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1. Introduction

Robots have evolved to indispensable helpers in today’s society and have been proven to
be one of the most important technological advances in recent human history. Particularly,
in the field of manufacturing, one cannot imagine an industrial environment without robots
performing tasks such as pick and place operations of heavy objects, high-precision cutting,
and welding of materials with such an efficiency which is unattainable for humans. Robots
have also spread into our homes, currently, in the form of little helpers taking over simple
tasks (such as vacuum cleaning) which are far from being capable of proper interaction with
the scene among others due to lack of essential grasping and manipulation abilities.
Towards artificial platforms capable of incorporating these abilities, research efforts in hu-

manoid robotics have been dedicated to the development of sophisticated systems capable of
mimicking the functionalities of a human. The progress in this field led to humanoid plat-
forms with huge potential which to some extent has been demonstrated in specific assistance
and manipulation scenarios performed in previously known human-centered environments.
However, the potential still remains untapped when robots are confined to a specific task and
an environment. To clear this hurdle, robotic platforms are to be endowed with cognitive
abilities for the acquisition of novel motor knowledge and the adaptation of this knowledge
to unseen situations in order to account for dynamic changes. An intuitive way to approach
this challenge is to study humans and to transfer knowledge about learning mechanisms and
strategies to robots. In the context of action knowledge acquisition, an emerging paradigm
is programming by demonstration, which in recent years progressed to the more biological-
oriented term of imitation learning. Following this paradigm, various approaches have been
proposed combining statistical learning methods and human observation for the extraction
and generalization of knowledge about motor skills. However, for an appropriate interac-
tion with objects and scenes, many challenges have to be addressed, specifically regarding
the observation of fine motor movements in humans as well as the representation and imple-
mentation of corresponding skills which are necessary to induce object- and task-specifity in
robotic grasping and manipulation.

1.1. Motivation and Objective

Grasping is one of the most essential capabilities that humans need to interact with the en-
vironment. The way how the arms and the fingers are moved in order to grasp a specific
object depends on a variety of different object-specific properties and the intention that is
pursued. For example, lifting heavy objects requires humans to perform grasps featuring firm
grips which maximize the forces exerted on the object while light and fragile objects are to
be grasped with the minimal amount of force but higher precision. Regarding one’s intention,
a grasping movement has to be executed according to the constraints imposed by the task.
The multitude of purposes associated with a single object yields a variety of different grasp
possibilities that requires a high level of dexterity and flexibility. For humans, this level is
easily attained thanks to their hands which are complex organs comprising a large number of
joints and muscles as well as sophisticated sensing capabilities. To mimic the functionality
of the human hand, research conducted in the field of robotic hand design led to elaborate
systems theoretically capable of performing dexterous hand movements. However, in practice,

1



1. Introduction

Figure 1.1.: Left: The humanoid robot ARMAR-IIIa (see (Asfour et al., 2006b)) executing a grasping
action adjusted to the cup. Right: Human subject performing grasping actions for
different tasks such as drinking, placing, passing-over, or carrying.

due to the grasp variety and the complexity of coordinated finger movements the generation
and execution of goal-directed grasping and manipulation actions involves the utmost effort.
Regarding the human example, to facilitate the synthesis of prehensile movements, the human
brain possesses a large repertoire of control mechanisms and motion patterns, and a compre-
hensive knowledge about the environment which enable the human to efficiently select and
perform a wide range of different grasping actions suitable for every situation. This grasp-
related motor knowledge is grounded and continuously enriched through extensive training
through exploration and observation. The variety of human grasping strategies is exemplified
in Figure 1.1 where each grasp is associated with the same object but a different task. So
far, the complexity of implementing grasping strategies on robotic platforms requires a strong
simplification of the problem by mapping a multitude of different grasping strategies to a
single grasping action. Another aspect which increases the complexity of robotic grasping
is that with traditional methods implementations grasping strategies have to be confined to
specific situations in order to ensure their applicability. Towards autonomous grasping and
manipulation in robots, instead of defining and programming grasping actions which can only
be executed under certain conditions, the implementation of a cognitive grasping behavior
becomes indispensable to make robotic grasping tractable.
The objective of this thesis is to establish a methodology which allows robots to learn

grasp primitives from human observation. Therefore, methods and representations have to
be developed which enable a robot to obtain grasp-related motor knowledge by extracting
and generalizing characteristic features of a grasping movement demonstrated by a human
counterpart. Based on these features, movement representations are to be instantiated in

2



1.2. Contributions

Figure 1.2.: The building blocks of a behavior which allows grasp learning from human demonstra-
tion: observation, generalization, and reproduction. The models which specify the grasp
representation form the foundation of such behavior. Based on these models the features
which have to be observed are determined, the functional relationships between observa-
tional features and action parameters are specified, and the structure for the generation
of an adapted grasping action is inferred.

order to form grasp primitives which can be adapted and applied to perform grasping in
different situations.

1.2. Contributions

In this thesis, an approach for the implementation of a learnable and extendable grasping
behavior is proposed in order to enhance the grasping capabilities of a humanoid robot.
As depicted in Figure 1.2, such a grasp learning behavior can be illustrated as a learning
cycle which comprises methods and mechanisms for the observation of human grasps, the
generalization of demonstrated grasps, and the reproduction of learned grasp-related motor
knowledge. A crucial factor for the success of such a learning cycle lies in the way of how
motor knowledge is represented. The models used to describe an action determine the relevant
features which need to be observed and extracted from human grasp demonstrations. Based
on the features, we want to parameterize these models in a way that a representation is
inferred which, on the one hand, generalizes a grasping movement allowing the adaptation
to novel situations, and, on the other hand, retains movement characteristics associated with
the demonstrated grasp type. To ground an instantiated grasp representation, based on the
parameterized models a grasping action has to be generated and executed on the robot.
Therefore, the main contribution of this thesis consists of a grasp representation which can
serve as a foundation for the described grasp learning behavior. Based on this representation
building blocks for the observation, generalization, and reproduction of demonstrated grasps
are implemented and combined to a grasp learning framework. Thus, the contributions of
this thesis can be summarized as follows:

3



1. Introduction

• Continuous Grasp Representation

A new approach for a continuous grasp representation in the task space is presented. To
obtain a complete description of the entire grasping process, beginning with the preshap-
ing of the hand and ending with the enclosing of the object, the representation comprises
two motion models of different granu larity for the hand and the finger movement. For
the representation of the hand movement existing methods capable of encoding reaching
movements are studied and evaluated with regard to their applicability in the domain of
grasping. Regarding the representation of the finger movements, a novel representation
based on virtual springs is proposed. Each fingertip is considered as a single mass point
within a dynamical multi-body system where mass spring damper systems between the
fingers are used to emulate finger movement synergies. It has been shown that these
synergies play an essential role in the reduction of the control complexity for dexterous
grasping in humans. In order to ensure that prehensile finger movements are represented
in a goal-directed way, designated contact locations are interpreted as attractor points
which form an equilibrium state to which the dynamical system converges.

• Learning of Grasps from Human Observation

The observation of human grasp demonstrations is accomplished by various human
motion capture methods. For the learning of basic grasp primitives, a marker-based
system is employed in order to obtain accurate motion data. In the efforts to increase
the autonomy of the robot, markerless methods are investigated and developed for
the position-invariant capturing of the human movements using the robot’s onboard
stereo camera system. In this context, an existing upper body tracking framework is
extended by a visual tracking procedure which allows the capturing of prehensile finger
movements based on circular image features and by means of stochastic methods for
state estimation.

Based on the recorded grasping movements the parameters needed for the instantia-
tion of the grasp are estimated using a nonlinear parameter estimation scheme. The
instantiated grasp is labeled according the observed grasp type and stored for later use.

The presented grasp representation and the corresponding grasp learning framework are
implemented and evaluated on a humanoid platform. The main goal of the evaluation is the
application of the proposed approach for the learning of grasp primitives representing common
human grasp types as specified in established grasp taxonomies. In real world scenarios, these
primitives are adapted to altering object- and task-specific conditions in order to derive goal-
directed grasping actions.

1.3. Outline

A central point in this work is the transfer of human grasp knowledge and mechanisms to
robots. For a better understanding, relevant studies conducted on human grasping are re-
viewed in Chapter 2. A major focus is set on models which explain human grasp kinematics
and, thus, can be used to derive a representation for grasping actions. In Chapter 3, grasp rep-
resentations which have been proposed in previous works are discussed. Of particular interest
are approaches which exploit findings in human grasping in order to facilitate grasping on
anthropomorphic platforms. Subsequently, in Chapter 4, the proposed grasp representation
is presented which allows the encoding of prehensile finger and hand approach movements.
First, the principles which form the basis of the representation are formalized in order to

4



1.3. Outline

introduce the terminology used in this thesis and to provide a clearer understanding of the
approach.
As previously mentioned, to enable a robot to learn grasps from human demonstration,

three different subproblems have to be addressed: the observation, generalization, and the
reproduction. Methods which allow the generalization of grasp examples to adaptable grasp
primitives are subject of Chapter 6. In order to generate grasp examples, in Chapter 5,
ways are discussed which enable the acquisition of grasp-relevant motion data from human
observation. Based on the developed methods, components are implemented and integrated
in a grasp learning framework. An overview of the framework as well as details on the
implementation and execution on robots are provided in Chapter 7. Chapter 8 discusses how
a grasp can be learned and synthesized using the developed framework. This is determined
by evaluating the proposed grasp representation. Finally, the contributions of the thesis are
summarized in Chapter 9 and future developments are briefly discussed.

5





2. Insights in Human Grasping

Towards more demanding grasping and manipulation tasks with highly-complex robotic sys-
tems such as humanoid robots, the need for grasp representations arises with which the control
complexity of these systems can be reduced and which allow the implementation of reusable
skills. Hence, in recent years, findings emerging from studies conducted on human grasping
take on greater significance in the design process of robotic grasp representations, since these
give insights on the underlying functional principles and mechanisms that determine human
grasping behavior and provide information on how dexterous grasping behavior can be imple-
mented. In this chapter, studies on human grasping and the modeling of grasping kinematics
are reviewed.

2.1. Grasping Hand Shapes

The shape of the hand has a tremendous effect on the location and the size of the contact
areas as well as the forces applied on the object. Hence, to attain a suitable grasp a hand
posture has to be formed satisfying the stability constraints imposed by the object properties
and allowing the execution of a subsequent task. As stated in (Castiello, 2005), to facilitate
the control of the hand, the human brain is equipped with a repertoire of different grasp
postures, each applicable under specific constraints. These grasp postures, respectively hand
shapes, are commonly known. Based on anticipated object properties and the task that is
pursued, the human brain selects a suitable hand shape to derive the final grasp.
A very early classification of different hand postures in grasping is introduced in (Schlesinger,

1919). Based on the observation of how different objects are grasped and held, six basic grasp
types are identified: spherical, palmar, tip, lateral, and hook prehension. The grasp types
considered in the classification have been categorized based on different object geometries
while any task-specific information has been disregarded. A more task-related categorization
is provided by (Napier, 1956). The observed grasp postures were used to denote grasping and
manipulation tasks performed in the context of industrial manufacturing. These postures are
coarsely divided into two categories, power and precision grasps, where the main difference
between power and precision grasps lies in the involvement of the palm. Power grasps fea-
ture palm contact, whereas precision grasps merely involve the thumb and the finger areas
in order to attain a stable grasp posture. In (Kamakura, 1980), by observing several human
subjects grasping and holding daily life objects 14 different grasp types have been identified.
As depicted in Figure 2.1, these are subdivided into four different categories: power grip,
intermediate grip, precision grip, adduction grip. Power grips are grasp types which are char-
acterized by the involvement of the palm as well. Grasps without palm involvement are either
assigned to the intermediate grip or the precision grip category depending on the extent of the
finger flexion movement. A special class is described by the adduction grip category which
subsumes grasps without thumb involvement. Each grasp type is categorized according to the
different contact areas of hand and fingers with the grasped object. Hence, object geometry
and the task associated with the object play a very essential role in the definition of a grasp
type.
A comprehensive and widely accepted human grasp taxonomy is presented in (Cutkosky,

1989). Based on extensive observations and interviews of humans performing single-handed
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Figure 2.1.: Illustration of the Kamakura taxonomy of prehension as introduced in (Kamakura,
1980). Power grips require palm contact with the object in order to maximize the
forces and, thus, the stability of the grasps. In intermediate grips, by maximizing the
contact areas between the fingertips and the object, the object is fixated. Grasp types
focusing merely on dexterity are subsumed in the precision grip class where minimal
forces are exerted by the fingertips. The adduction grip is characterized by fixation of
an object using the fingertip sides without involvement of the thumb.

industrial manufacturing tasks 16 different grasp types have been identified. The choice which
grasp type to use depends on the precision and the forces which are necessary to perform a
certain task with a specific object. Motivated by the categorization originating from (Napier,
1956), as depicted in Figure 2.2, the grasp types are arranged in a tree-like hierarchy where
the most-left grasp type, the heavy wrap, represents the most powerful but least dexterous
grasp and the most-right grasp type, the thumb-index-finger pinch grasp, features maximum
precision.
A recent work on grasp taxonomy is presented in (Feix et al., 2009). By combining various

grasp taxonomies proposed in existing literature 45 different grasp types have been identified
from which 33 grasp types are considered to satisfy grasp stability constraints. The proposed
taxonomy suggests a classification of grasps based on power and precision requirements as
well as the oppositional configuration featured by the corresponding hand posture.

2.2. Grasping Kinematics

The kinematics of human grasping has been extensively studied leading to a number of models
which attempt to explain principles and mechanisms that describe human grasping behavior.
A common simplification lies in the assumption that the hand aperture movement of the
fingers can be reduced to the actions of two functional units. This view emerges from the
virtual finger concept introduced in (Arbib et al., 1985) which postulates that multiple physical
fingers can be represented as a single imaginary unit, the virtual finger. It is assumed that
in order to grasp objects at least two virtual fingers, mostly thumb and index finger, apply
forces on the object surface in opposition to each other. In (Iberall, 1986), this assumption
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Figure 2.2.: Illustration of the Cutkosky grasp taxonomy (Cutkosky, 1989). The hand postures
reflect common grasps applied in manufacturing tasks and are ordered vertically accord-
ing to the details of the task and object information and horizontally depending on the
dexterity needed to perform a grasp. ( c©1989 IEEE.)

is supported by a comprehensive study on oppositional hand configurations, which comprises
additional contact areas of the hand such as the palm. Forces in opposition can be attained by
applying three basic grasp types: pad opposition, palm opposition, and side opposition. The
difference between these grasp types lies in the direction of the applied forces with regard the
hand’s palm. Grasps with forces exerted parallel to the palm are categorized as pad opposition.
In palm opposition, forces occur between hand surfaces perpendicular to the palm which is
the case when fingers are wrapped around an object, for example when grasping a hammer.
In side opposition, forces are applied between the thumb and the side of the index finger,
transverse to the palm.
A major focus in the literature has been the coordination between the reach and the hand

aperture movement. A fundamental view suggested by (Jeannerod, 1981) is based on the
existence of two independent components for the control of the limbs during grasping. It is
assumed that a transport component is responsible for moving the wrist towards a target
object, while a grip component controls the preshaping and enclosing of the fingers. Within
the grip component, the fingers are viewed as a single unit, hence, the finger movements are
assumed to be determined by the hand aperture which describes the distance between the
thumb and the index finger. The independence of both components is based on the hypothesis
of two independent visuomotor channels derived from the observation that the hand transport
merely depends on extrinsic object properties such as position and orientation within the
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Figure 2.3.: The Hoff-Arbib model as introduced in (Hoff and Arbib, 1993) explaining the temporal
coordination and synchronization of the various grasp stages in human grasping, the
preshaping and enclosing of the fingers and the approach movement of the hand.

environment, whereas the hand aperture relies on intrinsic properties such as the object size.
During the execution of a grasp, transport and grip component are running in parallel. A
temporal coupling ensures the synchronization between the components.
Following this idea, (Hoff and Arbib, 1993) introduced a model for grasping, consisting of

three independent feedback controllers for approach, preshape, and enclose which are coupled
via a time-based coordination module. The controllers are implemented based on a minimum
jerk model. In addition, the preshape and enclose controllers comprise an optimization prin-
ciple which assigns costs for maintaining the hand in an open position as well as for changing
the aperture size. The input parameters to the model are the distance to the target object
and its size. Based on these parameters the duration of the hand approach movement as
well as the maximum hand aperture is determined. Since the enclose time is assumed to be
constant for a particular task, the difference between approach duration and the enclose time
is considered to be the duration of the preshape phase. The controllers for hand approach and
prehensile finger movements are working in parallel and do not share any information about
the progress of each other. Therefore, perturbations affecting a single channel are handled
by estimating the time needed for the affected controller to terminate. This information is
forwarded to the coordination module for the update of the execution times of all controllers.
Once the preshape phase is finished, the enclose controller is activated. Following this scheme,
the model succeeded in explaining most of the experimental findings regarding the temporal
relation between hand approach and aperture in unperturbed grasping as well as grasping
under perturbations of object size and positions.
In (Haggard and Wing, 1997), it is argued that the coordination of approach and aperture

is based on a rather spatial than temporal relation. This theory is supported by experiments
in which subjects are asked to grasp under pull-perturbations affecting the hand transport.
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Figure 2.4.: Left: Grasp models for a single finger and for two virtual fingers based on individual
digit assumption as proposed in (Smeets and Brenner, 1999). Right: Model of grasp
kinematics of two virtual fingertips using spring elements (see (Verheij et al., 2012)).

It was observed that compensation movements, in the form of a coordinated hand aperture
response to the perturbation, are performed in order to maintain a spatial relation between
the transport and grip component which is featured in unperturbed grasping. This spatial
relation is described as a sensorimotor matrix comprising the position and gains. In (Rand
et al., 2008), this argument is pursued by assuming the existence of an underlying control
law for the initiation of the enclose phase which takes into account the dynamics of the arm
when reaching a target. Grasping experiments revealed that the distance of the hand to
the target at which the enclose phase starts changed according to the performed approach
velocity. This finding indicates the distance to the object at which the enclose phase is
initiated depends on the maximum hand aperture, wrist velocity and acceleration. In order
to describe the coordination of the hand approach and aperture for the entire grasp process,
in (Rand et al., 2008), the control law is extended towards a generalized model which is built
upon the relationship between velocity and acceleration parameters featured by the aperture
and transport movement. This model features a higher model fitness to experimental grasping
data than alternative models which have been proposed so far. Especially, the coordinated
hand-approach-enclose movement has been explained more accurately.
A different view on grasping is provided by (Smeets and Brenner, 1999) which is based on

the assumption that the kinematics of the fingers is not determined by the hand aperture
but by individual finger movements. This assumption is based on the requirement of an
oppositional configuration of finger and thumb in order to attain a stable grasp which leads
to the hypothesis that not only object size but also the finger contact positions on the object
surface are dominating parameters in human grasping. Furthermore, experimental findings
indicate that the thumb and virtual finger trajectories are generated independently. These
trajectories are modeled using a minimum jerk approach for representing pointing movements.
Using this alternative model, several essential grasping characteristics have been verified such
as the independence of the transport and prehension component.
Based on the work presented in (Smeets and Brenner, 1999), a dynamical systems model for

describing the kinematics of grasping while taking obstacle avoidance as task constraint is pro-
posed in (Verheij et al., 2012). Thumb and index fingertip are modeled as point masses whose
movements are determined by a force field consisting of four components. The main force
component pulls a single fingertip towards its designated goal, while repulsive forces push
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Figure 2.5.: Left: Postural synergies defined by the first two Principal Components as defined in
(Santello et al., 1998). Right: Interpolation between various grasp postures described
the two PCs showing the grasp synergisties for similar shaped objects. ( c©1998 by the
Society for Neuroscience.)

the fingertips away from any obstacles. A virtual spring between the fingertips generates
a synergistic force component in order to avoid collision between the fingers. Simultane-
ous termination of the movement is accomplished by introducing a damping component to
the system. Experimental findings of grasping characteristics as reported in previous studies
including grasping under object perturbations has been reproduced using this model. Further-
more, the model is able to deal with online perturbations, meaning perturbations occurring
during grasp execution.

2.2.1. Postural Hand Synergies

Neuroscientific studies demonstrated that not all finger joints are controlled independently
when performing the task of grasping. It is rather suggested that the movements of the finger
joints are strongly correlated, and, thus, the grasping movement is dominated by synergies in
posture space (see (Santello et al., 1998)). To prove this assumption, experiments showed that
static hand postures associated with grasps of familiar objects can be described by a point
in low-dimensional latent space. Human subjects were asked to perform grasps for various
objects. The hand shaping movement has been discretized in hand postures. Each posture
describes a joint angle configuration of the human hand which has been approximated by
a model with 15 DoF. The application of the Principal Component Analysis on this data
revealed that the variance of the data is large regarding the first components whereas the
variance becomes small starting with the fourth component. Subsequently, a low-dimensional
representation based on the first three principal components accounts for 97 % of the hand
postures whereas with two components 80 % can be represented. The average error when
reconstructing a low-dimensional grasp representation is ± 5 degrees per joint. This implies
that only a small number of control variables is needed to actually control a multi-DoF hand
when performing grasping actions. Furthermore, a very important conclusion that has been
made in (Santello et al., 1998) is that the control of the prehensile finger movements is to be
considered separate from the control of the contact forces. This conclusion is based on the
observation that although the same hand shapes have been applied to grasp the same object,
very different contact forces have been exerted on it.
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The common methodology to synthesize grasps on robotic platforms consists of a search for
an appropriate endeffector pose at which by closing the fingers around the object a grasp
is obtained that satisfies constraints imposed by a certain grasp measure. The development
of most grasp measures has been mainly driven by grasp stability issues and, hence, can
be traced back to the concept of force-closure (Salisbury and Roth, 1983). A grasp meets
the force-closure condition when the corresponding contact positions allow a robot to fixate
an object regardless of any external forces and moments. Such grasps are represented by a
set of contact points and their associated friction cones which describe the location and the
direction of the forces which have to be exerted by the fingertips in order to achieve a grasp
in the equilibrium, a state at which all forces and moments are balanced out. Based on the
determined contacts and the corresponding hand pose, a collision-free grasping movement
can be planned and executed. Hence, the most basic grasp representation incorporates the
following information:

• Contact information: the decision where to place the fingers on the object surface,

• Movement strategy: the strategy how the fingers should be moved towards the con-
tact positions.

However, the search for an optimal grasp entails high computational costs even for basic tasks
such as pick and place operations with simple robotic platforms. Modern robotics applica-
tions comprise manipulation problems which mostly require dexterous object grasping in a
task-specific way. Due to the high-level of dexterity featured by the human hand in gross
and fine motor skills, in the past years, research efforts have been devoted to development
of anthropomorphic robotic hand systems. In this context, various hand designs have been
proposed, starting with the Salisbury hand (Salisbury, 1983), the MIT/UTah hand (Jacobsen
et al., 1986), the ARMAR-III Hand (Gaiser et al., 2008) and advancing towards sophisticated
systems which incorporate a large number of joints and actuators in order to mimic function-
ality of the human hand. Examples for such systems are the Shadow hand (Shadow Robot

Figure 3.1.: Various robotic hand systems. From left to right: the Salisbury hand (Salisbury, 1983),
the MIT/UTah hand (Jacobsen et al., 1986) ( c©1986 IEEE), the ARMAR-III hand
(Schulz et al., 2001) ( c©2001 IEEE), the Gifu hand (Kawasaki et al., 2002) ( c©2002
IEEE), and the Shadow hand [Shadow Robot Company] ( c©2014 Shadow Robot Com-
pany).
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Company, 2013) with 24 DoF and the Gifu hand (Kawasaki et al., 2002) with 22 DoF which
are capable of performing highly dexterous manipulation tasks. However, the dexterity comes
with an increase in size, weight, and most importantly control complexity. As a consequence,
the search space increases dramatically with the complexity as well as the additional task-
specific constraints that have to be determined and considered. This makes the computation
of a grasping action with classical grasp planning methods intractable. With regard to the
anthropomorphic design of robotic platforms, an intuitive approach is to derive heuristics
from the observation of human grasp behaviors. In order to integrate this knowledge, grasp
representations have to be extended and designed such that knowledge about human grasping
can be encoded in a form that is accessible to robots. In the following, grasp representations
are discussed which are inspired by human grasping and are used for the recognition, anal-
ysis, and synthesis of grasps in robotics applications. In the perspective of this thesis, only
approaches which allow the representation of prehensile finger movements are reviewed.

3.1. Human-Inspired Discrete Grasp Representations

A straightforward approach to reduce the complexity in robotic grasp synthesis is to use human
grasp taxonomies, as presented in Section 2.1, in order to constrain the grasp configuration
space. In doing so, the discrete set of commonly applied grasp postures can be exploited as
pregrasp or initial solutions which serve as starting points to the search for a suitable grasp
pose which satisfies the given constraints. In this context, motivated by (Iberall, 1997), a grasp
representation is proposed in (Rao et al., 1989) which is based on eight different generalized
grasp types: power grasp, span grasp, cylindrical grasp, chuck grip, hook grip, lateral pinch,
pulp pinch, and precision pinch. Each grasp type determines a joint angle range for each
motor of a finger. For the grasp synthesis, the object of interest is localized in the scene and

Figure 3.2.: Left: Mapping a selection of grasps from Cutkosky grasp taxonomy to the Barrett
hand (Tegin et al., 2009). ( c©2009 IEEE.) Right: Grasp synthesis as a shape matching
problem (Li and Pollard, 2005). A hand shape represented by contact points and normals
is determined which provides the best match with regard to 3D object model. Here, a
grasp posture for a mouse is depicted. ( c©2005 IEEE.)
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represented in the form of geometric primitives (e.g. boxes, spheres, cylinders, and cones)
whereby all grasp types are adapted to each primitive. Depending on given task constraints,
the most qualified grasp type is executed.
In (Tegin et al., 2009), a programming by demonstration framework for grasping is presented

in which demonstrated human grasps are classified based on the Cutkosky taxonomy and
related to a specific object and a corresponding approach vector. As depicted in Figure 3.2,
a grasp is represented by a robot hand configuration which results from a learned mapping of
human grasp types to the kinematic structure of the robot hand. For the grasp reproduction,
based on human grasp demonstrations, the grasp type is recognized. The corresponding
prototypical hand configuration is aligned with the pose of the object to be grasped and, thus,
forms a pregrasp posture which serves as an initial solution to a grasp planning algorithm.
In (Li and Pollard, 2005), a grasp synthesis approach based on a shape matching algorithm

is developed. As depicted in Figure 3.2, a hand shape is represented in the form of contact
points and the corresponding contact normals for an object which is described by a dense
cloud of oriented points. Based on a database containing object- and task-specific grasp
postures recorded from human demonstration, a selection of possible grasp posture hypotheses
is retrieved by matching object and hand shape features. Using a clustering algorithm and
task constraint pruning, the most suitable grasping hand shape is determined and additionally
refined to obtain a stable grasp.
In (Kjellstrom et al., 2008), a framework is proposed for the recognition and the repro-

duction of grasps demonstrated by a human. Based on a database which comprises a large
number of different views of a human hand performing different grasp types from various

Figure 3.3.: Illustration of first two Eigengrasps for several hand embodiments according to (Ciocarlie
and Allen, 2009). For each hand, these Eigengrasps are extracted from training data
which contains numerous grasp postures mapped to the kinematics of the hand. ( c©2006
SAGE Publications.)
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Figure 3.4.: Based on the Contact Web representation, in (Kang and Ikeuchi, 1997), a grasp taxon-
omy is introduced which mainly distinguishes between volar and non-volar grasps. grasp
configurations representing different grasp types are visualized as graph structures whose
vertices are depicted as circles and squares. The bottom right corner shows the key to
the used symbols as well as the right human hand in opened configuration using the
Contact Web. ( c©1997 IEEE.)

grasp taxonomies (see (Cutkosky, 1989), (Kang and Ikeuchi, 1997), and (Kamakura, 1980)),
the robot is enabled to track and observe a grasp applied on a specific object. The view
obtained by observation of the demonstration is matched with hand shapes in the database to
obtain the applied grasp type and the corresponding approach vector. For the reproduction,
each recognized grasp type is associated with a prototypical joint angle configuration and the
corresponding fixed grip aperture. To adapt this prototype to different situations, the size of
the object is visually determined and the grip aperture is adjusted accordingly.
Motivated by (Santello et al., 1998), the concept of the Eigengrasps has been introduced

concept in (Ciocarlie and Allen, 2009) in order to attain a tradeoff between complexity and
controllability. As depicted in Figure 3.3, the Eigengrasp is determined by deriving a pro-
jection function which allows the description of a multi-DoF robot hand configuration in the
form of a low-dimensional vector in latent space. For this purpose, the Principal Component
Analysis is applied on a postural space containing common human grasp postures which are
mapped to a specific robotic hand. As indicated in (Santello et al., 1998), a grasp posture
can be represented by a linear combination in the Eigengrasp space. This space is spanned by
the first two eigenvectors of the data covariance matrix which correspond to the two largest
eigenvalues. For the synthesis of a grasp, a suitable posture for a given task is selected and
optimized with regard to a grasp quality function. Due to the low-dimensional representa-
tion, a grasping action can be planned and evaluated in an efficient manner. However, this
approach does not scale to different objects as well as to other robotic hands. Consequently,
individual Eigengrasp spaces have to be generated for each embodiment.
In (Kang and Ikeuchi, 1997), a grasp is represented by the Contact Web which is a graph

structure in 3D whose nodes describe contact points between the hand and the object. As
depicted in Figure 3.4, each segment of the human hand features a contact point, hence, a
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grasp is characterized by the shape and cardinality of the graph. For the recognition and
analysis of a grasp, based on the Contact Web representation, a taxonomy is derived which
distinguishes between volar and non-volar grasps depending on whether a palm contact exists
or not. In order to map a specific grasp type to a robotic hand, the nodes of the corresponding
Contact Web are grouped to virtual fingers. Each virtual finger is manually associated to an
actual robotic finger. For the synthesis of the mapped grasp, the Contact Web is parameterized
based on the contact points and the hand approach information extracted from human grasp
examples.

3.2. Human-Inspired Continuous Grasp Representations

The representations discussed in Section 3.1 provide a rather static description of grasping
actions which provides a search space reduction and, thus, leads to an improvement of the
grasp planning process. However, they lack essential information based on which a movement
strategy for prehensile finger movements can be inferred. In humans, hand approach and
prehensile finger movements are intertwined allowing the immediate adaptation of a grasping
strategy in order to accommodate changes in the scene and object properties. Hence, to
implement an efficient grasping behavior in dynamic environments, the question of how finger
movements can be incorporated in a grasp representation has to be addressed. Therefore,
instead of reducing a grasp to a single hand posture which is a mere snapshot of this continuous
process, a grasp ought to be represented in a continuous fashion as well.
In the following, grasp representations which follow a continuous approach, comprising

a motion description of the finger trajectories from preshape, approach, and enclose, are
reviewed. Approaches can be coarsely subdivided based on the configuration space in which
the finger movements are defined: continuous representations in the joint angle space and in
the task space.

Figure 3.5.: Manipulation manifolds for a cap turning movement as introduced in (Steffen et al.,
2008). The manifolds are arranged vertically according to the radius of the cap and
horizontally according to the temporal evolution. ( c©2008 IEEE.)
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3.2.1. Representations in Joint Space

An intuitive approach to create a continuous grasping movement is the interpolation between
grasp postures which are temporally related. Following this idea, (Nguyen and Stephanou,
1990) suggest a mapping from the hand configuration space to a topological space which is
defined by four terminal hand configurations (full adduction, abduction, fully flexed, fingertips
touched). Thus, arbitrary hand postures are approximated by a linear combination of these
four hand configurations. To obtain a continuous grasping movement, points representing the
preshape and final grasp posture which satisfy object- and task-specific constraints have to be
determined. The interpolation between these two postures results in a continuous grasping
movement.
A more elaborate approach in the form of manipulation manifolds has been proposed in

(Steffen et al., 2008). The core component of a manipulation manifold consists of a contin-
uous mapping which relates an ordered sequence of hand configurations to a series of latent
lower dimensional feature vectors. In order to obtain an approximation of this mapping,
unsupervised kernel regression is applied on human grasp data. As depicted in Figure 3.5,
manipulation manifolds have been used for the representation of a cap turning movement.
Subsequently, the latent feature vector consists of a normalized time stamp and the diameter
of the cap which relates the encoded movement to object-specific properties. Perturbations
in object size require training of a novel manifold. All manifolds constitute a map which rep-
resents a specific movement generalized to different intrinsic object properties. Using these
manipulation manifolds, a grasp can be represented in a similar manner. However, the main
drawback of this approach lies in the scalability of manifolds. To cover a wide range of grasp-
ing movements for different objects, a large amount of grasping data has to be collected and
considered in the model building process.
An alternative way to derive a mapping from object properties to grasp configurations is

to use neural networks. Following this methodology, in (Uno et al., 1995) an approach is
proposed to generate a model with which a grasp hand posture is inferred based on a visual
image of the object to be grasped. Without explicitly specifying the relations between the
object and the hand’s kinematics, this model is derived by training a neural network with data
from the observation of human grasps which consists of lateral object views annotated with

Figure 3.6.: Representation of a grasping primitive using the coupled dynamical systems approach
as presented in (Shukla and Billard, 2012). ( c©2012 Elsevier B.V.)
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Figure 3.7.: Left: Continuous representation of prehensile finger movements defined in joint space
using the DMP representation as introduced (Stulp et al., 2011). Right: Reproduction
of fingertip trajectories in task space represented in the form of a DMP as defined
in (Kroemer et al., 2010). ( c©2010 2011 IEEE.)

the corresponding grasp hand posture. In (Taha et al., 1997), an approach is presented which
enables the reproduction of the entire grasping sequence, from preshaping to enclosing. To do
so, a neural network is trained with continuous grasp data represented as temporal sequences
of joint angle movements related to specific objects. Experiments showed that the resulting
representations are very limited in their capabilities to adapt to other objects, different tasks
or embodiments.
In (Jäkel et al., 2010), grasping strategies are encoded in a representation which combines

the wrist approach movement in task space and the prehensile finger movements in joint angle
space. Embedded in a programming by demonstration framework, human grasp demonstra-
tions are generalized to strategies which can also be applied to grasp slightly different objects.
This is accomplished by incorporating a probabilistic variation model which combines various
error models regarding the object localization and the mapping. This model induces a non-
uniform sampling distribution of the configuration space and is used to guide the search of a
probabilistic motion planner.
In (Shukla and Billard, 2012), a grasp controller is implemented based on coupled dynam-

ical systems which considers the hand as well as the finger movements. Both movements are
described by separate dynamical systems which use ordinary first order differential equations
for the encoding of postural endeffector movements. To determine these differential equations
based on demonstrations of a specific grasp, it is assumed that each point in the demon-
strations is drawn from a joint distribution and that the probability density of the data is
modeled as a Gaussian Mixture Model (GMM). Both dynamical systems, represented as sepa-
rate GMMs, are coupled via a third GMM which encodes the joint probability distribution of
the inferred state of the fingers and the current hand pose. The proposed approach is capable
of encoding a specific grasping movement which is adapted to a specific object. However, it
does not generalize well to different task- and object-specific constraints and, thus, has to be
learned for every object and grasp type.
A similar approach is introduced in (Stulp et al., 2011), where a Dynamic Movement Primi-
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Figure 3.8.: Representation of the fingertip movements in the form of clusters projected into low-
dimensional latent space (Palm and Iliev, 2006). ( c©2006 IEEE.)

tive (DMP) is used to encode the coupled hand and finger movements. A DMP is a movement
representation which consists of a set of differential equations each describing a mass spring
damper system attached to a goal position and perturbed by a weighted nonlinear force term.
Each dynamical system, denoted as transformation system, represents a single dimension of
the movement to be encoded. An additional dynamical system, the canonical system, is im-
posed on the transformation systems in order to control their temporal evolution. For an
elaborate discussion of the DMP concept the reader is referred to Section 4.4.1. A grasping
movement is described by a (6+N)-dimensional trajectory which represents the movement
of the wrist and N finger joints. Based on a simulated grasping movement starting from
a preshape posture and ending at the final grasp posture, a DMP is initially learned. Us-
ing a reinforcement learning approach, the DMP is refined in order to generalize the grasp
representation to varying object positions.
An approach which also uses DMPs to describe dynamics of grasping movements in la-

tent space is introduced in (Amor et al., 2012). Similar to the Eigengrasp approach a low-
dimensional subspace is inferred by applying PCA on a set of human grasp demonstrations
which reflect different grasp types. By extracting the first five principal components a map-
ping between the hand joint angle space and a low-dimensional subspace is established. In
order to learn a specific grasp type, a corresponding grasping movement is projected into this
subspace. Based on the projection a DMP is learned where each dynamical system represents
a single dimension of the latent space.

3.2.2. Representations in Task Space

In (Palm and Iliev, 2006), for the purpose of recognizing human grasps, fingertip trajecto-
ries are modeled as a set of clusters which are formed at discrete times. A time-dependent
weighting function connects the clusters to create a continuous description of the fingertip
trajectories in task space. Using a set of fuzzy rules and predefined norm with which the sim-
ilarity to various grasp prototypes is determined, an observed grasp sequence is reconstructed
and classified.
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Figure 3.9.: Continuous grasp representation for various grasp types using GMM in low-dimensional
latent space as described in (Romero et al., 2010). ( c©2010 IEEE.)

A low-dimensional approach which exploits synergies in Cartesian space is presented in
(Romero et al., 2010). For a compact representation of a grasping movement, a method
based on Gaussian Process Latent Models (GPLVM) is applied to create a mapping from the
original observational space in which each point represents the fingertip positions as well as
the hand pose to a low-dimensional latent space. The use of Gaussian processes to regress
the mapping function allows a more accurate reconstruction and the processing of complex
and large datasets. Based on different grasp examples, various movements are encoded within
the GPLVM subspace. To form a continuous representation, each point in latent space is
enriched with a temporal dimension and Gaussian Mixture Models fitted to the trajectory in
this space. For the reconstruction of an encoded grasping movement, hand configurations for
each time step are inferred using Gaussian Mixture Regression.
In (Kroemer et al., 2010), a continuous grasp representation is presented consisting of a

DMP framework where each fingertip movement in task space is encoded as a single DMP
which is learned from a grasp example featuring a specific grasp. To synthesize an encoded
grasp, the DMPs are parameterized with appropriate contact positions as well as eventual
obstacle positions which are represented by a repelling force potential. These parameters are
extracted from visual features in the form of 3D edges which can either represent parts of the
target object or obstacles within the scene.

3.3. Discussion

Representations in joint space have the advantage that a kinematic solution for the control
of the fingers is immediately available. However, it is not guaranteed that the hand and
the fingers are aligned with the presumed contact positions. In the context of dexterous
grasping, hand postures provided by these representation can be merely considered as initial
solutions to grasp planning algorithms. Therefore, representations in joint space are limited
in their capability to generalize situation-specific grasp observations. In most cases, variations
regarding task- and object-specific constraints require extensive training of multiple models in
order to implement an efficient grasping behavior. Especially for high-dimensional data which
originate from the observation of complex systems such as the human hand, the processing of
the grasp data becomes cumbersome.
Representations defined in task space such as the Contact Web introduced in (Kang and

Ikeuchi, 1997) allow the direct incorporation of grasp-relevant information about the relation-
ship between hand and object, and, thus, facilitate the transfer of motor knowledge between
different embodiments as well as the adaptation to changing object- and task-specific con-
straints. In order to obtain a comprehensive grasp representation in the task space, movements
of the hand as well as the fingers have to be encoded in a continuous fashion. Few works such
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as (Romero et al., 2010) and (Kroemer et al., 2010) addressed this issue where different as-
sumptions have been made. In (Romero et al., 2010), the fingertip movements are considered
as a trajectory of a subsuming entity. This approach is robust to variances in grasp examples
performed by different human subjects and facilitates a low-dimensional grasp representation
as well as the incorporation of finger movement synergies. However, focusing on grasp clas-
sification, the approach studies how different grasp performances can be structured rather
than addressing the question of how a grasp can be reproduced under different conditions. As
opposed to this work, (Kroemer et al., 2010) developed a representation for the generation of
grasp primitives that can be reproduced with changing object- and task requirements. This
approach is based on the assumption that each finger moves individually, and, thus, disregards
kinematic dependencies and constraints as well as finger movement synergies which might lead
to infeasible solutions.
In this thesis, a continuous grasp representation is proposed which allows the continuous

description of a grasping process observed in task space. In the context of grasp learning from
human observation, finger movement synergies are modeled and integrated in this represen-
tation in order to form an adequate construct based on which robotic grasp primitives can be
derived in an efficient manner.
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The variety of numerous grasping possibilities and the continuous emergence of novel sit-
uations in human-centered environments, requires the ability for robots to rapidly acquire
grasp-related motor knowledge. A methodology which supports the development of such an
efficient grasp learning behavior is learning from observation. Based on observations of a spe-
cific grasping movement, a representation is desired which, on the one hand, encodes relevant
movement characteristics for the observed grasp type and, on the other hand, generalizes the
observed movement from the specific context. A grasp representation should contain sufficient
information allowing to infer a grasping movement policy which yields a similar behavior as
featured in the observed grasp demonstrations and which can be adapted to current object and
task-specific constraints. In this chapter, a continuous grasp representation in the task space
is proposed with required attributes in order to implement such grasp learning behavior. The
representation incorporates two separate motion models for the description of the prehensile
finger and hand movements. Especially, the question of how prehensile finger movements can
be represented is addressed in this chapter. For this purpose, a novel approach in the form
of the Virtual Spring Grasp representation is proposed. First, in Section 4.1, this approach
for a continuous grasp representation is motivated. In Section 4.2, fundamental principles
of the representation are described. Subsequently, the two motion models are elucidated.
Section 4.3 introduces the representation for the modeling of finger movements. The motion
model for the representation of hand approach movement is described in Section 4.4. The
coupling between both is addressed in Section 4.5.

4.1. Motivation

A continuous approach bears the advantage that it facilitates the adaptation of the represen-
tation to varying constraints and, thus, allowing to attain goal-directed grasping movements
in dynamic scenes. As suggested by (Hoff and Arbib, 1993), the proposed grasp representa-
tion comprises two separate models, one for the representation of the hand movement and
one for the finger movements. In the following, a grasping movement performed by a hand
with N fingers is described by a trajectory G := (XH ,XF) consisting of T frames where the
hand approach movement is represented by the trajectory matrix XH ∈ R6×T :

XH = (xH(1) . . .xH(T )) (4.1)

with xH(t) = (xH(t),yH(t),zH(t),αH(t),βH(t),γH(t))
T denoting the palm position and orien-

tation at time 1 ≤ t ≤ T . The finger movements are described by the trajectory matrix
XF ∈ R3·N×T :

XF =













(x1(1)
...

xN(1)






. . .







x1(T )
...

xN(T )












(4.2)

with xi(t) = (xi(t),yi(t),zi(t))
T indicating the position of fingertip i with 1 ≤ i ≤ N which is

defined in a coordinate system located within the hand. To obtain a continuous representation
of a grasping movement, a model which approximates G is needed. A method to approach
this problem is the use of dynamical systems which can be applied to describe the temporal

23



4. Grasp Representation

Figure 4.1.: Left: 2D vector field which drives a mass body from a start position S = (1,1) to a goal
position A = (7,6). A repelling force emanates from R = (6,4). Right: Same vector field
as depicted in the left figure with a shifted goal position A = (8,5).

evolution of an underlying physical system. In terms of grasping, the physical system is model
of the grasping hand. A state of a dynamical system imposed on this model corresponds to
a certain hand configuration. Movement representations based on dynamical systems have
been proposed in various works (see (Ijspeert et al., 2002), (Schaal et al., 2005), (Hersch
et al., 2008), (Ude et al., 2010)). Based on a formalization using differential equations, as
illustrated in Figure 4.1, an attractor landscape is shaped which determines how the physical
system evolves over time and which defines a specific goal state to which the system converges.
In a similar fashion, a repeller can be used to prevent the system of adopting an infeasible
state. Especially, considering goal-directed movements, these properties allow the generation
of movement policies which can be easily adapted to different start and goal conditions and
are robust against perturbations allowing to efficiently accommodate dynamic changes in the
environment.
In the following, the capability of dynamical systems to represent coordinated movements

performed by multiple fingers is investigated. Previous approaches for the representation of
finger movements are defined in a common space in which each point represents a configuration
for all fingers and, thus, treating fingers as a single entity. This methodology facilitates the
description of coordinated finger behavior, but, however, does not allow the consideration of
individual finger movements. This property can be beneficial and under certain conditions is
necessary to generate goal-directed grasping movements.
To enhance the adaptivity and flexibility of a grasp representation, the presented approach

is based on the assumption raised by (Smeets and Brenner, 1999) which suggests that pre-
shaping and enclosing of the fingers can be described as synchronized movements of individual
digits in the task space. This view on grasping allows the direct consideration of external dis-
turbances affecting an individual finger and, therefore, enables more accurate responses to
perturbations in object position and size. Hence, inspired by these findings and based on
the Contact Web representation introduced in (Kang and Ikeuchi, 1997), the Virtual Spring
Grasp Representation is introduced which interprets each finger and contact point as a mass
body in the task space. The synergistic effects between the bodies are implemented using
virtual spring components. For the representation of the hand approach movement, the pro-
posed approach relies on Dynamic Movement Primitives, a movement representation based
on nonlinear differential equations. Both representations are joined via a canonical system in
order to establish a coupling between the hand approach and the finger movements.
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Figure 4.2.: a) Backprojection error for grasp examples featuring a power grasp, pinch grasp, and
a medium wrap grasp. The 2D latent space is spanned by the first two principal com-
ponents which are extracted from the entire grasp data. The backprojection error for
power grasp examples where based on power grasp data featuring a latent space is de-
rived with 1, 2, or 3 principal components in b). For a medium warp and for a pinch
grasp, the error is plotted in c) respectively d).

4.1.1. Finger Movement Synergies

An important aspect when developing an approach for the representation for the prehensile
movements is the consideration of postural finger movement synergies. As indicated by (San-
tello et al., 1998), synergies are mechanisms which enable the human brain to facilitate the
control of the grasping hand. In robotics applications, this concept has been successfully im-
plemented in the form of underactuated hands (see (Brown and Asada, 2007),(Catalano et al.,
2012),(Chen and Xiong, 2013)). Such systems are capable of performing dexterous grasping
actions with a reduced control complexity due to the low-dimensional control input.
Finger movement synergies have been mostly studied in hand configuration space. For the

incorporation of these mechanisms in the proposed representation, the emergence of synergistic
effects in the task space is studied. To show that postural synergies lead to synergies in the
task space, human grasp demonstrations of different grasp types (power grasp, pinch grasp,
lateral grasp, spherical pinch grasp) have been recorded in the form of fingertip trajectories.
As suggested by (Santello et al., 1998), by applying a Principal Component Analysis (PCA)
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4. Grasp Representation

Figure 4.3.: Finger movement synergies in the task space represented by the first three principal
components extracted from the grasp demonstrations. The corresponding hand postures
depict the minimum (start of an arrow) and the maximum (end of an arrow) values of
the principal components.

on the grasp trajectories, a low-dimensional latent space is defined by the first two principal
components. For a five-fingered hand, each point of a novel grasp trajectory xh ∈ R5·3 is
projected on a latent representation xl ∈ R2. Through backprojection of xl to a fingertip
configuration xh

′ ∈ R5·3, one can assess how well a fingertip configuration can be represented
in latent space by evaluating the difference between xh

′ and xh. The plot a) in Figure 4.2
depicts the average reconstruction error of a fingertip position which is approximately 5−7 mm
depending on the number of principal components used for the projection. In plot b), c), and
d), the reconstruction error is visualized for a latent space generated from data which features
a specific grasp type. With three principal components the error is reduced to≈ 4 mm. Similar
to the findings stated in (Bicchi et al., 2011), the inclusion of a fourth principal component
does not considerably improve the experimental results. The latent space spanned by the
first three principal components is visualized in Figure 4.3. The finger movement synergies
represented by the principal components are denoted as syn1,syn2, and syn3. Synergy syn1

mainly controls the fingers to attain an oppositional configuration between thumb and the
remaining fingers while extending the fingers. Synergy syn2 addresses the opposition between
thumb and the index finger whereas synergy syn3 appears to be crucial for the preshaping of
the hand, since it represents a hand opening movement by maximizing the distance between
the virtual finger and the thumb. The results of this analysis reveal that finger movements
do not only feature synergies in joint angle, but in task space as well. The synergies further
show that the thumb movement correlates the least with the movements of the other fingers.
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4.2. Basic Principles

This indicates that the thumb plays a particular and decoupled role in grasping and, thus,
has to be treated differently from the other fingers.

4.2. Basic Principles

The VSG representation is based on the assumption that a fingertip can be represented as
a mass body b in Cartesian space whose position, velocity, and acceleration are denoted as
x, ẋ, ẍ ∈ R3. For the sake of simplicity, it is assumed that the mass of b is m = 1. According
to Newton’s Second Law the body’s acceleration is equivalent to the net forces acting on the
body:

f = mẍ. (4.3)

To constrain the movement of b, as depicted in Figure 4.5, a mass spring damper system is
employed which connects b to a fixed point in space. For the sake of simplicity, this fixed
point is assumed to be the origin of the coordinate system in which the spatial properties of b

are defined. Hence, for a spring with an equilibrium length l and a spring constant k > 0, the
forces acting on b in order to restore the equilibrium state are described by following equation:

fb =−k (d − l) x̂−ζ ẋ+fe (4.4)

with x̂ = x
‖x‖ being the unit vector of x and d = ‖x‖ describing the distance of b to the origin.

Potential external forces acting on b are incorporated in fe. With the damping coefficient
ζ the amplitude of the oscillations after perturbations is controlled. According to (Komkov,
1972), to induce a specific oscillatory behavior into the system, ζ has to be determined based
on the corresponding damping ratio r. This is described by following equation:

r =
ζ

2
√

k
. (4.5)

In general, we distinguish between four different oscillatory behaviors of a mass spring damper
system:

• r = 0 results in an undamped system which will pass the equilibrium point faster than
the three other modes. The system keeps oscillating with the same frequency and am-
plitude for an indefinite time without converging,
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Figure 4.4.: behavior of linear mass spring damper system with an equilibrium spring length of 10

mm. The spring links a mass body of 1 kg to a fixed point in space. Initially, the
spring is displaced to a length of 20 mm. Left: Variation of the damping term. Right:
Variation of the spring constant for critically-damped system.
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4. Grasp Representation

Figure 4.5.: Left: A single body linked to a fixed point in space via a spring element. Right: Multi-
body systems involving two mass bodies where both are coupled via a spring and addi-
tionally attached to a fixed point in space.

• 0 < r < 1 describes an underdamped system which will pass the equilibrium state and
overshoots, but due to the introduction of frictional forces will converge to the equilib-
rium state while oscillating with decreasing amplitude,

• r = 1 specifies a critically-damped system which converges to the equilibrium state as
fast as possible without oscillating,

• r > 1: leads to a non-oscillating system which in addition converges slower to the equi-
librium state due to high frictional forces.

As depicted in Figure 4.4, the behavior of the spring and, thus, the movement of the mass
body can be varied by changing the corresponding stiffness parameter and the damping ratio
whereas modifying the equilibrium spring length allows the definition of different goal states.

4.2.1. Multi-Body Systems

To simulate the behavior of coherent bodies whose motion mutually influence each other,
a multi-body system is defined where the interaction between the bodies is emulated using
spring elements. As illustrated in Figure 4.5, for a two-body problem which involves the
bodies bi and b j connected via a spring, the force exerted on bi by b j is described by:

fi j =−ki j

(

di j − l
)

(

xi −x j

di j

)

−ζi j

(

ẋi − ẋ j

)

(4.6)

with di j = ‖xi −x j‖ being the distance between bi and b j. Analogously, the following term:

f ji =−fi j (4.7)

describes the force acting on b j. With bi and b j being linked to the origin of the coordinate
system as defined in Eq. 4.4, the total net forces acting on bi and b j are described by following
terms:

fi = fbi
+fi j, (4.8)

f j = fb j
+f ji. (4.9)
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4.3. Virtual Spring Grasp Representation

Figure 4.6.: The virtual spring concept as introduced by (Arimoto et al., 2005) illustrated for arm
reaching on a humanoid robot.

Consequently, for a dynamical system with N bodies, based on the pairwise evaluation of the
interactions between the bodies, the net forces acting on a single body bi can be described
using following equation:

fi = fbi
+

N

∑
j=1

κi jfi j

{

κi j = 1 , ki j > 0

κi j = 0 , ki j = 0
, (4.10)

where κi j is a connectivity parameter which indicates whether a direct interaction between
two bodies according Eq. 4.6 exists or not. With Eq. 4.4 the motion of bi is described as:

ẍ= fbi
+

N

∑
j=1

κi jfi j +fei
. (4.11)

The behavior of the multi-body system over time is determined by the equilibrium lengths
and the stiffness parameters of the spring elements. The reproduction of the encoded behavior
is accomplished by solving the second order differential equations which in most cases is done
numerically and requires the continuous evaluation of Eq. 4.11 in equidistant time steps.

4.3. Virtual Spring Grasp Representation

The Virtual Spring Grasp (VSG) representation which has been proposed in (Do et al., 2011b)
is based on a multi-body system. The bodies in this system represent crucial points in the
task space such as the palm, the fingertips and their corresponding contact points. For
the emulation of synergies as well as the encoding of prehensile movement characteristics,
parameterizable virtual mass spring damper systems are incorporated. The system comprises
three types of virtual springs: springs linking each fingertip with a designated contact point
(see Section 4.3.1), springs between the fingertips (see Section 4.3.2), and springs anchoring
the fingertips to the hand (see Section 4.3.3).

4.3.1. Contact Springs

Inspired by spring-like effects in human reaching verified in numerous studies presented in
(Shadmehr and Wise, 2005), several control approaches have been developed based on the
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4. Grasp Representation

Figure 4.7.: The VSG Representation for a three-finger tripod grasp. The fingertips and the palm
(red) and designated contact points (blue) are connected by the contact springs. The
stabilization springs are denoted as si whereas the finger springs are represented by si j.
The fingertips are labeled as follows: thumb (T), index finger (I), middle finger (M),
ring finger (R)m and pinkie (P).

hypothesis that the relation between the endeffector and a target position can be described by
a virtual spring in the task space. As depicted in Figure 4.6, (Arimoto et al., 2005) introduced
a control method which in order to pull an endeffector towards its designated goal incorporates
a linear mass spring system specified by a single scalar stiffness coefficient. In combination
with the Jacobian matrix and a joint velocity damping term, the spring system allows the
derivation of joint torques for the generation of smooth multi-joint reaching movements. A
further example is given in (Bierbaum et al., 2009a) where a tactile exploration approach
is presented. In order to guide a robotic hand, Virtual Model Control is applied, a control
algorithm which has been originally proposed by (Pratt et al., 2001) and which uses virtual
springs to simulate the robot dynamics for bipedal locomotion. In order to represent fingertip
movements in a flexible and goal-directed manner, the proposed grasp representation adopts
this idea by placing a virtual spring with length lvci

between each fingertip and its designated
contact point. In the following, the virtual spring between the fingertip i represented by bi and
a virtual contact point bvci

is denoted as a contact spring. The position of the virtual contact
point denoted as xvci

emerges from the projection of the final grasp configuration xc ∈ R3N

into the current hand coordinate frame xH(t). Naturally, virtual and actual contacts points
are aligned once the hand has reached the final grasp pose xH(T ). Based on the contact
spring, the force fvci

acting on bi can be described as follows:

fvci
=−kvci

(dvci
− lvci

)(xvci
−xi)−ζvci

ẋi (4.12)
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4.3. Virtual Spring Grasp Representation

with dvci
= ‖xvci

−xi‖ and lvci
≥ 0. In order to obtain a natural looking fingertip movement, as

suggested in (Sekimoto and Arimoto, 2006), kvci
is defined as a time-varying stiffness function

which is monotonously increasing and converging towards kci
> 0. Following the gamma

distribution, this stiffness function is defined as follows:

kvci
= kc(t) = kci

(1.0− (1.0+α(Tend − t)+
α2

2
(Tend − t)2)e−α(Tend−t)). (4.13)

Similar to reaching movements, fingertip movements are assumed to be critically-damped.
This assumption does not generally apply to fingertip movements, e.g. periodic movements
are mostly underdamped. Nevertheless, for direct and intentional movements such as grasping,
critically-damped systems provide an appropriate description of the endeffector movements
aiming straight towards its goal without overshooting. Thus, considering the stiffness kvci

, the
damping term ζvci

is determined according to Eq. 4.5:

ζvci
= ζc(t) = 2∗

√

kc(t). (4.14)

Since the system features a critically-damped oscillation behavior, the number of unknown
variables is reduced to the spring constant parameter kci

. Hence, combined with the force
term in Eq. 4.12, the movement of fingertip i is described by following differential equation:

ẍci
=−kc(t)(xvci

−xi)−ζc(t)ẋi. (4.15)

Eq. 4.15 is valid for fingertips whose contact positions have been specified. For fingertips
which are not involved in a grasp e.g. the pinkie in a tripod grasp, kci

is set to zero from
which ẍci = 0 follows. The synergy study conducted in Section 4.1.1 suggests that a single
parameter kcv f

∈ R is sufficient for the approximation of the movements of the virtual finger
bv f towards the target. Since bv f subsumes the fingers with the indices i = 2, . . . ,N, it is
assumed that kc2

= . . . = kcN
= kcv f

. To accommodate the mostly decoupled thumb motion,
an individual contact spring with the stiffness kc1

is defined.

4.3.2. Finger Springs

For modeling the synergies between the fingers, a critically-damped mass spring damper
system is parameterized by a spring constant ki j > 0 and a spring length li j > 0 in order
to link bi and b j. As suggested by the findings in Section 4.1.1, the movements between the
fingers forming the virtual fingers are strongly correlated as well as the movements between the
thumb and the virtual finger. Therefore, spring elements are introduced between the thumb
and the fingertips forming the virtual finger in order to enforce an oppositional configuration.
Furthermore, springs are installed between the each fingertip and the neighboring ones to
accommodate the movement of the virtual finger as well as to allow perturbation forces acting
on a fingertip to have an effect on the fingers nearby. In the following, virtual springs between
the fingertips are denoted as finger springs. For a five-fingered hand (N = 5) where the fingers
are denoted as thumb (i = 0), index finger (i = 1), middle finger (i = 2), ring finger (i = 3),
and pinkie (i = 4), a spring constant matrix K ∈ RN×N is defined as follows:

K =













0 k21 k31 k41 k51

k12 0 k32 0 0

k13 k23 0 k43 0

k14 0 k34 0 k54

k15 0 0 k45 0













. (4.16)
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To complete the description of the entire system, a damping matrix Ψ with Ψ (i, j) = ζi j

is defined, which incorporates the damping factors for each finger spring si j. With K and Ψ ,
the forces exerted by the finger springs and acting on bi can be written as follows:

f fi =−K(i)











(

xi−x1
di1

)

(di1 − li1)
...

(

xi−xN

diN

)

(diN − liN)











−Ψ (i)







ẋi − ẋ1
...

ẋi − ẋN






. (4.17)

li j is assumed to be the desired distance between both fingertips at the end of a grasping
movement. Hence, li j is calculated from the last fingertip configuration of the observed grasp
example as follows:

li j =
∥

∥xi(T )−x j(T )
∥

∥ . (4.18)

Since Eq. 4.17 is composed by the forces defined in Eq. 4.6, the movement of bi caused by the
finger springs can be encoded as following equation:

ẍ fi =
N

∑
j=1

fi j. (4.19)

4.3.3. Stabilization Springs

Using the spring types introduced in Section 4.3.1 and Section 4.3.2, one is able to construct
a dynamical system to represent synergistic movements of fingertips approaching their con-
tact positions. However, this preliminary system is very sensitive to perturbations causing
undesirable effects such as rotation of the entire system or overshooting, which may lead to
kinematically infeasible solutions. To diminish these effects, additional spring elements, which
are denoted as stabilization springs, are introduced into the system. The stabilization springs
anchor the bodies {b1, . . . ,bN} to a single fixed point in space bs. By defining bs to be the
origin of the local hand coordinate system and, therefore, representing the hand’s palm, the
movements of the fingertips are constrained according to the grasping task as well as the
kinematic specifications of the hand. Based on the desired distance lsi

of the finger i to the
palm, a spring connecting bs and bi can be formally described as follows:

fsi
=−ksi

(dsi
− lsi

) x̂i −ζsi
ẋi, (4.20)

where dsi
= ‖xi‖ and ζsi

corresponds to the damping factor which is calculated using Eq. 4.5.
To enhance the feasibility of the solution, the kinematically reachable space is constrained by
spring elements with equilibrium lengths lmin

si
and lmax

si
. The forces exerted by these springs

are incorporated in the external force term fesi
in order to make sure that lmin

si
< dpi

< lmax
si

.
Subsequently, the fesi

is specified as follows:

fesi
=











−ks

(

dsi
− lmax

si

)

~xi −ζsi
ẋi, if dsi

> lmax
si

−ks

(

dsi
− lmin

si

)

~xi −ζsi
ẋi, if dsi

< lmin
si

0,else

, (4.21)

where ks is assumed to be a constant stiffness parameter and the spring lengths lmin
si

and
lmax
si

are adopted from embodiment-specific measurements of the grasping hand. Similar to
the contact spring constant, the unknowns in this systems are reduced to ks1

and ksv f
with

ks2
= . . . = ksN

= ksv f
to account for the different roles of the virtual finger and the thumb in

32



4.3. Virtual Spring Grasp Representation

Figure 4.8.: Visualization of the Virtual Contact Strip. The finger joint positions are represented by
x ji . The Virtual Contact Strip is defined by points which result from the intersection of
a ray originating from a point x jm on the finger and the object surface.

grasping. The differential equation describing the motion of the mass body bi concerning the
forces exerted by bs are formulated by:

ẍsi
=−ksi

(dsi
− lsi

)xi −ζsi
ẋi+fesi

. (4.22)

The different spring types provide the means to encode a grasping action in a goal-directed
manner. Especially, the representation of the finger-contact relationships using the contact
springs facilitates the adaptation to different task- and object-specific properties. Additionally,
the synergy and stabilization springs are incorporated in order to represent grasp-specific
movement characteristics. The resulting dynamical system which forms the core of the VSG
representation is illustrated in Figure 4.7. However, the dynamical system considers only the
movements of the fingertips, and ,thus, is limited to the representation of precision grasps or
non-volar grasps. In the following, an extension is presented which enables the encoding of
volar grasps as well.

4.3.4. Virtual Contact Strip

According the taxonomy introduced in (Kang and Ikeuchi, 1997), volar grasps are character-
ized by less precision but higher forces and, thus, require palm contact and, in most cases, the
enveloping of the fingers around the object. The representation of volar grasps is much more
complex than the representation of mere precision grasps. In order to encode and to reproduce
such a grasp behavior, sufficient information about the grasping hand and the target object
is needed. To represent volar grasp using the VSG representation, a concept is introduced
which is denoted as the Virtual Contact Strip in order to replace the virtual contact spring
described in Section 4.3.1.
Based on 3D models of the hand and the object, the Virtual Contact Strip is obtained

by projecting various points belonging to finger geometry onto the object. A finger i is
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4. Grasp Representation

described as a chain of segments (s0, . . . ,sB−1) and joints ( j0, . . . , jB−1) where j0 denotes the
root joint linking the finger to the palm, the configuration of i at time t can be described
by the Cartesian positions of the joints (x j0 . . . ,x jB) where x jB represents the position of the
fingertip. Through sampling with an equidistant step size ∇M, sb can be described by point
sequence Xbi

(t)∈R3×M. To determine the virtual contact point corresponding xbm
(t)∈ Xbi

(t),
a ray vm is constructed as follows:

vm = xbm
+z j0 × (xb+1 −xb) (4.23)

with z j0 denoting the rotation axis of the 1 DoF joint j0 (in anatomical terms PIP joint). vm

penetrates the object surface at the point x̂cbm
which is considered to be the corresponding

virtual contact point. Therefore, the Virtual Contact Strip can be defined as a set X̂cb(t) ∈
R3×M. In order to pull the finger towards the Contact Strip, mass spring damper systems as
defined in Section 4.3.1 are placed between xbm

and x̂cbm
with l = 0. In the case that the ray

does not intersect with the object surface no forces are applied on the corresponding finger
point. Based on M force components which originate from x̂cbm

and act on xbm
, the forces

exerted on the fingertip are described by following term:

fci
=

M

∑
m=1

ẍbm
. (4.24)

As mentioned before, the Virtual Contact Strip makes use of the grasping hand’s geometry in
order to implement an enveloping behavior and ,thus, ensures that the contact areas between
object and hand are maximized. This allows the application of higher forces and increases the
stability of a grasp. For now, this can only be accomplished by adapting the proposed grasp
representation to the embodiment used for grasping. Therefore, a volar grasp representation
cannot be transferred easily between different kinematics. However, on the other hand, the
control of prehensile finger movements is facilitated since the Virtual Contact Strip allows the
direct inference joint angle values.

4.3.5. Enclose and Preshape

The VSG Representation is used to represent both stages of a grasping movement, the enclos-
ing and preshaping of the hand. As depicted in Figure 4.9, two equilibrium states are defined
for each stage where the states are created by adapting the spring lengths of the representa-
tion to the underlying grasp example. The ends of the enclosing and preshaping stages are
denoted by Tpre and Tend. The equilibrium lengths of the finger springs and the stabilization
springs are adopted from the final fingertip configuration at Tend and are assumed to be fixed
for preshape as well as enclose. The transition between these two grasp stages is mainly ac-
complished by adapting the contact spring lengths accordingly. For an appropriate encoding
of the preshaping movement, lvci

= rmax − r is specified, with r describing the object radius
and rmax the maximal aperture which can be reached by the grasping hand. A preshaping
behavior is induced into the representation which evokes repelling forces emanating from the
object and acting on the fingertips. In the enclose stage, lvci

= 0 is assumed which guarantees
the alignment of the fingertips with the designated contact positions. Considering the two
equilibrium states, the time-varying stiffness functional defined in Eq. 4.13 has to be redefined
and, thus, takes the following form:

kvci
(t) =

{

kci
(1.0− (1.0+α(Tpre − t)+ α2

2
(Tpre − t)2)e−α(Tpre−t)) ,T0 < t < Tpre

kci
(1.0− (1.0+α(Tend − t)+ α2

2
(Tend − t)2)e−α(Tend−t)) ,Tpre ≤ t ≤ Tend.

(4.25)
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4.4. Representation of Transport

Figure 4.9.: Start, preshape, and enclose configuration of a spherical precision grasping action which
is represented using the proposed approach.

The end of each grasp stage is reached once kvci
(t) converged to the saturated value kci

. By
introducing both functionals into Eq. 4.12, a preshaping as well as an enclosing behavior
can be represented with a smooth transition between both stages. Based on the differential
equations in Eq. 4.19, Eq. 4.15, and Eq. 4.22, the total motion equation for fingertip i is
described as follows:

ẍi = ẍ fi + ẍci
+ ẍsi

+fe. (4.26)

The parameters with which a specific behavior is induced consist of the spring constant matrix
K and the stiffness parameters kc1

,kcv f
ks1

,ksv f
. Since the proposed VSG representation in-

corporates M = 7 finger springs, a representation with k= (k12,k13,k14,k15,k23,k34,k45,kc1
,kcv f

ks1
,ksv f

)T ∈R11 is proposed for the continuous representation of a prehensile finger movements
performed by a five-fingered hand.

4.4. Representation of Transport

To be able to fully describe a grasping movement, the proposed representation is coupled to
a model which allows the encoding of the hand approach movement. The hand approach
movement can be described by models for the description of human arm reaching. It is
commonly assumed that human movements are generated based on the composition of move-
ment primitives which represent basic actions and, thus, form a vocabulary for the generation
of complex movements. This assumption is supported by neuroscientific studies reported
in (Wolpert and Kawato, 1998) showing that the movement control and learning behavior
in humans can be explained by architectures which incorporate multiple forward and inverse
models in order to compare, predict, and generate motions. In the effort to transfer these
findings to robotic platforms, several approaches have been proposed to enable the extraction
of such models based on movement examples. In (Ude et al., 2004) and (Wada and Kawato,
1995) demonstrated joint angle trajectories are encoded using spline-based representations.
In (Tso and Liu, 1996), (Inamura et al., 2003), and (Asfour et al., 2008), approaches using
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4. Grasp Representation

statistically-based learning methods such as Hidden Markov Models have been proposed in
order to encode trajectories in the form of state sequences. The represented movements are
synthesized by interpolating between these states. An alternative approach is introduced in
(Calinon et al., 2007) where Gaussian Mixture Models are employed in order to generalize
multiple demonstrated trajectories of the same task.
Recent research efforts dedicated to the development of endeffector movement representa-

tions focused on the use of dynamical systems. In this context, (Khansari-Zadeh and Billard,
2011) presented a method based on a motion model in the form of a multi-dimensional dynam-
ical system which incorporates a nonlinear function composed by Gaussian basis functions.
The function parameters are estimated from the demonstrations in order to enforce the sys-
tem to encode the featured behavior. A popular movement representation is proposed by the
concept of Dynamic Movement Primitives in (Ijspeert et al., 2002), which incorporates a lin-
ear dynamical system perturbed by a nonlinear force functional in order to encode arbitrary
complex movements. A canonical system which drives the evolution of this system allows
the integration and synchronization of multiple systems and, thus, facilitates the encoding of
movements even in higher dimensions. In this thesis, DMPs are applied for the representation
of the hand approach movement. Besides the mentioned advantages, the canonical systems
enables the integration of the VSG representation into a unifying grasp representation. Hence,
in the following the concept of the DMPs is described in more detail.

4.4.1. Dynamic Movement Primitives

The idea behind Dynamic Movement Primitives is that each dimension of a multi-dimensional
movement can be described by a simple dynamical system resembling a linear spring system
which is perturbed by a nonlinear force functional. Based on this functional which is learned
from demonstration a nonlinear system is derived which describes an attractor landscape
with which arbitrary complex trajectories can be encoded. These systems are denoted as
transformation systems. For discrete movements, a transformation system forms a unique
point attractive system which is described as follows:

τv̇ = kH(xg −x)−ζHv+ fH(s) (4.27)

τẋ = v, (4.28)

where x and v are position and velocity of the system. xg is the predefined goal position and
τ denotes a temporal scaling factor with which the duration of the encoded trajectory can
be controlled. The mass spring damper system described in Eq. 4.28 is parameterized with
a stiffness parameter kH and a damping factor ζH which is chosen such that the system is
critically-damped. For the encoding of the hand approach movement XH ∈ RD, the transfor-
mation systems are composed of D critically-damped spring systems. In order to learn the
characteristics of a movement, for each dimension the attractor landscape is shaped based on
the demonstration represented by (XH , ẊH , ẌH). To do so, a nonlinear perturbation function
fH of locally weighted models in the form of Gaussian basis functions is used:

fH(s) =
∑i wiψi(s)s

∑i ψi(s)
. (4.29)

For each Gaussian basis function ψi(s) = exp
(

− (s−ci)
2)

2σi

)

centered at ci and with variance

σi, an appropriate weighting wi has to be determined using linear regression techniques. The
function fH depends on a phase variable s, which monotonically changes from 1 to 0 during
a movement and is obtained by integrating following equation:
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4.5. Coupling between Transport and Grip

τ ṡ =−α s , (4.30)

where α is a pre-defined constant. Eq. 4.30 is referred to as canonical system. The DMP
formulation features several properties such as guaranteed convergence towards the goal, spa-
tial as well as temporal invariance and robustness against perturbations. However, the most
important property lies in the simple adaptation towards new conditions such as new start
and goal positions. Once specified, the execution of the movement is attained through inte-
gration and evaluation of s(t). The obtained phase variable then drives the nonlinear function
fH which in turn perturbs the linear spring damper system to compute the desired attractor
landscape. For each specific grasp type, a DMP is generated and stored along with the VSG
representation in a motion library for later use.

4.5. Coupling between Transport and Grip

For the synchronization of the hand approach and the grip aperture movement, the phase
variable s, which evolves according to Eq. 4.30, is used to drive the temporal evolution of
the VSG representation as well. Consequently, the time-varying stiffness functional described
Eq. 4.13, which is the only time-variant functional within the VSG representation, is redefined
with regard to the phase variable s. Therefore, in Eq. 4.13, t is replaced with:

t =
sTe

τ
. (4.31)

With Eq. 4.31, the motion equation as defined in Eq. 4.26 is integrated in the DMP formulation
as an additional transformation system.
A further option to influence the convergence behavior of the dynamical system of the VSG

is provided by the external force component fe. This proves to be particularly advantageous
considering eventual corrective movements which have to be performed to accommodate er-
rors and uncertainties in the perception and execution. Specifically, the external force term
defined with regard to the contact springs proves to be useful. Adding forces directed towards
the contact positions accelerates the prehensile fingertip movements whereas forces directed
towards the palm slow down and delay the enclosing the fingers. To attain a grasp equilibrium,
it is important that for the definition of fe the condition limt→Tend

fe(t) = 0 holds.

4.6. Summary

In this chapter, a continuous grasp representation defined in the task space has been pre-
sented. The definition in the task space facilitates the incorporation finger-contact relations
implemented in the form of mass spring damper systems and, thus, allowing to encode goal-
directed prehensile finger movements. A crucial component in the proposed representation is
the emulation of finger movement synergies using virtual spring elements. The consideration
of finger movement synergies allows the representation of grasp-specific characteristics with
few parameters and, thus, contributes to a compact representation of coordinated prehen-
sile finger movements. In combination with a representation for the hand approach, a grasp
primitive is formed which can be adapted to the different task- and object-specific proper-
ties. Both representations are coupled via dynamical systems. Regarding the learning of
grasp primitives, the proposed representation which is based on a strong simplification of the
hand’s structure is used to facilitate the observation, learning, and the reproduction of grasp-
ing actions. However, it is stressed that the incorporated model lacks essential details about
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4. Grasp Representation

the kinematics and dynamics of the grasping hand and does not consider dynamic object
properties such as weight and friction. Therefore, the proposed approach is used to represent
the grasping kinematics emerging from grasp examples observed in the task space.
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5. Grasp Data Acquisition

In the previous chapter, a model has been proposed which allows the encoding of anthropomor-
phic grasps and, thus, enables the robot to learn grasping skills from human grasp examples.
To accelerate and facilitate the grasp learning process, grasp examples are obtained through
the observation of grasp demonstrations performed by the human. Human grasp demonstra-
tions feature highly optimized movements which are well adapted to the environment and the
objects to be grasped. Thus, the observation of humans is a way to acquire ideal grasp data
for the generation of situation-specific grasping strategies. In this chapter, methods will be
discussed which allow the capturing of human grasping movements using optical sensors. For
the creation of grasp data, markerless and marker-based methods have been employed. In
Section 5.1, advances in this field of human motion capture is reviewed. In Section 5.2, the
marker-based motion capture system used in this work is described whereas the developed
markerless approach is presented in Section 5.3.

5.1. Human Motion Capture with Optical Systems

Capturing of human motion has been extensively studied in the last decades leading to nu-
merous methods and systems which are applied in various fields such as robotics, sports,
medical, and entertainment applications, just to name a few. Especially, optical systems are
a focus of interest since with these systems human movements can be registered without the
human subject being physically confined to the system. Furthermore, most optical motion
capture systems allow the observation of large areas and, thus, enable the interpretation of
the performed motion in situation-specific contexts. Using multiple calibrated sensors image
features representing characteristic human body parts are captured. Based on triangulation
the 3D positions of these body parts are calculated. In general, optical systems are catego-
rized based on whether physical markers or natural image features are used to denote these
body parts. Thus, these human observation techniques can be subdivided in two categories:
marker-based and markerless.
Marker-based human motion capture systems are popular in commercial applications. The

usage of physical markers allows the generation of prominent signals and features which can be
rapidly processed. By focusing solely on these features, using such systems an arrangement of
multiple markers can be reliably localized and tracked. Based on this property, human move-
ments can be captured with an outstanding performance in terms of accuracy, frequency, and
robustness. However, most marker-based methods require extensive and costly equipment.
Thus, a motion capture procedure entails considerable effort. For example, preparatory work
has to be performed which includes the accurate attachment of markers on designated po-
sitions on the human subject and objects of interest. Furthermore, slight changes in the
configuration of the integrated sensor devices require a recalibration of the entire system.
Hence, marker-based motion capture are mostly bound to a fixed location and used for the
acquisition of motion data.
As opposed to this, markerless methods mostly require much less and simpler hardware.

In many cases, sensors integrated in most robotic platform such as a stereo camera setup
can be used to obtain information sufficient for the detection and the tracking of human
movements. Therefore, using markerless methods enables the capturing of human motion
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5. Grasp Data Acquisition

Figure 5.1.: Left: Visualization of the Vicon model used for human motion capture showing a pinch
grasp demonstration on a stick. Right: The marker placement defined for the observation
of grasping movements performed by the right hand.

invariant of time and location and, thus, allowing the implementation of an intuitive and
natural interface which can be used to empower robots to observe and learn actions in an
online manner. However, the restrictions of the used sensors lead to inaccuracies caused by
erroneous computations and occlusions which, subsequently, result in noisy motion data. In
addition, due to lack of markers, markerless methods rely on the extraction and processing of
common image features which have to be correctly interpreted in order to put the observation
into the movement context. The image processing line limits the frame rate with which a
human motion can be captured.

5.2. Marker-based Motion Capturing

One of the most popular commercially available systems is provided by [Vicon Motion Sys-
tems]. The technique, which is used here, relies on infrared cameras and artificial reflective
markers. The markers are placed on predefined body parts of a human subject. In a defined
workspace, the subject is surrounded by a set of infrared cameras. Each camera is equipped
with a infrared strobe, emitting a light signal, which is reflected by the markers. The reflected
light, which distinguishes itself from the background, is registered by the cameras. The data
from each camera consisting of 2D coordinates of each recognized marker position, is merged
in a data station, which computes the 3D position by triangulation and the label of each
visible marker. The integrated cameras have a resolution of 2 megapixels at 500 Hz which
allows the tracking of marker movements at frame rates up to 2,000 Hz. Besides the hardware,
the system contains a comprehensive software package, which facilitates the calibration and
handling of the system. Due to the high-speed and high-resolution properties of the cameras,
the Vicon system provides an accurate method for capturing human motion at high frame
rates. Furthermore, since the use of numerous markers allows capturing of barely visible mo-
tion of unobtrusive joints, complex kinematic models are applicable for the processing and
representation of the motion data. The problem of occlusion of body parts is reduced to a
minimum, since multiple cameras are used, which deliver multiple views of the same subject.
However, occlusions occur and can cause markers to disappear temporarily. In these cases,
tracking of the disappearing markers is discontinued. Therefore, the data requires a manual
post-processing in order to remedy these defects. Nevertheless, human motion capture using
optical markers is the method of choice if highly accurate data is needed.
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To obtain grasp examples from human observation, in this thesis, it has been focused on the
capturing of the fingertips and the hand’s back disregarding finger segments. Hence, to reduce
the risk of being occluded and increasing the robustness of the capturing procedure, larger
markers have been placed on the fingertips. In addition to the prehensile finger movements,
markers have been attached on the upper body in order to gain information about the hand
approach movement. The marker positions for the upper body have been determined from
(Stein et al., 2007). A snapshot of the human motion capture process as well as an illustration
of the marker arrangement on the grasping hand is depicted in Figure 5.1.

5.3. Markerless Motion Capturing

Markerless human motion capture has been a research topic which attracted a lot of attention
in recent years and which, at least in daily life, climaxed in the development of sensor systems
such as the Microsoft Kinect sensor dedicated to this purpose. In the field of humanoid
robotics, the observation of humans becomes particularly challenging due to the onboard
sensor capabilities which are limited regarding the resolution, the frame rate, and the field of
view. In the context of grasping, the real-time observation of simultaneous arm and finger
movements cannot be achieved with a single method, but rather with a combination of various
methods for the observation of specific body parts. Hence, in this thesis, for the observation
of human grasping movements, a framework is proposed which incorporates a method for
the markerless tracking of the human upper body as well as a fingertip tracking approach.
First, in Section 5.3.1, related approaches in the field of markerless human motion capture are
reviewed. Subsequently, the methods integrated in the proposed framework are described.

5.3.1. Advances in Markerless Human Motion Capture

Upper Body Tracking Approaches

Numerous approaches have been proposed for the tracking of coarse human full-body and
upper-body movements. The methods used for tracking are tailored to the used sensor sys-
tems.
In (Demirdjian et al., 2003), a system is presented which is based on the Iterative-Closest-

Point (ICP) algorithm. The ICP algorithm is used to fit rigid bodies of a 3D model to a depth
map calculated from a stereo camera image pair. The model configuration which consists of
the positions and orientations of the bodies is projected onto an articulated motion space in
order to enforce joint and contact constraints. The resulting configuration serves as an input to
a previously trained SVM model with which a previous body posture is mapped to a new valid
body posture. An ICP-based approach using depth maps which are captured with an active
3D sensor is presented in (Knoop et al., 2009). For tracking, a model is used which consists
of cylinders where each cylinder represent a body segment. To enforce joint constraints point
correspondences between these cylinders are modeled in the form of elastic bands. Considering
these constraints, the ICP algorithm is applied on each body segment separately in order to fit
the model to the current point cloud. In (Bregler and Malik, 1998), a human pose estimation
and tracking method is introduced which formulates the problem as minimization problem
based on 2D-3D correspondences. Rigid segments which form a 3D model of the human body
are projected and modeled as ellipsoids on the image plane. The kinematic chain of the model
is specified by twists and exponential maps. Using an EM algorithm, a model configuration is
searched for which the distance between the modeled segments and edge pixels describing the
contour of the human subject becomes minimal. In (Wachter and Nagel, 1999), an approach
is presented for model-based tracking in monocular image sequences. An Iterated Extended
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Kalman Filter is used to estimate the model parameters of a 3D model consisting of elliptic
cones by minimizing contour and region information between the model projection and the
actual image.
Methods based on minimization do not scale well in high-dimensional parameter space caus-

ing the tracking to get stuck in local minima and, thus, making it difficult to obtain an optimal
estimation for the model parameters. To address these deficiencies, in (Deutscher et al., 2000),
an approach based on particle filtering is introduced for the capturing of human movements.
Using the particle filter algorithm instead of merely optimizing a model configuration a search
for the optimal model parameter is performed which allows the tracking method to escape
from local minima. Edges and regions are detected by cameras placed around the human sub-
ject to be tracked. The particles consist of model configuration hypotheses which are weighted
according to edge and region cues determined based on the comparison between projections
of the 3D model on the corresponding image planes and detected image features. Similar to
this approach, (Azad et al., 2008) presented a particle filtering tracking method which relies
on stereo camera images. In addition to the edge cues, a distance cue is defined based on a
stereo-based 3D hand and head tracking. To increase the robustness, the method implements
a particle sampling in the vicinity of an inverse kinematics solution in order to facilitate the
reinitialization of the procedure. In the proposed framework, the method presented in (Azad
et al., 2008) is used for the capturing of human arm reaching movements. Therefore, this
approach is subject to a more detailed discussion in Section 5.3.3.

Finger Tracking Approaches

The hand is considered to be one of the most crucial body parts regarding the interaction
with other humans and the environment. Especially in the field of humanoid robots where
machines share similar kinematic structures such as humans e.g. a five-fingered hand, an
efficient method for the tracking of finger movements enables a robot to obtain relevant
information on human grasping. For this purpose, full hand tracking approaches in joint
angle space have been proposed in for example (Rehg and Kanade, 1994), (Stenger et al.,
2001), and (Oikonomidis et al., 2010). However, due to the highly complex structure of the
hand whose motion involves at least 21 DoF, tracking of the hand can be only achieved with
high costs which in return results in a low frame rate. Using mere stereo vision, a reasonable
solution lies in the reduction of the problem’s dimensionality by shifting from joint angle space
into the task space where fingertips provide prominent features which in most cases contain
sufficient information for further post-processing. In (Blake and Isard, 2000), a finger tracking
approach based on Active Contours is presented for the scenario of air-writing. The target to
be tracked consists of a contour which is laid around the pointing finger. The finger posture is
assumed to be fixed, thus, no reliable statement can be made on the actual fingertip position.
In (Argyros and Lourakis, 2006), fingertips are detected within a contour which is extracted
from skin blob tracking based on curvature properties. A more elaborate approach is presented
by (Hsiao et al., 2008) using Particle Random Diffusion where particles are propagated from
the center of the hand to positions close to the contour. The intersection of the contour with
predefined line segments centered at a particle and the examination of the resulting transitions
from non-skin area to skin-area and vice versa indicate whether a particle is considered to be
a fingertip. This method does not take into account possible overlapping of fingers with the
palm region and is specially designed to detect tips of stretched fingers. Based on multi-scale
color features, (Bretzner et al., 2002) introduces a hierarchical representation of the hand
consisting of differently sized blobs where each blob represents a part of the hand. The blob
features are matched with a number of hierarchical 2D models where each model incorporates
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a specific finger pose. Based on the limitation that finger postures are fixed, the tracking is
accomplished by applying a particle filtering technique. In order to implement a continuous
fingertip tracking method, one should rely on prominent features which can be extracted at
any time of an image sequence. In (Burns and Wanderley, 2006), for detecting a guitarist’s
fingertips, circular features are proposed which are localized by performing a circular Hough
transform. A similar approach is introduced in (Kerdvibulvech and Saito, 2008) where fingers
are located based on semi-circular templates.

5.3.2. Particle Filter Framework

The particle filter, originally introduced as the CONDENSATION algorithm in (Isard and
Blake, 1998), is a Bayesian filtering technique based on sequential importance resampling with
which a posterior probability density function of a state vector can be approximated from a
finite set of weighted samples, respectively particles, drawn from a probability distribution.
A particle can be described as (s,w) with s denoting a state hypothesis and w the corre-
sponding likelihood. w is determined based on how accurate the state estimate st matches
the current observation ot according to likelihood function p(ot |st). The approximation of
the posterior probability density function is based on a set of M particles which is denoted as
Xt = {(st ,wt)}i=1,...,M. Thus, the particle estimation of the current state can be formulated as
follows:

ŝt =
M

∑
i=1

wi
ts

i
t . (5.1)

To propagate the approximation over time, the particle filter algorithm is embedded in an
iterative scheme. In each iteration, m particles which are drawn from Xt−1 are resampled and
in order to form set of state hypotheses st . Then, each hypothesis is evaluated according to
p(ot |st). State hypotheses and weights are combined to particles which form Xt . As suggested
in (Isard and Blake, 1998) for the sampling of the particles, a dynamic model can be taken
into account which provides predictions on future locations given the current state and the
previous state. In addition, to account for unpredictable movements Gaussian noise can be
added. Adding Gaussian random variable Ψ and a displacement vector v̂ j, s

i
t can be written

as:
si

t = s
j
t−1 + v̂t +Ψ . (5.2)

5.3.3. Upper Body Tracking

For the capture of the human arm reaching movements, a real-time stereo-based human
motion capture system which has been introduced in (Azad et al., 2008) is applied. Based on
a stereo color image sequence, the system allows the tracking of the human upper body using
an adapted 3D model. The upper body model depicted in Figure 5.2 incorporates 14 DoF (6
DoF for the base transformation, 2·3 for the shoulders, and 2·1 for the elbows). The shoulder
is modeled as a ball joint and the elbow as a hinge joint. Consisting of rigid body parts
representing the torso, the upper arm, and the lower arm, the model provides a simplified
description of the kinematic structure of a human. These body parts are visualized using
cones which are scaled to fit the segments of the human subject to be observed. The model
tracking is implemented using the particle filter algorithm which uses two different cues, an
edge and a distance cue, in order to evaluate how well a given model configuration matches the
current observations. Regarding the edge cue, observations are extracted from stereo images
in the form of an edge map Ie. A particle si

t which denotes a configuration for the model to be
tracked is transformed into a set of contour points C with C = {c1, . . . ,cP} consisting of image
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Figure 5.2.: Left: Upper body model projected on the image plane. Right: Visualization of the 3D
model used for upper body tracking using the method proposed in (Azad et al., 2008).
( c©2008 IEEE.)

coordinates cp = (xp,yp) obtained by projection of the model onto the image plane. Based on
a comparison between Ie and C, the edge cue is defined as follows:

pe(Ie|si
t) ∝ we(s

i
t) = 1− 1

P

P

∑
p=1

Ie(xp,yp). (5.3)

Using the distance cue, each model configuration is evaluated according to the distance be-
tween points representing common body parts of the human subject and the 3D model. These
points represent hand and head position of the model and the human. A skin color tracking
method is used to localize candidate areas in the image Id which are labeled as head and
hand according the relative arrangement of these body parts. Corresponding model points
are calculated using forward kinematics on the 3D model with the pose si

t which are combined
in B = (p0, p1, p2). Similar to the edge cue, the distance is defined as follows:

pd(Id|si
t) ∝ wd(s

i
t) =

B

∑
b=1

‖pi − pi(Id)‖. (5.4)

The final likelihood function is constructed from Eq. 5.3 and Eq. 5.13 yielding following
equation for the computation of the weights:

wi
t =

√

we(s
i
t)wd(s

i
t)

∑
M
k=1

√

we(s
k
t )wd(s

k
t )
. (5.5)

To obtain a current state estimate st for the human model configuration the sum of all par-
ticles is evaluated as stated in Eq. 5.1. A deficiency of this approach lies in the exponential
growth of the search space with increasing dimensionality. For an accurate state estimation,
high-dimensional problems require a sufficiently large number of particles. To increase the
robustness and efficiency of the method, various extensions have been introduced such as a
prioritized fusion method, adaptive shoulder positions, and the incorporation of the solutions
of the redundant arm kinematics which help to constrain the search space.

5.3.4. Hand Tracking

The previously described tracking framework operates on peripheral views in which the en-
tire upper body is visible. Due to the limited resolution of the cameras, the views do not
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Figure 5.3.: Left: Peripheral view of the grasping hand. Center: Foveal view obtained during hand
tracking. Right: Visualization of hand tracking particles in the form of ellipses.

contain sufficient data based on which motion information about the finger movements can
be extracted. To obtain more detailed views on the grasping hand, foveal views are captured
and used for the hand tracking procedure. For the computation of the distance cue, the upper
body tracking framework incorporates a hand tracking algorithm which describes each state
of the hand si

t by its position. To increase the robustness of the hand tracking method with-
out risking any severe performance losses, the existing method is extended by simple shape
features. Hence, the hand in the image plane is described by an ellipse eI = (θI,rI) with θI

denoting the orientation of the ellipse and rI the ratio between the minor and the major axis
aI and bI. Based on the ellipse features, in addition to the distance cue, a shape cue is defined
as:

ps(eI|si
t) ∝ ws(s

i
t) =

1

2

( |θi −θI|
π

+ |ri − rI|
)

. (5.6)

By replacing we with we and redefining wd for B = 1 in Eq. 5.5 the likelihood function for the
hand state estimation is derived.

5.3.5. Fingertip Tracking

In order to obtain data from which grasp primitives can be learned, a fingertip tracking
framework is proposed allowing the observation of fingertip movements in the task space. The
localization and tracking of fingertips is a difficult problem due to lack of prominent features
and the frequent overlap of the finger and the palm. Based on foveal views focusing in the
grasping hand, the approach is proposed in (Do et al., 2011a) where fingertip positions are
determined based on circular image features. These features are tracked using a method which
combines particle filtering with a mean shift algorithm. To enhance the feature extraction
process an edge map is generated by applying a multi-scale edge extraction technique which
is described in Section 5.3.5. Based on this map, circular image features are extracted and
formed into observations which are needed for the actual tracking algorithm proposed in
Section 5.3.5. To increase the robustness of the algorithm, dynamical motion models are
trained for the prediction of the finger displacements in Section 5.3.5.

Feature Extraction

In order to generate the edge image, a skin color segmentation is performed for extracting
the hand and finger regions. Morphological operators are applied on the segmented image to
eliminate noise and to produce a uniform region. To detect the edges in this preprocessed
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image, a filtering method on various scales is used. Details on the filtering step and the
subsequent Hough transformation procedure are given in the following.

Multi-Scale Edge Extraction Considering the problem of fingertip tracking, due to small
intensity variances between different parts of the hand, e.g. the fingernail and the skin,
respectively, the finger regions and the palm, it is desired to detect edges where contrast can
vary over a broad range. Depending on the parameters, applying standard algorithms, such
as the Canny edge detectors on a wider scale, leads to an edge image where numerous, false
edges occur. To preserve low contrast edges in certain areas while reducing noise close to
high-contrast edges, based on the work of (Elder and Zucker, 1996), a filter approach has
been implemented consisting of a steerable Gaussian derivative filter on multiple scales. The
basis filters are defined as follows:

Gx
k(σk;x,y) =

−x

2πσ4
k

e

−(x2+y2)

2σ2
k

G
y
k(σk;x,y) =

−y

2πσ4
k

e

−(x2+y2)

2σ2
k . (5.7)

To define the scale at which the gradient can be reliably estimated, the magnitude of the filter
response rx

k(x,y;σk) and r
y
k(x,y;σk) obtained by convolution of the image I with the filters is

checked against a noise threshold. While the magnitude can be calculated according to:

rm
k (σk;x,y) =

√

rx
k(x,y;σk)

2 + r
y
k(x,y;σk)

2
, (5.8)

the threshold is set by the following function:

ck =

√

−2ln(1− (1−α)R)

2σ2
k

√
2π

sl (5.9)

Figure 5.4.: Processing line of the proposed fingertip tracking approach.
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5.3. Markerless Motion Capturing

Figure 5.5.: Left: Original input image. Center: Edge image using Canny detector. Right: Edge
image using the method proposed in Section 5.3.5.

with sl representing the standard deviation and α the significance level for an image with R

pixels which defines an upper boundary for allowed misclassification of image pixels. To take
into account local intensity and contrast conditions, it is focused on local signal noise in a
specific region rather than on global sensor noise. Therefore, Eq. 5.9 depends on the local
standard deviation sl calculated within 2σmax

k ×2σmax
k -neighborhood where σmax

k denotes the
largest scale being examined. Hence, each gradient at the minimum reliable scale σmin

k is
calculated where the likelihood of error due local signal noise falls below a standard tolerance.
This guarantees that a more accurate gradient map is estimated which is less sensitive to
signal noise and errors caused by interference from nearby structures. Based on the resulting
map, the edges are extracted and with non-maximum suppression, one obtains an edge image
which is depicted in Figure 5.5.

Hough Transformation for Circle Detection The circle features representing a certain
fingertips n ∈ {1, . . . ,N} are detected by applying a Hough transformation with radius r. For
each edge point (x,y) with known direction in the form of a rotation angle θ , a vote is assigned
to possible circle feature positions (u,v) in two-dimensional Hough space IH according to:

IH(u,v) = IH(u,v)+1 (5.10)

with

u = x± rcos(θ)

v = y± rsin(θ). (5.11)

Unfortunately, curves around the fingertips do not always feature perfect circular arcs. To
cope with noisy and slightly deformed curves, the voting is performed for a set of radii Rn =
{m0r, . . . ,mnr}. The radius r is scaled by factors 0 < m0 < mn < 2. In order to increase the
robustness of the tracking algorithm, a density distribution is formed in Hough space by
convolving IH with a Gaussian kernel G( r

2
;u,v).

Since the hand motion occurs in the task space, for proper fingertip tracking, a fixation of
r is only valid if movement of the fingertip in direction of the z-axis of a camera is excluded.
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5. Grasp Data Acquisition

Figure 5.6.: Left: Original input image. Center: Visualization of the Hough space. Right: Generated
contour for the particle filter tracking.

Adaptation of r in each frame, allows fingers to be tracked in all directions. Based on the
generated density distribution, for fingertip n in frame t, a radius estimate r̂t is determined by
applying an Expectation Maximization algorithm. Further details are given in Section 5.3.5.

Initialization

The tracking procedure is initialized based on the assumptions that the hand is opened, the
palm is visible, and the hand is not rotated. Based on these restrictions, the hand’s palm
is localized and possible finger regions are localized using the Hough transformation with
different radii constructed with m = 3. The maximum bins Ii

H with i = 1 . . .N are labeled
according the assumption that, for the right hand, the thumb is represented by the right-most
bin in the image. Using a line sweep method in polar space the remaining fingers are labeled
accordingly (for the right hand the line sweep is performed counter-clockwise leading to the
fingertip labeling n = {T humb = 0, Index = 1,Middle = 2,Ring = 3,Pinkie = 4}). Analogously,
for the left hand, the thumb is located at the left-most bin and the line-sweep is performed
clockwise.

Particle Filter Tracking

For the proposed fingertip tracking framework, a state s consists of the N fingertip positions
of the hand with each position being denoted by the coordinates (x,y) within the image. The
approximation of p(zt |st) is based on two cues: a contour and a distance cue. The contour
cue is derived by exploiting the external energy functional Eimg of a contour Ci

t . The contour
is obtained by connecting the single points in si

t according the finger order. The Eimg is
determined in terms of an edge image ZE

t which is constructed by drawing lines between a
set of maximum bins ZV

t that can be found in IH . As a result, the likelihood function can be
written as:

pc(zt |st) ∝ wc(st) = exp

(−Eimg(Zt ,Ct)

σ2
c

)

. (5.12)

The distance cue is calculated from the Euclidean distance between si
t and ZV

t which consists
of the sum of minimal distances between si

t( j) and ZV
t . Based on this cue, the likelihood

function can be defined as

pd(zt |st) ∝ wd(st) = exp

(

−∑
N
j=1 min(

∥

∥st( j)−ZV
t

∥

∥)

Nσ2
d

)

. (5.13)
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5.3. Markerless Motion Capturing

Figure 5.7.: Left: Filtered Hough space. Center: Particles in the form of contours connecting the
fingertip candidates. The black contour represents the best particle whereas the white
contour is weighted lowest. Right: Result image.

The final likelihood function is constructed from Eq. 5.12 and Eq. 5.13, hence, the computation
of the weights is defined as follows:

wi
t =

√

wc(s
i
t)wd(s

i
t)

∑
M
k=1

√

wc(s
k
t )wd(s

k
t )
. (5.14)

To obtain a current state estimate of the fingertip configuration the sum of all weighted
particles is evaluated.

Mean Shift Correction

To obtain more accurate position estimations, a mean shift algorithm is applied to move
the estimated fingertip position pn = st(n) towards the peak of local density distribution. In
this approach, the EM-like mean shift algorithm proposed in (Zivkovic and Kroese, 2004)
is used to estimate the variance of local density distributions. A variance estimation allows
the adaptation of the radius r corresponding to the current circular image features. Hence,
taking into account movement in the depth of the camera, for tracking circular features in
Hough space one has to incorporate an adaptation of radius rt . Under the assumption that
the distribution can be modeled as a Gaussian, parameters p̂n and σn are to be found which
represent the center and variance of the distribution. These parameters should maximize
following function:

f (p̂n,σn) = argmax
p,σ

M

∑
j=1

G(p j;pn;σ)IH(p j). (5.15)

This can be solved iteratively by introducing a weight λ j for each pixel p j based calculating
factors λ j according to:

λ j =
G(p j; p̂n;σn))IH(p j)

∑
M
k=1 G(pk; p̂n;σn)IH(pk)

. (5.16)

Based on Eq. 5.16, an update rule can inferred as follows:

p̂n =
M

∑
j=1

λ j p j, (5.17)
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5. Grasp Data Acquisition

Figure 5.8.: Left: Fingertip estimates extracted from the particles. Right: Result image after the
mean shift correction..

which shifts the center of the distribution towards its peak. A new estimate for the variance
is obtained by evaluating following update term:

σn = c
M

∑
j=1

λ j(p j − p̂n)(p j − p̂n)
T , (5.18)

where c is assumed to be a constant scaling factor. If convergence is achieved, the radius r is
approximated by σn.

Prediction

Providing a prediction of the movement of the objects to be tracked increases the robustness
of a statistical tracking framework. For the fingertip tracking framework, we decided to
train dynamical motion model in the form of a second-order auto-regresssive (AR) process as
proposed in (Blake and Isard, 2000), which is described as follows:

qt − X̄ = A1(qt−1 − q̄)+A2(qt−2 − q̄)+b0ωk (5.19)

where qt ∈RD denotes the current configuration, q̄ the mean configuration, and ωk ∈ [0,1]. To
learn the AR parameters A1, A2 ∈ RD×D and b0 ∈ RD, training data is provided in the form
of a configuration sequence Q = {q′0, . . . ,q

′
M} whereby the sequence is generated by manual

labeling of fingertips in each frame of a recorded image sequence.
Two AR models are trained to provide predictions for the fingertip movement for a nearly

static hand pose as well as the movement of the hand itself. Based on the assumption that the
motion of each finger is influenced by the motion of the neighbored fingers, the first model is
trained with training data whose instances q′i ∈ Q with D = N consists of the length of vector

v
j, j+1
t = p

j+1 mod N
t − p

j
t between the fingertips j and j+1 mod N:

q′i( j) =
∥

∥

∥
v

j, j+1
t

∥

∥

∥
j = 1, . . . ,N. (5.20)

For finger j, this leads to following displacement vector:

v̄t( j) =
q

j
t −q

j
t−1

q
j
t−1

v
j, j+1
t −

q
j−1
t −q

j−1
t−1

q
j−1
t−1

v
j−1, j
t . (5.21)
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5.4. Grasp Motion Data

The second model which considers the global movement of the average position of all fin-
gertips pmean trained with data set formed of q′i = pmean with D = 2 resulting into a overall
displacement:

v̂t( j) = q
j
t + v̄t( j). (5.22)

Due to the coupled fingertip movements, the models behave well resulting in reasonable
prediction of the finger displacements which supports the state estimation in the ensuing
tracking procedure.

5.4. Grasp Motion Data

The human capture methods described in Section 5.2 and Section 5.3 enable the acquisition
of positional information about the hand and finger movements during grasping. For the
instantiation of the grasp representation the captured trajectories have to be processed in
order to form the data matrices XH and XF which describe the positions of the hand and the
fingertips in the task space. While XH contains the positions of the grasping hand defined in
an ego-centric coordinate system within the the grasping agent, XF is composed of fingertip
trajectories locally defined with regard to the hand coordinate system. In this context, each
motion capture method, markerless or marker-based, provides different information and, thus,
depending on the used method the captured data has to be processed differently.
In case of marker-based captured motion data, considering the right hand to be the grasping

hand, its position is denoted by the marker RPM which is placed on the back of the hand. To
obtain the orientation of the hand, the markers RPTS and RPPS placed on each side of the
hand are used to create a plane indicating the pose of the hand coordinate system. Therefore,
the axis x, y, and z of the hand coordinate system are calculated as follows:

z =
(xRPM −xRMI)

‖xRPM −xRMI‖
(5.23)

y = z× (xRPPS −xRPT S)

‖xRPPS −xRPT S‖
x= z×y.

In case of markerless captured motion data, it is assumed that the position of the grasping
hand is denoted by the blob obtained by tracking the hand. The orientation of the hand is
difficult to calculate due to the missing information. Thus, the orientation is approximated
based on the captured fingertip positions. The plane based on which the coordinate frame is
determined is spanned by the thumb, the middle finger, and the pinkie. Thus, the axis x, y,
and z are determined by:

x=
(xMiddle −xT humb)

‖xMiddle −xT humb‖
× (xPinkie −xT humb)

‖xPinkie −xT humb‖
(5.24)

y =
(xMiddle −xPalm)

‖xMiddle −xPalm‖
×x

z = y×x.

For each frame, a grasp example in the hand coordinate system is calculated. Based on the
matrix which describes the transformation from a base coordinate system (for markerless and
marker-based data this base coordinate system is placed on the hip of the human subject) to
the local hand coordinate system, the fingertip positions are defined as in-hand trajectories.
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5. Grasp Data Acquisition

Figure 5.9.: Calculation of the local hand coordinate system based on the palm and fingertip positions
captured with marker-based (left) and markerless (right) methods.

5.4.1. Segmentation of Grasp Examples

Marker-based A segmentation is performed on the fingertip trajectories in order to cut
off sequences which do not belong to the actual grasping movement and further to identify
the time stamps which denote the end of the preshape and the enclose stage. Due to the
high accuracy and frequency with which human motion can be captured with this system,
segmentation of the data based velocity crossings proves to be sufficient. The end point of
the enclose phase is defined as follows:

Tend = argmin
t

√

√

√

√

N−1

∑
i=0

Ġ(i)2. (5.25)

Markerless Regarding the segmentation of the prehensile finger movement, due to increased
noise, in addition to the rule stated in Eq. 5.25 the procedure is controlled by the hand-object
relation as well. Hence, in this case, Tend is specified according following rule:

Tend = argmin
t

√

√

√

√

N−1

∑
i=0

Ġ(i)2 +
1

N

N−1

∑
i=0

∥

∥xg −G(i)
∥

∥ . (5.26)

Regardless of which method is used for motion capture, in a further step, the point Tpre

with 0 < Tstart < Tpre < Tend denoting the end of the preshape and the beginning of the enclose
phase has to be determined. To do so, Tpre is defined as the point where the grasp aperture
becomes maximal. Based on the assumption that the grip aperture is spanned between two
virtual fingers Tpre is computed according to:

Tpre = argmax
t

∥

∥

∥

∥

∥

G(0)− 1

N −1

N−1

∑
i=1

G(i)

∥

∥

∥

∥

∥

. (5.27)

The movement segments are normalized using the Master Motor Map framework which is
described in Section 7.3.1.
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5.5. Summary

5.5. Summary

In this chapter, methods are presented which allow the observation of human grasp demon-
strations. For the acquisition of accurate motion data which is captured at a high frame rate,
a marker-based system is employed. The outcome of this system is considered as reference
data based on which basic grasp primitives are learned in an offline manner using the repre-
sentations described in Chapter 4. To enable a robot to observe human grasp demonstration
invariant of time and location, an existing markerless upper body tracking framework has
been extended by methods which allow the capturing of fine granular prehensile finger move-
ments. Using a Hough transformation and a combination of particle filter and mean shift
tracking, circular features representing the fingertips are localized and tracked. The extended
framework uses the onboard systems of a robot, a pair of stereo cameras which provide pe-
ripheral and foveal views of the scene. Both methods, the upper body using peripheral and
fingertip tracking using foveal vision, are coupled via a hand tracking procedure which provide
foveal views of the hand. Regardless of marker-based or markerless, the captured motion is
segmented and transformed into a local hand coordinate system in order to generate the grasp
data needed for the instantiation of the proposed grasp representation.
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6. Parameter Estimation for a Grasp Representation

The proposed Virtual Spring Grasp (VSG) representation as described in Section 4.3 incor-
porates a dynamical model which is parameterized to adopt an arbitrary grasping behavior.
The model parameters, namely the spring constants, have to be adjusted in a way that the
model fits exemplary observations of the grasp type to be represented. These observations
are given by the grasp examples which have been recorded using the human motion capture
methods described in Chapter 5. In the following, in Section 6.1, approaches for the estima-
tion of parameters in dynamical systems will be briefly discussed. Subsequently, the concrete
parameter estimation problem for the instantiation of the VSG representation is outlined in
Section 6.2 and a method for the solution of the problem is presented in Section 6.3. Finally, a
common method for the learning of the DMP representation for encoding the hand approach
movement is reviewed in Section 6.5.

6.1. Parameter Estimation

The estimation of parameters in dynamical sytems has been extensively studied in the area
of system identification (e.g. in (Ljung, 1999) and (Young, 1981)). As stated in (Wu et al.,
2010), parameter estimation methods can be categorized in online and offline methods whereas
online methods are commonly applied in order to adapt a system’s behavior to current ob-
servations. Especially for the design of adaptive control algorithms, the online estimation
of model parameters plays a crucial role and has attracted much attention in the field of
robotics. In this context, various works such as (Flacco and Luca, 2011), (Pham, 2001), and
(Erickson et al., 2003) implemented an adaptive control mechanism using a recursive least
squares approach to accommodate current measurements. An alternative approach based on
a maximum-likelihood estimation method is introduced in (Swevers et al., 1997) which adapts
robot model parameters to actual torque and joint angle measurement errors for the predic-
tion of torque values in a dynamic setting. In (Gautier and Poignet, 2001) and (Sujan and
Dubowsky, 2003), a technique based on Kalman Filtering is used for parameter adaptation.
Online methods are suitable for implementing a flexible behavior into a system which varies
over time. Since the parameter estimation does not rely on observations in the past, the
response of the instantiated system is only considered to be valid within a small time window
subject to adaptation.
In order to derive a global control law which is valid throughout time, a universal model that

conforms with all available observations has to be generated. This requires that parameters
have to be estimated in an offline manner. In this context, various approaches such as (Serban
and Freeman, 2001) and (Ninness and Gibson, 2001) based on the least squares algorithm have
been proposed for the estimation and instantiation of a given model structure. Approaches
focused on the estimation of static parameters of mass spring damper have been introduced
in (Becedas et al., 2009), (Lloyd et al., 2007), and (Majjad, 1997) using a recursive weighted
least squares algorithm. However, most of these approaches are based on the assumption
that the model to be parameterized is capable of reproducing the exact behavior which is
observed in experimental measurements. Without prior knowledge and with sufficiently large
data sets, offline methods can provide globally feasible parameter estimations by minimizing
the error between model output and the corresponding output observations. In this thesis,
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6. Parameter Estimation for a Grasp Representation

the representation of a grasp relies on a strongly simplified model of the hand. Hence, in
the following, an estimation scheme is proposed which is tailored for the instantiation of the
proposed VSG representation under consideration that input as well as output observations
are contaminated with noise.

6.2. Problem Statement

To induce a certain grasp typical behavior into the VSG representation, the model parameters
K ∈ RN×N and kc,ks ∈ R2 have to be specified accordingly. Based on observations which ex-
emplarily describe the behavior to be reproduced, it is desired to determine model parameters
which minimize the error between the model output and the observed output.

6.2.1. Observational Data

Based on the trajectory G := (XH ,XF) defined in Eq. 4.1 and Eq. 4.2, the input and out-
put observations are derived. These observations form the data used to instantiate a VSG
representation that involves N fingers and set of finger springs {s1, . . . ,sM}. To describe the
data in a compact way, a lookup table I : ({1, . . . ,N}},{1, . . . ,M}}→ {1, . . . ,N}} is introduced
indicating which mass bodies are connected via a certain spring. Hence, for a query with
body bi and a spring sm placed between b j0 and b j1 the mapping I is defined as follows:

I(n,m) =







j0 if j1 = i

j1 if j0 = i

i else
(6.1)

With I, input observations are created in the form of data matrices Xss,Xcs ∈ R3N×T and
X f s ∈ R3N×T M. The current displacements of the virtual finger springs at the current time
frame 0 < t ≤ T are described by X f s(t) ∈ R3N×M which forms X f s =

(

X f s(1)×·· ·×X f s(t)
)

.
For a finger i, the entries of the data matrix X f s(t) are defined as follows:

X f s(t;n,m) = (XF(n, t)−XF(I(i,m), t))
(di,I(i,m)− lm)

di,I(i,m)
(6.2)

where (i−1) ·3 ≤ n < i ·3 ·N and 0 < j ≤ M. The spring m is described by the current length
di,I(i,m) and the equilibrium length lm. The displacements concerning the stabilization and
the contact springs is represented by Xss and Xcs. For the entire time series, based on the
assumption that the contact configuration is equivalent to the final fingertip configuration at
time T , the entries of the data matrices Xss and Xcs are defined as follows:

Xcs(n, t) = (XF(n,T )−XF(n, t))
(dci

− lci
)

dci

(6.3)

Xss(n, t) = XF(n, t)
(dsi

− lsi
)

dsi

. (6.4)

The output observations are represented by a data matrix Xo ∈ R3N×T with:

Xo(n, t) = Ẍ(n, t) (6.5)

which basically describes the acceleration profile of the fingertips. To complete the system of
differential equations as described in Eq. 4.26, the velocities of the fingertips as well as the
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external forces acting on the corresponding mass bodies have to be specified. The relative
velocities are combined in the matrix Xv:

Xv(t) =
1

∆ t

[

Ẋ f s(t); Ẋcs(t); Ẋss(t)
]

(6.6)

with
Ẋ f s = X f s(t)−X f s(t −1), Ẋcs = Xcs(t)−Xcs(t −1), Ẋss = Xss(t)−Xss(t −1)

and ∆ t denoting the time interval which lies between the measurements.
To simplify the description of the problem and the corresponding solution, the entries of

the spring constant matrix K are rearranged into the form of a vector k f ∈RM. Therefore, the
parameter estimation problem is solved by determining the stiffness parameters k= [k f ;kc;ks]
with k f ∈ RM, kc ∈ R2, and ks ∈ R2 which satisfy following equation:

Xo(t) = X(t)k+Xv(t)ζ, (6.7)

with the damping parameter ζ = [ζ f ;ζc;ζs] and X(t) =
[

X f s(t);Xcs(t);Xss(t)
]

which subsumes
the displacement matrices defined in Eq. 6.2 and Eq. 6.4. The problem stated in Eq. 6.7 is
referred to as a multivariate nonlinear least squares problem. The nonlinearity is induced by
the damping term Xv(t)ζ which, due to the assumption that the mass spring damper systems
are critically-damped, is defined as a function of the corresponding spring stiffness. To solve a
nonlinear least squares problem, one has to minimize the residuals between the observations
and the response of the parameterized model. Hence, based on Eq. 6.7 an optimization
problem of the following form can be formulated:

min fE(k) = ∑
T
t=1 ‖X(t)k+Xv(t)ζ−Xo(t)‖ (6.8)

subject to k ≥ 0 .

As stated in Section 4.2, the inequality constraint ensures the nonnegativity of the solution,
and, thus, the feasibility of the spring constant estimate. Due to the nonlinearity of the
problem a closed-form solution does not exist. Hence, numerical methods have to be applied
which starting from an initial solution provide a refinement towards a better solution in
an iterative manner. As depicted in Figure 6.3, the obtained solution is not guaranteed to
be optimal due to the existence of local minima. A further critical issue provoked by the
damping term is the introduction of noise onto both sides of Eq. 6.7. Since input as well as
output observations are contaminated with noise, even an optimal solution to Eq. 6.9 does
not necessarily induce the desired behavior in the given model.
Therefore, for the instantiation of the VSG representation, an estimation scheme is proposed

which combines various methods in order to efficiently identify and approximate the spring
constant parameters from noisy data.

6.3. Parameter Estimation Scheme

In the following, to obtain spring constant estimates for k ∈ RM+4, an iterative parameter
estimation scheme has been developed. The least squares problem specified in Eq. 6.7 is split
up in three separate problems since the estimation of each parameter depends on disjunct ob-
servations. A further aspect which supports this practice is that variations of each parameter
can have very different impact on the behavior of the dynamical system. The decomposed so-
lution of the problem enables an individual adaptation of the estimation method by specifying
crucial estimation parameters relative to the model parameter. For the estimation of a single
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Figure 6.1.: Flowchart of the proposed estimation scheme.
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parameter, it is assumed that the remaining parameters are known. Thus, for the estimation
of k f , based on given solutions for kc and kp the corresponding optimization problem takes
the following form:

min fE f
(k f ) = ∑

T
t=1

∥

∥X f s(t)k f − Ẋ f s(t)2
√

k f −y(t)
∥

∥ (6.9)

subject to k f ≥ 0

where y(t) = Xo(t) + Xss(t)ks − Ẋss(t)2
√

ks + Xcs(t)kc − Ẋcs(t)2
√

kc. Using a Total Least
Squares (TLS) method (see Section 6.3), each iteration starts with the computation of spring
constant estimates which satisfies Eq. 6.10 subject to the nonnegativity constraints (see Sec-
tion 6.3.4). To increase the robustness and the efficiency of the parameter estimation, the
proposed scheme uses a batch adaptation approach which divides the entire data set in smaller
subsets. Each subset contains a smaller amount of data and, thus, allows the derivation of
parameter estimates with less computational effort. However, the resulting estimates are con-
sidered as local solutions which become less likely to be valid for the entire data set with an
increasing number of subsets. Therefore, the solutions have to be fused into a single estimate
which is done by discarding infeasible solutions and combining feasible ones.
In a subsequent step, as described in Section 6.3.1, a weighting matrix is derived by eval-

uating the estimate on the given model. Based on the weighting matrix, a norm is defined
which is used by the TLS method in upcoming iterations in order to accommodate individ-
ually scaled and correlated noise within the data. The estimation procedure converges after
i iterations towards an estimation k̂′

i for the model parameters k, when following conditions
are satisfied:

∥

∥k̂′
i − k̂′

i−1

∥

∥ < ε (6.10)

fE f
(k f ) < δ f (6.11)

fEc
(kc) < δc (6.12)

fEs
(ks) < δs (6.13)

with ε being the convergence threshold and δ f , δc, and δs denoting the upper error bounds
for the residual functions fE f

, fEc
, and fEs

.
In this paragraph, the Total Least Squares (TLS) method is explained which is used for

solving the problem stated in Eq. 6.10. The described procedure is applied for the deter-
mination of multivariate estimates for k f , kc and ks. The TLS method is applied for the
estimation of k f . For the sake of simplicity, for now, the nonnegativity constraints are disre-
garded. To obtain a local estimate for k f the data matrices X =

(

X f s(t j)×·· ·×X f s(t j +Tl)
)

,

Ẋ =
(

Ẋ f s(t j)×·· ·× Ẋ f s(t j +Tl)
)

and the observation vector y = (Xo(ti)× . . .×Xo(t j +Tl)) are
introduced which consider a series of Tl observations starting from ti. To simplify the algorith-
mic description, k′ := k f is substituted. With X and Ẋ Eq. 6.10 is reduced to a local residual
functional:

fE(k) = Xk′− Ẋ2
√
k′−y. (6.14)

By introducing y′ = Xk′− Ẋ2
√
k′ which denotes the response of the model parameterized

with k′, the unconstrained least squares formulation in Eq. 6.14 can be written as a quadratic
optimization problem:

k′
ls = argmin

k′

∥

∥y−y′∥
∥

2
. (6.15)

Deriving the normal equations of Eq. 6.15 leads to an overdetermined system with 3 ·N > M

equations based on which an estimate can be obtained with common least squares methods
that solves to Xkls − Ẋ2

√
kls = y′ and minimizes Eq. 6.14. This applies only if the model

59



6. Parameter Estimation for a Grasp Representation

Figure 6.2.: Solution for a 2D functional regression problem obtained by applying the least squares
solver (left) and the TLS solver (right).

response is allowed to be defined as y′ = y+∆y which is the corrected system of equations
using a minimized correction term ∆y in order to accommodate for eventual noise. The input
observations X are assumed to be free of noise, and, thus, reflect the exact states of the given
model. In most scenarios, this prerequisite does not hold.
In the case of the VSG representation, a grasp behavior is defined for a construct which

strongly simplifies the structure of the grasping hand. Hence, due to modeling and measure-
ment errors, the contamination of input observations with noise is inevitable. To attain an
estimate which accounts for this circumstance, the optimization problem defined in Eq. 6.15
is extended in the following form:

ktls = argmink′
∥

∥

[

Ẋ;y
]

−
[

Ẋ′;y′]∥
∥

F
(6.16)

subject to Xktls − Ẋ′2
√
ktls = y′

with
[

Ẋ;y
]

∈ R3N+1×M, Ẋ′ = Ẋ+∆ Ẋ, and ‖ · ‖F denoting the Frobenius norm. According to
(Golub and Loan, 1983) the problem stated in Eq. 6.17 is referred to as a Total-Least-Squares
(TLS) problem with ktls being the corresponding TLS estimate.

6.3.1. Solving the TLS Problem

To derive a solution for Eq. 6.17 as proposed in (Markovsky and Huffel, 2007) a two-step
iterative algorithm based on an Expectation-Maximization (EM) approach is applied. Each
iteration starts with the estimation of ktls with fixed X′ which satisfies following term (E-step):

ktls = argmin
k′

∥

∥

[

Ẋy
]

−
[

Ẋ′yk′
]∥

∥

F
. (6.17)

In the subsequent step, data set is optimized to attain better fit with regard to estimation k′

which can be described as follows (M-step):

Xtls = argmin
X′

∥

∥[Xy]−
[

X̃′yktls

]∥

∥

2
. (6.18)

To increase the chances of finding parameter estimates which provide a good fit, initial val-
ues have to be determined which indicate where to start the parameter optimization. The
initialization procedure is implemented for the parameter estimation scheme is described in
Section 6.3.2.
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Figure 6.3.: Top: Mean squared error for the optimization of two spring constants. Bottom: Local
minima for the optimization of three spring constants. Each minimum is represented as
sphere where its radius represent the extend of the mean squared error.
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6. Parameter Estimation for a Grasp Representation

6.3.2. Initial Solution

Inspired by (Andrieu et al., 2005), to diminish the risk of being stuck in local minima, a
sequential Monte Carlo method is applied to sample the space in the proximity of a previous
estimation ki−1. In order to generate a sample k̂i, Gaussian random noise in the form of ψ
is added to the ki−1. Since the parameter estimation problem is solved separately for k f , kc,
and ks three different samples are generated as follows:

k̂ f = ki−1 +a f ψ

k̂c = ki−1 +acψ

k̂s = ki−1 +asψ , (6.19)

where a f , ac, and as denote the individual scaling factors. For each sample k̂i, the quadratic
error function in Eq. 6.22 is evaluated and the parameter estimate k′ is specified according
to:

k′ = argmin
k̂i

gE(k
′). (6.20)

6.3.3. Local Estimation of Spring Constant Parameters

To obtain an estimate ktls which satisfies Eq. 6.17, based on the residual function, a quadratic
problem is specified as follows:

mingE(k
′) =

∥

∥ fE(k
′)
∥

∥

F

2
(6.21)

= Tr( fE(k
′)T fE(k

′)). (6.22)

A stationary point at which Eq. 6.22 becomes minimal is determined using the first derivative
of gE(k

′):
ġE(k

′) = 2JT
E fE(k

′) (6.23)

with JE ∈ R3NTl×M denoting the Jacobian matrix that contains the gradients of fE(k
′) and is

defined as follows:

JE =









δ fE(k
′;1)

δk′(1) · · · δ fE(k
′;1)

δk′(M)
...

. . .
...

δ fE(k
′;Tl)

δk′(1) · · · δ fE(k
′;Tl)

δk′(M)









. (6.24)

In general, simple optimization techniques based on search algorithms such as the Simplex
method or gradient-based steepest descent approach can already be applied to derive an esti-
mate for ktls based on the information provided in Eq. 6.24, Eq. 6.22 and Eq. 6.23. However,
these techniques suffer from several deficiencies such as slow convergence, zigzagging or getting
easily trapped in local minima. To reduce the risk of suffering from these effects, additional
information given by the second derivative can be exploited in order to direct the optimization
procedure. For gE(k

′), the second derivative is derived by determining its Hessian Matrix GE

which is written as follows:

GE = 2JT
EJE +2

Tl

∑
t=1

fE(k
′; t)TE(t), (6.25)

where TE( j) ∈ R3NTl×M represents the Hessian matrix of fE(k
′) in the following form:

TE( j) =









δ fE(k
′;1)

δk(1)δk(1) · · · δ fE(k
′;1)

δk(1)δk(M)
...

. . .
...

δ fE(k
′;Tl)

δk(M)δk(1) · · · δ fE(k
′;Tl)

δk(M)δk(M)









. (6.26)
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GE plays a crucial role in determining an efficient update function for the least squares es-
timate since it provides a measure which relates the model response to the variations of
parameters to be estimated. However, the computation and inversion of the Hessian matrix
is computationally expensive which is why most numerical optimization techniques use an
approximation of GE in order to derive an update step in an iterative scheme. An algorithm
which proceeds this way and which is applied to solve Eq. 6.22 is the Levenberg-Marquardt
method. The algorithm, which was first introduced in (Levenberg, 1944), combines the Gauss-
Newton and the steepest descent method and, thus, unites the advantages of both methods.
Based on the assumption that GE ≈ (JT

E )JE an update equation for k′ is formulated which
changes a previous solution proportional to a step size into a direction given by the gradient
and scaled by the inverse Hessian:

k′
i+ = k′

i −b(JT
E,iJE,i +µiI)

−1JT
E,i fE(k

′
i). (6.27)

To avoid explicit inversion of JT
E,iJE,i + µiI, pk is introduced to derive following system of

equations:
(JT

E,iJE,i +µiI)pk = JT
E,i fE(k

′
i), (6.28)

which can be efficiently solved using matrix factorization techniques such as the Cholesky
or the QR method. Here, the QR method is preferred due to its numerical stability. To
accommodate for an ill-conditioned Jacobian matrix the Levenberg-Marquardt algorithm in-
corporates a regularization term in the form µiI. Furthermore, the regularization parameter
µi can be exploited to control the convergence behavior of the algorithm. When gE(k

′
i) ap-

proaches a local minimum a smaller value is assigned to µi+1 to achieve faster convergence. If
minimization of g(k′

i) fails, µi+1 is set to a higher value, which slows down the convergence,
and, thus, limits the divergence of the optimization. How to adjust the regularization param-
eter µ has been studied extensively in various works. Based on (Yamashita and Fukushima,
2001), a simple and effective update rule is inferred for the problem at hand:

µi+1 = µi(gE(k
′
i)), (6.29)

which allows quadratic convergence. Further details on the theory of the Levenberg-Marquardt
method can be found in (Lourakis, 2005).

6.3.4. Nonnegativity Constraints

So far, a solution for the unconstrained parameter estimation problem has been proposed
in the form of the TLS method. In this section, the inequality constraints ensuring the
nonnegativity of the solution are incorporated in the estimation procedure. To guarantee
the optimality when solving Eq. 6.9 subject to the nonnegativity constraints, the estimate
has to satisfy the Karush-Kuhn-Tucker (KKT) conditions. Considering the KKT optimality
conditions, Eq. 6.9 is extended as follows:

min fE(k
′) = ∑

Tl

t=1 ‖X(t)k′+Xv(t)ζ−Xo(t)‖ (6.30)

subject to k′ ≥ 0 (6.31)

ḟ (k′)≥ 0 (6.32)

ḟ (k′)Tk′ ≥ 0 . (6.33)

To solve nonnegative least squares problems, the estimation procedure follows the active set
method proposed by (Lawson and Hanson, 1974). This algorithm identifies an active subset
of constraints violating the KKT conditions and sets the corresponding regression coefficients
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6. Parameter Estimation for a Grasp Representation

to zero. Hence, at the beginning of each iteration the passive constraint set is determined
according following rule:

Ip =
{

m|k′(m) = 0, ḟ (k′;m)> 0
}

, (6.34)

where Ip holds the indices of the spring parameters estimates which satisfy the KKT condi-
tions. Accordingly, an active set Ia is defined which is equivalent to the complement to Ip. For
single parameters in k′ which are indexed by entries of the passive set, the KKT conditions
are fulfilled. In contrast, parameters belonging to the active set and for which k′(m) = 0 and
ḟ (k′;m)≤ 0 holds, have to be optimized further. Hence, focusing on the optimization of the
active set, a reduced least squares problem of the following form has to be solved:

min fEa
(k′) = 1

Tl
∑

Tl
t=ti

√

∑
|Ia|
l=1(k

′(Ia(l))X(Ia(l), t)−y(Ia(l), t))2 (6.35)

subject to k′ ≥ 0 . (6.36)

Based on k′
a which solves Eq. 6.36, an updated estimate of the spring constant k′ is formed

as follows:

k′(m) =

{

0 , m ∈ Ip

k′
a(m) , m ∈ Ia

(6.37)

Eq. 6.36 is treated as an unconstrained least squares problem and a parameter estimate for
the passive subset is attained by applying the previously described Levenberg-Marquardt
algorithm. The active and passive subsets are iteratively reevaluated and modified in order to
find the true active subset by pushing an active coefficient towards a feasible solution (in most
cases towards zero) and simultaneously checking whether the KKT conditions are satisfied.

Regularization

As previously mentioned, Eq. 6.9 states an ill-posed problem due to data noise and the
model simplifications. Hence, the presented parameter estimation problem does not have a
unique solution in general. Therefore, a regularization procedure in the form of the Tikhonov
regularization is introduced to make the system uniquely solvable.
Given an approximation of the spring constants k′ an error estimation is needed to deter-

mine the quality of the approximation. For that reason, the error function gE is extended
by:

gE(k
′) =

∥

∥ fE(k
′)
∥

∥

F

2
+ γ
∥

∥k′∥
∥ , (6.38)

giving a rating for an approximation of the spring constants k′. The regularization parameter
γ is estimated by analyzing simulated grasp trajectories. For that purpose, dynamical systems
with known spring constants are considered and searched for the γ minimizing the difference
between the real spring constants and their estimations.

6.3.5. Estimation of Data Correction

Subsequent to the estimation of the model parameters, a correction term for the underlying
data is computed which allows modifying the data in such a way that it better fits the model
description and, thus, might lead to a more accurate estimation. As previously mentioned,
the noise regarding the input observations is introduced by the damping term. Hence, based
on the assumption that ktls is an optimal solution to the system, a correction term for the
velocity matrix Ẋ′ is estimated by minimizing the following error functional:

mingM(Ẋ′) =
∥

∥ fM(Ẋ′)
∥

∥

2

2
(6.39)
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with
fM(Ẋ′) = y′−Xktls − Ẋ′ζ ′. (6.40)

Instead of estimating a correction term for the entire matrix X, Eq. 6.40 is solved for each data
point separately. Although fM(Ẋ′) is linear, the system of normal equations is underdeter-
mined since n > m. Therefore, a unique optimal solution does not exist. However, there exists
a unique minimizer with a minimum norm in terms of the Singular Value Decomposition of
Ẋ′. A local minimum in the vicinity of the actual measurements Ẋ can be easily computed
using following update rule:

Ẋtls = Ẋ−JMJM
T ( fM(Ẋ)) (6.41)

with JM = Xo. Within a single iteration Eq. 6.41 converges to the corrected velocity matrix
with which the X′ = Xtls. Thus, Eq. 6.17 can be specified in a way that ktls solves the problem
in iteration i.

6.4. Weight Formation

The TLS method is capable of dealing with errors in the observations which are independent
variables with zero mean and are identically distributed. For measurement errors which
are individually scaled and correlated between the data points the TLS method has to be
extended. For this reason, a weight matrix is incorporated in the least squares method
allowing to penalize outliers and individual frames. A more generalized formulation of the
TLS problem is obtained by introducing a weighting matrix W ∈RTl×Tl . The Frobenius norm
in Eq. 6.17 is extended by the weight matrix norm ‖ · ‖W which is defined as follows:

‖X‖W :=
√

TrXTWX. (6.42)

So far, the TLS problem has been solved under the assumption that W = I for which ‖ · ‖W

is equivalent to ‖ · ‖F . Without any prior knowledge of the observational error, the only
way to obtain information about the quality of the model fit lies in the analysis of the cross
covariances which are computed as follows:

cov(tu, tv) = (Xo(tu)−X(tu)k−Xv(tu)ζ)(Xo(tv)−X(tv)k−Xv(tv)ζ)
T (6.43)

with ti < tu, tv < Tl. The covariances between all time stamps are subsumed in a covariance
matrix Ci ∈ RTl×Tl :

Ci =







cov(ti, ti) · · · cov(ti,TL)
...

. . .
...

cov(TL,Ti) · · · cov(TL,TL)






. (6.44)

A better model fit is obtained when the variances for all parameters can be minimized. To
obtain a minimum variance estimate for k, the most suitable choice for the weight matrix W

is the inverse of the covariance matrix Ci. Based on the assumption that the error covariance
between different data points is zero and the variance of the error term does not remain
constant in time, Ci is transformed to C1

i according following rule:

cov(tu, tv) =

{

σtu if tu = tv
0 if tu 6= tv

(6.45)

which results in:

C1
i =







σ2
1 0

. . .

0 σ2
N






. (6.46)
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For correlated errors in different time-related observations, it is assumed that the covari-
ance of the error term across different time periods is no longer zero. Hence, considering
heteroscedastic effects, an error covariance matrix C2

i can be defined as:

C2
i =















σ2
1 ρσ2

1 0

ρσ2
1 σ2

2 ρσ2
2

. . . . . . . . .

ρσ2
T−2 σ2

T−1 ρσ2
T−1

0 ρσ2
T−1 ρσ2

T















, (6.47)

where

cov(tu, tv) =











σtu if tu = tv

ρσmin(tu,tv) if |tu − tv|= 1

0 if |tu − tv|> 1

(6.48)

holds. Depending on the observations, the weighting matrix can be defined as W = C1
i

−1
or

W = C2
i

−1
. In this thesis, the second form is chosen. Due to the simplified description of the

grasp and the applied human observation techniques, an accurate modeling of the dynamics
of these processes is not possible. The TLS method underestimates the true uncertainty of
the parameters by addressing merely zero-mean error.

6.4.1. Weighted Estimation of Spring Constant Parameters

For the incorporation of a weighting matrix W ∈ RTl×Tl in the TLS method, the quadratic
error functional introduced in Eq. 6.17 has to be adapted accordingly. Using the weight norm
‖ · ‖W , the quadratic optimization problem transforms to:

mingW (k′) =
1

2

∥

∥ fE(k
′)
∥

∥

2

W
(6.49)

=
1

2
fE(k

′)TW fE(k
′). (6.50)

Consequently, the corresponding gradient to the error functional is determined by:

ġW (k′) = JT
EW fE(k

′), (6.51)

where the second derivative is calculated as follows:

g̈E(k
′) = JT

EWJE +
Tl

∑
j=1

fE,k( j)WGE( j) (6.52)

with JE ∈ RTl×M denoting the Jacobian which contains the gradients of fE(k
′).

6.5. Instantiation of the Dynamic Movement Primitive

In order to encode a given hand approach movement XH in the form of a DMP, the transforma-
tion systems have to be adapted accordingly. The adaptation is accomplished by determining
the weights w ∈RP for the nonlinear perturbation term fH with which an attractor landscape
is shaped corresponding to the demonstrated trajectory XH . For the temporal invariance
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of the transformation system, following replacements v = ẋ
τ and v̇ = ẍ

τ are carried out in
Eq. 4.28. Rearranging the equation leads to:

fH(s(t)) =
ẍ(t)

τ2
− kH(xg −x(t))+ζH

ẋ(t)

τ
. (6.53)

Inserting XH , ẊH , and ẌH into Eq. 6.53 results in a perturbation force value f ′H(s(t)). Fitting
these values to the perturbation representation in Eq. 4.29 can be solved as a regression
problem for the weight vector w which can be written as follows for each dimension:

wn = argmin
w

Te

∑
t=1

P

∑
p=1

( f ′H(s(t))−Ψp(s(t))w)2, (6.54)

for i = 1, . . . ,M +N. This problem can be solved efficiently by standard locally-linear re-
gression methods. In this thesis, the Receptive Field Weighted Regression (RFWR) method
as introduced in (Schaal and Atkeson, 1998) has been chosen. The proposed technique is
specifically suitable for online learning problems since it follows an eager learning policy. The
implemented strategy is based on an iterative update of the existing model concerning incom-
ing data. The model is composed of a number of P locally linear models which are denoted
as Receptive Fields and formalized as Gaussian kernel functions with which the relation be-
tween input and output observations is approximated. The influence of a new data point on
a Receptive Field is determined based on the distance to its center and its variance. For an
algorithmic description and further implementation details on the RFWR method the reader
is referred to (Schaal and Atkeson, 1998).

6.6. Summary

In this chapter, an optimization scheme has been presented which allows the estimation of
parameters needed for the instantiation of the proposed grasp representation. The proposed
scheme is specifically designed to allow the efficient instantiation of the VSG representation
from noisy data where the spring constant estimates are derived by solving a nonlinear op-
timization problem. Towards an efficient solution, the original problem is broken down to
sub-problems which, through a batch processing approach, is solved for local subsets of obser-
vations. By introducing the Total Least Squares method for the spring constant estimation, it
has been shown that the VSG Representation is based on a strong simplification of the grasp-
ing hand, and, thus, the grasping action. Therefore, one has to assume that input as well as
output observations are error-prone due to this modeling error. To obtain physically feasible
spring constant estimates, the TLS problem is solved subject to nonnegativity constraints. In
order to accommodate an individually scaled and correlated non zero-mean error, a weight
matrix norm is introduced for attaining a better fit of the data to the model. Concerning the
hand approach movement, a regression technique in the form of the RFWR method is used to
obtain the weights of local models which constitute the nonlinear perturbation term used for
shaping the attractor landscape. Both, the VSG and the DMP representation, are defined in
the task space and the instantiations of these representations are considered as separate pro-
cedures. Hence, grasp examples are divided in two different observation sets which describe
the prehensile fingertip movements and the hand approach movement in the task space. The
methods which are needed to acquire and to process grasp examples from human observation
are subject of the following chapter.
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In the following, a framework is proposed which incorporates the introduced grasp repre-
sentation and corresponding methods needed to acquire grasp data and to instantiate the
representation. The purpose of this framework is to enable a humanoid robot to learn dif-
ferent grasps from the observation of human demonstrations and to apply the acquired grasp
knowledge under varying task and object constraints. First, in Section 7.1, similar frameworks
are reviewed. Subsequently, the proposed framework is introduced in Section 7.2. A major
focus of this chapter is set on additional methods which are necessary for the implementation
of the desired grasp learning behavior. In Section 7.3, the correspondence problem between
the human and the robotic embodiment is addressed. A central role in the mapping process
is played by the Master Motor Map, framework which is subject of Section 7.3.1. Finally,
several aspects regarding the reproduction of represented grasping actions are discussed in
Section 7.5.

7.1. Related works

Motivated by the vision of endowing robots with cognitive abilities to observe, to generalize
and to learn and, thus, enhancing the interaction between humans and robots, programming
by demonstration (PbD) has become an attractive paradigm and a much discussed topic
in the fields of robotics. With the development of humanoid robots the concept of imitation
learning arose from the PbD paradigm in order to address the novel challenges. Going beyond
the mainly engineering aspect of PbD, imitation learning approaches emulate human skill
acquisition behavior by making use of findings on human physiology and psychology. Following
methodology in PbD respectively imitation learning, numerous approaches focused on the
observation, representation, and reproduction of coarse arm movements in manipulation and
grasping actions have been introduced ((Schaal, 1997), (Pastor et al., 2009), (Kulić et al.,
2008), (Calinon et al., 2007), (Hersch et al., 2008), (Ijspeert et al., 2013)) using motion data
which mostly originate from marker-based systems or kinesthetic teaching.
In contrast to that, few works have addressed the learning of prehensile finger movements

from human observation. In (Zoellner et al., 2004), framework is introduced using multiple
stereo cameras and two data gloves in order to capture dual hand manipulation and grasping
movements. Observed actions are segmented, categorized, and encoded in the form of multi-
layered macro operators structured in a Petri-net for the task representation. The tasks are
executed on the humanoid robot ARMAR-II. Using a similar setup as in (Zoellner et al., 2004),
(Jäkel, 2013) records grasping movements in the form of wrist trajectories in the task space and
fingertip joint angle movements. A probabilistic modeling approach is used to generalize the
observations to grasping strategies which are integrated into a probabilistic motion planner.
Experiments have been conducted on a dual-arm platform whereas each arm has 7 DoF and
is equipped with a 13 DoF hand. In (Ekvall and Kragic, 2004), data glove readings, are stored
in a database and categorized according to the observed grasp type. These are mapped to a
robot hand using a function learned from data sets which contain human and corresponding
robot hand poses. In a subsequent stage, grasp types applied in human grasping actions are
recognized and reproduced by the robot using the grasp data. In order to instantiate a DMP
for the representation of prehensile joint angle movements, (Amor et al., 2012) used a data
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glove to record human grasp examples. The grasp representation is directly mapped onto a
four-fingered hand of the humanoid robot and is adapted to the current object to be grasped
by contact point warping. In (Kroemer et al., 2010), human grasping movements captured
with the Vicon system are used to learn DMPs which encode grasping actions observed in the
task space. To adapt the learned DMPs to the current scene, target positions are extracted
from a visual object representation based on 3D edges which are acquired using the robot’s
camera system. The specified grasp primitives are executed on a single arm robot using a
Barrett hand. In (Triesch et al., 1999), an approach is presented which allows learning of
grasping actions based on observations of human grasp demonstrations acquired by using
the onboard sensory system of a robot. To capture human grasping actions, a vision-based
hand-fingertip tracking algorithm is applied which enables the recording of the hand and
the index-thumb finger movement. The grasping movement is represented in the form of a
linear trajectory in the task space and is reproduced using the 7 DoF arm of the robot which
equipped with parallel gripper.

7.2. System Overview

According to (Bakker and Kuniyoshi, 1996), imitation learning tasks commonly comprise three
different stages: observation, generalization and reproduction. To deal with the problems
arising in these stages, various components are incorporated by the proposed framework whose
structure is depicted in Figure 7.3.

7.3. Mapping

Due to the differences in the kinematic structures of the human subject and a robotic plat-
form e.g. differing joints and limb measurements, in general, a one-to-one mapping does not
lead to a goal-directed and natural reproduction of a human movement. Hence, for each hu-
man individual, a mapping function has to be specified capable of adapting and optimizing
corresponding human motion data to the embodiment of the robot. To minimize the efforts
required to motion transfer between different embodiments, a standardized interface by using
the Master Motor Map (MMM) has been established which features a high level of flexibility
and compatibility.

7.3.1. Master Motor Map

The MMM is introduced in (Azad et al., 2007) and incorporates a reference kinematic model
of the human by defining the maximum number of DoF, currently 96, that might be used
by any visualization, recognition, or reproduction module. In doing so, a unifying framework
is created by defining a data exchange standard which allows the generation of normalized
action knowledge structures and facilitates the transfer of motion data between different
modules. Besides the kinematic specification of the reference model, the limb segments are
enriched with proper body segment properties, such as mass distribution, segment length,
and moment of inertia in order to compute gross body dynamics. These anthropomorphic
properties are defined and scaled according to linear equations which link these properties to
global parameters such as height and weight of the whole body. In (Winter, 2009), based on
anthropometric data, a proposition for these equations is inferred. By incorporating these
findings, the MMM model can be easily adapted to the actual measurements of the human
subject.
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Figure 7.1.: Left: Overview of the Master Motor Map (MMM) framework as introduced in (Azad
et al., 2007). Right: Kinematic reference model of the human incorporated in the MMM
framework.

Due to differences in orientation of the coordinate systems, in the Euler conventions, and
the lengths of the limb segments between the MMM model and the proprietary model of
an arbitrary system using the MMM interface, a conversion module has to be implemented
for each of the perception systems. This conversion module transforms the module specific
data into the MMM file format and vice versa. Similarly, for the reproduction on a robot, a
customized conversion module has to be implemented which performs the mapping of MMM
data to the embodiment of the robot. Regarding the proposed grasp representation, the
correspondence problem has to be solved for the hand approach and the finger movements.

7.3.2. Conversion of Fingertip Movements

Since the fingertip movements are captured in the task space, the conversion of captured finger
trajectories into an MMM format is accomplished by scaling the trajectories according to the

ratio rH =
lHh

lHmmm
where lHh

and lHmmm
denote the lengths of the observed grasping hand and

the MMM hand. Based on anthropometric data which has been reported in (Buchholz et al.,
1992), lHmmm

is defined as a function depending on the global parameters such as full hand
height and width. The lengths are measured from the hand’s base to the tip of the middle
finger. The VSG representation is adapted to the MMM hand measurements by adjusting
the equilibrium lengths of the stabilization springs.
To control the fingers of a robotic hand, a mapping based on a geometric inverse kinematics

(IK) approach has been implemented which exploits the information that is obtained from
the generated grasping strategy. Depending on the grasp type to be executed, whether, volar
or non-volar, different information is provided by the VSG representation which can be used
to compute the corresponding joint angles. For volar grasps, based on the target fingertip
positions, the IK is solved for each finger individually. To do so a plane with a normal vector
which is aligned with the joint axis of the PIP joint is spanned between the PIP joint and the
tip of the corresponding finger. Based on the finger segment lengths, a trapezoid with equal
inner angles is created. In the case of a common palm joint shared between the fingers, the
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palm joint is fixed at joint position which is the mean of all IK solutions computed for the
fingers. In a second iteration, the IK is solved for reduced kinematic chain leaving out the
palm joint. An example of the IK solution for the index and middle finger of the ARMAR-IIIb
hand is illustrated in Figure 7.2. Given volar grasp type, additional information in the form
of the Virtual Contact Strip is available. Since the finger segments are drawn towards the
object surface, a joint angle solution can be immediately inferred.

7.3.3. Conversion of Arm Movements

An important condition regarding the mapping arm movements in grasping and manipulation
tasks is the preservation of characteristic motion features as well as the goal-directedness.
Initially, to normalize marker-based motion data from the specific human embodiment that
is observed, the data is converted to MMM using the method introduced in (Gärtner et al.,
2010) which is based on virtual markers and an optimization of the joint angle configuration
for the reference model. Markerless captured movements are introduced into the MMM by
specifying the positions of the MMM joints corresponding to joints which can be tracked using
the applied capturing method.
For the reproduction of movements represented as MMM data, in (Do et al., 2008), a pro-

cedure is proposed which by means of optimization performs a mapping of human motion
in the form of joint angles and reference endeffector positions onto the kinematic structure
of a robot. A joint angle configuration is merely considered as an initial kinematic solution
which has to be refined in order to bring the endeffector close to the designated target po-
sition. Regarding the target positions, once a movement has been generated for the MMM
the reference positions are transformed and scaled from an ego-centric coordinate system in
the MMM (such as the hip) to the corresponding coordinate system in the robots kinematic
chain. Based on these transformed positions and joint angles, the refinement is conducted
in two stages: estimation of an initial solution and optimization according to a predefined
similarity measure.

Similarity Measure

One of the most crucial factors in the reproduction of human motion is the measure for rating
the similarity between the reproduced and the demonstrated movement. In (Matsui et al.,
2005), it is proposed to determine the distance between the postures of the robot and the
human by exploiting point correspondences between specified points on both bodies. To infer
useful statements concerning the similarity, accurate localization and identification of the
limbs are required, which makes the use of physical markers inevitable. In (Zhao et al., 2004),
a similarity measure is introduced, which only considers the joint angle relations. However, it
disregards structural differences between human and robot like differing limb lengths, which
one has to take into account in order to preserve the goal of a movement when mapped on
the robot. In this thesis, arm movements are represented in the form of joint angle sequences
and task space trajectories. To obtain a natural-looking movement which sustains a minimal
loss of goal-directedness, a similarity measure is used that combines both, the joint angle
configuration and key point correspondences. Thus, for a joint angle configuration θ ∈ RN

with N joints, the similarity measure is defined as follows:

S(θ) = argmin
θ

(∥

∥

∥

∥

∑
3
i=1 x̃(i)− fr(θ ; i)

3larm
(i)

∥

∥

∥

∥

+

∥

∥

∥

∥

∑
N
n=1 θ̃(n)−θ(n)

Nπ

∥

∥

∥

∥

)

(7.1)

with θ(n), θ̃(n) ∈ [−π,π] and x̃(i), fr(θ ; i) ∈ [−larm(i), larm(i)] whereas larm ∈ R3 describes the
maximum extension of the robot arm . The reference joint angle configuration is denoted by
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θ̃ ∈ RN , while x̃ ∈ R3 stands for the desired endeffector position. For the calculation of the
current endeffector position, the function fr is used to solve the forward kinematics problem
for the joint angle configuration θ.

Estimation of an Initial Solution

To obtain a solution leading to a high resemblance to the reference posture, which at the same
time meets all the mechanical constraints of the robot, the reference joint angle configuration
is optimized regarding the similarity measure as specified in Eq. 7.1. A solution is found
by applying a numerical optimization algorithm. To enhance the efficiency of the applied
optimization method, an initial guess is to be found which is close to an optimal solution.
Such an initial estimation is determined from a preselection of candidate joint angle configu-
rations, which are generated and evaluated by means of the similarity measure. To generate
a candidate estimation θ̃t , the reference joint angle configuration θ̃t computed at time t is
mapped into the robot joint angle space and projected on the bound constraints:

θ̃t(n) =











Cnmin
if θ̃t(n)≤Cnmin

θ̃t(n) if Cnmin
≤ θ̃t(n)≤Cnmax

Cnmax
if θ̃t(n)≥Cnmax

, (7.2)

where Cnmin
and Cnmax

denote the lower and upper joint angle bounds of joint n. If the value
of θ̃t(n) exceeds the given bounds, the joint n is fixed at the closest of the two boundaries.
A candidate is obtained by altering each non-fixed joint angle of the mapped configuration
by means of a vector δt = θ̃t − θ̃t−1. Thus, δt describes the changes between two consecutive
frames. As a result, a candidate estimation can be described as:

θ
j
t (n) = θ̃t(n)+αnβn (7.3)

with

αn =

{

1 if Cnmin
≤ θ̃t

i(n)≤Cnmax

0 else
βn ∈ {−δt(n),0,δt(n)} (7.4)

βn ∈ {−δt(n),0,δt(n)}. (7.5)

Given N joints to control, in the worst case M = 3N candidates need to be calculated and
evaluated. The best initial estimation satisfies the following equation:

θinit = argmax
θ

(

S(θ)−
∥

∥θ̂t −θ
∥

∥

)

. (7.6)

Optimization Problem

For optimization of a reference joint angle configuration with regard to the similarity measure,
one can use the LM algorithm briefly described in Section 6.3.3. Due to its numerical stability,
the LM method has become a popular method for solving inverse kinematics problems as
demonstrated in (Wampler, 1986). For the current problem, where, given the reference joint
angle configuration θ̂t , a solution θt is sought which maximizes Eq. 7.1. To interpret Eq. 7.1
as a function of sum of squares, a residual function s(θ) : RN →R is inferred from S as follows:

s(θ) =
∑

3
i=1xH(i)− fk(θ ; i)

3larm(i)
+

∑
N
n=1 θ̂

t(n)−θ(n)

Nπ
. (7.7)
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The corresponding optimization problem can be written in the following form:

θt = argminθ (2−S(θ)) (7.8)

subject to Cnmin
≤ θ(n)≤Cnmax

,

which is equivalent to the maximization of Eq. 7.1. θt is obtained by solving Eq. 7.9 as an
unconstrained least squares problem. For a feasible joint angle configuration, the solution is
projected onto the bound constraints.

7.4. Structuring of Grasp-Related Motor Knowledge

Based on the representations and motion data represented using the MMM framework, the
grasp representation is instantiated using the estimation scheme introduced in Section 6.3.
To form a grasp primitive, each grasp representation is enriched with additional information
relevant for the reproduction on the robot. In addition to the model parameter such as the
spring lengths and spring constants, the data structure contains the information about the
fingers involved in the data, the chronology of preshape and enclose and whether the encoded
grasp is volar or non-volar. However, regarding the acquisition of grasp knowledge, it seems
to be obvious to process and learn grasp types which are unknown to the system. To be able
to determine whether an observation denotes a grasp type which has already been learned, a
model has been trained which allows the classification of finger trajectories.

7.4.1. Grasp Type Classification

For the classification of grasp demonstrations, methods are used which have been introduced
in (Do et al., 2009) and (Fischer et al., 2011). Based on Support Vector Machines a multi-
model classifier has been trained. To reduce the efforts of training, as described in Section 4.1.1
fingertip trajectories are projected to a 2D latent space which has been created using PCA. For
each grasp type, a binary classifier is trained by labeling low-dimensional grasp observations
featuring this grasp type as a positive training examples whereas remaining grasp examples
associated with another grasp type are regarded as negative examples. Based on the resulting
training data, a corresponding model is trained which represents the currently observed grasp
type. In order to classify a new movement, the fingertip movements are translated in the latent
space and classified by fusing the classification results of each model. Models which react on
the trajectory input denote grasp primitives where the model parameters can be updated
based on the current observation. To update an existing grasp representation, based on the
current observation but using the grasp type information encoded in the classified primitive, a
grasp representation is instantiated. The parameter set of the primitive is updated by taking
the mean of both sets, the stored and the previously estimated one. If no models reacts, a
new grasp primitive is created and added to the grasp knowledge base.

7.5. Reproduction on the Robot

Given an object located at a position xg, the adaptation of a learned grasp primitive is accom-
plished by, first, parameterizing the DMP representation for the hand approach movement to
the object pose and, second, by determining contact positions on the object surface for the
VSG representation. The DMP parameterization is based on the assumption that start and
goal poses are known and velocities at both ends are zero. For the execution on the robot,
the start is denoted by the initial pose of the grasp hand. For the target pose, it is assumed
that the object to be grasped is annotated with suitable grasp poses and contact positions
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Figure 7.2.: Left: IK solution for the index finger computed based on a geometric approach. Center:
Subsequent solution of the IK for the middle finger. Due to the coupled palm joint, the
index finger is shifted. Right: Fixation of the palm with the average palm angle value
and solution of the IK for shortened kinematic chains (disregarding the palm) for the
index and middle finger.

which can be generated by applying appropriate grasp planning algorithms. The contact po-
sitions can be used to parameterize the VSG representation. In case, similar object are to be
grasped as featured in the grasp demonstration, the contact positions encoded in the grasp
representation can be scaled to meet object-specific requirements. To adapt an instantiated
VSG representation to a different object scale, the contact positions originating from human
observation are shifted in the direction from the object center to the contact. Hence, the
adapted contact point vc is determined as follows:

vc = vm + s(vc − vm) (7.9)

where vm denotes the object center, s the object scale factor, and vc the original contact
point for the reference object. Based on the adapted contact information the equilibrium
grasp poses for preshape and enclose are modified accordingly, which in return changes the
equilibrium lengths of the finger and contact springs. Once both representations have been
adapted to object- and task-specific constraints, a grasping movement can be generated by
integrating the differential equations incorporated in the grasp primitive.

7.5.1. Distance-Based Coupling between Transport and Grip

Due to kinematic inaccuracies and errors in the robot’s perception, it cannot be guaranteed
that the generated grasping movement leads to actual successful grasp execution. The over-
come these deficiencies a visual servoing approach which is introduced in (Vahrenkamp et al.,
2008) is applied to make sure that the robot endeffector is aligned with designated grasp pose.
However, the subsequent application of the visual servoing method after the hand approach
movement is finished requires the an additional control mechanism which deals the prehensile
finger movements. Hence a second coupling between hand approach and grip movement is
proposed. To accommodate corrective movements such as initiated by a visual servoing al-
gorithm, a coupling is proposed which is based on the distance of the robot endeffector and
the object to be grasped. This coupling is mainly accomplished by adding an additional per-
turbation force to the contact springs which prevent the fingertips to reach their designated
target positions in time. The perturbation term is applied between the virtual finger and the
thumb and, thus, translates to external forces which are added to the forces exerted by the
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7. Grasp Learning and Execution

contact springs. Based on a hand-object distance dg = ‖xH −xg‖, the external force for a
finger i is described as follows:

fi,ext(t) =
kci

kc1

dg

(

x̂i −xc

)

. (7.10)

The ratio between spring constants of the thumb with i = 1 and the remaining fingers is in-
troduced to preserve the prehensile enclosing behavior. To prevent the VSG representation to
attain the grasp equilibrium state, Eq. 7.10 is applied before the generated grasping movement
is finished.

7.6. Summary

In this chapter, a framework is presented consisting of various components which allow the
observation, the learning, and the reproduction of different grasp type behaviors featured in
human grasp demonstrations. Depending on the used observation method, the framework is
capable of learning grasp primitives online or offline. A major focus of this chapter is set
on the solution of the correspondence problem between the human and the robot. To be
able to generalize the captured motion data from the observed human subject, the MMM
framework is incorporated in order to facilitate the transfer of motor knowledge between
different embodiments. Hence, the grasp primitives are learned within the MMM framework
and used to update the grasp-related motor knowledge structures. Mapping of a grasping
action generated from these primitives is accomplished by optimizing the movements using a
nonlinear optimization approach. For the execution on the robot, several issues such as the IK
solution of the fingers and problems arising from the inaccuracies of the robot are addressed.
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8. Evaluation

In this chapter, the mechanisms and components integrated in the previously introduced grasp
learning framework are individually evaluated in terms of their feasibility and reliability. A
major focus of the evaluation is the adaptation and reproduction of grasp primitives which
encode human grasp demonstrations using the Virtual Spring Grasp (VSG) representation.
To be able to make a statement how accurate human grasps can be represented, most mea-
surements have been conducted in simulation disregarding the potential kinematic errors in
the robot platform. The applicability of the proposed approach is shown by experiments
carried out on actual robots.
The setup used in these experiments is outlined in Section 8.1. Subsequently, an evaluation

of the human observation techniques used in the proposed framework is presented in Sec-
tion 8.2. In Section 8.4 and Section 8.3.1, the proposed representation is evaluated in terms of
aspects regarding accuracy, generalization, and adaptivity. The reproduction and execution
of learned grasp primitives is subject to Section 8.5.

8.1. Experimental Setup

8.1.1. Experimental Platforms

The humanoid robot ARMAR-IIIb, which serves as the main experimental platform, is a copy
of the humanoid robot ARMAR-IIIa (see (Asfour et al., 2006a)). The robot is equipped with
two arms whereas each arm features 7 DoF (3 DoF in the shoulder, 1 DoF in the elbow, 1
DoF for the forearm rotation, and 2 DoF in the wrist). At the end of each arm a five-fingered
robotic hand is attached. The hand is pneumatically actuated and incorporates 8 DoF (2 DoF
for the thumb, middle, and the index finger, 1 coupled DoF for ring and pinkie, and 1 DoF
in the palm). For locomotion, the robot has a wheel-based holonomic platform which allows
movements in all directions. The main sensory capabilities are integrated in the active head,
a subsystem with 7 DoF equipped with two eyes, which have a common tilt and independent
can pan units. Each eye is equipped with two digital color cameras, one with a wide-angle lens
for peripheral vision and one with a narrow-angle lens for foveal vision. In addition, the active
head possesses 6 microphones placed around the head for sound localization and an inertial
measurement unit mounted on top of the head. For manipulation purposes, ARMAR-IIIb
is equipped with force torque sensors which have been installed between the wrists and the
hands. A distinctive feature of ARMAR-IIIb is that the hand system integrates tactile sensor
units placed on the palm and on the fingertips which enable the detection of contact.
The second experimental platform consists of a single-arm manipulator equipped with

a robotic hand system for fine manipulation. The Motoman-SIA20D arm developed by
[Yaskawa Motoman Robotics] is an industrial manipulator. At its end, an anthropomorphic
hand system is attached in the form of the Gifu Hand III which is introduced in (Mouri et al.,
2002). The hand system incorporates 5 fingers and a total number of 20 DoF. The thumb
has 4 joints where each joint is actuated by a separate servomotor. Each other finger has 4
joints which are driven by two servomotors. The root joint which links the finger to the palm
allows adduction and abduction movements. The remaining 3 DoF are coupled and enable
the flexion of the finger. Since the hand is electrically actuated, an accurate positioning of
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Figure 8.1.: Left: The humanoid robot ARMAR-IIIb with an 8 DoF anthropomorphic hand. Right:
The Gifu hand with 20 DoF attached to the Motoman manipulator.

the fingers is attained. However, the system is very sensitive to high forces causing backlashes
of the fingers. The platform has served for various grasping experiments as demonstrated in
(Ugur et al., 2012).
Both platforms, ARMAR-IIIb and the Motoman/Gifu system, are depicted in Figure 8.1.

8.1.2. Object Set

For the learning of grasp primitives, grasp data has been extracted from demonstrations of
human grasping actions applied to generic-shaped objects. The shape featured by the objects
comprises four different categories: boxes, spheres, cylinders, and discs. The confinement
to these objects is motivated by the simplified transferability of grasp knowledge from one
object to another. Regarding the learning of non-volar grasps, explicit information about
the object’s appearance is not required. Object-specific grasp information such as presumed
contact positions and the grasp pose are estimated from the demonstration. Therefore, in
the following, the intrinsic object properties are reduced to the object diameter which is
approximated by the distance between the positions of thumb and the virtual finger in the
final grasp configuration. For volar grasps, however, a full object model is required for the
computation and the evolution of the Virtual Contact Strip. Each object category contains at
least three object instances of different sizes. To distinguish between objects of similar shape
but different sizes, an object parameter s is introduced. Since, the medium-sized objects
are considered to be the reference object, the scale for these objects is set s = 1. The scale
parameter for a different object is determined based on the ratio between its diameter and
the one of the reference object.
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8.2. Grasp Data Acquisition

8.2. Grasp Data Acquisition

Marker-based Grasp Observation Towards a comprehensive grasp repertoire which incor-
porates common grasping strategies applied in human-centered environments, human grasp
demonstrations performed on the generic object set have been recorded using the Vicon sys-
tem. The selection of observed grasp types is guided by the Cutkosky grasp taxonomy. In the
perspective of this thesis, this taxonomy is regarded to be the most universal and compact
taxonomy. In the experiments, only single-handed grasping actions have been considered,
and, thus, as described in Section 5.2, markers have been attached to the upper body and to
the right hand of the human subject. Grasp examples have been collected from the demon-
strations of three different human subjects where each subject has been asked to perform a
grasp at least ten times. Starting from a common initial pose, the subject grasps an object
which has been placed in front, lifts and places the object, and finally returns to the initial
pose. The post-processing procedure consists of manual labeling of mislabeled markers and
interpolation between discontinuous trajectory segments. To reduce the amount of data that
has to be processed, the grasp demonstrations have been captured at a frame rate of 100

Hz which in return resulted in grasp trajectories with approximately 200−250 time frames.
Throughout this work, approximately 300 grasp demonstrations have been recorded.

Markerless Grasp Observation The grasp learning procedure using markerless observation
techniques has been adapted to the sensory capabilities of the humanoid robot ARMAR-
IIIb. Using both camera pairs of the humanoid’s active head, grasping actions are observed
based on image sequences with a resolution of R = 640 × 480 pixels. The low resolution
prohibits the simultaneous tracking of arm and finger movements. Hence, the observation
process is performed in two stages where, first, the arm movement of the performed grasp
is captured in the peripheral views, and, subsequently, using the foveal views, in a repeated
grasp demonstration, the fingertips are tracked. In the first stage, upper body movements are

Figure 8.2.: Images of the tracking results. The upper row depicts simultaneous closing of the fingers,
while the lower row shows sequential flexing of the fingers. The fingertips are labeled as
follows: Thumb (green), index (light blue), middle (dark blue), ring (pink), and pinkie
(red).
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Figure 8.3.: Error plot for a sequence of four hand and finger movements: Translation of the hand,
rotation of the hand, close and open movement incorporating flexing the fingers.

recorded using the peripheral cameras of the robot. Based on a known object location xg,
the hand approach movement is captured where the grasping hand is identified
In the second stage, during the repeated human grasp demonstration the grasping hand

is tracked actively in order to generate the foveated views which enable the tracking of the
fingertips. The entire observation process is based on the assumption that the difference
between the arm trajectories in the first and the second demonstration is minimal and, thus,
can be disregarded. Therefore, the duration of the captured arm movement is temporally
stretched to fit the captured fingertip trajectories.
As previously mentioned, markerless captured motion data lacks information based on

which the orientation of the grasping hand can be derived. Hence, based on prior knowledge
about the presumed initial and final hand poses during the observation stage (which is derived
from the orientation of the object to be grasped), an alleged hand orientation trajectory is
estimated through interpolation between these poses and added to the motion data. Regarding
the selection of grasp types to be learned using the proposed markerless methods, it has been
focused on the capturing of precision grasp types since due to the insufficient information,
the distinction between volar and non-volar grasp types cannot be made. A one-shot learning
behavior allowing the robot to acquire grasp knowledge from a single observation in an online
manner is implemented.
A comprehensive evaluation of the upper body tracking framework can be found in (Azad,

2009). In the following, the evaluation of the markerless fingertip tracking approach is de-
scribed. The fingertip tracker is triggered once the first grasp demonstration is finished. While
tracking the grasping hand in the peripheral view, a foveal view is captured based on which
edges are extracted at multiple scales σk = 4,2,1,0.5 and α = 0.5 using the method presented
in Section 5.3.5. The fingertip candidates are extracted from the resulting edge map and
labeled as described in Section 5.3.5 in order to initialize the tracking procedure.
Once the fingertip tracker has been initialized, equally weighted particles are generated. To

increase the robustness of the tracking, the movements of the fingertips are predicted using
the trained motion model of the fingertips. In the experiments, the particle filter algorithm
performed well with a number of 600 particles allowing to track a single grasping movement
without reinitialization. The number of iterations for the subsequent mean shift algorithm
depends on the numbers of particles. Thus, the less particles are used the more mean shift
iterations are needed. For 600 particles, the mean shift converged after approximately 3 iter-
ations. The accuracy of the fingertip tracking method has been evaluated based on deviations
in terms of image coordinates. The tracking framework has been evaluated for different move-
ments such as translation and rotation of the entire hand and common opening and finger
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closing movement. The fingertip positions have been estimated with a mean deviation of
≈ 7 pixels for translational movements. For a rotational, opening and closing movement, the
error increases up to 20 pixels. These measurements are depicted in Figure 8.3. The tracking
procedure is considered to be failed once a finger is lost, which is the case when a finger is
occluded or its movements are too fast.
In case of failure, a reinitialization is performed consisting of a search for maximum bins

in the vicinity of the last known estimation and arrangement of the fingers according to
the positions in polar space. Since this algorithm operates on monocular images, for each
view, a tracking instance is created whereas the 3D positions of the fingers are calculated by
exploiting the epipolar geometry. A limitation of the proposed tracking framework is that,
for the initialization, the palm has to be visible and facing the camera. Furthermore, due
to increased motion blur by using the active head, the human subject is asked to perform
prehensile movements at a lower velocity (approximately half of the natural speed). As
it can be observed in the sample images depicted in Figure 8.2, the proposed algorithm
accurately tracks the fingertips when the fingers are flexed. A problem which occurs during
the closing movement is that occasionally the finger knuckles are detected instead of the
fingertips. However, using the onboard sensors of a humanoid robot, the framework allows
the tracking of the fingertips with a frame rate of 25 Hz on a 2.40 GHz quad-core CPU.

8.3. Grasp Modeling

As stated in Chapter 4, the proposed grasp representation consists of two models of different
granularity. The hand approach movement is represented in the form of a Dynamic Movement
Primitives (DMP) which is learned from the captured motion data using the Receptive Field
Weighted Regression method described in Section 6.5. Approximately 10−20 basis functions
are needed for the encoding of the hand approach movement. A comprehensive analysis on the
performance of the Receptive Field Weighted Regression method is presented in (Schaal and
Atkeson, 1998). With regard to the representation of prehensile representation movements,
the focus is set on the question how well the proposed VSG approach performs compared to
previously proposed continuous task-space representations. For this purpose, various grasp
primitives are derived from human grasp demonstrations and evaluated in order to address
the issue of how accurate grasp behaviors can be encoded and how well the resulting grasp
primitives can be adapted to different object properties. In this context, it has been mainly
focused on a comparison with other approaches based on dynamical systems such as the
DMP-based approach presented in (Kroemer et al., 2010).

8.3.1. Grasp Parameter Estimation

Here, it is focused on the evaluation of the optimization scheme which has been described in
Section 6.3 for the instantiation of the VSG representation. For this purpose, experiments
have been conducted based on simulated as well as on the captured fingertip motion data. To
generate simulated grasping movements, the VSG representation has been parameterized with
an arbitrary set of spring constants and spring lengths which originate from the MMM hand
measurements. Modulation at a frequency of 40 Hz resulted in fingertip trajectories with a
duration of 2 s which in return resulted in simulated grasp data consisting of 80 frames. The
preshaping behavior is simulated using a Gaussian-based perturbation term that is centered
around Tpre = 0.66 ·Tend and creates a repelling force which emanates from the center of the
system and is applied on each fingertip.

83



8. Evaluation

Figure 8.4.: Left: Trajectories of simulated (red) and reproduced (yellow) finger movements using
parameters estimated by the proposed optimization scheme. Right: Simulated and
reproduced trajectories using parameters estimated by a nonlinear gradient-based opti-
mization algorithm initiated by the proximity sampling step.

In order to employ the parameter estimation scheme, the simulated grasp sequence has
been subdivided into NS subsets. A subset size with 20 frames has been specified. Based on
each subset, observations are formed as described in Section 6.2.1 which serve as input to
the estimation procedure. To diminish the risk of falling into local minima, ≈ 100 possible
solutions which are obtained by sampling the vicinity of previous estimate (from the preceding
subset) are evaluated. The best solution is used as an initial estimate for the Total Least
Squares solver (TLS). By iteratively solving the optimization problem for each subset, NS

local parameter estimates are calculated. Infeasible local solutions are discarded while feasible
estimates are fused to a global solution. Solutions which are close to a null solution or which
deviate 20 % of the mean solution are denoted as infeasible. When performing the optimization
on simulated data, it has been observed that with smaller subsets estimation results become
more accurate. As depicted in Figure 8.5, the spring constant optimization for each subset
converged after 13 iterations . The fused global solution deviates ≈ 1% from the reference
solution. Due to accurate local estimates, only a single iteration of the entire optimization
scheme is needed. In Figure 8.4, it can be seen that the reproduced trajectories using the
spring constants estimated by the proposed optimization scheme feature a higher similarity
to the simulated movement compared the parameters estimated by a non-iterative scheme
based on gradient-based optimization algorithm which only considers the spring constants as
subject to be optimized.

Parameter Estimation from Motion Capture Data

Regarding the learning of grasp primitives, it is more interesting to investigate the performance
of the proposed parameter estimation scheme on real motion data. Due to the increased level
of noise, small-sized subsets lead to heterogeneous solutions. Therefore, a unique global
solution is difficult to extract. In general, the more frames which are considered within a
subset, the larger the inconsistencies within data become, yielding spring constant estimates
around zero. The subset size depends on the data which is to be processed and, thus, a
reliable statement on the adequate number of subsets cannot be made. The subset size has
been chosen in order to maximize the number of feasible local solutions and, therefore, have
been determined experimentally.
The parameter estimation from marker-based motion capture data, has been performed

with a subset size of 20− 25 frames. The initial sampling procedure has been conducted
with a number of 1,000 samples whereas in subsequent iterations, the number of samples has
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Figure 8.5.: Left: Convergence behavior of the entire estimation scheme on marker-based captured
motion data. Right: Convergence behavior of the TLS solver for estimation of the spring
constants estimates from marker-based and markerless captured motion data.

been reduced to 100. The computational time needed for the sampling procedure is less than
100 ms and decreases to and, thus, has a minimal effect on the overall runtime. The inner
loop which computes the solution of the TLS problem converged after approximately 5,084

iterations. The maximum number of iterations has been restricted to 10,000. The entire
estimation scheme required 3 iterations to converge to a global solution. Since each grasping
movement has been subdivided in 10-15 subsets the total computation time amounts to 720

s.
Regarding the estimation of spring constants based on motion data extracted from stereo

camera sequences, the parameter estimation proved to be difficult due to low frequency at
which a grasping movement is captured (limited to 20 Hz according the tracking performance)
and the inaccuracies in the position estimations originating from the visual tracking. These
deficiencies causing more uncorrelated noise within the data lead to increased number of null
solutions for larger subset sizes. Hence, to overcome these problems, the number of samples
used to refine the initial parameter estimate has been raised to 5,000 whereas for subsequent
iterations 1,000 samples are considered adequate. Furthermore, the subset size has been re-
duced to 8−10 frames. However, due to the smaller subsets the optimization featured a faster
convergence. Hence, 511 iterations of the TLS solver is required whereas the entire estimation

Method Markerless Marker-based

nIterations Runtime nSolutions nIterations Runtime nSolutions

MMA 1000 190228 27 10000 189135 90

PTNEWTON 679 187278 45 7978 126388 92

LBFGS 516 107026 31 8472 138015 46

SLSQP 3 302 0 22 3573 7

VAR 582 113127 63 5553 92443 94

Proposed 511 4948 59 5084 16323 77

Table 8.1.: Comparison between the proposed parameter estimation scheme and gradient-based op-
timization algorithm implemented in the NLopt library. Results are listed for the esti-
mation of 100 subsets originating from the processing of 8 grasp trajectories.
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scheme does not feature any significant change after 3 iterations. For grasp trajectories with
the size of 80− 100, the computation time amounts up to 150 s. The parameter estimates
have been calculated in an offline manner using a 2.40 GHz quad core CPU. By comparing the
parameter estimation from simulated and real data, a large discrepancy between both results
becomes apparent where its reason mainly lies in the modeling error due to the simplification
of the hand structure.
The estimation scheme has been evaluated against various multivariate gradient-based re-

gression algorithms implemented in the NLopt library which is available at [Johnson]. As listed
in Table 8.1, the following algorithms have been employed: Method of Moving Asymptotes
(MMA), Preconditioned truncated Newton (PTNEWTON), Low-storage Broyden-Fletcher-
Goldfarb-Shanno (LBFGS), Sequential Least-Squares Quadratic Programming (SLSQP), and
the Shifted Limited-Memory Variable-Metric algorithm (VAR). For the given problem, the
SLSQP algorithm which is based on a quasi-Newton method showed the worst performance
by fastly converging towards a null solution. Regarding the number of feasible solutions ob-
tained by the applied optimization algorithms the proposed scheme is outperformed by the
VAR and the MMA. Regarding marker-based captured motion data, more than 90% of the
solutions computed by these algorithms have met the imposed feasibility criteria, while the
application of proposed scheme led to 77% of feasible solutions. On markerless motion data,
the performance of the VAR and MMA algorithms drastically decreased leading to only 27
respectively 45% of feasible solutions. In comparison to these results, using the proposed es-
timation method 59% of the calculated spring constant estimates calculated from markerless
observations have been considered feasible. Regarding the runtime the scheme performs ex-
ceptionally well compared to the other approaches. The main reason for this performance lies
in the separation of the estimation problem, since the computational costs grow exponentially
with O(MN3) with N denoting the dimensionality of the problem and M being the subset size.

Spring Constant Estimates

The final spring constant estimates extracted from grasp demonstrations which feature various
grasp types defined in the Cutkosky taxonomy are depicted in Table 8.2. Referring to the
finger spring constants k f , one can observe that the grasp behavior is mainly influenced by
the first four components which denote virtual springs linking the thumb to the remaining
fingers. In particular, the third and fourth component become increasingly important for
grasp types where the opposition of the virtual finger and thumb is crucial. With regard
to contact and the stabilization springs, it can be observed that the stiffness parameters
related to the thumb are scaled larger than those of the virtual finger. This is due to the
prominent role of thumb which originates from the guiding function and the larger distances
that this finger has to cover. The spring constant solutions between different grasp types
such as Spherical Power, Spherical precision feature a high similarity. On the on hand, it
means that the information indicating whether a volar or a non-volar grasp is to be learned
cannot be directly extracted from mere motion data. On the other hand, this result leads to
the finding that similar movements lead to similar solutions which supports the assumption
that the proposed estimation scheme parameterizes the VSG representation depending on
the featured grasp type rather than the explicit demonstration. To underline this finding, in
Table 8.3, solutions are listed for different trajectories which represent the same grasp type.
Due to the missing of reference values, the quality of the parameter estimates can only be

assessed by comparing the reproduced and the demonstrated movements. For the trajectory
comparison, the instantiated VSG representation has been used to reproduce prehensile move-
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ments under the same conditions as specified in the demonstration. The resulting trajectories
are depicted in Figure 8.7 showing validity of the grasp representation approach.
However, the similar shapes of the reproduced and the observed trajectories indicate that

the main characteristics of each grasp type could be retained, and, most importantly, grasps
could be reproduced in a goal-directed manner since the fingertips involved in the grasping
tasks are aligned with their contact positions while non-involved fingers remain at a designated
distance to the object. The deviation between observation and reproduction becomes maximal
when the fingers attain the maximum grip aperture. Grasp primitives learned from marker-
based captured motion data which involve all fingertips could be reproduced with an maximum
mean deviation of 5 mm whereas for three and two finger grasps this error increases to 7

respectively 10 mm. For motion data captured with the stereo camera system, the error adds
up to 23 mm. This phenomenon can be traced back to the small number of springs. Fingertips
not participating in a grasping action are only anchored to the hand structure yielding a wider
range of motion, while, for a grasping finger, a smoothing effect is attained which prevents
a detailed representation of a grasping movement. In general, it could be observed that by
introducing more mass spring damper systems into the dynamical system, the more accurate
a grasp behavior can be represented and reproduced.
To evaluate the proposed representation for prehensile fingertip movements in terms of ac-

curacy the VSG representation has been compared against a probabilistic and a dynamical
systems approach. With regard to probabilistic representations, grasp primitives are derived
using the method which has been introduced in (Romero et al., 2010). From multiple demon-
strations of the same grasp behavior, using the Principal Component Analysis a latent space
F ′ ∈ R3 (two-dimensional feature space and one temporal dimension) is inferred which al-
lows the low-dimensional description of a high-dimensional fingertip configuration defined in
F ∈ R15. Based on this space 50 Gaussian Mixture Models have been trained in order to
obtain a generalized representation of the demonstrated trajectories. Through regression and
backprojection the encoded grasp behavior can be synthesized.
To compare the VSG representation to another dynamical systems approach, based on the

method introduced in (Kroemer et al., 2010) DMP representations for fingertip movements
have been created. This DMP representation incorporates a transformation system for each

Grasp Type kc0
ks0

kcv f
ksv f

k f

Spherical Power 41.00 21.50 31.40 3.44 (9.61, 15.99, 13.59, 29.66, 1.00, 1.00, 1.00)

Circular Power 75.22 1.00 31.70 2.54 (7.10 10.98 9.51 25.02 6.19 5.74 21.81)

Heavy Power Wrap 51.41 13.44 32.69 11.68 (1.00,1.00,1.00,20.00,1.00,5.79,1.00)

Medium Precision Wrap 111.22 38.69 88.54 6.00 (1.00,1.00,1.00,44.48,1.00,1.00,1.00)

Adducted Wrap 79.84 1.00 27.07 18.04 (37.29, 23.47, 11.23, 32.75, 1.00, 30.50, 8.89)

Prismatic Wrap 34.95 18.60 39.37 1.77 (16.74, 18.27, 1.00, 6.41, 1.00, 1.00, 14.70)

Spherical Precision 40.00 5.96 31.03 5.03 (11.42, 20.75, 24.92, 36.47, 1.30, 1.00, 1.39)

Circular Disk 41.00 3.59 31.40 3.44 (9.61, 15.99, 13.59, 29.67, 1,00, 1,00, 1,00)

Thumb-4-finger 45.97 6.28 37.22 1.50 (1.00, 2.94, 16.12, 16.97, 1.09, 12.18, 1.00)

Thumb-3-finger 38.80 7.20 35.43 1.70 (11.14, 21.41, 30.33, 11.72, 3.69, 7.23,1.00)

Tripod 17.21 28.04 18.93 2.08 (1.00, 1.00, 11.08, 16.23, 1.00, 1.00, 1.00 )

Pinch 222.72 14.74 138.04 7.01 (57.26, 122.52, 107.08, 75.41, 6.43, 1.00, 1.00 )

Table 8.2.: Spring constant estimates representing various grasp types.
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(c) Heavy wrap grasp
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(d) Medium wrap grasp
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(e) Adducted thumb grasp
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(f) Prismatic light tool grasp

Figure 8.6.: Trajectories of original (green) and reproduced (red) prehensile fingertip movements
generated from grasp primitives which encode volar grasp types using the VSG rep-
resentation. In each plot, the most right trajectory represents the thumb movement
whereas the most left depicts the movement of the pinkie. The measurements are given
in mm.
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(b) Circular disc precision grasp
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(c) Thumb-4-Finger grasp
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(d) Thumb-3-Finger grasp
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(e) Tripod grasp
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(f) Pinch grasp

Figure 8.7.: Trajectories of original (green) and reproduced (red) prehensile fingertip movements
generated from grasp primitives which encode non-volar grasp types using the VSG
representation. In each plot, the most right trajectory represents the thumb movement
whereas the most left depicts the movement of the pinkie. The measurements are given
in mm.
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Grasp Type kc0
ks0

kcv f
ksv f

k f

Spherical Power 1 70.90 13.11 43.97 1.41 (8.46, 12.50, 13.50, 20.65, 5.89, 1.53, 1.00)

Spherical Power 2 41.00 21.50 31.40 3.44 (9.61, 15.99, 13.59, 29.66, 1.00, 1.00, 1.00)

Spherical Power 3 38.74 23.03 33.76 1.0 (11.67, 12.19, 14.07, 31.78, 1.56, 1.00, 1.00)

Spherical Power 4 42.85 24.51 34.22 17.05 (10.49, 17.48, 13.31, 30.14, 2.27, 1.56, 1.00)

Tripod 1 12.39 23.86 14.56 2.24 (1.00, 1.00, 10.59, 14.27, 1.00, 1.00, 8.23 )

Tripod 2 13.75 24.38 18.75 8.49 (1.00, 1.00, 15.64, 10.37, 1.00, 1.00, 6.55 )

Tripod 3 16.21 22.67 17.09 2.17 (1.00, 1.00, 12.20, 16.49, 1.00, 1.00, 1.00 )

Tripod 4 17.21 28.04 18.93 2.08 (1.00, 1.00, 11.08, 16.23, 1.00, 1.00, 1.00 )

Table 8.3.: Spring constant estimates for similar grasp examples.

dimension, hence, only focusing on positional information, 15 transformation system have been
employed where each incorporates approximately 10 basis functions. Thus, 150 parameters
have been determined to represent movements in a continuous fashion. Similar to the hand
approach movement, the nonlinear perturbation term incorporated in the DMP representation
is used to shape an attractor landscape where the attractor is not necessarily a contact point.
As depicted in Figure 8.12, based on these representation, various primitives for the encoding
of spherical precision are generated and synthesized. The movement reproduced from the
GMM-based representation featured a mean deviation of 9 compared to the demonstrated
grasping movement. However, in contrast to the dynamical systems approaches, less smooth
fingertip trajectories have been generated which is indicated by the jittery error trajectory.
Due to the lack of dynamic information such as velocity and acceleration in the GMMs, the
generated trajectories contains points which are less correlated than in trajectories originating
from the evolution of a dynamical system. In addition, the fact that the designated contact
positions are not exactly aligned with the fingertips implies that GMM-based primitives do
not provide the inherent capability of encoding the relationship between the endeffector and
the object. As opposed to this, attractors in dynamical systems allow the incorporation grasp
relevant information such as contact points in order to attain a goal-directed representation
and, thus, allow the creation of flexible and adaptive grasp primitives which are necessary for
efficient grasp synthesis in dynamic environments.
Clearly, the DMP representation allows a more accurate representation of the demonstrated

finger movements. For all grasp types, independent of the fingers involved in the grasp, a
deviation of maximum 5 mm has been attained. This error decreases with larger number of
basis functions that is used to describe the nonlinear perturbation term. However, in contrast
to the proposed VSG representation, DMPs for grasping do not encode the relations between
the hand and object properties. As shown in Section 8.4.2, this feature becomes increasingly
important when encoded grasp primitives are to be adapted to different situations.

8.4. Grasp Adaptation

Since the proposed grasp representation consists of two models for the hand approach and the
prehensile finger movements, separate experiments have been conducted focusing on the eval-
uation of the representation for the hand approach movement as well as the finger movements.
With regard to the hand approach movement, the DMP representation has been evaluated
concerning the applicability to represent various discrete arm movements in reaching and
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manipulation actions in a goal-directed manner allowing the adaptation to different extrinsic
object properties (such as position and orientation). The evaluation of the VSG representa-
tion is focused on how the incorporated dynamical systems behave on changes regarding the
intrinsic properties of an object (such as size and shape).

8.4.1. Adaptation of Arm Movements

To study the representation of discrete arm movements, a simple pick and place scenario
has been implemented as an imitation learning task. Based on the experimental setup as
described in Section 8.1 human arm movements have been recorded showing the execution of
a pick a place task. For this scenario, the segmentation led to motion segments representing
three different actions: hand approach, object placing, and hand retreat. For each action, a
class of DMP strategies is learned. Due to the simplicity of the movement, a total number
of 10−20 basis functions is regarded to be sufficient for the approximation of the nonlinear
perturbation term. Concerning the approach and retreat movement, each class contains two
different DMP strategies assuming that the object position may vary along the vertical axis
(either right or left relatively to the endeffector). For the placing action, four DMPs have
been trained in order to accommodate placing of objects from back to the front, from left to
right and vice versa. As depicted in Figure 8.8, the pick and place task has been reproduced
under different conditions by shifting the target positions for each DMP.
A more complex imitation learning task based on the pick and place-scenario has been

implemented in order to enable a robot to learn the shell game. In addition to existing DMP
set, sliding movements were demonstrated to the robot. For this purpose, the human user has
been asked to slide an object in eight different ways. Four distinct movements have been iden-
tified which are characterized whether the object has been moved from left to right, away or
towards the robot. Adding the four sliding DMPs to the library, a set of movement primitives
is obtained which cover the motion needed for performing the shell game. Each DMP is la-
beled with the semantic movement description (such as {”approach”,”transport”,”retreat”})
and information about the coarse movement direction (”le f t to right” or ” f ront to back”).

Figure 8.8.: Adaptation and reproduction of DMPs representing a pick and place task learned from
human observation on the humanoid robot ARMAR-IIIb.
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Figure 8.9.: Reproduced DMP movements for different actions: sliding, placing. and the adaptation
to different target. and start position.

Assuming zero velocity and acceleration at start and goal, for the reproduction of a complex
task, a sequence of chained DMP labels and target poses is passed to the robot. In the case
of the shell game scenario, the results of the reproduction are depicted in Figure 8.10.
The movement primitives successfully converged towards the target conditions. However,

a problem that has been encountered is that the movement slows down considerably in the
vicinity of the target pose which is due to shallow decay of the velocity profile caused by the
constant damping factor. Nonetheless, regarding the encoding and reproduction of discrete
arm movements where goal-directedness primarily matters this issue can be disregarded.

8.4.2. Adaptation of Finger Movements

In the following, the ability of the VSG representation to adapt to different object-specific
constraints is investigated. The adaptation to different predetermined contact positions is
guaranteed due to contact springs with zero length which enforce alignment of the mass bodies
representing fingertip and contact point. Hence, in this evaluation, it is rather focused on the
adaptivity of the VSG representation to different object scales. In this context, an informative
cue is given by the evolution of the grip aperture movement. To adapt an instantiated VSG
representation to a different object scale s, the contact positions originating from human
observation are shifted in the direction from the object center to the contact. For volar as
well as non-volar grasps, the equilibrium spring lengths of the finger springs and the contact
springs are to be scaled by the factor s. Similar to the problem of the DMP formulation, the
convergence towards the spring equilibrium in the preshaping phase is slowed down prohibiting
to reach the full grip aperture even at slower reproduction velocity. To minimize this effect,
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Figure 8.10.: Reproduction of the shell game scenario encoded as a DMP and learned from human
observation. The movement has been adapted to different target positions shifted in
front of the robot.
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Figure 8.11.: Temporal evolution of the grip aperture movement for different object scales. The left
column shows the reproduction of grasp primitives learned using the VSG representa-
tion where the right column shows the grip aperture movement for prehensile grasping
DMPs. Three different grasp types are depicted: a prismatic wrap grasp (top), a tripod
grasp (middle), and a precision grasp (bottom).

a scaling factor sc = u · s has been introduced into the VSG representation for the adjustment
of the contact springs. In the experiments, u = 2 has been chosen to implement a preshaping
behavior similar to the one in human grasping.
As depicted in Figure 8.11, the evolution of the grip aperture has been studied for vari-

ous object scales. Similar to the findings reported in various human grasp studies such as
(Paulignan et al., 1997) and (Castiello, 2005), prehensile fingertip movements have been re-
produced which feature a maximum grip aperture that strongly correlates to the object size.
An increase in object size led to a larger maximum grip aperture. In Figure 8.11, the grip
aperture movements for a prismatic wrap grasp, tripod grasp, and pinch grasp are depicted.

94



8.4. Grasp Adaptation

The primitive for prismatic wrap grasp has been derived from a human grasp demonstration
with an object with diameter of 114 mm where a maximum grip aperture of 143 mm is fea-
tured. Thus, for this specific grasping movement, the ratio g = object diameter

max grip aperture
is 0.79 which

corresponds to values reported in (Paulignan et al., 1997) for the grasping of larger objects.
For increased object scales s = 1.5 and s = 1.25, g remained constant. For smaller objects,
a hand preshaping has been imperceptible due to initial open hand configuration which has
been larger than the maximum grip aperture in the preshaping phase. However, a change in
the slope of the trajectory indicate that, similar to the grasping of larger objects, the hand
preshapes at two-thirds of the way. Thus, for s = 0.75 and s = 0.5, the ratios have been
determined to be g = 0.77 and g = 0.63. As result, a smaller object scale entails a decrease in
g. A similar behavior has been observed when adapting other primitives representing grasps
such as a tripod or a pinch grasp to different object sizes.
In comparison to grasp primitives based on the proposed VSG representation, it has been

investigated how the DMP-based primitives behave under different object scales. For the
prismatic wrap grasp type, a similar grip aperture behavior has been observed. However, the
reproduced grasping actions have featured smaller maximum grip apertures. The adaptation
to s = 1.5 and s = 1.25 yielded g = 0.9 and g = 0.84. This is due to the missing encoding of
information on intrinsic object properties which might be compensated by define an object-
specific scaling of the nonlinear perturbation term. For the tripod grasp, the adaptation to
smaller object caused the rapid decrease of the grip aperture. The reason for this behavior
lies in the insufficiency of DMPs to adapt to goals which are not in the vicinity of the encoded
target. A goal position which changes the direction in which the transformation systems con-
verge to can cause an overshooting of the dynamical system. Thus, moving a contact position
in a single dimension along the opposite direction can cause these undesired effects. This
deficiency becomes more evident for a pinch grasp which involves only the thumb and the
index finger. As it can be seen in the bottom right plot of Figure 8.11, the corresponding
DMP could not adapt to larger objects and showed an unexpected behavior for smaller ob-
jects. Compared to the DMPs encoding prehensile movements, primitives based on the VSG
representation proved to be more adaptive and robust towards different object sizes. The
reason for that lies in the explicit encoding of the relation between the grasping embodiment
and the object with virtual springs.

8.4.3. Behavior under Perturbation

A motivation to propose a representation in the task space is the robust synthesis of move-
ment primitives in dynamic environments. Therefore, in this section, the issue of how the
grasp behavior, generated by the proposed VSG representation, changes throughout time
with regard to perturbation forces resulting from possible obstacles will be discussed. Due
to the dynamical systems formulation, the incorporation of such perturbations is straightfor-
ward and is accomplished by adjusting the external force component in Eq. 4.26 accordingly.
For a correct evaluation of the results, the behaviors generated by the VSG and the DMP
representations have been compared. To simulate a perturbation, a force component which
follows a Gaussian distribution and is temporally centered at the end of the preshaping phase
is placed to pull the thumb towards the palm.
The results for a spherical precision grasp type are depicted in Figure 8.12 and show that

both representations behave robustly under perturbations by attaining the desired grip aper-
ture and converging towards the final grasp configuration without oscillating. In both cases,
the perturbations led to a reduction of the grip aperture. For the VSG representation, the
perturbation caused a 25% decrease of the maximal grip aperture while 50% decrease has
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Figure 8.12.: Left: Error between original and reproduced grip aperture movement generated from
grasp primitives represented using the VSG, the DMP, and the GMM-based approach.
The error is measured as Euclidean distance between the original and reproduced finger-
tip configuration (involving all five fingers). Right: Grip aperture movement generated
under perturbation.

been observed for grasps represented as DMPs. The reason for this difference lies in the
virtual finger springs which allow mutual influence between the fingertips, and, thus, help to
retain the relative spatial relationships between the fingertips. In contrast to this, the DMP
representation treats each fingertip as an independent entity which is decoupled from the
remaining fingertips. Therefore, forces exerted on a specific finger do not cause changes in
the movements of the other.

8.5. Grasp Reproduction

Assuming what grasp type to be executed whether based on information coming from a human
operator or by classification of a previously observed the grasping action, the corresponding
grasp primitive is selected. The object to be grasped is localized, whereas it is assumed that
the object is known and appropriate contact positions are associated with the object model.
This has been done manually, but one can think of a grasp planning algorithm in order
to obtain this contact information. The object scale is determined based on the distances
between the designated contact positions of thumb and virtual finger on the current object
and the ones stored in the grasp representation. With the appropriate DMP for the hand
approach movement adapted to the object pose, grasp trajectories are generated in the task
space.

8.5.1. Reproduction of Arm Movements

The movement is mapped to the robot with the method described in Section 7.3.1. For
markerless as well as marker-based motion capture data, the proposed method has been
evaluated by comparing an inverse kinematics method based on the Jacobian transpose and a
one-to-one mapping of the captured joint angles. For the evaluation, the most representative
method is to reproduce the movement under similar conditions as captured.

Marker-based Motion Capture Data The evaluation of the mapping method has been con-
ducted based on motion data which has been generated within the work of (Stein et al., 2007).
These describe various kitchen actions including movements like stirring, cutting, sweeping,
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grinding, grating, and pouring. Each arm movement has been captured in the form of tra-
jectories describing the pose of the endeffector in 6D as well as the current arm configuration
consisting of 13 DoF joint angle vector (3 DoF for the hip, 1 DoF for sternoclavicular joint, 3

DoF for the shoulder, 2 DoF elbow, 2 DoF for the wrist and 3 DoF for the hand). Based on
a predefined mapping table, presumable joint correspondences between the MMM reference
model and the robotic embodiment are specified. In the case of the humanoid ARMAR-IIIb,
due the anthropomorphic structure, the arm joint correspondences are obvious whereas the
kinematics of the robot do not include the hip pitch and roll joint as well as the sternoclavic-
ular joint. Joints where correspondences can be found are denoted as active joints which are
optimized in order to compensate missing joints. The results using of the mapping procedure
are illustrated in Figure 8.13a. The left plot of Figure 8.13a shows the joint angle error of
a reproduced joint angle configuration on the robot and the reference configuration. Due
to redundancy, the inverse kinematics method produces solutions with higher error, while a
one-to-one mapping naturally leads to a minimal error. In the center plot of Figure 8.13a,
by the right arm endeffector, the deviation of the hand positioning is illustrated. Here, given
a endeffector destination, the inverse kinematics method leads to an exact positioning of the
endeffector, while using the one-to-one mapping the designated position is not reached. In
both plots, it is shown, that the application of the proposed mapping procedure as, a trade-off
is attained, which results in a quite accurate endeffector positioning with an maximum error
of 25 mm and an acceptable mean joint angle error of 2 degrees for each DoF. One of the
most crucial joints which has a huge impact on the style of a trajectory is the shoulder joint.
Therefore, the right plot of Figure 8.13a shows the joint angle error for this joint in particular.

Markerless Motion Capture Data For the online reproduction and imitation of observed
human motion, the implemented mapping has been evaluated on markerless captured motion
data as well. Using the onboard stereo cameras of the ARMAR-IIIb active head upper body
movements with a total number of eight DoF were recorded, four for each arm, three DoF for
the shoulder joint and one for elbow flexion. Reference points in the task space are denoted as
mere 3D hand positions since the orientation cannot be estimated from this motion data. The
online reproduction was tested with simple movements like reaching, waiving, and approaching
certain postures. Similar to the results previously stated a trade-off between the accuracy of
the endeffector position and the joint angle error has been attained. However, due to the
reduced number of measured joints, one obtains results with a mean joint angle error of 2.7

degrees for each DoF, as shown in the left plot of Figure 8.13b, and a maximum deviation of
65 mm in the endeffector position of the right arm, as shown in the center plot of Figure 8.13b.
The reason for the relatively large deviation is that the utilized vision-based motion capture
system is not yet capable of reliably measuring the torso rotation. This lack of information
leads to a decreased flexibility throughout the reproduction, assuming the hip joint angles
to be fixed. One solution would be to incorporate the hip rotation into the optimization
procedure in order to allow for the missing flexibility even if the torso rotation cannot be
measured.

8.5.2. Reproduction of Finger Movements

The adaptation of the VSG representation to different robotic hand embodiments is achieved

by scaling the stabilization spring lengths according to ratio rR =
lHmmm

lHR
where lHR

and lHmmm

stand for the lengths of the robot hand and the MMM hand. Additionally, in order to
reproduce a preshaping behavior adapted to the hand, the maximum hand aperture m is set
to lHR

. The procedure is limited to the mapping to anthropomorphic robot hand systems
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featuring five fingers equal to the human hand. For hands with less fingers, similar to (Kang
and Ikeuchi, 1997), the fingers are to be grouped to virtual fingers based on manually defined
correspondences.
For synthesizing grasps on such hands, the VSG representation has been adapted to the

kinematic specifications of the hand system. Furthermore, the springs between the fingertips
and the contact springs are adapted to projected contact positions while the object pose has
been defined as an attractor for the hand approach DMP. The grasping movement is gener-
ated by solving the differential equations incorporated in the DMP and VSG representation
using the Runge-Kutta ODE solver of fourth order. For the arm movements, optimized joint
angle trajectories are executed whereas the fingers are controlled with IK solutions which
are calculated as described in Section 7.3.2. As depicted in Figure 8.13, the reproduction of
different grasping actions learned from human demonstrations is simulated for the humanoid
robot ARMAR-III. Due to kinematic inaccuracies and possible mapping errors, the generated
movement does not allow accurate positioning of the endeffector in the real world. Therefore,

(a) Evaluation results for the reproduction of motion captured by the Vicon system as reported
in (Do et al., 2008). Left: Mean joint angle error over all active joints in radians. Center:
Deviation of right arm endeffector of the robot and a predefined destination in mm. Right:
Mean joint angle error over the shoulder joint in radians.

(b) Evaluation results for the reproduction of vision-based captured motion as reported in (Do et al.,
2008). Left: Mean joint angle error over all active joints in radians. Center: Deviation of right
arm endeffector of the robot and a predefined destination in mm. Right: Mean joint angle error
over the shoulder joint in radians.
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Figure 8.13.: Left: View on the arm configuration observed using the upper body tracking method.
Center: Reproduction of the captured arm configuration. Right: Depiction of the
optimized joint angle configuration using the MMM interface.

in the last phase of the approach movement, visual servoing is applied in order to align the
endeffector with the designated grasp pose. To reproduce prehensile finger movements which
accommodate the corrective hand movement, the dynamical system of the VSG represen-
tation is perturbed as described in Section 7.5.1. As previously mentioned, in this thesis,
grasping movements have been generated and reproduced on the ARMAR-IIIb robot as well
as on the Motoman equipped with a Gifu Hand III. The main focus of the experiments con-
ducted on ARMAR-IIIb has been the validity of the proposed approach for learning grasp
primitives from human observation. Using the methods introduced in Section 5.3, the robot
is endowed with the capability to capture and to process human grasp demonstrations in
an online manner using the onboard sensor systems. Due to inaccuracies and occlusion, the
distinction between volar and non-volar grasps cannot be made. Thus, the proposed system
is constrained to the observation and learning of non-volar grasps. The reproduction of differ-
ent grasping actions previously learned is depicted in Figure 8.15. The experiments, however,
which have been conducted with the Motoman/Gifu system were focused on the represen-
tation and reproduction of prehensile movements for various object scales. As depicted in
Figure 8.17 and Figure 8.16, a grasp primitive, learned from demonstrations featuring the
grasping of an object with a specific shape, is adapted to different object instances which
are similarly shaped but with regard to the diameter are differently scaled. Adapted to the
grasping hand as well, the grasp primitive is used to generate a grasping action. The mul-
titude of finger joints allows an accurate reproduction of the generated grasping movement.
However, the robotic system is very limited in its ability to perform compliant grasping due
to an increased sensitivity towards higher forces causing backlashes of the fingers. Therefore,
designated contact positions have to be properly approached by the fingers in order to allow
a successful grasp. Using the proposed grasp representation, a movement control policy has
been derived capable of representing and reproducing prehensile finger movements which are
adapted to task- and object-specific constraints as well as the robotic embodiment.

8.6. Summary

In this chapter, the validity and applicability of the proposed grasp representation for the
learning of grasp primitives from human demonstration have been investigated. For this pur-
pose, it has been evaluated how well observed grasping movements can be represented and,
how accurate the observed situation has been captured by the components which form the
learning framework and, thus, are tailored to proposed grasp representation. Regarding the
methods for the observation of human grasp demonstrations, two different approaches have
been employed for gathering motion data for the learning of grasp primitives. In particular,
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(a) Spherical power grasp

(b) Spherical power grasp
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8.6. Summary

(a) Spherical power grasp

(b) Spherical power grasp

Figure 8.13.: Various grasp primitives learned from marker-based motion capture data. For each
grasp, the top line depicts the Vicon motion data. The middle line shows the mapping of
the motion to the MMM reference model. The bottom line illustrates the reproduction
of the learned grasp types in simulation.
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Figure 8.14.: Evolution of Virtual Contact Strip on different object models.

it has been shown that based on observations obtained by the markerless motion capture
methods, using the onboard stereo camera system of a humanoid robot, grasp data can be
generated which is suitable for the instantiation of the grasp representation. Based on the
captured motion data, in comparison to other nonlinear optimization algorithms, the pro-
posed parameter estimation procedure is performed for the efficient identification of model
parameters with which the grasp type behavior is described within the proposed represen-
tation. The experimental results show that the VSG representation allows the continuous
representation of the entire grasping action with a small number of parameters. However, the
most important finding is that based on different observations featuring the same behavior
the proposed estimation scheme is capable of finding a parameter estimate which uniquely
describes the demonstrated grasp type. Based on this finding, it has been shown that the
presented framework is capable of learning grasp primitives for grasp types defined in the
Cutkosky taxonomy. In order to evaluate the synthesis of the represented grasps, these prim-
itives are adapted to the robotic embodiment as well as different task- and object-specific
constraints. Compared to grasping actions represented in the form of a DMP, a formulation
which also uses of dynamical systems approach for a continuous description of movements,
the proposed approach proved to be more versatile. Due to virtual spring elements which en-
able the encoding of the finger-object relations not only non-volar grasp could be represented
and reproduced, but also volar grasps which require palm contact as well as the wrapping of
the fingers around the object in order to maximize the contact areas. Furthermore, it has

Figure 8.15.: Non-volar grasp types learned from human observation in an online manner.
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8.6. Summary

Figure 8.16.: Grasp preshapes and different scales reproduced on the Motoman/Gifu platform.

be shown that the virtual springs used for the implementation prehensile finger movement
synergies contribute to the compactness of the grasp representation and enhance the synthe-
sis of grasping actions under perturbation. The framework has been integrated on different
robotic platforms, the humanoid robot ARMAR-IIIb and the Motoman/Gifu platform. For
the Motoman/Gifu platform, the adaptation properties of the grasp primitives to different
object scales has been studied whereas the framework’s capability of learning human grasp
behavior in an online manner has been evaluated on ARMAR-IIIb.
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Figure 8.17.: Final grasp postures of reproduced grasp primitives adapted to different object scales
and executed by Motoman/Gifu platform.
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9. Conclusion

The objective of this thesis was to equip humanoid robots with the capabilities to learn
grasp primitives from human observation. In this context, the most crucial issue has been the
question how grasps can be represented in a comprehensive manner allowing the generalization
of observed grasp demonstrations as well as the adaptation of the encoded motor knowledge
to versatile task and object requirements. To address this question, the focus of this thesis
has been set on the development of a grasp representation and the learning of grasp primitives
for the generation of grasping actions applicable in different situations. In this chapter, the
contribution of this work is summarized and extensions and future works are discussed.

9.1. Contribution

Motivated by the anthropomorphic appearance of humanoid robots and the kinematic simi-
larities between human and humanoids, an intuitive methodology to deal with the complexity
of grasping in dynamic environments is to endow robots with a cognitive grasp learning be-
havior for the acquisition and extension of grasp-related motor knowledge. Following the
imitation learning paradigm where actions are learned through observation and generaliza-
tion of human demonstrations, this thesis presented representations and methods which allow
the efficient implementation of such a behavior. They address various aspects such as the
capturing of human motion, the representation of the observed motion, the parameter esti-
mation in dynamical systems, and the mapping of motion to humanoid robots. Thus, key
scientific contributions of this thesis are summarized as follows:

• Virtual Spring Grasp Representation

Grasping is a continuous process which involves multiple phases such as approaching,
preshaping, and enclosing the hand. Using discrete grasp representations commonly
used in robotic grasping, this process is reduced to a single snapshot of this process
causing a loss of valuable information which can facilitate efficient grasping. For a com-
prehensive representation of grasping actions, in this thesis, the Virtual Spring Grasp
representation has been introduced which is based on a dynamical multi-body system
in which each fingertip is associated with a mass body. For the modeling of finger
movement synergies, which are crucial mechanisms facilitating the coordination of mul-
tiple finger movements, mass spring damper system were introduced between these mass
bodies. By specifying the stiffness parameters of these springs, a specific grasp-typical
behavior has been induced into the representation. The definition of the representation
in the task space allows the interpretation of contact points as attractors and, thus,
enhances the adaptivity to varying object-specific constraints. To satisfy the require-
ments of a specific grasping task, the VSG representation has been incorporated in a
dynamical system which models the coarse approach movement of the hand.

• Observation of prehensile fingertip movements

For the evaluation of the proposed representation, substantial motion data on human
grasp demonstrations featuring common grasp types have been collected using a marker-
based motion capture system. The recorded grasp sequences have been segmented and
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transformed for offline learning of grasp primitives. Towards a cognitive grasp learning
behavior, to enable a robot to extend its grasp-related motor knowledge, a method has
been presented which allows the detection and the tracking of fingertips in prehensile
movements based on foveal views of an active vision system. For the detection of
fingertip candidates, steerable filters on multiple scales and a Hough transformation
for the extraction of circular image features are used. The tracking of the fingertips
is accomplished by transforming the problem into a contour tracking task which is
solved using a particle filter algorithm. A refinement of the fingertip position estimates
is attained by applying a mean shift procedure. Integrated in an upper body tracking
framework, the robot has been enabled to fully observe a grasp demonstration performed
by a human.

• Generation of grasp primitives

The learning of grasp primitives is mainly accomplished by specifying the characteris-
tic parameters of the observed grasp type. For an efficient parameter estimation, an
estimation scheme has been proposed in order to determine the spring constants of the
virtual mass spring damper systems which are employed to model the finger movement
synergies. The dimensionality and the complexity of the original estimation problem
is divided into subproblems. To be able to estimate the descriptive model parameters
on observations which are contaminated by noise, a Total Least Squares approach is
implemented for the solution of these subproblems. The solutions are combined to a
global parameter estimate with which the observed grasp behavior is encoded using the
proposed movement representation.

• Correspondence problem between different kinematics

For the reproduction of the learned grasp primitives on a humanoid platform, the cor-
respondence problem has been addressed. To enable the generalization and the transfer
of observed human motor knowledge to a robotic embodiment, the Master Motor Map
(MMM) framework is integrated. Based on a similarity measure and nonlinear optimiza-
tion methods, a method has been developed which allows the mapping of movements
defined in the MMM to the robotic embodiment.

The proposed grasp representation aims towards a simplified description of the continuous
grasping process with which the maximum information content extracted from human ob-
servation is retained. Therefore, based on the representation, a framework is presented with
the purpose of reducing the complexity concerning the acquisition as well as the synthesis of
grasp-related motor knowledge. For this purpose, methods have been developed and imple-
mented to enable a humanoid robot to observe, generalize, and reproduce grasping actions
which are necessary for an efficient object interaction in human-centered environments. As a
result, grasp primitives are obtained which can be adapted to varying task- and object-specific
constraints as well as different embodiments with less effort.

9.2. Discussion and Outlook

The representations and methods developed in this thesis address the representation and
the synthesis of grasping actions from a perspective which only considers the kinematics of
this process. Towards autonomous grasping and manipulation particularly dynamic aspects
of grasping have to be addressed in order to increase the robustness and efficiency of the
proposed approach. Hence, the future works involves the following tasks:
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• Integration of a grasp planning algorithm

In this thesis, the evaluation of the proposed grasp representation relies on contact infor-
mation which has been manually determined. To enable robots to autonomously grasp,
the integration of a grasp planning method into the introduced framework is a prerequi-
site. For this purpose, grasp planning approaches such as (Miller et al., 2003),(Berenson
et al., 2007), and (Przybylski et al., 2011) have to be investigated in order to assess the
suitability of a possible integration in the proposed learning framework. The combina-
tion of both can enhance the grasp planning as well as the learning. From the planning
perspective, the rich information encoded in the grasp representation can be exploited to
constrain and reduce the search for contact points satisfying dynamic object- and task-
specific constraints. On the other hand, contact points calculated by a grasp planning
algorithm can be used for prediction and estimation of human-object interaction and,
thus, can provide additional information which can be used to enhance the observation
as well as the parameter estimation process.

• Tactile sensing

Towards robust grasping in dynamic environments tactile sensors have to be considered
for contact detection and grasp quality assessment. In order to apply grasp quality
measures such as the Wrench Space introduced in (Borst et al., 2004), forces and torques
exerted by the fingertips have to be evaluated. In this context, the proposed VSG
representation has to be extended with mass bodies which are described by the position
and orientation in the task space.

• Regrasping strategies

The ability to modify a grasp posture in order to accommodate changing task require-
ments or unexpected object behavior is an essential part of efficient grasp synthesis.
Previous works in this area such as (Vinayavekhin et al., 2011) showed that regrasping
strategies can be learned from human observation. Motivated by these approaches, it
is desired to extend the proposed approach towards the implementation of a regrasping
behavior. In this context, it can be studied how an enriched object representation can
be incorporated in the grasp representation and how existing grasp primitives can be
used to generate regrasping actions.

• Learning of manipulation actions

A future task can be the extension of the grasp representation towards the represen-
tation of manipulation actions. The proposed approach can be applied to encode dual
arm actions. This is done by interpreting the arm endeffectors as mass bodies and
implementing arm movement synergies by means of the virtual spring concept. Fur-
thermore, guided by manipulation taxonomies such as (Bullock and Dollar, 2011), the
possibility of using the VSG representation for in-hand manipulation tasks can be in-
vestigated. The mapping of complex coordinated finger movements onto virtual springs
could be proven advantageous in order to simplify the learning of manipulation actions
from human observation.
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Figure A.1.: Software components which form the grasp learning framework. The blue boxes repre-
sent components developed in this thesis. Third-party libraries are depicted as white
boxes. The grasp-relevant motor knowledge (primitives as well as motion data) is aug-
mented and accessed via MMM interfaces which are implemented within the HMC,
MotionLearning, and the GraspLearning Scenarios. The data flow is illustrated by the
thick arrows where the nuances of the arrows indicate different stages of a grasp learning
process.

A. Libraries and Tools

In this appendix, an overview is given on the software tools and libraries which have been
developed for the implementation and evaluation of the proposed grasp representation on a
robotic platform. For this purpose, a grasp learning framework has been implemented which
comprises three main libraries: the ClaRe library, the MotionLearning library, and the HMC
library. The abbreviation ClaRe stands for Classification and Regression. Thus, the library
subsumes various methods which are common in multivariate classification and functional
regression with statistical learning methods. Based on these methods, the MotionLearning
library provides implementations of learning procedures which are needed for the instantiation
of movement representations defined in this library. Since a major focus of this thesis is the
learning of movement representations from human demonstrations, methods which allow the
capturing of human movements are implemented and wrapped up in the HMC library. In the
following, details about the structure and the content of these libraries are given.
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A.1. HMC

The HMC library builds upon the Integrating Vision Toolkit (IVT) (see Azad) and incorpo-
rates methods for the markerless capturing of coarse and fine-granular prehensile movements.
For this purpose, the HMC library incorporates methods for the tracking of the upper body
and the hand. Embedded in the proposed observation scheme, the HMC library is integrated
in the ARMAR-III control environment in order to acquire and process the image views which
are captured by the stereo camera system of the robot. For the implementation of the tracking
procedures, the particle filter framework included by the IVT is used. Running as separate
threads, the tracking procedures provide trajectories of the upper body and the fingertips
which are passed via the ARMAR-III control framework to a MotionLearning instance for
further processing.
As described in Chapter 5, in addition to markerless methods, a marker-based system has

been employed in order to obtain motion of human grasp demonstrations. For the marker-
based capturing of human motion, the Vicon system provides the NEXUS software package
which features methods for the calibration of the motion capture system as well as the record-
ing, the reconstruction, the visualization, and the processing of the captured trajectories. The
processed motion data is stored offline. Markerless as well as marker-based captured motion
data are streamed respectively loaded into the MotionLearning library for the parameteriza-
tion of the presented grasp representation.

A.2. MotionLearning

The MotionLearning library provides abstract methods and classes in order to guide the im-
plementation of procedures for the definition, the learning, and the synthesis of movement
representations. For this purpose, the library comprises various base classes which define
how concrete classes are to be implemented. For each movement representation, a trajec-
tory class, a learning class, and a control class has to be implemented. The trajectory class
converts incoming motion data to a training data set. To facilitate the generation of gen-
eralized movement primitives which should be transferable between different embodiments,
the trajectory class incorporates an interface to the Master Motor Map in order to enable
the normalization of motion data from the specific human embodiment which has been ob-
served. The learning class implements the learning procedure which allows the instantiation
of a movement representation based on this data set. Using the control class, the instantiated
representation is encoded as a control policy in order to enable the reproduction of the repre-
sented action. Focusing on continuous representations of grasping and manipulation actions,
the MotionLearning library provides implementation of discrete and periodic arm movements
based on Dynamic Movement Primitives as well as the specification of the Virtual Spring
Grasp Representation for fine-granular grasping movements.
For the visualization and evaluation of the resulting control policies, a simulation envi-

ronment provided by the Simox package (see Vahrenkamp)is integrated. Simox comprises
libraries and tools for simulation of robotic systems in the course of grasping and manipu-
lation from the kinematics point of view. To enable a human user to generate and inspect
different grasp primitives learned from stored grasp examples, the MotionLearning library
provides a graphical user interface which is depicted in Figure A.3. The grasp primitives are
labeled and stored for later use.
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Figure A.2.: Left: Visualization of Vicon marker trajectories representing a prismatic grasp within
grasp learning user interface. Right: Corresponding fingertip trajectories transformed
into the robot hand coordinate system.

A.3. ClaRe

The ClaRe library contains various implementations of methods which are needed for the
processing of motion data. To facilitate the application of different methods, a data set is
uniformly represented in matrix-like structure in which each column corresponds to single data
point. The last entry of this column denotes the target value which depending on the objective
can be a real value or a discrete class label. For data preparation, various filter methods have
been implemented. Furthermore, the ClaRe library incorporates various algorithms such as
the Principal Component Analysis, Expectation-Maximization, and Clustering algorithms
allowing the spatial and temporal segmentation as well as the dimensionality reduction of
motion data. For classification and regression, means are provided for the specification of
model parameters with which the relationship between data points and target values can be
described. In particular, common data classification such as the Naive Bayesian Classifier,
k-Nearest Neighbor, Neural Networks, and Support Vector Machine are incorporated. The
regression analysis is accomplished methods using least squares solvers which are tailored to
different linear and nonlinear problems. Considering the proposed grasp representation, the
Total Least Squares solver which has been outlined in Section 6.3 is of significant importance.

A.4. Grasp Learning Framework

Based on the functionalities provided by the HMC and MotionLearning libraries, robot skills
for the learning and the perception of human grasp demonstrations are implemented and
added to the existing skill basis within the robot control software. In combination with
already existing skills for the localization of graspable objects, the mapping and execution
of generated grasping movements, the grasp observation and learning skills are integrated in
grasp learning scenarios in order to ensure the fluent interaction between these components
and the correct temporal order of events. In this context, scenarios are software components
within the ARMAR-III framework which grant access to the sensor and hardware of the robot
as well as all existing motor and perceptual skills implemented on the platform.
The online grasp learning process is initiated by the localization of an object of interest in

the scene. Using the object localization methods implemented on the robot, a mode-based
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approach is applied to recognize known single-colored objects where textured objects are
localized with a data-driven approach using SIFT features (see (Azad et al., 2009)). The
upper body tracking thread which starts capturing the human motion when the head and
the hands are localized based on a skin color cue. The upper body tracking is stopped once
one of the hands reaches the object of interest. Human hand and finger movements are
recorded using the markerless methods presented in Chapter 5. The trajectories representing
the entire grasping action and additional information of the demonstrated grasp type (e.g.
number of involved fingers, palm contact) which originates from human feedback are streamed
to a MotionLearning instance for the instantiation of a grasp primitive.
To derive grasp primitives from Vicon motion data, the graphical user interface provided by

the MotionLearning library offers allows the loading, visualization, and processing of Vicon
motion data files. As depicted in Figure A.2, raw marker trajectories as well as the transformed
grasp data can be visualized within the interface. For the parameterization of the proposed
grasp representation, the interface provides access to the Total Least Squares solver. Once
the parameter estimation process has been performed, the resulting grasp primitive is saved
to a file along with additional grasp information.
For the reproduction of learned grasping action, the corresponding primitive can be read

either from a stream coming from the MotionLearning library or from an offline stored file.
With the read grasp parameters a control policy is inferred based on the dynamical system
incorporated proposed grasp representation. The encoded action is generated by applying the
ordinary differential equations solver implemented in the GSL library using a fourth-order
Runge-Kutta stepping function. The generated movement is mapped according the method
described in Section 7.3 and executed as described in Section 7.5.
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Figure A.3.: Snapshots of the graphical user interface of the grasp learning framework. Top: Interface
for the learning of grasp primitives using motion data mapped on the MMM model.
Bottom: Interface for the reproduction and simulation of grasp primitives using the
ARMAR-III model.
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B. Learning of Rhythmic Manipulation Actions

So far, the representations presented in this thesis are suitable for the learning of discrete
actions. However, rhythmic actions such as walking, stirring, and wiping are as essential as
discrete actions in human motor control. Unlike in discrete actions where the endeffector
is directed towards a target and the action is considered to be finished once the designated
target has been reached, in rhythmic actions, the endeffector is supposed to repeat a periodic
motion pattern indefinitely. The evidence that rhythmic actions are not a composition of
discrete segments has been provided by (Schaal et al., 2004) where fMRI studies showed
that different brain areas are activated. Thus, in order to suitably encode and reproduce a
rhythmic action, a different representation has to be defined. Addressing this issue, in the
following sections, it is discussed how a representation for periodic movements can be formed
based on the methods which have been discussed in Chapter 4.

B.1. Representation of Rhythmic Actions

As previously discussed in Section B.1, the continuous representation of discrete endeffector
movements has been addressed in numerous works, specifically in the context of imitation
learning. Representations for periodic motion patterns have been studied with regard to
biped locomotion of humanoid robots. In particular, Central Pattern Generators describing
neural networks which are responsible for the generation of periodic motion patterns in most
biological organisms have been of great interest. On this view, (Kimura et al., 2007), (Ijspeert,
2008), and (Righetti and Ijspeert, 2006) have introduced models based dynamical systems
in order to implement such mechanisms on robots. In a similar fashion, as described in
(Ijspeert et al., 2002), the DMP representation which has been introduced in Section 4.4 and
used for the description of discrete arm reaching movements can be modified in order enable
the representation of periodic movements as well. As described in Section 4.4.1, the main
components of a DMP are a canonical system, a transformation system, and perturbation
term. For the encoding of a periodic movement, instead of implementing the canonical system
as point attractor, a limit cycle attractor is used to induce an indefinite repetitive behavior
into the dynamical system. Driven by a phase variable φ = [0,2π], the corresponding canonical
system is defined as follows:

τpφ̇ = 1 (B.1)

τpṙ = kp(a− r) (B.2)

with τp =
Tp

2π denoting the duration of the each periodic cycle. The current amplitude of the
system is described by r whose convergence to a desired value a is ensured by Eq. B.2. The
convergence behavior is defined by kp. The transformation systems are defined as in discrete
DMPs where the target position xg represents the center around which the system oscillates.
In the following, it is referred to xg as the anchor position of a periodic pattern. The force
term fp which perturbs the system can be written as follows:

fp(φ ,r) =
∑

N
i=1 ϕi(φ)wp,ixp

∑
N
i=1 ϕi(φ)

(B.3)
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with ϕi(φ) = exp(− (mod(φ ,2π)−ci)
2)

2σi
being the basis function centered at ci and with variance σi.

The vector xp = (r cosφ ,r sinφ)T determines the direction of fp. By adjusting the weights wp,i,
the perturbation term can be adapted to a demonstrated trajectory. The resulting dynamical
system can be adapted to different conditions such as changing anchor positions and varying
amplitude and frequency values.

B.1.1. Encoding of Transient Periodic Movements

Commonly, most rhythmic actions start with a discrete movement. For instance, an initial
step based on different conditions has to be made before a walking pattern can be repetitively
executed. In the context of wiping, a discrete approach movement which has to be performed
in order to center the periodic motion pattern at a specific location blends into a repetitive
wiping motion. Thus, for a complete description of a rhythmic action, a generalized movement
representation has to be formalized which is capable of representing both, the periodic as well
as the discrete part of the movement to be encoded. In the following, the discrete part of a
rhythmic action is referred to as a transient.
Based on (Ijspeert et al., 2002) where a periodic pattern is represented as an asymptotically

stable limit cycle using the DMP approach, in (Ernesti et al., 2012), an extension is suggested
which allows the representation of a periodic motion as well as its corresponding discrete
transient movement. Transients are represented as trajectories converging towards the limit
cycle. The encoding of both, periodic and transient motion, is accomplished by introducing a
two-dimensional canonical system in the DMP formulation. In addition to the phase variable
φ , r is introduced to describe distance from the periodic pattern. This yields the state of the
DMP s(t) := (φ(t),r(t)) as the solution (φ ,r) of the following ordinary differential equation:

τpṡ

{

τpφ̇ = 1

τpṙ = η(aα − rα)rβ .
(B.4)

The amplitude a > 0 also denotes the radius of the limit cycle. The constants η ,α,β > 0

are variables which allow to adjust the convergence behavior. The value of φ is linearly
increasing whereas r converges monotonously to a. Thus, by interpreting (φ ,r) as polar
coordinates the solution of B.4 converges towards a circle with radius a around the origin on
the phase plane. To encode a demonstrated wiping action described by Xw, Ẋw, Ẍw ∈ RD×Te ,
a transformation system in the form of D critically-damped spring systems is defined which
initially converges towards a global point attractor xg ∈RD and continues to oscillate around
xg. The transformation system is specified as follows:

τpv̇ = kw(xg−x)−ζwv+fw(φ ,r), (B.5)

τpẋ = v. (B.6)

The constants kw and ζw are chosen in order to create a critically-damped system. Due to
the two-dimensional state space, the perturbation force is composed of two different terms
representing the periodic motion pattern as well as its corresponding transient. Thus, with
M > 0 basis functions for the encoding of periodic characteristics and N > 0 for the transient
part, fw is defined as follows:

fw(φ ,r) =
∑

M
j=1 ψ̃ j(φ ,r)wt, j +∑

N
i=1 ϕ̃i(φ ,r)wp,i

∑
M
j=1 ψ̃ j(φ ,r)+∑

N
i=1 ϕ̃i(φ ,r)

, (B.7)

whereW = (wp,1, . . . ,wp,N ,wt,1, . . . ,wt,M)T ∈RN+M contains the weights which can be adjusted
to fit the desired trajectory (Xw, Ẋw, Ẍw). The basis functions ψ̃ j encode the transient part

116



B.1. Representation of Rhythmic Actions

of the motion while the periodic part is modeled using ϕ̃i. In addition to the previously
introduced basis functions, ψ̃ j and ϕ̃i incorporate a term which determines the influence of
these functions close to the limit cycle. To implement a fading behavior from the transient
to the periodic movement bp(r) and bt(r) are introduced as follows:

ψ̃ j(φ ,r) = bp(r)ψ j(φ) (B.8)

ϕ̃i(φ ,r) = bt(r)ϕi(φ ,r), (B.9)

where bt(r) causes ϕi to vanish close to the limit cycle, while bp(r) diminishes the influence
of ψ j the farther the systems moves away from the limit cycle. Therefore, bp(r) and bt(r) can
be defined as follows:

bp(r) =

{

exp(−υ(r−a)2) r ∈ (a,∞)

1 r ∈ (0,a]
(B.10)

bt(r) =

{

1 r ∈ [a,∞)

exp(−υ(r−a)2) r ∈ (0,a),
(B.11)

where the constant υ > 0 is used to control the fading behavior.

B.1.2. Learning of Rhythmic Actions

Based on the previously described DMP formulation, a movement primitive for a wiping action
can be learned. The learning of a wiping action is decoupled in two phases: the encoding of a
human wiping demonstration and the adaptation of the resulting wiping movement primitive
to the surface to be wiped. Motion data of human wiping demonstrations have been recorded
using the Vicon system previously described in Section 5.2. For this purpose, reflective mark-
ers have been placed on the hand and the wrist of the human subject allowing the capturing
of trajectories which describe the hand’s wiping movements in the task space. In this the-
sis, four styles of wiping movements were investigated which feature varying discrete initial
approach movements (simple and complex) and different periodic wiping patterns (circle and
figure eight). Each demonstration is segmented in order to identify the transient part and
the periodic pattern of a wiping action. To encode the characteristics of the demonstrated
wiping movement, the weights in Eq. B.7 are determined using linear regression techniques
as introduced in Section 6.5. Initially, the wiping movement demonstrated in the task space
is learned in the (x,y)-plane disregarding the surface contact which yields a wiping DMP
with a two-dimensional transformation system. The captured human demonstrations and the
generated trajectories using the correlating DMP are illustrated in Figure B.1.

Segmentation of a Wiping Movement

Before a wiping movement demonstrated in the (x,y)-plane can be represented as using the
DMP formulation described in Section B.1.1, for a recorded trajectory Xw = {xw(t)},xw(t)∈
R2 with Ts ≤ t ≤ Te, the transient fading time Ttrans and the anchor point xg has to be
determined. For that reason, the trajectory is segmented into two parts, i.e. Xtrans =
(xw(Ts), . . . ,xw(Ttrans)) and Xp = (xw(T

−
c ), . . . ,xw(T

+
c )) with Ttrans < T−

c < T+
c ≥ Te denoting

the start and the end of a periodic cycle. The segment Xtrans contains the data points cor-
responding to the transient part where Xp is the vector of data points corresponding to the
periodic pattern. The segmentation is based on the assumption that in each cycle the vector
v(t) = xo

p(t)−xp(t) between a trajectory point xp(t)∈ Xp and the opposing point xo
p(t)∈ Xp
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Figure B.1.: From the left to right plot all recorded wiping styles (1,2,3,4) are shown. The top
line shows the original motion that was captured from human demonstration. On the
bottom, the trajectories are visualized which have been generated by the corresponding
DMP adapted to the different starting and anchor points as indicated by the dashed
lines.

remains unchanged throughout the entire periodic movement. For each point xw(t), the
opposing point xo

w(t) is determined from a set of points Xo
w(t) according to following rule:

xo
w(t) = argmin

x∈Xo
w(t)

‖xw(t)−x‖ ,

where Xo
w(t) originates from the intersection of a plane at xw(t) and a normal vector n =

xw(t +1)−xw(t −1) with X+
w = {xw(t

+)}, t < t+ ≥ Te. The transition point Ttrans = t1 from
discrete part to periodic part is found if vt1 = vt2 for Ts < t1 < t2 < Te. For the sake of robustness,
in every step, this check is performed for a sequence of points xw(t − 5), . . . ,xw(t − 5). Once
Ttrans is found, for the first periodic cycle, the duration of a cycle is determined by Tp = T+

c −T−
c

with T−
c = Ttrans and T+

c = t2 and, thus, the anchor point of the periodic movement is calculated
as follows:

xg =
1

Tp

Ttrans+Tp

∑
t=Ttrans+1

xw(t).

B.1.3. Adaptation to Environment

Due to inaccuracies within the kinematic chain from platform to the robot’s endeffector,
contact with the surface to be wiped and the wiping tool cannot be guaranteed. To attain a
goal-directed reproduction of the learned wiping action, the force torque sensor is exploited
in order to adapt the movement of the endeffector to the surface shape during the execution
of the generated wiping movement. Following the force profile adaptation method introduced
in (Gams et al., 2010), a force-feedback control mechanism is implemented which moves the
endeffector towards the surface while executing the wiping pattern. For an endeffector whose
current pose is described by x(t) ∈R6, the velocity during the execution of a wiping action is
calculated by:

v(t) = vw(t)+KwSw(fm(t)−f), (B.12)

where vw(t) denotes the desired velocities induced by the DMP control policy. Sw ∈ R6×6

stands for the force selection matrix and determines in which force direction the policy is
to be adapted. The adaptation behavior is determined by the force gain matrix Kw ∈ R6×6.
fm(t) denote the current force measurements whereas f describes the force state when the
robot is not in in contact with the environment. For a flat surface, Eq. B.12 is specified with
Kw = diag(0,0,kz,0,0,0) and Sw = diag(0,0,1,0,0,0) yielding a force-based adaptation in the
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B.1. Representation of Rhythmic Actions

Figure B.2.: On the left the generalization to different anchor points (black dots) is visualized. The
right plot shows runs with different starting points of the same motion. All dashed
plots show reproductions of wiping style 1 and the solid line corresponds to the original
trajectory.

z-direction which changes the height of the endeffector in platform coordinates. Based on
presumed table height z0, the desired movement is calculated in discrete time steps:

ż(t) = kz( fz(t)− f0,z), (B.13)

z(t) = z0 + ż∆ t (B.14)

(B.15)

where fz(t) is the measured force in the z-direction and f0,z is the desired force with which the
robot should press on the surface. However, reliable force measurements in a single direction
can be only obtained from constant movement or permanent contact with the surface. To
circumvent these restrictions, the problem is simplified by using use the length of the force

vector fm =
√

f 2
x + f 2

y + f 2
z instead of fz. This simplification causes the robot move upwards

every time it hits something. As previously mentioned, kz controls the adaptation behavior of
the movement and should be chosen in a way that on the one hand the upward movement does
not get too large and on the other hand enables the robot to quickly adapt to contact forces.
Through experiments the parameters have been empirically set to kz = 10

kg
s
and f0,z = 15N.

Based on the force-based surface adaptation a trajectory zw(t) is recorded for every periodic
cycle. The wiping DMP is repeatedly reproduced until the force torque measurements during
the execution of zw(t)meet predefined constraints which guarantee that the endeffector applies
the desired pressure on the surface to be wiped. Based on zw(t) an additional transformation
system is learned in order to augment the existing DMP.

Reproduction of a Wiping Movement

For each wiping style, a DMP has been learned and, hence, each DMP encodes a single
approach movement and a periodic movement. For the representation of the demonstrated
movements approximately M = N = 40 basis functions have been employed. In order to
synthesize the learned wiping movement on the robot, the DMP is parameterized with scene-
specific start and anchor position. The capability of this DMP formulation regarding the
generalization to different start and anchor positions is shown in B.2. To demonstrate the
adaptability of the used representation, for each DMP, wiping movements were generated
starting from three points and leading to three different goal positions which are equivalent
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to the anchor points of the periodic pattern. By integrating the resulting control policy and
using differential kinematics the wiping movements could be reproduced on the humanoid
platform ARMAR-IIIb. To enable the force adaptation in an online manner, the reproduction
speed has to be reduced. Hence, the wiping movements have been reproduced at half of the
demonstrated speed. In order to visualize the executed robot trajectories, a pen is attached to
the sponge. To minimize the friction between the sponge and the surface, only soft pressure is
applied during the wiping. Hence, contact is already determined if only parts of the sponge,
not necessarily the pen, touch the surface leading to discontinuities in the drawn trajectories.
The results of the experiments are depicted in Figure B.3.

B.2. Conclusion

The DMP formulation which is described in Section 4.4 combines the representation of discrete
as well as periodic movements in a single unit. Thus, a generalized representation is provided
which facilitates the learning and reproduction of primitives for the encoding of rhythmic
action and its potential transient behavior. Experiments in the context of the table wiping
task showed the validity of this approach. Using this DMP formulation, adaptive movement
primitives have been learned from human demonstrations. Using these learned primitives,
wiping actions adapted to different start and goal conditions could be reproduced on a hu-
manoid platform. In addition, a method is described which allows the augmentation of the
primitives to accommodate environmental features. Based on an active-compliant approach,
force torque sensor measurements are used to determine an adaptation of the primitive in an
online manner.
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a)

b)

c)

Figure B.3.: a) Single reproduction of a wiping movement from style 1, 2, 3, and 4. The trajectory is
drawn using a pen attached to the sponge. b) Multiple reproductions of a wiping move-
ment with different start positions. c) Multiple reproductions of a wiping movement
with different goal positions (equivalent to the anchor points of the periodic pattern).
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C. Reasoning of an Action based on Object-Action Affordances

The Dynamic Movement Primitive which has been learned to encode a demonstrated wiping
movement has been adapted and augmented in order to meet specific requirements imposed
by the current wiping object and the environment. In the following sections, mechanisms are
discussed which allow the continuous grounding, adaptation, and augmentation of learned
movement representations. For this purpose, a learning cycle is presented which in addition
to the imitation learning paradigm incorporates the concept of Structural Bootstrapping that
has been introduced in the Xperience (Xperience Project, 2011) to address how generative
mechanisms which rely on prior knowledge and sensorimotor experience can be implemented
in robotic systems and employed to speed up learning. Structural Bootstrapping – an idea
taken from child language acquisition research – is a method which provides an explanation
of how the language acquisition process in infants is initiated. Hence, in a robotic context,
Structural Bootstrapping can be seen as a method of building generative models, leveraging
existing experience to predict unexplored action effects and to focus the hypothesis space
for learning novel concepts. This developmental approach enables rapid generalization and
acquisition of new knowledge about objects, actions and their effects from little additional
training data. In the following, focusing on the scenario of table wiping, an example for
Structural Bootstrapping is provided in order to demonstrate the validity of the approach on
the sensorimotor motor level.

C.1. Learning of Affordances from Exploration and Physical Interaction

To enhance to efficiency robot manipulation in unstructured and dynamic environments,
robots have to be endowed with the cognitive capabilities which enable the autonomous ac-
quisition of knowledge by processing complex sensor information and the application of this
knowledge to rapidly explore unknown scenes, objects, and actions. The experience gained
by actively exploring and interacting with the environment, objects, and other agents and
by observing the effect of actions is characterized by the specific embodiment. Therefore,
representations and models emerging from this experience are better adapted to the robot’s
morphology and more suitable to capture the sensorimotor contingencies than those gener-
ated by traditional disembodied methods. The continuous grounding of internal models and
representations through exploration provides a suitable basis for the reasoning of a wiping
action. In the context of the table wiping task, a learning cycle based on Structural Boot-
strapping is instantiated in order to allow the generation of models which describe the relation
between object properties and action parameters learned from experience and is used to make
predication using internal simulation.
Several approaches in the literature deal with the problem of exploration-based learning and

generative model construction. In (Montesano et al., 2007), an affordance learning framework
is introduced which models dependencies between action and object features in the form of
a Bayesian Network. Using a set of manipulation actions (grasp, tap, touch) and based on
perceived object features the expected effect of an action to be performed could be estimated.
In (Kroemer et al., 2012), an interactive learning scheme is introduced which allows the
identification of object grasp affordances. Grasp primitives represented in the form of DMPs
learned from human grasp demonstrations and grounded based the observed effect (grasp
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successful or not). Towards structural bootstrapping, in (Detry et al., 2011), an approach is
presented for the learning of object grasp affordances through exploration. These affordances
are represented by grasp densities which are determined based on the visual features (3D
edges) of the object to be grasped. The object grasp affordances are grounded and the grasp
densities are refined based on exploration and observation of grasping actions performed by
the robot. In (Ugur et al., 2012), an approach is introduced which enables a robot to learn
a grasping behavior based on initial reflex-like motor primitives. The execution of these
primitives at different speeds and the observation of the tactile feedback when touching an
object leads to the generation of further behavior primitives. To link the resulting behavior to
different intrinsic and extrinsic object properties, the primitives are executed and the observed
effects are categorized using the Support Vector Machine. For the scenario of object-pushing,
in (Hermans et al., 2013), a method is proposed which enables a robot to learn goal-directed
push-locations on multiple objects. Using the Support Vector Regression method a model is
learned from explorative pushing which allow the prediction of the effect of certain pushing
action considering the current object shape and pose.

C.2. The Learning Cycle

In order to enable a robotic system to learn and refine sensorimotor knowledge within a
developmental process, a learning cycle has to be formalized which incorporates perceptual and
motor skills. As suggested in (Kolb, 1984), the presented learning cycle consists of four stages.
The initial stage of this cycle is the exploration stage. Given generalized representations of
objects and actions, the robot explores the scene in order to obtain instantiations of both,
object and action. The resulting action and object representation A1 and P1 form the basis
of an experiment which is conducted in the subsequent stage to create data from which
concrete experience can be generated. The robot applies the action A1 and observes its effect
E1 on object, environment, and on the robot itself. In the third stage, based on the data
D = (P1,A1,E1) experience is created by grounding and adapting the representations. In
the modeling stage, knowledge in the form of internal models fE and fA is extracted from
experiential data.
In subsequent iterations i with i > 1, the grounding is transferred to novel perceived object

representation Pi. Using fA and fE the parameters for action Âi and the expected effect
Êi for (Pi, Âi) can be predicted. Âi can be used to constrain and control the exploration
of the action parameter space within the repeated experiment and with Êi less, however,
more relevant additional training data can be created which has to be considered for the re-
grounding the representations and revision of the internal models. Hence, this learning cycle
allows the continuous acquisition, validation, and refinement of internal knowledge in long
term association through exploration and predictive reasoning.

C.2.1. Instantiation of the Learning Cycle for Wiping

Based on the concept described in Section C.2, as presented in (Do et al., 2014), a behavior
is implemented which enables a robot to efficiently learn wiping movements with different
objects. The resulting learning cycle is depicted in Figure C.1. To accelerate the learning
process, observations of human wiping demonstrations trigger the bootstrapping process and
provide data based on which a coarse representation of the wiping action can be inferred. As
described Appendix B, the wiping action is represented in the generalized form of a periodic
DMP. In the initial iteration, the robot is focused on the adaptation of this representation
to environmental circumstances, namely the surface to be wiped. This step corresponds to
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Figure C.1.: Instantiated learning cycle for the learning of wiping.

the grounding of the action representation. In subsequent iterations, the robot attempts to
establish the link between a object, action, and effect.

C.2.2. Exploration of Object Features

Each iteration starts with an object exploration phase through manipulation and perception
in order to obtain discriminative object features. Thus, in the context, the size and softness
of the object have been determined to be relevant. To determine the softness of an object the
robot uses its ability to control the grasping force of the pneumatically actuated hand with
a model-based force position control (see (Bierbaum et al., 2009b)). Initially the object is
grasped between the fingertips with a low grasping force at the top and the bottom side. The
distance between the fingertips of the index finger, middle finger, and thumb is measured using
the joint encoders and the forward kinematics. This initial distance value denotes the height
of the object h. Subsequently, the grasping force is increased which results in a deformation
of the object. Once a desired grasping force is attained, the distance between the fingertips
is measured again. The ratio between both distance measurements is used as a measure for
the softness s of the object.

C.2.3. Exploration of Action Parameters

Based on the object representation (s,h) ∈ R2, an experiment is conducted in order to find
out the action parameters which optimize the effect of an action given the explored object.
To generate differently scaled wiping movements, the amplitude parameter incorporated in
the learned periodic DMP representation can be varied. Especially, regarding the movement
of the endeffector directed towards the table, the amplitude has to be scaled according to
the specific softness parameter. The search for the optimal amplitude parameter a entails
considerable effort since it involves the variation of a, the subsequent parameterization of the
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Figure C.2.: Left: Robot view from the scene. Center: Segmented view of the scene in the beginning
of the wiping execution. Right: Segmented view on a ”clean” table.

wiping primitive, and the reproduction of a wiping action. An important indicator whether
a wiping movement is parameterized and executed adequately is given by the forces acting in
the robot. Therefore, starting from an initial estimate a0, the amplitude is varied according
following rules:

a(t) =































b−a(t −1) , fzw
(t)− f0 > ρ , żw < 0

b+a(t −1) , fzw
(t)− f0 > ρ , żw > 0

b+a(t −1) , fzw
(t)− f0 <−ρ , żw < 0

b−a(t −1) , fzw
(t)− f0 <−ρ , żw > 0

a(t −1) else

, (C.1)

where 0< b−≤ 1 and b+= 2−b− denotes a scalar factor which decreases respectively increases
the amplitude according the current movement direction and exerted forces. To accommodate
potential noise contaminating the force torque sensor readings, instead of fixating the desired
surface pressure on f0, ρ is introduced into the amplitude update rule to define a range of
force values [ f0 −ρ, f0 +ρ] in which the forces acting on the endeffector are considered to be
optimal. a(t −1) represents the amplitude estimate made in the previous time step. For each

iteration i, the overall amplitude factor ai is calculated by ai =
1

T+
c −T−

c
∑

T+
c

t=T−
c

a(t).

A further cue which allows the evaluation of a wiping movement is the dirt level which
describes the ratio between the amount of remaining dirt enclosed by an area to be wiped
and the entire wiping area size. While the action parameter space is explored based on the
force cue, the progress of the experiment is controlled by the dirt level. Thus, the goal of
the experiment is to wipe until the dirt level does not change. For dirt levels di,di−1 ∈ R

determined in iteration i and i−1, the goal can be formalized as follows:

di −di−1 ≤ dε (C.2)

where dε denote a threshold at which the dirt level change can be disregarded.

C.2.4. Exploration of Effect

As mentioned before, the effect of a wiping action is described by the dirt level d within area
O to be wiped. For the sake of simplicity, it is assumed that dirt features a predefined color.
Therefore, to determine the size and position of O, using the stereo camera setup the robot
explores the table and performs a color segmentation in order to localize the largest blob. A
bounding box Bi around that blob provides the image coordinates of O. Transformed into the
world coordinate system, one obtains Bw which provide the global coordinates of O. In order
to determine the current dirt level at any time t during the execution of the wiping experiment,
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Bw is transformed back onto image coordinates Bt
i. Hence, based on Bt

i the current dirt level
di(t) is calculated according to following equation:

di(t) =
ymax

∑
i=ymin

xmax

∑
j=xmin

k(i, j)

(xmax − xmin)(ymax − ymin)
. (C.3)

Since the hand might occlude a considerable area of the surface, a reliable assessment of
the dirt level cannot be guaranteed at any time during the execution of a wiping movement.
Hence, to control the experiment, the current dirt level at tc is set to d(tc) := dmax,i which is
defined as follows:

dmax,i = max{di(t)}Tsi
<t<tc

(C.4)

with i denoting the index of the current period.

C.2.5. Learning of Internal Models

To enhance the adaptation of a wiping primitive to novel objects, based on sensorimotor
experience gathered in previous iterations, internal knowledge structures are derived in the
form of models which are used for the prediction of the expected wiping effect for a specific
object-action combination. These models are trained from data which has been collected
during the conducted wiping experiment. The data can be can be described as follows:

(P,A,E) = ((s,h),a,d). (C.5)

To generate an internal model representing the complex relationships between perception,
action, and effect, computational methods have to be applied which are suitable to identify
structures from nonlinear data of arbitrary dimensionality without any prior knowledge. In
this thesis, the Support Vector Regression, a supervised learning technique which is described
in (Smola, 2011), is applied to approximate such a model, since it allows to capture complex
relationships between the training data points. Furthermore, a sparse model can be obtained
by applying the Support Vector method which facilitates the processing of large datasets and
enhances the prediction and simulation using the internal model. Based on our experimental
data collection {(Pn,An,En)}i=1,...,N , for the training of fE , a dataset D with N input/output
pairs is formed as follows::

D = {(xn,yn)}n=1,...,N , xi = (Pi,Ai), yi = (Ei). (C.6)

The internal model is described by fE : x → y. Finding a nonlinear mapping appropriate
function fE solves the learning problem and leads to desired model enabling the mapping of
an arbitrary input pair (P,A) on expected effect Ê. Usually, the search for fE is performed by
determining an approximation f̂E which minimizes the risk functional:

Remp

[

f̂E

]

:=
1

N

N

∑
n=1

d( f̂E(xn),yn) (C.7)

with d( fE(x),y) being a distance function to define the relation between the model’s output
f̂E(x) and the correct output y. Using the Support Vector method, the nonlinear regression
problem incorporated in Eq. C.7 is transformed into linear problem by introducing a nonlinear
mapping θ : R → RNh which projects the original dataset D into a feature space of higher
dimensionality. Hence, the SVR consists of finding a hyperplane (w,b) which satisfies:

g(x,w) =
Nh

∑
j=1

w jθ j(x)+b. (C.8)
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To determine a linear model which captures most training samples within an ε-margin, an
ε-loss-insensitive function is defined as follows:

Lε(g(x,w),y) =

{

0 if |g(x,w)− y| ≤ ε

|g(x,w)− y|− ε else
(C.9)

is introduced into the risk functional. Hence, our goal is to find a function fE whose distance
to any given data point does not exceed ε while being as flat as possible. This optimization
problem can be described:

minimize τ(w) =
1

2
‖w‖2 +C∑(ζ +ζ ∗) (C.10)

subject to yi − (g(xi,w)−b)≤ ε (C.11)

subject to (g(xi,w)+b− yi)≤ ε, (C.12)

where ζ are slack variables which are introduced to the problem in order to relax the con-
straints and to add a soft margin to the hyperplane and, thus, to tolerate a small error. C is a
constant which controls the trade-off between the flatness of fE and the tolerated deviations
larger than ε . Since θ is unknown according (Smola, 2011) a suitable kernel function such as
the Radial Basis Function:

k (x,xi) = exp(−γ‖x− xi‖) (C.13)

can be used to instead in order to project the data into high-dimensional space. The main
parameters controlling the performance of the SVR method are C and the kernel parameter
γ .

C.3. Experiments

As depicted in Figure C.3, the implemented learning behavior has been evaluated on our
humanoid platform ARMAR-IIIb. Each iteration of the learning cycle is starts with the robot
localizing the dirty area O. To facilitate the environmental perception, color of the dirt has
been specified (pink sand). The corresponding bounding box Bi is used to specify the target
configuration of the DMP. In the following step, the robot determines the object softness
and height by grasping the object of interest at the bottom and top side of the object. The
object exploration process is assisted by human operator since for wiping the object has to be
reoriented in the robot’s hand, so that the object is grasped from the side enabling the bottom
to touch the table. Given the internal models, predictions are made for the amplitude and the
expected effect. Subsequently, the robot performs a wiping movement with a and compares
the observed effect with the expected effect. If the observations does not coincide with the
expectation, a parameter exploration procedures as described in Section C.2.3 amplitude
is initiated in order to create further data for the grounding of the internal models. The
grounding of an internal model is done by updating the data set and retraining the entire
model.
The wiping experiments have been conducted on set of twelve objects which includes in-

stances designed for wiping (sponges, towel, toilet paper) and other household items (box,
bottle, ball, can) that are less suitable. To prevent damage to the robot restrict, objects
have been selected whose height and weight are within a predefined range. Based on exper-
imental data originating from wiping experiments with this object set, internal models fE

and fA are generated using the SVR method. Based on the implementation incorporated in
the LIBSVM library (see (Chang and Lin, 2011)), the SVR method used in this thesis has
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Figure C.3.: The humanoid platform ARMAR-IIIb wiping the table with a sponge.

been implemented in the ClaRe framework. The relevant parameters for the training of fA

have be determined to be C = 50 and γ = 0.5 whereas fE has been trained with C = 10 and
γ = 0.33. The data and predictions of the amplitudes and the expected dirt levels are listed
in Table C.1. It is interesting to see that for soft objects the amplitude could be reliably
re-estimated. The main reason for the variation of the amplitudes for harder objects lies in
the increased sensitivity towards forces exerted on the object respectively the end-effector. A
slight difference of the object pose in hand can produce very different results. Regarding the
prediction of the expected dirt level, good estimations could be made for cubic objects. For
spherical and cylindric objects, less useful predictions have been inferred.
Given a percept of a specific object, the corresponding amplitude estimate can be used

to considerably reduce the adaptation effort of a wiping movement. The plots depicted in
Figure C.4 indicate that with increasing knowledge leading to more accurate estimations of the
action parameter the execution of an action converges faster towards the desired behavior.
With regard to the forces exerted on the end-effector, a force trajectory is desired which
oscillates around the predefined force threshold of f0 = 15 whereas regarding the dirt level it
is desired to minimize the dirt level as fast as possible. The learning phase denotes the initial
phase where the movement primitive is adapted to the environment. In the adaptation phase,
based on a default value of a0 = 1 the amplitude is varied in order to attain the desired effect.
In the execution phase, the task is performed using the estimated amplitude parameter and
without any adaptation.
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Figure C.4.: Left: Trajectories of forces exerted on the end effector in various phases of the wiping
learning cycle. Right: Dirt level evolution in various phases of the wiping learning cycle.

C.4. Conclusion

An approach for the implementation of a cognitive learning behavior enabling robots to create
individual knowledge structures based on experience gained through physical exploration,
interaction, and observation has been proposed. The behavior manifests in the form a learning
cycle which incorporates perceptual and motor skills in order to continuously acquire data
based on which internal models are generated and grounded. For the scenario of table wiping,
it has been shown that with these internal models wiping primitives can be efficiently learned
and adapted to different task and object-specific constraints.

Object h s â a d̂ d

sponge (s) 79 0.0343 1.0 1.0 0.162 0.117
sponge (m) 91 0.0384 0.957 0.948 0.129 0.132
sponge (l) 102 0.0358 1.13 1.139 0.139 0.09
styrofoam cube (s) 87 0.00474 0.701 0.696 0.270 0.258
styrofoam cube (l) 91 0.00774 1.0 1.0 0.13 0.177
rolled towel 89 0.0213 1.215 1.057 0.229 0.142
styrofoam ball 100 0.00639 1.497 1.496 0.384 0.422
cardboard box 91 0.0171 1.072 1.072 0.240 0.178
plastic bottle 87 0.0263 1.453 1.453 0.310 0.568
metal can 86 0.00843 1.04 1.366 0.352 0.529
toilet paper 101 0.0232 0.887 0.887 0.162 0.128
foam 91 0.041 0.999 1.0 0.13 0.177

Table C.1.: Object properties and the corresponding action and effect parameter. h denotes the
object height in mm and s the softness of an object. â and a represent the estimated and
the actual amplitude of an adapted wiping movement. d̂ and d stand for the expected
and actual dirt level which indicates the effect of wiping.
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