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Abstract

Automatic tracking and identification of faces and persons are essential tasks in many
video analysis systems, for example to automatically generate meta data or as basis for
higher level applications. In many cases, identification is based on a single modality
such as faces. In this work, we propose methods to improve person identification by
integration of multiple cues including multiple modalities and contextual information.

We motivate and evaluate our proposed methods in the context of multimedia data,
specifically TV series. Despite its usually high resolution, multimedia data presents many
challenges. For example, camera views change constantly at shot boundaries, the camera
position is generally unknown and image conditions and poses of faces and poses can
change rapidly due to the underlying plot. Since we make only few assumptions about
the underlying data, our methods are applicable to other domains as well, for example in
the area of safety and security.

Before we can identify a face, it has to be localized in the image first. In videos we can
further associate localizations over time to consecutive face tracks. Face tracks can then
be identified jointly and errors in single frames (e.g., due to noise in the data or imprecise
localization) can be mitigated, improving overall identification accuracy. In this work,
we propose a detector-based face tracking approach based on a large bank of detectors
which cover a range of head poses. We integrate the detectors in a particle filter such that
these can be used efficiently, i.e. only one detector out of 49 is evaluated for each particle.

We evaluate our approach on a data set of two TV series, which we annotated with
ground truth face positions. The data set contains over 100 000 annotated faces and is
one of the largest public data sets available for the evaluation of face tracking. With
our proposed tracking approach we achieve an improvement of 0.15 in Multiple Object
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Tracking Accuracy over a frontal-face-only tracker. The miss rate (faces that are not
found) reduces by an absolute 10-15%, while the false positive rate only increases by
an absolute 5%. Consequently, the number of underlying tracks for which at least one
frame is found by the tracker also increases: the track recall improves by an absolute
5-15% while maintaining a high track precision.

While previous work in multimedia data focused on the recognition of faces, we extend
the problem to recognize persons, regardless of the visibility of the face. We employ
a person tracker in addition to face tracking approach as described above to localize
persons where the face is not visible. We approach the identification of persons from two
perspectives. On the one hand, we propose a learning approach that integrates additional
contextual information from videos to improve the learned face models. For learning
a face model, we use both labeled data, for which we generate labels automatically by
matching subtitles and transcripts, and unlabeled data as well as constraints between face
tracks. The different sources of information are combined in a joint loss function. On
the other hand, we integrate additional modalities, e.g. the general appearance of a person
or his/her expected presence on the screen, in a global fusion framework.

Due to the integration of additional information in the learning of face models, we
achieve an improvement in track identification accuracy of around 2% on average. By
fusing with additional modalities, the accuracy on face tracks improves by another 4%
on average. For person tracks, the accuracy improves due to the integration of multiple
modalities by an absolute of over 11%, since this allows to also identify persons correctly
for which the face is not visible or the face tracker could not find the face.

Finally, we propose a family of kernels which operate on tracks instead of single
frames/features. These kernels are applicable in many kernel-based learning approaches.
Due to the usage of tracks instead of frames as underlying basic units for learning, the
computational requirement for the optimization of the loss function is reduced by a
factor proportional to the square of the average track length.

The reduction in training time is especially of importance, when manual feedback is
considered during learning. Due to the reduced complexity, we can train new face models
and infer identities for all tracks within seconds. Therefore, the influence of the manual
labels can be increased. When correcting misclassified face tracks, less than half of the
tracks have to be corrected when we train and evaluate new models during feedback.
This is equivalent reducing the required manual label time by more than 50%.



Kurzzusammenfassung

Das automatische Nachverfolgen und Identifizieren von Gesichtern und Personen ist
Grundlage in vielen automatischen Videoanalysesystemen, z.B. zur automatischen Gener-
ierung von Metadaten oder als Basis für darauf aufbauende weiterführende Anwendun-
gen. In vielen Fällen wird eine Personenidentifikation nur auf einer Modalität basierend
durchgeführt, z.B. Gesichtern. In dieser Arbeit untersuchen wir Methoden, durch die die
Identifikation von Personen durch Hinzunahme von weiteren Modalitäten und anderen
(Kontext-)Informationen verbessert werden kann.

Wir motivieren und evaluieren unsere Verfahren am Beispiel von Multimediadaten
(TV Serien). Trotz der oft hohen Auflösung sind Multimediadaten herausfordernd, da
sich Blickwinkel aufgrund der Kameraführung ständig ändern, im Allgemeinen keine
Kalibrierung der Kamera bekannt ist und sich durch die unterliegende Handlung die
Aufnahmebedingungen und Ansichten von Personen und Gesichtern in schneller Abfolge
ändern können. Da wir nur wenige Annahmen zu den unterliegenden Daten treffen,
sind die entwickelten Verfahren weitestgehend ebenso in anderen Domänen, z.B. im
Sicherheitsbereich, einsetzbar.

Bevor ein Gesicht identifiziert werden kann, muss es zunächst im Bild lokalisiert werden.
In Videos kann zusätzlich ein zeitlicher Zusammenhang zwischen einzelnen Gesichtern
hergestellt werden. Dies erleichtert eine spätere Identifizierung, da zusammenhängende
Gesichtstracks gemeinsam identifiziert werden können und Fehler in einzelnen Frames
(z.B. durch Rauschen in den Daten oder aufgrund einer ungenauen Lokalisierung) aus-
geglichen werden können. Aufgrund obengenannter Eigenschaften ist in realistischen
Daten allerdings schon die Lokalisierung und Nachverfolgung (Tracking) von Gesichtern
in Videosequenzen ein herausforderndes Problem. In den letzten Jahren haben sich
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diskriminative Objektdetektoren zur Lokalisierung von Objekten in Bildern durchge-
setzt und – darauf aufbauend – detektor-basierte Tracking-Ansätze für Videos. Um
unterschiedliche Posen eines Gesichts abzudecken, werden oft viele, posen-spezifische
Detektoren eingesetzt. Durch die höhere Anzahl an Detektoren steigt allerdings auch
die benötigte Laufzeit.

In dieser Arbeit stellen wir einen detektor-basierten Tracking-Ansatz für Gesichter vor,
der zwar auf einer großen Anzahl von Detektoren beruht, durch die Integration in ein
Partikelfilter diese Detektoren aber Laufzeit-effizient einsetzt. So wird anstatt unserer
kompletten Detektorbank von 49 Detektoren nur jeweils ein Detektor pro Partikel
ausgewertet.

Wir evaluieren unseren Tracking-Ansatz auf einem Datensatz von zwei TV Serien, die
wir zu diesem Zweck mit Grundwahrheit-Lokalisierungen annotiert haben. Der Daten-
satz enthält über 100 000 annotierte Gesichter und ist einer der größten veröffentlichten
Datensätze zur Evaluation von Gesichtstracking. Im Vergleich zu einem Tracker, der nur
auf einem frontalen Detektor basiert, erzielen wir eine durchschnittliche Verbesserung
der Multiple Object Tracking Accuracy um 0.15. Vor allem die Miss-Rate (nicht gefun-
dene Gesichter) sinkt je nach Video durch die Verwendung von mehr Detektoren um
10-15 Prozentpunkte, während die Falsch-Positiv-Rate nur um bis zu ca. 5 Prozentpunkte
zunimmt. Dadurch erhöht sich auch die Anzahl der unterliegenden Gesichtssequenzen,
von denen zumindest ein Frame gefunden wurde: Der Track Recall steigt konsistent um
5-15 Prozentpunkte, während die Track Precision konstant bleibt oder ebenfalls ansteigt.

Während vorherige Arbeiten in Multimediadaten sich rein auf die Identifikation von
Gesichtern beschränkten, erweitern wir das Problem auf die Identifikation von Perso-
nen, auch wenn kein Gesicht sichtbar ist. Dazu verwenden wir zusätzlich zum oben
beschriebenen Trackingverfahren einen Personentracker, der Personeninstanzen unab-
hängig von Gesichtern lokalisiert.

Die Identifizierung von Personen untersuchen wir aus zwei unterschiedlichen Perspek-
tiven. Zum einen schlagen wir ein Lernverfahren vor, das zusätzliche Informationen aus
gegebenen Videos verwenden kann, um die zu lernenden Gesichtsmodelle zu verbessern.
Dabei verwenden wir sowohl gelabelte Daten, für die wir die Labels aus Untertiteln
und Drehbuch für einen Teil der Tracks automatisch generieren, als auch ungelabelte
Daten und Einschränkungen von Paaren von Tracks. Die unterschiedlichen Kompo-
nenten werden in einer gemeinsamen Kostenfunktion zusammengefasst und gemeinsam
optimiert. Zum anderen integrieren wir zusätzliche Modalitäten in einem globalen
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Fusions-Framework, z.B. das komplette Erscheinungsbild einer Person (bzw. ihrer
Kleidung) oder die erwartete Präsenz einer Person im Bild, wenn sie gerade spricht.

Durch die Integration von zusätzlichen Information in das Lernen von Gesichtsmod-
ellen erreichen wir eine Steigerung der Trackerkennungsrate um durchschnittlich ca. 2
Prozentpunkte. Durch die Fusion mit weiteren Modalitäten verbessert sich die Erken-
nungsleistung auf Gesichtstracks um durchschnittlich weitere 4 Prozentpunkte. Für
Personentracks steigert die Hinzunahme von weiteren Modalitäten die Erkennungsleis-
tung um über 11 Prozentpunkte, da nun auch Personen richtig erkannt werden können,
deren Gesicht nicht sichtbar ist oder vom Tracker nicht gefunden wurde.

Schließlich schlagen wir eine Familie von Kerneln vor, die auf Tracks anstatt einzelnen
Frames operieren. Diese sind für viele Kernel-basierten Lernverfahren anwendbar. Durch
die Verwendung von Tracks anstatt Frames als unterliegende Einheiten zum Lernen
reduziert sich der Rechenaufwand der Optimierung der Kostenfunktion um einen Faktor
proportional zum Quadrat der durchschnittlichen Tracklänge.

Die Reduktion der benötigten Rechenzeit ist insbesondere dann von Vorteil, wenn
manuelles Feedback in das Lernen mit einfließen soll. Durch die Vereinfachung des
Verfahrens können wir Gesichtsmodelle in wenigen Sekunden neu trainieren und auf
allen Tracks evaluieren. Dadurch kann der Einfluss von manuellen Labels gesteigert
werden. Bei der Korrektur von fehlerhaft erkannten Gesichtstracks muss so nur noch für
weniger als die Hälfte der Tracks manuelles Feedback gegeben werden, gleichbedeutend
mit einer Einsparung der Labelzeit von über 50%.
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Chapter 1

Introduction

Automatic person identification in images and videos is an extensive and challenging
problem. Person identities provide useful meta data for both personal and professional
applications, for example in digital photo albums, media databases for human-computer
interaction or security applications. They also serve as a foundation and building block
for many higher level video analysis tasks such as textual image description, interaction
analysis or video summarization. Ultimately, person identities are a key information to
understanding the visual content of images and videos, to make it searchable and useful
to others.

Large amounts of visual data are generated in different domains and from different data
sources independently, with massive growth rates. With the rise of smart phones, it
has never been easier to take pictures or record personal videos and it is estimated that
about 10% of all pictures taken since the invention of the camera have been taken in
the last 12 months (Good, 2011). Professional video sources include multimedia data
(broadcast archives, TV series and movies) and surveillance camera networks. Indexing
the information contained in the sheer volume of the data requires an automated solution.

In the past, the focus for automatic person identification has been placed by and large on
one modality at a time, which in many cases was faces. However, person identification is
an inherently multimodal problem and humans usually rely on more than just the face
for inferring the identity of a person. Often, the face of a person is partially occluded,
not visible at all, or not distinctive enough to make an informed decision on the identity,
for example because of bad lighting conditions. “Soft biometrics” such as gender, general
appearance, distinctive symbols on clothing, hair color and style, accessories, gait patterns
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or voice can play a great deal in telling people apart. In addition, soft and hard constraints
on person identities arise naturally from images and videos. As a hard constraint for
example, two persons in the same video frame should not be identified as the same person.
A soft constraint can arise from observing groups of people and making assumptions
about them staying a group. In multimedia data, subtitles, transcripts, overlaid text
and speech provide constructive cues on person identities. Consequently, automatic
person identification can benefit from using such data to make more informed and thus
(hopefully) better decisions.

Automatic naming of persons in multimedia data has received increasing attention in
the last years. As a direct commercial application, video streaming providers have very
recently started to offer information on cast and characters for TV series and movies
during playback1,2,3. Also in multimedia data, person identities serve as basis for higher
level applications, for example to search large media data bases for specific persons.
Multimedia data can usually be considered to be taken "in-the-wild", i.e. in varying
and diverse conditions, different poses, with partial occlusions and generally without
cooperation simplifying automatic identification. In long running TV series one can
also observe the effects of aging, different hair styles, weight loss and gain, adding to the
challenges of reliably identifying persons in such data.

In this thesis, we address as main application the naming of characters in TV series and
movies and make use of special characteristics of such data. To this end, we take into
account the whole pipeline of person identification and perform fully automatic end-to-
end person identification. We consider the following parts and underlying problems of
the pipeline in more detail.

The localization of visual elements for recognition is an underlying problem for most of
the above-mentioned modalities. If a face or person is not detected in an image, automatic
recognition cannot be expected. Therefore, robust localization is a necessary prerequisite
and high recall and precision are key to applicability in realistic scenarios.

A second central question is how to incorporate the different modalities and contextual
sources. This can be done initially while learning models for identification, e.g. by gener-
ating training data automatically from some of the accompanying data such as transcripts
and subtitles. Unlabeled data and constraints can provide additional information to

1 Hulu Face Match: http://www.hulu.com/labs/tagging
2 Amazon/IMDB X-Ray for movies: http://www.imdb.com/x-ray/
3 Actor info cards for Google Play Movies & TV
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train better models. Similarly, a fusion of multiple complementary cues, e.g. clothing
appearance, is likely to be beneficial for identification of previously unseen test data.

Finally, when learning from large amounts of data, the training set is often more con-
strained by the available memory than the available data. When using weak label sources
such as subtitles and transcripts, in order to correct remaining errors after identification,
informed human labels are required. In order to minimize the necessary human input,
person models can be updated iteratively during the labeling process and thus more tracks
be automatically identified correctly. A reduction in the number of elements to classify,
e.g. tracks instead of individual features, can present a solution to both challenges.

While the application focus of this thesis lies on multimedia data, the main ideas and
contributions can also be applied to other domains. For example, the presented face
tracker has originally been developed in a surveillance setting (Bäuml et al., 2010b).
Learning identities can similarly exploit contextual cues from a camera network (Bäuml
et al., 2012), and other modalities which are not explicitly explored in this thesis, can be
integrated in the proposed fusion scheme.

1.1. Overview over related literature

Early work on face identification in the "wild" was performed in news images (Berg
et al., 2004). To deal with the large amount of data, the idea of leveraging the captions as
weak labels and constraints on the identities of the persons depicted in the image was
explored. Labeling images from captions was continued with more advanced features and
different learning methods (Guillaumin et al., 2010, 2012). Similar ideas were explored in
broadcast news videos (Khoury et al., 2013; Song et al., 2004; Yang et al., 2005). No direct
textual captions are available here, but transcripts (Song et al., 2004; Yang et al., 2005) or
Optical Character Recognition of the overlaid text (Poignant et al., 2012; Yang et al., 2005)
provide equivalent information. In the end, the usage of this out-of-band information
allows to identify faces in large corpora without human intervention. An interesting
aspect of these approaches is that the employed labels are ambiguous, i.e. usually there
cannot be made a one-to-one correspondence between a name in the caption and a face
in the image. Learning the person model inherently has to determine the relationship
between labels and possible faces during training.
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To avoid manual labeling of faces in TV series for training person models, Everingham
et al. (2006) proposed an automatic method to obtain weak labels for some track identities
by aligning subtitles to transcripts and automatic speaker detection. Since speaker
detection is a difficult problem by itself, these labels are typically noisy and incomplete
(i.e., usually only about 20-30% of the tracks can be assigned a name, with about 80-90%
accuracy). Modifications to the original speaker detection procedure by Everingham et al.
(2006) have been proposed (Köstinger et al., 2011). As in broadcast news, these labels
can be regarded as partial and ambiguous while learning person models, addressed by
modeling the learning problem as a multiple instance learning problem (Köstinger et al.,
2011) or by using a specialized convex loss function (Cour et al., 2011). When transcripts
are not available, references to names in the spoken text can be leveraged (Cour et al.,
2010), although they provide much weaker hints on the identity of the faces in the
current shot. Work has also been conducted to align scripts to TV series and movies
when subtitles are not available (Sankar et al., 2009). However, this requires manual
samples for identification and thus cannot be used directly for identification itself.

In the context of multimedia data the problems of retrieval (Fischer et al., 2010; Sivic
et al., 2005) and clustering (Arandjelovic and Cipolla, 2006; Ramanan et al., 2007a;
Yamamoto et al., 2010) have been similarly addressed. Feature length movies were used
originally as easily obtainable data source for face recognition experiments (Fitzgibbon
and Zisserman, 2003). Recognizing the potential, Ramanan et al. (2007a) stated the
explicit goal of obtaining a data set for further face analysis experiments, using data
from different seasons of a TV series to cover changes in age, hair style and weight.
However, the data set was never widely used. Equivalently, face recognition and person
identification was extended to other "wild" domains such as generic web videos (Sargin
and Aradhye, 2009; Zhao and Yagnik, 2008), personal photo albums (Gallagher and
Chen, 2008a, 2007; Lin et al., 2010; Zhang et al., 2013) and movie trailers (Ortiz et al.,
2013).

The main focus of naming characters lies on naming face tracks (Everingham et al., 2006;
Köstinger et al., 2011; Ortiz et al., 2013; Ramanan et al., 2007a; Sivic et al., 2009). Due to
close up shots, face detection and tracking is an easier problem in such data than person
detection. In addition, faces are usually assumed to remain very similar in appearance
throughout a movie or TV series, while a character’s clothing might change frequently
between scenes. Clothing has been used as an auxiliary cue for naming faces, but the
localization is based on faces, e.g., the clothing descriptor is extracted from a bounding
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box beneath the face (Anguelov et al., 2007; Everingham et al., 2006; Ramanan et al.,
2007a). Consequently, the performance of the face tracker is important, as non-localized
faces are not further considered in the later stages of the identification pipeline. Different
kinds of region and point-based trackers have been proposed to track over frames in
which the underlying face detector could not find a face (Everingham et al., 2006; Sivic
et al., 2005). In order to increase the track recall of their tracker, Sivic et al. (2009) used
both a frontal and profile face detector as underlying face model. Ramanan et al. (2007a)
continued tracking using person-specific part models (i.e., of hair, face and torso) but
restricted the continuation to frames neighboring a face detection. In the same spirit as
Sivic et al. (2009), we extended our face tracker to track multiple poses with the goal to
locate more faces than a frontal-only tracker (see Chapter 2). We further extended the
problem to person tracks obtained by an independent person tracker to further increase
coverage. Using independent person tracks, we are able to identify persons even when
no face can be detected (see Chapter 4 for details).

Many different descriptors have been employed for face recognition. In the context
of multimedia data alone, there is a wide range of explored descriptors: simple pixel-
based (Everingham et al., 2006), Histograms of Oriented Gradients (HOG) (Sivic et al.,
2009), local descriptors (Cinbis et al., 2011; Khoury et al., 2013), local block-based Dis-
crete Cosine Transform (DCT) (Fischer et al., 2010), Local Binary Patterns (LBP) (Ortiz
et al., 2013), Gabor-response histograms (Ortiz et al., 2013) or SIFT-based Fisher vectors
(FV2) (Parkhi et al., 2014). However, as discussed before, person identification is an
inherently multi-modal problem. For example, performing speaker and face recognition
together is beneficial in both directions: audio can be used to verify face recognition
results and faces can help to identify the speaker (Li et al., 2001). The association between
speaker and face is often performed in a greedy manner (Gianni et al., 2007; Sargin and
Aradhye, 2009). For personal photo albums, Markov random fields have been employed
for fusing face and clothing cues (Anguelov et al., 2007), people, events and locations (Lin
et al., 2010) or faces, human attributes, clothing and co-occurrence (Zhang et al., 2013).
Clothing is a strong feature and can be described quite detailed (Yamaguchi et al., 2012),
however, such approaches are computationally too expensive for applicability in large-
scale video data bases. Typically, approaches resort to color and texture histograms with
different degree of segmentation of the clothing region (Anguelov et al., 2007; Gallagher
and Chen, 2008a; Ramanan et al., 2007b; Weber et al., 2011).
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Other cues which can be incorporated in the identification procedure include gen-
der (Cour et al., 2011) and character co-occurrence (Cour et al., 2009; Sang and Xu, 2012;
Zhang et al., 2009). The latter analyzes which characters are likely to appear together
(or not) and as such influences character naming decisions. One more example, where
specific elements of multimedia data are exploited are the usage of shot threads (Cour
et al., 2008; Yamamoto et al., 2010). Due to the way movies and TV series are edited,
there are often sequences which switch back and forth between two camera views, espe-
cially during conversations. Persons often do not move between these camera switches
and thus the identities of the corresponding tracks can be linked together. In Chap-
ter 4, we incorporate multiple cues, including clothing without faces and constraints
between tracks in a Markov Random Field and perform joint identification, optimizing
the identity assignment over all tracks simultaneously.

1.2. Contributions and outline

The contributions in this thesis are the following:

Chapter 2: Robust face and person tracking Our proposed multi-pose face tracker
is robust to diverse conditions and maintains high recall rates. We show in our analysis
that our multi-pose tracker has the following advantages: It increases the track recall,
i.e. more faces/persons are found and can subsequently be identified. Also, we obtain
longer tracks on average, which is favorable for identification as the decision can be based
on more samples.

Chapter 3: Semi-supervised multi-class learning with constraints For automatic
character identification in multimedia data usually all training and test data is available
at training time, i.e. the full movie or series is available. Therefore, we can model the
problem as a semi-supervised/transductive learning problem and leverage unlabeled test
data during training. Furthermore, a large number of constraints within and between
labeled and unlabeled samples can be automatically acquired. We propose a multi-class
learning framework that takes into account all three source of information, (weakly)
supervised data, unsupervised data and constraints in a joint formulation.
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Chapter 4: Joint multimodal person identification Previous work on naming
characters in TV series was limited to naming character appearances with visible (and
detected) faces. We extend previous work by identifying person tracks via clothing
appearance regardless of the visibility of the face, without the need to manually label
neither face nor clothing models. If available, speaker cues from speech recognition
and/or subtitles can be integrated as well. Face scores, person scores, speaker presence
and constraints are integrated in a global fusion and optimization framework, which
jointly optimizes person identity assignments within a shot.

Chapter 5: A Time Pooled Track Kernel Considering the large amount of data
(one season alone of a 20-min-per-episode TV series amounts to about 15000 face tracks),
efficiency and memory requirements should be taken into consideration. For kernel-
based learning methods, memory requirements grow quadratically with the number of
features. We therefore use tracks instead of single frames as a basic unit of learning and
investigate a family of track-based kernel functions. This results in both a significant
reduction in memory requirements and allows to pre-compute a significant part of the
required operations for both training and testing. A quick train-test turn-around time
enables us to quickly re-train and re-test all tracks in an interactive system after small
batches of feedback. This allows us to correct the labels of a set of incorrectly classified
tracks in about half the time otherwise required without re-training.

Chapter 6 concludes the thesis with a general discussion and outline for future work.

1.3. Previously published contributions

The main contributions of this thesis have been published in different conference proceed-
ings. The basic idea of the tracking approach in Chapter 2 was briefly presented in (Bäuml
et al., 2010a). The multi-class classification approach with constraints in Chapter 3 was
published in (Bäuml et al., 2013). Chapter 4 has been in part published in (Tapaswi et al.,
2012) and has also been in part subject of Makarand Tapaswi’s master thesis (Tapaswi,
2011). The track kernel approach (Chapter 5) has been published in (Bäuml et al., 2014).

A full list of my publications, including work not contained in this thesis, can be found
in Appendix C.





Chapter 2

Robust Detector-based Tracking

A necessary precursor to visual person identification is localizing the person in the image.
A person’s position in an image can be defined in different levels of detail, for example
by a bounding box around a face, a bounding box around the full person, fine-grained
localization of landmarks on the person (e.g., facial landmarks or body joints), or even
pixel-wise segmentations of face and body parts.

Depending on the subsequent usage, a simple (and faster to obtain) localization such
as a bounding box suffices, for example for marking occurrences of faces in a video or
cutting out empty sequences. It can further serve as basis for more fine-grained feature
localization. Current state-of-the-art facial landmark localization approaches usually
require a rough initial estimate of the location of the face, which a bounding box provides.

In this chapter we address the problem of tracking faces on a bounding box level, i.e. the
association of such localizations over time. Tracking faces, in contrast to merely detecting
them in each frame independently, is beneficial for multiple reasons.

First and foremost, the association of face localizations over time results in sets of localiza-
tions which can be processed jointly in subsequent steps. For example, identification can
be performed using multiple samples instead of just a single one, e.g. by fusing the results
over the set of samples and thus reducing noise and susceptibility to outliers (cf . Fig. 2.1).

Second, tracking can help to filter out false positive localizations. For example, single
localizations without support from neighboring frames are likely to be false positives.

Third, by filtering localizations over time, measurement noise can be reduced resulting
in more stable and accurate localizations.
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Figure 2.1.: In (Bäuml et al., 2010a) we showed that average retrieval accuracy is higher
for longer query tracks, because the number of samples available for training
the query model is higher. Obtaining long tracks by a robust tracker is
therefore a key factor for high recognition accuracy in videos.

The main objective of our tracker is to increase the recall of tracked faces while keeping
a high precision. Since we want to identify faces in subsequent steps, a high recall
is paramount. A face that is not localized by the tracker will not be available for
identification. Specifically, we address the problem of tracking non-frontal faces with a
real-time capable approach. As a byproduct, we perform a rough estimation of the head
pose, i.e. the angular configuration of the head and face.

2.1. Background and related work

The literature on tracking is vast. In the context of face and person tracking, detector-
based tracking is the prevalent approach due to its robustness on real-world data. In the
discussion of related work, we will therefore focus on the detector-based tracking of faces
and persons.

We can categorize approaches according to the employed appearance model and way of
association and filtering.

Appearance model The appearance model encloses the visual knowledge about the
tracked object. It generates predictions about the object location, often independently
for each frame. Principally, there are two extremes of how much knowledge about the
object is known in advance. On the one side, one can have a prior model of appearance,
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such as a skin-color model or a trained discriminative detector for the object class. In the
other extreme, the appearance can be learned during tracking from as little as a single
(often manual) initialization. Naturally, many different hybrid models of the above are
possible.

Early real-time face and person trackers relied on background subtraction (Wren et al.,
1997) and/or color models (Hunke and Waibel, 1994; Yang and Waibel, 1996) to localize
the object initially. Both can be seen as using a prior model of appearance (i.e., every-
thing that is not background where the background appearance is learned before; or a
previously learned model of skin color). However, by relying on such simple cues, these
approaches are very susceptible to changing environmental conditions (e.g., illumination
changes, new/moved/removed background objects, similarities in color between fore-
ground and background objects). Also, background subtraction usually relies on a static
camera.

Detector-based appearance models With the advent of discriminative object de-
tectors (and increasingly available processing power), object tracking in complex envi-
ronments shifted towards using such detectors as basis for localizing the object in the
image (Andriluka et al., 2008; Babenko et al., 2009; Breitenstein et al., 2009; Dalal and
Triggs, 2005; Fröba and Ernst, 2004; Kalal et al., 2010a; Küblbeck and Ernst, 2006; Wu
and Nevatia, 2007).

Detector-based tracking builds on two decades of object detection research. Among many
ways to localize an object in an image, the now prevalent (and arguably most successful)
way is to use a classifier to discriminate between object and non-object instances. The
detectors are trained beforehand on a set of positive samples, which contain the object,
and negative samples, which do not contain the object. Such classifier-based detectors
are much more robust in locating target objects than above-mentioned cues such as
background subtraction or color models.

Classification-based object detection approaches can be distinguished by the employed
feature(s) and the learning algorithm. For articulated objects, e.g. persons, it has proven
beneficial to detect parts of the object first, and then merge these part detections for a full
object detection (e.g., Andriluka et al. (2008); Bourdev and Malik (2009); Felzenszwalb
et al. (2009); Leibe et al. (2008), so here the part selection and merging strategies can also
be taken into account.
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A key requirement of features to be employed for detection is to be robust against
common image variances, e.g. to illumination changes, small local deformations or partly
occlusions. For face detection, among others Haar-like features (Viola and Jones, 2004)
and the Modified Census Transform (MCT) (Fröba and Ernst, 2004; Küblbeck and Ernst,
2006) have been employed successfully. For person detection, shape-based features are
more popular, for example edgelets (Wu and Nevatia, 2007) or Histograms of Oriented
Gradients (Dalal and Triggs, 2005), which have been shown to work well for other object
classes, too (Felzenszwalb et al., 2009). Also, combinations of features are conceivable,
for example by selecting the most discriminative features from a feature pool during
learning (Dollár et al., 2009; Schwartz et al., 2009).

As learning algorithm, basically any classifier which can distinguish two classes (object
vs. background) is conceivable: AdaBoost (Freund and Schapire, 1997) (e.g., for face
detection (Küblbeck and Ernst, 2006; Viola and Jones, 2004)), Support Vector Machines
(e.g., for generic object detection (Felzenszwalb et al., 2009) or person detection (Bourdev
and Malik, 2009; Dalal and Triggs, 2005)), partial least squared regression (e.g., for
pedestrian detection (Schwartz et al., 2009)), multiple instance boosting or random ferns
(e.g., for model free tracking (Babenko et al., 2009; Kalal et al., 2010a) are just a few
examples.

For merging parts, different approaches have been successfully employed. A generalized
Hough transform is used by Leibe et al. (2008) to estimate an object center from individ-
ual parts, which can be extended with instance-specific models (Seemann et al., 2007).
Bourdev and Malik (2009) employ a max-margin variant of the Hough transform (Maji
and Malik, 2009) in their Poselet approach. When the part structure is a tree, pictorial
structures present an efficient way to compute the MAP configuration of parts (An-
driluka et al., 2008; Felzenszwalb et al., 2009). Occlusions can specifically be addressed
during part merging by formulating the detection problem as a joint problem for the full
image (Wu and Nevatia, 2009).

Track appearance In between a-priori detector-based appearance models and model-
free approaches, hybrid approaches have been proposed. The idea is to use a strong prior
model to initialize the tracker and/or generate low-level tracklets, and then use higher
level appearance models such as color models or instance-specialized detectors (e.g., Ra-
manan et al. (2007b)) to continue tracking the objects or linking low-level tracklets.
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Kuo and Nevatia (2011) use tracklet-specific appearance models for linking different
tracklets, which Yang and Nevatia (2012b) extended to part-based appearance models.
Since each tracklet stems from detections, the appearance model does not cause drift. On
the other hand, apart from interpolated frames between linked tracklets, this approach
will not find objects that are not detected by the detector. Also, it can lead to track
switches, if for example persons wear similar clothing in the scene.

In order to improve over interpolation between tracklets, Sharma et al. (2012) propose
to adapt the underlying detector by unsupervised collection of training data. Missing
detection windows obtained by interpolation and low confidence detections which over-
lap with interpolated tracklets are used as positive training data, non-tracked detections
are negative training data. Similar to (Babenko et al., 2009), the detector adaptation is
formulated as a multiple instance learning problem to mitigate for possible spatial errors.

Association The primary goal of association is to assign measurements (e.g., detec-
tions) to an existing track hypothesis of the same target. Association is usually based
on a combination of an appearance model (see above), a motion model (e.g., Huang
et al. (2008); Isard and Blake (1998b)) and possibly additional cues such as homography
information between cameras and/or the ground plane (e.g., Hofmann et al. (2013); Khan
and Shah (2008)).

Many tracking approaches assume only knowledge about the current and one or more
previous frames (e.g., Breitenstein et al. (2009)). Such an assumption is necessary for real-
time and online tracking approaches, where a state estimation is expected for each frame
without waiting for more frames into the future. However, if for example ambiguities
in appearance cannot be resolved based on the information given in the current frame,
this can lead to identity switches. In part, this can be resolved by looking at more
than just the current frame (Leibe et al., 2007). Assuming prior knowledge of the
full video, tracking can be reduced to a global association problem, determining which
detections form together a track of one person. Different strategies for solving such global
association problems exist, for example shortest-paths searches (Berclaz and Fleuret,
2011), linear programming (Jiang et al., 2007), min-cost flow (Hofmann et al., 2013; Zhang
et al., 2008), greedy forward-backward tracking (Wu and Nevatia, 2007) or hierarchical
association (Huang et al., 2008).

In association-based tracking (e.g., Huang et al. (2008); Li et al. (2009); Wu and Nevatia
(2007, 2006); Yang and Nevatia (2012b)) given detections are associated to tracklets
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based on an affinity measure. The affinity measure can for example comprise manually
defined distances between location, size and appearance between two detections or
tracklets (Huang et al., 2008; Wu and Nevatia, 2007). It can also be learned from training
data (Li et al., 2009) or can be based on the number of consistent KLT-tracked features
between two detections (Everingham et al., 2006; Sivic et al., 2009).

Association-based tracking is especially appealing when the full video data is available
beforehand (Li et al., 2009; Wu and Nevatia, 2007; Yang and Nevatia, 2012b), since at
each step the best pair of detections/tracklets can be associated without being restrained
to the current time step. Remaining gaps between tracks can be bridged for example
using mean shift (Wu and Nevatia, 2007), or by a hierarchy of association steps using
increasingly complex affinity models (Li et al., 2009; Yang and Nevatia, 2012a).

Graph-based approaches model the tracking problem as a graph with detections as nodes
and weighted edges between them (Berclaz and Fleuret, 2011; Hofmann et al., 2013; Salvi
et al., 2012). In contrast to association-based approaches, which iteratively make greedy
decisions, a global solutions can be found by shortest-paths searches (Berclaz and Fleuret,
2011), linear programming (Jiang et al., 2007) or min-cost flow (Hofmann et al., 2013;
Zhang et al., 2008), usually at the expense of higher computational cost.

Online and real-time tracking In many real world scenarios, a tracker is required to
operate in real-time and in an online fashion, i.e. it cannot require information about
future frames. In order to achieve real-time performance, a tracking step should last well
below 1s. For example, for a video with 25fps, each processing step should require less
than 40ms.

When computational power was scarce, this required either simple models (Yang and
Waibel, 1996) or hardware specific implementation tuning (Gavrila and Philomin, 1999).
However, due to progress in hardware capabilities and object detection, there exist
several discriminative detector approaches today that are real-time capable on commodity
hardware (e.g., Küblbeck and Ernst (2006); Viola and Jones (2004)).

Another technique to speed up the underlying detection step is to run the detector only
at selected regions. For example, one can perform foreground-background segmenta-
tion and run detector(s) only on foreground regions (Nechyba et al., 2008). Similarly,
difference images can be used instead of foreground segmentations.
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Other speedups target the feature computation step of the detector, and approximate
feature responses at multiple scales from a few scales (Dollár et al., 2010). Benenson et al.
(2012) enhance this further by learning multiple, specialized detector models for different
scales.

Joint face tracking and head-pose estimation By determining the pose of the
head and face, one can estimate the viewing direction of a person and thus get a first
estimate of the focus of attention (Stiefelhagen, 2002; Voit and Stiefelhagen, 2006).

Most approaches for head pose estimation require a prior localization of the face or
head. For simplicity, face tracking and head pose estimation are often performed in
sequence (e.g., Voit and Stiefelhagen (2005)).

Considering both problems jointly can lead to an increase in both tracking and head
pose estimation accuracy. Pose estimation or verification can influence the tracking
by including pose as a continuous (e.g., Krahnstoever et al. (2011)) or discrete (e.g., Ba
and Odobez (2004)) variable in a particle state. (Kim et al., 2008) only include in-plane
rotation in the particle state, but model yaw changes as a constraint by including the
minimum distance to any pose subspace in the scoring of the particle.

An important factor is the approach for determining the head pose. Krahnstoever
et al. (2011) use a face detector. Neural networks (Voit and Stiefelhagen, 2005) or PCA
subspaces (Kim et al., 2008), which only discriminate between poses but not against
non-faces, are also possible choices. Furthermore, estimates from multiple cameras can
be combined (Voit and Stiefelhagen, 2005, 2006)

Ba and Odobez (2004) integrate face tracking and exemplar-based head pose estimation
in a probabilistic particle filter-based framework. The particle state-space includes –
in addition to the position – the face’s pan angle θ. Gaussian mixture models for 9
equally-spaced pan angles are learned on a training data set, and particles are scored with
the head pose mixture corresponding the current state.

Chen et al. (2011) estimate full body orientation instead of head pose. The detector
response of the pose class closest to the particle’s orientation state is used to score the
particle. Since the body pose restricts possible head orientations, jointly tracking location,
head pose and body orientation can further increase performance. Krahnstoever et al.
(2011) include both body and head orientation in the particle’s state. For both body and
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face orientation scoring a detector is used. Both above approaches perform tracking in
ground plane coordinates.

2.1.1. Discussion and contribution

Since our object class is known a-priori (i.e., faces), we can leverage pre-learned appearance
models. Drawing from the work of two decades on object classification and detection, a
discriminative classifier, i.e. a face detector, can be trained in advance. For robustness at
the detection step, invariant features to possible image changes such as illumination are
preferred (e.g., gradients, LBP, MCT), whereas color models are insufficient for the initial
localization (face color is not well defined when working for example with low light
images). Due to the rigid and discriminative nature of faces, face detectors are among
the best performing object detectors in the literature. Nevertheless, pose changes induce
substantial appearance changes and should be addressed either by part-based detectors,
or detector-banks for a set of pose classes. The integration of multiple detectors as
appearance model into the tracker without the computational burden of running all
detectors at the every frame is key to a real-time capable tracker.

A particle filter has been shown to work well with a detector-based appearance model.
While keeping independent particle filters for each track is paramount to prevent an
exponential explosion of the state space, care has to be taken in handling occlusions to
avoid track switches.

In the literature the focus for joint face and head pose tracking usually lies on improving
the precision of the head pose estimation. While the estimation of the head pose is a
byproduct of our approach, we are more interested in improving the recall of tracked
faces by tracking over different poses. Nevertheless, it can be useful for potential higher
applications that utilize or depend on head pose. An approach close to ours is presented
by Ba and Odobez (2004). However, there a generative model Gaussian mixture model
based on 4 different filter responses is used to determine the likelihood the discretized
head pose, which is likely to fail on realistic multimedia data.

Some of the discussed approaches use information about the ground plane (e.g., Chen
et al. (2011); Krahnstoever et al. (2011); Morzinger et al. (2011)), which makes these
approaches infeasible where information about the ground plane is not available. In
this work, we only assume to be working with a single camera, which is the case for the
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application scenario of multimedia data. Nevertheless, a monocular tracker can always
be applied in multi-camera settings, too, such as a camera network.

Contributions We extend the work on detector-based tracking with a particle filter
with the integration of multiple independent face detectors for different pose classes
without the need to run all detectors for each particle. We annotated a large data set based
on two TV series comprising more than annotated 100000 faces, allowing to evaluate the
tracker on a diverse set of conditions. On this data set, we evaluate our approach with
increasing number of detectors and demonstrate that our proposed approach reduces
the number of misses by up to 50%, leading to an consistent increase of Multiple Object
Tracking Accuracy (MOTA) of 15% points compared to a frontal-face-only tracker.

2.2. Robust online multi-pose detector-based tracking

We formulate object tracking as a sequential state estimation problem. Our goal is to
estimate the object state xt ∈ Rn at time t , where the state for example consists of
position and size of the object in the image. We assume that the object state progresses
according to the system model

xt = f (xt−1,wt ) (2.1)

and can be observed via the observation model

zt = g (xt ,vt ) (2.2)

where f and g are in general non-linear functionsRn×Rn→Rn and wt ,vt ∈Rn denote
state-independent process and observation noise, respectively, from a zero-mean normal
distribution. Thus, the state follows a first order Markov process, i.e. f only depends on
the state of the previous time step t − 1.

For detector-based tracking, evaluating g usually involves evaluating the object detector
at hundreds of thousands of windows of an image pyramid. However, this is compu-
tationally expensive, especially when employing multiple object detectors to account
for object variability (the evaluation time of n independent detectors is usually linear in
the number of detectors). We address this problem by reducing the number of image
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windows where object detectors are evaluated to estimate the observational density
p(zt |xt ) by means of a particle filter.

2.2.1. The bootstrap filter

The bootstrap filter (Gordon et al., 1993), also known as the CONDENSATION algo-
rithm (Isard and Blake, 1998a), recursively estimates the posterior distribution
p(xt |z0, . . . ,zt ) by iterative prediction and update steps. The density of the state xt is ap-
proximated by a set of N particles, i.e. weighted samples Qt = {(q

(k)
t , w (k)t ), k = 1, . . . ,N}.

In the prediction step, the particles are first resampled and then progressed according
to the system model. The update step then reweights the particles according to the
observational density p(zt |xt ).

The resampling assures that particles are evenly distributed according to the density p(xt ).
This is achieved by sampling with replacement N new particles Qt from Qt−1. The prob-

ability to sample particle q(k)t−1 is proportional to its weight w (k)t−1, i.e. PQ(k = i) =
w(i)t−1

∑

j w( j )t−1

.

The prediction updates the particles to approximate the prior distribution at the next
time step t : p(xt |z0, . . . ,zt ) =

∫

p(xt |xt−1) · p(xt−1|z0, . . . ,zt )dxt−1. This is achieved by
updating the state of each particle according to the system model with

q (k)t = f (q (k)t−1, wt ) . (2.3)

Finally, in the update step the particle weights are set according to the observations zt .
In order to maintain

∑

k w (k)t = 1, the weight update is normalized:

w (k)t =
p(zt |q

(k)
t )

∑

j p(zt |q ( j )t )
(2.4)

Since the number of particles does not change in the resampling step, the computational
requirements for updating the weights do not change over time. By choosing the number
of particles N accordingly, we can trade off accuracy in the approximation of the density
versus computational requirements for obtaining the observations.

In contrast to the Kalman filter (Kalman, 1960), neither f nor g have to be linear, and
the propagation of the covariance is not explicitly required. More importantly, for a
Kalman filter it is not as straightforward to control the computational requirements at
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the observation step, which constitutes the main computational burden in detector-based
tracking.

2.3. Detector-based face tracking with the bootstrap filter

In order to perform detector-based tracking using the bootstrap filter, the elements of
the object state, the system model and the observation model must be specified, which
we will do in the following. Although the bootstrap filter is capable of modeling multi-
modal distributions, we choose to model each track with its own bootstrap filter and
consider interactions between tracks only during the scoring of particles (Lanz, 2006).
Thus, the track state is defined for a single track only. Interactions between tracks are
handled by the occlusion model.

State We include the position (x, y) in pixels, scale s and orientation (ψ,θ,φ) of the
face in the state:

qt = (x, y, s ,ψ,θ,φ) (2.5)

The scale s is inversely proportional to the size of the face in the image, relative to the
detector base size. We do not want to require any camera calibration, therefore we
cannot determine the exact relative 3d position of the face to the camera. However, s is
proportional to z, the true distance of the face to the camera. To a certain degree, we
therefore can still reason about distances and sizes of objects relative to the camera. ψ,θ
and φ correspond to the yaw, pitch and roll angles of the head pose, respectively. By
including the head pose, we are able to select a single specific face detector to score the
current state.

We determine the current position of a track as weighted average over all particles

z∗t =
∑

k

w (k)t q (k)t (2.6)

=
∑

k

w (k)t (x, y, s ,ψ,θ,φ)(k)t , (2.7)

assuming that our particle distribution is unimodal. The unimodality is softly enforced
by tracking each face by its own set of particles and explicitly handling occlusions (see
below, Occlusion handling). Alternatively, the current position could be estimated as the
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mode of the state distribution, e.g. via mean shift. However, we found that in practice
the simple weighted average is sufficient.

The weighted average of the particle status gives us a rough localization of the face
and estimation of the head pose. We also compute a rough position estimate of facial
landmark positions. To this end, we first estimate for each detector its mean facial
landmark positions relative to its detection window on a separate training set. We then
compute the weighted average of the facial landmark positions over all particles. A
particle’s mean landmark position is determined from its corresponding detector, the
one with the closest pose class to the particle’s state (cf . below, Observation Model). This
initial estimate is surprisingly accurate and subsequently used to initialize a dedicated
landmark detection method (see Sec. 3.3.2).

Prediction The system model describes the expected motion of the face given the state
of the last frame. We use a stationary system model. Motion of the face is modeled
within the process noise wt , therefore the prediction step diffuses the last state according
to wt with

(x, y)t = (x, y)t−1+
1

st

(wx , wy)t (2.8)

st = st−1+ws t . (2.9)

wt is drawn from a zero mean Normal distribution with different variances for each of
the dimensions. The influence of the noise for (x, y) needs to be scaled by the size of the
face, since a larger face can move greater distances in terms of pixels in the image. Since
the scale s is inversely proportional to the size of the face, it is included as 1

s in the noise
term for (x, y).

Similarly, the system model for the head pose is also stationary:

(ψ,θ,φ)t = (ψ,θ,φ)t−1+(wψ, wθ, wφ)t (2.10)

Here, the variance is independent of the scale. In theory, the angular noise terms should
follow a von Mises-Fisher distribution (Mardia and Jupp, 1999). However, since we are
tracking faces, not heads, we neglect the wrap-around of the angles here and approximate
the distribution by a Normal distribution.
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Observation model For updating the particles’ weights, i.e. estimating p(zt |qt ), we
employ a bank of face detectors. Each face detector is a boosted cascade of weak classifiers
based on MCT features (Küblbeck and Ernst, 2006). We trained detectors at multiple yaw
and roll angles to account for different head poses. Each detector provides a calibrated
confidence value in the range [0,1]. Only valid detections which passed the full detector
cascade of N stages have a confidence > 0.

For each particle (q(k)t , w (k)t ), we determine the detector with the pose class γ closest to
the particles pose state (ψ,θ,φ)(k)t . The particle’s weight is then updated according to

w (k)t =







0 if n <N

σ
�

θ(γ )1 H (γ )
N

�

f(k)t

�

+θ(γ )0

�

if n =N
(2.11)

where σ(x) = (1+e−x)−1 is the sigmoid function and n the number of passed stages (from
a total number of N stages) in the detector. H (γ )

N

�

f(k)t

�

denotes the stage sum of the last
cascade stage of the detector for pose class γ evaluated on the feature vector f extracted
at location x(k)t . θ0 and θ1 are calibration parameters estimated on a validation set for
calibrating the face detector scores to a common range of [0,1]. While using stage-sums
directly is also possible, the value range of stage-sums is not necessarily comparable across
different detectors. By calibrating the detector scores to [0,1] we reduce a systematic
bias towards any of the pose classes.

Occlusion handling The above observation model does not uniquely associate a
detection with one track only. If the position and extent of particles of two tracks
overlap, they can score detections from the same underlying face, for example when one
face is occluded by another face. This double counting is undesired for two reasons. First,
in the event of no other detection, the occluded track will be drawn to the occluding face,
overlapping the “true” track for this face. Second, the detection would reset nt e r m = 0
for the occluded track, avoiding that the occluded track terminates.

Both problems are solved by the following heuristic. The weights of all particles that are
closer than θocc to the mean of another track, are set to ε= e−12.

Similarly, the image border can be seen as an occlusion. We therefore also set the weights
of all particles outside the image borders to ε= e−12.
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Initialization In order to start a new face track, we scan the full frame with a subset of
the detector bank every k frames. The value of k trades off the average time until a new
face is detected versus the computational load induced by the scan. A good value for k is
usually application dependent, but k = 5 for a 25fps sequence is a good default for an
interactive application (corresponding to one scan every 0.2 seconds). In order to avoid
the latency induced by the computational expensive scan every k frames, we smooth out
the scan over several frames by processing only parts of the full pyramid in each frame
similar to Küblbeck and Ernst (2006).

Validation A new track is initialized from each detection. Although the employed
MCT face detectors exhibit a low false positive rate, false positive detections cannot be
disregarded. Often, they only occur in one frame, but not consecutive frames. Also, a
true face results in usually more than one detection due to the shift and scale tolerance
of the detector. Therefore, we require that a track accumulates at least ni ni t detections
before it becomes a valid track, i.e. for ni ni t particles the respective detector cascade has
to complete all N stages, possibly spread out over multiple frames. Tracks which are
terminated (see below) without being validated are discarded. A lower ni ni t reduces the
number of missed tracks, while on the other hand leading to a higher number of spurious
tracks stemming from false positive detections. A separate validation step such as a
confident detection of facial landmarks or size-based reasoning could also help filtering
out possible false positive frames (Tapaswi et al., 2014c).

Termination A track should be terminated when the face is no longer present in the
image, for which a good indication is that none of the particles score any detections.
However, it is common that from time to time none of the particles detect a face due to
image noise (e.g., compression artifacts) or the random nature of the particle distribution,
whereas in the following frame the face is detected again. We therefore terminate a track
only if no detections were made in any of the particles for more than nt e r m frames. A
high nt e r m leads to longer, continuous tracks, which can bridge short occlusions or
frames in which the detector could not find a face, e.g. due to consistent noise or a
difficult face pose. However, it is also more likely that the track switches from a face
that is no longer present to the face of another person. A low nt e r m, possibly even 0,
leads to fewer false positive track frames and shorter but possibly fragmented tracks.
For identification, we prefer the latter to avoid track switches, since we usually infer the
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identity from the whole track, assuming that all frames of the track belong to the same
person.

2.4. Evaluation

We evaluate the tracker on a large multimedia data set comprising 12 episodes of two
different TV series. We first briefly describe the employed evaluation metrics (Sec. 2.4.1),
then introduce our collected data set (Sec. 2.4.2) and pre-processing steps (Sec. 2.4.3) .
Finally, we analyze different aspects of the tracker and compare against other approaches
from the literature (Sec. 2.4.4).

2.4.1. Evaluation metrics

We evaluate tracking performance using the CLEAR Multiple Object Tracking (MOT)
metrics (Bernardin and Stiefelhagen, 2008). They are designed for evaluating identity
tracking of multiple objects, i.e. they capture not only whether the location of an
object is correctly traced over time, but also whether its identity is maintained. This
is of particular importance for face and person tracking, since we will assume later for
identification that all frames within a track belong to the same person.

The Multiple Object Tracking Precision is defined as

MOTP=

∑

i ,t d i
t

∑

t ct

, (2.12)

where d i
t is the distance of hypothesis i to the matched ground truth object, and ct the

number of matches found for time t .

The Multiple Object Tracking Accuracy is defined as

MOTA= 1−
∑

t (mt + f p t +mm t )
∑

t gt

, (2.13)

where mt is the number of misses at time t , f p t the number of false positives (i.e. un-
matched hypotheses), and mmt the number of mismatches (i.e. correspondences that do
not maintain a previous object identity mapping).
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MOTA Multiple Object Tracking Accuracy 1−
∑

t (mt+ f p t+mm t )
∑

t gt

MOTP Multiple Object Tracking Precision
∑

i ,t d i
t

∑

t ct

FP Number of False Positives
∑

t f p t

FPR False Positive Rate
∑

t f p t
∑

t gt

MISS Number of Misses
∑

t mt

MISSR Miss Rate
∑

t mt
∑

t gt

MM Number of Mismatches
∑

t mm t

MMR Mismatch Rate
∑

t mm t
∑

t gt

GMM Number of Good Mismatches
∑

t g mm t

GMMR Good Mismatch Rate
∑

t g mm t
∑

t gt

BMM Number of Bad Mismatches
∑

t b mm t

BMMR Bad Mismatch Rate
∑

t b mm t
∑

t gt

TR Track Recall t1
T

TP Track Precision t1
h0+t1

Table 2.1.: Employed abbreviations in the result tables in this and the following chapters.

It is important to note that the average is computed over all frames, not individually for
each frame, and only then averaged over all frames in a second step.

For our purposes, MOTA is the more important measure compared to MOTP, since a
precise localization of the bounding box is not important for identification. We estimate
more detailed positions of facial landmarks in a separate step anyway for a fine-grained
alignment. The estimated landmarks do not necessarily coincide with the labeled ground
truth bounding boxes.

In order to be able to analyze sources of errors, we also further split up MOTA and report
miss rate, false positive rate and mismatch rates individually. Mismatches can be further
divided into good (g mm t ) and bad (b mm t ) mismatches. A good mismatch occurs when
the tracker ends a track, e.g., due to a partial occlusion, and then continues to track the
person afterwards, albeit under a different temporary identity. A bad mismatch on the
other hand occurs, when a track switches from one underlying person to another. Such
errors are bad because they violate our assumption that a track follows only one unique
person and we can assign one identity to it during identification.
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Figure 2.2.: Comparison of the two series’ face size distributions. BUFFY contains more
large faces due to many close-up face shots. The face size distribution has a
long tail with faces up to 580px in height.

We further report track recall and track precision, which give an intuition on the number
of tracks which are missed completely, and the track-level false-positive rate, respectively.
Let T be the total number of tracks, t1 the number of tracks for which at least one
hypothesis matches (true positives), and h0 the number of hypotheses that do not match
a track (false positives). Then track recall is defined as T R = t1

T and track precision as
T P = t1

h0+t1
.

In the result tables in Sec. 2.4.4 we will use the abbreviations from Tbl. 2.1.
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Ep. #tracks #faces #DCOs avg. height avg. length
[px] [frames]

BBT Season 01

1 641 11284 1711 84.8 81.3
2 630 9334 702 92.8 67.6
3 702 10724 1335 84.6 71.4
4 656 9892 1533 82.4 70.4
5 617 9380 1303 91.5 71.0
6 852 12761 1547 82.2 69.9

BUFFY Season 05

1 785 6141 220 140.1 68.2
2 943 7343 170 128.1 67.9
3 1158 7415 256 121.8 54.0
4 864 6678 343 143.6 67.3
5 854 6318 288 149.3 64.0
6 1102 7609 244 130.5 59.0

Sum 9804 104879 9652 – –

Table 2.2.: Ground truth statistics for face tracking evaluation on BBT and BUFFY data
set. The average face size in BBT is lower than in BUFFY due to different
filming styles. Note that, while the number of tracks in BUFFY is slightly
higher than in BBT, the overall number of annotated faces is lower due to
only annotating every 10th frame compared to every 5th for BBT.
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2.4.2. Data set

We evaluate our tracking approach on a data set consisting of 6 episodes each of the two
TV series The Big Bang Theory (BBT, episodes S01E01-06) and Buffy the Vampire Slayer
(BUFFY, episodes S05E01-06).

We annotated the data set with face bounding boxes and identities. Due to the different
episode lengths (BBT: ≈20min, BUFFY: ≈45min) we annotated every 5th frame for
BBT and every 10th frame for BUFFY to achieve full coverage on both series with
approximately the same labeling effort. Evaluation is performed only on annotated
frames, i.e. we do not perform interpolation of ground truth to avoid possible errors.
Faces which are poorly illuminated, strongly blurred, largely occluded or with more
than profile head pose, were marked as don’t care objects (DCOs). DCOs will not be
counted as errors if missed, but similarly not as error if actually localized by the tracker.

The minimum annotated face is about 18px in width. Due to different filming styles, the
distribution of face sizes is different for the two series (see Figure 2.2). BUFFY’s face
size distribution is skewed towards larger faces, owing to many close-up face shots. The
maximum face size is 580 p x versus 260 p x for BBT.

A brief overview over the statistics of the data set is given in Tbl. 2.2. A total of 104879
faces and 9652 DCOs have been annotated. On average, there are 683 tracks per episode
in BBT, and 951 tracks per episode in BUFFY, totaling up to 9804 tracks for all 12
episodes. To the best of our knowledge, this makes this data set one of the largest
available data sets for the evaluation of face tracking and the largest in the context of
multimedia data.

2.4.3. Preprocessing

Multimedia data usually consists of a series of shots, i.e. a sequence of frames that are
filmed uninterrupted from one camera. At a shot boundary, tracks end due to the switch
of camera/viewing angle. We therefore detect such shot boundaries explicitly before
tracking and forcefully terminate tracks at each of them.

Shot boundary detection We detect shot boundaries using the Displaced Frame
Differences (Yusoff et al., 1998) of motion compensated consecutive frames. We divide
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the image into equally sized blocks (e.g., 16x16p x), and compute the Displaced Frame
Difference at timestep t as

DF D(t ) =
∑

x,y

‖I16x16

�

(x, y), t
�

− I16x16

�

(x, y)− o(x, y, t ), t − 1
�

‖ , (2.14)

where I16x16

�

(x, y), t
�

is the image block of size 16x16 p x at position (x, y) and timestep
t . o(x, y, t ) denotes the motion offset of the image block from the previous to the current
frame, e.g. determined by block matching. We filter the obtained DFD feature by a series
of open and close operations to remove noise and expose the true peaks, which are then
thresholded to determine the shot boundary locations.

With this method, we correctly detect 1981 shot boundaries on the first 6 episodes of
BBT, with 2 misses and 8 false positive detections. Misses can be considered more severe
than false positives, since they might result in a track switch if – by chance – faces of
different persons are nearby in old and new shot. A continuation of the track from
one person to another violates our assumption on a unique identity within a track. On
the other hand, a false positive “only” splits a track in two parts, which will have to be
identified later independently. However, with a total of 10 failure cases compared to 1981
correct detections, the induced errors are negligible.

2.4.4. Results and analysis

Our motivating thesis was that by employing multiple face detectors for different poses,
we achieve better tracking performance, especially a higher track recall. We therefore
start by investigating the influence of including non-frontal detectors in the tracking
procedure.

Frontal vs. full pose We analyze the dependency of tracking performance using an
increasing amount of non-frontal detectors. A frontal-only tracker serves as baseline.
This frontal-only baseline is similar to the approach described in (Küblbeck and Ernst,
2006), except that we use a particle filter instead of a Kalman filter.

See Fig. 2.3 for different performance measures in dependency of the maximum yaw
angle of the employed detectors. MOTA increases consistently over different episodes
from the frontal-only case to using detectors of up to 90 degree yaw angle. As expected,
this is mainly dominated by a reduction in miss rate, i.e. more true faces can be localized
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Ep. max. MOTA MOTP FP(R) MISS(R) BMM(R) GMM(R) TR TPyaw

1
0 0.665 0.732 599 (0.058) 2744 (0.267) 4 (0.000) 88 (0.009) 0.737 0.824
45 0.731 0.719 356 (0.035) 2300 (0.224) 1 (0.000) 102 (0.010) 0.765 0.898
90 0.817 0.716 655 (0.064) 1128 (0.110) 1 (0.000) 96 (0.009) 0.854 0.864

2
0 0.480 0.640 1081 (0.125) 3327 (0.384) 1 (0.000) 96 (0.011) 0.677 0.694
45 0.583 0.630 610 (0.070) 2889 (0.333) 2 (0.000) 114 (0.013) 0.728 0.824
90 0.674 0.615 790 (0.091) 1940 (0.224) 4 (0.000) 96 (0.011) 0.820 0.801

3
0 0.396 0.679 2423 (0.230) 3856 (0.366) 5 (0.000) 91 (0.009) 0.652 0.622
45 0.513 0.664 1315 (0.125) 3715 (0.352) 2 (0.000) 100 (0.009) 0.658 0.756
90 0.617 0.638 1736 (0.165) 2211 (0.210) 0 (0.000) 97 (0.009) 0.782 0.745

4
0 0.595 0.697 963 (0.100) 2846 (0.296) 2 (0.000) 86 (0.009) 0.684 0.758
45 0.687 0.684 473 (0.049) 2457 (0.255) 2 (0.000) 78 (0.008) 0.702 0.849
90 0.767 0.663 784 (0.082) 1378 (0.143) 2 (0.000) 74 (0.008) 0.800 0.806

5
0 0.562 0.673 1031 (0.113) 2888 (0.316) 2 (0.000) 76 (0.008) 0.623 0.715
45 0.638 0.656 747 (0.082) 2493 (0.273) 1 (0.000) 61 (0.007) 0.649 0.795
90 0.712 0.635 1203 (0.132) 1355 (0.148) 7 (0.001) 64 (0.007) 0.793 0.772

6
0 0.489 0.666 1808 (0.142) 4542 (0.358) 3 (0.000) 127 (0.010) 0.672 0.705
45 0.578 0.649 1072 (0.084) 4152 (0.327) 3 (0.000) 125 (0.010) 0.672 0.791
90 0.682 0.635 1618 (0.128) 2306 (0.182) 3 (0.000) 112 (0.009) 0.803 0.740

Table 2.3.: Detailed tracking results for BBT S01E01-06 in dependency of the maximum
yaw angle of the employed detectors. A consistent increase in MOTA by over
0.15 can be observed in all 6 episodes. The number of misses is reduced by
about 50%, while at the same time not allowing significantly more false posi-
tives. Consequently, the track recall increases consistently over all episodes,
reaching about 80% across all episodes.

which cannot be found with a frontal detector only. The false positive rate increases, but
at a much slower rate than the reduction in miss rate, leading to an overall increase in
MOTA.

For detailed comparisons between the baseline and a full-pose tracker on BBT and
BUFFY see Tables 2.3 and 2.4, respectively. MOTA increases consistently by over 0.15.
Here again, we see the strong reduction in miss rate as in Fig. 2.3. In contrast, the
false positive rate increases only moderately. In coherence with the reduced miss rate,
track recall (TR) increases, while track precision remains stable. This confirms that by
employing non-frontal detectors, we are able to find more of the existing faces which
was our primary goal.

In Tbl. 2.5 we analyze the average track length in dependency of the maximum yaw
angle of the detectors. The average track length increases consistently when adding
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Ep. max. MOTA MOTP FP(R) MISS(R) BMM(R) GMM(R) TR TPyaw

1
0 0.615 0.751 662 (0.111) 1532 (0.256) 3 (0.001) 106 (0.018) 0.858 0.780
45 0.687 0.732 332 (0.056) 1435 (0.240) 1 (0.000) 104 (0.017) 0.863 0.891
90 0.750 0.714 392 (0.066) 1014 (0.170) 1 (0.000) 91 (0.015) 0.896 0.854

2
0 0.521 0.733 1115 (0.155) 2102 (0.292) 8 (0.001) 233 (0.032) 0.823 0.736
45 0.606 0.739 702 (0.097) 1893 (0.263) 7 (0.001) 237 (0.033) 0.835 0.846
90 0.707 0.730 841 (0.117) 1058 (0.147) 6 (0.001) 211 (0.029) 0.885 0.809

3
0 0.479 0.734 1107 (0.153) 2444 (0.339) 6 (0.001) 206 (0.029) 0.780 0.739
45 0.568 0.727 614 (0.085) 2288 (0.317) 6 (0.001) 212 (0.029) 0.784 0.846
90 0.656 0.698 874 (0.121) 1403 (0.194) 7 (0.001) 203 (0.028) 0.876 0.809

4
0 0.568 0.725 570 (0.087) 2091 (0.320) 2 (0.000) 163 (0.025) 0.804 0.794
45 0.629 0.713 365 (0.056) 1890 (0.289) 1 (0.000) 170 (0.026) 0.812 0.861
90 0.715 0.697 534 (0.082) 1169 (0.179) 2 (0.000) 160 (0.024) 0.880 0.838

5
0 0.588 0.756 802 (0.129) 1637 (0.262) 1 (0.000) 128 (0.021) 0.819 0.761
45 0.671 0.748 482 (0.077) 1435 (0.230) 1 (0.000) 135 (0.022) 0.835 0.844
90 0.721 0.725 587 (0.094) 1016 (0.163) 2 (0.000) 135 (0.022) 0.888 0.844

6
0 0.593 0.726 793 (0.105) 2113 (0.281) 3 (0.000) 156 (0.021) 0.843 0.794
45 0.651 0.730 502 (0.067) 1971 (0.262) 3 (0.000) 155 (0.021) 0.847 0.862
90 0.706 0.719 773 (0.103) 1275 (0.169) 1 (0.000) 166 (0.022) 0.899 0.824

Table 2.4.: Detailed tracking results for BUFFY S05E01-06 in dependency of the max-
imum yaw angle of the employed detectors. Similar to results from BBT,
MOTA and track recall consistently increase when including increasingly
non-frontal detectors. A notable difference to BBT is that the track recall
almost reaches 90% despite higher miss rates. While track coverage is better,
the increased good mismatch rates suggest that for BUFFY, more tracks are
split in two or more independent tracks – possibly because of more difficult
image conditions – and only intermediate frames are missed.

increasingly out-of-plane detectors. In addition to the higher track recall, we also obtain
longer tracks, which is beneficial for subsequent identification as we motivated in the
introduction of this chapter.

Further notable as a general property of the tracker is the low number of bad mis-
matches across all episodes. The reported mismatch rates are largely dominated by good
mismatches, which are tolerable for identification as discussed in Sec. 2.4.1.

Track validation and termination In Fig. 2.4 we evaluate the influence of ni ni t and
nt e r m. The respective metrics are averaged over the 6 episodes BBT S01E01-06. As
expected, a higher ni ni t reduces the false positive rate since a track needs to accumulate
more detection evidence before being validated. A lower nt e r m ensures that tracks end
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Figure 2.3.: Tracking performance with increasingly out-of-plane rotated detectors on
BBT. The x-axis denotes the maximum yaw angle of the underlying detectors,
e.g., at x = 30 the tracker uses detectors for yaw angles of 0, 15 and 30
degrees (inclusive). The miss rate decreases consistently over all episodes,
while the false positive rate increases, although far slower than the miss rate.
Consequently, MOTA increases consistently when adding more non-frontal
detectors. The corresponding plot for BUFFY can be found in Appendix A.

quickly without accumulating false positive localizations before being terminated. In
contrast, the miss rate is minimized by a low ni ni t (to not miss any short tracks) and a
high nt e r m, e.g. to bridge over difficult poses which cannot be correctly classified by the
detectors. Trading off between miss rate and false positive rate, in terms of MOTA both
a high ni ni t as well as a high nt e r m are beneficial.

The mismatch rate does not influence MOTA significantly due to the low number
of mismatches. However, considered independently the mismatch rate is minimized
by a high ni ni t and a high nt e r m. The latter is due to the inclusion of two types of
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Figure 2.4.: In terms of MOTA, both a higher minimum number of detections for valida-
tion (ni ni t ) as well as a high maximum number of frames before termination
nt e r m are beneficial. These plots also visualize the trade-off between false
positives, misses and mismatches as driven by initialization and termination.
The false positive rate is low when many detections are required to validate a
new track and tracks are quickly terminated. On the other hand, the miss
rate is low when few detections are sufficient for track validation and tracks
are continued for many frames without detections. The mismatch rate is
high, when few detections are required for validation, but tracks are also
quickly terminated. This leads to fragmented tracks, which are – if they stem
from the same person – counted as mismatch in the MOTA metric.
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max. BBT Season 01 Episodes
Average

yaw 1 2 3 4 5 6

0 48.5 37.7 40.4 41.0 49.8 40.6 43.0
15 53.1 40.4 43.8 44.5 53.4 43.4 46.4
30 52.3 40.9 43.4 44.8 52.4 43.6 46.2
45 52.1 41.0 42.8 46.1 55.0 44.0 46.8
60 54.3 43.5 43.9 45.4 54.1 44.4 47.6
90 56.9 44.3 46.4 47.2 54.8 48.0 49.6

Table 2.5.: Average track length in dependency of the maximum yaw angle of the detec-
tors. Adding detectors for more poses does not only increase track recall, but
also results in longer tracks, which is favorable for subsequent identification.

mismatches in the MOTA mismatch rate: i) true identity switches during a track (bad
mismatches), and ii) assigning a new ID to a new tracklet which underlying person has
been tracked before (good mismatches). Due to our occlusion handling, the number of
good mismatches is usually higher than the number of bad mismatches (e.g., due to short
occlusions). In terms of MOTA, a high nt e r m is therefore beneficial, since it allows to
bridge over short gaps and thus minimize the overall mismatch rate.

Minimum face size The MCT face detector always operates on the same fixed patch
size due to the employed pyramid scanning. However, the performance of the detector
on originally small image windows is usually worse than on larger windows. This can
for example be explained by compression artifacts in the image which are – relative to
the window size – stronger for smaller windows. Also, on a small scale, textures on
natural objects are more likely to resemble a face. This consequently also influences
tracking performance, since consistent false positive detections lead to false positive
tracks (cf . Sec. 2.3, Validation). We therefore evaluate the influence of the minimum
face size which we accept from the tracker (see Fig. 2.5). Below 30px, we observe more
false positive than true positive tracks. Therefore, a rejection of tracks with a mean
width < 30px increases overall MOTA.

Runtime The runtime of the tracker can be split into the following parts: initialization
scan time tinit, time for resampling tre, propagation tprop, occlusion handling tocc and for
evaluation of the observation model tobs. tinit and tobs can be further divided into the
time required to compute the underlying feature pyramid tpyr... and the evaluation of the
detector cascades tdet....
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Figure 2.5.: Tracking performance over increasing minimum average track sizes. Reject-
ing tracks with an average width below 30px decreases the false positive rate
faster than it increases the miss rate and thus leads to an improvement in
MOTA.

We measure the timings on a video with resolution 1024× 576px, using pyramid scale
step 1.1 and the full bank of 47 detectors for initialization with k = 5, i.e. running the ini-
tialization scan every 5 frames. The measurements are performed single-threaded, i.e. no
parallelization across multiple cores was performed for the purpose of this evaluation.
Note that these timings are data dependent. For example, the run time of the detector
depends on how many stages are completed for each detection window. However, they
give an insight into the computational complexity of the different tracker components
(see Tbl. 2.6).

The feature pyramid construction only has to be performed once per frame and can be
shared among all detectors. In our implementation, we build separate feature pyramids



Robust Detector-based Tracking 35

#calls time per call [ms] total runtime [s] 100%

tframe 125 1564.9 195.6

tinit 25 7598.2 190.0
. . . tpyrinit 25 134.3 3.4
. . . tdetinit 25 7463.9 186.6

tobs 267 12.4 3.3
. . . tpyrobs 125 13.1 1.6
. . . tdetobs 267 6.3 1.7

tre 267 0.813 0.2
tprop 267 7.760 2.1
tocc 267 0.025 0.007

Table 2.6.: Average run times over a 5 second interval of a video with 25fps corresponding
to a total of 125 frames. #calls denotes how often the corresponding compo-
nent is called for the five seconds of the video. All track-specific components
are called 267 times, since there are more than 2 tracks on average per frame.

for scanning and observation model, since the pyramid for the observation model can be
restricted to a region of interest where particles are present and thus is faster to compute.

The average run time per frame tframe is 1.56s . Averaged across all frames, 97% of the time
is spent during the initialization scan. The initialization is in turn mainly dominated by
the evaluation of face detectors and roughly depends linearly on the number of employed
detectors. To reduce the time required for initialization, we can (i) run only a subset of
the detectors and (ii) increase k, the number of frame between to initialization scans.
By running fewer detectors during initialization, we can trade off the coverage of pose
classes and the run time required to run the detectors. Similarly, a higher k trades off
the latency until a new face is detected by the tracker versus the run time. Finally, both
the construction of the feature pyramid and the detector scans can easily be parallelized
across multiple cores.

2.4.5. Comparison with other trackers

We compare the full-pose tracker with two other trackers from the literature for which
results on the data set are available: the KLT-based tracker (Sivic et al., 2009) and an
association-based face tracker (Roth et al., 2012) (ABT), which is an adaption of (Huang
et al., 2008) to face tracking. We obtained predicted bounding boxes from both (Sivic
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Approach
BUFFY Season 05 Episodes

Average
1 2 3 4 5 6

KLT (Sivic et al., 2009) 0.597 0.537 0.435 0.567 0.551 0.519 0.534
KLT (interpolated) (Sivic et al., 2009) 0.659 0.630 0.530 0.645 0.632 0.572 0.611
ABT (w/o high level) (Roth et al., 2012) 0.668 0.668
ABT (w/ high-level) (Roth et al., 2012) 0.719 0.719
Ours 0.750 0.707 0.656 0.715 0.721 0.706 0.709

Table 2.7.: MOTA rates for the episodes 1-6 of the 5th season of BUFFY. Our proposed
tracker outperforms both the KLT-based approach as well as the low-level
association-based approach (ABT). Both KLT and ABT approaches are offline
approaches and require knowledge about the full video in advance, whereas we
do not. With further high level information such as face identification scores,
ABT is able to slightly outperform our approach on episode 2. However, this
comes at the cost of a higher number of bad mismatches as can be seen in
Tbl. 2.8.

et al., 2009) and (Roth et al., 2012) and use the same ground truth and evaluation pipeline
to remove any influence from the evaluation procedure itself.

While the approach from Sivic et al. (2009) uses different detectors (a frontal and a profile
detector), the association-based approach from Roth et al. (2012) is based on the same
set of MCT detectors as our approach. Both other approaches are offline approaches,
i.e. they require all frames to be available before tracking. They are therefore less suitable
for online scenarios such as in a surveillance application. They also require to scan the
full image with the full bank of detectors every frame, while we only scan every 5 frames,
which gives our approach a significant run time advantage.

We report results in Tables 2.7 and 2.8. For the KLT-based tracker we report results for
both the original tracker outputs, which only consists of the frames where one of the
detectors fired, and an interpolated variant (denoted KLT (interpolated) in the tables),
where we linearly interpolated between consecutive detections of a track which were
more than one frame apart. The ABT approach also has two modes of operation, namely
with and without a high-level stage of linking tracklets across larger frame gaps.

In terms of MOTA, our approach outperforms both the KLT-based and the ABT (w/o
high level) approaches, while being on par with the ABT (w/ high level) approach.
In Table 2.8, we compare the underlying failure rates between all three trackers. The
approach from Sivic et al. (2009) suffers from a high miss rate, owing to the fact that only
frontal and full profile detectors are used. Using a higher number of intermediate pose
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Approach
BUFFY Season 05 Episode 02

MOTA MR FPR BMM GMM TR

KLT (Sivic et al., 2009) 0.537 0.424 0.024 1 (0.000) 105 (0.015) 0.671
KLT (interpolated) (Sivic et al., 2009) 0.630 0.292 0.063 2 (0.000) 107 (0.015) 0.682
ABT (w/o high level) (Roth et al., 2012) 0.668 0.207 0.062 3 (0.000) 451 (0.063) 0.851
ABT (w/ high-level) (Roth et al., 2012) 0.719 0.168 0.097 62 (0.009) 79 (0.011) 0.851
Ours 0.707 0.147 0.117 6 (0.001) 211 (0.029) 0.885

Table 2.8.: Detailed evaluation scores for BUFFY S05E02. Our approach’s favorable
performance is due to a low miss rate (MR), also reflected in the highest
track recall (TR) of all approaches. While ABT with high level linkage
outperforms our approach by about 0.01 in MOTA, it comes at the cost of a
high number of bad mismatches (BMM). These are especially undesired for
further identification since each BMM links two different persons within the
same track.

classes suggests to be a good way to reduce the number of missed faces. The approach
by Roth et al. (2012) also exhibits a higher miss rate than our tracker, possibly due to
a more aggressive filtering of false positive tracklets, but also a notably high number
of (albeit good) mismatches. The inclusion of the high-level association (ABT w/ high
level) reduces the number of good mismatches, but also introduces a high number of bad
mismatches, i.e. track switches. Finally, our approach has the lowest miss rate of all three
trackers, which is also reflected in the track recall (see Tbl. 2.7).





Chapter 3

Semi-supervised Learning with
Constraints

In the previous chapter, we localized faces in video data. Given the tracks we obtained
from the tracker, we are now interested in identifying each of them, i.e. assigning a
unique identity or name to each of them. In the context of realistic multimedia data,
identification can be seen as an open-set problem, i.e. there are usually background persons
(e.g., extras) which are not important to the story and instead can be collectively rejected
as unknowns.

The nowadays prevalent way for face recognition is to use a supervised machine-learning
approach. Training data for each person is collected and a multi-class classifier is trained.
For open-set recognition, we further have to decide whether a person is actually among
the known persons, for example based on the classifiers confidences. This machine
learning-based approach to face recognition can give good results when accurate and
enough training data is available.

However, obtaining manually labeled training data is a tedious, time-consuming and thus
expensive task. We will therefore follow Everingham et al. (2006)’s approach and make
use of available subtitles and transcripts to obtain labels for face tracks automatically.
Further, we assume that all face tracks are available at training time, which is often the
case in the context of multimedia data. For example, if the goal is to display additional
information on characters during the playback of a TV episode, the identification can be
performed once – offline – beforehand. Since even unlabeled tracks contain information,
e.g. about the distribution of possible face appearances, it can be beneficial to make use
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of them during training. If both labeled and unlabeled data is used during training, the
learning is called to be semi-supervised. If all test data is available during training, the
learning problem can be approached via transduction, i.e. transferring the given labels to
the test data, in contrast to being inductive, i.e. learning a generalizing model first from
the training data and then inferring the labels for the test data from the model. Whether
transductive learning is an easier task, since labels only have to be propagated from
the labeled to the unlabeled examples without the need to learn a generalizing model
first, is a topic of ongoing discussion in the machine-learning community (Chapelle,
Olivier Schölkopf, Bernhard Zien, 2006). In this chapter, we approach the problem
from the semi-supervised/inductive perspective because our employed model indeed has
generalizing capabilities and as such can also classify unknown test data.

Finally, natural constraints arise within and between tracks and can be determined
automatically. For example, all frames in a track are assumed to show the same person.
This results in a positive or must-link constraint, i.e. we can model already during training
that such samples are to be assigned the same identity. For this, it is important that the
tracker exhibits a low number of bad mismatches, as we analyzed in the previous chapter.
Similarly, we can also obtain negative or cannot-link constraints from the data. Two
tracks which co-occur in the same frame cannot stem from the same person and thus
should never be assigned the same identity 1. This induces not only constraints between
samples in the same frame, but between all pairs of frames of the two tracks, again due
to the previous assumption that all frames in a track belong to the same person. This
is a notable difference to single images (e.g., from a news page), where such constraints
would only be valid for detections within the one image.

In this chapter, we approach the problem of person identification as a semi-supervised
learning problem with constraints. The goal is to automatically identify all face tracks
by training discriminative multi-class classifiers from automatically obtained, weakly-
supervised track labels, additional unlabeled data and automatically generated constraints
between tracks. We integrate all three sources of information in a common learning
framework.

1 This is of course not true in the presence of mirrors in the scene. There is one such case in one video of
our data set, but compared to the amount of true negative constraints between tracks this occurrence is
negligible.
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3.1. Background and related work

The literature on face recognition is vast. We will therefore focus the discussion – after
a very brief introduction of supervised face recognition – on related semi-supervised
learning and clustering approaches. For a review of face recognition in general, we refer
the reader to surveys by Zhao and Chellappa (2003) and Jafri and Arabnia (2009).

Supervised face recognition For machine-learning-based supervised face recognition,
the goal is usually to learn a predictor F : X → Y , using a set of training samples
Xl = {(xi , yi )}Li=1 with descriptors xi and labels yi . During testing, labels of all test
samples {x j }L+T

j=L+1 are inferred using F . Descriptors xi are usually obtained by first
aligning the face to a canonical pose, and the performing a feature extraction, encoding
and possibly dimensionality reduction to obtain a compact face descriptor.

Many different choices forF are described in the literature, for example Support Vector
Machines (e.g., Berg and Belhumeur (2012); Heisele et al. (2001)) and AdaBoost (e.g., Zhang
et al. (2004)), but also non-parametric approaches such as k-Nearest-Neighbors (Ahonen
et al., 2004; Fischer et al., 2012). Similarly, a multitude of alignment methods (e.g., Berg
and Belhumeur (2012)) and descriptor extraction methods (e.g., Ahonen et al. (2004);
Ekenel and Stiefelhagen (2006); Taigman et al. (2014)) have been proposed.

In the context of multimedia data, face recognition has been also explored in supervised
settings. For example, Ortiz et al. (2013) exploits the Public Figures data set as training
set. Also, different approaches which obtain labels automatically from associated sources
operate in a supervised setting. Berg et al. (2004) obtain labels from image captions, while
Everingham et al. (2006), Sivic et al. (2009) and Bojanowski et al. (2013) from transcripts
and subtitles. As classifiers, nearest neighbor (Everingham et al., 2006) and multiple
kernel learning (Sivic et al., 2009) have been explored, amongst many more customized
classifiers, for example to handle ambiguous labels (Berg et al., 2004; Cour et al., 2009) or
jointly classify multiple modalities (Bojanowski et al., 2013).

Semi-supervised learning Semi-supervised learning differs from supervised learning
in that additional unlabeled training samplesXu = {xi}L+U

i=L+1 are available at training time.
The labels for these are not known, but the assumption is that they provide additional
information about the distribution of the underlying structure of the data (e.g., the
"face-manifold") and thus can help to build a better classifier.
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One common assumption about the distribution of data is that samples of the same class
form clusters in the descriptor space (the cluster assumption). To exploit that, approaches
for example encourage decision boundaries in low density regions between classes. By
maximizing the margin of hyperplanes on both labeled and unlabeled data Xu et al. (2005)
and Joachims (1999) extend the Support Vector Machine principle to semi-supervised
and transductive learning, using a symmetric hinge loss on the unlabeled data. Smooth
and ramped variations of the hinge loss have been explored by Chapelle and Zien (2004)
and Collobert et al. (2006), respectively. As another extension to supervised classifiers,
Grandvalet and Bengio (2005) proposed entropy-based regularization of the classifiers’
model parameters. Closely related is also the idea of self learning and Expectation
Maximization-based approaches, where unlabeled examples are assigned intermediate
labels using the current classifier’s model. Those intermediate labels are then used to
again update the model parameters. Variants of these ideas have been employed for
recognizing faces in images (e.g., Zhao et al. (2011)) or web videos (e.g., Rim et al. (2011)),
and can also be used for generative models (Nigam et al., 2000). If different descriptors for
the same data are available, for example face and clothing descriptors, one can iteratively
co-train two classifiers which provide labels for the unlabeled samples of the respective
other class (Blum and Mitchell, 1998).

The iterative nature of self-learning and EM-style approaches is usually due to a non-
convex part of the loss function. To avoid local minima, convex relaxations to originally
non-convex loss functions have been proposed (Joulin and Bach, 2012). Xu et al. (2005)
formulate the problem of finding maximum margin hyperplanes as a convex integer
problem.

Unlabeled data can also be used in the context of multiple instance learning. Joulin
and Bach (2012) employ an entropy penalty to encourage a uniform class distribution
in a bag. To incorporate unlabeled data within multiple instance boosting, Zeisl et al.
(2010) employ a cross-entropy loss between a prior belief of class label distribution
and the obtained distribution on the unlabeled data. A variant thereof was applied
to face recognition in TV series using ambiguous labels obtained from subtitles and
transcripts (Köstinger et al., 2011).

In the context of labeling person identities in photos, different approaches using Markov
random fields (Anguelov et al., 2007; Gallagher and Chen, 2007; Lin et al., 2010) have
been explored. Unlabeled examples are incorporated via pair-wise relations to other
labeled and unlabeled examples. In contrast to earlier discussed approaches, a joint
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probabilistic estimation of identity labels can be performed directly, instead of learning
a generalizing model first. Gallagher and Chen (2008a) exploit unlabeled data via co-
segmentation, i.e. segmenting the upper body regions of multiple instances jointly, in
order to obtain better clothing models for subsequent identification.

Learning with constraints A different way utilizing unlabeled data is through pair-
wise relations between them. In the context of images and videos such constraints arise
for example from tracking, co-occurrence reasoning or user input.

One way to exploit such constraints is through an additional loss term on unlabeled data
to a standard supervised loss. For example, Melacci et al. (2009) integrate constraints into
kernel ridge regression by penalizing constraint violations on unlabeled data. Yan et al.
(2006) employ a similar idea and enhance kernel logistic regression with a constraint loss
for person identification in a camera network. Both approaches incorporate unlabeled
data not directly, but through the pairwise constraints, in contrast to the previously
discussed semi-supervised approaches.

Pairwise constraints essentially encode the information which descriptors should obtain
the same label, and which should not. From the perspective of distances, this means
that descriptors with a must-link constraint should have a low distance, and with a
cannot-link should have a high distance. To exploit this, different approaches have been
proposed to learn a specialized distance metric, for example for image retrieval (Hoi
et al., 2006) or face recognition (Guillaumin et al., 2012). Cinbis et al. (2011) make use of
must-link and cannot-link constraints in order to learn a face- and cast-specific metric in
order to improve face clustering and identification in TV series. However, they rely on
supervised labeling of clusters in order to perform the actual identification.

In the context of clustering, must-link and cannot-link constraints are often employed as
additional cues which clusters to join or keep separated, and as such constrained variants
of k-means (Bilenko et al., 2004), maximum margin clustering (Zeng and Cheung, 2012)
or spectral clustering have been proposed (Li and Liu, 2009). For simultaneous tracking
and clustering of faces, Wu et al. (2013b) embed pairwise constraints between face tracks
into a Hidden Markov Random Field-based clustering approach. When clustering faces,
the resulting clusters are usually not labeled with unique labels. However, they can be
assigned unique identity labels by a separate mechanism, e.g., by a separately trained
multi-class SVM (Yu et al., 2011) or user input (Ramanan et al., 2007b).
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Markov random field-based approaches for face recognition usually model pairwise
relations between faces and therefore constraints naturally integrate in such models.
For example, Anguelov et al. (2007) integrate a uniqueness constraint, enforcing that
two persons in the image are not identified with the same identity. However, the
constraint is not strictly enforced, as they found empirically that allowing a small
number of conflicting identity assignments is beneficial for overall performance. Instead
of constraints, Lin et al. (2010) model a co-occurrence likelihood in a pairwise potential,
i.e. people that co-occur often are also more likely to be jointly assigned to two faces in
other images.

3.1.1. Discussion and contribution

There are many examples in the literature how adjoining data can be exploited for
automatic generation of labels. The method of Everingham et al. (2006) of aligning
subtitles (what is spoken when) and transcripts (who speaks what) is especially compelling,
since subtitles and transcripts are ubiquitously available for most popular TV series. A
drawback of this method is that the obtained labels are not pure due to the inherent
visual speaker detection step. Nevertheless, we will employ a similar method, since it
works very well in practice and allows for an automatic labeling of training data. We will
analyze to which extend the non-purity of the labels affects results.

The literature on semi-supervised learning clearly motivates the use of unlabeled data
for training better models without additional supervision. There is an abundance of
unlabeled data available in the multimedia context, and different approaches have shown
improvements on recognizing faces and characters by exploiting data with no labels.
The cluster assumption leads to different variants of the same idea, and eventually most
result in a large-margin-encouraging addition to the respective original supervised loss of
different classifiers. In contrast to transductive approaches, a generalizing classifier has the
advantage of being able to further classify new unseen test data. This is beneficial when
we obtain a new episode of a TV series for which we already have trained models for all
cast members (and do not want to re-run the full learning procedure every time). We will
therefore also start out with a supervised classifier. Following unlabeled large-margin
ideas, we employ an entropy-based term in the loss function to incorporate unlabeled
data, similar to Grandvalet and Bengio (2005).
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Finally, constraints between faces and face tracks arise naturally in videos. For clustering,
it is easily perceivable that they can help to link clusters (e.g., across a pose change) or to
avoid errors. Also in supervised settings, constraints have been shown to help in training
better models. However, in these approaches, unlabeled data was only considered in the
context of constraints, not by itself as in the semi-supervised literature. If an unlabeled
sample is not present in a constraint, it would not be used for learning.

In this chapter, we consider all resources together. We learn person models from auto-
matically obtained labels, unlabeled data and constraints in a common framework. We
incorporate these three sources of information in a common loss function for training a
multi-class classifier (Sec. 3.2). We apply the proposed learning framework to the task of
character naming in TV series and achieve state-of-the-art results (Sec. 3.3).

3.2. Semi-supervised learning with constraints

LetXl = {(xi , yi )}Li=1 denote training data xi with associated labels yi ∈Y . The problem
of character naming is inherently a multi-class problem, thus |Y |=K and, without loss
of generality, we assumeY = {1, . . . ,K}. We further have additional unlabeled dataXu =
{xi}L+U

i=L+1. Positive and negative constraints between data points C = {(xi1,xi2, ci )}Ci=1,
where ci ∈ {+1,−1}, denote pairs of features which belong to the same character and
should be assigned the same identity (c =+1), or do not belong to the same character
and should not be assigned the same identity (c =−1).

Using the given training data, we are interested in learning the set of parameters θ of a
classifier, which maps a new descriptor to one of the K classes

Fθ(x) :X →Y . (3.1)

A common way to learn θ from training data is to define a loss function over the training
data. By minimization of the loss, we obtain the parameter set θ∗ that best fits the given
training data

θ∗ = argmin
θ
L (y|Xl ;θ) . (3.2)

Different choices ofF lead to different types of classifiers. The definition ofL deter-
mines the way in which the parameters θ of the classifiers are learned. For a supervised
classifier, the loss function for example only takes into account labeled examplesXl .
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supervised

err: 3.00%

(a)

semi−supervised

err: 2.00%

(b)

semi−supervised + constraints

err: 0.00%

(c)

unsupervised + constraints

err: 100.00%

(d)

Figure 3.1.: Visualization of the effect of the different terms of the loss function on a toy
example. The denoted error is the joint error on labeled and unlabeled data.
(a)Ll : Supervised learning from labeled data (colored data points +/#/Ï)
only.
(b)Ll +Lu : Semi-supervised learning by additionally taking unlabeled data
(black ×) into account. The decision boundaries are encouraged to better fit
the underlying distribution.
(c) Ll +Lu +Lc : By further taking into account negative constraints be-
tween data points, the error reduces to 0.
(d)Lu +Lc : Even without using the labels, it is possible to still find mean-
ingful structure in the data using the entropy and constraint loss. However,
the assignment to the classes is not uniquely defined and has to be done in a
separate step.

Previous work extended supervised loss functions by addition terms to include unlabeled
data (e.g., Grandvalet and Bengio (2005)) or constraints on unlabeled data (e.g., Yan et al.
(2006)). We follow this approach and define a combined loss function that takes into
account (i) labeled dataXl , (ii) unlabeled dataXu and (iii) constraints C :

L (X ;θ) =L (yl , yc ;Xl ,Xu ,C ,θ) (3.3)

=Ll (yl ;Xl ,θ)+Lu(Xu ,θ)+Lc (yc ;C ,θ) . (3.4)

In this generic form,Ll denotes the supervised loss on labeled data,Lu the loss term on
unlabeled data andLc the loss over the given constraints.

We will now first introduce our model forF and then describe the different terms of
the loss function in more detail. The influence of different parts of the loss function are
visualized in Fig. 3.1 on a toy example.
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Figure 3.2.: Visualizations of the employed loss functions.

3.2.1. Model

Multinomial logistic regression (MLR) (Hastie et al., 2009) belongs to the family of log-
linear models and is a classical choice for multi-class classification. One of the advantages
of MLR is that its results can directly be interpreted as probabilities of a data point
belonging to class k with

P (y = k|x;θ) =
eθ

T
k

x

∑

z eθ
T
z x

(3.5)

with P (y = k|x;θ) ∈ [0,1] and
∑

k P (y = k|x;θ) = 1. The model is defined by parameter
vectors θk , one for each class. The full parameter set is given by θ= [θ1, · · · ,θK]. Due
to the constraint

∑

k P (y = k|x;θ) = 1, there are only K − 1 free parameter vectors and
consequently the parameter vector θK is usually fixed as 0.

To classify a sample x under this model, we compute the most likely class as

Fθ(x) = argmax
k

P (y = k|x;θ) = argmax
k

eθ
T
k

x

∑

z eθ
T
z x

. (3.6)

Due to the argmax and the monotony of e x , we can simplify the classification rule to

Fθ(x) = argmax
k
θT

k x . (3.7)

For notational brevity, we denote P k
θ
(x) := P (y = k|x;θ) in the rest of this chapter.

Kernelization Multinomial logistic regression can be extended to non-linear decision
boundaries by expanding x by a feature map function Φ(x). x can be expanded explicitly,
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however, for high dimensional or even infinite dimensional mappings this is often
infeasible in practice. Instead of computing Φ(x) directly, θT

k x can be replaced by a
function f (x). According to the representer theorem (Kimeldorf and Wahba, 1971) f (x)
has the form

f (x) =
n
∑

i=1

θki K(x,xi ) , (3.8)

where K(·, ·) is a positive definite reproducing kernel.

3.2.2. Supervised loss

In order to learn the parameter set θ from labeled training samples Xl , we use the
standard negative log-likelihood as loss

Ll (yl ;Xl ,θ) =−
1

L

L
∑

i=1

K
∑

k=1

1[yi=k] ln(P k
θ
(xi ))+λ||θ||

2 (3.9)

where 1[·] is the indicator function. The regularization term λ||θ||2 corresponds to a
zero-mean Gaussian prior on the parameters. Its purpose is to prevent overfitting on the
training data and its influence is controlled by the hyper-parameter λ.

This loss is convex and can be efficiently minimized with standard gradient descent
techniques. The gradient of Eq. 3.9 with respect to θ is

∂

∂ θk

Ll = 2λθk −
1

L

L
∑

i=1

xi ·
�

1[yi=k]− P k
θ
(xi )
�

. (3.10)

3.2.3. Entropy loss for unlabeled data

While the unlabeled dataXu does not carry information about its class membership, it
can be informative about the distribution of data points in regions without labels. As
discussed in the introduction and discussion of related work, the decision boundaries
should also respect the distribution of unlabeled data. That is, the decision boundaries
should preferably lie in low-density regions (see the toy example in Fig. 3.1 for a visual
example).
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A common way to achieve this is to include an entropy term into the loss function
in order to encourage uniformly distributed class membership across the unlabeled
data (e.g., Köstinger et al. (2011); Zeisl et al. (2010)). Instead, we use the entropy function
as a penalty on having the decision boundaries close to unlabeled data points (see Fig. 3.2)

h(xi ) =−
K
∑

j=1

P j
θ
(xi ) ln(P

j
θ
(xi )) . (3.11)

In order to compute the loss onXu , we sum over all unlabeled data points

Lu(Xu ;θ) =
µ

M

M
∑

i=1

h(xi ) (3.12)

=−
µ

M

M
∑

i=1

K
∑

j=1

P j
θ
(xi ) ln(P

j
θ
(xi )) ,

where µ controls the relative influence of the unlabeled data on the total loss. For our
model of P this leads to the following gradient:

∂

∂ θk

Lu =−
µ

M

M
∑
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1+ ln(P j
θ
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 . (3.13)

3.2.4. Constraints

Finally, we include pair-wise constraints between training samples xi1 and xi2. The
constraint (xi1,xi2, ci ) specifies whether xi1 and xi2 belong to the same class (ci = 1)
or not (ci =−1). Such constraints arise for example from temporal relations between
face tracks, i.e., two tracks which temporally overlap cannot belong to the same person,
and can be automatically generated without manual effort. Note that, in general, the
class memberships of both xi1 and xi2 are unknown. Nevertheless, constraints are not
only important between unlabeled data points, but also between pairs of unlabeled and
labeled data points, and even between two labeled data points. Since we plan to obtain
labels in an automated manner, they can contain errors, which in turn can potentially be
corrected by a constraint during training.
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Intuitively, for a negative constraint the product of the likelihood of features xi1 and xi2

belonging to different classes

P (yi1 6= yi2) =
K
∑

j=1

K
∑

l=1
l 6= j

P j
θ
(xi1)P

l
θ
(xi2) (3.14)

should be high. Since the P k
θ
(·) sum up to one, we can simplify the above to

P (yi1 6= yi2) = 1−
K
∑

j=1

P j
θ
(xi1)P

j
θ
(xi2) . (3.15)

We use the negative log-likelihood of the features belonging to different classes as loss

Lc (ci ;C ,θ) =−
γ

L

L
∑

i=1

ln(P (yi1 6= yi2))

=−
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L

L
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, (3.16)

where γ controls the relative influence of the constraint loss. The derivative ofLc with
respect to θk is
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3.2.5. Minimization of the loss

We first collect training data from all available episodes, and train one joint multi-class
classifier from supervised data, unsupervised data and constraints by minimization of
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the joint loss function (Eq. 3.4) via L-BFGS (Liu and Nocedal, 1989), a limited memory
variant of the Broyden-Fletcher-Goldfarb-Shanno algorithm. Using L-BFGS for the
minimization requires the gradient of the loss function to be available, which we have
given together with the respective losses.

Taking into account all available training data from multiple episodes at the same time
is unfortunately computationally infeasible, especially for the kernelized version of the
multinomial logistic regression. We therefore reduce the data by subsampling, effectively
removing features that were temporally nearby and therefore presumably visually similar.
For the kernel computation we further randomly select prototypes instead of working
with the full kernel matrix similar to (Lee and Mangasarian, 2001).

3.3. Automatic character naming

We apply the proposed learning framework to the task of character naming in videos. In
this chapter, we only consider face tracks for identification similar to Everingham et al.
(2006), Köstinger et al. (2011) and Sivic et al. (2009) as obtained from our tracker from
Chapter 2. We will consider clothing and other modalities in the next chapter, where we
will use the obtained track identities from this chapter as one input modality.

3.3.1. Data set

We evaluate our approach on 6 episodes each of season 1 of The Big Bang Theory (BBT-1
to BBT-6) and season 5 of Buffy the Vampire Slayer (BF-1 to BF-6). We employ the face
tracks obtained from our tracker as described in Chapter 2. Since our approach does not
deal with false positives explicitly, we remove false positive tracks manually to avoid a
distracting influence on the recognition performance. An automatic method to detect
false positive tracks is described in (Tapaswi et al., 2014c).

The data set consists of a total 3921 face tracks for BBT, and 5861 face tracks for BUFFY.
This corresponds to a track recall of about 80% for BBT (cf . Table 2.3) and 90% for
BUFFY (cf . Table 2.4). For an overview over some statistics of the data set see Table 3.1.

As discussed already for the tracking, the two series differ in their filming style and
therefore pose different challenges. Most notably for identification is the difference in
number of characters. BBT consist of a main cast of 5 people with 1 to 3 supporting
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 BF-1 BF-2 BF-3 BF-4 BF-5 BF-6

# characters 6 5 7 8 6 6 12 13 14 15 15 18
# face tracks 658 615 660 613 524 851 796 1004 1194 900 840 1127

# unknown tracks 9 2 98 45 61 200 10 138 9 48 107 71
# speaking tracks 147 104 132 126 78 116 158 192 177 186 174 211
speaker precision 89.12 87.50 93.18 88.89 92.31 87.93 89.24 82.81 81.36 87.10 88.51 86.73

speaker recall 19.91 14.80 18.64 18.27 13.74 11.99 17.71 15.84 12.06 18.00 18.33 16.24

Table 3.1.: Overview over basic statistics of the data set and the speaker assignment
performance on BBT and BUFFY. For both series, on average 16% of all face
tracks are assigned an identity by the subtitle-transcript alignment and speaker
detection. The average precision for BBT is 90% and for BUFFY 86%.

characters per episode, while BUFFY has a main cast size of around 12 characters and in
specific episodes up to 18 important characters. We denote every character as known and
assign them a unique identity, if they are named in the plot or have a significant role and
a sufficient number of tracks. In addition, both series contain unnamed extras, which we
denote as unknowns.

BBT’s plot takes mostly place in well-lit indoor settings, while BUFFY has many out-
doors scenes with poor lighting conditions. On the other hand, BUFFY contains a
sizable number of close-up shots, resulting in a long tail in the distribution of face sizes
(cf . Fig. 2.2).

Tables 3.2 and 3.3 show in their second column each character’s number of face tracks
accumulated over the six episodes of BBT and BUFFY, respectively. The number of face
tracks varies between over 1000 tracks for the main character and less than 10 for some
supporting characters. We label each of the face tracks with ground truth identities in
order to perform a quantitative evaluation of the identification approach.

3.3.2. Preprocessing

The preprocessing of the data for character identification consists of multiple steps.
We first detect shot boundaries and track faces as discussed in Chapter 2. As a second
step, we estimate facial landmarks in every frame of each track, which are subsequently
used in both speaker detection and face alignment. Keeping in mind the large amount
of multimedia data, we are especially interested in an identification scheme that does
not require manual supervision. We therefore follow Everingham et al. (2006) and
align transcripts to subtitles, and perform visual speaker detection to determine the
current speaking track. In this way, we obtain labels for some of the face tracks in an
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automatic manner. We will briefly discuss the process of facial landmark estimation,
subtitle-transcript alignment and speaker detection in the following.

Facial landmark detection We estimate the location of facial landmarks using the
Supervised Descent Method (SDM) by Xiong and la Torre (2013) which is a state-of-
the-art method for facial landmark detection. SDM starts with a rough estimate of
the landmark positions, e.g., we use the weighted mean landmark positions relative to
the tracker’s detections in the current frame. Iteratively, the landmark positions are
refined with a cascade of update steps, where each update vector is determined via joint
linear regression based on SIFT features extracted around the current landmark positions.
Multiple regression matrices are learned on training data for each of the update steps.
The procedures converges after as few as four update steps and requires in total around
30ms per face.

Weak labels from speaking faces Following Everingham et al. (2006), we align
subtitles with transcripts from the web in order to combine the timing component of
subtitles (what is spoken when, but usually without speaker identity) with the identities
from the transcripts (who speaks what, but without timing information). Using the
common text to align the two information sources, we can obtain who is speaking when,
i.e. we obtain labeled intervals (si , ei , yi ) with start time si , end time ei and associated
speaker identity yi . In order to associate the speaker identity information with a face
track, we further estimate visually which of the co-occurring faces is speaking during the
given time interval. The visual speaker detection is important to assign the identity to
only one face track if multiple tracks are present. While other approaches do without
speaker detection and handle possible ambiguities during training (e.g., Cour et al. (2010)),
the unique assignment of labels to the one speaking face allows for a less complex learning
approach.

Subtitle-transcript alignment We align transcripts and subtitles on word level, i.e. we
regard both texts as long sequences of words. We define the best alignment as the
one requiring the minimum number of word operations (word insertions, deletions,
and replacements) to transform one sequence into the other. This is closely related to
computing the Levenshtein distance (Levenshtein, 1966) between two strings, albeit
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00:07:00,733 --> 00:07:04,612
At least I didn't have to invent 26
dimensions to make the math come out. 

00:07:04,773 --> 00:07:07,412
- I didn't invent them. They're there.
- In what universe?

00:07:07,573 --> 00:07:09,291
In all of them, that is the point.

Leonard
At least I didn’t have to invent twenty-six 
dimensions just to make the math come out.

Sheldon
I didn’t invent them, they’re there.

Leonard
In what universe?

Sheldon
In all of them, that is the point.

who speaks what?         what is spoken when?

Figure 3.3.: Matching of transcripts to subtitles to determine who is speaking when.

using a different cost function. We compute the best alignment between word sequences
s and t implicitly using the following recursive cost function

ds ,t (i , j ) =min















ds ,t (i − 1, j − 1)1{s(i)6=t ( j )} ·min(3, leven(s(i), t ( j )))

ds ,t (i − 1, j )+ len(s(i))

ds ,t (i , j − 1)+ len(t ( j ))

(3.18)

where ds ,t (i , j ) is the distance up to word i of s and word j of t , and 1{s(i)6=t ( j )} the
indicator function, being 1 if word i of s and word j of t do not match. leven(s (i ), t ( j ))
denotes the Levenshtein distance between words s(i) and t ( j ).

The minimum distance d ∗ can be obtained efficiently via dynamic programming. We
reconstruct the pairs of matching words, i.e. where s(i) = t ( j ), by tracing the path
of operations backwards through the cost matrix. Based on the matching words, a
correspondence between subtitle and transcript lines can be established (cf . Fig. 3.3), and
the identity transferred from the transcript to corresponding subtitle line. Subtitle lines
for which the correspondence is ambiguous or which only consist of a single word are
ignored.

Over the first 6 episodes of BBT, this method is able to assign a total of 2959 identities
to subtitle lines, of which 2956 are correct, corresponding to a precision of 99.9% and a
recall of 91.2%.

Speaking face detection The labeled speaker intervals (si , ei , yi ) so far only indicate that
a specific character yi is currently speaking. However, it is very common that multiple
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Figure 3.4.: Speaking-face detection: Is this face speaking or not? We first detect facial
landmarks (top), crop out the mouth region (middle) and determine the
normalized minimum distances of the mouth region patch to the respective
previous frame (bottom, blue line). The distances are thresholded and accu-
mulated to determine whether the face was speaking during the duration of
a subtitle.

face tracks co-occur with the speaking interval. Therefore, we have to further determine
which of the face tracks is indeed speaking. We detect the current speaker among the
face tracks by analyzing the mouth movement.

To that end, we estimate the motion of the mouth region via block matching. The
normalized distance between the motion-compensated blocks averaged over the speaker
interval serves as confidence value which is thresholded to determine a face to be speaking
or not-speaking (as a third possibility we have a region of confidence where we do
not make a decision). Figure 3.4 shows a visualization of the speaking-face detection
procedure.

The combination of the subtitle-transcript alignment and the visual speaker detection
allows us to assign identities to some of the tracks. Despite the near-perfect results
from the subtitle-transcript alignment, we do not obtain perfectly clean labels from this
method, since the speaking face detection is noisy, Table 3.1 shows the precision and
recall of the speaker assignment method on our data set. “#speaking tracks” denotes the
number of tracks which were determined as speaking, which is usually less than 30%
of the tracks (not all characters speak at the same time). On average, we associate an
identity to about 16% of the tracks with a precision of 90% (BBT) and 86% (BUFFY),
which is similar to the reported performances of Sivic et al. (2009). The lower speaker
recall compared to Sivic et al. (2009) can be attributed to the higher number of total face
tracks which we obtain from our more robust tracking method.
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character
# face # assigned speaker speaker #correct/wrong

tracks as speaking precision recall 250100 200

Leonard 1146 218 90.83 17.28
Sheldon 998 250 89.60 22.44

Penny 525 97 92.78 17.14
Unknown 415 10 90.00 2.17

Howard 304 46 89.13 13.49
Raj 291 27 92.59 8.59

Mary 98 39 84.62 33.67
Leslie 83 10 80.00 9.64
Kurt 32 3 33.33 3.12

Gablehauser 16 2 100.00 12.50
Doug 8 0 – –

Summer 5 1 0.00 0.00

Table 3.2.: Character statistics and speaker assignment performance for BBT. For the 5
major characters, precision is around 90%. The absolute number of labeled
tracks varies however, with Raj being the lowest with 27 tracks, since he
speaks less than other characters.

Analyzing the performance on a character basis (see Tbl. 3.2 and Fig. B.1 for BBT,
and Tbl. 3.3 and Fig. B.2 for BUFFY), we observe that both the absolute number of
labeled tracks and the identity assignment performance varies between characters. For
example, only 27 tracks are assigned the identity Raj (with a precision of 92.6%), whereas
218 tracks are assigned the identity Leonard (with a precision of 90.8%).

Face descriptors We employ a local-appearance-based method based on the discrete
cosine transform (DCT) (Ekenel and Stiefelhagen, 2006) as face descriptor. Using the
eye-center and mouth-center locations from the facial landmarks, the face is first aligned
to a canonical pose via an affine transformation and cropped to a size of 48× 64 pixels.
If eye- or mouth-center cannot be determined, for example due to a profile view of the
face, we crop a region around the track’s bounding box in a best effort to obtain a good
face patch. Otherwise, tracks which only show a profile view of the face might end up
with no feature to identify them. The aligned face is then split into 6× 8 blocks. For
each block, the DCT is computed, of which we ignore the 0th value (average brightness)
and retain the next five coefficients. Concatenating over all 48 blocks, we thus obtain a
240 dimensional feature vector for each frame in the track.
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character
# face # assigned speaker speaker #correct/wrong

tracks as speaking precision recall 288100 200

Buffy 1324 288 90.28 19.64
Riley 586 77 88.31 11.60

Xander 555 122 77.05 16.94
Willow 488 108 90.74 20.08

Unknown 383 15 80.00 3.13
Giles 366 66 78.79 14.21

Dawn 360 44 86.36 10.56
Anya 299 53 81.13 14.38
Tara 257 33 78.79 10.12

Spike 239 50 90.00 18.83
Harmony 197 75 88.00 33.50

Xander2 154 15 93.33 9.09
Joyce 114 31 83.87 22.81

Glory 88 27 100.00 30.68
Dracula 70 5 80.00 5.71
Maclay 63 17 76.47 20.63

Beth 52 17 94.12 30.77
Graham 45 15 73.33 24.44

Overheiser 41 8 50.00 9.76
Mort 38 4 50.00 5.26

Leiach 33 0 – –
Donny 32 8 87.50 21.88

Manager 27 6 66.67 14.81
Ben 23 7 85.71 26.09

Watchman 12 5 100.00 41.67
Sandy 9 2 100.00 22.22

Toth 6 0 – –
Monk 0 0 – –

Table 3.3.: Character statistics and speaker assignment performance for BUFFY. For
some background characters, we do not obtain any correct label, e.g. if they
never speak or we cannot detect their respective tracks as speaking. The
precision of the assignment varies between characters and has to be taken into
account when judging later identification performance.
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While this DCT-based facial descriptor is not among the state-of-the-art descriptors, it
has proven robust in a series of previous work (Bäuml et al., 2010a; Bernardin et al., 2008;
Ekenel et al., 2007c; Ekenel and Stiefelhagen, 2006; Fischer et al., 2010; Stallkamp et al.,
2007) and is very efficient to compute.

We will perform all experiments with the same underlying features in order to ensure a
fair comparison. Of course, a better alignment and more descriptive features are expected
to have a positive influence on the recognition performance, and their incorporation
into the proposed method should be the subject of future work.

Unlabeled data With only 16% of the face tracks labeled by the speaker assignment,
we are left with 84% of the data that has no labels associated with it. This data constitutes
our unlabeled feature setXu .

Constraints Constraints between training samples can be automatically deduced on
the basis of face tracks. Positive constraints are formed, if two features stem from the
same face track, based on the assumption that the tracker followed the face correctly.
Negative constraints are formed when two tracks overlap temporally, based on the
assumption that the same person cannot appear twice at the same time. These negative
constraints are equivalent to the uniqueness or cannot-link constraint as used in other
previous work (e.g., Yan et al. (2006)).

Both negative and positive links can be constructed between all pairs of involved features.
Thus, a track of length N induces N · (N − 1) positive constraints. Two overlapping
tracks with N and M features, respectively, induces N ·M negative constraints between
the respective features, even if they only overlap for one frame, due to the transitivity of
positive relations within a track.

This automatic approach fails for negative links if the same person appears twice in a
frame, e.g. due to a mirror, and for positive links when a track switch occurs. However,
such events are rare compared to the errors made by the automatic speaker-based labeling:
there is one scene involving a mirror in BUFFY, and the number of tracks switches is in
the order of the number of bad mismatches, i.e. below 10 for every episode (cf . Tables 2.3
and 2.4).
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3.3.3. Identification

Once we trained the classifier through minimization of Eq. 3.4, we can now identify
every track. Again based on the assumption that all frames of a track stem from the same
person, we perform a joint decision over all frames of a track.

In order to determine the identity yt of a face track t with features {x(t )i }
|t |
i=1, we score

each frame according to Eq. 3.7. The individual scores are the averaged, leading to the
following track score for identity k:

pt (k) =
1

|t |

|t |
∑

i=1

P (y= k|x(t )i ) =
1

|t |

|t |
∑

i=1

eθ
T
k

x(t )i

∑

z eθ
T
z x(t )i

. (3.19)

The track is assigned the identity k with the overall highest score

st =max
k

pt (k) and yt = argmax
k

pt (k) . (3.20)

The outputs of the MLR classifier are in the range of 0 to 1 and could be interpreted
as probabilities. We fuse the individual frame scores by taking the sum instead of the
product over all frames, since we found this to be more robust to outliers in practice (a
theoretical justification can be found in Kittler et al. (1998)).

Assignment to “unknown” Some characters which remain unnamed in the plot (un-
knowns) have small speaking roles. We can assign the “unknown” identity automatically
to some of their face tracks with the described speaker-detection method and therefore
we can automatically collect some training samples for them. In contrast to a “normal”
character, we model all unknown characters as one joint class in the model. That is,
features are collected from all unknowns and used as joint training data for the “unknown”
class.

During identification, a track is assigned the “unknown” identity when it is the most
likely class according to Eq. 3.20.

3.4. Evaluation

In the following, we evaluate our approach on the described data set.
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Evaluation metrics A number of different evaluation criteria are established for the
task of person identification.

As most comprehensive measure, we compute the track accuracy of the assignment, i.e.
the number of correct assignments normalized by the number of total assignments:

ACCtrack =
1

|T |

∑

t∈T

1[yt = gtt] , (3.21)

where yt is the assigned identity according to Eq. 3.20 and gtt the ground truth identity
of track t . This measure does not take into account the track length. For example, one
could argue that it is worse to make a wrong decision for a long track (whose identity
will be displayed for a longer period of time in an end-user system) than for a short track.
We therefore also compute the accuracy on a frame basis:

ACCframe =
1

∑

t∈T |t |

∑

t∈T

|t |
∑

i=1

1[yt = gtt]

=
1

∑

t∈T |t |

∑

t∈T

|t | · 1[yt = gtt] , (3.22)

where |t | denotes the length of track t .

Everingham et al. (2006) and Sivic et al. (2009) report performance in terms of precision
and recall. Their motivation is that by taking the classifier score as a confidence value,
one can refuse to make a prediction when the confidence for the decision is too low.
Let s be the score cutoff after which we refuse to make a prediction, and T (s) = {t ∈
T , score(t )> s}, then

P R(s) =
1

|T (s)|

∑

t∈T (s)

1[yt = gtt] (3.23)

REC (s) =
1

|T |

∑

t∈T (s)

1[yt = gtt] (3.24)

The average precision (AP) is then defined as the area under the precision recall curve.

Due to the unknown characters, the identification is an open set recognition problem. We
therefore also report
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1 2 3 4 5 6 Avg.

BBT

Ll 89.04 88.46 73.94 77.16 78.63 62.98 78.37
Ll +Lu 89.04 88.46 73.79 77.49 78.63 63.10 78.42
Ll +Lc 89.65 90.24 76.36 78.14 81.49 65.69 80.26
Ll +Lu +Lc 89.50 90.24 76.36 78.79 81.30 65.92 80.35

BUFFY

Ll 77.39 69.12 74.62 75.33 71.43 68.32 72.70
Ll +Lu 77.76 68.92 74.62 75.22 71.31 68.41 72.71
Ll +Lc 78.64 71.22 75.71 75.67 73.45 69.74 74.07
Ll +Lu +Lc 78.52 71.12 75.46 75.78 73.69 69.65 74.04

Table 3.4.: Face recognition results using MLR and our loss extensions for BBT. While the
entropy loss only provides a marginal improvement, the constraints improve
performance by about 2% for BBT and 1.3% for BUFFY.

• Correct Classification Rate (CCR), the identification performance among the
known characters:

CCR=
1

|T(known)|

∑

t∈T(known)

1[yt = gtt] , (3.25)

• False Acceptance Rate (FAR): A false acceptance is the incorrect classification of an
unknown as one of the known characters:

FAR=
1

|T(unknown)|

∑

t∈T(unknown)

1[yt 6= u] . (3.26)

• False Rejection Rate (FRR): A false rejection is the incorrect classification of one of
the known characters as unknown:

FAR=
1

|T(known)|

∑

t∈T(known)

1[yt = u] . (3.27)

3.4.1. Results and Analysis

In all experiments we employ a polynomial kernel of degree 2, i.e. k(x,y) = (1+ 〈x,y〉)2.
In order to fit the kernel’s Gram matrix into memory, we subsample up to 5000 features
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 BF Avg.

SUM (Sivic et al., 2009) 0.89 0.83 0.68 0.82 0.85 0.69 0.79
MKL (Sivic et al., 2009) 0.90 0.83 0.70 0.86 0.85 0.70 0.81
VF2 (Parkhi et al., 2014) 0.94 0.83 0.78 0.89 0.92 0.74 0.85
MLR 0.93 0.81 0.83 0.87 0.91 0.86 0.87
MLR* 0.96 0.84 0.92 0.93 0.96 0.92 0.92

Table 3.5.: Comparison with the approaches by Sivic et al. (2009) and Parkhi et al. (2014)
in terms of average precision as reported in the respective papers. The com-
parison is performed on Sivic et al. (2009)’s tracks. Training and testing is
performed on each episode separately following the protocol of the original
papers. MLR* denotes performance when taking into account all episodes
jointly for training. For joint training, Sivic et al. (2009) report an increase in
AP to 0.82 and 0.79 for BF-3 and BF-6, respectively.

per character and further restrict the kernel basis to a maximum of 20000 features (Lee
and Mangasarian, 2001) (cf . Sec. 5.2.1). If not otherwise specified, we employ 50000
unlabeled features and 100000 constraint pairs. We select parameters λ, µ and γ on a
separate validation set, consisting of episodes 12-15 of each series.

In the following, we analyze the performance of our approach.

Comparison of influence of different loss terms We compare the recognition
performance by incorporating the different loss terms in Tbl. 3.4 (for details see Tables 3.7
(BBT) and 3.7 (BUFFY)). The incorporation of the entropy lossLu for unlabeled data
only provides a marginal improvement. A possible explanation is that the data obtained
from the automatic speaker assignment is already well-defined enough to place decision
boundaries at correct locations. We selected unlabeled features by subsampling (see
above).

A possible avenue for future work might be to select unlabeled features with a more
sophisticated strategy to improve their impact. Constraints on the other hand have a
more visible influence. The models learned by including the constraint lossLc show a
2% (respectively 1.3%) improvement in track-level accuracy over when using only the
supervised loss. A similar increase in performance can also be observed in frame-level
accuracy and correct classification rate. For BBT, the inclusion of the constraint loss is
also able to reduce the false acceptance rate, whereas this is not the case for BUFFY.
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Episode 1 2 3 4 5 6 Avg.

Speaker BBT

automatic 89.50 90.24 76.36 78.79 81.30 65.92 80.35
ground truth 94.52 93.50 77.42 83.52 82.25 62.40 82.27

BUFFY

automatic 78.52 71.12 75.46 75.78 73.69 69.65 74.04
ground truth 82.91 80.28 82.50 79.33 77.98 75.33 79.72

Table 3.6.: Influence of the noisy speaker assignment. Correcting the speaker assignments
to the ground truth track identities improves performance for both BBT and
BUFFY. The relative improvement for BUFFY is higher, possibly since the
original speaker labels were noisier.

Comparison with related work We compare our approach with baseline approaches
from (Sivic et al., 2009) and (Parkhi et al., 2014) and report results in Table 3.5. As (Sivic
et al., 2009) is an extension and improvement of (Everingham et al., 2006), we do not
explicitly compare with the latter. We evaluate on their tracks (cf ., Table 2.8) to perform
a fair comparison. The rest of our pipeline is as described above. Following their
evaluation protocol, we train and test on each episode separately and do not count
speaker-assigned tracks in the evaluation. We report results in terms of average precision
to be comparable with the reported results from (Sivic et al., 2009) and (Parkhi et al.,
2014), respectively.

Our approach (denoted MLR in Table 3.5) outperforms both other approaches with a
mean average precision of 0.87. By training and testing on each episode separately, some
characters are underrepresented in terms of available training data for some episodes.
If we take training data from all episodes into account and train a joint model over all
episodes, mean average precision increases to 0.92 (method denoted as MLR*). Using
training data from all episodes, Sivic et al. (2009) report for their approach an increase in
AP to 0.82 and 0.79 for BF-3 and BF-6, respectively.

Correcting speaker labels The speaker assignment (Sec. 3.3.2) is not perfect and the
label accuracy is only around 80-90% (cf ., Tbl. 3.1). In order to analyze the influence
of these errors, we correct all speaker assignments to the underlying true track identity.
As can be seen in Tbl. 3.6, the correction of the speaker labels has a positive influence
on the recognition performance. The impact on BUFFY is higher, possibly since the
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original labels were noisier. However, this experiment also shows, that only increasing
precision is not enough. A more accurate speaker assignment method could be beneficial,
but ideally it would not only increase precision of the labels but also the recall, labeling
more of the possible speaker tracks.

Track length In Fig. 3.5 (a,b) we analyze the recognition performance in dependency
of the track length. We show both the absolute number of correctly/wrongly labeled
tracks (Fig. 3.5 (a)) as well as the relative ranks of the correct track depending on the
track length (Fig. 3.5 (b)). Similar to what was one of our motivations for a better tracker,
we observe that with increasing track length the recognition rate rises consistently. For
tracks shorter than 25 frames, we obtain recognition accuracies below 60%, while for
tracks with a length above 75 frames, the recognition accuracy is around 80%.

However, we also observe that a large number of tracks is actually shorter than 75 frames.
In part, this is due to the non-perfect tracker which still breaks tracks within a shot
due to difficult poses or short-term occlusions. On the other hand, the track length is
also bounded by the shot length, and cannot be extended indefinitely even by a perfect
tracker.

Face size In Fig. 3.5 (c,d) we analyze the dependency of track-level accuracy on the
mean face size of a track. As expected, a small face is generally harder to recognize than
a larger face, with accuracies around 45% for faces of size below 25px up to over 90%
starting with faces above 100px in width.

Interesting to note is also the distribution of the absolute number of tracks over face size
(Fig. 3.5 (c)). There are two peaks around 40px and 100px. This is due to the filming
style in BBT with basically two camera settings, one for wide angle overview shots, and
one for close-up conversation shots. While we resize every face to a canonical size of
48x64px after alignment, it might be an interesting avenue for future work to exploit
such filming styles and for example learn two different models, one for higher and one
for lower resolution faces.

Face pose We further analyze the dependency of the track-level accuracy on the head
pose, namely the mean pan angle of the track. In Fig. 3.5 (b), we see that accuracy
consistently decreases with higher pan angles. This is not surprising, since our affine
face alignment is not able to remove the changes in appearance induce by out-of-plane
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face rotation. We also observe a small reduction in accuracy around the frontal pose.
One possible reason for this might be that many small faces, e.g. from extras in the
background of wide angle shots, are mostly frontal faces. However, for both small faces
as well as unknowns, recognition accuracy is lower than average, and influence the frontal
performance as well.

Characters The recognition accuracies across different characters can be found in
Fig. 3.5 (g,h). Unknown characters, although they present the fourth largest number of
tracks, are only very poorly recognized. The true identification rate for unknowns lies
below 10%. This is also reflected in a high false acceptance rate. One possible reason is
that they are underrepresented in the training set with only 10 tracks labeled as unknown
over the 6 episodes (cf ., Tbl. 3.2). Main characters are recognized well with around
90% accuracy each. If the number of training samples is low for a character, the model
deteriorates and so does the model’s performance, for example for Kurt, Gablehauser,
Doug and Summer. Also for Raj, despite being a main character, fewer training samples
are available since he does not speak very often (cf ., Table 3.2).

Character confusion matrix Confusion matrices of the character assignments can
be found in Figures 3.7 and 3.8 for BBT and BUFFY, respectively. As in Fig. 3.5 (g,h),
we observe that unknowns are confused often with other known characters. Also, for
characters for which the speaker assignment performed poorly, exhibit more confusion
with other characters. This was expected and motivates the investigation of better visual
speaker detection methods in future work.

Dependency on the number of constraints See Fig. 3.6 for an analysis of the
influence of the number of considered constraints on the accuracy. In this setting, we
do not consider any unlabeled samples. We train model on BBT and BUFFY for using
different numbers of constraints, ranging from as few as 1000 constraints to 10000000
constraints. Both frame- and track-level accuracy benefit from a higher number of
constraints.
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Figure 3.5.: Track-level recognition accuracy on BBT in dependency of (a,b) track length,
(c,d) face size, (e,f) face pose and (g,h) the character. The left column shows
in each case the absolute numbers of correctly/wrongly labeled tracks, while
the right column shows the relative performance over multiple ranks.
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Figure 3.6.: Recognition accuracy in dependency of the number of constraints employed
during training for (a) BBT and (b) BUFFY. Both track-level and frame-level
accuracy improve with a higher number of constraints.
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Track-level Accuracy

Ll 89.04 88.46 73.94 77.16 78.63 62.98 78.37
Ll +Lu 89.04 88.46 73.79 77.49 78.63 63.10 78.42
Ll +Lc 89.65 90.24 76.36 78.14 81.49 65.69 80.26
Ll +Lu +Lc 89.50 90.24 76.36 78.79 81.30 65.92 80.35

Frame-level Accuracy

Ll 91.34 91.84 76.47 85.27 80.70 73.32 83.16
Ll +Lu 91.34 91.84 76.43 85.46 80.70 73.18 83.16
Ll +Lc 94.49 94.70 80.77 87.02 85.09 76.98 86.51
Ll +Lu +Lc 94.35 94.70 80.80 87.35 84.93 77.27 86.57

Correct Classification Rate

Ll 92.13 92.03 88.91 88.33 88.04 82.98 88.74
Ll +Lu 92.13 92.03 88.91 88.53 88.04 82.82 88.75
Ll +Lc 95.05 94.89 91.35 90.35 91.57 85.76 91.49
Ll +Lu +Lc 94.91 94.89 91.31 90.69 91.39 85.99 91.53

False Acceptance Rate

Ll 56.87 100.00 98.34 94.10 92.87 83.37 87.59
Ll +Lu 56.87 100.00 98.62 94.10 92.87 83.37 87.64
Ll +Lc 39.62 100.00 82.82 98.97 79.70 74.50 79.27
Ll +Lu +Lc 39.62 100.00 82.43 98.97 79.70 73.88 79.10

False Rejection Rate

Ll 0.00 0.56 0.00 0.19 0.00 0.90 0.27
Ll +Lu 0.00 0.56 0.00 0.07 0.00 0.90 0.26
Ll +Lc 1.40 2.72 2.98 0.08 2.26 0.63 1.68
Ll +Lu +Lc 1.54 2.60 2.99 0.08 2.26 0.64 1.68

Table 3.7.: Result details for BBT.
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

Track-level Accuracy

Ll 77.39 69.12 74.62 75.33 71.43 68.32 72.70
Ll +Lu 77.76 68.92 74.62 75.22 71.31 68.41 72.71
Ll +Lc 78.64 71.22 75.71 75.67 73.45 69.74 74.07
Ll +Lu +Lc 78.52 71.12 75.46 75.78 73.69 69.65 74.04

Frame-level Accuracy

Ll 82.20 77.45 77.91 83.03 80.15 75.06 79.30
Ll +Lu 82.67 77.50 77.77 82.96 80.02 75.12 79.34
Ll +Lc 83.87 78.66 80.53 83.19 82.55 74.78 80.60
Ll +Lu +Lc 84.18 78.66 80.57 83.26 82.85 74.53 80.67

Correct Classification Rate

Ll 82.35 82.68 77.89 85.55 85.17 78.09 81.95
Ll +Lu 82.83 82.81 77.75 85.48 85.17 78.15 82.03
Ll +Lc 84.04 84.68 80.53 85.71 87.17 77.79 83.32
Ll +Lu +Lc 84.35 84.67 80.57 85.79 87.46 77.53 83.39

False Acceptance Rate

Ll 59.69 71.09 19.87 100.00 72.47 94.32 69.57
Ll +Lu 59.69 71.74 19.87 100.00 74.04 94.32 69.94
Ll +Lc 59.69 77.09 19.87 100.00 65.94 94.32 69.49
Ll +Lu +Lc 59.69 77.09 19.87 100.00 65.49 94.32 69.41

False Rejection Rate

Ll 0.90 0.66 0.02 0.10 0.00 0.63 0.39
Ll +Lu 0.90 0.66 0.02 0.10 0.00 0.63 0.39
Ll +Lc 0.91 0.94 0.51 0.46 0.03 0.81 0.61
Ll +Lu +Lc 0.80 0.95 0.53 0.46 0.03 0.81 0.60

Table 3.8.: Result details for BUFFY.
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Figure 3.7.: Confusion matrix for BBT results. As can be seen also in Fig. 3.5 (g), un-
knowns are confused most often with other known characters. Despite
having 97% precision own his assigned tracks, Leonard collects quite a few
tracks from other characters. Comparing these results with the speaker
assignment performance (Tbl. 3.2), we observe as expected that those char-
acters which were assigned only a few labels or whose assignments had low
precision, also perform worse in the actual identification.
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Figure 3.8.: Confusion matrix for BUFFY result. As for BBT, the bad performance
of unknown recognition is quite visible in the confusion matrix. Similarly,
those with poor speaker assignment performance show high confusion rates
with other characters.





Chapter 4

Multimodal Person Identification

The identification of faces is an important step towards full person identification. How-
ever, faces alone are generally not sufficient to recognize all persons in a movie of TV
series. On the one hand, we cannot assume that the face of the person is always localized
by the tracker. A face might be (partially) occluded, in an uncommon pose or not visible
at all, e.g. when the person is shown from behind. On the other hand, even if the face
is localized, it might not contain enough information to distinguish between different
persons. Fortunately, there are more cues in an image or video to identify a person than
just the face, for example the hair, clothing, gait, gender, speech or even the estimated
height and body size of a person. Humans, too, make use of such additional information
for a better identification (Gallagher and Chen, 2008a; Kumar and Berg, 2009).

In this chapter, we extend the problem from recognizing faces to recognizing persons, even
when the face is not visible. We perform person tracking in addition to face tracking to
localize all person instances in the video. From the video, we can automatically obtain ad-
ditional information such as clothing appearance, subtitles, audio or constraints between
tracks. The arguably most important modality after faces is the clothing appearance of a
person, since it is generally available, i.e., it can be extracted for every person, compared
for example to speech, which is only available for the current speaker. Given a face or
person detection, a rough estimate of the clothing appearance is also relatively simple to
extract. Further, clothing can be discriminative enough to differentiate between multiple
persons1, compared for example to gender, which constitutes only binary information.

1 Of course, this is data dependent. For example, discriminating between the four Teletubbies via their
color is simple, whereas discriminating between different instances of Mr. Smith in The Matrix, who all
wear similar black suits with white shirts, is not.
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In order to perform fully automatic recognition, we do not assume manual labels for
person tracks to learn clothing models. As with faces, we are interested in automatically
obtaining labels for learning clothing models. Since many of the person tracks can be
associated with faces, we use the estimated face identities from the previous chapter to
assign preliminary labels to clothing features. Of course, face identities are not 100%
accurate and we therefore consider a soft labeling with different confidences for the given
identities. The learned clothing models are then used to propagate clothing identities to
other person tracks which do not have an associated face.

We are further interested in combining more information sources than just faces and
clothing to perform the best identification. In contrast to the previous chapter, we will
perform a late fusion of the different modalities. For the fusion step, each modality is
regarded as a multi-class classifier which outputs confidences for each of the possible
identities. Some modalities can be directly associated with a face or person, whereas
others cannot (e.g., subtitles). We therefore integrate them in different ways. Finally, the
fusion is jointly performed over all tracks in a shot and takes into account additional
information such as constraints between tracks.

4.1. Background and related work

Using other information than faces for person identification has been a research topic for
a long time. In domains where a face is usually not visible with high enough resolution for
identification such as camera networks, approaches have resorted to identification based
on general appearance (e.g., Farenzena et al. (2010); Gheissari et al. (2006); Gray and Tao
(2008); Nakajima et al. (2003)) or gait (e.g. (Boyd and Little, 2005)). In the surveillance
domain, the problem is often posed as a re-identification problem, i.e. given one or
multiple instances of a person, the task is to find all other past and future appearances of
the same person. For a recent overview over appearance-based person re-identification
approaches see (Vezzani et al., 2013).

Clothing and appearance description Many different ways have been developed to
describe the general appearance of a person.

A multitude of different descriptors has been tried and evaluated in different contexts.
For example, simple histograms in different color and texture spaces have been shown
to work quite reasonable, e.g. color histograms in YCbCr (Everingham et al., 2006),
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RGB (Anguelov et al., 2007), LSH (Shi et al., 2013), LCC (Gallagher and Chen, 2008a)
or HSV (Jaffré and Joly, 2004) color spaces, and texture descriptors based on Gabor
filter responses (Anguelov et al., 2007), LBP (Shi et al., 2013), Gaussian-based filter
banks (Zhang et al., 2010), horizontal and vertical edge detector responses (Gallagher
and Chen, 2008a), covariance matrices (Bak et al., 2011) or matches of local descriptors
such as SIFT (Shi et al., 2013) or GLOH (Bäuml and Stiefelhagen, 2011).

The descriptor is often computed on a rectangular region below the face (e.g., Anguelov
et al. (2007); Everingham et al. (2006)) to avoid the need for a more sophisticated segmen-
tation of the clothing region. But clothing and general appearance of a person contain
more structure than can be captured with one global histogram. A more fine-grained
segmentation of the torso of the person has been shown to improve recognition perfor-
mance (Gallagher and Chen, 2008a; Sivic et al., 2006a)). Descriptors can for example
also be extracted from upper and lower torso regions (Annesley et al., 2005; Weber
et al., 2011), hair, face and upper body regions (Sivic et al., 2006a) or accumulated over
local regions (Farenzena et al., 2010). By performing a full body-pose estimation first,
the description can be attributed to individual body parts (Cheng et al., 2011). Body
part descriptors can also be used to find more instances of the same person in other
images (Sivic et al., 2006a) or adjacent frames (Ramanan et al., 2007a).

At a higher level, clothing can also be described in terms of the type of garment and its
configuration. Aiming towards a more semantic description of clothing in surveillance
footage, Borràs et al. (2003) match one of 5 graph structures against sub-segmentations
of the clothing region and label nodes of the graph for example as tie or jacket. For
a more fine-grained description of clothing in fashion photographs, Yamaguchi et al.
(2012) assign one of 17 clothing and accessory labels such as dress, shirt, shoes or bag
to a superpixels in an over-segmentation of the body. Similarly, high level attributes
describing the style and type of clothing and soft-biometric cues such as gender and hair
color, can be used in person re-identification tasks (Layne et al., 2012; Vaquero et al.,
2009).

Instead of defining regions and features manually, different approaches learn appearance-
based distance functions from training data. For the task of deciding for full person
images from different viewpoints whether they show the same person or not, Gray and
Tao (2008) define a feature pool from which features and feature regions are selected
by boosting to learn a discriminative decision function. Similar approaches explored
support vector ranking (Prosser et al., 2010) or metric learning (Dikmen et al., 2010;
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Hirzer et al., 2012; Köstinger et al., 2012). Following recent advances in deep learning,
the underlying features themselves can also be learned from data instead of defining a
feature pool by hand (Li et al., 2014).

Fusion of different modalities Many approaches use other modalities than just
faces alone. As another biometric cue, speech is often combined with visual cues (e.g.,
Bernardin et al. (2008); Bredin et al. (2012); Ekenel et al. (2007a)). In the context of
multimedia data and photo collections, clothing is another frequently used cue, albeit not
uniquely tied to an identity (Anguelov et al., 2007; Everingham et al., 2006; Gallagher
and Chen, 2008a; Ramanan et al., 2007a). Despite only being a binary cue, the gender
of a person can be estimated and improve the identity decision (e.g., Cour et al. (2009);
Gallagher and Chen (2008b)). Even group relations in pictures (Gallagher and Chen,
2009) or the first name combined with the age of a person (Gallagher and Chen, 2008b)
provide valuable information about a person.

In the simplest case, different modalities such as face and clothing are combined on
feature level (e.g., simply concatenating the individual descriptors) or on score level (e.g.,
combining the scores of individual modality classifiers by a weighted sum) (Everingham
et al., 2006; Kittler et al., 1998; Ramanan et al., 2007a).

An interesting approach for fusion of different modalities is presented by Markov random
fields (MRFs). MFRs were first introduced by Geman and Geman (1984) and are used
for diverse tasks such as segmentation (Boykov and Jolly, 2001; Gallagher and Chen,
2008a; Rother et al., 2004), image restoration/de-noising Geman and Geman (1984);
Greig et al. (1989), depth-estimation (Boykov et al., 1998). An MRF describes the joint
distribution of a set of random variables as an undirected graph, where dependencies
between random variables are given by edges within the graph. By modeling each face as
a random variable, a joint distribution over all face identities can be expressed, including
interdependencies between faces.

As such, MRFs have been used for inference of identities in different approaches for
person identification in personal photo collections (Anguelov et al., 2007; Gallagher
and Chen, 2007; Lin et al., 2010). Gallagher and Chen (2007) focus on faces only. They
incorporate a pairwise potential between nodes to model the similarity between faces
in different images and to enforce uniqueness of identities in the same image. Anguelov
et al. (2007) further include a pairwise potential to incorporate clothing similarity. In
order to deal with changes in clothing, the timestamps of the photos are considered to
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learn clothing models for limited time intervals. Lin et al. (2010) extend their MRF
model to recognize events and locations of the photos jointly with recognizing people.
By establishing a person-location relationship, the presence of a person at a particular
location can be inferred, and in turn be used for constraining the identification based on
the present people.

4.1.1. Discussion and contribution

The inclusion of additional context in the identification decision has been validated by
many approaches. Biometric cues such as speech clearly provide additional information
on the unique identity of a person. However, also non-unique modalities such as clothing,
age, gender or even the first names provide cues and constraints on the identity. Markov
Random Fields have been shown to be a powerful tool to model both the fusion of
different modalities as well as the dependencies between faces and persons in connected
images.

In this chapter, we extend previous work on naming faces in TV series/multimedia data
to naming persons. That is, we localize persons independently from faces with the goal
to increase the recall on the named person instances in the video beyond those where a
face is visible and detected. Although person detection is a difficult problem in itself and
the recall of current approaches is not comparable with face detection methods, we show
that with a current state-of-the-art detector we are able to increase both the number of
named persons as well as the precision on the existing face tracks.

Following the work in the context of personal photo collections, we propose a late fusion
scheme for identities in videos, modeling person and face tracks as random variables
over identities in a Markov random field. As such, we can both incorporate different
modalities into the recognition as well as incorporate constraints on the identities. We
further propose to include information from transcripts and subtitles to indicate the
presence of a person within a shot. So far, this information has only been used during
training of face models and was not enforced during identification. Inference of the
identities is performed jointly within a shot, in contrast to a track-by-track decision as in
previous approaches on character naming.

For describing clothing, we employ RGB color histograms due to their simplicity.
Although many more sophisticated features have been described in the literature, simple
color histograms were shown to provide already an effective description of the general
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appearance of a person. We propose an automatic approach to assign identity labels to
clothing clusters to avoid requiring manual labels. In contrast to previous work, our
clothing descriptor is not dependent on the availability of faces.

Acknowledgment This chapter contains joint work with Makarand Tapaswi, who I
supervised for his Master thesis (Tapaswi, 2011).

4.2. Preprocessing

In contrast to the previous chapter, we will describe the preprocessing steps on the data
before going into details on the method. This simplifies the description of the method as
it directly builds on the different parts of the pre-processing.

In the following, we will first discuss the localization of persons in the videos and the
association with their possible face tracks. We will also briefly describe the computation
of the clothing descriptor and the detection of scene boundaries in order to detect possible
clothing change time points.

4.2.1. Person detection and tracking

Similar to faces, we first need to localize persons before reasoning about their identities.
By and large, person detection and tracking is very similar to face detection and tracking,
and all advantages of detector-based tracking similarly apply to person tracking. However,
in contrast to faces, persons are very non-rigid “objects” due to their many degrees of free-
dom of how to move arms, legs and modify their body posture. This makes the detection
step considerably harder and state-of-the-art person detection methods (e.g., Bourdev and
Malik (2009)) do not perform quite as well as their face detection counterparts.

Similar to faces, a multitude of detection methods is described in the literature. Com-
monly well perform methods based on histograms of oriented gradients (HOG), such as
the original HOG-based holistic SVM approach (Dalal and Triggs, 2005), an extension
to a part-based model with a latent SVM (Felzenszwalb et al., 2009) or an ensemble of
hundreds of Poselets (Bourdev and Malik, 2009). Part-based models can deal to some
extent with partly occluded persons which are very common in multimedia data due
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Ep. MOTA MOTP FP(R) MISS(R) BMM(R) GMM(R) TR TP

1 0.670 0.658 25 (0.022) 248 (0.226) 2 (0.001) 87 (0.079) 0.806 0.964
2 0.626 0.629 16 (0.015) 314 (0.306) 0 (0.000) 53 (0.051) 0.747 0.970
3 0.645 0.653 50 (0.053) 241 (0.256) 0 (0.000) 42 (0.044) 0.764 0.913
4 0.592 0.623 43 (0.043) 285 (0.287) 1 (0.001) 76 (0.076) 0.751 0.929
5 0.575 0.619 51 (0.054) 284 (0.300) 0 (0.000) 66 (0.069) 0.739 0.918
6 0.518 0.512 100 (0.077) 399 (0.308) 1 (0.000) 123 (0.095) 0.729 0.875

Table 4.1.: Person tracking evaluation for BBT. The MOTA is consistently worse than
for faces. However, this is mostly due to a high miss rate (MISSR), as expected
due to the more difficult problem of person detection. Despite the high
miss rate, we still obtain a track recall (TR) between 70% and 80%. There
are almost no bad mismatches (BMM), i.e. track switches between different
persons, which is important for later identification.

to crops at the image border. From these options, we select the Poselet approach by
Bourdev and Malik (2009) due to its state-of-the-art performance.

For tracking, we follow (Huang et al., 2008) and associate detections from neighboring
frames according to an affinity measure based on distance and size of adjoining person
detections. In order to assess the performance of our tracker, we annotated person
bounding boxes for every 10th frame of the first 6 episodes of The Big Bang Theory. The
evaluation in terms of MOTA and related measures can be found in Table 4.1.

4.2.2. Clothing descriptor extraction

For clothing description, we use simple RGB color histograms at a fixed relative region
within the person bounding box. Despite more advanced methods for clothing descrip-
tion, color histograms were shown to perform reasonably well in previous work. Due to
their simplicity, they can be used without the need for other complex prerequisites such
as a body pose estimator.

We compute one descriptor per person bounding box as determined by the tracker. We
define the descriptor region as (x, y, w, h) = (0.1 · w, 0.2 · h, 0.8 · w, 0.3 · h) within the
person bounding box. The RGB histogram comprises 4× 4× 4 bins, resulting in a
64-dimensional descriptor c. We normalize the descriptor to unit-norm, i.e. c← c/||c ||
To reduce the influence of single outlier bins, we threshold each bin at 0.1 and then
re-normalize the descriptor, i.e. ci ←min(0.1, ci ); c← c/||c ||, similar to (Dalal and Triggs,
2005; Lowe, 2004).
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We regard this color feature as a good baseline in order to determine what can be achieved
with a very simple feature. Naturally, a more sophisticated descriptor is expected to
improve overall identification performance. Similarly, a better segmentation of the
clothing region, possibly in multiple sub-regions and jointly performed for all detections
in the image should decrease the influence of background and occluders.

4.2.3. Scene detection

Characters can change their clothing multiple time within one episode or movie. This
usually happens when the plot jumps in time or the location changes. Often, especially
in sitcoms, such cuts are emphasized by a special audio jingle or visual sequence.

In BBT, special computer graphics-rendered sequences are used. They have a distinct
color gradient as background. For simplicity, we employ a specialized method to detect
these scenes. A color gradient is difficult to capture in a few colors. We therefore
compute the 8 dominant colors for each frame in Lab color space according to (ISO/IEC
15938-3, 2001). We then backproject each pixel in the frame to its closest dominant color
and compute the mean difference between the original frame and its dominant color
backprojection

DCD=
1

N

∑

x,y

||I (x, y)−DC BP (x, y)|| (4.1)

as the dominant color descriptor (DCD) for that frame. A simple threshold suffices to
locate the special sequences of BBT without errors.

The scene detection results in a set of timestamps {ti} at which we assume the possibility
of clothing changes.

4.3. Global identity model

In order to obtain identities for person tracks, we first need to build clothing models
using the color features described above. We will describe an automatic method to
associate some of the clothing descriptors with identities in the following. We will also
describe how subtitles can be used as another modality next to clothing and faces for
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identification. Finally, we present in this section a model for jointly assigning identities
within a shot, incorporating the different modalities in the identity decision.

4.3.1. Person clustering and identity assignment

In order to automatically assign identities to some of the person tracks, we first associate
person tracks with face tracks. We transfer the face tracks’ identities as obtained from
Chapter 3 to their associated person tracks. Since face identification results are expected
to be noisy (with accuracies as low as 60%), we cluster similar clothing descriptors and
assign identities to clusters instead of individual descriptors to reduce the influence of
noise from the labels. Also, outliers such as from occlusions can be overturned by other
labels in the cluster.

1. Clustering of clothing descriptors We perform agglomerative clustering with
Ward linkage (Ward, 1963) on the descriptors. The goal of the clustering of descriptors is
to obtain pure clusters, i.e. in the ideal case we do not want to mix descriptors from differ-
ent persons. Firstly, this is achieved by clustering descriptors within each scene separately,
using the timestamps of scene boundaries from the scene detection (see Sec. 4.2.3). That
is, clothing descriptor clusters are never merged across scenes. This prevents that the
descriptors of two person get merged when they wear similar clothing albeit in different
scenes. Secondly, we employ a low threshold θc for cluster merging.

See Table 4.2 for clustering results on BBT. The low threshold leads to an over-clustering
of the descriptors, i.e. we usually obtain more clusters than characters in each scene. At
the same time, we are able to maintain a high purity of the clusters. The number of
clusters is significantly lower than the number of face tracks, indicating that we cluster
across and not just within tracks.

2. Cluster identity assignment Given the clothing clusters, we now assign identities
to some of the clusters using the identities from the face tracks.

We first start by associating face tracks with person tracks based on their relative location.
We define an expected face region within the person bounding box as (x, y, w, h) =
(0.1 ·w, 0.0 · h, 0.8 ·w, 0.2 · h). If the face lies strictly within the expected face region for at
least 5 frames, we associate face and person track, i.e. assume that they stem from the
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Ep. #scenes #tracks #clusters avg. cluster size avg. cluster purity

1 6 792 205 223 0.934
2 7 717 331 109 0.977
3 7 712 316 115 0.990
4 10 729 358 101 0.925
5 8 714 305 115 0.968
6 6 1157 282 163 0.937

Table 4.2.: Clustering results for BBT. Due to the over-clustering the cluster purity is
very high.

same person. We will reuse the association also later in the joint identification (Sec. 4.3.3)
to infer one joint identity for each associated face and track.

Using the associations, we accumulate identities for each cluster. For cluster Ci = {ci j }
and associated face tracks identities yi j ∈ {1..K ,∅} (∅ denotes for the unknown class), we
compute the frame-based identity distribution as

PCi
(y = k) =

1

|Ci |

∑

j

1[yi j = k] , (4.2)

i.e. we count how many frames in the cluster are associated with face tracks of each
identity.

Since neither the clusters are completely pure, nor the face identities are fully correct,
the accumulated identities can also be impure. We therefore impose two restrictions on
assigning an identity to a cluster. First, at least 10% of the frames of the cluster must be
assigned an identity, i.e. |{yi j 6=∅}|> 0.1|Ci |. Second, the most frequent identity must
be assigned to at least 60% of the assigned frames, i.e. maxk PCi

(y = k)> 0.6. If these two
conditions are met, we call the cluster assigned.

The likelihoods of the identities will further be used for obtaining track identity likeli-
hoods (see below).

3. Track identity assignment In order to compute identity likelihoods for a whole
track, we first compute identity likelihoods for all frames of the track. For a frame which
already belongs to an assigned cluster, we directly use the corresponding cluster’s identity
likelihoods .
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For all other frames Fu = { fui}, we compute the distance of the corresponding clothing
descriptor to the assigned clusters’ mean descriptors c i =

1
|Ci |
∑

j ci j . The frame’s identity
likelihoods are computed as a weighted sum over all assigned clusters’ identity likelihoods

P fu
(y = k) =

∑

i

wi · PCi
(y = k) (4.3)

where the weight wi = exp{−(cu − c i )/(
∑

j cu − c i )} controls the contribution of cluster
Ci with an exponential decay based on the distance between the clothing descriptor and
the respective cluster mean.

Given all individual frame likelihoods, we can compute the identity likelihoods of track
ti by averaging over its frames f j

Pti
(y = k) =

1

N

N
∑

j

P f j
(y = k) . (4.4)

4.3.2. Speaker presence

We can usually assume that the current speaker is present in the frame. Given an identity
of the current speaker (e.g., from speech recognition or subtitles), we can therefore
infer that at least one of the face or person tracks should have the same identity. We
already exploited this assumption in the generation of weak labels for training face
models (see Sec. 3.3.2). Since there can be multiple persons at the same time in the frame,
we cannot directly associate the speaker identity with one specific track. In Sec. 3.3.2
we detected whether any of the faces was speaking by a separate mechanism. However,
when the face of the current speaker is not detected, i.e. we only have a person track, or
the speaker detection fails due to a non-frontal pose, we cannot perform the association.
Therefore, we integrate presence as a independent cue, not associated to any track. The
association will be performed implicitly during the identification (see Sec. 4.3.3).

One possible way to determine the current speaker would be to perform speaker recog-
nition using the audio channel of the video. However, this would require a separate
training step and introduce new errors. Instead, we use the subtitle-transcript alignment
as described in Sec. 3.3.2 to obtain the identity of the current speaker, achieving a very
high precision of 99.9% correctly labeled subtitles with a recall of 91.2%.
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Figure 4.1.: Illustration of the MRF for fusion and joint identification. The video is
divided into scenes and shots. For each track, there is one associated identity
variable µi . Each identity variable is associated with respective face results
fi and clothing results ci , if present, and the speaker presence s via the joint
presence variable ν. Overlapping tracks are further interconnected via the
uniqueness potential Ψu .

4.3.3. Fusion of modalities and joint identification

A Markov random field (MRF) describes the joint distribution of a set of random variables,
where dependencies between random variables are given by edges within the graph.
In this framework, we model face/person tracks as random variables over identities
and introduce connections between them within shots, for example to (softly) enforce
uniqueness of identity assignments of co-occurring tracks or the presence of the current
speaker.

Let for each shot denote µ= {µ1, . . . ,µn} the set of identity variables associated with a
face or person track. We encode the identity variables as k + 1-dimensional vectors, for
the k known person plus the unknown class. Each of the identity variables is associated
with the respective face results fi and clothing results ci , if available (see Fig. 4.1). If
further per-track modalities are available, e.g. gender, age or similar, they can be integrated
straightforwardly into the model.
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We define the joint density in terms of an energy E(µ) as

P (Y =µ) =
1

Z
e−E(µ) , (4.5)

where Z =
∫

µ
e−E(µ) is the partition function, ensuring that

∫

µ
P (Y = µ) = 1. The

energy E(µ) consist of unary terms Φk(µi ) for the individual modalities and pairwise
terms Ψl (µi ,µ j ) for the relationships between different variables

E(µ) =
∑

k

wk

∑

i

Φk(yi )+
∑

l

wl

∑

i , j

Ψl (yi , y j ) . (4.6)

We are interested in finding the identity assignment µ∗ that minimizes E(µ), correspond-
ing to a maximization of P (Y =µ). We disregard Z in the following since it is constant
in µ and therefore only a constant factor in the maximization of P (Y =µ).

In the following, we will motivate and define the unary and pairwise terms for the
different modalities and relationships. Intuitively, a unary term should be low when the
identity variable matches the likelihoods from the respective modality and high if they
do not match.

Face unary We define the face unary as

Φ f (µi) =−〈µi, fi〉 . (4.7)

The negative dot product has the desired property of being low, when the variable
matches the face likelihoods. For example, if fi1 is high, indicating that the face matched
the model of person 1, Φ f (µi) will be low if the identity variable µi1 is also high and vice
versa.

Clothing unary The clothing unary is basically identical to the face unary, just taking
into account the identity likelihoods from the clothing-based recognition

Φc (µi) =−〈µi,ci〉 . (4.8)
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Presence unary In order to reason about the presence of characters, we need to
combine the individual identity variables to a shot-wide presence variable ν . We deduce
the soft presence ν of the characters by

ν = σ
�
∑

k

µk

�

, (4.9)

where σ(x) = (1+ exp(−x))−1 is the sigmoid function. The sigmoid ensures that the
presence term cannot be dominated by one character if multiple tracks of the same
character are in the same shot, e.g. due to occlusions.

The speaker unary associates the speaker presence result s with the presence variable ν as

Φp(ν) = 〈1− ν , s〉 , (4.10)

penalizing if the character should be present according to s , but is not according to ν .

Uniqueness constraint Let P (−) be the set of track pairs that co-occur, i.e. share at
least one common frame. For co-occurring tracks, we define a pairwise term between
the corresponding identity variables µi and µ j that penalizes the assignment of the same
identity

Ψu(µi ,µ j ) = 〈µi ,1:k ,µ j ,1:k〉 (4.11)

whereµ∗,1:k is the reduced identity variable excluding the unknown class. Since we do not
resolve unknown tracks further, we do not enforce a unique assignment on unknown.

Regularization In order to avoid that µ grows unbounded, we regularize µ using a
standard L2 regularization term. Following the above notation, the regularization term
is

Φr (µ) =
∑

i

〈µi ,µi〉 (= ||µ||
2) (4.12)
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Given the above unaries and pairwise terms, the complete energy becomes

E(µ) = w f

∑

i

Φ f (µi )+wc

∑

i

Φc (µi )+ . . .

+wpΦp(ν)+wu

∑

(i , j )∈P (−)
Ψu(µi ,µ j )+wrΦr (µ) (4.13)

with respective weights w∗ to control the relative influence of each modality. For our
following experiment, we use equal weights w f = wc = wp = wr = 1 for all but the
uniqueness term, which we enforce slightly more with wu = 2.

Energy minimization In order to jointly assign identities using the above model, we
minimize Eq. 4.13

µ∗= argmin
µ

E(µ) such that 0≤µi j∀i , j . (4.14)

The positivity constraint on µ ensures that µmaintains positive scores. We minimize
Eq. 4.13 using an active set method (Nocedal and Wright, 2006) as implemented in
MATLAB.

The obtained µ∗ induces the identity labeling on each of the corresponding tracks: the
identity for track i is assigned as

k∗= argmax
k
µi k . (4.15)

4.4. Evaluation

For evaluation, we employ the same data set as in the previous chapters. Statistics
on the face tracks of the data set can be found in Table 3.1. We conduct experiments
using different underlying tracks for the identity variables µi , namely face tracks and a
combination of face and person tracks.

Our first motivating thesis was that by taking into account multiple modalities, we can
improve the face recognition performance by resolving ambiguities in the face descriptors
by a different modality. We therefore start by instantiating oneµi for each face track, and
use the information from clothing, speaker and uniqueness to improve face recognition
results.
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Face only 89.50 90.24 76.36 78.79 81.30 65.92 80.35
MRF F+C 93.30 93.17 80.76 80.75 83.21 67.45 83.11
MRF F+C+U 93.61 92.85 81.36 81.73 84.73 70.62 84.15
MRF F+C+U+S 94.52 94.80 82.73 82.54 84.54 70.27 84.90

Table 4.3.: Joint identification and multimodal fusion results for BBT on face tracks.
Track-level accuracy increases consistently when adding clothing (C), unique-
ness (U) and speaker presence (S) terms into the MRF energy.

However, the coverage of the above is not increased over face-only identification. We
argued that a true person identification approach should go beyond faces only. We
therefore instantiate one µi for each track in the union of face and person tracks, i.e. all
associated face and person tracks and all singular tracks, both face and person tracks,
which could not be associated. In this second setting, we associate face and clothing
unaries only to those identity variables, where the respective track is present.

Multimodal face recognition We start by investigating the influence of the different
modalities on the face recognition performance. That is, how much can the incorporation
of clothing, speech and uniqueness help improve face recognition performance?

We instantiate one µi per face track and associate the different modalities to their
respective identity variable according to the face-person track association. We evaluate
the incorporation of different modalities step by step (see Tables 4.3 and 4.6 for BBT
and Table 4.9 for BUFFY), namely face + clothing (F+C), face + clothing + uniqueness
(F+C+U) and face + clothing + uniqueness + speaker presence (F+C+U+S). At each
step, track-level accuracy, frame-level accuracy and correct classification rate increase
consistently, improving face recognition performance by an absolute 4% in average
(track-level) accuracy for BBT. For BUFFY, a similar improvement can be observed,
although less strong with an improvement of only about 2%, possibly due to problems
of reliably distinguishing clothing colors in dark image conditions.

Despite the clothing models being learned using the results of the face recognition, they
alone (without uniqueness or speaker) already provide an accuracy improvement of
about 2.7% for BBT. The improvement from the speaker modality for BBT is small
(about 0.75% compared to 1.6% for BUFFY) despite its high precision (cf . Sec 4.3.2).
One reason for this is that for some shots there is no face track of the current speaker
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Using automatic face recognition results (cf ., Chapter 3)

Face only 71.28 66.98 58.51 60.34 57.54 45.64 60.05
Face only + prior 79.92 73.47 69.33 66.80 66.23 56.75 68.75
MRF F+C 91.36 87.53 78.09 75.10 76.96 64.10 78.86
MRF F+C+U 91.89 88.06 79.25 76.15 79.28 68.21 80.47
MRF F+C+U+S 92.55 90.05 79.90 77.47 78.99 67.61 81.09

Using ground truth face labels

Face only 79.65 74.54 77.06 76.68 70.43 68.12 74.41
Face only + prior 88.30 81.03 87.89 83.14 79.13 79.23 83.12
MRF F+C 95.88 94.69 97.81 91.17 93.91 88.46 93.65
MRF F+C+U 95.74 96.15 97.16 93.41 95.94 91.03 94.91
MRF F+C+U+S 95.88 96.55 97.29 93.41 95.51 90.94 94.93

Table 4.4.: Joint identification and multimodal fusion results for BBT on the union of
face and person tracks (see text). Track-level accuracy increases consistently
when adding clothing (C), uniqueness (U) and speaker presence (S) terms into
the MRF energy. Using ground truth face labels instead of automatic face
recognition results, we test the limit of our approach and reach almost 95%
track level accuracy.

due to a tracker failure. In such shots, the presence modeling not only does not improve
results, but possibly also overturns an otherwise correct decision to comply with the
presence of the speaker. In BUFFY on the other hand, there are many close-up shots
with only a single face present (the current speaker), whose identification benefits from
the hint on the current speaker identity.

The uniqueness constraint provides a significant reduction of the false acceptance rate,
causing to overturn one or more identically labeled tracks from a known identity to un-
known. Clothing and speaker modalities on the other hand do not provide improvements
in FAR.

Extending recognition to person tracks We now extend the task to naming tracks
stemming from both faces and persons. We construct joint tracks from the face-person-
track association as described in Sec. 4.3.1 (2. Cluster identity assignment), i.e. we combine
all associated face and person tracks to a single joint track. Face and person tracks that
are not associated with any other track are considered their own “joint” track.
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

Using automatic face recognition results (cf ., Chapter 3)

Face only 61.34 52.25 57.67 54.40 53.79 54.04 55.58
Face only + prior 68.22 57.75 62.69 58.72 62.18 58.66 61.37
MRF F+C 75.71 64.19 67.25 68.27 66.90 62.19 67.42
MRF F+C+U 76.32 64.57 66.85 69.60 67.71 62.70 67.96
MRF F+C+U+S 77.63 65.74 68.39 70.93 69.58 64.43 69.45

Using ground truth face labels

Face only 77.73 73.26 76.56 70.60 72.97 77.71 74.80
Face only + prior 84.62 78.76 81.58 74.92 81.36 82.32 80.59
MRF F+C 93.32 87.29 91.02 88.70 90.63 88.74 89.95
MRF F+C+U 94.03 88.45 92.50 90.53 91.70 88.53 90.96
MRF F+C+U+S 94.33 88.45 92.83 90.78 91.35 88.82 91.09

Table 4.5.: Joint identification and multimodal fusion results for BUFFY on the union
of face and person tracks (see text).

We first compute a face recognition-based baseline for these joint tracks. To this end, we
assign any joint track its corresponding face recognition result, if a face track is associated
with the joint track (denoted Face only in Tables 4.4 and 4.5). For all other tracks, i.e.
those that only stem from a person track, we can without further information assign the
max-prior identity, i.e. the most likely identity for a track in the 6 episodes for each series.
For BBT, the max-prior identity is Leonard. The respective results are denoted Face
only + prior in the result table. Compared to the results on face tracks alone, the face
recognition-based baselines on joint tracks perform worse in terms of accuracy due to
the higher number of joint tracks and the low accuracy of the max-prior assignment of
only ≈ 30%.

Again, we evaluate the incorporation of different modalities step by step. Adding clothing
provides a big jump in performance, improving results by 10% to 78% over face-only
recognition for BBT and by 6% to 67% on BUFFY. In this setting, the clothing modality
has more impact than in the previous experiment, since it provides the strongest cue for
the person tracks without a face.

See Tables 4.4 and 4.5 for an overview of the performance in terms of track-level accuracy
and Tables 4.7 and 4.10 for detailed comparison.
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Ground truth face labels The joint recognition depends on face identification results
on two levels. They are first used to bootstrap the clothing models and then integrated
as one modality in the joint identification. Since face recognition is a very active field of
research, we expect that new advances will improve face recognition results, for example
due to better descriptors or better matching between different face poses.

In order to explore the limit of our approach in dependency of the face recognition
results, we assume face recognition results to be 100% accurate, but leave everything else
as before. We perform identification on joint face-person tracks, see Tables 4.4 and 4.5 for
an overview on track accuracies and Tables 4.8 and 4.11 for a detailed comparison. When
considering only the ground truth face results, we reach about 83% accuracy, indicating
that almost one fifth of the tracks cannot be identified via faces. By incorporating
clothing, uniqueness and speaker presence we obtain a track-level accuracy of about 94%.
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Track-level Accuracy

Face only 89.50 90.24 76.36 78.79 81.30 65.92 80.35
MRF F+C 93.30 93.17 80.76 80.75 83.21 67.45 83.11
MRF F+C+U 93.61 92.85 81.36 81.73 84.73 70.62 84.15
MRF F+C+U+S 94.52 94.80 82.73 82.54 84.54 70.27 84.90

Frame-level Accuracy

Face only 94.35 94.70 80.80 87.35 84.93 77.27 86.57
MRF F+C 94.89 96.05 84.46 88.86 86.10 78.33 88.11
MRF F+C+U 94.91 95.67 85.24 89.72 87.45 79.50 88.75
MRF F+C+U+S 95.34 96.79 85.83 89.37 87.39 79.60 89.05

Correct Classification Rate

Face only 94.91 94.89 91.31 90.69 91.39 85.99 91.53
MRF F+C 95.36 96.24 94.70 91.84 93.37 87.16 93.11
MRF F+C+U 95.38 95.86 92.98 92.43 93.65 84.91 92.54
MRF F+C+U+S 95.82 96.98 93.46 92.07 93.59 85.22 92.86

False Acceptance Rate

Face only 39.62 100.00 82.43 98.97 79.70 73.88 79.10
MRF F+C 33.63 100.00 79.05 88.27 86.92 75.80 77.28
MRF F+C+U 33.63 100.00 62.75 80.30 74.90 53.64 67.53
MRF F+C+U+S 33.63 100.00 61.54 80.30 74.90 54.82 67.53

False Rejection Rate

Face only 1.54 2.60 2.99 0.08 2.26 0.64 1.68
MRF F+C 0.66 1.26 2.20 0.00 1.34 0.39 0.98
MRF F+C+U 0.86 2.25 3.47 0.16 1.49 4.56 2.13
MRF F+C+U+S 0.86 1.41 3.08 0.60 1.49 4.45 1.98

Table 4.6.: Joint identification and multimodal fusion results for BBT on face tracks. This
table extends Table 4.3 with more details. Track-level accuracy, frame-level
accuracy and correct classification rate increase consistently when adding
clothing (C), uniqueness (U) and speaker presence (S) terms into the MRF
energy. Adding the uniqueness constraint significantly improves the false
acceptance rate.
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Track-level Accuracy

Face only 71.28 66.98 58.51 60.34 57.54 45.64 60.05
Face only + prior 79.92 73.47 69.33 66.80 66.23 56.75 68.75
MRF F+C 91.36 87.53 78.09 75.10 76.96 64.10 78.86
MRF F+C+U 91.89 88.06 79.25 76.15 79.28 68.21 80.47
MRF F+C+U+S 92.55 90.05 79.90 77.47 78.99 67.61 81.09

Frame-level Accuracy

Face only 85.04 83.86 75.19 77.52 75.59 66.87 77.35
Face only + prior 88.19 86.79 79.05 80.07 79.35 71.17 80.77
MRF F+C 94.67 93.07 83.82 84.93 83.75 74.07 85.72
MRF F+C+U 94.63 93.93 84.43 85.49 85.12 76.12 86.62
MRF F+C+U+S 94.94 95.29 84.66 86.09 84.93 75.70 86.94

Correct Classification Rate

Face only 85.77 84.09 84.47 82.76 83.18 74.97 82.54
Face only + prior 88.98 87.02 88.93 85.49 87.40 80.04 86.31
MRF F+C 95.44 93.32 93.37 90.22 92.97 83.84 91.52
MRF F+C+U 95.39 94.18 91.77 89.68 93.45 81.95 91.07
MRF F+C+U+S 95.71 95.54 91.99 90.31 93.46 81.67 91.45

False Acceptance Rate

Face only 53.75 100.00 85.14 97.64 85.93 78.29 83.46
Face only + prior 53.75 100.00 85.14 97.64 85.93 78.29 83.46
MRF F+C 45.91 100.00 78.26 91.06 90.96 80.40 81.10
MRF F+C+U 45.91 100.00 63.26 74.61 82.41 56.38 70.43
MRF F+C+U+S 45.91 100.00 62.96 74.37 84.21 57.62 70.84

False Rejection Rate

Face only 2.05 2.96 3.00 0.07 2.01 1.03 1.85
Face only + prior 2.05 2.96 3.00 0.07 2.01 1.03 1.85
MRF F+C 0.58 1.62 1.95 0.33 1.15 0.50 1.02
MRF F+C+U 0.87 2.67 2.97 1.53 1.28 5.48 2.47
MRF F+C+U+S 0.84 1.69 2.75 1.51 1.18 5.93 2.32

Table 4.7.: Joint identification and multimodal fusion results for BBT on the union of
face and person tracks (see text), using automatic face recognition results. This
table extends Table 4.4 with more details.
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BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

Track-level Accuracy

Face only 79.65 74.54 77.06 76.68 70.43 68.12 74.41
Face only + prior 88.30 81.03 87.89 83.14 79.13 79.23 83.12
MRF F+C 95.88 94.69 97.81 91.17 93.91 88.46 93.65
MRF F+C+U 95.74 96.15 97.16 93.41 95.94 91.03 94.91
MRF F+C+U+S 95.88 96.55 97.29 93.41 95.51 90.94 94.93

Frame-level Accuracy

Face only 91.17 89.62 92.36 89.34 88.06 87.61 89.69
Face only + prior 94.32 92.55 96.22 91.89 91.81 91.91 93.12
MRF F+C 97.40 97.47 99.46 95.38 97.53 94.41 96.94
MRF F+C+U 97.22 98.53 98.97 96.33 98.65 93.93 97.27
MRF F+C+U+S 97.25 98.70 99.18 96.37 98.62 94.03 97.36

Correct Classification Rate

Face only 91.42 89.66 93.12 91.94 90.56 89.80 91.08
Face only + prior 94.63 92.60 97.57 94.67 94.78 94.87 94.85
MRF F+C 97.65 97.53 99.63 97.78 98.82 96.98 98.06
MRF F+C+U 97.30 98.53 99.05 97.37 99.04 94.56 97.64
MRF F+C+U+S 97.33 98.69 99.29 97.45 99.03 94.72 97.75

False Acceptance Rate

Face only 22.06 25.47 12.54 48.06 32.29 24.59 27.50
Face only + prior 22.06 25.47 12.54 48.06 32.29 24.59 27.50
MRF F+C 15.90 25.47 1.59 39.01 12.96 19.91 19.14
MRF F+C+U 6.83 0.00 1.52 18.63 4.54 9.59 6.85
MRF F+C+U+S 6.83 0.00 1.52 19.15 4.72 9.84 7.01

False Rejection Rate

Face only 0.00 0.00 0.39 0.00 0.54 0.99 0.32
Face only + prior 0.00 0.00 0.39 0.00 0.54 0.99 0.32
MRF F+C 0.00 0.01 0.07 0.33 0.60 0.23 0.21
MRF F+C+U 0.49 0.57 0.73 1.19 0.75 3.10 1.14
MRF F+C+U+S 0.58 0.41 0.49 1.09 0.75 3.03 1.06

Table 4.8.: Joint identification and multimodal fusion results for BBT on the union of
face and person tracks (see text), using ground truth face labels. This table
extends Table 4.4 with more details.
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

Track-level Accuracy

Face only 78.52 71.12 75.46 75.78 73.69 69.65 74.04
MRF F+C 79.52 72.11 74.96 76.56 75.60 69.65 74.73
MRF F+C+U 79.52 71.91 73.62 76.00 75.48 69.39 74.32
MRF F+C+U+S 80.90 73.61 75.21 77.11 78.21 70.72 75.96

Frame-level Accuracy

Face only 84.18 78.66 80.57 83.26 82.85 74.53 80.67
MRF F+C 84.93 78.85 79.40 83.66 83.69 74.79 80.89
MRF F+C+U 84.88 79.10 78.61 83.02 83.56 74.55 80.62
MRF F+C+U+S 86.52 80.30 79.73 83.63 85.19 75.62 81.83

Correct Classification Rate

Face only 84.35 84.67 80.57 85.79 87.46 77.53 83.39
MRF F+C 85.09 85.45 79.34 86.20 88.53 77.83 83.74
MRF F+C+U 85.04 84.92 78.54 85.48 88.38 77.58 83.33
MRF F+C+U+S 86.67 86.04 79.68 86.11 89.47 78.70 84.44

False Acceptance Rate

Face only 59.69 77.09 19.87 100.00 65.49 94.32 69.41
MRF F+C 59.69 83.31 13.17 100.00 67.02 94.89 69.68
MRF F+C+U 59.69 75.65 13.17 98.16 67.02 94.89 68.10
MRF F+C+U+S 53.40 73.70 13.17 98.16 59.75 94.89 65.51

False Rejection Rate

Face only 0.80 0.95 0.53 0.46 0.03 0.81 0.60
MRF F+C 0.88 0.87 0.81 0.14 0.03 0.81 0.59
MRF F+C+U 0.88 1.50 1.43 0.68 0.03 1.37 0.98
MRF F+C+U+S 0.29 1.21 1.73 0.68 0.02 1.43 0.89

Table 4.9.: Joint identification and multimodal fusion results for BUFFY on face tracks.
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

Track-level Accuracy

Face only 61.34 52.25 57.67 54.40 53.79 54.04 55.58
Face only + prior 68.22 57.75 62.69 58.72 62.18 58.66 61.37
MRF F+C 75.71 64.19 67.25 68.27 66.90 62.19 67.42
MRF F+C+U 76.32 64.57 66.85 69.60 67.71 62.70 67.96
MRF F+C+U+S 77.63 65.74 68.39 70.93 69.58 64.43 69.45

Frame-level Accuracy

Face only 77.37 70.76 71.89 74.36 74.31 68.37 72.84
Face only + prior 78.52 72.28 72.94 75.78 76.40 70.16 74.35
MRF F+C 83.83 75.69 75.05 79.63 78.16 71.04 77.23
MRF F+C+U 84.01 76.28 74.87 80.25 78.82 70.87 77.52
MRF F+C+U+S 85.25 77.32 75.99 80.47 79.84 72.18 78.51

Correct Classification Rate

Face only 77.64 77.50 72.45 78.15 81.70 71.61 76.51
Face only + prior 78.80 79.22 73.52 79.63 84.09 73.49 78.13
MRF F+C 84.08 83.79 75.65 83.69 86.23 74.48 81.32
MRF F+C+U 84.25 82.91 75.13 83.71 86.18 74.17 81.06
MRF F+C+U+S 85.47 83.90 76.27 83.98 86.71 75.55 81.98

False Acceptance Rate

Face only 74.19 81.90 61.46 100.00 78.32 93.85 81.62
Face only + prior 74.19 81.90 61.46 100.00 78.32 93.85 81.62
MRF F+C 62.26 87.61 61.19 100.00 79.27 95.16 80.91
MRF F+C+U 60.65 75.50 40.18 87.74 73.59 92.65 71.72
MRF F+C+U+S 56.77 74.06 40.18 88.33 69.07 92.65 70.18

False Rejection Rate

Face only 0.71 0.85 0.53 0.20 0.03 0.73 0.51
Face only + prior 0.71 0.85 0.53 0.20 0.03 0.73 0.51
MRF F+C 0.78 0.78 0.92 0.14 0.03 0.76 0.57
MRF F+C+U 1.32 1.70 1.89 1.63 0.15 2.31 1.50
MRF F+C+U+S 0.78 1.41 1.88 1.97 0.10 2.36 1.42

Table 4.10.: Joint identification and multimodal fusion results for BUFFY on the union
of face and person tracks (see text), using automatic face recognition results.
This table extends Table 4.5 with more details.
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BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

Track-level Accuracy

Face only 77.73 73.26 76.56 70.60 72.97 77.71 74.80
Face only + prior 84.62 78.76 81.58 74.92 81.36 82.32 80.59
MRF F+C 93.32 87.29 91.02 88.70 90.63 88.74 89.95
MRF F+C+U 94.03 88.45 92.50 90.53 91.70 88.53 90.96
MRF F+C+U+S 94.33 88.45 92.83 90.78 91.35 88.82 91.09

Frame-level Accuracy

Face only 92.74 90.54 90.21 88.93 90.49 92.16 90.84
Face only + prior 93.90 92.06 91.26 90.35 92.58 93.95 92.35
MRF F+C 97.32 95.49 94.93 95.40 95.40 95.22 95.63
MRF F+C+U 97.40 95.57 96.31 96.09 95.78 94.01 95.86
MRF F+C+U+S 97.54 95.43 96.45 96.39 95.72 94.35 95.98

Correct Classification Rate

Face only 92.91 91.98 90.98 90.57 93.95 92.80 92.20
Face only + prior 94.07 93.69 92.05 92.06 96.33 94.68 93.81
MRF F+C 97.44 96.88 95.75 96.62 97.27 95.79 96.62
MRF F+C+U 97.51 95.92 96.96 96.88 97.18 94.46 96.49
MRF F+C+U+S 97.66 95.79 96.97 97.21 97.21 94.83 96.61

False Acceptance Rate

Face only 37.42 20.69 55.89 43.25 34.15 20.22 35.27
Face only + prior 37.42 20.69 55.89 43.25 34.15 20.22 35.27
MRF F+C 25.48 15.35 53.70 28.60 17.87 15.58 26.10
MRF F+C+U 23.87 7.10 42.83 19.40 14.21 14.64 20.34
MRF F+C+U+S 25.48 7.42 34.61 19.77 14.87 14.89 19.51

False Rejection Rate

Face only 0.00 0.23 0.00 0.00 0.32 0.15 0.12
Face only + prior 0.00 0.23 0.00 0.00 0.32 0.15 0.12
MRF F+C 0.00 0.85 0.07 0.06 0.16 0.35 0.25
MRF F+C+U 0.18 2.22 0.18 0.62 0.85 2.00 1.01
MRF F+C+U+S 0.18 2.09 0.24 0.55 0.85 1.93 0.97

Table 4.11.: Joint identification and multimodal fusion results for BUFFY on the union
of face and person tracks (see text), using ground truth face labels. This table
extends Table 4.5 with more details.





Chapter 5

A Time Pooled Track Kernel

In Chapter 3 we learned frame-based face models. That is, our training data consisted
of descriptors of individual frames, and for identification we first classified each frame
separately before fusing the individual results for a joint track decision.

However, the number of frames to consider during training can quickly grow too large
to handle. Video data in the multimedia domain alone amounts to millions of hours of
data, with hundreds of hours added per day. Efficiency, both in terms of computational
and memory requirements, should therefore be taken into account. Especially for
kernel-based methods, the memory requirements grow quadratically with the number of
training features: the Gram matrix consists of the value of the kernel function for every
pair of features.

However, tracks can also be regarded as image sets, which can be advantageous for
multiple reasons: Image sets can be represented more compactly than the set of individual
frames (e.g., Hu et al. (2011)). Especially for distance or Gram matrices, memory
requirements reduce to the order of O(M 2), where M is the number of sets, compared
to O(N 2) with N denoting the number of descriptors across all sets combined (usually
M � N ). This is especially important in the context of large scale learning, where it
might be infeasible to keep all individual descriptors (let alone a kernel’s Gram matrix
with memory requirement O(N 2)) in memory. Therefore, given a finite amount of
memory, track representations can have more discriminative power than (a subset of)
individual frames. Furthermore, at test time, image set comparisons and decisions can be
more efficient to compute, possibly at the expense of a one-time pre-computational step.
This is desirable when quick iterations of training and testing are required, e.g. when user



100 A Time Pooled Track Kernel

feedback is obtained and training cycles are performed with a human in the loop (see
Sec. 5.3).

In this chapter, we present a generic time-based pooling kernel for tracks.

5.1. Background and related work

For large scale learning, different advances have been made recently. Shalev-Shwartz
et al. (2007) proposed a primal linear Support Vector Machine solver based on stochastic
gradient descent that scales well to large problem instances. For some classes of non-linear
kernels, mappings to approximate feature maps Ψ̂(x) have been proposed in order to
benefit from the speed-ups for linear SVMs (Maji et al., 2008; Vedaldi and Zisserman,
2012). However, these techniques usually rely on an explicit feature map expansion
which is impractical for very large or even infinite dimensional feature maps.

Different specific set distances have been devised for image sets in general. We can
differentiate between how approaches represent an image set, e.g. via its covariance
matrix (Wang et al., 2012) or its convex hull (Hu et al., 2011), and the way image sets are
compared, such as smallest distance between subspaces (Cevikalp and Triggs, 2010; Hu
et al., 2011) or correlation-based measures (Wang et al., 2008).

Kernels on sets are more prevalent in the context of local features, where an image or
object is represented by a set of local features (e.g., Wallraven et al. (2003)). Robustness
for such set kernels can for example be improved by non-uniform weighting (Lyu, 2005).
The pooled NBNN kernel (Rematas et al., 2012) pools base kernel comparisons on
local features over sub-classes or visual-word-like clusters. This is closely related to our
approach, however, it requires clustering in feature space which can be computationally
expensive, whereas we do not.

In the context of face recognition multimedia data, Parkhi et al. (2014) proposed a
feature composition method to obtain one feature per track based on Fisher vector
encoding of dense SIFT features. Other encodings such as the covariance matrix of the
descriptors (Wang et al., 2012), can be easily implemented for face tracks as well.
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5.1.1. Discussion and contribution

We propose a time-based pooling kernel for tracks which incorporates as special cases
both the normalized sum kernel (Lyu, 2005) and frame-wise base kernels. The kernel
pools local kernel evaluations over time, leveraging the structure of tracks. In contrast to
the pooled NBNN kernel, this is very efficient since it does not require a clustering step
in feature space, which can be computationally expensive.

With the proposed time pooling kernel we both reduce the memory requirements during
training and are able to speed up training-testing iterations at the same time. Due to
the structure of the kernel, classification/identification of all tracks can be performed
simultaneously and efficiently by means of a single matrix multiplication. Quick turn-
around times (training a new model and inferring new identities for all tracks) allows
efficient incorporation of feedback into the learning process.

5.2. Time pooled kernels

We are interested in applying convex optimization methods to classification of time-based
sets of features (e.g., face or person tracks). As already briefly discussed in Sec. 3.2.1,
many learning methods refer in their respective loss functions only within dot products
〈x,y〉 to the training data. In order allow non-linear decision boundaries, one can replace
the dot product by a kernel function k(x,y). This corresponds to computing the dot
product between the features in a different (usually higher dimensional) feature space:
k(x,y) = 〈Φ(x),Φ(y)〉.

We already introduced multinomial logistic regression in Sec. 3.2.1 as one such classifier
which can be extended by a kernel function to non-linear decision boundaries, resulting
in the objective function

min
w

λ

2
‖w‖2−

1

N

N
∑

i=1

M
∑

c=1

1[yi=c] ln

 

e fwc
(xi)

∑

z e fwz
(xi)

!

. (5.1)

Another popular classifier, the (two-class) Support Vector Machine (SVM) can be ex-
tended in the same way:

min
w

1

2
‖w‖2+

C

N

N
∑

i=1

max{0,1− yi fw(xi)} , (5.2)
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replacing the dot product 〈w,xi〉 by a function fw(x) =
∑

j w j k(xj,x).

Kernels are commonly defined on vectors since the relation to the dot product is evident.
However, kernels can also be defined on other structures, e.g. strings (Lodhi et al., 2002)
or vector sets (Kondor and Jebara, 2003), thus making such structures available as input
for above convex optimization schemes. In this chapter, we propose and evaluate a family
of set kernels for tracks.

5.2.1. Implementation of learning with kernels

In this section, we want to briefly motivate from an implementation perspective why
the reduction in the number of entities from frames to tracks is beneficial.

Let Q ∈ RN×N be a kernel’s Gram matrix with Qi j = k(xi,xj) for all pairs of training
features, N being the number of training features. We can then write the replacement
fw(xi) for the dot product in the loss functions as

fw(xi) =
∑

j

w j k(xi,xj) = [Q]iw , (5.3)

where [Q]i is the ith row of Q. In both the SVM’s as well as MLR’s loss function we
need to compute fw(xi) for all xi due to the summation over all training features. We can
thus compute

v=Qw (5.4)

with vi = fw(xi). For both SVMs and MLR, the Gram matrix therefore appears in a
matrix multiplication with the parameter vector.

If the number of training samples is large, it becomes infeasible to store Q in memory.
There are different approaches to deal with this problem. For example, one can reduce
the kernel bases xi to a subset of size M < N , leading to a non-square Gram matrix
Q ∈ RM×N . Similarly, one can also reduce the number of training features, reducing
the other dimension of Q. For SVMs, a minimum solution for its loss (Eq. 5.2) is
usually sparse (selecting a subset of the kernel basis as support vectors). Therefore, the
optimization itself can be performed by sequentially adding support vectors without
computing the full Q beforehand (e.g., Platt (1998)). However, even when computing
Q lazily, storing all computed entries of Q for later usage is still infeasible for large
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problems. Therefore, entries of Q are often recomputed multiple times, trading off
computational time for memory requirement.

Our approach in this chapter also reduces the size of Q, however not by subsampling
but by choice of a different kernel function. By operating on tracks instead of features,
the size of the full Gram matrix Q reduces from N ×N (N being the number of training
features) to M ×M , with M being the number of tracks (M �N ).

5.2.2. Pooling over time

Let k(x,y) = 〈Ψ(x),Ψ(y)〉 denote a base or local kernel defined on individual frames
(respectively their descriptors) x ∈X and y ∈ Y . Instead of using individual local kernel
evaluations directly, we pool their values over time with a pooling function Φ(·), which
for example can be the max or average 1

M N

∑∑

over the respective local kernel values of
a set of feature pairs. Let further X and Y be time-consecutive sets of features, e.g. features
extracted from tracks. We define a track kernel as

K
�

X ,Y
�

=K
�

X ,Y ; k(·, ·),Φ(·)
�

=Φ
�

{k(x,y) | x ∈X ,y ∈ Y }
�

. (5.5)

This construction spans a family of different kernels, depending on the choice of local
kernel and pooling function. K(X ,Y ) is a Mercer kernel (i.e., positive semi-definite,
p.s.d.) if the local kernel k(·, ·) is a Mercer kernel itself and the pooling operation is from
a set of operations (e.g., sum) that preserve positive semi-definiteness (Lyu, 2004).

For example, using the RBF kernel kRBF (x,y) = exp
�

− ‖x−y‖2

2σ2

�

as local kernel and
1

M N

∑∑

as pooling operation results in

K(X ,Y ) =
1

|X ||Y |

∑

x∈X

∑

y∈Y

exp

 

−
‖x− y‖2

2σ2

!

, (5.6)

which corresponds to the normalized sum kernel (Lyu, 2005) with a RBF kernel as base
kernel. Since kRBF (x,y) is a Mercer kernel and

∑

is a valid construction operation,
Eq. 5.6 is a Mercer kernel.

In contrast to Lyu (2005) and Rematas et al. (2012), the pooling of base kernels over time
does not require any a-priori clustering or nearest-neighbor search in feature space and
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Figure 5.1.: Different examples for splitting a track (black) into fixed-time (green) and
fraction-time (blue) subtracks.

thus is very efficient. This is based again on the assumption that all features of one track
belong to the same class/person, as we already assumed in previous chapters.

A drawback of the normalized sum kernel is that as it possibly averages out few positive
correspondences between the features of two tracks by many other negative correspon-
dences. This could be for example the case when persons turn their face/head within
one track which usually amounts to changes in the extracted features due to the different
poses.

We approach this problem from two perspectives. First, we employ non-averaging
pooling operations which can deal with many negative correspondences, e.g. max or its
variant 1

N

∑

maxN , where we average over the N highest local kernel results. Second, we
reduce such variations by applying the kernel not on full tracks, but on sub-tracks and
thus improve the coherence of the features. Our goal is similar to Rematas et al. (2012),
however, the pooling is performed over time. The shorter the pooling period is, the
more coherent the sets are. In the extreme case this can go down to single frames, which
we will discuss in Sec. 5.2.3.

Fixed-time splitting A first way of defining the pooling length is by splitting tracks
into equal-length time-continuous sets of features. Let X be the original set of features
for one track, then X f i xed (l )

i are the new subtracks of equal length l , combining the i th
set of l consecutive features of the track. The last subtrack can be shorter when the
original track length l en(X ) is not a multiple of l . In most cases fixed-time splitting
avoids a bias by track length.
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Fraction-time splitting One possible issue with the fixed-time splitting is that long
tracks get over-represented in the new subtrack sets. Instead of splitting into fixed-
length sets, we can split each track into equal-size fractions f ∈ (0,1], i.e. construct 1/ f
subtracks X f rac( f )

i from one track, each with l en(X f rac( f )
i ) = f · l en(X ). With fraction-

time splitting the relative number of tracks of each class is preserved. A visualization of
the two different track splitting variants can be found in Fig. 5.1.

5.2.3. Special cases and relation to other methods

Normalized sum kernel and extensions As already discussed above, the normalized
sum kernel is included in our family of track kernels as a special case (cf . Eq. 5.6)
with pooling operation 1

M N

∑∑

and no further splitting of tracks ( f = 1). With the
power-kernel k(·, ·)p we obtain the soft-max Mercer kernel of (Lyu, 2005).

Single-frame classification By splitting all tracks into individual frames (i.e., l = 1),
we arrive at frame-wise classification as we used in Chapter 3. When employing 1

M N

∑∑

as pooling operation, track kernel-based and frame-wise classification have commonalities
even for l > 1. In the frame-wise case for MLR-based classification, results are averaged
over the frames of the test-track (at test-time, cf . Eq. 3.20):

c∗ = argmax
c

1

|T |

|T |
∑

i

WF
∑

m

w (c)m k(xi ,xm) (5.7)

where |T | is the track length, WF the number of frame-based kernel bases (individual
features) from the training data, and w (c)m the model parameters learned by minimization
of Eq. 5.1.

For the track kernel-based classification (with 1
M N

∑∑

pooling) we compute for track T
at test time

c∗ = argmax
c

WT
∑

m

w (c)m K(T ,Tm) . (5.8)
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Expanding K(·, ·) to the summation over local kernels k(·, ·), we obtain

c∗ = argmax
c

WT
∑

m

w (c)m

1

|T ||Tm|

|T |
∑

i

|Tm |
∑

j

k(xi ,x
m
j ) . (5.9)

By reordering the sums,

c∗ = argmax
c

1

|T |

|T |
∑

i

WT
∑

m

w (c)m

|Tm|

|Tm |
∑

j

k(xi ,x
m
j ) (5.10)

we obtain a similar structure to Eq. 5.7.

For l = 1 each pooling Tm set only contains a single frame, i.e. |Tm|= 1. Setting |Tm|= 1
in Eq. 5.10, the similarity to Eq. 5.7 is apparent.

For l > 1, all frames in a pooling set Tm share the parameter w (c)m , whereas in Eq. 5.7
there is one w (c)m for each frame of the kernel basis. This parameter sharing comes with a
significant reduction in the number of kernel bases, i.e. WT <<WF .

Training/testing speed-up Since pooling over time is performed within the kernel,
we can pre-compute significant parts of Eq. 5.10 required for both training (cf . Eq. 5.1)
and testing. In the above example, the summation term over T and Tm can be pre-
computed and stored once for all track combinations. The equivalence to Eq. 5.8 reveals
that this is exactly the Gram matrix of the track kernel. Due to the reduction in kernel
bases (WT <<WF ), it is feasible to store the complete Gram matrix without resorting
to subsampling or approximations: the Gram matrix for 10000 tracks (∼ 1 season of
an average 20min TV series) fits well in current-sized main memory (100002 · 8By t e ≈
750M B).

Due to the pre-computation, we also avoid recomputing base kernel evaluations and
summations over individual frames at test time (compared to the single frame case,
see Eq. 5.7). The combination of the reduction in the size of the Gram matrix and
a simpler classification results in a speed-up for subsequent training/testing iterations.
A similar pre-computation for the base kernel evaluations could also be done for the
single-frame case, but the much larger number of instances (frames instead of tracks)
prohibits this for all practical instances.
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5.2.4. Time and space complexity

Training The computation of the kernel’s Gram matrix requires of O(N 2) local kernel
evaluations, where N is the number of features. Therefore, the computation of the full
track kernel Gram matrix is in O(N 2 · k(d )), with k(d ) being the complexity of the local
kernel evaluation depending on feature dimensionality d . The memory requirements
for the full Gram matrix depend on the pooling factors f or l , reducing the required
memory compared to the frame-wise kernel by l 2, resulting in O(N

2

l 2 ). This allows, as
argued before, to pre-compute and store the Gram matrix for multiple rounds of training
(cf . Sec. 5.3).

Testing At test time, we benefit from the fact that pooling over each (sub-)track was
already performed at training time. In the case of MLR, this reduces classification to a
single matrix multiplication Qw and obtaining the maximum over rows:

c∗i = argmax
c

e[Q]i w(c)

∑

z e[Q]i w
(z)
= argmax

c
[Qw]i , (5.11)

where Q ∈RN/l×N/l is the Gram matrix of the track kernel, [Q]i the i th row of Q, |C |
the number of classes and w ∈RN/l×|C | the parameter vector obtained by minimizing
the MLR loss function (Eq. 5.1). Thus, testing is dominated by the matrix multiplication
Qw and results in time complexity of O(N

2|C |
l 2 ).

5.3. Learning with a human in the loop

As an application of the track kernel, we consider training models for identification with
a human in the loop, combining the strengths of an automatic classifier and a human
operator. A possible motivation might be to prepare the identities of all tracks of a TV
series for release on a streaming platform. In that case, all tracks should be associated
with the correct identity, corresponding to a recognition accuracy of 100%, which is
improbable to accomplish with a current automatic approach. A related application
can be found in safety and security scenarios, where for example human operators are
supported by the learning algorithm to reconstruct the path of a thieve in a shopping
mall, learning new models while receiving feedback from the operator.
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Given a fixed classifier (e.g., trained in an automatic way using labels from subtitle-
transcript matching), the naïve solution would be to let the classifier identify all tracks
once and then let a human correct all wrongly identified tracks manually. However,
assuming that the classifier is able to generalize, new training data will result in a better
classifier that is capable of identifying additional test data correctly outside of the new
training data. This makes it beneficial to re-run training of the classifier and testing all
tracks once a few incorrect samples have been corrected. This avoids wasting expensive
labeling time by automatically correcting some tracks which would otherwise have had
to be corrected manually.

This raises the questions of a) which training data to label, and b) how many new
training samples S to label. The literature on active learning (e.g., Settles (2010)) mostly
deals with the former question, while number of samples |S | is usually set to 1 for one
iteration, disregarding the training and inference time required. Batch mode active
learning usually deals with which samples to select when |S |> 1. We are rather interested
in the relationship between training/inference time and the number of samples to label
each round to minimize the time to reach 100% recognition accuracy.

Our simple model of required labeling time is as follows. Let tp r e be a fixed amount of
time needed to set up a classifier and pre-compute the kernel’s Gram matrix. Let ti ni t be
the time it takes to label one training sample before any learning has been performed,
t f b the feedback time on one wrongly classified sample, and tt rai n and tt e s t the time it
takes to re-train the classifier and re-test all test samples, respectively. Further, let N be a
number of labeled samples in each round. The total labeling time can then be computed
as follows

tt ot al = tp r e +Ni ni t · ti ni t

+ k ·max{tt rai n + tt e s t ,N · t f b} (5.12)

To minimize unnecessary manual labeling, we should label N̂ tracks in each round,
such that N̂ · t f b ≈ tt rai n + tt e s t . As discussed in Sec. 5.2.3, we can achieve fast training
and inference with the track kernel, since we move the most time consuming step of
kernel computation to tp r e . Therefore, N̂ can be very small, reducing the amount of
unnecessary labeling to a minimum.
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BBT BBT-1 BBT-2 BBT-3 BBT-4 BBT-5 BBT-6 Avg.

single frame MLR 89.50 90.24 76.36 78.79 81.30 65.92 80.35
track-repr CDL (Wang et al., 2012) 80.52 72.36 67.27 64.11 62.79 48.41 65.91

pool split Mercer
1

M N

∑∑

f = 1 Ø 90.26 88.29 78.79 75.53 81.11 70.86 80.81
1

M N

∑∑

f = 0.5 Ø 90.11 88.62 80.30 76.18 82.44 71.09 81.46
1

M N

∑∑

l = 30 Ø 93.15 90.41 80.61 78.96 86.83 73.09 83.84
maxmax f = 1 89.65 90.08 76.36 78.47 81.87 67.92 80.73
maxmax f = 0.5 93.46 92.36 81.67 78.63 88.55 74.15 84.80
maxmax l = 30 92.54 91.71 80.45 76.35 82.44 70.51 82.33
1
N

∑

max1..N f = 1 93.91 93.17 82.73 78.79 88.55 71.80 84.83
1
N

∑

max1..N f = 0.5 89.35 88.62 76.52 74.39 80.15 71.92 80.16
1
N

∑

max1..N l = 30 93.76 93.01 85.45 78.79 87.79 73.09 85.32

BUFFY BF-1 BF-2 BF-3 BF-4 BF-5 BF-6 Avg.

single frame MLR 78.52 71.12 75.46 75.78 73.69 69.65 74.04
track-repr CDL (Wang et al., 2012) 65.83 54.38 56.03 62.44 59.52 51.64 58.31

pool split Mercer
1

M N

∑∑

f = 1 Ø 71.86 59.86 66.75 67.56 65.36 57.59 64.83
1

M N

∑∑

f = 0.5 Ø 73.74 64.94 69.01 71.89 67.62 63.18 68.40
1

M N

∑∑

l = 30 Ø 75.25 65.44 69.77 72.22 70.24 63.80 69.45
maxmax f = 1 78.14 67.83 71.19 73.56 72.62 66.99 71.72
maxmax f = 0.5 77.51 69.12 71.27 75.11 72.14 66.90 72.01
maxmax l = 30 78.77 70.72 74.37 76.67 74.17 68.77 73.91
1
N

∑

max1..N f = 1 77.89 67.53 70.69 73.56 72.86 66.64 71.53
1
N

∑

max1..N f = 0.5 77.26 68.92 71.44 75.11 72.14 66.99 71.98
1
N

∑

max1..N l = 30 78.27 70.42 73.87 76.44 73.45 68.50 73.49

Table 5.1.: Baseline results are reported in the first two rows for BBT and BUFFY, respec-
tively. CDL (Wang et al., 2012) is an example of a track-based representation
method. The bottom section shows the performance of different instanti-
ations of the time pooled track kernel. The maxmax and average-N-max
(with N = 5) variants with a fixed-time splitting of l = 30 perform best on
average, despite not being Mercer kernels. The normalized sum variants
(rows 1-3 bottom section) perform worst among the different track kernel
variants, however, better than CDL. For all variants, splitting tracks into
sub-sets generally increases performance.
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Figure 5.2.: Influence of the pooling parameters. Comparison of mean accuracy on
BBT 1-6 with different pooling functions for (a) fixed-time pooling and
(b) fraction-time pooling. The black line denotes the single frame-based
recognition accuracy.

5.4. Evaluation

We perform experiments again on the data set of BBT and BUFFY episodes. We test
different instantiations of track kernels. For a fair comparison, we use the same base
kernel as in the baseline, a polynomial kernel of degree 2: k(x,y) = (1+ xT y)2. We
evaluate pooling over the full tracks (i.e., f = 1), fixed-time pooling with l = 30 (split
each track into equal-length sub-tracks of size 30, which corresponds to roughly one
half of the average track length) and fraction-pooling with f = 0.5 (split each track
into exactly 2 sub-tracks). We also compare different basic pooling strategies, namely
normalized sum ( 1

M N

∑∑

k(·, ·)), single maximum (maxmax k(·, ·)), and average N-max,
an average of the maximum N base kernel values ( 1

N

∑

max1..N k(·, ·)). For the latter, we
keep N = 5 over all experiments. The results of the comparison can be found in Tbl. 5.1.

Baseline As first baseline, we employ the MLR frame-based approach from Chapter 3.
We further compare against Covariance Discriminative Learning (CDL) (Wang et al.,
2012), which is an example of combining features of a track to a joint track-feature.
For CDL, tracks are represented by their covariance matrix. We follow Wang et al.
(2012) and add a small positive diagonal to the covariance matrix to ensure it is positive
definite: C∗X = cov(X)+ 10−3I. The kernel between two tracks is defined as k(X,Y) =




log(C∗X ) · log(C∗Y )






F
. Using this kernel, we train an MLR classifier (Eq. 5.1). CDL
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Figure 5.3.: Training with feedback on BBT 1-6. We retrain/test every 10 corrected
samples. After correcting less than 400 samples, 100% accuracy is reached.
Without re-training/testing almost 1000 samples would need to be manually
corrected.

performs notably worse than the frame-based MLR approaches with 65.9% on BBT and
58.3% on BUFFY vs. 80.4% and 74%, respectively (see Tbl. 5.1).

Influence of splitting/time pooling For all variants of the track kernel, splitting
tracks into sub-sets increases performance. Fig. 5.2 displays the influence of the two
pooling parameters f and l for different pooling operations. We can see that for both
fixed-time and fraction-time splitting a smaller subset size leads to higher recognition
performance. This is not surprising since smaller subsets are more coherent and thus
learning can select from more representative subsets. Both max-based pooling operations
perform similarly. The normalized sum kernel (denoted as average in the plot legend)
performs slightly worse, possibly owing to the imbalance of good and bad matching
feature pairs for a given track pair.

Learning with feedback In Fig. 5.3, we compare the time required to manually label
all tracks of BBT to 100% accuracy versus the time required when incorporating feedback
with repeatedly retraining the classifier. Retraining and inference takes between 5 and 10
seconds on all 3920 tracks in our implementation (compared to minutes for the single-
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frame classifier). In our experience (from labeling many tracks of two TV series), it is
possible to correct on average 1 wrongly classified track per second with an appropriate
user interface (i.e., displaying many tracks at once). We therefore set N = 10. There were
977 incorrectly classified tracks after the initial classifier run. We can see in Fig. 5.3 that
by re-training and inferring new identities every 10 corrected samples, we reduce the
amount of samples to correct to less than 400. This reduces the time to fully correct the
initial recognition result to less than half.



Chapter 6

Conclusion

Face and person tracking and identification is a problem that arises in many automated
video analysis tasks for automatic meta data generation and as a basis for higher level
tasks. In this thesis, we have presented methods for robust face tracking, identifying
faces and persons with additional data outside faces and integration of feedback into the
learning process. While we have targeted only TV series as a data source in this thesis,
the majority of the results are applicable to other data domains and applications. In
the following, we summarize the contributions made in this work and outline possible
directions for future work.

To track faces we proposed a detector-based multi-pose face tracker based on a particle
filter. Different face poses are covered by a bank of detectors, each for a different
head pose. By integrating the head pose in the track state, we can efficiently select
a single detector for the observation model to avoid evaluating all 49 detectors for
every particle. In addition, we obtained an estimate of the head pose and a rough
configuration of facial landmarks, which can be used in subsequent analysis steps. We
evaluated the tracker on a large data set of two diverse TV series. We have shown that
tracking performance improves consistently by adding more out-of-plane detectors. In
its complete configuration, our tracker improves MOTA on average by about 0.15 over
a frontal-only detector. The tracker shows a higher track recall, i.e. finds more of the
existing face appearance and also obtains longer tracks on average. For subsequent
identification steps, both are important, as we can identify more faces, because they are
found, and identify them better, because we have more samples per track to perform a
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robust decision. Without modification, the tracker has been applied successfully to other
data domains as well, such as broadcast news, surveillance data or live webcam feeds.

We approached the task of person identification from two different perspectives. On
the one hand, we proposed a joint learning framework for learning face models which
integrates unlabeled data and constraints in addition to labeled data to learn better face
models. Since labels and constraints can be obtained automatically, our method does not
require any human supervision. We have shown that by integration of this additional
data our method improves face recognition rates by an average 2%. On the other hand,
we proposed a Markov random field-based fusion approach to integrate multiple cues
into a joint identity decision. Since a face is not always visible for each person in the
video, we extended the problem of naming faces in multimedia data to naming persons.
In order to be able to identify persons, we explored clothing as a cue, again without
requiring human supervision by leveraging face results to bootstrap clothing models. We
demonstrated that the fusion and joint identification is beneficial for both identification
of face tracks (improving results on average by 4%) and identification of joint face-person
tracks (improving results by over 11%).

Finally, we proposed a novel family of kernels defined on tracks instead of individual
frame-level features. The main motivation of the track kernel is a reduction of entities for
training face and person models, resulting both in a reduction of memory requirements
as well as a speedup during training and testing. We made use of the speedup to efficiently
integrate human feedback in train-test iterations to increase the effectiveness of human
feedback.

6.1. Limitations and future work

While we achieved a promising improvement in identification performance, there is
room for further advancements.

Pose invariant face recognition In recent years, descriptors for faces have shifted
towards local descriptors around landmarks for increased robustness and have shown
impressive performance on standard face recognition data sets. We would expect that
such descriptors provide an equivalent performance increase on multimedia data. A
shortcoming of our approach is that we do not explicitly model the pose of the face
during recognition. The employed affine 2d alignment is not sufficient to correct for the
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distortions induced by different view points of the 3-dimensional face. An interesting
avenue of future work would therefore be to integrate learning pose-aware face models
in combination with unlabeled data and constraints.

Clothing features Similar to the face descriptors, our employed descriptors for cloth-
ing are simple. In the context of clothing descriptions, different avenues of future work
are thinkable. For one, a more fine-grained segmentation of the clothing region would
promise to improve the discrimination between different persons. The larger the region
for clothing descriptor extraction is, the more important is the handling of occlusions
between different persons. One possibility to deal with occlusions could be for example
to perform the segmentation of clothing jointly for all persons in a frame at the same
time, taking into account the interdependencies of nearby persons.

Dependency on subtitles/transcripts The generation of automatic labels depends
strongly on the availability of subtitles and transcripts. While subtitles are ubiquitously
available, transcripts are usually supplied by fans and might not always be available.
Some attempts have been made to obtain labeled tracks automatically without using
transcripts. However, it might require a new level of understanding of the spoken text
to reliably infer identities for all characters and in sufficient quantities directly from the
text instead of annotated speech segments.

Unknown recognition and resolution One limitation of our proposed approach is
the recognition of unknowns. We obtain unknown labels through the same mechanism
as for the known characters (subtitle-transcript alignment + speaking face detection).
However, the number of labels obtained in this way is low and covers only a few of the
unknowns (many of the background characters never speak), and thus the recognition
performance on unknowns is low. One possible option to resolve this problem would
be to use an outside set of a large number of unknown face descriptors such as from the
Labeled Faces in the Wild (LFW) data set to cover the space of unseen faces better.

Another interesting prospective would be to actually resolve unknowns (even those
without training data) further into individual people instead of rejecting them jointly as
one class. This would require for example some form of clustering to group similar un-
known faces. However, judging from our experience in labeling ground truth unknown
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identities, such a task is even very hard for humans. Often this is due to unknowns only
being visible in the background, thus influencing their face size and the camera focus.

Feedback for earlier stages We used face identities to bootstrap clothing models,
which in turn improved face identity results. A possible option would be to iterate this
further and use the new face identities to improve the original clothing models. Such a
form of co-training has been explored in different domains and has provided promising
results.

Generally, feedback from later stages in the pipeline could also be used to improve earlier
stages. For example, one could improve the tracking by employing character specific face
and clothing models to link individual tracklets or even find further localization of the
characters which were previously missed by both the face and the person tracker.
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Tracking Evaluation Plots for BUFFY
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Figure A.1.: Tracking performance with increasingly out-of-plane rotated detectors on
BUFFY. The x-axis denotes the maximum yaw angle of the underlying
detectors, e.g., at x = 30 the tracker uses detectors for yaw angles of 0, 15
and 30 degrees (inclusive). The corresponding plot for BBT can be found in
Fig. 2.3.
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Figure A.2.: Tracking performance over increasing minimum face sizes. By rejecting
tracks with average face width below 30px decreases false positive rate faster
than miss rate increases and thus leads to an increase in MOTA.
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Automatic Speaker Assignment
Confusion Matrices
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Figure B.2.: Confusion matrix of the speaker assignment on BUFFY. The characters
Buffy and Xander get assigned most tracks from other characters. Also, most
of the other main characters are assigned at least one Buffy track. Especially
for identities with a low absolute number of identity assignments this can be
a cause for later confusion with Buffy during identification.
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Face ID result analysis for BUFFY
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Figure C.1.: Track-level recognition accuracy in dependency of track length for BUFFY.
(top) Absolute numbers of correctly/wrongly labeled tracks, (bottom) rela-
tive performance over multiple ranks.
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Figure C.2.: Track-level recognition accuracy in dependency of face size for BUFFY. (top)
Absolute numbers of correctly/wrongly labeled tracks, (bottom) relative
performance over multiple ranks.
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Figure C.3.: Track-level recognition accuracy in dependency of pan angle for BUFFY.
(top) Absolute numbers of correctly/wrongly labeled tracks, (bottom) rela-
tive performance over multiple ranks.
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Figure C.4.: Track-level recognition accuracy in dependency of different characters for
BUFFY. (top) Absolute numbers of correctly/wrongly labeled tracks, (bot-
tom) relative performance over multiple ranks. Unknowns exhibit very
poor performance, which is also reflected in the high false acceptance rate.
Similarly, characters with low number of tracks (and only few training sam-
ples) perform worse than the main characters, for which we obtain around
90% accuracy.
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