
Virtual InfiniBand Clusters for HPC Clouds

Marius Hillenbrand
System Architecture Group

KIT, Germany
m.hillen@kit.edu

Viktor Mauch
Steinbuch Centre for

Computing
KIT, Germany

mauch@kit.edu

Jan Stoess
System Architecture Group

KIT, Germany
stoess@kit.edu

Konrad Miller
System Architecture Group

KIT, Germany
miller@kit.edu

Frank Bellosa
System Architecture Group

KIT, Germany
bellosa@kit.edu

ABSTRACT
High Performance Computing (HPC) employs fast intercon-
nect technologies to provide low communication and syn-
chronization latencies for tightly coupled parallel compute
jobs. Contemporary HPC clusters have a fixed capacity and
static runtime environments; they cannot elastically adapt
to dynamic workloads, and provide a limited selection of
applications, libraries, and system software. In contrast, a
cloud model for HPC clusters promises more flexibility, as it
provides elastic virtual clusters to be available on-demand.
This is not possible with physically owned clusters.

In this paper, we present an approach that makes it possible
to use InfiniBand clusters for HPC cloud computing. We
propose a performance-driven design of an HPC IaaS layer
for InfiniBand, which provides throughput and latency-aware
virtualization of nodes, networks, and network topologies, as
well as an approach to an HPC-aware, multi-tenant cloud
management system for elastic virtualized HPC compute
clusters.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management—In-
finiBand, Isolation; D.4.4 [Operating Systems]: Commu-
nications Management—InfiniBand Virtualization

General Terms
Design

Keywords
HPC, InfiniBand, Cluster, Cloud Computing, Virtualization

1. INTRODUCTION
Today’s High Performance Computing (HPC) clusters are

typically operated and used by single organizations. A cluster

Copyright ACM, 2012. This is the authors version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribu-
tion. The definitive version will appear at CloudCP 2012: 2nd International
Workshop on Cloud Computing Platforms, Bern, Switzerland. Do not cir-
culate !

operator deploys a predefined, fixed runtime and systems
environment in a known-good configuration. Such physically
owned clusters have two major drawbacks: First, the resource
demands of HPC workloads are often fluctuating, leaving
the cluster under-utilized or overloaded. Second, application
developers are faced with a restricted runtime environment,
which allows them at best to change application libraries,
but not the underlying operating system or core runtime
libraries, such as the job scheduler.

HPC in the Cloud promises increased flexibility and ef-
ficiency in terms of cost and energy consumption. Large
providers of HPC Infrastructure as a Service (IaaS) can re-
duce personnel costs through high degrees of automation and
a better overall utilization than in privately operated clusters.
For end users, elastic virtual clusters provide precisely the
capacity that suits demand, without the need to purchase
and operate own hard- and software. Since virtual resources
can be fully granted to users, they can choose or customize
the OS or runtime environment according to their demands.

As an example, consider a team of researchers using fluid
dynamics simulations with varying demand for compute
capacity: They employ coarse test runs at the beginning of
their project and highly detailed simulations when completing
their publication (continuous high demand). With an HPC
cloud, they could scale the capacity of their virtual cluster
according to the stage of their project. During periods of
little or no use, there would be little or no running expenses.
Pay-per-use allows to associate the costs directly with the
resource usage (and the project’s budget). The researchers
use an experimental simulation package with special libraries
and therefore customized the software on their virtual nodes.

The Challenge of HPC-as-a-Service
HPC applications differ from standard cloud workloads in
their much higher demands on the underlying resources and
their guaranteed and timely delivery. Those requirements,
however, are particularly hard to achieve in a virtualized en-
vironment with its high I/O-overhead and jitter. It is unclear,
whether the elasticity and standardization of cloud environ-
ments, which are both achieved by means of virtualization,
can be achieved along with the predictability associated with
HPC. Further, and in contrast to server workloads, HPC
jobs are typically CPU-intensive and task synchronization
points (e.g., in the MPI communication library) often require
equal-paced CPU resources on all available cores. Therefore,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197533876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


it is an open question whether the consolidation benefits of
the cloud model can really be achieved in HPC environments.

Former research on HPC applications in contemporary IaaS
environments has identified network quality of service (QoS)
as the primary hindrance for virtual HPC clusters [6, 10],
which can be relieved by providing virtual machines (VM)
with direct access to an high-speed cluster interconnect [22].
Despite those initial findings, there had been no answer to
the question how cloud computing can achieve high levels of
isolation and elasticity, while, at the same time, delivering
guaranteed performance to virtualized HPC applications.

In this paper, we present a comprehensive architecture
for an HPC cloud model. Our architecture follows three
design goals: (i) isolation of individual users in the cluster
network to achieve multi-tenancy; (ii) automatic alloca-
tion and deployment of virtual HPC clusters, including the
configuration of the cluster network, to achieve dynamic
provisioning; and (iii) guaranteed network performance at
all times, to enable HPC-class service level agreements.
Our approach focuses on InfiniBand (IB), a common cluster
interconnect [19]. We present a performance-driven design
of an HPC IaaS layer for IB, which provides throughput and
latency-aware virtualization of nodes, networks, and network
topologies. It includes an HPC-aware, multi-tenant cloud
management system for elastic virtualized HPC clusters.
Our approach enables privately operated HPC clusters to
be run more cost-efficiently in the cloud, due to new sharing
opportunities [3].

The rest of the paper is structured as follows: we first
provide background information and give an overview over
related work in Section 2. We then discuss our approach for
an HPC cloud in Section 3. We present early experiences in
Section 4. Finally, we conclude and point out ongoing work
towards a prototype in Section 5.

2. BACKGROUND AND RELATED WORK
Our design is based on several existing building blocks

which we introduce in this section. Further, we present
related work, such as concepts for virtualized clusters.

Cloud computing is an ongoing trend in the IT industry,
referring to a model for ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources such as servers, storage, applications, and ser-
vices [17]. Users move away from owning and operating
applications and hardware themselves. Instead, they start
utilizing services and computing infrastructure that are of-
fered by cloud providers via web services. Payment is made
according to consumption [2]. Compared to user-owned
infrastructure, cloud computing offers more flexibility and
scalability. Growing demand can be answered by adding
resources from the cloud almost instantly; previously you
had to purchase and configure new hardware. Cloud com-
puting heavily relies on virtualization, with the main goal
being the abstraction of physical resources, while still retain-
ing their interfaces. Smith and Nair present an overview of
system-level virtualization in [24].

2.1 Cloud Computing and High-Performance
Computing

Virtualization offers several benefits for HPC, which have
been pointed out already by previous research [8, 11, 18].
Some of the promised benefits are:

Customization: Users can configure the virtual clusters
according to their own needs.

Isolation: Operators can grant (virtual) administrator priv-
ileges to users, while retaining full ownership of the
physical nodes and networks.

Reliability: Virtual machines can be monitored without
modification of the observed VM. Reliability can be
improved with checkpoint/restart schemes for VMs.

Scalability: Users can debug and test run their algorithms
on virtual nodes.

Virtualized clusters have already been proposed for grid
computing [9] and several frameworks have been developed
to manage such clusters (e.g., Nimbus [15]). One essential
feature, called contextualization, allows to configure the soft-
ware inside virtual clusters in an automated way and thus
simplifies cluster management. In contrast, contemporary
commercial IaaS clouds such as Amazon EC2 do not provide
support for clustering VMs; each VM is a single entity [4]. As
an alternative, there are tools such as StarHPC [13], which
provide sophisticated mechanisms for cluster setup on top
of these offerings. However, information about the cluster is
scattered between cloud provider and StarHPC in this case.

Gupta and Milojicic have evaluated contemporary IaaS
clouds [10]; they conclude that they are not cost-effective
for communication-intensive applications, but suitable for
loosely-coupled applications with little communication. The
Amazon EC2 cluster compute instances1 are a popular IaaS
offer targeted at HPC applications. In contrast to regular
EC2 instances, cluster compute VMs are assigned to dedi-
cated nodes with 10GBit/s Ethernet. Multiple instances can
be placed close together to improve network performance
within a cluster. Several studies confirm a performance com-
parable to that of HPC clusters [3,4]. However, you still need
external tools (such as StarHPC) to setup virtual clusters
on top of EC2 cluster compute instances.

Our approach goes beyond existing research on both cloud
systems and virtualized HPC. We propose a cloud manage-
ment framework that specifically supports virtual HPC clus-
ters: It provides high-performance resources and InfiniBand
interconnectivity for virtualized clusters, supports dynamic
reconfiguration of nodes and network topologies for cloud-
like elasticity, and provides contextualization for automated
deployment of HPC workloads.

2.2 The InfiniBand Architecture
InfiniBand (IB) is a high-performance network technology

which is in wide-spread use in compute clusters. We provide
a short overview of the IB architecture [12] and introduce
the mechanisms that we employ. Compared to network tech-
nologies such as Ethernet, IB has a substantial performance
advantage through aggressive protocol offloading; all layers
up to the transport layer are handled completely in network
adapters. Moreover, IB directly interfaces applications to
the network hardware. The OS is involved only in establish-
ing connections and registering memory buffers to ensure
protection. Applications bypass the OS to trigger actual
communication operations and poll for their completion, by
directly accessing device memory. As a result, an application
can handle complete send/receive cycles independently and
without latency from the intervention of the OS. Send re-
quests and receive buffers are posted to queues (pairs of send

1http://aws.amazon.com/hpc-applications/

http://aws.amazon.com/hpc-applications/


and receive queues). These queue pairs form communication
endpoints. IB supports four transport types: connection- and
datagram-oriented, each in a reliable and an unreliable vari-
ant. In addition to send and receive primitives, IB supports
remote direct memory access (RDMA) operations.

An IB network comprising only end nodes and switches is
called a subnet and forms an administrative domain. Two
types of node addresses are assigned dynamically by manage-
ment software: Local identifiers (LIDs) are used by layer-2
switches, and global identifiers (GIDs) are used by layer-3
routers to forward packets between subnets.

2.3 InfiniBand Isolation and Quality of Ser-
vice

IB has mechanisms for restricting communication and for
traffic-shaping, enabling the enforcement of isolation and
Quality-of-Service (QoS) policies. The isolation mechanisms
form groups of nodes called partitions and restrict communi-
cation to within these partitions. Each node can be a member
of one or multiple partitions, as stored in its membership table
by management software. Switches can be configured to filter
packets based on partitions and thereby enforce isolation.
The QoS mechanisms allow to schedule network bandwidth
in a flexible way by differentiating between up to 15 traffic
classes, called service levels. In each port, out-bound packets
are sorted into up to 15 send queues, called virtual lanes,
based on their traffic class. The outgoing link is multiplexed
based on a configurable weighted round-robin schedule.

Both isolation and QoS mechanisms work at the granularity
of network ports. They are not sufficient to separate VMs
running on the same host and thereby using the same network
port. We take care of this in our approach in Section 3.2.

2.4 InfiniBand Virtualization
There are three ways to virtualize IB with near-native

performance:

PCI Pass-through grants a VM direct access to a dedi-
cated HCA. It requires an I/O Memory Mapping Unit
(IOMMU) to ensure memory protection between differ-
ent VMs [25]. A guest OS uses regular drivers.

Para-Virtualization for IB has been proposed by Liu et al.
in [16]. It requires ongoing modifications of drivers in
host and guest with respect to changes of the underlying
hardware and OS.

Single Root-I/O Virtualization (SR-IOV) is a stand-
ard for virtualization support in hardware [20]. It allows
a PCI Express device to appear as multiple virtual
devices which guests can access via PCI Pass-through.

In all three cases, an application can circumvent all layers
of system software, OS, and hypervisor. Communication
operations thus suffer no virtualization overhead.

3. APPROACH TO HPC CLOUDS
Our goal is automated provisioning of elastic virtual com-

pute clusters for HPC workloads as an IaaS cloud service.
This section presents our approach towards this goal. We first
introduce our overall architecture, before we discuss its three
aspects in detail: virtualization of each node (Section 3.1),
virtualization of the cluster interconnect (Section 3.2), and
orchestration with a cloud management framework extended
to provide elastic virtual HPC clusters (Section 3.3).

Virtual Clusters 

Cloud Infrastructure 

Network Virtualization 

Host Host Host 

Host Host Host 
Physical Node 

High Speed 
Interconnect 

Node VMM 

Guest OS 

HPC Application 

Intercept 
Network 

Management 

Low-latency OS-bypass 

VM VM VM 

Virtual Topology 

User X 

User Y 

VM 
Virtual 

Topology 

Resize 
on-demand 

VM VM 

Figure 1: Virtualization of hosts and the cluster in-
terconnect to provide elastic virtual clusters.

In contrast to physical clusters, our approach includes elas-
ticity, the possibility to dynamically grow or shrink the size
of a virtual cluster, to reflect the current demand for compute
capacity. Each virtual cluster gets the impression of using the
interconnect by itself, albeit with reduced bandwidth. A user
can employ existing management tools to configure advanced
IB features in his virtual cluster’s view on the network. As
an advantage over physical IB networks, a user can employ a
network pre-configured by the HPC cloud provider, instead
of implementing or hand-tuning his own configuration. We
extend an existing cloud computing framework to manage
both the virtual clusters and the IB interconnect accordingly.
Figure 1 provides an overview of our architecture.

HPC applications have much stronger requirements on
QoS than traditional server workloads. They typically match
the bulk-synchronous single-program multiple-data (SPMD)
application model [5, 14] which can be simplified to a cycle
through two phases: Phases with purely local computation
alternate with synchronization phases, which often require
communication between all processes of a parallel job. When
some processes use more time for the computation phase, all
others have to wait before all processes can start the synchro-
nization phase together. Such delays limit the scalability of
parallel applications significantly [7,21]. The inhomogeneous
computation time in different processes is mainly caused by
OS background activity, but parallel application performance
will also suffer whenever one of the involved processes re-
ceives fewer computation resources. In addition, the time
required for synchronization directly depends on communi-
cation latency in the cluster network. Thus, an HPC cloud
has to guarantee resource allocation for processes (i.e., CPU
and memory) and network QoS (mainly, a bounded delay)
within the virtual cluster.

3.1 Node Virtualization
We provide a user with a collection of VMs that function

as virtual cluster nodes. A physical node provides these VMs



with basic resources, such as CPU, memory, and disk storage,
and with access to the IB cluster interconnect.

We want to minimize the background activity in the host
system (OS and hypervisor) to reduce their negative influence
on application performance. We dedicate a physical CPU core
to each logical CPU of a virtual cluster node and we allocate
physical memory for all virtual memory assigned to a VM.
The alternatives, timesharing and memory overcommitment,
would lead to preemption of HPC jobs, paging activity, and
ultimately jitter in the execution speed of HPC jobs – thereby
reducing parallel application performance [7, 21].

We use an existing hypervisor for commercial and server
workloads, the kernel-based virtual machine (KVM) running
on Linux. We made this decision for the following reasons:

Compatibility to Linux, POSIX: Compared with spe-
cialized lightweight kernels, a POSIX compatible OS
such as Linux supports a variety of programming lan-
guages and libraries. Linux is the de facto standard
OS for HPC clusters and supercomputers [19].

Availability of Source Code: In contrast to commercial
offerings, such as VMware ESX, the KVM source code
is available and allows modifications.

Convergence of host and guest OS: Optimizing Linux
for HPC workloads will benefit both host and guest
OS. Using different systems would double the effort.

Compatibility to Cloud Solutions: Many cloud manage-
ment frameworks already support KVM, in contrast to
specialized research OSs.

Compatibility to InfiniBand: The OpenFabrics Alliance,
formed of IB hardware manufacturers and others, pro-
vides and supports IB drivers for several GNU/Linux
distributions. Thus, there is no porting required for
our selection of host and guest OS.

SR-IOV is our preferred solution for IB access due to the
standardization of SR-IOV and announcements of IB SR-IOV
support by several vendors such as QLogic and Mellanox.
With SR-IOV, several VMs can use a single adapter. We
employ existing (as of early 2012, still announced) drivers,
whereas para-virtualization would require to adapt and main-
tain drivers per device and OS/hypervisor combination. We
based our approach on early SR-IOV patches for Mellanox
IB adapters that have been posted to the linux-rdma mailing
list in June 2010 and in December 2011. We expect our
approach to work with the released drivers as well.

3.2 Network Virtualization
We want to share a physical IB network between multiple

virtual HPC clusters and, at the same time, isolate them
from each other. We have to guarantee QoS properties such
as minimum bandwidth and bounded latency. In addition, a
user should be able to use all configuration options of an IB
network inside his own virtual cluster. All mechanisms we
employ to reach these goals shall not influence performance.

We redirect a user’s management actions to a virtual net-
work view, a state machine that resembles the physical net-
work and reacts to regular IB management protocols. That
way, a user can employ existing management tools to cus-
tomize the following settings for his virtual cluster:

Packet routing: A user can fine-tune routing to match the
communication pattern of his HPC application.

Isolation: A user may partition his virtual cluster into fur-
ther sub-partitions.

QoS policy: A user may employ his own QoS policy within
his bandwidth share.

However, a user is strictly blocked from modifying the
configuration of the physical network. The configuration
from a user’s virtual network view is implemented in the
physical network only after being approved and adapted
by the cloud management. Thus, the cloud provider can
always ensure and enforce proper isolation and bandwidth
allocations. As an advantage over physical IB infrastructure,
the HPC cloud provider supplies a reasonable default setup,
so that users do not have to run management tools if they
do not need a custom network configuration.

IB Network Management Interface
We strictly isolate the users from the physical network’s
management interfaces. We virtualize these interfaces to
allow users to manage the parts of the network connecting
their virtual clusters. We use the SR-IOV architecture of the
Mellanox IB adapters: There, only the host OS can send valid
management datagrams (MAD) to alter the configuration
of network nodes, such as switches and adapters. A guest
OS may only pass management traffic through the host via
a channel provided by the SR-IOV drivers: We can easily
replace this forwarding mechanism with a redirection to the
state machine implementing our virtual network view.

In addition, we employ a second layer of protection: IB
supports to protect the network configuration with a secret
key. Once this mechanism is enabled, each network node
(such as a switch or a network adapter) ignores any configura-
tion requests without the correct key. The cloud management
framework initially configures this protection, assigns each
node a separate random key, and keeps all keys secret. As
a result, only cloud management and the cloud provider
can configure the physical network directly. Legitimate con-
figuration changes requested by a user are redirected and
transformed through cloud management (the virtual network
view we discussed above), which applies them on behalf of
the user.

If a user breaks out of his VM and gains full access to
an IB adapter, he can circumvent the redirection of his
management operations. However, the key-based protection
in every node will keep him from actually modifying the
network configuration. A brute-force attack is not practical,
as it would take more than 3000 years (64-bit secret key,
40 Gbit/s link speed). Even if the user can extract or guess
one protection key (e.g., from the adapter in the host of his
VM), he cannot gain access to any other node’s configuration,
because all nodes are protected by different keys.

Network Traffic Isolation
We want to isolate virtual clusters and make communication
between nodes located in different virtual clusters impossible.
For this purpose, we extend the IB isolation mechanism (see
Section 2.3) to work with VMs.

IB partitions work at the granularity of network ports
(in adapters and switches). With several VMs sharing one
adapter, this is insufficient: An adapter is a member of
several partitions (typically one per VM), but we cannot
allow every VM to use every assigned partition, as the basic
mechanism would do. Partition filtering in switches does not
help, as a switch can only differentiate between ports—that
is, complete hosts—and not between individual VMs using



that port. So, we have to enforce correct partition usage in
hosts, where individual VMs can be distinguished.

In the IB software interface, an application specifies the
partition to use during connection establishment. With SR-
IOV IB access, such operations must be passed through the
host OS driver. Thus, the host can ensure that applications
only use partitions assigned to their VM. After a connection
is established, the application can send and receive using
OS-bypass and there is no further virtualization overhead.
However, it cannot alter the used partition. The unreliable
datagram transport is different and cannot be supported in
this way: The partition is specified per datagram directly
via OS-bypass. Thus, we must emulate queue pairs for
unreliable datagrams, disable OS-bypass, and thereby reduce
performance. However, HPC applications (i.e., MPI) use
reliable transports over IB and thus are unaffected.

With partitioning being effective for VMs, we can im-
plement our isolation policy based on this mechanism: By
default, each virtual cluster will be provided with a separate
partition. When a user defines further isolation inside his vir-
tual cluster, we assign him as many partitions in the physical
network, as defined inside his virtual network view. Up to
32768 (physical) partitions can be defined per subnet, which
should be sufficient for most cases. The host OS translates
the partition in each connection request (if valid) to the par-
tition used in the physical network, completely transparent
to the guest OS and its applications.

Network Performance Isolation
HPC services require bandwidth and latency guarantees, es-
pecially when some users fully utilize their bandwidth shares.
Alfaro et al. provide algorithms for implementing QoS poli-
cies using the mechanisms provided by IB in [1]. We consider
each virtual cluster to be an uncooperative user that tries to
utilize all available bandwidth. Thus, we assign each virtual
cluster a distinct traffic class to strictly separate its traffic
from others. Using this strict separation, we can employ the
IB QoS mechanisms to assign minimum bandwidth shares
and maximum latencies per hop. Based on the IB specifica-
tion [12] and the work of Alfaro et al. [1], we can determine
appropriate settings. We expect that actual service level
guarantees can also be derived this way.

With our policy of strict traffic separation, we face a limi-
tation: IB can only differentiate 15 traffic classes, so we can
share a physical network link only between 15 virtual clusters.
However, each virtual cluster will typically occupy just a
fragment of the physical cluster, so each link will be used
only by a subset of all virtual clusters. This subset depends
on VM placement, the physical network topology, and the
routing algorithm used. Consequently, clever VM placement
that respects the network topology can support more than 15
virtual clusters with performance isolation: Virtual clusters
with non-overlapping placement can be assigned the same
traffic class.

The restriction to 15 traffic classes also limits how detailed
a user’s custom QoS policy can be applied in the network: We
first ensure performance isolation between virtual clusters
and implement custom QoS settings only when there are
unassigned traffic classes left. Otherwise, a user’s traffic is
handled less differentiated than the user intended (e.g., as
only one traffic class instead of several).

At the IB software interface, we employ the same approach
as with network isolation: The host OS intercepts connection

establishment and maps the traffic class from the user’s view
to that assigned in the physical network (specified by an
identifier called service level). That way, a user is restricted
to utilize the bandwidth share assigned to his virtual cluster.
As with isolation, we must emulate unreliable datagrams and
deny OS-bypass.

3.3 Cloud and Cluster Network Management
A cloud management framework orchestrates the mech-

anisms we described to provision virtual HPC clusters au-
tomatically. We are currently completing an appropriate
framework. In this section, we present our goals and the
design principles we follow.

A management framework for HPC clouds has several
tasks: At a cluster-wide scale, the framework configures
the cluster network to provide network isolation and QoS.
It incorporates the network topology in the VM placement
algorithms to allocate VMs that comprise a virtual cluster
close to each other and to comply with restrictions imposed
by the IB QoS mechanisms (see Section 3.2). Locally on
each node, it grants VMs access to the cluster interconnect
by assigning them an SR-IOV virtual device and by setting
up network virtualization in the host OS (i.e., the virtual
network view we introduced in Section 3.2).

We employ an existing cloud management framework that
already supports virtual clusters (Nimbus [9, 15]) and add
the functionality to manage the cluster interconnect. We
integrate support for virtual clusters and the cluster network
with cloud management, instead of adding it on top, for
three reasons: (1) providing VMs with access to the cluster
interconnect requires modifications to the hosts; (2) virtual
clusters form the basis of our network isolation and QoS
policies and thus have to be integrated with cluster network
management; and (3) virtual clusters should be considered
in VM placement, which is the task of cloud management.

4. EARLY EXPERIENCES
In this section, we present experiences with an early pro-

totype. We use a 4-node cluster equipped with Mellanox
ConnectX-2 IB adapters, and an IB DDR switch. Since
SR-IOV IB drivers are not yet available, we revert to using
PCI Pass-through to dedicate an adapter to a single VM.
Based on a review of alpha SR-IOV patches, we expect to
get a reasonable estimate for the performance with SR-IOV.

With regard to isolation between virtual clusters, we have
verified the following properties of our design by experimen-
tation: (1) We can restrict communication to within a virtual
cluster, and (2) no user can modify the network configuration,
even when user VMs have full access to an IB adapter.

We have compared communication latencies between Ama-
zon EC2 cluster compute instances and VMs in our prototype
using the SKaMPI [23] MPI microbenchmark. In EC2, data
transfers have to pass through several layers of system soft-
ware, such as the guest TCP/IP stack or the ethernet driver
in Xen dom0. In contrast, an application can directly access
the IB adapter in our HPC cloud prototype, thereby bypass-
ing all layers of system software. As a result, we observed
significantly lower latencies in our prototype (3.4µs instead
of 77.5µs for 4-byte messages). Early experiments with HPC
application benchmarks show promising results. They in-
dicate that we can improve the default setup of common
Linux distributions significantly with moderate changes (e.g.,
reducing timer frequency).



5. CONCLUSION AND OUTLOOK
An HPC IaaS cloud model has many benefits: Elastic

virtual clusters provide capacity on-demand and the pay-
as-you-go principle avoids the huge initial investments of
physically owned clusters. We present a novel architecture
for such HPC clouds based on the IB cluster interconnect. We
provide each user with the impression of a dedicated physical
network. We provide strict isolation between virtual clusters
in the physical network (for multi-tenancy) and incorporate
a user’s settings as far as QoS mechanisms permit.

We are currently working on completing a prototypic HPC
cloud, which will incorporate SR-IOV IB access. We will
publish a thorough evaluation as soon as SR-IOV drivers
are publicly available. The placement of virtual nodes in
the physical IB cluster and the physical network topology
determine communication latencies within a virtual cluster
(e.g., number of hops). In addition, a certain placement may
render physical nodes unusable for other virtual clusters,
because of limited QoS resources (see Section 3.2). We are
currently working on strategies for this scheduling problem.
In contrast to contemporary cloud infrastructure, VMs with
access to IB cannot be live-migrated in a transparent way –
an additional challenge that we will face in the future.

Acknowledgements
We want to thank the Steinbuch Centre for Computing and
Mellanox Technologies for access to test infrastructure and
software support for our work.

6. REFERENCES
[1] F. J. Alfaro, J. L. Sánchez, M. Menduiña, and J. Duato.

A formal model to manage the infiniband arbitration
tables providing qos. IEEE Trans. Computers, 2007.

[2] M. Armbrust et al. Above the clouds: A berkeley view
of cloud computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of
California, Berkeley, Feb 2009.

[3] A. G. Carlyle, S. L. Harrell, and P. M. Smith.
Cost-effective hpc: The community or the cloud? In
Second International Conference on Cloud Computing
Technology and Science. IEEE, 2010.

[4] P. Church and A. Goscinski. Iaas clouds vs. clusters for
hpc: A performance study. In CLOUD COMPUTING
2011, The Second International Conference on Cloud
Computing, GRIDs, and Virtualization, 2011.

[5] A. Dusseau, R. Arpaci, and D. Culler. Effective
distributed scheduling of parallel workloads. In ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems.
ACM, 1996.

[6] C. Evangelinos et al. Cloud computing for parallel
scientific hpc applications: Feasibility of running
coupled atmosphere-ocean climate models on amazon’s
ec2. In Cloud Computing and Its Applications (CCA
2008), 2008.

[7] K. Ferreira, P. Bridges, and R. Brightwell.
Characterizing application sensitivity to os interference
using kernel-level noise injection. In ACM/IEEE
Conference on Supercomputing. IEEE Press, 2008.

[8] R. Figueiredo, P. Dinda, and J. Fortes. A case for grid
computing on virtual machines. In 23rd Intern. Conf.
on Distributed Computing Systems. IEEE, 2003.

[9] I. T. Foster, T. Freeman, K. Keahey, D. Scheftner,
B. Sotomayor, and X. Zhang. Virtual clusters for grid
communities. In CCGRID. IEEE, 2006.

[10] A. Gupta and D. Milojicic. Evaluation of hpc
applications on cloud. Technical Report HPL-2011-132,
HP Laboratories, 2011.

[11] W. Huang, J. Liu, B. Abali, and D. Panda. A case for
high performance computing with virtual machines. In
20th Annual International Conference on
Supercomputing. ACM, 2006.

[12] InfiniBand Architecture Specification Volume 1, Release
1.2.1. InfiniBand Trade Association, 2007.

[13] C. Ivica, J. T. Riley, and C. Shubert. Starhpc -
teaching parallel programming within elastic compute
cloud. In ITI. IEEE, 2009.

[14] T. Jones et al. Improving the scalability of parallel jobs
by adding parallel awareness to the operating system.
In ACM/IEEE SC2003 Conference on High
Performance Networking and Computing, 2003.

[15] K. Keahey and T. Freeman. Contextualization:
Providing one-click virtual clusters. In Fourth IEEE
International Conference on eScience, USA, 2008.
IEEE.

[16] J. Liu, W. Huang, B. Abali, and D. K. Panda. High
performance vmm-bypass i/o in virtual machines. In
USENIX Annual Technical Conference, 2006.

[17] P. Mell and T. Grance. The nist definition of cloud
computing. National Institute of Standards and
Technology, 53(6), 2009.

[18] M. Mergen, V. Uhlig, O. Krieger, and J. Xenidis.
Virtualization for high-performance computing. ACM
SIGOPS Operating Systems Review, 40(2):8–11, 2006.

[19] H. Meuer. The top500 project: Looking back over 15
years of supercomputing experience.
Informatik-Spektrum, 31(3):203–222, 2008.

[20] PCI-SIG Single-Root I/O Virtualization Specification,
http://www.pcisig.com/specifications/iov/

single_root/.

[21] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of
the missing supercomputer performance: Achieving
optimal performance on the 8,192 processors of asci q.
In ACM/IEEE SC2003 Conference on High
Performance Networking and Computing, 2003.

[22] N. Regola and J.-C. Ducom. Recommendations for
virtualization technologies in high performance
computing. In 2nd International Conference on Cloud
Computing Technology and Science. IEEE, 2010.

[23] R. Reussner et al. Skampi: A detailed, accurate mpi
benchmark. In V. Alexandrov and J. Dongarra, editors,
Recent advances in Parallel Virtual Machine and
Message Passing Interface. Springer, 1999.

[24] J. E. Smith and R. Nair. The architecture of virtual
machines. IEEE Computer, 38(5):32–38, 2005.

[25] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman.
Direct device assignment for untrusted fully-virtualized
virtual machines. Technical report, IBM Research,
2008.

http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/

	Introduction
	Background and Related Work
	Cloud Computing and High-Performance Computing
	The InfiniBand Architecture
	InfiniBand Isolation and Quality of Service
	InfiniBand Virtualization

	Approach to HPC Clouds
	Node Virtualization
	Network Virtualization
	Cloud and Cluster Network Management

	Early Experiences
	Conclusion and Outlook
	References

