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ZUSAMMENFASSUNG

Zusammenfassung

Lithium-Ionen-Batterien sind heutzutage aufgrund ihrer gleichzeitig hohen

Energie- und Leistungsdichte für viele Anwendungen besonders gut geeignete En-

ergiespeicher. Die Entwicklung und Verbesserung der eingesetzten Kathodenmateri-

alien sind Gegenstand intensiver Forschung, um Lithium-Ionen-Batterien an spezielle

Anwendungen anzupassen. In dieser Arbeit wird das Hochvolt-Kathoden Material

LiNi0.5Mn1.5O4 und seine Metall- (Ru, Fe, La, Nd und Sm) dotierten Derivate un-

tersucht. In den mittels eines Zitronensäure unterstützten Sol-Gel Verfahrens syn-

thetisierten Materialien wird der Einfluss der Dotiermetallionen auf die Struktur,

das elektrochemische Verhalten und den wirksamen elektrochemischen Mechanis-

mus untersucht. Es werden zwei verschiedene Kalzinierungsendtemperaturen (800

◦C und 1000 ◦C) zur Synthese der LiNi0.5Mn1.5O4 und LiNi0.4Ru0.05Mn1.5O4 Materi-

alien verwendet. Die Kalzinierungstemperatur von 800 ◦C wurde für die anderen

metalldotierten LiNi0.5Mn1.5O4-Proben ausgelassen, da diese im Vergleich zu den

Hochtemperatur-Derivaten eine schlechtere elektrochemische Leistung aufweisen. Die

Struktur und Morphologie der Materialien wurden mittels Röntgenpulverbeugung,

Neutronenbeugung, Röntgenabsorptionsspektroskopie (XAS) und Rasterelektronen-

mikroskopie untersucht.

LiNi0.5Mn1.5O4 Materialien bilden eine kubische Spinellstruktur mit Raumgruppe

Fd3m und liegen nach der Synthese mit einer Nebenphase mit Kochsalzstruktur vor

(Ni6MnO8). Die Ru-Dotierung unterdrückt die Bildung dieser zusätzlichen Neben-
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phase. LiNi0.4Ru0.05Mn1.5O4 Materialien sind phasenrein und haben ebenso eine ku-

bische Spinellstruktur mit der Raumgruppe Fd3m. Durch Neutronenbeugung sowie

Ru K-Kanten Röntgenabsorptionsspektroskopie konnte bestätigt werden, dass Ru im

Spinell eingebaut wird. Die Materialien, die bei 1000 ◦C synthetisiert werden, haben

eine höhere Leistungsdichte als die bei 800 ◦C synthetisierten. LiNi0.4Ru0.05Mn1.5O4-

1000 ◦C zeigt bei Raumtemperatur eine bessere Zyklenstabilität und Strombelast-

barkeit als LiNi0.5Mn1.5O4-1000 ◦C. Nach 300 Zyklen bei einer C/2 Zyklierung

verbleiben noch 84 % der anfänglichen Speicherkapazität. Dieser Wert is höher als

für das undotierte LiNi0.5Mn1.5O4-1000 ◦C von 79.5 %. Des Weiteren liefert die Ru-

dotierte Probe eine höhere Entladungkapazität bei hohen C-Raten (136 mAh g−1 bei 20

C) als das Ausgangsstoff Material (122 mAh g−1 bei 20 C). Die Strukturuntersuchungen

während der elektrochemischen Zyklierung zeigten, dass beide Materialien bei Li-Ein

und Auslagerung einen Phasenübergang zwischen zwei Spinellphasen durchlaufen.

Ähnlich dem LiNi0.4Ru0.05Mn1.5O4, enthalten Fe-dotierte LiNi0.5Mn1.5O4-Proben

die Nebenphase mit Kochsalzstruktur nicht. Jedoch enthalten sie zusätzlich geringe

Mengen von Li2MnO3 (C2/m) mit Schichtstruktur und von Spinnell-Fe3O4 (Fd3m).

Die Fe-Dotierung im Spinell der Hauptphase wurde durch Neutronenbeugung sowie

durch NMR- und Mössbauerspektroskopie bestätigt. Unter allen Fe-dotierten Kath-

oden und dem Ausgangsstoff LiNi0.5Mn1.5O4, hat das LiNi0.4Fe0.2Mn1.4O4 die beste

Speicherkapazität (92 %) nach 300 Zyklen sowie die höchste Anfangskapazität (134

mAh g−1) bei Raumtemperatur. Das LiNi0.4Fe0.2Mn1.4O4 besitzt ebenfalls bei 55 ◦C

eine höhere Speicherkapazität. Die gelieferten Kapazitäten bei hohen C-Raten (ins-

besondere bei 10 C und 20 C) sind in Bezug auf die erreichte Kapazität bei C/2 für

alle Fe-dotierten Proben höher als für das etablierte Vergleichsmaterial LiNi0.5Mn1.5O4.

Fe-dotierte Proben zeigen außerdem ein anderes strukturelles Verhalten während der

Zyklierung. Statt einer Koexistenz zweier Spinellphasen ändert sich die Zusasm-

mensetzung entsprechend einer festen Lösung kontinuierlich. Zudem liefert die in situ

Synchrotonbeugung keinen Hinweis auf eine elektrochemische Aktivität der Neben-
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phasen.

Die Analyse der Neutronenbeugung an La, Nd und Sm-dotiertem LiNi0.5Mn1.5O4

zeigt, dass diese Elemente nicht in die Spinellstruktur eingebaut werden. Darüber hin-

aus enthalten sie neben der Nebenphase mit Kochsalzstruktur zusätzliche oxidische

Phasen, die La, Nd oder Sm beinhalten. Die strukturellen Änderungen während der

Zyklierung zeigen, dass nur die Hauptphase mit Spinellstruktur elektrochemisch aktiv

ist.

Die Auswirkung der Massenbeladung auf Elektroden und Morphologie der

Proben wird ebenfalls ausführlich erörtert.
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ABSTRACT

Abstract

The Li-ion batteries are particularly suitable energy storage systems in several ap-

plications because of their simultaneous high energy and high power densities. De-

veloping and improving appropriate cathode materials are in the focus of research in

order to adapt lithium-ion batteries for specific applications. In this work the high-

volt cathode material LiNi0.5Mn1.5O4 and its metal (Ru, Fe, La, Nd and Sm) doped

derivatives are synthesized using a citric acid assisted sol-gel method and the influ-

ence of the dopant metal ion on the structure, electrochemical performance as well as

the underlying electrochemical mechanism are investigated. Two different final calci-

nation temperatures (at 800 ◦C and 1000 ◦C) are used to synthesize LiNi0.5Mn1.5O4 and

LiNi0.4Ru0.05Mn1.5O4 materials. The 800 ◦C calcination temperature was then omitted

for other metal doped LiNi0.5Mn1.5O4 samples as they exhibit inferior electrochemical

performance compared to their high-temperature derivative. The structure and mor-

phology of the materials are investigated using X-ray, synchrotron and neutron pow-

der diffraction techniques, X-ray Absorption Spectroscopy (XAS) as well as scanning

electron microscopy.

LiNi0.5Mn1.5O4 materials have cubic spinel structure with the space group Fd3m

and they contain a rock-salt (Ni6MnO8) impurity phase. The Ru-doping suppresses

the formation of this additional rock-salt phase. Ru-doped samples are phase pure

and have also cubic spinel structure with the space group Fd3m. It was confirmed

by neutron diffraction as well as Ru K-edge XAS studies that Ru is present inside the
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spinel material. The material synthesized at 1000 ◦C has better performance than the

one at 800 ◦C. LiNi0.4Ru0.05Mn1.5O4-1000 ◦C has superior cycling stability as well as

rate capability at room temperature compared to the parent LiNi0.5Mn1.5O4-1000 ◦C. It

has 84 % capacity retention after 300 cycles when cycled at C/2, which is higher than

that of the parent LiNi0.5Mn1.5O4-1000 ◦C (79.5 %). Moreover, Ru-doped sample deliv-

ers a higher discharge capacity at high C-rate (136 mAh g−1 at 20 C) than the parent

material (122 mAh g−1 at 20 C). The structural investigations during electrochemical

cycling show that both materials possess a phase-transition mechanism of Li intercala-

tion/deintercalation through two spinel phases (Fd3m).

As similar to the LiNi0.4Ru0.05Mn1.5O4, Fe-doped LiNi0.5Mn1.5O4 samples do not

contain the rock-salt impurity phase. However, they contain additional Li2MnO3 with

a layered structure (C2/m) and spinel Fe3O4 (Fd3m) phases. Fe-doping in the spinel

material was confirmed by neutron diffraction, NMR and Mössbauer spectroscopy.

Among all Fe doped cathodes and the parent LiNi0.5Mn1.5O4, the LiNi0.4Fe0.2Mn1.4O4

has the best capacity retention (92 %) after 300 cycles as well as the highest initial

capacity (134 mAh g−1) at room temperature. The LiNi0.4Fe0.2Mn1.4O4 exhibits a higher

capacity retention at 55 ◦C as well. The delivered capacities at high C-rates (especially

at 10 C and 20 C) with respect to the capacity delivered at C/2 are superior for all

Fe-doped samples compared to the parent LiNi0.5Mn1.5O4. Fe-doped samples show

a different structural evolution during cycling, which is described as a solid-solution

mechanism. Moreover, there is no evidence from in situ synchrotron diffraction for any

electrochemical activity of the impurity phases.

The neutron diffraction analyses of La, Nd and Sm doped LiNi0.5Mn1.5O4 show

that these elements are not inserted inside the spinel structure. In addition, besides

the rock-salt impurity phase, they contain additional La, Nd or Sm containing phases.

Structural evolution during cycling confirmed that only the main spinel phase is elec-

trochemically active.
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The effects of mass loadings on the electrodes and the morphology of the samples

will also be discussed in detail.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Due to the rapid increase in the use of portable computers, mobile phones, video

cameras, electronic devices, electrical vehicles etc., the urge for developing batteries

with the lightest combination of anode and cathode, which also deliver high cell volt-

age and capacity, increases day by day. The latest and highest performance secondary

battery system which fulfills these requirements is the lithium-ion (Li-ion) system,

which was developed in the late 1970’s and is now the fastest growing battery sys-

tem in the world.

Developing and improving the appropriate cathode materials are essential points

to adopt the lithium-ion batteries for their commercial applications. Among all the

cathode materials, the Mn-based spinel materials are potential candidates for high en-

ergy density battery applications due to their high operating voltage and relatively

high capacity [1, 2]. Moreover, they exhibit high-rate performance as a result of the 3D

lithium-ion diffusion through the path formed by 8a tetrahedral and 16c octahedral

sites [3–5].

The Ni-doped Mn spinel with the composition LiNi0.5Mn1.5O4 (LNMO) is a highly

promising cathode material which shows an impressive electrochemical performance

like large reversible capacity at a high operating voltage around 4.7 V where the re-
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versible Ni2+ 
 Ni4+ + 2e− redox reactions take place. In the completely stoichiomet-

ric LiNi0.5Mn1.5O4 spinel, the oxidation states of Ni and Mn are +2 and +4, respectively,

and no Mn ions exist in their trivalent state. However, usually a small amount of Mn3+

remains as a result of oxygen deficiency in the crystal lattice after the high temperature

synthesis process [2, 6–8]. Mn3+ is well-known as a Jahn-Teller ion causing structural

instability [9–12] but the effect of the amount of Mn3+ in LNMO is argumentative.

Additionally, the electrochemical performance especially at high rates still needs to be

improved to meet the required power density [13–15].

It has already been reported that cation doping on LNMO spinel enhances the

reachable practical capacity, cycling stability and the cycling performance at high C-

rates [6, 13, 14, 16]. The aim of this work is to investigate the effect of different cation

dopings in LNMO on structure, electrochemical performance and Li-intercalation/de-

intercalation mechanism in detail. The structural and morphology investigations are

carried out by ex situ and in situ high resolution powder diffraction using synchrotron

radiation and scanning electron microscopy, respectively. Elemental and thermal anal-

yses are performed with Inductively Coupled Plasma-Optical Emission Spectroscopy

(ICP-OES) and thermogravimetry, respectively. The electrochemical investigations are

performed at room temperature (RT) as well as at 55 ◦C. The electrochemical mecha-

nisms with respect to the structural changes for selected cases will also be discussed.
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Chapter 2

Basic Concepts and Principles of

Batteries

2.1 Introduction to Batteries

A battery converts the chemical energy directly into electric energy using an elec-

trochemical reduction-oxidation (redox) reaction and consists of one or more electro-

chemical units (galvanic cell). A galvanic cell has two electrodes (the anode which re-

leases the electrons and the cathode which accepts the electrons) and they are dipped

in an electrolyte (ionic conductor, which provides the medium for transferring charge

(ions) inside the cell between the anode and cathode).

Depending on the principle of operation, there are two main categories of bat-

teries. One of them are primary batteries, which are used only once and discarded

(chemical reactions, which take place in primary cells, are not easily reversible and ac-

tive materials may not return to their original forms) and the other one are secondary

batteries, which can be recharged (by applying electrical current, which reverses the

chemical reactions that occur during its use) and used many times. It should be noted

that the terms ”anode” and ”cathode” cannot be properly defined as by convention in
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the case of rechargable batteries. Therefore, they should always be defined with re-

spect to the discharging process or else the electrodes might be mentioned as positive

and negative electrodes for higher and lower potentials, respectively.

2.2 Overview of Rechargable Lithium ion Batteries

The anode and the cathode in rechargable batteries have to sustain many charg-

ing and discharging processes and the structural changes should be reversible during

cycling. The electrodes are surrounded by the electrolyte but a separator material is

used to separate them mechanically to prevent internal short-circuiting. The separator

is permeable to the electrolyte in order to maintain the ionic conductivity but imper-

meable to electrons.

The electrical capacity stored in Li-ion battery systems is related to the amount of

Li ions inserted/extracted from the electrodes. The reason of using lithium in batteries

in the first place is that it is the lightest metal among all metals and it is good reduc-

ing agent with standard electrochemical potential (Li/Li+= -3.05 V). However, using

metallic lithium in lithium ion battery is difficult because metallic lithium is expen-

sive, additionally, it will tend to dendrite growth during cycling which will cause poor

electrochemical performances and safety issues. For that reason, instead of metallic

lithium, the anode in the lithium ion batteries is a lithium insertion compound with

low standard potential of lithium insertion.

Even if the lithium ion batteries have their drawbacks, as need for additional pro-

tection against over charging/discharging or thermal runaway can occur under abnor-

mal situations (crushing, puncturing etc.), they have many advantages, as well. The

advantages of lithium ion batteries are:

X They have no memory effect (low maintenance)
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X They have high energy density and potential (results in high capacity)

X Low self-discharge

X Different types of lithium ion battery systems are available that can be adopted

to specific applications.

For a Li-ion cell, charging and discharging processes are shown in Figure 2.1.

Figure 2.1: Electrons and ions-transport during a) charging and b) discharging in a
Li-ion cell.

When the cell is connected to the external load, the discharging process takes place

where electrons flow from the anode, which is oxidized, to the cathode, which ac-

cepts electrons and is reduced. At the same time the cations (+) flow to the cathode

to complete the electric circuit. This process happens spontaneously. When the cell is

recharged by connecting to a power supply, electrons flow the reverse way, and at the

positive electrode oxidation occurs and at the negative electrode reduction occurs. As

it was mentioned, this process occurs only if the cell is forced externally. According to

5
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definition, the anode is the electrode where oxidation takes place and the cathode is

the electrode where the reduction takes place during discharge.

The main components in Lithium ion batteries are;

X Cathode Materials; transition metal oxides i.e LiCoO2 with layered structure,

LiMn2O4 with spinel structure, LiFePO4 with olivine structure and silicates etc.

Since this work focuses on LiNi0.5Mn1.5O4 (and its derivatives by doping) posi-

tive electrode materials having the highest potential, they are named as ”cath-

ode materials”. The equation 2.2.1 shows the charge/discharge reaction of

LiNi0.5Mn1.5O4 , which occurs at a high potential of ∼ 4.7 V (vs. Li/Li+).

LiNi0.5Mn1.5O4 
 Li1−xNi0.5Mn1.5O4 + xLi+ + xe− (0 ≤ x ≤ 1) (2.2.1)

X Anode Materials; carbon based (i.e graphite, hard/soft carbon) and noncarbon

alloys (i.e Li, Si, Sn, lithium alloys).

X Electrolytes must have good ionic conductivity but not be electronically conduc-

tive, because of internal short-circuiting. They must be non reactive with the

electrode materials and should have only little change in properties with change

in temperature. Additionally, they should be safe in handling and have low cost.

LiPF6 (lithium hexafluorophosphate) is the one with the lowest disadvantages

from all known candidate salts considering all mentioned properties and good

candidate for liquid organic electrolytes. The liquid organic electrolytes consist

of such lithium salt and organic solvents such as, ethylene carbonate (EC), propy-

lene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl

methyl carbobante (EMC) etc. The other classes of electrolytes are ionic elec-

trolytes (also known as ionic liquids which are salts in liquid form at below 100

◦C) and polymer electrolytes (which are formed by distributing the salt into a

polymer and have less ionic conductivity compared to other electrolytes).
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2.3 Important Definitions for Batteries

• Cell Voltage (U): The voltage is the driving force in an electrical circuit. This

driving force causes the movement of free electrons through the circuit and is

described as the potential differences (∆E) of the cathode and the anode.

U = Ecathode − Eanode = ∆E in V (2.3.1)

X Open circuit voltage: The voltage of a cell or a battery which is neither on

charge nor on discharge (i.e., disconnected from a circuit).

X Closed circuit voltage: The voltage of a cell or a battery which is connected

to a circuit and producing current into it.

• Charge (q): An ampere is a unit of electrical current (I), which is defined as a rate

of charge flow in an electric circuit, measured in Coulombs/second. The charge

is the amount of current transferred in a unit of time (t).

Q = I × t in Ampere-hour(Ah) (2.3.2)

• Current Density: The ratio of total current (A) and the surface area of the elec-

trode where this current flows (A/cm2).

• Capacity (Q): The capacity is the amount of charge, which is measured in Ampere-

hours (Ah). The capacity per mass of reactants (Ah/kg) is called specific capacity.

• Current Rate (C-Rate): A common method for indicating the discharge and also

the charge current of a battery is the C rate, which is numerically equal to the Ah

(Ampere-hour) rating of the cell.
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X 1 C means transfer of all of stored energy in one hour. In other words, 1C rate

means that the entire battery will be discharged in 1 hour by the discharge

current.

X 0.25 C (C/4) means full transfer of stored energy in 4 hours (25 % transfer in

one hour) or 0.1 C (C/10) means full transfer of stored energy in 10 hours (

10 % transfer in one hour) etc.

Discharge rates determine the battery capacity. The higher the discharge rate, the

lower the cell capacity and vice versa.

• Specific Power: The amount of current that a battery can deliver per unit mass

(m) or volume (V) of the cell.

P =
U · I
m

in Watt/kg or (2.3.3)

P =
U · I
V

in Watt/l (2.3.4)

• Energy: The output capability of a battery measured in Watt-hour (W=UxQ, Wh).

X Volumetric energy density (Energy density in Wh/L).

X Gravimetric energy density (Specific energy in Wh/kg).

• Resistivity: Electrochemical characteristics of the system which limits the amount

of current that flows in it ( in ohm, Ω).

• Faraday Constant (F): Quantity of charge per mole of electrons.

F = eNA (96485.3 C/mol or 26.801 Ah/mol) (2.3.5)

e ≈ 1.602× 10−19 C and NA ≈ 6.02× 1023 mol−1

• Cycle: One sequence of a complete charging and discharging process.
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2.4 Thermodynamic and Kinetic Aspects

The reactions that happen in the electrochemical system are based on thermody-

namic and kinetic aspects. When the reactions occur, the system will start to release its

free energy (Gibbs free energy, ∆Go) which can be used to do work and is at standard

conditions (at 25 oC temperature and 1 bar pressure) expressed as;

∆G = −nFE or ∆Go = −nFEo (2.4.1)

n: amount of electrons involved in the reaction

F: Faraday constant

E: cell potential under non-standard conditions in V

Eo: standard cell potential in V

The relationship between the Gibbs free energy under standard and non-standard con-

ditions is given by van’t Hoff isotherm as:

∆G = ∆Go +RTlna (2.4.2)

− nFE = −nFEo +RTlna (2.4.3)

E = Eo − RT

nF
lna→ Nernst Equation (2.4.4)

R: gas constant (8.314 J mol−1K−1)

T: temperature

a: ratio of the activities of products and reactants

The quantity of the electricity (nF) is directly proportional to the mass of active material

involved in the reactions and the current (hence to the capacity) which is expressed by

Faraday’s law as;

Specific Capacity (
Ah

g
) =

It

m
=
nF

M
(2.4.5)
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m =
ItM

nF
(2.4.6)

I: current (ampere)

t: time (h)

m: amount of active mass involved in the reaction (gram)

M: molecular mass of active material (g/mol)

The electrochemical reactions inside the cell and hence capacity and performances

are effected by the kinetic limitations depending on the redox reactions, resistance of

the cell components and mass transportation during cycling. When the current flows

inside a circuit, the voltage will differ from the open circuit voltage (E◦) because of

mentioned limitations. The situation is known as polarization or overvoltage given

by the difference between the open circuit voltage and terminal cell voltage which

exists when the current flows. Due to different kinetic effects, the polarization can be

categorized into three groups;

X Ohmic Polarization occurs because of the resistance of all cell components like;

electrolyte and electrodes and the contact between them, current collectors, ter-

minals, the films formed on the electrode surfaces etc.

X Activation Polarization occurs because of the limitation of charge transfer (redox

reactions) at the electrode/electrolyte interface.

X Concentration Polarization occurs due to the changes of the availability of the ac-

tive species as a result of redox reactions. Limited diffusion of active species

into/from electrodes give rise to concentration polarization.

The overvoltages cause differences of the cell voltage and therefore capacity com-

pared to equilibrium state. The more the overvoltages in the batteries the more the

reduced battery efficiency. Therefore keeping the overvoltages as low as possible is

essential point.
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Chapter 3

Aim of the Work

3.1 LiNi0.5Mn1.5O4 Spinel Cathode

LiNi0.5Mn1.5O4 (LNMO) is a highly promising cathode material due to the large re-

versible capacity at a high operating voltage around 4.7 V where the reversibleNi2+ 


Ni4+ + 2e− redox reactions take place.

Two different crystallographic modifications exist for LNMO with respect to its

synthesis temperatures: cation-ordered spinel (P4332 space group) where the transi-

tion metal ions (Mn and Ni) occupy distinct Wyckoff sites (12d and 4b, respectively)

and cation-disordered spinel (Fd3m space group) where the transition metal ions are

randomly distributed and display shared occupancy at the same Wyckoff site (16d)

[5, 17, 18]. The cation-disordered structure is also known as oxygen deficient struc-

ture, which is obtained at high annealing temperatures (≥650 ◦C). On the other hand

the cation-ordered structure can be obtained at low annealing temperatures (<650 ◦C)

[19]. These two structures are shown in Figure 3.1. For LNMO (P4332) with a primitive

cubic cell, the manganese ions are regularly distributed in 12d sites, and nickel ions in

4b sites. The oxygen ions occupy the 24e and 8c positions, while the lithium ions are

located in the 8c sites. For LNMO with a face-centered structure (Fd3m), the lithium
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ions are located in the 8a sites of the structure, the manganese and nickel ions are ran-

domly distributed in the 16d sites. The oxygen ions which are cubic-close-packed (ccp)

occupy the 32e positions.

Figure 3.1: a) Cation-ordered structure (P4332 space group) of LiNi0.5Mn1.5O4 b)
Cation-disordered structure (Fd3m space group) of LiNi0.5Mn1.5O4.

From previous works on LiNi0.5Mn1.5O4 and its derivatives it is known that the

cation-disordered structure has better electrochemical performances than the cation-

ordered one [20, 21].
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3.2 The effects of transition metal ion doping on

LiNi0.5Mn1.5O4 spinel

In the ideal LiNi0.5Mn1.5O4 spinel, the oxidation states of Ni and Mn are +2 and

+4, respectively, and no Mn ion exists in the trivalent state, which is well-known as

Jahn-Teller ion causing structural instability [9–12]. However, the high temperature

synthesis of LNMO usually results in the formation of a rock-salt LizNi1-zO impurity

phase due to oxygen loss [5]. This impurity reduces the amount of Ni in the cubic

spinel phase and, thereby, together with some oxygen loss, increases the amount of

Mn3+, which strongly influences the electrochemical properties [5].

Different methods were adapted in the past to improve the electrochemical per-

formances of LNMO such as coating and doping [5]. It should be noted that the term

of ”doping” is generally used in the literature which actually means cation and/or an-

ion substitution on the structure. Among those a partial cation substitution of Ni, Mn

or both in LNMO is found to be beneficial for the cycling stability. Fe [4, 22–25], Co

[4, 16, 22], Cu [26, 27], Cr [4, 16, 22–24, 28–30], Ru [2, 15], Ga [4, 24], Mg [31, 32], Ti [23],

Al [16, 26, 30], Zr [30], Rh [6, 33], Zn [23, 27] are the substituting elements that have

been used and investigated so far.

It has already been reported that cation doping on LNMO spinel enhances the

reachable capacity, cycling stability and cycling performance especially at high C-rates

[6, 13, 14, 16, 34]. Furthermore, the doping of spinels by 3d or 4d cations can also im-

prove the electrical conductivity and the structural stability [15, 35–37]. In 2010, Le et

al. studied the influence of tetravalent cation substitution on LNMO [38]. They synthe-

sized LiNi0.5Mn1.5-xMxO4, M = Ti (0<x<1.3) and Ru (0<x<1) samples with solid-state

reactions. They have reported that Ti doping decreases the high-voltage electrochem-

ical activity. In contrast, the capacity was maintained and the kinetics were improved

by Ru doping. However, no high-rate investigations are reported in this work. Wang
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et al. reported that the doping of Ru improves the rate capability and also the high-rate

cycling stability of LNMO [14, 15]. They have synthesized the LiNi0.5-2xRuxMn1.5O4 (x =

0, 0.01, 0.03, and 0.05) samples with solid-state and polymer-assisted methods. Among

all the Ru-doped samples, LiNi0.4Ru0.05Mn1.5O4 showed superior cycling performance

(at 10 C charge-discharge rate) and rate capability between 3.0-5.0 V. The substitution

of a part of divalent Ni ions with tetravalent Ru ions induced some octahedral va-

cancies [15]. Since the lithium diffusion occurs between tetrahedral sites via vacant

octahedral sites, the additional octahedral vacancies formed enhance the feasibility of

this process. They reported that LiNi0.4Ru0.05Mn1.5O4 shows 100 % discharge capac-

ity of its initial discharge capacity when charged with a rate of 0.2 C and discharged

from 0.2 C to 2 C. For the high discharge rate of 10 C, it can still retain 89 % of its

initial discharge capacity. At the highest rate of 10 C they reported discharge capaci-

ties of 117 mAh g−1 and 121 mAh g−1 for solid-state and polymer-assisted synthesized

LiNi0.4Ru0.05Mn1.5O4, respectively. In the present study, LiNi0.4Ru0.05Mn1.5O4 is one of

the transition metal doped LNMO which has been studied.

Partial substitution with Fe could also improve the thermal stability of the system

as the spinel cathode materials containing Fe were found to have an increased onset

temperature for thermal degradation [39]. In addition, Fe substitution could increase

the structural stability of the system during cycling and thereby improve the long-term

electrochemical performance. According to the work done by Liu & Manthiram, the

partial substitution of Mn, Ni or both metals in LiMn1.5Ni0.5O4 with Fe improves the

cycling performance and rate capability [25]. They attributed these improvements to

several factors like increased structural stabilization due to cation-disorder on the 16d

octahedral site of the spinel lattice, suppression of a thick surface film formation due

to the Fe-enrichment and Ni-deficiency on the surface, formation of Mn3+ and the re-

sultant increase in electronic conductivity and highly reduced polarization loss due to

fast lithium ion diffusion and fast charge transfer kinetics in the bulk. Another work

done by Zhong et al., reported trivalent transition-metal substitution on LNMO, giv-

14



CHAPTER 3. AIM OF THE WORK

ing rise to a composition LiNi0.45M0.10Mn1.45O4 (M = Fe, Cr, Co) [22]. They observed

an improvement in the rate capability which was attributed to the increased electronic

conductivity resulting from the trivalent 3d cation substitution. In 2012, Shin et al. re-

ported cation ordering and surface segregation in LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, and

Ga) cathodes [24]. According to their work, the right amount of cation substitution

in LNMO improves the rate capability by suppressing cation ordering and thereby

increasing the electronic and ionic conductivity in the material. Moreover, the dopant

cations segregate to the electrode surface and suppress parasitic reactions with the elec-

trolyte, which in turn improves the electrochemical performance at room temperature

as well as at elevated temperatures. In 2013, Lee & Manthiram have studied the effect

of different dopant ions on the degree of cation ordering in LiMn1.5Ni0.5-xMxO4 (M = Cr,

Fe, Co, and Ga) spinels [4]. They observed that the differences in the degree of cation

ordering on the 16d site of the spinel lattice originate from the size differences between

the Mn4+ and M3+ (M = Cr, Fe, Co, and Ga) ions, which in turn induce a difference in

the lattice strain during Li intercalation/de-intercalation. They also claimed that the

dopant cation influences the electrochemical activity below 3 V. The other doping ele-

ment which has been used in this study is Fe. The nominal composition of Fe-doped

samples is LiNi0.5-xFe2xMn1.5-xO4 where x= 0.1, 0.15 and 0.2.

It has been reported that rare earth elements such as La, Nd, Er, Y, Ga, Sm, Ce

etc. doped LiMn2O4 show improved electrochemical performances, as well. Recently

Mo et al. also reported the effect of Sm doping on LiNi0.5SmxMn1.5-xO4 spinel [40].

They claimed that Sm replacement by Mn causes the decrease of lattice parameter and

enhancement of cation disordering. Due to a more stable lattice structure, less amount

of Mn3+ and enhanced ionic and electronic conductivity, the cycling performances and

rate capabilities are greatly improved. The rare earth elements doped (La, Nd and Sm)

LNMO samples have also been investigated in this study. Rare earth elements (La, Nd

and Sm) have bigger ionic radii than Ni and Mn. Incorporated into the spinel structure

bigger size compared to 3d metal dopants would widen the spinel lattice and thereby
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improve the transport behavior. For the rare earth element doping on Ni or both Ni

and Mn, two nominal compositions have been used; M is either La, Nd or Sm;

LiNi0.5-x
2+M2x

3+Mn1.5-x
4+O4 (x=0.005) and LiNi0.5-3x

2+M2x
3+Mn1.5

4+O4 (x= 0.025).

The doping effect on LiNi0.5Mn1.5O4 investigated in the literature so far deals with

only disordered Fd3m structure.
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Chapter 4

Experimental

4.1 Synthesis of the Materials

The materials were synthesized by a citric acid-assisted sol-gel method in this

work. The sol-gel process is a colloidal route to synthesize an oxide network through

polycondensation reaction of molecular precursors in a liquid with an intermediate

stage including a sol and/or a gel state [41]. The whole process is illustrated in Figure

4.1.

The metal acetates LiCH3COO · 2 H2O , Mn(CH3COO)2 · 4 H2O, Ni(CH3COO)2 ·

4 H2O, Ru(CH3COO)2, Fe(CH3COO)2, La(CH3COO)3 · xH2O, Nd(CH3COO)3 · xH2O,

Sm(CH3COO)3 · xH2O were used as precursors depending on the stoichiometry of the

materials to be synthesized. The corresponding metal acetates of target powder ma-

terials were dissolved in a mixture of citric acid and ethylene glycol (1:4 mol/mol) by

heating at 90 ◦C in a glass beaker on the heating plate.
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Figure 4.1: Citric acid-assisted sol-gel synthesis routes.

Later, the solution was heated at 180 ◦C to evaporate the excess ethylene glycol

from the mixture and to get a transparent gel. When the mixture started to become

gel form, it was transferred into a porcelain bowl. The obtained gel was pre-calcined

at 400 ◦C for 5 h in the furnace to remove the carbon. When the furnace cooled down

to room temperature, the mixture was ground in a mortar, transferred into alumina

crucibles and then pre-annealed at 600 ◦C for 24 h in air with intermittent grinding.

Until this step, the heating rate was 300 ◦C/h. After this step, the LiNi0.5Mn1.5O4 and

LiNi0.4Ru0.05Mn1.5O4 materials were separated into two parts for post annealing. One

part of both material compositions was annealed at 800 ◦C and the other part at 1000

◦C with a heating rate of 600 ◦C/h and holding time < 1 min and cooled down to RT

in the furnace to obtain the final products. For all the other samples except these two

materials, the post annealing was limited to one temperature (1000 ◦C).
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4.2 Chemical Analysis

4.2.1 Inductively Coupled Plasma-Optical Emission Spectroscopy

(ICP-OES)

The Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) tech-

nique is commonly used in laboratories for determination of elemental composition in

a sample, which is introduced in liquid form. The principle of this method is that the

analyte solution is nebulised and then vaporized within the argon plasma. At tem-

peratures between 4725-6725 ◦C which are high enough to atomize and/or ionize the

elements, the atoms and ions are electronically excited so that they emit light with

characteristic wavelength which can be measured.

The determination of elemental concentration was done by ICP OES (iCAP 6500

Duo View (Thermo Fisher Scientific GmbH) in this study. Three parallel measure-

ments were performed with similar weights per sample (∼ 30 mg) to confirm the re-

producibility. Therefore, the resulting values are the average of these three values for

each sample. The samples were digested with 5 mL HCl (p.a., 37 %, Fa. Merck) at 180

◦C. The digestion solution was then diluted with de-ionized water. The acid concen-

tration in the sample solutions was 2 vol.% HCl (37 %). The calibration has been done

with six standard solutions of different concentrations with an acid concentration of 2

vol.% HCl (37 %).
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4.3 Structural Characterization Methods

4.3.1 X-Ray Diffraction

X-ray diffraction is a method used to determine the structure of a crystal, in which

the crystalline material diffracts the X-ray beam in specific directions. The condition

for diffraction is described by the Bragg Law (Equation 4.3.1).

2dsin(θ) = nλ (4.3.1)

where d is the spacing between the scattering planes in the lattice, θ is the angle

between incoming beam and scattering plane of the crystal and λ is the wavelength of

the incoming beam.

By measuring intensities which are related to the structure factor, structural infor-

mation can be extracted. Accordingly also structural changes as phase fraction, lattice

expansion, change in atomic positions, occupation numbers, lattice strain and crystal-

lite size can be determined. The structure analysis based on diffraction patterns was

performed with the Rietveld method using the Fullprof software package [42]. The

Rietveld method is based on minimizing the difference between experimental and cal-

culated pattern. The model used for refinement is based on structural parameters as

well as parameters determined by the experimental setup.

Crystallite size (D) and micro-strain (∆d/d) effects can be followed by investigat-

ing the angular dependence of the reflection broadening. Micro-strain broadening was

investigated during Li insertion/deinsertion into/from the structure; conversely no

size broadening was detected.

Additionally, to estimate site occupancies of the individual species the relevant

occupation factors were constrained to be 100 % for each site.
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Usually two different sources of X-rays are used; X-ray tubes and synchrotrons. X-

ray tubes are laboratory or conventional X-ray sources where electrons are accelerated

from a heated filament towards a metal anode target (cobalt, copper, molybdenum,

silver etc.). After the electrons strike the target, they lose some of the energy eiher as

Bremsstahlung or as characteristic radiaion. In synchrotron sources, relativistic elec-

trons are stored in a storage ring which are accelerated towards the center of the ring

by moving in a circular orbit and finally emit electromagnetic radiation [43] in a narrow

cone in forward direction.

In this study, some of the in situ diffraction experiments during electrochemical

cycling and ex situ experiments were performed at the high resolution powder diffrac-

tion beamline (P02.1) at PETRA-III, DESY, using synchrotron radiation with an energy

of 60 keV (λ = 0.20726 Å) and exposure time between 5 seconds and 2 minutes per

pattern. The initial powders were filled in glass capillaries with a diameter of 0.5 mm

for ex situ investigations. The diffraction patterns were acquired using a 2D flat panel

detector (Perkin Elmer Amorphous-Silicon detector). A photograph of the beamline is

shown in Figure 4.2.
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Figure 4.2: Overview of the beamline P02.1 at PETRA III, DESY, Hamburg.

The obtained 2D images were integrated to 1D diffraction patterns using the X-ray

image processing program Fit2D [44].

The other ex situ and in situ experiments were performed at the Powder Diffrac-

tion beamline (MSPD) at ALBA (see Figure 4.3), using synchrotron radiation with an

energy of 30 keV (λ=0.42477 Å) and exposure between 20 seconds and 2 minutes. The

initial powders were again filled in glass capillaries with a diameter of 0.5 mm for ex

situ investigations. The diffraction patterns at the MSPD beamline at ALBA are ob-

tained using a MYTHEN 1D Position Sensitive Detector [45].
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Figure 4.3: Overview of the beamline MSPD at ALBA, Barcelona.

4.3.2 Neutron Diffraction

Neutrons are particles without charge and interact only with the nucleus and not

with the electron cloud around the atom as, for instance, X-rays. Since the neutron

scattering length shows a very different behavior compared to the atomic form factor

for X-ray scatterig, especially light atoms ( eg. H, C, N, O, Li etc.) can be much bet-

ter detected with neutron diffraction compared to X-ray diffraction [46]. Furthermore,
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in some cases a much stronger contrast exists between scattering species in neutron

diffraction than compared to XRD. Moreover, due to the spin interaction between neu-

trons and magnetic moments in the structure information about the magnetic ordering

can be obtained which is not possible with X-rays.

The neutron datasets in this study were collected at the beamline Spodi, FRM II

using a 2D multidetector and a Ge(551) monochromator [47]. The wavelength was

estimated to 1.54831(2) Å (using Si NIST 640b standard) and zero-shift is 0.083(3)◦2θ.

The materials were filled in a vanadium container, the data were collected at room

temperature and the time for one measurement was 8 hours per sample.

4.4 Morphology Studies

4.4.1 Scanning Electron Microscopy (SEM)

A tungsten filament or a field emission gun is used to generate an electron beam

which is accelerated, then it scans the surface of the sample passing through some sys-

tem apertures and electromagnetic lenses. The electrons of the electron beam, hitting

the sample surface, penetrate into the sample and are scattered by the electrons and

nuclei of the sample atoms. The scattering can be inelastic or elastic. As a result of

the interaction of the sample with the incident beam, electrons and X-rays are ejected

from the sample which are collected by a suitable detector and then monitored by the

microscope operator.

The morphology of the particles was analyzed with a Zeiss Supra 55 SEM with pri-

mary energy of 15 keV and an in-lens detector. Before acquiring SEM images, a layer

of 8 nm Au/Pd (Au = 80 % and Pd = 20 %) was sputtered on the surface of the samples

using a DC sputtering device (SCD-050, Baltec) to reduce charging effects. Backscat-

tered electron images were also collected for chosen samples. The backscattered elec-
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trons are atomic mass of the nuclei sensitive which has an advantage to distinguish

lighter elements from the heavier ones. Since the elements with higher atomic number

backscatter electrons more efficiently than the one with lower atomic number, heavier

elements will be brighter than the lighter one on the backscattered electron images.

4.5 Brunauer-Emmett-Teller (BET) Surface Analysis Tech-

nique

Brunauer-Emmett-Teller (BET) is the most common technique for determination

of the surface area. In this technique, the analyte sample is exposed to a gas or vapour

which is adsorped on the surface of the sample. The weak forces (van der Waals forces)

occur between the adsorbate gas molecules and the adsorbent surface area of the sam-

ple due to physical adsorption. The amount of adsorbate gas on the surface is then

calculated.

For BET surface area measurements of the samples, the nitrogen physisorption

measurements were conducted using a Micromeritics ASAP 2020 system at 77 ◦K.

These samples were degassed at 150 ◦C for 12 h prior to the measurements. The

weights of these samples before and after degass were measured and the experimen-

tal densities were used to calculate the BET surface area. The specific surface areas of

these samples were determined according to the BET theory.

4.6 X-Ray Absorbtion Spectroscopy (XAS)

XAS is an element specific spectroscopic characterization method. It is based on

the absorbtion which can be used for studying oxidation states as well as local coordi-

nation of an absorbing atom. Depending on the absorption energy the technique can

be classified either hard or soft XAS. The hard X-rays typically above 2500 eV, predom-
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inantly give bulk information about the sample [48].

The XAS measurements were conducted to Ru-doped and undoped LNMO sam-

ples in this work. XAS measurements on Mn and Ni K-edges were carried out at the

XAS beamline, ANKA, Karlsruhe and for the Ru K-edge at BM 23 beamline at the

ESRF, Grenoble. XAS spectra on electrodes were recorded in transmission geometry

for both Mn and Ni K-edges. However, due to the low amount of Ru in the sample,

fluorescence geometry was preferred for the Ru K-edge measurements. The spectra

were processed using the Demeter software package based on IFEFFIT and FEFF [49].

The X-ray absorption near edge (XANES) spectra of both Ru-doped and undoped sam-

ples at the Mn, Ni and Ru edges were compared with reference materials to obtain the

oxidation states. Since XANES is a fingerprint technique, the position of the X-ray ab-

sorption edge can be correlated to the oxidation state of the absorbing atom. Extended

X-ray absorption fine structure analysis (EXAFS) was done using a structural model

for LiNi0.5Mn1.5O4 with Fd3m space group.

4.7 Mössbauer Spectroscopy

Mössbauer spectroscopy is an element-specific spectroscopic technique that makes

use of the recoil-less resonant emission and absorption of γ rays by specific nuclei

(mostly Fe; sometimes Sn, Sb, Eu) in solids. A radioactive source is used to probe

transitions between an excited state and the ground state of this nucleus. Different

interactions of the nucleus with its electronic environment (Coulomb interaction with

electron density, quadrupolar interaction with electric field gradients, Hyperfine inter-

actions with local magnetic fields) give information about the charge state of the central

ions, the coordination number, the type of ligands, bond properties, site symmetries,

electronic spin states, and magnetic couplings [50].

Fe Mössbauer spectroscopic measurements were performed in transmission mode
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at room temperature using a constant acceleration spectrometer with a 57Co(Rh) source

in this work. Isomer shifts are given relative to that of α-Fe at room temperature.

4.8 Nuclear Magnetic Resonance Spectroscopy (NMR)

Solid state MAS NMR spectroscopy is an element-specific spectroscopic method

that can be used on a large number of elements in order to investigate local structures

around these elements as well as dynamics of ions in condensed matter [51–53]. The

sample is located in a magnetic field of typically several T and radiofrequency fields in

the MHz regime are used to excite transitions between the Zeeman levels of the nuclear

ground state. Different interactions of the nucleus with its electronic environment, in-

cluding the shielding of the external field by binding electrons and quadrupolar in-

teraction with electric field gradients, influence the spectra and thus give information

about local environments around the nuclei. For powder materials, fast spinning of

the sample (Magic Angle Spinning (MAS)) is necessary to obtain high resolution in the

spectra.

NMR is both sensitive to the coordination environment of the nuclear probe, e.g.

7Li, and to the electronic configuration in the proximity of the nucleus [54, 55]. Para-

magnetic ions in the surrounding of the lithium ions have strong effects on the NMR

spectra due to the Fermi-contact mechanism, i.e. the transfer of spin density from the

unpaired electrons of the paramagnetic ions to the lithium nucleus.

In the present study, the 7Li magic-angle spinning (MAS) nuclear magnetic reso-

nance (NMR) spectroscopy was performed on a Bruker Avance 200 MHz spectrometer

with a magnetic field of B0 = 4.7 T, which is equivalent to a 7Li Larmor frequency of 77.8

MHz. An aqueous 1M LiCl solution was used as the reference for the chemical shift of

7Li (0 ppm). 7Li MAS NMR experiments were performed using 1.3 mm zirconia rotors

at a spinning speed of 60 kHz.
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4.9 Thermogravimetry (TG) and Differential Scanning

Calorimetry (DSC) Analyses

To understand the thermal behavior of the electrode material, simultaneous Ther-

mogravimetry (TG) and Differential Scanning Calorimetry (DSC) Analyses were car-

ried out using a Model STA 449 C (Netzsch, Germany) analyzer. TG is the technique

that measures the difference of the mass obtained during heat treatment. The more the

mass loss of samples indicates the more the degradation occurs. On the other hand,

DSC is the technique to determine some thermal points like melting point, glass tran-

sition of materials, phase changes, crystallization, heat capacity etc.

The thermal responses were detected over the broad temperature range by scan-

ning at a fixed heating rate. In this work, the temperature range was varied for the

initial and the charged electrodes but heating rate was kept constant at 5 ◦C/min. The

analyte powders were filled in an alumina crucible. The alumina crucible has been also

used as reference for the calibration measurements. Additionally, thermal treatments

have been applied under argon flow.

In order to perform thermal stability experiments of electrode samples, a powder

mixture consisting of 80 % (w/w) active material, 10 % (w/w) super C 65 carbon (TIM-

CAL) and 10 % (w/w) polyvinylidenefluoride (Solef PVdF 6020 binder, Solvay) was

grinded in a mortar. Later, the initial powder mixture of these three components were

pressed with ∼ 3 tons to obtain a pellet with 8 mm diameter. The pellets were then

charged up to 5 V with a charging rate of C/15. The charged samples were washed

with DMC in argon atmosphere in order to remove the electrolyte residues. Finally, si-

multaneous TG-DSC was performed to obtain the thermal behavior for initial electrode
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samples and fully charged samples under heat treatments.

4.10 Electrochemical Characterization

4.10.1 The Components in the Electrochemical Test Cells

4.10.1.1 Electrodes

• The Working Electrode: In this work, all of the working electrodes were pre-

pared by mixing 80 % (w/w) of active material, 10 % (w/w) super C 65 carbon

(TIMCAL) which is used as conductive agent and 10 % (w/w) polyvinylidene-

fluoride (Solef PVdF 6020 binder, Solvay) binder which is used to keep the active

material and the conductive agent together, in N-methyl-2-pyrrolidone (NMP,

Sigma-Aldrich) to get a slurry. The obtained slurry was coated on a special alu-

minium foil (which is almost pure and used in battery applications) with wet

thicknesses of 120 µm and 300 µm. They were dried at 100 ◦C, punched out with

a diameter of 1.2 cm and finally pressed with 7 tons/cm2. Before assembling the

test cells, the electrodes were re-dried in vacuum oven in the Ar filled glovebox.

The mass loading and the final electrode thickness for 120 µm wet thickness coat-

ings are ∼2 mg and 12 µm and for 300 µm wet thickness coatings ∼4.5 mg and 25

µm.

• The Counter Electrode: A lithium metal foil (Alfa Aesar) which has high purity

(99.9 %) with 0,75 mm thickness and 10 mm diameter was used as the counter

electrode in the Swagelok®-type test cells and in situ cells. In the coin cells,

lithium metal foil (Good Fellow) with high purity (99.9 %), 0.12 mm thickness

and 12 mm diameter was used as the counter electrode.
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4.10.1.2 Electrolyte

In this work, the LP30 Selectipur® electrolyte supplied from Merck which is 1M

LiPF6 in ethylene carbonate (EC): dimethyl carbonate (DMC) = 1:1 was used.

The common lithium ion battery electrolytes are solutions of LiPF6 salt in a solvent

blend of ethylene carbonate and various linear carbonates such as dimethyl carbonate,

diethyl carbonate and ethylmethyl carbonate. Among these components , ethylene

carbonate is essential for good solid-electrolyte interface (SEI) and LiPF6 has low cost,

high conductivity, good SEI formation properties, ability to effectively passivative an

Al foil current collector and is the most appropriate salt for high voltage materials .

LiPF6 salt has limited chemical stability but is thermally stable up to 107 ◦C in

a dry inert atmosphere (< 10 ppm H2O)[56]. The other disadvantage is unavoidable

detrimental HF contamination of its solutions. However, due to properties like good

anodic stability, high solubility in polar aprotic solvents and thus yielding highly con-

ductive solutions, the non-explosive and relatively non-poisonous behavior, it is the

preferred electrolyte salt used in practical lithium ion batteries. Moreover, its decom-

position path is a simple dissociation which is shown in Equation 4.10.1. LiPF6 can be

a source of powerful Lewis acid PF5 under appropriate conditions [57].

LiPF6 → LiF + PF5 (4.10.1)

Because P-F bonds are highly susceptible to hydrolysis, in the presence of even trace

amounts of water (∼300 ppm) in the electrochemical cell, POF3 and HF will be formed

(Equation 4.10.2) [56].

PF5 +H2O → POF3 + 2HF (4.10.2)

A rise in temperature will, of course, accelerate the formation of these species and their
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further reaction with the solvents. Total reaction is then shown in equation 4.10.3:

LiPF6 +H2O → LiF + POF3 + 2HF (4.10.3)

HF attack is especially dangerous for Mn-based spinel materials which causes Mn dis-

solution into electrolyte that results poor electrochemical performance. Therefore, it

is important to keep the humidity low which is <15 ppm H2O in standard battery

electrolytes.

4.10.1.3 Separator

As a medium of ionic transportation in the test cell and also for the separation of

the anode and the cathode material to prevent the short-circuit inside the cell, a glass

microfiber filter supplied from Whatmann® (GF/D 70mm Ø) with 12 mm diameter

was used. For the coin cells, the Celgard® trilayer PP/PE/PP battery separator with

16 mm diameter was used.

4.10.2 Layout of the Test Cells

4.10.2.1 Ex situ electrochemical experiments

Ex situ electrochemical experiments have been carried out by using two electrode

Swagelok®-type test cells (see Figure 4.4) which were assembled in an argon-filled

glove box with lithium foil (Alfa Aesar) as anode, LP30 (1 M LiPF6 in ethylenecar-

bonate (EC):dimethylcarbonate (DMC) = 1:1) as electrolyte and glass microfiber filters

(Whatmann®GF/D 70mm Ø) as separator. 200 µL electrolyte and two pieces of sep-

arators with 12 mm diameter have been used for each test cell.
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Figure 4.4: Shematic drawing of two electrode Swagelok®-type test cell.

4.10.2.2 In situ electrochemical experiments

For the in situ investigations of selected samples at the synchrotron facilities, an

in situ cell design as shown in Figure 4.5 was used [58]. The cell housing is made of

stainless steel. The windows of the cell for the beam are sealed with thin glass discs

(∼100 µm), fixed with a high-density polyethylene foil by heating up to 180 ◦C. The

procedure of assembling these in situ cells is the same as for Swagelok®-type cells.
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Figure 4.5: Shematic drawing of the test cell for in situ investigations (reproduced with
permission from Herklotz et.al, 2013).

The sample holder can hold four in situ cells (See Figure 4.7, left) that can be auto-

matically interchanged by a motor allowing in situ measurements of 4 cells cycling in

parallel.

Another cell design for the in situ investigations is a coin cell design (CR2025,

CR2032, CR2016 etc.). There are holes in the housing of the coin cells, which allow the

beam passing through the sample. These holes were then sealed either with Kapton

foil or aluminated Kapton foil, using the acid modified polyethylene (PE) foil as glue,

by heating them up to 180 ◦C (see Figure 4.6). For the in situ coin cell setup, the same

electrolyte was used. However, in this case, one piece of Celgard® trilayer PP/PE/PP

separator (soaked in the electrolyte minimum 8 hours) and thin lithium foil (0.12 mm

thickness) were utilised.
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Figure 4.6: Sealing the in situ coin cells.

The sample holder can hold eight in situ coin cells (See Figure 4.7, right) that can be

automatically interchanged allowing cycling of eight cells in parallel again controlled

by rotation motor.

Figure 4.7: In situ cell (left) and in situ coin cell (right) holders.
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4.10.3 Electrochemical Cycling Experiments

4.10.3.1 Instrument

A VMP (Perkin Elmer Instruments, USA) multichannel potentiostat controlled by

computer with the program EC-Lab was used to perform electrochemical experiments.

The channels were placed in a temperature controlled climate chamber which allows

to perform electrochemical experiments at different temperatures.

4.10.3.2 Techniques

There are several techniques, which can be applied to test the electrochemical per-

formance of the cells. In this research, two of these were mainly used such as;

X Cyclic Voltammetry (CV)

X Galvanostatic Cycling with Potential Limitation (GCPL )

Cyclic Voltammetry (CV):

The CV technique enables to measure the current resulting from oxida-

tion/reduction reactions during scanning of the potential between two given values

at a fixed rate. The CV technique is usually used for determining the electrochemical

activity regions in the working electrodes. Additionally, it provides information on the

properties of redox reactions. Figure 4.8 shows an example for cyclic voltammetry of a

LiNi0.5Mn1.5O4 spinel cathode. A reversible electrochemical activity can be observed at

around 4 V which is attributed to the Mn3+/Mn4+ redox couple [59, 60]. The two peaks

in the region of 4.5-4.9 V during oxidation and reduction processes can be attributed to

the Ni2+ 
 Ni4+ + 2e− reactions [1, 2, 5, 7, 59–61].

In this work, the scan rate used for the CV experiment was always 0.1 mV s−1.

However, the voltage range was varied depending on the active material investigated.
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Figure 4.8: Cyclic Voltammogram of LiNi0.5Mn1.5O4 spinel cathode material.

Galvanostatic Cycling (GCPL):

In this technique, a constant current (which is related to the C-rate) is set with

potential limitations of working and counter electrodes. The changes of potential be-

tween the given range with time are recorded. The results of Galvanostatic cycling are

usually presented as E (voltage) vs. t (time) or E vs. specific capacity (mAh g−1). An

example of galvanostatic cycling is shown in Figure 4.9.
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Figure 4.9: Galvanostatic cycling of LiNi0.5Mn1.5O4 spinel cathode material.

In this work, GCPL technique is applied in order to perform cycling stability and

rate capability performances. Cycling stability performance of a battery which is re-

lated to its cycle life as well as having a good performance at different current rate are

very important for its applications. The current rate was kept constant (C/2) during

charging and discharging processes for cycling stability performances. The rate ca-

pability experiments were carried out by keeping the charging current rate constant

(C/2) and applying different discharging current rates such as 1 C, 5 C, 10 C and 20 C.

37





CHAPTER 5. RESULTS AND DISCUSSIONS

Chapter 5

Results and Discussions

5.1 LiNi0.5Mn1.5O4 Spinel as High-Volt Cathode Material

5.1.1 Structural Analyses

LiNi0.5Mn1.5O4(LNMO) powders synthesized at 800 ◦C and 1000 ◦C have cubic

spinel structure and the patterns are indexed with the Fd3m space group (see Fig-

ure 5.1). An impurity phase LizNi1-zO (Fm3m) with rock-salt structure is obtained for

LNMO-800 ◦C and LNMO-1000 ◦C powders with phase fractions of 1 % and 3 %,

respectively. This LizNi1-zO phase is a quite well known impurity phase which occurs

as a result of increased oxygen loss from the crystal lattice due to the high synthe-

sis temperature [1] which in turn increases the amount of Mn3+ in the LNMO sample.

The structural parameters obtained from Rietveld refinement based on the synchrotron

data are listed in Table 5.1. In all the diffraction patterns presented in this study, the

observed data are shown as points in red, the calculated profiles are shown as black

line, the corresponding difference between observed and calculated are date shown as

line in blue and the calculated Bragg positions of reflections are shown as the vertical

lines in green colours.
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Figure 5.1: Rietveld refinement results based on synchrotron diffraction patterns of
as prepared a) LNMO-800 ◦C b) LNMO-1000 ◦C materials measured in 0.5 mm
capillaries.

The increase of lattice parameters with increasing synthesis temperature can be

attributed to oxygen loss from the crystal lattice which in turn increases the Mn3+ con-

tent in the sample [1]. Since Mn3+ has higher ionic radius (∼ 0.645 Å) than Mn4+ (∼

0.53 Å) [62], the unit cell would expand.

40



CHAPTER 5. RESULTS AND DISCUSSIONS

Samples
Atomic

Site
x=y=z a(Å)

Volume
(Å3)

Fraction of
impurity phase

%

Overall
Temperature
Factor (Bov)

Rwp(%)

LNMO-
800◦C

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2630(3)

8.1722(1) 546(1) 1 0.38 6.25

LNMO-
1000◦C

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2630(4)

8.1779(1) 547(1) 3 0.39 8.68

Table 5.1: Rietveld refinement results of LNMO samples based on synchrotron diffrac-
tion data (space group Fd3m).

As already mentioned the impurity phase in LNMO spinel sample is usually

treated as LizNi1-zO. However, the careful analysis of recently obtained neutron diffrac-

tion data for the sample reveals that the impurity phase can be better fitted with the

Ni6MnO8 (Fm3m space group) phase. The neutron diffraction pattern of LNMO-1000

◦C is shown in Figure 5.2. The inset figure of Figure 5.2 indicates the zoomed area of

whole pattern where additional two Bragg positions exist (shown with arrows) which

belong to Ni6MnO8 rock-salt structure but not to LizNi1-zO. The phase fraction of

Ni6MnO8 is ∼3 %. This information is not clearly observable in XRD patterns. The

calculated stoichiometry from the refined site occupation factors based on the Rietveld

refinements of neutron data is Li1.02(5)Ni0.45(1)Mn1.55(1)O4.
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Figure 5.2: Rietveld refinement result based on the observed neutron diffraction pat-
tern of as prepared LiNi0.5Mn1.5O4-1000 ◦C powder.

5.1.2 Elemental Analysis (ICP-OES)

Table 5.2 displays the Li/transition metal ratios of the LNMO samples synthesized

at 800 ◦C and 1000 ◦C as determined by ICP-OES. The observed values were calculated

assuming that Li has complete stoichiometry and the results show that no significant

difference is detectable between the samples synthesized at 800 ◦C and 1000 ◦C.

It should be noted that the Ni:Mn ratio obtained from ICP-OES (0.5004 : 1.5172) is

different from that calculated from neuton diffraction results for the spinel phase (0.45

: 1.55). This can be explained on the fact that the ICP-OES provides only the total ratio

of elements in the sample but the stoichiometry calculated from neutron diffraction

corresponds to the specific phase (here the Fd3m phase). The impurity phase is a Ni-

rich phase which is contributing also in ICP-OES.
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Sample
Ratio of Li:

Transition Metals
(expected)

Ratio of Li:
Transition Metals

(observed)

Ratio of Transition Metals
Ni:Mn (observed)

LNMO-800 ◦C 0.5 0.4951 0.5025 : 1.5172

LNMO-1000 ◦C 0.5 0.4956 0.5004 : 1.5172

Table 5.2: The results of ICP-OES analyses of LNMO-800 ◦C and LNMO-1000 ◦C.

5.1.3 Morphology Studies of initial LiNi0.5Mn1.5O4 powder

SEM images of LNMO-800 ◦C and LNMO-1000 ◦C are presented in Figure 5.3a

and b, respectively. The LNMO particles obtained after annealing at 800 ◦C lack well

defined edges and the particle sizes are in the range of 50-200 nm. In contrast, the

particles of the materials synthesized at 1000 ◦C exhibit pseudo-octahedral shape with

smoother surfaces with the size range 1-2 µm for LNMO-1000 ◦C .

Figure 5.3: SEM images of as prepared a) LNMO-800 ◦C, b) LNMO-1000 ◦C powders.
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5.1.4 Electrochemical Performances of LiNi0.5Mn1.5O4 Cathode Ma-

terials at Room Temperature (RT)

5.1.4.1 Cyclic Voltammetry (CV)

In order to determine the electrochemical activity regions contributing to the elec-

trochemical performance of the electrode materials, cyclic voltammetry has been con-

ducted. The electrochemical test cell of LNMO-1000 ◦C cathode material was cycled

between the voltage range of 3.5-5.0 V with the scan rate of 0.1 mV s−1. According to

the 1st and the 10th CV curves of LNMO-1000 ◦C spinel samples shown in Figure 5.4,

there is a reversible electrochemical activity at around 4 V which is attributed to the

Mn3+/Mn4+ redox couple [59, 60] which is still present after 10 cycles.

Figure 5.4: Cyclic voltammograms of 1st cycle and 10th cycle of LNMO-1000 ◦C cathode
material with the scan rate of 0.1 mV s−1 in a voltage range 3.5-5.0 V.

The two peaks in the region of 4.5-4.9 V during oxidation and reduction processes
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are related to the Ni2+/Ni4+ redox couple [1, 2, 5, 7, 59–61].

5.1.4.2 Cycling Stability

Since a lithium ion battery provides energy storage and conversion repeatedly,

the sustainability with good efficiency of these properties play an essential role for

suitability of its applications in real life. Therefore, the better cycle life means the more

demand.

To study cycling stability, all electrochemical experiments were repeated at least

two times for each sample in order to check reproducibility. The cycling stability re-

sults of the first 300 cycles of LNMO synthesized at 800 ◦C and 1000 ◦C with a C/2

charge-discharge rate in the voltage window 3.5-5.0 V which have been repeated 4

times for each sample are shown in Figure 5.5. For the material synthesized at 800 ◦C,

the capacity fading is much higher than the material synthesized at 1000 ◦C. In addi-

tion, LNMO-800 ◦C shows different character compared to LNMO-1000 ◦C until ∼100

cycles where the most ponounced degredation can be seen. In contrast, LNMO-1000

◦C shows very reproducible results in this region. The particles of the LNMO-800 ◦C

sample are nano-sized and not really well shaped (see Figure 5.3). They have a high

surface area which in contact with the electrolyte may cause undesirable side reactions

resulting in poor cycling performance [63]. The reason for the different character for

the first 100 cycles of LNMO-800 ◦C sample might be that due to high surface area

which in contact with the electrolyte may cause the decomposition of the electrolyte

which results in development of solid electrolyte interface (SEI). In contrast, the capac-

ity retention is higher for the material synthesized at 1000 ◦C which could be attributed

to the bigger particle size with pseudo-octahedral shape, smooth surface and reduced

surface area available for parasitic reactions [1]. The avarage capacity retentions after

300 cycles for LNMO-800 ◦C and LNMO-1000 ◦C are 42 % and 79.5 %, respectively [2].
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Figure 5.5: Discharge capacity vs. cycle number plots of LNMO-800 ◦C and LNMO-
1000 ◦C cathode materials cycled at C/2 charge-discharge rate in a voltage range
3.5-5.0 V at RT .

5.1.4.3 Rate Capability

Besides cycle life, the battery should also show good performance at different cur-

rent rates applied. In another words, the delivered capacity obtained at different C-

rates should not differ too much. In this work, the charging rate was hold constant at
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C/2 and the discharge rates were varied for 5 cycles for each rate to investigate the rate

capability of the cathode materials. The high-rate performances of LNMO-800 ◦C and

LNMO-1000 ◦C cathode materials prepared with the wet thickness of 120 µm (mass

loading is ∼2 mg and final electrode thickness is 12 µm without the thickness of Al

foil) and with the wet thickness of 300 µm (mass loading is ∼4.5 mg and final elec-

trode thickness is 25 µm without the thickness of Al foil), respectively, are displayed

in Figure 5.6. After applying high discharge rates, as a last step, the initial discharge

current rate (C/2) was applied again to see if the system regains its initial capacity. The

discharge capacities as percentages of the capacity delivered at C/2 for the two mass

loadings of LNMO samples are also listed in Table 5.3. The samples synthesized at

1000 ◦C have superior high rate-performance compared to the samples synthesized at

800 ◦C. This could also be due to the strong capacity fading of the 800 ◦C sample dur-

ing each cycling. Additionally, when the initial discharge rate (C/2) was applied as a

last step to check the reversibility of the performance of LNMO-800 ◦C sample, it was

observed that the both thin and thick electrodes cannot deliver the same capacity as

they delivered at the beginning for the first 5 cycles. This observation implies that the

electrochemical test cells with LNMO-800 ◦C electrodes have already deteriorated after

applying high discharge current rates. In contrast, the delivered capacities observed

for the first 5 cycles and for the last 5 cycles of LNMO-1000 ◦C electrodes shown in

Figure 5.6 are almost the same for the thin and thick electrodes. That shows that there

are no irreversible impairments which affect the electrochemical test cells seriously.
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Figure 5.6: Discharge capacity vs. cycle number plots of 800 ◦C and 1000 ◦C synthe-
sized LNMO at C/2 charge rate and varied discharge rates for electrodes with a
wet thickness of 120 µm and electrodes with a wet thickness of 300 µm.

Sample

Discharge Capacity

(mAh g−1) at C/2

The discharge capacities as percentage of the

capacity delivered at C/2 for two mass loadings
1C 5C 10C 20C

120µm 300µm 120µm 300µm 120µm 300µm 120µm 300µm 120µm 300µm
LNMO-
800◦C 136 136 95% 95% 83% 83% 74% 74% 67% 64%

LNMO-
1000◦C 134 134 100% 100% 99% 99% 97% 96% 91% 74%

Table 5.3: The discharge capacities obtained at different C-rates for LNMO cathode
materials for two different mass loadings.

Hence, up to 10 C the applied electrode thicknesses and mass loadings do not play

a critical role in the capacities delivered. However, at 20 C the capacities delivered are

much more dependent on the mass loadings. Since the thickness of the electrodes

(mass loading) plays an important roles on rate performances especially at high C-

rates, for the other element doped samples, only the electrodes with the wet thickness

of 120 µm have been used [2].
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5.1.5 Electrochemical Performance of LiNi0.5Mn1.5O4-1000 ◦C Cath-

ode Material at Elevated Temperature (55 ◦C)

5.1.5.1 Cycling Stability

Cycling a battery at elevated temperatures may decrease the internal resistance

thereby speeding up the electrochemical reactions in it which could result in higher

performance at the beginning of the cycling. However, this condition may effect the

cycle life negatively, as it can promote some degradation phenomena which would

occur on each components of the battery mostly at the electrode-electrolyte interface.

The cathode materials have been cycled at 55 ◦C which is the temperature mostly used

in literature [1, 6, 24, 64].

The amount of electrolyte that has been used for the electrochemical experiments

at room temperature was 200 µL. However, the test cells with the same amount of elec-

trolyte showed very fast capacity fading after couple of cycles when the experiments

were carried out at 55 ◦C. This experiments was repeated three times for LNMO-1000

◦C which is shown in Figure 5.7. The sudden decrease in the discharge capacity seems

not to be related with the sample performance but maybe with the stability of the test

cells at elevated temperature. The results of the repeated experiments also show that

the cycling behavior at 55 ◦C is not really reproducible after certain number cycles

which was obtained for all samples investigated in this work. Long term measure-

ments at 55 ◦C cause more reproducibility issues. Therefore, it should be noted that the

cycling stability data obtained at 55 ◦C for the rest of the samples will present where

the reproducible behavior can be seen.
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Figure 5.7: Discharge capacity vs. cycle number plots of LNMO-1000 ◦C cathode mate-
rial cycled at C/2 charge-discharge rate in a voltage range 3.5-5.0 V at 55 ◦C with
200 µL electrolyte.

To check if the capacity fading is related to the electrolyte consumption or drying

during cycling, sequential cycling stability tests of LNMO-1000 ◦C cathode material at

55 ◦C with different amount of electrolyte has been carried out. The best result ob-

tained was with 325 µL electrolyte per test cell (see Figure 5.8). The cells were cycled

between the voltage range of 3.5-5.0 V. All cells have been checked after cycling and

there were no drying out problem of the electrolyte. Another problem might be elec-

trolyte decomposition at high temperature and at high voltages. Because of this reason,

all cycling stability experiments at 55 ◦C have been carried out by using 325 µL elec-

trolyte for all other samples investigated in this work.
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Figure 5.8: Discharge capacity vs. cycle number plots of LNMO-1000 ◦C cathode mate-
rial cycled at C/2 charge-discharge rate in a voltage range 3.5-5.0 V at 55 ◦C with
different amounts of electrolyte.

The LNMO-1000 ◦C cathode material showed good capacity retention when it was

cycled with C/2 and with 325 µl electrolyte at 55 ◦C. It has an initial capacity of ∼ 136

mAh g−1 and a capacity retention of 75 % after 225 cycles. The capacity fading is then

∼ 0.11 % per cycle which is less than in some literatures [24, 34, 65]. The pronounced

capacity fading was obtained after 225 cycles.

Even a small amount of Mn3+ remains in LNMO structure, it has mainly Mn with

tetravalent state which prevents the Mn dissolution in the electrolyte that contains

acidic species. It has been reported that Mn dissolves in the electrolyte containing

acidic species [66, 67] when it has its trivalent state due to a disproportionation reac-

tion;

2Mn3+
(solid) −→Mn4+

(solid) +Mn2+
(solution)[5]
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The reason for the good capacity retention after 225 cycles at 55 ◦C might be the

reduced amount of Mn dissolution into the electrolyte. Additionally, LNMO-1000 ◦C

has micron range sized and good crystalline particles (see Figure 5.3b) with low surface

area. Therefore, side reactions in high voltage region at elevated temperature can be

reduced. The negative effect of these conditions was obtained after relatively high

number of cycles ( after 225 cycles).

5.1.6 Investigations on Structural Evolutions of LiNi0.5Mn1.5O4-1000

◦C Cathode Material during Electrochemical Cycling using Syn-

chrotron Diffraction

Understanding the mechanisms influencing the lifetime of a cell is of greatest im-

portance and within that the structural aspects play a key role. The structural changes

such as phase transitions (if present), lattice parameters, phase ratios, microstructure

parameters (crystallite size, strain) etc. inside the electrode materials during charging

and discharging can be understood with in situ diffraction studies. The study of struc-

tural changes occurring during lithiation / de-lithiation is critical for understanding of

degradation phenomena. In this work , only thick electrodes (wet thickness 300 µm)

with∼4.5 mg active material and 25 µm final thickness were used for all samples for in

situ diffraction studies during cycling in order to obtain enough intensity in diffraction

patterns.

5.1.6.1 Analysis of Synchrotron Diffraction Patterns Obtained During 1st Charging

and Discharging at C/2 Current Rate

Figure 5.9 displays the 1st charging and subsequent discharging voltage profiles

of the LNMO-1000 ◦C cathode material taken during in situ synchrotron diffraction

patterns.
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Figure 5.9: The first charge (black) - discharge (red) voltage profiles corresponding to
the in situ synchrotron diffraction patterns for LNMO-1000 ◦C cathode material
between 3.5-5.0 V cycled at C/2 charge-discharge rate.

The LNMO-1000 ◦C cathode material was cycled with a charge/discharge rate of

C/2 in the voltage range 3.5-5.0 V. Fast experiments with short exposure times at syn-

chrotron sources are essential to monitor structural changes under exactly the same

conditions as during battery operation. This behavior is different from the results of

slow experiments with a laboratory X-ray diffractometer, which can reveal changes

closer to equilibrium, but essentially different from the conditions in an operating en-

ergy storage device. It should be noted that the electrochemical performance obtained

with in situ cell is similar to that obtained with the standard Swagelok®-type cell. The

voltage profiles show a re-intercalation of ∼0.90 moles of lithium into LNMO-1000 ◦C

with in situ cell which was ∼ 0.95 moles of lithium in the case of Swagelok®-type cell.
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Figure 5.10: Selected 2θ regions of in situ synchrotron diffraction patterns of LNMO-
1000 ◦C measured at beamline P02.1 during the 1st cycle.

The structural evolution during charge and discharge processes for LNMO-1000

◦C are displayed in Figure 5.10 for selected 2θ regions, where black and red lines corre-

spond to the charge and discharge regions, respectively. For initial state of charge (up

to x = 0.34), the delithiation occurs via solid solution mechanism. The reflections shift

to higher 2θ values, in accordance with a shrinkage of the unit cell upon lithium extrac-

tion. At higher degree of delithiation, an additional cubic spinel phase appears with

the same space group (Fd3m) as the initial phase, but with a different lattice parameter,

which can clearly be seen in Figure 5.11.
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Figure 5.11: Synchrotron diffraction pattern of Li0.24Ni0.5Mn1.5O4-1000 ◦C observed
during the charging process at∼4.77 V corresponding to 0.24 moles of remaining
Li in the structure.

The second phase in LNMO-1000 ◦C cathode material was observed until the end

of charge (existence of two phases between x = 0.34-0.04 during charging) and re-

versibly continues until approximately half of the Li ions are re-intercalated during

discharge (existence of two phases between x = 0.34-0.04 during discharging). ”x” is

defined as the nominal number of moles of Li that remains in the structure, calculated

from the number of electrons flowing through the circuit. Figure 5.12 displays the evo-

lution of the lattice parameter as a function of the Li content for the LNMO-1000 ◦C

sample. The unit cell parameter of the second cubic spinel phase undergoes a con-

stant decrease and increase during charging and discharging, respectively, similar to

the main cubic spinel phase, which proves that the new phase formed is also electro-

chemically active.
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Figure 5.12: Change in the unit cell parameter as a function of number of moles of Li (x)
remaining in the structure for LixNi0.5Mn1.5O4-1000 ◦C. The red circles represent
the unit cell parameter changes of the additional spinel phase.

Figure 5.13: The phase ratios vs. Li content during cycling for LixNi0.5Mn1.5O4-1000 ◦C.
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Apparently, the phase transition obtained until end of the charge is reversible be-

cause it disappears upon discharging process. The phase fraction analysis shown in

Figure 5.13 supports this assumption.

The shrinkage of the unit cell at the end of the first charge obtained from Rietveld

refinement are 1.18 % and 2.08 % for LNMO-1000 ◦C for both spinel phases at the end

of the 1st charge (see table 5.4). The shrinkage differences are small. The lattice ex-

pansions during discharging are 1.13 % and 2.03 % for both phases of LNMO-1000 ◦C.

They are calculated from the lattice parameter differences between the end of the 1st

charge and the end of the 1st discharge. This indicates the re-insertion of remarkable

amounts of Li ions back into the structure.

LNMO
Lithium content a(Å) Shrinkage/ Expansion( % )

Initial 1 8.1733(1)

End of 1st

charge
0.0370 8.077(2)

8.0034(4)
1.18
2.08

End of 1st

discharge
0.9047 8.1694(2) 1.13

2.03

Table 5.4: Rietveld refinement results based on in situ synchrotron diffraction of
LNMO-1000 ◦C. (The percentage of the shrinkage is the difference between the
initial state and end of 1st charge and the percentage of the expansion is the dif-
ference between the end of 1st charge and end of 1st discharge)

The micro-strain analysis obtained by Rietveld refinement of the LNMO-1000 ◦C

sample is shown in Figure 5.14. An increase in the lattice strain was observed at the

voltage points where the Ni2+/Ni4+ redox couple is active. The lattice strain on the

structure especially when two phases exist deviate considerably. That would cause

much stress on the structure during Li insertion/deinsertion which can negatively in-

fluence the kinetic or cycling stability.
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Figure 5.14: The micro-strain analysis of LiNi0.5Mn1.5O4-1000 ◦C cathode material. The
maximum strain is given in the Fullprof microstructural output file as ∆d

d
× 10−4.

5.1.6.2 Analysis of Synchrotron Diffraction Patterns Obtained During Discharging

at 5 C and 10 C Current Rates

In order to monitor the structural changes during faster discharging, the same in

situ cell already cycled at a C/2 rate was used. The cell was charged a second time at

C/2 and discharged at 5 C and as a last step it was charged a third time at C/2 and

discharged at 10 C. In this section, the structural evolution obtained during discharging

at 5 C and 10 C will be taken into account. The exposure time for one XRD pattern

during fast discharging was 5 seconds and the patterns were obtained from each cell

individually for this experiment in order to get enough XRD patterns to be able to track

structural changes in each voltage range.

Figure 5.15 displays the voltage profiles of the LNMO-1000 ◦C cathode material

charged at C/2 and discharged at 5 C and 10 C, respectively, corresponding to the re-
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spective in situ synchrotron diffraction patterns.

Figure 5.15: The voltage profiles corresponding to the in situ synchrotron diffraction
patterns for LNMO-1000 ◦C cathode material between 3.5-5.0 V charged at C/2
and discharged at 5 C and 10 C, respectively.

The capacity loss can clearly be seen when the discharge rate is increased from 5 C

to 10 C. The 4 V plateau becomes less visible and in addition, the high-voltage plateau

∼4.7 V diminishes for both discharging rates. The delivered discharge capacities at 5

C (131 mAh g−1) and 10 C (123 mAh g−1) are slightly less than those observed with

Swagelok cells (see Figure 5.6 ). The reason for this difference could be attributed to

the bulky construction of the in situ cells which have glass windows sealing those are

not as hermetic as the Swagelok cells against air contact. In addition, thick electrode

with 4.5 mg active material was used which is not optimized for high C-rates.

The structural evolution during the discharge process at 5 C and 10 C for LNMO-

1000 ◦C is displayed in Figure 5.16a and b with selected 2θ regions. The kinetic effects

on structure during cycling processes have not been investigated so far. This new ob-
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servation shows that a faster discharging leads to the existence of a third spinel phase

(Fd3m) which disappeared at the end of the discharging process for both 5 C and 10 C

discharge rates.

Figure 5.16: Selected 2θ regions of the in situ synchrotron diffraction patterns of
LNMO-1000 ◦C measured at P02.1 during discharging at a) 5 C and b) 10 C.
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The results of the Rietveld refinements of the diffraction patterns at 5 C discharge

rate are displayed in Figure 5.17a, b and c showing a change in lattice parameter, phase

fractions and the micro-strain parameters, respectively. Similarly, Figures 5.17d, e and

f show the change in lattice parameter, phase fractions and micro-strain at 10 C dis-

charge rate. According to the evaluation of the diffraction patterns, the third spinel

(Fd3m) phase evolves in the structure during both 5 C and 10 C discharging process

which is absent when cycled at C/2 rate.

At the beginning as well as at the end of the discharging processes, there is only

one spinel phase. This observation indicates that the formation of the second and third

spinel phase is completely reversible and due to the constant changes in the lattice pa-

rameter for all three phases, it can be said that they are involved in the electrochemical

reactions, like in the process at C/2 rate. Moreover, the lattice strain observed during

5 C and 10 C discharge rate is higher than that at C/2.
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Figure 5.17: Structural parameters from synchrotron diffraction patterns of LNMO-
1000 ◦C measured at beamline P02.1 during discharging at 5 C and 10 C. a)
Change in the lattice parameter during 5 C discharging rate b) Change in the
phase ratios during 5 C discharging rate c) Micro-strain analysis during 5 C dis-
charging rate d) Change in the lattice parameter during 10 C discharging rate e)
Change in the phase ratios during 10 C discharging rate f) Micro-strain analysis
during 10 C discharging rate.

It can be concluded that the Li de-/intercalation in LNMO takes place via both

solid solution mechanism and phase transition depending on the state of charge. Ad-

ditionally, our in situ experiments with different C-rates show that the character of the

structural changes depends on the current density applied. The structure undergoes

62



CHAPTER 5. RESULTS AND DISCUSSIONS

extra phase transition when the current rate was increased which causes higher strain

on the lattice that effects the electrochemical performance.

5.2 Ru-doped LiNi0.5−2xRuxMn1.5O4 (x=0.05) Spinel as

High-Volt Cathode Material

This section focuses on the influence of Ru-doping on LNMO concerning

structure, morphology and electrochemical performances. The idea of synthe-

sizing LiNi0.5-2xRuxMn1.5O4 material is based on producing octahedral vacancies

in the spinel structure [15]. When Ni is partially replaced with the transition

metal Ru, the oxidation state distribution changes from Li+Ni0.5
2+Mn1.5

3+/4+O4-δ to

Li+Ni0.4
2+Ru0.05

4+Mn1.5
3+/4+O4-δ. As a result, in the ideal case, there will not be 2 moles

of transition metals in the spinel structure but less.

The details on the structure, morphology, cycling stability, rate capability and elec-

trochemical mechanism will be discussed in the following text in comparison with the

parent compound LNMO synthesized at both 800 ◦C and 1000 ◦C. For the comparison

of electrochemical performances like CV, cycling stability and rate capacibility, elec-

trodes with very similar mass loadings were used.

5.2.1 Structural Analyses

Figure 5.18 shows the synchrotron diffraction patterns of LiNi0.4Ru0.05Mn1.5O4

(LNRMO) samples synthesized at 800 ◦C and 1000 ◦C, respectively.
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Figure 5.18: Rietveld refinement results based on synchrotron diffraction patterns of
as prepared a) LNRMO-800 ◦C b) LNRM-1000 ◦C materials measured in 0.5 mm
capillaries.

The materials have cubic spinel structure with Fd3m space group as in the case of

the undoped LNMO samples. However, these materials are phase pure, no additional

impurity phases are detectable with synchrotron diffraction. This observation implies

that Ru doping suppresses the formation of an additional phase. In other words, Ru

doping makes the structure more stable against formation of second phase. Moreover,

the obtained lattice parameters listed in Table 5.5 are larger for the Ru-doped samples

than the undoped ones. The ionic radii of Ni2+ and Ru4+ are 0.69 Å and 0.62 Å, respec-
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tively. Because of this difference, it is expected that the Ru-doped samples should have

smaller lattice parameters than the parent LNMO samples. The reason for a larger lat-

tice parameter might be due to a higher amount of oxygen deficiency for the Ru-doped

samples, hence, resulting in a higher amount of Mn3+ which has larger lattice param-

eter (0.645 Å) than Mn4+ (0.53 Å).

Samples
Atom
Site

x=y=z a(Å)
Volume

(Å3)

Fraction of
impurity
phase %

Overall
Temperature
Factor (Bov)

Rwp(%)

LNRMO-
800◦C

Li8a
Ni16d

Mn16d

Ru16d

O32e

0.125
0.500
0.500
0.500

0.2631(3)

8.1830(1) 548(1) - 0.36 5.12

LNRMO-
1000◦C

Li8a
Ni16d

Mn16d

Ru16d

O32e

0.125
0.500
0.500
0.500

0.2633(3)

8.1889(1) 549(1) - 0.44 6.8

Table 5.5: Rietveld refinement results of LNRMO samples based on synchrotron
diffraction data (space group Fd3m).

The neutron diffraction data of initial LNRMO-1000 ◦C powder also shows that

the material is phase pure and again confirms that Ru is inside the spinel structure on

the 16d site (see Figure 5.19). Since the scattering lengths are different for Ni, Mn and

Ru (10.3 fm, -3.73 fm and 7.03 fm, respectively), it is possible to obtain their stoichiome-

tries by refining the site occupancies independently for all three cations. The calculated

stoichiometry from refined site occupation factors (which were refined independently)

based on the Rietveld refinements of neutron data is Li1.0512Ni0.4044Ru0.04224Mn1.5552O4.

This shows a slight Mn excess.
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Figure 5.19: Rietveld refinement results based on neutron diffraction pattern of as pre-
pared LNRMO-1000 ◦C powder.

5.2.2 Chemical Analysis (ICP-OES)

Table 5.6 gives the Li/transition metals ratios of the LNRMO samples synthesized

at 800 ◦C and 1000 ◦C as determined from ICP-OES analysis. The observed values were

calculated assuming that Li has complete stoichiometry and the results show that no

significant difference is detectable between the samples synthesized at 800 ◦C and 1000

◦C.

Sample
Ratio of Li:

Transition Metals
(expected)

Ratio of Li:
Transition Metals

(observed)

Ratio of Transition Metals
Ni:Mn:Ru (observed)

LNRMO-800 ◦C 0.5128 0.5071 0.4048 : 1.4853 : 0.0421
LNRMO-1000 ◦C 0.5128 0.5071 0.3931 : 1.4853 : 0.0439

Table 5.6: The results of ICP-OES analyses of LNRMO-800 ◦C and LNRMO-1000 ◦C.
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5.2.3 Morphology Studies of initial LiNi0.4Ru0.05Mn1.5O4 powder

SEM images of LNRMO-800 ◦C and LNRMO-1000 ◦C are presented in Figure

5.20a-b, respectively. The LNRMO particles obtained after the annealing at 800 ◦C have

similar properties as the parent LNMO samples. They also lack well defined edges and

the particle sizes are in the range of 50-200 nm. In contrast to the LNRMO-800 ◦C, the

particles of the materials synthesized at 1000 ◦C exhibit pseudo-octahedral shape with

smoother surfaces and a size range of 0.5-1 µm for LNRMO-1000 ◦C.

Figure 5.20: SEM images of as prepared a) LNRMO-800 ◦C, b) LNRMO-1000 ◦C pow-
ders.

5.2.4 X-Ray Absorption Spectroscopy (XAS) Analysis of LNRMO-

1000 ◦C in Comparison with LNMO-1000 ◦C

To study the influence of Ru doping on the oxidation state of Mn and Ni, X-ray ab-

sorption near edge (XANES) spectra were analyzed for LNMO-1000 ◦C and LNRMO-

1000 ◦C samples. By comparing the XANES region of the Mn K-edge of both LNMO-

1000 ◦C and LNRMO-1000 ◦C with the standard MnO2, it may be concluded that the

Mn in both systems predominantly exist as Mn4+ (see Figure 5.21).
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Figure 5.21: XANES of the Mn K-edge, for LNMO-1000 ◦C and LNRMO-1000 ◦C sam-
ples, as well as for the reference material MnO2.

Direct evidence of the presence of Mn3+ may not be obtained from XANES, as the

concentration of Mn3+ is too low to be detected. Recently, Rana et al. has correlated the

Mn-O bond distance obtained from the extended X-ray absorption fine structure spec-

tra (EXAFS) fitting to the average oxidation state of the Mn [68]. The present EXAFS

fitting for both LNMO and LNRMO provides a Mn-O bond distance of 1.90 Å (see

Table 5.7) which may be assigned to an average Mn-O bond distance lying between

Mn3.5+- O and Mn4+- O. The EXAFS fit for both LNMO and LNRMO at the Mn edge

is shown in Figure 5.22.
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Figure 5.22: Fourier transform Mn K-edge fit of a) LNMO-1000 ◦C and b) LNRMO-1000
◦C.

It should be emphasized that any quantification of Mn3+ is limited by the avail-

able data range (≈ 2∆k∆R/π) where ∆k is the range of Fourier transform and ∆R is

the range in direct space R over which the fit is evaluated. By comparing the measured

Ni-edges with a NiSO4 reference spectrum, it can be seen that Ni exists as Ni2+ in both

the Ru-doped and undoped system (see Figure 5.23).

Figure 5.23: XANES of the Ni K-edge, for LNMO-1000 ◦C and LNRMO-1000 ◦C sam-
ples, as well as for the reference material NiSO4.

The EXAFS fitting at Ni K-edge for both doped and undoped systems provides a
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bond distance for Ni-O of 2.05 Å, which may be assigned to a Ni2+- O bond distance

(see Table 5.7). The EXAFS fitting for both LNMO and LNRMO spectra at the Ni K-

edge is shown in 5.24.

Figure 5.24: Fourier transform Ni K-edge fit of a) LNMO-1000 ◦C and b) LNRMO-1000
◦C.

Although an identical structural model was used to fit both Mn and Ni edges, a

statistically better fit was observed for the Ni edge. This may be further attributed to

the presence of a mixed valance state of Mn which was not taken into account for fit-

ting. To confirm the presence of Ru inside the spinel structure the Ru K-edge spectra

of the Ru-doped samples were analyzed. By comparing the Ru K-edge XANES spectra

of the doped system with the reference spectra of RuO2 it may be concluded that Ru

exists as Ru4+ (see Figure 5.25a).
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Figure 5.25: a)XANES of the Ru K-edge for LNRMO-1000 ◦C, as well as for the refer-
ence material RuO2 b) Fourier transform Ru K-edge fit of LNRMO-1000 ◦C.

Furthermore, to understand the local coordination of the Ru, the EXAFS region of

the XAS spectra was analyzed. The Fourier transformation (FT) of the EXAFS spectra

to the r space revealed two high amplitude peaks, one at low r value (between 1 and 2

Å) and another at high r value (between 2 and 3 Å) (see Figure 5.25b). This is consistent

with the FT pattern obtained at the Ni as well as Mn edges. Thus, the Ru is expected to

be present inside the spinel structure. Finally the EXAFS fitting at the Ru K-edge pro-

vided a Ru-O bond distance of 2.02 Å and 2.94 Å for Ru-Ni/Mn, respectively, which

are the expected values for Ru occupying the 16d Wyckoff position in the spinel struc-

ture. The larger Ru-Mn/Ni bond distance correlate very well with the larger lattice

parameter observed for the LNRMO sample comparing to LNMO.
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LiNi0.5Mn1.5O4 LiNi0.4Ru0.05Mn1.5O4

rMn-O1(Å) 1.902(5) 1.903(6)

DW-Mn-O1(Å 2) 0.0035(6) 0.0032(6)

rMn-Mn(Å ) 2.890(5) 2.890(5)

DW-Mn-O1(Å 2) 0.0036(5) 0.0033(4)

rNi-O(Å) 2.047(4) 2.046(5)

DW-Ni-O(Å 2) 0.0062(5) 0.0056(7)

rNi-Mn(Å) 2.920(3) 2.913(4)

DW-Ni-Mn(Å 2) 0.0053(3) 0.0049(4)

rRu-O(Å) - 2.017(9)

DW-Ru-O(Å 2) - 0.002(1)

rRu-Mn(Å) - 2.940(8)

DW-Ru-Mn(Å 2) - 0.0030(9)

Table 5.7: EXAFS fit results obtained for Mn, Ni, and Ru K edges.

5.2.5 Electrochemical Performances of LiNi0.4Ru0.05Mn1.5O4 Cath-

odes at Room Temperature (RT)

5.2.5.1 Voltage Profile Comparison of LNMO-1000 ◦C and LNRMO-1000 ◦C Cath-

ode Materials

The voltage vs. discharge capacity plots of LNMO and LNRMO synthesized at 800

◦C and 1000 ◦C cycled with C/2 charge-discharge rate for the 3rd cycle are shown in

Figure 5.26. The Ru-doped samples exhibit higher 4 V region electrochemical activity

than LNMO as revealed from the larger plateau obtained at 3.8-4.4 V voltage range
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(see inset of Figure 5.26).

Figure 5.26: Voltage vs. 3rd discharge capacity curves of LNMO-800 ◦C (black), LNMO-
1000 ◦C (red), LNRMO-800 ◦C (green) and LNRMO-1000 ◦C (blue) cathodes cy-
cled at a charge discharge rate of C/2 in a voltage range 3.5-5.0 V.

As the 4 V electrochemical activity directly correlates to the amount of Mn3+ in the

sample, the above observation points out to a higher Mn3+ content in LNRMO (0.173

moles in LNRMO-800 ◦C and 0.183 moles in LNRMO-1000 ◦C calculated from the ca-

pacity obtained at the 4 V region) in comparison with LNMO (0.1 moles in LNMO-800

◦C and 0.109 moles in LNMO-1000 ◦C calculated from the capacity obtained at the 4

V region). This further indicates that the structure can better tolerate the oxygen non-

stoichiometry in the presence of Ru, without undergoing a phase separation. There are

no big differences between the electrochemical activities in the 5 V region (4.4-5.0 V)

which is attributed to the Ni2+/Ni4+ redox couple. Moreover, no additional electro-

chemically active regions are observed which shows that Ru is not participating in the

73



CHAPTER 5. RESULTS AND DISCUSSIONS

electrochemical reactions.

5.2.5.2 Cyclic Voltammetry (CV)

The comparison of the 1st and the 10th CV curves of LNMO-1000 ◦C and LNRMO-

1000 ◦C spinel samples are shown in Figure 5.27. The electrode mass loadings were

∼2 mg. The CV curves of the LNRMO sample show the same behavior as the parent

LNMO sample. The improvement of the kinetic is especially pronounced for charge.

The larger electrochemical activity during discharging at around 4 V which is attributed

to the Mn3+/Mn4+ redox couple can clearly be observed from the CV curves.

Figure 5.27: Cyclic Voltammograms of a) 1st cycle and b) 10th cycle of LNMO-1000 ◦C
and LNRMO-1000 ◦C cathodes with the scan rate of 0.1 mV s−1 in a voltage range
3.5-5.0 V.
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The two peaks in the region of 4.4-5.0 V during oxidation and reduction are re-

lated to the Ni2+/Ni4+ redox couple [1, 7, 61]. Since the LNRMO-1000 ◦C sample has

less amount of Ni inside the structure, this activity is higher in the LNMO-1000 ◦C

sample (black curve) than in LRMO-1000 ◦C (red curve), as it was expected. Besides

the Mn3+/Mn4+ and Ni2+/Ni4+ electrochemical activity regions, the CV curves do not

have any additional electrochemical activity region which again confirms that Ru4+ is

not electrochemically active in the studied voltage range.

5.2.5.3 Cycling Stability

The cycling stability results of the first 300 cycles of LNMO and LNRMO synthe-

sized at 800 ◦C and 1000 ◦C with a C/2 charge-discharge rate in the voltage window

3.5-5.0 V are shown in Figure 5.28a. For the materials synthesized at 800 ◦C, the capac-

ity fading is much higher than the materials synthesized at 1000 ◦C for both samples.

The reason might be that the particles of the LNMO-800 ◦C and LNRMO-800 ◦C sam-

ples are nano-sized and not really well shaped (see Figure 5.3a and 5.20a). Hence, they

have a higher surface area which in contact with the electrolyte compared to materials

synthesized at 1000 ◦C. That may cause unwanted side reactions and results in poor

cycling performance [63].

Figure 5.28b shows the coulombic efficiencies of all Ru-doped and undoped ma-

terials. The LNRMO-1000 ◦C sample has the highest first cycle coulombic efficiency.

Moreover, both Ru-doped materials have higher first cycle coulombic efficiency than

the parent LNMO samples. However, the coulombic efficiencies during the follow-

ing cycles of the materials synthesized at 800 ◦C are lower than the ones synthesized

at 1000 ◦C. The coulombic efficiencies of both LNMO-1000 ◦C and LNRMO-1000 ◦C

materials increase and reach ∼98-99 % during the following cycles.
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Figure 5.28: a) Discharge capacity vs. cycle number plots of LNMO-800 ◦C, LNMO-
1000 ◦C, LNRMO-800 ◦C and LNRMO-1000 ◦C cathode materials cycled at C/2
rate between 3.5-5.0 V at RT . b) Coulombic efficiencies vs. cycle number plots
for the cycling mentioned in a). Inset figure shows the zoom region of coulombic
efficiency plots for 50 cycles.
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Figure 5.29: Voltage vs. 300th discharge capacity curves of LNMO-800 ◦C, LNMO-1000
◦C, LNRMO-800 ◦C and LNRMO-1000 ◦C cathode materials cycled at a charge-
discharge rate of C/2 in a voltage range 3.5-5.0 V.

Figure 5.29 shows the 300th discharge curves for all four samples where the high

capacity losses of the LNMO-800 ◦C and LNRMO-800 ◦C samples are clearly visible

and the 4 V plateau almost vanishes for both samples. In addition, the high-voltage

plateaus (∼4.7 V) diminish for both samples and are almost absent for LNRMO-800 ◦C.

However, it still exists for the materials synthesized at 1000 ◦C. Even though LNRMO-

1000 ◦C has a larger 4 V electrochemical activity than LNMO-1000 ◦C, it has a bet-

ter cycling stability. The capacity retentions after 300 cycles for LNRMO-800 ◦C and

LNRMO-1000 ◦C are 8.6 % and 84 %, respectively.
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5.2.6 Comparison of Morphology Studies of LNMO-1000 ◦C and

LNRMO-1000 ◦C with SEM after Electrochemical Cycling

In order to get a first insight into the ageing mechanism, LNMO-1000 ◦C and

LNRMO-1000 ◦C have been investigated with SEM before and after 300 cycles (see

Figures 5.30a-d). The 800 ◦C synthesized samples were omitted as they exhibit poorer

electrochemical performance compared to their high-temperature derivative. Figures

5.30a-d show the fresh and the cycled cathodes of LNMO-1000 ◦C and LNRMO-1000

◦C, respectively.

Figure 5.30: SEM images of a) fresh LNMO-1000 ◦C, b) cycled LNMO-1000 ◦C, c) fresh
LNRMO-1000 ◦C and d) cycled LNRMO-1000 ◦C electrodes.

It is interesting to note that the LNMO-1000 ◦C particles undergo severe crack-
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ing after cycling. Comparatively much less particle cracks are observed in the case

of LNRMO-1000 ◦C electrodes. One of the reasons of the observed capacity loss in

LNMO-1000 ◦C might be related to this mechanical degradation which increases the

total available surface area and in turn results in side reactions such as electrolyte de-

composition. Additionally, this could also lead to contact loss which would result in

less material taking part in the electrochemical reaction. This investigation further-

more reveals that ruthenium doping on LNMO also helps to stabilize the electrode

morphology to a certain extent.

5.2.6.1 Rate Capability

A comparison of the high-rate performance of LNMO and LNRMO samples syn-

thesized at 800 ◦C and 1000 ◦C is displayed in Figure 5.31. The charging rate was hold

constant at C/2 and the discharge rates were varied. The samples synthesized at 1000

◦C have superior high rate-performance compared to the samples synthesized at 800

◦C as it was observed for the parent LNMO sample. However, both Ru-doped samples

synthesized at two temperatures have superior high rate performance to their parent

materials. The reason for this superior behavior is the improved Li insertion/deinsertion

kinetics. It has been confirmed that Ru4+ replaces Ni2+ in the spinel structure and as

a result creates octahedral vacancies [2, 15]. These vacancies may enhance the lithium

diffusion, which is taking place from one tetrahedral site to another via the octahedral

sites. Among all the materials LNRMO-1000 ◦C shows the highest absolute capacity

even at high C-rates. This material has the largest unit cell volume (see Table 5.5)

which might support fast diffusion of lithium ions and results in better kinetics of Li

insertion/de-insertion to/from the crystal structure.

The discharge capacities as percentages of the capacity delivered at C/2 of LNMO

and LNRMO samples are listed in Table 5.8. The discharge capacity at 5 C of LNRMO-

1000 ◦C is ∼100 % of the capacity delivered at C/2. Furthermore, the material delivers
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an absolute capacity of ∼139 mAh g−1 at 10 C which is 100 % of the capacity delivered

at C/2. At 20 C an absolute capacity of ∼136m Ah g−1 (98 %) is obtained.

Figure 5.31: Discharge capacity vs. cycle number plots of 800 ◦C and 1000 ◦C syn-
thesized LNMO and LNRMO at C/2 charge rate and varied discharge rates for
electrodes with a wet thickness of 120 µm.

Sample

Discharge Capacity

(mAh g−1) with C/2

The discharge capacity
as percentage of the capacity

delivered at C/2
1C 5C 10C 20C

LNMO-800 ◦C 136 95% 83% 74% 67%
LNMO-1000 ◦C 134 100% 99% 97% 91%
LNRMO-800 ◦C 139 99% 96% 92% 84%
LNRMO-1000 ◦C 139 100% 100% 100% 98%

Table 5.8: The discharge capacities obtained at different C-rates for LNMO and
LNRMO cathode materials.
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5.2.7 Electrochemical Performances of LiNi0.4Ru0.05Mn1.5O4-1000 ◦C

in Comparison with LiNi0.5Mn1.5O4-1000 ◦C Cathode at Ele-

vated Temperature (55 ◦C)

5.2.7.1 Cycling Stability

The cycling stability at 55 ◦C for both LNMO-1000 ◦C and LNRMO-1000 ◦C sam-

ples is shown in Figure 5.32. The LNRMO-1000 ◦C cathode material showed a higher

initial capacity than LNMO-1000 ◦C similar to the performance obtained at RT. How-

ever, they both have similar behavior when they were cycled at 55 ◦C. The most pro-

nounced degradation in LNRMO-1000 ◦C starts earlier than LNMO-1000 ◦C. Consider-

ing the cycling conditions like high voltage range, elevated temperature environment

and high cycling rate, the reason for the faster degradation in LNRMO-1000 ◦C might

be the performance of the cell which was used for days.

Figure 5.32: Cycle number vs. discharge capacity plots of LNMO-1000 ◦C and
LNRMO-1000 ◦C cathode materials cycled at C/2 charge-discharge rate in a volt-
age range 3.5-5.0 V at 55 ◦C.
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In addition, in section 5.2.5.1, where the voltage profiles of LNMO-1000 ◦C and

LNRMO-1000 ◦C samples were compared, it was observed that the LNRMO-1000 ◦C

sample contains a higher amount of Mn3+ (0.183 moles) than LNMO-1000 ◦C (0.109

moles). Since Mn dissolves in the acidic species containing electrolyte when it has its

trivalent state [5, 66, 67], the reason for the faster capacity fading of LNRMO-1000 ◦C

might also be that it has a higher amount of Mn3+ inside the structure. Moreover, el-

evated temperature environment for cycling might accelerate the Mn dissolution pro-

cess in the electrolyte inside the test cells.

5.2.8 Investigations on Structural Evolutions of LiNi0.4Ru0.05Mn1.5O4-

1000 ◦C Cathode Material during Electrochemical Cycling using

Synchrotron Diffraction

5.2.8.1 Analysis of Synchrotron Diffraction Patterns Obtained During 1st Charging

and Discharging at C/2 Current Rate

In order to investigate the structural evolution during cycling, synchrotron diffrac-

tion patterns were obtained when the LNRMO-1000 ◦C cathode was cycled with a

charge/discharge rate of C/2 in the applied voltage range 3.5-5.0 V. According to

the electrochemical performance of in situ cell, a re-intercalation of ∼0.95 moles of

lithium into LNRMO-1000 ◦C was obtained which is the same as that observed with

Swagelok®-type cell.

The structural evolution during charge and discharge is displayed in Figure 5.33

with selected 2θ regions, where black and red lines correspond to the charge and dis-

charge regions, respectively.
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Figure 5.33: Selected 2θ regions of the in situ synchrotron diffraction patterns of
LNRMO-1000 ◦C cathode material.

An additional cubic spinel phase appears in LNRMO-1000 ◦C with the same space

group (Fd3m) as the initial phase and different lattice parameter similar to the case of

LNMO-1000 ◦C. The additional phase starts to appear between x = 0.24 - 0.04 moles

during charging and between x = 0.1 - 0.45 moles of lithium in the structure during

discharging (where ”x” is defined as the nominal number of moles of Li that remains

in the structure, calculated from the number of electrons flowing through the circuit).

The change in lattice parameters during cycling is shown in Figure 5.34a.
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Figure 5.34: a) Change in the unit cell parameter as a function of number of moles of
Li (x) remaininig in the structure for LixNi0.4Ru0.05Mn1.5O4-1000 ◦C b) The phase
ratios vs. Li content in the sample during cycling.

The obtained lattice parameters for the two cubic spinel phases in LNRMO-1000
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◦C are closer to each other than in LNMO-1000 ◦C (see Figure 5.34a). The less change

in the lattice parameters during cycling for LNRMO-1000 ◦C may help to preserve the

morphology of the electrode during cycling (see Figure 5.30).

The unit cell parameters of the second cubic spinel phase undergo a constant de-

crease and increase during charging and discharging, similar to the main cubic spinel

phase, which proves that the new phase formed is also electrochemically active, like

in the parent LNMO cathode. Additionally, the second phase disappears at the end of

discharging process which means that the formation of this second phase is reversible

which in turn is supported by the phase fraction analysis shown in Figure 5.34b.

The micro-strain analysis obtained by Rietveld refinement of LNRMO-1000 ◦C is

shown in Figure 5.35.

Figure 5.35: The micro-strain analysis of LiNi0.4Ru0.05Mn1.5O4-1000 ◦C cathode mate-
rial. The maximum strain is given in the Fullprof microstructural output file as
∆d
d
× 10−4.
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Even though some increase in the lattice strain was observed at the voltage points

where the Ni2+/Ni4+ redox couple is active as it was observed in parent LNMO-1000

◦C, lattice strain during lithium insertion/deinsertion is more stable compared to un-

doped LNMO-1000 ◦C. In another word, the change in the lattice strain of LNRMO-

1000 ◦C during cycling is less than LNMO-1000 ◦C (see Figure 5.14). That makes the

structure more relaxed which might enhanced the cycling performance of the sample.

5.3 Fe doped LiNi0.5−xFe2xMn1.5−xO4-1000 ◦C (x=0.1; 0.15;

0.2) Spinels as High-Volt Cathode Materials

The influence of Fe-doping on the performance of LNMO will be focused in this

section. According to the literature , Fe substitution could improve the thermal stabil-

ity of the spinel system [39]. In addition, the partial substitution of Mn or Ni metals

in LiNi0.5Mn1.5O4 with Fe has been studied mostly and the results shows that Fe sub-

stitution improves the cycling performance and rate capability. Only couple of work

has been submitted about the effect of Fe substitution with both Ni and Mn [22, 25].

However, especially the effects of Fe substitution on structure (formation of bimixture),

thermal stability or electrochemical mechanism was not studied. The new composition

LiNi0.5−xFe2xMn1.5−xO4-1000 ◦C with x=0.1; 0.15; 0.2 will be investigated in detail on

the structure, morphology, electrochemical performance, cycling mechanism etc.

5.3.1 Structural Analyses

The synchrotron diffraction patterns of LiNi0.4Fe0.2Mn1.4O4 (LNF0.2MO),

LiNi0.35Fe0.3Mn1.35O4 (LNF0.3MO) and LiNi0.3Fe0.4Mn1.3O4 (LNF0.4MO) samples

synthesized at 1000 ◦C are presented in Figure 5.36. The Fe-doped samples also have

cubic spinel structure with space group Fd3m but they do not contain any rock-salt

impurity phase as in the parent LNMO. According to the Rietveld refinement based
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on the synchrotron diffraction data, only LNF0.2MO powder is phase pure without any

other impurity phases. The Rietveld refinement results are listed in Table 5.9. When

the amount of Fe increases in LiNi0.5-xFe2xMn1.5-xO4, the lattice parameters increase

and two additional phases, Fe containing cubic spinel Fe3O4 (space group Fd3m) and

a monoclinic Li2MnO3 phase with C2/m space group, appear. The phase fractions of

the Fe3O4 and the Li2MnO3 phases are also directly proportional to the amount of Fe

inside the whole nominal composition.
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Figure 5.36: Rietveld refinement results based on synchrotron diffraction patterns of as
prepared a) LNF0.2MO b) LNF0.3MO and c) LNF0.4MO materials measured in 0.5
mm capillaries. The inset figures indicate zoomed regions where the contribu-
tions from the Fe3O4 and Li2MnO3 phases can be seen (pink circles) in LNF0.3MO
and LNF0.4MO samples but not in LNF0.2MO.
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Samples Atom
Site x=y=z a(Å)

Volume
(Å3)

Fraction of
impurity
phases %

(Fe3O4/Li2MnO3)

Overall
Temperature
Factor (Bov)

Rwp(%)

LNF0.2MO

Li8a
Ni16d
Mn16d

Fe16d
O32e

0.125
0.500
0.500
0.500

0.2649(3)

8.1949(1) 550.35(1) - 0.25 11.1

LNF0.3MO

Li8a
Ni16d
Mn16d

Fe16d
O32e

0.125
0.500
0.500
0.500

0.2626(5)

8.2071(1) 552.80(1) ∼3.5/∼3.5 0.22 14.6

LNF0.4MO

Li8a
Ni16d
Mn16d

Fe16d
O32e

0.125
0.500
0.500
0.500

0.2629(5)

8.2129(1) 554.00(2) ∼8.5/∼4 0.25 13.5

Table 5.9: Rietveld refinement results of Fe-doped samples based on synchrotron
diffraction data (space group Fd3m).

Rietveld refinements based on neutron diffraction data of all Fe-doped LNMO

samples are shown in Figure 5.37. According to these results, all three Fe-doped sam-

ples contain Fe3O4 (Fd3m) and Li2MnO3 (C2/m) phases. The impurity phases were not

detectable with synchrotron diffraction experiments for the LNF0.2O sample. However,

the phase ratios of these impurity phases are very small (0.89 % for spinel Fe3O4 and

1.32 % for Li2MnO3, respectively). Neutron analysis shows that increasing the amount

of Fe in the nominal composition LiNi0.5-xFe2xMn1.5-xO4 leads to an increased amount

of Li2MnO3 and Fe3O4 impurity phases.
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Figure 5.37: Rietveld refinement results based on neutron diffraction patterns of as
prepared a) LNF0.2MO b) LNF0.3MO and c) LNF0.4MO powders.
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The calculated stoichiometry from the obtained site occupation factors after the

Rietveld refinements based on the neutron data are Li0.82176Ni0.38832Fe0.15552Mn1.45632O4,

Li0.87888Ni0.36024Fe0.20736Mn1.43088O4 and Li0.93048Ni0.26064Fe0.30816Mn1.43352O4 for LNF0.2MO,

LNF0.3MO and LNF0.4MO, respectively. It can be observed that there is a slight Mn ex-

cess in all compositions. This can be correlated with the Fe deficiency in the main spinel

phase (Fd3m), LNFe0.2MO, LNF0.3MO and LNF0.4MO which is further confirmed by

the presence of the impurity spinel phase Fe3O4. Moreover, the neutron scattering

lengths of Ni and Fe are very similar (10.3 fm and 9.45 fm, respectively) which could

also contribute to the discrepancy of the calculated values with the nominal composi-

tions.

5.3.2 Morphology Studies of initial LiNi0.5−xFe2xMn1.5−xO4 (x= 0.1;

0.15; 0.2) powders

The particles of Fe-doped LNMO samples exhibit also pseudo-octahedral shape

and LNFe0.2MO possesses smooth surfaces like the parent LNMO material (see Figure

5.38). However, the defined edges and smooth surfaces deteriorate with increasing

amount of Fe in the sample. The layered lines on the particles which can clearly be

seen in LNF0.3MO and LNF0.4MO samples might be related to the Li2MnO3 bimixture

grown in the same grain as the main phase [69].

The particle size is slightly larger and the size distribution is narrower for all Fe-

doped LNMO samples compared to the undoped one which results in lower surface

area available for parasitic reactions. This observation was then confirmed by the

Brunauer-Emmett-Teller (BET) experiments. According to the surface area analysis,

the LNMO sample has the highest surface area and the surface area found by BET

decreases by increasing the amount of Fe inside the structure. The BET surface areas

were found to be 13.40 m2/g, 11.16 m2/g, 4.87 m2/g and 4.76 m2/g for the LNMO,

LNF0.2MO, LNF0.3MO and LNF0.4MO materials, respectively.
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Figure 5.38: SEM images of as prepared a) LNFe0.2MO b) LNFe0.3MO and c)
LNFe0.4MO powders.

5.3.3 Mössbauer Spectroscopic Studies

The Fe Mössbauer spectra of LNF0.2MO, LNF0.3MO and LNF0.4MO are shown in

Figure 5.39.

For the sample with LNF0.2MO, the spectrum can be well described with a single

doublet with isomer shift IS = 0.34 mm/s and quadrupole splitting QS = 0.78 mm/s

(Table 5.10). These parameters confirm that exclusively Fe3+ with high-spin configu-

ration in an octahedral coordination is present [50, 70–73]. The spectra of the samples

with LNF0.3MO and LNF0.4MO are also dominated by this doublet and IS, QS, and the

line width are very similar to those of the sample with LNF0.2MO (Table 5.1). Addi-

tionally, a sextet is present with IS = 0.24 mm/s and a hyperfine field Bhf of about 48 T.
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Its relative area fraction amounts to 28 and 36 % for x = 0.3 and 0.4, respectively. These

values are consistent with the presence of Fe3O4 phase [74]. This sextet is not visible

for LNF0.2MO but might be obscured by the noise level.

Figure 5.39: 57Fe Mössbauer spectra of LNF0.2MO, LNF0.3MO and LNF0.4MO samples
at room temperature. (Experimental data points are shown as white spheres and
the fits are shown as red lines. Subspectra are shown as blue doublets and red
sextets).
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Sample Charge
State IS QS Line Width Bhf

Area
Fraction

LNF0.2O Fe3+ 0.335±0.002 0.781±0.004 0.328±0.005 - 100 %

LNF0.3O Fe3+

Fe3+

0.339±0.001
0.235±0.044

0.775±0.002
-0.226±0.085

0.309±0.003
1.245±0.166

-
47.6±0.3

71.9 %
28.1 %

LNF0.4O Fe3+

Fe3+

0.342±0.002
0.249±0.018

0.788±0.003
-0.075±0.036

0.229±0.004
0.740±0.065

-
47.8±0.1

63.8 %
36.2 %

Table 5.10: Fit parameters of the Mössbauer subspectra shown in Figure 5.39. Isomer
shift IS, quadrupole splitting QS, and line width are given in mm/s. The hyper-
fine field Bhf is given in T.

5.3.4 Nuclear Magnetic Resonance (NMR) Spectroscopic Studies of

LNF0.2MO Cathode Material in comparison with the parent

LNMO-1000 ◦C

Figure 5.40 shows 7Li MAS NMR spectra of the LNMO-1000 ◦C and LNF0.2MO

samples. Both spectra exhibit large NMR shifts of the isotropic peaks and MAS spin-

ning sideband manifolds with similar width.

In the LNMO-1000 ◦C several resonances are discernible in the range between 600

ppm and 1200 ppm. The line shape is very similar to the spectra obtained by Cabana

et al. from samples synthesized at 700 ◦C and 800 ◦C [75]. Deconvolution of our spec-

trum requires at least six contributing resonances with shift values of 725, 829, 893, 959,

1031, and 1113 ppm. This result is consistent with the findings by Cabana et al [75]. The

multiple NMR resonances found in their sample synthesized at 700 ◦C were explained

by two models of the local Mn/Ni distribution based on different degrees of Mn/Ni

disorder.
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Figure 5.40: 7Li MAS NMR spectra of LNMO-1000 ◦C and LNF0.2MO. The isotropic
resonances are labelled with the corresponding shifts. The spinning sidebands
are marked with asterisks.

In the spectrum of LNF0.2MO, one broad peak is observable in the range between

500 ppm and 1100 ppm without any indication of several distinct resonances. A sat-

isfactory fit was achieved by using a single Gaussian function yielding an NMR shift

of 794 ppm. The reduction of the average 7Li NMR shift in the Fe-substituted sample

by about 100 ppm is caused by the substitution of Ni2+ and Mn4+ by Fe3+ in the first

cation coordination sphere around Li. This substitution also leads to a large variety of

local electronic configurations. Therefore, possibly assisted by additional local distor-

tions of the Mn/Ni/Fe-O-Li bonds, superposition of the different contributions might

result in the observed broad featureless peak. In summary NMR spectroscopy confirm
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that the Fe ions are incorporated into the spinel lattice of LNMO-1000 ◦C.

5.3.5 Electrochemical Performances of LiNi0.5−xFe2xMn1.5−xO4 (x= 0.1;

0.15; 0.2) Cathode Materials at Room Temperature (RT)

5.3.5.1 Voltage Profile Comparison of Fe-doped and undoped LNMO-1000 ◦C Cath-

ode Material

Figure 5.41 shows the voltage profile of the 3rd discharge of the Fe substituted

samples compared with the undoped one.

The observation shows that the discharge plateau in the 4 V region where the

Mn3+/Mn4+ redox couple exists is bigger for Fe-doped samples than LNMO-1000 ◦C.

Additionally, this 4 V electrochemical activity becomes more pronounced when the

Fe amount increases in the material which shows that the amount of Mn3+ is getting

higher in the spinel structure. The calculated amount of Mn3+ from the experimental

data (voltage profiles) are 0.139 moles, 0.158 moles and 0.184 moles for LNF0.2MO,

LNF0.3MO and LNF0.4MO, respectively.
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Figure 5.41: Voltage vs. 3rd discharge capacity curves of LNF0.2MO, LNF0.3MO and
LNF0.4MO cathode materials in comparison with the parent LNMO-1000 ◦C cy-
cled at a charge/discharge rate of C/2 in a voltage range 3.5-5.0 V. Inset figure
shows the 4 V region.

5.3.5.2 Cyclic Voltammetry (CV)

It has been reported earlier that there is an electrochemical reaction of Fe3+ 


Fe4+ + e− at around 5.0 V in the Fe-containing spinel [1, 70, 76]. In order to investigate

this effect, the voltage range for Fe-doped samples was increased to 3.5-5.3 V for CV

experiments (see Figure 5.42).
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Figure 5.42: Cyclic Voltammograms of a) 1st cycle and b) 3rd cycle of LNF0.2MO,
LNF0.3MO and LNF0.4MO cathode materials with a scan rate of 0.1 mV s−1 in
a voltage range 3.5-5.3 V.

In the CV curves of Fe containing materials, besides Mn3+/Mn4+ (at round 4 V)

and Ni2+/Ni4+ (at around 4.7 V), there is an additional peak at around ∼5.0 V in the

oxidation step which is reversible and observed at ∼4.9 V in the reduction step in the

first cycle. This could be assigned to the Fe3+/Fe4+ redox couple [1]. In the 3rd cycle,

the peak separation decreases which is the indication of better kinetic for both oxida-

tion and reduction steps. The Mn3+/Mn4+ electrochemical activity is getting larger
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when the amount of Fe increases in the structure, similar to the observation from the

voltage profiles. Since the amount of Ni is decreasing and the amount of Fe is increas-

ing for the LNF0.2MO, LNF0.3MO and LNF0.4MO cathode materials the corresponding

electrochemical activities are changing accordingly. As a result, the Ni2+/Ni4+ electro-

chemical activity decreases and the Fe3+/Fe4+ electrochemical activity increases with

increasing amount of Fe doping into the LNMO, which can be seen more clearly in

Figure 5.42b.

There could also be a contribution to the electrochemical activity from Li2MnO3 in

the first charge at ∼4.7 V and in the following discharge at ∼3.5 V and charge even-

though the whole electrochemical activity cannot be reached [69]. However, this con-

tribution cannot be seen clearly from the CV curves or voltage profiles due to the small

amount of Li2MnO3 impurity phase in the Fe-doped samples.

5.3.5.3 Cycling Stability

Figure 5.43a shows the cycling stability of all Fe-doped cathode materials synthe-

sized at 1000 ◦C compared to the undoped LNMO-1000 ◦C after 300 cycles at room

temperature. They have been cycled with a current rate of C/2 in the voltage range of

3.5-5.0 V.

Among all cathode materials, the LNF0.2MO delivers the highest initial capacity

which is ∼134 mAh g−1. The initial capacities delivered are 124 mAh g−1 and 117.4

mAh g−1 for LNF0.3MO and LNF0.4MO cathode materials, respectively. The high-

est absolute capacity is delivered by LNF0.2MO as it has the lowest amount of im-

purity phases, therefore, more electrochemically active fraction is available per gram.

Concerning absolute capacity the samples can be ordered as LNF0.2MO > LNMO >

LNF0.3MO > LNF0.4MO. Moreover, the LNF0.2MO exhibits the highest capacity reten-

tion (92 %) after 300 cycles at RT.

99



CHAPTER 5. RESULTS AND DISCUSSIONS

Figure 5.43: a) Discharge capacity vs. cycle number plots of Fe-doped and undoped
LNMO-1000 ◦C cathode materials cycled at C/2 rate between 3.5-5.0 V at RT. b)
Coulombic efficiencies vs. cycle number plots for the cycling mentioned in a).
Inset figure shows the zoom region of coulombic efficiency plots for 50 cycles.

The inset in Figure 5.43b shows that LNF0.2MO has the highest first cycle coulom-

bic efficiency. Moreover, all Fe-doped materials have higher first cycle coulombic ef-

ficiency than the parent LNMO. During the following cycles, the coulombic efficiency
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increases for all materials and reaches ∼98 %. Hence, it can be concluded that the

coulombic efficiency in the first cycle is improved by Fe-doping into the LNMO mate-

rial.

Even though the LNF0.3MO and LNF0.4MO have lower BET surface area (4.87

m2/g and 4.76 m2/g, respectively) than the LNF0.2MO (11.16 m2/g) material, their

capacity retention is much lower (89 % and 87 % for LNF0.3MO and LNF0.4MO, re-

spectively, after 300 cycles). It should be noted that the capacity fading increases with

increasing Fe-doping, i.e increasing impurity phases and amount of Mn3+ in the sam-

ple. Hence, the disproportionation of Mn3+ and the dissolution of divalent Mn-ions

in the electrolyte as well as the adverse parasitic reactions of the impurity phases with

the electrolyte could be suspected as reasons for this deteriorating electrochemical per-

formance. Moreover, the involvement of Li2MnO3 phase in the electrochemical reac-

tion could also be contributing to the deterioration. The lowest capacity retention is

observed for LNMO-1000 ◦C (79.5 %). The reason for this inferior electrochemical per-

formance of LNMO-1000 ◦C could be its highest BET surface area (13.40 m2/g) com-

pared to the Fe-doped derivatives. In addition, as it is presented in section 5.3.8 (in situ

synchrotron diffraction investigations), the Fe-doped LNMO samples have a different

electrochemical mechanism and an improved structural stability during electrochemi-

cal cycling which could also be a reason of the enhanced cycling stability [77].

5.3.5.4 Rate Capability

The rate capability performance of all Fe-doped cathodes is shown in Figure 5.44.

The results were obtained in the voltage range 3.5-5.0 V by holding the charging cur-

rent rate constant (C/2) and varying the discharging current rates. Table 5.11 shows

the discharge capacities as percentages of the capacity delivered at C/2 current rate.
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Figure 5.44: Discharge capacity vs. cycle number plots of Fe-doped cathode materials
compared to LNMO-1000 ◦C at C/2 charge rate and varied discharge rates.

Sample

Discharge Capacity

(mAh g−1) at C/2

The discharge capacity
as percentage of the capacity

delivered at C/2
1C 5C 10C 20C

LNMO 134 100% 99% 97% 91%
LNF0.2O 135 100% 100% 99% 96%
LNF0.3O 125 100% 98% 98% 94%
LNF0.4O 116 100% 100% 98% 93%

Table 5.11: The discharge capacities obtained at different C-rates for Fe-doped and
undoped LNMO-1000 ◦C cathode materials.

The discharge capacities delivered by LNF0.3MO and LNF0.4MO samples are lower

than LNF0.2MO and LNMO-1000 ◦C cathode materials (see Figure 5.43). However, all

Fe-doped samples have superior rate capability performance than the parent LNMO-

1000 ◦C, especially at high C-rates applied (10 C and 20 C). Among all cathode mate-

rials, LNF0.2MO has the best performance related to discharge capacities at all C-rates.

This superior high-rate performance of Fe-doped LNMO derivatives could be again

attributed to their high structural stability as well as the improved kinetics during
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electrochemical Li-intercalation/deintercalation which will be discussed in detail in

section 5.3.8.

Moreover, it was showed in previous section that the cycling stabilities of all Fe-

doped samples are better that the parent LNMO-1000 ◦C. In addition, LNF0.2MO has

higher initial absolute capacity than the parent LNMO-1000 ◦C. Taking into account

that the higher rates, 10 C and 20 C, were applied from 15-25 cycles, the superior rate

capability performance of Fe-doped samples at these rates might also be due to its less

capacity degradation compared to LNMO-1000 ◦C. This might result in lower deliv-

ered capacities than LNF0.2MO especially at the higher rates 10 C and 20 C and poorer

rate capability than all Fe-doped samples. In order to clarify the reason behind the en-

hanced high-rate behavior of Fe-doped samples, the cycling stability performance at

high C-rate of LNMO-1000 ◦C and LNF0.2MO cathode materials were conducted with

two different experimental conditions; 1) charging at C/2 - discharging at 20 C (see

Figure 5.45a) and 2) charging at 20 C -discharging at 20 C (see Figure 5.45b). For the

first condition, there is a different behavior for the first couple of cycles in discharge

capacity values for both samples. That observation cannot be seen for the second con-

dition. It is not clear but this behavior might relate with different charge and discharge

rates. Different phenomena can contribute in this case such as structural conditioning,

changing of the morphology of the electrodes or involvement of the SEI etc. Besides

this different behavior, LNF0.2MO delivered a higher absolute capacity than the un-

doped LNMO-1000 ◦C at both experimental conditions applied. Additionally, its ca-

pacity retention is higher than the parent LNMO-1000 ◦C. The enhanced rate capabil-

ity performance of Fe-doped samples may be due to their increased structural stability

and improved Li intercalation/de-intercalation kinetics comparing to LNMO-1000 ◦C.
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Figure 5.45: Cycle number vs. discharge capacity plots of Fe-doped and undoped
LNMO-1000 ◦C cathode materials at a) C/2 charge and 20 C discharge rates and
b) 20 C charge and discharge rate in the voltage range 3.5-5.0 V at RT.
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5.3.6 Electrochemical Performances of LiNi0.4Fe0.2Mn1.4O4 in Com-

parison with LiNi0.5Mn1.5O4-1000 ◦C Cathode Material at Ele-

vated Temperature (55 ◦C)

5.3.6.1 Cycling Stability

Since the LNF0.2MO material exhibited the best cycling stability at RT among all

Fe-doped LNMO spinel materials, its elevated temperature (55 ◦C) cycling perfor-

mance was investigated. Figure 5.46 shows the comparison of cycling stabilities at 55

◦C for LNF0.2MO and undoped LNMO-1000 ◦C. Minimum two cells of each material

with similar electrode mass loadings were cycled at 55 ◦C. For the first 70 cycles, the

cells of each material showed a reproducible behavior which started to differ greatly

in the following cycles. As different from the RT cycling performance, the undoped

LNMO-1000 ◦C exhibited a higher absolute capacity than LNF0.2MO which could be

due to the increased Li+ diffusion at high temperature. Moreover, the parasitic reac-

tions taking place could also add contribution to this increased absolute capacity. Even

though the absolute capacity delivered by LNMO-1000 ◦C is higher, the capacity reten-

tion is again slightly lower than LNF0.2MO.
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Figure 5.46: Discharge capacity vs. cycle number plots of LNF0.2MO and undoped
LNMO-1000 ◦C cathode materials cycled at C/2 in the voltage range 3.5-5.0 V at
55 ◦C.

While LNF0.2MO exhibits 93 % capacity retention after 70 cycles, LNMO-1000 ◦C

shows only 91 % capacity retention at 55 ◦C whereas it is 99 % and 95.5 % at RT after

70 cycles for LNF0.2MO and LNMO-1000 ◦C, respectively. The reason could be again

the increased surface area, hence increased parasitic reactions occurring at elevated

temperature for LNMO-1000 ◦C.

5.3.7 Thermal Stability of Initial and Completely Charged LNMO-

1000 ◦C and LNF0.2MO Cathode Materials

Since various electrochemical reactions occur within the cell which might increase

the temperature and can cause fires or explosions, thermal stability of the electrode

materials is an important parameter for the battery safety. It has already been reported

that Fe containing spinel cathode materials have an increased onset temperature for
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thermal degradation [39]. The thermal stability experiments which are related to the

structural stability of initial and charged samples were performed with TG-DSC anal-

ysis, as well as with XRD.

The TG-DSC analyses of the materials are shown in Figure 5.47. The experiment

was conducted at a heating rate of 5 ◦C/min under Ar. The initial electrodes (which

consist of the mixture of 80 % (w/w) the active material, 10 % (w/w) super C 65 carbon

(TIMCAL) and 10 % (w/w) polyvinylidenefluoride (Solef PVdF 6020 binder, Solvay))

were heated until 400 ◦C. For the completely charged electrodes, the final temperature

was limited to 270 ◦C as it is already reported that the onset temperature of degradation

of completely charged LNMO is 220 ◦C ([39]). Hence, by chosing the temperature

above 220 ◦C, it can be surely assumed that the thermal LNMO-1000 ◦C of degradation

already started and a comparison with LNF0.2MO will illustrate if such a degradation

exists for it as well.

TG profiles show that the weight loss is higher for the charged samples than the

initial samples for both LNMO-1000 ◦C and LNF0.2MO cathode materials. Moreover,

the weight loss is slightly higher for charged LNMO-1000 ◦C (1.15 % at 270 ◦C) sample

than charged LNF0.2MO (1.1 % at 270 ◦C). In DSC profiles, the peak at 170 ◦C corre-

sponds to the melting of PVdF which is the known melting point of commercial PVdF

6020 [39].
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Figure 5.47: TG (left) and DSC (right) profiles in argon at a rate of 5 ◦C/min, for initial
and charged state of LNMO-1000 ◦C and LNF0.2MO cathode materials.

The initial and charged electrodes were subjected to XRD analyses (Mo-Kα1 radi-

ation) before and after TG experiments and the results are shown in Table 5.12.

The bimixture contents in initial cathode mixtures of LNMO-1000 ◦C (3.26 %) and

LNF0.2MO (1.87 %) as well as the lattice parameter of main phases (8.1776(1) Å and

8.1970(1) Å, respectively) slightly increase after the TG experiments. This could be due

to the slight oxygen loss in presence of C under Ar.

Two spinel phases with slightly different lattice parameters (8.0069(1) Å and

8.0839(1) Å) exist in case of LNMO-1000 ◦C after charging. The bimixture content is

3.59 %. The lattice parameters of these two main phases slightly increase (8.0091(1)

Å and 8.091(1) Å), however, a third spinel phase phase was obtained after the TG

experiments (270 ◦C) for charged LNMO-1000 ◦C cathode mixture with a small
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phase fraction (4.4 %) and considerably increased lattice parameter (8.168(2) Å). The

expansion of the lattice parameters after TG experiments are, 0.03 %, 0.09 % and

1.03 %. The disintegration of the structure reveals that the material is not stable to

thermal degradation in charged state. This could be due to the increased oxygen loss

in presence of C under Ar. Since the oxidation states of Ni and Mn are higher on the

charged states which are less stable than their lower oxidation states together with the

high temperature treatments, the material will lose more oxygen than its initial state.

Sample Fraction of
Impurity phase %

Fraction of
Main phase %

Lattice Parameter
(Main phase)

Lattice Parameter
(Impurity phase)

LNMO initial
before TG 3.26 96.74 8.1776(1) Å 8.298(1) Å

LNMO initial
after TG 4.39 95.61 8.1779(1) Å 8.300(1) Å

LNMO charged
before TG 3.59 89.12

7.29
8.0069(1) Å
8.0839(4) Å 8.290(3) Å

LNMO charged
after TG 4.21

65.82
27.31
4.40

8.0091(1) Å
8.091(1)

8.168(2) Å
8.256(1) Å

LNF0.2MO initial
before TG 1.87 98.13 8.1970(1) Å 8.26(1) Å

LNF0.2MO initial
after TG 4.50 95.50 8.1992(1) Å 8.240(2) Å

LNF0.2MO charged
before TG 1.94 98.06 8.0458(1) Å 8.26(1) Å

LNF0.2MO charged
after TG 4.85 95.15 8.1157(2) Å 8.2482(1) Å

Table 5.12: Rietveld refinement results of initial and charged LNMO-1000 ◦C and
LNF0.2MO samples before and after TG experiments based on space group Fd3m.
The mentioned impurity phase in LNMO-1000 ◦C is rock-salt Ni6MnO8 phase
and in LNF0.2MO is Fe3O4 spinel phase.

There is only one main spinel phase in the case of charged LNF0.2MO cathode

material. The lattice parameter (8.04577 Å) slightly increase after the TG experiments

(270 ◦C). The lattice parameter is 8.1157(2) Å after heat treatment and the expansion

after TG experiment for charged LNF0.2MO sample is 0.86 %. The observation shows

that the LNF0.2MO cathode material has different degradation mechanism than the

parent LNMO-1000 ◦C sample which is more stable to a thermal degradation.

109



CHAPTER 5. RESULTS AND DISCUSSIONS

5.3.8 Investigations on Structural Evolutions of Fe-doped LNMO

Cathode Materials During Electrochemical Cycling using Syn-

chrotron Diffraction

5.3.8.1 Analysis of Synchrotron Diffraction Patterns Obtained during Charging

and Discharging at C/2 Current Rate

LNF0.2MO cathode material was cycled with a charge/discharge rate of C/2 in the

voltage range of 3.5-5.3 V in order to investigate the Li intercalation/deintercalation

mechanism. The upper cut-off voltage was extended up to 5.3 V for the LNF0.2MO

cathode for the in situ investigations in order to check any structural changes arising

from the Fe3+
 Fe4+ + e − redox reactions. A re-intercalation of∼0.92 moles of lithium

into LNF0.2MO at the end of the first discharge was observed. This electrochemical

performance is almost the same as that observed with the Swagelok®-type cell.

The structural evolution during the charge and discharge processes for LNF0.2MO

sample is displayed in Figure 5.48 with selected 2θ regions, where black and red lines

correspond to the charge and discharge regions, respectively.
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Figure 5.48: Selected 2θ regions of the in situ synchrotron diffraction patterns of
LNF0.2MO cathode material measured at the MSPD Beamline during the 1stcycle.
The gap is due to beam loss during injection.

A different structural evolution is observed for the LNF0.2MO material in compar-

ison with the parent LNMO-1000 ◦C. For the LNF0.2MO sample, the electrochemical

mechanism is very similar to a solid-solution mechanism (see Figure 5.48), where

mainly a single cubic spinel phase remains throughout the complete cycle with the

lattice parameter decreasing during delithiation and increasing during lithiation.

However, there is also a phase separation into a second cubic spinel phase (Fd3m)

in LNF0.2MO from x =0.23 to x = 0.017 during charging and it starts from x = 0.36

during discharging. Due to the beam loss, the two phase region is not clear during

discharging process. The obtained lattice parameters for the two cubic spinel phases

in LNF0.2MO are very close to each other, different to the LNMO material (see Figure

5.12). The above observations could imply that the origin of the phase separation in

LNF0.2MO could be a kinetic limitation of the Li diffusion into/from the structure

rather than a true phase-transition mechanism [78]. Figure 5.49 displays the evolution

of the lattice parameter as a function of the Li content. For the LNF0.2MO sample, the
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unit cell parameter of the second cubic spinel phase undergoes a constant decrease

and increase during charging and discharging, respectively, similar to the main cubic

spinel phase which proves that the new phase formed is also electrochemically active.

Additionally, the formation of this second phase is reversible because it disappears at

the end of the discharging process. Furthermore, the phase fraction analysis shown in

Figure 5.50 supports this assumption, like in the case of the undoped LNMO-1000 ◦C

cathode material.

Figure 5.49: Change in the unit cell parameter as a function of number of moles of Li
(x) remaining in the structure for LixNi0.4Fe0.2Mn1.4O4. The red circles represent
the unit cell parameter changes of the additional spinel phase.
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Figure 5.50: The phase ratios vs. Li content plots during cycling for LiNi0.4Fe0.2Mn1.4O4.

The shrinkage of the unit cell at the end of the first charge as calculated from the

Rietveld refinement results is 2.09 % for LNF0.2MO (see table 5.13). The unit cell ex-

pansion at the end of discharge is 2.08 %. These unit cell contraction and expansion

values are calculated from the lattice parameter differences between the beginning and

the end of the 1st charge and discharge, respectively. This indicates the re-insertion of

close to 1 mole of Li ions back into the structure.
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LNF0.2MO
Lithium content a(Å) Shrinkage/ Expansion( % )

Initial 1 8.2001(4)
End of 1st

charge
0.05008 8.0286(7) 2.09

End of 1st

discharge
0.92422 8.1989(4) 2.08

Table 5.13: Rietveld refinement results of LNF0.2MO based on the in situ synchrotron
diffraction data. (The percentage of the shrinkage is the difference between the
initial state and end of 1st charge and the percentage of the expansion is the dif-
ference between the end of 1st charge and end of 1st discharge state)

The micro-strain analysis obtained from Rietveld refinement is shown in Figure

5.51. The lattice strain increased for LNF0.2MO cathode material at the voltage region

where the Ni2+/Ni4+ redox couple exists, similar to that observed for undoped LNMO-

1000 ◦C and also where the Fe3+/Fe4+ redox couple is active. The overall change in

lattice strain that occurs during cycling is lower for LNF0.2MO compared to LNMO-

1000 ◦C (see Figure 5.14). Therefore, the LNF0.2MO structure is more relaxed during Li

intercalation/de-intercalation in comparison with its parent LNMO-1000 ◦C structure,

which could result in a faster Li-ion diffusion. This improved structural stability for

LNF0.2MO during cycling is probably the reason for the enhanced cycling stability of

this material.
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Figure 5.51: The micro-strain analysis of LiNi0.4Fe0.2Mn1.4O4 cathode material. The
maximum strain is given in the Fullprof microstructural output file as d

∆d
× 10−4.

In situ investigation of the lithium intercalation mechanism in LNF0.3MO and

LNF0.4MO samples have also been performed in ALBA at the MSPD beamline using in

situ coin cells. The cells were cycled at C/2 in the voltage range of 3.5-5.3 V. Figure 5.52

displays the structural evolution during charge and discharge with selected 2θ regions,

where black and red lines correspond to the charge and discharge regions, respectively.
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Figure 5.52: Selected 2θ regions of the in situ synchrotron diffraction patterns of a)
LNF0.3MO and b) LNF0.4MO cathode materials measured at MSPD during the
1st cycle.

A similar lithium de-/intercalation mechanism occurs for the LNF0.3MO and

LNF0.4MO samples as it was observed for LNF0.2MO material. The electrochemical

mechanism is again close to a solid-solution mechanism for both cases. However, there

is also a phase separation into a second cubic spinel phase during charging and dis-

charging.

As it was mentioned before, all Fe-doped cathode materials contain an additional

Fe3O4 spinel phase. The phase fraction of this phase is very small in LNF0.2MO as can

bee seen in neutron measurements. Since the in situ cell consists of a stack of several

components like Al current collector, lithium metal, separator etc. there is an increased

background and this phase is not detectable in LNF0.2MO in situ. However, since the

initial LNF0.4MO powder has the highest amount of Fe3O4 phase, this phase is de-

tectable in the diffraction patterns obtained during in situ experiments for LNF0.4MO.

In principle, Fe3O4 is used as anode [79] material which is electrochemically active

below 3.0 V. It is not expected to be active in the voltage range which is used in this

work. It has been observed that the lattice parameters of Fe3O4 in LNF0.4MO obtained

from Rietveld refinement are 8.318(2) Å, 8.314(3) Å and 8.319(1) Å before cycling, at

the end of charging and at the end of discharging, respectively. In order to analyze

the XRD patterns of LNF0.4MO by Rietveld refinements, several parameters, models
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and the phases Al, Li, main spinel, Fe3O4 spinel and Li2MnO3 have been taken into

account. Considering this point and taking into account the standard deviations, the

differences among the lattice parameters obtained for initial, charged and discharged

states of LNF0.4MO are negligible. It can be concluded that the Fe3O4 spinel phase is

not active during cycling.

5.4 Rare Earth Elements doped LiNi0.495M0.01Mn1.495O4

and LiNi0.425M0.05Mn1.5O4 (M = La, Nd or Sm) Spinels

as High-Volt Cathode Materials

In this section the effects of rare earth metal doping, specifically La, Nd and Sm,

on the LNMO concerning structure, morphology and electrochemical performances

will be studied. The rare earth elements are divided into two groups as light rare earth

elements (La, Ce, Pr, Pm, Nd and Sm) and heavy rare earth elements (Eu, Gd, Tb, Dy,

Ho, Er, Tm, Yb and Lu). The heavy rare earth elements are more expensive than the

light rare earth elements. The rare earth metal doped LNMO materials were synthe-

sized at 1000 ◦C final calcination temperature. For the construction of the compositions,

two possibilities were taken into account: LiNi0.5-x
2+M2x

3+Mn1.5-x
4+O4 (x=0.005) which is

completely stoichiometric (as the spinel structureAB2O4) and LiNi0.5-3x
2+M2x

3+Mn1.5
4+O4

(x= 0.025) which contains octahedral vacancies similar to the Ru-doped LNMO sample.

5.4.1 Structural Analyses

If the rare earth metal ions (La, Nd and Sm) having bigger size compared to 3d

transition metal ions, could really be inserted into the spinel structure they would

widen the main spinel lattice. As a result, the Li-diffusion kinetics may be improved

which may lead to a better rate capability. The results of XRD refinements (see Figure

5.53) show that all rare-earth doped samples have cubic spinel structure with Fd3m
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space group and again an impurity phase with rock-salt structure (Ni6MnO8) exists in

all of them. Besides that, the La-doped samples: LiNi0.495La0.01Mn1.495O4 (LNLa0.01MO)

and LiNi0.425La0.05Mn1.5O4 (LNLa0.05MO) contain an additional LaMnO3 phase with

space group R3c. The Nd-doped samples: LiNi0.495Nd0.01Mn1.495O4 (LNNd0.01MO)

and LiNi0.425Nd0.05Mn1.5O4 (LNNd0.05MO) have an additional NdMnO3 phase which

belongs to the space group Pnma and there exists an additional SmMn2O5 phase (

space group Pbam) in the Sm-doped samples: LiNi0.495Sm0.01Mn1.495O4 (LNSm0.01MO)

and LiNi0.425Sm0.05Mn1.5O4 (LNSm0.05MO).
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Figure 5.53: Rietveld refinement results based on synchrotron diffraction patterns of
rare earth metal doped LiNi0.495M0.01Mn1.495O4 and LiNi0.425M0.05Mn1.5O4 (M= La,
Nd, Sm) materials measured in 0.5 mm capillaries.

The Rietveld refinement results based on synchrotron diffraction data are listed

in Table 5.14. The lattice parameters of all rare earth doped samples are very similar

to each other and also to parent undoped LNMO sample. By increasing the amount

of rare earth metals inside the samples, the phase fraction of rock salt impurity phase

decreased, instead, the fraction of the rare earth elements containing second impurity

phase increased for all La, Nd and Sm doped LNMO materials (see Table 5.14).
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Samples
Atom
Site

x=y=z a(Å)
Volume

(Å3)

Fraction of
rock-salt
phase %

(Ni6MnO8)

Fraction of
rare-earth
phase %

Rwp(%)

LNLa0.01MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2639(3)

8.1737(1) 546.44(1) 3 2 11.1

LNLa0.05MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2639(3)

8.1755(1) 546.44(1) 2 7 9.38

LNNd0.01MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2638(3)

8.1765(1) 546.63(1) 5 2 10.6

LNNd0.05MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2639(5)

8.1769(1) 546.72(1) 2 6 12.7

LNSm0.01MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2644(3)

8.1751(1) 546.36(1) 4 2 11.7

LNSm0.05MO

Li8a
Ni16d

Mn16d

O32e

0.125
0.500
0.500

0.2640(3)

8.1745(1) 546.23(1) 3 10 9.33

Table 5.14: Rietveld refinement results of rare earth metal doped spinels based on
synchrotron diffraction data (space group of main spinel phase Fd3m).

The Rietveld refinements based on the obtained neutron diffraction data are shown

in Figure 5.54. Neutron analyses show that the rare earth metals are not present inside

the main spinel structure but they form an additional oxide phases belonging to differ-

ent space groups. The stoichiometry calculation from site occupation factors were not

taken into account since the rare earth metals are not inside the spinel phase.
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Figure 5.54: Rietveld refinement results based on neutron diffraction data of as pre-
pared rare earth doped powders.

5.4.2 Morphology Studies of initial La, Nd or Sm-doped LNMO

powders

SEM images of LNLa0.01MO, LNNd0.01MO, LNSm0.01MO and LNLa0.05MO,

LNNd0.05MO, LNSm0.05MO are presented in Figure 5.55a-f, respectively. The particles

of LiNi0.495M0.01Mn1.495O4 (M = La, Nd or Sm) materials exhibit also pseudo-octahedral

shapes with smoother surfaces as the parent LNMO. The obtained particle sizes of

LNLa0.01MO, LNNd0.01MO, LNSm0.01MO are 0.5-1 µm, 1-2.5 µm and 1-2 µm, respec-
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tively. The particle sizes of LiNi0.425M0.05Mn1.5O4 (M = La, Nd or Sm) samples are dif-

ferent than that of LiNi0.495M0.01Mn1.495O4. The LiNi0.425M0.05Mn1.5O4 samples contain

particles with pseudo-octahedral shapes as well as small round shapes. The obtained

particle sizes of LNLa0.05MO, LNNd0.05MO, LNSm0.05MO are 0.2-0.5 µm, 0.2-2 µm and

0.2-1 µm, respectively.

Figure 5.55: SEM images of as prepared a) LNLa0.01MO, b) LNNd0.01MO, c)
LNSm0.01MO, d) LNLa0.05MO, e) LNNd0.05MO and f) LNSm0.05MO powders.
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The particle sizes change greatly with a little change in the amount of rare earth

metals inside the samples. To understand the reason for the large change in parti-

cle size, back scattered electron images were collected (see Figure 5.56). It has been

observed that the small particles have different contrast and they are brighter than the

big particles. The elements which have higher atomic number backscatter the electrons

more strongly than the ones with lower atomic number resulting in brighter particles

on the figure. This observation implies that the smaller particles belong to rare earth

metal containing oxides which exist as additional phase inside the samples. Since the

LNLa0.05MO, LNNd0.05MO and LNSm0.05MO samples have higher amounts of rare

earth metals, brighter particles can be seen in these samples more easily.
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Figure 5.56: Back scattered electron images of as prepared a) LNLa0.01MO,
b) LNNd0.01MO, c) LNSm0.01MO, d) LNLa0.05MO, e) LNNd0.05MO and f)
LNSm0.05MO powders.
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5.4.3 Electrochemical Performance of La, Nd or Sm-doped LNMO

Cathode Materials at Room Temperature (RT)

5.4.3.1 Cyclic Voltammetry (CV)

The 1st and the 10th CV curves of ”La, Nd and Sm-doped” LNMO samples com-

pared to the parent LNMO sample are shown in Figures 5.57a-d. The electrochemical

activities which belong to Mn3+/Mn4+ and Ni2+/Ni4+ redox couples can also be seen

at around 4 V and 4.7 V, respectively, which are still present after 10 cycles.

Figure 5.57: Cyclic Voltammograms of 1st cycle and 10th cycle of ”La, Nd and Sm-
doped” LNMO cathode materials with the scan rate of 0.1 mV s−1 in a voltage
range 3.5-5.0 V.

The electrochemical test cells were cycled in the voltage range 3.5-5.0 V. No redox
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activities are reported in this voltage range for the La, Nd or Sm. However, an addi-

tional electrochemical activity is observed at around 4.9 V for all samples pointed with

pink arrow most probably due to the parasitic reactions.

5.4.3.2 Cycling Stability

The cycling stability results of the first 300 cycles of ”La, Nd and Sm-doped”

LNMO compared to undoped LNMO cathodes with a C/2 charge-discharge rate in the

voltage window 3.5-5.0 V are shown in Figure 5.58. The initial capacities of LNLa0.01MO,

LNNd0.01MO and LNSm0.01MO are very close to the LNMO cathode. However, they

have a higher capacity retention after 300 cycles. The slightly lower absolute capacities

observed for LNLa0.05MO, LNNd0.05MO and LNSm0.05MO cathode materials are due

to the presence of electrochemically inactive impurity phases which are also included

in the calculation of the active material. The capacity retentions after 300 cylces of

LNLa0.01MO, LNNd0.01MO, LNSm0.01MO, LNLa0.05MO, LNNd0.05MO and LNSm0.05MO

cathode materials are 89.2 %, 90.5 %, 88.4 %, 85 %, 85 % and 86 %, respectively, which

was 79.5 % for LNMO. The rare earth metals are not present in the main structure,

however, the results may indicate that the cycling of the main phase is stabilized by

the bimixtures. The distributed impurity phases may contribute to the different mech-

anism of SEI formation.
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Figure 5.58: Discharge capacity vs. Cycle number plots for ”La, Nd and Sm-doped”
LNMO cathode materials in a voltage range 3.5-5.0 V at C/2 charge-discharge
rate.

5.4.3.3 Rate Capability

The high-rate performance of ”rare earth metal doped” LNMO compared to the

undoped one is displayed in Figures 5.59a-b. The charging rate was hold constant at

C/2 and the discharge rates were varied. The discharge capacities as percentages of the
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capacity delivered at C/2 of the samples are also listed in Table 5.15, which shows that

the discharge capacities up to 10 C as percentages of the capacity delivered at C/2 for

all ”rare earth matel doped” samples are very close to each other as well as to undoped

LNMO. The compositions LiNi0.495M0.01Mn1.495O4 and LiNi0.425M0.05Mn1.5O4 (M = La,

Nd or Sm) exhibited slightly higher rate capability at 20 C than the parent LNMO. The

capacity obtained at 20 C is 91 % of the capacity at C/2 for LNMO whereas it is ≥94 %

for ”rare earth-doped” samples.

Figure 5.59: Discharge capacity vs. cycle number plots of ”La, Nd and Sm-doped”
LNMO cathode materials at C/2 charge rate and varied discharge rates.
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Sample

Discharge Capacity

(mAh g−1) with C/2

The discharge capacity
as percentage of the capacity

delivered at C/2
1C 5C 10C 20C

LNMO 134 100% 99% 97% 91%
LNLa0.01MO 134 100% 100% 98.5% 95.5%
LNNd0.01MO 132 100% 99.2% 97.7% 94%
LNSm0.01MO 130 100% 99.2% 98% 94%
LNLa0.05MO 127 100% 99.2% 98.4% 97%
LNNd0.05MO 126 100% 100% 98.4% 96%
LNSm0.05MO 117 100% 99% 98.3% 96%

Table 5.15: The discharge capacities obtained at different C-rates for ”La, Nd and Sm-
doped” and undoped LNMO-1000 ◦C cathode materials.

5.4.4 Investigations on the Structural Evolution of

LiNi0.495M0.01Mn1.495O4 and LiNi0.425M0.05Mn1.5O4 (M = La,

Nd or Sm) Cathode Materials during Electrochemical Cycling

using Synchrotron Diffraction

It is possible that the presence of the impurity phases can influence the electro-

chemical mechanism by participating in the electrochemical reactions. Although no

clear evidence was observed for this behavior from CV experiments, a more reliable

method is needed to rule out this possibility.

In order to elucidate the structural changes during the lithium de-/intercalation

processes of ”La, Nd and Sm-doped” LNMO samples, the cathode materials were cy-

cled at C/2 in the voltage range of 3.5-5.0 V using the in situ coin cell setup. The

evolution of the structural changes for all samples for selected 2θ regions are shown in

Figure 5.60.

The formation of a second spinel phase during both, charging and discharging, is

observed for all samples, like in the parent LNMO cathode material. This second phase
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was formed reversibly which occured during cycling and disappeared at the end of the

discharging process. The LNLa0.01MO, LNNd0.01MO and LNSm0.01MO cathode mate-

rials contain 2 % of the La, Nd or Sm containing impurity phases and they are not easy

to detect from the diffraction patterns obtained during cycling due to the contribution

of additional background from in situ coin cell setup. However, the amount of these

impurity phases which were obtained in initial powders are more and therefore more

visible in the diffraction patterns obtained from the in situ coin cells of the LNLa0.05MO,

LNNd0.05MO and LNSm0.05MO cathode materials (see Figure 5.60d, e and f). The re-

spective reflections are indicated with red arrows in the graphs. The observation shows

that the lattice parameters of these La, Nd or Sm containing impurity phases do not

change during cycling. This confirms that these phases have no contribution to the

lithium de-/intercalation mechanism which means they are not electrochemically ac-

tive.
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Figure 5.60: The structural evolution obtained during first charge-discharge process for
a) LNLa0.01MO b) LNNd0.01MO c) LNSm0.01MO d) LNLa0.05MO e) LNNd0.05MO
and f) LNSm0.05MO cathode materials in the voltage range 3.5-5.0 V cycled at
C/2 charge-discharge rate.
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Chapter 6

Summary and Conclusion

The aim of this work was to investigate the effect of metal ion doping on the struc-

ture, electrochemical performance and electrochemical mechanism in the high-voltage

LiNi0.5Mn1.5O4 cathode materials. The chosen dopant metals in this work are Ru, Fe,

La, Nd and Sm. The Ru and Fe-doped materials were successfully synthesized with a

citric acid-assisted sol-gel method. In the case of rare earth metals doping (the incor-

poration of the dopant cations into the spinel structure) could not be confirmed.

The undoped LiNi0.5Mn1.5O4 samples annealed at 800 ◦C and 1000 ◦C crystallize in

the cubic spinel structure with Fd3m space group. Small amounts of well-kown impu-

rities with rock-salt structure were detected in both samples. Careful synchrotron and

neutron diffraction analysis reveals that the impurity phase is not a LizNi1-zO phase as

it was referred in the literature, but a Ni-rich phase with a stoichiometry Ni6MnO8. The

LNMO samples synthesized at 1000 ◦C have superior capacity retention at RT after 300

cycles at C/2 (79.5 %) than the ones synthesized at 800 ◦C when cycled at the same C-

rate (42 %), which is maybe due to a better crystallinity, superior particle morphology

and lower surface area available for parasitic reactions. Since the material synthesized

at 1000 ◦C has better performance than the one at 800 ◦C, cycling stability experiment at

elevated temperature was carried out only for LNMO-1000 ◦C cathode material. Even
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though the cycling stability deteriorates at elevated temperature, the LNMO-1000 ◦C

cathode material showed quite a good capacity retention after 225 cycles when it was

cycled with C/2 with an initial capacity of ∼ 136 mAh g−1 and a capacity retention of

75 %. However, increased amount of electrolyte was necessary to achieve such perfor-

mance.

The formation of impurity phase was suppressed by Ru-doping which indicates

the increased tolerance of the structure towards an oxygen loss upon doping. The

Ru doping in 16d sites in the spinel structure was confirmed by neutron diffraction

as well as Ru K-edge XAS studies. The amount of Mn3+ ions increases in Ru-doped

samples comparing to undoped LNMO. The sample synthesized at 1000 ◦C have bet-

ter capacity retention at RT after 300 cycles at C/2 (84 %) than the one synthesized at

800 ◦C when cycled at the same C-rate (8.6 %), as similar to the trend was observed

for LNMO samples. LNRMO-1000 ◦C exhibits excellent electrochemical performances

even at high C-rates (10 C and 20 C) compared to the LNMO-1000 ◦C sample which

could be attributed to its high unit cell volume and the presence of additional octahe-

dral vacancies. It shows the highest discharge capacity (136 mAh g−1 at 20 C) among

the LNMO and LNRMO samples synthesized at both 800 ◦C and 1000 ◦C. Additionally

the mass loadings of the cathodes significantly affect the delivered capacities especially

at high C-rate.

In situ synchrotron powder diffraction shows that LNMO-1000 ◦C and LNRMO-

1000 ◦C have similar structural evolution during electrochemical cycling. In both ma-

terials, Li de-/intercalation takes place via a phase transition mechanism or solid solu-

tion reaction depending on compositional range. In the two-phase region, the obtained

lattice parameters for the two cubic spinel phases in LNRMO-1000 ◦C are closer to

each other than for the LNMO-1000 ◦C material. Micro-strain analysis shows that the

change in the lattice strain of LNRMO-1000 ◦C during cycling is less than LNMO-1000

◦C which makes the structure more relaxed and helps to enhance the cycling perfor-

mance.

134



CHAPTER 6. SUMMARY AND CONCLUSION

The doping of Fe is found to suppress the formation of a rock-salt impurity phase,

which is often formed during high-temperature synthesis of LNMO. However, neu-

tron diffraction analyses show the existence of additional layered Li2MnO3 (C2/m) and

spinel Fe3O4 (Fd3m) phases. NMR and Mössbauer investigations confirm that Fe is

incorporated into the spinel structure onto the octahedral sites with oxidation state of

+3. According to the neutron diffraction analysis, it has been observed that increasing

amount of Fe in LNMO leads to an increase in the amount of Li2MnO3 and second Fe

containing spinel impurity phases. Among all Fe doped cathodes, the LNF0.2MO has

the best capacity retention ( 92 %) after 300 cycles as well as the highest initial capacity

( 134 mAh g−1). It is even higher than Ru-doped LNMO. The initial capacity decreases

with increasing the amount of Fe in the nominal composition LiNi0.5-xFe2xMn1.5-xO4.

However, for all Fe substituted samples, the capacity retention is higher than that of

parent LNMO-1000 ◦C sample at RT. Also at high temperature (55 ◦C), the LNF0.2MO

exhibits a higher capacity retention. All Fe-doped samples have superior rate capabil-

ity performances according to delivered capacities at high C-rates (especially at 10 C

and 20 C) compared to capacity delivered at C/2.

In contrast to LNMO and LNRMO the evolution of the Fe-doped spinel structure

occurs via solid solution mechanism almost in the entire range of Li-content. However,

LNF0.2MO undergoes inhomogeneous Li intercalation/extraction at certain x values

(number of moles of Li remaining in the structure) which gives rise to appearance of

an additional phase as revealed from the discontinuous behavior of the phase fraction

and very small lattice parameter differences of the two phases. The LNF0.2MO ma-

terial shows a different electrochemical reaction mechanism and an excellent cycling

stability in comparison with the LNMO material. The improved kinetics reflected by

the smaller difference of the lattice parameters between the two cubic phases and the

reduced lattice strain in the structure during electrochemical cycling appears to be the

reason for improved cycling stability. The smaller lattice strain seems to be correlated

with an increased lattice parameter due to the iron doping. The lattice parameters of
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the impurity phases in the Fe-doped samples remain constant throughout the cycling,

indicating their electrochemical inactivity.

The neutron diffraction analyses of La, Nd and Sm doped LNMO show that these

elements are not inserted inside the spinel structure. However, they form additional

La, Nd or Sm containing phases. The existence of these rare earth metal containing

bimixtures in the samples lead to broader particle size distribution than that observed

for undoped LNMO. The rock salt (Fm3m) impurity phase exists in all the composi-

tions. According to in situ investigations of rare earth elements doped LNMO samples,

there is no electrochemically active phase observed besides the main spinel (Fd3m)

phase.
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Surname: KIZILTAŞ-YAVUZ
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