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Abstract

Electronic markets, driven by the rise of the Internet and the establishment of the world
wide web, spread out amongst business entities as well as private individuals. Albeit nu-
merous approaches on designing and developing electronic markets exist, e.g., Roth’s Mar-
ket Design or Weinhardt et al.’s Market Engineering, a unified approach targeting market
development, redesign, and refinement has been lacking.

The work at hand studies the potential of continuously improving electronic markets
from a market provider’s perspective. It comprises five experiments conducted on different
instances of prediction markets targeted to forecast macroeconomic indicators as well as
political outcomes. Thereby, the experiments’ design focuses on the three distinct aspects
of Agent Behavior, Interfaces, and Auxiliary Services in electronic markets.

First, behavioral aspects of market participants (agents) are linked with both, the qual-
ity of their trading decisions and trading behavior, by combining trade data with replies of
a specifically compiled questionnaire. Hereby, traders’ market predispositions, i.e., their
aptitude for trading, can be assessed ex ante and might serve as a measure to counsel
traders. Second, in a political stock market, traders’ political preferences are deduced
from their trading behavior. Interestingly, a simple model considering the agents’ behav-
ior is yet sufficient to explain participants’ political preferences correctly to a high extent.
Third, a comparison is drawn of participants’ trading performance and trading behavior
between a web interface and a similar mobile application. Results show that albeit mobile
interfaces are accepted by participants, trading conducted via the provided web interfaces
is more successful in a pecuniary sense and provides higher predictive power concerning
the predicted event. Fourth, the trading interface’s impact on the Disposition Effect (i.e.,
the disposition to hold losing stocks too long whilst selling winning stocks too early) is
explored. To this end, two trading interface modifications are evaluated: a trend indicator
arrow, reflecting the development of traders’ portfolio value, and textual advice about the
disposition effect. Results reveal that increasing transparency of traders’ portfolio value
increases the disposition effect, whereas textual advice does not seem to be apt in decreas-
ing the effect’s strength. Fifth, since prediction markets are an established mechanism to
acquire quantitative information, an endeavor is made to also assess qualitative informa-
tion via auxiliary services from dispersed agents, i.e., the crowd. Therefore, external as
well as different kinds of internal survey systems are evaluated. The gained research in-
sights comprise a better understanding of trading behavior in electronic markets, and thus,
unveil potential ways for market engineers to continuously improve electronic markets.
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Ðord̄ević, Philipp Speiser, and Petar Trifonov for your intense and enduring friendship. For
bestowing me lifetime by using her power wisely, I thank Ms. Manthey. I owe you a lot!

Finally, I would like to thank my beloved family; my parents Carmen and Klaus for their
constant backing and love throughout my life and my sister Valeska for being an inspiring
example in many ways.

Karlsruhe, February 2015 Tobias T. Kranz





Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

II Foundations and Related Work 13

2 Continuous Market Engineering 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 A Typical Market Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Market Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Market Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Agile Market Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 The Need for Continuous Market Engineering . . . . . . . . . . . . . . . . . . 24
2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Prediction Markets – Theoretical Foundations 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Market Microstructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Trading Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Contract Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Incentives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Currency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Tournament . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.1 Trading System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Prediction Markets – Use Cases and Data 45
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Kurspiloten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



Contents

4.2.1 Market Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Market Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Dataset and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 51

4.3 Economic Indicator eXchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Market Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Market Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 Dataset and Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . 58

4.4 Continuous Market Engineering – Timeline . . . . . . . . . . . . . . . . . . . . 60
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

III Insights from Continuous Market Engineering 63

5 Analyzing Agent Behavior: Assessing Trader’s Market Predisposition 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.1 Personal Attributes and Trading Behavior . . . . . . . . . . . . . . . . . 66
5.2.2 Risk Aversion and Trading Behavior . . . . . . . . . . . . . . . . . . . . 67
5.2.3 Trading Behavior in the Market . . . . . . . . . . . . . . . . . . . . . . . 68
5.2.4 Service Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Setting and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Descriptive Statistics and Methodology . . . . . . . . . . . . . . . . . . 70
5.4.2 Trading Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.4.3 Decision Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Interpreting Agent Behavior: Reading a Trader’s Mind 83
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Political Stock Markets and Polls . . . . . . . . . . . . . . . . . . . . . . 85
6.2.2 Biases in Political Stock Markets . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Setting and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Descriptive Statistics and Methodology . . . . . . . . . . . . . . . . . . 88
6.4.2 Traders’ Reported Preferences . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4.3 Traders’ Predicted Preferences . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

vi



Contents

7 Extending the (IT) Infrastructure into the Mobile World: Comparing Trading
Performance in Stationary and Mobile Settings 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Information Systems and Participant Decisions . . . . . . . . . . . . . 97
7.2.2 Comparing Stationary vs. Mobile . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Setting and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.1 Decision Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.4.2 Trading Behavior and Performance . . . . . . . . . . . . . . . . . . . . 106

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8 Improving the (IT) Infrastructure: Interface Influence on the Disposition Effect111
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.2.1 Disposition Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2.2 Disposition Effect in Prediction Markets . . . . . . . . . . . . . . . . . 114

8.3 Setting and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
8.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
8.4.1 Descriptive Statistics and Methodology . . . . . . . . . . . . . . . . . . 119
8.4.2 Disposition Effect on Prediction Markets . . . . . . . . . . . . . . . . . 120
8.4.3 Disposition Effect’s Influence on Trading Performance . . . . . . . . . 121
8.4.4 Disposition Effect per Treatment . . . . . . . . . . . . . . . . . . . . . . 121
8.4.5 Activity per Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

9 Extending Auxiliary Services: Conducting Trader-centered Surveys 129
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.2.1 Prediction Markets and Surveys . . . . . . . . . . . . . . . . . . . . . . 131
9.3 Setting and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.3.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

9.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.4.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.2 Response Rate and Reaction Time . . . . . . . . . . . . . . . . . . . . . 136
9.4.3 Number of Answered Items . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.4 Trigger-based Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vii



Contents

IV Finale 143

10 Conclusion and Future Research 145
10.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
10.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

V Appendices I

A Texts and Trade Screens I

B Heath et al. measure VII

References IX

List of Abbreviations XXVII

List of Figures XXIX

List of Tables XXXI

viii



Part I

Introduction





Chapter 1

Introduction

“ If the world was stable, there would be no need to

change business operations and methods, nor to under-

stand what has changed and what works well. How-

ever, firms operate in dynamic environments, not stable

ones.”

ABBIE GRIFFIN, 1997

1.1 Motivation

MARKETS are very efficient and effective mechanisms to exchange goods and ser-

vices. From classical market places where physical goods are exchanged, through

stock markets, up to emissions trading, markets are used. Individuals in modern soci-

eties rely on numerous markets in their daily life – often even unknowingly. Business-to-

business (B2B) markets, for example, belong to a family of markets most people never

interact with directly. Nevertheless, when you switch on the lights in the morning, the

electricity was probably traded on an exchange.1 When you buy goods in retail stores, the

price is most likely influenced by wholesale market prices. When you book a flight, the

price depends inter alia on foreign exchange markets, as they determine currency prices

1In case of Germany energy is often traded on the European Energy eXchange (EEX) in Leipzig
(cf. http://www.eex.com/).
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Chapter 1 Introduction

and thus affect jet fuel prices. Participants in B2B markets are often professionals with

a certain trading experience. With the rise of the Internet and the establishment of the

world wide web2 (WWW) in the 1990’s, electronic markets started to attract business en-

tities in addition to private individuals. New forms of electronic markets emerged, often

separated into business-to-business (B2B) e-commerce and business-to-customer (B2C) e-

commerce.3 Historically, electronic markets are a rather new way of implementing market

mechanisms and have a couple of advantages. They hardly need physical space, transac-

tion costs are often strikingly reduced, and market rules can be changed and monitored

centrally. Besides the use-cases mentioned above, markets are also used to trade informa-

tion or even expectations about future events as will be subsequently shown.

The design of markets plays a pivotal role in relation to ‘how well’ markets function.

Generally, a market’s objective influences its requirements, which in turn determines the

market’s resulting design. This comprises, inter alia, the design of the transaction object,

the market microstructure, or, in case of electronic markets, the market’s implementation

and thus its graphical user interface. Consequences emerging from certain design decisions

are a highly discussed issue in economic literature. A seminal article concerning this topic

is Roth’s (2002) work on Market Design, wherein he proposes to transition the planning

process of markets from a rather conceptual design approach into a more rigid engineer-

ing approach based on theoretical insights. In his 2008 follow-up article he defines three

preconditions for properly functioning markets: First, markets have to provide thickness,
which means “[. . . ] to attract a large enough proportion of the potential participants [. . . ]”
(Roth, 2008). Second, overcoming congestion, which can be evoked by thickness; i. e., pro-

viding a sufficient amount of adequate alternative transactions. Third, markets have to be

safe and easy to use in order to be attractive for participants and thus preventing potential

participants from circumventing the market. The idea of market design is revisited and

taken further by Weinhardt et al. (2003), resulting in the concept of Market Engineering
as most recently described by Gimpel et al. (2008). Subsequently, the Market Engineering

concept was applied to the development of numerous markets; inter alia a sports pre-

diction market for the FIFA Worldcup 2006 called STOCCER (Luckner et al., 2005) or a

2An interesting background report on the ideas and concepts of the WWW can be found Berners-Lee and
Fischetti (2000).

3Teo and Ranganathan (2004) define business-to-business (B2B) e-commerce as “the buying and selling of
products and services among businesses” and business-to-customer (B2C) e-commerce as “the sale of products
and services to individuals”.
A slightly more precise definition of B2B e-commerce can be found in Lucking-Reiley and Spulber (2001)
and reads: “The popular phrase ‘B2B e-commerce’ refers to the substitution of computer data processing and
Internet communications for labor services in the production of economic transactions.”
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multi-attributed combinatorial exchange called MACE (Schnizler et al., 2004; Schnizler,

2008). From another point of view, slightly restructuring Roth’s (2008) prerequisites, even

the best designed market will only be successful if (i) it is accepted by the participants

and (ii) participants behave as expected by the market designer, i. e., assumptions made

about market participants’ behavior hold true.4 Therefore, it is indispensable to develop

a deeper understanding of market participants, since ultimately, participant behavior and

hence the participants’ acceptance of a market is the main determinant for a market’s out-

come and thus its success. For instance, individual’s risk aversion or cognitive abilities have

been shown to influence decision making (e. g., Subrahmanyam, 1991; Frederick, 2005).

Furthermore, emotions are known to impact individuals economic decision making (e. g.,

Loewenstein et al., 2001). Hence, this thesis attempts to include these aspects of individ-

ual behavior in the consideration of market participants’ behavior in electronic markets.

Following the typology of Service Analytics (Fromm et al., 2012), this approach can be clas-

sified as advanced analytics on customer data. Bearing in mind that Market Engineering

is not solely the engineering perspective of designing and introducing of markets, but also

describes their further development, the aspect of continuously tracking and improving a

market – from a market provider point-of-view – is up to now under-addressed. Addi-

tionally, up to now, economic literature lacks an explicitly documented case of continuous

tracking and supporting a market in the context of Market Engineering.

Why, should markets be tracked, supported, and improved in a continuous manner?

For what reasons could a fit-and-forget approach for markets be insufficient and eventu-

ally fail? At least two views on that issue should underline the necessity for Continuous
Market Engineering. First, it can be observed that numerous market providers repeatedly

changed and extended their markets for intrinsic motivated reasons – for instance, reach-

ing out to a new set of clients by satisfying their needs or implementing new features to

enhance customer loyalty. It can further be observed that a range of markets adapted or

extended their functionality to improve internal processes. Second, as time goes by things

change. Although, admittedly, this reads trivial, it leads to the class of external motivated

changes. It implies that design decisions drawn once, based on reasonable assumptions at

a particular point in time, have a probability to not hold true forever. In other words, as-

sumptions leading to once sensible design decisions can be increasingly violated and even

lose their validity due to omitted adaptations to a changing environment, trends in partici-

pant behavior, or due to technological causes. Consequently, solely the aim of conserving a

4The first point primarily relates to Roth’s (2008) second and third prerequisites (‘thickness’ and ‘safe’),
whereas the second point concerns all three preconditions.
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market state once intended can be a sufficient necessity to continuously track and improve

a market – and thus motivating Continuous Market Engineering. In contrast to changes in

the socio-economic and legal environment, as laws and regulatory standards, changes in

individual behavior are not as easy to spot or foresee. Hence, the work at hand stresses the

importance of Continuous Market Engineering by (i) documenting two continuously engi-

neered markets as well as (ii) developing a deeper understanding of market participant’s

behavior.

Summing up, stakeholders of a market can benefit from a better understanding of

market participants’ individual behavior. Since environmental conditions and individ-

ual behavior are subject to change, market design decisions have to be monitored and

re-evaluated. Markets require continuous adaption and redesign in order to constantly

achieve their desired market outcome. The work at hand furthers the understanding of

individual trader behavior and demonstrates the power of Continuous Market Engineering

by presenting several studies conducted on two play-money prediction markets.

1.2 Research Outline

This thesis stresses the importance of a continuous approach to the Market Engineering
framework (Weinhardt et al., 2003; Gimpel et al., 2008) from a market provider’s point of

view while focusing on individual trader behavior.5 Specifically, the Market Engineering

framework as presented in Section 2.4 provides guidance for engineering electronic mar-

kets. It comprises a specified prescriptive design process model and a toolbox of methods

supporting that aim. The research objective of the work at hand is to apply Continuous
Market Engineering on electronic markets, thus demonstrating its potential and necessity

for successful markets. Furthermore, based on the above mentioned framework, a Contin-

uous Market Engineering Process (cf. Section 2.6) is derived from the experiences gained

so far. The studies are conducted on two prediction markets presented in Chapter 4 and

presented closely following the Market Engineering Object (cf. Figure 2.4a).

Personal attributes like risk aversion (RA), cognitive reflection abilities (CRA), and emo-

tion regulation strategies (ERS) are known to influence individual behavior. Up to now,

it seems unclear how these personal attributes influence (i) trading behavior (i. e., trader

behavior in the market) and (ii) decision quality (i. e., quality of trading decisions) in a

5The term ‘trader behavior’ corresponds to ‘Agent Behavior’ in the market engineering nomenclature (cf.
Chapter 2).
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prediction market context. Hence, advanced Service Analytics (Fromm et al., 2012) are

applied on the customer data of a prediction market in order to better understand Agent
Behavior. This approach delivers comprehensive insights on traders’ predisposition for

markets. Based on the gained knowledge, it is feasible to substantially improve service ex-

perience. This can be achieved by adapting the Market Structure to agent’s preferences and

abilities via personalized tweaks (interface adaption, product choice, etc.). In particular,

the following questions are addressed:

Research Question 1: How do selected personal attributes (RA, CRA, and ERS) influence
trading behavior in markets?

Research Question 2: How do selected personal attributes (RA, CRA, and ERS) influence
decision quality in markets?

After it has been shown that personal attributes do influence trading behavior, the ques-

tion arises whether trading behavior can reveal information about the traders themselves.

For instance, whether it is possible to ‘read a trader’s mind’ from his actions performed

on the market. Therefore, individual trading behavior on a prediction market is analyzed

in order to estimate individuals’ preferences. Specifically, on a Political Stock Market, the

relation between trading behavior and political preferences is examined by answering the

following research question:

Research Question 3: How well can an unobtrusive analysis of trading behavior reveal
trader preferences?

After examining traders’ actions on markets from a behavioristic angle, the market

providers perspective is taken. It is common sense, that interface design can influence

individual decision behavior and thus decision outcome (e. g., Kauffman and Diamond,

1990). With the rise of mobile information systems, the question arises whether and which

impact different devices have on decision behavior and decision outcome. Furthermore,

the setting in which individuals tend to use mobile devices often differs from stationary

settings. Hence, the following research questions is evaluated in this thesis:

Research Question 4: Are decision behavior and decision outcome affected by the kind
of device used?

Besides interface design, behavioral biases do influence and often harm individual’s

decision behavior (e. g., Tversky and Kahneman, 1974). An important and well studied

7
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behavioral bias especially traders tend to suffer from is the disposition effect (cf. Shefrin

and Statman, 1985). An endeavor is made to gain insights how differences in trading

interfaces influence the disposition effect. First, the effect of providing information about

the disposition effect in trading interfaces is examined. Second, the impact of a commonly

used interface element of electronic market systems, a trend indicator arrow reflecting

a trader’s portfolio state, is investigated. Considering the relative strength of behavioral

biases in the face of small interface changes, two research questions are addressed:

Research Question 5: Is providing information about the disposition effect suitable to
lower the strength of the disposition effect exhibited by an individual?

Research Question 6: Does a trend indicator arrow affect the strength of the disposition
effect exhibited by an individual?

Prediction market operators try to gain insights about future events from participants.

Market operators may, every once in a while, also have the desire to gather feedback or

learn more about their participants. Insights gained through such endeavors might help to

improve the market and thus raise loyalty as well as attract more customers. Still focusing

on the user interface, an attempt is made to find a suitable way to acquire such feedback

and additional information from and about market participants. Although, much research

has been conducted on how to design and conduct questionnaires (e. g., Babbie, 1990;

Fowler, 2014; Andres, 2012) as well as whom to include in a survey to reach certain

goals (e. g., representativeness, response rate), little is known on where exactly – in a

technical sense – to conduct surveys. In the specific domain of prediction markets, as

well as in the broader domain of online communities, it is largely undecided whether it

is beneficial to integrate a survey on the same platform versus conducting the very same

survey on an external specialized survey platform. Besides implications on the graphical

representation and on the user guidance, this decision impacts development as well as

operation costs of the market. Therefore, the final aspect of this thesis poses the following

research question:

Research Question 7: Are integrated surveys more accepted by participants of a predic-
tion market than standalone surveys?

The aforementioned research questions can be assigned to the components of the Mar-
ket Engineering Object as shown in Figure 1.1.6 From a Market Engineering perspective,

6For an in-depth description of the Market Engineering framework, containing the Market Engineering

8



1.2 Research Outline

research questions 1 and 2 connect Agent Behavior with Market Outcome, whereas research

question 3 solely focuses on Agent Behavior. The (IT) Infrastructure is subject to research

question 4. Research questions 5 and 6 additionally concerns the Microstructure. Finally,

research question 7 focuses on Auxiliary Services.

Socio-Economic and Legal Environment

Market Outcome

Agent Behavior

Transaction Object

Auxiliary Services

Market Structure

Micro-
structure

(IT) Infra-
structure

Business
structure

RQ1 RQ2

RQ3

RQ4

RQ5
RQ6

RQ7

RQ1: How do selected personal attributes (RA, CRA, and ERS) influence trading behavior in markets?
RQ2: How do selected personal attributes (RA, CRA, and ERS) influence decision quality in markets?
RQ3: How well can an unobtrusive analysis of trading behavior reveal trader preferences?
RQ4: Are decision behavior and decision outcome affected by the kind of device used?
RQ5: Is providing information about the disposition effect suitable to lower the strength of the disposition effect
exhibited by an individual?
RQ6: Does a trend indicator arrow affect the strength of the disposition effect exhibited by an individual?
RQ7: Are integrated surveys more accepted by participants of a prediction market than standalone surveys?

FIGURE 1.1: Placement of Research Questions in Market Engineering Object
(based on Gimpel et al., 2008)

Object, see Section 2.4. Note, that some research questions relate to multiple components of the Market
Engineering Object. In such cases, a best-fit approach is taken and the research question is assigned to the
component, which it relates to most.
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1.3 Structure of the Thesis

The work at hand is structured in five parts as shown in Figure 1.2. Part I motivates this

thesis, presents the examined research questions, and gives an overview of the structure of

this thesis. Part II introduces Continuous Market Engineering (see Chapter 2) and presents

theoretical foundations on Prediction Markets (see Chapter 3) before two instances of pre-

diction market are described (see Chapter 4).

Part III presents selected insights derived from applied Continuous Market Engineering

conducted on the two prediction markets described in Chapter 4. Chapter 5 examines

how Agent Behavior can be analyzed and whether certain characteristics lead to a specific

Market Outcome (hence addressing research questions 1 and 2).7 Further analyzing Agent
Behavior, Chapter 6 describes what a specific trading behavior denotes about a trader’s

attitude and beliefs (hence addressing research question 3).8 Chapter 7 analyzes how

Agent Behavior is influenced by the choice of (IT) Infrastructure offers (hence addressing

research question 4).9 Chapter 8 shows how small design changes in the (IT) Infrastructure
can raise or lower a trader’s behavioral bias (hence addressing research questions 5 and

6).10 Chapter 9 describes how Auxiliary Services can be provided that simultaneously im-

prove a trader’s platform experience as well as support the market provider’s goals (hence

addressing research question 7).11

Part IV concludes this thesis by stating the contributions made in the context of Contin-

uous Market Engineering, giving a research outlook, and summarizing this work. Appen-

dices are contained in Part V.

7Parts of this chapter are based on joint work with Florian Teschner and Christof Weinhardt and have
been presented at the Hawaii International Conference on System Sciences 2014 (Kranz et al., 2014b).

8Parts of this chapter are based on a joint article with Florian Teschner, Philipp Roüast, and Christof
Weinhardt which has been presented at the International Conference on e-Society 2014 (Kranz et al., 2014).

9Parts of this chapter are based on joint work with Florian Teschner and Christof Weinhardt and have
been presented at the Multikonferenz Wirtschaftsinformatik 2012 (Teschner et al., 2012). Other parts of this
chapter are based on a joint article with Florian Teschner and Christof Weinhardt which is published in the
International Journal of E-Services and Mobile Applications (Kranz et al., 2014c).

10Parts of this chapter are based on a joint working paper with Florian Teschner and Christof Weinhardt
which is currently under review.

11Parts of this chapter are based on joint work with Florian Teschner, Philipp Roüast, and Christof Wein-
hardt which has been presented at the European Conference on Information Systems 2014 (Kranz et al.,
2014a).
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Chapter 2

Continuous Market Engineering

“ [. . . D]esign is important because markets don’t al-

ways grow like weeds — some of them are hothouse

orchids.”

ALVIN E. ROTH, 2002

2.1 Introduction

DESIGNING markets is a major challenge for market engineers, as hinted by the in-

troductory quote. A meaningful market may seldom have a purpose of its own but

often is a plain tool to achieve a certain goal, which in turn determines a market outcome.

Thus, it seems fruitful to take a step back in order to assess what should be achieved, before

prerequisites and goals can be translated to market characteristics. Furthermore, before a

profound proposition on how to design ‘good’ markets can be suggested one has to fathom

a market’s typical lifecycle and ecosystem. Hence, this chapter starts by introducing a

stylized market lifecycle followed by selected literature dealing with the design process

of market systems. First, Roth’s (2002) ideas on Market Design are presented, followed

by Market Engineering (Weinhardt et al., 2003) and one of its derived forms, Agile Market
Engineering (Block, 2010). These approaches may help in supporting a market engineer
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in creating markets to achieve desired goals. Finally, the significance of a continuous ap-

proach to the design and improvement of markets, called Continuous Market Engineering,

is highlighted.

2.2 A Typical Market Lifecycle

Literature describing and developing models of lifecycles are around since many decades

and were applied to many research domains; starting from the biological sciences, but also

in social sciences (e. g., O’Rand and Krecker, 1990), in organizational sciences (e. g., Quinn

and Cameron, 1983), object-oriented programming (e. g., Henderson-Sellers and Edwards,

1990), regional clusters (e. g., Fornahl and Menzel, 2007) or to describe typical phases in

a product’s life (e. g., Vernon, 1966; Wells and Gubar, 1966; Segerstrom et al., 1990).

Typically, an electronic market comprises multiple components making up the market as

such; i. e., the market software, computer systems, etc. Additionally, auxiliary services such

as customer service processes or billing processes usually support the market system. Even

though, an electronic market is not a product in the classical sense, it befells a lifecycle

and can hence be matched to a product lifecycle fairly well.

The lifetime of a product is usually separated into phases which are traversed through-

out a product’s lifecycle. Figure 2.1 depicts the five phases of a product’s lifecycle as de-

scribed by Stark (2011), products – including services, and thus markets – run through

in their existence: ‘Imagine’, ‘Define’, ‘Realise’, ‘Use/Support’, and ‘Retire/Dispose’. He

further groups those activities as follows. First, Beginning-of-Life (BOL) of a product com-

prises the three phases ‘Imagine’, ‘Define’, and ‘Realise’. Second, Middle-of-Life (MOL) is

described by ‘Use/Support’ of a product. Third, the phase ‘Retire/Dispose’ makes up the

End-of-Life (EOL) of a product.

Imagine Define    Retire/DisposeRealise Use/Support

Beginning-of-Life (BOL) Middle-of-Life (MOL) End-of-Life (EOL)

FIGURE 2.1: Product Lifecycle
(based on Stark, 2011)

The Stage-Gate System by Cooper (1990), as depicted in Figure 2.2, is based on a slightly

different lifecycle model. It separates the BOL in five stages, which are each connected with

16



2.2 A Typical Market Lifecycle

so-called gates, fulfilling quality assurance functions that will not be discussed here. Every

new product starts with an idea, and enters the first stage ‘Preliminary Assessment’, fol-

lowed by the stage ‘Definition’. Afterwards, the product will enter the stage ‘Development’

and pass on to stage ‘Validation’. The last stage is called ‘Commercialization’ and deals,

inter alia, with production, sales, and related processes. Both Cooper’s and Stark’s phases

of a product’s BOL find their equivalence in the Market Engineering Process, as depicted

in Figure 2.4b, that will be discussed in the next section. However, the MOL and EOL

are described rather shortly with one phase each in the model of Stark (2011). As Cooper

(1990) explicitly concentrates on the BOL, MOL is only broached, and EOL is not discussed

at all.

Stage
1

Gate
1

Stage
2

Gate
2

Stage
3

Gate
3

Stage
4

Gate
4

Stage
5

Gate
5

Idea Initial Screen Decision on 
Business Case

Pre-
Commercialization 
Business Analysis

Post-
Implementation 

Review

Post-
Development 

Review

Second 
Screen

Preliminary 
Assessment

Detailed 
Investigation 

(Business Case) 
Preparation Development

Test &
Validation

Full Production & 
Market Launch

Beginning-of-Life (BOL)
Middle-of-
Life (MOL)

FIGURE 2.2: Stage-Gate System
(based on Cooper, 1990)

A more detailed depiction for the MOL is the stylized market lifecycle as shown in

Figure 2.3, which comprises four phases.1 It describes, in a simplified way, the alteration

of sales and profits of a market during its utilization. The caption ‘sales’ of the upper curve

in Figure 2.3 is not meant literally, but represents the turnover generated with the market

– the analogy to sales in a manufactured product context – rather than realized sales on the

market. In the first phase, the ‘Emerging phase’, the yet unknown market is introduced to

the intended audience. Tasks in that phase include the involvement of marketing methods

in order to advertise the market. Nevertheless, the market is already fully operative and

is used by a small, but steadily increasing number of participants.

Although, the market does already generate some sales, it generally yields negative

profits. This changes in the following ‘Growth’ phase, where the market starts to return

1 Even though called ‘Market Lifecycle’, this prototypal view can also be applied to a general product
context and under certain assumptions also to a service context.
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time

$

profits

sales

Emerging Growth Maturity Decline

0

FIGURE 2.3: Stylized Market Lifecycle
(based on Weinhardt and Gimpel, 2007)

positive profits. Furthermore, the sales’ growth rate increases until the sales reach an

inflection point from which the phase of ‘Maturity’ starts. This is generally the phase in

which most profits are yield and least resources need to be invested. The profits and sales

tend to stay largely constant. Afterwards, at a certain point, the sales start to decrease,

followed by diminishing profits; indicating the start of the ‘Decline’ phase. Finally, the

market reaches its EOL and is discontinued. Summing up, the presented lifecycle models

assume a linear, serial and thus non-repetitive phase model for products. They are well

suited for a simplified descriptive reflection of product lifecycles and thus furthers the

understanding of basic patterns in a product’s lifetime. Nevertheless, they do not focus

on the possibility to re-iterate certain phases in order to adapt a product in a dynamic

environment.

2.3 Market Design

In his seminal paper, Roth (2002) discusses the changing expectation on economists to

not only analyze markets, but to design them. Hereby, he implicitly calls for new methods,

guidelines and frameworks for market designers. This very change from an analytical ex-

post based perception to a formative ex-ante way of thinking implies the need for new ap-

proaches. Hence, research should not only concentrate on a conceptional, characteristics-

based track, but extend efforts to investigate cause-effect relationships of market features
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to eventually enable an anticipatory design approach. Furthermore, he postulates two

theses guiding the advent of Market Design. First, [. . . ] in the service of design, experimen-
tal and computational economics are natural complements to game theory” (Roth, 2002).

Second, he states that [. . . ] we need to foster a still unfamiliar kind of design literature in
economics, whose focus will be different than traditional game theory and theoretical mech-
anism design” (Roth, 2002). In 2008, Roth concretizes his earlier work, where he also

postulates three prerequisites for markets to flourish: thickness, congestion, and safety.

First, thickness must be provided by markets in the sense of attracting a sufficiently large

share of a market’s target group. Second, markets need to have a certain level of liquidity

in order to overcome potential congestion. Third, markets must provide safe and simple

trading opportunities to prevent participants from choosing any outside option. Finally, he

corroborates his approach to market design on the basis of detailed examples of medical

and academic labor markets, kidney exchanges, and school assignment problems. “After
a market has been designed, adopted, and implemented, it has a continuing life of its own”
(Roth, 2010). In the light of the latter quote, Roth (2010) revises his earlier publication

(Roth, 2008) and reports developments and insights gained so far. Although, the pre-

sented markets still operate effectively, he nevertheless identifies unsolved problems that

call for solutions. Milgrom (2011) sees market design closely linked to mechanism de-

sign, yet admitting that relevant questions of market design such as product definition,

communicational concerns, incentives, and linkages among markets are not well studied

in the context of mechanism design.2 Examples of applied mechanism design in areas of

market design include online advertisement markets (e. g., Edelman et al., 2007; Levin

and Milgrom, 2010), electricity markets (e. g., Wilson, 2002), or radio spectrum auctions

(e. g., McMillan, 1994).

Summing up, “[. . . ] market design calls for an engineering approach” (Roth, 2002) and

stresses that details matter in relation to the market’s mechanics and thus its purpose.

Stated differently, it lacks a structured procedure model, capable of guiding a market de-

signer in the creation process.

2.4 Market Engineering

Market Engineering as defined by Weinhardt and Gimpel is “[. . . ] the process of consciously
setting up or restructuring a market in order to make it an effective and efficient means for

2 “Market design is an engineering discipline linked to mechanism design.” (Milgrom, 2011)
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carrying out exchange transactions” (Weinhardt and Gimpel, 2007).3 It requires “[. . . ] an
integrated, [holistic] view on markets, a multiplicity of methodologies, an interdisciplinary ap-
proach, and the understanding that details matter” (Weinhardt and Gimpel, 2007). Market

Engineering can be seen as an advancement to Market Design as described in the preceding

section, although it is slightly different. In contrast, to Roth’s (2002) focus on the appli-

cation of market mechanisms, Market Engineering describes a systematic development

process for markets (Market Engineering Process, cf. Figure 2.4b) besides a framework

(Market Engineering Object, cf. Figure 2.4a) which supports market engineers in structur-

ing the creative leeway. It hereby focuses on implementation details whilst considering

environmental conditions and influences on agent behavior in order to reach the desired

market outcome.

Socio-Economic and Legal Environment

Market Outcome

Agent Behavior

Transaction Object

Auxiliary Services

Market Structure

Micro-
structure

(IT) Infra-
structure

Business
structure

(A) Market Engineering Object

– Theoretical Modeling
– Empirical Studies
– Prototyping

– Mechanism Design
– Parametric Design
– Methods from
   Computer Science/IS

– Survey
– Interview
– SWOT Analysis
– Literature Review

– Training
– Methods from
   Marketing

– Conceptual Modeling
– Methods from
   Software Engineering

Environmental
Analysis

Design

Evaluation

Implementation

Introduction

Input Process Methods

Objectives

Requirements
List

Preliminary
Requirement

Satisfaction List

Market
System

Conceptual
Model

(B) Market Engineering Process (selection)

FIGURE 2.4: Market Engineering Framework
(based on Gimpel et al., 2008)

The Market Engineering framework describes a Market Engineering Object (Figure 2.4a),

consisting of multiple components, which gives an orientation for market engineers as well

as a Market Engineering Process (Figure 2.4b) that describes the necessary steps in creat-

ing a market. All components of the Market Engineering Object are embedded within

a Socio-Economic and Legal Environment which comprises applicable laws, social norms,

3Another definition can be found in Neumann (2007): “Market [E]ngineering is the engineering design of
all institutional rules of an electronic market” (Neumann, 2007).
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and others. The Socio-Economic and Legal Environment is considered as given and can

usually not be modified by the market engineer. A market engineer’s aim is to achieve a

certain Market Outcome (e. g., activity, liquidity, allocation efficiency). This goal can be

reached by designing the Market Structure, the Transaction Object, and the Auxiliary Ser-
vices. Market Structure encompasses three interdependent components: Microstructure,

(IT) Infrastructure, and Business Structure. Microstructure defines the market mechanism,

like allocation and pricing rules. The (IT) Infrastructure comprises technical implemen-

tation details and interfaces to the market. Finally, trading fees as well as business and

pricing model details belong to the Business Structure. Here, one has to be aware of the

fact that the three aforementioned components, which make up the Market Structure, are

strongly interdependent and thus cannot be designed independently of each other. Agent
Behavior results from those components as well as from certain agent characteristics (cf.

Chapter 5). In other words, it is not feasible for a market engineer to directly influence

Agent Behavior. Therefore, he has to anticipate a certain Agent Behavior as result of his

design decisions in order to achieve a desired Market Outcome.

The Market Engineering Process, based upon waterfall models as known in software

engineering, leads a market engineer in creating a market. First, subject to the market

objectives, the requirements are gathered by means of an Environmental Analysis. Second,

based on the derived requirements list, the market Design is created. Afterwards, the

Evaluation of the market is conducted on the basis of a conceptual model of a market

system. Depending on the outcome of the evaluation step, the process re-iterates the

design step or continues with the Implementation, where the market is created based on

the preliminary list of requirements to be satisfied (‘preliminary requirement satisfaction

list’). Finally, Introduction of the market marks the last step of the Market Engineering

Process. Weinhardt and Gimpel (2007) characterizes the Market Engineering Process as

a “basically sequential process” that, nevertheless, allows iterations of process steps. Albeit

acknowledging the necessity of iterations, the discussion on conditions and requirements

thereof is not further stressed.

A juxtaposition of the main phases of the Market Engineering Process (Figure 2.4b)

besides those of the discussed lifecycle models from Section 2.2 is depicted in Figure 2.5.

As depicted, the Market Engineering Process supports the Market Engineer in each step

throughout the Beginning-of-Life phase. Similar to the Stage-Gate System and the Product

Lifecycle Phases introduced earlier, the Market Engineering Process does hardly concern

the Middle-of-Life nor End-of-Life phases.

Market Engineering has successfully been applied to the creation process of markets in
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Beginning-of-Life (BOL) Middle-of-Life (MOL)

   Retire/DisposeUse/Support

Product Lifecycle Phases (Stark, 2011)

Market Engineering Process (Gimpel et al.,2008)
Stage-Gate System Phases (Cooper, 1990; simplified)
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FIGURE 2.5: Juxtaposition of Lifecycle Models in the Beginning-of-Life
(based on Cooper, 1990; Weinhardt and Gimpel, 2007; Stark, 2011)

various domains like (computing) grid markets (e. g., Schnizler et al., 2004, 2008), sport

prediction markets (e. g., Luckner et al., 2005), economic indicators (e. g., Teschner et al.,

2011), or environmental predictions (e. g., Stathel et al., 2009). It has been proven suitable

in supporting market engineers in the creation process of markets. Nevertheless, albeit it

allows for re-iterations, it lacks a focus on continuous monitoring and improvement of an

existing market.

2.5 Agile Market Engineering

Block (2010) suggests Agile Market Engineering as a specialized advancement to Market

Engineering. It contains a development process model including propositions for respon-

sibilities4 and software development methodologies as well as a collection of accompa-

nying software tools. In its core, Agile Market Engineering is still based on aspects of

the aforementioned Market Engineering framework, especially it makes use of the Market

Engineering Object. Its main contribution is to describe an agile development process in

detail, which is enriched with the experienced knowledge gained from practical market de-

velopment projects. The Agile Market Engineering Process is depicted in Figure 2.6 and shall

be understood as a “[. . . ] collection of best practices, experiences, and tools and furthermore
shows one way to orchestrate them [. . . ]” (Block, 2010). It comprises three phases, namely

the Pre-Development Phase, the Development Phase, and the Operation Phase, whereas each

of these phases consists of three process steps.

4The proposed responsibilities/roles are business owner, market developer, market expert, market oper-
ator, change manager, and market participants. For further details see Block (2010, pp. 49)
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FIGURE 2.6: Agile Market Engineering Process
(based on Block, 2010)

First, in the Pre-Development phase, the Business Owner develops a vision for the mar-

ket and assesses the market’s environment. For the first subtask, Block (2010) proposes

to make use of creativity techniques like freewriting (Belanoff et al., 1991), brainstorming

(Osborn, 1953), or mindmapping (Buzan and Buzan, 1993). Second, the Business Owner,
assisted by the Market Expert, collects initial requirements for the upcoming market. He

suggests to rely on user stories (Beck, 2000; Jeffries, 2001) for that purpose. Third, the

Business Owner, accompanied by the Market Engineer as well as the Market Developer eval-

uate potentially existing market platforms by their similarity to the market’s vision, which

may act as a starting point for development. Therefore, Schönfeld and Block (2010) de-

veloped a market template repository. According to the Agile Market Engineering Process,

it will take a few hours to several days to complete these steps. As result, a set of initial

requirements is obtained, which initiates the Development phase. The steps of the devel-

opment phase may be repeated numerous times. Each iteration is expected to last from

one week to one month. First, the requirements are prioritized by the Business Owner. For

this purpose, it is suggested to make use of prioritization schemes like MoSCoW (Clegg

and Barker, 1994; Ash, 2007) or the one Selhorst (2006) developed on the basis of Kano
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et al. (1984). Second, the Business Owner along with the Market Developer finalizes the

requirements and chooses a subset of user stories to implement in the following phase.

Third, the Market Developer with the backing of the Business Owner, the Market Expert,
and the Change Manager design, implement, and test the current set of user stories. Here,

a test-driven development process (Beck, 2002) is proposed. This phase ends with a re-

lease of the market system. Afterwards, the Operation phase, which runs continuously,

starts. First, the most recent release of the market system is deployed on the production

system by the Market Operator and the Market Developer. Second, the Market Operator, the

Business Owner, and the Market Expert observer and assess the market’s activity. This aims

to ensure proper operation of the market system in both the business and the technical

dimension, which also includes monitoring for fraudulent activity for which approaches

like the one described in Blume et al. (2010) are eligible. Third, the Business Owner, the

Market Developer, the Market Expert, and the Market Operator revise the market’s require-

ments based on their experiences gained in the latter step as well as on implicit (Kelly and

Teevan, 2003) and explicit feedback. Those revised requirements will potentially trigger

a new iteration of the Development phase, which in turn eventually leads to a new market

release.

2.6 The Need for Continuous Market Engineering

In contrast to the simplified concept that markets are planned, implemented, run, and

finally closed, reality often narrates a different tale. Also, the ‘classical’ lifecycle phases

of emerging, growth, maturity, and decline are an abstraction which is too simplified for

many areas of application. On the one hand, sometimes markets turn out to be far more

successful during their operation than expected in the planning phase. Thus, their run-

time is often prolonged which in turn raises the probability for changes in market’s envi-

ronment or objectives that will create a necessity for adjustments. The opposite can also

be observed, and calls for an analogous approach of identifying and analyzing (design)

weaknesses and conducting subsequent improvements. On the other hand, markets can

be planned with an open end date from the beginning, knowing that their initial concept

is rather a first approximation than a final design, and conscious of the need for further

adjustments. Both situations described often require a regular or even continuous revisit-

ing of the market’s initial objectives and requirements as well as the way they are imple-

mented. In these cases, the Market Engineering approach, although it explicitly allows the

possibility to re-iterate process steps of the Market Engineering Process (i. e., re-design of
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markets), does not stress the continuous aspect satisfyingly with the relation to reality’s

needs. Especially the Market Engineering Process (cf. Figure 2.4b) lacks explicit advice for

a market’s Middle-of-Life phase (cf. Section 2.4) and thus for a continuous monitoring and

improvement process. In particular, a structured process address changes is not contained

in the Market Engineering framework.

As already quoted from Roth (2010)5, after its development a market is not simply

released into a static reality, but rather in a dynamic context in which the market might

not necessarily be able to fulfill its purpose without proper readjustments. Weinhardt and

Gimpel (2007) describe this circumstance as a “fusion of design- and runtime”6 and stress

the advantages of these cases by stating that “[. . . ] service operators can continuously ex-
periment with subsets of their user groups [. . . ] and the real-time feedback allows continuous
improvement in the design of their online businesses”, eventually leading to “a competitive
advantage over potential new entrants” (Weinhardt and Gimpel, 2007). Roth (2010) further

stresses the importance of continuously monitoring running markets in order to ensure that

they fulfill their purpose: “For those involved directly in the market, it is useful to continue
to monitor it to make sure it is functioning well” (Roth, 2010). Especially in the context

of prediction markets, it is known that “[m]arkets can fail and have been observed to pro-
duce anomalous behavior (Thaler, 1993; Thaler and Ziemba, 1988) thus understanding how
to design prediction markets for successful deployment to minimize these failures is critical”
(McHugh and Jackson, 2012). In turn, the Agile Market Engineering Process contains this

very step by (potentially) continuously reiterating the development and operation phases

in turn. This resembles a potential connection between ‘Introduction’ and ‘Environmental

Analysis’ in the Market Engineering Process.

This thesis suggests a Continuous Market Engineering Process, as depicted in Figure 2.7,

based on many years of experience gained while operating the prediction markets ‘Eco-

nomic Indicator eXchange’, ‘Political Indicator eXchange’, and ‘Kurspiloten’ (cf. Chapter 4).

The process was derived by a combination of describing the interplay of operating, moni-

toring and refining taking place on the aforementioned prediction markets as well as from

knowledge and insights gained throughout this time. It hereby attempts to structure and

abstract the approaches conducted and the lessons learned so far. Similar to the Agile

5“After a market has been designed, adopted, and implemented, it has a continuing life of its own.” (Roth,
2010)

6Taken from the following quote: “For some Internet market platforms, like eBay and Amazon, an in-
teresting tendency can be observed: after the initial introduction of the electronic market platform, there is
no clear cut distinction between design-time and runtime any more. This equals the fusion of design- and
runtime of other Internet services like Google, for example” (Weinhardt and Gimpel, 2007).
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FIGURE 2.7: Continuous Market Engineering Process

Market Engineering Process, the Continuous Market Engineering Process can basically be

viewed as an enhancement to the Market Engineering Process (Figure 2.4b) by aspects of

continuous operation, monitoring, and refinement. In contrast to the latter, it does not end

after the step ‘Introduction’, but moves on into the step ‘Operation’. This step summarizes

all activities of the market operator in running the market system (i. e., the market itself

as well as auxiliary services supporting the market’s operation). It is only interrupted by

either (i) an introduction of a new release of the market system, which equals a restart of

the step ‘Operation’, or by (ii) reaching the End-of-Life of the market, which results in a

controlled suspension and closure of the market. The step ‘Introduction’ is accompanied

by a ‘Monitoring’ step, which furthermore surveillances the ‘Operation’ of the market con-

tinuously. It describes all efforts undertaken by the market operator focusing on observing

the market, i. e., the market’s internals (e. g., technical operation of the market system,

the market’s metrics, etc.), the trader’s behavior in the market, as well as environmental

influences on the market (e. g., technological, legal and socio-economic changes). Mon-

itoring the technical operation of the market system comprises monitoring the hardware

and software the market system runs upon, as well as the market software system itself.

Proper solutions may be built on top of common IT infrastructure monitoring solutions.

By using market-specific key performance indicators, essential market metrics may be de-

rived and conveniently monitored.7 Semi-automatic monitoring tools a way to monitor

trading behavior, like trading pattern recognition (e. g., Blume et al., 2010) or special-

ized logging facilities, which record key events. Environmental changes may be classified

7Generally, there are various possibilities to derive KPIs for a market. In case of prediction markets, a
good starting point are the ‘Market Quality Measures’ as defined in the Prediction Market Quality Framework
(Teschner, 2012, p.16).
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as technological, legal, and societal changes. Examples for technological changes of the

environment are accruing security issues, changes in trader’s IT systems, or innovations

rendering certain technologies obsolete. Legal changes, inter alia, comprise regulatory

interventions forcing market operators to adapt their systems. Finally, socio-economic

changes may affect traders’ behavior and preferences, which in turn can result in different

needs and demands on the market system. Each of the aforementioned monitoring goals

are described rather abstract, as their particular design largely depends on the market’s as

well as the market provider’s specific objectives. While a market is operating, usually the

Continuous Market Engineering Process finds itself – besides in the ‘Operation’ step – in

the ‘Monitoring’ step, continuously observing market parameters. There are basically two

possibilities that will trigger a continuation of the Market Engineering Process. First, in

case the ‘Monitoring’ step identifies a deviation from what is considered as normal opera-

tion, the step ‘Deviation Analysis’ is triggered, aiming to identify the underlying mechanics

leading to this very change. Subsequently, it is decided how extensive the corrective ac-

tions have to be and thus triggering the ‘Redesign’ step, which needs to be initiated in

order to refine the market. Second, changes of the market’s objectives, resulting in the

adaptation of subsequent input variables (namely, requirements, or conceptual changes;

cf. ‘Input’ in Figure 2.7), can trigger the step ‘Deviation Analysis’ directly. For instance, a

market operator decides to change its service portfolio (e. g., extending it by introducing

a new class of products) will trigger the ‘Deviation Analysis’ directly. In turn, this process

step will evaluate the available input parameters, eventually preparing the execution of

the step ‘Redesign’. Analogous to the Market Engineering Process, here the ‘Redesign’ step

deals with the design of the market structure, as depicted in Figure 2.4a, followed by the

‘Evaluation’ step, which tests the market system with regards to functionality, acceptance

and market outcome. For instance, reacting to a change in trader’s activity by introducing

additional transaction objects will result in a redesign of the market. Another example

is the reaction to a security issue, which will result in a redesign of the market system’s

technical implementation. After conducting a ‘Redesign’ step, the process flow continues

its way through the process model, reaching the step ‘Introduction’, which launches a new

market release, and preliminary ends in the ‘Operating’ and ‘Monitoring’ steps.

2.7 Summary

This chapter presents different abstractions of lifecycles applicable for markets. Subse-

quently, the concept of Market Design is introduced before the Market Engineering frame-
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work, the related Market Engineering Process and an advancement, Agile Market Engi-

neering, was discussed. Consistently, the importance of continuity in operating, moni-

toring, and re-designing markets in order to operate successful markets is stressed. Lastly,

the Continuous Market Engineering Process, intended to guide market engineers in continu-

ously operating and improving a market is presented. The derived approach of Continuous
Market Engineering is applied subsequently to the work at hand.
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Chapter 3

Prediction Markets – Theoretical

Foundations

“ Prediction is very difficult, especially if it’s about the

future.”

NIELS H. D. BOHR

3.1 Introduction

PREDICTIONS about future events and scenarios which are reliable and trustworthy

are often a prerequisite for economic as well as political decisions.1 Common ways

to gain insights about future developments are expert polls and mathematical prediction

models using formal statistical methods such as regression analysis and ARIMA2. With the

growth of the Internet, markets that are accessible via a web interface trading predictions

about future events have emerged as a promising alternative forecasting tool. In these

Prediction Markets3, participants trade contracts with payoffs depending on the outcome

1Note, the words ‘prediction’ and ‘forecast’ are used interchangeable in this work.
2For a detailed description of the Autoregressive Integrated Moving Average (ARIMA) model see Box

and Jenkins (1976).
3For an introduction to Prediction Markets containing a selection of successful applications see also

Wolfers and Zitzewitz (2004).
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of uncertain future events (see Section 3.2). Usually, participants submit their future ex-

pectations as orders like one does when trading stocks in financial markets. Prediction

markets have been successfully applied to a wide range of topics such as sports betting

(e. g., Borghesi, 2009) or political forecasts (e. g., Forsythe et al., 1992) as shown in Sec-

tion 3.5.

Prediction markets derive their predictive power from a market design that provides in-

centives for traders to truthfully reveal their information and an algorithm which weights

individual opinions. By aggregating dispersed information and expectations about future

events into market prices, they generate a forecast and thus facilitate decision making. The

price system plays an essential role to this end, whereto von Hayek (1945) wrote: “The
most significant fact about [the price system] is the economy of knowledge with which it oper-
ates, or how little the individual participants need to know in order to be able to take the right
action.” In this context, the most important assumption of von Hayek (1945) states that

gains from trades and equilibrium prices can be obtained even without common knowl-

edge and perfect information. This holds especially for cases in which trader do not have

(or reveal their) rational expectations, or whereby traders have only limited information

of the markets state, or even if the number of market participants is rather ‘small’. Smith

(1982) examined three experimental market settings and found strong support for the so-

called Hayek Hypothesis4. In a sense, the Efficient-Market Hypothesis (EMH), developed by

Fama (1970), can be seen as a concretization of the Hayek Hypothesis. Simply speaking,

von Hayek (1945) described the price system’s capability to aggregate dispersed informa-

tion into (equilibrium) prices even under suboptimal circumstances, whereas Fama (1970)

hypothesizes that market prices already reflect all available information. Fama (1965) de-

fines an ‘efficient’ market as a market “[. . . ] where prices at every point in time represent best
estimates of intrinsic values.” According to the Efficient-Market Hypothesis, the fundamen-

tal value of a stock5 in an efficient market is completely represented by the market price,

which contains all relevant information of a stock and the market itself (Fama, 1970). In his

1970 paper, Fama breaks the EMH down into three subforms (weak-form efficiency, semi-
strong-form efficiency, and strong-form efficiency) which he redefined slightly in 1991. In

the weak form, past stock prices as well as other historic information do not completely

determine future stock prices. Hence, past stock prices cannot predict future stock prices.

Nevertheless, market participants cannot systematically exploit those inefficiencies to gain

4For a complementary study to Smith (1982) proving Hayek’s hypothesis cf. Al-Ubaydli and Boettke
(2011).

5The fundamental value of a stock, according to Harris (2003), is the value all traders would agree on,
given complete information.
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profits. Accordingly, stock prices follow a random walk model. In the semi-strong form,

all publicly available information is – in addition to past price developments – incorpo-

rated into current prices. In the strong form, all relevant public and private information

regarding the market are incorporated into market prices.

However, there are also preconditions a forecasting goal has to fulfill so that a prediction

market can be used to generate a forecast for the particular event. Basically, a Prediction

Market can be used to predict any future event that matches the following requirements:

First, the event in question can be transformed into a number (i. e., a price). Second, as a

forecast tries to describe the state of the given event at a specific date, it must be possible

to determine the outcome of the event in question doubtlessly at the specified point in

time.6

The remainder of this section, structured based on the Prediction Market Framework
Teschner (2012) developed based upon Zhang et al. (2011), is as follows. First, the market

microstructure is presented. Subsequently, the importance of a well-designed incentive

scheme is stressed, followed by a discussion of ways to design the trading system as well

as the market interface and their particular implications. Finally, exemplary use cases are

presented.

3.2 Market Microstructure

Market Microstructure can be defined as “[. . . ] the study of the process and outcomes of
exchanging assets under explicit trading rules” (O’Hara, 1995, p. 15). First, the trading

mechanism is presented before we turn towards the design of tradable contracts.

3.2.1 Trading Mechanism

Prediction markets neither rely on a specific trading mechanism nor are restricted to simple

binary outcomes. The most basic trading mechanism for prediction markets is based on a

continuous double auction (CDA) for a contract that represents the outcome of an upcoming

event. Probably the most widely used market mechanism is a continuous double auction

(Wolfers and Zitzewitz, 2004). Besides its low complexity and easy of implementation, a

6For details see paragraph on ‘Contract Design’ in Section 3.2.
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CDA guarantees by design, that trading is a zero-sum game and hence is without financial

risk to the operator.

If the number of participants and/or market liquidity is rather low or noisy (defined as

‘thin markets’), a plain CDA is usually not an appropriate mechanism. Instead the use of

market makers is beneficial under such circumstances.7 Hereby, it is regardless of whether

a human market maker or an automated market maker (i. e., an algorithm) is used. For in-

stance, Hanson (2003) describes an automated market maker based on a market scoring

rule to constantly provide trading opportunities. Stathel et al. (2009) discusses differ-

ent market-maker approaches – amongst them the aforementioned one – and presents an

own approach, which is also used in an intra-organizational prediction market presented

in Stathel et al. (2010). This approach consists of an automated arbitrageur and an auto-

mated liquidity provider. The presented market (Stathel et al., 2010) comprises multiple

stocks, each representing the probability of occurrence of a certain future scenario, includ-

ing an outside option. According to the used payout function, the price of each product

represents the probability of occurrence one to one (e. g., $ 12 equals 12 %). Hence, the

sum of all stocks must relate to the sum of probabilities of occurrence of all future sce-

narios, which obviously is 100 %. Additionally, throughout the market runtime bundle

trading was allowed.8 By design, the market did not prevent traders from influencing the

price of products so that the sum of open buy or sell orders lead to arbitrage opportunities.

The automated arbitrageur described in Stathel et al. (2009) regularly checked for such

arbitrage opportunities and leveled those by actively buying and selling as the circum-

stances require. The liquidity provider component of Stathel et al.’s (2009) market maker

behaved similar to the one described by Boer et al. (2007). Generally, on the positive

side, a market maker opens the possibility to provide rather small markets, but also has a

downside. The market maker might cost some money to quote prices. In case of a human

market maker, usually a salary and supplementary costs have to be paid, additionally both

types of market maker might lose money when trading. Although, the maximum amount

of money an automated market maker will cost in the worst-case scenario can often be

calculated, a market engineer should be aware of that fact.9 In marked contrast to most

electronic trading systems, usually no trading fees are charged in Prediction Markets as

this would have counter-productive effects on forecast accuracy, “[. . . ] because it inhibits

7A market maker can either be an individual, an organization, or an algorithm, providing liquidity to
the market by quoting both sell and buy prices.

8In the given setting, Bundle trading describes the market feature to sell one stock of each kind to the
market system and receive $ 100 in return, or to buy one stock of each kind for a total price of $ 100 from
the market system.

9For an in-depth analysis see Hanson (2007), Luckner (2008), and Chen and Pennock (2012).
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rational participants from executing trades with an expected profit of less than the trading
fee, thus, creating a bias” (Spann and Skiera, 2003, p. 1318).

3.2.2 Contract Design

There are multiple ways to design a contract in a prediction market, wherein the forecast-

ing goal is the major determinant for that choice. The precondition to forecast any event

with a prediction market is that the outcome can be quantified at a specific point in time.

Wolfers and Zitzewitz (2004) describe three possible contract types. First, a Winner-takes-
all contract that models events with a binary outcome, as for instance the chance that a

certain candidate will be elected in a majority election. Second, an Index contract that

is suitable to predict a numeric value representing a future event. Examples are the vote

share of a certain party in a proportional representation or the number of unemployed

persons at a given time (cf. Teschner et al., 2011). Third, a Spread contract which can

be used to reveal the markets median expectation of a future event. In contrast to the

aforementioned, it defines a fixed payoff and determine a particular spread via a market

mechanism.

Any specific event and the corresponding tradable contract are connected via their pay-
out function. The payout function is the key to market transparency as it enables partic-

ipants to determine a priori what outcome equals which contract price, or as Antweiler

(2012) expressed it: “The ability of a trader to quickly convert and visualize the relation-
ship between outcome and price is important.” Imagine a Winner-takes-all contract for a

candidate ’A’ in an upcoming election taking place with the method of majority decision.

In this example, the payout function (see Equation 3.1) ensures one currency unit (1 CU)

per stock in case candidate ’A’ wins the election; else all stocks of that contract will be

worthless.

(3.1) pA =

¨

1CU, Candidate ’A’ wins the election

0CU, otherwise

A more complex payout function for an Index contract might look like Equation 3.2.10

Here, the inflation rate (I) is predicted and results in the price pInflation as stated. The

10This example is based on Teschner et al. (2011).

33



Chapter 3 Prediction Markets – Theoretical Foundations

relative difference to last years’ value of I (i. e., It=0−It=−12
It=−12

) multiplied by scaling factor α

(here, 10) and added to 100 is paid out.

(3.2) pInflation = 100CU+αCU×
It=0 − It=−12

It=−12
, withα= 10 and t in months

Let us assume a rational risk-neutral market participant formed his expectation about

the inflation development and derived with high certainty a relative change of 2.54 %. By

using the payout function (Equation 3.2) the price per stock related to the given expec-

tation can be calculated. In case the assumption was right, the resulting payout will be

125.40 CU. If the current market price of that contract will be below this value, the mar-

ket participant should buy those stocks. In the opposite case, with market prices above

125.40 CU, the market participant should sell his stocks, since he expects them to be paid

out for a lower price. In case of equality of expected payout value and market price, the

market participant should be undecided whether to buy or to sell.11

Last, a Spread contract is explained in detail. It is again a zero-sum game for market

operators and defines a fixed payoff which is paid when the event in question realizes.

Here, as the amount available to pay out is determined by a fixed price both sides pay for

a contract, market participants in a way negotiate the payout function itself. An example

is depicted in Equation 3.3.

(3.3) ps
A =

¨

2CU, s∗ > s (Candidate ’A’ wins more than s % of the vote)

0CU, otherwise

Imagine a contract in form of an even-money bet (i. e., the winner’s stake is doubled,

while the loser receives nothing). Specifically, it shall be priced for $ 1, paying $ 2 if a

election candidate ‘A’ wins a vote share s∗ of more than s percent, $ 0 otherwise. Hereby,

traders submit bid and ask offers for the spread s, which in turn determines the potential

payoff of that very contract.12 For instance, a rational risk-neutral trader expecting candi-

date ‘A’ to win 30 % of all votes (i. e., s∗ex pected = 30%) would submit bids for that contract

11As the market participant’s confidence will only in rare cases be 100 %, it is most likely, that he would
sell his stocks in favor for cash than buying additional stocks that bear a risk of losing money. Furthermore,
aspects like market activity and past price development – just to name a few – might play an important role
in such a situation.

12Note, that s varies.
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for less than 30 % and asks starting at 30 %, since s∗ex pected > s has to hold in order to dou-

ble the stake. If bid and ask orders for s overlap, both traders pay the contract’s price ($ 1).

Furthermore, to conduct the final payout, the market system has to store the specific s of

that transaction. After the event in question can be quantified, each transaction has to be

paid out; i. e., it has to be determined, whether the (transaction-dependent) s is smaller

than s∗. In turn, this decides which ‘side’ receives its doubled stake. Such a contract design

follows that the bids and asks gathered in the order book will form the market’s median

expectation for s∗.

3.3 Incentives

Proper incentives are a crucial factor for a prediction market’s success. Thus, an important

part of a market engineer’s work is to design and implement a suitable incentive system.

There are numerous ways to classify incentives, like the very rough division into intrinsic
(e. g., joy) and extrinsic (e. g., monetary reward) incentives or the finer-graded taxonomy

of financial, moral, coercive, and natural incentives. In the context of prediction markets,

it is common to make use of extrinsic (i. e., financial) incentives – also due to the fact, that

creating moral, coercive or even natural incentives is a tough endeavor.

Regardless of whether a prediction market is run with real or play money, the market

operator should provide monetary incentives. In case of play-money prediction markets,

this can be achieved by supplying material prizes or vouchers. Besides that, incentives

have to be communicated in a transparent way in order to be understood by participants

and thus take full effect.

3.3.1 Currency

Every prediction market needs some kind of currency to enable trading. Using real money

is by far the most straight-forward approach to fulfill that premise as participants as well

as the market operators are used to it. On the downside, it can imply additional burden

for market operators as they might – depending on their location – have to obey certain

laws on lottery, gambling, or money laundering.13 Additionally, using real money might

13Even though the Socio-economic Environment (cf. Chapter 2) can be assumed as given, it might be
possible to circumvent those regulations. For instance, the market operator might call a single participation
fee of €10 for granting market access including 10 play-money units to participants.
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discourage participants who are not willing to risk real-money although they want to share

their estimations of future events. Furthermore, they additionally might be concerned to

provide payment information. As research indicates, the predictive power of prediction

markets – given a suitable incentive system – does not suffer, when using play money in

combination with an appropriate incentive system (e. g., Servan-Schreiber et al., 2004;

Christiansen, 2007; Slamka et al., 2008).

3.3.2 Tournament

Especially in case of play-money prediction markets, a ranking mechanism can be used

to provide incentives for participants to reveal their true estimations. A public ranking

can create a tournament-like setting for participants, that motivates a constructive and

steady participation in the market. Furthermore, a ranking can be used to construct an

additional incentive for play-money prediction markets. For instance, material prizes can

be raffled amongst the best performing participants. In an insightful study, Luckner (2006)

compared the influence of incentive schemes on prediction accuracy including rank-order

tournaments. In contrast to naive expectation, he found that predictive accuracy was

highest in the rank-order tournament treatment.

3.4 Technology

A prediction market is usually implemented as an online market, reachable from the In-

ternet or in some cases as an intra-organizational market that is only accessible from an

internal network (cf. Section 3.5 for an example). Besides aspects of usability, which are

dealt with at the end of this section, questions of speed, scalability, and reliability are of

interest from a trading system perspective.

3.4.1 Trading System

Multiple processes in a trading system are influenced by its speed. First, the number of

orders that can be conducted per time unit gives an indication of throughput. Second,

consistent with Riordan and Storkenmaier (2012), the time it takes from submitting an

order until feedback about the order is available, after it is accepted and possibly executed
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from the trading system, indicates the latency of an order. “Latency in electronic order-
driven markets is determined entirely by the hardware and software (IT systems) used to
match and report orders.” (Riordan and Storkenmaier, 2012, p. 417) Those measures gain

importance when it comes to high frequency trading, or algorithmic trading in general.

In case of solely human traders, the latency of a market system can be neglected, when

it achieves a certain minimal quality that is far off modern stock exchanges.14 Especially

on prediction markets normally only human traders are involved and thus requirements

for prediction market IT systems are usually moderate. The scalability of a trading system

is a technical characteristic which is important for a market operator in order to assure a

reactive market system, even under highly flexible demand patterns. Finally, the general

reliability and safety of the trading system is a key prerequisite (cf. ‘safe’ in Section 1.1).
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FIGURE 3.1: GRAILS Framework

An established framework meeting those requirements is GRAILS15. It builds upon es-

tablished technologies like Java Platform Enterprise Edition16, the dynamic programing

14For instance Deutsche Börse’s Xetra system version 8.0 (released in 2007) reportedly already had an
average latency of 10 milliseconds (according to Riordan and Storkenmaier (2012)), which is distinctly
below the visual reaction time of an average person of 180-200 milliseconds (according to Kosinski (2013)).

15Accessible at the URL https://grails.org/ .
16Accessible at the URL http://www.oracle.com/technetwork/java/javaee/overview/index.

html .
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language for the Java Virtual Machine Groovy17, and the persistency framework Hiber-

nate ORM18 and others. The following example illustrates the process of requesting a web

page from a GRAILS application (Figure 3.1): The client requests a specific page (i. e.,

URL) via a HTTP-Request (cf. Berners-Lee et al., 1996; Fielding et al., 1999) of the form

http://Base-URL/Controller-Name/Action/Parameters (see label ‘1’ in Figure 3.1). The

application server routes that request to the indicated action of the specified controller

including the specified parameters (see label ‘2’). Depending on the implementation of

the requested action, the controller accesses or modifies necessary data from the data

model (called ‘Domain Objects’ in grails terminology; see labels ‘3’ and ‘4’) backed by

GORM. Thereby, the controller can make use of additional functionality offered by sin-

gleton instances available to all controllers (‘Services’ in grails terminology) or plug-ins19

(see labels ‘5’ and ‘8’). Services and plug-ins can themselves access and modify data from

the model (see labels ‘6’ and ‘7’). Next, the controller compiles the necessary data and

passes it on to the corresponding view of the requested action (see label ‘9’). The view

is responsible for generating a HTML file based on the data received (i. e., rendering). In

that process, the view can make use of templates and additional programming logic to

generate the HTML output, as indicted by the connection to the SiteMesh library in Figure

3.1. Finally, the application server replies the browser request with the generated HTML

(see label ‘10’). A more specific example would be the submission of an order in one of

those markets presented in Chapter 4. In that case, a trader would first login on the market

system and would request the trading interface, analogous to the former example. When

submitting an order, the client would send the necessary information as an HTTP request

to the market system (see label ‘1’). The controller in charge for receiving orders would

extract the order-related information from that HTTP request (see label ‘2’). Afterwards,

it will generate a new domain object representing that order (see labels ‘3’ and ‘4’). The

domain object will be persisted by GORM according to the database settings configured in

the respective application. Next, this very domain object is passed on a GRAILS service,

that conducts the allocation, clearing and settlement of orders (see labels ‘6’ and ‘8’). If the

order can be matched to a standing order, the responsible service performs the necessary

steps and saves the involved orders as well as writes and transaction log (see labels ‘5’

and ‘7’). In case that the order cannot be matched, it will be saved as an open order and

appear in the order book (see labels ‘6’ and ‘7’). Finally, the controller passes the result on

to the view (see label ‘9’), which renders a result screen, which is subsequently transfered

17Accessible at the URL http://groovy.codehaus.org .
18Accessible at the URL http://hibernate.org .
19For instance using the GRAILS mail plugin to send emails.
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to the trader’s client system (see label ‘10’). Both types of prediction markets discussed in

the work at hand are implemented and operated with this very framework.

3.4.2 Interface

The market interface is a trader’s major point of contact and interaction with a market and

hence plays a pivotal role for a market’s success. Furthermore, the interface can be used

to ‘nudge’ (Thaler et al., 2010) traders into sensible behavior. Besides a form to submit

orders, information about the market state are necessary for market participants to trade.

Typical information presented to traders in a market interface are (i) name and descrip-

tion of the tradable contract, (ii) a chart showing past prices, (iii) an ordered list of un-

matched buy and sell orders (order book), (iv) the last price at which two orders have been

matched, (v) participant’s holdings in that particular contract, (vi) participant’s amount

of cash available for trading, (vii) participant’s open orders, (viii) additional information

(e. g., price trends or order volumes). In case of an unexperienced market participant,

this amount of information might be perceived as complex or even overwhelming. Thus,

the question arises, whether every trader really needs every available piece of information

and hence, if that complexity can be reduced. This question is primarily of importance

when the negative effects of ‘too much’ information on individual’s decision performance

(i. e., information overload) are considered. In his 1984 paper, Jacoby examined informa-

tion overload on customers and showed that consumers can be overloaded, albeit he was

convinced that information overload will not occur. In a reply to Jacoby (1984), Malhotra

(1984) was able to show empirically that information overload does occur in real-life set-

tings, and thus that the simple relation ‘more information is always better’ does not hold.

A more positive approach on the interdependencies of information and decision quality is

the theory of cognitive fit. This theory examines the positive effects ‘right’ and ‘appropriate’

information has on decision quality. According to Vessey (1991), that a fit among prob-

lem representation and problem solving task leads to better and faster decision making.

In a further study, Kleinmuntz and Schkade (1993) confirmed Vessey’s (1991) main state-

ment. A related school of thought is the resource matching theory (cf. Anand and Sternthal,

1989; Tan et al., 2010), which tackles the relationship of mental resources demanded for

a certain task and mental resources available.

A major challenge of interface design is to present the right amount of information

necessary for a market, suited to individual capabilities. As markets might also be used

in domains where individuals do not expect them or find their application unnatural, one
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could alternatively take a step back and ask, whether it is necessary to confront individ-

uals with a market at all. For instance, consider a fully dynamic pricing mechanism for

electricity, in which consumers are unwilling to trade for every bit of electricity, but rather

would use a rule based system through which they might set subjectively acceptable price

bounds. Such a system would in a way encapsulate the market and thus hide complex-

ity from the user. Against this background, Seuken et al. (2010) proposed the concept of

hidden markets. In his work, he describes two sub-forms of hidden markets. First, weakly
hidden markets attempt to “find the right trade-off between hiding or reducing some of the
market complexities while maximizing economic efficiency attained in equilibrium” (Seuken

et al., 2010, p. 1662). Second, strongly hidden markets completely hide some semantic

aspects of the market. Even though hidden markets’ main purpose was to increase user

acceptance in domains where markets do not play a pivotal role, that concept is especially

apt to be used in order to simplify a prediction market’s interface as shown by Teschner

and Weinhardt (2012).

Besides the trade-oriented market interface, a portfolio overview, a trading history and

a profile page might supplement the interface. Furthermore, a prediction market usually

contains additional static web content like game instructions and legal information.

3.5 Applications

Prediction markets have been applied to numerous domains since their appearance. This

section presents a selection of exemplary applications of prediction markets, with the in-

tention to provide an overview of interesting real-world use cases.

Political Stock Markets

Political Stock Markets (PSM) are one instance of prediction markets. They share their

main objective, namely aggregating information from its participants in order to create

efficient forecasts for uncertain future events. In this case, these uncertain future events

are of political nature, i.e. elections, nominations for elections or policies.

Using prediction markets for political forecasts offers many advantages compared to

traditional polls or expert surveys. As PSMs are usually open round the clock, partici-

pants can trade whenever they like and therefore react to news promptly (Snowberg et

al., 2007). Since prediction market prices are updated immediately when participants

incorporate their expectation by trading, PSMs provide continuously and timely updated
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forecasts. Usually, their market interface is interactive and the setting gamified, in marked

contrast to most surveys, and thus providing further incentives for participation. Most

surveys rely on random samples for validity and accuracy. In prediction markets, in com-

parison, those with the best information are the best participants – the very individuals

who are most likely to self-select into the market. Additionally, as successful participants

accumulate their profits they gain forecasting weight over time compared to less successful

participants. With surveys, this process of self-selection would introduce a sampling bias,

but with markets, the incentive system forces low performers out of the market in the long

run. Turning to the disadvantage of markets over surveys, one has to mention the higher

complexity burdening participants (Graefe et al., 2010). First, participants have to under-

stand the trading mechanism. Second they have to understand how events are related to

contracts. The process of understanding the ‘task’ (i. e., filling in a questionnaire or sub-

mitting an order) is more structured and better researched for surveys than markets. The

forecast performance of prediction markets in general is still in debate. On the positive

side, they have proven repeatedly to be very potent information aggregation mechanisms

(e. g., Berg et al., 2008; Ledyard et al., 2009; Bennouri et al., 2011). Although, other

evidence suggests that the relative performance advantage of markets may be small com-

pared to surveys or polls (e. g., Goel et al., 2010; Erikson and Wlezien, 2008; Rothschild,

2009). Compared to eliciting expert opinions, prediction markets eliminate the effort of

identifying experts and motivate their participation. In many cases they allow anonymous

participation, which may increase the likelihood of nonconformists to participate and re-

veal information while they do not need to deal with conflicting opinions.

A famous example of PSM are the Iowa Electronic Markets (IEM)20 operated by the

University of Iowa launched in 1988 (cf. Forsythe et al., 1992). The question of PSMs’ per-

formance compared to polls has sparked some attention in the last years. Berg, Forsythe,

Nelson, and Rietz (2008) analyze the results of more than ten years’ worth of PSM pre-

dictions on the IEM against corresponding polls and conclude that market results out-

performed the polls in most cases. Similarly, Berlemann and Schmidt (2001) find that

– though by a less broad margin – European PSMs significantly outperformed respective

polls as well. There has been some doubt with respect to the naive manner polls were

used in their comparisons, i.e. Erikson and Wlezien (2008) argue that polls needed to be

properly adjusted before comparison, but as Rothschild (2009) points out, fairly adjusting

both PSM and poll results yields PSM as the overall more accurate predictor.

20Accessible at the URL http://tippie.uiowa.edu/iem/ .
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Economic Predictions

It has been known for long that the accuracy of classical economic forecasts are often dis-

appointing (McNees, 1992). Even worse, inter alia, Heilemann and Stekler (2012) found

that hardly any improvement in economic forecast accuracy could be observed in the last

decades. With that in mind, Teschner et al. (2011) and Teschner and Weinhardt (2014)

described a prediction market to forecast economic indicators called Economic Indicator eX-
change (EIX). The predictive accuracy of selected macroeconomic indicators are promising

and sometimes outperforming established forecasting methods (Teschner and Weinhardt,

2014). For a detailed description of the EIX see Chapter 4.3.

Sports Betting

One example of prediction markets used for sports betting is Tradesports.com, Inc.21. On

that platform, numerous so-called contests for different forms of sport22 are listed. A series

of stocks is associated with each contest. Usually, the stocks are Index contracts (cf. Sec-

tion 3.2). Tradesports.com was the object of a couple of prediction market studies targeting

inter alia market efficiency, transaction costs, intra-game price movements, and disposition

effect (e. g., O’Connor and Zhou, 2008; Borghesi, 2009; Hartzmark and Solomon, 2012;

Borghesi, 2013). Sports betting prediction markets are similar to traditional odds-based

sports betting platforms like Betfair23 and others. In contrast to the aforementioned type

of sports betting, the prediction market approach can deliver a more intuitive representa-

tion of current expectations, since the prices are usually easier to convert to probabilities.

Furthermore, the rules platform providers apply for setting their odds commonly differ

between sports betting providers as well as from the way market prices are derived in a

prediction market.

Intra-Organizational Markets

Contrary to the ongoing development in the personal sphere of (self-)disclosing more and

more information and thus eroding privacy24, for companies information is often a valu-

able asset that has to be actively secured and kept undisclosed. Prediction markets are

21Accessible at the URL http://www.tradesports.com/ .
22At the time of writing the following forms of sport are listed: American Football (NFL and NCAA FB),

Baseball (MLB), Basketball (NBA), and Golf.
23Accessible at the URL http://www.betfair.com/ .
24Remember Scott McNealy’s famous 1999 quote (“You have zero privacy anyway. — Get over it.”) or

Marc E. Zuckerberg’s 2010 claim that privacy is no longer a social norm (“People have really gotten comfortable
not only sharing more information and different kinds, but more openly and with more people. That social norm
is just something that has evolved over time.”).
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also suitable to be used in such settings that demand discretion. For instance, prediction

markets can be used in a company to forecast whether an internal development project

will be successful, on time or within budget. Another example is an intra-company predic-

tion market used to assess and evaluate ideas and innovations (cf. Stathel et al., 2010). In

both examples it is crucial to restrict access to the prediction market platform accordingly

by technical provisions.

3.6 Summary

As has been shown in this chapter, prediction markets are not the ultimate off-the-shelf

solution for forecasting challenges, due to their flexibility. However, properly designed

prediction markets have shown to be successful in a variety of applications in the last

decades (e. g., Forsythe et al., 1992; Zitzewitz, 2006; Huber et al., 2008; Berg and Rietz,

2010; Teschner et al., 2011). They have a long track of successful field applications, e.g.,

in political elections (e. g., Berg et al., 2008), sport events (e. g., Luckner and Weinhardt,

2008) , finance (e. g., Bennouri et al., 2011), innovation assessment (e. g., Stathel et al.,

2010), and predicting market development (e. g., Spann and Skiera, 2003).25

The roots of their predictive power are twofold; prediction markets can provide in-

centives for traders to truthfully disclose their information and an algorithm by which to

weight opinions. They facilitate and support decision making through aggregating ex-

pectations about forthcoming events (cf. Berg and Rietz, 2003; Hahn and Tetlock, 2005;

Hanson, 1999).

25See Wolfers and Zitzewitz (2004) for a comprehensive review.

43





Chapter 4

Prediction Markets – Use Cases and Data

“ Prediction markets are remarkably accurate infor-

mation aggregation mechanisms.”

STEVEN GJERSTAD, 2005

4.1 Introduction

THE studies presented in Chapters 5 – 9 are conducted on two prediction markets

subsequently described here. First, the prediction market Kurspiloten is introduced,

which is used in the studies detailed in Chapters 5, 7 & 8. Second, the Economic Indicator

eXchange (EIX) and its submarket, the Political Indicator eXchange (PIX), which are used

in the studies in Chapters 6 & 9 are introduced. Third, an overview is given about the

runtimes of the different markets, the studies conducted, and the products tradable in

different versions of the markets.

4.2 Kurspiloten

The Kurspiloten1 market was the yearly stock-market game of the leading German business

newspaper Handelsblatt in 2011 (cf. Table 4.2). It is a prediction market for selected stock

1engl. ‘Quotation Pilots’
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indices and commodities, developed at the Karlsruhe Institute of Technology (KIT) by the

Institute of Information Systems and Marketing. The market is designed as a continuous

double auction without a market maker, operating from 2011-09-02 until 2011-11-25. The

cooperation with Handelsblatt helped to reach out to a broad and well-informed audience

interested in financial markets and economic developments.

4.2.1 Market Design

The work presented in Chapters 5, 7 & 8 is conducted on a prediction market called Kur-
spiloten. It is a web-based prediction market designed to forecast the stock exchange value

of selected stock indices and commodities on a weekly basis. Participants registered free

of charge and traded with play money.2 Therefore, they could not lose any real money.

Prizes worth over€70,000 were drawn among well-performing participants to incentivize

them to reveal their true beliefs (cf. Section 3.3).

Like in financial markets, Kurspiloten is set up as a continuous double auction with one

stock representing the final (real-world) price of one of the twelve predicted stocks at a

given time. Six stock indices, three commodities, one commodity index, one future con-

tract and one exchange rate can be traded (Table 4.1). The tradable contracts represent

their underlying stock one-on-one. Participants are expected to buy if they think that cur-

rent Kurspiloten prices underestimate their estimation of the final value of the underlying

stock market index or commodity and sell if they think prices overestimate the final value.

By trading their price expectations of twelve selected stock indices and commodities on a

weekly basis, participants are able to share their private information with others.

Although Kurspiloten uses play money, participants are provided incentives to behave

similar to a real-money market. Prizes worth over€70,000 were drawn to well performing

traders in order to provide incentives for truly reveal information. As the amount of play

money was not extensible by some analogy of a deposit, participants had an incentive to

economize their play-money budget (cf. Section 3.3). Hence, the dominant strategy of

participants is to buy undervalued stocks and sell overvalued stocks. Furthermore, they

should realize gains as well as losses in order to increase their buying power. The traders’

total assets (i. e., total amount of money and stocks at market prices a trader owns) is used

as a performance measure. Weekly prices worth around€1,500 are awarded according to

2Due to legal restrictions the market had to rely on play money; nonetheless ‘€’ was used as currency
name. To avoid confusion ‘P€’, ‘EIX€’, or ‘PIX€’ are used in this thesis as currency sign for play money and
‘€’ for real money.
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TABLE 4.1: Tradable Stocks on Kurspiloten Market

Stock ISIN Underlying (currency, unit)

DAX DE0008469008 30 major German companies (€, Index)

MDAX DE0008467416 50 major German companiesa (€, Index)

TecDAX DE0007203275 30 largest German technology companies

(€, Index)

EuroStoxx 50 EU0009658145 50 Eurozone companies (€, Index)

Dow Jones US2605661048 30 major US companies ($, Index)

Industrial Average

Nikkei 225 XC0009692440 Tokyo Stock Exchange (¥, Index)

EUR/USD EU0009652759 EUR-USD exchange rate ($, €)

Euro-Bund Future DE0009652644 Future contract on German national

loan (€, €)

Gold XC0009655157 Gold (€, Ounce)

Silber XC0009653103 Silver ($, Ounce)

Brent Crude Oil XC0009677409 Brent-Oil ($, Barrel)

Rogers International NL0000424505 38 commodities from 13 international

Commodity Index exchanges (€, Index)

Notes: In Kurspiloten market all stocks are traded in P€, regardless of the currency of their underlying

(e. g., Nikkei 225 at ¥ 13,045 will have a payout value of P€13,045); aExcluding DAX and TecDAX

the ranking of the participants’ assets at the end of each week. The main prize worth over

€40,000 is given to the most successful trader according to his overall assets, i. e., – since

all stocks are paid out – the total amount of money one owns at the end of the game.

Upon registration each participant receives an initial endowment of P€100,000 and

1,000 stocks of each tradable asset. The trading period for all stocks is seven days. Each

Friday at 5:30 pm, the market is closed for trading. To attenuate endgame effects the

market is closed for trading five minutes prior to the payout. Afterwards all 12 products

(Table 4.1) are paid out according to the stock exchange prices at 5:35 pm. All participants

receive their new endowment consisting of 1,000 stocks each for the next seven-day trad-

ing period.3 Finally the market is reopened for trading. As the experiment ran for twelve

3Due to a bad money/stocks-ratio a second account was introduced for each user called “Geldspeicher”
(engl. Money Bin). Starting on 2011-10-23 all money exceeding P€10,000,000 is booked to the Money Bin
in the weekly payout procedure.
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weeks, 144 payouts were executed. Any order submitted for a paid out product can be

rated ex post as ‘informed’ or ‘uninformed’ in relation to the payout price. For instance,

the stock ‘DAX 07.10.2011’ was tradable from 2011-09-30 until 2011-10-07 at 5:30 pm

and represents the (real-world) price of DAX on 2011-10-07 at 5:35 pm (GMT+1), which

is 5,673.08. Imagine (a) a buy order for this stock with a limit price of P€5,715 and (b)

a buy order for this stock with a limit price of P€5,660. Order ‘a’ is an uninformed order,

since its limit price is higher than the payout price (i. e., the final value of the underlying

stock) and will therefore most likely result in a loss. In contrast, order ‘b’ can be regarded

as an informed order, since its limit price is below the payout price and thus its execution

will result in a gain of P€13.08 per stock when it is paid out.

Registration for Kurspiloten was free of charge and open for anyone. In the registration

process participants only had to enter a valid email address and a username. Participants

could register up to three days before market opening, or at a later time. Due to the re-

peated endowments of stocks for following trading periods a trader receives after each

payout, participants who registered after market opening would be disadvantaged. In

order to give those traders a chance to catch up with the competitors, their initial en-

dowment is adjusted to the account balance a hypothetical user who registered on the

first day would have.4 If a user registers after market opening, he receives the amount of

money a hypothetical user who registered on the first day would currently own (i. e., all

past endowments multiplied with their corresponding payout values) including the initial

portfolio for the current week.

Proper incentives are set by using a public ranking list containing the usernames based

on the traders’ absolute assets. This ranking’s primary use is to award the €70,000 in

prizes. The ranking was accessible for all traders throughout the market’s runtime. Thus,

the second incentive is a trading-performance dependent social comparison. In order to in-

form participants about the market rules, general instructions explaining the basic market

rules and conditions of participation are provided. The instructions were neither indi-

vidualized in any way nor adapted to the specific treatment a participant might be part

of.

4This is achieved by creating a dummy user account on the first day of the market which receives the
same endowments as each user and is paid out in the same way a normal user is.
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4.2.2 Market Interfaces

Kurspiloten Web Interface

The trading interface of the Kurspiloten web interface is displayed in Figure 4.1. Partic-

ipants have convenient access to their portfolio and account information (W1), market

information (W2) such as the last trading day, the order book with five visible levels of

depth (W3), and an up-to-date financial news stream (W4) provided by the Handelsblatt.

As additional information, a chart of the Kurspiloten prices is displayed in comparison to

the stock’s price development (W5). Finally, a short reminder about the rules of the game

is displayed (E).

FIGURE 4.1: Kurspiloten Web Trading Screen
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Kurspiloten Mobile Interface

The Kurspiloten App (KAPP) is a mobile client for the Kurspiloten Market designed for iOS

version 4 and above of Apple’s iPhone. KAPP’s design is a compromise of two goals: First,

KAPP is intended to be easy to use for all users. Therefore, the design followed Apple’s iOS

Human Interface Guidelines5 to look and feel native on the iOS platform. Second, existing

Kurspiloten-users should be able to use the App with minimal learning-effort. Therefore,

KAPP uses the same wording, trading workflow, and – as far as possible – information

elements as the Kurspiloten’s web-interface. Due to the limited screen size of the iPhone

platform, it is not reasonable to let KAPP look exactly like Kurspiloten’s web-interface.

Nevertheless, KAPP’s frontend tries to be close to Kurspiloten’s web interface inter alia by

sharing the same menu structure and nomenclature.

(A) upper part (B) lower part

FIGURE 4.2: Kurspiloten Mobile Trading Screen

KAPP contains all core features of the Kurspiloten Market (Figure 4.2), i. e., submission

5Accessible at the URL https://developer.apple.com/library/ios/documentation/
userexperience/conceptual/mobilehig/ .
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of orders, cancellation of orders, examination of own holdings in the portfolio and the

available amount of money. Analogous to the Kurspiloten web interface, the KAPP trading

screen offers access to six dedicated information screens (Figure 4.2b). Most of them are

congruent to the web interface’s information entities, namely the order book with five

visible levels of depth (A1, cf. W3 in Figure 4.1), a chart containing the stock’s real price

development in comparison to the Kurspiloten price (A2, W5), the user’s own holdings

of the stock (A3, W1), the last value and closing time of the contract (A4, W2), and an

interface to the same news stream as in W4 (A5). Additionally, participants have access

to previous (real) stock values (A6). KAPP lacks some secondary features of Kurspiloten,

namely the online-help and ranking list. KAPP was submitted to the App Store and could

be downloaded at no charge while Kurspiloten was operational. In order to gain a broad

user-base, an ‘advertisement’ – consisting of link to KAPP and a short description text –

was put on the homepage of the Kurspiloten website.

To allow research about users’ information usage prior to submitting an order, the con-

sumption of the six information screens are logged in KAPP (information entities A1-A6,

Figure 4.2). Kurspiloten and KAPP both track the time a user needs to create and submit an

order. As KAPP uses separate screens to display stock related information, it also records

the user’s consumption time of these information units on a per item basis.

4.2.3 Dataset and Descriptive Statistics

The dataset used is taken form the Kurspiloten market running from 2011-09-02 until

2011-11-25. In total 3,463 participants registered for the Kurspiloten market. 3,217 par-

ticipants activated their accounts by confirming their email address. Of those, 2,283 sub-

mitted at least one order. 1,912 participants submitted at least one order that led to a

transaction. During the sample period 144 stocks were paid out. Overall, participants

submitted 215,432 orders. Since not every order can be executed against a matching

counter-order (e. g., too high/low price), the submitted orders resulted in 131,561 exe-

cuted transactions. Just 327 of them are submitted via KAPP (cf. Chapter 4.2.2). For every

single order the trading value can be calculated and thus, if an order was profitable or

not.

Most participants registered in the first few days and thus were able to participate for

the majority of the market’s runtime (Figure 4.3a). After the first week the registration

count per day stabilized around 25 before it dropped to around five in the last two weeks.
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Nevertheless participants registered until the last day of the market. The number of or-

ders peaked in the market’s first week and stayed above 2,000 orders per day for about

two-thirds of the runtime (Figure 4.3b). In the last third of the market lifecycle, it slowly

declines towards the minimum point of around 800 orders per day. With more than 2,500

orders submitted on an average per day (Figure 4.3b) the dataset contains 131,561 trans-

actions.
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(B) Orders per Day

FIGURE 4.3: Activity per Day including Simple Moving Average (SMA)

4.3 Economic Indicator eXchange

The Economic Indicator eXchange (EIX)6 is a prediction market for macro-economic indi-

cators. Initially, the market was designed to forecast economic indices only, as the name

indicates. It launched in October 2009 to predict indicators for, e. g., unemployment fig-

ures, gross domestic product, and inflation rates (cf. Figure 4.4). Starting in November

2013, the EIX was extended for political indicators (cf. Figure 4.2). This extension was

marketed as the Political Indicator eXchange (PIX).

4.3.1 Market Design

The work presented in Chapters 6 & 9 is conducted on a prediction market called Economic
Indicator eXchange (EIX). The goal of EIX is to “scientificly test and respectively demonstrate

6It was marketed as Handelsblatt Prognosebörse EIX.
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the possibility of conducting economic forecasts with a prediction market in a field study.”7

The EIX play money prediction market was started in 2009.8 It is designed to forecast

macro-economic variables. In order to reach out to a broad audience interested in eco-

nomic trends the market was also operated in cooperation with the leading German eco-

nomic newspaper Handelsblatt.

The EIX was planned as a one year project, but was continued in yearly rounds due to

its success.9 Teschner et al. (2011) details the reasoning behind market design for the first

two versions of the EIX. Until May 2011 the EIX was run as a web-based system only. In

June 2011 a mobile trading application was released called EIX-Market-App (EMA) which

provides mobile access to the underlying market system. The goal of the market is to

forecast economic indicators up to nine months in advance by continuously aggregating

economic information. The market is designed as a continuous double auction without

a market maker. After registration participants are endowed with 1,000 stocks of each

contract and EIX€100,000 (short for ‘Economic Indicator eXchange €’). The continuous

economic outcomes are represented by one stock and paid out at data release according

to a linear payout function as depicted in Table 4.4. To increase participants’ motivation

and to provide incentives to truly reveal information, in version 3 of EIX prizes worth

€36,000 are offered; eight yearly prizes (total value €10,000) are awarded according to

the portfolio ranking at the end of the market period. In version 4, the value and number

of the prices are slightly smaller. Specifically, prizes worth €4,550 are raffled amongst

participants; one yearly prize worth €299.99, and three prizes per quarter with a total

worth of around €800 in markets dealing with economic indicators as well as more than

€1,000 in political markets (see following paragraph).

Political Markets

In 2013, the EIX was extended to include political markets, called the Political Indicator
eXchange (PIX). Initially, the PIX was used to collect predictions on the Lower-Saxony state

elections. Afterwards, a similar setup attempted to predicted the German federal election

7Author’s translation; original: “Ziel des Forschungsprojektes ist es im Rahmen einer Feldstudie die
Möglichkeit der Konjunkturprognose mit einer Prognosebörse wissenschaftlich zu testen beziehungsweise zu
demonstrieren.” (Jäger-Ambrozewicz, 2009)

8The EIX was set up as a joint project. Besides the Institute for Information Systems and Marketing (IISM)
at the Karlsruhe Institute of Technology, the EIX project was supported by Forschungszentrum Informatik
FZI, Institut der deutschen Wirtschaft Köln, and Verlagsgruppe Handelsblatt.

9The work at hand focuses on the years three (2011-11-01 – 2012-10-31) and four (2012-11-05 –
2013-10-29) of the EIX. The years one (2009-11-30 – 2010-10-31) and two (2010-10-01 – 2011-10-31)
are covered as far as necessary. For an in-depth analysis of the first two year of EIX see Teschner (2012).
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in late 2013. Specifically, two markets are run in order to gather predictions: The candidate
market is comprised of Winner-takes-all contracts (cf. Section 3.2) representing the chances

of being elected for Chancellor candidates respectively Minister-President candidates. The

party market contains different Index contracts (cf. Section 3.2), one for each promising

party as well as a rest-of-field contract. These markets run on the EIX market system but

are separate from the economic indicators. Trading takes place in a separate play-money

currency called ‘PIX€’. Additionally, a separate ranking for political markets is provided.

The German federal voting system, in which each voter has two votes, is rather complex.

It makes use of proportional representation (PR) and method of majority decision (MD) and

works roughly like this: the Erststimme (first vote) determines in each constituency which

delegate is sent to the Bundestag (parliament) using MD; the Zweitstimme (second vote)

uses PR to determine the share of seats each party achieves. If no party is able to gain the

bare majority of votes, elected parties start exploratory talks in order to form a coalition.

Afterwards, the Bundestag (i. e., all delegates of the parliament) elects the Chancellor on a

proposal of the Bundespräsident. The Lower-Saxony state election system is quite similar

to the aforementioned voting system. Put simply, voters elect representatives sent to the

Landtag (parliament) using PR, which subsequently elects the Minister-President using

MD.

The Lower-Saxony state election market operated from 2012-11-05 to 2013-01-20.10

The candidate market contains four Winner-takes-all contracts (cf. Section 3.2) represent-

ing David McAllister, Stephan Weil, and rest-of-field. In the party market, seven Index
contracts are used to represent the parties CDU, SPD, FDP, Grüne, DIE LINKE, Piraten,

and rest-of-field.11 Afterwards, an analogous market design is used for the German fed-

eral elections. It operated from 2013-01-23 until just before the election on 2013-09-22.12

A quite long runtime of eight months allows plenty of time for collecting data. The Ger-

man federal elections market predicts the election outcome continuously from 2013-01-23

until the election on 2013-09-22.

For the German federal elections, the candidate market is comprised of four Winner-
takes-all contracts (cf. Section 3.2) belonging to Chancellor candidates Dr. Angela Merkel,

Peer Steinbrück, an unnamed Green candidate (placeholder) and rest-of-field. The party
market contains eight different Index contracts, for CDU/CSU, SPD, FDP, Grüne, DIE LINKE,

10The market closed at 07:45 o’clock on 2013-01-20, as the election started the same day at 08:00 o’clock.
11The entire names of the abbreviated parties can be found in the List of Abbreviations.
12The market closed at 07:45 o’clock on 2013-09-22, as the election started the same day at 08:00 o’clock.
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Piraten, AfD13, and rest-of-field.

The best performing traders by portfolio value win prizes after the market closes. To

account for percentage values, Winner-takes-all contracts pay PIX €100 if the respective

candidate becomes the next Minister-President of Lower-Saxony respectively the next Ger-

man Chancellor, and Index contracts pay their respective parties’ election result percentage

in PIX €. Registration is free, but every person is only allowed one trading account. Upon

registration, traders receive an initial endowment of PIX €100,000 and 1,000 stocks of

each contract. Since the contracts in each market are interdependent due to their dif-

ferent underlying events, this constraint dictates that prices should sum up to PIX €100

(which corresponds to 100 %). To easily enforce this, traders have the possibility to buy

and sell the unit portfolio, consisting of one of each contract in a market, for PIX €100.

Therefore, if the sum of best bids equals up to over PIX €100, or the sum of all best asks

equals up to less than PIX €100, there is opportunity for arbitrage. For an in-depth dis-

cussion of bundle trading see “Basic Portfolios” in Luckner and Weinhardt (2008, pp. 55).

The remaining market details are analogous to the EIX market (cf. Section 4.3): Partici-

pants can submit limit orders continuously – with the exception that short sales are not

allowed. As limit orders with an extreme price can be used, there is no need for market

orders. Orders are matched continuously according to the order precedence rule. The five

best bids and asks for each contract are displayed in an order book.

4.3.2 Market Interfaces

EIX Web Interface

The web-based trading interface of version 3 of the EIX is displayed in Figure 4.4a.14 Fig-

ure 4.4b depicts the web-based trading interface of the PIX, which was introduced in ver-

sion 4 of the EIX. In both interfaces, participants have convenient access to the price devel-

opment (W1), the account information (W2), market information (W3) such as the last

trading day, the order book with five levels of visible depth (W4). As additional infor-

mation, Handelsblatt provides access to an up-to-date economic news-stream (W5) which

13In April 2013, the rest-of-field contract rose over 10 %. An integrated survey (as presented in Chapter 9)
was used to gather insights about that development from the market participants. As a majority suspected
the newly founded party AfD to be behind that increase, it was decided to split the rest-of-field contract in a
new rest-of-field contract and an AfD contract in 2013-04-30.

14As the trading interface of EIX did not change notably between version 3 and version 4, no dedicated
screenshot of version 4 is contained.
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(A) EIX Web Trading Screen (Version 3) (B) PIX Web Trading Screen (Version 4)

FIGURE 4.4: EIX and PIX Web Trading Screens (annotated)

was included in the EIX interface only. Furthermore, the trader’s average purchase price

of the current indicator (W6) is displayed.

The trading wizard for the PIX is depicted in Figure 4.5a. First, all tradable contracts

are shown in an overview chart (1), where their current prediction in the market is shown

as a bar plot. By clicking on the specific bar, traders can choose the indicator to trade.

(A) PIX Web Trading Wizard (Version 4) (B) EIX Web Trading Wizard (Version 3)

FIGURE 4.5: EIX and PIX Web Trading Wizard Screens (annotated)

Additionally, the indicator can be chosen from a drop-down list below the overview chart.

Second, traders report their estimation of the election outcome with the help of a slider
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(2). The resulting percentage is used to derive a limit price for the order suggested. Third,

traders report their confidence via another slider (3). This value is used to determine

the quantity of stocks configured in the resulting order. Finally, the suggested order is

displayed (4) and traders can submit these with the clicking of a button. Figure 4.5b

depicts the trading wizard for the EIX in version 3.15 It differs slightly from the PIX trading

wizard in two aspects. First, it does not offer the possibility to chose the product to trade

inside the trading wizard itself. This is a consequence of the defined work flow for trading

economic indicators, which lets users chose the product to trade in a separate screen.

Second, instead of picking an exact expectation, traders can set their expectation’s upper

and lower bounds (2). Subsequently, traders set their confidence level (3), before they are

able to submit the derived order (4).

EIX Mobile Interface

The EIX-Market-App (EMA) is a mobile client for the EIX designed for Apple’s iPhone. EMA

offers all of EIX’s core features, i. e., submit and cancel orders, checking one’s holdings

in the portfolio, additional information like the order book, news, and so forth. EMA’s

frontend is a compromise of two design goals. First, EMA was intended to be easy to use

for new users. Second, existing EIX-users should be able to use the App with minimal

learning effort. Due to the limited screen size of the iPhone, it is not reasonable to let EMA

look exactly like EIX’s web-interface. EMA’s frontend tries to be close to EIX’s web-interface

by sharing the same menu-structure and nomenclature (Figure 4.6).

Analogous to EIX’s web-interface, EMA offers six stock related information screens

linked from the trade screen (Figure 4.6b). To allow research about users’ information

usage prior to submitting an order, the consumption of the six information panels (respec-

tively screens, in case of EMA) are logged in both IS. Both EIX and EMA track the time a

user needs to create and submit an order as well as the information used in this process.

15As the trading interface of EIX did not change notably between version 3 and version 4, no dedicated
screenshot of version 4 is contained.
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(A) upper part (B) lower part

FIGURE 4.6: EIX Mobile Trading Screen

4.3.3 Dataset and Descriptive Statistics

EIX

Figure 4.7 depicts logarithmized activity measures for versions 3 & 4 of the EIX market from

2011-11-01 until 2013-10-29.16 Specifically, Figure 4.7a shows the number of persons

registering for EIX aggregated on a weekly basis. Furthermore, this Figure contains a

monthly simple moving average of the registration figures. On average more than seven

persons registered per week. Figure 4.7b depicts the number of orders submitted per week

besides a monthly simple moving average. Nearly 600 orders were submitted per week on

average.

16These charts do not contain data related to the political stock market PIX. Instead, only orders concern-
ing economic indicators as well as registered persons that traded those products are considered.
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FIGURE 4.7: EIX Activity per Week including Simple Moving Average (SMA)

PIX

Figure 4.8 displays the logarithmized time series of the number of registered persons and

submitted orders for the PIX market. Both charts show weekly aggregated data in addition

to a four weeks simple moving average. As shown in Figure 4.8a, on average more than 36

persons registered per week. Here, participants submitted on average about 2,500 orders

per week as depicted in Figure 4.8b.

Registrations per Week

Weeks since start of PIX

N
um

be
r 

of
 O

rd
er

s

0 5 10 15 20 25 30 35

4
5

10

20

50

100

200 mean: 36.89
     sd: 36.4
4 weeks SMA 

(A) Registrations per Week

Orders per Week

Weeks since start of PIX

N
um

be
r 

of
 O

rd
er

s

0 5 10 15 20 25 30 35

400
500

1000

2000

5000

8000

mean: 2490.69
     sd: 1831.03
4 weeks SMA 

(B) Orders per Week

FIGURE 4.8: PIX Activity per Week including Simple Moving Average (SMA)
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4.4 Continuous Market Engineering – Timeline

This section gives an overview of the changes carried out on the beforehand introduces

prediction markets.

TABLE 4.2: Operational Timeline of Regarded Prediction Markets

Market Area of Prediction Version Opening Date Closing Date

EIX Economic Indicators 1 2009-10-30 2010-10-31

EIX Economic Indicators 2 2010-10-01 2011-10-31

EIX Economic Indicators 3 2011-11-01 2012-10-31

EIX Economic Indicators 4 2012-11-05 2013-10-29

PIX Lower Saxony State Election 4.1 2012-11-05 2013-01-22

PIX German Federal Electiona 4.2 2013-01-23 2013-09-22

Kurspiloten Stock Indices and Commodities 1 2011-09-02 2011-11-25

Notes: aIntroduction of contract ‘AfD’ in German federal election market took place on 2013-04-30.

Table 4.2 depicts the runtime of the prediction markets alongside their major versions.

The first version of EIX started to operate in late 2009. Teschner (2012) describes the first

and second version of EIX in detail. The work at hand focuses on version 3 & 4 of EIX, its

submarket PIX, and Kurspiloten. These operated between September 2011 and November

2013.

TABLE 4.3: Timeline of Conducted Studies

Study Chapter Market Begin End

Trader’s Market Predispositiona 5 Kurspiloten 2011-09-02 2011-12-14

Reading a Trader’s Mindb 6 EIX (v4.2) 2013-06-21 2013-09-23

Stationary vs. Mobile 7 Kurspiloten 2011-09-02 2011-11-25

Interface/Disposition Effect 8 Kurspiloten 2011-09-02 2011-11-25

Survey Comparison 9 EIX (v4.2) 2013-07-29 2013-08-25

Notes: aMarket data from 2011-09-02 until 2011-11-25 was considered. The follow-up questionnaire

was conducted between 2011-11-30 and 2011-12-14; a reminder was sent out on 2011-12-06; bA trans-

lated version of the question “Which party can you identify with the most, when it comes to national
politics?” (cf. Sjöberg, 2009) was asked at two different periods (2013-06-21 until 2013-07-31 and

2013-08-26 until 2013-09-23).
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Table 4.3 lists the studies conducted in the subsequent chapters along with the asso-

ciated prediction market instance. Table 4.3 relates the studies conducted in the work at

hand to the specific market they are based upon. Furthermore, the timeframe in which

data was collected can be found in the aforementioned table. Additional details can be

found in the Table notes.

TABLE 4.4: Timeline of Tradable Contracts on EIX Market

Version

Indicator Unit Cycle Payout Function 1 2 3 4

Export % monthly 100+α× ( It−It−1
It−1
) Ø

Export Bil. € monthly 30+ ABS(It )
109 Ø Ø Ø

Gasoline € monthly ABS(It) Ø

GDP % quarterly 100+α× ( It−It−3
It−3
) Ø Ø Ø Ø

Inflation % monthly 100+α× ( It−It−12
It−12

) Ø Ø Ø Ø

Ifo Index % monthly 100+α× ( It−It−1
It−1
) Ø

Ifo Index Points monthly ABS(It) Ø Ø Ø

Investments % quarterly 100+α× ( It−It−1
It−1
) Ø Ø Ø

Unemployment Num. monthly 100+ ABS(It )
106 Ø Ø Ø Ø

Notes: I : Indicator; t: time in months; α=10

Tables 4.4 & 4.5 are compilations of all products that where tradable on the EIX and PIX

during their runtime. Table 4.4 lists all economic indicators that were tradable throughout

the first four versions of EIX.

TABLE 4.5: Tradable Contracts on PIX Market

Indicator Unit Contract Type Payout Function

Candidates LSSEa % Winner-takes-all PIX€ 100 if C is elected, otherwise PIX€ 0

Party LSSEa % Index ABS(Vote ShareP)

Candidates GFEb % Winner-takes-all PIX€ 100 if C is elected, otherwise PIX€ 0

Party GFEb,c % Index ABS(Vote ShareP)

Notes: C: Candidate; P: Party, t: time in months; aLSSE: Lower-Saxony State Election 2013; bGFE: German

Federal Election 2013; cIntroduction of contract ‘AfD’ in German federal election market on 2013-04-30
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Basically, there are two points in time at which indicators, respectively their payout

function, were changed. First, between version 1 and version 2, the payout function of

the indicators ‘Export’ and ‘Ifo Index’ were modified from a relative measure with scaling

towards an absolute representation.17 In case of ‘Export’, the payout function was addi-

tionally scaled and added to a fix amount. Second, starting with version 4, the indicator

‘Investments’ was canceled due to low activity in favor of ‘Gasoline’, which was expected

to be (i) easy to understand and (ii) more strongly connected to participants’ daily routine

than its predecessor.

Finally, Table 4.5 list the four different indicator classes used in PIX besides their payout

functions. The timeframe, in which indicators of each classes were tradable resemble

the runtime of the PIX as depicted in Table 4.2. The candidate stocks are modeled as

Winner-takes-all contracts, which means that they pay PIX€ 100 in case the candidate

represented by this stock is elected Chancellor respectively Minister-President; otherwise

they are worthless. In contrast, Index contracts are used to model the party stocks. Hence,

they pay vote share of their underlying party in PIX€ at the time of release of the election

results.

4.5 Summary

This chapter presented the prediction markets used in the work at hand. First, the Kur-

spiloten market, used in Chapters 5, 7 & 8 is introduced. Second, the Economic Indicator

eXchange with its submarket, the Political Indicator eXchange is described. It builds the

basis for the studies described in Chapter 6 & 9. Besides their web-based user interfaces

both markets also provided mobile user interfaces in forms of specifically designed mobile

applications. A major distinction lies in the markets’ durations; whilst Kurspiloten has a

rather short runtime of 12 weeks, each version of EIX operated for about one year. More

specific descriptive data on the prediction markets described can be found in the respective

chapters.

17See Teschner (2012) for a detailed discussion on this topic.
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Chapter 5

Analyzing Agent Behavior: Assessing

Trader’s Market Predisposition

“ In economics, the majority is always wrong.”

JOHN K. GALBRAITH

5.1 Introduction

IN this study behavioral aspects of market participants are linked with the quality of

their trading decisions and behavior in the market. Creating a link between behavioral

aspects of the participants and quality is important in that the quality of the predictive

power is directly negatively affected if participants make systematically biased decisions.

This is a relatively well known, but still not well understood or studied hypothesis of be-

havioral finance literature. In Kurspiloten market decision quality is obviously described by

the participants’ trading performance as well as their share of profitable trades. Current

research does not clearly answer the question which personal attributes support or hinder

specific successful behavior in markets – and maybe never will. The current approach is

extended by taking user heterogeneity aspects such as personal attributes into account. Be-

sides trading performance it focuses on trader activity and whether they provide or take

liquidity to/from the market as qualitative measures for trading behavior. Specifically, a

two-staged study is conducted to investigate the influence of cognitive reflection abilities,
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grade of risk aversion, and use of emotion regulation strategies on trading behavior and

decision quality in a prediction market context.

The remainder of this chapter is structured as follows: Section 5.2 gives a review of

related work on personal attributes, risk aversion, and trading behavior. The experimen-

tal setting and research questions are presented in Section 5.3. Section 5.4 describes the

dataset and the methodology used. Subsequently, the results are presented from two per-

spectives: trading behavior and decision quality. Finally, Section 5.5 concludes this chap-

ter.

5.2 Related Work

5.2.1 Personal Attributes and Trading Behavior

Psychologists have demonstrated a variety of systematic departures from ‘rational’ decision-

making by individuals. These lead to substantial information processing biases or judg-

ment biases and colored expectations (Forsythe et al., 1999). Markets suffer from biases

as well and there is an ongoing debate to which extent their efficiency is affected (Ar-

row et al., 2008). Objectively irrelevant (Huber et al., 2008) and selectively presented

information (Dittrich et al., 2005) can and does influence individual trading behavior. A

promising approach to describe and explain financial decision-making may be the explicit

consideration of psychological factors. Lo et al. (2005) for example have shown the nega-

tive influence of extreme emotional states on trading performance. Additionally, they con-

clude that “[t]he lack of correlation between personality traits and trading performance begs
for additional data and a more refined analysis [. . . ]” (Lo et al., 2005). Their approach of

acquiring psychological factors via personality questionnaires seems promising. Frederick

(2005) introduced a well-established questionnaire to measure cognitive ability, the cog-
nitive reflection test (CRT). It builds upon the existence of two types of cognitive processes

which Stanovich and West (2000) call “System 1” and “System 2” processes. “System 1
processes occur spontaneously and do not require or consume much attention. [. . . ] System 2
processes [are] mental operations requiring effort, motivation, concentration, and the execu-
tion of learned rules” (Frederick, 2005). By offering participants three short tasks, which

– at first glance – seems to be solved best by “System 1” processes while actually being

more complex tasks (i. e., “System 2”), it is possible to differentiate the more impulsive

from the more cognitive reflective ones. The ten paired lottery (TPL) introduced by Holt
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and Laury (2002) is a widely used risk aversion test that offers “[a] menu of paired lottery
choices[,] structured so that the crossover point to the high-risk lottery can be used to infer
the degree of risk aversion” (Holt and Laury, 2002). Participants can choose between ‘A’

(safe choices) and the more risky ‘B’. By design, the risk neutral choice pattern is four ‘A’

choices followed by six ‘B’ choices. Gross and John (2003) introduced a questionnaire to

determine emotion regulation strategies, the emotion regulation questionnaire. It consists

of ten statements – four concerning suppression and six concerning reappraisal – the par-

ticipant agrees or disagrees with on a seven-point Likert scale. The concept of reappraisal
takes place in the context of antecedent-focused emotion regulation and means a cognitive

change in the interpretation of a situation. Suppression happens in the context of response-

focused emotion regulation and aims to hide a specific emotion. All three questionnaires

are rather short whilst reliable and can therefore be used altogether in one questionnaire

without overly stretching a participant’s attention.

5.2.2 Risk Aversion and Trading Behavior

Several authors have identified risk aversion as a reason for certain market behavior (e. g.,

Subrahmanyam, 1991). It may cause participants to not make profitable but risky trades

in a market. If participants suffer from this aversion, valuable information may not be

impounded into prices and thereby reduce the predictive power of a market. Unfortu-

nately, useful insights can only rarely be obtained from empirical data on security prices

since risk aversion measures must be obtained independently of trading data. By merg-

ing household investment decisions with data from external risk questionnaires Wärneryd

did not find a relationship between risk aversion and portfolio choice (Wärneryd, 1996).

This is in line with findings from an empirical asset market in which participants’ portfolio

choice is unrelated to a risk aversion proxy (Güth et al., 1997). In contrast to portfolio

choice, individual market behavior seems to be influenced by risk aversion. Fellner and

Maciejovsky (2007) find that the higher the degree of risk aversion, the lower the observed

market activity. Kirchler and Maciejovsky (2002) find the higher the degree of risk aver-

sion the lower the total number of contracts traded. In an early experimental study, Ang

and Schwarz (1984) separated participants in two markets according to their degree of risk

aversion. They show that the market with lower risk aversion (speculators) exhibit greater

volatility but it also tend to converge closer and faster to the expected equilibrium price

than the risk averse (conservative) market. Finally, the interaction between risk attitude

and overconfidence with respect to trading activity deserves further attention. Theoretical
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finance models predict higher market activity as a consequence of overconfidence1 (Barber

and Odean, 2001). People tend to be overconfident about their capabilities and level of

knowledge. This could also negatively impact the information content of prices.

5.2.3 Trading Behavior in the Market

Trading behavior in the market is measured via two measures. First, the traders’ activ-

ity is used; i. e., the number of submitted orders. Second, their ‘roles’ in the market are

regarded. A common perspective to categorize trading behavior is to group traders depend-

ing on how they submit their orders. One possibility is to separate between a) liquidity
providers or market makers and b) liquidity takers or price takers. Market makers usually

buy and sell the same contract at the same time, trying to profit from the spread. Another

feature is placing orders on top of the order queue instead of taking the opposite first of-

fer. The marginal trader hypothesis by Forsythe et al. (1992) assumes that marginal and

not average traders determine prices. These traders ‘make the market’ and appear to be

more rational (Oliven and Rietz, 2004), plus they are more unlikely to produce trading

violations (Forsythe et al., 1992). Oliven and Rietz (2004) report that price takers make

errors on average 47 % of the time whereas market makers had an average 8 % error rate.

Consistently Forsythe et al. (1999) describe an error rate for price takers as high as nearly

6 times the error rate for market makers. As a result when traders act as market makers,
they make fewer mistakes and hence appear more rational. Furthermore market makers
serve as liquidity providers and allow continuous trading (Luckner, 2008). The usually

small group of market makers has a disproportionately large effect on aggregated market

behavior (Sunstein, 2006). Previous work on trading behavior consistently suggests that

liquidity providers perform better in market environments. In order to understand the mo-

tives behind the self-selection into these roles, Oliven and Rietz (2004) use demographic

information. They find that “[. . . ] this choice is significantly affected by market-specific ex-
perience and general financial knowledge, education, sex, and religious affiliation [. . . ]” but

nevertheless “[. . . ] remains largely unexplained” (Oliven and Rietz, 2004).

5.2.4 Service Analytics

Following Fromm et al. (2012, p.143), service analytics can be classified in two dimen-

sions. First, complexity can be separated in basic analytics as a foundation (comprising

1Overconfidence refers to the habit of overestimating one’s ability to perform a task.
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data management and reporting) and advanced analytics using methods from statistics

and operations research building on top of it. Especially the latter is predestined to unveil

a service’s full potential. Second, the analytics’ scope can be ranged in provider, encounter,

or customer data. In an e-service system context such as a prediction market, the customer

data to apply advanced service analytics can often easily be obtained, since the provider and

customers are connected by design (Fromm et al., 2012).

5.3 Setting and Research Questions

5.3.1 Experimental Setting

In order to answer the research questions presented in the next Subsection (5.3.2) a two-

staged field study on the Kurspiloten market (cf. Section 4.2) is conducted. In a first

phase, participants took part in an online prediction market. For the study’s second phase

all market participants are invited to take part in a four-section online survey, five days

after the market’s end. The first section concerns general feedback of the market plat-

form and its game design. The main part combines the three questionnaires introduced

in Subsection 5.2.1. Namely, the cognitive reflection test, followed by the emotion regula-
tion questionnaire, and last the ten-paired lottery. The questionnaire closes with a “final

evaluation question” which asks if participants answered truthfully throughout the ques-

tionnaire. The survey was active for 14 days and participants were incentivized by giving

away ten Amazon vouchers worth €30 each via a raffle.

5.3.2 Research Questions

Advanced service analytics is applied on an e-service system in order to gain comprehensive

insights on customers’ market predisposition. Based on this, it should be possible to sub-

stantially improve a customer’s service experience in a second step. This can be achieved

by adapting the service to customers’ preferences and abilities via personalized tweaks

such as interface adaptions, and product choice. In particular, an attempt is made to shed

some light on the research questions 1 (following an aspect of Oliven and Rietz (2004))

and 2 presented in Subsection 1.2, which are:

Research Question 1: How do selected personal attributes (RA, CRA, and ERS) influence
trading behavior in markets?
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Research Question 2: How do selected personal attributes (RA, CRA, and ERS) influence
decision quality in markets?

Specifically, this analysis focuses on the influence of cognitive refection abilities, risk
aversion, and emotion regulation strategies on the aforementioned trading behavior and

decision quality. As a person’s cognitive reflection is known to be positively correlated to

her IQ as well as other measures for cognitive ability (Frederick, 2005), it is assumed that

a higher cognitive reflection leads to ‘better decisions’ in general. For trading behavior, – in

particular for activity – it is not quite clear, what ‘better’ means, nevertheless it is expected

that the more cognitive reflective traders are less likely liquidity takers (i. e., price takers)

(Forsythe et al., 1999). In case of decision quality, it is expected that a high CRT-value leads

to a higher trading performance as well as a higher probability to make a profit. As stated

in Section 5.2, risk aversion has been shown to have an impact on trading behavior. Hence,

it is expected that risk averse traders are less active. Furthermore, it is assumed that risk

attitude does induce certain trading behavior. According to a study of Fenton-O’Creevy

et al. (2011), the emotion regulation strategy used by traders differs according to their

experience and performance. Therefore, it is expected that certain behavioral patterns

depending on the emotion regulation strategy used are discovered. Among others, these

behavioral patterns include how traders engage in a market, what their decision quality

will be or how they self-select into the roles of price takers or market makers.

5.4 Results

In this section the empirical findings are presented, starting with descriptive statistics. Sub-

sequently, trading behavior in the market and the traders’ decision quality is analyzed.

5.4.1 Descriptive Statistics and Methodology

In total, 512 at least partly processed online questionnaires are received; 386 of them are

completely filled. 320 of those contain a positive answer to the “final evaluation question”.

The median processing time of those 320 replies is 11 minutes 26 seconds (mean: 26m

43s) for the whole questionnaire and 9 minutes 21 seconds (mean: 24m 26s) for the main

part containing CRT, ERQ, TPL. In order to statistically analyze this dataset the survey

responses have to be filtered and – as well as the trading data – operationalized. Therefore,

replies are filtered based on the answer for the TPL. The so-called “stay in bed” types (i. e.,
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participants that report to be irrational risk averse) are filtered. These respondents have

chosen ‘A’ over ‘B’ in question nine and/or ten of the TPL, where the expected payoff is lower

for ‘A’ than for ‘B’ ($ 1.96 vs. $ 3.47 and $ 2 vs. $ 3.85). Note, that the so-called “ABBA”

types of the TPL (i. e., respondents who switch multiple times forth and back between A and

B) are not filtered. According to Holt and Laury (2002) “[e]ven for those who switched back
and forth, there is typically a clear division point between clusters of A and B choices, with few
‘errors’ on each side. Therefore, the total number of ‘safe’ A choices will be used as an indicator
of risk aversion.” In this survey, the mean difference in the number of ‘A’ answers with and

without “ABBA” types is a mere 0.03 (4.86 to 4.89). After this step, 246 questionnaires

are left. Of those, 50 participants did not actively trade in the Kurspiloten market, i. e.,

they submitted no order at all. This leaves 196 usable questionnaires for evaluation. This

corresponds to 10.25 % of active participants (50.78 % of completely filled questionnaires)

or to an overall response rate of 20.19 % (completely filled questionnaires in relation to

active participants), which is a fairly normal response rate for online questionnaires (e. g.,

Cook et al., 2000; Ranchhod and Zhou, 2001; Deutskens et al., 2004). The variables used

in the analyses (Table 5.1) are described in the following.

TABLE 5.1: Variables

Variable Description Value

CRThigh Cognitive Reflection Test 1 or 0

– Three correct answers = 1

TPLrisk averse Ten Paired Lottery 1 or 0

– Five or more ‘safe choices’ = 1

ERQsuppress Emotion Regulation Questionnaire 1 or 0

– Suppression is used = 1

ERQreappraise Emotion Regulation Questionnaire 1 or 0

– Reappraisal is used = 1

buyo Order o is a buy = 1 1 or 0

initializeo Order o initializes a trade = 1 1 or 0

quantityo Size of order o in stocks [1, inf]

limit priceo Limit price of order o [.01, inf]

profito Profit made with order o [-inf, inf]

wino Order o was profitable = 1 1 or 0

order countp Number of orders executed by participant p [1, inf]
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The CRT consists of three questions that can be answered either correctly or incorrectly.

To derive a dichotomous variable for the CRT, participants with zero to two correct answers

are assigned into the group CRTlow; thereby only participants who answered all three ques-

tions correct are put in the group CRThigh. Since the responses of the ERQ are collected

via a seven point Likert scale, the mean of the answers concerning the suppression and

reappraisal strategy are calculated separately and normalized to the interval [−1,1]. Fi-

nally, 1 is assigned to the dummies ERQsuppress or ERQreappraise if the normalized averages of

replies concerning the corresponding strategy are greater or equal zero; else they are set

to 0. The reliability of the ERQ is estimated with Cronbach’s α (Cronbach, 1951), which

is 0.673 for the ERQsuppress questions and 0.819 for the ERQreappraise questions. With an

α of more than 0.8, the assessment of ‘Reappraisal’ can be considered good. Although,

the α for ERQsuppress is slightly below 0.7, the survey’s results can be considered reliable

since the latent construct ‘Suppression’ is measured – by design of the ERQ – with just four

items. Since, by design, Cronbach’s α rises with N, the aforementioned α value is in an

acceptable range for a four-item construct. Responses of the TPL are also segregated into

two groups: TPLrisk averse is set to 1 for participants with five or more ‘A’ choices, while it is

0 for participants with four or less safe choices. The trading direction is identified by the

variable buy, which is 1 for a buy and 0 for a sell order. The variable initialize is used to

distinguish between liquidity taking and liquidity providing orders. An order that is not

immediately executed provides liquidity to the market, whereas an order that initializes

a trade directly after submission to the market ‘takes’ liquidity from it. (For example, a

buy order a of 125 Stocks for P€120.00 is submitted while a sell order b of 100 stocks

for P€120.00 and another sell order c of 150 Stocks for P€119.95 are the highest sell

orders in the order book. The initializing order is order a, since it initializes the trade,

as it completely fulfills order b and partly (25 units) order c. Note, that under certain

circumstances order b and c can also be initializing, due to a prior (partly) execution.)

In the first case initialize is set to 0, since the order does not trigger a trade, else it is set

to 1, i. e., if an order takes liquidity from the market. Furthermore, the limit price of an

order in P€ (limit price) and the number of shares traded (quantity) is used. The variable

win indicates if a specific transaction led to a (positive) profit. Last, the number of orders

submitted per participant is encoded by order count.

Two types of regression models are used to analyze the dataset. First, OLS regres-

sions are used to estimate the personal attributes’ influence on participants’ trading activity

(Equation 5.1) as well as on the profit per trade (Equation 5.3). Second, logistic regres-

sions are used to investigate participants’ trading strategy (Equation 5.2) and profitability
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(Equation 5.4).

(5.1)
order countp = i +β1 × CRThigh + β2 × TPLriskaverse

+β3 × ERQsuppress + β4 × ERQreappraise

Equation 5.1 connects participants’ personal attributes to participant’s market activity

proxied by the number of submitted orders. The personal attributes regarded comprise

cognitive reflection abilities, risk aversion, and emotion regulation strategies.

(5.2)

log(πinitialize
πTrade

) = i +β1 × CRThigh + β2 × TPLriskaverse

+β3 × ERQsuppress + β4 × ERQreappraise

+β5 ×
∑12

i=1(γi ×Mi)
+β6 × buyo + β7 × quantityo + β8 × limit_priceo

Equation 5.2 examines the trading strategy used (liquidity providing vs. liquidity taking)

whilst considering personal attributes on a per-order level. Furthermore, it is controlled

for different markets (Mi, i = {1, . . . , 12}, cf. Table 4.1), trading direction (buy), order size

(quantity), and price (limit_price).

(5.3)

profito = i +β1 × CRThigh + β2 × TPLriskaverse

+β3 × ERQsuppress + β4 × ERQreappraise

+β5 ×
∑12

i=1(γi ×Mi)
+β6 × buyo + β7 × initializeo

Equation 5.3 relates the profit gained per order in P€ to personal attributes on a per-

order level. Again, this model controls for product-specific effects (Mi) and trading direc-

tion. Additionally, it is controlled for liquidity providing/taking trading behavior (initial-
ize).

(5.4)

log( πwin
πTrade
) = i +β1 × CRThigh + β2 × TPLriskaverse

+β3 × ERQsuppress + β4 × ERQreappraise

+β5 ×
∑12

i=1(γi ×Mi)
+β6 × buyo + β7 × quantityo + β8 × limit_priceo + β9 × initializeo

Equation 5.4 estimates the probability to submit a profitable order (in relation the final

outcome) as a function of personal attributes. Again, it is controlled for product-specific
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effects (Mi) and trading direction. Furthermore, order size (quantity), price (limit_price),

and liquidity providing/taking trading behavior (initialize).

The results of this study are presented in the following subsections. First, the trading

behavior in the market is analyzed, then the traders’ decision quality is regarded.

5.4.2 Trading Behavior

In the following the trading behavior in the market is investigated with two types of re-

gression models. First, the traders’ personal attributes (namely, cognitive reflection abilities,

risk aversion, and emotion regulation strategies) are connected with their activity proxied

by the order count on a per-user basis. Second, the personal attributes are investigated in

terms of trading strategy on a per-order basis. Therefore, orders are classified as liquidity
providing or liquidity taking via the variable initialize.

Activity

A linear regression model built to analyze how the activity per user depends on the per-

sonal attributes. As both models in Table 5.2 show, the activity is significantly higher

for participants with a high cognitive reflection (standardized coefficients: .16 in A1, .15

in A2). Also, risk aversion significantly increases the number of orders submitted to the

market (Model A1, std. coef.: .15). Even though risk aversion is significant positive cor-

related with the number of submitted orders (cor = .148, t-stat = 2.08), risk aversions’

influence declines and its significance fades to the 10 %-level when the participants’ emo-

tion regulation strategies are included (Model A2, std. coef.: .13). Similarly, ERQsuppress

is significantly negatively correlated with the number of submitted orders (cor = −.146,

t-stat= −2.07); both emotion regulation strategies have no significant effect in model A2

(using the logarithmized order count as dependent variable leads to similar results.). In

contrast to Fellner and Maciejovsky (2007) and Kirchler and Maciejovsky (2002), a robust

relation between risk aversion and activity have not been found.

Trading Strategy

In order to investigate the participants’ personal attributes on their trading strategy (i. e.,

their role in the market), a logistic regression on the variable initialize is conducted. The

74



5.4 Results

TABLE 5.2: Activity

Model A1 A2

order count order count

CRThigh 165.95∗∗ 160.50∗∗

(2.25) (2.15)

TPLrisk averse 157.76∗ 138.89·

(2.17) (1.89)

ERQsuppress −118.98

(−1.62)

ERQreappraise 45.03

(.57)

(Intercept) 21.97 64.41

(.35) (.68)

Adj. R2 3.69 % 4.05%

Num. obs. 196 196

Notes: t-statistics in parenthesis; ·p< .1, ∗p< .05,
∗∗p< .01, ∗∗∗p< .001

results in Table 5.3 show that high cognitive reflection favors the initialization of trades

(Marginal Effects (mfx): .02 in I1 and I2, .01 in I3) whereas risk aversion hinders it (mfx:

−.02 in I1, −.03 in I2 and I3). While the strengths of those effects are about equal in

I1, they diverge more and more from I2 to I3. Like risk averse traders, ones using the

suppression strategy also tend to initialize less often (mfx: −.02 in I2, −.03 in I3) whereas

traders using the reappraisal strategy tend to initialize trades more often (mfx: .04 for I2,

.04 for I3). Although the limit price of an order is highly significant, its impact on initialize
is diminishable as those for the trading direction (buy) and trading quantity. Nevertheless,

those control variables do support the validity of Model I2, specifically the influences of

risk aversion and emotion regulation strategies. Putting it all together, it is shown that on

the one hand, high cognitive reflection leads to higher activity and – contrary to previous

research – drives liquidity taking, as reappraisal does; on the other hand, risk aversion and

suppression impels liquidity providing.

Result 1: Based on the analyzed personal attributes specific trading behavior can be iden-
tified.
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TABLE 5.3: Trading Strategy

Model I1 I2 I3

initialize initialize initialize

CRThigh .07∗∗∗ .09∗∗∗ .04∗∗

(5.20) (6.23) (2.81)

TPLrisk averse −.07∗∗∗ −.11∗∗∗ −.12∗∗∗

(−4.09) (−6.02) (−6.86)

ERQsuppress −.09∗∗∗ −.07∗∗∗

(−5.95) (−4.58)

ERQreappraise .16∗∗∗ .16∗∗∗

(10.57) (10.22)

Control for
�

products

buy .01

(.61)

quantity .00

(−.89)

limit_price .00∗∗∗

(3.34)

(Intercept) .08∗∗∗ .02 .13∗∗∗

(5.27) (1.19) (4.49)

AIC 48,001.96 47,885.59 47,399.02

pseudo-R2 6.42% 6.74% 8.11%

Num. obs. 34,729 34,729 34,729

Notes: z-statistic in parenthesis; AIC: Sakamoto et al. (1986), pseudo-R2:

Nagelkerke (1991); ·p< .1, ∗p< .05, ∗∗p< .01, ∗∗∗p< .001

5.4.3 Decision Quality

The final value of all stocks in the dataset is known. To answer the question “What features
does a trader need to be successful?” the total profit of each trade is calculated based on

the final value of the corresponding stock. Furthermore, each trading decision is classi-

fied according to its profitability (in other words: as ‘right’ or ‘wrong’). From an ex-post

perspective, the profitability (win) is considered as the probability to make a profit.
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Trading Performance

In order to analyze the influence of a trader’s personal attributes on her performance, a

linear regression is conducted on the profit in P€ on a per order basis (Table 5.4). A strong

TABLE 5.4: Trading Performance

Model P1 P2 P3

profit profit profit

CRThigh 116.35∗∗∗ 124.09∗∗∗ 116.92∗∗∗

(3.90) (4.14) (4.06)

TPLrisk averse −160.99∗∗∗ −110.40∗∗ −91.64∗∗

(−4.43) (−2.95) (−2.60)

ERQsuppress 232.23∗∗∗ 276.37∗∗∗

(6.90) (8.66)

ERQreappraise 8.30 −102.85∗∗∗

(.26) (−3.35)

Control for
�

products

buy 1794.55∗∗∗

(64.18)

initialize 134.43∗∗∗

(4.92)

(Intercept) 330.02∗∗∗ 211.25∗∗∗ −816.32∗∗∗

(9.75) (5.17) (−13.91)

Adj. R2 .08 % .23 % 11.44 %

Num. obs. 34,729 34,729 34,729

Notes: t-statistic in parenthesis; ·p< .1, ∗p< .05, ∗∗p< .01, ∗∗∗p< .001

significance for cognitive reflection (standardized coefficients: .02 for P1 to P3) and risk

aversion (std. coef.: −.02 for P1 and P2, −.01 for P3) can be seen in Model P1. The dataset

shows that cognitive reflection, risk aversion, and usage of the suppression strategy (std.

coef.: .04 in P2, .05 in P3) have significant influence on traders’ performance (Model P2).

In Model P3 even the reappraisal strategy has a significant influence (std. coef.: −.02).

Nevertheless, the trading direction has the strongest effect on the traders’ performance

and the highest contribution to the profit (std. coef.: .33).
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Probability to make a Profit

Comparing the OLS regression results for profit (Table 5.4, P3) with the logistic regression

for win (Table 6, W3), only minor changes can be seen in the estimators’ significance and

direction. Interestingly, the traders’ cognitive reflection ability has a significant influence

in Model W3 only (Marginal Effect (mfx): .01). (Obviously, highly cognitive reflective

traders do not robustly have a higher probability to make a profit, but if they gain, their

average profits are higher.) The suppression strategy improves decision quality and slightly

improves from W2 to W3 (mfx: .02 in W2 and W3). The usage of the reappraisal strategy

had a higher significance level through the models – and additionally keeps its sign (mfx:

−.01 in W2, −.02 in W3) as well. Contrary to that, risk aversion declines in significance

and strength from model W1 to W2, but still beats a strong 5 % significance level in model

W3 (mfx: −.02 in W1, −.01 in W2 and W3). Interestingly initialize plays no role in a

trader’s probability to make a profit. As earlier for limit price in Model I1 (Table 5.3),

strong significances in combination with weak (marginal) effects for the control variables

quantity and limit price can be seen in Model W3. Analogous to Model P3, buy has the

strongest effect in Model W3 (mfx: .14).

Summing up, high cognitive reflection leads to better trading performance, whilst it

does not (robustly) increase the probability to make a profit. Risk averse trader’s perfor-

mance is slightly worse, as are their chances to make a profit. Suppressors decide ‘better’

and are more likely to make a profit, whereas reappraisal tends to impair good decisions

as well as the probability to make profits.

Result 2: Personal attributes do significantly influence trading performance as well as
the probability to make a profit.

5.5 Conclusion

In this chapter, advanced service analytics was applied in order to gain comprehensive in-

sights on participants’ market predisposition. Based on a relatively short questionnaire, the

trading history and regression models, it is possible to characterize participants’ trading
behavior and decision quality up to a certain degree. The applied methodology is hereby

not tied to the context of play money prediction markets and can hence be used throughout

similarly designed e-service systems like retail-trading systems. In particular, the influence
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TABLE 5.5: Probability to make a Profit

Model W1 W2 W3

win win win

CRThigh −.02 −.02 .04∗∗

(−1.16) (−1.43) (2.65)

TPLrisk averse −.07∗∗∗ −.05∗∗ −.04∗

(−4.12) (−2.64) (−2.17)

ERQsuppress .08∗∗∗ .09∗∗∗

(5.23) (5.48)

ERQreappraise −.06∗∗∗ −.10∗∗∗

(−3.93) (−6.51)

Control for
�

products

buy .58∗∗∗

(40.01)

quantity .00∗∗∗

(−7.31)

limit_price .00∗∗∗

(−3.54)

initialize .00

(−.35)

(Intercept) .34∗∗∗ .34∗∗∗ .04

(21.06) (17.44) (1.13)

AIC 46,493.89 46,464.39 44,060.04

pseudo-R2 6.31 % 6.40 % 12.73 %

Num. obs. 34,729 34,729 34,729

Notes: z-statistic in parenthesis; AIC: Sakamoto et al. (1986), pseudo-R2:

Nagelkerke (1991); ·p< .1, ∗p< .05, ∗∗p< .01, ∗∗∗p< .001
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of a subjects’ cognitive reflection ability, grade of risk aversion and use of emotion regula-

tion strategies on trading behavior and decision quality in a play money prediction market

was investigated. Putting all results together, it could be shown that cognitive reflection

abilities have a significant positive influence on all investigated variables. One may argue

that traders with higher cognitive reflection abilities performing better and having a higher

probability to make a profit than the average is not very surprising. But traders in the high

CRT group also behave differently: they submit more orders and tend to be liquidity tak-

ers. Interestingly, risk aversion has a positive impact on the number of submitted orders

and a negative influence on a trader’s performance as well as on her probability to make

a profit. Finally, risk averse traders tend to be liquidity providers. Although neither emo-

tion regulation strategy has a significant influence on a traders’ activity, it can be shown

that emotion regulation influences the initialization of trades: traders who confirm using

the suppression strategy tend to provide liquidity, while the use of the reappraisal strategy

leads to liquidity-taking trading behavior. Looking at the traders’ performance, there is

also a clear distinction between the reappraisal and the suppression strategy; traders who

confirm using the suppression strategy make more profit on average and have a higher

probability to make a profit, whereas traders who make use of the reappraisal strategy

make less profit on average and have a smaller chance to decide profitable. Even if it may

look like in these findings that the emotion regulation strategies reappraisal and suppres-

sion are opposite effects a person has to decide between, they are not. Even though both

strategies seem to compensate each other in this study, one have to keep in mind that

they are two strategies of emotion regulation a person makes use of ‘simultaneously’ in a

different shape. Risk aversion has shown to affect the trading strategy towards liquidity

providing. Furthermore, it slightly influences trading activity positively. In case of deci-

sion quality, risk aversion proved to be obstructive; both for profit and for the probability

to make a profit.

Summing up, this study proved the possibility to categorize (potential) traders ex ante
with advanced service analytics. The implications of these results are at least twofold.

First, individual trading behavior can partly be predicted and therefore the market can

be adapted accordingly. One possibility is to alter the user interface depending on the

market predisposition of the particular user. A highly risk averse user with low cognitive

reflection abilities who regulates his emotions mainly by using the suppression strategy

is for instance less likely to need an order book since she tends to set limit orders in-

stead of simply taking the quoted prices. Based on such knowledge, it is possible to create

personalized and hence much clearer, user-centered trading interfaces. Second, a certain
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bonus/malus can be predicted a trader is going to experience in a market setting. This

enables traders to self-assess their market predisposition and behave accordingly; e. g., by

not joining a market. But even from the market providers’ point of view, these results can

be useful, since they can ex ante identify potential traders that do not have the ‘right’ pre-

dispositions. Additionally, they could identify potentially ‘aptly traders’ and recommend

them to trade specific products. By following those implications, it should be possible

to improve participants’ decision performance within the context of prediction markets,

which itself will lead to a better predictive power.
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Chapter 6

Interpreting Agent Behavior: Reading a

Trader’s Mind

“ Thought is the seed of action; but action is as much

its second form as thought is its first.”

RALPH W. EMERSON, SOCIETY AND SOLITUDE (1870)

6.1 Introduction

VOTERS, politicians, campaign advisers, businessmen as well as the media set out

to consume and publish information in the context of an election. They all have

a stake in the election outcome and seek to further their understanding of the election

dynamic with up-to-date electoral probabilities. Public poll information, as a reflection of

the public’s take on the current political climate, helps campaign advisers measure their

success and can influence informed voters’ decisions. Before a major election, new polling

results are published every other day in Germany by various institutes. As pointed out

in Hillygus (2011), modern scientific polling has come a long way from its beginnings in

1937 and has seen an explosive growth in the last decades.

The Internet has democratized information and now plays a crucial part in every elec-

tion. In fact, a recent study by Bitkom (2013) shows every third German to consider the
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Internet the decisive factor in the upcoming election.1 One of the most promising ways of

forecasting elections are prediction markets.

In prediction markets, participants trade contracts whose payoff depends on the out-

come of uncertain future events. For example, a market contract might reward a dollar

if a particular presidential candidate is elected. An individual who thinks the candidate

has a 65 % chance of being elected should be willing to pay up to 65 cents for such a con-

tract. Market participants form expectations about the outcome of an event. Comparable

to financial markets, they buy, if they find that prices underestimate the probability of the

event in question and they sell a stock, if they find that prices overestimate the probability

of an event. The Iowa Electronic Markets2 (IEM) are a well-known example for predic-

tion markets. One of the IEMs’ markets, the Iowa Presidential Stock Market (IPSM), is a

political stock market (PSM) which predicts, inter alia, the outcome of U.S. presidential

elections Forsythe et al. (1992). The IPSM features contracts that represent one nominee

each. Market participants buy and sell nominee contracts depending on their assessment

of the U.S. presidential election outcome.

PSMs have been used widely in different countries and electoral systems (e. g., Berg

et al., 2008; Forsythe et al., 1992). In contrast to the traditional, straight-forward process

of a representative part of the population eligible to vote answering a question like “What
party would you vote for, should the election take place this Sunday?”, in a PSM participants

are incentivized to trade on their expectation about the election outcome. Hence there are

two distinct differences. First, participants provide their beliefs about the election outcome,

opposed to simply stating his political preference in a poll. Second, the market mechanism

incentives early, timely and accurate predictions about the outcome.

One thought that immediately comes to mind is that traders may be biased by their per-

sonal preferences in their valuation of contracts. This would be no surprise, dealing with a

sensitive topic like politics. The judgment bias is well known from sports gambling, where

devoted fans of sports clubs show a substantial amount of wishful thinking Babad and Katz

(1991). In this study, the way political preferences help to shape traders’ decisions in a

German PSM is analyzed. It is found that traders excessively buy the party they prefer to

win the election. The bias differs in strength for different parties but is nonetheless con-

sistent, no matter what party preference. In general, it seems that it is most pronounced

for small parties. This result even holds for the small but identifiable subgroup of tactical

1The study relates to the German federal elections on 2013-09-22.
2Accessible at the URL http://tippie.uiowa.edu/iem/ .
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voters. As this bias is so consistent for subgroups and preference, a straightforward pre-

diction model can be provided to infer traders’ party preferences by analyzing the trading

behavior. This might reduce participants’ perceived as well as their effective anonymity in

prediction market and thus their behavior.

The remainder of the chapter is organized as follows: First, a closer look at the core

ideas behind PSMs is taken to explain the way they work and why they have been found

to be so successful. A review of the literature regarding bias in prediction markets is

also provided, especially in PSMs and in light of the research questions. Subsection 6.3.1

provides specifics about the market on which this research is conducted. The empirical

results of this research are discussed in Section 6.4. Finally, Section 6.5 concludes.

6.2 Related Work

6.2.1 Political Stock Markets and Polls

Political Stock Markets – as a subset of prediction markets – share their main objective,

namely aggregating information from its participants in order to create efficient real-time

forecasts for uncertain future events. In this case, these uncertain future events are of

political nature, i. e., elections, nominations for elections or policies.

As a forecasting method prediction markets offer many advantages. First off they pro-

vide the incentives for traders to truthfully disclose their information and an algorithm to

weight opinions (Arrow et al., 2008). Compared to statistical forecasting methods, these

markets can incorporate real-time information. As prediction market prices are updated

immediately when traders incorporate their expectation in prices, they provide continu-

ously and timely updated forecasts. Compared to eliciting expert opinions, prediction mar-

kets eliminate the effort of identifying experts and motivate their participation. In most

cases they allow anonymous participation, which may increase the likelihood of noncon-

formists to participate and reveal information and they do not need to deal with conflicting

opinions.

The question of PSMs’ performance compared to polls has sparked some attention in

the last years. Berg et al. (2008) analyze the results of more than ten years’ worth of

PSM predictions on the IEM against corresponding polls and conclude that market results

outperformed the polls in most cases. Similarly, Berlemann and Schmidt (2001) find that

85



Chapter 6 Interpreting Agent Behavior: Reading a Trader’s Mind

– though by a less broad margin – European PSMs significantly outperformed respective

polls as well. There has been some doubt in respect to the naive manner polls were used in

their comparisons, i. e., Erikson and Wlezien (2008) argue that polls needed to be properly

adjusted before comparison, but as Rothschild (2009) points out, fairly adjusting both PSM

and poll results yields PSM as the overall most accurate predictor again.

6.2.2 Biases in Political Stock Markets

In theory, there exists an ideal called rational trader. He is always instantly available to

trade when an opportunity arises to make a profit, maximizing which is his only objective.

If he is exposed to new information, he objectively incorporates it and updates his beliefs

accordingly. As all too often, reality tells a different tale: Traders act imperfectly out of

a variety of reasons, and PSMs are no exception from this rule. Different types of bias,

mostly already known from regular markets, betting markets, polling and other fields,

have been identified in various studies. A general consensus seems to be that traders’

judgment of probabilities can be impaired by favorite-longshot (cf. Wolfers and Zitzewitz,

2004; Snowberg and Wolfers, 2010) and judgment bias, while it is unclear whether these

individual biases sway the market on an aggregate scale. Here the focus is on the judgment

bias.

Anyone who has recently discussed the odds of a sports event with supporters of both

teams is very likely to know this effect. Supporters generally tend to overvalue their team

and therefore experience a judgment bias when predicting the outcome. Sports enthusiasts

show a significant amount of this aforementioned wishful thinking even after explicitly

being asked to stay objective (Babad and Katz, 1991).

Multiple subsequent studies (i. e., Babad et al. (1992); Babad and Yacobos (1993) as

well as Uhlaner and Grofman (1986)) show that a considerable amount of wishful think-

ing is also observable when it comes to politics. While the amount of wishful thinking

in a sports context is dependent mostly on emotionalism and level of fanhood, in case of

politics the preferred party plays an important role. The intensity of wishful thinking de-

creases, moving from right-wing towards left-wing on the political spectrum. Interestingly,

extreme left-wing supporters even show an inverse effect. Since the aforementioned stud-

ies measure voters’ intentions by inquiring predictions about election outcomes, it seems

natural that a judgment bias caused by wishful thinking is present in PSMs as well.
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As presumed, nearly all authors who investigate this effect in their PSM experiments,

report significant amounts thereof. Take Forsythe et al. (1992), who find the judgment

bias affecting trading behavior on average and most traders incapable of valuing prices

objectively. These results are replicated by Forsythe et al. (1998), Jacobsen et al. (2000),

and Berlemann and Schmidt (2001). Forsythe et al. (1999) provide a detailed discussion

about judgment bias and two effects that can cause it: (i) the false consensus effect, which

states that traders overestimate their own representativeness, and (ii) the assimilation-
contrast effect, which describes the tendency to interpret information overly in the direction

of one’s own preference. They find that although most individual traders are significantly

biased in their trading, overall market prices are not. As an explanation, a fraction of

traders is assumed to be aware of biased traders’ shortcomings, correcting market prices

while taking advantage of this information. Since they tend to set limit orders close to

market prices, they are known as marginal traders. However, this result does not seem to

hold universally: Berlemann and Schmidt (2001) find a judgment bias on the aggregate

scale in German PSMs.

6.3 Setting and Research Questions

6.3.1 Experimental Setting

A German PSM is used to examine the effects of traders’ political preferences on trading

activity . Specifically, data from the PIX for the German federal election 2013 is used. For

a detailed description of the PIX market refer to Subsection 4.3.1.

6.3.2 Research Questions

As the wishful thinking bias is so persistent, two questions arise. First, are all subgroups
equally biased in their trading decisions? One hypothesis is that different party preferences

lead to a more pronounced bias. Second, are tactical voters as biased as preference based
voters? Finally, if the bias is stable and constant over subgroups, research question 3 as

presented in Section 1.2 arises:

Research Question 3: How well can an unobtrusive analysis of trading behavior reveal
trader preferences?
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6.4 Results

In this section the empirical findings are presented, starting with descriptive statistics.

Subsequently, traders’ self-assessed party preferences are reported. Finally, traders’ party

preferences are predicted.

6.4.1 Descriptive Statistics and Methodology

A day before the election, the average transaction prices were collected for all parties and

a final prediction was created. Table 6.1 illustrates the market prediction and displays

the election outcome for comparison. In general there was a lot of uncertainty about the

election outcome, due to potential strategic voting.

TABLE 6.1: Market Prediction and Election Outcome

CDU/CSU SPD LINKE Grüne FDP AfD Piraten Rest-of-field

Prediction 35.06 % 20.32% 8.47 % 7.63 % 6.70 % 15.15% 2.53 % 4.15 %

Outcome 41.55 % 25.74% 8.59 % 8.44 % 4.76 % 4.70% 2.19 % 4.03 %

Abs. Dif. 6.49% 5.42% .12% .81 % 1.94 % 10.45 % .34 % .12 %

Measuring the Judgment Bias

The wishful thinking judgment bias has already been covered in Subsection 6.2.2. Using

the questionnaire functionality, users willing to share this information were matched to

their preferred party. This enables to analyze the extent of individual false consensus

effect in the spirit of Forsythe et al. (1992), as a proxy of judgment bias. From 2013-06-21

until 2013-07-31 and from 2013-08-26 until 2013-09-23, the question “Which party can
you identify with the most, when it comes to national politics?” (cf. Sjöberg, 2009) was run.

Possible answers were CDU/CSU, SPD, FDP, Grüne, DIE LINKE, Piraten, AfD, another party
and prefer not to say. Only one selection is permitted, allowing to match each participating

trader to exactly one party. For the subsequent analysis, it is assumed that this question is

truthfully answered and that preferences are valid and remain constant for the runtime of

the two markets.

The analysis of the individual false consensus effect is approached with the known

methods (cf. Forsythe et al., 1998). One possibility to determine whether supporters of

a party systematically preferred the corresponding contract is to analyze their portfolios.
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The judgment bias states that the preferred contract is overvalued, which should cause a

higher demand for that contract from affected traders than from the average trader. The

logical conclusion is that since he is expected to invest more money, the value share of the

preferred contract in a biased trader’s portfolio exceeds the average trader’s value share in

this contract. Specifically, the following measure is defined:

(6.1) ξt,party :=
v i

t,party

v i
t

∑m
i=1 v i

t
∑m

i=1 v i
t,party

,

where i ∈ {1, . . . , m} is the position of party (with the captions CDU/CSU, SPD, . . . , rest-
of-field; leading to m= 8) in the portfolio. Vector vt is obtained by multiplying the ‘unbal-

anced portfolios’ (Forsythe et al., 1999, p.92) with the market prices at t aggregated for all

users that responded to the party preference questionnaire. Whereas, vt,party corresponds

to the multiplication of the ‘unbalanced portfolios’ with the market prices at t aggregated

for all users that prefer party. Hence, ξt,party describes the ratio of party’s value percentage

in the supporters’ portfolio compared to its value percentage in the aggregate portfolio.

Bearing the prior assumptions in mind, an existing, notable judgment bias would yield

ξt,party > 1. This is precisely what is empirically calculated in the portfolio analysis for

judgment bias.

6.4.2 Traders’ Reported Preferences

The PIX was used in several ways to collect data for this study. Since the author co-designed

the market and the underlying data structure, it was possible to store literally every piece of

information needed on events that take place on the PIX. Since the author co-designed the

market and the underlying data structure, it was possible to store all information necessary

to conduct this study. First and foremost, detailed information on events such as orders

and transactions was used.

This includes, e. g., whose order was matched on which exact date, and the price and

volume that was subsequently traded. Second, a survey function was added to the plat-

form: The questionnaire (Figure 6.1) allows for questions with a predefined list of answers

to appear on the PIX’s main page, one at a time. Adjustable settings include the question

mode, allowing only one reply selection or multiple. Equally important, it can be precisely

defined when, where and in what order questions are asked. These properties are defined

by a time window for question activity, and a priority ranking for the order of appearance.
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(A) Market-embedded Survey (B) Magnification

FIGURE 6.1: Screenshot of the Market-embedded Survey Functionality
(a: placement on website, b: magnification)

Obviously, it was made sure that every user can answer every question only once. For each

of the questions, the option “prefer not to say” was provided, due to the sensitive nature

of the questions. Users submit their responses by selecting the radio button or checkbox

and clicking submit. A self-made questionnaire infrastructure was used because this way,

traders can quickly reply to a question or two without leaving the website. Hence, will-

ing responder who do not want to go to an external website were not lost. 336 traders

participated in the experiment on the false consensus effect by providing their personal

political preference. Table 6.2 lists the results. Using this data, it is possible to measure

for judgment bias.

TABLE 6.2: Party Preference

CDU/CSU SPD LINKE Grüne FDP AfD Piraten Rest-of-field

Answers 28 25 16 22 23 204 8 10

Percent 8.33 % 7.44% 4.76% 6.55% 6.85% 60.71% 2.38% 2.98 %

Notes: N= 336

Using the questionnaire function, a subset of traders was also identified that can be

regarded as tactical voters. According to a measure developed by Heath et al. (1991),

called ‘Heath et al. measure’ in Fisher (2004), tactical voters can be directly identified

using a simple question. The Heath et al. measure was slightly modified for the context

of the German situation. Table B.2 in Appendix B depicts the full measure. This study set

out anticipating that tactical voters exhibit a difference in behavior, also on a PSM. The

90



6.4 Results

results of the questionnaire are that 21.6 % of traders belong to the class of tactical voters

based on their answers.

6.4.3 Traders’ Predicted Preferences

In this section, the empirical results from the collected data on the PIX including 2013-09-22

are presented. First it is shown that participants exhibit a strong and significant judgment

bias on the PIX. This result corresponds to previous findings in the existing literature on

judgment bias in prediction markets.

Using the party preference data as presented in Table 6.1 and traders’ portfolio on the

test day t = 2013/09/22, the judgment bias is measured. The results for ξt,party are listed

in Table 6.3. Recall that a ξ > 1 means that a group of traders holds a greater value in

their own preferred contract than all traders on average. The result indicates that this is

true for all major parties. For supporters of CDU/CSU, who ‘only’ hold 62 % more in their

own contract, the effect is not very strong. Parties with small numbers of participating

supporters, such as LINKE and Piraten, seem to be the ones to rely the most on their own

preferred contract. However it must be kept in mind that there is no statement about

significance of the effect yet. A smaller number of traders allows for higher variance. (The

rest-of-field contract has been left out since the concept of ‘rest-of-field-supporters’ does

not make sense.)

TABLE 6.3: Judgment Bias per Party

CDU/CSU SPD LINKE Grüne FDP AfD Piraten

ξt,party 1.62 2.05 7.23 3.29 4.00 1.95 9.30

N(party) 27 23 14 20 21 153 6

Notes: N = 264

This study aims to examine, if an individual’s preference for a given party is linked

with his ‘biased investment characteristics’. As biased investment characteristics, the ratio

of an individual’s investment in stocks of that particular party to the individual’s overall

investments is used. Hence, one simple OLS regression is conducted per party; describ-

ing the ‘investment characteristics’ by an intercept and a dummy variable indicating the

individual’s preference for party (Table 6.3). All seven regressions are significant to the

0.1 %-level.
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As a robustness check a time series with the values of ξ is constructed, since they are

time dependent. In order to do this, all relevant data (like portfolio structure) must be

counted back in time. In general ξ is well above 1 for all parties and increasing over time

towards the election. The time series of ξ values provide a good robustness check. From

the data it can be seen that the judgment bias is aggravated for the underdog parties3

(FDP, Grüne, LINKE, Piraten, AfD) compared to the established parties (average of 5.15 vs.

1.84).

According to the adjusted Heath et al. questionnaire 21.6 % of answerers are identified

as tactical voters which seems to be a relatively high figure. Unfortunately there is no

reference number for Germany as a whole. One might assume that tactical voters do not

exhibit the wishful thinking bias to the same extent as non-tactical voters. These two

classes of participants are compared and no statistical difference can be found (average

ratio invested in preferred contract: .43 vs. .39, p-value: .72).

Finally, a model was built to predict party preference by analyzing portfolio data. Specif-

ically, a simple tree based classification model is used. The party preference of a participant

p is predicted using the percentage of invested play-money per party and additionally the

net number of shares bought in each party.

In order to test the validity of the model the sample (N = 264) is split in a training

(~62 %; 164 observations) and a validation (~38 %; 100 observations) set. In the out of

sample test, the model correctly classifies 70 % of all instances. The party wise detection

rates (e. g., AfD: 93 % vs. CDU/CSU: 53 %) suggest that a higher number of supporters

in the training set leads to better results. Keep in mind that the base rate is one in eight

or 12.5 % – given that each participant could prefer one of the 8 parties. Moreover, as

the most intuitive and straightforward method is used to model the data, more predictor

variables (e. g., gender, age, other trading behavior or activity) or better methods such as

random forest, support vector machines (SVM), or neural networks are very likely to yield

better models. Hence, it can be concluded that prediction market data enables researchers

and practitioners to classify their trading population very easily.

3Here, a party is classified as underdog, when their election outcome is below 10 %.
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6.5 Conclusion

The motivation behind this research is to understand how the increasing importance and

possibilities of online prediction models change the way people think of events like elec-

tions. While elections used to be like ‘blackboxes’ in past times, they seem to have become

predictable, almost to the point where the candidate with the best data analysts will win

the election such as stories from Issenberg (2012) would have made us believe.

Political Stock Markets are one of the new continuous available prediction methods.

They are based on the assumptions that market prices (in an abstract form of predictions)

are set by rational unbiased traders. The key question that is addressed in this study

is whether and to which extent traders stay objective or if they are biased by their own

preferences.

The participants’ preferences are collected using questionnaires directly accessible from

the trading website which are simple and do not require much time. This helps obtaining a

quite high number of answered questions and subsequent data to analyze (cf. Chapter 9).

Surprisingly, although this is the most personal question asked amongst multiple other

questions, it is still the most frequently answered question. It seems like traders are very

eager to identify themselves as supporters of their preferred parties, which leads to the

conclusion that most traders have strong opinions and that their political opinions are

among the reasons for trading.

This strong opinion does influence how they trade and act in the market, even though

they are incentivized to not do. Through a portfolio level analysis of trading data matched

with survey data it is possible to consistently predict voter intention in the market popula-

tion. Moreover, evidence is provided that the bias is consistent over all parties but elevated

for underdog parties. Surprisingly, analyzing subgroups no difference is found in the bias

between tactical and non-tactical voters.

As the bias is so consistent for subgroups and preference, it is possible to provide a

straightforward prediction model to infer a trader’s party preference by analyzing his trad-

ing behavior with 70 % accuracy. This is important because it might reduce participants’

perceived as well as their effective anonymity which is sometimes highlighted as a major

reason for prediction markets’ success.
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Chapter 7

Extending the (IT) Infrastructure into

the Mobile World: Comparing Trading

Performance in Stationary and Mobile

Settings

“ I have always wished for my computer to be as easy

to use as my telephone; my wish has come true because

I can no longer figure out how to use my telephone.”

BJARNE STROUSTRUP, 1990

7.1 Introduction

WE often rely on information systems (IS) to filter, aggregate, and present informa-

tion we need in a manner that supports decision making processes. A common

misbelief about decision making is that the more information available, the better our

decisions. In contrast, it has been shown that more information can lead to decreased

decision making performance, e. g., due to information overload (cf. Malhotra, 1982). For

electronic markets, Teschner et al. (2011, 2014) showed that more information can be

harmful for individual trading performance.
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With the rise of mobile information systems, the question arises how decision behavior

and decision performance are influenced by its usage. In general, two major developments

seems to influence the usage of IS here. First and obviously, mobile IS enables the usage

of IS in a mobile context. Hence, one is enabled to make use of IS in settings where it

was not possible before. This opens a whole new set of opportunities (e. g., Muntermann

and Janssen, 2005) and hindrances which can, for instance, result in faster reaction times

to news in a trading context as well as to a higher degree of distraction or uncertainty.

Second, mobile IS might also supersede traditional IS in certain settings. Mobile Human-

Computer Interaction (HCI) often differs from its stationary counterparts (e. g., Schmiedl

et al., 2009) for a variety of reasons: inter alia different screen sizes (e. g., Brewster, 2002;

Adipat and Zhang, 2005), gesture controlled vs. mouse and keyboard, operation systems,

and reliability of network connectivity. Thus one might expect that these differences do

result in different outcomes in some cases. Therefore it is expected that users of mobile IS

will perform differently than users of stationary IS for a given task or problem.

In order to design mobile systems that support good decision making it is necessary to

analyze how participants search for information and how they incorporate this information
in their decision process. Moreover, behavioral aspects of IS users have to be linked with the
quality of their decisions in order to improve the design of mobile IS. More precisely, this

study tries to answer the following question: “How do different devices (and therefore user
interfaces) affect decision behavior and decision outcome?” Hence, a field study is conducted

on an electronic market to shed some light onto this higher research question.

Specifically, the research is conducted in a repeated market environment called Kur-
spiloten (cf. Section 4.2). The Kurspiloten market is a prediction market (cf. Wolfers and

Zitzewitz, 2006; Luckner, 2008) designed to forecast the stock exchange value of selected

stock indices and commodities on a weekly basis. This prediction market is set up as a con-

tinuous double auction, like in financial markets, with one stock representing each new

release of economic information. Participants buy if they think that prices underestimate

the probability of an event and sell if they think prices overestimate the probability of an

event. The prediction market thereby aggregates information in the same way a stock mar-

ket does, which is relatively efficient in an ex-ante information sense. In the Kurspiloten

field experiment with nearly 2,000 active participants the impact of mobile and stationary

interfaces on user behavior and decision performance is studied.

The remainder of the chapter is organized as follows: Section 7.2 discusses related

literature on decision making in the context of stationary and mobile information sys-

tems. The experimental setting, methodology used, and research direction is presented
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in Section 7.3. Subsequently, the results are discussed in Section 7.4. Finally, Section 7.5

concludes this chapter.

7.2 Related Work

7.2.1 Information Systems and Participant Decisions

Kauffman and Diamond (1990) highlight the importance of research on behavioral deci-

sion making and information presentation effects. They examine how behavioral effects

may become operative in screen-based securities and foreign exchange trading activities,

where users can choose among information presentation formats that support trader de-

cision making. They present a model to identify where and how information, heuristics,

and biases might affect decision making in trading environments. In the domains of de-

cision support systems and online shopping environments the influence of the interface

on decision behavior has been repeatedly demonstrated. Kleinmuntz and Schkade (1993)

find that information displays do influence decision processes by facilitating some deci-

sion strategies while hindering others. Decision makers balance the desire to maximize

accuracy against the desire to minimize effort. They further separate characteristics of

information displays into the form of individual items (numerical, verbal or pictorial), the

organization into meaningful structures (groups, hierarchies or patterns) and the sequence

(the order in which information element appears). In a follow-up study they show that or-

ganization strongly influences information acquisition while form influences information

combination and evaluation. Sequence had only a limited effect on information acquisition

(Schkade and Kleinmuntz, 1994). Investigating the relationship between problem repre-

sentation and task type in information acquisition, Vessey and Galletta (1991) develops

the cognitive fit theory. The theory proposes that the correspondence between task and

information presentation leads to superior task performance for individual users. In sev-

eral studies, cognitive fit theory has provided an explanation for performance differences

among users across different presentation formats such as tables, graphs, and schematic

faces (Vessey and Galletta, 1991; Vessey, 1994). Additionally they show that increasing

interface flexibility instead of an informed choice of display format may be harmful rather

than helpful to the problem solver. Similarly Speier and Morris (2003) compare the use

of visual and text-based interfaces for low and high complexity tasks. They find that in

low complexity environments participants perform better using text-based query tools.
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However in high complexity environments participants perform better with visual sup-

port. Turning to the optimal pool of available information in decision support systems,

empirical work has shown that users can handle only a certain amount of data.

Malhotra (1982) concludes that individuals cannot optimally handle more than ten in-

formation items or attributes simultaneously. Testing decision accuracy, Streufert et al.

(1967) show that as information load increases, decision making first increases, reaches

an optimum (information load ten) and then decreases. Finally, in an interactive home

shopping simulation, Ariely (2000) tested how the participants’ control over information

influences their utilization of this information. He compared four settings: if information

control was high-low and the task complexity was low-high. He finds out that increased

control over information leads to better performance in tasks with low complexity and

lower performance in the high complexity setting. He reasons that participants in the low

complexity setting, when demand on processing resources is low, more information is ben-

eficial. However, in complex situations the information is detrimental to performance due

to the additional burden of selecting the right information (Ariely, 2000). He concludes

that when cognitive load is high (e. g., when the task is novel or difficult) high information

control can be harmful.

To summarize previous work, the amount and control of information, as well as the

information representation does influence user behavior. On the one hand information

control improves performance by improving the fit between actions and outcomes. On the

other hand information control requires the user to invest processing resources in man-

aging the information amount and flow. As a conclusion, information control has both

positive and negative effects on performance. The two tasks of processing and managing

information are related and codependent. Finally, one must note that previous work has

mainly investigated the topic in laboratory settings. User behavior and decision perfor-

mance is analyzed in a field experiment setting, namely a prediction market.

7.2.2 Comparing Stationary vs. Mobile

Eriksson (2012b) compares the online self-arrangement experience of mobile device users

to stationary computer users in an electronic travel service experiment. Thereby he fo-

cuses on the three dimensions efficiency, effort, and anxiety. He found that mobile device

users experiences the given task more negative. In a follow-up study Eriksson (2012a)

compares the use of different channels in electronic travel services in Finland for 2004
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and 2011. There he found that most customers use only a computer to fulfill travel related

tasks. Nevertheless, there are a small and growing number of customers using only mobile

devices for such tasks. Interestingly, the number of customers using both computers and

mobile devices is much larger than the number of (solely) mobile device users. Altogether,

most users report the computer as their preferred interaction channel. Both studies focus

on user perception of the offered services.

In contrast to the studies mentioned earlier, Muntermann and Janssen (2005) focuses

on behavior and outcome depending on the used channel. They find that mobile financial

information systems can provide serious benefit to customers’ value. They investigate re-

alizable returns in a stock market subject to the users’ reaction time to incoming events.

In a simulation, based on a real-world dataset, they compare two different scenarios of

information latency. The results show that, in the low-latency scenario, customers gain

more than five percent of realizable returns compared to less than 2.5 percent in the high-

latency scenario. Due to the characteristics of mobile information systems users are able to

react nearly immediately to new information and transform their advantage into monetary

gains. In a market-based environment, Teschner et al. (2012) describe a method to dis-

tinguish between decision supporting and misleading information in mobile applications.

Their preliminary results suggest that the decision making process differs depending on the

device used. Besides the studies mentioned there exists hardly empirical work analyzing

decision performance in mobile applications.

7.3 Setting and Research Questions

7.3.1 Experimental Setting

This study was conducted on the Kurspiloten market. Kurspiloten is a prediction market

for selected stock market indices and commodities. Subsection 4.2 contains a detailed

market description.

Operationalization

In the following, the indicator variable Deviceo is 1 for a given order o when it was submit-

ted trough the mobile application, otherwise it is 0. The order type used for a given order

o is described by the indicator variable Market Ordero. It is 1 for a liquidity taking market

99



Chapter 7 Comparing Trading Performance in Stationary and Mobile Settings

order and 0 for a liquidity providing limit order that cannot immediately be matched. For

a buy order o the dummy variable TDo (“trading direction”) is 1, whereas for a sell order

it is 0. In this continuous market the outcome of each stock (i. e., the final value) can be

observed. Therefore the information content of each order can be measured ex-post. With

respect to the outcome of a stock, if the order moved the price in the correct direction it is

classified as informed, whereas an order moving the price in the opposite direction of the

outcome is classified as uninformed. Based on Teschner et al. (2011), the following score

is used to capture this process:

(7.1) Scoreo,i =























1, priceoi
≤ fvi

and otype = BUY

1, priceoi
≥ fvi

and otype = SELL

0, priceoi
> fvi

and otype = BUY

0, priceoi
< fvi

and otype = SELL

The price of an order o for the stock i is represented as priceo,i. The fundamental final

outcome value of a stock is represented by fvi
. In a way, the Scoreo,i can be interpreted as

an indicator for the profitability of an order and thus as the decision outcome of a trader;

Scoreo,i is 1 for a profit greater equals to zero and 0 otherwise.

Analyzing Decision Confidence

As described in the last section, two proxies are used to measure the participants’ decision

confidence and trading behavior. The quantity of a specific order is related to the device

used. As the different stocks exhibit different historic variances (e. g., the Dow Jones is

much more volatile than Bund-futures) the analysis is controlled for these variances by

adding the market indicator variables Mi. These control variables are included in all re-

gression models. To identify the influence of the device on the submitted quantity (first

confidence proxy) the following OLS regression is used:

(7.2) Quantityo = i + β1 ×Deviceo + β2 ×Market Ordero + β3 × TDo +
12
∑

i=1

(γi ×Mi)

For the second proxy it is necessary to look at how users submit their orders. For an

executed order there are only two possibilities; either an order is a market order (price

taking) or a limit order (liquidity providing). The market order initializes a trade by getting
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immediately matched against a standing limit order and thus taking liquidity from the

market. On the contrary, orders are counted as limit orders when they cannot immediately

be matched and thus executed. In this case, they are written to the order book and hence

provide liquidity to the market. As this is a binary outcome, a binomial logistic regression

model is used. If an order is initializing a trade, the dependent variable is 1 otherwise it

is 0. Equation 7.3 measures the device’s influence on the probability whether an order is

a market order (i. e., price taking) or a limit order (i. e., liquidity providing).

(7.3) log(
πMarket Order

πTrade
) = i + β1 ×Deviceo + β2 ×Quantityo + β3 × TDo +

12
∑

i=1

(γi ×Mi)

Analyzing Trader Performance

In order to calculate the influence of trader behavior on trading outcome Equation 7.3 is

adapted the following way. The dependent variable is the score (profitability) as defined

in Equation 7.1, which is 1 for a profit and 0 for a loss. As before, the analysis is controlled

for different risks in the market categories by adding the dummy variables M1-M12 and

receive the following equation:

(7.4)
log(πScore

πTrade
) = i +β1 ×Deviceo + β2 ×Market Ordero + β3 ×Quantityo

+β4 × TDo +
∑12

i=1(γi ×Mi)

The regression for the profit (Equation 7.5) is analogous to Equation 7.4, except that

the quantity has to be dropped due to the obvious high correlation with profit:

(7.5) Profito = i + β1 ×Deviceo + β2 ×Market Ordero + β3 × TDo +
12
∑

i=1

(γi ×Mi)

7.3.2 Research Questions

As more decisions are facilitated through mobile decision support systems, one of the most

urgent questions is “How to design interfaces that improve decision making?” In order to an-

swer this higher research question it has to be deeply understood if and how the interface

influences decision making. More specifically it needs to be analyzed how participants

search for information and how they incorporate this information in their decision pro-

cess.
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The second goal of this study is to link behavioral aspects of the market participants

with the quality of their decisions. Creating a link between behavioral aspects of the par-

ticipants and quality is important since the quality of the predictive power is directly neg-

atively affected if participants make systematically biased decisions. Hence, the second

research question is “How do different devices (and therefore user interfaces) affect decision
behavior and decision outcome?” The main research question of this study is introduced in

Section 1.2 as research question 4 and reads:

Research Question 4: Are decision behavior and decision outcome affected by the kind
of device used?

The experimental set up is well suited to studying the behavioral aspects of decision

making because in contrast to financial markets (i) the outcome of events in the market

is ultimately known and (ii) the ex-post trading performance of participants can be mea-

sured. To give indications for these research questions, the influence participants’ device

choices have on their information usage is analyzed. Following Ariely (2000), it is expected

that users choose different information items in order to adapt the interface to their in-

formational needs, needed to fulfill the given (decision) task (i. e., trade). Due to mobile

devices’ limitations, it is expected that this adaption leads to less consumption of informa-

tion items in case of mobile device users; whereas users of a stationary device consume

(slightly) more information items as they do not suffer from device related limitations.

Following the research model (Figure 7.1), based upon van Witteloostuijn and Muehlfeld

(2008), the Device usage is connected with the participants’ Confidence and Trading Behav-
ior in hypotheses H1. In order to measure the vague concept of confidence, two common

proxies are used: a) the order type used to trade and b) the order size in stocks. Particular,

the order type is distinguished between market orders and limit orders. A limit order is exe-

cuted for a given limit price, whereas a market order is an order that executes immediately,

but often at less favorable prices. Hence, the trader submitting a market order pays the

spread (i. e., the difference between the best buy and best sell prices), but is guaranteed

immediate execution. A less confident trader is less willing to trade immediately and will-

ing to wait for the market to move in his direction (Teschner and Weinhardt, 2012). The

second proxy to quantify trader behavior in financial markets is the size of the submitted

order (cf. Yang et al., 2012). As all traders have the same start portfolio the quantity of

a trade is a proxy for a trader’s confidence perception. If a trader has doubts about the

future development of an indicator he is likely unwilling to bet all on one – or just a few –

shot(s).
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Continuous Trading Task

H1 H2

H3

Moderation Effects Control
Variables

Device

Trading /
Decision Outcome

Confidence and 
Trading Behavior

Trader /
Decision Maker

FIGURE 7.1: Research Model

Summing up, the users’ device choice is connected with their decision confidence and

trading behavior by using the proxies order size and order type (market order or limit order).

Hence, the following hypotheses are stated:

Hypothesis 1a: Participants using mobile device submit orders with lower average quan-
tity.

Hypothesis 1b: Participants using mobile device have a lower probability to submit mar-
ket orders.

In the next step, the interplay between Confidence and Trading Behavior and Trad-
ing/Decision Outcome (H2 in Figure 7.1) is regarded. As described above, large orders

are expected to be more informative than smaller orders. In other words, an increased

order-size is expected to be a predictor for a profit (Hypothesis 2a). Previous research on

trading behavior showed that traders who set prices and use limit orders (market-making)

are less mistake-prone and appear to be more rational than traders using market orders

(price-taking) (Oliven and Rietz, 2004). Hence, traders using market-making trades (limit

orders) are expected to be more successful (Hypothesis 2b). The hypotheses related to H2

(Figure 7.1) are as follows:

Hypothesis 2a: Increased order-size is positively correlated with the resulting profit.
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Hypothesis 2b: Participants using limit orders are more likely to submit profitable orders.

Finally, and most importantly, by controlling for trading behavior it is analyzed how the

self-chosen Device influences the participants Trading/Decision Outcome (see H3 in Fig-

ure 7.1). The decision outcome of a submitted order can be analyzed depending on the

resulting profit or loss. The needed heuristic is detailed in Subsection 7.3.1. The intu-

itive reasoning is that more information can be displayed, understood, and incorporated

using the stationary device. As more information are expected to be beneficial a better

trading performance is expected (Hypotheses 3a and 3b). Moreover, one could argue that

participants can trade on ad-hoc information just when they are available and may use

this advantage to make a profit (cf. Muntermann and Janssen, 2005). In order to proxy

decision outcome two measures are used. The first is the likelihood that a trader makes the

‘right’ decision (i. e., she submits a profitable order; for details see Equation 7.1). Second,

the profit resulting from each order can be measured ex post. Thus the hypotheses for the

interface influence on decision accuracy (see H3 in Figure 7.1) are:

Hypothesis 3a: Participants using mobile device are less likely to submit profitable orders.

Hypothesis 3b: Participants using mobile device make less profit.

Those three steps combined provide an indication of the market interface and the in-

formational impact on trader behavior. Moreover, they provide insight into the inter-play

between device, information and decision making.

7.4 Results

This section summarizes the results of the conducted study. The three hypotheses pre-

sented in Section 7.3.2 are analyzed following the research model and the results are in-

terpreted. First, the device influence on traders’ decision confidence is reported. Second,

trading behavior and trading performance is analyzed.

7.4.1 Decision Confidence

Users accessing the platform through the mobile device were expected to use on aver-

age small order sizes (Hypothesis 1a). Using a simple t-test no significant difference was
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found between the order-sizes (quantity) of web and mobile traders (web: 1,038.28; mo-

bile: 1,276.55; t-stat = .84). Even when controlling for different factors (as described

above), no significant influence of the device used was found (Table 7.1). Turning to what

type of orders (i. e., market order vs. limit order) participants submit to the market, no

significant difference was found between orders submitted through stationary or mobile

devices (Hypothesis 1b). As described in Section 7.3.2, both measures (quantity and mar-
ket order) can be interpreted as proxies for confidence. Hence, it has to be concluded that

the decision confidence seems to be unaffected by the device used.

TABLE 7.1: Regression Model for Hypotheses 1a and 1b

Hypothesis H1a H1b

Quantity Market Order

Device (mobile) 207.50 −.08

(1.23) (−.68)

Market Order −50.20∗∗

(−2.96)

Trade direction 68.59∗∗∗ .46∗∗∗

(3.98) (39.96)

Quantity −0.55∗∗

−2.94

Control for
� �

Products

(Intercept) 895.59∗∗∗ .02

(28.97) (.85)

Adj. R2 2.60 %

pseudo-R2 8.65%

N 131,561 131,561

Notes: t-statistic (left model) and z-statistics (right model) in

parenthesis; pseudo-R2: Nagelkerke (1991); ·p< .1, ∗p< .05,
∗∗p< .01, ∗∗∗p< .001

105



Chapter 7 Comparing Trading Performance in Stationary and Mobile Settings

7.4.2 Trading Behavior and Performance

Following the research model, the effect of Trading Behavior on Trading/Decision Outcome
is analyzed (see H2 in Figure 7.1). Therefore, it is regard how profit and quantity of orders

are connected. Using Equation 7.5, the model on the right side of Table 7.2 is received.

TABLE 7.2: Regression Model for Hypotheses 2b/3a and 2a/3b

Hypotheses H2b/H3a H2a/H3b

Score Profit

Device (mobile) −.29∗ −263.64∗

(−2.53) (−1.97)

Market Order −0.63∗∗∗ 121.73∗∗∗

(−5.42) (8.98)

Trade direction .74∗∗∗ 1655.26∗∗∗

(62.48) (120.56)

Quantity −.00∗∗∗ −.02∗∗∗

(−17.81) (−8.52)

Control for
� �

Products

(Intercept) −.13∗∗∗ −766.70∗∗∗

(−6.02) (−31.00)

Adj. R2 10.68%

pseudo-R2 11.08%

N 131,561 131,561

Notes: t-statistic (left model) and z-statistics (right model) in

parenthesis; pseudo-R2: Nagelkerke (1991); ·p< .1, ∗p< .05,
∗∗p< .01, ∗∗∗p< .001

As one can see, quantity has a negative significant influence on profit. However, since

the effect strength is relatively small in comparison to the average profit (mean: 198.50,

sd: 2,561.52), it is doubtful that there is an economic significant effect of quantity on

profit and Hypothesis 2a cannot be proven. Turning to Hypothesis 2b, the model on the

left side of Table 7.2 is the result of applying Equation 7.4 to the dataset. Market order
has a small (marginal effect: −.015) negative influence on score and therefore supports

Hypothesis 2b. Interestingly, although market order has a small negative influence on score,
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it has a positive influence on the overall profit, which leads to the conclusion that market

orders fail at being profitable more often than their counterparts, but if they do not, they

are much more profitable than limit orders.

Finally, the difference in Decision Outcome between the two interface types is regarded

(see H3 in Figure 7.1). As described, two proxies are used to measure decision outcome in

the market environment. First, the likelihood of an order being profitable (score) in regards

to the device the order was submitted from (see Hypothesis 3a as depicted in Table 7.2).

As one can see, device negatively affects this likelihood, although the regression controlled

for Trading Behavior (quantity, market order) and market specific effects (Equation 7.3).

Although the influence of device is rather small (marginal effect: −.07) and only significant

at the 5 %-level, this result supports Hypothesis 3a. Moreover, device significantly reduces

the average profit by about 264 currency units (see Hypothesis 3b in Table 7.2), and hence

supports Hypothesis 3b.

As both the likelihood for submitting a profitable order (i. e., score) as well as the aver-

age profit decreases if the device dummy is set to 1, it can be concluded that submitting an

order through a mobile device leads to worse trading performance compared to a station-

ary device. However, as this is a field experiment it cannot be identified to which extent

this effect is driven by the mobile device, or by the environment in which a participant is

trading with the mobile app (or even the mobile app itself). So both the mobile device and

the environment in which participants use their mobile device may negatively affect their

performance. However, it is not possible to give an explicit answer with the information

available in this field study.

7.5 Conclusion

By describing a prediction market which participants can access through stationary and

mobile interfaces the potential of analyzing decision processes in various device settings

has been shown. Participants’ confidence and trading behavior on a per-order basis has

been examined subject to the device used. Furthermore, the influence of trading behavior,

and the usage of a specific device class (namely, web or mobile) on trading outcome has

been analyzed. This study contributes three main findings:

First, it was not possible to proof that the device has an influence on participants’ de-

cision confidence as measured by two proxies (order-size and order-type). Since decision
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confidence is only one aspect of what can possibly be influenced by using a certain device

type, this study leaves room for further research.

Second, it could be shown that market orders, although they tend to lead to a higher

profit, lead to profitable transactions less often. These somewhat contradictory results

prompt the following interpretation: market orders fail more often, but if they do not,

the average gain is higher than the average loss is in case of failing. In order to deeply

understand trading behavior in this market, one has to analyze the trading behavior even

more thoroughly, e. g., by taking additional aspects of trading behavior into account or

simply by analyzing the data on a per-user basis.

Third, it has been found that orders submitted by a mobile device perform significantly

worse than their stationary counterparts. In particular, significantly lower profits, and a

significantly lower probability for submitting a profitable order were found when using a

mobile device. It remains unclear, if the usage of the device itself or indirect influences

are causing this ‘performance penalty’. One might assume that mobile traders are simply

distracted through an often-noisy environment. Another possibility is that mobile traders

are simply unable to obtain information necessary to perform well via the smaller screen

and other limitations of the user interface. As hinted at earlier, it is possible that the

information usage as well as the environmental influence is worth considering in a future

study.

A major limitation of this study is, that it can neither be ruled out that – in some cases –

traders used the web-interface in a mobile setting to submit an order (e. g., with a lap-

top or a smartphone web-browser) nor that a user in a stationary setting used the mobile

application for that purpose. Even though there are reason to believe that traders in a

stationary context prefer to use the web-interface as well as mobile traders tend to use the

KAPP, there are no reliable information about a user’s trading environment. Hence, fur-

ther research and a different, more controlled approach is needed to provide clarification

of these questions. Moreover, the data has a strong bias towards orders submitted via the

web-interface. One explanation for the few mobile orders could be that many participants

tested the mobile interface with a couple of orders once and decided to use the stationary

interface instead. Unfortunately, no acceptance-survey was conducted amongst users of

KAPP. As the majority of feedback received concerning the usability of KAPP was positive,

there is reason to believe that the few mobile orders are instead attributed to the partic-

ipants’ usage preferences of that particular market. In other words: Participants simply

made little use of the possibilities of mobile trading. Besides this weakness, all orders
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submitted via mobile devices are real world observations traders submitted without being

specifically incentivized to do so.

This study has two major implications: First, it illustrates that decision making perfor-

mance does not solely depend on the decision maker and her resources. Second, one need

to be aware of these differences when designing software artifacts using multiple devices

having different characteristics. Specifically in the domain of financial markets this study

is the first work to highlight the influence of mobile trading interfaces on trading behav-

ior and performance. Due to the close relation to decision processes, this study helps to

understand the impact of information system interfaces on decision making in general.
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Chapter 8

Improving the (IT) Infrastructure:

Interface Influence on the Disposition

Effect

“ Traders in any, perhaps all, markets have different

talents, interests, and abilities; they may interpret data

differently or be swayed by fads. However, as long as

not all traders are so influenced there is room for mar-

kets to function efficiently.”

ROBERT FORSYTHE, FORREST NELSON,

GEORGE R. NEUMANN, AND JACK WRIGHT, 1992

8.1 Introduction

IN 2002, 28 % of U.S. retail trades were executed via retail brokerage companies; one

year later, U.S. online retail brokerage companies already managed more than 31 mil-

lion accounts (Bakos et al., 2005). In a more recent analysis Camargo and Fonseca (2013)

estimate the US self-directed online brokerage market to have reached over 40 million

customers in 2012. Furthermore, they report growth rates have slowed down since 2010
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which can be an indication of saturation. From a customer’s perspective, important distin-

guishing features for online retail brokerage companies are fees, trading capabilities, and

the functionality of their trading interfaces. As designing trading interfaces gives broker-

age companies an additional opportunity to differentiate themselves from competitors, a

lot of effort is put into designing ‘attractive’ trading interfaces for customers. Although it

is common knowledge, that a decision maker’s performance in general depends inter alia

on the user interface used (Speier and Morris, 2003), even a carefully designed and easy

to use interface may not prevent traders suffering from behavioral biases.

The disposition effect is such a behavioral bias, which often leads to individual losses and

missed gains. Although the disposition effect is well known in several research communi-

ties, it is not considered to be part of general knowledge. Therefore, providers of online

trading platforms might have a particular interest to inform their customers about that

bias, -and if possible provide tools to avoid the bias. On the one hand, the strength of that

bias is influenced by the individuals’ internal decision making processes and knowledge

about the specific bias and awareness. On the other hand, the individuals’ environment

(e. g., information presentation) might impact the effect strength.

In this study, performance indicators are identified as a driver of the disposition effect

and it is shown that their disuse can decrease the disposition effect and therefore its nega-

tive implications. Although, the question persists how individuals can be sensitized for this

bias. Evidence that textual information can work – even under difficult circumstances –

can for instance be found in the area of health warnings on tobacco. Hammond (2011)

could show that persons who noticed a textual warning sign, in some cases started to think

about changing their behavior. But he also emphasizes, that the information must “capture
[. . . ] attention and educate” (Hammond, 2011) in order to be effective. Another study in

the health domain examining effects of pictures and textual information found that only

using textual arguments led to minor changes in intended behavior (Boer et al., 2006).

To summarize, it has been shown that textual information can have an effect, although

it does not seem to be a strong one. The following research questions are addressed in

this study: (i) Is the knowledge about the existence of the disposition effect suitable to

lower the disposition effect exhibited by an individual? (ii) Does a trend indicator arrow

(like the ones often used in online trading screens) positively affect the strength of the

disposition effect exhibited by an individual? To answer these questions, an experiment is

set up in an online prediction market. Before addressing these questions it is first verified

that the disposition effect is prevalent in the regarded market at all, and whether it effects

participant’s trading performance.
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The remainder of this chapter is structured as follows: First, related research concern-

ing the disposition effect and prediction markets is presented in Section 8.2. Second,

the conducted experiment is described and the hypotheses are developed in Section 8.3.

Thereafter, in Section 8.4, a short description of the dataset is given and the methodology

used is outlined, before the findings are presented. Finally, results and their implications

are discussed and concluding remarks are made in Section 8.5.

8.2 Related Work

8.2.1 Disposition Effect

Across a wide range of markets, traders tend to hold on to paper losses for too long and

realize gains too early. This tendency is a deviation from rational behavior, where the

trader makes his decision based on relative gains and losses instead of the absolute val-

uation of his investment. Based on Kahneman and Tversky’s (1979) prospect theory, the

work of Machina (1982), and others, Shefrin and Statman (1985) examined this particu-

lar pattern and coined the term disposition effect (DE) for it. They developed a descriptive

theory that enabled a broader insight on this particular effect in real markets. But their

explanatory approach goes beyond prospect theory and also includes aspects of mental

accounting (Thaler, 1985), as well as the asymmetry of pride and regret (Kahneman and

Tversky, 1979; Thaler, 1985), and self-control (Thaler and Shefrin, 1981). The existence

of the disposition effect has been shown in stock markets (e. g., Lakonishok and Smidt,

1986), for a U.S. discount brokerage house (Odean, 1998) or for the Taiwan Stock Ex-

change (Barber et al., 2007), but also in experimental settings (e. g., Andreassen, 1988;

Weber and Camerer, 1998) or in prediction markets (e. g., Teschner et al., 2012). Al-

though the disposition effect can be shown in a wide range of markets, its strength seems

to depend on individual factors, such as professionalism, sophistication, and trading ex-

perience. Shapira and Venezia (2001) examine a dataset from an Israeli brokerage house

and found out, that independent investors tend to have a higher disposition effect than

professional investors. Seru et al. (2010) show that the disposition effect declines with

trading experience. But even a lower disposition effect for professional traders does not

mean, that disposition effect’s performance-degrading implication vanishes with growing

experience. Both studies imply that the strength of the disposition effect for an individual

is varying and can actively be influenced. Garvey and Murphy (2004) analyzes a success-

ful team of proprietary traders and found, that even though the traders were experienced
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and performed very well, their performance could have been better, if they would have

avoided the disposition effect’s trading pattern. Feng and Seasholes (2005) show, that a

combination of sophistication and trading experience can even eliminate investor’s reluc-

tance to realize losses, but it can only diminish the propensity of an investor to realize

gains. Summing up, the disposition effect has shown to hinder individuals trading perfor-

mance. Although, it can be diminished by traders’ experience and sophistication it cannot

be totally avoided.

8.2.2 Disposition Effect in Prediction Markets

Teschner et al. (2012) analyzed the disposition effect in a prediction market for macroe-

conomic indicators as described in Teschner et al. (2011) with a sample size of 96 active

traders. They conducted their analysis largely based on the work of Odean (1998). In line

with previous research, they found a disposition effect on the individual level (DE= .1582)

as well as on the aggregated level (DE = .2248). Furthermore, they found a significant

asymmetry in the disposition effect towards the percentage of gains realized. Interest-

ingly, there was no significant impact of the disposition effect on absolute forecast error

as well as no correlation between prediction accuracy and disposition effect. Hartzmark

and Solomon (2012) examined a dataset of a NFL betting market from Tradesports.com,

Inc.1 and found that prices followed a S-shaped curve instead of linearly matching the

underlying probabilities. They found this particular mispricing to be consistent with the

disposition effect. In another study, Borghesi (2013) found strong evidence for the disposi-

tion effect in Tradesports’ market for NBA totals contracts to lead to significant differences

between prices and underlying values, also consistent with the disposition effect. Sum-

ming up, there is evidence that the disposition effect exists in prediction markets.

8.3 Setting and Research Questions

8.3.1 Experimental Setting

A field experiment is conducted on a prediction market called Kurspiloten (cf. Section 4.2).

Additional specifics of that market are detailed in the next paragraph. Afterwards, the ex-

1Accessible at the URL http://www.tradesports.com/ .
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periment, consisting of treatment-specific user interface changes is described. The treat-

ments actually used are explained in the last paragraph.

Market Details

Besides individual decisions, the disposition effect also depends on market price devel-

opments. For example, traders in a bearish market have simply less chances to realize

paper gains but more paper losses; the opposite applies to bullish markets. Since traders

might concentrate their trading on different stocks, this dependency might be problem-

atic for further analyses. In extreme situations traders might experience different or even

opposed market effects due to their different portfolios. However, it is expected that the

effect market price developments have on the disposition effect are rather small in this

market. First, the tradable stocks (Table 4.1) can roughly be grouped into stock indices

and commodities. Within those groups, the single commodities/indices are somehow in-

terdependent (e. g., DAX and MDAX, Gold and Silver.) and thus are unlikely to develop

in opposed directions for a longer period of time. Second, traders in Kurspiloten market

start with an identical portfolio and receive an identical endowment each week, therefore

tempting traders to trade all kinds of tradable stocks. As all traders participate in the very

same market, it is assumed that price market trends do not influence the disposition ef-

fect between individual traders significantly. Finally, traders’ profits are used as a control

variable in the following regression models (where appropriate), which further smoothens

the potential negative impact of market price developments on the comparability of the

individual disposition effect.

User Interface Modifications

The experiment is set up as a 2× 2 full factorial between subjects design. Both treatment

conditions are visual changes to the trade screen (Figure 8.1; Appendix A). The first change

(‘DE Info Text’) consists of a linked text “Do you know about the disposition effect?”2 just

above the price chart (see label (a) in Figure 8.1). When a user clicks on this text, a para-

graph explaining the disposition effect fades in. Appendix A contains the complete text

besides an english translation. As the experiment takes place in the field, compromises

must be made in some areas. Hence, traders are not forced to read the DE Info Text prior

to trading on the market. Instead the current time and user id is recorded with every click

2Author’s translation. Original phrase: “Kennen Sie den Dispositions-Effekt?”
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on the link to DE Info Text for further analyses. The second treatment condition (‘Trend In-

dicator’) extended the box “Your Performance”3 on the lower right of the trade screen by

one column (see label (b) in Figure 8.1). The basic interface only contains the information

“Average Purchase Price”4 (left column in the box “Your Performance”), whilst the second

treatment condition extended that box by a column named “Performance”, containing the

relative performance of stocks held. First, the percentage difference between the current

market price and the average purchase price for the corresponding stock is shown. Second,

a tiny trend direction arrow indicates whether this difference is negative, zero, or positive.

The arrow is colored red, grey, or green, respectively. It is similar to stock trend indicators

used in many online trading interfaces.

Treatments

All participants registered on the Kurspiloten market are assigned to one of the three treat-

ment groups or to the control group as shown in Table 8.1. Participants who registered in

the pre-market phase are randomly assigned prior to the start of the market. Participants

who joined after start of the market are assigned randomly at registration. Each trader re-

mains member of the assigned treatment group for the whole duration of the market. The

first group was confronted with both conditions described above (treatment Trend_Info)

and depicted in Figure 8.1. One group saw the trend info (treatment Trend), another one

the info text (treatment Info). No changes were made for the control group (Control), i. e.,

the control group saw neither the info text nor the trend info.

TABLE 8.1: Treatments and Research Design

DE Info Text w/o DE Info Text

Trend Indicator Trend_Info Trend
w/o Trend Indicator Info Control

8.3.2 Research Questions

This study tries to answer the afore-mentioned research questions 5 and 6 from Sec-

tion 1.2:

3Author’s translation. Original phrase: “IHRE PERFORMANCE”
4Author’s translation. Original phrase: “durchschnittlicher Kaufpreis”

116



8.3 Setting and Research Questions

FIGURE 8.1: Trading Screen for Treatment Trend_Info

(Containing both user interface modifications made: a and b. A click on the linked text (a) fades in an info

text about the disposition effect. The whole disposition info text is depicted in Appendix A. Modification

(b) shows the ‘Trend Indicator’ element. Screenshots of the three remaining treatments can be found in

Appendix A. )

Heading: “Price development of Dax 2011-10-07”; In box (a): “Do you know about the disposition effect” (only available in

treatments Info and Trend_Info); Chart: price chart for Kurspiloten prices (red dotted line) and real-world prices (black line); middle

left: “Your Order for Stock . . . 2011”, radio buttons for buy and sell, information about the current real-world price of selected

stock (bold), input field for limit price, information about deviation of limit price from real-world price, input field for quantity,

information about buying power (bold), ‘execute’ button; Right column: 1st box: “My Portfolio”, own holdings, own holdings

available, and money (P€); 2nd box: “Market Information”, least recent price and closing date of current product; 3rd box:

“Orderbook”; 4th box: “Current News”, news stream from a major German financial newspaper; 5th box: “Your Performance”, average

purchase price of selected stock and relative performance (i. e., relative price difference of average purchase price and least recent

market price; only available in treatments Trend and Trend_Info)
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Research Question 5: Is providing information about the disposition effect suitable to
lower the strength of the disposition effect exhibited by an individual?

Research Question 6: Does a trend indicator arrow affect the strength of the disposition
effect exhibited by an individual?

As stated earlier, albeit the disposition effect (DE) is a well-known behavioral bias, it is

not part of a general education and can therefore not expected to be known by the vast

majority of participants of an online prediction market. As research has shown, knowledge

about the existence of the disposition effect can lead to a decreased disposition effect. This

study tries to shed some light on the question, if it is expedient to inform about the DE with

a short information text directly within an online trade screen or if a ‘deeper understanding’

of the disposition effect is needed. It is expected that reading an information text leads to

a lower disposition effect, simply by creating awareness for this particular deviation from

rationality, and thus increasing self-control.

Therefore, an – yet unspecified – interface change ‘DE Info Text’ is defined, consisting

of an information text about the disposition effect on the trading screen. Hence, in line

with current research, the information text is expected to reduce the disposition effect:

Hypothesis 4: Mean disposition effect is lower if ‘DE Info Text’ was read. (INFO < CTRL)

Moreover, self-control might be decreased by confronting a trader with the portfolio

state in a transparent fashion.The disposition effect is driven by the traders’ perception of

his portfolio development; e. g., if a trader cannot remember the purchase price of stocks,

he is obviously unable to tell if he is riding a gain or a loss. In a more complex market en-

vironment, traders repeatedly buy and sell different amounts of shares for different prices

resulting in a non-intuitive way to calculate the average purchase price. That purchase

price has to be compared to the current stock market price in order to determine the own

holdings’ performance. The easier a trader realizes his portfolio value, the more he might

be tempted to yield to the disposition effect.

Furthermore, it is well known that traders can fall victim to mental accounting. Show-

ing traders a transparent state of their portfolio on a per stock basis might intensify this

biased perception. In order to support traders with an objective and comparable method

to reflect about the portfolio performance, an interface change ‘Trend Indicator’ is defined,

that consists of a relative performance indicator of a trader’s portfolio price development

and a visual cue representing its direction. The ‘Trend Indicator’ is therefore expected to

increase the disposition effect:
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Hypothesis 5: Mean disposition effect is higher if ‘Trend Indicator’ is present. (TREND> CTRL)

From a theoretical point of view, it is not expected that an information text about the

disposition effect and a trend indicator for the own portfolio’s price development should

influence each other. Therefore, the following hypotheses are developed:

Hypothesis 6a: ‘Trend Indicator’ does increase the mean disposition effect, even if ‘DE Info Text’
is present. (TREND_INFO > INFO)

Hypothesis 6b: ‘DE Info Text’ is suitable to reduce the mean disposition effect, even if
‘Trend Indicator’ is present. (TREND_INFO < TREND)

The trend indicator is expected to induce a higher order activity, since it reflects the

state of a portfolio in a more transparent way and thus might make trading opportunities

more obvious. Hence, the fourth hypothesis is:

Hypothesis 7: ‘Trend Indicator’ leads to an increase in the traders’ activity.

8.4 Results

In this section the empirical findings are presented, starting with descriptive statistics.

Afterwards, the overall and individual existence of the disposition effect is shown, before a

detailed look at the disposition effect with regard to the four treatments introduced earlier

is taken. Finally, we shed some light on the traders’ order-based activity per treatment.

8.4.1 Descriptive Statistics and Methodology

This study uses the dataset from Kurspiloten market as described in Section 4.2. The dis-

position effect is only calculated for traders who submitted at least 12 orders. Additionally,

traders that had no chance to realize a gain or a loss and traders that did not realize at least

one gain or one lose are filtered. Due to these circumstances the disposition effect can be

determined for 514 traders. The sizes of the three treatment groups and the control group

are nearly balanced out: NTrend_Info = 123, NTrend = 126, NInfo = 123, and NControl = 142.

About one quarter of the traders, who could click on the info text link, actually made use

of this possibility: Nclicked
Trend_Info = 30, Nclicked

Info = 30. The average account age lies between

69.10 days (Trend) and 67.26 days (Trend_Info) with an overall mean of 68.05. Traders’
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performance – measured by their total trading profit – differs significantly (t-stat = 2.34,

p = 2.04%) between treatments Info and Trend. Hence, variable Profit is used in the re-

gression analysis to control for that fact. Besides, variable Trades per Day is used to control

for different trading activity. Although the number of trades per day does not significantly

differ between treatments, it does for traders that clicked on the info link in comparison

to those who did not (t-stat= 2.51, p= 1.24%).

The disposition effect is mainly measured based on Odean (1998). The only exception

is the length of the time slices used. Since the trading period per product was rather

short (seven days), the users’ sessions are used to differentiate between paper gains and

losses instead of trading days; e. g., if a traders’ average purchase price was below the

highest and lowest market price in the regarded session it is counted as a paper gain. The

disposition effect (DE) is calculated as DE= PGR−PLR where PLR denotes the Proportion

of Losses Realized, and PGR the Proportion of Gains Realized. PGR and PLR are calculated

as follows:

(8.1) PLR=
# realized losses

# realized losses+# paper losses

(8.2) PGR=
# realized gains

# realized gains+# paper gains

8.4.2 Disposition Effect on Prediction Markets

In line with current research, an aggregated disposition effect (DE) can be shown in the

Kurspiloten market (DE= .154, PLR= .041, PGR= .196) which is slightly smaller than in

a similar study of Teschner et al. (2012) (DE= .225, PLR= .018, PGR= .242) and higher

as in studies using data of online brokers (e. g., for an U.S. discount broker Odean (1998)

measured DE = .05, for a German online broker Weber and Welfens (2007) measured

DE = .09). On the individual level the disposition effect is 0.148 and thus comparable to

a similar study on a play-money prediction market conducted by Teschner et al. (2012)

(DE = .158). Further details are displayed in Table 8.2. As one can see PLR, PGR and

DE are significantly greater than zero. Additionally, the disposition effect is asymmetric,

since the absolute correlation between DE and PLR is slightly smaller than between DE

and PGR.
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TABLE 8.2: Mean Individual Disposition Effect

Value t-stat (x > 0) Correlation (DE, x)

PLR .094 11.67 −.69

PGR .242 21.84 .85

DE .148 9.89 —

Notes: N = 514 (complete groups); both correlations are significant

at a 1 %-level

Result 3: The disposition effect is prevalent in the regarded market on an aggregated as
well as on an individual level.

8.4.3 Disposition Effect’s Influence on Trading Performance

As the disposition effect is prevalent in the market, the question arises, how the disposition

effect influences the market. Since this study focuses on the trader, there is a particular

interest in the disposition effect’s influence on traders’ performance. Therefore, the corre-

lations between the traders’ profits and the disposition effect, as well as their relative rank

and the disposition effect are regarded. (Relative rank here indicates the rank within the

514 regarded traders instead of the overall rank among all registered traders.) Neither

a significant correlation between profits and the disposition effect (ρ = .011, Pearson’s

product-moment correlation, t-value = .24), nor between the disposition effect and the

traders’ rank (ρ = −.028, Pearson’s product-moment correlation, t-value = −.62) can be

found.

8.4.4 Disposition Effect per Treatment

Table 8.3 (Figure 8.2a) shows the mean disposition effect in each treatment group and the

control group. The differences between Trend_Info and Trend (δ = .019), Info and Control
(δ = .052), Trend_Info and Info (δ = .036), and Trend and Info (δ = .017) are not signifi-

cant. Solely, the disposition effect for Trend_Info as well as for Trend is significantly higher

than for Control (both on a 5 %-level; Trend_Info: δ = .088, t-stat= 2.15, p-value= .016

and Trend: δ = .069, t-stat= 1.78, p-value= .038). At first glance, this result seems to

support Hypothesis 5. But as mentioned earlier, even if all traders in treatments Info and
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Trend_Info may read the disposition effect info text, it has not been controlled whether

they actually did expand this info text yet.

TABLE 8.3: Mean Individual Disposition Effect per Treatment (Complete Groups)

DE Info Text w/o DE Info Text

Trend Indicator .185 .166
w/o Trend Indicator .149 .097

Notes: N = 514 (complete groups)

(A) complete groups (B) subsample

FIGURE 8.2: Mean Individual Disposition Effect per Treatment

Therefore, the former analysis is repeated with a slight adaption: Table 8.4 (and Fig-

ure 8.2b) shows the mean disposition effect for a subsample, in which only traders in the

Info and Trend_Info treatment were taken into account that clicked on the info text link.

Furthermore, the disposition effect for those traders is calculated on the basis of trades

they executed after they first clicked on the info text link. Hence, N is slightly smaller.

As one can see, there is hardly difference between the treatments Trend_Info and Info
(δ = .001, not sign.). Also, the differences between Trend_Info and Trend (δ = .038),

Info and Trend (δ = .038), Trend_Info and Control (δ = .031), as well as Info and Control
(δ = .031) are not significant. Solely, the disposition effect for Trend is significantly higher

than for Control on a 5 %-level (δ = .069, t-stat = 1.78, p-value = .038). Again, this

finding supports Hypothesis 5. However, theses results cannot confirm Hypothesis 4.

Result 4: Textual information about the disposition effect has no influence on its strength
(cf. Hypothesis 4).

Result 5: Treatment Trend shows a significantly higher disposition effect than the control
group (cf. Hypothesis 5).
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TABLE 8.4: Mean Individual Disposition Effect per Treatment (Subsample)

DE Info Text w/o DE Info Text

Trend Indicator .128 .166
w/o Trend Indicator .128 .097

Notes: N = 328 (subsample: all traders who have not clicked on the

‘DE Info Text’ link mentioned in subsection ‘User Interface Modifications’

are filtered.)

When taking a look at the tiny difference between Trend_Info and Trend (δ = .001) in

Table 8.4 in contrast to the rather big difference of 0.069 between Trend and Control, one

might assume that the treatment condition ‘DE Info Text’ might have an influence on the

treatment condition ‘Trend Indicator’. It seems reasonable to examine, if the info text does

hinder the trend indicator’s increasing influence on the disposition effect. To control for

such an interaction effect, the regression model shown in Table 8.5, Model 2 and 4 is used.

To control for such an interaction effect, the regression model shown in Table 8.5, Model 2

and 4 is used.5 Additionally an ANOVA was applied. Neither method shows an interaction

between the treatment conditions ‘DE Info Text’ and ‘Trend Indicator’. That means, neither

of the treatment conditions do have a stronger or weaker effect under the premise that the

other treatment condition is present or absent. Furthermore, Models 3 and 4 control for

potential differences in treatment groups. Nevertheless, all models in Table 8.5 show a

positive influence of the trend indicator on the individual disposition effect.

For the sake of completeness, Table 8.6 contains the result for the complete treatment

groups. The result of the OLS regression and the ANOVA are qualitatively similar to what

has been presented for the subsample (Table 8.5), including the trend indicator’s influence

on the disposition effect.

Result 6: No interaction effects have been found between the disposition effect and show-
ing visual cues (cf. Hypotheses 6a).

There is reason to believe, that the trend indicator itself does increase the individ-

ual disposition effect strength. Therefore, the average disposition effect of all traders

who can see the trend indicator (mean DE = .176) is compared, with those who cannot

(mean DE= .121). In other words, the joined treatment Trend and Trend_Info is compared

against treatment Info and the Control group. This analysis results in a significantly higher

5 Please note, that the dummy-coding was adjusted for ‘DE Info Text’ appropriately.
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TABLE 8.5: Measuring Interaction Effects (Subsample)

Model (1) (2) (3) (4)

Direct Effects Interaction (1) + Controls (2) + Controls

Trend Indicator .060· .069· .061· .070·

(visible=1, hidden=0) (1.66) (1.78) (1.70) (1.81)

DE Info Text −.05 .031 −.014 .020

(visible=1, hidden=0) (−0.09) (.41) (−.27) (.27)

Trend Indicator −.069 −.067

× (−.65) (−.63)
DE Info Text

Trades .003· .003·

per Day (1.89) (1.87)

Profit .000 .000

(−.35) (−.36)

(Intercept) .102∗∗∗ .097∗∗∗ .088∗∗∗ .084∗∗

(3.96) (3.66) (3.33) (3.07)

Adj. R2 .25 % .06% .76 % .56 %

N 310 310 310 310

Notes: OLS regression estimates on subsample; dependent variable: disposition effect; t-statistics in paren-

thesis; ·p< .1, ∗p< .05, ∗∗p< .01, ∗∗∗p< .001

value for traders who see the trend indicator on a 5 %-level (δ = .054, t-stat = 1.82,

p-value = .034, N = 514). Again, the repetition of this analysis for the subsample from

above leads to analogous results (δ = .060, t-stat= 1.66, p-value= .049, N= 310).

Result 7: Displaying visual cues such as trend arrows increases the individual disposition
effect (cf. Hypothesis 5).

8.4.5 Activity per Treatment

As mentioned in section Hypotheses, treatment Trend is expected to have a higher num-

ber of orders submitted (Hypothesis 7). Therefore the number of (i) orders submitted

and (ii) logarithmized number of orders submitted is compared between all treatment

groups. The logarithmization is used, since it diminishes the effect of extreme values.
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TABLE 8.6: Measuring Interaction Effects (Complete Groups)

Model (1) (2) (3) (4)

Direct Effects Interaction (1) + Controls (2) + Controls

Trend Indicator .054· .062· .055· .062·

(visible=1, hidden=0) (1.83) (1.94) (1.83) (1.95)

DE Info Tex −.017 .014 −.025 .005

(visible=1, hidden=0) (−.37) (.21) (−.54) (.08)

Trend Indicator −.062 −.061

× (−.67) (−.66)
DE Info Text

Trades .002 .002

per Day (1.57) (1.56)

Profit .000 .000

(−.29) (−.31)

(Intercept) .123∗∗∗ .120∗∗∗ .114∗∗∗ .111∗∗∗

(5.75) (5.43) (5.16) (4.87)

Adj. R2 .28% .17% .37 % .26 %

N 514 514 514 514

Notes: OLS regression estimates on subsample; dependent variable: disposition effect; t-statistics in paren-

thesis; ·p< .1, ∗p< .05, ∗∗p< .01, ∗∗∗p< .001

One significant difference is found between Info and Control (δ = 382.24, t-stat = 1.71,

p-value = .045) for comparison ‘i’ and four differences for case ‘ii’: logarithmized trad-

ing activity in treatment Info is slightly higher than in Control group on a 0.1 %-level

(δ = 1.126, t-stat = 3.91, p-value < .001). Additionally, the logarithmized trading ac-

tivities for treatment Trend_Info and Info are significantly higher than for treatment Trend
(Trend: δ = 1.059, t-stat = 3.55, p-value < .001, Trend_Info: δ = .819, t-stat = 2.81,

p-value = .003). Finally, the logarithmized trading activity for treatment Trend_Info is

significantly higher than for Control (δ = .885, t-stat= 3.15, p-value< .001).

Since this analysis uses the afore-stated subsample (only traders who clicked on the

‘DE Info Text’ link), the result may also be interpreted in a different way: the more orders

a trader submits, the more often she sees the ‘DE Info Text’ link. Therefore one may argue,

that it is more likely for her to click on this link, which will result in such a pattern. To
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TABLE 8.7: Activity per Treatment

DE Info Text w/o DE Info Text

Trend Indicator 5.479 4.922

w/o Trend Indicator 5.502 4.855

Notes: N = 514 (complete groups); mean logarithmized number of or-

ders submitted per Treatment

clarify that question, the complete group was analyzed, but no significant differences were

found (Table 8.7). Hence, Hypothesis 7 is rejected.

Result 8: The trend indicator does not lead to a higher trading activity (cf. Hypothesis 7).

8.5 Conclusion

As the results show, the disposition effect can be aggravated by a tiny modification of the

user interface. The modification consists of a simple percentage value and a trend direc-

tion arrow showing the traders’ portfolio value, as used by online trading sites throughout

the web as trend indicator for stock prices or for similar applications. Surprisingly, even

such a small change does significantly increase the strength of the disposition effect. Those

changes are not expected to only have a downside. On the upside, it is assumed that traders

seeing the interface elements described above do submit more trades, since it shows the

current state of the traders’ portfolio in a fast and easy recognizable manner. But interest-

ingly this assumption could not be verified. As private investors are regularly confronted

to trading interfaces containing such elements, those results are especially interesting for

providers of market interfaces. For market interface providers like retail brokers, these

results imply to not use trend indicators. Nevertheless, currently most online brokers do

make excessive use of such interface elements, at least for the reason of easier recognition

of relative (price) changes. In order to help retail investors to avoid the disposition effect

– which has previously been shown to reduce investor welfare – online brokers should con-

sider redesigning their interfaces. These results also have an implication for regulators.

They should carefully think about obligating online brokers to elucidate customers about

behavioral biases, which are known to degrade their performance. As the results suggest,

textual advices do not seem to be the best possible solution in this case. (Besides, the

results put the effectiveness of textual information and advices already given to traders in
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question.) Regulators might furthermore think about banning certain types of visual cues

that are known to lead to a great share of ‘wrong’ decisions and a substantial degradation

of performance. Further research is needed to show, if the visual cue examined in this

study does satisfy the requirements to belong into this category. Nevertheless, retail bro-

kers should be interested in a good user experience and are hence motivated to deliver a

‘good’ user interface, which is supporting instead of misleading. Innovative retail brokers

might even use results like these to create a unique sales proposition, playing a pioneer

role in providing disposition effect-reducing user interfaces.

The disposition effect is a well-explored deviation from rational behavior. As many stud-

ies show, the disposition effect can have a negative impact on the decision performance in

trading environments. This study analyzed the disposition effect on aggregated and indi-

vidual level in an online prediction market with nearly 2,000 active traders and more than

200,000 orders. In line with research, a disposition effect could be found at both levels.

Furthermore, a field study with over 500 traders was conducted for which the individ-

ual disposition effect could be measured. Although, it could not be verified that creating

awareness of the disposition effect via textual information could decrease its strength, it

could be shown that even tiny visual cues can significantly increase the strength of the

disposition effect. Nevertheless, this study leaves room for further research. On the one

hand, the trend indicator was solely used to represent the average purchase price of the

traders’ portfolios in contrast to the current market price. A future study could examine, if

the disposition effect is also affected if trend indicators are used to represent price changes

of tradable stocks. On the other hand, it has been reported, that only about one quarter

of traders clicked on the link to the offered info text. Furthermore, even if a trader clicked

on the link, there was no possibility to validate that she has (i) understood the text and

its implications or (ii) read the text at all. A laboratory experiment could be set up to con-

trol for these factors; an additional questionnaire could provide certainty if a participant

has read and understood the concept of the disposition effect and its implications on her

trading performance. In a follow-up field study, a reposition of the offered link in a more

conspicuous location is worth considering.
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Chapter 9

Extending Auxiliary Services:
Conducting Trader-centered Surveys

“ An understanding and appreciation of existing insti-

tutions, good theory, good computational modeling and

well-designed experiments are critical ingredients to a

successful design.”

HAL R. VARIAN, 2002

9.1 Introduction

ACCURATE and reliable forecasts of future short- and long-term events are a crucial

competitive factor for companies, regions, and countries and an important founda-

tion for political decision making. Advances in information systems are changing informa-

tion aggregation in many contexts: political institutions increasingly open up for grassroots

feedback and open discussion of societal innovation, ad-hoc communities use social media

to coordinate, and companies gradually shift decisions towards a broad basis of employ-

ees and allow for user-driven innovation. An underlying theme of this trend is using the

collective intelligence and wisdom of the crowd.
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There are various ways to utilize the wisdom of crowds or collective intelligence such

as using wikis, reputation systems, or polling mechanisms. Another way to aggregate

dispersed information is by using a Prediction Market (cf. Chapter 3.) In these markets,

participants trade contracts whose payoff depends on the outcome of uncertain future

events. For example, a market contract might reward one dollar if a particular presiden-

tial candidate is elected. An individual who thinks the candidate has a 65 % chance of

being elected should be willing to pay up to 65 cents for such a contract. Market partici-

pants form expectations about the outcome of an event. Comparable to financial markets,

they buy if they find that prices underestimate the probability of the event in question and

they sell a stock if prices overestimate the probability of an event. The track record of

prediction markets suggests that markets may help to better foresee future developments

and trends. Although, prediction markets have their strengths in quantitative predictions

and even make conditional predictions possible – albeit complicated – (cf. Berg and Rietz,

2003), they are not well suited when it comes to qualitative predictions. The strength

of prediction markets is the collaborative valuation of given contracts (i. e., the mapping

between payoff, event outcome, and event date). Since all valuation is based on quanti-

tative values (i. e., prices), qualitative information can only be induced into the market in

the contract design, which falls to the market operator. For example, questions like “What

will the Gross Domestic Product (GDP) of country A be in 2015” fit perfectly to prediction

markets, whereas “How can productivity be improved?” is better suited for surveys.

Complex forecasts, such as conditional or qualitative judgments are better gathered with

traditional forecast methods such as survey-systems. However, traditional survey-systems

also have some known drawbacks. First of all, the success of surveys largely depends on

the participant selection (Ammon, 2009; Gordon, 2007). The most common selection cri-

terion is reputation, which is based on perceived expertise. However, Tetlock (2005) shows

that perceived expertise does not correlate with individual forecast accuracy. The second

drawback is the decreasing participant motivation over the study’s course. The long, rigid

and tedious process leads to decreasing participant numbers (Cuhls, 2003). Ilieva et al.

(2002) conducted a literature review and found response rates for online surveys from low

as 6 % (Ranchhod and Zhou, 2001) to high as 67 % (Kiesler and Sproull, 1986). Deutskens

et al. (2004) conducted a study with different types of surveys. Evans and Mathur (2005)

analysed the pros and cons of online surveys in contrast to traditional mail surveys and

discussed the online surveys’ best uses. Inter alia, he found online surveys are best to use

if timeline is vital, strong methodological control is sought (e. g., order of the questions), and

survey research is conducted frequently; all which applies for repeated online surveys in a
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prediction market context.

There are at least two ways surveys can benefit from an accompanying prediction mar-

ket; motivation and pre-selection of experts. Prediction markets motivate participants to

contribute continuously through incentives and by providing constant feedback; both on

the aggregate and the individual level. More participants might be willing to participate

(at least partly) in a survey if they have indicated that they have information regarding a

topic. The question is how to figure out when a participant has information about a topic?

This can be detected through the prediction market. If participants change the market

price, they most likely have information about a certain topic and might be willing to fill

out some related qualitative and possibly more complex questions. In previous studies

(e. g., Chen et al., 2005), surveys run in parallel to prediction markets but in separate sys-

tem. Survey participants had to leave the known platform, fill out a survey, and return to

continue trading. Potentially, participants might find it convenient to answer survey ques-

tions right on the same platform. Moreover, Teschner et al. (2011) show that individual

forecast input can be measured and objectively evaluated in prediction markets. Hence,

this might help to pre-select experts not based on their reputation but on their previous

forecast performance.

The remainder of this chapter is structured as follows: Section 9.2 gives a review of

related work on prediction markets and surveys. The experimental setting and research

questions are detailed in Section 9.3. Subsequently, Section 9.4 describes the dataset and

the methodology used. Finally, Section 9.5 concludes this chapter.

9.2 Related Work

9.2.1 Prediction Markets and Surveys

Prediction markets offer a number of advantages over surveys. Prediction markets are

continuous and ongoing, allowing immediate revelation of new information Rothschild

(2009). As they are usually open around the clock, participants can trade whenever they

like and therefore react to news immediately (Snowberg et al., 2007). This also applies

mostly to (traditional) mail surveys (e. g., Dillman, 1991) or internet surveys (e. g., Zhang,

1999).1 Although some surveys offer a small incentive in return for participation, the in-

centives earned by traders in a prediction market increase in proportion to the quality of

1See Cook et al. (2000) for an interesting overview on the response rates of internet surveys.
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the information provided. Unlike surveys, a market provides immediate feedback to par-

ticipants, allowing them opportunities to reassess their own information and to respond.

The feedback enables participants to learn on two levels; first by actively trading, partic-

ipants might gain experience and hence improve over time. Second, by observing their

performance participants might realize their low ability and consequently leave the mar-

ket (Teschner et al., 2011). The market interface is interactive and the setting gamified,

in marked contrast to most surveys, providing further incentives for participation. Most

surveys rely on random samples for validity and accuracy. In prediction markets, on the

other hand, those with the best information are the best participants – the very individuals

who are most likely to self-select into the market. Additionally, as successful participants

accumulate their profits they gain forecasting weight over time compared to less successful

participants. With surveys, this process of self-selection would introduce a sampling bias,

but with markets, the incentive system forces low performers out of the market. Turning

to the disadvantage of markets over surveys, one has to mention the higher complexity

burdening participants (Graefe et al., 2010). First, they have to understand the trading

mechanism and second, they have to understand how events are related to contracts. This

process is more structured and better researched for surveys. The forecast performance

of prediction markets is still in debate. On the positive side, they have proven repeatedly

to be very potent information aggregation mechanisms (e. g., Berg et al., 2008; Ledyard

et al., 2009; Bennouri et al., 2011). Although, other evidence suggests that the relative

performance advantage of markets may be small compared to surveys or polls (e. g., Erik-

son and Wlezien, 2008; Rothschild, 2009; Goel et al., 2010). Prediction markets have a

long track of successful field applications, e. g., in political elections (Berg et al., 2008),

sport events (Luckner and Weinhardt, 2008), finance (Bennouri et al., 2011), and pre-

dicting market development (Spann and Skiera, 2003). See Wolfers and Zitzewitz (2004)

and Ledyard et al. (2009) for reviews. However, to the best of the author’s knowledge,

prediction markets and surveys have never been combined during the prediction making

process.

9.3 Setting and Research Questions

9.3.1 Experimental Setting

For this study a German political stock market, PIX, during the 2013 federal election hosted

on the EIX market is used (cf. Section 4.3.1). In order to compare the integrated to stan-
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dalone surveys two treatment groups (integrated vs. standalone) are set up. All traders are

randomized in one of the groups. An extensive questionnaire with 73 items consisting of

6 parts was created: 1) General questions and platform feedback, 2) Election outcome, 3)

Information sources, 4) Personal questions, 5) Political coalitions, and 6) Election Polls.

While the integrated group could answer the questions one by one directly on the platform

the standalone group was presented with a link to an external survey software (LimeSur-

vey, 2014) where participants had to answer all questions in one pass (Figure 9.1). The

integrated questionnaire allows for questions with a predefined list of answers to appear on

the PIX’s main page, one at a time. Adjustable settings include the question mode, allowing

only one reply selection or multiple. Equally important, it can precisely be defined when,

where and in what order questions are asked. These properties are defined by a time win-

dow for question activity, and a priority ranking for the order of appearance. Obviously, it

was made sure that every user can answer every question only once. Since these questions

are of sensitive nature, each contains the option “prefer not to say”. The answers can be

selected via radio buttons, before users can submit their answers by clicking on a button.

It was decided to use a self-made questionnaire infrastructure to enable traders replying

quickly to a question without leaving the website. As a consequence, willing responders

who simply not want to go to an external website were not lost.

(A) Integrated Survey (box labelled ’a’) (B) Standalone Survey

FIGURE 9.1: Integrated Survey (a) and Standalone Survey (b)
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(A) Ad Hoc Post-Trade Question (B) Magnification

FIGURE 9.2: Trigger-based Survey on Top of Trade Overview Screen (a) and Magnification (b)

Additionally, every participant is asked an ‘ad hoc post-trade question’ (trigger-based
survey) using a self-made trigger-based survey-system. In order to gain a better under-

standing of the trader’s thought processes, after every submitted order the trigger-based

survey-system was called in order to decide, if the current participant should be asked

the trigger-based survey. The algorithm used determines on the basis of the participant’s

trading history, number of already answered ad hoc post-trade questions in the last 21

days and a random component, if the question will show up immediately after the sub-

mission of an order or not. The parameters are configured in order to ask each trader at

least once in three weeks per tradable product. The trigger-based survey asks the trader

for the reason of his last order. Possible answers are: 1) I feel, that party/candidate was
under/overvalued, 2) I can/cannot imagine to vote for that party/support that candidate, 3)

I like to see a lower/higher price for that party/candidate on this prediction market, 4) I need
stocks/money to sell/buy a bundle, 5) other reason.2 The trigger-based survey (Figure 9.2)

motivates participants to rationalize their trading decision ex-post and opens an interesting

area for further field-studies on decision behavior.

2Note, that all answer were selectable via radio-buttons; especially, it was not possible to answer ‘5)’
textual.
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9.3.2 Research Questions

The integration opens up several research questions. First, how well (measured by re-

sponse rate, total number of answered questions, response speed) does an integrated sur-

vey work compared to a standalone version? Surveys often have a quite low response

rate of about 10 % (e. g., Ranchhod and Zhou, 2001; Deutskens et al., 2004). Finding a

way to increase the response rate would be highly beneficial. In some applications such as

ad-hoc questionnaires regarding recent events, researchers aim for a fast response speed.

Moreover, how well does the trigger-based survey tool, polling participants who are stating

that they have new information perform? Second, previous work shows that in prediction

markets experts can be identify ex post by their performance. This raises the question of

when to ask the experts? This study tries to address the question of how to best acquire

information from the market’s experts. Additionally, online surveys are sovereign in re-

sponse speed and the ability to methodologically control the filling process. According to

Evans and Mathur (2005), online surveys fit best for the given purpose. Hence, a compar-

ison of different types of online surveys is made. Specifically, common standalone surveys

and market integrated surveys are used. The main research question, as introduced in

Section 1.2 as research question 7 is:

Research Question 7: Are integrated surveys more accepted by participants of a predic-
tion market than standalone surveys?

The ‘acceptance’ is measured by response rate, total number of answered questions,

and response speed. Additionally, a first experimental study on trigger-based surveys is

run.

9.4 Results

In this section results of the study are presented. First, descriptive statistics are shown.

Second, differences in response rate and reaction time are reported, followed by a closer

look on the number of answered items. Third, an application of the trigger-based survey

is presented and its response rate and acceptance is reported.
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9.4.1 Descriptive Statistics

Participants were invited to fill out either the integrated or the standalone survey from

2013-07-29 until 2013-08-25 (28 days). Both groups are nearly equally sized (integrated:

N = 1, 864, Nact ive = 706; standalone: N = 1,731, Nact ive = 657) and hardly different in

their trading activity (integrated: 71.57/7/466.83, standalone: 101.78/7/685.36 (#or-

ders mean/median/sd)). Traders are counted as active, if they submitted at least one order

while the market was active.

9.4.2 Response Rate and Reaction Time

The integrated survey has a higher response rate; both complete responses and partial

responses are higher for participants using the integrated survey. The standalone survey

leads to 6 (.91 %) complete and 38 (5.78 %) partial responses in contrast to 32 (4.53 %)

complete and 124 (17.56 %) partial responses in the integrated survey. (Percentages relate

to active traders in corresponding groups.) The advantage of integrated surveys over stan-

dalone surveys cannot conclusively shown here, due to the small response rates. Here, the

integrated survey leads to an increase of 533.33 % in complete responses, and 326.32 %

in partial responses compared to the standalone survey.

Next, the duration from the moment the survey was available until a participant an-

swered his last question (‘reaction time’) is compared. In treatment integrated, partici-

pants that only partly answered the questionnaire have a median reaction time of 10.01

days (mean= 12.21) compared to 13.26 days (mean= 14.66) in treatment standalone. To

completely fill the survey participants’ reaction time is on median 6.52 days (mean= 7.80)

in treatment integrated and 13.64 days (mean = 12.48) in treatment standalone. Sum-

ming up, treatment integrated delivers completely filled questionnaires (t-stat = 1.535,

p = 6.68 %) as well as partially filled questionnaires significantly faster (t-value = 1.786,

p= 3.94%).

Result 9: The integrated survey delivers results significantly faster (24.51 % – 52.20 %).

9.4.3 Number of Answered Items

As shown, the difference between reaction times for partial responses is lower than for

complete responses. As a rather long questionnaire was used, the number of items an-
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swered in total and per survey participant are also of interest. Those measures can help to

estimate participants’ acceptance of the duration of this particular survey and the possible

response rate a shorter survey would have (had). In treatment integrated participants an-

swered 3,522 items and 28.40 items per participant (median= 11). Treatment standalone
leads to 2,497 answered items and 65.71 per participant (median = 64.71). Altogether,

participants in treatment integrated answered on average significantly (Wilcoxon rank sum

test, W = 1,214, p < 0.01 %) less items than in treatment standalone. It is assumed, that

the reason lies in the ‘entry barrier’ of standalone surveys; i. e., in contrast to an integrated

survey, which a participant might start, suspend, and continue as he pleases, an invitation

link to a standalone survey represents a certain barrier. Participants might think twice be-

fore leaving the main web site to take part in a survey of unknown length and cognitive

effort.

Result 10: The integrated survey lead to 41.05 % more answered items.

9.4.4 Trigger-based Survey

Last, the response rate for the trigger-based survey is analyzed. A total of 3,691 questions

were triggered to 699 different traders resulting in 3,388 responses from 681 traders. As it

cannot be distinguished if a participant answered “other reason” or denied to answer, the

resulting response rate of 91.79 % is a lower bound. Participants decided to not answer a

trigger-based survey 303 times (152 unique traders). 547 participants or 78.25 % never

declined to answer a trigger-based survey.

Result 11: Trigger-based survey: high response rate (91.79 %) and widely accepted (78.25 %).

In order to illustrate how the two survey types can be used in conjunction, some pre-

liminary data will be shown, matching both surveys on a per participant basis. Results

of the trigger-based survey are shown in Table 9.1. Column “Answer” lists the possible

responses as described in Section 9.3; column “Total” contains all data gathered with the

trigger-based survey; column “Party/Candidate” shows only results of the trigger-based

survey for traders who stated their preferred candidate/party via the integrated survey.

Obviously, answer 1 was the major reason for trades (66.59 %), regardless if traders sub-

mitted an order for their preferred party/candidate (62.04 %) or for any other party/candidate

(65.35 %). Hence, the majority of orders were reportedly submitted based on (subjec-

tively rational) economic considerations and thus might be more ‘sensibly priced’ as orders
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TABLE 9.1: Judgment Bias per Party

Total Party/Candidate

Preferred Other

Answer Count Percentage Count Percentage Count Percentage

1) under/overvaluation 2,458 66.59 % 206 62.05% 1,107 65.35 %

2) potential support/vote 511 13.84 % 75 22.59% 267 15.76 %

3) like to see lower/higher price 175 4.74 % 22 6.63% 76 4.49 %

4) bundle 244 6.61 % 18 5.42% 112 6.61 %

5) other reason/no answer 303 8.20 % 11 3.31% 132 7.79 %

Sum (answered) 3,388 91.79% 321 96.69 % 1,562 92.21%

Sum (total) 3,691 100.00% 332 100.00 % 1,694 100.00%

that were submitted for reasons 2 and 3. Similar to answer 1, answer 4 indicates subjec-

tively rational trading behavior, as trading bundles is profit neutral. Altogether, over 80 %

of participants reported to make their decisions based on rational considerations, which

seems pretty reasonable. Although, there is a considerable proportion (18.58 %) where

participants report, they want to see higher/lower prices or (not) support a certain candi-

date/party. At first glance, this seems to indicate irrational trading behavior. Nevertheless,

this answer does not strictly exclude rational consideration (e. g., one might ‘know’ a cer-

tain candidate is overvalued, but prefer answer 3 over 1 anyway.). Therefore there is no

reason to doubt participants answered truthfully on a large scale.

When comparing the percentual responses of all participants with those of participants

that reported their party/candidate preferences, two salient contrasts can be seen. First,

the differences between “Total” and “Preferred” are on average higher than for “Total” and

“Other”. Second, the biggest difference is present between “Total” and “Preferred” for an-

swer 2 (8.75 %). Both observations might indicate, that participants’ political preferences

do affect their trading decisions. This might complement findings like the one that traders

tend to buy more stocks of their preferred party (e. g., Kranz et al., 2014). Nevertheless,

most differences between “Total” and “Preferred”/“Other” are rather small and – at first

glance – the major tendency that roughly 2/3 chose answer 1 looks consistent.

Scratching the surface, it seems that trading behavior matches stated behavior in both

surveys and survey responses are most widely consistent between both surveys. Summing

up, the combination of integrated and trigger-based surveys provides a promising way to

analyze individual trading behavior more deeply in further research.
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Result 12: The integrated survey and the trigger-based survey seem to deliver consistent
results.

9.5 Conclusion

In the age of near-ubiquitous internet access through an expanding variety of connected

devices, it has not only become possible to conduct a greater number of polls, surveys,

and preference elicitation tasks that involve a greater number of people; it is also possi-

ble to obtain more and richer information from each respondent. Nowadays, a popular

way to gather that information on a continuous and repeated way is to run prediction

markets. Their track record suggests that these markets may help to better foresee future

developments and trends. Markets are powerful instruments for aggregating dispersed

information, yet there are flaws. Markets are too complex for some users, they fail to

capture massive amounts of their users’ relevant information, and they suffer from some

individual-level biases (e. g., Wolfers and Zitzewitz, 2004, 2006).

In this study a large-scale prediction market is integrated with a survey in two dis-

tinct ways. First, trading in prediction markets indicates that participants believe to have

additional information. Consequently, a one-question survey is randomly triggered after

a trade. The response rate for these types of question is with 91.79 % extremely high

compared to typical online surveys. This approach reveals two advantages: (i) those par-

ticipants who trade have information and (ii) they are actually interested to share that

information. Both, having information and willingness to share information are usually

out of scope of an online survey. Second, participants might find it convenient to answer

survey questions right on the same platform. Hence, a survey feature was integrated. In

a large-scale field experiment with over 3,500 participants, consistency and the response

rate of the integrated survey was tested and compared to a standalone version. The in-

tegrated survey was found to deliver robust responses and a 3.16 % (533.33 % relative)

higher response rate. Although the higher response rate could not be proven conclusively,

both findings highlight the great possibilities for surveys to integrate with prediction mar-

kets. However, one has to be aware of structural differences between those survey types

(e. g., participants might change their mind during an integrated survey).

Online surveys allow for qualitative responses and more complex question design. Es-

pecially given the fact that simple fill-in-the-blank and multiple choice questions give way

to enhanced graphical interfaces that can capture probability distributions over response

139



Chapter 9 Extending Auxiliary Services: Conducting Trader-centered Surveys

categories, even from people not familiar with distributions (Goldstein, 2013). Hence,

combined forecasting with surveys and prediction markets can handle both; continuous,

incentive-compatible forecasting as well as complex, quantitative question design.

As a direction for future research, it seems fruitful to develop adaptive survey systems

that provide to ask participants only if the participant is expected to respond to it. In order

to achieve that, it has to be evaluated whether it is possible to model the likelihood of a

response. Moreover the trigger-based question, in its present form leads participants to

rationalize their trading behavior. This leads to the question whether the trigger-based

questionnaire leads to a different trading behavior. The limitations of the present work

are straightforward: Most importantly, one instance of an integrated system of surveys

and markets was explored in a political context. In order to increase external validity,

the next step is to explore other information settings and implement surveys in prediction

markets with other topics and populations.
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Chapter 10

Conclusion and Future Research

“ If you try to make something just to fit your unin-

formed view of some hypothetical market, you will fail.

If you make something special and powerful and honest

and true, you will succeed.”

HUGH MACLEOD, 2004

10.1 Contributions

CONTINUOUS Market Engineering has shown to be suitable to create, maintain, and

refine successful and sustainable markets that are able to adapt to changing demands

and requirements. The work at hand documents the application of Continuous Market

Engineering on two electronic markets. Applying the presented Continuous Market En-

gineering Process to both prediction markets studied in this work has lead to numerous

improvements and insights. These contributions are demonstrated in the previous chap-

ters, whereas this section recapitulates them in a more brief manner.

This thesis attempts to answer the following seven research questions:

• How do selected personal attributes (RA, CRA, and ERS) influence trading behavior

in markets?
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• How do selected personal attributes (RA, CRA, and ERS) influence decision quality

in markets?

• How well can an unobtrusive analysis of trading behavior reveal trader preferences?

• Are decision behavior and decision outcome affected by the kind of device used?

• Is providing information about the disposition effect suitable to lower the strength

of the disposition effect exhibited by an individual?

• Does a trend indicator arrow affect the strength of the disposition effect exhibited

by an individual?

• Are integrated surveys more accepted by participants of a prediction market than

standalone surveys?

The answers to these research questions can be summarized as follows.

Contribution 1: How do selected personal attributes (RA, CRA, and ERS) influence trading
behavior in markets?
It has been known for long that personal attributes influence individual behavior. Nev-

ertheless, the question of which attributes influence behavior in the domain of electronic

markets is not completely answered yet. The work at hand specifically attempts to under-

stand the interplay of risk aversion, cognitive reflection abilities, and emotion regulation

strategies with two aspects of trading behavior, namely trading activity and liquidity pro-

viding. By analyzing trading data in conjunction with a questionnaire containing estab-

lished personality tests, valuable insight on that interplay could be gained. Both cogni-

tive reflection abilities (CRA) and risk aversion (RA) significantly improve trading activity

(around 1.65 (RA) and 1.92 (CRA) additional orders per day). However, the tendency

to provide liquidity is decreased by cognitive reflection and increased by risk aversion.

Neither emotion regulation strategies (ERS) have shown to significantly influence trading

activity, but both strategies have a significant impact on the tendency to provide liquidity.

Participants using the emotion regulation strategy of suppression tend to provide liquidity,

whereas participants using the reappraisal strategy tend to be liquidity takers. In sum-

mary, with only one exception, all regarded aspects of individual behavior are influenced

by the assessed personal attributes. Specifically, only individual trading activity was not

influenced by the emotion regulation strategy used.

146



10.1 Contributions

Contribution 2: How do selected personal attributes (RA, CRA, and ERS) influence decision
quality in markets?
Turning to personal attributes and decision quality, the following results can be summa-

rized. First, cognitive abilities are shown to significantly improve trading performance

(around P€120 per trade) and probability to make a profit. Second, risk aversion impairs

trading performance (around P€90 per trade) as well as the probability to trade prof-

itably. In contrast, risk-averse traders tend to provide liquidity. Third, emotion regulation

strategies influence the regarded constructs. Emotion-suppressing traders perform signifi-

cantly better (around P€270 per trade) and have a higher chance of submitting profitable

orders, whereas using the reappraisal strategy leads to lesser gains (around P€100 per

trade) and a smaller chance to decide profitably. Wrapping up, cognitive reflection and

using the suppression strategy turns out to be beneficial for traders, whereas reappraisal

and risk aversion impairs the regarded measures.

Contribution 3: How well can an unobtrusive analysis of trading behavior reveal trader
preferences?
When predicting future events, it can be important to know whether and to which extent

prediction market participants – in this case traders – stay objective or whether they are bi-

ased by their own preferences. Through a portfolio level analysis of trading data matched

with survey data it is possible to consistently predict voters’ intention in our market popula-

tion. Furthermore, evidence is provided for a judgment bias consistent over all parties but

elevated for small parties. Surprisingly, no significant difference occurs when comparing

the bias between subgroups of tactical and non-tactical voters. Due to the bias’ consistency

across subgroups of tactical and non-tactical voters as well as different party preferences,

a straightforward prediction model can be provided, which infers a trader’s party prefer-

ence from his trading behavior. The derived model correctly predicts party preferences

in the validation set with an accuracy of around 70 %. Simply speaking, traders presum-

ably unknowingly and unwillingly reveal themselves by their trading behavior. On the

one hand, this implication somehow contradicts the traditional view on prediction mar-

kets, as anonymity is often seen as a major reason for participants to truthfully reveal their

expectations – and thus eventually prediction markets’ forecasting performance. Albeit,

the intra-participant anonymity stays unaffected, awareness of this result might reduce

participants’ perceived anonymity and thus their trust attitude towards prediction markets

(especially when dealing with ‘sensitive’ questions). This can in turn impair participants’

willingness to participate on such markets. On the other hand, it supports existing the-

ory on prediction markets by showing that traders tend to reveal their true preferences
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on prediction markets by submitting orders accordingly. In the end, preference-consistent

trading behavior – as encountered in this prediction market – is the foundation to infer

individuals’ preferences from their trading behavior.

Contribution 4: Are decision behavior and decision outcome affected by the kind of device
used?
After demonstrating the interplay of personal attributes and preferences with decision out-

come, the influence of device choice was shown. In a comparison of mobile and stationary

trading interfaces it is illustrated that orders submitted from a mobile device perform sig-

nificantly worse than orders submitted via a stationary trading interface. Interestingly, a

significant influence of the device choice on the traders confidence (measured with two

proxies) could not be proven. This result illustrates once more that decision making per-

formance does not solely depend on the decision maker and his (cognitive) resources.

Instead, awareness of differences between devices when designing software artifacts has

shown to be important.

Contribution 5: Is providing information about the disposition effect suitable to lower the
strength of the disposition effect exhibited by an individual?
A well-explored deviation from rational behavior is the disposition effect. Its negative

impact on trading performance has been shown in many studies of trading environments.

To assess the individual and aggregated disposition effect, a field study was conducted on a

prediction market on which the disposition effect could be determined for over 500 traders.

In line with previous research, a significant disposition effect on both the aggregated and

the individual level was found in the regarded market. As a debiasing method, half the

participants could access an information text about the disposition effect. By analyzing

the information text access, it could not be shown that this textual information is suitable

to significantly impact the traders’ individual disposition effect.

Contribution 6: Does a trend indicator arrow affect the strength of the disposition effect
exhibited by an individual?
Although creating awareness of the disposition effect via textual information could not ver-

ifiably decrease its strength, even tiny visual cues have shown to significantly increase the

disposition effect’s strength and thus letting traders deviate from rational behavior. Specif-

ically, a performance indicator arrow transparently showing if a trader’s portfolio value is

positive or not significantly increases the disposition effect by around 12 % compared to

the market’s average (up to 71 % compared between treatment groups). This result is of

particular importance, as such interface elements are widely used in online brokerage in-
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terfaces, and thus also has an implication for regulators. Hence, it might be worthwhile to

consider mandating online brokers to educate customers about behavioral biases, which

are known to degrade individual performance. As the previous result (cf. Contribution 5)

implies, textual advice seems not to be a proper solution in this case. Thus, it might be

sensible to consider interface design itself as a regulatory object.

Contribution 7: Are integrated surveys more accepted by participants of a prediction market
than standalone surveys?
In the age of near-ubiquitous internet access through an expanding variety of connected

devices, it has not only become possible to conduct a greater number of polls, surveys, and

preference elicitation tasks that involve a larger number of people; it is also possible to ob-

tain more and richer information from each respondent. In this study, two types of surveys

were combined with a prediction market on which over 1,400 participants traded actively.

Following the assumption that conducting a trade indicates that a participant believes to

have information about the product traded, a one-question survey (‘post-trade question’)

was randomly triggered consequently upon a trade. Compared to typical response rates of

online surveys, this post-trade question’s response rate was with 91.79 % extremely high.

Assuming that participants of an online platform prefer to answer surveys right on the

same platform due to convenience reasons, a second study was conducted. It aimed to

identify if the effort to integrate a rather long survey on an existing platform – in contrast

to using a specialized standalone survey system – pays out through a substantial increase

in response rate or data quality. Hence, half of the participants were offered an integrated

survey system, whilst the other half were redirected to an external survey system. Subse-

quently, the response rate and consistency of both surveys were compared. The integrated

survey delivered robust responses and a 3.16 % (533.33 % relative) higher response rate.

Albeit the higher response rate could not be proven conclusively, these results emphasize

the potential in integrating surveys into online markets.

All presented contributions were derived from studies carried out on a special form of

web-based electronic markets, namely prediction markets. This implies the presence of

certain market specifics (play money, virtual products, and the like) most other electronic

markets lack. Furthermore, the conducted studies mainly focus on the three facets Agent
Behavior, Interfaces, and Auxiliary Services. Consequently, the unrestricted generalizabil-

ity of the results and their implications for any market might not be given. Nevertheless,

the reported contributions can be seen as a first step in demonstrating how to refine ex-

isting electronic markets against the backdrop of Continuous Market Engineering. Thus,

these studies pave the way for market engineers in identifying entry points for improving
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markets.

10.2 Outlook

Having presented the main contributions from applying Continuous Market Engineering

on two Prediction Markets, on-going work and ideas for future research are described.

Improve questionnaire on trader’s Market Predisposition The presented set of per-

sonal attributes assumed to influence individual trading behavior and thus representing

an individual’s Market Predisposition is – albeit suitable – neither complete nor optimized

(cf. Chapter 5.5). Further research is needed to improve the questionnaire used. First, it

seems fruitful to evaluate additional constructs that might have an explanatory value for a

trader’s Market Predisposition. Second, especially since it most certainly will be beneficial

to include additional constructs, the duration of the Market Predisposition test is object to

optimization. One starting point can be the use of reduced alternatives to established tests,

e. g., a shortened version of the Ten-Paired Lottery by Holt and Laury (2002) as presented

in Teubner (2013) or the application of a different risk preference test (see, e. g., Charnes

et al. (2013) for an overview).

Feedback on trader’s Market Predisposition and adaptive interfaces A straightfor-

ward question on assessing a trader’s Market Predisposition is whether traders that are

informed about their individual Market Predisposition (i) would alter their decision to join

a certain market and (ii) if they will change their willingness to improve their own abilities

according to their measured predisposition immediately or over the course of time. Those

questions could be answered in a follow-up study on a given electronic market with minor

intervention. To examine question (i), existing and potential participants would have to

be separated in one control as well as one treatment group. In the treatment group each

existing participant would have to undergo a yet to be refined Market Predisposition test.

Potential participants in the treatment group would have to conduct the very same test as

first step of the market’s registration process. The result of the test would then have to be

presented to the participants instantly and individually. An accompanying survey could be

used in the proposed study in oder to reflect the participants’ understanding of the pre-

sented results and their implications. In order to examine question (ii), additional panel

surveys would have to be conducted amongst control and treatment groups in a yet to be
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defined interval. For a market provider, like an online retail brokerage company, such an

individual measure could be used to easily cluster participants along their predisposition

and thus their inherent need for support. Practically, it might be beneficial for participants

with a lower predisposition to be redirected to a more simplified and supportive trading

interface whereas the more proficient traders can be confronted with a full-featured expert

interface.

Comparing Web and Mobile interface in a laboratory experiment The study pre-

sented in Chapter 7 showed that even though participants’ decision confidence was not

decreased, when participants chose to submit orders via a mobile device their decision

performance suffered. As discussed in Section 7.5 the conducted field study is by design

not suited to examine questions of environmental influences and participant’s acceptance.

To rule out that the performance decrease is solely driven by environmental factors, a lab-

oratory experiment could be conducted. Such an experiment offers the chance to gain

additional insights; for instance concerning acceptance of the mobile interface offered via

a Technology Acceptance study (cf. Venkatesh, 2000; Venkatesh and Davis, 2000).

Control for understanding of Disposition Effect information text As has been shown

in Section 8.4.1, only about one quarter of participants accessed the offered disposition

effect information text. Even for participants accessing that information text, it was neither

possible to validate that (i) the text and its implications were understood nor (ii) read at

all. A laboratory experiment could be set up to control for these factors; an additional

questionnaire could provide certainty if a participant has read and understood the concept

of the disposition effect and its implications on trading performance. Furthermore, in such

a follow-up laboratory experiment, a reposition of the offered link in a more conspicuous

location is worth considering.

Validate superiority of integrated surveys The integrated survey in its present form

(see Section 9.3) proved its superiority over an external specialized survey system in one

specific market instance. The next logical step is to increase external validity. Hence, it

seems fruitful to explore other settings of online communities and different lengths and

types of surveys as well as different survey systems.
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Towards a combination of Prediction Markets and Delphi Method Accompanied by

the motivating results of the survey integration study (see Chapter 9), a combination of

Prediction Markets with a more sophisticated kind of survey technique, namely the Delphi

Method (cf. Dalkey and Helmer, 1963), appears encouraging to further improve predictive

quality by gathering additional information from participants for the following reason. On

the one hand, Prediction Markets are known to be very apt performing quantitative predic-

tions and are able to react rapidly to changing situations and newly emerged information.

However, they are not a very appropriate forecasting instrument for quantitative or condi-

tional predictions – albeit it is possible to apply them to such settings. On the other hand,

the Delphi Method is profoundly suited for such kind of settings. Nevertheless, it has a

drawback when it comes to selecting the ‘right’ participants in sense of information or

expertise of subjects, which in turn is a major strength of prediction markets, as well per-

forming (and thus, in a way, predicting) participants can be easily identified by their past

performance (cf. Equation 7.1). The dynamics of a Prediction Market offers additional op-

portunities to identify situations in which participants might have important information.

An indication for such a situation is, for instance, when a trader that used to predict well in

the past submits an order with a limit price that strongly diverges from the current market

price. In such a case, the presented trigger-based question (Section 9.3.1, Figure 9.2b) can

be used to instantly prompt that participant for the reason behind his action. As shown

in Chapter 9, the technical foundations for integrated surveys have already been laid as

part of the work at hand in case of the Economic Indicator eXchange. However, impor-

tant questions on how to combine those forecasting approaches remain open for further

research.

Examine rationalization effect of trigger-based question The trigger-based question

(see Section 9.3.1) leads participants to rationalize their trading behavior. This is achieved

by simply prompting the market participant immediately after submitting an order to an-

swer why the order was submitted with respect to the current market price of the product

in question and the order’s limit price. Answering such a question forces the participant

to rationalize ones behavior retrospectively, which in turn leads to the question whether

the trigger-based questionnaire leads to a different trading behavior in subsequent trading

decisions. At first glance, present data seems to support the hypothesis that traders have

a tendency to decide more on rational reasons after being confronted to a trigger-based

question. Nevertheless, further research is required to answer that question adequately.
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Enhance Prediction Markets with User Generated Content Prediction markets make

use of the so-called Wisdom of Crowds (cf. Surowiecki, 2004) to obtain their predictive

power. The participating actors of an actual prediction market instance can be separated

in market participants (Agents) and market operators (Market Engineers). Currently, most

prediction market providers are responsible for the technical market operation, a certain

set of trading rules and the selection of forecasting goals (i. e., tradable products). Whereas

the market participants’ stake is to trade their information on that market and thereby

generating and improving a certain prediction. A more progressive approach could fur-

ther enable the Crowd to participate in the market, not only by predicting, but instead

by contributing User-Generated Content (cf. Krumm et al., 2008; van Dijck, 2009) through

defining the forecasting goals itself. Ultimately, such an enhanced prediction market sys-

tem would shift the market providers role to (i) a pure provider of a trading rule set and

(ii) a technical market operator, whereas the participants role would broaden towards cre-

ation of content in the form of products. This flexibility would open up a broad range

of new questions regarding interface design and user guidance in setting up new product

proposals. In order to prevent thin markets, a major challenge will be to figure out a mech-

anism for deciding which product proposal to approve for trading. One approach would

surely be to define an Initial Public Offering (IPO) phase in which the product proposal is

reviewed by the market provider, presented to the public, and has to raise a certain amount

of money (cf. Book Building) in order to get approval for future trading. In case a defined

amount of money can be raised, one can assume that sufficient interest of participants ex-

ists to trade the proposed product. The evaluation of the illustrated approach could take

place on an existing prediction market, since by design, user-generated products would be

able to co-exist with ‘traditional’ products.

Incentive Engineering As discussed in Section 3.3, a properly designed incentive sys-

tem is essential for a play-money prediction market. Straub, Gimpel, and Teschner (2014)

showed that incentive systems influence the effort so-called crowd workers are willing to in-

vest for a certain task. In a related study Straub, Gimpel, Teschner, and Weinhardt (2014)

investigate the influence of competitors’ performance on individuals’ effort (i. e., task com-

pletion rates) as well as on individuals’ premature abandonment rates. They find that the

strength of competitors decreases both regarded individual measures. It seems reasonable

to believe that those relationships also tend to hold in the domain of prediction markets. A

future study might examine, (i) whether those results are applicable to prediction markets

and – if so – (ii) whether and which additional aspects of their trading behavior are influ-
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enceable by incentive design decisions. Ultimately, guidelines for a purposefully Incentive
Engineering might be derived from this research.

10.3 Summary

In this Chapter, the main contributions to literature based on the results contained in this

thesis were presented. First, a Continuous Market Engineering Process based on related

theory was presented and discussed. Subsequently, the application of Continuous Market

Engineering methodology on two play-money prediction markets with a focus on Agent

Behavior, Interfaces, and Auxiliary Services was documented. The results presented help

market engineers to better understand trader behavior in electronic markets and highlight

numerous approaches to analyze, support, and improve traders’ market interaction. Fi-

nally, several opportunities for further research focusing on Agent Behavior in the context

of Continuous Market Engineering have been sketched. The outlined research directions

are appropriate to further explore participants’ behavior in electronic market systems. I

would be pleased if the contributions of the work at hand help to widen the understanding

of dynamics in markets and inspiring further research in this thrilling research domain.
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Appendix A

Texts and Trade Screens

Disposition Effect Info Text

Information text used in the study presented in Chapter 8.

Original:

“Entgegen der alten Börsenregel, nach der Anleger Gewinne laufen lassen und

Verluste durch Verkauf begrenzen sollen, ist an fast allen internationalen Kap-

italmärkten genau das Gegenteil zu beobachten. Aufgelaufene Gewinne wer-

den meist zu früh realisiert, während sich Anleger von Aktien in der Verlust-

zone häufig viel zu spät trennen. Diese irrationale Verhaltensweise wird als

Dispositionseffekt bezeichnet. Der Dispositionseffekt führt häufig zu individu-

ellen Verlusten und entgangenen Gewinnen. Anleger, die den Dispositions-

effekt vermeiden, können deutlich höhere Gewinne erzielen.”

Author’s translation:

“In contrast to the well-known stock market rule that investors should ride

gains and sell losses, precisely the opposite is observable from nearly all in-

ternational capital markets. Profitable stocks are often sold too early, whilst

traders depart from losing stocks way too late. This irrational behavior is

known as disposition effect. The disposition effect often leads to trader losses

and missed gains. Investors, who resist the disposition effect may realize sig-

nificantly higher gains.”

I
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Trade Screens per Treatment

This Section contains screenshots for the different treatments presented in Chapter 8. For

an overview refer to Table A.1.

TABLE A.1: Overview of Treatments and Screenshots

DE Info Text w/o DE Info Text

Trend Indicator
Trend_Info Trend

(Figure 8.1) (Figure A.1)

w/o Trend Indicator
Info Control

(Figure A.2) (Figure A.3)

II



FIGURE A.1: Trading Screen for Treatment Trend

(Containing one user interface modification. Modification (b) shows the ‘Trend Indicator’

element.)

III
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FIGURE A.2: Trading Screen for Treatment Info

(Containing one user interface modification. A click on the linked text (a) fades in an info text

about the disposition effect. The whole text is depicted in Appendix A.)

IV



FIGURE A.3: Trading Screen for Treatment Control

V





Appendix B

Heath et al. measure

The adapted Heath et al. measure, as used in the study presented in Chapter 6 is shown

in Table B.2. The original Heath et al. measure is depicted in Table B.1.

TABLE B.1: Wording of the Heath et al. measure (Heath et al., 1991)

Which of these comes closest to the reason for your decision
with regard to the [. . . ] in the last federal election?

[. . . ] N Reply

first vote 1 I always vote that way.

2 I thought it was the best candidate.

3 I really preferred another candidate, but he had

no chance of winning in this constituency.

4 Other reason

5 Prefer not to say

second vote 1 I always vote that way.

2 I thought it was the best party.

3 I really preferred another party, but I wanted to allow

another party to overcome the 5% threshold.

4 Other reason

5 Prefer not to say
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TABLE B.2: Wording of the modified Heath et al. measure (based on Heath et al., 1991)

Welche dieser Aussagen lag Ihrer Wahlentscheidung
zur [. . . ] in der letzten Bundestagswahl am ehesten zu Grunde?

[. . . ] N Reply

Erststimme 1 Ich wähle immer so.

2 Aus meiner Sicht war es der beste Kandidat.

3 Ich zog einen anderen Kandidaten vor, aber dieser

hatte keine Aussicht auf den Wahlsieg.

4 anderer Grund

5 keine Angabe

Zweitstimme 1 Ich wähle immer so.

2 Aus meiner Sicht war es die beste Partei.

3 Ich zog eine andere Partei vor, wollte aber einer weiteren

Partei das Überwinden der 5%-Hürde ermöglichen.

4 anderer Grund

5 keine Angabe
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