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Abstract: High-resolution, three-dimensional (3D) imaging of soft tissues
requires the solution of two inverse problems: phase retrieval and the re-
construction of the 3D image from a tomographic stack of two-dimensional
(2D) projections. The number of projections per stack should be small to
accommodate fast tomography of rapid processes and to constrain X-ray
radiation dose to optimal levels to either increase the duration of in vivo
time-lapse series at a given goal for spatial resolution and/or the conserva-
tion of structure under X-ray irradiation. In pursuing the 3D reconstruction
problem in the sense of compressive sampling theory, we propose to reduce
the number of projections by applying an advanced algebraic technique
subject to the minimisation of the total variation (TV) in the reconstructed
slice. This problem is formulated in a Lagrangian multiplier fashion with
the parameter value determined by appealing to a discrete L-curve in
conjunction with a conjugate gradient method. The usefulness of this recon-
struction modality is demonstrated for simulated and in vivo data, the latter
acquired in parallel-beam imaging experiments using synchrotron radiation.

© 2015 Optical Society of America

OCIS codes: (100.3190) Inverse problems; (100.3010) Image reconstruction techniques;
(110.3000) Image quality assessment; (340.6720) Synchrotron radiation; (340.7440) X-ray
imaging.
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1. Introduction

X-ray phase-contrast computed micro-tomography (XPCuT) is a weakly invasive three-
dimensional (3D) imaging technique. Thanks to the high degree of spatio-temporal coherence
and high flux density in state-of-the-art synchrotron radiation and due to impressive advances
in detector technology, sub-micron spatial resolutions and exposure times well below one mil-
lisecond per projection are feasible. This enables four-dimensional (4D) imaging applications
important for the elucidation of rapid dynamics. In particular, in vivo elucidations of internal
processes on short time scales benefit from highest possible volume-acquisitions rates. Exem-
plarily, this was pointed out by investigation of a moving screw-and-nut-type hip joint [1] in the
insect Sitophilus granarius (grain weevil) [2]. Moreover, dose reduction is an issue of key im-
portance in all X-ray imaging applications. Namely, the usefulness of in vivo imaging strongly
hinges on a good control of dose effects, thus enabling long time-lapse series of 3D images with
weak perturbations induced by the imaging process itself. Recently, embryonic development in
the vertebrate model organism Xenopus laevis (African clawed frog) was imaged in vivo via
3D time-lapse series [3, 4]. In cases like these a low number of tomographic projections is es-
sential. The challenge for 3D reconstruction algorithms thus is to generate relevant information
from limited input data. Note that propagation based phase contrast imaging dose reduction can
also be achieved by exploiting spatial coherence. Namely, mean intensity contrast, measured at
a single propagation z, rises with /z whereas the signal to noise ratio (SNR) in the phase map
increases with z [5]. Obviously, this implies that the same SNR can be obtained with a lower
dose if z is increased accordingly. The degree of coherence in hard X-ray radiation provided by
most 3rd-generation synchrotrons limits z to be about 1 m.

Reconstruction is an inverse problem restoring the 3D distribution of the attenuation index
throughout the object from the tomographic projections distributed in an angular range from
0° to 180° (see Fig. 1 for a schematic experimental setup). In this article we pursue a recon-
struction algorithm that obtains a high accuracy of relevant features, using a low number of
projections. A particular reconstruction technique, called filtered back-projection (FBP) [6],
appeals to a combination of the Fourier-slice with the Nyquist-Shannon sampling theorem. It
posits that the minimal number of equi-angularily spaced, tomographic projections, required
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Fig. 1. In vivo X-ray tomography experiment with propagation-based contrast. Left panel:
experimental setup showing (1) the X-ray source (here: bending magnet), (2) tomographic
stage, (3) sample, and (4) detector system. Right panel: parallel-beam projection of atten-
uation index through 2D slice of object (forward model), for explanations of labels see
text.

for reconstruction of a noiseless 3D image at a spatial resolution 2Ax, is given as

Frop = 3K (M)
Here K = L/Ax, L representing the linear dimension of the (quadratic) field of view. FBP is a
rapid reconstruction technique which does not require any parameter tuning. Sparsely sampled
projection data result in a degraded quality of FBP reconstruction [7]. An alternative approach,
the algebraic reconstruction technique (ART) [6, 8, 9], is not widely used due to long computing
times and expert knowledge required in searching optimal solutions in the highly degenerate
landscape of possible answers to the inverse problem. That is, there are many iterations for
solving a highly dimensional, yet underdetermined system of linear equations [10]. A choice
of appropriate solution demands some sort of a priori knowledge and/or the application of deep
physical principles, usually in analogy to those of statistical thermodynamics. The process of
constructing a unique solution to ART subject to such additional conditions is called regulari-
sation.

Compressive sampling (CS) theory gives definite conditions on the number of required
measurements for a sparsely represented object [11] under which it can be recovered within
a prescribed error. In image reconstruction ART is able to accommodate such prior knowledge
as the existence of a sparse representation, and thus one may hope that a limited set of noisy
data suffices in reconstructing such an object with a good accuracy. To construct an optimal rep-
resentation of the object, a sequence of base changes, transforming the original (spatial domain)
into an increasingly sparse set of representations, is required. For example, pursuing this idea, a
base change called discrete gradient transform (DGT) may lead to a sparse expansion of certain
2D or 3D images. The totality of associated expansion coefficients expresses the so-called total
variation (TV) of the image [12]. Inspired by CS theory, ART with TV regularisation has been
studied for both few-view and limited angle problems [13]. Also, phase retrieval in propagation
based X-ray imaging was considered as a minimisation problem subject to TV regularisation in
[14], based on a linear model for forward propagation.

Let us be more definite. ART searches a solution to a linear system of equations Ax = p,
representing the forward imaging process. Here A is the system matrix which can be calculated,



e.g., by Siddon’s algorithm [15] (weighting by length of line segments associated with the
intersection of an X-ray with a given pixel as shown in the right panel of Fig. 1), p denotes a
vector embodying the set of projections acquired during the tomographic imaging process, and
x indicates the distribution of the attenuation index. Only parallel-beam geometry is considered
in this paper, but the conclusions obtained are sufficiently general to be applicable to the fan
or cone beam situation as well. ART now performs the inverse operation of recovering X in
terms of A and p. As mentioned above, this problem is ill-posed in the case of low number
of projections which lies essentially below the bound of Eq.(1). ART augmented with TV
regularization yields an optimal solution to Ax = p in the sense of ||Ax — p||3 and ||x||Tv being
minimal where the I, norm of vector b reads ||b||» = (¥;5?)!/? and ||x||1v is the TV part to be
introduced in detail in Sec. 2.1. One can impose the inverse reconstruction problem as

x" =argmin||x|[Ty, subjectto Ax=p, (2)
X

which aims to minimise the total variation function while enforcing the optimal solution x* to
be consistent with measurements p. However, this problem may have no solution at all consid-
ering errors in experimental data. In this case a tolerance is required to obtain an approximate
solution. In this spirit, one may formulate a variant of the problem by introducing a Lagrangian
multiplier literally [16] as

X" = argmin|Ax — p[ + A[}x]rv . 3

A is a parameter controlling the trade-off between data fidelity and sparse regularisation. The
TV minimisation was introduced into clinical applications and developed into the fan-beam
algorithm TV-POCS for CT reconstruction [13], which was latter improved towards better con-
vergence and robustness against cone-beam artifacts [17]. Note that TV minimisation also is
applied to image denoising and restoration. In the general context, many solvers have already
been developed for the TV-based, large-scale minimisation problems (2) or (3) with fast con-
vergence, such as TwIST [18], NESTA [19], UPN [20], and FISTA [21]. Moreover, another
set of algorithms employs the splitting idea [22] in developing an alternating minimisation ap-
proach for image recovery with TV regularisation, such as RecRF [23], TVAL3 [24, 25], and
ADMM [26, 27] utilizing techniques like the split Bregman algorithm [28], the augmented La-
grangian method or the alternating direction method and gaining also fast convergence. The
interrelations of these techniques have been pointed out in [29] and [30].

In the present work, we pursue a simple implementation of the conjugate gradient method
to solve the unconstrained minimisation problem (3) for a yet undetermined parameter A. In
solving problem (3) in the exact sense of problem (2) the minimum x*(A) would have to be in-
serted into the TV minimisation condition to yield the optimal value A* by algebraic inversion.
As a consequence, x*(A*) solves problem (2). To proceed like this, however, is impractical and
could even be impossible since (i) the determination of A* requires an iterative approach, e.g.,
Newton’s method, (ii) A* is usually not unique implying the need for manual selection, and (iii)
a solution in this sense may not exist at all for inconsistent data. Even if it existed, the search
for an exact solution to problem (2) may be too restrictive in the sense that reconstructions may
ensue that are unrealistically flat. Therefore, we search a reasonable constraint in fixing the
value of A in (3) to a finite value in an automated way. This can be achieved by the celebrated
discrete L-curve method [31] which we will employ in the present paper. For a comprehensive
analysis of this method in the context of inverse problems, also pointing out limitations in view
of its convergence properties, see [32].

When constrained minimisation problems are mapped into unconstrained ones more freedom
can be introduced in terms of the so-called augmented Lagrangian method such that the number
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of parameters exceeds the number of constraints. To determine these parameters by reasonable,
additional conditions poses a multidimensional optimisation problem which is computationally
expensive. Still, it is interesting to discuss a particular example called TVAL3 proposed in [25].
There total variation is generalised in terms of a variety of constraints (various generalised gra-
dient transforms), formulated in terms of new variables @j; in addition to x, to give rise to a new
minimisation problem in ®; and x. The formal substitution of these additional constraints into
the minimisation problem gives back the higher dimensional equivalent to the old problem of
Eq. (3). The important insight is to treat the additional constraints also in the sense of assigning
Lagrangian multipliers v; 1, the latter, however, never to be literally determined by resolutions
of the associated constraint equations. In addition, higher powers of all constraints are included
into the new cost function, subject to additional multipliers s, W, ---, Vi1, Vi2, --- to allow
for various ‘speeds’ of the approach to the solution of the constraint equations. The equivalent
of the automated parameter fix in terms of the L-curve approach of Sec. 2.2 now is to find, say,
the smallest distance of a surface to the origin, parametrised by the above set of multipliers, in a
high-dimensional space spanned by all residuals. Practically, this is prohibitive in view of com-
putational effort even though the ‘augmented’ Lagrangian method appears to exhibit superior
convergence properties for minimising the cost function. Pragmatically, one may just set (i,

o, -+, Vi1, Vi2, -+~ to values which visually lead to somewhat expected results (human judg-
ment) which, however, prejudices the reconstruction and thus should be avoided in practical
applications.

More complex parameter selection methods were proposed in the literature such as the dis-
crepancy principle (DP) [33] and the generalized cross validation (GCV) [34]. For an elaborate
comparison of the L-curve method with other ways of fixing model parameters in a priori
under-determined inverse problems, see [35]. To the best of our knowledge the conjugate gra-
dient minimisation of the cost function, associated with (3), together with the subsequent, au-
tomated determination of parameter A using the discrete L-curve has not been used before for
tomographic reconstruction.

This paper is organised as follows. In Sec. 2 we discuss peculiarities of the TV-based conju-
gate gradient method including possible definitions of TV. The criterion on how to determine
the parameter value for A is elucidated conceptually and exemplarily (Shepp-Logan phantom)
in fixing an optimal point on the discrete L-curve. Also, we outline a strategy for automised
reconstruction of entire 3D volumes given parallel-beam illumination. Sec. 3 first defines and
discusses suitable error measures to judge reconstruction quality compared to a reference and
subsequently applies our modality to successively increasing data complexity: noisefree simu-
lated data (Barbara) and low-noise in vivo data obtained from X-ray propagation based micro-
tomography, using intensity ‘projections’ in case of a weevil and phase projections (generated
from intensity maps by high-resolution quasiparticle phase retrieval) representing a stage-17
frog embryo during neurulation. To point out certain advantages of the here-proposed modality
we compare few- and many-view reconstruction results with those obtained by standard fil-
tered back-projection. The concluding section of the paper summarises our results, speculates
about an advantageous application to (low-dose) data with a high level of statistical noise, and
discusses a future venue for an essential reduction of the computational effort.

2. Methods

In this section we apply the TV-based conjugate gradient method (CGTV) to solve problem
(3). In terms of CGTY, for a specific sparse-object application see [36], for another implemen-
tation and comparison of performance with alternative minimisation procedures see [37]. For
the parameter determination, the discrete L-curve method is used. Finally, we discuss imple-
mentations of this workflow for automated 3D reconstruction.
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2.1. CGTV solver

For later use, it is convenient to represent the object in terms of a 2D matrix X € R"*" (n
pixels in each of the two dimensions) where each entry is associated with the local value of the
attenuation index. Thus, vector x in (3) can be composed out of the elements X; ; (i, j=1,--- ,n)
by column X;; being stacked on top of column X;> and so forth. Here the dimensionality of
vector X is given as N = n? (total pixel number in the to-be-reconstructed slice).

The system matrix A € R¥>*V in (3) possesses M rows and p € R¥*!. For exact reconstruc-
tion one would have to impose M = N but usually one has M < N such that a regularisation for
a reasonable solution to the reconstruction problem in the sense of (3) is required. The function
to be minimised in (3) consists of two terms: the data fidelity term, F(x) = ||Ax — p||3, and the
total variation term, 7 (x) = ||x||7v. To define the latter, we consider the 11-norm or the 12-norm
of the gradient field, obtained by the so-called discrete gradient transform (DGT). For a given
pixel (i, j) one has

DGTyy;;(X) = | A X|+] A} X (4)

or
DGTyp,ij(X) = [(A6X)?+ (A} jX)Z]W, (5)

where the difference operations Ag’ jX (h for horizontal) and A jX (v for vertical) on matrix X
are defined as
AlX=X ;- X1 (6)

and
AL X=X X1, )

respectively. Thus, total variations, defined in terms of the 11-norm or 12-norm of the gradient
field, see Egs. (8) and (9), read

X[l rv = Y DGTyy;(X) ®)
i,j
or
X[z, v = Y DGTy,i5(X). )
iJj
In practice, no essential differences arise when appealing to either of the definitions of total
variation, Eq. (8) or Eq. (9). However, definition of (9) does not depend on the choice of Carte-
sian coordinates, and therefore we exclusively will use it throughout the remainder of this work.
Thus, notationally, we let ||x||;2 v — ||X]|Tv.

Let us now turn to technical points in addressing the minimisation problem (3). To do this,
we employ the nonlinear conjugate gradient method [38]. There are accelerated minimisation
schemes such as TwIST [18], UPN [20], FISTA [21] and ADMM [27]. Their common feature
is that at least one parameter controlling the trade-off between data fidelity and regularization is
determined empirically. It is true that, compared to these fast algorithms, the conjugate gradient
method possesses higher iteration complexity. However, as such it exhibits fairly general, stable
convergence properties. This is why we simply choose to use the conjugate gradient method
here.

Minimisation of the cost function f(x), f = F(x) + AT (x) (see text before Eq. (4)), then
requires the computation of the gradients of F and T in an n>-dimensional vector space. The
gradient of F(x) is given as

VF(x) = V(]|Ax—p|[3) = 2AT (Ax—p). (10)
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However, T is not differentiable when X; ; = X;_; ; and X; ; = X ;_;. This is overcome by
introducing a mild modification of the modulus definition as [39]

2| ~ (2 +€)/?, (11)

where € is much smaller than typical values of z are. Therefore, we obtain for the partial deriva-
tive of ||x]||Tv

dlIxflrv _ 2Xij — X1, — Xij-1
OXij (X —Xim1,))? + (Xij— X jo1)? + €]/
Xij —Xit1,j
+ 9. 9. (12)
(X1, —Xi)? + (K1) = Xigr j-1)2 + €]/
n Xij = Xij+1

[(Xijr1 = Xz j1)* + (Xi 1 — X )2 +€]1/2

The gradient of cost function f(x) is now calculated using Egs. (10) and (12). Algorithm 1 be-
low shows how CGTV is implemented. In this algorithm, the parameter 3* controls the update
of conjugate direction. In our implementation we apply the Dai and Yuan formula proposed in
[40], showing robust and fast convergence property which is absent for other formulas such as
Hestenes-Stiefel, Fletcher-Reeves, Polak-Ribiere, etc., listed in [38].

Algorithm 1 TV-based conjugate gradient method (CGTV)

Input: set € to a positive, small value (typically € = 107°); take x° as the initial guess (we
assume x° = 0); prescribe parameter value for A; maximum iteration number K.
Output: estimate x
1: k:=0
2: while k < K do
3:  calculate gradient direction V f(x*) = VF (x*) + AVT (x")
4 set Dai and Yuan formula [40] B5, = ||[V£(x¥)[3/[(@ 1) T(VF(x¥) — VF(xE1))] for
k>1,B3 =0

5: update the conjugate direction d* = —V f(x*) + BE, d*~!

6:  perform back-tracking line search algorithm to find step size o
7. update the object estimate x*! = x* 4 or*d*

8 if ||akdt||/|xk|| < & then

9: return (k+ 1)™ estimate x¢*!
10:  end if

11:  k=k+1
12: end while
13: return (K 4 1)™ estimate xX+!

2.2.  Discrete L-curve method to fix TV regularization

As already mentioned, it is advantageous to fix parameter A in problem (3) with a reasonable
criterion other than the strict imposition of ||Ax — p||3 in the sense of an exact resolution of this
constraint by the Lagrangian multiplier method. Rather we would like to maintain a definite
balance between data fidelity and the sparsity condition.

Different values of A change reconstruction quality. This can be seen from Fig. 2 which dis-
plays the results for the Shepp-Logan phantom of image size 256 x 256 reconstructed from 60
projections using the CGTV solver for various values of A. If A is small (Fig. 2(a) and 2(b))
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then reconstruction retains a good data fidelity but streakline artifacts do appear in the recon-
structed image. For A approaching the value 2 (Fig. 2(c)) artifacts disappear. For larger values of
A (Fig.2(d) and 2(e)) images becomes oversmoothed, thus losing details around edges. There-
fore, we conclude visually that a good choice is A = 2.

oY o) o) I

08 08 08
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-0, -0. -0. -0.
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(a) A =0.001 by A =0.1 c)A=2 @ir=16 (e)A =64

0

Fig. 2. Upper row: reconstruction results for Shepp-Logan phantom (256 x 256) from 60
projections (402 projections required in FBP reconstruction to meet pixel resolution) using
the CGTV solver subject to various values of A. Lower row: Cuts along horizontal through
respective images of upper row (marked by red lines). Corresponding cuts through the
ground truth are blue lines.

Let us now investigate whether there is a way to automatically optimise A. An established
method to do this is the use of the L-curve criterion which does not require any prior informa-
tion. Extensively used by Tikhonov in truncated singular value decomposition methods [41],
the L-curve criterion surely is applicable to CGTV. This criterion evaluates the norm of the
regularisation term versus the residual error in parametric dependence on A. In our case this
corresponds to plotting the parametric curve ||x||tv versus ||Ax — p||3. When the regularisa-
tion term is overweighted, the algorithm reconstructs the object with a low regularisation and
a high fidelity term. On the other hand, for small values of A the fidelity term is small while
the regularisation term is large. As a consequence, parametric fidelity- versus regularisation-
term dependence is L-shaped, see Fig. 3. One may represent this L-curve on a log-log scale.
However, the L-shape persists when representing the curve on a linear-linear scale. In our work
residuals depend only power-like on A, and thus we use a linear-linear representation of the
L-curve.

Notice that the quantities ||x||tv and |[Ax — p||3 plotted versus one another in the L-curve
do in principle possess different dimensions. Setting the dimension of electron density equal
to zero, the dimensionality of the “integrands” (integral: average over reconstruction plane) is
1/length (gradient, 11-norm, length given by pixel size AX) for ||x||Tv and length? (line integral,
12-norm, length again given by pixel size AX) for || Ax — P||% So, to obtain the same dimension,
say, length?, ||x||ty would have to be multiplied by AX3. Since we never change resolution
in our reconstruction, we may, however, set AX = 1, and the above-mentioned multiplication
needs not to be done. If a problem was to be addressed in which a derivation of the L-curve for
a re-scaled pixel size SAX from the L-curve of the original pixel size AX was demanded, then
this multiplication needs to be performed to exclude geometric rescaling effects. Since the to be
reconstructed electron density does depend on the resolution, however, we do expect a change
of the L-curve and hence its optimal value A* after this multiplication still obeying the same
L-curve criterion (maximum curvature or minimum euclidean distance to the origin).
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Fig. 3. Discrete L-curve for the reconstruction of the Shepp-Logan phantom (256 x
256) from 60 projections with respect to A = 0, 0.001, 0.005, 0.01,0.05,0.1,0.5, 1, 2,
4,8, 16, 32, 64 (for information preserving FBP reconstruction 402 projections would be
required). Green arrow indicates the optimal point on the L-curve, corresponding to A = 2.

Numerically, it is appropriate to discuss the discrete L-curve method which is based on an in-
terpolation of discrete points on the curve obtained from a finite set A-values at a fixed number
of iterations for the conjugate gradient minimisation where stagnation starts to set in. The L-
curve criterion now states that both the regularisation and fidelity terms are comparably small.
That is, the prejudice of TV minimisation is to be effective mildly only compared to what prob-
lem (2) in Sec. 1 demands. Intuitively, it is clear that the corner of the L-curve meets this re-
quirement. But how can one identify the L-curve corner mathematically speaking? Two criteria
can be considered [31]. First, one may seek the point of shortest distance to the origin. Alter-
natively, one may pick the point of maximum curvature. Numerically, a reliable calculation of
curvature requires a higher-order-polynomial interpolation. We do not pursue this option this
paper and resort to the first possibility, minimising the Euclidean distance (F(x)? 4 T'(x)?)'/2,

For the L-curve in Fig. 3 reconstructions of the Shepp-Logan phantom in Fig.2 were per-
formed from 60 projections using the CGTV solver subject to 14 values of A. Breaking the
algorithm off after 200 iterations, F(x) and T (x) were calculated and parametrically plotted.
From top right to down left points marked by red crosses correspond to the following values of
A:0,0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 32, and 64. In the sense of minimum dis-
tance to the origin the optimal value is A = 2, highlighted by the green arrow. The reconstructed
image corresponding to A = 2 is displayed in Fig. 2(c). So, indeed, the L-curve criterion gener-
ates the same value of A as identified above visually, indicating its reliability. For the remainder
of this paper we refer to the CGTV solver subject to the discrete L-curve method as optimised
CGTV.

2.3.  Strategy for automised reconstruction

To reconstruct 3D objects from noisy intensity projections, various pre-processing steps need
to be performed which include flat- and dark-field corrections to eliminate modulations e.g.
introduced by beam- and detector-inhomogeneities as well as hot- and dark-pixel filtering. In
the case of phase-contrast imaging phase retrieval is required in addition. Depending on the
SNR, the application of various masks to Fourier-transformed (processed) intensity data may
be required prior to phase retrieval [5].

Strictly speaking, CGTV reconstruction of a volume out of 2D projection data acquired in a
parallel beam would necessitate the separate determination of the optimal value A* for each of
the 2D slices comprising the reconstruction volume. Obviously, this task can be performed in
parallel [7]. Lacking computing power, it often suffices to determine A* in a typical slice and
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subsequently use it for near-to-optimal reconstruction of all other slices. Figure 4 displays the
workflow of the CGTV reconstruction of a volume.

TV-based conjugate gradient reconstruction

. . volume reconstruction
preprocessing A-determination . ) ier
using slice-specific

for all slices
value of A

* denoising

« filtering

* phase retrieval

* flat- and dark-
field corrections |

A-determination volume reconstruction
via one typical slice using global value of A

Fig. 4. Strategy of volume reconstruction using the optimised CGTV in the case of parallel-
beam imaging.

3. Applications of optimised CGTYV reconstruction

In this section we investigate the reconstruction quality of optimised CGTV when applied to a
more realistic phantom (photograph of Barbara) and two sets of X-ray in vivo data, representing
a weevil as well as a stage-17 frog embryo. While reconstructions of the weevil are obtained
from a maximum of 400 intensity images, generated by a mix of phase and absorption contrast
(no phase retrieval); reconstructions of the frog embryo rely on a maximum of 499 phase maps,
retrieved from propagated intensity images. Practically, no absorptive contamination is present
in the frog data. (The ratio between real decrement and imaginary part of the refractive index
at an X-ray energy of ~ 30 keV is ~ 10° [42]). Thus, judging from the vantage point of image
formation, reconstructions of the frog embryo use a lower dose than the reconstructions of the
weevil do. We also compare the performance of optimised CGTV to that of conventional FBP.

3.1. Image quality assessment (IQA)

Subjective evaluation, which draws upon experience, is often used for CT reconstruction to as-
sess its quality. In general, an analysis of research data should not rely on subjective evaluation.
Reproducible results of low prejudice can only be generated by subjecting data assessment to
sufficiently general scientific principles (a set of error metrics optimised to given noise types
and the effects of missing input information). This is important for meaningful image analy-
sis subsequent to the reconstruction procedure. For example, reconstructed CT data acquired
in entomology or developmental biology serve as input to segmentation of tissues and cells,
volumetry, cell-mass determination, estimates on the statistics of model parameters, feature
extraction, inference of force exertion, flow-field analysis, etc., and each of these procedures
propagates the reconstruction error.

3D reconstruction of tomographic data acquired in a parallel beam decomposes into 2D re-
construction of independent slices. Therefore, only a 2D assessment of reconstruction quality
is considered here. The simplest and most widely used quality measure is the mean square error
(MSE), defined as the average of the squared grey-value differences over all pixels representing
reconstructed (X) and reference (Y) slices

1 n
MSE(X,Y) = — ) (Xij—Yi;), (13)
ij=1
An assumption behind using MSE as an error measure is that image pixels are statistically
independent. Thus MSE exhibits a certain sensitivity to structural changes [43]. A low value



of MSE(X,Y) indicates good similarity between X and Y. However, congruence between ex-
tended regions is detected more poorly. Therefore, we also consider another image quality index
called structural similarity (SSIM) [44]. SSIM is based on the fact that images acquired of real
objects are usually structured in a hierarchical way, and correlations between grey values in
separated pixels occur. The SSIM index is a product of three factors based on a luminance
measure /(X,Y), a contrast comparison ¢(X,Y), and association s(X,Y),

SSIM(X,Y) = I(X,Y)* x ¢(X,Y)P x s(X,Y)?, (14)

where a, 8, and v are real-positive trade-off parameters which adjust their relative importance.
For simplicity, here we set them equal to unity, @ = 8 = y = 1. The reader is referred to [44]
for explicit representations of /, ¢, and s. SSIM ranges within [0, 1]. Values close to unity (zero)
indicate a great (small) structural similarity between the reconstructed and the reference image.

3.2.  Reconstruction of simulated data

The discrete L-curve of the Shepp-Logan reconstruction of Sec. 2.2 was represented by fourteen
values of A. Figure 5 now shows the dependences of MSE and SSIM on the same A values,
demonstrating consistency with the discrete L-curve of Fig. 3 in the sense that the optimal value
of A =2 is close to the minimum (maximum) of the MSE (SSIM) curve. Note that compared
to the L-curve criterion the minimum (maximum) of the MSE (SSIM) curve yields a slight
underestimation (overestimation) of this parameter value. This demonstrates consistency of the
L-curve method in the sense of a compromise between MSE and SSIM based optimisation.

10° 10 107 10 10° 10 10

(a) b)

Fig. 5. MSE in (a) and SSIM in (b) upon evaluating the CGTV reconstruction of the Shepp-
Logan phantom with fourteen different values of A. Green arrows indicate the optimal value
A =2 as determined from the discrete L-curve in Fig. 3.

Let us now apply this analysis to a more realistic phantom — the Barbara image (256 x 256)
shown in Fig.6(a). In many X-ray CT applications the gradient image is sparse only in an
approximate sense. Namely, it is not guaranteed that the object, like the one in Fig. 6(a), enjoys
the property of piece-wise constancy across its entire support as was the case for the Shepp-
Logan phantom. Using the same forward model, see Sec. 1, 120 projections are sampled which
are subsequently taken as input for the CGTV solver subject to the discrete L-curve criterion to
optimally reconstruct the image.

The first step is to determine the optimal value of A. Again, the same fourteen values of A
as used in case of the Shepp-Logan phantom are employed. Figures 6(b)-6(d) display recon-
struction results for three different values of A. Small values of A, say A = 0.001, generate no-
ticeable streakline artifacts. In contrast, when A goes large, details at edges are oversmoothed.
The corresponding L-curve is shown in Fig. 7. The smallest distance to the origin occurs at
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A = 4, corresponding to the reconstruciton in Fig. 6(c). Theoretically, regions represented by
high frequencies (texture) can only be smoothly interpolated from a few projections when us-
ing TV regularization due to lack of sparsity in the gradient-space representation. As shown in
Fig. 6(a), areas marked by red ellipses lose texture information in the reconstruction of Fig. 6(c),
but sparse areas, marked by green rectangles, preserve their edges well.

(a) Barbara (b) A =0.001 )A =4 (dA=64

Fig. 6. (a) original Barbara (256 x 256) and reconstruction results from 120 projections
using the CGTV solver with (b) A = 0.001, (¢) A =4, and (d) A = 64.
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Fig. 7. Discrete L-curve for the reconstruction of the image Fig. 6(a) (256 x 256) from 120
projections (for information preserving FBP reconstruction 402 projections would be re-
quired). Values of A, which are employed, read A = 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,
1,2,4,8, 16,32, 64. According to the criterion of shortest distance to the origin, the opti-
mal value is A = 4, indicated by the green arrow.

Figure 8 depicts reconstructions of the Shepp-Logan phantom and Barbara with a much small
number of projections (60 as opposed to 402 in former, 120 as opposed to 402 in latter case)
than required for FBP reconstruction without loss of resolution relative to that imposed by pixel
size. Note the streaklines in FPB reconstructions subject to these lower number of projections
while optimal CGTV is void of such artifacts. Table 1, in terms of IQA indexes, shows that
optimised CGTV performs much better than FBP for a limited number of projections. Note that
due to its piecewise constancy optimised CGTV reconstruction of the Shepp-Logan phantom
is essentially perfect. This is less so for the optimised CGTV reconstruction of Barbara which,
however, still performs much better than FBP.

3.3.  Reconstruction of experimental data

In this section, two different in vivo data sets are examined using FBP and optimised CGTV
reconstruction, one representing a weevil imaged by a mixture of phase and absorption
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(a) True image (b) FBP (c) CGTV

Fig. 8. True image and image reconstructions using FBP and CGTYV for the Shepp-Logan
phantom (first row, 60 projections) and Barbara (second row, 120 projections).

Table 1. IQA measures for reconstructions using FBP and optimised CGTV subject to low
numbers of projections through the Shepp-Logan and Barbara phantoms.

IQA Shepp-Logan Barbara
Measures FBP CGTV FBP CGTV
MSE 843.35 4.54 867.11 299.05
SSIM 0.21 0.99 0.40 0.75

propagation-based X-ray intensity contrast subject to direct reconstruction (no retrieval of the
exit wave function), the other one embodying a stage-17 frog embryo during neurulation with
a stack of exit-phase maps (projection of real decrement of refractive index) serving as input
to the reconstruction. Phase retrieval is performed by a variant of the quasiparticle algorithm
proposed in [45] and [46] with the high-frequency part of the intensity contrast being cut off
at a radial point where noise starts to exceed the signal. Both data sets are subject to statistical
noise, in the former case directly present in the intensity data while the stack of phase maps
carries the noise contamination in an implicit way. Projections are constrained to the angular
range [0°, 180°].

For imaging the weevil, white-beam illumination with a critical energy of E. ~ 15keV, a
propagation distance of z = 50cm, a photon flux density of ~ 10'3 phs/mm?/s, an effective pixel
size of Ax = 3.7 um, and a field of view of (7.4mm)?, corresponding to 2000 x 2000 pixels,
was employed at ANKA’s TOPO-TOMO bending-magnet imaging beamline. The detection
system uses a freestanding 50 pm-thick Cerium-doped lutetium aluminum garnet (LuAG:Ce)
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scintillator orthosilicate scintillator, generating visible light by the absorption of X-rays. This
latent visible-light image is relayed by an optical system with a three-fold magnification onto
the pco.dimax camera that performs the actual signal detection. An acquisition of 400 intensity
projections was performed per tomogram with an exposure time of 0.3 ms per projection.

The frog embryo was imaged at the undulator imaging beamline 32-ID of APS subject to
monochromatic (AE/E ~ 10~*), highly coherent X-ray illumination of energy E = 30keV, a
photon flux density of ~ 10'> phs/mm?/s, a propagation distance of z = 70cm, an effective pixel
size of Ax = 1.3 um, and a field of view of (3.328 x 2.808 mm)?, corresponding to 2560 x 2160
pixels, were employed. The detection system used in this experiment was a 100 um LuAG:Ce
scintillator supplemented by a five-fold magnifying optics and a pco.edge camera. The number
of projections acquired per tomogram was 499 with 60 ms of exposure time per projection. A
rough estimate yields that the dose per projection, deposited into the object, is about 20 times
smaller for weevil compared to frog-embryo imaging.

In order to perform few-view reconstructions in case of weevil imaging, one fifth of angular,
equidistantly-spaced projections (80) are extracted out of 400 projections, while in the frog
case a third (167) equidistant projections are taken as input for the reconstruction. This choice
of data thinning is motivated by Figs. 15 and 16 to be discussed below. Sparsity holds fairly well
for the weevil data (chitin skeleton, large cavities represent piecewise constant regions), thus
few-view reconstruction should lead to good results. In contrast, the frog embryo exhibits, at a
comparable imaging resolution, finer structures (cells of variable size, cell nuclei, yolk platelets,
boundaries between densely and loosely packed cells) leading to appreciable variations within
regions. In principle, more projections thus are necessary for faithful reconstruction.

Thanks to parallel-beam illumination, we focus on the reconstruction of one 2D slice only.
Recall that the reconstruction of the 3D volume is accomplished by simple vertical stacking
of such 2D slices, allowing parallel computing for fast reconstruction even though this pro-
duces an asymmetric treatment of sparsity in x, y versus z gradients. Reference slices are FBP-
reconstructed using the full number of projections.

Figures. 9(a), 9(b), 9(d), 9(f) display weevil-reconstruction results in one and the same slice
using CGTV subject to various values of A. The level of Poisson noise in the intensity projec-
tions here is about 0.5 %. Such a low noise-level is expected to propagate to the reconstructed
object, maintaining the same order of magnitude. Statistical noise thus is negligible for weevil
reconstruction based on the original data. To check exemplarily how a substantial increase of
Poisson noise affects the CGTV reconstruction we artificially impose a 3 % noise level (6 times
as the original) on the average intensity of weevil data. The corresponding discrete L-curves are
shown in Fig. 10 for both cases of 0.5 % and 3 % Poisson noise. Minimum distance to the origin
occurs for both at the same value A = 0.5 (green arrows in Fig. 10). Notice that for A = 0.5 the
values of |[x||7v are comparable while [|Ax—p|3 is considerably larger for the case of 3 % Pois-
son noise. This indicates that optimal CGTV reconstruction universally annihilates small-scale
fluctuations albeit subject to a mild alteration of the large-scale structure, comparing Fig. 9(d)
with Fig. 9(e). However, we do expect a shift of the optimal value of A in the right direction
if further higher level of Poisson noise is added. Obviously, when A is small there are streak-
line artifacts (Fig. 9(b)) and pronounced decrease in quality for the high noise data (Fig. 9(c)).
Streakline artifacts are absent in Figs. 9(d) and 9(e) (optimal reconstruction) and 9(f), the latter,
however, exhibiting poor resolution because of higher Poisson noise.

Figures 11(b)-11(d) display according CGTV reconstructions of the stage-17 frog embryo.
The level of Poisson noise in intensity projections is comparable to the original weevil data,
roughly of the order of 0.3 %, which is low. Note, however, that towards the bottom part of the
slice there is motion induced blur (systematic error) due to an onset of developmental dynamics
during the tomographic scan. The L-curve is shown in Fig. 12 with the minimum distance to the
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(a) reference, 0.5 % noise (b) A =0.001, 0.5 % noise (¢) A =0.001, 3 % noise

(d) A =0.5, 0.5 % noise () A =0.5, 3 % noise () A =4, 0.5 % noise

Fig. 9. Reference image and A dependent reconstruction results from intensity data of wee-
vil subject to different levels of Poisson noise and 80 projections: (a) FBP reconstruction
using full set of low-noise projections; (b) and (c) CGTV reconstructions for a small value
of A =0.001 for 0.5 % and 3 % noise data, respectively; (d) and (e) respective CGTV re-
constructions for A = 0.5 which is optimal for both, 0.5 % and 3 % noise data; (f) CGTV
reconstruction using A = 4 for 0.5 % noise data.
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Fig. 10. Discrete L-curves for CGTV reconstruction from 80 projections of the wee-
vil data with 0.5 % (blue curve) and 3 % (lime green curve) Poisson noise using A =
0,0.001, 0.005, 0.01, 0.05,0.1,0.5, 1,2, 4, 8, 16,32, 64. Both curves exhibit minimum
distance to the origin at the same value A = 0.5.
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(a) reference (b) A =0.001 () A =0.1 (MA=4

Fig. 11. Reference image and A dependent reconstruction results from phase maps retrieved
from intensity projections of stage-17 frog embryo: (a) FBP reconstruction using full set of
projections; (b)-(d) CGTV reconstructions using 167 projections for different values of A.
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Fig. 12. Discrete L-curve for CGTV reconstruction from 167 phase maps of stage-17 frog
embryo using A = 0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1,2, 4, 8, 16, 32, 64.

origin occurring for A = 0.1 (green arrow in Fig. 12). The associated reconstruction is depicted
in Fig. 11(c). Again, streakline artifacts occur in Fig. 11(b), which are absent in Figs. 11(c)
(optimal reconstruction) and 11(d).

Interestingly, the presence of a lightly weighted TV minimisation constraint for few-view
CGTYV reconstruction appears to mimick FBP reconstruction as far as the occurrence of streak-
line artifacts is concerned. This is shown in Fig. 13. Thus, by a small value of A the degeneracy
in finding the (global) minimum of | Ax — p||3 (underdetermined linear system of equations) is
lifted in the sense of unique FBP reconstruction.

To point out the loss of resolution even for optimised CGTV we present in Fig. 14(b) a
line cut through the frog-embryo slice shown in Fig. 14(a) with reconstructions performed by
FBP subject to the full number of projections (P = 499, reference, red curve) and optimised
CGTYV using only P = 167 (blue curve). Clearly, the blue line misses high-frequency compo-
nents (noisy structure in flat regions) which are present in the red line. There is high-frequency
information in the optimised CGTV reconstruction with P = 499 (green curve), occasionally
albeit not always representing that of the red line. We conclude that low-dose (few-view) recon-
struction using optimised CGTV is free of streakline artifacts which necessarily are introduced
by FBP. Optimised CGTYV thus operates cleanly with an acceptable loss of resolution towards
long in vivo time-lapse series in the following sense: it depicts, say, cellular shapes by precise
reconstruction of cell boundaries, it excludes the appearance of FBP few-view reconstruction
artifacts, but it does not resolve small intracellular details like yolk platelets and nuclei. For
dose-intense (many-view) reconstruction of sub-cellular resolution FBP is to be preferred due
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(a) FBP (b) CGTV (A =0.001) (c) FBP (d) CGTV (A =0.001)

Fig. 13. Comparison of FBP and small-A CGTV reconstruction of weevil and frog-embryo
slices (A = 0.001 in both cases) using a small number of projections, P = 80 and P = 167
(as opposed to maximum numbers P = 400 and P = 499), respectively. Note that streakline
artifacts appear for both FBP and small-A CGTV reconstruction.
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Fig. 14. (a) Definition of line through reconstructed slice of stage-17 frog embryo, (b) re-
construction results (normalised to [0, 1]) along this line for FBP subject to the full number
of projections (P = 499, reference, red curve) and optimised CGTV using P = 167 (blue
curve) and P = 499 (green curve).

to its computational efficiency, however.

Finally let us, using the two error metrics MSE and SSIM as defined in Sec. 3.1, ask the
question how the reconstruction quality depends on the number of projections P, taking the
full-projection FBP reconstruction as a reference. As Fig. 15 (weevil) and Fig. 16 (stage-17
frog embryo) indicate both error measures saliently saturate at P ~ 80 and P ~ 167 (green
arrows), respectively. This justifies our use of these P values in the analysis above.

3.4.  Convergence analysis and computational performance

To demonstrate relatively fast convergence for the regularisation of ART by TV-minimisation
using the conjugate gradient solver, we depict in Fig. 17 the behaviour of the cost function
for the data set of weevil, corresponding to (3), in dependence of the iteration number k for
the weevil data set. Five curves corresponding to different values of A are shown, in which
red denotes A* = 0.5. For A values in the vicinity of A* no appreciable decent occurs for
k > 30. Regarding computational performance, forward and backward operations (such as Ax,
ATx) are required and take a considerable time in each iteration. Typically, the computational
time required for a CGTV volume reconstruction with a given value of A takes about 25 min
employing the parallel reconstruction strategy and hardware configuration in [7].
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Fig. 15. Error of optimised CGTV with respect to full-view FBP reconstruction (P = 400)
of weevil slice using error metrics MSE and SSIM, defined in Sec. 3.1, versus the number
of projections P. Green arrows mark approximate onset of saturation.
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Fig. 16. Error of optimised CGTV with respect to full-view FBP reconstruction (P = 499)
of stage-17 frog-embryo slice using error metrics MSE and SSIM, defined in Sec. 3.1, ver-
sus the number of projections P. Green arrows mark approximate onset of saturation.
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Fig. 17. Convergence analysis of CGTV reconstruction of weevil data for five different
values of A. The optimal value is A* = 0.5 denoted in red, and in its vicinity minimisation
saturates for a number of iterations k£ > 30.
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4. Conclusions

In this work we propose and evaluate a particular algebraic reconstruction technique (optimised
CGTV), minimising the total variation (TV) in a conjugate-gradient fashion in using a La-
grangian multiplier formulation. The optimal value of the multiplier is automatically obtained
by imposing an independent L-curve criterion. By ‘independent’ we mean that the multiplier
is not determined literally by resolving the constraint equation. Rather, a physically reasonable
flexibility is introduced doing justice to the principle of least prejudice on the reconstruction.

Applying optimised CGTV to reconstruct phantom and in vivo data, acquired by propagation
based X-ray imaging with and without phase retrieval, we conclude that few-view reconstruc-
tion represents a promising low-dose venue. Namely, it maintains resolution at an acceptable
level, continues to realistically reproduce edges which bound sufficiently large structures (cells,
tissue confines), quickly saturates the image quality as the number of projections increases, and
is void of streakline artifacts as generated by filtered back-projection (FBP). This is impor-
tant, e.g., for automatic image analysis such as structure segmentation, appealing to a priori
set grey-value thresholds. That is, moderately sacrificing the spatial resolution is not a strong
limitation if the subject of biological research is to understand coarse phenotypal dynamics:
tissue separation, cell division and migration, and cavity formation. All these only require a
clear segmentation of the associated boundaries. Because of this, optimised CGTV should be
interesting for 4D livecell imaging, aspiring to the acquisition of long time-lapse series [3, 4].
The in vivo data, as reconstructed in the present work, is not contaminated by a high level of
statistical photon noise. Exemplarily, we show for the weevil data that with an artificial increase
of Poisson noise optimal CGTV performs well in annihilating noise-induced small-scale fluc-
tuations at the same time well preserving objects features seen in CGTV reconstruction based
on the low-noise data. A more systematic investigation of optimal CGTV reconstruction under
various sources of noise is certainly in order. We plan to carry out such an analysis in future
work based on in vivo tomographic data. In such data high-resolution reconstruction obtained
by techniques of many-view reconstruction can still be accommodated, after the acquisition of
a long time-lapse series few-view reconstructed by optimised CGTYV, to spatiotemporally pin
down and correlate interesting events.

It is perceivable that the L-curve method proposed in the present work can be applied to
other task-specific reconstruction problems that appeal to some sort of sparsity, say, to focus
on enhanced surface reconstruction or absorptive contamination in images that primarily use
phase contrast.
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