionalization, and also 

by PSM. Another focus of this study was to obtain functional SURMOFs using post-synthetic 

modification based on azide-alkyne click reaction, as well as to monitor such reaction using 

infrared reflection absorption spectroscopy (IRRAS) and surface X-ray diffraction (out-of-plane 

and in-plane XRD). The reaction dynamics of two types of azide-alkyne click reaction, Cu(I)-
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catalyzed and strain-promoted, were compared for the same MOF structure. 

If a PSM of a whole SURMOFs sample is practically feasible, a spatially and temporally 

controlled modification of it is yet to be realized. Therefore, another goal was the study of 

functional patterning of SURMOFs by PSM. This combined photolithography techniques, which 

allowed the functional groups to be bonded locally to the MOF structure. In this project, two 

types of click reaction were used: azide-alkyne click reaction and thiol-yne click chemistry. Both 

reactions could be photo-controlled. In the azide-alkyne case, photoinitiated Cu(II) reduction to 

Cu(I) can be used to catalyze the reaction, whereas the thiol-yne click chemistry could be 

induced directly by UV light.  

Though the presence of the coordinative defective sites in MOF crystals shows a structure is not 

perfect, it increases the material activity and functionality, for an example its catalytic activity. In 

this work, another aim was the tuning of Cu-paddle-wheel based MOFs with such coordinative 

defects knowing that post-synthetic thermal treatment can trigger the reduction of perfect Cu(II) 

to the defective Cu(I) sites. For this study, the defect-free UHM-3 SURMOFs was used as an 

investigation model, since other MOFs, such as HKUST-1, synthetically contain around 5% of 

defective Cu(I). The combined analyses of UHV-IRRAS, XPS, and XRD measurements allowed 

identifying a relationship between the defect content and the annealing temperature of the post 

synthetic treatment. The defect containing MOFs adsorbed guest molecule (CO and CO2) 

differently. Additionally, a collaboration with the theoretical chemistry group can be initiated for 

a better understanding regarding the bonding energy of these two gases. 
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2 Characterization methods 

Various, well established, characterization methods are available for the investigation of bulk 

material properties. With regards to surface science, analysis techniques are of great importance 

for the researchers.  

To face these challenges a numbers of characterization techniques, including X-ray diffraction 

(XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible 

spectroscopy (UV-Vis), optical microscope, fluorescence microscope, scanning electron 

microscope (SEM), atomic force microscopy (AFM), water contact angle measurement, quartz 

crystal microbalance (QCM), spectroscopic ellipsometry (SE) have been applied to character the 

produced SURMOFs in this PhD study.  

This chapter introduces the theoretical background and relevant instrument of the above-

mentioned characterization techniques, as well as specifies testing process relevant for 

SURMOFs 

2.1 X-ray diffraction  

X-ray diffraction (XRD) is perhaps the most widely used method to probe the structure, 

including atomic ordering and spacing of crystalline materials144. It is sometimes named X-ray 

powder diffraction as the samples used were originally in a powdery form. However, this 

technique can be also used to study crystalline thin film materials21, and in this thesis, XRD was 

applied to determine the crystalline structure of the produced SURMOFs. 

2.1.1 Theoretical background 

XRD is based on the constructive interference of monochromatic X-rays within a crystalline 

sample. A crystalline material possesses an ordered and periodic arrangement of elements in the 

three-dimensional space. The distances between the nearest neighboring atoms or ions are 

typically a few angstroms and are comparable with the magnitude of X-ray wavelengths. 

Therefore, when the monochromatic X-rays hit into the crystalline sample, the interaction of the 

incident X-rays with the crystalline sample will exhibit constructive interference in some 

scattering direction. This phenomenon is called as “X-ray diffraction”, and was first discovered 

by Laue in 1912. Soon after, 1913, Braggs successfully determined the crystalline structure of 

sodium chloride (NaCl) and potassium chloride (KCl) by using the X-ray diffraction in the 

crystals and obtained the famous Bragg's law, which shows the relation of X-ray diffraction and 

crystalline structure. According to the Bragg’s law, the diffracted X-rays exhibit constructive 

interference and diffraction patterns are visible when the path difference between the X-rays 
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material especially when having organic moieties146. IR spectroscopy is based on the specific 

vibrational modes of the chemical bonds in the materials.  A chemical bond between two atoms, 

being similar to a harmonic oscillator, only absorbs infrared radiation of certain frequencies. 

Typically, each molecule is a different combination of atoms and chemical bonds, and can give a 

unique IR ‘fingerprint’. Therefore, IR spectroscopy is used to identify different kinds of 

materials by matching database references. More particularly, IR spectroscopy is applied to 

detect the presence of functional groups, since each group also has a characteristic IR absorption 

spectrum. Additionally, changes in the size of resolved vibration peaks can be used to analyze 

quantitatively the proportion of the corresponding material or functional group. Furthermore, IR 

spectroscopy is also used to characterize the linkage environment of metal complexes. For an 

example, carbon monoxide (CO) bound to Cu(II), and to Cu(I) present different adsorption 

frequencies at 2179 cm-1, and 2121 cm-1, respectively147. Therefore, IR spectroscopy is an 

important and handy technique used by many chemists for the study of gas, liquid, and solid 

samples. Different IR techniques including transmission infrared spectroscopy, infrared 

reflection-absorption spectroscopy (IRRAS), attenuated total reflection (ATR) and ultra high 

vacuum infrared reflection-absorption spectroscopy (UHV-IRRAS) have been developed for 

different investigation conditions, and are now introduced.  

2.2.1 Transmission infrared spectroscopy 

Transmission infrared spectroscopy is the most common technique for the qualitative analysis of 

materials and the identification of their chemical composition thanks to the availability of a large 

number of spectral libraries. The samples can be solid, liquid or gaseous, but the preparations 

differ accordingly. For solid materials, thin films and thin polymer membranes that can be 

directly placed into the sample holder are readily analyzed. The powder samples can be mixed 

and pelleted (5% in weight) with another powder that is IR transparent, for an example 

potassium bromide (KBr). The pellet is placed into the sample holder for the IR acquisition. The 

liquid samples are prepared by squeezing liquid between two IR transparent windows. 

Additionally, some solid samples can be dissolved and also prepared in this way. The gas 

samples require a gas cell with suitable path length to enable detection.  

2.2.2 Infrared reflection-absorption spectroscopy 

Infrared reflection-absorption spectroscopy (IRRAS) is a powerful analytical technique for the 

characterization of adsorbed materials or thin molecular layers on metal surfaces148. An incident 

IR beam irradiates the sample layer, and is reflected toward the detector by the underneath 

metallic layer as metal substrates present a good IR reflectivity. Part of the spectrum is then 

absorbed by the sample layer while passing through it. The chemical composition of the 
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into the sample. The sample absorbs part of the energy corresponding to the vibration of the 

present chemical bond. The evanescent waves are then attenuated or altered. This is passed onto 

the reflected light and monitored by the IR detector. The infrared absorption spectrum of the 

sample can be then recorded. However, two requirements must be met for the measurement: (1) 

The sample must be in direct contact with the ATR crystal; (2) The refractive index of the sample 

must be significantly smaller than that of the ATR crystal. 

In this PhD study, ATR results were recorded from a Bruker Optics Tensor 27 spectrometer with 

a Bruker Optics Platinum® ATR (Attenuated total reflectance) accessory and a deuterated tri 

glycine sulfate (RT‒DTGS) detector.  The FTIR ATR spectra were recorded at room temperature 

(ca. 22 °C) with a resolution of 4 cm-1 using air as background. 

                   

Figure 2.6: Schematic illustration of ATR setup (Figure taken from Ref.150) 

2.2.4 Ultra high vacuum infrared reflection-absorption spectroscopy 

Ultra high vacuum infrared reflection-absorption spectroscopy (UHV-IRRAS) is a technique that 

the IRRAS measurement is carried out under UHV condition, in which the whole IR chamber 

with the pathway of infrared light is under UHV condition as shown in Figure 2.7 a and b151. In      

this condition, the IRRAS measurement provides a few advantages: (1) Avoid the contamination  

of the samples by ambient humidity or atmospheric gases. (2) Provide a long mean free path 

(MFP) for the IR light beam. (3) Allow dosing specific guest molecules for the investigation of 

adsorption and reaction phenomena. (2) Produce high quality infrared spectrum. 

 



 

Figure 

measure

UHV ap

In the 

specific

spectrom

UHV ch

2.7: Sche

ement (a) an

pparatus. (T

presented w

ally designe

meter (Bruk

hamber.  

ematic repr

nd transmis

Taken from R

work, the 

ed apparatus

ker Vertex 8

resentation 

ssion absorp

Ref.151) 

UHV-IRRA

s (Prevac, R

80v, Bruker

- 43 -

of reflect

ption of IR m

AS Fourier 

Rogów, Pola

r Optics, Et

tion-absorpt

measuremen

transform

and) as show

ttlingen, Ge

tion at gr

nt (b). (c) A 

results we

wn in Figure

ermany) is 

razing inci

specifically

re recorded

e 2.6 c, whe

directly cou

dence IR 

y designed 

d using a 

ere a FTIR 

upled to a 



 - 44 -

2.3 X-ray photoelectron spectroscopy  

X-ray photoelectron spectroscopy (XPS) is one of the most widely used techniques for the 

surface chemical analysis152. XPS technique was developed by Kai Siegbahn, who was awarded 

with the Nobel Prize in 1981for his significant contributions. 

XPS is based on the photoelectric effect, in which the bound electron in the core (inner) levels of 

the atom absorbs the energy (E=hν, where h is Plank's constant and ν is the frequency) of an 

incident photon and overcomes the work function (Φ) and then is emitted from the material 

surface as depicted in Figure 2.8. Note that the value of the work function of the material and the 

material in the spectrometer are denoted differently, as Φ1 and Φ2 in Figure 2.8. The kinetic 

energy of the emitted photoelectron is measured by the electron energy analyzer and the bonding 

energy of the photoelectron is calculated using the following equation: 

                  Ekin= hν - EB - Φ                                                                                      (2.2) 

Where Ekin is the kinetic energy of the photoelectron (relative to the vacuum level EV), EB is the 

bonding energy (relative to the Fermi level EF). 

In general, XPS apparatus consists of five essential components: an X-ray source, a sample 

holder, a UHV chamber, an electron energy analyzer, and a detector. The X-ray source produces 

X-ray photons which can be focused toward the sample on the sample holder. UHV condition is 

needed to increase the mean free path of photoelectron. The electron energy analyzer allows 

measuring the kinetic energy of the photoemitted electrons, as well as filtering them and letting 

pass a define energy distribution. The detector counts the number of the energetically selected 

photoelectrons passing through the exit slit of the hemispherical electron energy analyzer for a 

given time 

XPS allows a number of applications including the identification of chemical composition and 

chemical state, and their quantitative analyses. However, XPS is a highly surface specific 

technique which can only yield information up to 10 nm or less below the sample surface due to 

the limitation of the electron mean free path. In comparison, X-ray can penetrate micrometers 

below the surface. The sensitivity of the XPS measurement is mainly dependent on the spectra 

background level and the element specific photoelectron cross sections. In general, a high 

sensitivity (concentration down to 0.1 atomic%) can be achieved in XPS measurement153. 

Here, the XPS measurements were carried out with a specifically designed ultrahigh vacuum 

apparatus with a hemispherical electron energy analyzer (VG-Scienta R4000) and a non-

monochromatic Al Kα X-ray source, as shown in Figure 2.7c. 
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SEs and BSEs, both can be used for the imaging of a sample. However BSEs can also provide 

additional information about the elemental density of a sample as heavy elements (high atomic 

number) backscatter electrons more strongly than lighter elements (low atomic number) 

Therefore BSEs are commonly used to contrast between areas with different chemical 

compositions and to identify of the elemental distribution within a sample.  

The preparation of a sample, especially to deal with its insulation, is important to produce high 

quality images. In general, the high energy electron beam, leads to charge accumulation onto the 

sample surface, and especially due to insulation. This may cause displacement resulting in an 

unfocused and indistinct image. To avoid the issue, the sample surface is usually pretreated by 

coating with a few nanometers of gold or carbon. Noteworthy, carbon coating is more 

appropriate to BSEs measurement because gold, having a high atomic number, strongly 

backscatter electrons. 

In general, an energy dispersive X-ray (EDX) analysis system is attached to the SEM instrument 

to identify the elemental composition of the sample. The data recorded by the EDX analysis 

consist of spectra showing the peaks corresponding to the elements in the samples. This 

technique can be qualitative, semi-quantitative, quantitative and also provide spatial distribution 

of elements through mapping. Therefore by means of this technique an elemental mapping of a 

sample also becomes possible. 

In this study, SEM images were recorded using a Philips XL30 (FEI Co., Eindhoven, NL), a field 

emission gun environmental scanning electron microscope (FEG-ESEM), operated between 15 

keV and 30 keV, and 0.7 to 1.0 Torr chamber pressure. Elemental analyses was performed using 

an energy dispersive X-ray fluorescence spectroscopic unit (EDX) from EDAX (EDAX Inc., 

Mahwah, NJ, USA) with a liquid nitrogen cooled sapphire Si(Li) detector. For the spectra 

collection, the microscope was operated at 15 kV and a 100 mm aperture was used. Measurement 

times were five minutes for the collection of the spectra. 

2.8 Atomic force microscope 

Atomic force microscopy (AFM) is a high resolution type of scanning probe microscopy, which 

is applied to image the morphology of a sample surface with a three-dimensional (3D) detail159. 

The resolution can be down to the nanometer scale. The technique accept a wide range of the 

sample types including biological structures, such as cells and biomolecules160. Acquisition can 

be run in air, liquid, or vacuum condition. Generally, it is a non-destructive method. Therefore, 

AFM is one of the most widely used techniques for the topological investigation of 

nanomaterials and biological materials. 
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community because of its many applications including the study of non-sticky coating, self-

cleaning and biofouling preventing surfaces. 

In this PhD study, static water contact angles were measured using the sessile drop method with 

a home-built water contact angle measurement device. Typically, 3 μL of deionized water was 

used for the static water contact angle measurement. Pictures of the water droplets on the surface 

were taken with a UK 1115 digital camera (EHD imaging, Germany). Image J software with the 

Dropsnake plug-in was used to analyze the images. The reported water contact angle values were 

the average of at least three WCA values from repeated experiments. 

2.10 Quartz crystal microbalance for gas molecule loading 

The background and principle of quartz crystal microbalance has been introduced briefly in the 

previous chapter (1.2.3.4). Here the focus is directed on the measurement of gaseous molecule 

loading. 

As a guest molecules are adsorbed directly on the QCM electrode, or indirectly on the sample 

materials coating the electrode, the resonance frequency decreases due to the inertial mass 

increase. This allows a dynamic monitoring of an adsorption process116. In this thesis, 

SURMOFs were pre-grown on gold-coated QCM electrode. The gaseous molecule loading of the 

SURMOFs were carried out with a dissipation monitoring (QCM-D) instrument combined with a 

home-built gas phase controller as depicted in Figure 2.15. The gas phase controller control a 

flow of pure (6.0) argon gas (1) directly into the QCM cell (8) along the gas tube (7) or first into 

the liquid guest molecule container (5) and to evaporate and carry the guest molecules into the 

QCM cell. To perform the loading experiment, the SURMOFs were activated at 60 °C under 

pure argon flow overnight. Thereafter the temperature of the QCM cell was decreased to 30 °C 

to run the experiment, also under pure argon flow. When the baseline is obtained (stable 

oscillation frequency), the gas flow was adjusted to carry the guest molecules into the QCM-cell 

(Figure 2.16 ‘start to load’ point). The loading of the guest molecule in the SURMOFs resulted 

in the decrease of the observed frequency until it reached an equilibrium after a certain time 

(Figure 2.16 a). The maximum change of the frequency allowed computing the maximum mass 

loading (see Figure 2.16 b). The unloading experiment was carried out by switching the three-

way valve to flow pure argon into the QCM-cell (Figure 2.16 ‘start to unload’ point). When the 

physically adsorbed molecules were desorbed, the frequency changes went back to equilibrium. 

The difference of the frequencies (∆F), or masses (∆M), between the loading equilibrium and the 

unloading equilibrium were attributed to chemical or coordinated adsorption on the SURMOFs 

(Figure 2.16). 
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2.11 Spectroscopic ellipsometry 

Spectroscopic ellipsometry (SE) is an optical analysis technique used to determine the thickness, 

refractive index and relative permittivitiy of the thin films162. Typically, the SE technique relies 

on measuring the change of the polarization state of a light train passing through and interacting 

with the thin film sample. The polychromatic light is linearly polarized by a polarizer and is 

described by two orthogonal components in reference to the incidence plane: the s-polarized and 

p-polarized states (see Figure 2.17 a). The electric field of the s-polarized is perpendicular to the 

incidence plane while that of the p-polarized is coplanar. As the incident polarized light is 

reflected from materials, the polarization and intensity of the light are changed due to the 

interaction with the thin film. These changes depend on the thickness and the optical properties 

of the thin films. These changes are monitored with a rotating analyzer placed on the pathway of 

the reflected light as shown in Figure 2.16 c. After the reflected light passes though the rotating 

analyzer, the detector records the intensity change and phase shift between s- and p-polarized 

light. Compared to the incident and linearly polarized light, the reflected light is not linearly but 

elliptically polarized due to the distinct interaction of the p and s components with the thin film 

as show in Figure 2.16 a and b.  The complex reflectance ratio (ρ) can be directly calculated from 

the amplitude ratio (Ψ) and the phase difference (∆) according to the following equation: 

                              ρ = tan	(Ψ) × e௜∆                                                                          (2.5) 

Though the amplitude ratio (Ψ) and the phase difference (∆) are experimentally measured, the 

optical constant of the thin film cannot be directly determined. Therefore, a modeling analysis 

using an iterative procedure (least-squares minimization) is performed. The unknown optical 

constants and/or thickness based on the applied model are varied and all ellipsometry parameters 

are calculated using the Fresnel equation. The experimental data are tested with match function 

against the model to provide the desired parameters. In the case of multilayer samples the model 

considers the optical constants and thickness parameters of all distinct layers, thus each layer has 

to be modeled individually. Although ellipsometry is suited for of thin surfaces in ranges from 

sub-nanometers to a few microns, some surfaces are still difficult to investigate. As an example, 

with films deposited on glass substrates, the reflection from the backside of the glass strongly 

interferes with the reflection from the surface. 

In this PhD study, the film thicknesses were measured using an M-44 multiple wavelength 

ellipsometer from J. A. Woollam Co., Inc. (Lincoln, NE, USA) which was aligned at a fixed 

incident angle of 70° to the sample surface. An arc lamp with a high pressure Xe discharge point 

source operating in a wavelength range of 200–1000 nm was used. The data analysis was carried 

out using the modeling software WVASETM from J. A. Woollam Co. The SAMs and conditioning 

layer were modeled as a single Cauchy layer model with an estimated refractive index of 1.45. 
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3 Materials and experiments 

3.1 Materials 

Gold substrates (100 nm Au/5 nm Ti evaporated on Si wafers) were purchased from Georg 

Albert–Physical Vapor Deposition (Silz, Germany). 

16-mercaptohexadecanoic acid (MHDA, 99%), 11-mercapto-1-undecanol (MUD, 99%), copper 

(II) acetate hydrate (98%), copper(II) trifluoroacetate hydrate, zinc acetate dihydrate (≥98%), 

tetrakis(acetonitrile)copper(I) hexafluorophosphate (Cu(I)(CH3CN)4PF6, 97%), copper(II) sulfate 

(≥99%), benzene-1,4-dicarboxylic acid (BDC, 98%), naphthalene-2,6-dicarboxylic acid (NDC, 

99 %), Biphenyl-4,4′-dicarboxylic acid (BPDC, 97%), 2-aminoterephthalic acid (NH2-BDC, 

99%), 1,4-diazabicyclo[2.2.2]octane (Dabco,≥99%), phenylacetylene (98%), 2,2-Dimethoxy-2-

phenylacetophenone (99%), α, α′-dibromo-o-xylene (97%), 1-ethynyl-4-pentylbenzene (97 %), 

Alkyne MegaStokes dye 673, Alkyne MegaStokes dye 608, ethanol (99.99%), methanol(≥

99.9%), tetrahydrofuran (THF, ≥99.9%), tert-Butyl nitrite (90%), trimethylsilylazide (95%), 

ethyl acetate, acetic acid (100%), hydrochloride (37%, in water), hexane (≥95%), toluene (≥

99.9%), dichloromethane (≥99.8) were obtained from Sigma-Aldrich and used without further 

purification.  

3.2 Preparation of SAMs 

Preparation of MHDA SAMs on gold substrate 

The gold substrate was immersed for 48 h in a 20 μM MHDA solution (prepared by dissolution of 

MHDA in a 5% (v/v) acetic acid in ethanol solution), rinsed with pure ethanol, and then, gently dried 

under nitrogen flux to obtain the MHDA SAMs. 

Preparation of MUD SAMs on gold substrate 

The gold substrate was immersed for 24 h in a 1 mM MUD solution (prepared by dissolution of 

MUD in ethanol solution), rinsed with pure ethanol, and then, gently dried under nitrogen flux to 

obtain the MUD SAMs. 

Preparation of patterned SAMs on gold substrate 

Patterned SAMs were prepared using micro contact printing (μCp) technique. To obtain the SAMs 

on gold surface with different patterns, such as square, triangular, roundness and strip-type, an 

elastomeric polydimethylsiloxane (PDMS) stamp with corresponding pattern is need. To perform the 

preparation, the SAMs solution (MHDA or MUD) was dropped on the patterned PDMS stamp until 
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it fully covered the whole pattern on the stamp. And waiting 2 min allow the absorption of SAM 

molecule on the stamp surface. Then stamp was dried with nitrogen, gently pressed on the clean gold 

substrate for 2 min to obtain the patterned SAM on gold surface. Usually, this patterned SAMs 

modified substrate can be immersed into 1 mM 1-decanethiol ethanol solution for 5 min to block the 

non-patterned area with 1-decanethiol for receiving inert terminated groups around the patterned 

functional terminated groups (-OH or -COOH). 

3.3 Compounds or molecules loading in SURMOFs 

Loading Eu(bzac)3bipy into trilayer SURMOF systems 

The trilayer SURMOF systems (Cu-BDC+Cu-NDC+Cu-BPDC or Cu-BPDC+Cu-NDC+Cu-

BDC) were first activated at 80 °C for 4 h. Then the sample was broken into two parts and the 

pieces were immediately immersed into a 0.1 mM hexane solution of Eu(bzac)3bipy (bzac=1-

benzoylacetone, bipy=2,2’-bipyridine) at 60 °C for 72 h. Finally, the pieces were removed from 

the solution, rinsed with pure hexane and then dried in a flow of N2 before recording the SEM 

micrographs. 

Loading methanol into SURMOFs 

The loading of methanol was determined by gas-phase QCM using Zn2(N3-bdc)2(dabco)] 

SURMOFs grown on QCM gold substrates modified with a MUD SAM. The detail technique for 

the gas-phase loading experiment using QCM was introduced in the second chapter. Prior to the 

QCM measurements the SURMOF sample was activated at 60 °C for 4 h under a flow of pure 

nitrogen to remove any residual solvent hosted in MOFs. Before switching to the vessel 

containing methanol, pure nitrogen gas (carrier gas) was passed over the SURMOF sample to 

obtain a stable baseline. The adsorption curve was recorded at 25°C using a flow rate of 100 

sccm.  

Gas absorption and tuning defect sites in SURMOFs 

The adsorption of CO or CO2 gases in the UHM-3 MOF thin films were monitored using a 

specifically designed ultrahigh vacuum Fourier transform infrared (UHV-FTIR) apparatus 

(Prevac, Rogów, Poland), where a FTIR spectrometer (Bruker Vertex 80v, Bruker Optics, 

Ettlingen, Germany) is directly coupled to a UHV chamber. The X-ray photoelectron 

spectroscopy (XPS) measurements were carried out from the same UHV chamber by fitting it 

with a hemispherical electron energy analyzer (VG-Scienta R4000) and a non-monochromatic Al 

Kα X-ray source. Leaking valves allowed the dosing of CO and CO2 gases into the chamber. The 

dosed amount was expressed in langmuirs (1 L is equivalent to an exposure of 10-6 mbar of a gas 

during 1 second). The temperature of the SURMOFs sample was controlled by type K 

thermocouple bound to the edge of sample support. Once a sample was placed in and the UHV 
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was set, annealing could be carried out in-situ by simply increasing the temperature to 320 K, 

370 K, 420 K, 470 K, or 520 K, and heating continuously for 30 min. Thereafter, the sample was 

cooled down to a temperature of interest, if needed, gases were dosed in, and further 

measurements (XPS or IRRAS) were run. UHV was maintained at all times during these 

processes. 

3.4 PSM of SURMOFs 

PSM of Zn2(N3-bdc)2(dabco)] MOF thin films in volume and N3-bdc surface-modified 

[Zn2(bdc)2(dabco)] MOF thin films on the surface with Cu(I)-catalyzed click chemistry.  

The reaction solution was prepared by mixing 0.2 mL of phenylacetylene [0.1 mg of 1-ethynyl-

4-pentylbenzene or 0.1 mg of Alkyne MegaStokes dye 673 for surface modification] and 5 mg of 

Cu(I)(CH3CN)4PF6) into 4 mL of THF solvent under a nitrogen atmosphere. The bottles were 

sealed with covers to avoid contact with oxygen. The THF solvent was bubbled with nitrogen to 

remove residual oxygen in the solvent before adding the reactants. The solutions were then 

mixed in an ultrasonic bath for 5 min, and then the activated SURMOF sample was placed into 

the reaction solution under a nitrogen atmosphere. Finally, the bottles were sealed with covers 

again, and the reaction was carried out under continuous stirring at room temperature. After 

reaction, the sample was rinsed with pure THF and dichloromethane to remove residual reactants 

or catalyst and then dried in nitrogen gas. To monitor the reaction, the sample was taken out 

from the solution for the infrared reflection absorption spectroscopy (IRRAS) and X-ray 

diffraction (XRD) measurements at time intervals of 1 h. The reaction was continued afterward 

with the same sample. 

PSM of Zn2(N3-bdc)2(dabco)] MOF thin films with Cu-free click chemistry. 

The activated SURMOF samples were first immersed into THF, and then the surface 

functionalization was initiated by adding 1 mg of cyclooctyne derivative (either compound 1 or 2) 

under continuous stirring. The reaction was carried out at room temperature. After the reaction, 

the sample was rinsed with pure THF and dichloromethane to remove residual reactants and 

finally dried using nitrogen gas. To monitor the reaction, the sample was taken out for IRRAS 

and XRD measurements every 30 min. 

PSM of patterned Zn2(N3-BPDC)2(dabco)] SURMOFs with dye molecule using Cu-free 

click chemistry. 

The new-synthesized  patterned SURMOF [Zn(N3-BPDC)2(Dabco)] was firstly activated at 

80 °C for 4 h to remove the solvent remove residual solvent from the SURMOF pores. And then 

the activated sample was soaking in a toluene solution of Alkyne MegaStokes dye 608 (0.01 mM) 
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for 30 min at 60 °C. After the reaction, the sample was rinsed with pure toluene and 

dichloromethane to remove residual reactants and finally dried under a nitrogen stream. 

Cu(I) catalyzed alkyne–azide cycloaddition controlled by photoinitiated Cu(II) reduction. 

The new-synthesized SURMOF [Zn2(N3-BPDC)2(Dabco)] was firstly activated at 80 °C for 4 h 

to remove residual solvent. Then the sample was placed on the UV-light irradiation table. A THF 

solution of copper(II) sulfate, photoinitiator (2,2-Dimethoxy-2-phenylacetophenone), and alkyne 

terminated molecules (Alkyne MegaStokes dye 673) was deposited drop-wise on the surface of 

the activated SURMOF sample and covered with a quartz glass lid to avoid oxygen. A 

photomask on the lid allowed controlling the area exposed to light. Thereafter, the sample was 

exposed to UV irradiation, then rinsed with THF and dichloromethane to remove residual 

reactants, and finally dried under a nitrogen stream. 

Patterned decomposition of azide groups using photo-lithography and their PSM. 

The freshly synthesized SURMOF [Cu(N3-BPDC)] were activated at 80 °C for 4 h to remove the 

residual solvent from the SURMOF pores. A photomask was directly position on the top of the 

MOF surface and then were exposed to UV light irradiation at room temperature under 

atmospheric conditions. With regard to the PSM, the patterned irradiated SURMOFs were 

soaked in a toluene or THF solution of Alkyne MegaStokes dye 608 (0.01 mM) for 30 min at 

60 °C. After the reaction, the sample was rinsed with pure toluene and dichloromethane to 

remove residual reactants and finally dried under a nitrogen stream. 

Photo-induced thiol-yne click chemistry. 

 Likewise, the new-synthesized SURMOF [Zn2(alkyne-BPDC)2(Dabco)] was firstly activated at 

80 °C for 4 h and placed on the irradiation table. A ethanol solution of photoinitiator (2,2-

dimethoxy-2-phenylacetophenone) and thiol terminated molecules (anthracene-2-thiol) was 

deposited drop wise on its surface , and covered with a quartz glass lid. After irradiation, ethanol 

and dichloromethane were also used to rinse the sample of residual reactants. Finally, the 

samples were dried under a nitrogen stream. 

Layers-selected PSM of six-layers SURMOF systems. 

 The freshly synthesized six-layers SURMOF systems (Cu-N3BPDC+Cu-BPDC+Cu-

N3BPDC+Cu-BPDC+ Cu-N3BPDC+Cu-BPDC) were firstly activated at 80 °C for 4 h. Then the 

sample was broken into two pieces which were immediately immersed into solution of iodine 

reactant (methyl 2-((2-(1-fluorocyclooct-2-yn-1-yl)-2-oxoethyl)amino)-3-(4-hydroxy-3-

iodophenyl)propanoate) in toluene for 24 h at 60 °C. Thereafter, the pieces were recovered, 

rinsed with pure toluene, and then dried under a nitrogen stream before the SEM micrographs 

were recorded. 
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3.5 Theoretical calculation 

Theoretical model of the Cu-BDC and Cu-NDC interface. 

These theoretical calculations were contributed by, Prof. Thomas Heine and  Dr. Binit Lukose 

from Jacobs University Bremen. 

The Cu-BDC and Cu-NDC interface has been modeled by investigating a supercell incorporating 

5 times NDC and 6 BDC linkers along the interface, accounting to an interface length of 6.7 nm. 

Two layers are on top and below the interface, where the outer atoms are fully saturated using 

carboxylate group. Only one SURMOF layer (perpendicular to the growth layer) has been 

modeled. All geometries have been fully optimized using the density-functional based tight-

binding method (DFTB)164-166. The strain energy has been evaluated using the same method, by 

taking the structural units separately, saturating and relaxing them. The total strain energy of the 

Cu-NDC strip accounts to 0.22 eV/nm, the Cu-BDC strip is slightly stronger strained with 0.29 

eV/nm, and finally the bridging linkers contribute with 0.17 eV/nm, thus adding up to a total 

strain of 0.68 eV/nm. 

DFT calculations of perfect and defective UHM-3 with CO and CO2. 

These theoretical calculations were contributed by Prof. Thomas Heine, Dr. Andreas 

Mavrantonakis and Dr. Barbara Supronowicz from Jacobs University Bremen. 

Density Functional Theory (DFT) calculations were performed on two molecular clusters resembling 

the pristine and defect structure. In order to reduce the complexity of the system, instead of the fairly 

large dmsdip linkers the smaller BTC units were used. The cluster contained a dicopper moiety along 

with four (Cu(BTC)4) or three (Cu2(BTC)3) benzene tricarboxylate linkers for the pristine or defect 

case, respectively. The distant (i.e. not bound to the dicopper unit) carboxylate groups were saturated 

with lithium cations instead of protons. In this way, the two oxygen atoms of a distant carboxylate 

group are equivalent, whereas in the case of a proton saturation, two nonequivalent oxygen atoms 

would be generated. The pristine dicopper paddlewheel was always modeled in the high spin triplet 

spin state, with an unpaired electron per copper atom, whereas the defect paddlewheel was in the 

doublet spin state. This treatment have also been used in our previous work on CO adsorption on 

defect sites of HKUST-1 147. The models used in the present study are displayed in Figure 3.1. The 

B3LYP 167, 168 hybrid functional was applied in combination with the 6-311G(d) basis set for the non-

metal atoms and the LANL2TZ(f) for the copper along with the appropriate effective core potentials. 

London dispersion interactions were treated classically by Grimme’s approach (denoted as DFT-D3) 
169. The geometry optimizations were carried out using tight convergence criteria to obtain the 

minimum energy structures for the empty and CO/CO2 loaded pristine and defect paddlewheels. 

Subsequently, the loaded structures were all verified to be minima on the potential energy surface by 

performing a harmonic analysis. Due to the large size of the systems, only partial frequencies of the 
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guest molecules were computed. The binding energies were determined using the following 

expression: BE = E(MOF…guest) – E(MOF) – E(guest). Zero Point Energies (ZPEs) were always 

included. The interaction energies were always corrected for the Basis Set Superposition Error 

(BSSE) by applying the Counterpoise (CP) method 170. For the bonding analysis, we used the method 

of Weinhold 171 to calculate the natural bond orbitals (NBO) and the charges based on the natural 

population analysis (NPA).  All calculations were performed with the Gaussian 09 program suite 

(Gaussian 09, Revision D.01, Gaussian Inc., Wallingford CT, 2009). 

 

Figure 3.1: Cluster models of perfect and defective UHM-3 and their complexes with CO and 

CO2. 
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4 Results 

4.1 Multi-heteroepitaxial growth of SURMOF-2 series 

4.1.1 Background 

The countless number of different MOF types resulting from the combination of metal or metal-

oxo connectors with organic linkers can be extended further by employing heteroepitaxy. 

Growing different types of MOFs in a sequential fashion172-175 allows entering the next level of 

complexity. Of particular interest here is the stacking of MOFs with different lattice constants for 

some smart applications. For example in sensorics, it may be required to have a first layer of 

MOFs with pore sizes sufficiently large to accommodate nanoobjects such as proteins52 or metal-

nanoparticles. An additional topping layer with smaller pore size could then serve as a filter to 

reduce cross-talk in MOF-based sensors.176 However, a combination of MOF materials with 

different lattice constants is a major challenge, because the heteroepitaxy of conventional 

materials requires lattice constant matching, that is, the lattice constant of the material to be 

grown must match that of the templating substrate. Particularly important is the case of metal-on-

semiconductor epitaxy, where sophisticated strategies are used to overcome the restrictions 

imposed by the fact that the second material must match the lattice constant of the first material 

by better than 2 %.177  

Here, we show the epitaxial growth of different MOF types with lattice constant mismatches as 

large as 20 %. The experiments were carried out by using the structure platform provided by 

SURMOF-2, an isoreticular class of metal organic frameworks described in previous work.53  

SURMOF-2 is synthesized from Cu-acetate and dicarboxylic acids using LPE method,53 and the 

crystal structures of the compounds used in this study are shown in Figure 4.1. For better 

understanding of this heteroepitaxial growth, a collaboration with the theoretical chemistry group 

of Prof. Thomas Heine and Dr. Binit Lukose was initiated and the quantum chemical calculations 

were used to determine the related interface energy penalty and the theoretical results 

demonstrated that the intrinsic elasticity of MOFs helps to yield epitaxial growth also in case of 

strongly different lattice constants. 
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a second MOF layer with a smaller lattice constant of 1.34 nm was formed on the first one. A 

comparison to the XRD-data recorded for the corresponding SURMOFs made directly using Cu-

acetate and NDC reveals that the structures are identical. Note, the XRD peaks located at 5.9° 

demonstrate that the initial SURMOF layer is still present. In the next step, an even shorter 

ligand, BDC (benzene-1,4-dicarboxylic acid), was used. Again, the XRD data (peaks labeled 

(001)A and (002)A) shown in Figure 4.2 (black curve, out-of-plane) and Figure 4.2 (black curve, 

in-plane) demonstrate that a third type of MOFs with the same orientation but with a lattice-

constant decrease to 1.12 nm has been grown on the supporting substrate (Cu-NDC). 

In order to demonstrate that the constraint of lattice matching is virtually nonexistent for this 

reticular class of MOFs, we have instead of stepwise decreasing the lattice constant as in the 

example presented above also realized the opposite scenario of increasing lattice constants. To 

perform the experiment, we started here first with an initial layer of Cu-BDC (with a pore-size of 

1.12 nm) and then continued to deposit Cu-NDC and finally Cu-BPDC, thus increasing the pore-

sizes to 1.34 nm (NDC) and finally 1.55 nm (BPDC). The resulting scenario is shown in the 

schematic illustration displayed in Figure 4.3 (2). As confirmed by the out-of-plane [Figure 4.3 

(1)] and in-plane [Figure 4.3 (3)] X-ray diffractograms, also for this case of increasing lattice 

constants the heteroepitaxial growth proceeds without difficulties despite the rather pronounced 

lattice mismatch. 

Additionally, an analysis of the peaks-widths in the out-plane XRD-data (Figure 4.2 (1) and 4.3 

(1)) using the Debye-Scherrer equation yields average domain sizes of 35 nm for MOF-A, 31 nm 

for MOF-B and 52 nm for MOF-C in the case of A+B+C systems and 37 nm for MOF-A, 36 nm 

for MOF-B and 96 nm for MOF-C in the case of C+B+A systems. For the in-plane XRD-data 

(Figure 4.2 (3) and 4.3 (3)), it yields average domain sizes of 60 nm for MOF-A, 40 nm for 

MOF-B and 25 nm for MOF-C in the case of A+B+C systems and 36 nm for MOF-A, 33 nm for 

MOF-B and 52 nm for MOF-C in the case of C+B+A systems. 
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CF3 vibration can be observed from the hetero-SURMOFs (Cu-BDC+Cu-NDC), but not from a 

homogenous Cu-BDC SURMOFs. Therefore, using the geometry indicated in the upper part of 

Figure 4.7 as starting point, a geometry optimization was carried out for a model with a thickness 

of one layer on each side of the heterojunction. The resulting geometry is shown in Figure 4.7 

(bottom), which demonstrates that the lattice distortion imposed by this rather large lattice 

mismatch is confined to the immediate vicinity of the junction. 

There is a significant difference between the interface of the heterojunction between two MOF 

phases, exemplified for the Cu-BDC-on-Cu-NDC MOFs, and typical interfaces between 

covalently bound materials, as for example semiconductors. In the latter case, unsatisfied 

valences result in the formation of dangling bonds, leading to a severe energy penalty and also a 

chemical instability resulting from the pronounced chemical reactivity of dangling bonds. In case 

of metal−organic frameworks, because of the large pore size enough space is available to 

annihilate such vacancies by attaching a smaller chemical functionality in this case an acetate 

group instead of the large organic linkers (BDC, NDC, or BPDC) used to build the MOF 

framework. As a result, all valences at the MOF/MOF heterointerface can be fully satisfied, and 

the only contributions to the energy penalty resulting from the lattice mismatch come from 

excess strain. The strain energy, that is, the summation of the deformation energy of all 

connectors and linkers compared to the pristine MOF lattice, accounts to a total of 0.68 eV per 

nm interface length, normalized for one layer. This is significantly less than the energy of a 

typical covalent bond, which amounts to 3 eV or more. Moreover, the strain is delocalized over a 

rather large area, allowing for little local stress. 

The relatively low lattice deformation energy that is necessary to form the heteroepitactic 

interface can be understood in terms of the very small elastic constants that are present in MOFs. 

For SURMOF-2 we obtain, within DFTB values for the bulk modulus of B = 37.4 GPa for 

SURMOF-2 (BDC) and of B = 22.1 GPa for MOF-2 (NDC). These values are similar to those of 

other MOFs (B = 34.7, 15.34, 10.10, and 10.73 GPa for HKUST-1, MOF-5, −177, and DUT-6 

(MOF-205) within DFTB.165 This elastic constant is about one order of magnitude lower than 

those of normal inorganic solids such as silicon or III−V semiconductors.180 

4.1.5 Summary 

we have demonstrated in this study that the idealized, highly crystalline, oriented hierarchically 

porous MOF crystal structure, Cu-BPDC/Cu-NDC/Cu-BDC and Cu-BDC/Cu-NDC/Cu-BPDC, 

with large lattice mismatches of 19.6 and 15.7% for which a synthesis using the conventional 

route is either difficult or impossible, can be readily prepared by using a liquid phase epitaxy 

scheme involving a layer-by-layer deposition on a templating organic surface. Such unusually 

strong lattice mismatches are possible as no chemical bond defect is introduced to the structure, 
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and the associated stress is distributed over a large volume. The availability of MOF coatings 

with vertical pore size gradients opens up the possibility to use them in multilevel filtering 

systems or in MOF-based sensors.181 

This chapter is based on a publication in Nano Letters in February 2014182 and the quantum 

chemical calculations were contributed by Dr. Binit Lukose and Prof. Thomas Heine from 

Jacobs University Bremen. 

4.2 Liquid-phase epitaxial growth of azido-based SURMOFs and their post-

synthetic modification  

4.2.1 Background 

An enormous number of topologically equivalent MOFs with very similar unit cells but 

differently functionalized linkers have been realized in the past. Although, in most cases, the 

linker functionalization does not affect MOF growth, there are exceptions where the new 

function interferes with the MOF forming process and a direct growth cannot be observed.55, 131, 

141, 183 For these cases, the so-called post-synthetic modification (PSM) offers an alternative, 

because the addition of the target function is carried out after the MOF lattice is formed. In the 

past few years, numerous studies have shown that bulk MOFs built from organic linkers 

exhibiting functional groups, such as −NH2, −OH, −NO2, and −N3, are well-suited for the PSM 

process.55, 131, 141, 183 In a number of works, it has been demonstrated that PSM is particularly 

attractive in the context of providing a platform material that can then be functionalized to 

optimize certain properties, e.g., in the context of sensors,184 semiconductors,185 and molecular 

sieves.186  

Among the different approaches to PSM, a coupling via click chemistry, the copper(I)-catalyzed 

azide-alkyne Huisgen 1,3-dipolar cycloaddition (CuAAC),187 is particularly appealing because 

the reaction can be carried out with high yields under mild conditions.137, 188-191 Although the 

method has been very successful for the PSM of MOFs, it does exhibit a few disadvantages. In 

particular with regard to biological applications,192-195 the necessity to use a Cu(I) catalyst is a 

drawback, because some of the Cu(I) metal ions will remain in the converted MOF and a 

thorough cleaning is necessary for the applications where the cytotoxic metal ions are unwanted. 

In addition, typically, the total conversion yield in click-chemistry based PSM of MOFs is 

substantially lower than 100%. The remaining azide groups may hinder more advanced 

applications of surface-anchored MOF (SURMOF) thin films, e.g., in the context of proton 

transport pathways in fuel cells.196 Recently, a strain-promoted metal-free click reaction, azide-

alkyne cycloaddition (SPAAC), has been developed to solve these problems.197-199 However, 
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cycloaddition reaction for 8 h. The reaction leaves the XRD peak positions unchanged. 

Furthermore, the widths of the peaks show no or very small changes, providing strong evidence 

that the thickness of the SURMOF layers has remained unaffected.200 We thus conclude that the 

PSM reaction does not change the periodicity, crystallinity, and orientation of the SURMOFs 

and the backbone of the frameworks is not affected by the click reaction. Control experiments 

where SURMOFs were immersed into solutions containing only Cu(I) catalyst or only 

phenylacetylene did not lead to any changes of the SURMOF structure (see the Supporting 

Information of Ref. 201).  

In the case of PSM with phenylacetylene, the maximum number of reacted N3 groups was found 

to be slightly more than 90% (a total of six samples were investigated). The fact that not all N3 

groups could be converted is attributed to steric effects, which affect the diffusion of the catalyst 

into the MOF. Also, the subsequent removal of the Cu(I) catalyst from the SURMOFs after click  

 

Figure 4.13 EDX data of [Zn2(N3-bdc)2(dabco)] MOF thin films after Cu-catalyst click reaction, 

followed by soaking in ethanol under ultrasonic for 4 h. 
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4.2.4 Surface modification of SURMOFs 

The successful modification of the N3-SURMOFs using Cu(I) catalyzed azide−alkyne 

cycloaddition allows for anchoring different types of functional groups onto the outer surface of 

the SURMOF for a rational modification of surface properties, e.g., hydrophilicity/ 

hydrophobicity, the selective attachement of target analytes,172 and optical response (e.g., 

fluorescence123, 202). Here, hydrophobic functionalities (1-ethynyl-4-pentylbenzene) and 

fluorescent labels (Alkyne MegaStokes dye 673) were employed to modify SURMOF surfaces 

using CuAAC (see Figure 4.15). The hydrophobic property of SURMOFs before and after the 

modification was characterized with contact angle measurement, as shown in panels a and b of 

Figure 4.16. The surface-functionalized SURMOFs obtained by the click reaction exhibited a 

substantial higher hydrophobicity than the pristine SURMOF. The water contact angle increased 

from 19° for N3-bdc functionalized [Zn2(bdc)2(dabco)] SURMOFs (Figure 4.16a) to 62° for the 

SURMOFs after modification with long alkane molecules (Figure 4.16b). An intense and 

homogeneous red fluorescence is observed after grafting the Alkyne MegaStokes dye 673 to the 

SURMOF surface using the click reaction (see Figure 4.16d). The IRRAS results in Figures 4.17 

(1) and 4.17(2) also demonstrate that a quantitative yield can be achieved with the click reaction 

on the SURMOF surface. 
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4.2.5 PSM of [Zn2(N3-bdc)2(dabco)] SURMOFs using SPAAC 

                                   

Scheme 4.2: Click reaction of N3-bdc ligands in the [Zn2(N3-bdc)2(dabco)] SURMOFs using 

strain-promoted azide-alkyne cycloaddition 

In comparison to the Cu(I) catalyzed azide-alkyne cycloaddition, the advantage of the metal-free 

azide-alkyne cycloadditions is that they proceed in the absence of metal catalyst and the potential 

toxicity or contamination of metal catalysts for the products can be avoided.197, 198, 203-206 In the 

case of the Cu(I)-induced catalysis, three species have to be in close proximity (azide, Cu(I) 

catalyst, and alkyne) to trigger the reaction, while in the case of the SPAAC reaction, only two 

species are required (alkyne and azide). Accordingly, one would expect that reaction times are 

faster and that reaction yields are higher compared for the SPAAC reaction than for the Cu-

catalyzed reaction. However, the azides do not react easily with alkynes in the absence of a metal 

catalyst. In the earlier studies, different approaches have been developed to increase the 

reactivity of alkyne groups to allow for metal-free azide-alkyne cycloadditions under mild 

conditions. One elegant approach was reported by Wittig and Krebs,207 who achieved alkyne 

activation by incorporating the alkyne group into an eight-membered ring. This strategy has been 

elaborated lately on various types of cyclooctynes, in particular in cellular systems.197 The 

scheme of SPAAC is illustrated in Scheme 4.2 for compounds 1 and 2. The detail modification 

process was displayed in chapter 3 (3.4). As shown in panels A and B of Figure 4.18, the peak 

intensity of the characteristic ν(N3) stretching vibration at 2114 cm−1 gradually decreases with 

increasing the time. Overall, the reaction proceeds much faster than the Cu(I)-catalyzed reactions  
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functionality like an amino group to a linker severely affects SURMOF growth and frequently 

renders the synthesis impossible), the azido-based SURMOFs used in this study provide an 

excellent platform to add the desired functionalities without affecting the SURMOF growth 

process. The tedious optimization of growth conditions for each new type of ligand can now be 

replaced by a rational, straightforward subsequent reaction with high (almost 100%) yield. In 

addition to sensor, this finding is expected to have a pronounced impact on biological and 

biomedical applications of SURMOFs.195, 208 As an example, the covalent grafting of small 

peptides will provide the possibility to render antimicrobial properties to SURMOFs. 

This chapter is based on the publication in Langmuir in November 2013201 and Dr. Sylvain 

Grosjean, Dr. Tobias Hagendorn and Prof. Stefan Bräse synthesized the organic compound (2-

azidoterephthalic acid and cyclooctyne derivative) used in this study and the detail processes are 

displayed in chapter 6 (6.1).  

4.3 Patterning of MOF thin films using post-synthetic modification 

4.3.1 Background 

The ability to pattern the MOFs on the surfaces is essential for the development of MOF-based 

device. For the past decade, a lot of the research effort has been directed toward patterning MOF 

thin films on a given substrate84, 112. However, most of the patterning technologies whether 

bottom-up or top-down approaches only offer a way to control the shapes of MOF films in the 

mounting surface plane dimensions (x and y dimensions)112 and it is limited by the initial 

patterning. As such, it does not enable a full three-dimentional (3D) control. The LPE approach 

used relies on a stepwise, layer by layer, building block deposition101, which allows producing 

hybrid and multiheteroepitaxial SURMOF systems122, 182. Therefore, controlling the patterned 

functionalization of MOF thin film along growth direction (z dimension) would become possible. 

Additionally, the x and y dimension control could also arise from its quality of having a high 

porosity. There are enough space that the organic linkers, as well as the metal connector, are 

effectively accessible for further chemical reaction after the MOF fabrication, in a process named 

post synthetic modification (PSM)209. In this work focus was on azide-alkyne click chemistry as 

it offers appealing PSM schemes188, 201, 210. Click chemistry has already proven to be a reliable 

tool to graft modifications, as described in the last chapter (4.2), but more importantly, the 

derived reactions can be influenced by UV exposure211-215. They can be either started using 

photo-initiators211, 212, or in the contrary, prevented through azide photodecomposition215. This 

major feature enables the use of available photolithography techniques to modify the SURMOFs. 

Considering the above mentioned chemistries, we present preliminary results and lay the 

foundations for a methodology combining a top-down (UV lithography) and bottom up (LPE 
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spraying) approaches and using MOFs as pseudo 3D multifunctional resist material. In this work, 

our study is divided into five parts. In the first part, the growth of patterned azido-SURMOFs on 

patterned SAMs using a recent developed robot dipping method and the PSM of such patterned 

azido-SURMOFs by strain-promoted azide-alkyne click chemistry were demonstrated. The 

second part showed that the PSM of SURMOFs could be controlled in a spatial and temporal 

fashion for the patterned modification of azido-SURMOFs by using a photolithography 

technique, which directed photo reduction of Cu(II) to Cu(I) and enabled the catalysis of azide-

alkyne click action of alkyne molecules on azido-SURMOFs. In the third part, the patterned 

decomposition of azide functional group in azido-SURMOFs by UV irradiation combined with a 

photo mask was achieved and revealed by PSM with alkyne molecules grafted on the rudimental 

azide area by strain-promoted click chemistry. In a fourth part, another photoreaction for 

patterning was probed by photo-induced thiol-yne click chemistry. In the last part, the design of 

3D-patterned multifunctional SURMOFs was sought. A multilayer MOF system was grown by 

alternatively stacking two structure, MOF-A and MOF-B. A layer-selective staining process then 

revealed the quality of hetero-layer deposition. This multilayer could be used for the patterned 

modification by UV lithography to reach the 3D-patterned multifunctional SURMOFs. 

4.3.2 Deposition of MOFs on patterned SAMs modified Au-substrate and their 

post-synthetic modification. 

As mentioned in the first chapter (1.2.1.2), to grow MOF thin film on the solid surface by LPE, 

the substrate usually needs to be coated with SAMs or treated by plasma to yield a surface of 

dentate group such as -COOH, -OH, -NH2 and pyridyl that provide the location of MOF 

materials99, 216. The LPE SURMOF technique is well suited to obtain a patterning of MOF thin 

film through the controlled deposition of the MOF building blocks since a huge numbers of 

methods have been extent studied to obtain patterned SAMs with dentate and non-dentate 

terminal groups on solid-substrate217-219. Our previous works has demonstrated successful in 

growing patterned SURMOFs from patterned SAMs by an auto-pump LPE system220. However, 

the morphology and roughness have not been satisfying enough to meet advanced application 

requirement. The most possible reason is the suboptimal removal of the uncoordinated metal 

connectors or organic linkers excess from the reaction surface, which affects the following step  
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4.4 Tunable coordinative defects in UHM-3 SURMOFs by post-synthetic 

thermal treatment and their application for gas adsorption 

4.4.1 Background  

MOFs that exhibit accessible coordinative unsaturated metal sites are particularly interesting for 

sensing and catalytic applications225-227. Such active sites not only improve the adsorption 

properties with regard to hydrogen (H2)
228-230, methane (CH4)

46, carbon dioxide (CO2)
227, or 

carbon monoxide (CO) gases 226, 231, but also function as Lewis acid sites in catalytic 

applications232, 233. Only certain types of MOFs possess such active metal sites in their regular 

lattice. For example HKUST-1 displays open metal sites at the axial positions of the Cu(II) 

dimer234. However, studies reported that such active sites can also be generated via the 

introduction of defects, e.g. missing linkers. Wu and coworkers 235 have reported direct structural 

evidence in UiO-66 (University of Oslo-66) materials of such active defect sites due to the 

absence of linkers. Such defects strongly affect the CO2 adsorption behavior of UiO-66, as 

shown by a striking CO2 uptake enhancement with increased defect concentration. More recently, 

Fischer and coworkers have reported a series of defect-engineered MOFs (DEMOFs) made by 

adding small concentrations of linkers with a reduced number of carboxylate groups to the 

reactant solution236, 237. They have also demonstrated that the reduction of carboxylate groups 

coordinated to the Ru2 paddle-wheel centers enhances CO adsorption and can catalyze 

dissociative CO2 chemisorption as well as olefin hydrogenation reactions 237.  

Another strategy to introduce or increase the number of defective (or undercoordinated) metal 

sites in MOFs is to apply a postsynthetic treatment. Vermoortele and coworkers have used 

postsynthetic treatment of MIL-100 with inorganic acids to increase the number of Lewis and 

Brønsted sites, resulting in higher activity and selectivity in Diels−Alder reactions238. Szanyi and 

co-workers have found that Cu(II) dimers in HKUST-1 can be reduced and oxidized to Cu(I) by 

postsynthetic thermal treatments. These reactions produce defects, where Cu(I) and Cu(II) 

entities coexist inside the hybrid structure, and increased the active site population239. Our 

previous studies have also confirmed that the Cu(I) defects in HKUST-1 SURMOFs can be 

induced by annealing treatment99, 147. Noticeably, Nijem and co-workers have reported that those 

Cu(I) defects in HKUST-1 exhibit a preferential adsorption of NO compared to H2O 240. A more 

thorough study on the induction of defect sites in these materials is however hampered to some 

extent by the fact that the nominally ideal material contains a synthetically inherent and relevant 

proportion of defective sites147.  

To tackle this issue, we focus on the fabrication of a different MOF, UHM-3, which also contains 

Cu-paddle wheel units. UHM-3229, also referred to as PCN-12-Si (isoreticular to PCN-12 228), is 

constructed by the coordination of di-copper and 5,5’-(dimethylsilanediyl)diisophthalate 
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Figure 4.37: Out-of-plane XRD patterns: SURMOFs UHM-3 sample grown on a MHDA SAM 

surface (top curve), simulated diffraction pattern for a bulk MOF UHM-3 (bottom curve) and 

simulated diffraction pattern for a surface oriented MOF layer of UHM-3 (middle curve). 

The structure of the LPE grown thin film was examined using XRD. A typical experimental 

pattern is displayed in Figure 4.37 (top curve). Compared to the diffraction patterns of the bulk 

UHM-3 material (Figure 4.37, bottom curve), only the peaks at the 2θ positions of 5.3°, 10.6°, 

and 15.9° appeared for the thin film sample. This is consistent with the XRD patterns of the bulk 

UHM-3 where the reflexes at 5.3°, 10.6° and 15.9° are assigned to the (111), (222) and (333) 

diffraction planes 229. To aid the interpretation of these XRD-data, a diffraction pattern for a (111) 

oriented UHM-3 SURMOF layer was simulated (Figure 4.37, middle curve). The good 

agreement of the peak positions and the relative intensities between the experimental and the 

simulated patterns confirmed the presence of a well-ordered MOF thin film exhibiting a (111) 

orientation.  
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Figure 4.38: IRRA spectrum of UHM-3 SURMOF sample grown on a MHDA SAMs. 

Chemical structure characterization of the pristine MOF thin film was also carried out using 

infrared spectroscopy. The corresponding IRRAS data displayed in Figure 4.38 shows 

characteristic asymmetric vibration peaks of carboxylate groups at 1640 cm-1 and 1424 cm-1. The 

bands at 1457 cm-1 and 1370 cm-1 are assigned to the symmetric vibration of carboxylate 

moieties and indicated that such groups from dmsdip linkers had coordinated with copper ions to 

form the paddle wheel units. Additionally, we observed a very weak vibration band at 1705 cm-1 

which is assigned to a C=O stretching vibration.  

4.4.3 Coordinatively unsaturated dicopper units in UHM-3 SURMOFs 

To identify the co-existence of Cu(II) and Cu(I) in UHM-3 SURMOFs, CO was used as a probe 

molecule since the stretching frequency of CO adsorbed to the metal centers within the porous 

MOF structure can be easily measured by IR spectroscopy and used to draw a conclusion on the 

charge state of Cu-ions147. The highly oriented and crystalline pristine UHM-3 MOF thin films 

were first characterized by IRRAS at low temperature (110 K) under UHV conditions. For the 

empty MOF, no vibrational bands were observed in the range of 2300–2000 cm-1 (Figure 4.39 a, 

black-colored dashed curve). After dosing CO (by backfilling the UHV chamber), a strong 

vibrational band at 2175 cm-1 was detected (Figure 4.39a black-colored continuous curve). This 

band is blue shifted by 32 cm-1 with respect to the gas phase CO frequency of 2143 cm-1 and is 

assigned to CO bound to Cu(II) sites147. Subsequently, the sample was heated to different 

temperatures, cooled back to low temperature and then again exposed to CO. The IR spectra 
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Figure 4.39: UHV-IRRA spectra (a) and XPS curves (b) of a UHM-3 SURMOF sample in a 

pristine state, and after successive annealing at 320 K, 370 K, 420 K, 470 K, and 520 K. At first 

and after each annealing, the sample was cooled down to 110 K before the measurements were 

carried out. XPS data for the copper 2p3/2 region are shown. XPS experimental curves are 

depicted with circles and the deconvoluted curves according to the Cu(I) and the Cu(II) 

populations with plain lines. IRRAS spectra were acquired before (dashed line) and after (plain 

line) a 5 L CO dosing. 

depicted in Figure 4.39(a) upper panels show that for annealing to temperatures below 320 K no 

new vibration bands are detected. After annealing to 370 K a new, strong band at 2118 cm-1 as 

well as a weak feature at 2153 cm-1 were observed. Whereas the vibrations at 2118 cm-1 can be 

assigned to CO bound to Cu(I) sites 147, the origin of the weak band is unclear. Note the fact that the 

width of the band at 2118 cm-1 is clearly larger than the band at 2175 cm-1. 

The Cu(II/I) ratio in the UHM-3 SURMOFs was also determined using XPS (Figure 4.39b). XPS 

can be easily applied to SURMOFs supported on a metal but not to the powder material where 

electrical charging greatly complicates the data interpretation. The analysis of the XPS data 

(Table 4.2) shows that the Cu(I) defect density was below 1% in pristine samples, and that the 

amount of Cu(I) defects clearly increased when higher annealing temperatures were used, until 

all Cu(II) atoms were reduced to Cu(I) after annealing to 520 K.  
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Table 4.2 Results from XPS data fitting. 

Temperature 

/ K 

 

Binding Energy / eV Ratio / % 

Cu(I) Cu(II) Cu(I)/ 

[Cu(I)+Cu(II)] 

300 - 935.2 <1 

320 932.9 935.0 2 

370 932.9 934.9 7 

420 933.1 934.9 27 

470 933.2 935.0 51 

520 933.3 - >99 

 

 

Figure 4.40: XRD patterns for UHM-3 SURMOF sample that were annealed at different 

temperatures. 

The crystallinity of UHM-3 MOF thin films after annealing to different temperatures was analyzed 

by XRD. The XRD patterns shown in Figure 4.40 reveal no changes in the position and intensity of 

the reflexes up to an annealing temperature of 420 K, where the Cu(I) concentration amounts to 27%. 
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For higher annealing temperatures the intensity of the diffraction peaks decreased. The thin film lost 

its crystallinity (i.e. all diffraction peaks disappeared) after annealing to 520 K.  

4.4.4 Adsorption of CO2 and coadsorption of CO and CO2 in UHM-3 SURMOFs 

with defects 

Firstly, we monitored the adsorption of CO2 at the metal atoms within the UHM-3 structure for 

different amounts of Cu(I) defects (see Table 4.2). Figure 4.41 shows the UHV-IRRAS results for 

pristine UHM-3 SURMOFs with different CO2 amounts dosed. Already for small exposures (5L), a 

distinct peak at a position of 2336 cm-1, assigned to CO2 adsorbed at Cu(II) sites, was clearly 

observed. When increasing the CO2 dosing, (Figure 4.41), the peak intensity increased, accompanied  

 

Figure 4.41: UHV-IRRA spectra from a pristine UHM-3 SURMOF sample with dosing different CO2 

amounts. All spectra were recorded at 110K. 

by a slight blue shift to 2343 cm-1. A weak feature at 2275 cm-1 was attributed to the minor natural 

occurrence of 13C isotopes in CO2. In the high frequency range (3800– 3500 cm-1), two other 

vibration peaks were observed at 3593 cm-1 and 3698 cm-1 after increasing the dosages to 10 L.  
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Figure 4.42: UHV-IRRA spectra of a pristine and then 470 K annealed UHM-3 SURMOF sample 

with dosing 5 L CO2. All spectra were recorded at 110 K. 

 

Figure 4.43: UHV-IRRA spectra of a 470K-annealed UHM-3 SURMOF sample with dosing CO and 

CO2 mixture (1:1) at different temperature and showing a preferential desorption of CO. 
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Figure 4.44: UHV-IRRA spectra of pristine UHM-3 SURMOF samples in a pristine state, after an 

annealing at 420 K and another at 470 K before and after dosing 5 L of CO2 and 5 L of CO. All 

spectra were recorded at 160K. 

Subsequently, the UHM-3 SURMOFs were heated to 470K (to generate Cu(I) sites) and then 

exposed again to CO2. Surprisingly, no new bands were observed (Figure 4.42), revealing that CO2 

bound to Cu(I) has the same vibrational frequency as CO2 bound to Cu(II). With another set of 

experiments, we examined the co-adsorption of CO and CO2 on a SURMOF sample heated to 470 K. 

In such a sample, half of the Cu(II) ions were reduced to Cu(I) (Table 4.2). The sample was cooled 

down to 107 K and 5 L of a CO/CO2 (1:1) mixture were dosed into the UHV chamber. The 

adsorption of both, CO and CO2, species was clearly detected (Figure 4.43). Then, the temperature of 

the sample was increased stepwise and up to 240 K. After each step of increasing, an IR spectrum 

was recorded. We found that CO was completely desorbed from the Cu(II) sites at 119K. When 

increasing the temperature to 142 K, the CO2 vibrations disappeared, whereas the vibration 

characteristic for CO bound to Cu(I) sites was still visible and disappeared only after heating to 200 

K. The dosing and desorption experiment was repeated on the same sample and showed no 
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noticeable changes in the selective adsorption properties of the SURMOFs.  

For a sample temperature of 160 K no adsorption of CO or CO2 could be detected (see Figure 4.44). 

Only after creating Cu(I) species through annealing to 470 K (Figure 4.44) the IR spectra revealed 

the adsorption of CO within the MOF.  

Table 4.3 Calculated B3LYP-D3 binding energies (kJ/mol), vibrational frequencies of CO 

(stretching mode) and CO2 (asymmetric mode) on the Cu(I) and Cu(II) sites and their 

corresponding shifting with respect to the free gas molecules. The experimental vibrational shifts 

are also reported. The charge Forward- and Back-donation as calculated from the NBO analysis 

is also given. 

Guest  Site (Modela) BE 

(kJ/mol)b 

Δvcalc 

(cm-1)c 

Δνexper 

(cm-1)d

Charge Forward-

donation  

(guest  M) 

Charge Back-

donation 

 (M guest) 

CO CuI (Defect) -60.2 -42 -25 0.30 0.18 

 CuII (Defect) -20.4 +35 +32 0.27 0.05 

 CuII 

(Pristine) 

-23.2 +28 +32 0.22 NO 

CO2 CuI (Defect) -23.8 -13 -13 0.04 NO 

 CuII (Defect) -23.9 -10 -13 0.04 NO 

 CuII 

(Pristine) 

-26.5 -10 -13 0.05 NO 

aDefect corresponds to the Cu2(BTC)3 molecular model and Pristine to the Cu2(BTC)4. 
bThe binding energies include the Zero Point Energies and have been corrected for the BSSE. 
cThe calculated stretching frequency for free gaseous CO is 2220 cm-1 and the calculated asymmetric mode for free 

CO2 is 2435 cm-1.  
dThe experimentally observed frequencies for CO on the SURMOF are 2118 & 2175 cm-1 and for CO2 is 2336 cm-1.  

4.4.5 DFT calculations 

DFT calculations were contributed by Prof. Thomas Heine, Dr. Andreas Mavrantonakis and Dr. 

Barbara Supronowic from Jacobs University Bremen. 

Results of the DFT calculations are summarized in Table 4.3 and the structures are shown in Figure 

3.1 in the third chapter. At the B3LYP-D3 level, the binding energy of adsorbed CO2 on both sites, 

that is, at Cu(I) and Cu(II) models, is -23.8 kJ/mol. The asymmetric stretching frequency of the 

adsorbed CO2 molecule was reduced by 13 and 10 cm-1 for the Cu(I) and Cu(II) sites, with respect to 
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4.4.6 Experimental results and discussion 

The XRD, IR, SEM and XPS data demonstrated that with the LPE fabrication process, well-defined, 

homogeneous, and highly oriented MOF thin films with the same structure as bulk UHM-3 were 

grown. The XRD results also confirmed that these UHM-3 films were highly crystalline, and that the 

obtained crystals grew along the [111] direction only (Figure 4.37). In the pristine films the density of 

Cu(I) defects was below 1%, an amount clearly lower than the 4% observed in the related HKUST-I 

material that has been fabricated with the same deposition method 147. 

In the ideal UHM-3 structure, the coordination of a Cu(II) dimer with four carboxyl groups of 

the linkers yields a fully coordinated paddle wheel unit (Figure 4.35). The XPS data, as well as 

the CO-adsorption results, demonstrated that the applied annealing treatment induced a partial 

reduction of Cu(II) to Cu(I). In the absence of any other possible reductive species than the 

linkers (heating was carried out under UHV-conditions), we propose that either a Cu(II)-

catalyzed oxidative decarboxylation or a Cu(II)-catalyzed cross coupling of the linkers occurred. 

Such reactions have been known for a long time 242, but have not yet been studied under the 

present conditions (part of a porous solid, vacuum). Further investigations will be required to 

identify the details of this reaction in more detail. In any case, the reduction of the Cu(II) to Cu(I) 

will lead to a loss of carboxylate moieties that coordinate to the Cu dimers. The XRD and XPS 

results demonstrated that a small amount of missing carboxylate groups did not affect the crystalline 

structure of the UHM-3. Even at a relative Cu(I) concentration of  27%, the UHM-3 structure was 

still essentially intact (Table 4.2 and Figure 4.40). However, at a defect concentration of 50.9 %, the 

XRD data revealed that the structure had collapsed, with the intensity of the diffraction peaks 

decreasing drastically. After a 520 K annealing, the XPS data showed the total reduction of Cu(II) to 

Cu(I), and no XRD peak was observed. These results demonstrated that it was possible to induce a 

fairly high density of defects without losing the ordered packing of the paddle wheel units in the 

UHM-3 structure when annealing temperatures between 420 K and 470 K were used. This is in 

agreement with the results of Wenzel and coworkers who have found their powder UHM-3 MOF 

samples to be still highly crystalline after a 24 h post-synthetic thermal treatment in vacuum at 

around 420 K (150 °C)229. 

The vibration at 2175 cm-1 can be clearly assigned to CO bound to Cu(II) species in structurally 

flawless parts of the UHM-3 SURMOFs. An investigation of the temperature dependence of this 

peak (see Figure 4.43) revealed a continuous decrease until heating up to 119 K, above which 

temperature the peak completely disappeared. A quantitative analysis results in a binding energy of 

0.34 eV, a value identical to the one reported previously for HKUST-I147. The vibrations at 2118 cm-1 

arising from CO bound to Cu(I) sites showed a similar temperature dependence. In this case, 

however, the peaks were visible for temperatures up to 200 K. This corresponds to a binding energy 

of 0.46 eV which is again similar to the value reported for HKUST-I147.  
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The experimental data suggest that CO2 binds weakly to the Cu(II) species in pristine UHM-3 with 

an asymmetric stretch frequency of 2336 cm-1 for a low loading, which shifts to 2343 cm-1 for higher 

CO2 loading. We attributed this small blue shift to inter-molecular couplings that occur when multiple 

CO2 bind to the same Cu(II) site. The two vibrational peaks observed after dosing 10 L at 3593 and 

3698 cm-1 are tentatively assigned to ν1 (symmetric stretching) and ν3 (asymmetric stretching) mode 

combination overtones.  

Surprisingly, the vibrations for CO2 bound to Cu(II) and Cu(I) appeared at the same position in the 

IRRA spectra. This unexpected insensitivity to the charge state of the Cu ions can be understood on 

the basis of the DFT calculations. They reveal a rather weak interaction of the molecules with both, 

Cu(I) and Cu(II), and – in contrast to CO – only a very small charge transfer. The theoretical results 

for the CO2 ν1-shift relative to the gas phase, -10 cm-1, are in excellent agreement with the 

experimental value of -13 cm-1.  

The computed binding energies are presented in Table 4.3. According to the B3LYP-D3 calculations, 

CO on Cu(I) has the largest binding energy with around -60 kJ/mol, and CO2 on Cu(I)/Cu(II) has an 

energy around -24 kJ/mol, relatively close to the approximately -20 kJ/mol obtained for CO on 

Cu(II). The CO/Cu(I) and CO/Cu(II) binding energies are fully consistent with previous experimental 

and theoretical work. The theoretical CO2/Cu(I) and CO2/Cu(II) binding energies are slightly lower 

than the value (36 kJ/mol) calculated from the temperature dependent disappearance of the IR 

vibration peak upon heating (Figure 4.43).  

The NBO analysis shows that the binding to the differently charged Cu-ions, Cu(I) and Cu(II), is 

rather different for CO, but essentially identical in case of CO2 (Table 4.3). In the case of CO, there is 

a constant donation of ~0.30 |e| from the C atom to the metal through the σ bond to both, Cu(I) and 

Cu(II). For the Cu(II) binding, the calculations reveal a negligible back-donation of ~0.05 |e| from the 

metal to the CO π* antibonding orbitals. For adsorption at Cu(I), this back-donation is much stronger 

with 0.18 |e|. This explains the higher binding energy for Cu(I). The relevant NBOs of CO that are 

participating in the interaction with the metal sites are shown in Figure 4.46. The overall charge 

transfer is 0.20 |e| for Cu(II) and only 0.1 |e| for Cu(I).. In the case of CO2, an identical behavior with 

the Cu(I) and Cu(II) centers is calculated with a negligible charge transfer of 0.04 |e| from the CO2 

molecule to the MOF. Upon interaction with the metal site, a redistribution of the electron density is 

occurring from the carbon and distant oxygen atoms towards the oxygen atom closest to the metal. 

The proximal oxygen atom receives an excess of electron density in comparison to a free 

unperturbed molecule, whereas the carbon and the distant oxygen atoms loose electron density 

(Figure 4.47). This explains why the CO2 molecule interacts in the same manner with Cu(I) and 

Cu(II), whereas CO shows different behaviors. 
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Figure 4.47: Plot of the electron redistribution upon interaction of CO2 with the Cu(I) and Cu(II) 

sites. Densities plotted with a contour value of 0.001 e•A3. 

To investigate the gas separation properties of the material, an annealed sample with a Cu(I) 

concentration of  51% was exposed to a mixture of CO and CO2. The IRRA spectra showed that only 

CO bound the UHM-3 in the temperature range of 140-200K.  

4.4.7 Summary 

In this work, UHM-3 MOF thin films were grown using a LPE based method at room 

temperature on a gold substrate coated with a COOH terminated SAM. The XRD results 

demonstrated that the produced SURMOFs were highly crystalline and oriented. CO adsorption 

experiments, as well as XPS measurements, revealed a very low Cu(I) defect density quantified 

below 1%. Defects were induced in a controlled fashion by an annealing treatment that caused a 

reduction of Cu(II) to Cu(I). Up to a Cu(I) concentration of 27%, no major degradation of the 

crystalline order was observed. Whereas the binding energy of CO to Cu(I) is substantially 

stronger than to Cu(II), the binding of CO2 is very similar with both Cu species. DFT 

calculations were fully consistent with the experimental findings and confirmed that the chemical 

interaction of CO2 with Cu(I) and Cu(II) is rather weak, as, in contrast to the binding of CO to 

Cu(I) and Cu(II), no charge transfer seems to occur. Also, the calculated vibrational modes were 

in excellent agreement with the experimental observations. Our results demonstrated that post-

synthetic annealing offers an interesting alternative to produce MOFs containing different 

concentration of defects. 

This chapter will be submitted as an article for publication and Prof. Michael Fröba, Dr. 

Stephanie E. Roggenbuck and Dr. Katharina Peikert synthesized the organic ligands (5,5’-

(dimethylsilanediyl)diisophthalate) used in this study. 
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5 Conclusions 

This PhD thesis showed the preparation, characterization and application of new-type surface 

mounted metal-organic frameworks (SURMOFs). Liquid phase epitaxy (LPE) process was used 

for growing the thin films on functionalized substrates, as this layer-by-layer procedure yields 

highly oriented and crystalline MOF thin films. The growth orientation was controlled through 

having a substrate SAMs coating with specific functional group terminations. Additionally, the 

layer-by-layer procedure allowed controlling the film thickness by adjusting the number of 

growth cycles. The crystal structure and chemical composition of the produced SURMOFs were 

determined by X-ray diffraction (XRD) and infrared reflection-adsorption spectroscopy (IRRAS). 

The resulting data showed the quality of the samples and confirmed the reliability of the method. 

The objective of this thesis was focused on constructing functional SURMOFs, as well as, tuning 

their reactivity for challenging applications. 

Since the layer-by-layer approach allows us to separately control the deposition of metal and 

organic linker on the substrate, it advantageously enables changing the composition of the 

SURMOFs along the growth direction during the fabrication. This was put into practice, and a 

hierarchically organized MOF multilayer system with pronounced differences in the size of the 

nanoscale pores was successfully realized at first. The huge lattice constant variability was 

obtained by depositing integratively the components of SURMOF-2 structures namely Cu-BDC, 

Cu-NDC and Cu-BPDC, with lattice constants of 1.12, 1.34, and 1.55 nm respectively. The out-

of-plane and in-plane XRD results confirmed the crystallinity and orientation of this tri-layer (or 

ternary phase) system, and demonstrated that lattice constant increase (Cu-BDC+Cu-NDC+Cu-

BPDC) and decrease (Cu-BPDC+Cu-NDC+Cu-BDC) were both possible despite the rather 

pronounced lattice mismatch (19.6% and 15.7%, respectively). A collaboration with the 

theoretical chemistry group of Prof. Thomas Heine and Dr. Binit Lukose was initiated to 

understand this remarkable mismatch tolerance that a thorough theoretical analysis of the MOF-

on-MOF heterojunction structure and energetics was carried out. The vacancies left by the huge 

lattice mismatch can be healed with acetate groups that originate from the applied metal source 

reactant, since MOFs present available pore space that acetate groups can easy diffuse into for 

annihilating the vacancies. This theoretical hypothesis was confirmed experimentally: since 

fluor-labeled acetate has a specific IR absorption, it was used as a marker to reveal the presence 

of acetate ligands at the heterojunctions by IRRAS. The theoretical analysis also demonstrated 

that the low elastic constant of MOF materials can help them overcome the excess strain induced 

from the huge lattice mismatch. In all, the results indicated that the epitaxial growth of integral 

hetero MOF thin film with huge lattice mismatch was possible. This extends the possibilities for 

the fabrication of functional and complex MOF systems fabrication for the realization of more 

advanced application, such as multilevel filtering systems and MOF-based sensors. 
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The focus in the second part was on the fabrication of MOFs with defined functional group 

distribution within the material or over its surface, and on the subsequent (i.e. post fabrication) 

chemical modification of these active groups. Post-synthetic modification (PSM) provides 

additional pathway to obtain MOFs materials otherwise not realizable with a direct synthesis 

process. A strategy based on azide-functionalized MOF was established and layer-pillar MOFs 

[Zn2(N3-bdc)2(dabco)] were synthesized. The out-of-plane and in-plane XRD results 

demonstrated that SURMOF [Zn2(N3-bdc)2(dabco)] were grown on MUD-SAMs modified 

substrate with [001] orientation. PSM was carried out based on the linker azide group reactivity. 

Two different reaction pathways were used namely Cu(I)-catalyzed azide-alkyne click reaction 

(CuAAC) and strain-promoted azide-alkyne click reaction (SPAAC). The IRRAS and XRD 

results demonstrated that both reaction pathways succeeded in the PSM of [Zn2(N3-bdc)2(dabco)]. 

Advantages and disadvantages of both methods were revealed by comparing each other. In the 

case of CuAAC, cytotoxic Cu(I) ions, that cannot be removed completely after the reaction, 

would be a drawback for the biological applications. Additionally, three species (azide, Cu(I) 

catalyst, and alkyne) have to meet in close proximity to initiate the reaction. This is a challenging 

condition given the limited diffusion of reactants through the nanopores, and resulted in low 

reaction yield. Both problems could be overcome by SPAAC, where a metal catalyst is not 

needed. After optimization of the reaction conditions, conversion yields of nearly 100% were 

achieved. Though the synthesis of active alkyne derivatives required more complicated 

procedures compared to the common alkyne derivatives, SPAAC-based PSM of MOF materials 

should attract considerable attention for application in the fields of biomedicine, or proton and 

electron transport. 

The ability to obtain patterned SURMOFs is also essential for the development of MOF-based 

devices. Here patterned SURMOFs could be grown on a patterned SAMs, since the terminal 

groups such as –COOH or –OH on the SAMs provide the primal and only ligation of metal 

connectors. Micro contact printing (μCp) technique was used to produce these –OH terminated 

patterned SAMs. Patterned SURMOF [Zn2(N3-bpdc)2(dabco)] were grown on such SAMs with 

[001] orientation using a robot dipping apparatus comprising a ultrasonic cleaning process. This 

yielded uniformly patterned MOF thin films with high quality and high selectivity. The 

morphology and roughness was determined using optical microscopy and atomic force 

microscopy. Additionally, fluorescence dye markers were used to label the patterned SURMOFs 

based on a SPAAC reaction scheme. The fluorescence images confirmed the labeling was 

successful and the patterned SURMOFs were formed. Since the azide-alkyne reaction used for 

the PSM can be influenced by the UV-induced reduction of Cu(II) to Cu(I), the functional 

patterning of monolithic SURMOFs was achieved and the functional groups were specifically 

localized in the MOF structure. Such experiments were performed using a photo mask and only 

irradiated parts reacted as evidenced by the fluorescent images when using alkyne terminated 
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dye molecules as reactants. However, the azide group could also be destroyed by UV irradiation, 

which at first appeared as a drawback with this reaction scheme. This was used as a strategy for 

functional patterning. In a first step, a SURMOF-2 namely [Cu(N3BPDC)] was synthesized and 

the azide groups in the SURMOFs were locally destroyed by UV exposure through a photo mask. 

As a result, the subsequent SPAAC reaction could only occurred in the non-irradiated areas. This 

was also confirmed by the fluorescent images when active alkyne terminated dye were used as 

reactant. In addition, photo-induced thiol-yne click chemistry was also used for the functional 

patterning of SURMOF [Zn2(alkyne-bpdc)2(dabco)]. To realize a 3D functional patterning of 

SURMOFs, a six-layers MOF system (Cu-N3BPDC+Cu-BPDC+ Cu-N3BPDC+Cu-BPDC+Cu-

N3BPDC+Cu-BPDC) was synthesized and the azide groups allowed the later staining with iodo-

labelled reactant using SPAAC reaction. This multilayer system was imaged by SEM with the 

detection of backscattered electrons since material with heavy elements like iodine should scatter 

electron more strongly. This revealed the successful growth of such multilayer system that 

should bring the control into the three spatial dimensions for the modification of SURMOFs. 

In the fourth part, the defect engineering of SURMOFs and its application for adsorption of gas 

molecule such as CO and CO2 were investigated. The presence of Cu(I) defects in Cu(II)-based 

MOFs usually makes the material more reactive. Here, UHM-3, a Cu(II) paddle wheel composed 

MOF, was investigated. The SURMOFs were grown on MHDA-SAMs along the [111] 

orientation. The SEM images demonstrated the resulting UHM-3 MOF films being continuous 

and homogenous with no evidence of cracks. Exposure of the UHM-3 SURMOF to carbon 

monoxide (CO) adsorption experiments, as well as XPS measurements, revealed a very low 

density of Cu(I) defects (<1%) in pristine film (i.e. before annealing). The postsynthetic 

annealing under ultra-high vacuum allowed a controlled induction of Cu(I) defect sites, through 

the reduction of Cu(II). XRD results demonstrated that a small quantity of defects (up to a Cu(I) 

concentration of 27%) did not affect the crystalline order. Both theoretical (Contributed by the 

group of Prof. Thomas Heine, Dr. Andreas Mavrantonakis and Dr. Barbara Supronowic) and 

experimental results demonstrated the bonding energy of CO/Cu(I) being higher than that of 

CO/Cu(II) and CO2/Cu(I)+Cu(II). The selective adsorption with CO–CO2 mixture at 

temperatures ranging from 140 to 200 K, showed the potential of such a fabrication and 

modification strategy to produce materials for gas separation. 
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Synthesis of 2-azido-[1,1'-biphenyl]-4,4'-dicarboxylic acid (azido-BPDC) and 2-ethynyl-

[1,1'-biphenyl]-4,4'-dicarboxylic acid (alkyne-BPDC).  

The synthesis was done by Prof. Stefan Bräse and Dr. Sylvain Grosjean from Karlsruhe Institute 

of Technology. 

The key intermediate dimethyl 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylate (1) was prepared via a 

literature procedure 245. The procedure was displayed in Scheme 6.1. 

 

Scheme 6.1: Synthesis of 2-azido-[1,1'-biphenyl]-4,4'-dicarboxylic acid (azido-BPDC) and 2-

ethynyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid (alkyne-BPDC) 

2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (2) 246. Dimethyl 2-aminobiphenyl dicarboxylate 

(1) (1.00 g, 3.51 mmol, 1 eq) was suspended in tetrahydrofuran (30 mL). A solution of potassium 

hydroxide (1.18 g, 21.03 mmol, 6 eq) in water (20 mL) was added and the reaction mixture was 

refluxed for 20 h. Tetrahydrofuran was evaporated under reduced pressure then HCl 6M was 

added until pH = 1. The aqueous suspension was filtrated, the solid was washed with water and 

methanol, and dried in vacuo to give (2) as a pale yellow solid (0.86 g, 95%). 1H-NMR (500 
MHz, DMSO-d6): δ = 13.04 (br-s, 2H, CO2H), 8.03 (d, 2H, J = 7.5 Hz, CHAr), 7.67 (s, 1H, 
CHAr), 7.63 (d, 2H, J = 7.5 Hz, CHAr), 7.49 (d, 1H, J = 8.0 Hz, CHAr), 7.28 (d, 1H, J = 8.0 Hz, 

CHAr) ppm. 13C-NMR (125 MHz, DMSO-d6): δ = 167.1 (CO2H), 167.0 (CO2H), 142.3 (CIV
Ar), 

140.3 (CIV
Ar), 132.1 (CIV

Ar), 131.2 (CIV
Ar), 130.8 (CHAr), 130.0 (CIV

Ar), 129.8 (CHAr), 129.0 

(CHAr), 121.3 (CHAr), 119.3 (CHAr) ppm. IR (ATR): ν = 3349, 1678, 1606, 1430, 1392, 1234, 

1114 cm-1. MS (EI) m/z = 257 [M+]. HRMS (EI) m/z C14H11NO4, calcd.: 257.0688, found: 

257.0681. 

2-azido-[1,1'-biphenyl]-4,4'-dicarboxylic acid (azido-BPDC)247. 2-aminobiphenyl dicarboxylic 

acid (2) (0.40 g, 1.56 mmol, 1 eq) was dissolved in dry tetrahydrofuran (45 mL) and tert-

butylnitrite (0.56 mL, 4.67 mmol, 3 eq) was added at T = 0°C. After 15 min. stirring 
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trimethylsilylazide (0.41 mL, 3.11 mmol, 2 eq) was added at T = 0°C and the reaction mixture 

was slowly allowed to room temperature and stirred for 48 h. The reaction mixture was 

evaporated under reduced pressure and the solid was treated with cold tetrahydrofuran and 

filtrated, then dried in vacuo to give (azido-BPDC) as a yellow-white solid (0.43 g, 97%). 1H-

NMR (500 MHz, DMSO-d6): δ = 13.22 (b-s, 2H, CO2H), 8.02 (d, 2H, J = 7.5 Hz, CHAr), 7.85-

7.81 (m, 2H, CHAr), 7.64 (d, 2H, J = 7.5 Hz, CHAr), 7.56 (d, 1H, J = 7.5 Hz, CHAr) ppm. 13C-

NMR (125 MHz, DMSO-d6): δ = 167.0 (CO2H), 166.3 (CO2H), 141.1 (CIV
Ar), 137.2 (CIV

Ar), 

135.7 (CIV
Ar), 131.9 (CIV

Ar), 131.4 (CHAr), 130.2 (CIV
Ar), 129.6 (CHAr), 129.2 (CHAr), 125.9 

(CHAr), 119.9 (CHAr) ppm. IR (ATR): ν = 2119, 1684, 1556, 1493, 1394, 1279 cm-1. MS (EI) 

m/z = 283 [M+], 255 [M+-N2]. HRMS (EI) m/z C14H9N3O4, calcd.: 283.0593, found: 283.0586. 

Dimethyl 2-iodo-[1,1'-biphenyl]-4,4'-dicarboxylate (3). Dimethyl 2-aminobiphenyl dicarboxylate 

(1) (1.43 g, 5.00 mmol, 1 eq) was suspended in 15% hydrochloric acid (10 mL), the suspension 

was cooled at 0°C and a solution of sodium nitrite (0.40 g, 5.75 mmol, 1.15 eq) in water (3 mL) 

was added dropwise. The mixture was stirred at 0°C for 10 min., then a solution of sodium 

iodide (0.90 g, 6.00 mmol, 1.2 eq) in water (3 mL) was added dropwise; the resulting solution 

was heated at 60°C for 20 min. The reaction mixture was poured into water (50 mL) and 

extracted with ethyl acetate (3 x 250 mL). The combined organic phases were washed with a 10% 

sodium sulfite solution and brine, dried over Na2SO4, filtered and concentrated under reduced 

pressure. The residue was purified with column chromatography (silica gel, toluene) to give (3) 

as a white solid (1.27 g, 64%). 1H-NMR (500 MHz, CDCl3): δ = 8.62 (s, 1H, CHAr), 8.12 (d, 2H, 

J = 8.5 Hz, CHAr), 8.06 (d, 1H, J = 8.0 Hz, CHAr), 7.42 (d, 2H, J = 8.5 Hz, CHAr), 7.35 (d, 1H, J 

= 8.0 Hz, CHAr), 3.95 (s, 6H, CO2CH3) ppm. 13C-NMR (125 MHz, CDCl3): δ = 166.9 (CO2CH3), 

165.5 (CO2CH3), 150.1 (CIV
Ar), 147.8 (CIV

Ar), 140.9 (CHAr), 131.1 (CIV
Ar), 130.0 (CIV

Ar), 129.8 

(CHAr), 129.6 (CHAr), 129.4 (CHAr), 129.3 (CHAr), 97.5 (CIV
Ar-I), 52.6 (CO2CH3), 52.4 (CO2CH3) 

ppm. IR (ATR): ν = 2950, 1717, 1592, 1435, 1372, 1273, 1195 cm-1. MS (EI) m/z = 396 [M+], 

365 [M+-OCH3]. HRMS (EI) m/z C16H13IO4, calcd.: 395.9859, found: 395.9855. 

Dimethyl 2-((trimethylsilyl)ethynyl)-[1,1'-biphenyl]-4,4'-dicarboxylate (4)245. Dimethyl 2-

iodobiphenyl dicarboxylate (3) (1.00 g, 2.52 mmol, 1 eq), copper iodide (24 mg, 0.13 mmol, 0.05 

eq) and bis(triphenylphosphine)palladium(II) chloride (53 mg, 0.08 mmol, 0.03 eq) were 

dissolved in a mixture of tetrahydrofuran and triethylamine (1/1, 50 mL) under argon. 

Trimethylsilylacetylene (TMSA) (1.05 mL, 7.57 mmol, 3 eq) was added and the mixture was 

stirred at room temperature for 24 h under argon. The reaction mixture was diluted with water 

(100 mL) and extracted with dichloromethane (3 x 200 mL). The organic phase was washed with 

water and brine, then dried over Na2SO4, filtered and evaporated under reduced pressure. The 

residue was purified with column chromatography (silica gel, dichloromethane / n-hexane, 

Rf(DCM/nHx:7/3) = 0.27) to give (4) (0.84 g, 91%) as a yellow-white solid. 1H-NMR (500 MHz, 
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CDCl3): δ = 8.26 (d, 1H, J = 1.5 Hz, CHAr), 8.09 (d, 2H, J = 8.0 Hz, CHAr), 8.03 (d, 1H, J = 8.0 

Hz, J = 1.5 Hz, CHAr), 7.70 (d, 2H, J = 8.0 Hz, CHAr), 7.45 (d, 1H, J = 8.0 Hz, CHAr), 3.95 (s, 

3H, CO2CH3), 3.94 (s, 3H, CO2CH3), 0.14 (s, 9H, Si(CH3)3) ppm. 13C-NMR (125 MHz, CDCl3): 

δ = 167.0 (CO2CH3), 166.3 (CO2CH3), 147.1 (CIV
Ar), 144.0 (CIV

Ar), 134.9 (CHAr), 129.8 (CIV
Ar), 

129.7 (CHAr), 129.6 (CHAr), 129.6 (CIV
Ar), 129.5 (CHAr), 129.3 (CHAr), 122.0 (CIVAr-C≡CTMS), 

103.2 (ArC≡CTMS), 99.5 (ArC≡CTMS), 52.5 (CO2CH3), 52.4 (CO2CH3), -0.3 (Si(CH3)3) ppm. 

IR (ATR): ν = 2948, 2896, 2155, 1715, 1605, 1431, 1386, 1278, 1185 cm-1. MS (EI) m/z = 366 

[M+], 351 [M+-CH3], 335 [M+-OCH3]. HRMS (EI) m/z C21H22O4Si, calcd.: 366.1287, found: 

366.1282. 

2-ethynyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid (alkyne-BPDC). Dimethyl 2-

((trimethylsilyl)ethynyl)biphenyl dicarboxylate (0.50 g, 1.36 mmol, 1 eq) was dissolved in 

tetrahydrofuran (20 mL). A solution of potassium hydroxide (0.77 g, 13.64 mmol, 10 eq) in 

water (15 mL) was added and the reaction mixture was stirred at room temperature for 72 h. 

Tetrahydrofuran was evaporated under reduced pressure and HCl 6M was added until pH = 1. 

The brown-yellow milky suspension was extracted with ethyl acetate (3 x 150 mL), the 

combined organic phases were washed with a water and brine, dried over Na2SO4, filtered and 

concentrated under reduced pressure to give (alkyne-BPDC) as a yellow-white solid (0.33 g, 

92%). 1H-NMR (500 MHz, DMSO-d6): δ = 13.19 (b-s, 2H, CO2H), 8.10 (s, 1H, CHAr), 8.04-

8.03 (m, 3H, CHAr), 7.72 (d, 2H, J = 8.0 Hz, CHAr), 7.61 (d, 1H, J = 8.0 Hz, CHAr), 4.29 (s, 1H, 

ArC≡CH) ppm. 13C-NMR (125 MHz, DMSO-d6): δ = 167.0 (CO2H), 166.2 (CO2H), 146.3 

(CIV
Ar), 143.0 (CIV

Ar), 134.3 (CHAr), 130.5 (CIV
Ar), 130.1 (CHAr), 129.9 (CHAr), 129.3 (CHAr), 

129.2 (CHAr), 120.4 (CIV
Ar-C≡CH), 84.8 (ArC≡CH), 81.6 (ArC≡CH) ppm. IR (ATR): ν = 3279, 

1678, 1599, 1572, 1420, 1289, 1191 cm-1. MS (EI) m/z = 266 [M+], 249 [M+-OH]. HRMS (EI) 

m/z C16H10O4, calcd.: 266.0579, found: 266.0575. 

Sythesis of 5,5’-(dimethylsilanediyl)diisophthalate. 

The synthesis was done by Prof. Michael Fröba, Dr. Stephanie E. Roggenbuck and Dr. Katharina 

Peikert from University of Hamburg. 

5,5’-(dimethylsilanediyl)diisophthalic acid (dmsdip) was prepared as previously reported229.  
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6.2 Abbreviations 

0D                                        zero-dimensional 

1D                                        one-dimensional 

2D                                        two-dimensional 

3D                                        three-dimensional 

μCp                                         micro contact printing 

AB-BPDC                            2-azobenzene-4,4’-biphenyldicarboxylic acid 

AC-mode                             alternate current mode 

AFM                                    atomic force microscopy 

alkyne-BPDC                      2-alkyne-[1,1'-biphenyl]-4,4'-dicarboxylic acid 

ATR                                     attenuated total reflection 

BET                                     Brunauer-Emmett-Teller 

BiPy                                    4,4’-bipyridine 

BPDC                                  4,4’-biphenyldicarboxylic acid 

BSE                                      back-scattered electrons 

BSSE                                      basis set superposition error 

BTC                                    1,3,5-benzenetricarboxylic acid 

bzac                                     1-benzoylacetone 

CP                                          counterpoise 

CPs                                      coordination polymers 

CuAAC                               Cu(I) catalyzed azide alkyne click reaction 

Dabco                                 1,4-diazabicyclo[2.2.2]octane  

DEMOFs                             defect-engineered MOFs 

DFT                                     density-functional theory 

DFTB                                  density-functional based tight-binding method 

DMOF                                 Dabco MOF 

dmsdip                                 5,5’-(dimethylsilanediyl)diisophthalic acid 

DUT-6                                 Dresden University of Technology-6 
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EDX                                    energy-dispersive X-ray 

FITC                                    fluoresceinisothiocyanate 

FT-IR                                   Fourier Transform Infrared 

HKUST-1                            Hong Kong University of Science and Technology-1 

IR                                         infrared spectroscopy 

IRMOFs                               isoreticular MOFs 

IRRAS                                 infrared reflection absorption spectroscopy 

LB                                        Langmuir and Blodgett 

LPE                                      liquid phase epitaxy 

MFP                                     mean free path 

MHDA                                16-mercaptohexadecanoic acid 

MIL                                      Matériaux de l'Institut Lavoisier 

MOFs                                   metal-organic frameworks 

MUD                                   11-mercapto-1-undecanol 

N3-BDC                               2-azidoterephthalic acid          

N3-BPDC                            2-azido-[1,1'-biphenyl]-4,4'-dicarboxylic acid 

NBO                                       natural bond orbitals 

NDC                                    naphthalene-2,6-dicarboxylic acid 

NH2-BDC                           2-aminoterephthalic acid 

NORM                                near-field optical random mapping 

NPA                                       natural population analysis 

NSOM                                 near-field scanning optical microscope 

NU                                      Northwestern University 

PC                                        personal Computer 

PCPs                                    porous coordination polymers 

PDMS                                     polydimethylsiloxane 

PhD                                     doctor of philosophy 

PP1                                      (4-(4-pyridyl)phenyl)-methanethiol 
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PSM                                     post-synthetic modification 

PTFE                                    polytetrafluoroethylene 

QCM                                    quartz crystal microbalance 

SAM                                     self-assembled monolayer 

SBUs                                    secondary building units 

SE                                         spectroscopic ellipsometry 

SEM                                     scanning electron microscope 

SEs                                       secondary electrons 

SIM                                      structured illumination microscopy 

SPAAC                                strain promoted azide alkyne click reaction 

SURMOFs                           surface-mounted metal-organic frameworks 

THF                                      tetrahydrofuran 

UHM-3                                 University of Hamburg-3 

UHV                                     ultra high vacuum 

UIO                                      University of Oslo 

UV                                        ultraviolet 

UV-Vis                                 ultraviolet–visible spectroscopy 

XPS                                      X-ray photoelectron spectroscopy 

XRD                                     X-ray diffraction 

ZIF                                        zeolitic imidazolate framework 

ZPEs                                        zero point energies 
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