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Abstract

The multi-criteria shortest path problem is concerned with the minimization of multi-
ple, possibly conflicting objectives such as travel time and highway tolls. Sanders and
Mandow [60] present a parallel algorithm for this problem. They generalize Dijkstra’s [18]
single-criterion shortest path algorithm to multiple criteria, while parallelizing all addi-
tional work induced by this generalization. For the bi-criteria case they even show that
their algorithm performs less work than classic bi-criteria algorithms.

We discuss in how far these theoretical results translate into an efficient implementation
for modern shared-memory multiprocessors. In particular, we focus on a cache-efficient
implementation of the bi-criteria case and present an extensive evaluation of the algorithm
and its underlying data structures.

The evaluation indicates that parallel bi-criteria shortest path search is feasible in practice.
Our implementation exhibits significant speedups when solving difficult problem instances
in parallel. In addition, even a sequential implementation is competitive to classic bi-
criteria shortest path algorithms.

As an additional contribution of independent interest, we present parallel bulk updates
for weight-balanced B-trees [3]. We use this technique to implement the Pareto queue, a
multi-dimensional generalization of a priority queue proposed by Sanders and Mandow [60]
and required by their algorithm.

Zusammenfassung

Bei der Berechnung von kürzesten Wegen gibt es häufig nicht nur ein, sondern mehrere
interessante Kriterien, wie zum Beispiel die Reisezeit und die Mautkosten für die jeweili-
ge Strecke. Sanders und Mandow [60] präsentieren einen parallel Algorithmus für dieses
multi-kriterielle kürzesten Wege Problem. Bei dem Algorithmus handelt es sich um eine
Verallgemeinerung des Algorithmus von Dijkstra [18] von einem auf mehrere Kriterien, je-
doch unter Parallelisierung jeglicher zusätzlich entstehender Arbeit. Für den bi-kriteriellen
Fall kann sogar gezeigt werden, dass im parallelen Algorithmus weniger Arbeit als in klas-
sischen Ansätzen anfällt.

In der vorliegenden Arbeit wird untersucht, inwieweit sich diese theoretischen Ergebnisse
in die Praxis übertragen lassen. Wir erarbeiten hierzu eine cache-effiziente, bi-kriterielle
Implementierung des Algorithmus für moderne Multiprozessorsysteme mit geteiltem Spei-
cher.

Unsere experimentellen Untersuchungen zeigen die Praktikabilität paralleler bi-kriterieller
Suche. Die parallele Implementierung des Algorithmus liefert signifikante Beschleunigun-
gen für Probleminstanzen mit unkorrelierten oder negativ korrelierten Kriterien. Darüber
hinaus kann für diese Instanzen sogar gezeigt werden, dass selbst im sequentiellen Fall der
parallele Algorithmus kompetitiv zu klassischen bi-kriteriellen Verfahren ist.

Als zusätzlicher Beitrag allgemeineren Interesses präsentieren wir parallele Massenupdates
für gewichtsbalancierte B-Bäume [3]. Wir verwenden diese Technik zur Realisierung der
Pareto queue, einer mehrdimensionalen Verallgemeinerung von Prioritätswarteschlangen,
welche von Sanders und Mandow [60] im Zuge ihres parallelen Algorithmus eingeführt
wurde.
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1. Introduction

The problem of finding the quickest route from one location to another, the shortest path
problem, is ubiquitous in our daily lives. Classic algorithms solving it, such as Dijkstra’s
[18] algorithm, are designed to minimize a single metric such as travel time. Unfortunately,
this simple model is not sufficient for all interesting shortest path problems. For example,
we may be interested in the simultaneous optimization of multiple, conflicting objectives
such as travel time and highway tolls. In these cases, there may not be only one optimal
route, but several reasonable ones, all with their own advantages and disadvantages: a fast
route with high costs, a slightly slower route but with slightly lower costs, etc. Given an
algorithm that computes all these alternative routes for us, we can select a route according
to our personal preferences, e.g., depending on how much we value our time.

The shortest path problem concerned with minimizing multiple objectives is called the
multi-criteria shortest path problem. As indicated in the example given above, it deals
with the computation of all optimal alternative routes, the so-called Pareto optimal paths.
It has a large number of applications, including but not limited to vehicle routing [30],
routing in railroad networks [44] and routing in multimedia networks [15].

Even the shortest path problem with only two criteria, the bi-criteria shortest path problem,
is NP hard [20]. The crucial parameter determining its complexity is the total number of
Pareto optima [44], which can be exponential in the number of nodes [27]. Even though
many real world applications do not exhibit these worst-case properties [44, 39], solving
them still requires significant resources. Guerriero and Musmanno [23] therefore conclude
that parallel computing is the main goal for future development in this field. By using
today’s hardware more efficiently, parallel shortest path search promises faster computation
of existing problem instances and may make the computation of even larger instances
feasible.

Sanders and Mandow [60] present a parallel label-setting algorithm for the multi-criteria
shortest path problem. The algorithm is a generalization of Dijkstra’s [18] algorithm for
the multi-criteria case and relies on a multi-dimensional generalization of a priority queue,
the Pareto queue. To our knowledge, it is the first proposal of a parallel multi-criteria
shortest path algorithm, which however, has not been implemented yet.
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Chapter 1. Introduction

1.1. Problem Statement

The one-to-all bi-criteria shortest path problem is concerned with finding all Pareto opti-
mal paths from a single source node to all other nodes of a given graph. Our goal is to
investigate if this problem can be efficiently solved in parallel. More specifically, we want
to evaluate whether a careful, bi-criteria implementation of the algorithm of Sanders and
Mandow [60] can be efficient in solving large inputs on modern shared-memory multipro-
cessors.

In contrast to classic sequential bi-criteria shortest path algorithms, the parallel algo-
rithm explores several Pareto optimal paths in parallel. Identifying and exploring these
paths comes with additional overhead, but may be worthwhile if, depending on the prob-
lem instance, many paths can be explored simultaneously. Unfortunately, Sanders and
Mandow [60] point out that their algorithm may be too complicated to be efficient in
practice, as they adopted fine-grained parallelism to achieve good asymptotic results.

Most modern server and desktop systems are equipped with shared-memory multiproces-
sors. Given their quick inter-processor communication, they are an ideal target for our
implementation effort. However, multiprocessors are diverging from traditional machine
models used for algorithm design [59]. Given the potential inefficiency of the algorithm,
we therefore have to incorporate knowledge about the hardware in order to devise a fast
implementation. For example, we have to consider memory hierarchies, issues like false
sharing, and in general, constant factors instead of plain asymptotics.

Even if our parallel implementation does not achieve perfect speedups over classic sequen-
tial competitors, we might still be able to show that parallelization can be beneficial for
certain problem instances.

1.2. Contributions

The contributions of this thesis (a short summary intended for informed readers):

• Parallel Bi-Criteria Shortest Path Search: We present an implementation of the
algorithm of Sanders and Mandow [60] based on cache-efficient B-trees. We use this
implementation to validate the practicality of parallel multi-criteria shortest path
search for synthetic and real world instances. We make two major observations:

– A serial execution of the algorithm is competitive to classic sequential bi-criteria
shortest path algorithms, at least for problem instances with uncorrelated and
negatively correlated objectives. For the latter case, the serial execution can
even be slightly faster than its classic competitor.

– The parallel algorithm is practical on modern shared-memory multiprocessors
for sufficiently difficult problem instances, achieving absolute speedups of at
least three for four threads and five for eight threads. For larger number of
threads, the speedup of our implementation is bound by the available memory
bandwidth.

• Bulk Updates for B-tree: We contribute a technique for the parallel bulk update of
weight-balanced B-trees [3] and use it as the basis for a cache-efficient implementation
of the parallel bi-criteria algorithm. Given p threads and a tree of size N , our
technique has an amortized update bound of O(k/p · logN) parallel time for the
application of a sequence of k updates. The same runtime bound is achieved by the
binary tree-based competitor algorithm of Frias and Singler [19]. However, we are
able to show that even a sequential implementation of our technique is competitive to

2



1.3. Outline

this parallel competitor using eight threads. In addition, our parallel implementation
achieves an absolute speedup of at least three for four threads and six for eight
threads.

• Classic Bi-Criteria Shortest Path Search: We contribute to the research on sequen-
tial bi-criteria shortest path algorithms by engineering a classic competitor for our
parallel implementation. We show how label selection rules [47, 29] can affect the
access pattern on label sets. By exploiting these findings, our implementation is able
to outperform label setting and label correcting implementations presented in recent
literature (i.e., in [54]).

1.3. Outline

This thesis starts with a discussion of the bi-criteria shortest path problem and with classic
algorithms solving it. Based on this background information, we present the parallel
algorithm of Sanders and Mandow [60] as proposed by its authors.

The parallel algorithm relies on batched updates of balanced search trees. In Chapter 3,
we therefore investigate (parallel) bulk updates for cache-efficient trees. After a short
review of the relevant literature, we present our own solution, including its analysis and
evaluation.

In Chapter 4, we detail the implementation of the parallel algorithm of Sanders and
Mandow [60] based on our cache-efficient tree. We also provide the remaining details
of our implementation, including means to reduce the need for synchronization and load
balancing. Our effort results in an efficient shared-memory implementation.

The implementation is evaluated in Chapter 5. We start with the development of a tuned
reference implementation of a classic shortest path algorithm, serving as a competitor
for the parallel implementation. The evaluation is then carried out for a combination of
synthetic and realistic road, grid and sensor networks. We conclude our work in Chapter 6
with a short retrospective and several proposals for future work.
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2. Bi-Criteria Shortest Path Search

We look into basic concepts and classic algorithms for bi-criteria shortest path search.
Based on this knowledge, we then present the parallel algorithm of Sanders and Mandow [60].

2.1. Definitions and Terminology

We introduce basic terminology in order to define and explain the one-to-all bi-criteria
shortest path problem.

Definition 2.1 (Graph, Weight, Path, Length). Let G = (V,E) be a directed graph with
n nodes and m edges. Each edge of this graph has a weight in form of a two-dimensional
cost vector ~w = (x, y). The costs x and y are non-negative integer values (e.g., the time
and cost required to traverse an edge). A path in G is a sequence of edges. The length of a
path is defined as the component-wise sum of all of its edge weights. For example, a path
p consisting of three edges with weights ~w1 = (10, 7), ~w2 = (1, 3), and ~w3 = (2, 2) has the
length l = (13, 12). Given a path p, we refer to the first cost component of its length as
px and to the second as py (i.e., in our example px = 13 and py = 12).

To decide which paths are better than others, we adopt the concept of Pareto optimality :

Definition 2.2 (Pareto optimality, Dominance, Pareto front). A path p from node u to
node v is called Pareto optimal if it is not dominated by any other path from u to v. A
path p is dominated by a path q if and only if (q 6= p)∧ (qx ≤ px)∧ (qy ≤ py). This means,
p is dominated if q is better or equal to p in both dimensions and strictly better in at least
one of them. Given a set of paths, the Pareto optimal subset is called the Pareto front.

Figure 2.1 explains this concept using a geometrical representation of our two-dimensional
objective space: Given a point p, we draw a shaded region marking all coordinates in both
dimensions that are larger than the coordinates of p. A point is dominated if it falls into
the shaded region of another point. Pareto optimal points lie outside of all shaded regions
and are therefore not dominated.

We can finally define the shortest path problem subject to this thesis.

Definition 2.3 (Bi-criteria shortest path problem). The one-to-all bi-criteria shortest
path problem is concerned with finding all Pareto optimal paths from a single source node
to all other nodes in a given graph G.

5



Chapter 2. Bi-Criteria Shortest Path Search

Pareto front

y

x

non-dominated
dominated

Figure 2.1.: Dominated and non-dominated (i.e., Pareto optimal) solutions within the
bi-dimensional objective space.

However, we are only interested in computing minimal complete sets of Pareto optimal
paths (e.g., see [29]): Even though Pareto optimality does not exclude several paths to the
same node with the same length, we only want to compute one of these paths.

Before we look into classic algorithms solving this problem, we have to introduce an im-
portant ordering of paths, the lexicographic order. The lexicographic order has a few
important properties (at least) in the bi-criteria case, which we summarize in form of
several observations.

Definition 2.4 (Lexicographic order). A path p is lexicographically smaller than a path
q if and only if (px < qx) ∨ (px = qx ∧ py < qy)

Observation 2.1 (Identification of one Pareto optimum). Given a set of paths, the lex-
icographically smallest one is always Pareto optimal. For example, of all dominated and
non-dominated points in Figure 2.1, the left-most one is Pareto optimal.

Observation 2.2 (Identification of all Pareto optima). The Pareto optimal subset of a
set of lexicographically sorted paths is equivalent to the prefix minima over y-coordinates
of paths [60]: A point in Figure 2.1 is Pareto optimal if its y-coordinate is smaller than
the y-coordinates of all lexicographically preceding points (i.e., points with smaller x-
coordinate).

Observation 2.3 (Sorting of Pareto optima). If we sort Pareto optima (e.g., all non-
dominated points in Figure 2.1) by their increasing x-coordinate, they are also sorted by
their decreasing y-coordinate.

As a preparation for presentation of the parallel shortest path algorithm, we introduce the
task concept:

Definition 2.5 (Task, Work stealing). A task is an object, which represents work of the
application to be performed in parallel. Tasks are executed by threads, each of which
maintains a work list of scheduled tasks. If a thread has finished all tasks in his local
work list, it attempts to steal tasks from other threads using a randomized work-stealing
algorithm [8, 9].

Tasks allow us to logically decompose a problem without having to worry about available
hardware cores or threads. We call a task recursive if it behaves like a recursive procedure,
i.e., it either reaches a base case or spawns additional tasks of the same type.

6



2.2. Classic Algorithms

2.2. Classic Algorithms

Generally speaking, multi-criteria shortest path algorithms can be classified as either exact,
heuristic or approximate [21]. Exact algorithms can further be subdivided into labeling
algorithms and ranking algorithms. We restrict our following discussion to exact labeling
algorithms, as they are closest to the approach of Sanders and Mandow [60]. For details
on other approaches, we refer to recent surveys of multi-criteria [21] and bi-criteria [64, 54]
algorithms.

Labeling algorithms grow shortest paths by computing and assigning labels to nodes, similar
to Dijkstra’s [18] algorithm. However, instead of just one label, multi-criteria labeling
algorithms have to maintain a set of labels for each node.

Definition 2.6 (Label (permanent, tentative)). A label represents a path from the start
node to the respectively labeled node and encodes the length of this path. Representing
paths, Definitions 2.2 and 2.4 also apply to labels, i.e., labels can dominate each other,
non-dominated labels are called Pareto optimal, and labels can be sorted lexicographically.
A permanent label denotes a path known to be Pareto optimal. Tentative labels denote
temporary results not yet known to be Pareto optimal.

Labeling algorithms are either label setting or label correcting and differ in when and how
tentative labels become permanent. We proceed to describe their common core, before
detailing their differences.

Definition 2.7 (Labeling Algorithm Data Structures (Queue, Label Set)). Labeling al-
gorithms rely on the following abstract data types:

• Queue Q: A set of tentative labels serving as the work list of the algorithm. A
label selection strategy controls the order in which tentative labels are removed from
the queue, determining which paths are explored next. Even though we refer to the
elements in Q as labels, they are in fact pairs of node ID and label, in order to track
the assignment of labels to nodes.

• Label Set L[v] for each v ∈ V : The collection of permanent and tentative labels
assigned to node v. Only non-dominated labels which are not equal to an existing
label can be inserted into this set, a policy enforced by a dominance check which is
also responsible to delete existing labels dominated by newly inserted ones.

Algorithm 2.1: Classic Bi-criteria Labeling Algorithm

Input: Graph G = (V,E), start node s
Output: L

1 L[v]← ∅ for all v ∈ V
2 Queue Q← {(s, (0, 0))}
3 while Q is not empty do
4 (u, l)← Q.nextLabel()
5 foreach (u, v) ∈ E do
6 w ← weight((u, v))
7 l′ ← (lx + wx, ly + wy)
8 if l′ is not dominated by L[v] then
9 update L[v]

10 update Q

7



Chapter 2. Bi-Criteria Shortest Path Search

Label set L[v1] Queue QLabel set L[v2]

=⇒

y

x

y

x

y

x

Figure 2.2.: Locally Pareto optimal labels within their label set L and within the
queue of all tentative labels Q: Locally optimal labels might not be glob-
ally optimal, i.e., not all labels in Q are part of the (dotted) Pareto front.

Algorithm 2.1 presents the basic structure of label setting and correcting approaches: In
each iteration of its outer loop, the algorithm retrieves a label l from Q. Let this label
belong to a node u. The algorithm proceeds to derive a candidate label l′ for each outgoing
edge (u, v). The candidate label l′ is discarded if it is dominated by any label in the label
set L[v]. Otherwise, it is added to L[v] and Q. Labels of v that are dominated by l′ are
removed. The outer loop of the algorithm finishes once all tentative labels in Q have been
explored without leading to new non-dominated candidate labels. The resulting labels in
the label sets of nodes can now be backtracked to derive the Pareto optimal paths (not
shown here).

The queue Q contains tentative labels of different nodes. While labels in a label set of a
single node do not dominate each other, labels within Q may dominate each other. Figure
2.2 visualizes this for a fast plain queue populated with labels of two different nodes.

Label setting algorithms remove only non-dominated labels from Q. These labels are not
only locally optimal within their respective label sets, but also globally optimal in Q with
respect to any other label to be explored next. They cannot be dominated by any other
label discovered later, as their costs are only increasing and never decreasing.1 Label
setting is therefore optimal in the sense that all extracted labels are part of the output of
Pareto optimal paths [60], i.e., extracted labels are permanent.

Bi-objective label setting has first been proposed by Hansen [27] and was later generalized
to the multi-objective case by Martins [40]. Q has commonly been implemented as a
lexicographically sorted priority queue, as relying on Observation 2.1, its minimal element
is known to be Pareto optimal. Current research on label setting algorithms focuses on
different label selection strategies [29, 47], different kinds of priority queue implementations
[47, 53], speedup techniques applicable for one-to-one (single target) searches (e.g., [17,
53]), and parallelism due to Sanders and Mandow [60].

Label correcting algorithms are less sophisticated in their label choice and just select
any tentative label for the next iteration by using a simple queue data structure (FIFO,
LIFO, ...). Suboptimal labels may be extracted and processed, which do not belong to
any Pareto optimal path. Only once the queue has run completely empty, the label sets
can no longer change (i.e., tentative labels become permanent). Bi-criteria label correct-
ing algorithms have been subject to extensive research on selection strategies (e.g., node
selection instead of label selection), implementation choices and speedup techniques just
like label setting algorithms [65, 11, 47, 63].

The choice between label setting and label correcting algorithms comes with a trade-off
between time spend in queue operations managing the extraction of (Pareto optimal)
labels and time spend processing suboptimal labels. Computational results indicate that
no method is clearly superior [23, 47, 54]. Garroppo et al. [21] support these results with
their theoretical analysis of label setting and label correcting approaches.

1For a detailed proof see [60].
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2.3. Parallel Pareto Search

2.3. Parallel Pareto Search

Sanders and Mandow [60] present a parallel label setting algorithm called paPaSearch,
short for parallel Pareto Search. While classic label setting algorithms select any Pareto
optimal label from Q per iteration, paPaSearch extracts all of them.2 It relies on a multi-
dimensional generalization of a priority queue, the Pareto queue, to find and extract these
independent labels. The algorithm then processes them in parallel.

We outline the bi-criteria version of the algorithm, before detailing label sets and the
Pareto queue. Figure 2.3 presents the algorithm. A detailed description follows.

Pareto queue Q

1. Find Pareto minima
2. Generate candidate

labels
3. Group candidates by

node
4. Compute Pareto

optima among
candidates

5. Merge candidate lists
and label sets

6. Batch update of the
Pareto queue

label sets
(one for each
node)

...

1.

2.

3.

4.

5.

6.

Figure 2.3.: Outline of the paPaSearch algorithm of Sanders and Mandow [60], con-
sisting of six steps, which are repeated in a loop until the queue runs
empty. Labels are represented as dots, with their color encoding the
corresponding node.

2Not to be confused with label correcting algorithms, which extract any tentative label.
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Chapter 2. Bi-Criteria Shortest Path Search

1. Find Pareto minima: Extract all Pareto optimal labels from the Pareto queue.

2. Generate candidate labels: For each Pareto minima and each outgoing edge of the
corresponding node generate a candidate label.

3. Group candidates: To prepare the batch processing of labels, group candidate labels
by the node they are assigned to (e.g., via sorting).

4. Compute Pareto optima among candidates: Independently for each node, drop
candidate labels dominated by other candidate labels for the same node. If the candi-
date labels are sorted lexicographically (e.g., due to appropriate sorting in the previous
step), Observation 2.2 details the correspondence of Pareto optima to labels with prefix
minimal y-coordinates. The latter can be identified in a single scan.

5. Merge candidate lists and label sets: Independently for each node, merge surviving
candidate labels with the label sets of the respective node. Candidates dominated by
an old label or equal to an old label are dropped. All other candidates are inserted and
may lead to several tentative labels being dominated and deleted. All modifications of
the label set are logged in order to apply the same updates to Q.

6. Batch update of the Pareto queue: Update Q by applying all updates gathered
in the previous step. The Pareto queue now contains all remaining and new tentative
labels of which a Pareto optimal subset can be extracted for the next iteration.

The individual steps of the algorithm (including all data structure operations) are meant to
be performed by several threads in parallel, i.e., each thread extracts a subset of labels from
Q, creates a subset of candidate labels, merges a subset of labels into label sets, etc. Sanders
and Mandow [60] specify their algorithm using parallel primitives such as task scheduling
with randomized work stealing and prefix sums for load balancing. For example in steps
2-5, prefix sums are used to assign equal numbers of candidate labels to each thread. This
implies that labels belonging to the same node may be distributed over multiple threads,
requiring their collaboration.

Sanders and Mandow [60] detail a bi-criteria Pareto queue and bi-criteria label sets, both
which are meant to be implemented as parallel trees with bulk updates.

Pareto Queue.

The Pareto queue is a simplified version of the data structure described in [10] (and in
some papers cited there). It stores tentative labels lexicographically sorted in the leaves
of a balanced binary search tree.

In contrast to a simple priority queue, it allows to extract all Pareto optimal labels available
in the current iteration, instead of just one of them. As stated in Observation 2.2, Pareto
minima are prefix minima over the y-coordinates of lexicographically sorted sequences.
While prefix minima can easily be found sequentially by scanning all leaves from left to
right, the serial dependencies on the y-coordinates of predecessors need to be broken for
a parallel computation: Each inner node v stores a pointer to the left-most leaf with the
minimum y value in the subtree rooted at v, i.e., the prefix minima imposed by its subtree.
When searching a subtree for Pareto minima, we only descend into subtrees whose minimal
label is not dominated by the minimal label of a preceding subtree. Procedure 2.2 shows
the pseudo code of this computation. The recursive calls in lines 8 and 9 are independent;
both subtrees can be searched in parallel using task parallelism (see Definition 2.5).

For an implementation of the parallel batch update of the Pareto queue at the end of
an iteration, Sanders and Mandow [60] refer to the parallel red-black tree of Frias and
Singler [19] (which we review in Section 3.1).

10



2.3. Parallel Pareto Search

Procedure 2.2: findParetoMinima(v, u)

Input: Binary tree node v, prefix minima u imposed by a preceding subtree
Output: all Pareto optimal labels in the tree rooted in v

1 if v is leaf then
2 report the label stored at v
3 else if v → left.min dominates v → right.min then
4 findParetoMinima(v → left, u)

5 else if u dominates v → left.min then
6 findParetoMinima(v → right, u)

7 else in parallel
8 findParetoMinima(v → left, u) // Only report values not
9 findParetoMinima(v → right, v → left.min) // dominated by the left subtree

Label Sets.

Similar to classic sequential labeling algorithms, labels assigned to nodes are stored in
label sets. However, as a main difference, dominance checks and updates have to consider
sequences of several candidate labels instead of just individual ones.

The Pareto optima in label sets are stored lexicographically ordered in the leaves of bal-
anced search trees. According to Observation 2.3, such sets can be simultaneously sorted
by increasing x-coordinates and by decreasing y-coordinates, enabling us to check domi-
nance in logarithmic time in the size of the label set (i.e., the height of the tree):

Definition 2.8 (Predecessor Dominance Check). Search the insertion position of a candi-
date label within the lexicographically sorted set. The candidate label is dominated if it is
dominated by its predecessor label (the x-predecessor). If non-dominated, the candidate
label may dominate other labels, i.e., all direct successor labels whose y-coordinate is larger
or equal to its own. A second search therefore locates the first label with a y-coordinate
smaller than the one of the candidate label (the y-predecessor). All labels between the
x-predecessor and y-predecessor have to be deleted as they are dominated. A visual rep-
resentation of this concept is given in Figure 2.4, highlighting the candidate label and its
predecessors.

y

x
candidate label

x-predecessor

y-predecessor

non-dominated
dominated

Figure 2.4.: Insertion of a candidate label into a label set. As indicated by the shaded
region, all labels between the x- and y-predecessors are dominated.

Once all dominance checks are completed, the label set can be updated in a second pass,
removing all dominated labels, and inserting the surviving candidate labels in a single
batch update. This batch update can again be realized using the approach of Frias and
Singler [19].
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Chapter 2. Bi-Criteria Shortest Path Search

Theoretical Results.

Sanders and Mandow [60] prove several qualities of their paPaSearch algorithm, which we
just summarize here:

• As Dijkstra’s [18] algorithm, it performs at most n iterations, where n is the number
of nodes. This means all additional work of the multi-criteria case compared to the
single criteria is completely parallelizable.

• It performs asymptotically less work than classic sequential label setting algorithms
since the batched nature of data structure updates supplies additional information,
enabling efficient update algorithms.

With our description in Chapter 4, we are the first to present an implementation of this
algorithm.
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3. Parallel Bulk Updates for Balanced
Search Trees

The parallel algorithm of Sanders and Mandow [60] relies on batched data structure up-
dates, i.e., sequences of insertions and deletions meant to update either the Pareto queue
or a label set. The authors propose to implement both these data structures as balanced
binary search trees with parallel bulk updates, such as the parallel red-black tree of Frias
and Singler [19].

For an algorithm or data structure to be efficient in practice, it has to consider the memory
hierarchies of modern hardware, including the block-wise transfer between individual cache
levels. Motivated by this insight, we adopt a cache-efficient balanced tree data structure
and augment it with parallel bulk updates, instead of using the proposed binary trees. We
begin with a short review of the relevant literature before detailing our own approach. A
thorough evaluation then follows in Section 3.3.

3.1. Related Work

Cache-efficient trees take various forms, with cache-aware [56, 13] and cache-oblivious B-
trees [6, 7] being among the most prominent. B-trees are balanced trees that increase
spatial locality by storing multiple elements per node. This makes them well suited for
systems only efficient at transferring larger blocks of data. Accordingly, a simple cache-
sensitive B-tree has a node size of a single cache line [55] and can be multiple times faster
than binary trees [14]. Cache-sensitive memory layouts help to improve the performance
of the latter but are not sufficient to outperform B-trees [57].

Reducing the height of a B-tree can further improve its performance, as the shorter search
paths lead to fewer cache faults. The height of a B-tree can be reduced by increasing the
branching factor of inner nodes. Rao and Ross [56] propose the CSB+-tree that achieves
this by storing all children of a node as a single consecutive memory block. A single pointer
to this block is then sufficient to address all children, freeing up space to store more keys
per cache-line. A complementary technique is proposed by Chen et al. [13]. Their pB+-tree
still maintains one pointer per child but increases the branching factor by making inner
nodes larger (e.g., 8 cache lines wide). The latencies involved in the retrieval of these
additional cache lines are then hidden with the help of prefetching. Hankins and Patel [26]
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Chapter 3. Parallel Bulk Updates for Balanced Search Trees

furthermore show that larger nodes offer a good balance of cache misses, TLB1 misses
and instruction count. Further techniques improving the cache performance of B-tree are
summarized by Graefe and Larson [22].

An I/O-optimal parallel tree data structure for the Parallel External Memory (PEM)
model [4], the parallel buffer tree, is presented by Sitchinava and Zeh [62]. It is an adap-
tation of the sequential buffer tree [1], which delays updates directed to a subtree until
enough operations have been gathered to make their processing worthwhile. The lazy ex-
ecution of the buffer tree realizes a form of bulk updates. Bulk updates exploit temporal
and spatial locality of otherwise individual consecutive updates by applying them in one
operation. Such algorithms generally work by collecting and grouping updates directed to
the same leaf into balanced update trees. These trees are then inserted into the original
tree as a whole, followed by an appropriate rebalancing of the latter. If search paths of dif-
ferent keys have common prefixes, these only need to be traversed once [38]. Furthermore,
rebalancing can be efficient since the whole update sequence can be considered instead
of just an individual update [57]. Sequential bulk updates for (a,b)-trees, which include
B-trees, have been studied in [51, 33]. An overview of bulk update algorithms for these
and other kind of trees can be found in [57].

As Sitchinava and Zeh [62] point out, concurrent data structures allow multiple threads to
operate simultaneously and independently on the same data. In parallel data structures, on
the other hand, threads cooperate in order to speed up queries and updates. Concurrent
bulk updates of B-trees have been considered by the database community (e.g., [51, 52, 34])
and depend on locks in order to synchronize threads. Recent results indicate performance
advantages of lock-free (i.e., parallel) approaches [61].

Practical work on parallel bulk updates is due to Frias and Singler [19]. The authors present
a parallel bulk construction and insertion algorithm for red-black trees [24]. Their major
tools are split and concatenate operations [67]: Given a sequence of elements to insert,
the tree is splitted into p subtrees according to an initial fair distribution of the update
sequence among the p threads. These subtrees can then be updated in parallel before
they are concatenated to the result tree. To accommodate for different subtree sizes, the
update procedure is augmented with load balancing based on randomized work stealing.
The authors validate the practicality of their technique by reporting good speedups.

The bulk construction of Frias and Singler [19] shares ideas with a more theoretical algo-
rithm proposed by Park and Park [48] for the Parallel Random Access Machine (PRAM).
Various other parallel search trees [12, 50, 28, 49] have been proposed for the PRAM model,
all of which assume random access and rely on fine grained parallelism (e.g., pipelining or
synchronized round-based computations).

3.2. Parallel Weight-balanced B-trees

We adopt B+-trees [16] in order to augment them with parallel bulk updates. B+-trees are
a form of B-trees in which all elements reside in leaves. Internal nodes only store pointers
to child nodes and router keys, serving as an index that guides search traversals to the
correct leaves. Specifically, we implemented our tree as a weight-balanced B-tree [3], as it
can be rebalanced efficiently (details follow). To adapt such a tree to the cache hierarchy
of multicore machines, we follow the results of Hankins and Patel [26] by making internal
nodes and leave nodes several cache lines wide.

1The translation look-aside buffer (TLB) caches recent translations from virtual to physical memory
addresses.
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...

... ...

...

w(v) ∈
[
1
4β

1α, β1α
]

w(v) ∈
[
1
4β

2α, β2α
]

w(v) ∈
[
1
4β

0α, β0α
]

∈ [1024, 4096]

∈ [128, 512]

∈ [16, 64]

B-tree: Level:Weight:

2

1

0

Figure 3.1.: Structure of a weight-balanced B-tree for the parameters α = 64 and
β = 8.

3.2.1. Weight-balanced B-trees

Weight-balanced B-trees were introduced by Arge and Vitter [3]. Arge [2] provides the
following definitions.

Definition 3.1 (Weight). The weight w(v) of a leaf v in a search tree T is defined as the
number of elements stored in it. The weight of an internal node v is defined as the sum
of the weights of all its children (i.e., the number of elements in the leaves of the subtree
rooted in v).

Definition 3.2 (Weight-balanced B-tree). T is a weight-balanced B-tree with leaf param-
eter α and branching parameter β (α, β ≥ 8) if the following conditions hold:

• A leaf u has a weight 1
4a ≤ w(u) ≤ α. All leaves of T are on the same level (level 0).

• An internal node v on level l has weight w(v) ≤ βlα.
• Except for the root, an internal node v on level l has weight w(v) ≥ 1

4β
lα.

• The root has more than one child.

Figure 3.1 gives a concrete example for this abstract definition using the parameters α = 64
and β = 8, showing the minimal and maximal acceptable subtree weight on each level of
the tree. In addition to the presented child pointers and router keys within an inner node,
an implementation has to store the total weight for each subtree.

Observation 3.1 (Weight-balanced B-Tree Properties). Weight-balanced B-trees have a
few important properties [3, 2]:

• The height of a N element weight-balanced B-tree with parameters α and β is
O(logβ(N/α)).

• The weight constraints imply a bounded degree: Any node v (except for the root)
has between 1

4β and 4β weight-balanced children. A degree out of these bounds is
not possible without violating the weight constraints of v.

• A node v only needs to be rebalanced every Θ(w(v)) operations applied to its subtree.

Particularly the last property makes them interesting for us (summarizing the description
in [2]): We can use a simple amortized argument to charge the costs of rebalancing a node
v to all Θ(w(v)) operations responsible for its imbalance. After inserting an element in a
leaf, several nodes on the path from the leaf to the root may be out of balance. We can
either apply regular B-tree rebalancing operations on these nodes or make use of partial-
rebuilding (e.g., see [46]) and rebuild the tree rooted in the highest unbalanced node. As
a subtree can be rebuild in a linear number of steps, this gives us an O(logN) amortized
update bound.

We proceed to explain our own contribution based on the existing ideas presented here.
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...
B-tree:

Updates:
(sorted)

update
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applied
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...

... ...

...

router keys

splitting the

update sequence

Figure 3.2.: A parallel bulk update procedure for B-trees using recursive tasks.

3.2.2. Parallel Bulk Updates

Given a sorted sequence of insertions and deletions, we want to update a tree in a single
bulk operation using p collaborating threads. Figure 3.2 explains our general approach:
We partition the update sequence according to the tree, i.e., we perform a binary search to
locate the router keys of the root node within the sorted sequence and split it accordingly.
We spawn a task (see Definition 2.5) for each resulting subsequence in order to apply it to
its respective subtree. This is repeated recursively until all updates have been propagated
to leaves. To update a leaf, we merge its elements with the incoming updates.

Splitting the update sequence according to the tree may lead to load imbalances if many
updates are applied to the same area of the tree. However, this also means a subtree on
some level needs to be rebalanced, as we can show by contradiction: Assuming we apply
many updates in the same area of the tree without having to perform any rebalancing,
then these updates have to be distributed over several leaves, as a single leaf can only store
a constant number of elements. Updating several leaves is parallelized by our task concept
and thus not a load balancing problem. We have therefore shown that load imbalances
can only occur if a subtree needs to be rebalanced due to the over- or underflow of leaves.
Fortunately, as explained next, we can parallelize this rebalancing.

3.2.3. Parallel Partial-Rebuilding

Let N be the size of the tree, k the length of a sequence of updates S, and p the number of
threads involved in the computation. Let Si denote the i’th update in S and let Sij denote
a range of updates. Furthermore, let dij be the weight-delta of an update range Sij , i.e.,
the number of insertions minus the number of deletions in this range. The weight-delta dij
realized by an update range Sij is given as dij = Wj−Wi, where W is a sequence which we
precompute using a single prefix sum before applying a bulk update to our tree. The first
entry in W is initialized with zero. An entry Wi is set to Wi−1 + 1 if Si−1 is an insertion
or to Wi−1 − 1 if it is a deletion.

The key insight of our approach is that we know whether a tree can be updated in-place
or whether it needs to be rebalanced prior to descending into it: Let t be a subtree on
level l. Furthermore, let Sij be the range of updates to be applied to t. If the sum of the
corresponding weight-delta dij and the original weight of the subtree do no longer fall into
the acceptable weight range for a subtree on level l, then t needs to be rebalanced instead
of just updated.
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...

...

...

1) updates
pushed down to
subtree

2) rewrite to new
set of leaves

3) new subtree
constructed form leaves

4) new subtree
replacing the old
subtree(s)

Figure 3.3.: Parallel rebalancing of a weight-balanced B-tree using partial-rebuilding.
If a subtree requires rebalancing it is rebuild from scratch from the exist-
ing elements and the incoming updates.

As stated in Section 3.2.2, a tree is updated by spawning recursive update tasks for its
subtrees. To rebalance a tree, we use a very similar task parallel procedure. Figure 3.3
explains the idea: Updates are pushed down the tree using recursive tasks, but instead
of merely updating leaves in place, the merged stream of elements and updates is written
into a new set of leaves. Once all leaves are filled, a balanced tree is constructed from these
leaves, replacing the old subtree. This means, rebalancing is not a separate step, but we
can rebalance a tree while updating it.

The details of the parallel rebalancing approach depicted in Figure 3.3 follow. We note
that tasks for individual subtrees are independent from each other. All synchronization
that is required is already implicitly provided by the life cycle of tasks.

1. Rebalancing Start: We scan an inner node from left to right and compute the
update ranges Sij by using binary searches to locate the router keys within S. We
use the weight-delta information to check which subtrees needs to be rebalanced and
then trigger rebalancing tasks for each consecutive range2 of unbalanced subtrees. In
addition, we allocate an appropriate number of leaves to for all elements.

2. Rewrite Process: Within our recursive rebalancing tasks, we descend into all leaves
of a subtree to be rebalanced. Elements in leaves are merged with the incoming updates
and written to the new set of leaves. As an only exception, there is no need to descend
into subtrees in which all elements are deleted, as indicated by weight-deltas leading to
updated weights of zero.

The position of an element within the new set of leaves (i.e., its updated rank) can
be computed independently for each subtree using subtree weights and weight-deltas:
Given a rank of zero for the root of the unbalanced subtree, the rank of a subtrees is
given by the rank of its parent plus the updated total weight of all preceding siblings
in the same node (as this is the space required for rewriting them). Following this
approach, we know where to start writing the elements of a leaf. As ranks can be com-
puted independently for different subtrees, the entire rewrite process can be parallelized
using task parallelism.

2If a subtree or even a range of adjacent unbalanced subtrees has fewer elements (i.e., its total weight) than
the size of a perfectly balanced tree for this level, we include the elements of an additional neighboring
subtree.
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Many updates may fall into a single leaf. We therefore split an update range applied
to a leaf into subranges in order to process them in parallel. Let Sij be an update
range and let Spq be one of its subranges. A binary search locates its first update in
the existing keys of the leaf. The weight-delta information then helps to compute the
starting position of elements resulting from the application of this particular update
subrange Spq: Let l be the index of the first element in the leaf smaller or equal to Sp.
Given the rank r of the first element of the rewritten leaf, the rank of the first element
produced by the application of the Spq update range is r + l +Wip.

3. Tree Construction: We want to build a perfectly balanced tree over the filled leaves.
A perfectly balanced tree can take an equal number of insertions or deletions before
it needs to be rebalanced, i.e., it is half-full. Accordingly, a weight-balanced B-tree on
level l with leaf parameter α and branching parameter β has a designated weight of
1
2(minweight(l, α, β) + maxweight(l, α, β)) = 1

2(14β
lα + βlα) = 5

8β
lα. For details, see

Definition 3.2.

With this size information at hand, a tree can be constructed using a top-down task
parallel process: We recursively spawn tasks according to the layout of the balanced
tree to be constructed that allocate and initialize the latter. When reaching the leaf
level, instead of allocating leaves, the correctly pre-filled result leaves created in the
previous step of this algorithm can be referenced.

4. Replacement: The tree construction yields an inner node with one or more children.
These children have to be integrated into the parent node. Fortunately, as the degree
of a node has well defined bounds (see Observation 3.1), there is always enough space
within a node for all its children.

3.2.4. Runtime Analysis

Let N be the size of a weight-balanced B-tree, k size of the applied bulk update sequence,
and p be the number of threads involved in the computation. To eliminate lower-order
terms we assume N ≥ p2 and k ≥ p. For simplicity of the following analysis, we further-
more treat the leaf parameter α and branching parameter β as constants. The parameters
become significant again when we want to discuss the performance of the B-tree on actual
hardware. We consider this problem in our evaluation in Section 3.3.1.

According to Definition 3.2 a sequential weight-balanced B-tree has a height of O(logN)
and an amortized update bound of O(logN) for individual updates. As in [19], we note
that the cost of a sequential bulk update is bound by the cost of applying the updates
individually one by one, i.e., O(k logN).

Our parallel weight-balanced B-tree is updated using tasks. Task parallelism with random-
ized work stealing performed by p threads leads to an execution time of O(T1/p + T∞),
where T1 is the serial execution time of an operation and T∞ the critical path of the com-
putation, which cannot be parallelized [8]. If a bulk update of size k does not lead to an
overflow of a tree of size N , then T∞ is bound by its height O(logN). In combination
with the upper bound of the sequential bulk update time T1 = O(k logN), this gives us
an amortized update bound of O(k/p · logN + logN) for the parallel bulk update. We can
simplify this bound to O(k/p · logN).

We also have to consider the case where the updates lead to an overflow of the tree and
therefore to its reconstruction. This reconstructed tree has at most N +k elements. Using
p threads, its level-by-level construction takes O((N +k)/p) time due to the geometrically
decreasing work per level. As indicated in Observation 3.1, we can charge these rebalancing
costs to all Θ(N+k) updates leading to its imbalance. The update bound of O(k/p · logN)
therefore stays valid even for this special case.
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3.3. Evaluation

In addition to the actual update, our algorithm relies on a single parallel prefix sum as a
pre-computation step. It runs in O(k/p+log p) time (e.g., [32]) and is therefore dominated
by the update time of O(k/p · logN). The same update bound is also achieved by Frias
and Singler [19].

3.2.5. Implementation Details

We implemented our parallel B-tree in C++ using Intel® Threading Building Blocks
(Intel® TBB 4.1)3. We shortly summarize a few details which positively affected the
performance of our B-tree implementation:

• The B-tree supports bulk updates consisting of insertions, deletions and a mixture
of both. The parallel prefix sum computation preceding a bulk update is however
only required if a bulk contains insertions and deletions. Otherwise, weight-deltas
are implicitly provided by the number of updates in an update range. Given this
simple shortcut, we allow clients to specify the content of bulk updates (i.e., in-

sertions_only, deletions_only, mixed) to disable the weight-delta computation
if possible.

• Spawning a task for every subtree to be updated constitutes overhead if the work
is already sufficiently balanced between the different threads. We therefore adopt
a dynamic cutoff value used by the implementation of the parallel red-black tree of
Frias and Singler [19]: A subtree is updated sequentially without spawning additional
tasks if the number of updates in the corresponding update range is smaller than
(k/p)/ log(k/p), where k is the size of the entire bulk update and p the number of
involved threads.

• To update a leaf, we sequentially merge the incoming updates with the existing
elements of the leaf. The result is written to a thread-local spare leaf, which replaces
the old leaf in the tree. The latter then becomes the spare leaf for the next update.

• Nodes are padded to cache line boundaries to prevent false sharing. They are allo-
cated using the TBB scalable memory allocator [31].

• Rewriting a subtree requires a set of new result leaves. Our experiments indicated
that is faster to allocate leaves lazily by the fist thread writing to a specific one,
instead of allocating all leaves before the rewriting starts (even if done in parallel).
The required synchronization can be realized with little overhead using an atomic
compare_and_swap operation per allocated leaf.

3.3. Evaluation

We evaluate our B-tree on a system with two Octa-Core Intel Xeon E5-2670 CPUs (Sandy
Bridge) clocked at 2.6 GHz. The sockets form two NUMA nodes, both maintaining 32 GB
of main memory. Each of the eight cores per socket has a 64 KB private L1-Cache and a
256 KB private L2-Cache. In addition, all cores of a socket share a 20 MB L3-Cache. Our
implementation is compiled with -O3 -march=native -std=c++11 using GCC 4.7.2.

Our tests have the following properties (mostly adopted from [19]):

• Data: Elements are chosen to be similar to node-label pairs used by the Pareto
queue of our parallel label setting algorithm, i.e., structs with three random 32-bit
integers: x-coordinate, y-coordinate, and node id.

3http://threadingbuildingblocks.org
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• Skew: Random values for the tree are taken from the entire integer value range
[0, 232]. Random integers for updates are taken from the range [0, skew · 232], where
skew is a factor controlling the locality of insertions and deletions. As in [19], we
consider uniformly distributed elements (skew = 1) and more localized updates that
require rebalancing of the tree and load balancing among threads (skew = 0.01).

• Ratio: Bulk updates with k elements are applied to trees of size N = r · k, where r
is a configurable tree size ratio. Bulk construction of a tree is given for r = 0. As in
[19], we only consider r = 0, r = 0.1 and r = 10.

To generate a deletion batch, we perform a random shuffle of all N elements and
select the first k elements. In order to accommodate for the skew factor, we only
include elements of the tree in the shuffle whose value is smaller than skew · 232.

We flush the data cache after the initial tree has been constructed and before the bulk
sequence is generated and applied. All reported timing values are pruned averages4 of
the elapsed wall-clock time of otherwise unloaded machine, i.e., the average after the 25%
fastest and slowest runtimes have been filtered. Each test is repeated at least5 50 times.

Furthermore, we have implemented a direct sequential counter part of our parallel B-tree
that follows the same implementation strategy, but does not rely on parallel constructs
such as tasks or parallel loops. All speedups are reported in regard to this sequential
implementation.

3.3.1. Parameter Tuning

Before running the experiments, we have to determine the size of leaves and inner nodes
by tuning the leaf parameter α and the branching parameter β.

For smaller nodes our B-tree behaves more like a binary tree, whereas for larger nodes
it becomes more array-like. Both have their advantages and disadvantages, depending
on the structure of the input sequences, i.e., the distance of update positions within the
tree. Larger distances make smaller leaves promising due to the small number of accessed
elements per applied update. Larger leaves, on the other hand, are advantageous for
smaller distances, as multiple updates can be applied by scanning a leave (i.e., high spatial
locality). Figure 3.4 visualizes this trade-off for the leaf parameter α: We are inserting
a fixed set of uniformly distributed elements into trees of different sizes. As expected,
extreme parameter settings are only good for extreme input sequences.

In order to identify specific parameter values for α and β, we have to run a detailed
analysis. We inspect the uniform insertion of k elements into trees of size N = 10 · k
and N = 100 · k. The first ratio represents a dense update sequence, whereas the second
one represents are sparse update sequence. Figures 3.5 and 3.6 show the results of these
computations.

The TBB scalable memory allocator used by our B-tree implementation redirects uncached
memory allocations over 8 KByte to the operating system, bypassing all thread local heaps
[31]. We observed that this limits the scalability of our B-tree in cases where allocations
are required (i.e., construction and rebalancing) and therefore only consider node sizes
below this threshold.

According to Figure 3.5 and the limitations of the memory allocator, we set the parameters
for dense updates to α = 660 and β = 32. Furthermore, according to Figure 3.6, we set
the parameters to α = 64 and β = 32 for sparse updates.

4Bader et al. [5] propose to use such an approach if running times are not at least two or three orders of
magnitude faster than the clock resolution.

5Smaller instances are repeated significantly more often, so that each test takes at least several seconds
in total.
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Figure 3.4.: Performance heatmap: Insertion of k = 100 000 uniform random elements
into a tree of size N = r · k for a varying leaf parameter α and varying
tree sizes (scaled via r). The map is best read row-wise. The grayscale
assigned to a leaf parameter indicates the relative performance of this
parameter to the performance of all other leaf parameters for the same
tree ratio. The results validate the hypothesis of small leaves being suit-
able for sparse insertions and large leaves being appropriate for dense
insertions.
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Figure 3.5.: Detailed parameter tuning for dense insertions: Insertion of k = 100 000
elements into trees of size N = 10 · k. If not varied in the experiment,
the parameters are set to α = 660 and β = 32. The left plot indicates
performance advantages of larger leaves, whereas the right one shows that
the size of inner nodes only has a moderate performance influence.
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Figure 3.6.: Detailed parameter tuning for sparse insertions: Insertion of k = 10 000
elements into trees of size N = 100·k (thus the same tree size as in Figure
3.5). If not varied in the experiment, the parameters are set to α = 64
and β = 32. The experiment renders a leaf parameter of about 64 as
optimal. In addition, similar to Figure 3.5, the branching factor of nodes
has only moderate influence on the performance of the tree.
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Figure 3.7.: Insertion of a sequence of elements into a tree 100-times larger than the
sequence. The largest binary tree experiments do not fit into the main
memory and are therefore omitted. Our B-tree outperforms both sequen-
tial competitors. They will therefore not be considered any further in the
following experiments.

3.3.2. Experimental Results

We are not aware of any direct competitors besides the parallel red-black tree of Frias
and Singler [19], an extension of the C++ std::set with parallel bulk updates. We adopt
their latest implementation (MCSTL6 0.8.0-beta) and compile it with the latest compatible
GCC version 4.2.4 using the flags -O3 -march=native. Within the following experiments,
mcstl (p1) denotes the serial7 execution of the bulk-update procedure and mcstl (p8)

denotes the MCSTL red-black tree using eight threads.

In Figure 3.7 we use a simple experiment to gauge the performance of our sequential B-tree
implementation compared to the performance of the MCSTL algorithm and an ordinary
std::set binary tree without bulk updates. Our B-tree outperforms both single-threaded
competitors. They are therefore not considered any further in the following experiments.

Figures 3.8, 3.11, 3.12, and 3.13 show the insertion into trees of different sizes, comparing
our B-tree to the red-black tree of Frias and Singler [19] with their own benchmarking
methodology. We complete these results by reporting our achieved absolute speedups.
Figures 3.9 and 3.10 furthermore present deletions from a tree, a feature not supported by
the parallel red-black tree. A summary of the results follows.

Performance.

Our B-tree is significantly faster than the red-black tree of Frias and Singler [19], outper-
forming it in all experiments. In most cases, even our sequential implementation is faster
than their parallel red-black tree using eight threads. Exceptions to this last statement
are very sparse insertions (Figure 3.13) where loading large leaves constitutes overhead if
only very few element of a leave are affected by updates. In contrast to the binary tree,
our B-tree furthermore shows a relatively constant insertion cost per element.

We attribute the good performance of our B-tree to its cache-efficient design. As an addi-
tional factor, according to Frias and Singler [19], node allocations constitute a considerable
share of the work to be done. As B-tree nodes are larger, fewer nodes have to be allocated
to store the same number of elements, mitigating the allocation problem.

6Multi-Core Standard Template Library, http://algo2.iti.kit.edu/singler/mcstl/
7A complete sequential implementation of the bulk update procedure does not exist. We therefore run

the parallel version with just one thread.
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Figure 3.8.: Dense bulk insertion: Insertion of a sequence of elements into a tree that
is 10-times larger than the sequence.

Speedup.

For uniform updates that do not require rebalancing (skew = 1) we achieve a speedup
of three for four threads and six for eight threads (Figures 3.8, 3.9, 3.13). For the bulk
construction experiment or experiments where rebalancing is required (Figures 3.8, 3.11,
and 3.12), our maximal achieved speedups are higher and sometimes even slightly super-
linear. We ascribe the superlinear speedup to the utilization fast private of caches which
remain unused in the sequential case. For example, during the construction, tree nodes are
allocated and connected to each other in a downward pass but only populated with data
during the subsequent upward pass. The second pass is faster if large portions of the tree
are still cached in higher levels of the cache hierarchy, enabling a multi-threaded version
to reach super-linear speedups thanks to the additional caches.

Speedups are achieved only for a rather large number of elements. This result is consistent
with the results of Frias and Singler [19] and can be improved by forcing a process with p
threads to only use p cores of a single socket. The process will then profit from improved
locality for small inputs (which is particularly important on a NUMA machine) but suffer
from the limited I/O bandwidth of the single socket for larger ones. We followed Frias and
Singler [19] and refrained from explicitly binding threads to specific sockets and cores.

Deletions.

Insertion and deletions are implemented almost identically and therefore have similar per-
formance and speedups (see Figure 3.9). As an important difference however, weight-deltas
may indicate the deletion of an entire subtree, relieving from having to push down updates
to the leaves of this subtree. Instead, it can be deleted directly without significant com-
putational effort. Such a deletion is very fast, making it difficult to achieve any speedups
in a parallel implementation.
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Figure 3.9.: Deletion of a sequence of size k from a tree of size n = 10 · k.
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Figure 3.10.: Insertion and deletion: Update of trees which are 10-times larger than
a given insertion and deletion sequence. Separated denotes the case
where the insertion and deletion of k elements are applied to the tree
as two separate bulk updates. Combined denotes the case where these
two update sequences are merged and applied in a single bulk operation
instead of two. Only the combined approach requires the prefix sum
computation of the weight sequence (see Sections 3.2.3 and 3.2.5).

As explained in the implementation details presented in Section 3.2.5, the prefix sum
computation can be enabled or disabled depending on the content of a bulk update. It is
not required for update sequences containing either only insertions or only deletions. It
was therefore disabled in all benchmarks performed so far.

Figure 3.10 details the case when we have to perform both deletions and insertions on
the same tree. The result is two-fold: For uniformly distributed insertions and deletions
(skew = 1) it is faster to update the tree in a single bulk update instead of a bulk deletion
followed by a separate bulk insertion. This is true even with the overhead of the prefix sum
computation required for the former. This result is somewhat expected, as the tree has to
be traversed only once instead of twice. For skewed insertions (skew = 0.01) the result is
less clear. As indicated in Figure 3.10, the performance depends on a combination of the
deletion sequence and the tree layout. For specific constellations, separate deletions may
be optimized by the deletion short-cut for entire subtrees described above. The separate
bulk updates then turn out be faster than the combined case, because there is neither an
expensive first pass (for the deletion) nor the additional prefix sum computation.
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Figure 3.11.: Bulk construction by inserting a sequence of elements into an empty
tree.
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Figure 3.12.: Large bulk insertion: Insertion of a sequence that is 10-times larger than
the tree, forcing a complete reconstruction of the latter.
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Figure 3.13.: Sparse bulk insertion: Insertion of a sequence of elements into a tree
that is 100-times larger than the sequence. The largest experiment for
the parallel red-black tree is missing because it does not fit into the main
memory. Unfortunately, we have no proper explanation for the setback
of the speedup of our B-tree for larger number of threads. We assume
it is caused by a combination of a low branching factor in the root node
and size of this tree compared to the size of the system caches, both
making it difficult to reach an adequate performance if both sockets of
the system have to be used.
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4. Engineering the Parallel Pareto Search
Algorithm

Goal of our engineering effort is to devise a fast and efficient implementation of the algo-
rithm of Sanders and Mandow [60] for shared-memory multiprocessors. Consistent with
the results in Chapter 3, we consider memory hierarchies, but also aim to reduce the need
for excessive synchronization and load balancing. A detailed evaluation of our implemen-
tation follows in Chapter 5.

4.1. Coarse-grained Loop Parallelization

The parallel Pareto search algorithm explores several Pareto optimal paths in parallel. It
extracts these paths from the Pareto queue in a main loop, until the queue runs empty.
Even though subsequent loop iterations cannot be solved in parallel due to serial depen-
dencies on the content of the queue, the work within an iteration can be parallelized.

As seen in Section 2.3, such an iteration consists of several steps, starting with an ex-
traction of labels from the Pareto queue and ending with a batch update of the latter.
Each of these steps is performed by several threads in parallel. Unfortunately, as Sanders
and Mandow [60] point out that, such fine-grained parallelism may render the algorithm
impractical. We approach this problem by adapting the algorithm slightly: Even though
threads update different label sets in parallel, we update a single label set only sequentially
by a single thread. Accordingly, to achieve proper load balancing, our implementation re-
lies on the existence of a sufficiently large number of label sets to be updated per iteration.
To decrease the number of synchronization and communication operations even further,
we reduce the number of steps in the inner loop of the algorithm, as fewer steps imply
fewer synchronization points.

Figure 4.1 outline the algorithm as implemented by us. A further description follows.
Details on the involved data structures are then presented in the remainder of this chapter.

1. Find Pareto minima: Identify all Pareto optimal labels from the Pareto queue in
parallel. For each encountered minima, generate candidate labels, and schedule the
removal of the minima during in the later executed batch update of the Pareto queue Q.

We detail this task parallel process in Section 4.3. It combines two steps of the original
algorithm (”Find Pareto minima” and ”Generate candidate labels”) and re-uses the load
balancing performed for the Pareto minima computation to also balance the creation
of candidates.

27



Chapter 4. Engineering the Parallel Pareto Search Algorithm

Pareto queue Q

1. For each Pareto
minima:
a) Generate candidate

labels
b) Generate deletion

update
2. Sort candidates by

node
3. Merge candidate lists

and label sets
4. Sort batch updates
5. Batch update of the

Pareto queue

label sets (one
for each node)

...

1.a

2.

3.

5.

1.b

4.

Figure 4.1.: Outline of the shared-memory adaptation of the paPaSearch algorithm.
Labels in their different forms are all represented as dots, with the color
encoding the corresponding node.

2. Sort candidates by node: To prepare the batch processing of labels, use a paral-
lel shared-memory sorting procedure to group candidate labels by the node they are
assigned to.

This implies all threads have written their generated candidate labels to a single, shared
array. In Section 4.2, we present an approach of how such an array can be filled
simultaneously with only moderate synchronization effort.

3. Batch Update of label sets: In parallel but independently for each node, merge
candidate labels with the label sets of the respective node. All resulting modifications
of the label set are furthermore collected as operations for the batch update of Q.

Load balancing can be realized via a parallel loop, splitting the array of candidates
into ranges of dynamic size depending on the remaining workload. Candidate labels
belonging to the same node are identified using scanning. Each corresponding label set
is updated sequentially by a single thread.

This step combines the original steps ”Compute Pareto optima among candidates” and
”Merge candidate lists and label sets” into a single step. As explained in Section 4.4,
this combination enables an optimized candidates filtering.

4. Sort batch updates: Sort all Pareto queue updates which have been gathered over
the course of the current iteration lexicographically. Analogues to step two, this implies
all these updates have been written to a shared array. Further details are provided in
Section 4.2.

5. Batch update of the Pareto queue: Update Q by applying the updates that have
been sorted in the previous step. For further details, see Section 4.3.
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unused space

Buckets: ThreadA ThreadB ThreadA

filled unfilled

Array:

size

Figure 4.2.: Buckets within a shared array which are filled by different threads in
parallel. Threads allocate a new bucket by atomically incrementing the
size variable according to a fixed bucket size.

4.2. Collecting Results

The sorting steps of our algorithm adaptation (steps 2 and 4) require elements to be col-
lected in contiguous arrays. These elements are generated by different threads in parallel.
Unfortunately, the threads are likely to generate unequal number of elements. Due to
the dynamic nature of the algorithm, even the total number of generated elements per
iteration is unknown.

We implement a dynamic solution for this problem, enabling threads to append their locally
generated results to a shared array. Even though this technique seems rather trivial, it is
the key to our shared-memory approach, as it settles the important implementation detail
of how to pass data from one step to the next.

Inspired by the multi-core radix sort of Wassenberg and Sanders [66], we allocate an
array large enough to store all possible results. It may even be larger than the available
main memory, because virtual memory implementations of modern operating systems map
physical memory only on the first access of a memory page. We let all threads write to
this array in parallel, but force them to synchronize their accesses using atomic operations
on a shared size variable.

An atomic fetch-and-add of the size variable returns the value of the variable, and, in
the same cycle, increments it with the given value. Let the returned value be x and let
it be incremented by i. No other thread can interrupt this atomic increment. The range
[x, x+i) is therefore exclusively owned by the incrementing thread. As visualized in Figure
4.2, the range defines a bucket, which can be filled without further synchronization. Once
this bucket is filled, the thread can request a new bucket by another atomic increment.

Threads always perform increments by a fixed bucket size. In contrast to increments for
just one element, this reduces contention on the atomic, but also eliminates false sharing,
as buckets can be aligned to cache line boundaries.

The last bucket of a thread can probably not be filled completely, resulting in gaps in
the shared array without meaningful data. Fortunately, the next step of our algorithm
is always to sort the collected data. By populating these gaps with a maximal value, we
can use the sorting operation to move the corresponding entries to the end of the array,
where they can be excluded from further processing. The approach comes with a trade-off
between the frequency of atomic updates and the increased sort volume. We consider it
in our evaluation in Section 5.3 by tuning the bucket size accordingly.

4.3. Implementing a Parallel Pareto Queue

The Pareto queue proposed by Sanders and Mandow [60] is based on a binary search
tree (for details, see Section 2.3). As we have seen in Section 3.3.2, our parallel B-tree
significantly outperforms its binary tree-based competitor. We therefore adopt it as the
basis for our custom Pareto queue implementation.
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Procedure 4.1: findParetoMinima(t, p, G)

Input: B-tree node t, prefix minima p imposed by a preceding subtree, Graph
G = (V,E)

Output: Candidate labels and deletion updates for all discovered Pareto optimal
labels in the tree rooted in node t

1 min← p // current prefix minima
2 if v is leaf then
3 foreach node label pair (u, l) in t do // scan leaf for Pareto minima
4 if ly < miny or l = min then // is l is non-dominated?
5 store deletion update for l
6 foreach (u, v) ∈ E do
7 w ← weight((u, v))
8 l′ ← (lx + wx, ly + wy)
9 store candidate label (v, l′)

10 min← l

11 else
12 foreach subtree slot i in t do // search subtrees in parallel
13 if t[i].miny < miny or t[i].min = min then
14 spawn task findParetoMinima(t[i].node, min, G)
15 min← t[i].min

In a Pareto queue, the root of each subtree must be augmented with information about
the label with the minimal y-coordinate in this subtree. Storing a pointer to this label,
as proposed by Sanders and Mandow [60], would lead to additional (random) memory
accesses during the discovery of Pareto minima. We therefore opt to increase the spatial
locality by copying the x- and y-coordinates of these minimal labels to the corresponding
internal nodes of our B-tree. As shown in our adapted pseudo code in Algorithm 4.1,
internal nodes can then be scanned efficiently.

We use tasks to search different subtrees independently in parallel and rely on randomized
work stealing for load balancing. We process each discovered Pareto minima immediately
(see lines 5-9), i.e., we generate candidate labels and create a deletion update to remove
the respective minima.

It is more efficient to update the Pareto queue in a single instead of multiple independent
updates (for details, see Figure 3.10 and the description in Section 3.3.2)1. We therefore
merge the Pareto minima deletions with the updates generated by label set modifications
and apply them in a single bulk update. Our B-tree requires this update sequence to be
sorted. In a sequential implementation, the Pareto minima can be extracted in lexico-
graphic order, not requiring any further sorting. Therefore only the label set updates need
to be sorted before both can be merged to form the complete update sequence. In the
parallel implementation on the other hand, this merge shortcut does not apply, because
the randomized work stealing of the task parallelism prevents an ordered extraction of
minima.

1This applies at least to uniform updates. Fortunately, as shown in the appendix (see Figure A.5), this
is the common usage pattern of the Pareto queue.
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4.4. Implementing Label Set Updates

Given a sequence of candidate labels for a node, we have to check which of them are
dominated and which need to be inserted into the label set. Labels of the label set which
are dominated by newly inserted candidates have to be removed. We begin with a short
description of the dominance check before detailing two alternative label set implementa-
tions.

In a preprocessing step, all candidate labels of a node are sorted lexicographically. Even
though this could be achieved in the previous grouping step by using an appropriate
comparison-based sort, a delayed lexicographic sort profits from simplified sort compara-
tors (i.e., fewer branch) and improved cache locality. It furthermore enables us to overlap
I/O and computation by prefetching a label set while the associated candidate labels are
sorted.

When performing dominance checks, it is inefficient to spend work proportional to the
number of old labels, which can be significantly larger than the number of candidates to
insert. The predecessor-based dominance (see Definition 2.8) is therefore promising as it
allows us to identify Pareto optimal candidate labels in logarithmic time in the size of the
lexicographically ordered label set: A candidate label is dominated if it is dominated by its
x-predecessor. A non-dominated candidate label furthermore dominates all labels between
its x- and y-predecessors. The predecessor searches can either be realized as traversals in
a search tree, or as binary searches on array-based label set implementations. We note
that the predecessor approach also yields the correct insertion position of non-dominated
labels.

Sanders and Mandow [60] propose to implement dominance checks for a set of candidate
labels in two passes. In a first pass, candidates dominated by other candidates for the same
node are meant to be filtered. The second pass shall then be used to compare the surviving
candidates to the existing labels in the corresponding label set. In our implementation, we
combine both steps in a pipelined fashion, reusing information gathered in the second step
to improve the first one: We scan over candidate labels from left to right and check their
dominance using the predecessor method referenced in the previous passage. Let l′ be such
a candidate and let l be the predecessor label dominating it. The candidates are sorted;
all following candidates therefore have x-coordinates larger or equal to l′x. Accordingly,
following candidates are dominated if they have a y-coordinate larger or equal to ly. We
can filter them in constant time by a simple comparison to ly without having to use the
more costly logarithmic approach. Whereas the original proposal of filtering dominated
labels among candidates amounted to only about 3%–5% of dominated labels being pre-
filtered, our pipelined approach is able to filter 40–80%, depending on the problem instance
and the label set implementation.

We present two label set implementations: A tree-based variant with logarithmic insertion
time, and an array-based variant which is simpler but only offers linear insertion time.

Vector Label Set.

We store labels in lexicographically sorted unbounded arrays [41], i.e., in a std::vector.
Such a vector provides fast random access and an automatic resize of the underlying array
for insertions. Even though insertion and deletions are fast at the end, applying them to
arbitrary positions requires linear time due to the shift of following elements.

In Figure 4.3, we present a label set update procedure attempting to combine insertions
and deletions in order to minimize the number of shifted elements: Inserting a label may
lead to existing labels being dominated. Instead of deleting these immediately, the range
of dominated labels can be marked as a gap. This gap can then be filled by subsequently
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Vector update:

1)

gap of dominated labels
candidate label

2)

3)

1) Insertion into gap and
shift of remaining gap
to next insertion
position

2) Insertion into gap
3) Insertion with shift of

following elements

Pre-Update
State:

Post-Update
State:

Figure 4.3.: Example of a batch update of a vector-based label sets. The update
process is visualized using four states, beginning with the pre-update
state, and ending with the post-update state: In a single pass over the
vector, six lexicographically sorted candidate labels are inserted. This
leads to the domination four existing labels, which are removed by being
replaced.

inserted labels without requiring additional shifts. If the next label to be inserted is not
adjacent to the gap, the gap can be moved to the correct insertion position (i.e., Step 2
in Figure 4.3). Instead of shifting all following elements in the vector, therefore only the
elements between the gap and the next label insertion position need to be shifted. Once
all candidates in the current batch have been inserted, there may be a remaining gap. We
delete it in a final operation, leaving the label set as a contiguous array of labels.

Following this approach, updating a label set requires only a single pass with neither an
old label nor a candidate label being looked at twice. The worst-case runtime of inserting
a batch of candidates into a label set is linear in the size of both. In practice however,
insertions can be significantly faster, i.e., if insertions are concentrated at the end of the
vector or if most shifts can be circumvented using the gaps created by dominated labels.

B-tree Label Set.

Following the results of Chapter 3, we implement the tree-based label set using a sequential
version of our weight-balanced B-tree. It is updated in two passes. We check which labels
are dominated in a first pass and apply the corresponding updates in a second one, by
using its bulk update capabilities.

Similar to the B-tree update procedure (see Section 3.2.2), candidate labels are pushed
down the tree to the lexicographically sorted leaves using recursive update procedures.
Within leaves, dominance can be checked with an implementation of the predecessor dom-
inance based on scanning (see Definition 2.8). However, it is not sufficient to search for
dominated labels just within these leaves. Figure 4.4 presents the specific case of a can-
didate label dominating labels in an adjacent leaf. Fortunately, this implies that also the
router key of the updated subtree is dominated. When we back out of the recursive update
procedure of a subtree, we can therefore use the router key to check if a descend into its
right sibling is required in order to identify the remaining dominated labels.2

As an additional use-case, router keys help to realize a further improved candidate filtering,
which is also apparent in Figure 4.4: Candidate labels have to be propagated to a subtree
only if they are not already dominated by the router key of the preceding subtree. Many

2To a certain extent, this resembles the finger search [25] idea which is used for updates in the more work
efficient extension of the paPaSearch algorithm [60].
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y

x

B-tree Label Set:

Logical View:

Dominance check
across subtree
boundaries.

Router keys are
copies of the larg-
est label in each
subtree.

Candidate label
dominated by a
preceding router
key.

Figure 4.4.: Structure of a B-tree-based label set. Router keys help to detect when
dominance check span across subtrees. In addition, they can be used to
filter candidate labels in inner nodes and without having to access the
corresponding subtree.

filtering and dominance checks can therefore be carried out in internal nodes without
having to propagate the candidates to leaves.

Major disadvantage of the approach, as presented so far, are its two passes over the tree.
i.e., the first one for dominance checks and the according generation of updates and the
second one to apply these updates. To optimize the second pass, we adopt a form of relaxed
balance [45]: If the updates generated for a leaf keep the weight of this leaf between the
minimal and maximal acceptable value (see Definition 3.2), we apply them immediately.
This requires a second pass over the leaf but prevents another traversal of the root-to-leaf
path. However, as learned in Section 3.2.1, updating a leaf may unbalance other nodes on
this path. We therefore slightly relax the weight-balancing condition by deferring these
rebalancing operations to the next proper bulk update of the affected subtree. Relaxed
balancing maintains the current structure of the tree; only the number of elements per leaf
can change. Nodes are only created or deleted during the proper bulk updates.
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5. Evaluation

We have implemented our approach in C++ using Intel® Threading Building Blocks
(Intel® TBB 4.1)1. All allocations are performed using the TBB scalable memory allocator
[31]. We have furthermore implemented a direct sequential counterpart that follows the
same implementation strategy, but does not rely on parallel constructs such as tasks or
parallel loops. We compile our code it with GCC 4.7.2 and the flags -O3 -march=native

-std=c++11.

We test our implementations on a system with two Octa-Core Intel Xeon E5-2670 CPUs
(Sandy Bridge) clocked at 2.6 GHz. The sockets form two NUMA nodes, both maintaining
32 GB of main memory. Each of the eight cores per socket has a 64 KB private L1-Cache
and a 256 KB private L2-Cache. In addition, all cores of a socket share a 20 MB L3-Cache.
Each socket has four memory channels. The system runs Suse Linux Enterprise (SLES)
11 with kernel version 3.0.42.

5.1. Sequential Competitor

To serve as a competitor for the parallel label setting algorithm, we are in need of an equally
well-tuned reference implementation of a sequential bi-criteria shortest path algorithm.
We opt to implement a classic label setting algorithm, as it is the conceptually closest
alternative. As detailed in Section 2.2, there are various key design decisions involved in
such an implementation. We settle them one by one:

Queue Data Structure: We store all tentative labels in an addressable priority queue [41]
based on a tuned binary heap similar to the one proposed in [58].

In the context of label setting algorithms, binary heaps have been shown to be
highly competitive with other implementation choices such as Fibonacci heaps or
bucket data structures [47, 53]. Binary heaps have also been chosen by Raith and
Ehrgott [54].

We tried to reduce the size of this heap by storing only a single label per node,
i.e., only the best label instead all of them. In this context, we also experimented
with different strategies to find the next best label of a node once its best label was
removed from the heap. However, none of these approaches turned out to be as
competitive and consistent in their results as just storing all labels within a single
heap.

1http://threadingbuildingblocks.org/
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Figure 5.1.: Classic bi-criteria label setting: Label set operations for different label
selection strategies: In contrast to sum and max, the lex label selection
strategy leads to an access pattern that is almost exclusively concentrated
at the end of a lexicographically ordered label set. Figure B.6 in the
appendix shows that this behavior also holds for other instances.

Label Selection Strategy: Our priority queue is lexicographically sorted.

This design decision stands in contrast to recent experimental results [47, 29] on
label selection strategies that identified alternative orderings to be more efficient,
such as selecting the label with the minimal sum (i.e., x + y) or the label whose
largest criteria (i.e., max{x, y}) is minimal.

We deviate from these results because a label selection strategy cannot be seen in
isolation: The selection of different Pareto optimal labels from the priority queue
leads to a different access pattern on label sets, and, depending on the dominance
check, to a different number of label comparisons.

Figure 5.1 presents the label set access pattern for lexicographically sorted sets,
i.e. the positions within a label set where candidate labels are either dominated or
inserted. The lexicographic label selection strategy leads to an access pattern that is
almost exclusively concentrated at the end of a label set. We proceed to show how
this makes lexicographic label selection favorable for us.

Label Set Data Structure: We store labels in lexicographically sorted unbounded arrays [41].

Given that insertions happen almost exclusively at the end of our label sets, we can
choose to implement them as unbounded arrays [41] (i.e., std::vector), which are
very efficient at appending elements.

We have also experimented with search tree data structures (i.e., std::set) but
these were clearly outperformed. Considering related work, we are not aware of any
discussion on the best data structure choice for label sets.
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Dominance Check: We check if a candidate label is dominated by the last label. If this
is not the case, we fall back to an implementation of the predecessor method (see
Definition 2.8).

The dominance short cut relies on the focused access pattern of the lexicographic
ordering. As a fall back, we use an implementation of the predecessor method (for
further details, see Definition 2.8) to check for dominance, and to compute the ap-
propriate insertion position into the sorted set. The pseudo code of the resulting
dominance check is presented in Algorithm 7.1. Our whole insertion procedure is
then shown in Algorithm 7.2. Both algorithms are available in the appendix.

In Figure 5.2, we compare our classic label setting implementation (LSetClassic) to the
label setting and label correcting implementations of Raith and Ehrgott [54].

The results of [54] have been gathered on a system with a 2.40 GHz Intel Core 2 Duo
processor and 2 GB RAM. The algorithms are implemented in C and compiled with GCC
4.1.1 with compile option -O3. The results of our C++ implementation are gathered on a
very similar machine (1.83 GHz Intel Core 2 Duo, 3 GB RAM, GCC 4.4). We therefore
compare these implementations by directly comparing the reported timing values.
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Figure 5.2.: Comparison of our classic label setting implementation (LSetClassic)
to label setting and label correcting implementations of Raith and
Ehrgott [54] on road and grid instances of the same authors. Details
on the different road instances are provided in Table 5.1. A description
of the grid instances can be found in the Appendix B.
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Even given our slightly slower CPU, our implementations turns out to be faster for almost2

all instances. We conclude that LSetClassic can therefore serve as a faithful reference
for our paPaSearch implementation.

5.2. Test Instances

The crucial parameter affecting the performance of bi-criteria search algorithms is the
total number of Pareto optima [44]. The latter is not only related to the size and shape
of the graph, but also to the correlation between objectives [43, 11]. The number of
Pareto optimal paths decreases with increasing correlations and even degenerates to the
single-criterion case for perfect correlation.

We consider several different instances within this thesis. Most of these instances have
been proposed in the context of directed search from a start node s to a target node t (i.e.,
one-to-one search). We adopt the concept of reporting the number of labels of the target
node, but still compute the Pareto optimal paths to all other nodes (one-to-all search).

Random Grids.

Grids organize nodes into a rectangular shape of a given height and width. Each node is
connected to its (at most) four neighboring nodes via directed edges with random edge
weights.

Grids are very common in the literature (e.g., [54, 23, 47]). We adopt a definition that, in
addition to the number of nodes, allows a controlled adjustment of the correlation between
objectives [37, 43]. Let G be square grid and let −1 ≤ q ≤ 1 be a parameter controlling
the correlation objectives. Each edge weight ~w = (x, y) in G is then computed as follows:
x and y∗ are independent random integers uniformly selected from the interval [1, cmax]
and y is derived from x and y∗ according to the correlation q:

y =

{
q · x+ (1− q) · y∗ for q ≥ 0
1 + cmax − (|q| · x+ (1− |q|) · y∗) for q < 0

Within our experiments, we consider positively correlated grids (q = 0.8), uncorrelated
grids (q = 0) and negatively correlated grids (q = −0.8), both for cmax = 10 and cmax =
1 000 (e.g., values used in [37, 47]). The characteristics of the different type of grid instances
are detailed in Figure 5.3. Searches always start in one corner of the grid and end in the
opposite corner.

Sensor Networks.

A sensor in a sensor network monitors its surrounding, processes gathered data, and com-
municates with its local peers. We consider artificially created sensor networks in which
sensors are represented by nodes and communication partners connected via edges. As
the two objectives, we chose the distance to the connected node and a random integer,
both uncorrelated values form the range [1, 10 000]. We use sensor networks with a fixed
number of 100 000 nodes and node degree ranging from 5 to 50, i.e., degrees drastically
different from the rather limited degree of the other instances.

2With the only exception of grid instance whose computation is faster than 0.01 seconds.
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Figure 5.3.: Number of Pareto optimal labels for grid instances with different sizes and
correlations: Larger graphs lead to more Pareto optimal paths. On the
other hand, smaller maximal costs imply more identical labels and thus
fewer Pareto optimal paths. The number of optima refers to the number
of optimal paths from one corner of the grid to the opposite corner, not
counting Pareto optimal paths to other nodes.

Name State Nodes Edges Degree Pareto optima
Avg. Avg. Max

DC1-DC9 Washington, DC 9 559 39 377 4.12 3.33 7
RI1-RI9 Rhode Island 53 658 192 084 3.58 9.44 22
NJ1-NJ9 New Jersey 330 386 1 202 458 3.64 10.44 21
NY1-NY20 New York City 264 346 730 100 2.76 2 082.60 7 397

Table 5.1.: Characteristics of the used road instances. The number of Pareto optima
refers to the number of optimal paths between pairs of random start and
target nodes, not counting Pareto optimal paths to other nodes.

Road Networks.

We adopt road networks as real world use cases. We consider simple road instances with
correlated objectives (time/distance) and more difficult road instances with uncorrelated
objectives (time/economic costs). Statistics on the road maps can be found in Table 5.1.

• (time/distance): Raith and Ehrgott [54] adopt the three US road maps as tests
beds for bi-criteria shortest path search, i.e., Washington DC (DC), Rhode Island
(RI) and New Jersey (NJ). They generate nine different problem instances for each
map. The objectives time and distance are highly correlated (Pearson’s correlation
coefficiency of 0.99 [35]), leading to only few Pareto optimal paths.

• (time/economic costs): Machuca and Mandow [36] present a road instance of New
York City (NY) featuring the objectives time and economic cost. The latter at-
tempts to model the cost of traversing an edge, as a combination of estimated fuel
costs and highway tools. The two objectives are uncorrelated (Pearson’s correlation
coefficiency of 0.16), leading to a moderately difficult problem instance.

5.3. Parameter and Implementation Choices

Based on the parameter tuning of the weight-balanced B-tree presented in Section 3.3.1,
we configure the Pareto queue for dense updates (α = 660, β = 32) and B-tree label set
for rather sparse ones (α = 64, β = 32).

The bucket append technique described in Section 4.2 depends on the bucket size parame-
ter. This parameter realizes a trade-off between the frequency of threads synchronizations
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Figure 5.4.: Tuning of the bucket size parameter for uncorrelated grids of size n =
3002. Only extreme parameter values have an impact on the performance,
any other value is acceptable, e.g., a batch size of 128.

through atomic updates and an increased sort volume. According to the tuning results of
Figure 5.4, we set the bucket size to 128.

In Section 4.4, we introduced one label set version based on our weight-balanced B-tree
and one based on std::vector. Figure 5.5 compares these two label set implementations
according to their performance on a grid configuration (other configurations yield similar
results and are therefore omitted). The results can be traced back to the access pattern of
the paPaSearch algorithm on label sets. Figure 5.6 presents this pattern. It supports the
hypothesis that the vector cannot handle all access patterns equally well. It will therefore
not be considered any further in this thesis.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

100
2

150
2

200
2

250
2

300
2

350
2

400
2

450
2

500
2

R
u
n
ti
m

e
 [
m

s
] 
/ 
n

Grid Instance

Label Sets on Grid (q=0, cmax=10)

paPaSearch (seq, vec)
paPaSearch (seq, btree)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

100
2

150
2

200
2

250
2

300
2

350
2

400
2

R
u
n
ti
m

e
 [
m

s
] 
/ 
n

Grid Instance

Label Sets on Grid (q=0, cmax=1000)

paPaSearch (seq, vec)
paPaSearch (seq, btree)

Figure 5.5.: Grid experiments for the two different label set implementations. The
result indicates that the vector is not competitive for all instances.
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Figure 5.6.: Position within a label set where candidate labels are either dominated or
inserted by our parallel labeling algorithm. A similar analysis for other
access pattern can be found in the appendix (Figure A.4).
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5.4. Experimental Results

As stated in the introduction, goal of this thesis is to investigate whether the bi-criteria
shortest path problem can be efficiently solved in parallel. More specifically, we want to
evaluate whether our paPaSearch implementation is efficient on modern shared memory
multiprocessors.

The paPaSearch algorithm explores all available Pareto optimal paths in parallel. We
therefore expect it to excel for large and difficult instances, i.e., instances with uncorrelated
or negatively correlated objectives. These instances should not only exhibit a large number
of paths to be explored simultaneously, but should also lead to larger and therefore more
efficient bulk updates (in terms of temporal and spatial locality).

With the goal of finding a break-even point where parallel processing becomes worthwhile,
we perform a controlled evaluation of grids with different sizes and correlations. We use
sensor networks to test the dependence on the node degree, and furthermore, rely on road
networks to gauge the performance on more realistic graphs. For details on the number of
Pareto optima for these different instances, see Figure 5.3 and Table 5.1.

In the following, paPaSearch (p8) refers to parallel Pareto search algorithm using eight
threads. Its sequential counterpart is referred to as paPaSearch (seq). We compare both
to the classic sequential competitor LSetClassic. All reported timing values are averages
of the elapsed wall-clock time of an otherwise unloaded machine. For grids and sensor
networks, all measurements are repeated on ten different instances. Measurements for
road networks are repeated three times.

Performance.

In general, the results confirm the practicality of our parallel paPaSearch implementation.
In Figures 5.7 and 5.8, we establish the performance effect of different correlations of
objectives and different grid sizes. As it turns out, the parallel paPaSearch implementation
is always faster than LSetClassic except for small grids with high correlations.

The parallel algorithm excels at large and difficult instances as expected. On the other
hand, paPaSearch is clearly outperformed by LSetClassic for instances with highly cor-
related objectives. With only few labels being worked on per iteration, the overhead of
paPaSearch compared to LSetClassic becomes significant. For example, while LSet-

Classic extracts labels using a fast binary heap and can perform many dominance checks
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Figure 5.7.: Performance of grids with varying correlations between the two objec-
tives. Across the board, the parallel implementation paPaSearch (p8) is
the fastest approach. LSetClassic is only faster for grids with a very
high correlation. Similar plots for other grid sizes are available in the
appendix (Figure A.3).
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Figure 5.8.: Performance for grids of different sizes. The experiments consider the
combination of three fixed correlations (q = 0.8, q = 0, and q = −0.8),
and two different maximal edge costs (cmax = 10 and cmax = 1000). We
observe that the parallel implementation paPaSearch (p8) is the fastest
approach, except for very small grids with a high correlation of objectives.
Furthermore, its sequential counterpart is competitive to LSetClassic

for problem instances with uncorrelated and negatively correlated objec-
tives. For the latter correlation, it is even slightly faster than the classic
alternative.
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Figure 5.9.: Road instances of Machuca and Mandow [36] with uncorrelated objectives
(time/economic cost) representing a real world application. The experi-
ment confirms the results for large uncorrelated grids (see Figure 5.8).

in constant time, the paPaSearch operations (sorting, scanning leaves of B-trees, ...) suf-
fer from significant higher constant factors, which can only be amortized by working on a
large number of labels.

The results for the realistic road instances are very similar to respective grid instances.
Difficult road instances with uncorrelated objectives are presented in Figure 5.9. Road in-
stances with highly correlated objectives can be found in Appendix A. The experiments for
the sensor networks (also available in the appendix) furthermore confirm that paPaSearch
can also handle higher node degrees.

Speedup and Component Analysis.

Figure 5.10 presents the speedup of the parallel paPaSearch implementation over either
paPaSearch (seq) or LSetClassic, depending on which is faster for the specific instance.
We observe absolute speedups of four to five for eight threads and also a maximal speedup
of at least seven.

To understand the behavior and speedup of paPaSearch, we analyze the different com-
ponents of our implementation. Figure 5.11 shows the relative runtime of the important
algorithm steps for increasing number of threads. For the sequential variant and the par-
allel variant using one thread, updating label sets is the most expensive step, followed
by both Pareto queue operations. The relative runtime of these steps is not constant for
increasing number of threads, which implies they do not scale equally. Figure 5.12 presents
the corresponding speedups, which we analyze in the following.

The speedup for sorting is rather low. Probably, we do not sort enough elements for the
used tbb::parallel_sort to scale well. The speedups for sorting updates are slightly
worse than the ones for sorting candidates. We attribute this to the slightly fewer number
of elements being sorted, and secondly, to the tuned sequential sort operation used for
updates in the sequential case (see Section 4.3 for details on the sequential merge short-
cut which does not apply in the parallel case).

The Pareto queue update procedure achieves a maximal speedup of about eight. We
believe it is memory-bound, because even with both sockets, the system has only eight
memory channels. Large amounts of data can therefore only by transferred from and to
main memory with a speedup of about eight. The speedup for the extraction of Pareto
minima is slightly higher than the number of available memory channels. It profits from
parts of the tree still being cached after the preceding bulk update.
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Figure 5.10.: Absolute speedup of the parallel Pareto search algorithm for different
instances. The speedup is reported over either paPaSearch (seq) or
LSetClassic, depending on which is faster for the specific instance.
For the largest instances, the maximal achieved speedup is always about
seven or eight. The speedup for smaller instances is lower, because they
feature fewer Pareto optimal paths to be explored in parallel. This
specific number depends on the configuration of cmax and q. We further
observe that the speedup does not increase for thread counts larger than
the physical number of cores.

In contrast to the other components, the label set update method continues to scale with
increasing number of threads and even with hyper threading (i.e., more than 16 threads).
Updating a label set requires a lexicographic sort of the corresponding candidate labels.
This sort operation constitutes local cache-based processing, which does not require data
from the main memory. Compared to the Pareto queue operations, there is therefore less
pressure on the memory bandwidth, i.e., higher speedups become possible.

We conclude that the speedup of our paPaSearch implemented is mainly limited by the
sorting procedures and the number of memory channels.
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6. Conclusion

This thesis presented a bi-criteria implementation of the multi-criteria shortest path algo-
rithm of Sanders and Mandow [60], the parallel Pareto search algorithm.

We compared our implementation to a tuned classic label setting algorithm. The results
indicate that the parallel Pareto search algorithm is competitive for large and difficult
instances when run sequentially. Furthermore, it is shown to exhibit significant speedups
when run in parallel. According to our analysis, this speedup is bound by the performance
of parallel shared memory sorting procedures and the systems memory bandwidth. We
have therefore demonstrated that parallel bi-criteria shortest path search is practical on
modern shared memory multiprocessors.

As an additional contribution of independent interest, we presented parallel bulk updates
for weight-balanced B-trees. We used this technique as the basis for a cache-efficient
implementation of important data structures of the parallel bi-criteria algorithm. The
performance of the latter is hereby improved greatly; Sanders and Mandow [60] proposed
to implement these data structures based on parallel binary trees, which are significantly
slower than our solution. As future work, it seems worthwhile to concentrate on repre-
senting our B-tree more compactly in order to use the precious memory bandwidth more
efficiently. For example, we might apply well-established B-tree compression techniques
(for a survey, see [22]).

Regardless of the good results for difficult instances, our implementation does not perform
well for instances with highly correlated objectives. Featuring only few Pareto optimal
paths, these instances are normally considered easy. However, this also implies that only
few paths can be explored in parallel. We might be able to improve this situation to our
advantage by applying the delta-stepping [42] idea to the Pareto queue, i.e., increasing the
number of extracted labels per iteration. This should lead to more parallelizable work and
probably fewer iterations in total. By increasing the size of bulk updates and therefore the
temporal and spatial locality of our algorithm, delta stepping might also help to increase
the performance for more difficult instances.

Finally, the algorithm extensions proposed by Sanders and Mandow [60] are other promis-
ing candidates for future work. These extensions include single target search (one-to-one
bi-criteria shortest path search) and the adaptation of the algorithm to work with more
than two objectives.
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7. Appendix

A. Parallel Pareto Search

Figures A.1, A.2, and A.3 present additional experimental results of the paPaSearch al-
gorithm.

Furthermore, we present label set modifications (Figure A.4) and Pareto queue modifica-
tions (Figure A.5) of the parallel Pareto search algorithm [60] for different road and grid
instances. All presented instances are exemplary, i.e., we consider just a single random
grid per configuration and present only two representative road instances. Details on the
different instance types can be found in section 5.2.
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Figure A.1.: Road instances of Raith and Ehrgott [54] with highly correlated ob-
jectives (time/distance). This experiment confirms the results for grid
instances (see Figures 5.8 and 5.7), i.e., paPaSearch is not competitive
for highly correlated objectives.
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Figure A.2.: Sensor networks showing that paPaSearch can also handle higher out
degrees with results similar to the road and grid instances.
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Figure A.3.: Performance of grids with varying correlations between the two objec-
tives. The experiments consider grids of two different sizes and with two
different maximal edge costs (cmax = 10 and cmax = 1000). Across the
board, the parallel implementation paPaSearch (p8) is the fastest ap-
proach. LSetClassic is only faster for small grids with high correlation.
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Figure A.4.: Position within a label set where candidate labels are either dominated
or inserted by our parallel labeling algorithm.
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Figure A.5.: Position within the Pareto queue where tentative labels are either in-
serted or removed. Deletions correspond to the positions where Pareto
minima are found.
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B. Classic Bi-Criteria Label Setting

Figure B.6 details the label set access pattern for road instances. The Algorithms 7.1
and 7.2 show the corresponding label set implementation. We use a binary search for
x-predecessor and scanning for our y-predecessor implementation. To prevent bound
checks within these functions, we add sentinels of lexicographically minimal and maximal
labels to each label set (not shown here). Table B.1 furthermore shows the grid instances
used to evaluate this implementation.

Name h× w Nodes Edges Avg. Pareto optima

G1 30 × 40 1 202 4 720 35.24
G2 20 × 80 1 602 6 240 88.92
G3 50 × 90 4 502 17 820 112.33
G4 90 × 50 4 502 17 900 50.33
G5 50 × 200 10 002 39 600 286.08
G6 200 × 50 10 002 39 900 50.17
G7 100 × 150 15 002 59 700 188.33
G8 150 × 100 15 002 59 800 123.33
G9 100 × 200 20 002 79 600 273.75
G10 200 × 100 20 002 79 800 124.00
G11 200 × 150 30 002 79 800 205.17
G12 50 × 50 10 002 39 600 50.83
G13 100 × 100 10 002 39 800 115.67
G14 200 × 200 40 002 159 600 279.67
G15 2 450 × 2 4 902 19 596 4.75
G16 1 225 × 4 4 902 19 592 7.83
G17 612 × 8 4 898 19 586 8.75
G18 288 × 17 4 898 19 550 17.33
G19 196 × 25 4 902 19 550 22.33
G20 140 × 35 4 902 19 530 31.75
G21 111 × 44 4 886 19 448 48.25
G22 92 × 53 4 878 19 398 58.08
G23 79 × 62 4 900 19 468 69.33
G24 70 × 70 4 902 19 460 78.33
G25 62 × 79 4 900 19 343 95.00
G26 53 × 92 4 878 19 320 109.92
G27 44 × 111 4 886 19 314 135.67
G28 35 × 140 4 902 19 320 185.08
G29 25 × 196 4 902 19 208 260.33
G30 17 × 288 4 898 19 008 412.50
G31 8 × 612 4 898 18 360 815.92
G32 4 × 1 225 4 902 17 150 1 376.25
G33 2 × 2 450 4 902 19 596 1 574.83

Table B.1.: Characteristics of the grid instances of Raith and Ehrgott [54] used in the
experiment presented in Figure 5.2. The number of optima refers to the
number of optimal paths from the start at one side of the grid to the end
node at the other side, not counting Pareto optimal paths to other nodes.
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Figure B.6.: Classic bi-criteria label setting: Label set operations for the lex label
selection strategy on road instances.

Algorithm 7.1: Dominance Check

Input: Label set L of size n, Candidate label l
Output: true if l is dominated by any label in L, false otherwise

1 if L[n]x < lx then
2 return L[n]y ≤ ly
3 else
4 k ← x-predecessor(L, l) // Position of largest labels with smaller x-coord.
5 if L[k]y ≤ ly then
6 return true // l is dominated by its predecessor
7 else
8 k + + // Move to element with greater or equal x-coordinate
9 return (L[k]x = lx and L[k]y ≤ ly)

Algorithm 7.2: Label Set Update

Input: Label set L of size n, Candidate label l
1 if l is not dominated by L[v] then
2 Let k be the insertion position computed by the dominance check
3 j ← y-predecessor(L, l) // Position of the first non-dominated label
4 if k = j then
5 Insert into L at position k. Shift succeeding labels
6 else
7 Replace label at position k with l
8 Delete other labels in the range [k + 1, j)

9 Update the heap Q according to changes in L
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