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Abstract
Background: Investigations on adverse biological effects of nanoparticles (NPs) in the lung by in vitro studies are usually

performed under submerged conditions where NPs are suspended in cell culture media. However, the behaviour of nanoparticles

such as agglomeration and sedimentation in such complex suspensions is difficult to control and hence the deposited cellular dose

often remains unknown. Moreover, the cellular responses to NPs under submerged culture conditions might differ from those

observed at physiological settings at the air–liquid interface.

Results: In order to avoid problems because of an altered behaviour of the nanoparticles in cell culture medium and to mimic a

more realistic situation relevant for inhalation, human A549 lung epithelial cells were exposed to aerosols at the air–liquid inter-

phase (ALI) by using the ALI deposition apparatus (ALIDA). The application of an electrostatic field allowed for particle deposi-

tion efficiencies that were higher by a factor of more than 20 compared to the unmodified VITROCELL deposition system. We
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studied two different amorphous silica nanoparticles (particles produced by flame synthesis and particles produced in suspension by

the Stöber method). Aerosols with well-defined particle sizes and concentrations were generated by using a commercial electro-

spray generator or an atomizer. Only the electrospray method allowed for the generation of an aerosol containing monodisperse

NPs. However, the deposited mass and surface dose of the particles was too low to induce cellular responses. Therefore, we gener-

ated the aerosol with an atomizer which supplied agglomerates and thus allowed a particle deposition with a three orders of magni-

tude higher mass and of surface doses on lung cells that induced significant biological effects. The deposited dose was estimated

and independently validated by measurements using either transmission electron microscopy or, in case of labelled NPs, by fluores-

cence analyses. Surprisingly, cells exposed at the ALI were less sensitive to silica NPs as evidenced by reduced cytotoxicity and

inflammatory responses.

Conclusion: Amorphous silica NPs induced qualitatively similar cellular responses under submerged conditions and at the ALI.

However, submerged exposure to NPs triggers stronger effects at much lower cellular doses. Hence, more studies are warranted to

decipher whether cells at the ALI are in general less vulnerable to NPs or specific NPs show different activities dependent on the

exposure method.
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Introduction
Amorphous SiO2 nanoparticles (NPs) are regarded as only little

pathogenic. However, it has been shown that the inhalation of

silica NPs induces transient inflammation in rats [1,2]. Mean-

while there are numerous reports which also demonstrate

adverse effects of amorphous silica NPs in vitro, e.g., in

macrophages [3-5], in lung epithelial cells [5-8] and in

co-cultures of both cell types [9]. However, in vitro exposure of

lung cells under submerged conditions does not reflect the

physiological situation in the lung where cells are directly

exposed to an aerosol. Especially our findings of a strong

inhibitory effect of serum proteins on NP toxicity show how the

standard cell culture model generates artefacts and might lead to

wrong conclusions [5]. Additionally, particle collection and

resuspension in medium may change their physico-chemical

properties and the particle dose delivered to the cells under

submerged conditions is often unclear due to differences in

agglomeration and sedimentation of suspended NPs. In vitro

experiments at the air–liquid interface (ALI) are therefore of

utmost relevance.

Although exposure of cells at the air–liquid interface (ALI)

represents a more realistic exposure scenario compared to

submerged exposure only few research papers are found in the

literature, in particular for silica NPs [10]. This is due to the

need for more sophisticated laboratory equipment, technical

know-how and, additionally, for the generation of a nanomate-

rial aerosol in a reproducible manner. A recent review prepared

by toxicologists and aerosol scientists states the urgent need for

further developments of in vitro cell exposure studies including

those at the air–liquid interface [11]. Advantages of ALI expo-

sures are (a) the modification of particles by filter collection and

resuspension in medium are avoided, (b) the nanoparticle dose

interacting with the cells can be controlled more precisely and

(c) the exposure of lung cells at ALI resembles an in vivo

inhalation more closely. Several exposure systems for the

controlled exposure of cells to particles at the ALI have recently

been developed. Most ALI systems described in the literature

rely on the deposition of nanoparticles by diffusion mecha-

nisms [12-17].

Due to the small size of the nanoparticles the mass and surface

doses that can be applied on the cell surface through ALI expo-

sures are very low compared to the typical “lowest observed

adverse effect levels” (LOAEL) derived from submerged exper-

iments [18]. One approach to increase the applied dose is the

use of nanoparticle agglomerates. However, especially in the

size regime between 100 nm and 500 nm deposition efficien-

cies of ALI exposure chambers based on diffusion or gravita-

tional settling are usually very low [19]. One approach to

increase the deposition rates is the use of an electrostatic field

[20-23]. This enables deposition efficiencies of up to 100% for

charged particles [11]. de Bruijne et al. [21] used a corona

charger for efficient charging of aerosol particles and did not

observe adverse effects on A549 cells by the trace gases formed

in the corona. However, for particle sizes below 50 nm, the

probability to be charged becomes low [24] and hence the depo-

sition efficiency of such systems decreases.

In this study we used a well-characterised commercially avail-

able exposure chamber system (VITROCELL® SYSTEMS)

that we equipped with electrodes to enhance deposition by

applying an electrostatic field (referred to in the following as

ALI deposition apparatus, ALIDA) [18]. Aerosols with well-

defined particle sizes and concentrations were generated by

using commercial electrospray generators or atomizers. The

deposited dose was determined by using transmission electron

microscopy (TEM) and in case of labelled NPs by fluorescence

analyses. Industrial SiO2 NPs (Aerosil®200, Evonik) produced
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Figure 1: Temporal evolution of SiO2 particle size distributions generated for cell exposure. (A) From an aqueous solution of SiO2-50 nm monomers
(Stöber synthesis, Postnova) high number concentrations of airborne SiO2-50 nm monomers with a narrow size distribution were generated by elec-
trospray. The atomizer, however, generated from the same nanoparticle suspension large agglomerates (B) allowing for the deposition of high mass
doses. Large agglomerates with a broad size distribution were also generated by atomizing Aerosil200 (C). Initial size distributions are given on the
left hand side of each time chart.

by flame synthesis and SiO2 NPs produced by the Stöber

method (Postnova Analytics, Landsberg) were used to test the

biological responses in A549 cells with and without an electro-

static field at the ALI and under submerged conditions.

Results and Discussion
Aerosols
The aerosols were generated by two different methods: an

atomizer and electrospray. By using the electrospray method it

was possible to generate an aerosol containing monomers and

small agglomerates of SiO2-50 nm NPs with a high number

concentration and a narrow size distribution (Figure 1A). This

method was however not applicable for the dispersion of

Aerosil200 suspensions which contain aggregates that were too

large for a stable operation of the electrospray in the cone jet

mode. Therefore, an atomizer was used that delivered a rela-

tively large and broad droplet size distribution [25] and, with

Aerosil200, an aerosol with constant but broad size distribution

(Figure 1C). Furthermore, dispersion of SiO2-50 nm NPs with

the atomizer allowed for the generation of large agglomerates

(Figure 1B) which resulted in high mass and surface doses.

Particle deposition
The aerosol was directed into the ALI deposition apparatus

(ALIDA) as described in section Experimental and the particles

were deposited on Transwell membranes covered with test cells

without or with applying an electrostatic field (Figure 2).

Figure 2: Schematic view of the Vitrocell® exposure chamber modi-
fied with an electrode for electrostatic particle deposition.

In order to increase the deposition efficiency the exposure

chambers were modified with an electrode similar to the setup

presented by Savi et al. [20]. In contrast to Savi et al. who used

an alternating electrical field, during the exposure experiments a

constant voltage of 1 kV was used in this study. Furthermore,

no insulation between electrode and cell medium was installed,

so that the cells themselves can be considered as an equipoten-

tial surface and electrode, respectively. This makes a close dis-

tance between electrode and cells unnecessary and allows for

the use of larger medium volumes. As counter electrode a fine
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Table 1: Characteristics of the particles, the aerosol generation and deposition with electrostatic field.

Aerosil200 atomizer SiO2-50 nm atomizer SiO2-50 nm
electrospray

primary particle size (TEM) (7–100) nma (54 ± 3) nmb (54 ± 3) nmb

specific surface area 200 m2·g−1 c 60 m2·g−1 d 60 m2·g−1 d

aerosol generation
concentration of the suspension used for aerosol
generation

1 mg·mL−1 3.25 mg·mL−1 7 mg·mL−1

mean (agglomerate) mobility diameter in air
(SMPS)

(279 ± 10) nm (230 ± 10) nm (53 ± 1)nm

agglomerate fractione 100% 92% 7%
particle deposition
exposure duration 5 h 7 h 5 h
mass dose (TEM) (52 ± 26) µg·cm−2 (117 ± 46) µg·cm−2 (0.14 ± 0.05) µg·cm−2

surface dose (TEM) (104 ± 52) cm2·cm−2 (70 ± 28) cm2·cm−2 (0.08 ± 0.03) cm2·cm−2

number dose (TEM) (2.0 ± 0.8) × 108 cm−2 (1.4 ± 0.3) × 109 cm−2 (6 ± 2) × 108 cm−2

deposition efficiency — — (11 ± 3)%
experiments per endpoint 3 2 2

aThe manufacturer calculated a primary particle size of 12 nm from the BET surface. bThe manufacturer states a size of 70 nm analysed by DLS.
cGiven by the manufacturer. dValue was estimated from the primary particle size. eObtained by analysis of size distributions and TEM pictures [18].

conducting mesh was placed 2 mm above the cell surface at the

end of the aerosol inlet.

The electrical field was almost homogeneous with an axial

strength of 500 V·mm−1. A computer simulation revealed that

only at the outer border of the Transwell membranes (more than

10 mm distance from the center of the membrane) a significant

inhomogeneity of the field is expected due to increasing radial

components in the electrical field strength (Figure 3). These

radial components however, cause a force in radial direction

and hence provide a more homogeneous particle deposition on

the cell surface than a purely homogeneous field profile.

For determination of the cellular dose cell-free Transwell

membranes carrying one or more grids for transmission elec-

tron microscopy (TEM) were exposed to the aerosol under the

same conditions as the cells and analysed for particle loading.

Deposition of SiO2-50 nm NPs
The SiO2-50 nm particles were produced by the Stöber method

and provided by the manufacturer as an aqueous suspension

containing monomeric particles. For preparing an aerosol the

suspension was diluted with water by factors of 3.6 and 7.7 for

electrospray and the atomizer, respectively. The electrospray

generated aerosol particles with a mean mobility size of

(53 ± 1) nm (σ = 1.2) and a typical number concentration of

(1.3 ± 0.2) × 106 cm−3. The uncertainties stated are, if not

defined otherwise, standard deviations of all experiments done

and the parameter σ characterises the standard deviation of a

log-normal size distribution. After the exposure of empty

Figure 3: Electrostatic potential within the exposure chambers.
Assuming a flat equipotential surface the electrostatic potential was
1 kV at the cell level. The dashed lines indicate the borders of the
Transwell membrane. The field profile was simulated with SimIon (SIS,
v8). Isolating parts of the Transwell insert and chamber were
neglected.

Transwell membranes loaded with TEM grids to SiO2-50 nm

monomers generated by electrospray and deposited with the

electrostatic field a total number dose of (6 ± 2) × 108 cm−2 was

determined by analysis of the TEM pictures (Table 1). Further-

more, a mean projection equivalent diameter of the particles of

(54 ± 3) nm (σ = 1.1) was measured on the TEM grids in very

good agreement with the diameter of the airborne particles.

Since the particles were not homogeneously distributed over the

entire Transwell membrane (Figure 4) the total number dose

corresponds to a mean particle number dose. Compared to the

total applied particle number this dose is equivalent to a deposi-
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Figure 4: Deposition efficiency of SiO2 monomers depending on particle size (left plot) with electrostatic field (symbols) and without electrostatic field
(SiO2 particle characteristics and drawn line as in Comouth et al. [18] and deposition efficiency of SiO2-50 nm monomers in dependence of the pos-
ition on the Transwell surface (plot on the right)). SiO2-50 nm monomers were dispersed by electrospray and deposited on a Transwell surface with
electrostatic field. The deposited mass was calculated from particle loadings on TEM grids at three different radial positions on the Transwell surface
from the center to the edge. The dashed line indicates the averaged deposition efficiency. The results indicate a moderate but significant linear
decrease of the particle loading between the center and the edge of the Transwell membranes.

tion efficiency of (11 ± 3)% which is 22-fold higher compared

to 0.5% achieved with this exposure chamber without electro-

static field for particles of this size [18]. However, due to the

small monomer size the corresponding mass and surface dose

after 5 h of exposure only amounts to (0.14 ± 0.05) µg·cm−2 and

(0.08 ± 0.03) cm2·cm−2, respectively (see Table 1).

In contrast to the electrospray the atomizer delivered an

agglomerate fraction of about 92% (data not shown) with a

mean mobility diameter of (230 ± 10) nm (σ = 1.8) (Figure 1)

and typical number concentrations of (7 ± 1) × 105 cm−3.

Compared to the particles in the aerosol a slightly larger mean

projection equivalent diameter of (270 ± 30) nm (σ = 1.9) was

observed to be deposited (Figure 5B) with a total number dose

of (1.4 ± 0.3) × 109 cm−2. Reasons for these different sizes are

the size-dependent deposition efficiency and different equiva-

lent diameters that were used for size classification with SMPS

and TEM, respectively. The latter one, however, may be negli-

gible due to the almost compact spherical structure of the

agglomerates (Figure 5D). Small agglomerates showed struc-

tures similar to the clusters described by Cho et al. [26] and

Manoharan et al. [27]. More than 95% of the mass however

were provided by agglomerates larger than 200 nm mobility

equivalent diameter. Agglomerates of this size contain more

than 40 monomers so that errors due to different effective densi-

ties of small agglomerates and monomers are also assumed to

be negligible. The mass dose resulting from analysis of the

TEM micrographs as a function of the applied mass is shown in

Figure 5A. Within the uncertainties TEM and fluorescence data

are in very good agreement and can be described by a linear

function of the applied particle mass. For the cell exposures a

mean mass dose of (117 ± 46) µg·cm−2 follows from this func-

tion. This is within the dose range of classical nanotoxicology

studies under submerged conditions and beyond the lowest

observed adverse effect level (LOAEL) defined for, e.g.,

Aerosil200 in lung epithelial cells [5].

Deposition of Aerosil200
Aerosil200 are industrial SiO2 NPs produced by flame syn-

thesis and provided as a powder. The manufacturer states a

mean primary particle size of 12 nm. However, our analyses by

TEM revealed monomeric particle sizes between 7 and 100 nm

almost exclusively forming larger agglomerates. For preparing

an aerosol the powder was suspended in water and ultrasoni-

cated. The hydrodynamic diameter determined by DLS in water

was (215 ± 25) nm as also reported previously [5]. The mean

sizes of the aerosolized and deposited Aerosil200 agglomerates

were (279 ± 10) nm (σ = 1.8) mean mobility equivalent and

(491 ± 40) nm (σ = 2.25) mean projected area equivalent diam-

eter, respectively (Figure 6B), and hence even larger compared

to the SiO2-50 nm particles (Table 1). Please note that the larger

difference between the two given equivalent particle diameters

is caused by the fluffy structure of the Aerosil200 agglomerates

since the measured mobility equivalent diameter corresponds to

the diameter of a hypothetical compact sphere with the same

dynamic mobility as the agglomerates and the projected area

equivalent diameter to that of a circle with the same area as the

projected area of the agglomerates under the microscope [28].

Due to smaller deposited number concentrations of (2.0 ± 0.8) ×

108 cm−2, the corresponding mean mass dose determined from

TEM micrographs and measured effective densities was only

(52 ± 26) µg·cm−2. The analysis of TEM pictures assuming

compact agglomerates results in the upper limit of this mass

dose (78 µg·cm−2). However, the true deposited dose is presum-
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Figure 5: Characteristics of deposited SiO2-50 nm agglomerates. Aerosols of fluorescently labeled SiO2-50 nm agglomerates were generated by an
atomizer and deposited on Transwell membranes with an applied electrostatic field. The deposited mass was either detected by measuring fluores-
cence intensity or using TEM analysis of particle loaded grids. (A) shows the deposited mass as a function of the applied mass by the two detection
methods. The size distribution of the corresponding particles on a TEM grid is shown in (B). (C) shows the particle loading on TEM grids after seven
hours of exposure corresponding to a mass dose of (117 ± 46) µg·cm−2 and (D) representative clusters at higher magnification indicating the spher-
ical agglomerate shape. Please note that the applied mass in (A) is given in arbitrary units (third power of the mobility equivalent diameter) and neither
the effective density nor the total particle size range was considered. Hence the slope of the linear fit is not equal to the mean mass deposition effi-
ciency.

Figure 6: Deposited mass (derived from the number of particles) of Aerosil200 agglomerates as a function of the applied mass (A), size distribution of
the corresponding particles (B), as well as the particle loading on a TEM grid after five hours of exposure corresponding to a mass dose of
(52 ± 26) µg·cm−2 (C), and a representative cluster indicating the agglomerate shape (D). Please note that the applied mass in (A) is given in arbi-
trary units (third power of the mobility equivalent diameter) and neither the effective density nor the total particle size range was considered. Hence
the slope of the linear fit is not equal to the mean mass deposition efficiency.
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Figure 7: Effects of ALI and submerged exposure to (Aerosil200) and SiO2-50 nm agglomerate NPs (B) on the integrity of the membrane of A549
cells determined by LDH release. A549 cells were exposed to filtered air or to aerosols containing Aerosil200 NPs (A) or SiO2-50 nm NPs (B) under
ALI conditions with application of an electrode (+). Controls were exposed to filtered air with or without electrode (−). The mass doses after ALI expo-
sure were 52 µg·cm−2 for Aerosil200 NPs after 5 h and 117 µg·cm−2 for SiO2-50 nm NPs after 7 h. Subsequently, cells were post-incubated in
medium without FCS and supernatants were processed 24 h after the onset of exposure. For comparison, cells were treated for 24 h with an esti-
mated maximal dose of 15.6 µg·cm−2 (50 µg·mL−1) applied as suspension in medium without FCS or with medium alone. Results are means ± s.e.m.
of 4 to 6 samples originating from three (A) and two independent experiments (B).

ably lower as the effective densities of larger agglomerates are

decreased. Aerosol particle mass (APM) measurements deliv-

ered effective densities of (0.81 ± 0.02), (0.53 ± 0.02) and

(0.39 ± 0.01) g·cm−3 for particle mobility equivalent sizes of

80 nm, 250 nm, and 800 nm, respectively, which is 34–68%

less than estimated when considering the rather compact

SiO2-50 nm agglomerates. This is in agreement with TEM

micrographs that show a more complex cluster structure

compared to SiO2-50 nm agglomerates that cannot be described

by a packing of hard spheres (Figure 6D). We assume this struc-

ture is caused by strongly bonded agglomerates and aggregates

present in Aerosil200 after its synthesis in gas phase as reported

by Seipenbusch et al. [29]. Such strong particle interactions

prevent the monomers from restructuring within the atomized

droplets. Hence Aerosil200 agglomerates are rather composed

of irregular shaped aggregates [30] than of spherical monomers

behaving like hard spheres. For this reason the actual effective

density decreases with increasing agglomerate size (Figure S1,

Supporting Information File 1). Therefore, the minimal dose of

26 µg·cm−2 was calculated considering only the lowest effec-

tive density for the largest agglomerates, which, however, is

obviously underestimating the final deposited mass. Hence, the

actual dose will be within the calculated extremes and is given

as (52 ± 26) µg·cm−2.

Biological effects
For the determination of biological effects the Transwell inserts

covered with a confluent layer of A549 cells were exposed to

filtered and unfiltered aerosol. Exposure to the unfiltered

aerosol of Aerosil200 NP and SiO2-50 nm NP agglomerates led

to deposited doses of 52 µg·cm−2 and of 117 µg·cm−2, respect-

ively (see Table 1), which roughly leads to similar surface doses

of about 104 cm2·cm−2 for Aerosil200 and 70 cm2·cm−2 for

SiO2-50 nm NPs.

For the comparison with submerged exposure to silica NPs, the

cells in Transwell inserts were treated with 50 µg·mL−1 NP

suspensions in medium without FCS. The cellular dose was

estimated according to the computational model of Hinderliter

et al. [31]. The particle dose delivered to the cells is determined

by diffusion and sedimentation processes, which are dependent

on the particle sizes [31]. Aerosil200 NPs are detected as

agglomerates in cell culture medium with an average hydrody-

namic diameter of (220 ± 6) nm in the freshly prepared suspen-

sion and remain stable up to 24 h (Table S1, Supporting Infor-

mation File 1). In contrast, SiO2-50 nm NPs are mainly present

as (72 ± 19) nm NPs directly after dispersion but are also

detected to a minor extent as larger agglomerates of about 2 μm

after 24 h (Table S1, Supporting Information File 1). The final

calculated deposited mass after 24 h is nearly identical for both

Aerosil200 and SiO2-50 nm NP suspensions and amounts to

7.0 µg·cm−2 (Figure S2, Supporting Information File 1).

Figure 7 shows that the electrical field and the exposure to

filtered air had no effect on the release of lactate dehydroge-

nase (LDH) into the medium. Enhanced levels of LDH indicate

membrane damage, which leads to cell death. LDH values of

the ALI-exposed control samples were similar to those detected

under submerged conditions. In contrast, exposure to silica NPs

induced strong LDH release under submerged exposure condi-
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Figure 8: Release of IL-8 from A549 cells after submerged and ALI exposure to Aerosil200 and SiO2-50 nm NP agglomerates. A549 cells were
exposed to filtered air or to an aerosol containing Aerosil200 NPs (A) and SiO2-50 nm NPs (B) under ALI or submerged conditions as described in
Figure 7 above. IL-8 concentrations in the medium are represented as means ± s.e.m. of 4 to 6 samples originating from three (A) and two inde-
pendent experiments (B).

tions. The LDH release after submerged exposure to

15.6 µg·cm−2 (50 µg·mL−1) Aerosil200 indicates 100% cell

lysis as it was comparable to the LDH release from Triton

X-100-treated cells, which were used as positive controls in

some experiments (data not shown). However, cells exposed to

NPs in the ALI system were less sensitive compared to

submerged exposure. Under both conditions, SiO2-50 nm NPs

were less effective in reducing the membrane integrity than

Aerosil200 NPs.

The medium was also analysed for the release of the pro-

inflammatory cytokines IL-8 and IL-6. Figure 8 shows, that the

electrical field and the exposure to clean air had no effect on

IL-8 release. The results at the ALI were qualitatively compa-

rable with those obtained under submerged conditions. Expo-

sure to silica NPs induced a strong release of IL-8 under

submerged exposure conditions. Cells exposed to NPs at the

ALI, however, released much lower IL-8 levels. Again under

both conditions, as also seen for the release of LDH above,

SiO2-50 nm NPs were less effective than Aerosil200 NPs. IL-6

release was not detected after ALI exposure to silica NPs and

was only moderately enhanced after submerged exposure (data

not shown). For comparison, a positive control for IL-6 and

IL-8 release has been previously analysed under submerged

conditions in medium without FCS [5]. Lipopolysaccharide

(LPS, 10 µg·mL−1) induced the release of about 1000 pg·mL−1

of IL-8 and 10 pg·mL−1 of IL-6 after 24 h, respectively.

To analyse the biological effects of NPs at earlier points in time,

cells were lysed immediately after ALI or submerged exposure.

Phosphorylation of the MAP kinase p38 and induction of the

inflammatory protein COX-2 were determined by Western blot.

Figure 9A and Figure 9C show that Aerosil200 NPs induced

similar levels of p38 phosphorylation and COX-2 after

submerged and ALI exposure although the deposited dose under

submerged conditions was lower than at the ALI. Similar to the

findings described above for the release of LDH and IL-8,

induction of COX-2 by SiO2-50 nm NPs was also less

pronounced when compared to Aerosil200 NPs (Figure 9B,D).

However, the relative phosphorylation of p38 seems to be

enhanced at the ALI when compared to Aerosil200 or to

submerged exposure. As p38 phosphorylation was detected

after 7 h of exposure whereas LDH and IL-8 release were moni-

tored after 24 h, a more detailed kinetic analysis is needed to

substantiate a possibly different regulation of this biomarker in

response to SiO2-50 nm NPs.

Our studies on the biological effects of Aerosil200 under

submerged conditions confirm results obtained previously [5].

Here we compare them directly with the effects of Stöber-

synthesized silica NPs SiO2-50 nm and additionally compare

them to an ALI exposure method. The results after ALI expo-

sure showed that both silica NPs qualitatively induced the same

toxic and pro-inflammatory effects as after submerged expo-

sure, however, quantitatively much less pronounced. During

ALI exposure the particle dose was linearly applied over a time

period of 5 h (Aerosil200) and 7 h (SiO2-50 nm) and thereafter

remained constant (Figure S2, Supporting Information File 1).

For submerged conditions, particles continuously settle down

onto the cells in dependence of the agglomeration state and the

viscosity of the medium [31,32]. Therefore, the constant

mechanical stress imposed by particle deposition might explain

the increased sensitivity of cells under submerged culture condi-

tions. Indeed, the importance of shear forces to exacerbate
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Figure 9: Induction of COX-2 und phosphorylation of p38 in A549 cells after SiO2-NP treatment under submerged and ALI conditions. A549 cells
were exposed to filtered air or to an aerosol containing Aerosil200 NPs (A) and SiO2-50 nm NPs (B) as described in Figure 7 above. COX-2 and
phospho-p38 were detected in whole cell lysates by Western blots. PCNA (left panel), Lamin B (right panel) and total p38 were used as loading
controls, as indicated. The results shown are representative for three (A) and two independent experiments (B). (C) and (D) show the quantification of
the p-p38 and COX-2 bands normalized to the loading controls (total p38 and PCNA or Lamin B, respectively), which are compared to the ALI
controls exposed to clean air without electrode (which are set to 1).

NP-induced toxicity has been described previously [8,33].

Another explanation could also be the secretion of surfactant by

A549 cells under ALI conditions [34] which may have a protec-

tive effect due to binding of surfactant proteins to the particles

[35].

Furthermore, Aerosil200 NPs induced similar but more intense

cellular responses compared to SiO2-50 nm NPs. A possible

reason could be the higher specific surface area of the

Aerosil200 NPs with 200 m2·g−1 compared to 60 m2·g−1 of the

SiO2-50 nm NPs. The dependence of biological effects on

particle size and specific surface area is well known and has

already been shown for many types of particles including amor-

phous silica particles [36].

Conclusion
In this study two silica NPs produced by different synthesis

methods were intensively characterized with regard to their

properties in aerosols, deposition from the aerosol onto cells

and biological endpoints under ALI and submerged conditions.

We could confirm our previous finding with SiO2 NP suspen-

sions from another manufacturer (Ludox AS40) that the genera-

tion of an aerosol that contains monomeric silica particles is

possible when using an electrospray generator [18]. Further-

more, a VITROCELL® exposure module was modified and

equipped with electrodes to allow electrostatic deposition

enhancement by more than a factor of about 20. However,

although the deposited particle number for monomeric silica

particles of 53 nm diameter was comparable to those of agglom-

erated silica particles the mass and surface doses were too low

to induce significant biological effects in lung cells. Therefore,

an atomizer was used to generate aerosols with larger agglomer-

ates allowing application of mass and surface doses that were

up to three orders of magnitude higher.

Both types of silica NPs induced cytotoxicity and inflammatory

responses under conventional submerged conditions. At the

same nominal applied dose Aerosil200 NPs were more toxic

than 50 nm silica NPs produced by the Stöber method.

However, when considering the specific surface area both NPs

show similar potencies. This supports previous findings that

presumably the interaction of cells with the silica surface trig-

gers adverse effects. Surprisingly, at the ALI the apparent toxi-

city of both NPs was drastically reduced although the deposited
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mass was higher by a factor of three to seven. The underlying

reasons for the different sensitivity remain unknown. Future

studies need to address the relevance of changes in the dose rate

as a critical parameter for cellular toxicity. Moreover, more

detailed analysis of particle uptake (e.g., by confocal

microscopy or TEM) under ALI and submerged conditions will

be helpful to unravel the different responses. This study is one

of only a handful of similar attempts to directly compare bio-

logical effects of NPs under ALI and submerged conditions. In

a triple-culture comprised of human lung epithelial cells,

macrophages and dendritic cells were exposed to similar doses

of ZnO particles under submerged and ALI conditions. Interest-

ingly, the response (LDH release, HO-1 induction) occurred

more rapidly at the ALI but to a similar extend [37]. Similarly,

exposure of A549 cells to ZnO particles at the ALI provoked a

stronger increase in pro-inflammatory gene expression and the

concentrations of particles to induce the lowest observed effect

levels were reduced [38]. Moreover, gold nanoparticles were

deposited with the previous system but, in contrast to some

other submerged studies, did not induce adverse effects [39].

Also a mono-culture of bronchial 16HBE14o cells induced IL-8

already at much lower diesel exhaust particle concentrations

deposited at the ALI in comparison to submerged exposure

[40]. ALI and submerged exposure have also recently been

compared for their response to a chemical inducer of oxidative

stress. In line with our findings, a tetra-culture of A549, THP-1,

mast and endothelial cells reacted more sensitive under clas-

sical submerged conditions with respect to release of IL-8 and

production of ROS [10]. Therefore, more NPs with different

chemistries and sizes as well as different cell culture models

need to be assessed in order to either confirm a reduced toxicity

of NPs at the ALI in general or rather to identify a NP-specific

behaviour that depends on the exposure method. Furthermore, it

is possible that at the ALI gene expression will change

compared to submerged cultures, a topic which warrants further

investigations. Indeed, human bronchial epithelial cells are

more resistant to stress imposed by ambient air pollution parti-

cles and decrease expression of the pro-inflammatory marker

IL-8 and the anti-oxidant gene heme oxygenase 1 (HOX1)

when cultivated at the ALI prior to exposure [41]. However,

first studies in A549 cells for those selected genes do not indi-

cate major changes in expression within a few hours of cultiva-

tion at the ALI [38].

Recently, the concept of “dose rate” as a critical driver of toxi-

city was again promoted [42]. In animal experiments, instilla-

tion of high doses of titania NPs initiates inflammation whereas

deposition of the same mass by inhalation is almost without

effect. The difference between the two approaches is a drasti-

cally increased dose rate (micrograms per minute) when using

instillation versus inhalation. However, the interpretation of

such in vivo experiments is complicated, because not only the

dose rates differ, but also the distribution of the NPs within the

lung and the clearance are different. As in our in vitro studies

these two confounding factors are eliminated, the dose rate still

remains an important determinant to possibly explain the differ-

ences in toxicity when exposing cells at the ALI and under

conventional submerged conditions. However, in our study the

dose rate is considerably lower for the submerged versus ALI

deposition and therefore does not correlate with increased toxi-

city. This raises of course the question which dose rates are

most realistic and how comparable different studies are.

Presumably, the use of other ALI systems delivering the dose

almost instantly (bolus deposition), and thus avoiding the neces-

sity to incorporate sophisticated humidification systems as used

in our ALIDA, will also provide different outcomes because at

the even higher dose rate the relative response to NPs might

change. Certainly, a systematic comparison of different

air–liquid-interface methods including classical submerged

toxicological assays is needed to assess the relevance of dose

and dose rate and to finally relate results obtained from such in

vitro methods to data obtained from exposure studies with

animals or even humans.

Experimental
Materials
Aerosil®200 powder was kindly provided by Evonik (Essen,

Germany). The SiO2-50 nm NPs without or with labelling with

fluorescein isothiocyanate (FITC) supplied as a monodisperse

solution of 25 mg/mL in water were from Postnova Analytics

(Z-PS-SIL-GFP-0.07, Landsberg am Lech, Germany).

Dulbecco’s Modified Eagle Medium (DMEM), Roswell Park

Memorial Institute medium (RPMI-1640), Hank’s Balanced

Salt Solution (HBSS), Dulbecco’s Phosphate Buffered Saline

without Ca2+ and Mg2+ (DPBS-/-), penicillin, streptomycin, and

trypsin were from Life Technologies (Frankfurt am Main,

Germany). Fetal calf serum (FCS) was from PAA (Cölbe,

Germany). The cytotoxicity detection kit for determining

release of LDH was from Roche (Mannheim, Germany).

Enzyme-linked immuno assays (ELISA) for the detection of

human IL-6 and IL-8 were from BD Biosciences (OptEIA kits,

Heidelberg, Germany). 4-(2-Hydroxyethyl)piperazine-1-ethane-

sulfonic acid (HEPES) and the chemicals for sodium dodecyl-

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were

from Carl Roth (Karlsruhe, Germany). For the Western blots

Immobilon-P PVDF membranes (Millipore, Eschborn,

Germany), primary antibodies against COX-2 (Biozol, Eching,

Germany), phospho-p38 (Thr 180/ Tyr 182, Cell Signalling,

Frankfurt am Main, Germany), PCNA (PC-10), Lamin B

(M-20) and p38 (C-20) (both from Santa Cruz), HRP-conju-

gated secondary antibodies (DAKO, Hamburg) and the

enhanced chemiluminescence (ECL) detection system
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from GE Healthcare (Freiburg, Germany) were used.

Transwell® inserts containing polyester membranes of 24 mm

diameter and with pores of 0.4 µm (Cat.No. 3450) were from

Corning Life Sciences (Amsterdam, The Netherlands). 75-mesh

formvar-coated copper grids for transmission electron

microscopy (TEM) were from Plano GmbH (Wetzlar,

Germany).

Aerosol generation and characterisation
For cell exposure to nanoparticle monomers the monodisperse

SiO2-50 nm NP suspensions were dispersed into synthetic air

(Air Liquide, 20% O2 in N2, less than 3 ppm impurities) by

using an electrospray aerosol generator (TSI 3480, Shoreview,

United States) as described by Comouth et al. [18]. To ensure

agglomerate fractions of less than 7% the suspension was

diluted to 7 mg·mL−1 with Nanopure water (type 1 ultrapure

water, Barnstead, Germany). In addition to the electrospray an

Atomizer (Topas, ATM 220, Dresden, Germany) was used for

aerosol generation. The particle number concentrations and size

distributions of the aerosol were continuously measured by

using a scanning mobility particle sizer (SMPS, TSI, Aachen,

DMA 3081 and CPC 3025).

Exposure of cells to aerosol
The cells were exposed to the aerosol with the ALIDA expo-

sure system described in detail by Comouth et al. [18]. For cell

exposure the aerosol was humidified to 80–90% relative

humidity at 37.5 °C. The humidified aerosol was then carried

with identical flows of 100 mL·min−1 (sccm) through six tubes

of equal dimensions to the inlets of six exposure chambers

(VITROCELL Systems GmbH, Waldkirch). Two stainless steel

modules were equipped with three Transwell® inserts of 24 mm

membrane diameter. To increase the deposition efficiency an

almost homogeneous electrical field with an axial strength of

500 V·mm−1 was applied.

Determination of the dose
In order to determine the deposited fraction of the applied

aerosol during ALI exposure TEM grids (Plano, SF162-6) were

placed on the Transwell membranes at three different radial

positions and exposed to the aerosol for different times. Subse-

quently, 50 micrographs of the deposited particles were taken

for each experiment by using a transmission electron micro-

scope (Zeiss 109T, Oberkochen). The deposited particles were

detected and analysed regarding their number and size with a

custom-made software.

For the calculation of mass doses spherical primary particles

with a density of 2 g·cm−3 were assumed. This value is close to

the 1.8–2.2 g·cm−3 stated by the manufacturer (Postnova

Analytics) and to literature data for amorphous silica particles

of 2.2 g·cm−3 [43]. For agglomerates remaining from droplets

containing more than one particle an effective density cannot

easily be defined. For hard spheres Manoharan et al. [27]

suggested that the particles are configured in spherical pack-

ings with structures that minimize the second moment of the

mass distribution. Hence we treated large agglomerates as

compact spherical clusters with volume fractal dimensions close

to 3. Furthermore we assumed a volume filling factor of 1.56

assuming a polytetrahedral structure. In order to justify this

simplification the deposited mass dose of the FITC-labeled

SiO2-50 nm particles was estimated additionally from their

fluorescent intensity. Therefore, the exposed Transwell inserts

were filled with 0.8 mL distilled water to suspend the deposited

particles. The fluorescence of the solution was measured at

(485 ± 10) nm excitation and (530 ± 12) nm emission wave-

lengths by using a Bio-Tec FL600 spectrometer and the soft-

ware package KC4 (MWG-Biotech AG, Ebersberg, Germany).

At the same time Transwell inserts filled with 0.8 mL of

suspensions containing FITC-labeled SiO2-50 nm NPs at

0.25 mg·mL−1, 0.5 mg·mL−1 and 1 mg·mL−1 were used for cali-

bration. Since Aerosil200 particles are not fluorescent this

procedure could not be applied to verify the corresponding

TEM results. In order to give at least a lower limit of the mass

dose the effective density of 80 to 800 nm sized agglomerates

was measured by using an Aerosol Particle Mass (APM)

analyser (Kanomax, APM 3601) [44] in combination with a

differential mobility analyser (DMA) connected upstream. The

total amount of deposited particles was estimated finally by

extrapolating the amount of deposited particles as a function of

the applied particle mass.

Cell culture
The human alveolar epithelial cell line A549 obtained from

American Type Culture Collection (ATCC, Rockville, MD)

was maintained in DMEM supplemented with 10% (v/v) FCS,

2 mM L-glutamine, 100 U·mL−1 penicillin, and 100 mg·mL−1

streptomycin at 5% CO2 at 37 °C. The cells were passaged

every three to four days. Two days before ALI exposure experi-

ments 4 × 105 cells in 1 mL of RPMI-1640 medium with

10% FCS were seeded per Transwell insert with a surface

area of 4.7 cm2. This corresponds to a cell density of

8.5 × 104 cells·cm−2. At the day of exposure cells formed a

confluent monolayer as assessed by microscopy.

Submerged treatment of cells
The Aerosil200 particles were suspended in cell culture medium

without 10% FCS at 10 mg·mL−1 and probe-sonified (Branson

Sonifier, 250, Schwäbisch Gmünd, Germany) for 50 s (50 duty

cycles, output 5) right before preparing dilutions and adding to

cells. The SiO2-50 nm particles were diluted in medium and

vortexed.
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Exposure of cells under ALI conditions
Shortly before the experiment the medium above the cells and

under the membrane was removed and both sides were washed

with HBSS. 1.5 mL RPMI1640 medium without sodium bicar-

bonate, prepared from RPMI1640 powder, containing 10 mM

HEPES, 100 U·mL−1 penicillin, 100 mg·mL−1 streptomycin and

without FCS was pipetted into the basal compartment and the

apical compartment was covered by a thin layer of 100 µL

HBSS (ca. 214 µm initial mean layer height) in order to avoid

drying out of the cells. RPMI instead of DMEM was used for

growing cells at the ALI as it allowed a better maintenance of a

stable pH which is required to keep cells viable. The cells were

transported to the ALIDA system in a pre-warmed and ther-

mally insulated box and exposed. Two inserts with cells were

exposed to clean air which was generated by passing the humid-

ified and conditioned aerosol through HEPA air filters

(HepaVent™ Y271, Whatman GmbH, Dassel). Three other

inserts were exposed to the unfiltered aerosol and one equipped

with TEM grids for dose determination. Each exposure was

done with and without applying an electrostatic field enhancing

the deposition efficiency.

Determination of biological effects
After the ALI exposure the cells were either directly lysed or

further incubated under submerged conditions in serum-free

RPMI medium without HEPES at 37 °C and 95% humidity and

analysed after 24 h. Post-incubation was performed submerged

in order to allow optimal release of cytokines into the apical

compartment. For comparison, cells grown in Transwell inserts

were simultaneously treated under submerged conditions in

serum-free RPMI medium for the same time periods. The cell

lysates were analysed for COX-2 and phosphorylated p38 by

Western blot. The media of the post-incubated cells were

analysed for release of LDH by using a test kit from Roche

according to the manufacturer’s instructions. Release of IL-6

and IL-8 was analysed by enzyme-linked immune assay

(ELISA) kits from Becton Dickinson according to the manufac-

turer’s instructions.

Western blots
Whole cells were lysed with 2× Lämmli SDS Buffer (160 mM

Tris·HCl pH 6.8, 4% SDS, 20% glycerol, 4% ß-mercapto-

ethanol). The cell lysates were boiled at 95 °C for 5 min, probe

sonified for 15 s and then stored at −20 °C. Equal amounts of

the lysates were loaded onto 10% SDS-polyacrylamide gels and

after electrophoresis, the proteins were transferred onto Immo-

bilon-P PVDF membranes. The membranes were blocked with

5% (w/v) non-fat dry milk in 1% Tween20 in Tris-buffered

saline (TBS) for 1 h. For the detection of phosphorylated p38

the membranes were blocked in 3% (w/v) BSA. The blots were

then incubated with primary antibodies and subsequently with

HRP-conjugated secondary antibodies which were finally

detected with the ECL system.

Supporting Information
Supporting Information contains 1) data obtained by

dynamic light scattering of the particles suspensions 2) data

on the deposited mass dose for Aerosil200 particles after

ALI exposure and 3) deposition kinetics of the mass doses

for Aerosil200 and SiO2-50 nm particles during ALI and

submerged exposure.

Supporting Information File 1
Additional experimental data.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-5-171-S1.pdf]
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