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Abstract

We investigate the topological properties and the accessible Majorana fermion (MF) phases arising in
ahybrid device consisting of a chain of magnetic adatoms placed on the surface of a conventional
superconductor with Rashba spin—orbit coupling (SOC). By identifying the favored classical magnetic
ground state of the adatom chain, we extract the corresponding phase diagram which exhibits an
interplay of ferromagnetic (FM), antiferromagnetic (AFM) and spiral orders. We determine the para-
meter regime for which the FM or AFM phases dominate over the spiral and additionally become
stable against thermal and quantum fluctuations. For the topological analysis we focus on the FM and
AFM cases and employ a low-energy effective model relying on Shiba bound states. We find that for
both magnetic patterns the hybrid system behaves as a topological superconductor which can harbor
one or even two MFs per edge, due to chiral symmetry. As we show, the two magnetic orderings lead to
qualitatively and quantitatively distinct topological features that are reflected in the spatial profile of
the MF wavefunctions. Finally, we propose directions on how to experimentally access the diverse MF
phases by varying the adatom spacing, the SOC strength, or the magnetic moment of the adatoms in
consideration.

Materials with Rashba spin—orbit coupling (SOC) have recently attracted renewed attention due to their
pivotal role for realizing artificial topological superconductors (TSCs) which harbor Majorana fermions
(MFs) [1-5]. Early proposals involved materials with SOC, such as topological insulators [6], non-
centrosymmetric SCs [7], and Rashba semiconductors [8—11], which stimulated significant experimental
progress. Remarkably, a number of promising but yet not fully conclusive MF-signatures have been already
reported in semiconductor-based heterostructures [ 12—15]. The unsettled witnessing of MFs [16—18]
constitutes a strong motivation for engineering and testing alternative hybrid devices. For instance, platforms
based on magnetic adatoms which can be manipulated and probed via spin-polarized and spatially-resolved
scanning tunneling microscopy (STM) techniques, appear capable of unambiguously revealing the presence
of MFs.

This new perspective opened the door for new MF devices based on magnetic adatoms on the surface of
conventional superconductors. One finds implementations with magnetic adatoms where the ordering is
random [19], spiral [20-29], antiferromagnetic (AFM) with SOC induced by the combination of Zeeman
fields and supercurrents [30], and ferromagnetic (FM) on top of a superconducting surface with Rashba
SOC (31, 32]. According to very recent experimental findings [33], MFs seem to indeed emerge in
magnetic adatom hybrid devices, where the ordering of the chain appears to be FM. This type of ordering
canlead to MFs only if Rashba SOC is present, arising from the broken inversion associated with the Pb
superconducting substrate. In fact, this is a plausible scenario for Pb which owes already a non-negligible
intrinsic SOC [34]. Evenmore, it has been shown that the Rashba SOC arising in Pb quantum well
structures can be considerably large and tunable [35-38]. The related SOC strength can evenreach a

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Top view of a chain of adatoms placed on top of a superconducting surface with Rashba spin—orbit coupling (SOC). In
the absence of magnetism, the point group symmetry of the hybrid structure, is C,, consisting of two reflection operations o, and o,,
(the index shows the mirror plane), and a C, rotation (x, y, z) — (—x, —y, z). (b) Side view of the hybrid structure. Crystal field
effects (CFEs) violate spin rotational symmetry and favor an easy spin axis for the magnetic ordering (here zaxis). On the other hand,
SOC induces a Dzyaloshinsky—Moriya (DM) interaction. When the spin anisotropy dominates over the DM interaction, the adatoms
order in a ferromagnetic (FM) or antiferromagnetic (AFM) fashion, depending on the chain constant a. Otherwise, the spiral (SP)
ordering prevails.

corresponding momentum splitting of the order of 6k ~ 0.05 kg, where kris the Fermi-momentum
(7=1).

In this work we focus on a platform directly related to the recent experiment of [33]. Specifically we consider
asingle chain consisting of classical magnetic adatoms deposited on top of the surface of a SC with Rashba SOC.
We first infer the energetically favored classical magnetic order of the chain, out of the possible FM, AFM and
spiral profiles. Secondly, we investigate the topological properties of the arising engineered TSCs, particularly
focusing on the topological FM and AFM chains.

In the first part of the manuscript, we explore the competition of the three aforementioned magnetic
profiles by assuming identical adatoms owing a fixed spin S. The magnetic atoms interact viaa Ruderman—
Kittel-Kasuya—Yosida (RKKY)-type superexchange [39], which is mediated by the electrons of the SC. Due to
the presence of SOC, the resulting superechange interaction is anisotropic and includes a Dzyaloshinsky—
Moriya (DM) contribution [40]. The latter favors spiral ordering which is stable against disorder if the SOC s
sufficientlylarge [41]. On the other hand, FM and AFM orders are stabilized by Ising-type anisotropy terms,
induced by the crystal field of the substrate, which favor an easy axis for the magnetic ordering (see figure 1).
By taking into account the various interactions, we extract the resulting magnetic phase diagram by
additionally varying the distance of the adatoms. In this manner, our results address implementations with
alternative substrates, either due to a different superconducting material or orientation of the surface
involved.

In the second part, we focus on the topological properties of these platforms, and concentrate on the FM and
AFM cases. This is justified, as the findings of [33] indicate a strong Ising anisotropy, which as we show here, can
additionally render the FM and AFM phases inert to quantum and thermal fluctuations in spite of the one-
dimensional character of the chain. For extracting the topological phase diagram, we first retrieve an effective
low-energy model based on Shiba states [42], which constitute midgap electronic states of the SC localized at the
sites of the adatoms. The symmetry properties of the system gives rise to a rich phase diagram of MF-phases with
0, 1, or 2 MFs per chain edge. One can access the three phases via varying the adatom distance, the strength of the
SOC and the value of the magnetic moment. The phases with 2 MFs per chain edge are topologically protected by
chiral [32, 43-46] symmetry, and they indeed become accessible here for the parameters adopted. For
illustrating the relevant mechanism driving the diverse topological phases, we identify the relevant gap closings
in the Shiba bandstructure, which provide insight for manipulating the MFs and tailoring the topological
properties of these platforms.

Our paper is structured as follows: In section 1 we obtain the magnetic phase diagram for a magnetic chain
on top of a metallic surface with Rashba SOC. We consider that the magnetic adatoms interact viaan RKKY
interaction, while at the same time they experience a crystal field induced Ising anisotropy. In section 2 we
extend the previous analysis for the case of a superconducting substrate and discuss the modifications on the
interplay of the spiral, FM and AFM phases. In section 3, we retrieve an effective one-dimensional low-energy
Hamiltonian of the hybrid device for the FM and AFM implementations, relying on Shiba bound states. In
sections 4 and 5, we extract the topological phase diagrams and study the arising MF wavefunction
characteristics, for the FM and AFM Shiba chains, respectively. Finally, we present our conclusions in
section 6.
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1. Magnetic phases of an adatom chain on a Rashba metallic surface

In this section we discuss the favored ordering of a chain of magnetic atoms placed on top of a metallic surface
with Rashba SOC. We first retrieve the RKKY superexchange interaction between the magnetic atoms, which is
mediated by the substrate electrons. By additionally taking into account an Ising-like anisotropy term due to the
crystal field, we retrieve the classical magnetic phase diagram, which consists of FM, AFM and spiral phases.
Finally, we investigate the impact of quantum and thermal fluctuations on the FM and AFM magnetic orders,
and show that they are stable.

1.1. RKKY interaction
We start with the Hamiltonian of a two-dimensional metallic substrate with Rashba SOC:

Hupetal = ZWIJ hy Vi (1)
k
wherehy = & + a(k X 2) - 6 isa2 X 2 matrix in spin-space and I/JkT = (c,jT, o 1) is the corresponding spinor.
Furthermore, ¢} creates an electron with momentum k and spin projection 6. The quadratic electronic

dispersion, & = k?/2m — p, can be linearized around the Fermi-momentum (kr = /2mu ), i.e.
& = vp(k — kg), wherek = |k|and vris the Fermi-velocity. The Hamiltonian hy can be readily diagonalized via

am/2-rotation about the k-axis:
ei%lé-o'h -i%ke _ k
k€ - fk + akoy, (2)

wherek = k/k. The respective eigenenergies are given by &y = & + Aak &~ vp(k — k), with
k) = kp(1 — ad/vg), corresponding to the two helicitybands A = +1. Thus, the effective momentum splitting
0k corresponds to a SOC strengtha = vg 6k/kp.

In order to proceed, we define the Matsubara Green’s function in the helicity subspace: g, (k, iw) =

(iw — &;)~' and with that we obtain

(io - & - ake.)” = 3 +2’1”Z g, (k, i). (3)

A==%

According to the result above, the electronic Green’s function is given by

G (k, iw) =

Z 1+ ﬂe_i%k GG e'4k”

5 g, (k, iw)
I=t
14+ 2 (k X 2) -0
=Y —— 7 (ki) (4)
P 2

H+

At this point, we assume a certain arrangement for the magnetic adatoms on the metallic substrate. Here we
consider classical spins S; with magnitude|S;| = S, placed at positions R; = iax, withi = 1, ..., N.Inaddition,
we consider that the interaction between the adatoms is driven by an exchange interaction mediated by the
conduction electrons of the substrate. The coupling between adatoms and conduction electrons can be
parametrized by an exchange energy J, i.e.

o A i)

Given that Jis a small coupling constant and that the local modifications of the electronic spectrum in the
substrate are negligible, we can follow a standard one-loop expansion and obtain an effective spin—spin
interaction. The so called RKKY interaction reads [39]

Hrgxy = ——ZXWS Sﬂ (6)

where the spin susceptibility can be derived using the Green’s function given in equation (4):

i =B el =y 0)o' (1, - )] v

[0}

whereG (R, iw) = / ) ¢*RG (k, iw). In the following we will consider a chain of adatoms with magnetic
moments placed along the x direction. In appendix we present in detail the steps which yield the well known

result [47] for the RKKY interaction:
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Figure 2. Possible scenarios for the classical magnetic ground state: ferromagnetic (FM), spiral (SP) and antiferromagnetic (AFM)
ordering.

)

Hggxy = _m(]k_F)z " (ZkF |r21]
T (Zkaij)

X {cos (Zmarij)si -Si+ [1 — cos (Zmar,j)]S,)’S}'
+ sin(Zmarij)<Siij)y}, (8)

wherevp = m/2x is the density of states at the Fermi-level for each spin-band andr;; = (i — j)a. Equation (8)
holds in thelimitkza > 1. For vanishing SOC, we recover the usual spin rotationally invariant Heisenberg
interaction, proportional to S; - §;. On the other hand, a finite SOC produces both an additional Ising
interaction S/ S jy anda DM interaction (S; X §;),. Note, that the particular form for the RKKY interaction could
have been readily retrieved by considering all the bilinear spin—spin interaction terms, which are allowed by the
C,, point group symmetry of the system in the non-magnetic phase.

We may write the RKKY interaction in a compact fashion, by taking into account that the rotation of a
classical spin §; by an angle 6;; = 2mar;; with respect to §;;, is given by

S]-(H,-]-) = cos (9,‘]')5]'+Sin (9,7)(}7)(5]'). (9)

Thus we may rewrite equation (8) as follows [47]:

)

Hyxxy = —m(]k_F)z o (2kF 2
ij (ZkFTij)

. Si - Si(0;)- (10)

This implies that the SOC would generally establish a spiral configuration, with a tilting angle 6, ; = 2maa
between successive spins. However, the substrate crystal field effects (CFEs), violate spin rotational invariance so
that the magnetic moment of adatoms tends to point along the axis perpendicular to the surface (z axis here).
This anisotropy gives rise to an additional term appearing in the total adatom Hamiltonian, which depends on
the microscopic details of the substrate and can generally assume a rather complicated form. However, here we
will consider the simplest allowed term with the form

Hcrg = _gz(siz)z, (11)

which accounts for the broken spin-rotational invariance. The parameter D has been already estimated
experimentally for some cases, by means of spin-polarized STM [48, 49].

1.2. Classical magnetic ground state
In this paragraph, we discuss the competition of the possible magnetic phases of the adatom chain (see figure 2),
arising from the interplay of the SOC and the CFEs. The former favors a spiral ordering while the latter, iflarge
enough, can stabilize a FM or AFM ordering depending on the adatom spacing. For the rest, we treat the spins
classically, thus assuming that|S;| = S with a fixed magnitude S. In the classical limit: S — oo whereas ] — 0, so
that JS remains finite. Later we will discuss the stability of the classical ground state against quantum and thermal
fluctuations.

There are various ways to determine the classical ground state of the Hamiltonian H,gsical = Hepe + Hrixy-
In this section we pursue a rather qualitative discussion and we prefer to apply a trial configuration S; (9) =
S sin (91)x + S cos (9i) Z, with the orientation of the spins confined in the xz plane. The latter form is fixed due
to (i) the CFEs which energetically favor the appearance of finite magnetization along the easy z axis and (ii) the

4
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Figure 3. Phase diagrams for the classical magnetic ground state. The parameter plane is defined by the adatom spacing a, and the
rescaled strength D of the crystal field anisotropy. The presented diagrams were calculated for two values of the Rashba SOC strength
a. We find that large a coupling favors the spiral configuration, whereas increasing the Ising anisotropy strength D pins an easy axis (z)
and promotes the FM and AFM phases.

mixing of the x and z magnetization components induced by the DM interaction as an indirect result of the
Rashba SOC. Therefore, the particular form of the Hamiltonian implies that in the magnetic ground state, the
spins are lying in the xz plane. Under these conditions, the ground state is defined by the optimal value of the
angle 9, which minimizes the classical Hamiltonian:

DS? .
Hagsical (8) = _T Z cos? (9i)

n

( ISk )2 sin ( 2kp
—-m
4 i <2kF i )2

We minimize this Hamiltonian with respect to 9 for an infinite chain. In figure 3 we see that depending on the
relation between: (i) exchange energy JS, (ii) CF anisotropy D, (iii) SOC strength akp, and (iv) adatom spacing a,
the classical ground state can assume a FM (9 = 0), AFM (9 = x) or spiral configuration (9 # 0, x). The
stronger the SOC, the stronger the CF anisotropy that has to be present, in order to compensate the tendency of
the system to form a spiral. Moreover, we observe that by tuning the SOC strength, as for instance by applying an
electric field along the z axis, we can realize a FM <> AFM quantum phase transition. This can be clearly seen in
figure 4 where the different phases are shown for two different values of the atomic spacing. The particular
characteristic of the phase diagram implies that electric fields can be also employed for altering the topological
properties of the Shiba chains yielding a rich landscape of MF phases. Finally, note that the arising phase
transitions are first order.

) cos [(Zma + 19/a)rij]. (12)

1.3. Thermal and quantum fluctuations

In this paragraph we will investigate the robustness of the FM and AFM phases against thermal and quantum
fluctuations. To this end we assume that the system resides either in the FM or the AFM phase, with 9, = 0, #
respectively. We will retrieve the dispersion of the magnetic fluctuations for each magnetic phase, by employing
a Holstein—Primakoff (HP) transformation [50]. In the limit of large S, the HP transformation reads

Sf=(x1VS2 (bf +b;), SI=iJs2 (b]-1b;),
S7=(x1)(S - b]b;), (13)

with b;and b, constituting bosonic operators which obey the commutation relation[b;, b ]T =6, where the
indices1, j refer to the sites of the adatoms. In addition tcorresponds to the FM (+) and the AFM (—) cases. At
this point, we effect this transformation on equation (8) and separate the resulting quantum Hamiltonian in
orders Héum;mum with respect to the operators b;and b,'. The zeroth order of the quantum Hamiltonian coincides
with the classical ground state energy given by
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Figure 4. Phase diagrams for the classical magnetic ground state. The parameter plane is defined by the rescaled SOC strength a, and
the rescaled strength D of the crystal field anisotropy. The presented diagrams were calculated for two values of the adatom spacing a.
We observe stabilization of the FM or AFM phases for increasing CF anisotropy. More importantly, tuning the SOC strength can tailor
the phase diagram leading to controllable switching between the FM and AFM phases.

NDS? _
Hqﬁantum-# = Hclassical,i— = - 5 - Z._,lt]asz (14)
ij

Tk )2 sin (ka | rij
T (2](}:7'1']')

EEf = (x1)Tm ( cos (Zmar,-j). (15)

Thelinear term Hquanturrl vanishes, whereas the bilinear term is given by

s =3 (587 - 39) 410+ 1)

-—Z(sf_}u:f‘))(b bj+b]b:)
+sZ:l+_ﬁ(be,-+ b}b,-) + g(zs— 1) Zi:b,fb,». (16)

In momentum space the Hamiltonian reads

Hc(llzlzintum,i = Z[yq(l) (b; b‘l + qu b‘ﬂ)
q
7 (bybl, + byby) | (17)
with the combinations

yq<1>=—§(5i’“+ =} ) + —(28 - 1) + S=:25

2 q
S Z+.a =+,0
i =75 (; )
and £ —Z exp (igj) Z/"*. Abosonic Bogoliubov transformation b, = ugfhy — vqﬂ_Tq withu, = cosh 7,

v = sinh 77, and tanh (Zr]q )= yqz) / A o immediately provides the eigenenergies of the spin wave modes,

2 2
o= [WT-TT
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Figure 5. Sublattice-magnetization measured from its ground-state value, AS (S = 15/2), as a function of anisotropy D for different
temperatures T'and SOC strength a for both the AFM and the FM configuration. Both phases become unstable for D — 0, since
fluctuations become significant. The AFM phase always exhibits both thermal and quantum fluctuations. In contrast, quantum
fluctations appear in the FM case only when SOC is present. In both phases a sufficiently large, but experimentally feasible, value for D
suppresses both types of fluctuations.

In order to investigate the stability of the FM and AFM phases, we calculate the sublattice magnetization, i.e.
1w 1
— j zZ\ _ ¢ _ T
M = szzl(il) <S]>—S N Eq <bqbq>.

Using the Bogoliubov operators and by introducing the Bose—Einstein distribution n, = (ﬂ; A,)> we obtain the
deviation of the sublattice magnetization from its ground-state value

AS=S—M=%Z{1:[nquq2+(1+nq)qu:|, (18)

where we have assumed thatsgn ((S?)) = 1.In figure 5 we show AS for different temperatures and SOC
strength. For the atomic spin we use S = 15/2 that has been realized in clusters of few magnetic atoms [51]. We
find that for T=0and a = 0 only the AFM configuration exhibits quantum fluctuations, which are absent in the
FM case (AS = 0). In both cases we find that quantum as well as thermal fluctuations are suppressed with
increasing anisotropy D. For both AFM and FM configurations, the sum in equation (18) diverges for finite
temperatures when taking the limit D — 0, and thus thermal fluctuations destroy the magnetic order. In STM
experiments the nearest neighbor exchange energy as well as the crystal field anisotropy can be measured. The
next neighbor RKKY interaction of various metals is of the order [48, 49]

J

2sin ( 2kpa
m(&) M ~ 0.1 meV. (19)

T (kaa)z

The crystal field anisotropy D has been determined in [49] to be approximately given by ~1meV or even larger
[48]. In terms of the parameters | and D our calculation covers the parameter regime D/] < 10, which is
consistent with the aforementioned experimental realization. Furthermore, the so far explored temperatures are
within therangeT ~ 0 — 1 K, which are typical for the MF experiments. As a conclusion, FM or AFM magnetic
chains may be established, even in the presence of strong SOC without being destroyed by fluctuations.

2. Magnetic phases of an adatom chain on a Rashba superconductor
Here we extend the previous analysis in order to investigate the effect of superconductivity on the magnetic

phase diagram. Once again, the magnetic adatoms interact via an RKKY interaction which is mediated by the
electrons of the substrate superconductor, while they also feel a spin anisotropy due to the crystal field.

7
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2.1. Gor’kov—Nambu Green’s function

In this section we derive the Green’s function for the superconducting substrate degrees of freedom in the
presence of SOC. As before, we exclusively discuss Rashba SOC, although other couplings between spin and
momentum may be intrinsically present. This type of SOC can be engineered and can be considerably large for
instance in quantum wells [35-38]. In fact, superconducting thin films of Pb feature both intrinsic and Rashba
types of SOC. Starting from the Hamiltonian of equation (1) for a two-dimensional metallic surface with SOC,
we consider here an additional spin singlet s-wave pairing term A (here real and positive)

1 s\
H, = 3 Zy/,j[afkrz + ar, (k X z) <6 — ATyGy]l//k
k

1
== Y v (20)
2 k

where the Pauli matrices  are defined in particle-hole space andy; =(cf;, x> c—k1> c_k;) is the corresponding
spinor. Following the procedure of section 1.1 we perform a rotation, i.e.

elik® he7iike = &1, + ako, — Ary0,.

Mind that the representation of the spin operator in the extended space is given by 6/2 =(z, oy, 0,, 7,0,)/2. By
introducing

. ) -1
gk iw) =[G - 22 - ], 1)
we obtain
[iw — &1, — ako, + Aryay]_l

1 4+ Ar,0, . 5 ;
= Z%(lw + ékTZ + akGZ - ATyG)’)gj(k’ ICU)

A==

and with the above, the electronic Gor’kov—Nambu Green’s function becomes
5 ; izk-6f : -1 s
G (k, iw) = 6‘11""’[160 — &1, — ako, + Aryay] eifks

1+,1(12><2)-5

iw + &y,
C & 2 (i) — &% - &,
1+ /1(12 X 2) -G Azy0, .
“~ 2 (i) — & — &

Thus the presence of the Rashba SOC induces triplet pairing correlations [52—54]
A(k X 2) “6 Ty0,= A(sin PyTx0, — COS (pkfy),

where tan ¢ =k, /k,. The emergence of triplet correlations can be also understood within the theory of induced
orders and patterns of coexisting phases [53, 54, 56, 57]. In this work, we assume only a local pairing interaction
leading to a spin singlet superconducting order parameter A [55], which is accompanied by the triplet
correlations above. However, in the presence of suitable non-local interactions which contribute to the above
superconducting triplet channel, the s-wave singlet and p-wave triplet order parameters necessarily coexist at a
microscopic level due to the SOC [52—54]. In the latter case, a p-wave spin triplet order parameter has to be taken
into account and determined self-consistently, as it can lead to modifications of the topological phase
diagram [5].

In equation (22) one can identify the electronic Gor’kov—Nambu Green’s function

l+/1(k><2)'0' o+ &,
2 (iw)? — A2 - &

Gk, iw) = Y.

A=%

and the anomalous one,

A~ 10y — A1 cos @ + sin @0,
F(k i) = 2 3 — ( )

(i) = & — &,

A=%
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By focusing on positions along the x axis, i.e.r = rx, we find
GA(rﬁ’ 1w) = fi eikrcosqjké(k’ iw)
(2m)?
B Z/«oo dk k Jo(kr) —ide,Ji (kr) iw + 7.y — Aty0,
- 2 () - & —&;

(23)

These expressions are valid if wp > vp/r ~ Ep/kpr, where wp is the Debye frequency. Mind that for r =0, we
basically recover the electronic bulk Green’s function

iw — At,0,

Jo? + A .

G (0, iw) = —7vp (24)

2.2.RKKY interaction
In order to discuss the effective RKKY interaction mediated by the quasiparticles of a superconducting substrate
with SOC, one can simply replace the Green’s function appearing in equation (7) by the one of equation (23) and
the spin Pauli matrices 6% and 6/ by the corresponding components of the spin Pauli vector in the new
representation 6 =(z,0x, 6,, 7,0; ). For a superconducting substrate, the RKKY interaction owes an additional
term, which does not arise in the case of metallic substrates. This distinct RKKY term is associated with Shiba
states [42], appearing due to the presence of the magnetic adatoms on the superconducting surface. The latter
constitute localized states at the sites of the adatoms, with energies &y which are smaller than the
superconducting gap. In spite of the fact that the number of Shiba states is relatively small compared to the
number of the bulk accessible states, it has been recently shown that their contribution to the RKKY interaction
can become important, favoring an AFM ordering [58]. Nonetheless, in order for the Shiba term to dominate
over the bulk RKKY contribution the adatom spacing has to be rather long, since the former decays as (kpr)~!
whereas the latter decays as (k) 2. The authors of [58] showed that the Shiba contribution dominates if the
conditionkpr > &/r is fulfilled, holding for the material parameters and the atomic spacing (r ~ 100 nm),
which they focused on.

In stark contrast, here we assume an adatom spacing of the order of 1 nm and a coherence length of
& ~ 80 nm. Therefore we find thatkrr < &y/r and conclude that the Shiba bound state contribution is
negligible in our case. Its inclusion would only move the phase boundaries slightly deeper into the AFM region.
Moreover, since the main contribution to the RKKY interaction arises for energies quite above the gap 4, there is
also no quantitative modification of the results found previously in section 1 for a normal metallic substrate.
Therefore, the phase diagrams presented in figures 3 and 4, also hold for the case of a superconducting substrate.

3. Effective model for FM and AFM Shiba chains

Aswe explained in the previous paragraph, the contribution of the Shiba states to the RKKY interaction is
unimportant in the case under consideration, and thus their presence is irrelevant for deciding on the type of
magnetic order which will develop in the adatom chain. However, the Shiba states are midgap states which
govern the low-energy behavior of the electronic degrees of freedom. Therefore, in this section we proceed with
investigating the characteristics of the Shiba states that develop under the influence of background FM and AFM
magnetic orderings of the adatom-spins §;, with|S;| = S, which have been stabilized by the effective RKKY
interaction originating solely from the continuum spectrum. The magnetic exchange Hamiltonian now
becomes

dkdk’ ik,
_Z /f (27)? e KRyl Mjz.0: yye (25)

with R; =iax. We introduced M; = JS (+1 ), corresponding to FM (+) and AFM (—) ordering, respectively. In
order to find the electronic spectrum we solve the Bogoliubov—de Gennes (BdG) equation [27, 30, 31, 58—60]

dk’ . kKR
Z /(2”)2 G(k1 8) e_l(k_k ).R]Mjrzaz¢k’ = ¢k’ (26)

where the wavefunction ¢, = (uky, Uk)> Vkt» Vi) )! contains the spin-dependent particle- and hole-components
uand v. We assume that the continuum states are only slightly affected by the presence of the magnetic atoms and

thus assume the usual spectrum, Ey, = /A? + &7, for the superconductor. By defining
¢; = (1/2m) / dk e*Righ, we trace out the continuum states and end up with the equation
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Z[v;-a,-j ~ ViG (&, £) Vi |0, = 0, (27)

J

whereV; = M; 7, 6,. By performing an expansion both in the normalized energy, £/A, as well as the couplings to
higher order neighbors, we obtain from equation (23)

G0, &) » —mr (/A - 7y0,), (28)
G(r%, &)~ G (N2 + G (1) w0,
+ F*(r)try0, + FO(r)7,. (29)

The integrals in equation (23) together with the approximate form for the Bessel functions given in
equation (A.2), yield the coefficients

G (r)

j— s _ E _
or = cos (mar) s1n(kp |7 4)e N (30)
Fi(r r
m/(F) = cos (mar) cos(kp Ir| — %)e_% ﬂk:‘ ot (31)
a
r . . r
i‘nfp) = sin (mar) sm(kp Ir| — %)e_% nkjl e (32)
F (1’) . z\ Il 2
P = sin (mar) cos(kp 7] — Z)e O e g (33)
where & is the coherence length of the superconductor. The indices s and a denote functions which are
symmetric or anti-symmetric under inversionr — —r. With this we rewrite equation (27) in the form of a
Schrodinger equation
D Hiip; = e, (34)
j
with the Hamiltonian
Hj; = W[ (HZ/FMZT),G), - M;7,0, ) Oij
+ M,-Mj(gf-_j'rz - Gijt.0p + Fi_jT 0, — Ff’_]-‘ry):l, (35)

where we have compactly denoted f, = f (1) and set M =JS. The solution of equation (34) determines the
energies and wavefunctions of the Shiba midgap states.

4. Topological FM Shiba chain

It has been well established, already from earlier proposals involving topological insulators [6] and
semiconductors [8—11], that the combined presence of SOC, s-wave superconductivity and magnetism, can
induce topological superconductivity. Note also that a recent symmetry classification [5] has presented further
directions of how to combine these ingredients for engineering TSCs. Both cases of topological FM and AFM
Shiba chains fall into this classification scheme. In fact, the effective model for a topological Shiba chain (see also
[31]) resembles previous continuum models describing TSCs using nanowires with Rashba SOC [10, 11]. In the
present case, the effective Zeeman field is provided by the magnetic adatoms (classical here) and the SOC occurs
due to the involvement of a superconducting surface. However, there are also important differences. First, the
perpendicular local magnetic field felt by the Shiba states is generally less harmful for superconductivity
compared to a perpendicular magnetic field, due to the additional contribution of the orbital effects in the latter
situation. In the case of Shiba states, in spite of the fact that the superconducting gap becomes locally suppressed,
it generally survives even when the magnetic exchange energy becomes comparable to it [60]. In addition, note
that the FM ordering is more likely to suppress superconductivity locally compared to the AFM ordering.
Moreover, another distinctive feature for the effective model of topological Shiba chains is that they
incorporate triplet pairing correlations, which can generally lead to a significant quantitative modification of the
phase diagram (see [5]). In addition, the topological Shiba chain models are lattice models involving higher
order neighbor couplings, thus strongly depending on the adatom spacing. Consequently, one can not always
restrict to a nearest neighbor model but instead, depending on the ratio §y/a, alarge number of neighbors can
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become relevant. Evenmore, the inherent presence of additional chiral symmetries, leads to a rich variety of
topologically phases even with 2 MFs per edge.

In the following paragraph, we first discuss the symmetries of a topological FM Shiba chain which are crucial
for performing a topological classification of the accessible MF phases. Furthermore, we extract the topological
phase diagram and study numerically the MF wavefunctions for a finite chain, in order to discuss aspects related
to the experimental realization of this scenario.

4.1. Symmetry classification

As already mentioned, in the absence of magnetism, the point group symmetry of the hybrid structure (as in
figure 1), consisting of the chain on top of an infinite substrate surface, is C,,. Since the effective model
describing the Shiba chains is embedded in the two-dimensional geometry, rather than being a stictly one
dimensional system, it inherits the same point group properties. This is reflected in the C,, point group
symmetry of the non-magnetic part of the Hamiltonian in equation (35). This point group consists of the:

1. identityelementE: (x, y, z) = (x, y, 2),
2. reflection operationo,;: (x, y, z) = (=%, y, 2),
3. reflection operationo,,: (x, y, z) — (x, =y, 2),

4. zaxis m-rotation Cy: (x, y, z) — (—x, —y, 2).

Note that for the effective Shiba state model of equation (35) only the inversion operation I: x > —x is
accessible, and corresponds to Ii = —i and Zj = —j, withi, j denoting adatom sites. Therefore, within our
spinor formalism the aforementioned symmetries are generated by the unitary operators: £ = I, 6y, = it 0.1,

by, = io, and C, = ir,0, 1. The term associated with the presence of FM ordering, Mz, 0, = Mz, 0, transforms

A N N AT A
under the C,, elements in the following manner: 6. 6! 1,0, Oy, =T, 05, ajz 7,0,6y, =—7,0,,C, 1,6,C, =7, 0,.

yz
Moreover, the FM chain is invariant under the action of the discrete translation operator, f,, which leads to shift
i = i+ 1,i.e.equalto the adatom spacinga.

In contrast, the usual time-reversal operation 7 with generator T = ia},]AC, is broken as the FM term satisfies

%TTZ o, T = —1,0,. Here K denotes the anti-unitary complex-conjugation operator. As it becomes evident from

the above relations, the FM term is invariant under the action of the following combined symmetry operations:

To,, and To,.,, i.e. consisting of operations under which the rest of the Hamiltonian is invariant. Usually, this type

of symmetries are called hidden symmetries [5, 61], as they are a combination of symmetry operations which,

separately, do notleave the Hamiltonian invariant. In the particular case only the action of the operator

6 = 6., T = K, which coincides with the complex conj ugatlon, leaves the total BAG Hamiltonian invariant.
Similarly to the usual time-reversal symmetry operator 7,8 isalso anti-unitary. We may thus call ita

. . . . T
generalized time-reversal symmetry operator [5]. However, the operators differ in periodicity,i.e.7 = —I and

6" = I. Thelatter implies that 7 -symmetry will lead to a Kramers degeneracy, while @-symmetry imposes a
reality condition on the Hamiltonian without any Kramers pairs [62—64]. In the case under consideration, the
presence of ©-symmetry together with the built-in charge-conjugation symmetry of the BdG Hamiltonian,
effected by the operator = = =7k, give rise to the chiral symmetry operator II = 7,. Thus although the usual
time-reversal symmetry is broken in our system, the presence of the aforementioned set of symmetries implies
that the system resides in the BDI symmetry class, which in one-dimension can support topologically non-trivial
phases characterized by a Z invariant [62—64]. The latter allows an integer number of MFs per chain edge (see
also [43—46]). As we show in the next paragraph these topological phases are indeed accessible with the
particular system.

4.2. FM Shiba chain Hamiltonian

In order to study the topological properties of a FM Shiba chain, we will transfer to momentum space, defined in
the FM Brillouin zone (BZ) k € (—x/a, n/a). At this point we introduce the corresponding BAG momentum
space Hamiltonian, H = H{ + H}', consisting of the (i) non-magnetic H} and (ii) magnetic 1}’ parts:

H) = tyt, — viT,0, + (A + Dk)T}/Gy — dity, (36)

H? = _BTZO-Z) (37)

11
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where we have introduced B = A/(zvg]S) and

ty = Zt,g cos (8ka) with ts=—

= G5 (38)
S=1 VR
ad ) . 24 a
Vi = 21/5 sin (6ka) with vs= - G5, (39)
S=1 ITVE
- ) 24 s
D = ZD(; cos (6ka) with Dy=-— T3, (40)
Sm1 VE
s ) ) 24 a
di = Y dssin (5ka) with ds=—— F3. (41)
521 ITVE

The above Hamiltonian acts on the wavefunction ¢, = (ux, ks V> Viy )T In addition, t; corresponds to the §-
order nearest neighbor hopping, vs corresponds to the §-order nearest neighbor SOC, D; to the §-order nearest
neighbor extended s-wave spin-singlet superconducting gap and d;; to the 5-order nearest neighbor spin-triplet
superconducting gap oriented along the y axis.

4.3. Topological invariant
For exploring the topological phase diagram, we reside on the presence of chiral symmetry I1 = z, and block off-
diagonalize the BAG Hamiltonian [43, 64], via a rotation about the 7, axis effected by the unitary transformation

(7, + 7,.)/~/2. We obtain
0 A
H = ( ] (42)

Al 0

The upper block off-diagonal block is given by
Ay =ty — idy — Bo, — [vk —i(a+ Dk)]ay. (43)
The determinant of Ay is a complex number and reads
Det[Ak] =t} + (A + Dk)2 - B> —dl-vi+ Zi[vk(A + Dk) - tkdk]. (44)

With the vectors g, = (ReDet[Ax], Im Det[A;], 0)and g, = g, /18,1 therelated Z topological invariant is
defined by the winding number [30, 65]

1 N
= — i 4
N=—[ dk(gkx dk)z (45)

Note that by considering a Z classification which also takes into account phases with 2 MFs, we manage to go
beyond the study of a FM Shiba chain performed in [31], which assumed a Z, classification and thus restricted to
the cases with 1 MF per edge.

4.4. Topological phase diagram—results

In figure 6 we show the winding number as a function of the adatom spacing a, magnetic exchange energy JS and
SOC strength . Phases with zero, one or two MFs per edge are accessible. When the ground state of the system
resides in a phase near a boundary of the topological phase diagram, one can employ a weak perpendicular
Zeeman (electric) field to tune the magnetic exchange energy (SOC strength) in order to achieve transitions
between phases with different number of MFs. We additionally observe in figure 6(b) that the phase diagram
exhibits MF bound states even for very small values of a. This is similar to the nanowire case [10, 11], where
mainly determines the spatial profile and localization of the MFs at the edges of a finite system. Interestingly, this
also holds for the case of 2 MFs per edge.

In figure 7 we compare the winding number calculation shown in panel (a), with the evolution of the two
lowest positive eigenenergies, shown in panel (b) that was obtained from the open chain Hamiltonian for
different lengths. As follows from bulk-boundary correspondence, the number of MF bound states agrees with
the value of AV, although long chains are required here in order to obtain quantitative accordance with the
predicted phase boundaries. As a matter of fact, this is the case for the gap closing that occurs at the transition
from trivial to N = 2. Here, two truly-zero energy bound states appear only for very long chains. This has to be
contrasted with the region where N' = 1. There, the zero energy bound state become stabilized already for

12
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Figure 6. The Z topological invariant (winding number) as defined in equation (45), for varying adatom spacing a and (a) magnetic
exchange energy JS (@ = 0.01 vg) or (b) normalized SOC strength a (zvrJS = 0.85). In both cases, we find topological phases
harboring 1 or 2 MFs per chain edge. Note in (a) that tuning the magnetic exchange energy can be used to switch between 1 and 2 MF
phases. When close to the phase boundary, the latter could be for instance achieved by applying a weak perpendicular Zeeman field. In
(b) we observe that for an infinitessimally small SOC strength, both 1 and 2 MF phases are accessible. This is anticipated for the single
MF phase where @ does not enter the topological criterion, but quite remarkably, it also takes place for the 2 MF situation. Here
electrical tuning of @ can be used for realizing topological quantum phase transitions.

N = 2000

0 " o

0.7 0.8 0.9 05 0 05
g IS ka/m

Figure 7. (a) The Z topological invariant (winding number) as defined in equation (45) (blue) depending on the magnetic exchange
energy JS along the green line in figure 6(a). (b) The two lowest positive eigenenergies in red and black for three different lengths of the
chain (N'=130, N=430 and N=2000). Note that in order to obtain well localized MF bound states and validate the bulk-boundary
correspondence predictions, quite long chains are required. This is particularly the case for the transition to the 2 MF phase, which is
protected by chiral symmetry. In panel (c) we show the corresponding gap closings of the energy dispersions ¢, occuring exactly at the
phase transition points I and II. The transition (I) N' = 0 — 2 arises from gap closings at the non-inversion-symmetric points +k,
connected to each other by inversion. Instead, the transition (II) A" = 2 — 1arises due to a gap closing at the inversion symmetric
momentum k= 0.

shorter lengths of the chain, which can be seen through the different decays of the wavefunctions in figures 8(a)
and (b).

To shed more light on the above findings, we complementary demonstrate in figure 7(c) the gap closings of
the bulk band structure, for the parameters where the topological quantum phase transitions occur. One
observes that the phase transition involving a single MF corresponds to gap closings at the inversion symmetric
wavevector k = 0, whereas in the case involving 2 MFs, the dispersion shows gap closings at two non-inversion-
symmetric points +k,.

For even better understanding, let us investigate in more detail the behavior of the topological invariant. The
gap closing conditions and therefore the phase boundaries, are given by setting Det [A;] = 0, which requires the
following two equations to be simultaneously satisfied
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Figure 8. Wavefunctions corresponding to figure 7 for the ground state (g) and the first excited state (e). The left and right Majorana
bound states are labeled by (L) and (R), respectively. (a) Whereas the MF wavefunction within the 1 MF phase is strongly localized and
oscillates with a periodicity of lattice spacing, panel (b) shows the wavefunctions inside the 2 MF phase which strongly leak into the
bulk and oscillate with a wavenumber k-.

Vk<A + Dk) — tdy =0, (46)

#+(A+ D) - B —df - vi=0. (47)

To obtain some analytical results, we will focus on a simplified situation. For instance, by considering a short
superconducting coherence length, &, we can restrict ourselves only up to nearest neighbor terms in the
Hamiltonian of equation (36). Under these conditions we havet; = t; cos (ka), vy = v sin (ka),

Dy = D cos (ka)anddy = d, sin (ka). Equation (46) is satisfied for the inversion symmetric pointsk = 0, x
and the pair of non-inversion-symmetric points +k, given by cos (k4 a) =vA/(d;t; — v D). By setting these k-
values in equation (47), we obtain the gap closing conditions, or equivalently the phase boundaries. Fork = 0, «
we obtain the conditiont” + (4 + D;)> = B?, akin to the criteria found in nanowire models [10, 11]. A similar
procedure can provide the gap closing conditions for +k, points, which however is quite lengthy and will not be
presented here.

Itis important to comment on the form of the wavefunctions in the case of 2 MFs. In this case, the non-
inversion-symmetric points +k,, will give rise to zero-energy wavefunctions, which however are complex and
proportional to exikeai ( jindex of chain site). Nonetheless, MF wavefunctions should be real, and this can only
achieved by making linear combinations of the wavefunctions, so that they finally obtain a dependence
cos (kyaj)andsin (kaj). This explains (i) the oscillating behavior shown in figure 8 with a period determined by
k«and (ii) the fact that when one MF wavefunction shows a maximum, the other shows a minimum. As
expected, the MF wavefunction for a single MF phase does not show this type of feature.

5. Topological AFM Shiba chain

The presence of Rashba SOC due to the superconducting substrate, is an ingredient capable of engineering MFs
also for other magnetic phases of the chain, apart from the FM one. As we already discussed in previous
paragraphs, the same conditions which favor the FM ordering, also provide fertile ground for the establishment
of AFM ordering. A crucial requirement is the presence of strong Ising anisotropy in order to overcome the DM
interaction. If this is the case, other details such as the adatom spacing, will decide on the FM or AFM type of
ordering.

The possibility of topological AFM Shiba chains was recently discussed in [30] for superconducting
substrates in the absence of SOC. In that case, a new mechanism for engineering topological superconductivity
was proposed, were SOC was induced by a supercurrent flow along the chain together with an in plane Zeeman
field. Note that AFM and FM Shiba chains can only host MFs in the presence of some kind of SOC [5]. In stark
contrast, spiral Shiba chains do not require SOC, but exhibit MF in a self-tuned manner. Nonetheless, any
realistic manipulation of MFs in spiral Shiba chains will unavoidably require the application of external Zeeman
fields [28] or supercurrents [29], counterbalancing the advantage of self-tunability.

In the rest of the manuscript we will focus on the topological phases supported in AFM Shiba chains. As we
will present in the next paragraphs, some of the generic results which we reported earlier for the FM case are also
relevant for the AFM order. For instance, AFM Shiba chains also support MF phases with one or two MFs per
chain edge. However, as we explain in the AFM analysis, the underlying mechanism and the topologically
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relevant k-space points, differ in each case. The reason can be traced back to the (i) different magnetic
wavevector Q =0 or wand (ii) the presence of additional hidden symmetries which appear in the AFM case.

5.1. Symmetry classification

The present paragraph follows closely the analysis carried out for the FM case. As previously, the relevant point
group in the absence of magnetism is C,,. The Hamiltonian of equation (35) includes now the AFM term, given
byM;z,0,=M (-1 Yz, 6,. The latter AFM Hamiltonian term, transforms under the C,, elements in the
following manner: 6;2 (=1)iz,0, 6y, = —(=1)z,0,, 6 (=1)1,0,6,, =—(~1)I7,0,and

C ZT (-1)1,0, C, = (-1) 7, 0,. Essentially, we recover exactly the same behavior encountered in the FM case,
since I(—1)/ = (=1)7 = (=1)/. However, in contrast to the FM ordering, the AFM chain is invariant under the
translation operation, t,,, instead of ¢,. Thus the reduced Brillouin zone (RBZ) becomes now relevant, defined
byk € (—n/2a, n/2a]. This reflects the formation of a two sublattice structure. With the help of the translation
operator, f,, we additionally obtain f; (=1)i7,0,t, = —(—1)/7,0,. Finally, similarly to the FM case, the system is
not invariant under 7, as 7' (-=1)iz,0, T =- (-1)iz,0,.

Asin the FM case, the AFM chain is invariant under the hidden symmetry operator & = 6, 7 =K. More
importantly, the distinct property f; (=1)i7,0,f, =—(—1)/7,0, canyield additional hidden symmetries, when t,
is combined with 6,,, 6, or 7. Indeed we find three additional symmetries: (i) the anti-unitary symmetry
©' = Tt, (ii) the unitary symmety O = o, t, and (iii) the unitary symmety ©" = o6,,t,. On the other hand,
unitary symmetries allow to block-diagonalize the Hamiltonian and label it with the eigenvalues of the respective
operators. Here we may use only one of the two unitary symmetry operators for block diagonalizing the
Hamiltonian. Note that the presence of two anti-unitary symmetries @ and @', does not allow the classification
of the Hamiltonian according to the ten existing symmetry classes [62—64]. The latter classification methods can
be only applied on Hamiltonians with no additional unitary symmetries present. However, after the block
diagonalization of the Hamiltonian relying on the unitary symmetry, a symmetry classification is possible [5].
This is exactly the tactic which we will follow in the next paragraph, by first transferring to the RBZ.

5.2. AFM Shiba chain Hamiltonian
By transferring to momentum space, we obtain the following Schrodinger equation, which provides the single-
particle spectrum in the AFM case:

Higy + HY brrq = €y (48)

withQ = 7/a, k€ BZ, H} and H}' given in equation (36). By passing to the RBZ we obtain

[Hg_Q/z Br,o, [¢k—Q/2] _ €[¢k—Q/2], (49)

Br,o, Hiion )\ Prran Prron

where by additionally introducing the p Pauli matrices in the AFM space we end up with the Hamiltonian
Hi=H), + M} _p + Br.p.o, (50)
defined in the RBZ, while we introduced

0 0
_ Hi_qnx Hipon

H} . > (51)
The explicit form reads
ﬁk =147z + -T2, — Vi +T:0y — Vk,-T:[,0y
+ (A + Dk,+>1yay + Dy _1yp,0) — di 47y — di T,
— Bt,p,0,, (52)

where the parameters appearing can be directly retrieved by the definitions of t;, v4, Dy and di. For completeness,
we present their expression below

tir = ) ta cos (2lka) (—1), (53)

=1

t- = Y.ty sin [(2 = 1)ka] (-1), (54)

I=1
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Vig = ivzl sin (2lka) (—1)', (55)
=1
Vi = ivz,_l cos [(2] — 1)ka] (=1)"*1, (56)
=1
Dy, = iDzl cos (2lka) (-1, (57)
=1
Dy_= iDzz_l sin [(2] — 1)ka] (=1)!, (58)
=1
diy = idy sin (2lka) (-1}, (59)
=1
dy_= idﬂ_l cos [(21 — 1)ka] (—1)"*1. (60)

I=1

At this point, we move on with the symmetry classification. In the particular basis, the translation operator £, has
the representation

. eik=Q2)a 0
t, =
a 0 ei(k+Q/2)a

= —ipze“‘”. (61)

For simplicity, we will drop the U (1) phase factor, since it is irrelevant for the present discussion. On the other
hand, complex conjugation has the following representation in this basis £ = p K’, with K’ not acting on the

wavevector Q. Under these conditions we obtain the representation for the following operators: @ = A K,

6 = £,y K'andO = p, o,. We directly confirm that the Hamiltonian is invariant under the action of these
operators, as discussed in the previous paragraph. However, there are additional symmetries. We find two chiral
symmetries: [I = 7, and Il = 7,p,0,, as also two charge-conjugation symmetries: = = 7,9 K’ and

A
=

E' =10 K. In this representation both time-reversal symmetry operators satisfy 6’ = (02 =1, yielding
the symmetry class BDI® BDI.

The particular symmetry class of the Hamiltonian can alternatively retrieved by block diagonalizing the
Hamiltonian via the transformation

P AL (62)
V2 V2 ’

whichyields UH,UT = 33, (1 + 66.) @Hy o, with the blocks
ﬁk,o' = (tk,+ - GVk,—) 7, + (tk,— = 0Vk,+)72py + Br,p,
+ [0 (A + Dk,+) - dk’_:lrypy + <0Dk,_ - dk,_,.) Ty. (63)

Interestingly we find that for each subspace, o up and down, the Hamiltonian possesses the form of two
decoupled topological FM Shiba chain models (see equation (36)), but with the AFM Pauli matrices playing the
role of the spin Pauli matrices. Note, that with the particular choice of the spinor, the functions in front of the
matrices have a similar behavior under inversion (k — —k), as in the FM Shiba case studied earlier or related
nanowire models [10, 11, 32, 43]. Therefore, we anticipate at least an equally rich phase diagram, exhibiting an
interplay of topological phases with one or two MFs per edge of the chain.

5.3. Topological invariant
Each of the o subblocks reside in the BDI symmetry class and can be off-block diagonalized, similar to the
procedure followed in the FM case. Therefore, we effect the transformation (z, + 7,)/(+/2 ) which yields

H 0 Ak (64)
ko — A;:E,, 0 >
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Figure 9. The Z topological invariant (winding number) as defined in equation (67), for varying adatom spacing a and (a) magnetic
exchange energy JS (@ = 0.03 v¢) or (b) normalized SOC strength a (zvrJS = 0.85). In both cases, we find topological phases
harboring 1 or 2 MFs per chain edge. Note in (a), that tuning the magnetic exchange energy can be used to switch between 1 and 2 MF
phases. When close to the phase boundary, this could achieved with a weak perpendicular Zeeman field (x axis). Observe also that a
threshold SOC strength is generally required for both 1 and 2 MF phases to become accessible. This is in contrast to the FM case and
arises because the strength for the SOC a appears now in the topological criterion for the 1 MF phase. Therefore, also tuning of & can
be exploited for realizing topological quantum phase transitions, but via a different mechanism.

with the upper off-diagonal block given by
Akﬁ =1Ip+ — OV -+ i(dk)+ - GDk,_) + sz
- {Jvk,.,_ — fg— — i[a(A + Dk,.'.) + dk,_:l}py. (65)

By introducing the determinants Det[Ay , ], as also the related vectors g , = (Re Det[Ay, ], Im Det[A; ], 0),

we can define the quantities
1 agk c
No=— f dk| g, x ——| > 66
2 JRBZ Bko ok i (66)

with the unit vectors g, =g, _ / |g;. , |- However, the quantities above do not constitute topological invariants

because the g, vectors are not compactified in the RBZ, i.e. do not have the same value for the RBZ edges

k = +r/2a. Thelatter occurs because we chose to work in the AFM space{k — Q/2, k + Q/2}, instead of the
band-index space. Only Hamiltonians defined in the band index space satisfy the compactification condition. In
the present situation, the folding of k-space has been performed in a convenient manner, which however does
not meet the above criterion. Therefore, a topological invariant can be only defined by combining the two &
sectors. Essentially we have to start from the total Hamiltonian H,, block off-diagonalize it, introduce the upper
off-diagonal block A; and define a corresponding vector 8. = (Re Det [Ai], Im Det[A;], 0). This procedure
yields the topologically invariant quantity

N=N+N (67)

with WV, beingR, instead of Z. Note this procedure was circumvented in [30] by extending the integration to the
BZ. However, the method presented in this paragragh is the most general and we conclude that only A is capable
of providing the related Z number of MFs per edge which are protected by chiral symmetry.

Nonetheless, there can be situations where additional terms in the Hamiltonian can violate chiral symmetry
while at the same time preserving the unitary symmetry (. In this case, each Hamiltonian block 7}, , belongs to
symmetry class D, which is characterized by a strong Z, invariant in one momentum space dimension.
However, due to interdependence of the two blocks, only phases with 0 or 1 MFs are accessible. The phase
diagram is retrieved by introducing a total Z, invariant obtained by muliplying the Z, invariants of each block.

5.4. Topological phase diagram—results
In figure 9 we present the calculated winding number A of equation (67), with varying adatom spacing a and (a)
magnetic exchange energy zvx JS or (b) normalized SOC strength a. As in the FM case, we also encounter phases
with zero, one or two MFs per edge. The modification of the magnetic exchange energy, effected for instance by
applying of a Zeeman field perpendicular to the ordered spins (x axis), can tune the phase diagram. Similar
functionality appears with the variation of the SOC strength, where its increase can extend the window for
phases with 2 MFs.

However, in contrast to the FM case, we observe that generally a critical SOC strength is required for realizing
atransition to the topological phases. The latter feature will be explained below, by considering a nearest
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Figure 10. (a) The invariant N as defined in equation (67) along the green line in figure 9(a) for zvJS = 0.75. (b) We depict the
energetically lowest dispersions corresponding to the two blockso = 1 , | of the Hamiltonian in equation ((63), at the transition
points where N'= 0 — 2 (I)and N' = 2 — 1 (III). Inbetween the two critical spacings, corresponding to (I) and (III), the previous
gap closing points +k, move towards k =0 (II). (c) Ground state energy (red dots) and first excited energy (black) depending on a for a
chain length of N=250 and N = 1500 atoms.

neighbor model for the AFM Shiba chain. In short, the apparent difference relies on the fact that for the 1 MF
phase of the FM and AFM chains, different k points are topologically involved. For the FM case, the inversion-
symmetric pointsk = 0, 7 become relevant. In contrast, the 1 MF phase in the AFM case arise from gap closings
ofeachs = 1, | block Hamiltonian at the k = 0 point of the RBZ, which coincides with the z/2a point of the
original BZ. Therefore, the topological criteria are retrieved from different points, with the SOC strength not
involved in the FM case but crucially appearing in the AFM case.

We now proceed with examining in more detail the topological properties of the system for two values of the
magnetic exchange energy. First we consider a cut of figure 9 for @ = 0.03 vg and zvg JS = 0.75. In figure 10 we
present: (a) the topological invariant N and (b) the relevant gap closings in RBZ associated with the changes of
N'.We observe in figure 10(b) that the transition N' = 0 — 2 occurs due to the gap closings at the points £k,
foro = |. The particular phase with 2 MFs is protected by chiral symmetry. Upon increasing the adatom
distance in phase II, the +-k, points converge to k = 0 and merge, exactly when another topological phase
transition occurs N' = 2 — 1. The latter transition and change in V' is possible due to the recombination of the
two =k, points at the inversion symmetric point k = 0 of the RBZ. The last transition to the trivial
superconducting phase occurs via a gap closingat k=0 of the s = | subblock. Note generally that the
dependence of M on the adatom spacing a is quite complicated, as all the coefficients are functions of the latter.
In figure 10(c) we depict the two-lowest positive eigenenergies of the AFM Hamiltonian for an open chain. Note
that, the appearance of a single zero eigenenergy agrees very well with the bulk predictions for the 1 MF phase. In
contrast, the bulk results for the 2 MF phase are retrieved for quite long chains.

In figure 11 we present the arising MF wavefunctions in the 1 MF and 2 MF cases. In the case with 2 MFs, we
retrieve once again the oscillatory behavior of the wavefunctions associated with the cos (k, aj) andsin (k. aj),
related to chiral symmetry. However, the MF wavefunction for the 1 MF phase, shows also a particular
oscillatory behavior due to different reasons. Since the latter topological phase is arising from the k = 0 point of
the RBZ, which coincides with the k = 7/2a point of the BZ, the wavefunctions show close to this transition
point a characteristic oscillatory behavior given by the lattice constant, i.e. it assumes the form cos (jz/2). This
oscillatory behavior, with a wavelength given by the adatom spacing, still persists even deep inside the 1 MF
phase (see figure 11(a)).

To obtain further insight, we will retrieve some analytical results by restricting to the nearest and next nearest
neighbor versions of the Hamiltonian in equation (63). For the nearest neighbor model we havet;, = #; cos (ka),
v = v sin (ka), Dy = D, cos (ka) andd; = d; sin (ka). Each Hamiltonian block now obtains the form
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Figure 11. Majorana wavefunctions corresponding to figure 10 for the ground state (g) and the first excited state (e). The left and right
Majorana bound states are labeled by (L) and (R) respectively. (a) The MF wavefunction in the 1 MF phase shows an oscillatory
dependence on the lengthscale of the adatom spacing. (b) The wavefunctions inside the 2 MF phase are less localized and oscillate with
an inverse wavelength k-.

H, = —ow cos (ka)z, — t; sin (ka)fzp}, + Br,p,

>

+ [UA — d; cos (ka)]’l'ypy — oD sin (ka)z,. (68)

The apparent exchange of roles between t; <> v;and D; < d; happens because the k= 0 point of the RBZ
corresponds to thek = 7/2a of the BZ. This is exactly the reason for the distinctly different dependence on the
SOC, that we obtain in the AFM topological phase diagrams. Therefore, gap closings at k =0, connected toa 1
MEF phase, will occur when v* 4+ (64 — d,)* = B? depending on each o block. Obviously the topological phase
boundaries for the 1 MF phase depends on the SOC strength, in contrast to the FM case and nanowires proposals.

On the other hand, the chiral symmetry protected points are given by cos (k, va) =ct,A/(tyd, — v D). Since
k. € (—n/2a, n/2a], we obtainsgn [cos (k, «a)]=sgn [o]. Thisimplies that for each o block we obtain a single
ko« satisfying the gap closing criterion. Even more, chiral symmetry here implies that for a pointk,, , there exists
another in the—o spinblock fork_, » = —k, «. Thus the £k, pair of chiral symmetry protected points found in
the FM case, translates now into the (k, «, k_, ) pair of points, i.e. inversion connects the two subblocks. This
also explains why we can not generally consider the quantities NV, as independent chiral symmetry related
topologically invariant quantities.

Nonetheless, a direct comparison with the results presented in figure 10, shows that a nearest neighbor
model is inadequate for capturing the physics of the exact model, since the chiral symmetry protected 2 MF
phase originates from +k, points of the same subblock. This can only occur if we take into account the next
nearest neighbor contributions. In fact, for a model with only next nearest neighbor terms, the Hamiltonian
coincides with that of equation (68) butwithk — 2k ora — 2a. Thus we may equivalently make use of
equation (68) but now with kin the original BZ. As a result, the equation cos (k, xa) =ct;A/(tid; — v D;) can
now provide a set of £k, points, for each o subblock, explaining our findings.

We now proceed with a cut of the phase diagram in figure 9, fora = 0.03 vg and zwgJS = 0.85. In figure 12
we present: (a) the topological invariant N and (b) the relevant gap closings in RBZ associated with the changes
of V.. For the particular value of the magnetic exchange energy, the possibility of 2 MF phases still appears, but
has a different origin. This is clearly reflected in the fact that the topological invariant changes always by 1. This
implies that only inversion-symmetric point k = 0 can yield gap closings. This is indeed the case, as shown in
figure 9(b). We find that the different transitions occur due to the gap closings at the k = 0 for the two different
o =1, | sub-blocks. Interestingly we observe that only after two successive gap closingsatk=0forc = 1 , the
system becomes topologically trivial. This counter intuitive result can be naturally explained when next nearest
neighbors are present, leading to a quadratic gap closing at k=0 [66]. Essentially, the 2 MF phase also in the
present case, constitutes a manifestation of chiral symmetry.

In figure 13 we show representative MF wavefunctions for the N' = 1, 2 regions of figure 12. Indeed, we find
the appearance of two MFwhen kra/z = 5.59. Each wavefunction is oscillating in magnitude and becomes
exponentially suppressed in the bulk. As in previous sections, we denote the left and right Majorana
wavefunctionbyy;  ; (i = 1, 2), respectively. Bothy; and y, appear to be shifted spatially, with one becoming
maximum at the points where the other is minimized. Furthermore, as we show in figure 14, the oscillatory
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Figure 12. (a) The invariant N as defined in equation (67) along the second green line in figure 9(a) for zvJS = 0.85. (b) We depict
the energetically lowest dispersions corresponding to the two blockss = 1, | of the Hamiltonian in equation (63), at the transition
pointswhere N'= 1 — 2 (), N'= 2 - 1(Il),and N = 1 — 0 (III). (c) Ground state energy (red dots) and first excited energy
(black) depending on a for a chain length of N = 250 atoms. The calculations were performed for @ = 0.03 vp and zvgJS = 0.85.
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Figure 13. Majorana wavefunctions corresponding to figure 12 for the ground state (g) and the first excited state (e). The left and right
Majorana bound states are labeled with (L) and (R) respectively. (a) The MF wavefunction in the 1 MF phase shows an oscillatory
dependence on the lengthscale of the adatom spacing. (b) The wavefunctions inside the 2 MF phase are less localized and oscillate with
smaller frequency (see figure 14).
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Figure 14. (a) Logarithmic plot of the right edge MF wavefunctions: (i) deep inside the 2 MF phase (ka = 5.59 «) and (ii) close to
transition II (ka = 5.64 r). (b) The band minimum at k = 0 leads to to an oscillation of the MF wavefunctions on a lengthscale of the
adatom spacing (see light blue curves in (a) and 3(b)). Band minima away from this point lead to the slow oscillatory trend (dark blue
curves).
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behavior of the wavefunctions can be attributed to the band mimina of the gapped 2 MF phase. Close to
transition Il depicted figure 12(a), the wavefunctions exhibit a periodicity cos (jz/2) which originates from the
k=0 point of RBZ, that coincides to the k = z/2a point of the original BZ. In contrast, deep inside the 2 MF
phase and inbetween transitions I and II, the dispersion shows minima away from the k = 0 wavevector of the
RBZ, leading to oscillations with smaller frequency (see figure 14).

6. Conclusions

In summary, we investigated the magnetic phase diagram and the emergence of MF in chains of magnetic
adatoms deposited on a superconducting substrate with Rashba SOC. By considering classical magnetic
adatoms, that interact via a superexchange interaction in the additional presence of magnetic anisotropy, we
identified the parameter space for which FM, AFM or spiral order is stabilized. The presence of magnetic
anisotropy, which arise from the crystal field of the substrate, promotes the FM and AFM phases and renders
them robust against thermal as also quantum fluctuations.

Motivated by recent experiments which confirmed the possibility of strong magnetic anisotropy in such type
of devices, we explored the occurence of topological superconductivity for the most prominent FM and AFM
configurations. Our findings reveal a rich topological phase diagram for both cases, which can support phases of
1 or 2 MFs per edge, and can open perspectives for novel quantum computing applications. The phases with two
MFs per edge are protected by chiral symmetries, which differ for each magnetic pattern. Remarkably, the
topological phase diagrams for the two cases exhibit a different dependence on the strength of SOC which is
directly related to the magnetic wavevector, Q=0 or z. In fact, depending on the value of Q, different points of
the Shiba bandstructure become topologically relevant. As a consequence, the MF wavefunctions demonstrate a
variety of oscillatory characteristics which reflect the type of the underlying magnetic order.

The thorough parameter exploration performed in this work, addressing (i) the competition of magnetic
phases for the adatom chain and (ii) the detailed topological phase diagram of the hybrid device, can motivate
new experiments by employing alternative superconducting substrates or types of adatoms. In particular, the
topological phase diagram can be tailored via tuning the SOC strength, the adatom spacing and the magnitude of
the atomic spin. Thus the emergent interplay of magnetic and therefore topological phases in Shiba chains
predicted in this work, can open the door for novel versatile and functional MF platforms.

Note added: Mind that there are two regimes which describe adatom chains on top of superconductors. We
discussed the Shiba limit where the spectral weight lies entirely in the superconductor. If the adatoms are closely
packed the adatom chain is in the metallic regime [67]. An interplay between both regimes is most likely the
situation applicable to the recent experimental results of [33]. For instance, in [68] it has been shown that a shift
of spectral weight to the superconducting substrate, i.e. the Shiba limit that we considered, leads to a stronger
localization of Majorana wavefunctions which is in agreement with the recent observations [33].
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Appendix. RKKY interaction

In this appendix we derive the effective RKKY interaction, described in equation (8), which is mediated by the
electrons of a metallic surface with Rashba SOC. We consider a chain of magnetic adatoms arranged along the x
direction. Accordingly, the Green’s function that enters in equation ((7), is given by

1
G rx, lCU f 1kr cos @y,
( z (2n)* iw — &

sin @.6x — €os @0y

+ = / 1kr COS @ - ,
Z (27[)2

iw — &y

_1 /O“’ X otk = ido i 0] (A1)

2 = 27 1w — &y
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Here J,,(kr) are the Bessel functions which in the limit kr > 1 can be approximated by

cos(k 7] — o %)[sgn ny. (A.2)

Ju(kr) ~ 5

2
kIr]
The remaining momentum integral in equation ((A.1) can be derived by the substitutionsk — k; + &/vgand

000 % - Up / * d&, wherevp is the density of states at the Fermi level. Within this approximation the

—0o0
remaining integrals in (A.1) can be evaluated, and are given by the quantities

cos[(k,l + §/VF)|r| - % - %]

L io) = Yatve [~ de : : (A3)
/Z;_r - iw— &
with m =0, 1. This can be done by means of a contour integral providing
I 5 1 . nr T wr
M = —sgn (w) Z/’V’Zel Sg"(w)(ki|f|—7—z)e—%. (A4)
TV p A=t

It follows that the electronic Green’s function is approximately given by
1

G(rfc, iw) ~ m [Io(r, iw) — io, I, (r, iw) sgn (r)]. (A.5)

Note that we replaced k by kr everywhere except for the arguments of the trigonometric functions. This
approximation is valid as long as 6k < kg, which we assume to be the case throughout this work. In order to
evaluate the susceptibility of equation (7), we make use of the relation

Trg{aa[lo + ioy I, sgn (r)]oﬂ[lo —io, I, sgn (r)]}/z
= (18 = I?)8ap + 20280y8 .y + 2€apy Lol sgn (7). (A.6)

Furthermore in the limit T — 0, the Matsubara sums in equation (7) can be converted into integrals, i.e.
too dw . .
TY., — Lo -, Yielding

/m d—wlm(r, iw) I, (r, iw)
T

—00

n+m ]m/pypz (A7)

—= 3 @y sinf (kiot kIl = 2

LA =+ |7

where vy = m/2x is the density of states for each spin-band. We use equation (A.7) together with equation (A.6)
in order to evaluate the susceptibility in equation (7), which yields after some algebra the well known RKKY
interaction equation (8) for a two-dimensional metal with Rashba SOC.
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