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Abstract 

Abstract 

Neutrophils represent the most abundant type of leukocytes in vertebrates and are the 

first cells migrating to sites of trauma. Despite their fundamental importance, our 

understanding of the molecular changes occurring within neutrophils upon 

inflammation in a living animal remains fairly limited. In this study, the zebrafish 

model was used to investigate the in vivo orchestration of a neutrophil inflammatory 

response at the protein level. 

Firstly, the proteome of resting whole kidney marrow (WKM) neutrophils was 

investigated. Resting WKM neutrophils express more than 1500 proteins. Of these, 

75% are enriched in neutrophils compared to neutrophil free brain tissue. In addition, 

the zebrafish neutrophil proteome shows partial conservation of immune related 

proteins between zebrafish and human. Secondly, a chemically induced inflammation 

assay in adult zebrafish was established in order to investigate proteome changes within 

activated neutrophils. To this end, a highly accurate and precise quantitative proteomics 

approach was required allowing for relative quantification of protein levels between 

samples. Two proteomics approaches, the label free and the SILAC (stable isotope 

labeling by amino acids in cell culture) method were thus applied to investigate the 

proteome dynamics within neutrophils upon inflammation. Through label-free 

proteomics 48 differentially regulated proteins were identified during inflammation. 

Gene ontology analysis revealed that these proteins are associated with cell cycle, nitric 

oxide signaling, regulation of cytoskeleton rearrangement and intermediate filaments as 

well as immune-related processes such as antigen presentation, leucocyte chemotaxis, 

and IL-6 signaling. Comparison of protein expression dynamics with transcript 

expression dynamics suggests the existence of regulatory mechanisms confined to the 

protein level for some genes. The SILAC approach identified 61 differentially 

regulated proteins during different stages of inflammation associated with motility, 

leukocyte and macrophage chemotaxis as well as localization pathways. Furthermore, 

comparison between label free and SILAC approach revealed that SILAC is more 

accurate and reproducible compared to the label free method. This is largely due to the 

availability of internal controls via spike in of SILAC proteins into neutrophil proteins 

at an early stage of sample preparation thereby reducing variation between replicates. 

In summary, this thesis provides the first a complementary analysis of zebrafish 

neutrophil proteomes, identified a suitable proteomics approach for zebrafish immune 
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cells and will thereby add to the understanding of physiological immune responses and 

potentially support the development of therapeutics for immunological disorders. 

 



Zusammenfassung 

Zusammenfassung 

Neutrophile Granulozyten bilden die größte Leukozytenpopulation in Wirbeltieren und 

sind oft die ersten Zellen, die auf Gewebeschäden reagieren. Trotzdem ist unser 

Verständnis der molekularen Veränderungen innerhalb Neutrophiler während 

Entzündungen im lebenden Tier noch unvollständig. In dieser Dissertation wurde daher 

am Modell des Zebrabärblings die komplexe Dynamik der intrazellulären 

Veränderungen auf Proteinebene während einer neutrophilen Entzündungsreaktion in 

lebenden Fischen untersucht. 

Dazu wurde zuerst das Proteom von nativen Neutrophilen im Nierenmark von adulten 

Zebrabärblingen analysiert. Native Neutrophile exprimieren mehr als 1500 Proteine. 

Davon waren 75% ausschließlich in Neutrophilen präsent, nicht aber in 

Vergeichsproben von grundsätzlich neutrophilfreiem Hirngewebe. Darüber hinaus zeigt 

das Proteom von Neutrophilen im Zebrabärbling eine teilweise Konservierung von 

immunassoziierten Proteinen zwischen Fisch und Mensch. Des Weiteren wurde in 

dieser Arbeit ein chemisch induzierter Entzündungsassay in adulten Zebrabärblingen 

etabliert, der es ermöglichte Veränderungen im Proteom von aktivierten Neutrophilen 

während der Entzündung zu untersuchen. Da zu diesem Zweck eine präzise 

quantitative Analysemethode eingesetzt werden muß, die eine relative Quantifizierung 

der Proteinmengen zwischen zwei oder mehreren Proben erlaubt, wurden die 

markierungsfreie massenspektrometrische Quantifizierung sowie die SILAC Methode 

(stable isotope labeling by amino acids in cell culture) getestet und miteinander 

verglichen. Mit der markierungsfreien Proteomik konnten 48 unterschiedlich regulierte 

Proteine während der Entzündung identifiziert werden. Gene Ontology (GO) Analyse 

ergab, daß diese Proteine mit Zellzyklus, der Stickoxid-Signalgebung, der Regulierung 

des Zytokeletts sowie Immun-Prozessen wie der Antigenpräsentation, Leukozyten-

Chemotaxis, und IL-6 Signalgebung assoziiert sind. Ein Vergleich der 

Proteinexpression mit der Analyse von Transkriptionsdaten zeigte, daß für einige Gene 

regulatorischen Mechanismen verstärkt auf der Proteinebene stattfinden. Über den 

SILAC Ansatz gelang es 61 differentiell regulierte Proteine während verschiedener 

Stadien der Entzündung zu identifizieren. Hierbei ergab die GO Analyse zusätzliche 

Assoziierung mit Zellmotilität, Leukozyten und Makrophagen-Chemotaxis sowie 

Lokalisierungswegen. Der direkte Vergleich zwischen markierungsfreier Methode und 

der SILAC Methode ergab einen deutlichen Vorteil der Isotopenmarkierung in Bezug 

auf Präzision und Reproduzierbarkeit. Dies ist vor allem auf die Verfügbarkeit von 
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internen Kontrollen über Zumischung von Kontroll-SILAC Proteinen in die Proben von 

Neutrophilproteinen zurückzuführen, die in einem frühen Stadium der 

Probenvorbereitung erfolgt und dadurch die Variabilität zwischen einzelnen Proben 

reduziert. Zusammenfassend stellt die vorliegende Arbeit die erste umfangreiche 

Analyse des Proteoms von neutrophilen Granulozyten des Zebrabärblings dar und 

identifiziert die SILAC Methode als geeigneten Proteomik Ansatz für Zebrabärbling 

Immunzellen. Damit wird das Zebrabärblingsmodell in Zukunft weiter zum 

Verständnis der physiologischen Immunreaktionen beisteuern können und 

möglicherweise die Entwicklung von Therapeutika für Immunstörungen beschleunigen. 
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 1. Introduction 

1.1. Zebrafish model system 

Danio rerio (Zebrafish) vertebrate model system was first introduced in late 1960 by 

George Streisinger (Streisinger et al., 1981). It is a freshwater animal and provides a 

unique model organism for investigating developmental and disease processes (Meeker 

& Trede, 2008; White et al., 2013). Over the last few decades zebrafish have been 

extensively adopted into a variety of research areas, including: developmental biology, 

immunology, and drug or chemical screening due to several advantages compared to 

other animal models. Female zebrafish produce several hundred eggs each week. Given 

the fact that fertilization and development occur externally, the tracking or visualization 

of development and function of the immune system is greatly facilitated by various 

microscopy techniques. Moreover, embryos are transparent, allowing the direct 

visualization of the developmental process. This process is very rapid with most of the 

organ systems fully developed by five days of post fertilization. Adult zebrafish are 

small in size, which allows a large number of fish to be maintained in a relatively small 

facility. These aspects of zebrafish biology have made it an ideal animal model for 

chemical screening (Hertog, 2005; Ou et al., 2012; Zon & Peterson, 2005). Chemical 

screens can be performed easily, quickly, and at a low cost. This is done by dissolving a 

small amount of chemical into water and large-scale chemical screening can be carried 

out in multi well plates (Wittmann et al., 2011).   

Zebrafish are a genetically tractable model organism. The entire genome has been 

sequenced, assembled, and large numbers of genetic markers have been mapped.  

Zebrafish genetic maps show higher conservation between the zebrafish and human 

genome. Moreover, zebrafish also hold several genetic and experimental tools to 

generate various disease models (Huang et al., 2012; Lawson & Wolfe, 2011; Lieschke 

& Currie, 2007). Firstly, most of the zebrafish disease models are created by a forward 

genetics approach; such as ethyl-nitroso-urea (ENU) or non-targeted retroviral and 

transposon-mediated insertional mutagenesis. Forward genetics screening in the 

zebrafish have been instrumental in identifying gene mutations that affect the 

development of the fish (Meeker & Trede, 2008). These genetic approaches enabled the 

identification of genes involved in patterning, regeneration, and development of organs; 

including: the heart, eye, and blood.  
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Table 1: List of transgenic zebrafish reporter line available for immune cells  

Tissue Transgene Publication 

Neutrophils 
lyz:EGFP, lyz:DsRed, 

mpx:EGFP 

(Hall et al., 2007), 

(Renshaw et al., 2006) 

Embroyonic macrophage mpeg1:EGFP (Ellett et al., 2011) 

Red blood cells 
gata1a:DsRed and 

gata1:GFP 

(Long et al., 1997), 

(Traver et al., 2003b) 

Pan- leukocytes Ptprc:DsRed (Bertrand et al., 2008)  

Eosinophils gata2a:EGFP (Balla et al., 2010) 

B cells ighm1:EGFP (Page et al., 2013) 

Immature B and T cells rag 2:EGFP (Langenau et al., 2003) 
Mature T cells lck:EGFP (Langenau et al., 2004) 

Lymphoid precursors, T cells il7r:mCherry (Stachura & Traver, 2011) 

B cells, macrophages and 

dendritic cells 

mhcII:GFP, 

mhcII:AmCyan 
(Wittamer et al., 2011)  

Lymphoid precursors ccr9a:cfp (Stachura & Traver, 2011) 

In addition, zebrafish rely on three main reverse genetic techniques including targeting 

induced local lesions in genome (TILLING), gene knockdown using morpholinos, and 

transgenics for gene knockdown as conventional knockdown method were not 

established in zebrafish (Ablain & Zon, 2013; Meeker & Trede, 2008). However, 

recently CRISPR-Cas genome editing technique was established to facilitate RNA 

guided site-specific DNA cleavage (Hwang et al., 2013). Finally, transgenic lines can 

be generated in which the target transgene can lead to the expression of fluorescent 

proteins under control of tissue or cell specific promoters. There are various zebrafish 

transgenic lines relevant to immunological studies that have been established (Table1) 

(Stachura & Traver, 2011). All of these powerful genetic manipulations, 

pharmacological screens, and transgenic lines have made zebrafish an ideal model 

system to study the immune system (Renshaw & Trede, 2012).  

1.2. Immune system 

The immune system protects against threats like parasites, bacteria, and viruses. Two 

fundamental branches of the immune system include innate and adaptive immunity. The 
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innate immune system is believed to have predated the adaptive immune response, 

which is based on several pieces of evidence. Firstly, innate host defenses are found in 

all multicellular organisms, whereas adaptive immunity is found only in vertebrates. 

Secondly, innate immune recognition distinguishes self from non-self perfectly, a 

condition not satisfied by adaptive immune response. Thirdly, the innate immune 

system uses receptors that are an ancestral in their lineage, whereas adaptive immunity 

appears to use the same effector mechanism guided by clonally specific antibodies.  

Unlike the adaptive immune system, innate immune system does not confer long lasting 

or protective immunity to the host, but only confers immediate non-specific protection. 

The responses of the innate immune cells are molecularly driven by a diverse array of 

pattern recognition receptors (PRRs) that bind prevalent biomolecules of pathogens 

known as ‘pathogen-associated molecular patterns’ (PAMPs) or can be activated by 

non-microbial ‘damage-associated molecular patterns’ (DAMPs) (Chen & Nuñez, 

2010).  

1.3. Zebrafish immune system 

Zebrafish have become a powerful vertebrate model system to study hematopoiesis and 

immunity (LeBert & Huttenlocher, 2014; Renshaw & Trede, 2012; Traver et al., 

2003a). The zebrafish immune system is similar to the mammalian immune system, but 

studying human immune system in-vivo is difficult because of its complex 

development. Therefore, in recent years the uses of zebrafish have gradually extended to 

the study of human diseases; which include cancer and immunological related disorders. 

This is due to particular advantages inherent to the zebrafish (Lieschke & Trede, 2009; 

Trede et al., 2004). These advantages lie in the chronological separation of innate and 

adaptive immunity during embryonic and larval development. Only the innate immune 

system is active during larval stages, whereas the development of a functional adaptive 

immune system requires several weeks. This temporal separation enables the study of 

the vertebrate innate immune response in vivo without the confounding aspects of 

adaptive immunity (Novoa & Figueras, 2012). Moreover, the zebrafish’s rapid 

development, transparent embryo, and availability of various transgenic lines 

(neutrophil, macrophage, eosinophil) have provided new insights towards the 

understanding of innate immunity including immune cell migration, regeneration, and 

host-pathogen interactions in the developing vertebrate embryo (Keightley et al., 2014). 
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Additionally, the zebrafish immune system contains almost the full repertoire of 

lymphoid organs and immune cells found in mammals (Traver et al., 2003a; Yoder et 

al., 2002). 

1.3.1. Hematopoiesis in Zebrafish 

Immune cell development in vertebrate embryos occurs in a two-step process; primitive 

hematopoiesis and definitive hematopoiesis (Bertrand et al., 2007; Davidson & Zon, 

2004; de Jong & Zon, 2005). Primitive hematopoiesis is the first wave of blood 

development that occurs from 12 to 24 hr post fertilization (hpf). Contrary to mammals, 

zebrafish lack yolk sac blood islands, this thusly leads to primitive hematopoiesis to 

occur anatomically at two locations. The Inner cell mass primarily produces cells of 

erythroid lineages and the rostral blood island in the anterior portion of the embryo, 

produces a primitive macrophage population. In addition to macrophages, the next types 

of immune cells that arise during primitive hematopoiesis are neutrophils and 

thrombocytes. Immature neutrophils are first detected at 48hpf. Similar to other 

vertebrates, zebrafish erythropoiesis also requires various genes including scl, gata and 

lmo2 during primitive hematopoiesis (Figure 1a) (Carroll & North, 2014; Paik & Zon, 

2010).  

Similarly to primitive hematopoiesis, definitive hematopoiesis has also been 

investigated. Bertrand et al., 2007 were the first to notice a transient wave of definitive 

hematopoiesis, termed erythromyeloid precursors (EMPs) develop at posterior blood 

island. EMPs provide the initial innate immune cells, as it is present in the embryo, 

before the appearance of hematopoietic stem cells (HSCs) (Bertrand et al., 2007; Carroll 

& North, 2014). These EMPs produce both definitive erythroid as well as distinct 

myeloid cell (neutrophilic granulocyte, monocyte, and macrophage) groups. Previous 

studies have shown that EMPs have limited cell differentiation, giving rise only to 

erythroid and myeloid population and have a transient population because of their 

limited self-renewal capabilities. Definitive HSCs arises from hemogenic endothelium 

shortly after the beginning of the blood cell circulation. These cells arise in the aorta-

gonad mesonephrons (AGM) by 30 hpf in zebrafish. Subsequently, HSCs migrate 

through the blood to the caudal hematopoietic tissue (CHT) pro-nephrons. Similar to 

fetal liver in mammals, CHT represents a midway site of hematopoietic differentiation. 
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HSC cells differentiate into erythroid, myeloid, and thromboid cells at approximately 

3dpf (Figure 1a) (Bertrand et al., 2010; Carroll & North, 2014; Kissa & Herbomel, 

2010).  

Like mammals, HSCs and the blood cells developmental process is regulated by various 

genetic factors. A common signaling cascade including vascular endothelial growth 

factors (Vegf), bone morphogenic protein (Bmp), Notch followed by Hedgehog, 

prostaglandin E2, runt-related transcription factor (Runx) pathways control the immune 

cell as well as blood cell development (Carroll & North, 2014; Chen & Zon, 2009; 

Ellett & Lieschke, 2010; Paik & Zon, 2010). Definitive HSCs particular gene signature 

including c-myb and runx1, start expressing in the AGM after 26hpf (Davidson & Zon, 

2004).   

 

Figure 1: Model of hematopoietic ontogeny in the zebrafish embryo and adult 

zebrafish. (a) Four independent waves of precursor production. First, primitive 

macrophages arise in cephalic mesoderm, migrate onto the yolk ball, and spread 
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throughout the embryo (1). Then, primitive erythrocytes develop in the intermediate cell 

mass (2). The first definitive progenitors are EMPs, which develop in the posterior 

blood island (PBI; orange, 3). Later, HSCs arise in the AGM region (teal, 4), migrate to 

the CHT (b) Hematopoiesis in adult zebrafish occurs in kidney and thymus (c) 

Hematopoiesis in the kidney. The HSCs give rise to two distinct types of cell lineages 

including myeloid and lymphoid progenitor cells. The myeloid cells develop into 

monocytes, granulocytes, thrombocytes, and erythrocytes. On other side, lymphoid 

lineages give rise to B, T cells and NK cells. However, T cells migrate and developed 

into the thymus 

1.3.2. Whole Kidney Marrow as a hematopoietic organ 

CHT is intermediate hematopoietic organ of zebrafish larvae. Erythropoiesis, 

myelopoiesis, and thrombopoiesis shift to the kidney marrow at around 5 dpf. Zebrafish 

whole kidney marrow is the primary site for hematopoiesis from larval stages to the 

adult stage (Ellett & Lieschke, 2010). However, some of the hematopoietic processes 

may also occur in the developed spleen of zebrafish. Hematopoiesis occurs in the 

kidney, in the vestiges of the pronephrons and between the tubules of the 

mesonephrons. Zebrafish kidney starts producing mature myeloid and lymphoid cells 

within two weeks of initial development (Figure 1b and c) (Boatman et al., 2013; 

Davidson & Zon, 2004; Murayama et al., 2006). 

1.3.2.1. Zebrafish immune cells 

1.3.2.1.1. Neutrophils 

Neutrophils (Heterophil) are one of the most abundant granulocytes of zebrafish. Like 

human, zebrafish neutrophils have multi-lobe and segmented nuclei. However, 

zebrafish neutrophils nuclei are 2 to 3 lobed compared to 5 lobed nuclei in human 

neutrophils. Zebrafish neutrophils have pale cytoplasm that contains two distinct type of 

granules: azurophilic and non-azurophilic.  Zebrafish neutrophils are well equipped with 

antimicrobial defenses. For example, zebrafish neutrophils exhibit higher expression of 

myeloperoxidase enzyme, which form a primary defense in the cell (Crowhurst et al., 

2002; Renshaw et al., 2006). 
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1.3.2.1.2. Eosinophils 

Morphological appearance of zebrafish eosinophils is significantly different compared 

to their mammalian counterpart (Crowhurst et al., 2002). Zebrafish eosinophils are 

small, have a non-segmented peripherally located nucleus, and are characterized by an 

eosinophilic cytoplasm. Eosinophil cytoplasm is granular like a neutrophil; however, 

eosinophil granules are larger as well as spherical. Contrary to neutrophils, eosinophil 

granules do not stain with a respective stain. Like neutrophils, eosinophils also reside in 

the kidney and blood circulation. In addition, developmental stages of eosinophils could 

be observed in adult zebrafish whole kidney marrow. Mammalian eosinophils play a 

crucial role in host defense including asthma and allergic diseases, although the role of 

zebrafish eosinophils still needs to be investigated. Recently, an eosinophil specific 

zebrafish transgenic line (gata2) has been generated that could help to dissect the 

functional characterization of eosinophils in the zebrafish immune system. (Balla et al., 

2010).  

1.3.2.1.3. Mast cell   

Mast cells play key roles in inflammation and allergic reaction. Like their mammalian 

counterparts, morphological characteristics of mast cell in zebrafish have been recently 

identified. Expression of mast cell specific enzyme carboxypeptidase A5 in blood cells 

at 24hpf has been noticed. Mast cells are expresses in the zebrafish gill and intestine 

(Dobson et al., 2008). 

1.3.2.1.4. Macrophage 

Zebrafish macrophages are one of the first immune cells to arise during hematopoiesis. 

They are large cells with phagosomes, as well as more cytoplasm content compared to 

nuclei. In addition, their cytoplasm is vacuolated and agranular (Crowhurst et al., 2002). 

They are one of the key phagocytic innate immune cells essential for host defense. 

Macrophages are activated by as pathogen associated molecular patterns (PAMPs) or 

damage associated molecular patterns (DAMPs) during sterile or non-sterile 

inflammation. Activated macrophages phagocytize the noxious materials and are 

involved in the clearance of a large number of dying neutrophils, erythrocytes, and 
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cellular debris. Additionally, macrophage activate other immune cells such as lymphoid 

cells (Benard et al., 2014; Ellett et al., 2011). 

1.3.2.1.5. Lymphoid cells 

Fluorescence activated cell sorting (FACS) analysis of whole kidney marrow and 

thymus has shown the existence of diverse populations of lymphocytes. Additionally, it 

has been also noted that lymphoid lineage cells are smaller in size and less granular as 

compare to myeloid lineage cells (Traver et al., 2003b).  

1.3.2.1.6. B cells  

B cells are an important type of lymphocytes involved with adaptive immunity. B cell 

receptors (BCRs) enable antigen recognition and discrimination of B cells from other 

lymphocytes such as natural killer cells and T cells. Zebrafish B cells develop within the 

WKM at around 2-3 weeks post fertilization. B cell development within the kidney 

marrow hinders direct developmental visualization. Contrary to the five 

immunoglobulins (Igs) of mammals, zebrafish exhibits only three Igs; IgM, IgD, and 

IgZ. However, mammals do not express IgZ.  Recently, a B cell specific marker gene 

and zebrafish transgenic line (igm:eGFP) has been generated. Moreover, they have also 

observed that B cells have phagocytic capacity to phagocytize the pathogens (Page et 

al., 2013). 

1.3.2.1.7. T cells 

T cell exhibits T cell receptors and plays a crucial role in cell-mediated immunity.  In 

zebrafish, a definitive hematopoietic cell migrates to CHT, then to the kidney, and 

finally the thymus for development and selection. T cells ultimately differentiate and 

populate in the thymus after three days of post fertilization. All four TCR chains of the 

mammalian system are also found in zebrafish. T cells of zebrafish also express CD4 

and CD8 marker genes (Langenau et al., 2004; Langenau & Zon, 2005). 

1.3.2.1.8. Dendritic cells (DC) 

Dendritic cells are crucial link between the innate and the adaptive immune system.  

Zebrafish DCs are presents in various adult tissues, which resemble mammalian DCs. 
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Zebrafish DCs can be enriched by their affinity for lectin peanut agglutinin. Similar to 

mammalian DCs, zebrafish DCs exhibit expression of il12, MHC class II, iclp1 and 

csf1r, which are associated with DC function and antigen presentation. It has been 

shown that zebrafish DCs could activate T lymphocytes in an antigen dependent manner 

(Lugo-Villarino et al., 2010). 

1.3.2.1.9. Natural killer (NK) cells 

NK cells are derived from lymphoid lineages and are classified as innate lymphoid 

cells. They form an important component of the innate immune system. NK cells main 

roles are to discriminate self from non-self and to provide a first line of defense against 

foreign or transformed cells, such as virally infected cells. Paralleling mammals, 

zebrafish also exhibit the existence of NK cells. Yoder et al., have shown that zebrafish 

express novel immune type receptors (NITRs) orthologous to mammalian NK cell 

receptors. Mammalian NK cell receptors display both inhibitory and activating forms. 

In zebrafish, 39 types of NITRs have been identified. Of the 39 NITR genes, only nitr9 

showed similarity to mammalian NK cell activating receptor (Yoder et al., 2010). 

1.4. Inflammation 

Inflammation is an immediate response of the innate immune system to maintain 

homeostasis in response to infection or injury. Macroscopic inflammatory symptoms 

include redness, swelling, heat, and pain, resulting from increased blood flow, increased 

permeability across the blood capillaries, which allows leukocytes and large molecules 

(cytokine, antibody) to leave the blood stream and cross the endothelium wall towards 

the site of injury or infection (Rocha e Silva, 1978). 

1.4.1. Sterile inflammation 

Inflammation that occurs in the absence of pathogen like injury, chemically induced and 

dying cells is known as sterile inflammation. Similarly to infection mediated 

inflammation, sterile inflammation induces immune cell recruitment at the site of 

inflammation (Figure 2) (Chen & Nuñez, 2010; Menezes et al., 2011; Rock et al., 

2010). Most of the time cell death occurs in two ways: apoptosis and necrosis. 

Apoptosis is a natural process of cellular death. However, during extreme cellular 
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damage normal apoptosis does not occur but rather necrotic cell death which occurs 

under extreme cellular stress or trauma. These dying cells lose plasma membrane 

integrity rapidly, and consequently intracellular materials spill into the extracellular 

environment and triggers sterile inflammation (Kono & Rock, 2008; Shen et al., 2013). 

The inflammatory process is controlled or coordinated at various stages including 

inducers, sensors, mediators, and effectors of inflammation. 

 

Figure 2: Schematic illustration of sterile inflammation. Tissue injury in the absence 

of infection releases danger signals that stimulate neutrophils recruitment to the site of 

sterile inflammation 

1.4.1.1. Inflammatory inducers and sensors 

Inflammation inducers are the signals that initiate an inflammatory response during 

sterile or non-sterile inflammation. They activate inducer specific sensors in order to 

produce a specific sort of mediator (McDonald & Kubes, 2011). There are two types of 

inflammatory inducers: exogenous and endogenous inducers. Exogenous inducers are 

categorized as microbial inducers and non-microbial inducers. Each microorganism 

exhibits uniquely conserved moieties known as PAMPs. These molecular patterns are 

sensed by pathogen recognition receptors (PRRs) such as Toll-like receptors (TLRs) 
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and NOD-like receptors (NLRs) in order to stimulate pro-inflammatory responses. 

TLRs are transmembrane proteins located on the cell surface and endosomes. Immune 

cell TLRs sense the microbial inducers and initiate production of inflammatory 

mediators such as prostaglandins, chemokines, and cytokines (Chen & Nuñez, 2010; 

Medzhitov, 2008).   

Endogenous inducers are signals produced by tissue injury or stress in the absence of 

pathogen, releases intracellular molecule inducers known as DAMPs. These DAMPs 

(HSPs, ATP, S100, HMGB1, uric acid, extracellular matrix and endogenous nucleic 

acid) are recognized by PRRs and play a similar function as PAMPs. For example, TLR 

2 and TLR4 sense the extracellular matrix as DAMPs and activate the production of 

cytokine and chemokines (Chen & Nuñez, 2010; Kono & Rock, 2008; McDonald & 

Kubes, 2011). 

1.4.1.2. Inflammatory mediators 

Inflammatory inducer molecules stimulate the production of a certain number of 

inflammatory mediators to attract leukocytes (Coussens & Werb, 2002; Medzhitov, 

2010; Sadik et al., 2011). Based on their biochemical properties inflammatory 

mediators have been characterized into seven groups including vasoactive amines, 

vasoactive peptides, complement fragments, lipid mediators, cytokines, chemokines, 

and proteolytic enzymes (Medzhitov, 2008). During the inflammatory process mast 

cells and platelets release vasoactive amines such as histamine and serotonin, which 

ease the leukocyte’s recruitment by increasing vascular permeability and vasodilation. 

Second, vasoactive peptides are generated by proteolytic process and extracellular fluid, 

resulting in mast cell degranulation. Third, the complement system (C3a, C4a and C5a) 

circulates in the blood as inactive forms. During cellular stress, inflammatory inducers 

activate complement system, including C5a, to promote granulocyte and monocyte 

recruitment (Iadecola & Anrather, 2011; Mayadas et al., 2009). Fourth, lipid meditators 

(eicosanoids) also play an important role in inflammation and inflammation resolution. 

Eicosanoids including prostaglandins, leukotrienes, lipoxins are mostly produced from 

arachidonic acid by neutrophils, macrophages, and dendritic cells via three pathways: 

lipoxygenase, P-450 epoxygnase, and cyclooxygenase mediated production (Harizi et 

al., 2008). These lipid molecules regulate wide variety of physiological and 



Introduction 

	
  
12 

	
  

pathological process. For example; prostaglandins including PGE2 and PGI2 induce 

vasculature permeability and vasodilation in order to attract immune cells such as 

neutrophil and macrophages. On the other hand, lipoxins mediate inflammation 

resolution and regeneration by inhibiting neutrophil filtration to inflammation site 

(Hirata & Narumiya, 2012; Levy et al., 2001; Serhan, 2007; Serhan & Savill, 2005). 

Fifth, cytokines including TNF alpha, IL-1, IL-6 and others are also important 

inflammation mediators, which are produced mostly by macrophages and mast cells. 

These cytokine mediators play a vital role in endothelial activation and leukocyte 

recruitment during the inflammatory response (Feghali &Wright, 1997; Medzhitov, 

2010; Sanjabi et al., 2009). In addition to cytokines, chemokines are key mediators of 

inflammation produced by many cell types. They are specialized to control leukocytes 

extravasation and chemotaxis towards the affected tissue (Moser, 2004; Sallusto & 

Baggiolini, 2008; Thelen & Stein, 2008). Next, and finally, inflammatory mediators can 

be proteolytic enzymes such as elastin, cathepsins, and matrix metalloproteinases 

(MMPs). These proteolytic enzymes play a crucial role in host defense, tissue 

remodeling, and immune cell migration. Mmps are cell secreted soluble and membrane 

bound enzymes that degrade extracellular matrix to facilitate neutrophil migration in 

tissue (Coussens & Werb, 2002; Hall et al., 2014; LeBert & Huttenlocher, 2014; Wolf 

& Friedl, 2011). 

1.4.1.3. Inflammation effectors cells 

1.4.1.3.1. Neutrophils attraction  

Cells that respond to inflammatory mediators are known as effectors of inflammation 

such as neutrophils, macrophages, and mast cells. Neutrophils are short-lived and the 

most abundant leukocytes in mammals and zebrafish. They provide a first line of host 

defense against sterile (tissue damage) or non-sterile (pathogen infection) inflammation. 

Mature neutrophils are released into the blood stream and circulate for next 1-2 days. 

After 1-2 days they undergo apoptosis and are cleared by dendritic or macrophages. In 

response to wounding, infection or other inflammatory stimuli, neutrophils are the first 

immune cell recruited at the inflammatory site and perform well defined effector 

functions, such as phagocytosis and activation of other immune system components 

(Henry et al., 2013; Renshaw et al., 2006). At the site of inflammation, inflammatory 

mediators activate the circulating resting neutrophils. Neutrophils exit from the blood 



Introduction 

	
  
13 

	
  

vessels and migrate to the inflamed site by various processes such as rolling, adhesion, 

crawling and transmigration (Kolaczkowska & Kubes, 2013; Nathan, 2006; Phillipson 

& Kubes, 2011). 

In the initial phase of the inflammatory response, inducers and mediators activate the 

surrounding endothelial cells and subsequently up-regulate the expression of adhesion 

molecules, such as P and E selectins. Neutrophils exhibit expression of glycosylated 

ligands for these selectins, including P-selectin glycoprotein ligand 1 (PSGL-1). These 

adhesive molecules (P and E selectins) tether circulating neutrophils to the vessel wall. 

Neutrophils roll along the endothelium under shear stress generated by blood flow 

(Phillipson & Kubes, 2011; Sundd et al., 2012; Wang & Arase, 2014). In addition, 

involvement of selectin ligands (PSGL1) on neutrophils also activates various kinases 

such as Src family kinasem and  Syk, phosphoinositide 3- kinase (P13K). These kinases 

subsequently activate the integrin molecules expressed by neutrophils (Mueller et al., 

2010; Yago et al., 2010). Rolling neutrophils further interact with integrins and induce 

conformational changes and clustering of β2 integrins. Conformational changes of β2 

integrin expose its ligand to intracellular adhesion molecule 1(ICAM1) expressed by 

inflamed endothelial cells. Activated integrins enable neutrophil adhesion by inhibiting 

and stopping neutrophil rolling (Constantin et al., 2000; Luo, 2012; Petri et al., 2008). 

Once neutrophils are adhered to the endothelium, neutrophils might migrate through 

endothelial cell barrier by two ways; either paracellularly (passing between endothelial 

cells) or transcellularly (passing through pores or passages that traverse the endothelial 

cytoplasm). Transmigration of neutrophils depends on adhesion molecules including 

PECAM-1 and CD99 expressed by the endothelium and leukocytes. PECAM-1 

endothelium transmembrane junction molecules participate in pre-cellular 

transmigration. Pre-cellular transmigration is the migration of leukocytes from the 

luminal side of capillaries through endothelial cell junctions to the abluminal side. 

However, the trans-cellular pathways are a key route for a small subset of the neutrophil 

population for rapid emission (Carman & Springer, 2008; Wang & Arase, 2014). 

Once neutrophils are recruited to the inflammatory site, neutrophils directly recognize 

PAMPs with the help of PRRs and destroy them. Neutrophils are involved in pathogen 

killing, through release of their toxic granule contents packed with proteolytic enzymes, 

antimicrobial proteins, and reactive oxygen species. Moreover, neutrophil granules 
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release enzymes such as NADPH dependent oxidase and MPO, which contribute in the 

production of antimicrobial molecules as reactive oxygen species (ROS) and hydrogen 

peroxide (H2O2) (Kobayashi et al., 2005). Moreover, highly activated neutrophils expel 

nuclear extracellular traps (NETs) including histones and DNA in order to eliminate 

extracellular pathogens. Phagocytosis prevents inflammation from spreading and aids in 

resolution (Lu et al., 2012). 

1.4.1.4. Inflammation resolution 

Once the initiating noxious materials are removed via phagocytosis, the inflammatory 

reaction must be resolved in order to prevent the inflammation from spreading 

becoming chronic or causing diseases. Reduction or removal of leukocytes or cell debris 

from the inflamed site is called catabasis or resolution of inflammation. The resolution 

process is rapidly initiated by cellular pathways that actively biosynthesize locally, as 

well as dual-acting, anti-inflammatory cytokines, such as IL-10, TGF-β and dual acting 

anti-inflammatory (Sultani et al., 2012) and pro-resolution lipid mediators, i.e. the 

lipoxins, resolvins, and protectins (Ariel, 2012; Bannenberg & Serhan, 2010; 

Bannenberg et al., 2005; Serhan et al., 2008). Resolution of inflammation is distinct 

from anti-inflammatory processes because pro-resolution mediators actively promote 

clearance of microorganisms and apoptotic cells. So mediators of the resolution of 

inflammation are different from immunosuppressors of inflammation as they activate 

mechanisms that bring about the restoration of homeostasis in inflamed tissue. Once 

neutrophils arrive at inflamed site and phagocytized noxious materials. Furthermore, 

neutrophils induce the production of anti-inflammatory or pro-resolution lipid mediators 

including protectins, resolvins, and lipoxins to resolve the inflammation. Lipoxins play 

a dual role in inflammatory resolution by selectively stopping neutrophil and eosinophil 

infiltration and activating macrophage recruitment at inflamed site (Levy et al., 2001; 

Schwab & Serhan, 2006; Serhan et al., 2008; Uddin & Levy, 2011). Recruited 

macrophages increase phagocytosis of microorganisms and apoptotic cells, and increase 

the exit of phagocytes from the inflamed site through the lymphatics. 

1.5. Neutrophil inflammatory response in zebrafish model system 

Neutrophilic inflammation is an essential immune response to maintain the zebrafish 

primary immune system. Tissue damage or infection stimulates leukocyte recruitment to 
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the wound site through immediate release of ‘danger signals’, such as ATP, uric acid, 

lipids, DNA and nuclear proteins (Škoberne et al., 2004). In the case of injury, 

neutrophils migrate to the injury site by sensing a hydrogen peroxide gradient produced 

by damaged epithelial cell (Niethammer et al., 2009). Yoo et al., has further revealed 

that H2O2 produced by injury oxidizes cysteine of Lyn, a member of Src family kinases 

(SFKs) present in neutrophils. Lyn kinase is an important molecule of neutrophils; it 

controls the neutrophil endothelium adhesion and directional migration. Oxidation of 

the cysteine amino acid stimulates Lyn kinase, which in turn activates the 

phosphotidylinositol (3, 4, and 5) triphosphate (PI3K) (Yoo et al., 2011). Activated 

PI3K further activates Rho GTPase (Rac2) at the leading edge to induce cytoskeleton 

reorganization that lead neutrophil directional migration. Moreover, Rac2 can also 

activate PI3K for neutrophil cytoskeleton reorganization and directional migration 

(Deng & Huttenlocher, 2012; Deng et al., 2011). 

Once neutrophils have reached the inflamed site, neutrophil gets involved in 

phagocytosis, removing microbes and damaged tissue to initiate resolution. Resolution 

of inflammation or reduction of neutrophils at a site of tissue injury occurs in numerous 

ways (Deng & Huttenlocher, 2012). These include apoptosis, removal of dead 

neutrophils and noxious materials, and neutrophil reverse migration (Mathias et al., 

2006). Previous studies have shown that only a small number of cells at the injured site 

undergo apoptosis and the rest of the neutrophil cell reverse migrates from the site of 

inflammation (Starnes & Huttenlocher, 2012). 

1.6. Challenges 

Various powerful studies of granulocytic inflammation have been carried out in 

zebrafish model system to ascertain the roles of that particular inflammatory gene. So 

far most of the zebrafish research on inflammation has been done based on imaging 

(Enyedi et al., 2013), chemical screening (Zon & Peterson, 2005), and FACS (Mathias 

et al., 2009) and gene expression analysis. Gene expression analysis is derived from 

large-scale transcriptomics including microarrays (van der Vaart et al., 2013) and RNA 

seq (Ordas et al., 2011). Most likely, protein abundance is calculated or predicted based 

on the gene expression analysis. However, previous comparative studies in various 

organisms have shown fairly limited correlation between protein and mRNA. 
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Researchers have suggested four basic arguments behind this poor correlation.  First, 

the level of transcription of a gene gives only a rough estimate of its level of expression 

into protein. An mRNA produced in abundance may be degraded rapidly or translated 

inefficiently, resulting in a small amount of protein. Secondly, many proteins 

experience post-translational modifications that profoundly affect their activities. For 

instance, a protein may not be active until it becomes phosphorylated. Thirdly, many 

transcripts give rise to more than one protein, through alternative splicing or alternative 

post-translational modifications. Finally, many proteins form complexes with other 

proteins or RNA molecules, and only function in the presence of these other 

molecules(Muers, 2011). 

Traditionally, zebrafish researchers rely on antibodies or immunohistochemistry for 

protein analysis. However, each of these methods only opens small window to 

understand the complexity of multilayer cellular proteins because of inaccessibility of 

zebrafish specific antibodies. Therefore, researchers have introduced proteomics 

techniques to define global analysis of proteins in a protein complex of cell, tissue or 

complete organism. 

1.7. Proteomics 

Proteomics study includes protein identification, quantification, interactions as well as 

determination of their localization, and most importantly investigation of their function 

(Nilsson et al., 2010). Mass spectrometry based proteomics have become the primary 

technology to study the proteins in complex mixtures. Over the years, different mass 

spectrometry techniques have been developed to perform proteomics analysis (Micallef 

et al., 2010; Roe & Griffin, 2006). 

1.7.1. Mass spectrometry based proteomics 

As the name implies, a mass spectrometer measures the mass to charge ratio of 

electrically charged molecules (proteins or peptides). A mass spectrometer contains 

three important parts including an ion source, a mass analyzer, and ion detector. In the 

first instance, liquid samples are ionized into charged particles and detectors detect the 

mass to charge ratio (Catherman et al., 2014). The two most commonly used sources 

include matrix assisted laser desorption/ ionization (MALDI) and electrospray 
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ionization (ESI) (Chen, 2008; Singh et al., 2010a; 2011). MALDI and ESI produce 

charged ions with very low internal energy. MALDI ionizes co-crystalized predigested 

peptide samples from a target metal plate (Medzihradszky et al., 2000). While ESI 

ionize the molecules from a liquid phase and is therefore readily coupled to liquid-based 

chromatographic (LC) separation techniques. Compared to MALDI, liquid 

chromatography (LC) coupled ESI-MS enables analysis of complex peptide mixtures. 

Once the peptide mixture is ionized, charged particle reaches the mass analyzer, which 

is one of the crucial modules of mass spectrometer. MALDI mostly consists time of 

flight (TOF) analyzer that enables the separation of ion according to time of flight. Mass 

spectrometry has key parameters include sensitivity, resolution, mass accuracy, and 

reproducibility to perform proteomics (Medzihradszky et al., 2000). To date, three types 

of mass analyzers are used for proteomics analysis such as time of flight, quadruple, and 

ion trap instruments (quadrupole ion trap -QIT, linear ion trap -LIT, Fourier transform 

ion cyclotron resonance -FT-ICR). All mass analyzers differ noticeably in sensitivity, 

resolution, and mass accuracy and hold some weaknesses and strength (Aebersold & 

Mann, 2003a). 

The ion trap instruments or methods are robust, sensitive, and relatively inexpensive. 

They are extensively used in proteomics research (Figeys & Aebersold, 1997). In this 

dissertation, ion trap (Orbitrap) instrumentation was used for proteomics analysis. 

Therefore, a brief introduction will be given to this particular method. The Orbitrap 

mass analyzer consists of a small electrostatic device into which ion packets are injected 

at energies to orbit around a central, spindle shaped electrode. The image current of the 

axial motion of the ions is picked up by the detector. Currently in proteomics research, 

LTQ Orbitrp is a widely used instrument, which is a hybrid of low-resolution linear ion 

trap and orbitrap analyzer (Michalski et al., 2011). First LTQ-Orbitrap in MS mode 

traps the ion population in the center for high resolution analysis based on Orbitrap 

analyzer. In MS/MS mode the linear ion trap only retains a chosen mass window, which 

is activated by a supplemental radio frequency (RF) field leading to fragmentation of 

the trapped precursor ions, and records the signal of a mass dependent scan at low 

resolution. This method was further developed for more efficient ion entrapment for 

fragmentation, induced by Higher energy Collisional Dissociation (HCD) (Shao et al., 

2014). This energy causes the peptide ion to fragment at different points, commonly at 

the peptide bonds. HCD fragmentation is similar to fragmentation in triple quadrupole 
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or quadrupole TOF. HCD based fragmentation provides higher mass accuracy in the 

Orbitrap analyzer (Michalski et al., 2011). The recorded ions represents tandem mass 

spectrum (MS/MS) that contains information of the amino acid sequence (Aebersold & 

Mann, 2003a). 

Further, this peptide mass fingerprinting (PMF) is used for protein identification. 

Several software packages or search engines including Mascot, Sequest, MaxQuant are 

available to assist in the protein identification (Cox & Mann, 2008; Cox et al., 2009). 

These software programs help to compare the experimental PMF mass (ion spectra) 

with theoretical mass value derived from DNA or protein databases including Uniprot, 

NCBI, and International protein index (IPI). 

1.7.2. Quantitative proteomics 

Quantitative proteomics is an approach to measure the amount of protein change in 

samples during an altered state. Quantitative proteomics are two types including relative 

and absolute quantitative proteomics. Absolute quantification is the measurement of 

exact amount of protein such as concentrations of plasma marker proteins in units or the 

copy number of a protein per cell. Relative quantification depends on the comparison of 

protein expression in two samples. There are various methods for relative protein 

quantification including 2D (DIGE) (Saxena et al., 2012), label-free (Andreev et al., 

2012), and stable isotope labeling (Tao & Aebersold, 2003) but the best method is 

defined based on three aspects including rapidity, efficiency, and reproducibility 

(Altelaar et al., 2013b; Ong & Mann, 2005a). 

Two-dimensional gel electrophoresis is traditional quantitative proteomics approach, 

allows the separation of the proteins based on molecular weight and isoelectric point. 

Further, this method has been upgraded in which proteins were labeled with different 

fluorescent dyes and separated on gels to visualize differentially regulated proteins. 

Although, this method provided good sensitivity, linearity, and dynamic range 

compared to traditional antibody based analysis, this method stills have some 

limitations. First, this method requires many more replicates and image analyses for 

significant results. Secondly, this approach can visualize only few hundred proteins and, 

most importantly, this method has certain limitations in the identification of small 
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molecular weight and low abundant proteins (Abdallah et al., 2012; Deracinois et al., 

2013).  

 

Figure 3: Workflows of commonly used quantitative proteomics approaches. Boxes in 

blue and red symbolize two experimental conditions. Horizontal lines indicate when 

samples are combined. Dashed lines indicate points at which experimental variation 

and thus quantification errors can occur. This figure is adopted from Ong et al., 2005 

and Bantscheff et al., 2007 

With time and demand, mass spectrometry based quantitative proteomics has gained a 

lot of popularity and various developments have been made in quantitative proteomics 

approaches. To date, two quantitative proteomics analysis have been applied for 

complex protein samples such as label-free and labeling approaches	
  (Figure 3) (Blagoev 

et al., 2003; Ong & Mann, 2005a). 

1.7.2.1. Label free proteomics 

Label free quantitative proteomic methods allow for the quantification of relative 

expression changes in two samples without the use of labeling. This is one of the 

rapidly growing proteomics methods because of its speed, low cost, and easy and 

multiple sample analysis (Wasinger et al., 2013; Zhu et al., 2010). There are two 
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strategies for label free quantification including spectral counting and peptide peak 

intensity measurement. In the first case, spectral counting implies the abundance of 

protein, by means of higher spectra denoting more highly abundant proteins (Wang et 

al., 2008b). Therefore, relative protein quantification is calculated by comparing the 

number of spectra from the same protein of two samples. However, spectral counting is 

protein centric and it is less reliable for small and less abundant proteins. In addition, 

the spectral counting method does not hold much promise to identify proteins with less 

expression change (Old et al., 2005; Wasinger et al., 2013). Secondly, relative 

quantification using peptide peak intensity measurement involves comparing the MS 

peptide ion intensities belonging to a given protein. This method provides better 

identification of differentially regulated proteins. The label free protein quantification 

implies that samples are prepared and compared separately and individually analyzed by 

MS/MS. However, a major limitation of label free quantitative method is systemic and 

non-systemic variation between replicates. 

Label free quantification has been applied in various biological research fields. 

Professor Mann’s group applied label free quantitative proteomic strategies to 

understand the proteome of mouse dendritic cells upon viral infection. They further 

suggested that a label free quantitative strategy is one of the better choices for limited 

amount of tissue or cell material (Luber et al., 2010). Hogl et al., 2013 had for the first 

time applied a label free quantification approach to understand the membrane protein 

dynamics of zebrafish upon Bace 1 protease knockdown. They successfully identified 

4500 membrane proteins in the zebarfish brain. Moreover, they have also reported that 

the expression of 24 proteins was altered due to Bace 1 knockdown (Hogl et al., 2013).  

1.7.2.2. Labeling method  

As the name implies, labeling quantitative proteomics method in MS quantify the 

proteins based on specific stable isotope labeling. Stable isotope labeling techniques are 

based on the introduction of a differential mass tag (internal standard) that affects only 

the mass of protein without changing chemical properties of proteins and subsequently, 

protein quantification performed by comparing the intensities of labeled mass tags. 

There are three well-known stable isotope labeling methods; enzymatic, chemica, and 

metabolic. The stable isotope labeling  method is more reliable and reproducible 
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compared to label free quantitative proteomic approaches (Bantscheff et al., 2007; 

2012). 

1.7.2.3. Enzymatic labeling 

This method is performed during proteolytic digestion or after proteolysis in a second 

incubation step with proteases. In this method, 18O incorporated into C-terminal of 

peptides resulting in a mass shift of 2 Dalton per 18O atom. While Trypsin and Glu-C 

labeling introduce two oxygen atoms resulting in 4 Da mass shifts; which are, generally, 

sufficient for differentiation of isotopemers (Heller et al., 2003). However, this method 

could not achieve full labeling. Therefore, each peptide has different rates of labeling 

which hinder  data analyses (Bantscheff et al., 2007; Goshe & Smith, 2003). 

1.7.2.4. Chemical labeling 

Chemical isotopes bind to reactive amino acid side chains of proteins or peptides are 

known as chemical labeling. Numerous chemical labeling methods including isotope 

coded affinity tags (ICAT), isotope coded protein labels (ICPL), tandem mass tags 

(TMT), and isobaric tags for relative and absolute quantification (iTRQ) are available to 

perform quantitative proteomics analysis. ICAT chemical label binds to cysteine amino 

acids. Therefore, this method is not suitable for the identification and quantification of 

proteins that lack cysteine amino acids (Wasinger et al., 2013). 

However, current chemical labeling methods (TMT and iTRQ) target the protein or 

peptide N terminus and epsilon amino group of lysine residue. These labeling reagents 

are also known as isobaric tags because they primarily target amines (Thompson et al., 

2003; Wiese et al., 2007). iTRQ labeling allows identification of comparison of up to 

eight samples in parallel. iTRQ is incorporated in different protein samples after trypsin 

digestion and subsequently digested and labeled samples (treated and control) combined 

together for mass spectrometry analyses. iTRQ labeled different states peptide sample 

shows similar mass because labeled peptides from different states are isobaric. 

However, differential behavior of peptides can be observed during mass spectrometry 

fragmentation of peptide spectra. Nevertheless, this labeling method depends on the side 

chain reaction of amino acid that could lead to unexpected products that can produce a 

bias in protein quantification (Aggarwal et al., 2006; Wasinger et al., 2013; Wiese et 
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al., 2007). Additionally, as mentioned earlier that chemical labeling is introduced after 

protein digestion of different samples and therefore can create inconsistent protein 

digestion thus leading to labeling variation. In addition, these chemical labeling reagents 

are very costly, which limit larger numbers of data analyses (Elliott et al., 2009). 

1.7.2.5. Metabolic labeling 

In metabolic labeling strategies, the labeled isotope analog is synthesized into each 

protein during cell growth or cell division. Therefore, this method provides an 

alternative strategy for accurate quantitative proteome analysis. Metabolic labeling was 

first established in bacteria and yeast by growing them into 15N enriched media. 

However, 15N labeling was not feasible for most mammalian cells. There are a number 

of essential amino acids that cannot be synthesized by mammalian cells. Therefore, 

these essential amino acids should be supplied to cell in cell culture medium (as food 

supplements) for cell survival. Ong et al., 2002 were  the first to report this method by 

introducing 13C6-arginine and 13C6-lysine into mammalian cell culture (Ong et al., 

2002). As the metabolic labeled analog is supplied to cell culture this metabolic labeling 

method has been named as stable isotope labeling by amino acid in cell culture 

(SILAC). These isotopically labeled amino acid cell culture media are available on the 

market. Once labeled analogs of an amino acid is supplied to cell culture instead of 

natural amino acids, labeled amino acids get incorporated into proteins during normal 

protein synthesis. Fully SILAC labeled cells can be achieved after 3-5 exchanges of 

media. Once isotopic labeled amino acids are incorporated into proteins, it induces a 6 

Dalton mass differences between labeled and non- labeled amino acids. As there are no 

chemical differences between natural (light) and labeled amino acid (heavy) SILAC 

labeled cells behave as normal cells would. For accurate quantitative proteomics 

analysis, light cells can be treated or infected and heavy cells can be kept as a control 

cells. In mass spectrometry analysis, each peptide appears in a pair with 6 Dalton mass 

differences, and relative expression of the same protein in two samples can be measured 

based on the peptide intensity (Mann, 2014; Ong & Mann, 2005b; Ong et al., 2002). 

The main advantage of SILAC is that treated and non-treated samples can be pooled 

prior to protein extraction. Therefore, manual errors get eliminated during sample 

preparation resulting in higher quantification accuracy, more precession, and higher 

reproducibility. Moreover, this method also enables the quantification of small changes 
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in protein levels, as well as, protein modifications. Although, metabolic labeling is one 

of the most highly sensitive methods for protein quantification, protein quantification 

based isotopic labeling of arginine residues has limitations due to metabolic conversion 

of arginine to proline residues (Ong & Mann, 2005a; Ong et al., 2003). 

1.7.2.5.1. In vivo metabolic labeling  

Animal models including fruit flies, rat, zebrafish and mice serve as tools to mimic 

human physiology and disease. Therefore, extension of quantitative proteomics using 

SILAC creates an opportunity to study a wide range of diseases that effects tissues or 

organ proteomes. To date, SILAC has been expanded by labeling entire organism 

including mouse (Kruger et al., 2008), drosophila (Sury et al., 2010), rat (Rauniyar et 

al., 2013), and zebrafish (Konzer et al., 2013). SILAC labeling of whole organisms 

requires preparation of food that contains the SILAC amino acid as the sole nutrient 

source and that is compatible with growth of the organism. McClatchy et al., 2007 

achieved approximately 90% SILAC labeling by feeding 15N enriched spirulina diet to 

rats for 44 days. Similar to cell lines, the SILAC labeled rat did not produce any 

phenotypic discrepancies compared to non-labeled control rats. Organs including brain, 

heart, and muscles did not achieve more than 75 % SILAC labeling, even though the 

nitrogen source from the diet is the same.  This disparity is due to certain tissues having 

slower protein turnover rates than others (McClatchy et al., 2007). To mitigate the 

inconsistent labeling rate, Kruger et al. 2008 selected 13C6 lysine to establish a 

metabolically labeled mouse (Kruger et al., 2008). They prepared a mouse diet by 

replacing natural lysine amino acid with isotopic labeled lysine variant and feed the 

mice with labeled chow regularly. Similar to the SILAC labeled rat, mice showed 

similar food consumption, normal fertility, and normal weight gain compared to non-

labeled mice. After two generations of continuous feeding with the isotopic labeled diet, 

mice were fully labeled with isotopic lysine residue. These techniques enable accurate 

protein quantification of proteins in various organs and tissue without any chemical 

labeling, which might lead to chemical modification and inaccurate protein 

quantification (Mann, 2006).  

Despite its various advantages, heterogeneity and complexity of tissue samples limit its 

direct comparison with non-labeled tissue. Therefore, Geiger et al., 2013 recommend 
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using the SILAC model organisms as standards rather than as the experimental system 

themselves, since the SILAC food might have metabolic effects. Moreover, with the 

spike-in standard approach the same SILAC organism can be used for experiments with 

different age groups, incubation, and strains of various genetic backgrounds (Geiger et 

al., 2011; Gilmore et al., 2013).  

 

Figure 4: In-vivo metabolic labeling in zebrafish. (a) In-house developed SILAC diet 

for adult zebrafish consists of heavy labeled cells of E. coli, S. cerevisiae, mouse tissue 

and SILAC mouse diet (b) Lys-6 diet feeding to nonlabled zebrafish upto 3-11 months 

labeled on average 85% proteins of zebarfish. This plot was achieved by analysis of 200 

proteins. Whereas, SILAC incorporation rate were further increased after one week and 

five months of F1 generation Knozer et al., 2013 

In continuation to mouse SILAC labeling, a Swedish research group has established 

SILAC labeled zebrafish. They used the 13C6 lysine mouse diet technique to label 

zebrafish proteins and checked the labeling efficiency in various organs. Notably, the 

incorporation of metabolic isotopic lysine residues into zebrafish was low in compared 

to other SILAC labeled organism and contrary to the other SILAC labeled organisms, 

they found physiological abnormalities (inability to breed and development) in SILAC 

a

b
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labeled zebrafish. They hypothesized that the rodent diet might not contain sufficient 

nutrition required for fish (Westman-Brinkmalm et al., 2011). Therefore, the Kruger 

group had to first establish a Lys-6 containing universal fish food for larval and adult 

zebrafish and feed the fish up to one generation. They achieved a 98% SILAC 

incorporation in brain, blood, heart, muscle, gills, spleen, skin, and liver (Figure 4). 

Interestingly, they did not observe any physiological abnormalities in SILAC labeled 

zebrafish (Konzer et al., 2013; Nolte et al., 2014).  

Although, labeling efficiency of various organs of zebrafish have been checked, SILAC 

labeling in the whole organisms cells including immune and epithelial cell are still 

lacking.  

1.8. Aim of the study 

Neutrophils are the first immune cells respond to sterile or non-sterile inflammation. To 

date, little is known about molecular changes in neutrophils upon inflammation. The 

zebrafish is increasingly used as a model to genetically address immunological 

problems due to several advantages including availability of transgenic lines of 

fluorescently labeled neutrophils and macrophages. Moreover, recently an interesting 

chemically-induced inflammation (ChIn) assay, using copper sulphate (CuSO4) to 

trigger robust sterile inflammation was established in zebrafish larvae. Wounding of 

zebrafish lateral line neuromasts is inflicted chemically by adding micromolar 

concentrations of CuSO4 to the bathing water, resulting in rapid recruitment of 

leukocytes to injured neuromasts. Hence, ChIn assay enables automated screening 

procedures towards the identification of immune-modulatory activities of candidate 

compounds in zebrafish larvae. However, it was currently unknown whether the ChIn 

assay could also be used in adult zebrafish. Therefore, the first aim of my thesis was to 

establish chemically induced inflammation in adult zebrafish to understand the 

molecular changes in neutrophils. In past, microarray and RNA sequencing analysis of 

adult and embryo zebrafish infected with various pathogens has been performed. 

However, proteo-genomics studies showed clear differences in transcript and protein 

expression levels in various biological systems. Thus, second and central aim of my 

thesis was to select and optimize suitable quantitative proteomics method to determine 

inflammatory proteome of adult zebrafish WKM neutrophils	
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 2. Methods and materials 

2.1. Materials 
2.1.1. Reagents and consumables 

Table 2: List of reagents/plastic ware 

Name Supplier 

Copper II sulphate anhydrous (CuSO4) Carl Roth GmbH & Co KG 

PeqGold Trifast reagent Peqlab 

QuantiTect Reverse TranscriptionQiagen Qiagen 

GoTaq qPCR master mix Promega 

SBS v3 kits Illumina 

Bradford reagents Bio-Rad 

Nu-PAGE gradient gels Invitrogen 

Colloidal Blue Staining Kit Invitrogen 

MSS222 Sigma-Aldrich 

L-15 media  Sigma-Aldrich 

Fetal bovine serum gold PAA laboratories Gmbh 

Acetone AppliChem 

Acetonitrile Sigma Aldrich 

Acetic acid AppliChem 

Formic Thermo Scientific 

Ethanol Merck kGaA 

SDS Carl Roth GmbH 

Tris/HCL Carkl Roth GmbH 

HEPES Sigma Aldrich 

Urea Sigma Aldrich 

Thiouria Sigma Aldrich 

DTT Sigma Aldrich 

Iodoacetamide Sigma Aldrich 

Microloader pipette tips Eppendorf 
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2.1.2. Instruments 

Table 3: List of instruments used in the study 

Instrument Manufacturer 

FACS Aria II flow cytometer BD Biosciences 

StepOnePlus Thermo Cycler ABI 

Agilent Bioanalyzer 2100 Agilent 

ChemiDoc MP Imaging System Bio-Rad 

LTQ Orbitrap XL mass spectrometer Thermo Scientific 

Lyophilizer Martin Christ freeze dryers 

Quadrupole-based mass spectrometer QExactive Thermo Scientific 

Leica MZFLIII Stereoscope Leica 

Stereoscope Olympus SZX7 Leica 

DM5500 fluorescent microscope Leica 

 Sonication Branson Sonifier 250 

2.1.3. Primers 

Primer name Sequence 

myd88-fwd CGAACACAGGAGAGAGAAGGAGTC 

myd88-rev TCAAAGGTCTCAGGTGTCAGTCC 

il6-fwd GATGACAGTGAAGCTCTTGGACAC 

il6-rev CCGATTCAGTCTGACCGGAGATTG 

tnfa-fwd CGTCTGCTTCACGCTCCATAAGAC 

tnfa-rev ATGGATGGCAGCCTTGGAAGTG 

mmp9-fwd TGATGCAGCTTTCGGTGGAGTG 

mmp9-rev TCCCGGCAGAAGTAGAAGAATCCC 

tgfb1a-fwd TGGGAAGGCAACACAAGGTG 

tgfb1a-rev TGAGAAATCGAGCCATGAACCAC 

il8-fwd TTTTCCTGGCATTTCTGACC 

il8-rev CGTCGGCTTTCTGTTTCAAT 

bactin1-fwd CCGGTTTTGCTGGAGATGA 

bactin1-rev CACATAGGAGTCTTTCTGTCCCATG 

il1b-fw ACGGATCCAGCTACAGATGCGACATGCA 
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il1b-rev ACGAATTCCTTGAGTACGAGATGTGGAGA 

cox2-fwd TGAAAGTCCACCGACGTACAA 

cox2-rev CGGAGCCAAATGGTAGCATAC 

2.1.4. Software 

BD FACS Diva vs 8.1 

Illumina RTAv1.13  

CASAVA (Version 1.9) and Eland (Illumina) 

Tophat (version 1.4.1) 

Bowtie (version 0.12.7) 

MaxQunat (Version 1.3.7.4) 

Perseus (version 1.3.7.1) 

STRAP (Software Tool for Rapid Annotation of Proteins software program) 

DAVID (Database for Annotation Visualization and Integrated Discovery) 

GeneGo software (www.genego.com) 

Cytoscape (Version 3.1) 

2.2. Methods 

2.2.1. Zebrafish lines 

Neutrophil-specific zebrafish reporter line Tg(lyzC:DsRed)nz50 was used in this 

dissertation (Hall et al., 2007). All zebrafish husbandry and experimental procedures 

were performed in accordance with the German animal protection standards [Animal 

Protection Law, BGBl. I, 1934 (2010)] and were approved by the Local Government of 

Baden-Württemberg, Regierungspräsidium Karlsruhe, Germany (License number: 

Proteome analyses of adult zebrafish: Az.: 35-9185.81/G-170/12 and general license for 

fish maintenance and breeding: Az.: 35-9185.64). 
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2.2.2. SILAC zebrafish 

SILAC zebrafish were obtained from the Krüger lab at the MPI Bad Nauheim. SILAC 

zebrafish were established by supplementing diet containing 13C6 lysine (Lys-6), and 

were maintained under standard laboratory conditions (Konzer et al., 2013).   

2.2.3. Induction of inflammation in adult fish 

Healthy transgenic zebrafish (4-8 months old) were treated with 25µM CuSO4 for 1hr. 

Following incubation, inflammation was confirmed visually by consideration of 

leukocyte influx to the gills. 

2.2.4. Inflammation kinetics assay in adult zebrafish 

Healthy transgenic zebrafish were incubated with 25 µM CuSO4 and protein samples 

were collected at different time points. First, fish were incubated with CuSO4 10 min to 

1hr (inflammation initiation t=10, t=30 and t=1hr), and subsequently, fish were 

transferred into fish water for 2hr (inflammation progression t=1.5hr and t=2hr). 

Finally, fish were incubated up to 8hr (inflammation resolution t=4hr and t=8hr), and 

further collected for cell sorting. 

2.2.5. Isolation of marrow neutrophils  

Adult Tg(lyzC:DsRed) zebrafish were anesthetized with 0.2 mg/ml of Tricane and killed 

in an ice bath. After decapitation and ventral incision the organs were removed to 

expose the whole kidney marrow (WKM). WKM was then removed and placed in L-15 

media with 5% fetal bovine serum (FBS). The WKM was triturated and subsequently 

passed through a 40 micron filter and centrifuged at 450 g. Dissociated cells were 

suspended in media and filtered again. The single cell suspension was analyzed and 

sorted on a FACS Aria II flow cytometer. The WKM cell suspension was gated based 

on size and granularity using forward and side scatter characteristics, respectively. The 

fluorescently labeled cells from the DsRed reporter line were visualized using the PE 

filter set (582/15nm) upon excitation by a 488 nm laser line. DsRed positive cells were 

back-gated to confirm their myeloid characteristics and collected. Purity was verified by 

both, FACS reanalysis and visual inspection on a DM5500 fluorescent microscope. Cell 

viability was determined by Tryphan blue staining and cell numbers were determined 
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using a hematocytometer. Subsequently, cells were snap-frozen and stored at -80°C for 

later proteomic analysis. 

2.2.6. Real time PCR analysis 

RNA was extracted from inflamed and control neutrophils using PeqGold Trifast 

reagent according to the manufacturer's protocol, and cDNA was prepared using 

QuantiTect Reverse Transcription Kit. qPCR was performed on an ABI StepOnePlus 

Thermo Cycler with CRX96 real-time system and using GoTaq qPCR master mix. PCR 

was performed in triplicate using the following standard program: one cycle of 95° for 

15 min, and 40 cycles of 95° for 15 sec plus 60° for 30 sec with known pro-

inflammatory (tnf-alpha, myd88, mmp9, il6, il8,) and anti-inflammatory (tgf-beta,) 

marker genes. In addition, il1 and cox2 genes were used to investigate the inflammation 

kinetics assay in adult zebrafish. Additionally, a melting curve was generated based on 

the following condition: 95° for 15 sec, 60° for 30 sec and 95° for 15 sec. Normalization 

was performed against zebrafish bactin1.  

2.2.7. RNA sequencing 

Total RNA was extracted with PeqGold Trifast reagent and quality of total RNA was 

checked using Agilent Bioanalyzer 2100 total RNA nano chip. Subsequently, 

sequencing libraries were generated from total RNA samples using the Truseq RNA 

protocol and paired end reads (2 x 50 nucleotides) were obtained with a Hiseq1000 

using SBS v3 kits by multiplexing 2 samples on a single lane of sequencing. Moreover, 

cluster detection and base calling were performed using RTAv1.13 and quality of reads 

was assessed with CASAVA v1.9 and Eland using the zebrafish (zv9) genome. For 

transcript quantification, reads were mapped with the exon-exon junctions compatible 

mapper Tophat (Trapnell et al., 2009) and Bowtie against the zebrafish genome using 

known exon junctions (Ensembl, release 67) and the options butterfly-search, coverage-

search, microexon-search, min-anchor-length 5. The mean distance between read pairs 

were obtained from CASAVA analysis. Additionally, quantification of gene expression 

was performed with HT-Seq and differential gene expression made with DESeq R 

packages (Anders & Huber, 2010). 
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2.2.8. Label free in-gel LC-MS/MS analysis 

2.2.8.1. 1D Electrophoresis 

Sorted neutrophil cells (in duplicate) were lysed in protein lysis buffer containing 4% 

SDS, 100 mM Tris/HCl, pH 7.6 (Sigma) and heated at 99°C for 10 min. Subsequently, 

protein samples were homogenized by ultra-sonication (3 times, 30 second pulses with 

an interval of 60 seconds). The protein supernatant was collected after centrifugation at 

15000 g for 15 min at room temperature, and total protein concentration was measured 

using the Bradford method. Fifty µg of protein were subjected in duplicate to gel 

electrophoresis using precast 4–12% Nu-PAGE gradient gels and separated on the basis 

of their molecular weight. The gel was stained with Colloidal Blue Staining Kit 

overnight. Subsequently, the gel was de-stained and documented. Gel lanes were cut 

into 9 slices, and each slice was de-stained by washing with 50 mM ammonium 

bicarbonate/50% ethanol followed by absolute ethanol. This was followed by reduction 

and alkylation with DTT and iodacetamide, respectively. Subsequently, gel slices were 

digested with mass-spectrometry grade trypsin with an enzyme to protein ration of 

1:100. Peptides were eluted from the gel pieces using acetonitrile and desalted using 

homemade C18 columns (stage tips) (Kruger et al., 2008). 

2.2.8.2. Mass spectrometry analysis  

Each trypsin-digested sample, representing the peptide content of one gel piece was 

eluted from stage tips, subjected to an automatic sampler and further analyzed by nano-

reversed phase chromatography using an Agilent 1100 nanoflow system, online-coupled 

via in house packed fused silica capillary column emitters (length 15cm; ID 75µM; 

resin ReproSil-Pur C18-AQ, 3µm), and a nanoelectrospray source (Proxeon) to a LTQ 

Orbitrap XL mass spectrometer. Linear gradients from 5–35% buffer B (80% 

acetonitrile, 0.5% acetic acid) over 150 min at 200 nl/min were applied to elute peptides 

from the C18 column. The whole mass spectrometry process was operated in data-

dependent mode, collecting collision-induced MS/MS spectra from LTQ-FT full scans 

from m/z 300 to m/z 1800; resolution r = 60,000; LTQ isolation and fragmentation at a 

target value of 10000. AGC target MS 30000 and 100ms and 300-750ms maximum 

injection time were applied for ion trap and Orbitrap, respectively. Subsequently, a 1.2 

Dalton ion selection window for MS/MS was applied. The five most intense peaks from 
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full MS scan were fragmented in a linear ion trap using colloidal induced dissociation 

(CID) (35% normalized collision energy) and for LTQ Orbitrap measurements 

(MS/MS), the 15 most intense peaks were selected for fragmentation in the linear ion 

trap.  

2.2.8.3. Label free method data analysis 

The acquired mass spectrometry raw data was further analyzed by MaxQuant software. 

Peptide identification was performed by searching the peak list against the international 

protein index sequence database (zebrafish IPI, version 3.54) supplemented with 

commonly observed contaminants (embedded in MaxQuant) and concatenated with 

reversed versions of all sequences. Carbomidomethylation of cysteine was set as fixed 

modification; oxidation of methionine was kept as variable modification. Additionally, 

the search parameters included use of proteolytic enzyme and up to a maximum of 2 

missed cleavages. Peptide mass tolerance was 6 ppm for precursor ion and 0.5 Dalton 

for fragment ion. A false discovery rate of 1% was applied for protein and peptide 

identification and proteins identified with at least 2 peptides or a single unique peptide 

were incorporated for data analysis. 

2.2.9. Labeling approach (SILAC labeling) 

2.2.9.1. Sample preparation for shotgun approach  

Zebrafish WKM myeloid and neutrophil control cells and neutrophils from different 

time points of inflammation were homogenized in SDS lysis buffer containing 4% SDS 

in 100 mM Tris buffer (pH 7.6). Further, all samples were heated at 95 °C for 5 min and 

subsequently sonicated for DNA sharing. Supernatant of all the samples were collected 

by centrifugation at 16000 g for 10 min. Protein concentrations of the samples were 

measured by Biorad assay. Moreover, to generate a SILAC protein standard, equal 

amounts of myeloid cell population proteins from the SILAC zebrafish were combined 

and mixed with corresponding non-labeled neutrophil proteins (5 µg of labeled SILAC 

standard + 5 µg of non-labeled neutrophil proteins). These spike-in samples (5X2) were 

precipitated with ice cold acetone and protein pellets were collected by centrifugation 

and pellets were dried. The pellets were dissolved in 6M urea, 2M thiourea and 10mM 

HEPES, pH 8.  Subsequently, protein pellets were reduced and alkylated with 1mM 

dithiothreitol (DTT) and 5mM iodoacetamide, respectively. Alkylated proteins samples 
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were digested with the endopeptidase Lys-C in Tris buffer (pH 8.5). Digested peptides 

were purified by stop and go extraction (STAGE) tips. 

2.2.9.2. Mass spectrometry analysis of in-solution digest of SILAC labeled 

neutrophil samples 

Digested peptides were analysed with ultra-high presure liqued chromatography and 

mass spectrometry. First, peptides were separated using a dual buffer method of A 

(0.1% (v/v) formic acid in H2O) and B (0.1% (v/v) formic acid in 80% acetonitrile) on 

an easy nanoflow HPLC system. A linear gradient was applied from 7 to 35% B for 220 

min followed by 95% B for 10 min and then re- equilibration to 5% B for 10 min on a 

50 cm column (75 µm ID) packed in-house with 1.9 µm diameter C18 resin. 

Temperature of column was controlled in a custom-made column oven at 40 °C. The 

UHPLC system was coupled via a nanoelectrospray ionization source to the quadruple-

based mass spectrometer QExactive. MS spectra were acquired using 3e6 as AGC target 

at a resolution of 70000 (200 m/z) in a mass range of 350−1650 m/z. For ion 

accumulation, 60 ms a maximum injection time was used and MS/MS events was 

measured in the data-dependent mode for the 10 most abundant peaks (Top10 method) 

in the high mass accuracy Orbitrap after Higher energy C-Trap Dissociation (HCD) 

fragmentation at 25 collision energy in a 100−1650 m/z mass range. Additionally, the 

resolution was set to 17 500 at 200 m/z combined with an injection time of 60 ms. 

2.2.9.3. Data Analysis 

Raw data were analysed using MaxQuant. Andromeda search engine was used for 

peptide searches against a Uniprot database of zebrafish including a list of common 

contaminants. MaxQuant was used to quantify the SILAC peptide pairs using the 

following parameters: LysC as the digesting enzyme, maximum missed cleavages of 

two, Lys6 as the SILAC labelling, carbamidomethylation as fixed modification, and 

oxidation of methionine and acetylation of protein N-terminus as variable 

modifications. The cutoff for mass deviation was set to a maximum value of 7 ppm for 

peptide mass and 0.5 Da for MS/MS ions. A minimum length of 6 amino acids and a 

false discovery rate of 1% were used for peptide identification. A minimum ratio count 

of two was used for SILAC quantification, and a protein identified with at least two 
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peptides and one unique peptide was used for further data analysis. Statistical analyses 

were performed using Perseus. 

2.2.10. Gene ontology analysis 

2.2.10.1. STRAP 

Identified neutrophil proteins were further analyzed for their cellular localization, 

biological processes and molecular functions using STRAP analysis (Bhatia et al., 

2009) .  

2.2.10.2. GeneGo-Metacore 

Additionally, gene IDs of identified proteins were obtained using DAVID  analysis 

(Huang et al., 2009). Subsequently, the GeneGo software (www.genego.com) was 

applied to establish process, network and pathways maps with identified proteins. 

2.2.10.3. Cytoscape 

Moreover, neutrophil proteins were also analyzed by Biological Networks Gene 

Ontology tool (BiNGO) supported by Cytoscape.  Cytoscape is an open source platform 

to investigate or visualize complex protein or transcript data for their molecular function 

and localization.  
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 3. Results 

3.1. Proteome mapping of adult zebrafish marrow neutrophils reveals partial 

cross species conservation to human peripheral neutrophils (This chapter is taken 

from Singh et al., 2013) 

Modern mass spectrometry allows for cell type, or tissue-specific identification and 

quantification of proteins (Aebersold & Mann, 2003b) and several studies have been 

performed to explore the proteome of neutrophils from different animal model systems 

(Luerman et al., 2010). Recently, various proteome analyses have also been done on zebrafish 

tissue. For example, the protein content of adult zebrafish brain (Singh et al., 2010b), caudal 

fin (Saxena et al., 2012; Singh et al., 2011; Westman-Brinkmalm et al., 2011), kidney 

(Saxena et al., 2011), liver (Wang et al., 2007) and gill (De Souza et al., 2009) as well of 

developing zebrafish embryos (Link et al., 2006) has been explored. Zebrafish whole kidney 

marrow is the main hematopoietic site in adult zebrafish analogous of mammalian bone 

marrow. However, although the zebrafish is increasingly applied for immunity-related 

research, a resource for the protein composition of neutrophils or other immune cells of 

zebrafish was still lacking. Therefore, the objective of the study described in this section was 

to establish a method to separate resting neutrophils from adult zebrafish and subsequently 

acquire the proteome map of marrow neutrophils. 

3.1.1. Separation of neutrophil granulocytic cells from adult zebrafish whole kidney 

marrow 

To elucidate the proteome of whole kidney marrow derived neutrophils, a transgenic 

neutrophil reporter line (lyzC:dsRed) of zebrafish was obtained and raised. Kidney was 

removed from adult fish and physically dissociated by trituration. Single suspension cells 

were separated based on forward scatters (FSC) and side scatters (SSC) by flow cytometer 

analysis. Forward Scatters is directly proportional to cell size, and side scatter is proportional 

to cell granularity. Flow cytometer analysis of WKM showed distinctive cell populations 

including lymphoid, myeloid and precursors cells based on cell size (FSC) and granularity 

(SSC). Myeloid cell population consists of neutrophils, eosinophils and monocytes. DsRed 

positive neutrophils from the WKM of transgenic zebrafish were resolved based on red 

fluorescence (PE filter). Further, cells were sorted and reanalyzed based on cell size and 

granularity. FACS reanalysis of sorted cells confirmed the myeloid characteristics based on 
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cell size and cell granularity. In addition, purity of cells was also validated microscopically. 

An average 3x106 cells per fish were obtained. After sorting and purity assessment (>90%), 

the cells were spun down and subsequently proteins were extracted (Figure 5)  

 

Figure 5: Separation of neutrophils from zebrafish whole kidney marrow based on FACS. 

(a) Separation of major cell lineages of zebrafish WKM based on cell size (FSC) and cellular 

granularity (SSC). (b) Analysis of WKM cells based on red fluorescence of the neutrophil-

specific lyzC:DsRed transgene. PE+ cells were gated and collected (P2). (C) PE+ cells (P2) 

gate back to the mature myeloid cell compartment based on cell size and granularity (d) 

Purity of collected cells was reanalyzed by FACS. More than 90% cells were PE+ cells (e) In 

addition; purity of sorted cells was also examined under the microscope (brighfield channel, 

fluorescence channel, merged) 

3.1.2. Zebrafish resting neutrophils proteome 

To elucidate the proteome profile of adult zebrafish neutrophils gel based proteomic analysis 

was performed. Upon analysis of total protein extract (50µg) from adult zebrafish marrow 

neutrophils by 1DE and LTQ Orbitrap XL MS, a total of 1544 proteins were identified from 9 

trypsin-digested fractions (Appendix Table S1a & 1b). About 78% (1204/1544) of the 

proteins were identified upon the presence of multiple peptides. The remaining 340 proteins 

were identified on the basis of unique single peptides (Appendix Table S1c). Protein 

abundance ranged from ion intensities of 1010 to 104, with most abundant proteins represented 

by Mpx, Actin, Histone 2B and L-plastin (ion intensity 1x1010 – 4.9x109) and the least 
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abundant protein was Dhrs7 (ion intensity 104). Out of the 1544 proteins identified, 201 were 

largely uncharacterized proteins (Appendix Table S1d) (with zgc or loc identifiers), while 195 

proteins lacked annotated gene symbols and were thus identified through IPI IDs (Appendix 

Table S1e). 

3.1.2.1. Neutrophil specific proteins in adult zebrafish marrow neutrophils 

The protein content of a cell largely determines its functional state and may even provide a 

better indication of cellular function than the transcriptome. Nevertheless, highly abundant 

proteins often hinder the identification of other, less abundant proteins that may be more 

specific to the tissue- or cell type under investigation. To narrow down the protein content 

that may be specific to neutrophils versus other tissues neutrophil data set was compared with 

a protein data set from other tissue devoid of neutrophils. Hence, the adult zebrafish brain 

proteome was compared (Singh et al., 2010a) with the current set of 1349 proteins with 

annotated gene symbols from neutrophils (Appendix Table 1f). Comparison of the neutrophil 

proteome with that of adult zebrafish brain revealed that 25% (340/1349) of proteins 

identified in neutrophils were also present in tissue from adult brain (Figure 6 & Appendix 

Table S2a). These common proteins included many cytoskeletal, enzymatic and metabolic 

proteins. The remaining 75% were enriched in neutrophils versus adult zebrafish brain tissue 

(Appendix Table S2b). A list of the most abundant neutrophil-specific proteins is shown in 

Table 4.   

 

Figure 6: Zebrafish brain and neutrophil proteome comparison. Venn diagram comparing 

zebrafish whole brain and zebrafish neutrophil proteome data sets 
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Table 4: Most abundant proteins in zebrafish neutrophils 

Gene Name Protein name  Uniprot 

Id 

Intensity No. of 

peptides 

npsn Nephrosin Q503K7 6974900000 13 

lcp1;pls2 Plastin-2 Q6P698 4951600000 45 

h2afx similar to histone cluster 2 Q7ZUY3 4560900000 9 

lyz Lysozyme C Q24JW2 3172600000 17 

lect2 

 

Leukocyte cell-derived chemotaxin 

2 like 

Q0H0R9 2321700000 14 

nccrp1 nonspecific cytotoxic cell receptor 

protein 1 

A1L1Z5 1100500000 14 

si:dkeyp-

46h3.6 

Histone H3 Q4QRF4 1019300000 7 

prdx5 Peroxiredoxin 5 Q502C8 988140000 9 

cap1 Adenylyl cyclase-associated protein A7E2H8 811930000 22 

coro1a Coronin, actin binding protein, 1A Q7SX58 626720000 18 

rdx Radixin;67 kDa protein Q66I42 565640000 31 

anxa3b annexin A3b A8E5E5 463900000 26 

wdr1 WD repeat domain 1 Q6NY25 342040000 24 

calrl Calreticulin like Q6DI13 301730000 25 

h1fx H1 histone family, member X Q802U8 240540000 4 

rab1a RAB1A Q7ZSZ0 238780000 8 

clic1 Chloride intracellular channel 1 Q6NYF2 237250000 13 

rps13 Ribosomal protein S13 Q6IMW6 234040000 9 

arpc3 Actin related protein  Q6ZM62 224530000 9 

nme2 Nucleoside diphosphate kinase Q7SXG5 213480000 7 

List of the 20 most abundant neutrophil-specific proteins identified in zebrafish 

marrow neutrophils. Protein abundance is shown as ion intensity. Number of peptides 

depicts the number of individual peptides identified for each protein. 

3.1.2.2. Process and Pathway Analysis 

To determine annotated functional roles of the proteins identified from neutrophils, 1009 

proteins with recognized gene symbols were submitted to Gene-Go (Metacore) for functional 
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and network pathways analysis. Oxidative phosphorylation and immune response, including 

alternative complement pathways, chemotaxis and CXCR4 signaling, together with 

cytoskeletal remodeling, apoptosis and survival, and transport were among the 20 most 

prominently associated pathways (Appendix 2).  

For example, C3, C3a, iC3b, C3c, C3dg, C3b, C5 convertase as well as factor B, Bp, Ba were 

among the identified proteins, which were significantly associated with the humoral branch of 

the innate immune system acting to protect the host from microorganisms (Figure 7) 

(Thurman & Holers, 2006).  

 

Figure 7: Complement pathway map analysis of zebrafish neutrophil proteins.	
  Alternative 

complement pathway map identified from the zebrafish neutrophil proteome. 10 different 

zebrafish neutrophil proteins were found associated with the alternative complement 

pathway. Proteins with red color thermometer bar represent the zebrafish neutrophil proteins 

identified in this study 
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In addition, global process network analysis revealed a significant association of identified 

proteins with 12 different process networks (Appendix 3). A total of 67 proteins were 

associated with translation (initiation, elongation, termination) and 28 proteins with 

transcription (mRNA processing). 48 proteins were associated with immune response (30 

with phagosome antigen presentation and 18 with phagocytosis). Phagocytosis is a key 

process of the innate immune system, in which cells engulf foreign particles or cell debris. 

For example, iC3b, C3, Myosin, Shp -1, Syk, Crkl, CDC42, Slp 76 and Hck and others are 

commonly associated with phagocytosis (Figure 8) (Flannagan et al., 2012).  

 

Figure 8: Phagocytosis network process analysis of zebrafish neutrophil proteins. 

Phagocytosis process network identified from the neutrophil proteome dataset. 18 neutrophil 

proteins were found associated in this pathway. Proteins represented with a red circle 

represent the proteins identified in this study 

Further, enrichment by protein function analysis mapped the identified proteins into six 

different functional groups including enzymatic proteins, proteases, kinases, transcription 

factors, ligands and receptors (Table 5). 
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Table 5: Functional categories of zebrafish neutrophil proteins	
  

Classification Gene  symbol 

Proteases Acp1, Ppp3cc,Ptpn6, Mtmr6,Ppp1cb 

Transcripation factors Drap1, Pa2g4, Gabpa, Hmgb1, Hcfc1 

Receptors Atrn, M6pr, Ptgrc, CD41, CD82 

Ligands Lect2, Mif, Stoml2, B2m, Manf 

Enzymes Arsa, Asah1, Bdh1, Hexb, Glb1 

Kinases Csnk1a1i, Cpne3, Prkib, Slk 

Phosphatases  Ppap2a, Minpp1, Nudt5, Pgaam1, Fbp1 

List of the five most abundant proteins of different functional categories in zebrafish 

neutrophils 

3.1.2.3. Cross-species correlation between human and zebrafish resting neutrophils 

proteome 

In lieu of protein data from human marrow neutrophils, comparison between zebrafish 

neutrophil dataset and a recently reported data of a whole cell lysate proteome of neutrophils 

isolated from peripheral blood were performed (Tomazella et al., 2010). Of the 1544 proteins 

identified from neutrophils of adult zebrafish, only 1148 proteins were annotated with unique 

gene symbols (Appendix Table S2c). To maximize the number of proteins available for 

comparison the zebrafish proteins without unique gene symbols (395) were blasted against the 

human protein database at NCBI to identify orthologous proteins. Out of the 395 proteins, 89 

produced hits with greater than 80% identity, 102 with 60-80% identity and 133 proteins 

produced hits with 40-60% identity to human proteins (Appendix Table S3a). Including the 

proteins identified through BLAST analysis (Appendix Table S3b), only 1472 zebrafish 

proteins were comparable with the human dataset. Tomazella et al. identified 1249 proteins, 

where 430 proteins were identified only from detergent soluble extracts and 240 proteins were 

identified only from detergent insoluble extracts of human neutrophils. 579 proteins were 

identified from both sample preparations. The proteome data of the here discussed zebrafish 

neutrophils are based on detergent soluble extracts. Therefore, the detergent soluble human 

and detergent soluble zebrafish neutrophil proteome data sets based on gene symbol were 

compared. More than 47% (471) of all proteins identified in the detergent soluble human 

neutrophil proteome were also found in the zebrafish neutrophil proteome (Figure 9a & 

Appendix Table S3c). Surprisingly, comparison of the detergent insoluble proteome of human 
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neutrophils and the zebrafish detergent soluble neutrophil proteome also revealed a more than 

48% (386) overlap between the human and zebrafish sample preparations (Figure 9b).  

 

Figure 9: Cross species comparison of zebrafish and human neutrophil proteomes. Venn 

diagrams comparing the zebrafish and human neutrophil proteomes (a) Comparison of 

zebrafish and human detergent soluble proteomes (b) Comparison of zebrafish detergent 

soluble and human detergent insoluble proteomes (c) A majority of proteins common between 

zebrafish detergent soluble and human detergent insoluble are also present in the human 

detergent soluble data set 

However, of 386, 78% (301) proteins were found in both, the detergent soluble and detergent 

insoluble human neutrophil proteome data set (Figure 9c). To perform cross-species 

comparison in gene ontology, the 471 proteins common between human and zebrafish 

detergent soluble extracts and 1002 (Appendix Table S3d) proteins found in zebrafish only 

but not in human neutrophils were submitted to Gene Go Metacore for functional, pathway 

and network analysis. Network process analysis revealed that commonly identified proteins 

significantly associate with 47 different network pathways, where six immune-related 

pathways were among the top 20 pathways (Figure 10). These include phagosome in antigen 

presentation, antigen presentation, neutrophil activation, amphoterin signaling, TCR 

signaling, TREM 1 signaling.  
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Figure 10: Cross-species neutrophil Gene-Go network process pathways. Most prominent 

Gene-Go network process pathways associated with proteins identified in both zebrafish and 

human neutrophils 

In contrast, non-common proteins were significantly associated with only 20 different 

network pathways, with high ranking pathways such as translation, transcription, cytoskeleton 

regulation, cell cycle and muscle contraction, including only two immune–related pathways 

(rank 10 and 11) (Figure 11).  
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Figure 11: Gene-Go network process pathways of non-conserved neutrophil protein. Most 

prominent Gene-Go network process pathways associated with proteins that were not 

conserved between zebrafish and human neutrophils 

Additionally, to investigate the conservation of immune related proteins between zebrafish 

and human neutrophils, Gene-Go Metacore analysis of both data sets was performed 

individually. Subsequently, the proteins specifically associated with immune system pathways 

were extracted and compared, revealing 54% similarity between zebrafish marrow neutrophils 

and human peripheral blood neutrophils. Although, proteins in both, human and zebrafish 

neutrophils were identified from all major compartments, the distribution to various 

compartments differed between the samples. In zebrafish neutrophils the percentage of 

nuclear proteins and proteins involved in macromolecular processes was higher than in human 

neutrophils. On other hand proteins from human neutrophils contained a higher proportion of 

proteins from plasma membrane, endosome, cytoplasm and mitochondria (Table 6).  
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Table 6: Comparison of human and zebrafish neutrophil proteomes based on 

subcellular localization 

Compartment Human Zebrafish 

Cytoplasm 19% 19% 

Macromolecular complex 5% 10% 

Intracellular organelles 10% 3% 

Extracellular 6% 2% 

Cell surface 1% - 

Plasma membrane 11% 3% 

Cytoskeleton 6% 7% 

Peroxisome 1% - 

Nucleus 13% 17% 

Mitochondria 7% 5% 

ER 4% 4% 

Ribosome - 8% 

Chromosome 2% 3% 

Endosome 4% 1% 

Others 11% 19% 

Furthermore, characterization based on biological processes revealed that in zebrafish almost 

twice as many proteins were associated with cellular processes compared to human 

neutrophils. Similarly, the fraction of proteins associated with metabolic processes was higher 

in zebrafish than in human neutrophils. Whereas, the numbers of proteins involved in 

regulation and development were similar in both species. However, human neutrophils from 

peripheral blood contained more proteins that are specifically associated with response to 

stimulus immune system processes and interaction with cells and organism than marrow 

neutrophils from zebrafish (Table 7). 

Table 7: Comparison of human and zebrafish neutrophil proteomes based on 

association with biological process 

Process Human Zebrafish 

Regulation 21% 19% 

Reproduction 3% - 
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Response to stimulus 7% 3% 

Cellular process 27% 44% 

Developmental process 6% 7% 

Growth 2% - 

Immune system process 5% 1% 

Interaction with cells and organism 7% 2% 

Localization 6% 6% 

Metabolic process 8% 11% 

Other 12% 8% 

3.2. Proteome dynamics in neutrophils of adult zebrafish upon chemically-induced 

inflammation (This chapter is taken from Singh et al., 2014, copyright (2014), with permission from 

Elsevier 2014) 

Result 3.1 showed that most of the neutrophil proteins were enriched in neutrophils and 

similar to human, zebrafish neutrophils also express certain number of immune related 

proteins. However, the expressions of these proteins during inflammation or disease state are 

not yet demonstrated. This chapter aimed to perform the proteome of zebrafish neutrophils 

upon sterile inflammation. Laser damage and tail fin amputation methods are routinely used 

to induce sterile inflammation in zebrafish larvae and adult zebrafish. However, these 

methods require extensive manual manipulation prone to large variability when applied at 

large scale. d’Alencon, et al., established an interesting assay employing chemically-induced 

inflammation (ChIn), using copper sulphate to trigger robust sterile inflammation. Copper 

sulphate induces cell death of the sensory hair cells in the lateral line system of zebrafish 

larvae, which eventually regenerate within 24 hr after removal of the damaging agent 

(Hernández et al., 2006; 2007). Cell death of hair cells induces rapid granulocyte recruitment 

to the affected tissue, a process that can be quantified using appropriate transgenic lines 

(Wittmann et al., 2011). The ChIn assay hence, enables automated screening procedures 

towards identification of immune-modulatory activities of candidate compounds using 

zebrafish larvae. However, it is currently unknown whether the ChIn assay could also be 

applied in adult zebrafish. Here the applicability of chemically-induced inflammation in adult 

zebrafish was established and investigated the protein dynamics within neutrophils upon 

inflammation using label free proteomics approach. The label free method is an easy, cost 
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efficient and straightforward approach and it does not require labeling to determine relative 

amount of proteins. 

3.2.1. Establishment of chemically induced inflammation in adult zebrafish 

In order to assess the applicability of the ChIn assay to induce inflammation in adult 

zebrafish, fish of a transgenic neutrophil reporter line (lyzC:dsRed) were incubated with 

25µM copper sulphate for 1hr. Subsequently, inflammation was confirmed by evaluation of 

neutrophil influx to the gills as fish gills are the first target organ for abiotic stress (Figure 12) 

(Lü et al., 2013). Microscopic examination of zebrafish gill revealed that chemically induced 

inflammation has increased neutrophil influxes into zebrafish gill in comparison to non-

treated zebrafish gill.  

 

Figure 12: Chemically-induced inflammation induces neutrophil influx into adult 

zebrafish gills. (a) Control (untreated) gill: (i) Brightfield gill image, (ii) fluorescent image of 

zebrafish fish gill, (iii) close-up of (i) and (iv) close-up of (ii). (b) Copper sulphate treated 

gill: (i) Brightfield image of treated gill, (ii) fluorescent gill picture shows strong neutrophil 

influx into zebrafish fish gill after copper sulphate treatment, (iii) close-up of (i) and (iv) 

close-up of (ii) 

Importantly, this experiment confirmed that copper sulphate is capable to induce 

inflammation in adult zebrafish similar to zebrafish larvae. However, cells recruited to the 

gills were insufficient in number to perform further proteome or transcriptome analysis. 

a ii

b
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3.2.1.1. Chemically-induced inflammation activates neutrophils in the whole kidney 

marrow of adult zebrafish 

As shown in chapter 3.1, a large population of granulocytes is present in adult whole kidney 

marrow. Therefore, I evaluated whether neutrophils within the kidney were activated upon 

copper sulphate treatment. To this end, neutrophil cells were sorted from inflamed and non-

inflamed adult zebrafish whole kidney marrow for RNA extraction. qPCR analysis were 

performed to evaluate the inflammatory status of kidney marrow neutrophils. qPCR analysis 

showed that expression of the pro-inflammatory genes tnfa, il6, il8, myd88, mmp9 was 

increased after copper sulphate treatment, while expression of the anti-inflammatory gene tgfb 

was reduced (Figure 13).  

 

Figure 13: Chemically-induced inflammation activates the neutrophils of adult zebrafish 

kidney marrow. qPCR analysis shows that chemically-induced inflammation significally 

increased the expression of pro-inflammatory genes (il6, il8, mmp9, myd88, tnfa) and reduced 

the expression of the anti-inflammatory gene tgfba 

These results indicated that chemically induced inflammation activates neutrophils residing in 

the whole kidney marrow of adult zebrafish enabling the use of this abundant cell population 

for further analysis.  
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3.2.2. Label free proteomics analysis to investigate chemically induced inflammation in 

adult zebrafish neutrophils 

Transcript level analysis further validates the WKM neutrophils activation upon chemically 

induced inflammation. This study aimed to select suitable proteomics approach to perform 

quantitative proteomics. Various types of quantitative proteomics are presently used in 

proteomics research; advantages and disadvantages of these methods have been discussed in 

the introduction. Label free quantification is a method that aims to determine the relative 

amount of proteins in two or more samples. Contrary to other quantification method, this 

method does not rely on protein labeling. Therefore, it is an open method for any kind or 

number of protein quantification analysis. Here, label free proteomics approach was selected 

to investigate the effect of chemically induced inflammation on neutrophils proteome.   

3.2.2.1. Inflammation-induced activation triggers changes of the protein content of 

neutrophils in the whole kidney marrow 

To investigate the protein dynamics in whole kidney marrow neutrophils upon chemically-

induced inflammation, a mass-spectrometry approach was applied. Inflamed and healthy 

zebrafish kidney marrows were isolated and proteins from neutrophil cells were extracted and 

quantified. Subsequently, 45 µg of total protein extract was separated by one-dimensional 

electrophoresis followed by LC-MS-MS analysis of in gel based tryptic digested peptides in 

triplicate. In total, more than 1500 proteins were identified with a false discovery rate of 1% 

at peptide level. Protein LFQ (label free quantification) intensities of inflamed and non-

inflamed neutrophil samples were compared for protein quantification. A total 21 proteins 

detected in both, inflamed and control samples, were significantly differentially regulated 

between inflamed and control neutrophils (p<0.05). Out of 21 proteins, 14 proteins such as 

Ran, Rab27, Anxa2a, Psma1, Scinlb, Uqcrc2b, Serpinb1l1, Cathepsin D, Rac2, Aga, Gnai2l, 

Dnl and Mitochondrial ATP synthase subunit a, Mapk1 were up-regulated and 7 proteins, 

Tcp1, Fmo5, Gltp, Hsp90b, Ywhaqa, 60s Ribosomal protein L37a and Tubulin beta 2a, were 

significantly down regulated. Proteasome subunit alpha (Psma1) and Tubulin beta 2a proteins 

were highly influenced by chemically-induced inflammation. Their expression levels changed 

2.29 fold and 0.53 fold, respectively (Figure 14, Table 8).  

Table 8: Differentially regulated proteins in adult zebrafish neutrophils upon 
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chemically-induced inflammation 

Gene symbol Uniprot ID Proteina 

fold change 

Mol. wt RNAb 

fold change 

Psma1 Q6DGX8 2.29 29.248 3.71 

Dnl Q6P4U8 2.10 37.632 1.62 

Uqcrc2b Q6IQ59 1.72 48.122 2.40 

Serpinb1l1 F1R9A9 1.51 43.457 1.93 

Anxa2a Q6P603 1.48 38.138 2.88 

zgc:163069 F1R2V7 1.47 56.474 2.13 

Ctsd F1QDA2 1.45 45.28 3.40 

Ran P79735 1.42 24.46 2.7 

Scinlb A5PMZ3 1.41 79.466 1.24 

Rab27 Q4V8U8 1.39 25.082 2.0 

Mapk1 Q6P023 1.31 42.17 1.34 

Rac2 A2BHI1 1.31 24.64 2.43 

Gnai2l Q6TNT8 1.28 40.83 1.26 

Aga A8KC00 1.28 36.20 2.24 

Hsp90b Q7T3L3 0.73 91.281 1.59 

Fmo5 Q7T1D7 0.72 63.818 - 

Tcp1 Q803P2 0.71 60.282 0.41 

Gltp A2BG43 0.71 23.94 - 

Ywhaqa Q7ZUM0 0.69 27.764 0.38 

Rpl37a A7YY10 0.67 10.205 0.29 

Tubb2a F1R6Y8 0.53 52.657 0.45 
a The protein fold changes are calculated by dividing intensities of proteins from 

inflamed sample by intensities of proteins from control samples. With a p value < 

0.05, a ratio of higher than 1.28 represents significantly up regulated and a ratio 

lower than 0.73 represents significantly down regulated 
b Changes in corresponding gene expression are determined by RNA sequencing 
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Figure 14: Differentially regulated proteins in neutrophils upon inflammation. Green dots 

represent proteins significantly down regulated and red dots represent proteins significantly 

upregulated upon chemically-induced inflammation. P=0.05; Cut-off value 1.28 

In addition, qualitative analysis of the zebrafish inflammatory proteome was performed. To 

do this, certain numbers of proteins were identified, which were not detected in either the 

control neutrophils or the inflamed neutrophils sample. Qualitative data analysis revealed that 

27 proteins were not detectable in either one of the samples in triplicate. Out of 27 proteins, 

23 were only detected in neutrophils of treated fish indicating induction of their expression 

upon inflammation, while 4 proteins were only detected in neutrophils of control but not 

treated fish indicating a strong reduction of their expression level (Table 9). 

Table 9: List of proteins, detected only in control or inflamed neutrophils 

Gene 

symbol 

I/Ca 1 I/Ca 2 I/Ca 3 I/Ib 1 I/Ib 2 I/Ib 3 RNA 

foldc 

change 

Ca6 1429300 - 1608600 - - - 1.69 

Hnrpkl 1433600 - 3204900 - - - 1.09 

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3

Lo
g 

p-
va

lu
e

Log2 ratio

Dnl

Ctsd

Serpinb1l1

Scinlb
Psma1

Uqcrc2b
Rab27a
zgc:163069
Anxa2a

Tcp1

Fmo5

Hsp90b1

Tubb2a
Rpl37a2

Ywhaqa

Mapk1

Rac2



Results 

	
  
52 

	
  

Mri1 2619100 - 3262200 - - - 0.125 

Rdh12l 3222900 7135800 - - - - 1.99 

Ssrp1a - - - 1180900 - 1106200 1.49 

Phpt1 - - - 2022500 1577900 - 2.51 

si:ch211-

147j13.3 

- - - 4218900 3364800 2503700 1.48 

Acadsb - - - 947540 - 1848000 1.76 

Ddb1 - - - 2963200 - 2146200 3.18 

Nipsnap3 - - - 2797600 2549200 - - 

zgc:15307

3 

- - - - 1191300 2104500 1.25 

Arl8bb - - - 1226700

0 

- 7728200 0.96 

Arl8ba - - - 1095900 - 1087900 1.77 

Ap2s1 - - - 1971900 - 3560800 - 

Ubl5 - - - - 3978800 2809200 - 

Tia1l - - - 2109800 2353800 1524200 1.15 

Stk38a - - - - 2184400 1012500 0.25 

Mt-atp8 - - - 5218300 5716400 - 0.72 

Supt16h - - - 1916300 - 2564000 0.95 

Prkar2aa - - - - 2645900 1578700 1.37 

Dbnlb - - - 4656300 7060200 6870800 1.20 

Zgc:1017

23 

- - - 2748000 - 4767500 2.89 

Si:ch211-

175g6.7 

- - - 1734500 1552100 1285400 1.08 

Ppp5c - - - - 3513600 1850200 1.28 

LOC5601

39 

- - - 6319100 7045900 5808300 - 

Nt5c1bb - - - 1859500 2079400 - 0.24 

Lactb2 - - - 2103100 1462900 - - 
a  Intensities of proteins only identified in inflamed but not in control sample 

considered as up-regulated proteins 
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b  Intensities of proteins only detected in control but not detected in inflamed 

considered as down regulated proteins 
c Changes in corresponding gene expression are determined by RNA sequencing 

To predict the biological consequence of differentially regulated neutrophil proteins, proteins 

were mapped for their cellular localization, biological processes and molecular functions 

based on STRAP gene ontology analysis. Gene ontology analysis of differentially expressed 

proteins revealed that the majority (48%) of proteins were localized to the cytoplasm, nucleus 

and cytoskeleton (Figure 15).  
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Figure 15: Gene ontology analysis of differentially expressed neutrophil proteins. 

Distribution of 48 differentially regulated inflammatory proteins based on (a) localization, (b) 

biological process and (c) molecular function 

Most of these proteins are involved in cellular process (42%), regulation (24%), metabolic 

processes (8%), localization (8%), developmental processes (5%) as well as response to 

stimulus (5%), the immune system (3%) and other (5%). Moreover, differentially expressed 
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proteins are mainly associated with the molecular function of binding (40%) and catalytic 

activity (45%), while the remaining 15% of the proteins were associated with enzymatic 

regulation, structural molecular activity, molecular transducer activity and others. 

Gene-Go Metacore analysis was performed to identify the regulatory pathways that 

differentially expressed neutrophil proteins are associated with (Figure 16). 

 

Figure 16: List of network process pathways associated with identified differentially 

regulated neutrophil proteins. Metacore analysis revealed that chemically-induced sterile 

inflammation in adult zebrafish neutrophils affects a broad range of biological pathways 

including cell cycle (p=1.498×10-4), nitric oxide signalling (p=2.831×10-4) as well as 

regulation of cytoskeleton rearrangement (p=1.197×10-3) and intermediate filaments 

(p=1.196×10-3). Moreover, differentially regulated proteins were significantly associated 
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with immune system pathways such as phagosome antigen presentation (p=3.389×10-3), 

antigen presentation (p=1.447×10-3), leukocyte chemotaxis (p=1.610×10-3), and IL-6 

signalling (p=3.916×10-3) 

3.2.2.2. Comparison of inflammatory transcriptome and proteome suggests post-

transcriptional gene regulation in neutrophils upon inflammation  

Previous proteome and transcriptome studies showed week positive correlation between these 

two omes, which emphasizes the role of post-transcriptional regulation in protein translation 

(Jüschke et al., 2013; Maier et al., 2009). Therefore; in the current study, effects of 

chemically induced inflammation was also illustrated at transcript level and compared with 

proteome data set. Transcriptome analysis revealed a partial correlation to expression changes 

on the protein level (Table 8 and 9). For example, expression of proteasome subunit alpha 

increased 3.71 fold and Rpl37a changed 0.29 fold in agreement with changes observed on the 

protein level. However, hsp 90b was up regulated on the transcript level while down regulated 

on the protein level. The 27 proteins that showed no detectable signals in either one of the 

samples were also compared for their transcript level expression change. Comparison of 

transcriptome and proteome data revealed that only 44% of these genes (phpt1, srsp1a, 

acadsb, prkar2aa, dbnlb, sich 211-147j 13.3, arl8ba, zgc63840, zgc153073, Ppp5c, 

zgc101723, mri1 showed similar changes at the transcript level. 38% of these genes showed 

no changes of their corresponding transcripts (sich.211.175g6.7, suptl6h, tiall, arl8bb, hnrpkl, 

niplsnap3, ap2s1, ubl5, loc560139 and lactb2) indicating that these genes are mainly regulated 

on the protein level in this context. However, 18% genes (rdh12l, hnrpkl, ca6, nt5c1bb, 

stk38a) showed a reciprocal change of expression on the transcript and protein level. 

3.3. Quantitative proteome analysis of an entire inflammatory reaction in adult 

zebrafish WKM neutrophils based on in vivo incorporation of stable isotopes   

Inflammation plays a leading role in containing and resolving infection and also occurs under 

sterile conditions. Inflammation must be resolved in due time in order to prevent the 

inflammation to become chronic. In chapter 3.2, have shown that copper sulfate treatment to 

adult zebrafish activated whole kidney marrow neutrophils similar to zebrafish larvae and 

altered the expression of 48 genes on protein and RNA levels. However, there are no reports 

of inflammation kinetics or inflammation resolution in adult zebrafish. Copper sulfate 

treatment to zebrafish larvae induces granulocytes recruitment to the affected tissue 
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(mechano-sensory hair cells) within one hour (initiation phase). Resolution starts three hr post 

inflammation and the inflammation is almost resolved after 6 hr. In order to perform 

proteome analysis over the duration of an inflammatory reaction in adult zebrafish I here 

investigated the kinetics of inflammation in adult zebrafish and defined different time points 

of inflammation in adult zebrafish neutrophils.  

In chapter 3.2, it has been explained that the label free method is an easy, cost efficient and 

straightforward approach to investigate inflammatory proteome analysis of whole kidney 

marrow neutrophils. The primary limitation, however, is that every sample needs to be 

handled separately from sample preparation to mass spectrometry analysis. Therefore, all 

steps starting from sample preparation to PMF data acquisition are prone to variations in 

protein quantification. Thus, protein quantification using the label free method frequently 

required several replicates and very consistent sample preparation. Furthermore, in the 

absence of highly sensitive mass spectrometry it would be very challenging to apply this 

method to investigate the inflammatory proteomics analysis of WKM neutrophils at different 

stages of inflammation.   

Stable isotope labeling with amino acid in cell culture (SILAC) is a simple and robust method 

for accurate protein quantification. The SILAC method is widely adopted in other model 

organisms including mice, newts, and nematodes. SILAC is a precise and accurate 

quantification method in comparison to the label free approach because it can be spiked in 

each sample as an internal control at early stages of sample preparation. This reduces variable 

sample variations from each experiment step. Therefore, this section describes the 

establishment of SILAC labeling in adult zebrafish to investigate the proteome of an entire 

inflammatory reaction. 

3.3.1. Chemically induced inflammation starts resolving two hr post-inflammation 

Results of chapter 3.2 showed that chemically induced inflammation activates neutrophils 

residing in the whole kidney marrow of adult zebrafish and alters the expressions of various 

genes at protein and RNA level. It was investigated whether the inflammation kinetics in 

adults would be similar to the known kinetics in zebrafish larvae upon chemically induced 

inflammation in adult zebrafish WKM neutrophils based on qPCR analysis. 
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Figure 17: Chemically induced inflammation gradually starts resolving after four hr of 

inflammation. qPCR analysis shows that chemically-induced inflammation activates 

neutrophils 30 minutes after treatment and 4hr after treatment inflammation gradually 

resolved 

To perform this, a neutrophil reporter line of adult zebrafish was treated with copper sulfate 

for 1 hour and subsequently the fish were transferred into normal fish water for up to 8 hr. 

The fish were then anesthetized and the kidney marrow was extracted. Neutrophil cells were 

separated FACS sorting. To obtain an overview of the inflammation kinetics, two genes were 

selected for qPCR analysis. The qPCR analysis of inflammatory marker genes revealed that 

four hr after copper sulfate treatment the level of inflammation decreasing almost to base 

levels indicating resolution of granulocytic inflammation (Figure 17). On the basis of these 

observations, five stages of inflammation including initiation (t=0 and t=1 hr), progression (t= 

2hr) and resolution (t=4hr and 8hr) of were selected in order to perform quantitative 

proteomics of adult zebrafish neutrophils. 

3.3.2. SILAC based proteomics analysis of chemically induced inflammation in adult 

zebrafish neutrophils 

SILAC is a simple and robust in vivo labeling method that can be applied to study and 

analyze cells at multiple time points. Conventionally, SILAC has been used for two or three 
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different states from the same tissue protein. Here, whole myeloid population proteins were 

spiked-in into single cell neutrophil proteins and analyzed inflammatory proteome changes.  

3.3.2.1.  SILAC diet administration fully labels WKM proteins of adult zebrafish 

SILAC labeling in Zebrafish has been elaborated in introduction. Knozer et al., had 

established SILAC labeled fish and achieved an average more than 95% labeling. However, 

they did not investigate the labeling efficiency in zebrafish whole kindey. Zebrafish whole 

kidney marrow is a major hematopoietic organ of zebrafish where majority of neutrophils 

reside. Therefore, in collaboration with Kruger lab, SILAC labeling efficiency in adult 

zebrafish WKM was analyzed.  To test the SILAC based quantification method in zebrafish, 

equal amount of labeled (heavy) whole kidney marrow protein lysate was mixed into 

unlabeled whole kidney marrow protein lysate. Samples were digested in solution with the 

protease LysC and analyzed with LC-MS/MS on a hybrid quadrupole Orbitrap instrument 

(QExacative). As SILAC tissue was used as an internal standard, the direct ratio between 

labeled and non-labeled tissue was calculated. Direct comparison of SILAC ratios between 

replicates revealed Pearson correlations (r) more than 0.94. Whole kidney marrow proteomics 

analysis has revealed that similar to other organs zebrafish whole kidney marrow has also 

achieved more than 94% labeling.  Therefore, SILAC quantification in zebrafish provides the 

same statistical accuracy as demonstrated for cell culture and other living animals. 

3.3.3. Quantitative proteome analysis of inflammation kinetics  

Once more than 94% SILAC labeling in zebrafish whole kidney marrow was achieved. My 

aim was to adopt this method to compare proteome dynamics of inflammation kinetics from 

initiation (1-hr), progression (2-hr) to resolution (4-hr, 8-hr) of adult zebrafish whole kidney 

marrow neutrophils. To this end, (Tg(lyzC:DsRED2)nz50)  zebrafish neutrophil reporter line, 

which express the red fluorescence protein under the control of the lyzC promoter was 

employed. Neutrophil reporter lines of adult zebrafish were treated with 25 µM copper sulfate 

for 1hr and fish were transferred to normal fish water up to 8 hr. Subsequently, FACS analysis 

was performed to separate the fluorescent neutrophils cells. Significantly, more than 95% 

pure neutrophils proteins were extracted from all the time points. However, zebrafish SILAC 

labeled neutrophils reporter line was not available. Therefore, this study aimed to sort the 

whole myeloid population of the SILAC zebrafish. As it has been previously described, a 
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myeloid lineage consists of monocytes, neutrophils, eosinophils. Neutrophils are one of the 

most abundant polymorphonuclear leukocytes.  

 

Figure 18: Experiment procedure for SILAC Spike-in into control and various stages of 

inflamed neutrophils samples and mass spectrometry analysis. Proteomic workflow using 

SILAC labeling and mass spectrometry analysis. First fish was incubated with copper 

sulphate for 1hr and subsequently fish were transferred into fish water (upto 2hr, 4hr and 

8hr) WKM were extracted and neutrophil cells were sorted based on FACS. For SILAC fish, 

whole myeloid cells population was sorted. Equal amount of SILAC proteins were mixed in to 

different time point of neutrophils proteins and subsequently proteins were digested and 

UHPLC-QExcative mass spectrometry was performed 

Approximately one million myeloid cells from SILAC fish were isolated and subsequently 

proteins were extracted. After protein extraction, equal amounts of SILAC standard myeloid 

cells proteins were mixed into each (0hr, 1hr, 2hr, 4hr, 8hr) non-labeled neutrophil proteins 

sample, which was obtained from transgenic neutrophil reporter line of adult zebrafish whole 

kidney marrow. Further samples were digested in solution with protease LysC and analyzed 

with LC-MS/MS on a hybrid quadrupole Orbitrap instrument (QExacative) (Figure 18). A 

total of 10 samples were measured and each sample was measured with four-hour gradient. 

Subsequently, PMF data were submitted to MaxQuant software tool against protein database 
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of zebrafish to identify proteins. In total more than 2000 proteins were identified with false 

discovery rate of 1%. As neutrophils proteins were spiked-in with SILAC proteins from 

zebrafish myeloid cells as internal standard, direct fold change of proteins were computed by 

comparing SILAC ratio of control vs SILAC ratio of neutrophil inflamed proteins (Figure 19). 

The data analysis with MaxQuant and Perseus allowed to quantify a total 692 proteins, of 

these, 61 proteins were significantly (p=0.05) differentially regulated. 

 

Figure 19: Determination of proteins expression based on SILAC mixture. This is an 

example for calculating expression change between two samples based on SILAC (internal 

standard). Grey peak represents the intensity of neutrophil proteins, whereas red peak 

denotes the intensity of SILAC labeled proteins 

3.3.3.1. Differentially regulated proteins in neutrophils upon chemically induced 

inflammation 

In total, 61 proteins were detected that were up or down regulated with fold change of 1.5. 

Out of the 61 proteins, 20 proteins showed more than 1.5 fold up-regulation and 15 proteins 

showed 1.5 down regulation at each time point from 2hr to 8hr of post chemically induced 

inflammation. This observation indicates that inflammation progresses significantly during 

intermediate stage of inflammation kinetics. Among the 61 proteins differentially quantified 

from neutrophils, 12 proteins were always up or down regulated.  

3.3.3.1.1. Chemically induced inflammation increases the expression of various 

neutrophils proteins 

A heat map demonstrating the dynamics of protein expression in the neutrophils upon 

inflammation at different time points are shown in figure 20. There were three major 

expression patterns observed in up regulated proteins, these include proteins that always stays 

up regulated during inflammation initiation, progression and resolution such as; Si:dkey-
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32n7.4, Stx11a, Si:ch211-15d5.5 and Zgc:110425 and Ckbb. On the other hand, there were 

group of proteins including Doc8, Ctsb and Cand1, whose expression increase initially and 

gradually decline 4 hr of post inflammation. This trend of expressions showed that these 

proteins might be involved in inflammation initiation. Finally, certain numbers of protein 

were also identified; those expressions were increased after 4hr and 8hr of inflammation 

(Table 10).  

 

Figure 20: Chemically induced inflammation altered the expression of various neutrophil 

proteins. Differentially regulated proteins were mapped in to multiple experiment viewers 

(MEV) tool to visualize the expression of same proteins at different time points. Blue 

represents down regulated protein and yellow represents up regulated proteins. This analysis 

showed that chemically induced inflammation induced the expression change of various 

proteins 
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3.3.3.1.2. Chemically induced inflammation reduces the expression of neutrophils 

proteins 

In addition to up-regulated proteins, I have also observed three different expression patterns 

of down regulated proteins. There were five proteins in neutrophils including Got2b, Rpl19, 

ppt1, Reep5 and Eif1axb; exhibiting a consistently reduced expression during inflammation 

initiation, progression and resolution. Furthermore, there were a group of proteins such as Sri, 

Mvp, Cox6b1, Elf3l, Me3, whose expression gradually decreased from 2 hr to 4 hr and later 

steadily start towards resolution. Lastly, It has been observed that maximum 22 proteins 

expression were reduced 8hr of post inflammation. These trends of protein expression from 4 

hr and 8 hr demonstrate that these proteins might be key molecule players for inflammation 

resolution (Figure 20 and Table 10).  

Table 10: Differentially regulate neutrophil proteins upon chemically induced 
inflammation: 

Protein 
IDs 

Gene names Fold changea 

1hr 2hr 4hr 8hr 

Q502A6 Ctssb.1 0.365 0.377 0.474 -0.408 

E7FAW6 LOC100331639 0.438 0.338 0.689 0.389 

Q4V914 H2afy2 -0.453 -0.361 -0.264 0.010 

F1R314 Zgc:110425 0.889 0.826 0.753 0.414 

Q6AXJ2 Eif3ha 0.800 1.084 0.133 0.637 

Q6DRE6 Rpl12 -0.248 -0.243 -0.139 -0.086 

E9QGG4 LOC100000469 -0.583 -0.347 -0.270 -0.518 

Q8AWD9 Ctsd 0.647 -0.311 -0.738 -1.021 

F8W2W2 Kpnb1 -0.477 -0.437 -0.304 -0.352 

Q8AY63 Ckbb 0.451 0.412 0.547 0.656 

Q7T2A5 Eif3l -0.421 -0.542 -0.319 -0.413 

F1QX22 Stx11a 0.916 0.649 1.172 0.941 

F1QCG3 Adam10a 0.436 NaN 0.214 -0.069 
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F1QCD4 Got2b -0.513 -0.750 -0.715 -0.662 

Q6DH63 Cox6b1 -0.453 0.142 -0.441 -0.160 

E7F5A4 Loc560910 0.184 0.406 0.501 0.360 

E9QEQ6 Mvp -0.108 -0.608 -0.282 -0.282 

Q6P022 U2af2b -0.266 -0.220 -0.237 0.014 

F1R4I7 Sri -0.230 -0.628 -1.098 -0.159 

A4QPA0 Me3 -0.038 -0.589 -0.086 -0.219 

E7FDL3 Si:ch211-136m16.8 0.277 0.648 0.786 0.607 

Q6DHM9 Rhoab 0.257 -0.461 -0.038 -0.365 

Q8JH70 Aldocb -0.186 -0.225 -0.293 -0.493 

E7FEI6 Arhgap4b -0.223 -0.809 -0.548 -0.830 

Q6P5L3 Rpl19 -0.362 -0.839 -0.775 -0.421 

F1QJ79 Dock8 0.779 0.559 0.460 0.414 

F1QBW0 Ncf2 0.169 0.153 0.868 0.358 

A5PMS9 Ap1b1 0.060 0.316 0.481 0.114 

F1QES8 Si:ch211-147j13.3 0.812 -0.141 0.845 0.479 

E7F131 Tfr1b 0.027 0.483 0.793 0.493 

Q6TGT9 Srsf5a 0.251 0.306 0.708 0.700 

Q6DHP3 Arf3a 0.272 0.406 0.544 0.604 

F1QBS7 Sult2st1 0.036 -0.004 -0.209 -0.354 

F1QCX8 Mmp13a 0.207 -0.417 0.685 0.655 

Q6PH57 Gnb1 -0.101 -0.216 -0.525 -0.472 

B0R1D0 Psmc4 -0.194 -0.136 -0.264 -0.425 

Q6IQJ2 Tubb4b -0.169 -0.236 -0.412 -0.373 

F1R8J6 Ppt1 -1.138 -0.639 -0.615 -0.704 

Q1LYB6 Si:ch211-15d5.5 0.676 0.380 0.906 0.484 
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Q5TYZ5 Cand1 0.487 0.455 0.403 0.009 

F1QVK3 Ugp2b 0.288 0.798 0.535 0.638 

Q66IB6 Hmgb2b 0.256 0.387 0.428 0.055 

Q8UVG7 Fabp3 0.183 -0.323 0.627 -0.165 

F1QSJ9 Si:dkey-32n7.4 0.738 0.776 1.292 0.559 

F1Q895 Hmgb3b -0.413 0.565 -0.390 -0.144 

F1QPX6 Zgc:152830 NaN -1.381 NaN 0.552 

Q6DH80 Lygl1 -0.298 0.090 -0.571 -0.994 

F1QI99 Srp68 -0.114 -0.044 -1.678 -0.773 

Q561X9 Bdh2 0.208 0.100 0.036 0.603 

Q6NX86 Hmgb1a -0.159 -0.346 -0.069 -0.687 

F1QUV7 Gars 0.232 0.184 0.273 0.463 

Q6P603 Anxa2a -0.289 0.295 0.135 0.604 

B0S6Z1 Dhx9 1.609 0.598 NaN 0.977 

F1R2L4 Nars 0.473 0.252 0.192 0.411 

Q7T385 Atp6v1c1a 1.123 1.343 1.621 1.782 

Q5U3U8 Zgc:101614 NaN 0.272 -0.191 -0.490 

F1R541 Rab1ba -0.109 0.077 0.074 0.415 

F1QF15 Actr2a -0.144 -0.140 -0.314 -0.422 

Q6PBX9 Reep5 -0.415 -0.530 -0.586 -0.782 

E9QJN5 Eif1axb -0.338 -0.451 -0.604 -0.537 

B8XY56 Rnaset2 0.370 -0.104 0.106 -0.515 

a The protein fold changes are calculated by dividing SILAC ratios of proteins from 

inflamed sample by SILAC ratios of proteins from control samples. With a p value < 

0.05, a log ratio of higher than 0,30 represents significantly up regulated and a log 

ratio more than -0,30 represents significantly down regulated 

NaN  means not identified in duplicates 
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3.3.3.2. Bioinformatics analysis reveals that differentially regulated proteins are 

enriched in various GO terms 

As the zebrafish data base had poor annotation compared to other mammalian databases and 

because various identified differentially regulated proteins were unassigned or 

uncharacterized, Uniprot ID of identified differentially regulated proteins were converted to 

NCBI accession id and BLAST against human protein data base. BLAST analysis revealed 

that most of the differentially regulated proteins show more than 60% similarity with human 

proteins. Only few identified differentially regulated zebrafish neutrophils proteins showed 

less than 60% similarity against human protein database. 

To obtain a better in-sight into differentially regulated proteins of neutrophils upon 

chemically induced inflammation, GO terms analysis was performed. Based on STRAP GO 

analysis tool the differentially regulated proteins were analyzed for their localization, process 

and molecular function. Localization of the 61 identified differentially regulated neutrophils 

proteins was examined. GO term analysis showed that approximately 60% of the 

differentially regulated proteins were localized to nucleus (21%), cytoplasm (16%), 

macromolecular process (11%) and others. The rest of the differentially expressed proteins 

were approximately equally localized to other organelles such as, mitochondria, ER 

chromosome, cytoskeleton, extracellular and intracellular organelles and plasma membrane. 

In addition, GO analysis of the differentially regulated proteins for their molecular function 

revealed that majorly differentially expressed proteins were associated with cellular processes 

(33%), regulation (24%), developmental processes (11%), location and immune system and 

interaction with cells and organism (4%). Important molecular functions associated with 

differentially regulated proteins were catalytic activity (47%), binding (35%) and structural 

molecular activity (11%) (Figure 21). 
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Figure 21: Majority of differentially regulated neutrophils proteins show homology with 

humans. Distribution of 58 differentially regulated inflammatory proteins based on (a) 

localization, (b) biological process and (c) molecular function 

3.3.3.3. Functional characterization of differentially regulated identified neutrophils 

based on In-silico analysis 

Of the 61 proteins, 58 proteins showed more than 60% similarity with human protein 

database. To explore the possible biological relevance of the identified 58 significant 

differentially regulated proteins, Cytoscape based In-silico analysis was performed. Genes 
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name of differentially regulated proteins were submitted into BiNGO supported by 

Cytoscape. Differentially regulated inflammatory proteins data were analyzed for their 

molecular and cellular function. BiNGO analysis showed that differentially regulated proteins 

were associated with various biological pathways such as: cellular molecular assembly (p= 

0.0000035), cellular compartment assembly (0.00004), microtubule based movement 

(p=0.00042), cellular process (p=0.0028), cell migration (p=0.0029) as well as cell motility 

(p=0.0037) macrophage chemotaxis (p=0.0043) and proteins metabolic process (p=0.0042) 

determined by significant p=0.05 value.  

A maximum 18 proteins including Me3, U2af2b, Ap1b1, Zgc:153264, Zgc:110425,  

Zgc:55461,  Got2b, Actr2a, Ppt1, Stx11a, Tfr1b, H2afy2,  Eif1axb,  Zgc:123292, Rpl12,  

Rhoab, Kpnb1 and Mmp13a were most significantly (p=0.00284) associated with cell process 

pathway. In addition, Psmc4, Eif1axb, Ctsd, Ppt1, Actr2a, Ctssb.1, Rpl12, Tfr1b, Mmp13a 

differentially regulated inflammatory proteins were associated with protein metabolic process. 

Interestingly, many proteins play an important role in numerous pathways such as: cell 

motility, leukocytes and macrophage chemotaxis as well as localization of cell. 

3.3.4. Comparison between label free and SILAC quantitative proteomics approach 

To select the best-suited method to investigate an inflammatory proteome of limited number 

of neutrophils cells sorted from zebrafish whole kidney marrow two proteomics method were 

applied. . Both methods have showed that chemically induced inflammation altered the 

neutrophils proteome. However, comparison between label free and the SILAC approach 

revealed that label free method allowed quantifying less number of proteins in compare to 

SILAC method. Approximately, 60% proteins were commonly identified in the both methods, 

and overlaps of differentially regulated proteins were very less (20%) between two methods. 

In addition, methodology comparison of both approach revealed that label free approach take 

5 days to analyze sample in triplicate, which was just analyzed within 24 hr by SILAC 

approach. Comparison of the both methods has been elaborated in discussion section.  
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 4. Discussion 

Zebrafish offers several advantages as an inflammatory model system compared to the 

mammalian inflammatory model system. As in humans, neutrophils are the most abundant 

innate immune cells also in adult zebrafish. However, it was not clear whether the zebrafish 

neutrophil is comparable to higher vertebrate neutrophils, and whether zebrafish neutrophils 

have similar defense mechanisms to those known from mammals. The application of 

proteomics for the characterization of neutrophils bears strong potential towards a better 

understanding of neutrophil biology.	
  

4.1. Proteome profile of resting neutrophils 

In this thesis, a comprehensive analysis of the proteome of neutrophils from the whole kidney 

marrow, the major hematopoietic compartment, of adult zebrafish was performed. A gel-

based LC-MS/MS approach was employed to explore the proteome of FACS sorted 

neutrophils and identified 1544 proteins expressed in neutrophils. Subsequently, to identify 

proteins that may be particularly enriched in neutrophils, comparison between neutrophil 

proteomedata with the only publicly available proteome data of healthy brain of zebrafish was 

carried out. The healthy brain is expected to be devoid of neutrophils and the immune 

component present in the brain is comprised of microglia only (Svahn et al., 2012). The 

proteome composition of wild zebrafish may not be entirely identical to the laboratory strain 

used in this study. However, the comparison with non-granulocytic tissue revealed that more 

than 75% of the proteins were enriched in neutrophils versus zebrafish brain tissue. Further, 

functional characterization of these proteins revealed that the majority of these proteins 

belong to various immune-related pathways such as alternative complement pathways, 

chemotaxis and CXCR4 signaling and inflammation. 

4.1.1. Cross species conservation of neutrophils proteins and functions 

In order to evaluate the degree of cross-species conservation, a comparative analysis between 

the identified neutrophil proteome of zebrafish and a recently published data set of human 

neutrophils was performed (Tomazella et al., 2010). Of 986 proteins identified from the 

detergent soluble fraction of the human neutrophil proteome, only 47% (471) proteins were 

also present in the zebrafish neutrophil data set evaluated in this study. As expected, proteins 

common between human and zebrafish display significant association with various distinctly 



Discussion 

	
  
70 

	
  

immune-related pathways including neutrophil activation, antigen presentation and 

phagocytosis. Interestingly, 386 proteins were also found to be common between the 

zebrafish neutrophil proteome and the human detergent insoluble neutrophil proteome. 

However, only 85 proteins were actually specific to the human detergent insoluble neutrophil 

proteome, while the majority of proteins identified in the detergent insoluble fraction were 

also present in the detergent soluble fraction of human neutrophils. Analysis of the annotated 

subcellular localization of these proteins showed that only about 2% are membrane associated 

proteins, while the majorities were cytoplasmic or nuclear proteins indicating technical rather 

than biological reasons for the overlap of proteins between detergent soluble and detergent 

insoluble fractions. Among proteins conserved in zebrafish and human were many with well-

characterized roles in the immune system such as L-plastin, Ferritin and S100. For example, 

Ferritin plays a pivotal role in iron homeostasis (Arosio & Levi, 2002) and restricts iron 

availability to microorganisms (Xiong et al., 2011). The S100 protein is a calcium-binding 

protein (Anton Hermann, 2012) involved in various processes of the immune system such as 

leukocyte chemotaxis and adhesion (Foell & Roth, 2004; Ryckman et al., 2003). Moreover, 

several members of the Rab protein family, heat shock proteins and histones were also 

identified. Rab proteins are known to regulate membrane trafficking. For example, Rab 5 

plays a significant role in chemoattractant receptor endocytosis and fusion of intracellular 

granules with phagosomes in human neutrophils (Perskvist et al., 2002). Similarly, some 

members of the HSP family such as HSP60, HSP70, HSP90 stimulate the cells of the innate 

immune system and thus act as danger signaling molecules during inflammation (Wallin et 

al., 2002). Particular histones, along with DNA and antimicrobial proteins, are an important 

component of neutrophil extracellular trap (NETs) (Lu et al., 2012). Moreover, WD repeat 

domain 1 (Wdr1), sorting nexin (Snx5), sorcin (Sri) proteins were also found in zebrafish 

resting neutrophils, whose functions are not well established in immune defense but may 

nevertheless be critical. For example, sorcin is a calcium binding protein involved in 

intracellular Ca2+ homeostasis and is expressed in leukocytes and lymphocytes (Rebhan et al., 

1997). Sorcin may thus be important for inflammation through its calcium regulatory function 

as calcium is an important mediator in innate immunity (Clapham, 2007). Similarly, Sorting 

nexin 5 is a intracellular trafficking protein and may play a vital role in modulation of 

secretory pathways for controlling cytokines and inflammation (Stow & Murray, 2013). The 

Wdr 1 protein promotes cofilin-mediated actin filament disassembly (Kato et al., 2008). 
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Hence, Wdr1 may be important for immune cell migration during inflammation (Bravo-

Cordero et al., 2013). 

4.1.2. Non-conserved proteins and technical differences between two data sets 

The non-conserved proteins on the other hand were typically associated with translation, 

transcription, cytoskeletal remodeling and cell cycle. Neutrophils are cells of the myeloid 

lineage originating from marrow tissue and residing as immature or inactive cells in bone 

marrow (mammalian) or kidney marrow (zebrafish). The human proteome data used in this 

study is derived from peripheral blood neutrophils, while the zebrafish proteome studied here 

represents marrow neutrophils. Therefore, the limited degree of conservation between the 

human and fish proteomes analyzed here may in part be due to the differing nature of the 

samples. Kidney marrow neutrophils consist of developing and mature neutrophils, while 

peripheral blood neutrophils consist of functionally mature neutrophils only. In addition, 

although many aspects of the human and zebrafish hematopoietic systems are similar, 

differences do exist. For example the human hematopoietic system contains three types of 

granulocytes, neutrophils, eosinophils and basophils. This distinction is less clear in zebrafish, 

where a distinct basophil type has not been characterized yet (Crowhurst et al., 2002). Thus it 

is conceivable that zebrafish neutrophils may combine functional repertoires that may be 

separated into multiple cell types in humans. Moreover, although there is no evidence that the 

lyzC+ granulocyte population used in this study contains other cell types than neutrophils, 

different maturation states may be present. Protein identification strongly depends on 

subcellular protein distribution and the extraction method as well as sensitivity and precision 

of the mass-spectrometry approach used. This data suggest that extraction method used in this 

study or MS approach yielded more nuclear proteins at the expense of membrane- and cell 

surfaces proteins as compared to the human data set. However, because similar extraction and 

buffer conditions as well as a similar MS approach were applied for both, human and 

zebrafish samples, the observed variations in subcellular protein distribution and content are 

likely due to differences in neutrophil differentiation, maturation or activation. Thus, deeper 

analyses of compartment-specific proteomes of matched sample types will likely result in 

higher yields and better comparability regarding cross-species conservation between zebrafish 

and human neutrophil proteomes. 
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Nevertheless, cross comparison of immune related proteins of zebrafish and human revealed a 

conservation of more than 54% between zebrafish and human proteome data sets. In light of 

the sample differences mentioned above, this degree of similarity suggests a considerable 

conservation between the two species and warrants more detailed analyses in the future. To 

further investigate the similarity between zebrafish and human innate immune systems on a 

functional level, it is interesting to compare protein dynamics upon activation of zebrafish 

neutrophils through infection or upon sterile inflammation. 

4.2. Proteome dynamics in neutrophils of adult zebrafish upon chemically induced 

inflammation 

In chapter 3.2, it has been showed that chemically induced inflammation activates whole 

kidney marrow neutrophils in adult zebrafish, significantly changing the expression levels of 

several proteins. Interestingly, comparison of protein and transcript data revealed only partial 

correlation between changes in protein and mRNA levels. Such inconsistency indicates 

differences in genetic regulation of protein and transcript levels of certain genes in neutrophils 

upon inflammation that may be accounted for by inflammation-induced changes in translation 

efficiency, alternative splicing, folding, transport, localization, secretion or protein and RNA 

degradation (Ghazalpour et al., 2011; Gry et al., 2009). The identification of such 

inconsistencies triggers further investigation into the regulatory mechanisms and interactions 

between transcript abundance and protein level of a given gene.  

4.2.1. Immune system associated differentially regulated inflammatory neutrophils 

proteins  

The zebrafish kidney marrow is the main haematopoietic organ in adult fish containing a 

mixture of both immature and mature neutrophils. Changes in protein content identified in 

this study therefore likely reflect alterations in mature as well as immature neutrophils upon 

chemically-induced inflammation. The proteins that were responsive to inflammation are 

related to various biological functions, including immune system, cell cycle and cytoskeleton 

remodelling. HSPs are ubiquitously expressed and are essential for numerous processes 

including cell cycle control and signal transduction. Previous studies reported high expression 

levels of heat shock proteins (HSP70, HSP60, HSP90) during microbial infections (Multhoff, 

2006; Pockley, 2003; Wallin et al., 2002). However, it has been noted that Hsp90b expression 

was up regulated on the transcript level while down regulated on the protein level upon 
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chemically-induced inflammation in zebrafish. This could be due to biological differences 

mentioned earlier or indicate a negative feedback loop.  

Additionally, inflammation induced the expression of several cytoskeletal proteins including 

the Rho family, small GTP binding protein (Rac2), tubulin (Tubb) and debrein-like protein 

(Dbnlb) in activated neutrophils of the adult zebrafish. Rac proteins are members of Rho 

family of GTPases and are key regulators of actin cytoskeleton and NADPH oxidase (Courjal 

et al., 1997; Fenteany & Glogauer, 2004) and recognized for mediating the cytoskeletal 

dynamics required for various cell adhesion processes during cell migration and cell-cell 

adhesion (Alcaide et al., 2009; Williams et al., 2011). In vivo studies of neutrophil migration 

in zebrafish previously reported that Rac2 signalling is necessary for neutrophil motility and 

CXCR4-mediated neutrophil retention in hematopoietic tissue (Deng et al., 2011; Shelef et 

al., 2013). Moreover, upregulation of member of mammalian actin binding proteins (mAbp) 

such as a debrein-like protein (Dbnlb) was also observed, which is a major component of the 

beta 2 integrin mediated signalling cascade during complement-mediated phagocytosis and 

adhesion of neutrophils under physiological shear stress conditions. On the other hand, down 

regulation or genetic inhibition of mAbp1 in neutrophils results in defective cell migration 

under flow condition (Hepper et al., 2012; Schymeinsky et al., 2009). Therefore, our 

observation supports other reports implicating roles for Rac2 and mAbp in neutrophils upon 

inflammation. However, the role of Dbnlb has not been investigated in inflammation or 

neutrophil migration. Thus, investigation of the function of Dbnlb during leukocyte 

trafficking may provide additional insight into the regulation of leukocyte trafficking during 

acute inflammation. 

Unfortunately, systematic comparison to other proteome analyses in zebrafish are currently 

not feasible due to substantial variability in the tissues analysed and the technologies applied. 

However, previous studies on infection-induced inflammation adult zebrafish tissues revealed 

that the expression of several proteins were similarly affected (Encinas et al., 2010; Lü et al., 

2013; Xiong et al., 2011). For example, Annexin A2a, is a calcium-dependent phospholipid 

binding protein associated with several biological and physiological processes and plays a 

crucial role in response to bacterial stimuli during host defence as an anti-inflammatory 

mediator (Yeh & Klesius, 2010). The observed increase of Annexin A2a also in chemically 

induced sterile inflammation confirms the vital role of this protein in inflammatory responses 

to various stimuli. Moreover, a significant increase in expression of the serine peptidase 
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inhibitor Serpin and the F-actin severing protein Scinderin b was noticed after chemically 

induced inflammation. Serpins are proteinase inhibitors which play a role in complement 

cascade, blood coagulation (Wang et al., 2008a), and modulation of inflammatory response 

by suppressing protease dependent cell apoptosis (Lu et al., 2011). Serpins are also involved 

in innate immunity providing bacteriostatic activity against Bacillus subtilis (Donpudsa et al., 

2009) Scinderin b is a calcium dependent F-actin severing protein, a vital component of the 

exocytotic machinery (Zhang et al., 1996). Encinas et al. recently observed an increased 

expression of Scinderin b in zebrafish fin tissue after infection with viral haemorrhagic 

septicaemia virus. Present finding thus further indicates that there are groups of proteins that 

are similarly affected by sterile or infection-induced inflammation.  

Chemically-induced inflammation also resulted in upregulation of cathepsin D in neutrophils. 

Cathepsin D is an aspartic protease, released by azurophilic granules in neutrophils. Studies in 

mice implicated Cathepsin D as an important protein for cytoskeleton remodelling and cell 

migration (Koch et al., 2013). Additionally, elevated level of the ATP synthase subunit beta, a 

subunit of the V-ATPase complex was noticed. V-ATPases pump protons from the cytoplasm 

to the lumen (Hinton et al., 2007) and maintain the cytoplasmic pH of neutrophils and 

macrophages (Nanda et al., 1996). Previous studies have shown that inhibition of V-ATPase 

proteins attenuate the migration, adhesion and reactive oxygen production in neutrophils 

(Oliveira et al., 2007).  

4.2.2. Non-immune related function of differentially regulated inflammatory neutrophil 

proteins 

In this study, various proteins were also identified such as tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, theta polypeptide (Ywhaq) 

and adaptor related protein complex 2, sigma 1 (Ap2s1), which are differentially regulated 

during chemically induced inflammation. The functions of these proteins are not well 

characterized in immune system and inflammation. For example, Ywhaq belongs to a group 

of highly conserved proteins involved in several cellular processes such as cell-cell contact 

inhibition, signal transduction, apoptosis and cell adhesion and is highly expressed in 

leukocytes and lymphocytes (Aitken, 2006). Ywhaq may play important role in neutrophil 

adhesion and cell migration during inflammation. Similarly, adaptor related protein complex 

2, sigma is involve in protein transport via transport vesicle in different membrane trafficking 
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pathways, clathrin dependent endocytosis as well as extracellular calcium homeostasis 

(Nesbit et al., 2012). Calcium is an important mediator in innate immunity. Therefore, 

overexpression of Ap2s1 may regulate the endocytosis as well as calcium homeostasis 

mechanism in inflammation. In addition, up regulation of Arf-like family of small G proteins, 

ADP ribosylation factor like 8a and 8b (Arl8a and Arl8b) was noticed. Arl8b plays important 

role in regulating spatial distribution of lysosomes by controlling their motility on 

microtubule tracks. Lysosomes move towards the cell periphery and fuse with plasma 

membrane to release their content in order to degrade the extracellular matrix to promote cell 

migration (Tuli et al., 2013). Hence, up regulation of Arl8b may promote the extracellular 

matrix degradation and subsequently neutrophil migration during inflammation. 

4.2.3. Advantage and disadvantage of label free proteomics approach 

So far label free proteomics analysis was used to investigate inflammatory proteome analysis 

of neutrophils, because a label free approach is a very simple, cost effective and reproducible 

quantitative proteomics approach. Label free quantification relies on measurement of spectral 

peak intestines or spectral counting (Asara et al., 2008; Megger et al., 2013). Labeling 

strategies such as iTRAQ (Patel et al., 2009; Pereira et al., 2011) and TMT require more 

sensitive and special mass spectrometers. Contrarily, the label free method can be performed 

using low-resolution mass spectrometry based on spectral counting quantification. Although 

this method appears straightforward, label free proteomics has inherent drawbacks. To 

perform label free proteomic analysis, control and treated samples are handled separately. 

Therefore, each sample experiences variability during preparation. Furthermore, the digested 

peptides are separated based on their hydrophobicity and charge. Later separated peptides are 

ionized in an ion source, where some peptides may naturally ionize more efficiently than 

others because the amino acid composition of every peptide differs and subsequently the 

ionized peptides detected in mass spectrometer also differ.  Thus, protein quantification is 

performed based on either spectral counting or spectral peak intensities. Therefore, this 

method requires several replicates as well as precise sample preparation, highly sensitive 

mass spectrometry analysis and extensive raw data processing and bioinformatics analysis 

(Boehmer et al., 2010; Wasinger et al., 2013; Zhou et al., 2012). In previous studies, 

comparison between label free and ITRQ and TMT showed that label free method provided 

best proteome coverage. However, quantification and reproducibility were very poor 

compared to labeling methods (Altelaar et al., 2013a; Li et al., 2011).           
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In summary, firstly chemically induced inflammation assay was established in adult zebrafish 

and subsequently; the protein dynamics in adult zebrafish whole kidney marrow neutrophils 

upon inflammation was investigated. Based on label free proteomics analysis several 

differentially regulated proteins were identified those are known to be involved in 

inflammatory processes. Several proteins were hitherto not described in the context of 

neutrophils and inflammation. Therefore, present study provides a valuable resource for 

further evaluation of inflammatory proteins over different time points of neutrophilic 

inflammation. However, proteomics analysis based on label free proteomics showed, high 

variation between replicates. Therefore, It has been thought that SILAC in-vivo labelling 

approach could improve the protein identification and reproducibility.  

4.3. SILAC based proteomics analysis of chemically induced inflammation in adult 

zebrafish neutrophils 

SILAC has been rapidly adopted as an approach in MS based proteomics. It is a simple, 

robust and accurate proteomics approach. Using a comparative SILAC proteomics approach 

focused on inflammatory proteins, 61 differentially regulated proteins in zebrafish WKM 

neutrophils were identified. Furthermore, comparison between results of label free and 

SILAC proteomics approaches were carried out.  

4.3.1. SILAC: suitable quantitative proteomics approach for accurate protein 

quantification 

For a comparison of protein quantification approaches, application of a single type of mass 

spectrometer is favorable. Gel based proteins fractionation and Orbitrap mass spectrometers 

were adopted to perform label free proteomics analysis. Nonetheless, in-solution protein 

digestion and highly sensitive Q-Exqutive mass spectrometry was selected to perform SILAC 

proteomics analysis. Comparison between SILAC and label free approach revealed that 

shotgun SILAC proteomics approach allowed us to identify and quantify a higher number of 

neutrophil proteins. Comparison of differentially regulated proteins reveled that only 20% 

differentially regulated proteins were commonly identified between both approaches. Low 

correlation between label free and SILAC methods might be due to different experimental 

procedures and mass spectrometers. For example: the label free proteomics experiment was 

carried out as follows: gel based proteins separation, independent experiment and on less 

sensitive mass spectrometer in comparison to SILAC spike in method. While SILAC 
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proteomics was performed by in-solution digestion and mass spectrometry analysis. 

Therefore, SILAC analysis did not go through multiple step sample preparation, which leads 

to less variation between replicates. SILAC spike in method is very economical, robust, and 

in principle applicable to various cell and tissue type (Zanivan et al., 2013). Here, myeloid 

cell proteins were used to label neutrophil proteins due to lack of SILAC labeled neutrophil 

reporter line. The myeloid population gate in zebrafish WKM contains numerous cell types 

including neutrophils, monocytes and eosinophils. Therefore, highly abundant proteins of 

monocytes and eosinophils might be obscuring the identification of low abundant neutrophil 

proteins.  

Protein reproducibility and accuracy were investigated for each quantification method by 

comparing quantitative results obtained from two replicate measurements (Lau et al., 2014; 

Zanivan et al., 2012). SILAC approach showed better reproducibility by correlation analyses 

of protein ratios by means of linear regression compared to label free method. With respect to 

accuracy, however, the two investigated methods of quantification showed clear differences 

(Li et al., 2011). SILAC method was found to be considerably more accurate compared to 

label free methods. This higher precision of SILAC method allows the detection of even 

minute protein expression changes, which makes SILAC approach more favorable than the 

ion intensity based label free proteomics (Collier et al., 2011; Lau et al., 2014; Megger et al., 

2014).  

4.3.2. Advantage and Drawbacks of SILAC quantitative proteomics method 

Application of SILAC method has provided new insight to protein biology over the past 

decade. The robustness, low cost, and ease of implementation make SILAC an obvious 

choice, particularly when working with cultured cells or SILAC-compatible organisms. The 

ultimate benefit of SILAC over label free method is that sample can be spiked in at an early 

stage during the sample preparation. Theoretically, the SILAC method increases the precision 

and reproducibility by reducing both the sample loss and variability from sample preparation 

and mass spectrometry analysis (Bantscheff et al., 2012; Choudhary & Mann, 2010; Mann, 

2014; Ong, 2012). By comparing SILAC myeloid sample spike-in into different stages of the 

neutrophil inflammatory proteomic analysis, I showed that sample mixing at an early 

experiment step resulted in higher precision and repeatability in protein quantification. In 

addition, shotgun mass spectrometry (in-solution digestion) method was performed for 
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SILAC sample measurements, therefore, it saves mass spectrometry run time and fewer 

technical replicates are required compared to label free gel based mass spectrometry analysis. 

However, un-availability of SILAC labeled zebrafish transgenic reporter line for individual 

immune cells limits the application of SILAC proteomics analysis at cellular level.   

4.3.3.  Biological relevance of identified differentially regulated inflammatory proteins 

SILAC quantitative proteomics method allowed us to identity a large number of differentially 

regulated proteins in adult zebrafish neutrophil cells upon chemically induced inflammation. 

Stress or injured cells release alarm signals or DAMP (Damage associated molecular pattern) 

including heat shock proteins (Hsps), cytokines and Hmgb1 that regulate the ongoing immune 

response (Chen & Nuñez, 2010; Hohne et al., 2013; Kono & Rock, 2008; McDonald et al., 

2010; Škoberne et al., 2004). For instance, Hmgb2b protein was up-regulated during 

inflammation progression and started resolving after 8 hr of inflammation. Hmgb2b and 

Hmgb3b show approximately 70% homology similarity with human HMGB1 and HMGB3 

proteins, respetively. Hmgb2b play an important role in neutrophil recruitment at necrotic or 

damage sites. Hmgb protein inhibition significantly reduces cytokine production and 

neutrophil recruitments at wound sites (Wang et al., 2013). In addition, Zgc: 110425 and 

H2afy2 show more than 60% and 73% homology similarity to human histone protein H1.1 

and H2A.2 respectively. Endogenous histones play crucial functions as DAMP. Here, 

expression of H1.1 was gradually increased after 1hr of copper treatments. Furthermore, it 

expression started declining after 8 hr copper sulfate treatment. On the other hand, H2afy2 

was down regulated at 1hr and 2hr of inflammation, but resolved latter to base point. 

Endogenous histone activates innate immune cells through DNA mediated TLR 9 activation 

during mice liver injury (Huang et al., 2011). 

Furthermore, sterile inflammation also resulted in over expression of Dock8 protein in 

neutrophils. Dock8 is an important activator of Rho GTPases and Rho GTPase activation is 

required for immune cell migration at injury or infection site (Yang et al., 2009). It has been 

observed that chemically induced inflammation induces expression of Dock8 at the initial 

stage of inflammation and after 4hr of inflammation expression of Doc8 gradually started 

decreasing towards resolution. Additionally, elevated level of neutrophil cytosolic factor 

(Ncf2) protein at 4hr after copper sulfate treatment was observed. Nacf2 is one of the 

important protein subunits, which form the NADPH enzyme complex. NADPH plays a 



Discussion 

	
  
79 

	
  

crucial role in immune cell activation and phagocytosis (Bokoch & Zhao, 2006). Up-

regulation of Ncf2 at late stage of inflammation may be required for phagocytosis during the 

resolution phase of inflammation. 

The functions of other proteins identified here are not well characterized in immune system 

and inflammation. For example, Sorcin (Sri) is calcium binding protein and regulate 

intracellular calcium homeostasis (Ilari et al., 2002). Sri had more than 75% homology 

similarity to human SRI B. Expression of Sri was down regulated at 2hr and 4hr of 

inflammation. However, expression of sorcin was resolved after 8hr of inflammation. A 

similar finding was reported by Hu et al in mice (Hu et al., 2013). They showed that knock 

down of CXCR chemokine in mice reduced the expression of sorcin. CXC chemokines play a 

central role in neutrophil activation and chemotaxis. Phagocytosis of neutrophils down 

regulated the expression of chemokine receptor CXCR1 and CXCR2 (Doroshenko et al., 

2002). SILAC based result further support the notion that sorcin might be involved in 

inflammation resolution through phagocytosis.  

Expression of Tfr receptor protein gradually increased up to 4hr of inflammation and after 8hr 

of inflammation its expression dropped towards resolution. Transferrin receptor protein (Tfr) 

is a carrier of transferrin proteins. Tfr imports the iron into the cell in a vesicle by receptor 

mediated endocytosis, which gets releases in to cell due to acidification of vesicle through 

hydrogen pump ions (Arosio & Levi, 2002; Lafourcade et al., 2008; Ponka & Lok, 1999; van 

Dam et al., 2002). Tfr protein might thus be involved in hydrogen ion pump activation 

required for neutrophils phagocytosis and inflammation resolution.  

In summary, this analysis has provided a large data set of proteins differentially regulated in 

the course of inflammation. This provides a basis for follow-up experiments on the 

mechanism by which novel proteins are involved in the inflammation initiation, progression 

and resolution of chemically induced inflammation. 
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 5. Conclusion and outlook 

This study provides the first proteomics study of adult zebrafish whole kidney marrow 

neutrophils during resting and activated state. Initially, 1500 proteins were identified in 

resting adult zebrafish neutrophil. Of these 1500 proteins, 75% proteins were enriched in 

neutrophils compared to non-neutrophil tissue. These proteins were compared with human 

peripheral resting neutrophil proteins, and despite sample differences, 54% of immune-related 

proteins were found to be conserved between zebrafish and human resting neutrophils. 

Moreover, chemically induced inflammation assay in adult zebrafish was successfully 

established. Copper sulphate treatment resulted in activation of WKM neutrophils enabling 

application of this assay for further investigation of neutrophil biology in the zebrafish model 

system.  

To investigate global proteome dynamics of neutrophils upon inflammation, two quantitative 

proteomics approaches were applied. First, a label free proteomics method was used to 

examine the proteome of neutrophils after 1h of chemically-induced inflammation. A total of 

48 significantly-regulated proteins were identified. Comparison of protein expression levels 

with transcriptome data revealed partial correlation but also significant differences between 

transcript and protein expression for several genes. This finding confirms the notion that 

substantial post-transcriptional regulation occurs in vivo and underscores the importance of 

proteome studies to decipher the actual gene expression status of cell populations. As a proof 

of the principal validity of the label free proteomics approach, a number of proteins that were 

reportedly linked to inflammation and neutrophil migration was successfully identified. 

However, the reproducibility of this method remained a major challenge.  

Instead, the quantitative SILAC method was used to elucidate the protein content in zebrafish 

granulocytes upon inflammation and this proved to be more accurate and reproducible. In this 

analysis, 61 proteins were found to be significantly, differentially-regulated during the course 

of inflammation. In conclusion, the SILAC technique identified and quantified considerably 

more proteins in comparison to label free technique and showed overall a greater sensitivity in 

detecting changes in protein expression. Taken together, this study demonstrates the value of 

proteomics in zebrafish to study immune response in individual leukocyte populations and 

provides new insights into the dynamics of granulocytic proteomes upon inflammation. It 

thereby paves the way for quantitative proteomics approaches aiming at the evaluation of 
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protein expression in physiological or disease states using zebrafish.  

Outlook 

The SILAC method has proven to be a valuable resource for quantitative proteomics analysis 

of granulocytic inflammation in adult zebrafish. However, as reported in chapter 3.3, 

transgenic SILAC reporter lines are not yet available. Therefore here the entire myeloid 

population of SILAC fish proteins was used to spiked-in neutrophil samples for quantitative 

proteomic analysis. This may preferentially yield quantification of proteins that are either 

highly abundant or commonly present in all myeloid cell populations. In the future, it will 

thus be of advantage to generate SILAC labeled transgenic reporter lines for individual 

myeloid populations such as granulocytes, macrophages, mast cells or dendritic cells. This 

would then allow for the use of specific internal controls in order to perform extensive 

quantitative proteomics. In addition, this SILAC based quantitative proteomics approach 

could then be further extended into zebrafish larvae. Chemically induced inflammation and 

small molecule screening assays are well established in zebrafish larvae to identify bioactive 

compounds with therapeutic potential. However, the identification of molecular targets of 

these compounds is currently an unresolved challenge. Therefore, the proteomics approach 

suggested in this study would represent a viable approach to identify target molecules in these 

screening assays.  

Moreover, here a considerable number of proteins were identified that currently have no 

annotated function at all or no function associated with inflammatory reactions. Functional 

evaluation of these proteins in the context of inflammation will thus be the logical next step. 

Such studies will ideally be performed in zebrafish larvae to exploit the advantages of the 

zebrafish system using high end in vivo microscopy, pharmacological intervention or genetic 

manipulation via the CRISPR/Cas technology. 
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Appendix 1 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0073998#s5 Table 
S1-S3 

Singh SK, Sethi S, Aravamudhan S, Kruger M, Grabher C (2013) Proteome Mapping of 
Adult Zebrafish Marrow Neutrophils Reveals Partial Cross Species Conservation to Human 
Peripheral Neutrophils. PLoS ONE 8(9): e73998. doi:10.1371/journal.pone.0073998 
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Appendix 2 

 

Appendix 2: Gene-Go pathway map analysis of zebrafish neutrophil proteins. Most 
prominent Gene-Go pathway maps associated with identified neutrophil-specific proteins  
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Appendix 3: Zebrafish neutrophil Gene-Go network process pathways. Most prominent 

Gene-Go network process pathways associated with identified neutrophil-specific proteins 
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