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Abstract
We investigate the topological properties and the accessibleMajorana fermion (MF) phases arising in
a hybrid device consisting of a chain ofmagnetic adatoms placed on the surface of a conventional
superconductor with Rashba spin–orbit coupling (SOC). By identifying the favored classicalmagnetic
ground state of the adatom chain, we extract the corresponding phase diagramwhich exhibits an
interplay of ferromagnetic (FM), antiferromagnetic (AFM) and spiral orders.We determine the para-
meter regime for which the FMorAFMphases dominate over the spiral and additionally become
stable against thermal and quantum fluctuations. For the topological analysis we focus on the FMand
AFMcases and employ a low-energy effectivemodel relying on Shiba bound states.We find that for
bothmagnetic patterns the hybrid systembehaves as a topological superconductor which can harbor
one or even twoMFs per edge, due to chiral symmetry. As we show, the twomagnetic orderings lead to
qualitatively and quantitatively distinct topological features that are reflected in the spatial profile of
theMFwavefunctions. Finally, we propose directions on how to experimentally access the diverseMF
phases by varying the adatom spacing, the SOC strength, or themagneticmoment of the adatoms in
consideration.

Materials with Rashba spin–orbit coupling (SOC) have recently attracted renewed attention due to their
pivotal role for realizing artificial topological superconductors (TSCs) which harborMajorana fermions
(MFs) [1–5]. Early proposals involvedmaterials with SOC, such as topological insulators [6], non-
centrosymmetric SCs [7], and Rashba semiconductors [8–11], which stimulated significant experimental
progress. Remarkably, a number of promising but yet not fully conclusiveMF-signatures have been already
reported in semiconductor-based heterostructures [12–15]. The unsettled witnessing ofMFs [16–18]
constitutes a strongmotivation for engineering and testing alternative hybrid devices. For instance, platforms
based onmagnetic adatomswhich can bemanipulated and probed via spin-polarized and spatially-resolved
scanning tunnelingmicroscopy (STM) techniques, appear capable of unambiguously revealing the presence
ofMFs.

This new perspective opened the door for newMF devices based onmagnetic adatoms on the surface of
conventional superconductors. One finds implementations withmagnetic adatoms where the ordering is
random [19], spiral [20–29], antiferromagnetic (AFM) with SOC induced by the combination of Zeeman
fields and supercurrents [30], and ferromagnetic (FM) on top of a superconducting surface with Rashba
SOC [31, 32]. According to very recent experimental findings [33], MFs seem to indeed emerge in
magnetic adatom hybrid devices, where the ordering of the chain appears to be FM. This type of ordering
can lead toMFs only if Rashba SOC is present, arising from the broken inversion associated with the Pb
superconducting substrate. In fact, this is a plausible scenario for Pb which owes already a non-negligible
intrinsic SOC [34]. Evenmore, it has been shown that the Rashba SOC arising in Pb quantumwell
structures can be considerably large and tunable [35–38]. The related SOC strength can even reach a
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correspondingmomentum splitting of the order of δ ∼k k0.05 ,F where kF is the Fermi-momentum
( = 1).

In this workwe focus on a platformdirectly related to the recent experiment of [33]. Specifically we consider
a single chain consisting of classicalmagnetic adatoms deposited on top of the surface of a SCwithRashba SOC.
Wefirst infer the energetically favored classicalmagnetic order of the chain, out of the possible FM,AFMand
spiral profiles. Secondly, we investigate the topological properties of the arising engineered TSCs, particularly
focusing on the topological FM andAFMchains.

In the first part of themanuscript, we explore the competition of the three aforementionedmagnetic
profiles by assuming identical adatoms owing a fixed spin S. Themagnetic atoms interact via a Ruderman–
Kittel–Kasuya–Yosida (RKKY)-type superexchange [39], which ismediated by the electrons of the SC. Due to
the presence of SOC, the resulting superechange interaction is anisotropic and includes a Dzyaloshinsky–
Moriya (DM) contribution [40]. The latter favors spiral ordering which is stable against disorder if the SOC is
sufficiently large [41]. On the other hand, FM andAFMorders are stabilized by Ising-type anisotropy terms,
induced by the crystal field of the substrate, which favor an easy axis for themagnetic ordering (see figure 1).
By taking into account the various interactions, we extract the resultingmagnetic phase diagram by
additionally varying the distance of the adatoms. In thismanner, our results address implementations with
alternative substrates, either due to a different superconductingmaterial or orientation of the surface
involved.

In the second part, we focus on the topological properties of these platforms, and concentrate on the FMand
AFMcases. This is justified, as thefindings of [33] indicate a strong Ising anisotropy, which aswe showhere, can
additionally render the FMandAFMphases inert to quantumand thermal fluctuations in spite of the one-
dimensional character of the chain. For extracting the topological phase diagram,we first retrieve an effective
low-energymodel based on Shiba states [42], which constitutemidgap electronic states of the SC localized at the
sites of the adatoms. The symmetry properties of the system gives rise to a rich phase diagramofMF-phases with
0, 1, or 2MFs per chain edge. One can access the three phases via varying the adatomdistance, the strength of the
SOC and the value of themagneticmoment. The phases with 2MFs per chain edge are topologically protected by
chiral [32, 43–46] symmetry, and they indeed become accessible here for the parameters adopted. For
illustrating the relevantmechanism driving the diverse topological phases, we identify the relevant gap closings
in the Shiba bandstructure, which provide insight formanipulating theMFs and tailoring the topological
properties of these platforms.

Our paper is structured as follows: In section 1we obtain themagnetic phase diagram for amagnetic chain
on top of ametallic surface with Rashba SOC.We consider that themagnetic adatoms interact via an RKKY
interaction, while at the same time they experience a crystal field induced Ising anisotropy. In section 2we
extend the previous analysis for the case of a superconducting substrate and discuss themodifications on the
interplay of the spiral, FM andAFMphases. In section 3, we retrieve an effective one-dimensional low-energy
Hamiltonian of the hybrid device for the FM andAFM implementations, relying on Shiba bound states. In
sections 4 and 5, we extract the topological phase diagrams and study the arisingMFwavefunction
characteristics, for the FM andAFMShiba chains, respectively. Finally, we present our conclusions in
section 6.

Figure 1. (a) Top view of a chain of adatoms placed on top of a superconducting surface withRashba spin–orbit coupling (SOC). In
the absence ofmagnetism, the point group symmetry of the hybrid structure, isC2v, consisting of two reflection operationsσxz andσyz

(the index shows themirror plane), and aC2 rotation → − −x y z x y z( , , ) ( , , ). (b) Side view of the hybrid structure. Crystal field
effects (CFEs) violate spin rotational symmetry and favor an easy spin axis for themagnetic ordering (here z axis). On the other hand,
SOC induces aDzyaloshinsky–Moriya (DM) interaction.When the spin anisotropy dominates over theDM interaction, the adatoms
order in a ferromagnetic (FM) or antiferromagnetic (AFM) fashion, depending on the chain constant a. Otherwise, the spiral (SP)
ordering prevails.
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1.Magnetic phases of an adatom chain on aRashbametallic surface

In this sectionwe discuss the favored ordering of a chain ofmagnetic atoms placed on top of ametallic surface
with Rashba SOC.We first retrieve the RKKY superexchange interaction between themagnetic atoms, which is
mediated by the substrate electrons. By additionally taking into account an Ising-like anisotropy termdue to the
crystalfield, we retrieve the classicalmagnetic phase diagram,which consists of FM,AFMand spiral phases.
Finally, we investigate the impact of quantum and thermal fluctuations on the FMandAFMmagnetic orders,
and show that they are stable.

1.1. RKKY interaction
We start with theHamiltonian of a two-dimensionalmetallic substrate with Rashba SOC:

∑ψ ψ=H h , (1)
k

k k kmetal
†

where σξ α= + ×k zh ( ˆ) ·k k is a 2 × 2matrix in spin-space andψ = ↑ ↓c c( , )k k k
† † † is the corresponding spinor.

Furthermore, σck
† creates an electronwithmomentumk and spin projection σ. The quadratic electronic

dispersion,ξ μ= −k m2 ,k
2 can be linearized around the Fermi-momentum ( μ=k m2F ), i.e.

ξ = −v k k( ),k F F where = ∣ ∣kk and vF is the Fermi-velocity. TheHamiltonianhk can be readily diagonalized via

aπ 2-rotation about the k̂-axis:

ξ α σ= +σ σ−π π
h ke e , (2)k

k
k

k z
i ˆ· i ˆ·4 4

where =k k kˆ . The respective eigenenergies are given byξ ξ λα= + ≈ −λ λk v k k( ),k k F with
αλ≈ −λk k v(1 ),F F corresponding to the two helicity bands λ = ±1. Thus, the effectivemomentum splitting

δk corresponds to a SOC strengthα δ= v k kF F .
In order to proceed, we define theMatsubaraGreen’s function in the helicity subspace: ωλg k( , i )=

ω ξ− λ
−(i )k

1 andwith that we obtain

∑ω ξ α σ
λσ

ω− − =
+

λ
λ

−

=±
( )k g ki

1

2
( , i ). (3)k z

z1

According to the result above, the electronic Green’s function is given by

∑

∑
σ

ω
λ σ

ω

λ
ω

=
+

=
+ ×

σ

λ

σ

λ

λ
λ

=±

−

=±

π π

( )

k

k z

G g k

g k

( , i )
1 e e

2
( , i )

1 ˆ ˆ ·

2
( , i ). (4)

k k
z

i ˆ· i ˆ·4 4

At this point, we assume a certain arrangement for themagnetic adatoms on themetallic substrate. Herewe
consider classical spinsSi withmagnitude∣ ∣ =S S,i placed at positions =R xia ˆ,i with = …i N1, , . In addition,
we consider that the interaction between the adatoms is driven by an exchange interactionmediated by the
conduction electrons of the substrate. The coupling between adatoms and conduction electrons can be
parametrized by an exchange energy J, i.e.

∬∑ σ
π

= ′
σ σσ σ

=

− − ′
′ ′ ′( )k k

SH J c c
d d

(2 )
e · . (5)k k R

k kJ

i

N

i

1
2

i( )· †i

Given that J is a small coupling constant and that the localmodifications of the electronic spectrum in the
substrate are negligible, we can follow a standard one-loop expansion and obtain an effective spin–spin
interaction. The so called RKKY interaction reads [39]

∑χ= − αβ α βH
J

S S
2

, (6)
ij

ij i jRKKY

2

where the spin susceptibility can be derived using theGreen’s function given in equation (4):

∑χ σ ω σ ω= − − −αβ

ω
σ

α β( ) ( )R R R RT G GTr , i , i , (7)ij i j j i
⎡⎣ ⎤⎦

where ωRG ( , i )=∫ ω
π

kGe ( , i )k k Rd

(2 )
i ·

2 . In the followingwewill consider a chain of adatomswithmagnetic

moments placed along the x direction. In appendixwe present in detail the stepswhich yield thewell known
result [47] for the RKKY interaction:
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∑
π

α α

α

= −

× + −

+ × }
{

( )
( )

( ) ( )

( )( )

S S

S S

H m
Jk k r

k r

m r m r S S

m r

sin 2

2

cos 2 · 1 cos 2

sin 2 , (8)

F

ij

F ij

F ij

ij i j ij i
y

j
y

ij i j
y

RKKY

2

2

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

whereν π= m 2F is the density of states at the Fermi-level for each spin-band and ≡ −r i j a( )ij . Equation (8)
holds in the limit ≫k a 1F . For vanishing SOC,we recover the usual spin rotationally invariantHeisenberg
interaction, proportional toS S·i j. On the other hand, afinite SOCproduces both an additional Ising

interactionS Si
y

j
y and aDM interaction ×S S( )i j y. Note, that the particular form for theRKKY interaction could

have been readily retrieved by considering all the bilinear spin–spin interaction terms, which are allowed by the
C2v point group symmetry of the system in the non-magnetic phase.

Wemaywrite the RKKY interaction in a compact fashion, by taking into account that the rotation of a
classical spinS j by an angleθij = αm r2 ij with respect toS ,i is given by

θ θ θ≡ + ×( ) ( ) ( )( )S S y Scos sin ˆ . (9)j ij ij j ij j

Thuswemay rewrite equation (8) as follows [47]:

∑
π

θ= −
( )

( )
( )S SH m

Jk k r

k r

sin 2

2
· . (10)F

ij

F ij

F ij

i j ijRKKY

2

2

⎛
⎝⎜

⎞
⎠⎟

This implies that the SOCwould generally establish a spiral configuration, with a tilting angleθ +i i1, = αma2
between successive spins.However, the substrate crystalfield effects (CFEs), violate spin rotational invariance so
that themagneticmoment of adatoms tends to point along the axis perpendicular to the surface (z axis here).
This anisotropy gives rise to an additional term appearing in the total adatomHamiltonian, which depends on
themicroscopic details of the substrate and can generally assume a rather complicated form.However, herewe
will consider the simplest allowed termwith the form

∑= − ( )H
D

S
2

, (11)
i

i
z

CFE
2

which accounts for the broken spin-rotational invariance. The parameterD has been already estimated
experimentally for some cases, bymeans of spin-polarized STM [48, 49].

1.2. Classicalmagnetic ground state
In this paragraph, we discuss the competition of the possiblemagnetic phases of the adatom chain (see figure 2),
arising from the interplay of the SOC and theCFEs. The former favors a spiral orderingwhile the latter, if large
enough, can stabilize a FMorAFMordering depending on the adatom spacing. For the rest, we treat the spins
classically, thus assuming that∣ ∣ =S Si with afixedmagnitude S. In the classical limit: → ∞S whereas →J 0, so
that JS remainsfinite. Later wewill discuss the stability of the classical ground state against quantumand thermal
fluctuations.

There are variousways to determine the classical ground state of theHamiltonianHclassical = +H HCFE RKKY.
In this sectionwe pursue a rather qualitative discussion andwe prefer to apply a trial configuration ϑS ( )i =

ϑ ϑ+x zS Ssin ( i) ˆ cos ( i) ˆ,with the orientation of the spins confined in the xz plane. The latter form isfixed due
to (i) theCFEswhich energetically favor the appearance offinitemagnetization along the easy z axis and (ii) the

Figure 2.Possible scenarios for the classicalmagnetic ground state: ferromagnetic (FM), spiral (SP) and antiferromagnetic (AFM)
ordering.
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mixing of the x and zmagnetization components induced by theDM interaction as an indirect result of the
Rashba SOC. Therefore, the particular formof theHamiltonian implies that in themagnetic ground state, the
spins are lying in the xz plane. Under these conditions, the ground state is defined by the optimal value of the
angleϑ, whichminimizes the classical Hamiltonian:

∑

∑

ϑ ϑ

π
α ϑ

= −

− +
( )

( )

H
DS

m
JSk k r

k r
m a r

( )
2

cos ( i)

sin 2

2
cos (2 ) . (12)

i

F

ij

F ij

F ij

ij

classical

2
2

2

2

⎛
⎝⎜

⎞
⎠⎟

⎡⎣ ⎤⎦

Weminimize thisHamiltonianwith respect toϑ for an infinite chain. Infigure 3we see that depending on the
relation between: (i) exchange energy JS, (ii) CF anisotropyD, (iii) SOC strengthαk ,F and (iv) adatom spacing a,
the classical ground state can assume a FM (ϑ = 0), AFM (ϑ π= ) or spiral configuration (ϑ π≠ 0, ). The
stronger the SOC, the stronger theCF anisotropy that has to be present, in order to compensate the tendency of
the system to form a spiral.Moreover, we observe that by tuning the SOC strength, as for instance by applying an
electric field along the z axis, we can realize a FM↔AFMquantumphase transition. This can be clearly seen in
figure 4where the different phases are shown for two different values of the atomic spacing. The particular
characteristic of the phase diagram implies that electric fields can be also employed for altering the topological
properties of the Shiba chains yielding a rich landscape ofMF phases. Finally, note that the arising phase
transitions are first order.

1.3. Thermal andquantumfluctuations
In this paragraphwewill investigate the robustness of the FMandAFMphases against thermal and quantum
fluctuations. To this endwe assume that the system resides either in the FMor the AFMphase, withϑ π=± 0,
respectively.Wewill retrieve the dispersion of themagnetic fluctuations for eachmagnetic phase, by employing
aHolstein–Primakoff (HP) transformation [50]. In the limit of large S, theHP transformation reads

= ± + = −

= ± −

( ) ( )
( )

S S b b S i S b b

S S b b

( 1) 2 , 2 ,

( 1) , (13)

j
x j

j j j
y

j j

j
z j

j j

† †

†

with bi andbi
† constituting bosonic operators which obey the commutation relation b b[ , ]i j

† =δ ,ij where the
indices i j, refer to the sites of the adatoms. In addition ±corresponds to the FM (+) and the AFM (−) cases. At
this point, we effect this transformation on equation (8) and separate the resulting quantumHamiltonian in
ordersH m

quantum
( ) with respect to the operators bi andbi

†. The zeroth order of the quantumHamiltonian coincides
with the classical ground state energy given by

Figure 3.Phase diagrams for the classicalmagnetic ground state. The parameter plane is defined by the adatom spacing a, and the
rescaled strengthD of the crystalfield anisotropy. The presented diagramswere calculated for two values of the Rashba SOC strength
α.Wefind that largeα coupling favors the spiral configuration, whereas increasing the Ising anisotropy strengthD pins an easy axis (z)
and promotes the FMandAFMphases.
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∑Ξ≡ = − − α
± ± −

±H H
NDS

S
2

, (14)
ij

i jquantum,
(0)

classical,

2
, 2

Ξ
π

α≡ ±α
−
± − ( )

( )
( )m

Jk k r

k r
m r( 1)

sin 2

2
cos 2 . (15)i j

i j F F ij

F ij

ij
,

2

2

⎛
⎝⎜

⎞
⎠⎟

The linear termHquantum
(1) vanishes, whereas the bilinear term is given by

∑

∑

∑ ∑

Ξ Ξ

Ξ Ξ

Ξ

= − − +

− + +

+ + + −

α

α

α

± −
±

−
+

−
±

−
+

−
±

( )( )

( )( )

( )

H
S

b b b b

S
b b b b

S b b b b
D

S b b

2

2

2
(2 1) . (16)

ij

i j i j i j i j

ij

i j i j i j j i

ij

i j i i j j

i

i i

quantum,
(2) , ,0 † †

, ,0 † †

, † † †

Inmomentum space theHamiltonian reads

∑ γ

γ

= +

+ +

± − −

− −

( )

( )

H b b b b

b b b b , (17)

q
q q q q q

q q q q q

quantum,
(2) (1) † †

(2) † †

⎡⎣
⎤⎦

with the combinations

γ Ξ Ξ Ξ

γ Ξ Ξ

= − + + − +

= − −

α α

α

± +
=

±

± +

( )

( )

S D
S S

S
2 4

(2 1)

2

q q q q

q q q

(1) , ,0
0

,

(2) , ,0

andΞ α ±
q

, = Ξ∑ α ±qjexp (i )j j
, . A bosonic Bogoliubov transformation β β= − −b u vq q q q q

† with η=u cosh ,q q

η=v sinhq q and ηtanh (2 )q = γ γ ,q q
(2) (1) immediately provides the eigenenergies of the spinwavemodes,

ω γ γ= − .q q q
(1) 2 (2) 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Figure 4.Phase diagrams for the classicalmagnetic ground state. The parameter plane is defined by the rescaled SOC strength α, and
the rescaled strengthD of the crystalfield anisotropy. The presented diagramswere calculated for two values of the adatom spacing a.
We observe stabilization of the FMorAFMphases for increasing CF anisotropy.More importantly, tuning the SOC strength can tailor
the phase diagram leading to controllable switching between the FMandAFMphases.
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In order to investigate the stability of the FMandAFMphases, we calculate the sublatticemagnetization, i.e.

∑ ∑= − ± = −
=

M
N

S S
N

b b
1

( 1)
1

.
j

N
j

j
z

q

q q

1

†

Using the Bogoliubov operators and by introducing the Bose–Einstein distribution β β= 〈 〉n ,q q q
† we obtain the

deviation of the sublatticemagnetization from its ground-state value

∑Δ = − = + +( )S S M
N

n u n v
1

1 , (18)
q

q q q q
2 2⎡⎣ ⎤⎦

wherewe have assumed that 〈 〉 =Ssgn ( ) 1z
1 . Infigure 5we show ΔS for different temperatures and SOC

strength. For the atomic spinwe use =S 15 2 that has been realized in clusters of fewmagnetic atoms [51].We
find that forT=0 andα = 0 only theAFMconfiguration exhibits quantum fluctuations, which are absent in the
FMcase (Δ =S 0). In both cases we find that quantum aswell as thermalfluctuations are suppressedwith
increasing anisotropyD. For bothAFMand FMconfigurations, the sum in equation (18) diverges forfinite
temperatures when taking the limit →D 0, and thus thermalfluctuations destroy themagnetic order. In STM
experiments the nearest neighbor exchange energy aswell as the crystalfield anisotropy can bemeasured. The
next neighbor RKKY interaction of variousmetals is of the order [48, 49]

π
≡ ∼

( )
( )

J m
JSk k a

k a

˜
sin 2

2
0.1 meV. (19)F F

F

2

2

⎛
⎝⎜

⎞
⎠⎟

The crystalfield anisotropyD has been determined in [49] to be approximately given by∼1meV or even larger
[48]. In terms of the parameters J̃ andD our calculation covers the parameter regime ≲D J̃ 10, which is
consistent with the aforementioned experimental realization. Furthermore, the so far explored temperatures are
within the range ∼ −T 0 1 K,which are typical for theMF experiments. As a conclusion, FMorAFMmagnetic
chainsmay be established, even in the presence of strong SOCwithout being destroyed by fluctuations.

2.Magnetic phases of an adatom chain on aRashba superconductor

Herewe extend the previous analysis in order to investigate the effect of superconductivity on themagnetic
phase diagram.Once again, themagnetic adatoms interact via an RKKY interactionwhich ismediated by the
electrons of the substrate superconductor, while they also feel a spin anisotropy due to the crystal field.

Figure 5. Sublattice-magnetizationmeasured from its ground-state value, ΔS ( =S 15 2), as a function of anisotropyD for different
temperaturesT and SOC strength α for both theAFMand the FMconfiguration. Both phases become unstable for →D 0, since
fluctuations become significant. TheAFMphase always exhibits both thermal and quantum fluctuations. In contrast, quantum
fluctations appear in the FMcase onlywhen SOC is present. In both phases a sufficiently large, but experimentally feasible, value forD
suppresses both types offluctuations.
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2.1. Gor’kov–NambuGreen’s function
In this sectionwe derive theGreen’s function for the superconducting substrate degrees of freedom in the
presence of SOC. As before, we exclusively discuss Rashba SOC, although other couplings between spin and
momentummay be intrinsically present. This type of SOC can be engineered and can be considerably large for
instance in quantumwells [35–38]. In fact, superconducting thinfilms of Pb feature both intrinsic andRashba
types of SOC. Starting from theHamiltonian of equation (1) for a two-dimensionalmetallic surfacewith SOC,
we consider here an additional spin singlet s-wave pairing termΔ (here real and positive)

∑

∑

σψ ξ τ ατ Δτ σ ψ

ψ ψ

= + × −

=

( )k zH

h

1

2
ˆ · ˜

1

2
, (20)

k
k k

k
k k k

k z z y ysc
†

†

⎡⎣ ⎤⎦

where the Paulimatrices τ are defined in particle-hole space andψk
† = ↑ ↓ − ↑ − ↓c c c c( , , , )k k k k

† † is the corresponding
spinor. Following the procedure of section 1.1we perform a rotation, i.e.

ξ τ α σ Δτ σ= + −σ σ−π π
h ke e .k

k
k

k z z y y
i ˆ·˜ i ˆ·˜4 4

Mind that the representation of the spin operator in the extended space is given by σ̃ 2= τ σ σ τ σ( , , ) 2z x y z z . By
introducing

ω ω Δ ξ= − −± ±
−

g k˜ ( , i ) (i ) , (21)k
2 2 2 1⎡⎣ ⎤⎦

we obtain

∑

ω ξ τ α σ Δτ σ

λτ σ
ω ξ τ α σ Δτ σ ω

− − +

=
+

+ + −
λ

λ

−

=±
( )

k

k g k

i

1

2
i ˜ ( , i )

k z z y y

z z
k z z y y

1⎡⎣ ⎤⎦

andwith the above, the electronic Gor’kov–NambuGreen’s function becomes

∑

∑

σ

σ

ω ω ξ τ α σ Δτ σ

λ ω ξ τ
ω Δ ξ

λ Δτ σ

ω Δ ξ

= − − +

=
+ × +

− −

−
+ ×

− −

σ σ

λ

λ

λ

λ λ

− −

=±

=±

π π

( )

( )

k

k z

k z

G kˆ ( , i ) e i e

1 ˆ ˆ · ˜

2

i

(i )

1 ˆ ˆ · ˜

2 (i )
. (22)

k k
k z z y y

k z

k

y y

k

i ˆ·˜ 1 i ˆ·˜

2 2 2

2 2 2

4 4⎡⎣ ⎤⎦

Thus the presence of the Rashba SOC induces triplet pairing correlations [52–54]

σΔ τ σ Δ φ τ σ φ τ× = −( ) ( )k zˆ ˆ · ˜ sin cos ,k ky y x z y

where φtan k =k ky x. The emergence of triplet correlations can be also understoodwithin the theory of induced
orders and patterns of coexisting phases [53, 54, 56, 57]. In this work, we assume only a local pairing interaction
leading to a spin singlet superconducting order parameterΔ [55], which is accompanied by the triplet
correlations above. However, in the presence of suitable non-local interactions which contribute to the above
superconducting triplet channel, the s-wave singlet and p-wave triplet order parameters necessarily coexist at a
microscopic level due to the SOC [52–54]. In the latter case, a p-wave spin triplet order parameter has to be taken
into account and determined self-consistently, as it can lead tomodifications of the topological phase
diagram [5].

In equation (22) one can identify the electronic Gor’kov–NambuGreen’s function

∑
σ

ω
λ ω ξ

ω Δ ξ
=

+ × +
− −λ

λ

λ=±

( )
k

k z
G ( , i )

1 ˆ ˆ ·

2

i

(i )

k

k
2 2 2

and the anomalous one,

∑ω Δ σ λ φ φ σ

ω Δ ξ
=

− +

− −λ λ=±

( )
kF

i
( , i )

2

i cos sin

(i )
.

k ky z

k
2 2 2
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By focusing on positions along the x axis, i.e. =r xr ˆ,wefind

∫

∫∑

ω
π

ω

π
λσ ω τ ξ Δτ σ

ω Δ ξ

=

=
− + −

− −

φ

λ

λ

λ=±

∞

( )x
k

kG r G

k k J kr J kr

ˆ ˆ, i
d

(2 )
e ˆ ( , i )

d

2

( ) i ( )

2

i

(i )
. (23)

kr

y z k y y

k

2
i cos

0

0 1

2 2 2

k

These expressions are valid ifω ≫ ∼v r E k r,D F F F whereωD is theDebye frequency.Mind that for r=0,we
basically recover the electronic bulkGreen’s function

ω πν
ω Δτ σ

ω Δ
= −

−

+
G 0ˆ ( , i )

i
. (24)F

y y

2 2

2.2. RKKY interaction
In order to discuss the effective RKKY interactionmediated by the quasiparticles of a superconducting substrate
with SOC, one can simply replace theGreen’s function appearing in equation (7) by the one of equation (23) and
the spin Paulimatricesσα andσ β by the corresponding components of the spin Pauli vector in the new
representation σ̃ = τ σ σ τ σ( , , )z x y z z . For a superconducting substrate, the RKKY interaction owes an additional
term,which does not arise in the case ofmetallic substrates. This distinct RKKY term is associatedwith Shiba
states [42], appearing due to the presence of themagnetic adatoms on the superconducting surface. The latter
constitute localized states at the sites of the adatoms, with energies ε0 which are smaller than the
superconducting gap. In spite of the fact that the number of Shiba states is relatively small compared to the
number of the bulk accessible states, it has been recently shown that their contribution to the RKKY interaction
can become important, favoring anAFMordering [58].Nonetheless, in order for the Shiba term to dominate
over the bulk RKKY contribution the adatom spacing has to be rather long, since the former decays as −k r( )F

1

whereas the latter decays as −k r( )F
2. The authors of [58] showed that the Shiba contribution dominates if the

condition ξ>k r rF 0 is fulfilled, holding for thematerial parameters and the atomic spacing ( ∼r 100 nm),
which they focused on.

In stark contrast, here we assume an adatom spacing of the order of 1 nm and a coherence length of
ξ ∼ 80 nm0 . Thereforewefind that ξ<k r rF 0 and conclude that the Shiba bound state contribution is
negligible in our case. Its inclusionwould onlymove the phase boundaries slightly deeper into the AFM region.
Moreover, since themain contribution to the RKKY interaction arises for energies quite above the gapΔ, there is
also no quantitativemodification of the results found previously in section 1 for a normalmetallic substrate.
Therefore, the phase diagrams presented infigures 3 and 4, also hold for the case of a superconducting substrate.

3. Effectivemodel for FMandAFMShiba chains

Aswe explained in the previous paragraph, the contribution of the Shiba states to the RKKY interaction is
unimportant in the case under consideration, and thus their presence is irrelevant for deciding on the type of
magnetic orderwhichwill develop in the adatom chain.However, the Shiba states aremidgap states which
govern the low-energy behavior of the electronic degrees of freedom. Therefore, in this sectionwe proceedwith
investigating the characteristics of the Shiba states that develop under the influence of background FMandAFM
magnetic orderings of the adatom-spinsS ,i with∣ ∣ =S S,i which have been stabilized by the effective RKKY
interaction originating solely from the continuum spectrum. Themagnetic exchangeHamiltonian now
becomes

∬∑
π

ψ τ σ ψ= ′

=

− − ′
′

k k
H M

1

2

d d

(2 )
e (25)k k R

k kJ

j

N

j z z

1
2

i( )· †j

withRi = xia ˆ .We introduced = ±M JS ( 1) ,j
j corresponding to FM (+) andAFM(−) ordering, respectively. In

order tofind the electronic spectrumwe solve the Bogoliubov–deGennes (BdG) equation [27, 30, 31, 58–60]

∫∑
π

ε τ σ ϕ ϕ′ =− − ′
′

k
kG M

d

(2 )
ˆ ( , )e , (26)k k R

k k
j

j z z2
i( )· j

where thewavefunctionϕ = ↑ ↓ ↑ ↓u u v v( , , , )k k k k k
T contains the spin-dependent particle- and hole-components

u and v.We assume that the continuum states are only slightly affected by the presence of themagnetic atoms and

thus assume the usual spectrum, Δ ξ= +Ek k
2 2 , for the superconductor. By defining

∫ϕ π ϕ= k(1 2 ) d e k R
kj

i · j we trace out the continuum states and end upwith the equation
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∑ δ ε ϕ− =( )xV V G r Vˆ ˆ, 0, (27)
j

i ij i ij j j
⎡⎣ ⎤⎦

where τ σ=V Mj j z z . By performing an expansion both in the normalized energy,ε Δ, aswell as the couplings to
higher order neighbors, we obtain from equation (23)

ε πν ε Δ τ σ≈ − −( )G 0ˆ ( , ) , (28)F y y

ε τ τ σ

τ σ τ

≈ +

+ +

 
 

( )xG r r r

r r

ˆ ˆ, ( ) ( )

( ) ( ) . (29)

s
z

a
z y

s
y y

a
y

The integrals in equation (23) togetherwith the approximate form for the Bessel functions given in
equation (A.2), yield the coefficients

πν
α= − π

π
− ξ

 ( )r
m r k r

( )
cos ( ) sin e , (30)

s

F
F k r4

2r

F
0

πν
α= − π

π
− ξ

 ( )r
m r k r

( )
cos ( ) cos e , (31)

s

F
F k r4

2r

F
0

πν
α= − π

π
− ξ

 ( )r

i
m r k r

( )
sin ( ) sin e , (32)

a

F
F k r4

2r

F
0

πν
α= − π

π
− ξ

 ( )r

i
m r k r

( )
sin ( ) cos e , (33)

a

F
F k r4

2r

F
0

whereξ0 is the coherence length of the superconductor. The indices s and a denote functionswhich are
symmetric or anti-symmetric under inversion → −r r .With this we rewrite equation (27) in the formof a
Schrödinger equation

∑ ϕ εϕ= (34)
j

ij j i

with theHamiltonian

Δ
πν

πν τ σ τ σ δ

τ τ σ τ σ τ

= −

+ − + −− − − −



   
( )

( )
M

M M

M M , (35)

ij
F

F y y z z ij

i j i j
s

z i j
a

z y i j
s

y y i j
a

y

2
2

i
⎡⎣

⎤⎦
wherewe have compactly denoted ≡−f f r( )i j ij and setM= JS. The solution of equation (34) determines the

energies andwavefunctions of the Shibamidgap states.

4. Topological FMShiba chain

It has beenwell established, already from earlier proposals involving topological insulators [6] and
semiconductors [8–11], that the combined presence of SOC, s-wave superconductivity andmagnetism, can
induce topological superconductivity. Note also that a recent symmetry classification [5] has presented further
directions of how to combine these ingredients for engineering TSCs. Both cases of topological FMandAFM
Shiba chains fall into this classification scheme. In fact, the effectivemodel for a topological Shiba chain (see also
[31]) resembles previous continuummodels describing TSCs using nanowires with Rashba SOC [10, 11]. In the
present case, the effective Zeeman field is provided by themagnetic adatoms (classical here) and the SOCoccurs
due to the involvement of a superconducting surface.However, there are also important differences. First, the
perpendicular localmagnetic field felt by the Shiba states is generally less harmful for superconductivity
compared to a perpendicularmagnetic field, due to the additional contribution of the orbital effects in the latter
situation. In the case of Shiba states, in spite of the fact that the superconducting gap becomes locally suppressed,
it generally survives evenwhen themagnetic exchange energy becomes comparable to it [60]. In addition, note
that the FMordering ismore likely to suppress superconductivity locally compared to the AFMordering.

Moreover, another distinctive feature for the effectivemodel of topological Shiba chains is that they
incorporate triplet pairing correlations, which can generally lead to a significant quantitativemodification of the
phase diagram (see [5]). In addition, the topological Shiba chainmodels are latticemodels involving higher
order neighbor couplings, thus strongly depending on the adatom spacing. Consequently, one can not always
restrict to a nearest neighbormodel but instead, depending on the ratioξ a,0 a large number of neighbors can
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become relevant. Evenmore, the inherent presence of additional chiral symmetries, leads to a rich variety of
topologically phases evenwith 2MFs per edge.

In the following paragraph, wefirst discuss the symmetries of a topological FMShiba chainwhich are crucial
for performing a topological classification of the accessibleMF phases. Furthermore, we extract the topological
phase diagram and study numerically theMFwavefunctions for afinite chain, in order to discuss aspects related
to the experimental realization of this scenario.

4.1. Symmetry classification
As alreadymentioned, in the absence ofmagnetism, the point group symmetry of the hybrid structure (as in
figure 1), consisting of the chain on top of an infinite substrate surface, isC2v. Since the effectivemodel
describing the Shiba chains is embedded in the two-dimensional geometry, rather than being a stictly one
dimensional system, it inherits the same point group properties. This is reflected in theC2v point group
symmetry of the non-magnetic part of theHamiltonian in equation (35). This point group consists of the:

1. identity element ↦E x y z x y z: ( , , ) ( , , ) ,

2. reflection operationσ ↦ −x y z x y z: ( , , ) ( , , )yz ,

3. reflection operationσ ↦ −x y z x y z: ( , , ) ( , , )xz ,

4. z axis π-rotation ↦ − −C x y z x y z: ( , , ) ( , , )2 .

Note that for the effective Shiba statemodel of equation (35) only the inversion operation ↦ − x x: is
accessible, and corresponds to = −i i and = −j j, with i j, denoting adatom sites. Therefore, within our
spinor formalism the aforementioned symmetries are generated by the unitary operators: =E Iˆ , σ τ σ= ˆ i ,yz z x

σ σ=ˆ ixz y and τ σ= Ĉ i z z2 . The term associatedwith the presence of FMordering, τ σ τ σ=M M ,j z z z z transforms

under theC2v elements in the followingmanner:σ τ σ σˆ ˆyz z z yz
† = τ σ− z z ,σ τ σ σˆ ˆxz z z xz

† = τ σ− ,z z τ σC Cˆ ˆ
z z2

†
2 = τ σz z .

Moreover, the FMchain is invariant under the action of the discrete translation operator, t̂ ,a which leads to shift
↦ +i i 1, i.e. equal to the adatom spacing a.
In contrast, the usual time-reversal operation with generator σ= ˆ i ˆ ,y is broken as the FM term satisfies

τ σ τ σ= − ˆ ˆ
z z z z

†
. Here ̂ denotes the anti-unitary complex-conjugation operator. As it becomes evident from

the above relations, the FM term is invariant under the action of the following combined symmetry operations:
σ xz and σ ,yz i.e. consisting of operations underwhich the rest of theHamiltonian is invariant. Usually, this type
of symmetries are called hidden symmetries [5, 61], as they are a combination of symmetry operations which,
separately, do not leave theHamiltonian invariant. In the particular case only the action of the operator

Θ σ≡ ˆ ˆ ˆ
xz = ̂, which coincides with the complex conjugation, leaves the total BdGHamiltonian invariant.

Similarly to the usual time-reversal symmetry operator ̂ , Θ̂ is also anti-unitary.Wemay thus call it a

generalized time-reversal symmetry operator [5].However, the operators differ in periodicity, i.e. = − Iˆ 2
and

Θ = Iˆ 2
. The latter implies that -symmetry will lead to aKramers degeneracy, whileΘ-symmetry imposes a

reality condition on theHamiltonianwithout anyKramers pairs [62–64]. In the case under consideration, the
presence ofΘ-symmetry togetherwith the built-in charge-conjugation symmetry of the BdGHamiltonian,
effected by the operatorΞ τ≡ ˆ ˆ ,x give rise to the chiral symmetry operatorΠ τ≡ˆ

x . Thus although the usual
time-reversal symmetry is broken in our system, the presence of the aforementioned set of symmetries implies
that the system resides in the BDI symmetry class, which in one-dimension can support topologically non-trivial
phases characterized by a invariant [62–64]. The latter allows an integer number ofMFs per chain edge (see
also [43–46]). Aswe show in the next paragraph these topological phases are indeed accessible with the
particular system.

4.2. FMShiba chainHamiltonian
In order to study the topological properties of a FMShiba chain, wewill transfer tomomentum space, defined in
the FMBrillouin zone (BZ) π π∈ −k a a( , ]. At this point we introduce the corresponding BdGmomentum
spaceHamiltonian,k = +  ,k k

m0 consisting of the (i) non-magnetick
0 and (ii)magnetick

m parts:

τ τ σ Δ τ σ τ= − + + − ( )t v d , (36)k k z k z y k y y k y
0

τ σ= −  , (37)k
m

z z
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wherewe have introduced Δ πν= JS( )F and

∑ δ Δ
πν

= =
δ

δ δ δ
=

∞

t t ka tcos ( ) with
2

, (38)k
F

s

1

∑ δ Δ
πν

= =
δ

δ δ δ
=

∞

v v ka v
i

sin ( ) with
2

, (39)k
F

a

1

∑ δ Δ
πν

= =
δ

δ δ δ
=

∞

   kacos ( ) with
2

, (40)k
F

s

1

∑ δ Δ
πν

= =
δ

δ δ δ
=

∞

d d ka d
i

sin ( ) with
2

. (41)k
F

a

1

The aboveHamiltonian acts on thewavefunctionϕk = ↑ ↓ ↑ ↓u u v v( , , , )k k k k
T . In addition, δt corresponds to the δ-

order nearest neighbor hopping, δv corresponds to the δ-order nearest neighbor SOC, δ to the δ-order nearest
neighbor extended s-wave spin-singlet superconducting gap and δd to the δ-order nearest neighbor spin-triplet
superconducting gap oriented along the y axis.

4.3. Topological invariant
For exploring the topological phase diagram,we reside on the presence of chiral symmetryΠ τ=ˆ

x and block off-
diagonalize the BdGHamiltonian [43, 64], via a rotation about the τy axis effected by the unitary transformation

τ τ+( ) 2z x .We obtain

′ = A

A

0

0
. (42)k

k

k
†

⎛
⎝⎜

⎞
⎠⎟

The upper block off-diagonal block is given by

σ Δ σ= − − − − + ( )A t d vi i . (43)k k k z k k y
⎡⎣ ⎤⎦

The determinant ofAk is a complex number and reads

Δ Δ= + + − − − + + −  ( ) ( )A t d v v t dDet 2i . (44)k k k k k k k k k
2 2 2 2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

With the vectors =g A A(ReDet[ ], Im Det[ ], 0)k k k and = ∣ ∣g g gˆ ,k k k the related topological invariant is
defined by thewinding number [30, 65]

∫π
= ×

∂
∂

 g
g

k
k

1

2
d ˆ

ˆ
. (45)k

k

z
BZ

⎛
⎝⎜

⎞
⎠⎟

Note that by considering a classificationwhich also takes into account phases with 2MFs, wemanage to go
beyond the study of a FMShiba chain performed in [31], which assumed a2 classification and thus restricted to
the cases with 1MFper edge.

4.4. Topological phase diagram—results
Infigure 6we show thewinding number as a function of the adatom spacing a, magnetic exchange energy JS and
SOC strength α. Phases with zero, one or twoMFs per edge are accessible.When the ground state of the system
resides in a phase near a boundary of the topological phase diagram, one can employ aweak perpendicular
Zeeman (electric) field to tune themagnetic exchange energy (SOC strength) in order to achieve transitions
between phases with different number ofMFs.We additionally observe infigure 6(b) that the phase diagram
exhibitsMF bound states even for very small values ofα. This is similar to the nanowire case [10, 11], where α
mainly determines the spatial profile and localization of theMFs at the edges of afinite system. Interestingly, this
also holds for the case of 2MFs per edge.

Infigure 7we compare thewinding number calculation shown in panel (a), with the evolution of the two
lowest positive eigenenergies, shown in panel (b) thatwas obtained from the open chainHamiltonian for
different lengths. As follows frombulk-boundary correspondence, the number ofMF bound states agrees with
the value of , although long chains are required here in order to obtain quantitative accordance with the
predicted phase boundaries. As amatter of fact, this is the case for the gap closing that occurs at the transition
from trivial to = 2. Here, two truly-zero energy bound states appear only for very long chains. This has to be
contrastedwith the regionwhere = 1. There, the zero energy bound state become stabilized already for
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shorter lengths of the chain, which can be seen through the different decays of thewavefunctions infigures 8(a)
and (b).

To shedmore light on the above findings, we complementary demonstrate infigure 7(c) the gap closings of
the bulk band structure, for the parameters where the topological quantumphase transitions occur. One
observes that the phase transition involving a singleMF corresponds to gap closings at the inversion symmetric
wavevector k=0,whereas in the case involving 2MFs, the dispersion shows gap closings at two non-inversion-
symmetric points±k*.

For even better understanding, let us investigate inmore detail the behavior of the topological invariant. The
gap closing conditions and therefore the phase boundaries, are given by setting =ADet[ ] 0,k which requires the
following two equations to be simultaneously satisfied

Figure 6.The topological invariant (winding number) as defined in equation (45), for varying adatom spacing a and (a)magnetic
exchange energy JS (α = v0.01 F) or (b) normalized SOC strength α (πν =JS 0.85F ). In both cases, wefind topological phases
harboring 1 or 2MFs per chain edge. Note in (a) that tuning themagnetic exchange energy can be used to switch between 1 and 2MF
phases.When close to the phase boundary, the latter could be for instance achieved by applying aweak perpendicular Zeeman field. In
(b) we observe that for an infinitessimally small SOC strength, both 1 and 2MFphases are accessible. This is anticipated for the single
MFphasewhereα does not enter the topological criterion, but quite remarkably, it also takes place for the 2MF situation.Here
electrical tuning ofα can be used for realizing topological quantumphase transitions.

Figure 7. (a) The topological invariant (winding number) as defined in equation (45) (blue) depending on themagnetic exchange
energy JS along the green line infigure 6(a). (b) The two lowest positive eigenenergies in red and black for three different lengths of the
chain (N=130,N=430 andN=2000). Note that in order to obtainwell localizedMFbound states and validate the bulk-boundary
correspondence predictions, quite long chains are required. This is particularly the case for the transition to the 2MFphase, which is
protected by chiral symmetry. In panel (c) we show the corresponding gap closings of the energy dispersions εk , occuring exactly at the
phase transition points I and II. The transition (I) = → 0 2 arises from gap closings at the non-inversion-symmetric points±k*,
connected to each other by inversion. Instead, the transition (II) = → 2 1 arises due to a gap closing at the inversion symmetric
momentum k=0.
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Δ + − =( )v t d 0, (46)k k k k

Δ+ + − − − = ( )t d v 0. (47)k k k k
2 2 2 2 2

To obtain some analytical results, wewill focus on a simplified situation. For instance, by considering a short
superconducting coherence length,ξ ,0 we can restrict ourselves only up to nearest neighbor terms in the
Hamiltonian of equation (36). Under these conditions we have =t t kacos ( ),k 1 =v v kasin ( ),k 1

=  kacos ( )k 1 and =d d kasin ( )k 1 . Equation (46) is satisfied for the inversion symmetric points π=k 0,
and the pair of non-inversion-symmetric points±k*, given by k acos ( * )= Δ − v d t v( )1 1 1 1 1 . By setting these k-
values in equation (47), we obtain the gap closing conditions, or equivalently the phase boundaries. For π=k 0,
we obtain the condition Δ+ ± = t ( ) ,1

2
1

2 2 akin to the criteria found in nanowiremodels [10, 11]. A similar
procedure can provide the gap closing conditions for±k* points, which however is quite lengthy andwill not be
presented here.

It is important to comment on the formof thewavefunctions in the case of 2MFs. In this case, the non-
inversion-symmetric points±k*,will give rise to zero-energy wavefunctions, which however are complex and

proportional to ±e *k aji (j index of chain site). Nonetheless,MFwavefunctions should be real, and this can only
achieved bymaking linear combinations of thewavefunctions, so that they finally obtain a dependence

k ajcos ( * ) and k ajsin ( * ). This explains (i) the oscillating behavior shown infigure 8with a period determined by
k* and (ii) the fact that when oneMFwavefunction shows amaximum, the other shows aminimum. As
expected, theMFwavefunction for a singleMFphase does not show this type of feature.

5. Topological AFMShiba chain

The presence of Rashba SOCdue to the superconducting substrate, is an ingredient capable of engineeringMFs
also for othermagnetic phases of the chain, apart from the FMone. Aswe already discussed in previous
paragraphs, the same conditionswhich favor the FMordering, also provide fertile ground for the establishment
of AFMordering. A crucial requirement is the presence of strong Ising anisotropy in order to overcome theDM
interaction. If this is the case, other details such as the adatom spacing, will decide on the FMorAFM type of
ordering.

The possibility of topological AFMShiba chains was recently discussed in [30] for superconducting
substrates in the absence of SOC. In that case, a newmechanism for engineering topological superconductivity
was proposed, were SOCwas induced by a supercurrent flow along the chain together with an in plane Zeeman
field. Note that AFMand FMShiba chains can only hostMFs in the presence of some kind of SOC [5]. In stark
contrast, spiral Shiba chains do not require SOC, but exhibitMF in a self-tunedmanner. Nonetheless, any
realisticmanipulation ofMFs in spiral Shiba chains will unavoidably require the application of external Zeeman
fields [28] or supercurrents [29], counterbalancing the advantage of self-tunability.

In the rest of themanuscript wewill focus on the topological phases supported inAFMShiba chains. Aswe
will present in the next paragraphs, some of the generic results whichwe reported earlier for the FM case are also
relevant for the AFMorder. For instance, AFMShiba chains also supportMFphases with one or twoMFs per
chain edge.However, as we explain in the AFManalysis, the underlyingmechanism and the topologically

Figure 8.Wavefunctions corresponding to figure 7 for the ground state (g) and thefirst excited state (e). The left and rightMajorana
bound states are labeled by (L) and (R), respectively. (a)Whereas theMFwavefunctionwithin the 1MFphase is strongly localized and
oscillates with a periodicity of lattice spacing, panel (b) shows thewavefunctions inside the 2MFphasewhich strongly leak into the
bulk and oscillate with awavenumber k*.

14

New J. Phys. 17 (2015) 023051 AHeimes et al



relevant k-space points, differ in each case. The reason can be traced back to the (i) differentmagnetic
wavevectorQ=0 or π and (ii) the presence of additional hidden symmetries which appear in the AFMcase.

5.1. Symmetry classification
The present paragraph follows closely the analysis carried out for the FM case. As previously, the relevant point
group in the absence ofmagnetism isC2v. TheHamiltonian of equation (35) includes now theAFM term, given
by τ σMj z z = τ σ−M ( 1) j

z z . The latter AFMHamiltonian term, transforms under theC2v elements in the

followingmanner:σ τ σ σ−ˆ ( 1) ˆyz
j

z z yz
† = τ σ− −( 1) ,j

z z σ τ σ σ−ˆ ( 1) ˆxz
j

z z xz
† = τ σ− −( 1) j

z z and

τ σ τ σ− = −C Cˆ ( 1) ˆ ( 1)j
z z

j
z z2

†
2 . Essentially, we recover exactly the same behavior encountered in the FMcase,

since − = − = −−( 1) ( 1) ( 1)j j j. However, in contrast to the FMordering, the AFMchain is invariant under the
translation operation, t2a, instead of ta. Thus the reduced Brillouin zone (RBZ) becomes now relevant, defined
by π π∈ −k a a( 2 , 2 ]. This reflects the formation of a two sublattice structure.With the help of the translation

operator, t̂ ,a we additionally obtain τ σ τ σ− = − −t tˆ ( 1) ˆ ( 1)a
j

z z a
j

z z
†

. Finally, similarly to the FMcase, the system is

not invariant under , as τ σ τ σ− = − − ˆ ( 1) ˆ ( 1)j
z z

j
z z

†
.

As in the FM case, theAFMchain is invariant under the hidden symmetry operatorΘ σ≡ ˆ ˆ ˆ
xz = ̂.More

importantly, the distinct property τ σ−t tˆ ( 1) ˆ
a

j
z z a

†
= τ σ− −( 1) j

z z can yield additional hidden symmetries, when ta
is combinedwithσ ,yz σxz or . Indeedwefind three additional symmetries: (i) the anti-unitary symmetry

Θ′ = ta (ii) the unitary symmety σ= txz a and (iii) the unitary symmety σ′ = tyz a. On the other hand,
unitary symmetries allow to block-diagonalize theHamiltonian and label it with the eigenvalues of the respective
operators. Herewemay use only one of the two unitary symmetry operators for block diagonalizing the
Hamiltonian.Note that the presence of two anti-unitary symmetriesΘ andΘ′, does not allow the classification
of theHamiltonian according to the ten existing symmetry classes [62–64]. The latter classificationmethods can
be only applied onHamiltonianswith no additional unitary symmetries present. However, after the block
diagonalization of theHamiltonian relying on the unitary symmetry, a symmetry classification is possible [5].
This is exactly the tactic whichwewill follow in the next paragraph, byfirst transferring to the RBZ.

5.2. AFMShiba chainHamiltonian
By transferring tomomentum space, we obtain the following Schrödinger equation, which provides the single-
particle spectrum in the AFMcase:

ϕ ϕ εϕ+ =+  , (48)k k k
m

k Q k
0

with π=Q a, ∈k BZ,k
0 andk

m given in equation (36). By passing to the RBZwe obtain

τ σ

τ σ

ϕ
ϕ

ε
ϕ
ϕ

=−

+

−

+

−

+

 
  , (49)

k Q z z

z z k Q

k Q

k Q

k Q

k Q

2
0

2
0

2

2

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where by additionally introducing the ρ Paulimatrices in the AFM spacewe end upwith theHamiltonian

ρ τ ρ σ= + +͠ + −    (50)k k k z z x z,
0

,
0

defined in the RBZ,while we introduced

=
±

±
− +  

2
. (51)k

k Q k Q
,

0 2
0

2
0

The explicit form reads

τ τ ρ τ σ τ ρ σ

Δ τ σ τ ρ σ τ τ ρ

τ ρ σ

= + − −

+ + + − −

−

͠ + − + −

+ − + −


 


( )

t t v v

d d

, (52)

k k z k z z k z y k z z y

k y y k y z y k y k y z

z x z

, , , ,

, , , ,

where the parameters appearing can be directly retrieved by the definitions of tk, vk,k and dk. For completeness,
we present their expression below

∑= −+
=

∞

t t lkacos (2 )( 1) , (53)k

l

l
l

,

1

2

∑= − −−
=

∞

−t t l kasin [(2 1) ]( 1) , (54)k

l

l
l

,

1

2 1
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∑= −+
=

∞

v v lkasin (2 )( 1) , (55)k

l

l
l

,

1

2

∑= − −−
=

∞

−
+v v l kacos [(2 1) ]( 1) , (56)k

l

l
l

,

1

2 1
1

∑= −+
=

∞

  lkacos (2 )( 1) , (57)k

l

l
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,

1

2

∑= − −−
=

∞

−  l kasin [(2 1) ]( 1) , (58)k

l

l
l

,

1

2 1

∑= −+
=

∞

d d lkasin (2 )( 1) , (59)k

l

l
l

,

1

2

∑= − −−
=

∞

−
+d d l kacos [(2 1) ]( 1) . (60)k

l

l
l

,

1

2 1
1

At this point, wemove onwith the symmetry classification. In the particular basis, the translation operator t̂a has
the representation

ρ

=

= −

−

+
t̂ e 0

0 e

i e . (61)

a

k Q a

k Q a

z
ka

i( 2)

i( 2)

i

⎛
⎝⎜

⎞
⎠⎟

For simplicity, wewill drop theU (1)phase factor, since it is irrelevant for the present discussion.On the other
hand, complex conjugation has the following representation in this basis ρ= ′ ˆ ˆ ,x with ′̂ not acting on the

wavevectorQ. Under these conditionswe obtain the representation for the following operators:Θ ρ= ′ˆ ˆ ,x

Θ ρ σ′ = ′ˆ ˆ
y y and ρ σ=̂ z y.We directly confirm that theHamiltonian is invariant under the action of these

operators, as discussed in the previous paragraph.However, there are additional symmetries.Wefind two chiral
symmetries:Π τ≡ˆ

x andΠ τ ρ σ≡ˆ ,x z y as also two charge-conjugation symmetries: Ξ τ ρ≡ ′ˆ ˆ
x x and

Ξ τ ρ σ′ ≡ ′ˆ ˆ
x y y . In this representation both time-reversal symmetry operators satisfyΘ Θ= ′ = Iˆ ( ˆ ) ,

2 2 yielding

the symmetry class BDI⊕BDI.
The particular symmetry class of theHamiltonian can alternatively retrieved by block diagonalizing the

Hamiltonian via the transformation

ρ ρ ρ σ σ
=

+ +
σ− π

U
2 2

e , (62)
y z z z y i y4

which yields σσ= ∑ + ⨂͠ ͠
σ σ U U (1 ) ,k z k

† 1

2 , with the blocks

σ τ σ τ ρ τ ρ

σ Δ τ ρ σ τ

= − + − +

+ + − + −

͠ σ + − − +

+ − − +

 
 

( ) ( )
( ) ( )

t v t v

d d . (63)

k k k z k k z y z z

k k y y k k y

, , , , ,

, , , ,
⎡⎣ ⎤⎦

Interestingly wefind that for each subspace, σ up and down, theHamiltonian possesses the formof two
decoupled topological FMShiba chainmodels (see equation (36)), butwith theAFMPaulimatrices playing the
role of the spin Paulimatrices. Note, that with the particular choice of the spinor, the functions in front of the
matrices have a similar behavior under inversion ( → −k k), as in the FMShiba case studied earlier or related
nanowiremodels [10, 11, 32, 43]. Therefore, we anticipate at least an equally rich phase diagram, exhibiting an
interplay of topological phases with one or twoMFs per edge of the chain.

5.3. Topological invariant
Each of the σ subblocks reside in the BDI symmetry class and can be off-block diagonalized, similar to the
procedure followed in the FMcase. Therefore, we effect the transformation τ τ+( ) ( 2 )z x which yields

′ =͠ σ
σ

σ
H

A

A

0

0
, (64)k

k

k
,

,

,
†

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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with the upper off-diagonal block given by

σ σ ρ

σ σ Δ ρ

= − + − +

− − − + +

σ + − + −

+ − + −

 
{ }

( )
( )

A t v d

v t d

i

i . (65)

k k k k k z

k k k k y

, , , , ,

, , , ,
⎡⎣ ⎤⎦

By introducing the determinants σADet[ ],k, as also the related vectors =σ σ σg A A(Re Det[ ], Im Det[ ], 0),k k k, , ,

we can define the quantities

∫π
= ×

∂

∂σ σ
σ g

g
k

k

1

2
d ˆ

ˆ
, (66)k

k

z
RBZ

,
,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

with the unit vectors σĝk, = ∣ ∣σ σg gk k, , . However, the quantities above do not constitute topological invariants

because the σgk, vectors are not compactified in the RBZ, i.e. do not have the same value for the RBZ edges

π= ±k a2 . The latter occurs becausewe chose towork in the AFM space − +k Q k Q{ 2, 2}, instead of the
band-index space. OnlyHamiltonians defined in the band index space satisfy the compactification condition. In
the present situation, the folding of k-space has been performed in a convenientmanner, which however does
notmeet the above criterion. Therefore, a topological invariant can be only defined by combining the two σ
sectors. Essentially we have to start from the totalHamiltonian͠ ,k block off-diagonalize it, introduce the upper
off-diagonal block Ãk and define a corresponding vector =g A A˜ (Re Det[ ˜ ], Im Det[ ˜ ], 0)k k k . This procedure
yields the topologically invariant quantity

= +↑ ↓   (67)

with σ being, instead of. Note this procedure was circumvented in [30] by extending the integration to the
BZ.However, themethod presented in this paragragh is themost general andwe conclude that only is capable
of providing the related number ofMFs per edgewhich are protected by chiral symmetry.

Nonetheless, there can be situationswhere additional terms in theHamiltonian can violate chiral symmetry
while at the same time preserving the unitary symmetry. In this case, eachHamiltonian block ͠ σk, belongs to
symmetry classD, which is characterized by a strong2 invariant in onemomentum space dimension.
However, due to interdependence of the two blocks, only phaseswith 0 or 1MFs are accessible. The phase
diagram is retrieved by introducing a total2 invariant obtained bymuliplying the2 invariants of each block.

5.4. Topological phase diagram—results
Infigure 9we present the calculatedwinding number of equation (67), with varying adatom spacing a and (a)
magnetic exchange energyπν JSF or (b) normalized SOC strength α. As in the FMcase, we also encounter phases
with zero, one or twoMFs per edge. Themodification of themagnetic exchange energy, effected for instance by
applying of a Zeemanfield perpendicular to the ordered spins (x axis), can tune the phase diagram. Similar
functionality appears with the variation of the SOC strength, where its increase can extend thewindow for
phaseswith 2MFs.

However, in contrast to the FMcase, we observe that generally a critical SOC strength is required for realizing
a transition to the topological phases. The latter feature will be explained below, by considering a nearest

Figure 9.The topological invariant (winding number) as defined in equation (67), for varying adatom spacing a and (a)magnetic
exchange energy JS (α = v0.03 F) or (b) normalized SOC strength α (πν =JS 0.85F ). In both cases, wefind topological phases
harboring 1 or 2MFs per chain edge. Note in (a), that tuning themagnetic exchange energy can be used to switch between 1 and 2MF
phases.When close to the phase boundary, this could achievedwith aweak perpendicular Zeeman field (x axis). Observe also that a
threshold SOC strength is generally required for both 1 and 2MFphases to become accessible. This is in contrast to the FMcase and
arises because the strength for the SOC α appears now in the topological criterion for the 1MFphase. Therefore, also tuning ofα can
be exploited for realizing topological quantumphase transitions, but via a differentmechanism.
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neighbormodel for the AFMShiba chain. In short, the apparent difference relies on the fact that for the 1MF
phase of the FMandAFMchains, different k points are topologically involved. For the FMcase, the inversion-
symmetric points π=k 0, become relevant. In contrast, the 1MFphase in the AFMcase arise from gap closings
of eachσ = ↑ ↓, blockHamiltonian at the k=0 point of the RBZ,which coincides with theπ a2 point of the
original BZ. Therefore, the topological criteria are retrieved fromdifferent points, with the SOC strength not
involved in the FMcase but crucially appearing in the AFMcase.

We nowproceedwith examining inmore detail the topological properties of the system for two values of the
magnetic exchange energy. First we consider a cut offigure 9 forα = v0.03 F andπν =JS 0.75F . Infigure 10we
present: (a) the topological invariant and (b) the relevant gap closings in RBZ associatedwith the changes of
 .We observe infigure 10(b) that the transition = → 0 2 occurs due to the gap closings at the points±k*
forσ = ↓. The particular phase with 2MFs is protected by chiral symmetry. Upon increasing the adatom
distance in phase II, the±k* points converge to k= 0 andmerge, exactly when another topological phase
transition occurs = → 2 1. The latter transition and change in is possible due to the recombination of the
two±k* points at the inversion symmetric point k=0 of the RBZ. The last transition to the trivial
superconducting phase occurs via a gap closing at k=0of theσ = ↓ subblock.Note generally that the
dependence of on the adatom spacing a is quite complicated, as all the coefficients are functions of the latter.
Infigure 10(c)we depict the two-lowest positive eigenenergies of theAFMHamiltonian for an open chain. Note
that, the appearance of a single zero eigenenergy agrees verywell with the bulk predictions for the 1MFphase. In
contrast, the bulk results for the 2MFphase are retrieved for quite long chains.

Infigure 11we present the arisingMFwavefunctions in the 1MF and 2MF cases. In the casewith 2MFs, we
retrieve once again the oscillatory behavior of thewavefunctions associatedwith the k ajcos ( * ) and k ajsin ( * ),
related to chiral symmetry. However, theMFwavefunction for the 1MFphase, shows also a particular
oscillatory behavior due to different reasons. Since the latter topological phase is arising from the k=0 point of
the RBZ,which coincides with the π=k a2 point of the BZ, thewavefunctions show close to this transition
point a characteristic oscillatory behavior given by the lattice constant, i.e. it assumes the form πjcos ( 2). This
oscillatory behavior, with awavelength given by the adatom spacing, still persists even deep inside the 1MF
phase (see figure 11(a)).

To obtain further insight, wewill retrieve some analytical results by restricting to the nearest and next nearest
neighbor versions of theHamiltonian in equation (63). For the nearest neighbormodel we have =t t kacos ( ),k 1

=v v kasin ( ),k 1 =  kacos ( )k 1 and =d d kasin ( )k 1 . EachHamiltonian block nowobtains the form

Figure 10. (a) The invariant as defined in equation (67) along the green line infigure 9(a) forπν =JS 0.75F . (b)We depict the
energetically lowest dispersions corresponding to the two blocksσ = ↑ ↓, of theHamiltonian in equation ((63), at the transition
points where = → 0 2 (I) and = → 2 1 (III). Inbetween the two critical spacings, corresponding to (I) and (III), the previous
gap closing points±k* move towards k=0 (II). (c)Ground state energy (red dots) and first excited energy (black) depending on a for a
chain length ofN=250 andN=1500 atoms.
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σ τ τ ρ τ ρ

σΔ τ ρ σ τ

= − − +

+ − −

͠ σ 


v ka t ka

d ka ka

cos ( ) sin ( )

cos ( ) sin ( ) . (68)

k z z y z z

y y y

, 1 1

1 1
⎡⎣ ⎤⎦

The apparent exchange of roles between ↔t v1 1 and ↔ d1 1happens because the k=0point of the RBZ
corresponds to the π=k a2 of the BZ. This is exactly the reason for the distinctly different dependence on the
SOC, thatwe obtain in the AFM topological phase diagrams. Therefore, gap closings at k=0, connected to a 1
MFphase, will occur when σΔ+ − = v d( )1

2
1

2 2 depending on each σ block. Obviously the topological phase
boundaries for the 1MFphase depends on the SOC strength, in contrast to the FMcase and nanowires proposals.

On the other hand, the chiral symmetry protected points are given by σk acos ( * ), =σ Δ − t t d v( )1 1 1 1 1 . Since
π π∈ −k a a* ( 2 , 2 ],we obtain σk asgn [cos ( * )], = σsgn [ ]. This implies that for each σ blockwe obtain a single

σk *, satisfying the gap closing criterion. Evenmore, chiral symmetry here implies that for a point σk *,, there exists
another in the σ− spin block for = −σ σ−k k* *, , . Thus the±k* pair of chiral symmetry protected points found in
the FMcase, translates now into the σ σ−k k( *, *), , pair of points, i.e. inversion connects the two subblocks. This

also explains whywe can not generally consider the quantities σ as independent chiral symmetry related
topologically invariant quantities.

Nonetheless, a direct comparisonwith the results presented infigure 10, shows that a nearest neighbor
model is inadequate for capturing the physics of the exactmodel, since the chiral symmetry protected 2MF
phase originates from±k* points of the same subblock. This can only occur if we take into account the next
nearest neighbor contributions. In fact, for amodel with only next nearest neighbor terms, theHamiltonian
coincides with that of equation (68) butwith →k k2 or →a a2 . Thuswemay equivalentlymake use of
equation (68) but nowwith k in the original BZ. As a result, the equation σk acos ( * ), =σ Δ − t t d v( )1 1 1 1 1 can
nowprovide a set of±k* points, for each σ subblock, explaining ourfindings.

We nowproceedwith a cut of the phase diagram in figure 9, forα = v0.03 F andπν =JS 0.85F . Infigure 12
we present: (a) the topological invariant and (b) the relevant gap closings in RBZ associatedwith the changes
of . For the particular value of themagnetic exchange energy, the possibility of 2MFphases still appears, but
has a different origin. This is clearly reflected in the fact that the topological invariant changes always by 1. This
implies that only inversion-symmetric point k=0 can yield gap closings. This is indeed the case, as shown in
figure 9(b).We find that the different transitions occur due to the gap closings at the k=0 for the two different
σ = ↑ ↓, sub-blocks. Interestingly we observe that only after two successive gap closings at k=0 forσ = ↑ , the
systembecomes topologically trivial. This counter intuitive result can be naturally explainedwhen next nearest
neighbors are present, leading to a quadratic gap closing at k=0 [66]. Essentially, the 2MFphase also in the
present case, constitutes amanifestation of chiral symmetry.

Infigure 13we show representativeMFwavefunctions for the = 1, 2 regions offigure 12. Indeed, wefind
the appearance of twoMFwhen π =k a 5.59F . Eachwavefunction is oscillating inmagnitude and becomes
exponentially suppressed in the bulk. As in previous sections, we denote the left and rightMajorana
wavefunction by γL R i, =i( 1, 2), respectively. Both γL and γR appear to be shifted spatially, with one becoming
maximumat the points where the other isminimized. Furthermore, as we show infigure 14, the oscillatory

Figure 11.Majoranawavefunctions corresponding to figure 10 for the ground state (g) and thefirst excited state (e). The left and right
Majorana bound states are labeled by L( ) and R( ) respectively. (a) TheMFwavefunction in the 1MFphase shows an oscillatory
dependence on the lengthscale of the adatom spacing. (b) Thewavefunctions inside the 2MFphase are less localized and oscillate with
an inverse wavelength k*.
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Figure 12. (a) The invariant as defined in equation (67) along the second green line infigure 9(a) forπν =JS 0.85F . (b)We depict
the energetically lowest dispersions corresponding to the two blocksσ = ↑ ↓, of theHamiltonian in equation (63), at the transition
points where = → 1 2 (I), = → 2 1 (II), and = → 1 0 (III). (c) Ground state energy (red dots) and first excited energy
(black) depending on a for a chain length ofN=250 atoms. The calculationswere performed forα = v0.03 F andπν =JS 0.85F .

Figure 13.Majoranawavefunctions corresponding to figure 12 for the ground state (g) and thefirst excited state (e). The left and right
Majorana bound states are labeledwith L( ) and R( ) respectively. (a) TheMFwavefunction in the 1MFphase shows an oscillatory
dependence on the lengthscale of the adatom spacing. (b) Thewavefunctions inside the 2MFphase are less localized and oscillate with
smaller frequency (see figure 14).

Figure 14. (a) Logarithmic plot of the right edgeMFwavefunctions: (i) deep inside the 2MFphase ( π=ka 5.59 ) and (ii) close to
transition II ( π=ka 5.64 ). (b) The bandminimumat k=0 leads to to an oscillation of theMFwavefunctions on a lengthscale of the
adatom spacing (see light blue curves in (a) and 3(b)). Bandminima away from this point lead to the slowoscillatory trend (dark blue
curves).
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behavior of thewavefunctions can be attributed to the bandmimina of the gapped 2MFphase. Close to
transition II depicted figure 12(a), thewavefunctions exhibit a periodicity πjcos ( 2)which originates from the
k=0point of RBZ, that coincides to the π=k a2 point of the original BZ. In contrast, deep inside the 2MF
phase and inbetween transitions I and II, the dispersion showsminima away from the k= 0wavevector of the
RBZ, leading to oscillations with smaller frequency (see figure 14).

6. Conclusions

In summary, we investigated themagnetic phase diagram and the emergence ofMF in chains ofmagnetic
adatoms deposited on a superconducting substrate with Rashba SOC. By considering classicalmagnetic
adatoms, that interact via a superexchange interaction in the additional presence ofmagnetic anisotropy, we
identified the parameter space for which FM,AFMor spiral order is stabilized. The presence ofmagnetic
anisotropy, which arise from the crystal field of the substrate, promotes the FMandAFMphases and renders
them robust against thermal as also quantum fluctuations.

Motivated by recent experiments which confirmed the possibility of strongmagnetic anisotropy in such type
of devices, we explored the occurence of topological superconductivity for themost prominent FMandAFM
configurations. Our findings reveal a rich topological phase diagram for both cases, which can support phases of
1 or 2MFs per edge, and can open perspectives for novel quantum computing applications. The phases with two
MFs per edge are protected by chiral symmetries, which differ for eachmagnetic pattern. Remarkably, the
topological phase diagrams for the two cases exhibit a different dependence on the strength of SOCwhich is
directly related to themagnetic wavevector,Q=0 or π. In fact, depending on the value ofQ, different points of
the Shiba bandstructure become topologically relevant. As a consequence, theMFwavefunctions demonstrate a
variety of oscillatory characteristics which reflect the type of the underlyingmagnetic order.

The thorough parameter exploration performed in this work, addressing (i) the competition ofmagnetic
phases for the adatom chain and (ii) the detailed topological phase diagramof the hybrid device, canmotivate
new experiments by employing alternative superconducting substrates or types of adatoms. In particular, the
topological phase diagram can be tailored via tuning the SOC strength, the adatom spacing and themagnitude of
the atomic spin. Thus the emergent interplay ofmagnetic and therefore topological phases in Shiba chains
predicted in this work, can open the door for novel versatile and functionalMFplatforms.

Note added:Mind that there are two regimeswhich describe adatom chains on top of superconductors.We
discussed the Shiba limitwhere the spectral weight lies entirely in the superconductor. If the adatoms are closely
packed the adatom chain is in themetallic regime [67]. An interplay between both regimes ismost likely the
situation applicable to the recent experimental results of [33]. For instance, in [68] it has been shown that a shift
of spectral weight to the superconducting substrate, i.e. the Shiba limit that we considered, leads to a stronger
localization ofMajoranawavefunctions which is in agreement with the recent observations [33].
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Appendix. RKKY interaction

In this appendixwe derive the effective RKKY interaction, described in equation (8), which ismediated by the
electrons of ametallic surfacewith Rashba SOC.We consider a chain ofmagnetic adatoms arranged along the x
direction. Accordingly, theGreen’s function that enters in equation ((7), is given by

∫

∫

∫

∑

∑

∑

ω
π ω ξ

λ
π

φ σ φ σ
ω ξ

π ω ξ
λσ

=
−

+
−
−

=
−

−

λ

φ

λ

λ

φ

λ

λ λ

=±

=±

=±

∞

( )x
k

k

G r

k k
J kr J kr

ˆ, i
1

2

d

(2 )
e

1

i

1

2

d

(2 )
e

sin cos

i
,

1

2

d

2 i
( ) i ( ) . (A.1)

k k

kr

k

kr x y

k

k
y

2
i cos

2
i cos

0
0 1

k

k

⎡⎣ ⎤⎦

21

New J. Phys. 17 (2015) 023051 AHeimes et al



Here Jn(kr) are the Bessel functions which in the limit ≫kr 1can be approximated by

π
π π≈ − −J kr

k r
k r

n
r( )

2
cos

2 4
[sgn ( )] . (A.2)n

n⎜ ⎟
⎛
⎝

⎞
⎠

The remainingmomentum integral in equation ((A.1) can be derived by the substitutions ξ→ +λk k vF and

∫ ∫ν ξ→
π

∞

−∞

∞
d ,k k

F0

d

2
whereνF is the density of states at the Fermi level.Within this approximation the

remaining integrals in (A.1) can be evaluated, and are given by the quantities

∫∑ω λ ν ξ
ξ

ω ξ
=

+ − −

−λ

λ
π π

=± −∞

∞ ( )
I r

k v r
( , i ) d

cos

i
, (A.3)n

n
F

F
n

2 4
⎡⎣ ⎤⎦

withm=0, 1. This can be done bymeans of a contour integral providing

∑ω
πν

ω λ= −
λ

ω π

=±

− − −λ
π ω( )I r( , i )

i
sgn ( ) e e . (A.4)n

F

n k ri sgn( )
4

n r
v F2

It follows that the electronic Green’s function is approximately given by

ω
π

ω σ ω≈ −( )xG r
k r

I r I r rˆ, i
1

2
( , i ) i ( , i ) sgn ( ) . (A.5)

F
y0 1

⎡⎣ ⎤⎦

Note that we replaced k by kF everywhere except for the arguments of the trigonometric functions. This
approximation is valid as long asδ ≪k k ,F whichwe assume to be the case throughout this work. In order to
evaluate the susceptibility of equation (7), wemake use of the relation

σ σ σ σ

δ δ δ ε

+ −

= − + +

σ α β

αβ α β αβ

{ }
( )

I I r I I r

I I I I I r

Tr i sgn ( ) i sgn ( ) 2

2 2 sgn ( ). (A.6)

y y

y y y

0 1 0 1

0
2

1
2

1
2

, , 0 1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

Furthermore in the limit →T 0, theMatsubara sums in equation (7) can be converted into integrals, i.e.

∫∑ →ω
ω
π−∞

+∞
T ,d

2
yielding

∫

∑

ω
π

ω ω

λ λ π
π ν

= − ′ + − +

λ λ
λ λ

−∞

∞

′=±
′( )

I r I r

k k r
n m v

r

d
( , i ) ( , i )

( ) sin
2

, (A.7)

m n

m n F F

,

2⎡
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⎤
⎦⎥

whereν π= m 2F is the density of states for each spin-band.We use equation (A.7) togetherwith equation (A.6)
in order to evaluate the susceptibility in equation (7), which yields after some algebra thewell knownRKKY
interaction equation (8) for a two-dimensionalmetal with Rashba SOC.
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