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Zusammenfassung
Moderne Hardware stellt neue Herausforderungen an Algorithmen.

Um Rechnerarchitekturen mit mehreren Sockeln und komplexen Ca-
chehierarchien gut auszulasten, müssen Algorithmen mit den Stär-
ken und Schwächen der Hardware im Blick entworfen werden. Rich-
tig eingesetzt kann moderne Hardware auch neue und interessante
Optimierungsansätze bieten. In dieser Arbeit präsentieren wir einen
neuen Ansatz zur Arbeitsverteilung, anhand einer LU-Zerlegung. Bei
der Arbeitsverteilung betrachten wir Möglichkeiten gemeinsame Da-
ten zwischen verschiedenen Teilaufgaben wiederzuverwenden. Sofern
dies möglich ist werden die entsprechenden Teilaufgaben so auf Re-
chenkerne zugewiesen, dass sie gemeinsame Eingaben über den L3
Cache teilen können.
Das bestimmen der LU-Zerlegung einer Matrix ist eine der wichtig-

sten numerischen Aufgaben. Die LU-Zerlegung wird verwendet, um
Matrizen zu invertieren, ihre Determinante zu bestimmen und um li-
neare Gleichungssysteme zu lösen. Der Algorithmus zur LU-Zerlegung
ist außerdem repräsentativ für viele weitere numerische Berechnun-
gen. Dies ist auch der Grund, weshalb er der Hauptbestandteil des
berühmten LINPACK Benchmarks ist, welcher verwendet wird, um
die stärksten Supercomputer für die TOP500 Liste zu bestimmen.
Es ist wichtig, die Laufzeit der LU-Zerlegung zu verbessern ohne

die numerische Genauigkeit zu verschlechtern. Deshalb verwenden wir
den selben numerischen Algorithmus wie die anerkannte PLASMA
(Parallel Linear Algebra for Scalable Multi-core Architectures) Bi-
bliothek. Durch unsere Anpassungen an die Arbeitsverteilung, die es
uns ermöglichen Teilaufgaben mit gemeinsam genutzten Daten besser
zu verteilen, erreichen wir eine Performanzsteigerung, zwischen 15%
und 29%.



Abstract
Modern hardware makes new demands on algorithms. To prop-

erly utilize multi-socket architectures with non-trivial cache hierar-
chies, algorithms have to be designed with the hardware’s strengths,
and weaknesses in mind. If properly addressed, modern hardware
offers new, and interesting optimization possibilities. In this the-
sis we present a new scheduling approach, using the example of an
LU-decomposition. Our scheduler considers data reuse opportunities
between different subtasks, and schedules these subtasks in a way
that lets them share common inputs through the L3 cache.
The LU-decomposition of matrices is one of the most important

numerical algorithms. It is used for matrix inversion, to compute the
determinant of a matrix, and to solve systems of linear equations.
The algorithm for LU-decomposition is also representative for many
other numerical computations. This is the reason, why it is part
of the famous LINPACK benchmark, that is used to rank the most
powerful supercomputers in the TOP500 list.
It is important, to improve the performance of the LU-decomposition,

without decreasing its numerical accuracy. Therefore, we use the
same numerical algorithm for the LU-decomposition as PLASMA
(Parallel Linear Algebra for Scalable Multi-core Architectures), which
is a current state of the art implementation. By adapting the schedul-
ing scheme, to take better advantage of data sharing, we achieve
performance increases between 15%, and 29%.
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1 Introduction

1 Introduction

1.1 Motivation
Modern computers become faster, and faster. Today, there are two main fac-
tors that cause the increase in computing power, the increase in the number
of cores per processor, and the fact that modern cores can perform more and
more computations per cycle. Through Advanced Vector Extensions (AVX and
AVX2), cores can compute up to eight floating point operations per cycle (16
with AVX2). At this rate of computation, memory access becomes an impor-
tant bottleneck. Especially the latency of uncached memory accesses can be
detrimental for high performance computations. This trend is further intensi-
fied on multi socket-hardware by non-uniform memory access (NUMA). A single
memory access can slow down computations significantly. To counteract this
problem, manufacturers use complex cache hierarchies. Modern processors have
multiple levels of caches, some of which are shared between cores. It has become
an important, and difficult task, for programmers to optimally use these complex
cache architectures.
We chose the LU-decomposition problem to show that even problems which

were long believed to be compute bound can profit from dedicated cache opti-
mizations. LU-decomposition is interesting in this context for multiple reasons.
(1) It is one of the most important numerical algorithms. LU-decompositions
are the main tool to solve systems of linear equations, which is an important
subtask for many applications. Systems of linear equations are used in many
different areas, for example in engineering, physics, chemistry, computer science,
and economics. The LU-decomposition can also be used to invert matrices, and
to compute determinants. (2) The algorithm for LU-decomposition is charac-
teristic for many dense linear algebra computations. If our methods succeed
at accelerating the LU-decomposition, it is very likely that similar ideas can be
used to accelerate other numerical linear algebra computations. (3) Because of its
importance, there are already optimized implementations of LU-decomposition
algorithms, like the one used in the PLASMA [11, 1] library (Parallel Linear
Algebra for Scalable Multi-core Architectures). Therefore, even small improve-
ments can be worthwhile, and show the novelty of our approach. Well optimized
solutions can not only be used as competitors in our experiments, we can also
use them as a starting point for our own solution. (4) LU-decomposition is the
core of the famous LINPACK [12] benchmark. This benchmark is used to rank
the worlds most powerful supercomputers in the TOP500 list [9].
For large numerical computations like the LU-decomposition it is common to

generate parallelism by dividing the computation into small sequential subtasks.
Oftentimes, many subtasks can be executed independently creating parallelism.
This execution method is often called DAG-scheduling (Directed Acyclic Graph),
because one can construct a graph with the subtasks as vertices, and the depen-
dencies between subtasks as edges (see Section 2.3). In the context of numeri-
cal linear algebra computations, subtasks are often routines of highly optimized
BLAS libraries (Basic Linear Algebra Subprograms). Therefore, it is more in-
teresting to optimize the scheduling of subtasks than to optimize the subtasks
themselves.
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1 Introduction

Even in modern, state of the art libraries like PLASMA very little care is
taken to optimize data sharing between independent subtasks. Our approach is
to take into account, when multiple subtasks access the same input data. We
show, that scheduling subtasks with data sharing opportunities in mind, can
greatly reduce the number of cache misses, and in turn improve the running
time of the algorithm. To reduce the number of cache misses, we exploit the fact
that modern processors use shared caches, which connect multiple cores of one
processor. Scheduling tasks, that read the same memory regions, onto cores that
share a common cache, can lead to significant speedups, because the common
memory region will only be cached once.
In addition to our cache optimizations, we explicitly address, and optimize the

NUMA-behavior of our implementation. By controlling the NUMA-distribution
of the matrix, we are able to schedule tasks in a way, that minimizes the access
to non-local memory. Tasks are scheduled on the node, that holds the majority
of their input tiles. This accelerates data accesses even in case of cache faults.
What we propose, can be described as a data-computation-co-scheduling. Al-

gorithms can only reach their optimal performance, if data flow, and work flow
are considered together. To analyze the data flow and the usage of shared caches
during the computation we develop a theoretical cache model. This cache model
predicts the contents of shared caches during the computation depending on the
order, and placement of executed subtasks. Using this theoretical model, we
optimize the scheduling process that is used for our algorithm’s subtasks.
An important aspect for all numerical linear algebra computations is accuracy.

There are papers, that propose a trade-off between the speed, and the accuracy of
a computation. We aim to achieve the best possible accuracy. Therefore, we use
the same numerical algorithm that is used within PLASMA to compute the LU-
decomposition. This algorithm was described by Dongarra et al. [10], and we use
it as a starting point for our implementation. Most of our code is taken directly
from PLASMA, and nearly all of our changes are part of the scheduling process.
Notably, all of our numerical computations are exactly the same operations as
in PLASMA, and therefore produce the same result with the same accuracy. An
analysis of the algorithm’s accuracy can be found in the original description [10].
Through our changes in the scheduling strategy, we achieve a performance

improvement of 15% on big matrices (32768 rows/columns), and up to 29% on
smaller matrices (8192 rows/columns).

1.2 Related Work
In principle, there are two fields of work, that we consider to be related to our
findings. The first field is related through the common topic of LU-decomposition,
while the second field is related through similar optimization methods.
As described in Section 1.1, LU-decompositions are a very important for com-

mon problems like solving systems of linear equations. For that reason, there are
already many publications on the efficient computation of LU-decompositions.
Over the last decades a lot of work has gone into the efficient parallelization of
the LU-decomposition.
It has become clear, that LAPACK [2], which has been the standard library for

linear algebra computations for a long time, has performance issues on modern
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1.2 Related Work

multi-core machines. The reason for this is, that LAPACK creates parallelism
with a fork-join based approach. Instead of splitting the computation into small
subtasks, that can be computed independently. LAPACK uses bigger subtasks,
that are executed in parallel. This results in a significant synchronization over-
head. Modern contributions to the area of dense matrix computations rely on the
dynamic scheduling of fine grained, (mostly) sequential subtasks. Through this
approach, the synchronization between different threads is reduced significantly.
As we already mentioned, the algorithm for LU-decomposition can be split

into subtasks, that can be executed somewhat independently. There are differ-
ent kinds of subtasks, within the LU-decomposition. The most complex type of
subtasks is called a panel task (see Section 2.2.3). These panel tasks, are consid-
ered too big, to be executed sequentially. Therefore, it has been a focus of many
papers to improve their execution. Buttari et al. [7], and Quintana-Ortí et al. [17]
seek to improve the panel parallelization, by changing the pivoting scheme (see
Section 2.2) such that the panel factorization can be split into smaller subtasks.
They use what they call incremental pivoting to parallelize panel tasks more
efficiently. This method is also employed by Kurzak et al. [14] in their work on
dynamically scheduling dense linear algebra workloads.
But, changing the pivoting scheme comes at a cost in numerical stability.

Dongarra et al. [10] show that the loss of precision over the more commonly used
partial pivoting can be significant. Dongarra et al. also show a recursive variant
of the panel algorithm – using partial pivoting – that can be parallelized. This
algorithm combines high accuracy with high performance. It is the algorithm
that is used within the PLASMA [11] library, and because we used PLASMA as
a starting point, for our implementation, this is also the algorithm that we use
for this thesis.
Related works, that use similar optimization, and scheduling techniques can

be found in the field of DAG-scheduling. A lot of work has been done in the
context of DAG-scheduling, as it is applicable to many problems. Kwok, and
Ahmad [15] give a good overview of many aspects of DAG-scheduling.
Bosilca et al. [5] present a framework for high performance computations on

distributed hardware, using DAG-scheduling. Their goal is to simplify devel-
opment by offering a run-time system, which schedules tasks, and data-flows.
This framework has already been used by Bosilica et al. [6] to implement some
distributed numerical linear algebra functions, including a LU-decomposition.
One technique, that we are using for our optimizations is to manipulate the

execution order of subtasks in a way that allows subtasks to reuse cached memory
slots. Cheng et al. [8] show that parallel depth first traversal of the task-DAG can
reduce the number of cache misses compared to more traditional work stealing
methods. While this method shows large improvements for many problems, they
did not reach significant improvement for the LU-decomposition.
Apart from application level scheduling, there are also more indirect methods,

to improve the cache locality of parallel work loads. Tam et al. [18] use an ap-
proach, where they change the operating systems scheduling mechanisms. With
this method, they try to optimize the allocation of threads to processors. This
is done, by monitoring the memory accesses of applications with performance
counters, and rescheduling threads appropriately.

11
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1.3 Overview
We begin this thesis with the Preliminaries in Section 2. In this section, we
describe the background of our work. It contains theoretical backgrounds, like the
definition of an LU-decomposition, and a short introduction to DAG-scheduling
as well as the high level description of the numerical algorithm that we use for
our factorization.
In Section 3 we explain our optimization techniques from a theoretical point

of view. There, we develop the theoretical cache model, that we base our cache
optimizations on, and we describe the the cache, and NUMA-optimizations that
we implemented.
After this theoretical view on our optimizations, we use Section 4 to detail the

architecture of our scheduler, and the scheduling process. Here we also describe
how we incorporate the ideas – developed in Section 3 – into the scheduling
approach. In Section 5 we describe the detailed implementation, of our scheduling
process. There, we describe details, that are important for the scheduling of tasks
within our implementation. This includes the data structures of our scheduler,
the sequence of a threads work cycle, and the process of readying, and scheduling
subtasks.
To validate our findings, we conducted the performance experiments shown in

Section 6. There we compare the performance of our implementation to that from
the PLASMA library. We also conduct a detailed analysis, of our optimization
techniques, and their influence on the running time of different subtasks of the
algorithm. In the end, we summarize our findings in Section 7.

2 Preliminaries
This section contains some theoretical background for this thesis. We begin with
Section 2.1 where we explain different matrix layouts. Then we use Section 2.2 to
define the problem of LU-decomposition. Within this section, we also introduce
the numerical algorithm that we use to compute the decomposition. It works by
splitting the work of the computation into small subtasks. These subtasks can
either be executed sequentially – one after the other – or they can be reordered.
Many subtasks are independent from one another. They can be executed in
parallel.
In Section 2.3 we describe DAG-scheduling which is a method to schedule inde-

pendent subtasks. Subsequently, we use Section 2.4 to show the task structure of
the algorithm for LU-decomposition when it is scheduled with a DAG-scheduler.
Then, we describe the architecture of modern computers in Section 2.5. There,

we describe the hardware properties that we exploit to achieve better running
times.

2.1 Matrix Layout
There are multiple ways to efficiently store matrices. Classically matrices are
stored in the column-major format. This means that all elements of the matrix
are stored in one consecutive piece of memory, in a column by column ordering
(see Figure 1a). This data layout is very popular, because it is the native format

12



2.2 LU-Decomposition

used in Fortran, and therefore LAPACK [2], which is a widely-used linear algebra
interface written in Fortran.
There are other data layouts which are designed for better data locality. Such

layouts have proven effective especially for matrix multiplication. Examples for
this are hierarchical storage options and layouts that store matrices along space-
filling curves [3, 13] (see Figure 1b). Layouts of this kind can often lead to cache
oblivious algorithms – algorithms that effectively use caches without being tuned
to specific cache sizes.
We are using a blocked data layout [7]. This means, that the matrix is stored

in square blocks, which we call tiles. Each tile is stored in a column major
format (see Figure 1c). This layout is used in modern linear algebra software
like PLASMA [11]. It improves data locality, but submatrices are still stored in
the column major format. This enables us to use common BLAS libraries like
Intel’s MKL (Math Kernel Library) for subtasks of our computation.
In this thesis we are handling a lot of tiled matrices, therefore we want to

specify some naming conventions.

Definition 2.1 (Matrix Layout). All matrices used in this paper are square
matrices of size nglob × nglob (unless specified otherwise). A tiled matrix is a
matrix that is subdivided into n× n tiles of size b× b.

n =
⌈

nglob

b

⌉
If nglob 6= n · b then there are offsets in the lowest tile-row (rightmost tile-

column).
We call the tile in matrix A at position (i, j) Aij. The top left tile is A1 1, and

the bottom right tile is An n. We also use Ai...k j as a shorthand, for the tiles Aij,
Ai+1 j, . . . , Akj (part of a column), and Ai j...k for Aij, Ai j+1, . . . , Aik (part of
a row).

As previously mentioned, this data layout combines good data locality with
the ability to use existing libraries. It can also facilitate the parallelization of
matrix algorithms. An algorithm that operates on a matrix can often be split into
different subtasks that only work on certain tiles of the matrix. Two subtasks that
work on different parts of the same matrix can usually be executed in parallel.
This facilitates parallel execution without unnecessary synchronizations (or data
locking).

2.2 LU-Decomposition
The LU-decomposition is a factorization of a matrix into a lower triangular
matrix (zeros above the diagonal) and an upper triangular matrix (zeros below
the diagonal). These two matrices can in turn be used to solve linear systems of
equations or to invert the original matrix.
There are different varieties of LU-decompositions. Before we describe the

version that is commonly used (also used for this thesis), we begin by defining
the most basic variation of LU-decomposition.

13



2 Preliminaries

(a) Column Major (b) Space Filling Curve (c) Blocked Data Layout

Figure 1: Different data layouts for storing matrices.

Strict LU-Decomposition

Definition 2.2 (Strict LU-Decomposition). The matrix A is said to have an
LU-decomposition, if there exists a factorization A = L · U where:

• L is a lower triangular matrix (only zeros above the diagonal) with ones on
the diagonal.

• U is an upper triangular matrix (only zeros below the diagonal).

If there exists such a decomposition for a matrix A then it is unique. This is
forced through the constraint that L must have ones on its diagonal.

There are two problems with this general definition of LU-decompositions. The
first problem is that an LU-decomposition of this form is not possible for some
matrices. Especially singular matrices (not invertible) and permutation matrices
(exactly one “1” per row, and column) often do not have an LU-decomposition.
The second problem is the numerical stability of such a decomposition. This
kind of decomposition is only guaranteed to be numerically stable in certain
special cases, for example for diagonally dominant matrices (diagonal elements
are greater than the sum of other elements in the same row).
LU-Decomposition with Row Pivoting (partial pivoting) To reduce the prob-
lems of strict LU-decompositions, it is very common to allow row pivoting for
the decomposition. Row pivoting means that rows of the original matrix A are
permuted during the decomposition. This can improve the numerical stability
because it can prevent that large numbers are divided by very small numbers.
Rows are usually exchanged according to a pivoting scheme. We use the partial
pivoting scheme, which is the most common pivoting scheme, that in practice
leads to good numerical stability.

Definition 2.3 (LU-Decomposition with Row Pivoting). An LU-decomposition
of A with row pivoting is a decomposition where P · A = L · U and:

• L ·U is a strict LU-decomposition of P ·A (as described in Definition 2.2).
• P is a permutation matrix (P · A = A with permuted rows).

If we allow row pivoting, then every squared matrix has an LU-decomposition.
Throughout this thesis LU-decomposition will always mean an LU-decomposition
with partial pivoting (unless specifically mentioned otherwise).

14



2.2 LU-Decomposition
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Figure 2: Description of partial pivoting. The elimination of values below the
diagonal with, and without partial pivoting.

Partial Pivoting During the algorithm used for the decomposition, we eliminate
values in column k (below the diagonal) by subtracting a multiple of row k (see
Figure 2a). If the entry akk is zero, this leads to a division by zero. This is the
reason why not every matrix has a strict LU-decomposition. Even if |akk| > 0,
there can be numerical problems if akk is small compared to other entries in
column k. These numerical problems can reduce the overall accuracy of the
computation significantly.
Partial pivoting reduces these inaccuracies by choosing a pivot row and swap-

ping that row into row k (see Figure 2b). The pivot row is chosen as the row
that has the highest absolute value in column k. This way | aik

akk
| ≤ 1 can be

guaranteed for every “elimination factor” aik

akk
(see Figure 2c).

In this thesis we do not go into further detail on the numerical accuracy of our
LU-decomposition. The numerical accuracy of our LU-decomposition should be
equal to the accuracy of any similar implementation using partial pivoting. Since
our implementation is closely related to the implementation used in PLASMA,
we expect our accuracy to be the same. Results on the accuracy of PLASMA’s
LU-decomposition can be found in [10].

2.2.1 Representation of the LU-Decomposition in one Matrix

Memory is a concern when factoring big matrices. Therefore, it is preferable
not to allocate multiple matrices at once. Especially, if two of these matrices
will be triangular (one half of all elements are zero). Luckily, L and U can be
stored together in one matrix. This is possible, because L is a lower triangular
matrix and U is an upper triangular matrix. The only positions where non-zero
elements of L and U collide are on the diagonal, but all diagonal entries of L are
one. Thus, both triangular matrices can be stored in one matrix, in which the
zero entries and L’s diagonal are stored implicitly (see Figure 3).
The LU-decomposition can even be computed in place without allocating any

new matrices. Both algorithms that we present throughout this section are ex-
amples for in-place LU-decompositions (see Section 2.2.2, and Section 2.2.3).
Only the permutations have to be stored externally. However, storing a per-

mutation matrix can be done a lot less memory consuming than a regular matrix.
The permutation matrix is used to create a row permutation of the original ma-
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Figure 3: Representation of L, and U in one matrix.

Algorithm 1: Gaussian Elimination with Pivoting
Input: matrix A ∈ Rnglob×nglob

1 for 1 ≤ k ≤ nglob do
2 qk ← arg maxk≤i≤n |aik| // find pivot row with partial pivoting
3 exchange_rows(k, qk) // Figure 4a
4 for k + 1 ≤ i ≤ nglob do // Figure 4b
5 aik ← aik

akk
// generates entry of L

6 for k + 1 ≤ j ≤ nglob do // Figure 4c
7 for k + 1 ≤ i ≤ nglob do
8 aij ← aij − aik · akj // update matrix with row operations

Output: matrix A containing L and U , and the pivoting vector
Q = (q1, . . . , qn)

trix A. So instead of saving all permutations in the form of a matrix, we are
storing permutations in the form of an integer vector. Every value qi of this vec-
tor denotes that row i was exchanged with row qi (compare Algorithm 1 line 2,
and 3). Saved like this, the permutation matrix only uses memory space linear
in the matrix size nglob.

2.2.2 Gaussian Elimination

Originally the LU-decomposition was computed via the Gaussian Elimination al-
gorithm that can be seen in Algorithm 1 and Figure 4. This is the same algorithm
that is commonly used when manually solving linear systems of equations. The
matrix is triangulated – from top left to bottom right – by eliminating entries
under the diagonal.
For this algorithm, we assume that we work on a matrix with tile size b = 1.

So nglob = n and Aij is the element in position (i, j) of A. As it is customary
to use lower case letters for individual matrix elements, we use lower case letters
while b = 1.
There is one global loop (Algorithm 1 line 1 to 8) over k. Each global iteration

k works in three steps:
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(a) Find the optimal pivot
row and swap it into
the row k.

(b) Compute factors for
row operations – write
them into column k.

(c) Execute row opera-
tions on the rest of
the matrix.

Figure 4: One iteration of the LU-decomposition via Gaussian Elimination

1. (lines 2-3) We find a pivot row. This is the row with which values under
the diagonal are eliminated. Then, the pivot row is exchanged with row k.
We call this a row exchange (see Figure 4a).

2. (lines 4-5) Afterwards, we compute all factors which are later used to elim-
inate values under the diagonal. These factors make up the k-th column of
L (see Figure 4b). Hence, L can be seen as a history of all used elimination
factors.

3. (lines 6-8) At last, we subtract multiples of the right side of the pivot row
(row k right of column k) from each lower row. The corresponding factors
for each row were computed in step two and are stored in the k-th column
of L. We call these subtractions row operations (see Figure 4c).

Each iteration of this loop finalizes row k of matrix U . It also computes all
values that are in column k of matrix L. The values of column k might still be
reordered through row exchanges of future iterations. All values above row k are
final.
In step one the pivot row is chosen according to the pivoting scheme. Partial

pivoting is the most commonly used pivoting scheme. It is a method that in
practice achieves good numerical stability while still being fast, and easy to
implement. Partial pivoting means that we always use the row with the biggest
absolute value in column k as the pivot row. Therefore, akk is be the biggest
value in column k. This makes the computation of aik/akk more numerically
stable.
The problem with this algorithm is that it heavily uses matrix-vector products

(level 2 BLAS operations), these cannot fully take advantage of modern hard-
ware. Especially the matrix update (see Figure 4c), which is by far the biggest
portion of the algorithm’s work, could be executed more efficiently if it con-
sisted of matrix-matrix products (level 3 BLAS operations). Therefore, modern
libraries (for example PLASMA) use a slightly different version of this algorithm.
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Algorithm 2: Tiled LU-Decomposition with Pivoting
Input: a tiled matrix A ∈ (Rb×b)n×n

1 for 1 ≤ k ≤ n do
2 Ak...n k, Qk ← PANEL(Ak...n k) // finds pivots + column updates
3 for k + 1 ≤ j ≤ n do
4 Ak(..n) j ← TOP(Ak(..n) j, Akk, Qk) // exchange rows + computation
5 for k + 1 ≤ i ≤ n do // update the rest of the matrix
6 Aij ← SUBMATRIX_UPDATE(Aij, Aik, Akj)

7 for 1 ≤ i < k do // exchange rows left of the panel
8 Ak..n i ← BEHIND_PANEL_PERMUTATION(Ak..n i, Qk)

Output: matrix A that now contains L and U , and the pivoting vector
Q = (Q1, . . . , Qn)

2.2.3 Algorithm for Tiled Matrix Layouts

The LU-decomposition algorithm for tiled matrices, that can be seen in Algo-
rithm 2 and Figure 5, effectively recreates Gaussian Elimination on a matrix of
tiles. The main difference is that it combines row exchanges and row operations
from multiple columns (one tile-column) before applying them to the rest of the
matrix. For each global iteration over k (lines 1-8 in Algorithm 2), we call tile-
column k the panel of iteration k (Ak..n k; orange in Figure 5a). The panel is
comparable to column k of iteration k during the Gaussian algorithm. At the
beginning of each iteration, all permutations and elimination factors within the
panel are computed. Afterwards, the rest of the matrix is updated with all row
exchanges and row operations made within the panel. The algorithm splits its
work load into four major classes of subtasks:
PANEL-tasks (or P-tasks): In each global iteration, there is exactly one P-task.
It computes the LU-decomposition of the panel and the corresponding subsection
of the permutation vector Q (see Figure 5a). In Section 5.4 we go into further
detail about the implementation of the panel algorithm that we use. At this
point it is only important to know that the panel algorithm is parallelized which
means that there are multiple cores that work on each P-task cooperatively.
The P-task can be implemented very similar to the Gaussian Elimination al-

gorithm from Section 2.2.2. The P-task finds the pivot row for each column
within its tile-column and computes the corresponding tile-column of matrix L.
A single P-task has an asymptotic complexity of O((n− k + 1) · b3) flops. All n
P-tasks combined have an asymptotic complexity of

complexity(P-tasks) = O
(
n2 · b3

)
.

TOP-tasks (or T-tasks): They are the tasks that execute row exchanges on
the right side of the panel. In each global iteration, there is one T-task per
tile-column on the right side of the panel. They also compute the effects of
row operations within the topmost tile-row (see Figure 5b). The row exchanges
execute O(b2) reads and writes (no flops), while the row operations have an
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P

(a) Decompose the panel and
compute the corresponding
part of Q.

T T T T T

(b) Execute row exchanges
and finalize the topmost
tile-row.

U U U U U

U U U U U

U U U U U

U U U U U

U U U U U

(c) Update the rest of the ma-
trix with all row operations
made in the panel.

XX

(d) Execute the row exchanges
on the left side of the
panel.

Figure 5: One iteration of the LU-decomposition on a tiled matrix (k = 3 on a
matrix with 8× 8 tiles).

asymptotic complexity of O(b3) flops. All T-tasks combined have a complexity
of

complexity(T-tasks) = n · (n− 1)
2 · O

(
b3
)

= O
(
n2 · b3

)
.

SUBMATRIX_UPDATE-tasks (or U-tasks): These are the tasks that update
most of the matrix. In every iteration, there is one U-task for each tile that has
to be updated (see Figure 5c). Every U-task operates on one tile. It computes
the effects of row operations – made within the panel – on its tile. This is done
with a simple matrix multiplication. The U-task operating on tile Aij during
iteration k computes Aij = Aij − Aik · Akj. This is very similar to the matrix
update of the Gaussian Elimination seen in Algorithm 1 (line 6-8) and Figure 4c.
The difference is that matrix-matrix products are significantly better to use a
processor at full capacity than vector-matrix products. One U-task consists of
2b3 flops. All U-tasks together have a complexity of

complexity(U-tasks) = n · (n− 1) · (2n− 1)
6 · 2b3 .

BEHIND_PANEL_PERMUTATION-tasks (or X-tasks): An X-task executes
row exchanges made within the panel on a tile-column left of the panel (see Fig-
ure 5d). In each iteration, there are as many X-tasks as there are tile-columns
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left of the panel. X-tasks fulfill a special role in the algorithm. They do not
compute any flops. Because of this, it is beneficial to omit X-tasks from certain
considerations or images. Instead of computing any values X-tasks exchange
values from the topmost matrix tile with values from the corresponding pivot
rows. Therefore, they cause O(b2) reads/writes without having any computa-
tional complexity.
In Conclusion U-tasks are the only class of tasks which has a cubic complexity
(cubic in the matrix size nglob). They dominate the running time of the algorithm.
Therefore, we will be paying a lot of attention to optimizing the execution of U-
tasks. The LU-decomposition with this algorithm takes

complexity(tiled algorithm) = n · (n− 1) · (2n− 1)
6 · 2b3 +O

(
n2b3

)

= 2
3n3b3 − 1

2n2b3 + 1
6nb3 +O

(
n2b3

)
.

The theoretical flop count taken from LAPACK working note 41 [4] (with m = n
for square matrices) is

complexity(LU-decomposition) = 2
3n3

glob −
1
2n2

glob + 5
6nglob .

This is also the flop count that we use to compute the performance (Gflop/s) of
our algorithm in Section 6.

2.2.4 Spatial View on the Tiled LU-decomposition

In this section, we want to introduce a geometrical view on all subtasks of the
numerical algorithm for tiled matrices. We identify each subtask with one tile
that it operates on (even if it changes multiple tiles). This allows us to spatially
arrange subtasks in a grid (see Figure 6). This grid structure simplifies the
formulation of dependencies between subtasks.
At first we introduce new version numbers for all tiles of the matrix. We

call the tile at position (i, j) after iteration k of the algorithm A
(k)
ij . With each

iteration we finish the k-th tile row. This means that A
(i)
ij is the final version of

tile Aij (A(i)
ij = A

(n)
ij ) because in future iterations there are no tasks that change

Aij.
With the definition of version numbers, we can introduce a new naming system

to easily differentiate all subtasks of the algorithm. Each task is indexed with
the global iteration that it belongs to and with the position of one matrix tile
that it works on (See Figure 6):

• P
(k)
kk is the P-task of iteration k.

• T
(k)
kj is the T-task that operates on column j during iteration k.

• U
(k)
ij is the U-task that operates on the tile Aij during iteration k.

• X
(k)
kj is the X-task that operates on column j during iteration k.
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Figure 6: Task naming example (k = 2 on 5× 5 matrix)
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Figure 7: Spatial representation of subtasks from three iterations of the tiled LU-
algorithm (without X-tasks).

If we start working on a square matrix then the part of the matrix that is
actively worked on (through P-, T-, and U-tasks) remains a square at the bot-
tom right corner of the matrix (each iteration finishes one tile-row and one tile-
column). We can arrange all tasks of one iteration according to the matrix tiles
that the task operates on (see task indices), an example of this can be seen in
Figure 6. Additionally, we can stack the tasks of consecutive iterations on top of
each other – creating a time axis. This generates a pyramid structure of tasks,
part of which can be seen in Figure 7.
In this structure, the task occupying position (i, j, k) is responsible for the

computation of tile A
(k)
ij . This view on the algorithm’s subtasks is beneficial

because we can use it to describe relations between subtasks more easily.

2.3 DAG-Scheduling
DAG-Scheduling is a very important computation model to expose opportunities
for parallelization within an algorithm. An algorithm is divided into a set V of
subtasks (t1...t|V |). Where each subtask has to be executed sequentially.
Some of these subtasks might be independent from one another. Hence, they

may be scheduled simultaneously. Other tasks might not be independent, for
example if task tb uses task ta’s result then tb cannot be scheduled until ta is
finished. We call this a precedence constraint or we say tb depends on ta. Such
precedence constraints can be denoted by tuples (ta, tb). We say E is the set of all
precedence constraints which are implicitly given by the algorithm (E ⊂ V ×V ).

21



2 Preliminaries

We can visualize all tasks and dependencies as a directed graph G = (V, E).
The vertices of the graph are the subtasks of the algorithm, and the edges of the
graph are the dependencies between subtasks. In the example above tb depends
on ta. Therefore, the graph contains an edge from vertex ta to vertex tb. Every
valid algorithm that is parallelized through subtasks implies such a graph. There
cannot be any directed cycles in this graph because a cycle would imply a task
that transitively depends on itself (This task could never be ready for execution).
Thus, we call this graph the task-DAG (Directed Acyclic Graph) of an algorithm.
There are four basic states a task can have during the computation:

• (not ready) A task is not ready as long as it depends on at least one unfin-
ished task.

• (ready) Ready tasks are ready to be scheduled and executed. A task is
ready if it has no dependency to an unfinished task and it is not already
working or finished.

• (working) This means that the task is currently being executed. Each task
t has a running time w(t).

• (finished) Finished tasks are tasks that have already been executed.

In the beginning of an algorithm’s execution, there are usually only a few ready
tasks and many more tasks that are not ready. Once a ready task is finished
other dependent tasks may become ready. These ready tasks are also scheduled
until every task is finished. An execution of the algorithm can be compared to
a traversal of the task-DAG. The target of DAG-scheduling is usually to find a
schedule that minimizes the time needed for the computation.

2.4 Task-DAG of the LU-decomposition
The algorithm from Section 2.2.3 is already separated in small subtasks which we
indexed in Section 2.2.4. Now, we analyze the precedence constraints between
these subtasks to see which of them can be executed in parallel. A summary of
all precedence constraints can be seen in Table 1 and a visualization can be seen
in Figure 8:
P-task: (see Figure 8a) During each iteration P

(k)
kk works on the panel(Ak...n k).

It reads tiles A
(k−1)
k...n k and transforms them to version A

(k)
k...n k. The tiles A

(k−1)
k...n k are

usually written by the tasks U
(k−1)
k...n k (except for k = 1). Therefore, P

(k)
kk cannot be

started until U
(k−1)
k...n k are finished. P

(k)
kk also generates the k-th part of the pivoting

vector (Qk).
T-task: (see Figure 8b) The T-task T

(k)
kj performs row exchanges on column

j. Therefore, it reads tiles A
(k−1)
k...n j and the k-th part of the pivot vector Qk. It

changes the tiles A
(k−1)
k...n j into intermediate tile versions Ã

(k−1)
k...n j where permutations

are already performed but row operations are not. Row operations of all previous
iterations have to be completed to do this, therefore, T

(k)
kj depends on the tasks

U
(k−1)
k...n j . After all row permutations, T

(k)
kj performs the row operations on all rows

of the uppermost tile Ã
(k−1)
kj to create tile A

(k)
kj . Hence, T

(k)
kj needs tile A

(k)
kk which

22



2.4 Task-DAG of the LU-decomposition

Task t Inputs IN(t) Outputs OUT(t)
Dependencies In Dependencies Out

P
(k)
kk A

(k−1)
k...n k A

(k)
k...n k, Qk

U
(k−1)
k...n k T

(k)
k k+1...n, X

(k)
k 0...k−1, U

(k)
∗∗

T
(k)
kj A

(k−1)
k...n j, A

(k)
kk , Qk Ã

(k)
kj , Ã

(k−1)
k+1...n j

U
(k−1)
k...n j , P

(k)
kk U

(k)
k+1...n j

U
(k)
ij Ã

(k−1)
ij , A

(k)
ik , A

(k)
kj A

(k)
ij

P
(k)
kk , T

(k)
kj [X(k+1)

k+1 k ], P
(k+1)
k+1 k+1 or T

(k+1)
k+1 j

X
(k)
kj A

(k−1)
k...n j, Qk A

(k)
k...n j

P
(k)
kk , X

(k−1)
k−1 j or [U (k−1)

∗∗ ] X
(k+1)
k+1 j

Table 1: Tasks with corresponding input and output tiles, and the resulting de-
pendencies. Square brackets [∗] denote read before write dependencies.

(a) P-task (b) T-task (c) U-task

(d) X-task with j = k − 1 (e) X-task with j < k − 1

Figure 8: Incoming dependencies of each class of tasks. The examined task is
drawn transparent and highlighted in its color (see Figure 5). Direct
dependencies are highlighted in red (read before write in brighter red).
All white tasks are indirect dependencies.

at this point was last written by P
(k)
kk (as was Qk which was needed for the row

permutations). Therefore, T
(k)
kj is also dependent on P

(k)
kk .

U-task: (see Figure 8c) The U-task U
(k)
ij performs all row operations of the k-

th iteration on tile Ã
(k−1)
ij . Therefore, it reads the tiles Ã

(k−1)
ij , A

(k)
ik (for the

elimination factors) and A
(k)
kj (for the pivot row elements). This makes U

(k)
ij

dependent on T
(k)
kj (who writes Ã

(k−1)
ij and A

(k)
kj ), and on P

(k)
kk (who writes A

(k)
ik ).

The dependence on P
(k)
kk can be ignored, since U

(k)
ij is already dependent on T

(k)
kj

which in turn is also dependent on P
(k)
kk .

X-task: (see Figure 8d and 8e) The X-task X
(k)
kj performs row interchanges on

column j (left of the panel). Thus, it reads the permutation vector Qk which
makes it dependent on P

(k)
kk . It also reads the tiles A

(k−1)
k...n j and changes them to
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Figure 9: task-DAG of the tile based algorithm on a 5× 5 tile matrix.

version k. These tiles were previously written by either task P
(k−1)
k−1 k−1 (if j = k−1

this means A
(k−1)
k...n j is the previous panel) or task X

(k−1)
k−1 j (if j < k − 1).

If A
(k−1)
k...n j was written by P

(k−1)
k−1 j , then it was part of the panel from the last

iteration (k − 1) which means many tasks of that iteration read its contents.
Therefore, we have to make sure that each of those tasks is finished before X

(k)
kj

can change the panel. Thus, X
(k)
kj is dependent on each U-task of the previous

iteration (k − 1). We call this kind of precedence constraint a write after read
constraint.
Write after read constraints can generally be circumvented by duplicating the

affected memory. This is not important here since X-tasks only make up an
insignificant amount of the algorithm’s running time. Hence, it is no problem to
wait for all dependencies and postpone X-tasks until later in the computation.
This is the only instance of a write after read precedence constraint within the
algorithm.
With the help of these precedence constraints we can build the task-DAG (see

Figure 9). One can see that there is a lot of structure to this graph. This makes it
easy to pre-compute the incoming and outgoing dependencies when the subtasks
are created.

2.5 Modern Multi-Socket Machines
Modern processors become increasingly complicated. They get more cores, deeper
cache hierarchies, and they have more advanced arithmetic units. Most of our ex-
periments were done on a Sandy Bridge system, where each core can compute up
to four double precision multiplications and four double precision additions per
cycle (AVX). Newer machines, that support AVX2 instructions, can even com-
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Figure 10: Schematic sketch of a four socket architecture. It shows the NUMA-
memory, shared caches, as well as QPI-links connecting the sockets.

pute eight combined multiply and add functions per cycle, resulting in a peak
performance of 16 flop per cycle. Luckily modern processors are also equipped
with bigger and bigger caches to hide long latencies when accessing slow off-core
memory.
Properly using these big caches is becoming an important issue for program-

mers. Especially the last level of on-chip cache (L3) is crucial for the performance
of many algorithms because it is the largest cache that can hide long load times
from off-chip memory. Since the L3-cache is commonly shared between all cores
of one processor, we can decrease the number of L3-cache-misses by reusing
cache-lines that were originally loaded by another core of the same processor.
This makes the L3-cache even more interesting from an algorithmic point of
view. We call all cores sharing one L3-cache a cache-node.
Another aspect of modern multi-socket machines is that they are usually

NUMA-machines (Non Uniform Memory Access). This means that there are
different memory sections and the access rate of each memory section depends
on the processor that it is accessed from. In practice, every socket has its own
“local” memory. Local memories are shared between sockets, but accesses are
significantly faster when accessing local memory. Everything that is accessed re-
motely has to be shared through QPI links (QuickPath Interconnect) connecting
all sockets (see Figure 10).
NUMA-machines accentuate the importance of caches even further because

there can be longer latencies when accessing memory remotely. Memory con-
trollers are usually shared between all cores of one processor. Thus, cache-nodes
and NUMA-nodes usually correspond with each other. Therefore, we use the
terms node, cache-node, and NUMA-node somewhat interchangeably.
In the following, we will also use the terms thread and core interchangeably.

At the beginning of the execution, we start one thread per core. Every thread
is pinned to one corresponding core. Even though every machine that we used
supports hyper-threading, we create only one thread per physical core. Hyper-
threading does not actually improve the performance of the LU-decomposition
since the two hardware-threads that are executed on the same core share a com-
mon floating-point unit.

25



3 Our Concepts for Performance Improvements

3 Our Concepts for Performance Improvements
In this section, we present the ideas and concepts that we used to optimize
the scheduling of subtasks. As described in Section 2.2.3, U-tasks represent the
most work among all task classes. They are the only task class that performs
Θ
(
n3
glob

)
floating point operations. In our experiments, U-tasks take up to 95%

of the running time especially on large matrices (see Section 6.4.1). Therefore,
we concentrate our efforts on improving the performance of U-tasks.
At first we will describe how the scheduling of subtasks can influence the cache

status, and thereby, the performance of a subtask. To do this we first define a
cache model that will simplify the cache behavior during the computation (Sec-
tion 3.1). Then we point out why classical DAG-scheduling (Section 3.2) might
not be the best option to schedule the LU-decomposition. After this introduc-
tion, we go into further detail on our approach to improve the cache performance
(Section 3.3) and NUMA-behavior (Section 3.4) of our implementation.

3.1 Tile-Cache Model
To be able to predict the cache performance of a potential schedule, we devel-
oped the following theoretical machine model. It is supposed to replicate the
conditions described in Section 2.5 while still being easy to work with.
For our purposes a modern multi socket machine consists of s nodes (node0, . . . ,

nodes−1). Each node consists of p cores, a shared tile-cache, and local memory.
The cores are labeled globally, core0, . . . , corep−1 are the cores of node0 (subse-
quently nodei consists of corei·p, . . . core(i+1)·p−1). Each node’s shared cache can
contain a constant number c of matrix tiles (see Section 2.1 Blocked Data layout)
depending on the tile size (b× b) and the physical cache size.
When a task t is executed on corei all input tiles Ain ∈ IN(t) have to be read.

There are three different memory locations where Ain could be read from:

• (Cache Hit) If tile Ain is already loaded into the shared cache of the cor-
responding node, then it can be read from this cache reducing the loading
time significantly.

• (Locally Solvable Cache Miss) The tile is not cached and has to be read from
the local memory.

• (NUMA-Miss) Ain is not cached and is not stored locally thus it has to be
loaded from another node’s local memory. We call this a NUMA-miss.

Every tile, that is read this way, is stored in corei’s shared cache. After the
execution of t, each output tile Aout ∈ OUT(t) replaces the corresponding input
tile in the local cache. Eventual copies of the old version in other caches are
invalidated (removed).
T- and X-tasks are the only tasks that read partial tiles. Therefore their input

tiles have to be treated differently. T- and X-tasks perform row exchanges on non-
panel tiles. A T-task T

(k)
kj swaps rows of the tile-column Ak...n j into its uppermost

tile Akj. Therefore, it reads/changes Akj completely and only reads/changes
single rows of all other tiles within the column. Hence, we approximate that for
cache modeling purposes a T-task (or X-task) only reads and writes the topmost
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3.2 Data co-use Hypergraph

tile of its column. To represent the additional data that is read from the rest of
the column, we load another tile into the local tile cache. This tile is not part
of the actual matrix. It is loaded into the cache to “waste” space, therefore, it
cannot be used for future cache hits. Since all other tiles of the column are not
changed significantly, they are not invalidated or cached.
Each local cache can store up to c different tiles. When the tile Ain is loaded

and the local cache is already at its capacity, an old tile will be replaced. In our
model we replace the tile that has not been used for the longest time.
This cache model is meant to simulate the behavior of modern L3-caches dur-

ing the computation of the LU-decomposition. There are some key differences
between our model and actual hardware caches. The biggest difference is that
the model only represents complete matrix tiles. In reality a tile consists of
thousands of different cache lines. We think that this simplification is justifi-
able because most subtasks accesses their input tiles as a whole. This means
that their cache lines enter the cache succinctly and are probably also replaced
somewhat succinctly.
The simulation assumes a fully associative “least recently used” cache (the

oldest tile of the cache is replaced) when in reality caches are not fully associative.
This means, that a new cache line can only replace a cache line from a subset
of all cache lines. Hence, it might not always be the oldest cache line which is
replaced. Cache lines might even be evicted although the cache is not full yet.
This happens if the corresponding subset of the cache is full.
We think that in our case the assumption of a fully associative cache is valid.

The machine, that we used for testing (see Section 6.1 SandyBridge32), has a
20-way set associative cache. This means, the cache can simultaneously store
up to 20 cache lines associated with one cache group. If we assume that no two
cache lines of one matrix tile share the same cache group (This assumption is
guaranteed if a tile is stored consecutively within the physical memory) then there
can be at least 20 different tiles in the shared cache of one node and replacement
should work as expected.
Our model only counts the number of “tile-cache hits” (and misses). We do

this because reading one tile produces significantly less cache misses than the
number of cache lines that the tile consists of. Therefore, we believe that in
practice a lot of work is done by the prefetcher. We also assume that a matrix
tile is big in comparison to all other data which is loaded during the execution
of a task. Therefore, we ignore all data that is not part of the matrix in our
cache simulation. Reloading parts of other data structures should not evacuate
significant parts of a tile from the cache.
This cache model simplifies the complex behaviors of modern hardware caches

good enough to predict the effectiveness of our following optimization techniques.
In Section 6.5, we show that it also holds up in real experiments and measure-
ments.

3.2 Data co-use Hypergraph
One major problem with using classical DAG-scheduling for the LU-decomposition
is that all relations between subtasks are expressed through precedence con-
straints. Two tasks that are not directly or indirectly dependent have no con-
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Figure 11: Data co-use hyperedges.

nection. Therefore, they are scheduled completely independent from one another
even if they share common input tiles. This makes expressing data reuse between
different tasks difficult. But since our subtask implementation basically uses the
same code as our competitors (mostly BLAS library calls), cleverly scheduling
different subtasks becomes the only way to improve running times.
To improve the global schedule, we analyze not only the obvious precedence

constraints of the task-DAG. We also review data reuse possibilities. Therefore,
we introduce new hyperedges (edges connecting more than two tasks) between
tasks that read (write) the same version of a memory section.

HE(mem(v)) = {ti ∈ V | task ti reads or writes into mem(v)}

In our case the memory sections correspond to matrix tiles. Each version of
a matrix tile A

(k)
ij implicitly defines a hyperedge HE(A(k)

ij ) which contains all
subtasks that read (or write) tile A

(k)
ij .

HE(A(k)
ij ) = {ti ∈ V | task ti reads or writes into tile A

(k)
ij }

In Figure 11 we show examples of hyperedges within the task-DAG (Fig-
ure 11a) and within the spatial representation of one iteration (Figure 11b).
One can easily see that each hyperedge HE(A(k)

ij ) contains exactly one task that
writes A

(k)
ij . All other tasks read A

(k)
ij . Each precedence constraint edge (ta, tb)
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can be found within such a hyperedge. The constraint is caused by tb using the
results of ta. In the context of our computation results are matrix tiles. There-
fore, the constraint is caused by a tile which ta writes to that tb reads. But not
all connections of such a hyperedge follow precedence constraints.
If we look at hyperedge HE(A(k)

k+1 k) (the second panel tile of iteration k), the
hyperedge contains all tasks that handle A

(k)
k+1 k namely P

(k)
kk (the panel task),

U
(k)
k+1 (k+1)...n (the topmost row of U-tasks), and X

(k+1)
k+1 k . The tasks U

(k)
k+1 (k+1)...n

have no connection in the original task-DAG. Hence, a classical DAG-scheduler
would not know that all these tasks share an input tile, let alone schedule them
appropriately.
Our target is to schedule tasks in such a way that these data reuse possibilities

are exploited. Scheduling multiple tasks of one data reuse hyperedge appro-
priately can often lead to an improved cache performance and even reduce the
amount of node to node communication.

3.3 Cache Improvements

When a core works on a U-task U
(k)
ij , there are three input tiles that have to be

loaded into the local cache: the topmost tile of the tile column A
(k)
kj , the panel

tile A
(k)
ik , and the original tile Ã

(k−1)
ij (see Figure 12a). If the same core would

also compute the neighboring tile update U
(k)
i j+1, A

(k)
ik might still be in the cache.

This produces a cache hit in our machine model (see Section 3.1), thus, there
would only be the need to load two new matrix tiles.
As described in Section 3.1, caches are shared between all cores of one node.

Therefore, we can also reduce the amount of tile loads by scheduling neighboring
tasks simultaneously on two cores of the same node. This can be even more
beneficial because it reduces the amount of tiles that have to be cached simul-
taneously. If we schedule all U-tasks that operate on one tile-row i to a node,
then we only need to store two tiles per core plus the shared tile A

(k)
ik . Thus, tiles

can remain inside the cache longer because less tiles are actively needed for the

29



3 Our Concepts for Performance Improvements

computation.
With that said, we need to figure out how to group and schedule U-tasks

such that we reuse as many cached tiles as possible. To do this we analyze
the data reuse hyperedges described in Section 3.2. The hyperedges between
U-tasks of one iteration k have a grid structure (see Figure 11b). All U-tasks
working on one column j are connected through the common use of the topmost
tile A

(k)
kj (U (k)

(k+1)...n j ∈ HE(A(k)
kj )), and all U-tasks operating on the same row i

are connected through the common use of the same panel tile A
(k)
ik (U (k)

i (k+1)...n ∈
HE(A(k)

ik )).
Therefore, we propose to group tasks that operate on a square of tiles. This

exploits horizontal and vertical data reuse opportunities equally (see Figure 12b).
If we group all U-tasks working on a 3×3 square of tiles, then computing all nine
U-tasks in parallel loads a total of 15 distinct tiles (three panel tiles, three tiles
of the first row, and the nine tiles that are operated on). This way, we can save
twelve loaded tiles compared to unoptimized execution (three tiles per U-task
= 27 loaded tiles) and four loaded tiles compared to row/column-wise groups
(two tile loads per task plus one commonly used tile = 19 loaded tiles). The
savings increase even more when we increase the number of tile updates that are
grouped together (4× 4⇒ 24 tile loads ⇒ 24 tiles saved).
There are upper limits to the size that groups of U-tasks should have. If a

group is too big, cached tiles might be replaced while the node still works on the
same group. In this case cache benefits might be lost because tiles are replaced
before they can be reused.

3.4 Targeted NUMA-Scheduling
In Section 3.3, we introduce a possibility to reduce the number of tile loads
throughout our matrix update tasks. Our next goal is to accelerate the tile
loads that are still needed. As described in Section 3.1, there are three different
memory locations a read tile can come from, the cache, the local memory node,
and a foreign node. We want to make sure that our implementation of the LU-
decomposition loads as few tiles as possible from foreign nodes. At first we want
to describe what parameters we can influence to achieve this.
The first influence that we have on the NUMA-performance is that we can

influence the way in which the matrix is distributed on different nodes of the
machine. We store the matrix separated in tiles with a blocked data layout (see
Section 2.1). Each tile is stored on one node in a consecutive area of memory.
To be able to improve the locality of data reads, we can control the distribution
of the matrix tiles to nodes. This distribution can be described as a mapping.

t2n : Tiles→ |Nodes|

We chose to keep this mapping constant within one computation. This means
that we will not move tiles from one node to another. Moving a tile during the
computation would require copying an existing tile. We believe that the time
needed for this copy is greater than the time that can be saved through NUMA-
hits on this tile. Therefore, all different versions of one tile will always remain
on the same node (at the same global position).
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The second influence that we have on the NUMA-behavior of our implemen-
tation is the placement of subtasks. Our implementation will work on each core
of the machine in parallel. Therefore, we can control which core of the machine
executes a certain subtask. This can be described as a mapping comparable to
t2n. Note, that we do only map to nodes (not to specific cores). The specific
core does not matter from a NUMA standpoint and this mapping leaves us more
freedom for the specific scheduling.

s2n : Subtasks→ |Nodes|

If we schedule a subtask on the node that contains all its input tiles, then that
subtask will not lead to any NUMA-misses. It is not possible to place all matrix
tiles such that all input tiles of each U-task are located on the same node.
Instead, we have to optimize t2n and s2n together to achieve the best possible

NUMA-behavior. To do this, we look at the different tiles that are accessed
by each task. What sticks out to us is that all tasks access multiple tiles from
one tile column. P-tasks access the whole panel, T- and X-tasks exchange lines
within one tile column, and even U-tasks access two tiles from one column (U (k)

ij

accesses Aij as well as Akj).
Therefore, we propose to distribute the matrix tile-column-wise. This means

that all tiles of one tile-column are stored in the local memory of the same node.
Subsequently, subtasks are scheduled to be executed on a core that belongs to
the node where most of their input tiles are stored.

3.5 Merging Cache and NUMA-Strategies
On first glance our cache and NUMA-strategies work against each other. In
Section 3.4 we proposed to store the matrix distributed tile-column-wise and to
schedule subtasks on the node that holds their input tiles. For our proposed cache
optimizations, introduced in Section 3.3, we suggest to execute square groups of
tasks on one node to exploit opportunities for cache co-use.
If we distribute the matrix in a round robin tile-column-wise pattern, the two

tasks U
(k)
ij and U

(k)
i j+1 are supposed to be scheduled on two different nodes (accord-

ing to the NUMA-optimization). For cache purposes they are two neighboring
tasks which could benefit from being scheduled on one node (simultaneously).
Another mistake would be to partition the matrix into |Nodes| vertical sections.

This would cause an imbalanced work placement. With each iteration the area
of the matrix that is worked on by P-, T-, and U-tasks shrinks by one tile-
column. Hence, the node that is responsible for the leftmost section will have
less tasks to execute (apart from X-tasks, which do not perform any floating
point operations).
Our solution to this problem is to distribute m neighboring tile-columns to

one node. This allows us to group tasks that work on m×m squares of tiles for
“simultaneous” execution on one node. It also roughly balances the work load
of different nodes. To further simplify the grouping of tasks for cache purposes,
we introduce meta-tiles. Meta-tiles are m × m squares of tiles. In our imple-
mentation we group tasks depending on the meta-tile that they operate on (see
Section 4.1.2).
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4 Overview of our Solution

The most obvious way to combine tiles to meta-tiles is to combine the m×m
tiles on the upper left side of the matrix and to continue from there. This is really
easy if n is a multiple of m, because then every meta-tile has the same size. But
if this is not the case, then tiling the matrix from the upper left side will lead
to cutoffs in the last row/column of meta-tasks (cutoffs = smaller meta-tiles; see
Figure 13a).
As described in Section 2.2.4, the area of the matrix that is actively being

worked on is a shrinking square on the bottom right side of the matrix. Each
iteration shrinks this square by one tile row/column. Therefore, the top left
border of this square can cut across meta-tiles (see Figure 13a). Hence, there
can also be cutoffs on the top left side of the square. So instead of creating
meta-tiles from the top left side of the matrix, we start tiling the matrix from
the the bottom right corner of the matrix (see Figure 13b). This reduces the
absolute number of possible borders with cutoffs (there can never be cutoffs on
the bottom/right side of the matrix).
With these considerations we can define t2n and s2n as:

off = m− (n mod m)
t2n : Aij 7→ ((j + off) div m) mod |Nodes|
s2n : Y

(k)
ij 7→ ((j + off) div m) mod |Nodes| = t2n(Aij)

In Section 2.2.3 we describe that P-tasks use a parallelized algorithm. Thus,
there can be multiple cores cooperating on one P-task. In this case, we enforce
that all cores working on one P-task belong to one node. This creates an upper
bound to the number of cores working on one P-task. In Section 5.4 we describe
why this restriction is not problematic.
Even with this distribution the workload is not fully balanced between nodes.

Therefore, s2n(t) should only be used as the preferred node for task t (no strict
allocation). There has to be a system which prioritizes the execution of t on
the preferred node but also ensures that no core is idling while there are ready
tasks that can be executed. This form of work-stealing or work-rebalancing is
important because the time that can be saved through proper NUMA-placement
of one task is too small to justify waiting for a more appropriate task while other
tasks are ready.

4 Overview of our Solution
Our Scheduler works on a two level hierarchical approach. On the global level
groups of tasks which we call meta-tasks are scheduled to nodes. On the local
level meta-tasks are unpacked into individual subtasks and then scheduled to
cores. This two level approach – with meta-tasks – has a lot of benefits. It
reduces creation and scheduling overheads of tasks because we will never handle
individual tasks on the global scheduling level. It also simplifies the treatment
of parallelized subtasks (P-tasks) and the implementation of our cache improve-
ments described in Section 3.3.
We begin this section by describing the concept and the creation of meta-

tasks (in Section 4.1). Then, we describe the architecture of our scheduler (in
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(a) When we start tiling from the top left
corner, there are iterations with meta-
tile-cutoffs on each side of the matrix.

(b) A matrix with 3 × 3 meta-tiles and
NUMA-distribution on three nodes.
Tiling from the lower right corner re-
duces cutoffs.

Figure 13: Meta-tiles and NUMA-distribution of the matrix.

Section 4.2). This scheduler uses methods of DAG-scheduling (see Section 2.3),
which we refined with our cache and NUMA-concepts (see Section 3), to schedule
tasks.

4.1 Meta-Tasks
The task-generation is done sequentially in the beginning of the execution. One
core creates all meta-tasks and inserts them into the data structures of the sched-
uler. This is done in a way that allows other cores to start working as soon as
the first task is fully created (see Section 5.2.1).
The DAG that we schedule during the execution is not exactly the task-DAG

that we presented in Section 2.4. On the global scheduling level we work only
with meta-tasks. Therefore, we will be scheduling a DAG that has meta-tasks
as its vertices.

4.1.1 Meta-Task Definition

Formally, A meta-task is a set of subtasks. For scheduling purposes, we can
extend the definitions of dependency and readiness (see Section 2.3) on meta-
tasks. A meta-task mt2 depends on another meta-task mt1 if there is a task
t2 ∈ mt2 that depends on a task t1 ∈ mt1. A meta-task is ready to be executed
if there are no unfinished meta-tasks that it depends on.
With these preliminary definitions we can define the meta-task-graph. The

meta-task-graph is the graph that we get by contracting all tasks belonging to
one meta-task within the task-DAG. More formally, it is the graph G = (V , E)
where V is the set of all meta-tasks and E is the set of all meta-task dependencies

V = {mt1, . . .mt`} mti ⊂ V V =
⋃̇

mt∈V

mt

E = {(mt1,mt2) ∈ V × V | ∃t1 ∈ mt1, t2 ∈ mt2 (t1, t2) ∈ E}
We say a meta-task-graph is schedulable if it has no cycles or (self-)loops. If

there is a cycle in the meta-task-graph, then the tasks of this cycle could never
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(a) Combining tasks to meta-
tasks with 3× 3 meta-tiles.

(b) Meta-tiles over multiple iterations (col-
ored in a checkerboard pattern)

Figure 14: Using meta-tiles to create meta-tasks.

be ready because they would be (indirectly) dependent on themselves. A bad
choice of meta-tasks can lead to an unschedulable meta-task-graph even if the
original task-DAG was free of cycles. Cycles can be generated by grouping two
tasks when one of them is (indirectly) dependent on the other.

4.1.2 Meta-Task Generation

We construct meta-tasks with a set of rules that are meant to simplify the cre-
ation of meta-tasks and keeping track of their dependencies. The most important
rules are: we only group tasks of the same task class, and we only group tasks
of the same global iteration. These two rules ensure that the resulting meta-
task-graph remains a DAG and therefore remains schedulable. In Figure 9 (on
page 24) one can easily see why this is the case. All meta-tasks that follow these
rules are groups of tasks which lie on one level of the task-DAG. If we contract
vertices within one level of the DAG, the resulting graph remains cycle-free.
As motivated in Section 3.3, it is beneficial to group U-tasks that work on

a square of tiles. To simplify the grouping of tasks that work on squares of
tiles, we introduced meta-tiles in Section 3.5. A meta-tile is a square of tiles
with dimensions m × m. In each iteration, we group all U-tasks that operate
on one meta-tile see Figure 14a (we group T-tasks similarly). The advantage of
this approach is that task groups can easily be generated and groups of differ-
ent iterations work on the same meta-tiles this simplifies dependencies between
iterations/task-DAG-levels (see Figure 14b). The resulting meta-task-graph can
be seen in Figure 15.
P-tasks There is only one P-task per iteration of the matrix. Therefore, multiple
P-tasks will not be grouped together (as it would lead to circular dependencies).
But as we mention in Section 2.2.3, our P-task implementation is parallelized
(for details see Section 5.4). If a P-task is supposed to be executed with x cores,
we will unpack x different subtasks from it. Hence, the P-meta-task can also be
viewed as a grouping of x P-task pieces.
U-tasks As described above, we will group U-tasks with the help of meta-tiles.
This means that there will usually be groups of m2 U-tasks.
T-tasks Comparable to U-tasks, T-tasks will also be grouped depending on
the meta-tiles that they work on. This leads to groups of m T-tasks building
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Figure 15: Meta-Task-Graph. We left out X-tasks because they are not grouped
into meta-tasks.

one T-meta-task. There are two reasons for grouping T-tasks this way. The first
reason is that they share a common data dependency towards the panel-tile A

(k)
kk .

The second reason is that it simplifies dependencies towards U-meta-tasks (per
U-meta-task there is at most one T-task that depends on it, and each U-task
depends on exactly one T-task).
X-tasks We do not group X-tasks together into meta-tasks since they only have
minor possibilities for data co-use (permutation vector). Additionally they can
be used to balance the data between different nodes.

4.1.3 Priorities

Task priorities are very important for parallel computations. We need them to
control the order in which tasks are computed. At any given time, there might be
considerably more ready tasks than there are cores on the machine. Therefore,
we need priorities to specify which tasks should be executed first.
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Figure 16: Task-DAG with priorities. The priorities are marked in shades of red.

This is important because some tasks are more crucial for the progress of
the computation than others. For example, there are tasks that a lot of other
tasks depend on. Delaying one of these tasks might lead to a situation were
there are less tasks than processors. As one can see in the illustrations of the
task-DAG (Figure 9) and the meta-task-graph (Figure 15), every task is at least
indirectly dependent on every P-task from earlier iterations. Hence, P-tasks
should be executed with a high priority. But static priorities like: P-tasks,
are more important than T-tasks, are more important than U-tasks . . . are no
satisfactory solution. A U-task can be more important than a T-task if there
is a P-task that depends on that U-task, or if that U-task belongs to an earlier
iteration.
For our priorities we use a metric that is derived from the idea of critical

paths. The critical path is the longest path within the task-DAG from one of
the starting tasks (no incoming dependencies) to one of the finishing tasks (no
outgoing dependencies). The reason why we study critical paths is that for each
directed path (t1, . . . , t`) of the task-DAG, ∑i w(ti) is a lower bound for the
minimal time needed for the computation. This is the case because the task ti

has to be finished before ti+1 can be started. Thus, the computation along a path
is always sequential. Therefore, we estimate the priority of each vertex t through
the number of tasks along the longest path starting from t. These priorities can
easily be computed because of the graphs periodic structure.
The overall longest paths within the task-DAG are the paths that go through

all P-tasks. They incorporate 3n− 1 different vertices and have the form (P (1)
1 1 ,

T
(1)
1 2 , U

(1)
∗ 2 , P

(2)
2 2 , . . . , U (n−1)

n n , P (n)
n n , X

(n)
n ∗ ) (see Figure 16). Hence, for each iteration

the P-task is the task with the highest priority.
Figure 16 shows the priorities of each task as well as the longest way from

that task to task P (n)
n n . The figure does not show X-tasks because we defined the

priority of each X-task to be the minimal possible priority. This way X-tasks are
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Figure 17: Priorities within the Spatial Representation. All tasks with priority 46
and greater. All tasks that are marked in red have priority 46. They
are on a plane through the spatial representation.

executed towards the end of the execution time when otherwise there might only
be few other tasks that can be scheduled in parallel.
If we look at the tasks of one global iteration, we see that the priorities decrease

from left to right. We also see that all priorities of U-tasks within one column are
the same. If we look at tasks from multiple iterations in the spatial perspective,
described in Section 2.2.4, then we can see that all tasks that share a common
priority are positioned on an angled plane within the pyramid (see Figure 17).
During the execution, tasks are computed ordered according to their priority

(more or less). Tasks of higher priority are scheduled earlier than tasks of lower
priority. If we assume a strict order (no task of a lower priority is executed until
all higher priority tasks are finished), then work would begin on the leftmost
column of the pyramid. And it would progress in angled planes (as seen in
Figure 17) up to the top of the pyramid.
Priorities will mostly be used on the global scheduling level to choose which

meta-tasks are scheduled to nodes. Therefore, we have to define the priority of
a meta-task. We define the priority of a meta-task tm to be the highest priority
among its tasks (priority(tm) = maxt∈tm{priority(t)}). This is reasonable be-
cause dependencies will only be updated once the whole meta-task is finished. A
single important task that depends on a meta-task can make the whole meta-task
important. Luckily, priorities within a meta-task do not vary a lot (a meta-task
contains at most m tile-columns).

4.2 Architecture of our Scheduler
Our scheduling approach is designed with the following goals in mind: (1) All
individual tasks of one meta-task should be executed on the same node at approx-
imately the same time. This is important for our cache improvements described
in Section 3.3. (2) To enable the NUMA-optimizations described in Section 3.4,
the scheduler should be able to schedule meta-tasks to specific nodes. (3) prior-
ities should be considered during the scheduling process.
None of these goals require the scheduling to specific cores. Therefore, we

use a two level hierarchical approach for our scheduling. On the global level,
meta-tasks are stored until they become ready, then they are scheduled to nodes
(see Section 4.2.1). Here, we have to consider NUMA-placement and priorities.
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The local level is node specific. On the local level meta-tasks are unpacked into
individual tasks and the individual tasks are scheduled to the cores of the local
node (see Section 4.2.2).

4.2.1 Global Level Scheduling

As previously mentioned, on the global level there are no individual tasks. All
individual tasks are only implicitly defined by their meta-task.
The global scheduling level consists of two main data structures: The meta-

task-hash H, that contains a reference to all meta-tasks that have not been
finished, and a priority data structure Q, that contains all ready meta-tasks that
have not been scheduled to a local node.
The meta-task-hashH is used to keep track of all dependencies from tasks that

have not been declared ready yet. Whenever a meta-task is finished, we check
all its outgoing dependencies. When one of the dependent meta-tasks becomes
ready, we insert that meta-task into Q.
The priority data structure Q consists of |Nodes| + 1 priority queues that we

will call Q0, . . . ,Q|Nodes|−1, and Qglobal. Each queue Qi contains all ready tasks
that should be scheduled to nodei. Qglobal contains all ready tasks that are allowed
to be scheduled to any node (without NUMA-preferences).
The scheduling process works with a pull approach shown in Figure 18. If the

local scheduler from nodei needs a new meta-task, it will first look at the queues
Qi and Qglobal. From these queues it will use the task with the highest priority.
If both queues are empty, it will take a meta-task that was originally meant for
another node. To do this it will look at all other queues Qj|j 6=i and it will take
the task with the highest priority. We call this work-stealing (a node works on a
meta-task that was originally meant for another node).

4.2.2 Local Level Scheduling

The local scheduling level is node specific, therefore, each node i has its own
local scheduler. On the local level, meta-tasks are unpacked into individual
tasks. The individual tasks are put into a FIFO-queue LQi (First In First Out),
see Figure 18. This queue acts as a task buffer. Whenever a core needs a new
task, it will take the first task from LQi. If there are no tasks, it will get a new
meta-task from the global scheduler.
This approach guarantees that all tasks that belong to a meta-task will be

executed subsequently. This increases the chances that common input tiles are
co-used through the shared cache.
The core that finishes the last task of a meta-task will update the dependency

information of dependent meta-tasks on the global level. Any core can be re-
sponsible for this update since any core can be the last core finishing a task.
This balances the scheduling work between all cores.

4.3 Execution Order of Subtasks
Throughout this thesis, our goal is to improve the performance of subtasks by
scheduling them with their data-dependencies in mind. In Section 3, we describe
our approach how data-dependencies can be exploited. Now we want to analyze
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Qglobal

Qi

Qi+1

local

⋃

Qi+2

⋃

scheduler i

Cores from node i

LQi

Figure 18: Pulling a new Task. When a core needs a new task, it will first look
into the local FIFO-queue. If that is empty, it will pull a task from
Qi or Qglobal. If Qi ∪ Qglobal is also empty, it will look into all other
priority queues (dotted lines).

how different parts of our design come together to create the execution order and
how this execution order prevents expensive memory accesses.
This is especially important for U-tasks as most of our optimizations are meant

to improve the execution of U-tasks. On the local level, subtasks are unpacked
from a meta-task. All subtasks that belonged to one meta-task are executed
consecutively on one node. Each U-task reads three tiles, the panel tile L, the
tile H at the top of the matrix, and the tile A that it operates on. In Figure 19,
we can see how different subtasks share the same input tiles (for a 3 × 3 U-
meta-task). We unpack (and execute) U-meta-tasks in a column-major order
(U1, . . . , U9). The first task that is begun has a tile-cache miss for tiles L1 and
H1, the second, and third task each have a hit for tile H1 and a miss for tiles L2
and L3. Task four will produce a tile-cache miss for tile H2, and task seven will
produce a tile-cache miss for tile H3. This means, we can separate the subtasks
into four groups: tasks U5, U6, U8, and U9 that only have a tile-cache miss for
their respective A tile; tasks U7, U8 which have an additional tile-cache miss when
reading tile H; tasks U2 and U3 which have a cache miss accessing tile L (and A);
and task U1 which has a tile-cache miss for each tile it accesses. Since all accessed
tiles – apart from the three P tiles – are within the same meta-tile-column, there
will be only three tile-cache misses that are not solvable through local memory.
The scheduling of meta-tasks follows two principal rules: meta-tasks are prefer-

ably scheduled to the node that stores the tile column they operate on (see
Section 3.5); and meta-tasks are scheduled depending on their priority. Inter-
estingly, this means that after a meta-task is finished the next meta-task that
is scheduled to the node will often be within the same column as the previous
meta-task. This is the case because two U-meta-tasks that operate on tiles of the
same column during the same iteration have the same priority (see Section 4.1.3).
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Figure 19: Task execution order with cache status. Cache hits are highlighted
green. Cache misses are highlighted black if they are locally solvable,
or red if they are not (not generally local). The cache is ordered in a
Least-Recently-Used ordering.

Additionally, they become ready at the same time because they depend on the
same T-task. They are also supposed to be scheduled to the same node as their
input tiles are located on the same node.
If two consecutive meta-tasks do work on the same column and the tile-cache is

sufficiently large, cached tiles can be shared between two meta-tasks. In Figure 19
we see, that after the execution of one meta-task, tile H1 is at cache position 13
(there are 12 tiles read after the last use of H1). If tile H1 is still cached when the
next meta-task is started, then the first subtask of that meta-task will have an
additional cache hit. The same is true for tasks U4 and U7 if the corresponding
tiles H2 and H3 are still cached.
Even if the scheduler is not optimized to exploit shared input tiles, the priority

structure can influence the execution order such that tiles can be shared. As pre-
viously mentioned, two U-tasks within the same column have the same priority
and become ready at the same time. Therefore, U-tasks of one column will be
executed somewhat simultaneously even if they are scheduled by an unoptimized
scheduler. Hence, the topmost tile H can be reused.

5 Implementation Details

5.1 Data Structures
There are three different data structures that our solution operates on: the
scheduling data structures, the matrix, and the meta-task-graph.
In Section 5.1.1 we go into further detail about the data structures of our

scheduler. The scheduler consists of multiple data structures that were initially
introduced in Section 4.2.
As described in Section 2.1, the matrix is stored in a blocked data layout. In

Section 5.1.2 we describe how we implemented the blocked data layout and how
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we distribute the matrix between different nodes.
In Section 5.1.3 we describe the meta-task objects that make up the meta-

task-graph. Note that these objects are stored in the scheduler data structures
H and Q.

5.1.1 Data Structures of the Scheduler

As described in Section 4.2, our scheduler works on two scheduling levels, the
global level that consists of a hash H and the priority data structure Q, and
the local level which is node specific and consists of a FIFO-queue LQ∗ (on each
node). We use general stl-implementations (Standard Template Library) for
each of these data structures. These implementations are generally not thread
safe. Therefore, they have to be protected with locks such that only one thread
can access each data structure at a time.
Task Hash H The task hash holds pointers to all unfinished meta-tasks. Each
meta-task has an id which is used as its key. As already mentioned, we use a
sequential implementation for this hash. Therefore, we have to use a lock to
protect it. We call this lock the H-lock. This lock is not only used to protect
simple accesses to H. In Section 5.2.1 we describe how this lock can be used to
prevent race conditions that can occur when threads are working while tasks are
still being generated/inserted into H.
Priority Data Structure Q As described in Section 4.2, Q consists of multiple
different priority queues that contain all meta-tasks that are ready to be executed.
We use multiple queues to be able to schedule tasks in a NUMA-aware way
(Qglobal,Q0, ...). Tasks are inserted into the queue that belongs to the node that
they are preferably scheduled to.
Even though Q consists of multiple priority queues, we only use one lock to

protect all priority queues simultaneously. We do this because all threads that
take elements from Q access Qglobal. Therefore, protecting all queues together
has the same effect as locking them individually. It is more advantageous to
reduce the contention on this one lock. To do this, we ensure that there can
be at most one thread per node that seeks to remove meta-tasks from Q at any
given time.
Local FIFO-Queues LQ∗ Since the local level is specific to each node, we will
have one lock per local queue. In addition to protecting the local queue, we use
this lock to ensure that there can be at most one thread (per node) looking for
a new meta-task (see Section 5.3).

5.1.2 Practical Matrix Layout

Usually a matrix is stored in a continuous piece of memory. This is the case in
LAPACK [2] for example, there the standard matrix layout is a column major
format. As described in Section 2.1, we work with a blocked data layout. This
means that the matrix is subdivided into tiles. One can still store all tiles back
to back into a consecutive piece of memory (this is done in PLASMA).
We chose to truly separate all tiles, therefore, we store an n × n matrix with

pointers to all tiles, which are themselves b × b matrices. Each tile is stored in
a continuous piece of memory using a column major format, as is the matrix of
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pointers. Different tiles are not stored together. We use this layout because it
enables us to explicitly store matrix tiles on specific nodes of the system.
As described in Section 4.1.2, we distribute the matrix tiles in a meta-column-

wise layout. This pattern is meant to combine the advantages from distributing
the matrix tile-column-wise (described in Section 3.4) with the concept of meta-
tiles (motivated in Section 3.3).

5.1.3 Meta-Task

As previously described in Section 4.1, a meta-task is a set of tasks that have been
bundled together. On the global level, each individual task is only represented
implicitly through its meta-task. From an implementation standpoint, a meta-
task consists of many different attributes which are important for different steps
of the scheduling process:
There are general attributes:

• id: uniquely identifies each meta-task. It is used synonymously to the
whole meta-task, and at run-time a meta-task can be found through its id
(within H).

• counter: atomic counter, that we use for multiple steps of the scheduling
process. Its uses will be described more thoroughly in Section 5.2.2.

Some attributes are responsible for describing the implicit tasks that are rep-
resented by each meta-task. As we do not store any tasks directly, we do have
to store some information that we can use to create the represented tasks. Each
task can be uniquely identified by its identifier Y

(k)
i,j (Y ∈ {P, T, U, X}), therefore,

we store:

• type: describes the class of the individual tasks (P-, T-, U- or X-tasks)
within that meta-task (in our implementation there can be only one type,
see Section 4.1.2).

• k: the number of the iteration that all tasks within the meta-task belong
to.

• position and size: needed to specify the tiles that the individual tasks
work on.

Other attributes are used in the global scheduling process to determine when
a task becomes ready, and when and where the ready task should be scheduled:

• dep_in: a list of all meta-tasks that this meta-task is dependent on (stored
as ids). With the help of this list it is possible to check if a meta-task is
ready to be scheduled (see Section 5.2.1).

• dep_out: a list of all meta-tasks that are dependent on the meta-task (also
stored as ids). We use this list to update all dependent meta-tasks once a
task is finished.

• priority: important for the scheduling process.
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• preferred: ∈ {global, 1, ..., |Nodes|}. This attribute is important for our
NUMA-optimization. It stores the node id where this meta-task should
be scheduled to optimally use the local memory (mt will be put into
Qmt.preferred).

5.2 Description of a Meta-Task’s Lifetime
Before we go into detail on the stages a meta-task goes through during the
computation (see Section 5.2.2), we want to describe how meta-tasks are declared
ready (see Section 5.2.1).

5.2.1 Readying a Meta-Task

Each meta-task has a counter. Before the meta-task is ready, we use this counter
to count the number of finished dependencies that it has. After the creation of
each meta-task its counter will be zero. Whenever a meta-task mt is finished, we
find all meta-tasks mtout that are dependent on mt and increment their counters.
If mtout’s counter equals the number of mtout’s incoming dependencies, then mtout
is ready and it can be scheduled.
However, this method has one problem. It assumes that all meta-tasks are

created before the first one is started. This is a problem because the the creation
of the meta-task-graph is not parallelized. Only one core can work on the meta-
task creation. To raise the efficiency of our implementation it must be possible
for all other cores to work on the meta-tasks that have already been created.
Thus, when the meta-task mt is finished, we cannot be sure that all dependent
meta-tasks mtout have already been created.
Therefore, if we finish the computation of mt, and look for mtout in H to

increase its counter, we might not find mtout. If this is the case, then we cannot
increase mtout’s counter. This might mean that mtout is never declared ready
because its counter would be too small.
Our solution to this problem is that whenever a task mt is inserted into H, we

check all its dependencies to find the number of dependencies that have already
been fulfilled (without being able to increase mt’s counter). This can be done
by searching all meta-tasks mtin that mt depends on in H. The order in which
meta-task are created ensures that mtin was created before mt. Therefore, if mtin
is not in H, it must be finished already. Hence, we increase mt’s counter for each
meta-task mtin that is not in H.
This solution works, but it opens the possibility for a race condition. Imagine

a meta-task mta is being finished, by a corea, while core0 inserts the dependent
meta-task mtb into H. In this case mtb’s counter might be increased too often.
For example, if corea removes mta from H, then core0 inserts mtb and checks its
dependencies. In this scenario, core0 will increment the counter because mta is
not in H anymore. While this happened, corea checks the meta-tasks that are
dependent on mta. It finds mtb in H, and increment its counter a second time.
Because of this race condition, we have to protect the insertion and the deletion
of tasks through locks. We use the H lock that protects accesses to the task
hash H to also protect the [insertion + check for readiness] and the [deletion +
updating dependent tasks] (see Section 5.3.2 and Figure 20).
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5.2.2 Overview

In this section we look at a meta-task mt and all the stages it goes through
during the scheduling process. Each meta-task is generated by core0 at the
beginning of the execution. All meta-tasks are created by in the order described
in Algorithm 2. The attributes are computed (id, position/size, incoming and
outgoing dependencies, . . . ), and the counter is set to 0.
After its creation, mt is put into H, which holds all unfinished tasks. At this

point we check if mt is ready by searching each meta-task mtin that it depends
on in H. The meta-task mtin was created before mt. Hence, it has already been
inserted to H. If it is not there anymore, it must already be finished. For each
finished dependency we increase mt’s counter by one. If the counter is equal to
the number of incoming dependencies, mt is ready to be scheduled. Otherwise
mt will remain “not ready” until all its dependencies have been fulfilled.
When mt is ready, it will be inserted into the priority data structure Q (note

that it is not removed from H as it is not finished yet). Depending on mt’s pre-
ferred node h, mt is inserted into Qh. Once mt is the most important meta-task
in its priority queue, it might be scheduled to a local scheduler (see Section 4.2.1,
Figure 18, and 20).
When mt is scheduled to a node, we reset its counter to 0. Then we unpack

its individual tasks (t1, . . . , t`). These are inserted into the local FIFO-queue.
Whenever a task ti is finished, we increase mt’s counter by one. The core that
increases the counter to ` is responsible for finishingmt (no race condition because
the counter is atomic).
To finish mt, we remove it from H. Then we go through the list of all outgoing

dependencies. We look for each dependency mtout in H. If mtout is in H, we
increase its counter to represent that one of its incoming dependencies has been
fulfilled. This might make mtout ready (in that case it is inserted into Q). If
mtout is not in H, then it has not been inserted yet (it cannot be finished because
it cannot be ready). In this case we do nothing because when mtout is inserted
into H, its dependencies will be checked, and it will be clear that mt has already
been finished.

5.3 Work-Cycle of a Thread
The first thread (on core0) is responsible for generating tasks. After it created
all tasks, it begins working together with all other threads. In the following we
describe the usual work cycle of a thread p which belongs to the node s. This
work cycle can also be seen in Figure 20 which shows a flowchart representation
of the procedure.
Whenever p needs a new task, it acquires the LQs-lock. Then it accesses LQs

and checks the number of tasks in LQs. If the number of tasks is smaller than
a limit c` (≈ number of cores on the node), then the queue should be refilled
with new meta-tasks. The process of filling the queue with new meta-tasks is
described in Section 5.3.1.
When there are enough tasks in the local queue LQs, then p removes the first

task t and unlocks the LQs-lock. Now, p executes the task t. After the execution
we increase the counter of the meta-task that t belongs to. With the help of this
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Figure 20: Thread work cycle. This flowchart shows the work cycle of a thread on
node s (main work cycle bold). The colored areas represent locks that
the thread holds.

counter, we can check if t was the last task that belonged to this meta-task. If t
was the last task, then p is responsible for deleting the meta-task and updating
dependent meta-tasks (see Section 5.3.2). Otherwise (or after the update) p is
ready to work on another task and the work cycle begins anew.

5.3.1 Filling the Local Queue with new Meta-Tasks

The procedure of getting new meta-tasks can be seen in Figure 20 (green and
blue area). To reduce the contention on global locks, it is important that there is
at most one thread per node looking for new meta-tasks (at a time). Therefore,
we introduce the `s flag, which signalizes that there is a thread from node s
looking for new meta-tasks.
When p wants to get a new task, it first takes the LQs-lock and checks if LQs

contains enough elements (≥ c` ≈ number of cores on the node). If this is not
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the case and the `s flag is not set (no other thread is already looking), p will
be looking for new meta-tasks. It sets `s while it still holds the LQs-lock (to
prevent race conditions). Then it unlocks the LQs-lock so other threads can still
access the remaining tasks (up to c` tasks are still available).
Now, p is looking for new meta-tasks on the global level. It begins with

reserving the Q-lock, which protects the global priority data structure. From all
meta-tasks in Q, p chooses a meta-task. As described in Section 4.2.1, p first
checks the priority queues Qglobal and Qs. From these, it takes the meta-task
with the highest priority. If Qglobal and Qs are empty, p chooses the meta-task
with the highest priority among all other priority queues Qi 6=s.
When p has obtained a meta-task mt, it releases the Q-lock and reacquires the
LQs-lock before it unpacks mt into the individual subtasks t1, . . . , t`. These are
inserted into LQs. Before p inserts them into the queue, it resets mt’s counter to
zero (this counter is now used to count the number of finished subtasks). After
all tasks are inserted, p checks the number of tasks in the local queue LQs again.
If there are still not enough tasks in the local queue (≤ ch; usually c` ≤ ch ≤ 2c`),
then p repeats this procedure until there are enough tasks locally. When there
are enough tasks, p resets the `s flag and resumes its work cycle. Notice that
we use two different constants (c` ≤ ch). Tasks are added when there are less
then c` tasks until there are more then ch tasks. With both parameters, we can
regulate the frequency and size of the queue refills.

5.3.2 Finishing a Meta-Task

The procedure of finishing a meta-task can be seen in Figure 20 (red area). If
p finished the last task of meta-task mt, then p is responsible for finalizing mt
(p was the last task to increase mts atomic counter). To do this, p reserves the
H-lock. Then it removes mt from H.
Now, p has to update all dependent meta-tasks. For each meta-task mtout that

depends on mt we check if that meta-task already exists within H. If it does, we
increment its counter. If it does not, we ignore mtout because its counter will be
updated when it is inserted into H.
When the counter ofmtout equals the number ofmtout’s incoming dependencies,

thenmtout is ready and has to be scheduled. In this case, p reserves theQ-lock and
inserts mtout into the appropriate priority queue Qmtout.preferred. After inserting
mtout, p unlocks the Q-lock. This is the only instance where two different locks
are held by one task. Once p updated all dependent subtasks, p also releases the
H lock and continues working on other tasks.

5.4 Panel Algorithm
The panel algorithm (implementation of P-tasks) is central to any LU-decomposition
algorithm. Even though submatrix updates (U-tasks) compose the majority of
the work, panel updates (P-tasks) are very important because they are on the
critical path of the computation, and every single P-task performs significantly
more work than a single U-task.
Because a P-task performs that much work, it is very appealing to parallelize

its implementation. Hence, we use a parallel panel algorithm (see Algorithm 3).
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Algorithm 3: Panel Algorithm (parallel, recursive)
Data: This algorithm is executed in parallel on multiple cores (id =core id

within the task). Each core works on a fixed set of tiles within the
panel. All highlighted tasks (green) can be executed “independently”.

1 Function recursive_LU(id, `, r)
2 if r − ` > 1 then
3 mid = r+l

2 // split into left and right part
4 recursive_LU(id, `, mid) // see Figure 21b
5 if id = 0 then
6 triangular solve on the top right // ≈T-task see Figure 21c
7 synchronize
8 submatrix update on the right side // ≈U-tasks see Figure 21c
9 recursive_LU(id, mid, r) // see Figure 21d

10 else // r − l = 1
11 (`id, rowid) ← local maximum, and its row // see Figure 22b
12 (pivot, q`) ← exchange_max(`id, rowid) // see Figure 22c
13 if id = 0 then
14 row_exchange(q`, `) // see Figure 22d
15 compute values in column ` // a← a

pivot
see lines 4,5 in Algorithm 1

Output: LU-decomposition of the panel with pivoting elements ql, . . . , qr

This algorithm was also used by Dongarra et al. [10]. It distributes the panel
tiles between all participating cores (see Figure 21a). Every core is responsible
for a fixed subset of panel tiles.
The panel is factorized cooperatively by splitting it into a left and a right part.

The two parts are solved recursively. At first the left side is factorized (line 4
and Figure 21b). Then, the right side of the split has to be updated with the
row operations made on the left side. This is comparable to an iteration of the
tiled algorithm (described in Section 2.2.3). First, the core that is responsible
for the first panel tile performs a triangular solve on the top square of the right
side (line 6 and Figure 21c) – comparable to a T-task. Then, all cores perform a
submatrix update (line 7 and Figure 21d) – comparable to a U-task – on the tiles
that they are responsible for. After the right side is updated, it can be solved
using the same recursive algorithm (line 9 and Figure 21e).
After a number of splits there is only one column left (line 10 and Figure 22a).

At this point, all cores find the maximal value in their part of this column
(line 11 and Figure 22b). These local maxima are exchanged to find the global
maximum (line 12 and Figure 22c). The row with the global maximum will be
the pivot row. It is exchanged to the top tile of the panel (line 13, 15, and
Figure 22d). The pivot element is used to compute all values of the column
(line 15 Figure 22e) by dividing them with the pivot element – comparable to
lines 4 and 5 in Algorithm 1.
In theory this algorithm can be used to compute a complete LU-decomposition

(not only the panel) but it does not scale very well with the number of processors.
The problem of this algorithm is that there are frequent synchronization points

47



5 Implementation Details

(a) work
distribution

(b) recursion
on the left

(c) triangular
solve

(d) submatrix
update

(e) recursion
on the right

Figure 21: Panel algorithm recursion. The panel algorithm is executed in parallel.
Each core works on a subset of tiles depending on its id within the P-
task. In this case there are three cores working on five tiles.

(a) single tile
instance

(b) find local
maxima

(c) find the
global pivot

(d) swap pivot
row to top

(e) compute
column

Figure 22: Panel algorithm terminating case. Once the recursion arrives at single
column instances, the cores search for a pivot (together). The pivot
row is exchanged to the top row and all L values of the column are
computed.

between cores. Because of this, we chose to reduce the number of cores that
work on each panel compared to PLASMA. In PLASMA it is possible that all
cores (up to 40) cooperate on one P-task. In our implementation we reduced the
maximum number of cores that cooperate of one P-task to the number of cores
on the node where the P-task is executed.
One reason why reducing the number of processors within one P-task is ben-

eficial is that after the first P-task there are a lot of tasks that become ready.
Working on these tasks is very efficient compared to the suboptimal paralleliza-
tion of P-tasks. As long as there are other more efficient tasks to work on,
P-tasks should not be executed by more cores than necessary. In our experi-
ments we found that only using cores of one node did not lead to a situation
where cores were waiting idly, for the P-task to finish. Using only cores from
one node can also accelerate the communication and synchronization overheads
because all cores have access to the same caches and local memory.
All cores that start working on one P-task have to wait for all other cores

that also work on this P-task until they can get started. They will wait at
the first synchronization point until every core reached that point. Therefore,
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it is beneficial to not only reduce the number of processors per P-task but to
ensure that all processors enter the P-task at approximately the same time.
Fortunately, this can easily be enforced within the architecture of our scheduler,
by creating one P-meta-task that is unpacked into x smaller subtasks (x is the
number of cooperating threads). Through the local scheduling structure with
a FIFO-queue, we can guarantee that no other task will be started before the
P-task is sufficiently attended. This guarantees that, as soon as the first thread
enters a P-task, the next x− 1 threads (of the same node), that are looking for
a task, begin working on the same P-task.

6 Experiments
In this section, we describe in detail how we tested our implementation against
the current state of the art. Within our evaluation, we look closely at each of
our optimizations. To gain more insight into the influences of our optimizations
we not only measured the running time of the executions. We closely measured
the running times of each subtask that was executed within the computation.
Within this section, we first describe the surroundings of our measurements.

In Section 6.1 we describe the test systems and their software setups. Then
in Section 6.2, we describe the test instances and sizes. Section 6.3 gives an
overview of our results, and the advantages of our implementation compared to
the current state of the art (PLASMA). After this overview, we use Section 6.4
to go into further detail about the performance of our implementation. There
we analyze the influences of each optimization on the running time of subtasks.
Then, we analyze the schedule from a theoretical point of view by analyzing

the measurements with the machine model that we developed in Section 3.1.
The results of this analysis can be seen in Section 6.5. At the end of this section
– in Section 6.6 – we review our implementation with consideration of different
performance metrics. There we will analyze the energy consumption and the
efficiency with which we use the systems resources.

6.1 Hardware and Environment
We ran our experiments on three different machines. These three machines com-
bined are representative for most (compute-)server architectures used today. All
of our systems use an Ubuntu Linux operating system and have speed-stepping
enabled.
The main system, that we could extensively test our implementation with, is

a system consisting of four Sandy Bridge (Intel Xeon E5-4640) processors with
eight cores each. The cores are running at 2.4GHz (base frequency). We call
this machine SandyBridge32. We use SandyBridge32 as the main system for our
testing because it is the biggest system that we could regularly test on. If not
explicitly mentioned otherwise, all measurements used in the text and in images
are taken on SandyBridge32.
SandyBridge32 has 512GB of main memory distributed evenly between all

four sockets (128GB each). Additionally, all cores of a single processor share
a common L3 cache with 20MB. The processors support AVX instructions to
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accelerate floating point computations. This leads to a theoretical peak per-
formance of 614.4Gflop

s
(double precision), though this could be surpassed using

speed-stepping. SandyBridge32 runs on kernel version 3.2.0-75-generic.
The second machine, that we regularly tested on, is a two socket system with

two Ivy Bridge (Intel Xeon E5-2650 v2) eight core processors (very similar to
those on SandyBridge32) each running at 2.6GHz (base frequency). We call
this system IvyBridge16. IvyBridge16 has 128GB of main memory which is
distributed between both sockets (64GB each). Comparable to SandyBridge32,
each processor on IvyBridge16 has a 20MB L3 cache that is shared between all
its cores. Since IvyBridge16 also supports AVX instructions, it has a theoretical
peak performance of 332.8Gflop

s
. IvyBridge16 runs on kernel version 3.13.0-36-

generic.
The newest machine, that we were able to use for testing, is a 2-socket Haswell

(Intel(R) Xeon(R) CPU E5-2670 v3) system with 24 cores that have 2.3GHz
each. We configured this system to distribute its cores into two NUMA-nodes,
one per socket (alternatively, one could separate the 12 cores per socket into two
NUMA-nodes). We call this system Haswell24. Haswell24 is the only machine
in our test set that supports the new AVX2 instructions. Haswell24 has 128GB
of main memory (64GB per node) and 30MB of shared L3 caches per node. It
runs kernel version 3.13.0-45-generic.
To compare our implementation with the current state of the art we used the

PLASMA library. PLASMA is a library for numerical linear algebra problems,
that is freely available. Dongarra et al. [10] have shown that it has a significantly
better performance than LAPACK and intel’s MKL (Math Kernel Library). In
all our tests, we used PLASMA version 2.6.0, which was released in December
of 2013.
Comparable to our implementation, PLASMA uses a BLAS (Basic Linear

Algebra Subprogram) library for its low-level matrix manipulations. BLAS li-
braries offer highly tuned matrix computations that can be used to circumvent
the need to reimplement and retune simple functionality. For our tests, we used
the MKL’s BLAS implementation. All tests were made with MKL version 11.0
(update 5).
We also use PAPI [16] (Performance Application Programming Interface), which

is a library that can be used to read hardware performance counter. In our tests,
we use these performance counter to measure detailed performance characteris-
tics like the amount of L3 cache misses that happen during subtask executions.
We used PAPI version 5.3.2.0. All test programs were compiled with version
13.1.3 of the Intel compiler suite (icc/icpc). During the writing of this thesis
Intel released new versions of their compiler (15.0.0), and the MKL (11.2 update
1). Sample tests with the new versions have shown no changes.

6.2 Tested Variations and Inputs
During our experiments, we tested the following variations and scheduling schemes:
PLASMA: (sometimes called P or P〈b〉) within PLASMA, we used the function

called dgetrf_tiled, which is the standard algorithm for the LU-decomposition
of tiled matrices. In our preliminary testing this function was the fastest algo-
rithm for LU-decomposition within PLASMA. As advised by the PLASMA users
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guide [11] we ran all tests made with PLASMA on interleaved memory to reduce
NUMA-effects (numactl --interleave=all).
M〈m〉col: our scheduler with all optimizations as they are described in Sec-

tion 3.3 and 3.4. The meta-tile size is set to m×m. For most measurements on
SandyBridge32 we use m = 3, this has generally been an optimum in our exper-
iments. On IvyBridge16 and Haswell24 a meta-tile size of m = 5 has achieves
the best performance.
M〈m〉nN: our scheduler with a meta-tile size of m×m but without the NUMA-

optimizations. In this variation there is no care taken where matrix tiles are
stored and where meta-tasks are scheduled to. Each matrix tile is still stored on
one NUMA-node but that NUMA-node is chosen at random, and not all tiles
from one meta-tile are stored on the same node (not usually). To keep all cache
optimizations intact, subtasks belonging to one meta-tasks are still scheduled to
one node.
M1nN: our scheduler with a meta-tile size of 1 × 1 and without NUMA-

optimization. This is a variation of our scheduling scheme without any opti-
mizations described in Section 3. The meta-tile size of 1 × 1 effectively makes
meta-tasks equivalent to single subtasks, thus, eliminating the cache optimiza-
tion. We use this variation as a reference point for our comparisons. Using M1nN
we can analyze how much performance can be gained through each optimization.
We tested all these variations on matrices with between 4096 and 32768 ele-

ments per side and with varying tile sizes. For PLASMA the optimal tile size
strongly depends on the matrix size. Therefore, we tested a wide range of tile
sizes between 240 and 512 (240, 256, 280, 288, 320, 352, 384, 416, 448, 480,
and 512). Whenever we mention PLASMA with a fixed tile size, we explicitly
choose the best tile size for that matrix size (if not explicitly stated otherwise).
Because the running times of our implementation are less dependent on the right
combination of matrix- and tile size, we only tested a smaller sample of tile sizes
(240, 256, 288, 320, 384, 448).
To control the amount of variance within our tests we repeated every test in-

stance five times. With five running times per test instance we can compute the
average time that each decomposition takes. We can also compute the standard
deviation between the different iterations. It is important to consider the devia-
tion of a measurement to determine if results are significant. Especially on small
matrices running times can vary a lot.
To ensure the comparability of all measurements, we use the same matrix

generator for all measurements. All matrices are generated with the matrix
generator that was used in PLASMA’s timing subprograms. We reimplemented
that matrix generator for our tests.
In addition to all running times, we also want some more detailed information

on the performance of all subtasks, therefore, we log each execution of a subtask.
For each subtask, we measure the time as well as the amount of cache misses that
the subtask caused during its execution. To count the number of cache misses,
we use hardware counters which we access through the PAPI library. With the
help of these detailed performance logs, we are able to analyze the effect that
even small scheduling changes have on the overall performance of subtasks.
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Figure 23: Main performance plot. This plot shows the performance (Gflop
s

) of
different scheduling variations over different matrix sizes (nglob).

6.3 Overview of our Test Results

The diagram in Figure 23 shows the performance of different scheduling vari-
ations on matrices of varying sizes. The performance is measured in Gflop
per second. It is computed by dividing number of Gflop that are theoretically
needed to compute the LU-decomposition (lower bound for LU-decomposition:
2
3n3

glob − 1
2n2

glob + 5
6nglob) through the execution time of the LU-decomposition.

The diagram clearly shows that our scheduling optimizations improved the over-
all performance of the numerical algorithm significantly. It highlights two dis-
tinct effects that separate our implementation from that of our competitors. We
achieve a 15% better peak performance (517Gflop

s
with M3col against 448Gflop

s
for

PLASMA with tile size 416). And we achieve this peak performance even on
smaller matrices, for example, we reach a 29% higher performance on a matrix
with nglob = 8192 (420Gflop

s
with M3col against 325Gflop

s
PLASMA with b = 256).

If we compare different variations of our scheduling scheme, it becomes clear
that our combination of cache- and NUMA-optimizations is responsible for the
increased peak performance. The variation M1nN shows that without any op-
timizations the peak performance is comparable to that of PLASMA (456Gflop

s

with M1nN against 448Gflop
s

with PLASMA b = 416). This is not surprising
considering that we used the PLASMA implementation as a starting of point
for our implementation. The experiments with M3nN show that the cache-
optimization by itself improves the peak performance significantly (to 480Gflop

s
).

But only the combination of both optimizations results in the best peak perfor-
mance (517Gflop

s
).

The increased performance of our implementation on smaller matrices is nearly
independent from the scheduling variation. This could indicate that the task
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Figure 24: Varying tile sizes. This measurement shows the influence of different
tile sizes on the performance of our implementation (M3col executed
on SandyBridge32).

generation of our scheduler is more effective. It is designed to generate tasks
as quickly as possible and to schedule tasks even before the complete task-DAG
is generated. Thus, it has some distinct advantages over PLASMA which is
a general library that is not as specialized on the LU-decomposition. These
advantages are somewhat negligible on large matrices where the task generation
does take less time relative to the computation. Contrary to the performance
on big matrices, it can even be beneficial to turn off certain optimizations when
working on small matrices. This might be an additional sign that on smaller
matrices it is important to quickly generate and schedule all subtasks. Instead
of worrying about correct NUMA-placement and smart grouping of tasks.

6.3.1 Influence of the Tile Size

In Figure 24 we can see that bigger tile sizes lead to worse performance on small
matrix sizes. The reason for this is that bigger tile sizes on small matrices lead
to less overall tasks, which leads to several problems. Less tasks means that
there are times where not all cores are used at full capacity. It also means that
the ratio of U-tasks towards the other task classes is slightly decreased, which is
problematic since U-tasks are the most efficient class of subtasks (Gflop

s
-wise).

Additionally, big tiles can reduce the effectiveness of our NUMA-optimization.
Our NUMA-optimization works by distributing the responsibility for these meta-
tile-columns between NUMA-nodes (see Section 3.5). Bigger tiles lead to a re-
duced number of meta-tile-columns, which can lead to a work imbalance between
nodes. Especially on smaller matrices, these imbalances can be significant.
On bigger matrices the tile size loses some of its influence. Even the worst
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Figure 25: Varying meta-tile sizes. This measurement shows the influence of
different meta-tile sizes on the performance of our implementation
(b = 256 on SandyBridge32).

tile size for a matrix with nglob = 32768 still achieves around 97% of the optimal
performance (500Gflop

s
with b = 384 against 517Gflop

s
with b = 256).

6.3.2 Influence of the Meta-Tile Size

In Figure 25 we see that for small matrices big meta-tile sizes have the same
effect as big tile sizes. They reduce the number of available meta-tasks that
can be scheduled to nodes. Hence, it is possible that some cores idle needlessly.
Meta-tasks with a size of 4 × 4 or greater have significantly more tasks than a
node has cores. When such a big meta-task is scheduled to a node then there
are tasks that are not started directly. Therefore, it is possible that cores idle
because there are no more meta-tasks ready to be scheduled, while other nodes
still have ready tasks that are not executed yet.
On bigger matrices, bigger meta-tile sizes achieve a better performance than

smaller meta-tile sizes. Especially M1col and M2col are quickly outclassed.
M3col seems to be the best meta-tile size. It is the optimal meta-tile size for
nearly all matrix sizes, only rivaled by M5col (and M1col/M2col for very small
matrices).
Interestingly, M4col seems to be significantly slower than other comparable

meta-tile sizes. One possible reason for this is that the number of tasks within a
4× 4 U-meta-task (16) is a multiple of the number of cores that SandyBridge32
has per node. Hence, there can be a synchronization between multiple cores (of
the same node). This could repeatedly lead to a situation where two processors
simultaneously read the same input tiles. In this situation, both processors have
to wait for the cache misses to resolve. Thus, both core cannot profit from fast
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Figure 26: Relative efficiency. All measurements were taken on a matrix with
nglob = 32768. There are two options when reducing the number of
cores: the first option is to reduce the number of cores per node and
the second option is to reduce the number of nodes.

access times of the shared L3 cache because the accessed memory sections are
not loaded yet. For a more detailed analysis of this effect see Section A.1.
Another interesting point is that M1col performs worse than the unoptimized

version M1nN (447Gflop
s

with M1col against 456Gflop
s

with M1nN). The reason
for this is probably that our NUMA-optimization synchronizes accesses to the
panel tiles (which are not stored locally). It is probable, that no two threads
access the same panel tile, so all panel tiles have to be loaded separately. This
is a problem since all panel tiles, of one iteration, are stored on the same node,
creating a potential bandwidth problem on the QPI links.

6.3.3 Scalability

In this section, we want to explore how efficient our solution adapts to different
machine setups. We demonstrate how our solution scales to a varying number of
cores and we present running times of our implementation on IvyBridge16 and
Haswell24.
Varying Number of Cores on SandyBridge32 Figure 26 shows the efficiency
of our implementation on SandyBridge32. The efficiency of our implementation
never drops below 86%. Interestingly, using all cores of one node reduces the
efficiency drastically, compared to spreading the used cores onto multiple different
nodes. The biggest difference can be seen when we use eight cores. If these eight
cores are spread out between all four nodes, then we achieve a nearly perfect
efficiency of 99% but using all eight cores of one node only reaches an efficiency
of 89%. This is a reduction by 10% similar efficiency differences can be seen for
16 and 24 cores (8%, and 4%).
One reason for this is the multiplication of memory resources. If only two

out of eight cores work on each node, they still have access to the whole L3
cache and memory bandwidth. Both of these resources have to be shared eight
ways when all cores of one node are active. This is another indicator that cache
and memory resources can be a limiting factor for the execution of the LU-

55



6 Experiments

0 4096 8192 12288 16384 20480 24576 28672 32768
matrix size nglob

0

50

100

150

200

250

300

325

pe
rf

or
m

an
ce

 in
 G
fl
op
s

M5col
M5nN
M1nN

P best
P b=256

P b=480

24576 28672 32768300

310

320

Figure 27: Performance on IvyBridge16. Comparable, to the measurements on
SandyBridge32 we use b = 256.

decomposition. Another reason could be the speed stepping of the CPU. Speed
stepping can overclock the CPU as long as it is sufficiently cold. The spread of
working cores reduces the temperature development, therefore, enabling higher
CPU frequencies.
IvyBridge16 In Figure 27 we can see multiple interesting effects. Sadly espe-
cially on big matrices our implementation does not achieve any significant speed
ups compared to PLASMA. Both implementations perform around 315Gflop

s
(315Gflop

s

for PLASMA with b = 480 and 316Gflop
s

for M5col). Especially the NUMA-
optimization does not change the performance significantly. Accesses to non-
local NUMA-nodes seem to be significantly faster on IvyBridge16 than they are
on SandyBridge32. The reason for this is that IvyBridge16 consists of two sock-
ets connected by two parallel QPI links. This makes the communication between
nodes significantly faster than the communication between the four QPI nodes
on SandyBridge32, that are only connected by a ring of QPI links. Therefore,
NUMA-effects seem to have no influence on memory access times, making aver-
age memory accesses much cheaper.
Cheap memory accesses are probably also the reason why our cache optimiza-

tions cannot improve the running time as significantly as on SandyBridge32.
A U-task without cache optimization (M1nN) takes an average of 1.69ms. We
could only improve this to 1.63ms through our cache optimizations (M5col), even
though the number of cache misses per U-task was nearly cut in half (from∼ 9593
with M1nN to ∼ 4809 M5col). For a breakdown of the U-task performance on
IvyBridge16 see Section A.2.
Haswell24 Even though Haswell24 is a two socket machine like IvyBridge16,
we achieve significant speedups on Haswell24 (see Figure 28). On big matrices
(nglob = 32768) we achieve an improvement of 8% from PLASMA (b = 320)
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Figure 28: Performance on Haswell24. On Haswell24 the best parametrization of
our implementation is M5col with a tile size of b = 320.

with 605Gflop
s

to M5col with 656Gflop
s

. The reason for this seems to be that
memory accesses and NUMA-effects are expensive relative to floating point op-
erations. Therefore, our optimizations can significantly improve the running time
of the decomposition, by reducing the number of memory loads. Haswell24 is
the newest and strongest system that we could run tests on. We believe that this
performance increase is representative for many future two socket systems with
AVX2. Through the increased performance on floating point operations memory
accesses become a bottleneck even on two socket machines. For a breakdown of
the U-task performance on Haswell24 see Section A.3.
Everything considered, our solution scales well to different hardware and ma-

chine sizes. The gains over our competitors depend on the hardware setting. Our
gains are significantly larger on machines where memory accesses are expensive
compared to floating point operations. This is especially the case on four socket
systems and on systems with AVX2.

6.4 Breakdown of our Improvements

In this section, we want to go more in depth on the use of all our improve-
ments. Here, we use the information that we gathered by logging all executions
of subtasks.
In Section 6.4.1 we analyze the influence of different task classes on the overall

running time, and how the running time composition changes between different
scheduling schemes. In Section 6.4.2 and 6.4.3, we analyze the influence of our
optimizations on the running time and the number of cache misses of single tasks.
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Figure 29: Relative running time ratios over different matrix sizes (on Sandy-
Bridge32). This plot shows the running time of different schedules
variations relative to the performance of M3col. It also shows the
distribution of the running time in different subtask classes (P-tasks
orange, T-tasks blue, U-tasks gray, X-tasks green, and scheduling red).

6.4.1 The Influence of Different Task Classes

In Section 2.2.3 we stated that U-tasks are the only class of tasks that performs
O
(
n3
glob

)
floating point operations, while P-, T- and X-tasks perform signifi-

cantly less floating point operations. This was the reason why we focused our
improvements on the efficient execution of U-tasks (as stated in Section 3).
Now we want to analyze the running time percentages of each task class. With

these percentages, we can prove the hypothesis that the majority of running
time is spent executing U-tasks. To compute the running time percentages,
we summed up the execution times of all different task classes (weighted with
the number of participating cores) and computed their influence on the total
execution time. The result of this analysis can be seen in Figure 29. Especially
when decomposing big matrices, U-tasks clearly dominate the running time. On
a matrix with nglob = 32768, U-tasks make up around 95% of the execution time
(see Table 2). Even on small matrices, U-tasks contribute more than 75% of
the total running time (e.g. 77% for M3col on nglob = 8192). This validates our
decision to target U-tasks with our optimizations.
Figure 30 and Table 2 show a compilation of different scheduling variations

on a constant matrix size of 32768. With the help of this diagram and the
corresponding table, we can analyze the influence of our optimizations on dif-
ferent task classes. One can see that our implementation uses less time for the
panel factorization (P-tasks). We believe the reason for this is that we use less
processors for the panel factorization. This reduces the high synchronization
overheads that are necessary for the parallel panel algorithm. As described in
Section 5.4, this also reduces the time that is spent inside a panel task waiting
for all other participating processors to begin working on that panel task. Using
less processors has no impact on the utilization of cores because there are enough
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Figure 30: Running time percentages of different task classes (on SandyBridge32).
This plot shows the total running time of different variations on a
matrix with nglob = 32768 (b = 416 is PLASMA’s optimum) and its
distribution on different task classes (P-tasks orange, T-tasks blue, U-
tasks gray, X-tasks green, and scheduling red).

tasks such that each processor that does not participate in panel tasks can still
work on other tasks. It is also recognizable that X-tasks profit from the NUMA-
optimizations made in M3col. They are accelerated by over 30% (from 1.06s for
M1nN to 0.73s for M3col). X-tasks exchange rows of the matrix, therefore, they
access “random” lines within one column. Our NUMA-optimization ensures that
all lines can be read from the local memory, thus accelerating their access times.
It is interesting that T-tasks do not profit from NUMA-optimizations as much
as X-tasks, even though they also exchange matrix lines within one column. Ad-
ditionally to the improved subtask executions, meta-tasks can also reduce the
scheduling overhead significantly. The time spent scheduling tasks is reduced by
nearly 80% (from 0.79s for M1nN to 0.16s for M3col).
The most visible increase in performance, however, was achieved in the exe-

cution of U-tasks. While the relative performance increase is only around 10%
(48.1s for M1nN to 43.2s for M3col) the absolute reduction in running time is
greater than the complete running time of all other task classes combined. This
performance increase is the core of this thesis. Therefore, we use the following
sections to analyze the influence of our optimizations on the running time of
single U-tasks.

6.4.2 Cache Performance

In this section, we want to analyze the effectiveness of the cache optimization
that we described in Section 3.3. Its purpose is to reduce the number of expected
cache misses during the execution of U-tasks. To be able to make predictions
on the number of cache misses, we designed a theoretical tile-cache model (see
Section 3.1). Within this model, we achieved significant cache benefits by group-
ing tasks according to their input tiles and executing all tasks of one group on
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P-tasks T-tasks U-tasks X-tasks scheduling total
M3col 0.51s 0.85s 43.16s 0.73s 0.16s 45.42s

100% 100% 100% 100% 100% 100%
M3nN 0.60s 0.97s 45.94s 1.16s 0.22s 48.89s

116% 113% 106% 158% 134% 107%
M1nN 0.57s 0.83s 48.14s 1.06s 0.79s 51.40s

111% 97% 111% 144% 486% 113%
PLASMA 1.78s 0.82s 48.13s 1.01s 3.30s 55.04s
(b = 256) 347% 96% 111% 137% 2022% 121%
PLASMA 1.22s 1.11s 47.98s 0.97s 1.04s 52.33s
(b = 416) 237% 130% 111% 132% 639% 115%

Table 2: Breakdown of the running times of different task classes on a matrix
with nglob = 32768 (b = 416 is the optimal tile size for PLASMA on this
size). We computed the running time percentages by adding all execution
times of single tasks and dividing that number by 32 (the number of
cores on SandyBridge32). The scheduling time is the total time used for
the computation minus the time of all task executions. The percentage
number is computed relative to the corresponding times of M3col.

the same node at approximately the same time. In Section 3.5, we decided to
group tasks which work on one “meta-tile” of the matrix. This way, input tiles
can be shared through the L3 cache. In Section 3.3, we describe that executing
a 3× 3 U-meta-task would only read 15 different input tiles. This is a reduction
by 12 tiles from approximately 27 tiles that have to be read when executing 9
unrelated tasks (a reduction by 4

9).
Now, we want to see how this optimization holds up during practical exper-

iments. In Figure 31 we plot the number of cache misses that happend during
a U-tasks execution against its running time (for different scheduling variants).
We do this with a 2D-histogram plot. In this plot, tasks are distributed on bins
depending on the number of cache faults and their execution time. Each bin
is 100 cache misses wide and 0.01 milliseconds tall. The color of a point (x, y)
represents how many U-tasks had x cache misses and took y milliseconds.
These plots show that during the cache optimized scheduling variants (M3nN

and M3col in Figure 31) U-tasks cause significantly less cache misses than U-
tasks of the unoptimized version (M1nN in Figure 31). One can also see that
the U-tasks of the cache optimized versions can be categorized into two general
groups. There is one group of U-tasks – consisting of approximately 2

3 of all
U-tasks. All U-tasks of this group cause less than 8000 cache misses and most
of them cause around 2000-4000 cache faults.
The U-tasks of the other group cause approximately as many cache misses as

U-tasks during the unoptimized variant M1nN. The reason for this is that when
a node begins executing the tasks of one meta-task, then the tiles that are read
by the first task might not already be in the cache. Therefore, this task does
not profit from any cache optimizations. It likely causes the same amount of
cache hits and misses as an unoptimized U-task. Only the later tasks within
one meta-task are able to profit from our optimizations by reading tiles that
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Figure 31: U-task cache misses versus execution time as density map. All U-
task executions during the factorization of a matrix with nglob = 32768
(690880 U-task executions). Each bin is 100 cache misses wide and
0.01 milliseconds tall.

M3col 1.999ms 5475
M3nN 2.128ms 5901
M1nN 2.230ms 9941
PLASMA (b = 256) 2.229ms 9274
PLASMA (b = 416) 9.522ms 53373
(norm.) 2.219ms 12438

Table 3: Average running time of one U-task compared to its average number
of cache misses (averaged over all U-task executions on a matrix with
nglob = 32768). For PLASMA with b = 416 we computed the normalized
time and cache misses (by computing the amount of time/cache misses
per Gflop)

preceding tasks already loaded into the cache.
We can also see from these plots that the running time of a U-task depends on

its number of cache misses. A U-task out of the first group (less than 8000 cache
misses) takes about 0.2ms less time to compute than a U-task of the second group
(M3col: 0.21ms = 2.14ms− 1.93ms and M3nN: 0.23ms = 2.28ms− 2.05ms). In
Section 6.5, we try to explain this effect, using the theoretical cache model.

6.4.3 NUMA-Optimization

In this section, we analyze the influence of our NUMA-optimization on the ex-
ecution time of U-tasks. Our NUMA-optimization consists of storing the ma-
trix distributed meta-column wise on all NUMA-nodes and executing meta-tasks
preferably on the node that holds the corresponding column (see Section 3.4 and
3.5). In Figure 30 and in Table 2, we can see that U-tasks profit from being
executed that way.
In Table 3 and in Figure 31, we see that the number of cache misses does

not change significantly through the NUMA-optimization (compare M3nN and
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M3col). Instead, the influence of a cache miss on the running time of a U-task
is shrinking between M3nN and M3col. For M3col in Figure 31 there are areas
where the influence of cache misses on the average running time is very weak
(nearly constant running time for increasing number of cache misses).
Another effect that can be witnessed, looking at the execution of U-tasks dur-

ing M3col, is that explicit NUMA-scheduling can reduce the variance in running
times. Since every execution happens on the NUMA-node that stores two of
three input tiles, there is at most one tile that has to be loaded from another
NUMA-node. Interestingly, the running time difference between U-tasks that
profit from the cache optimization and those that do not remains. Even the
absolute running time difference between the first and the second group is nearly
the same in M3nN as in M3col.

6.5 Using the Tile-Cache Model to Analyze Experiments
In Section 3.1 we described the tile-cache model that we designed to represent
the way shared caches work during the computation. This cache model was
motivated by the assumption that L3 hardware caches store full matrix tiles,
which simplifies cache behavior significantly.
The tile-cache model was the basis for our optimizations. In Section 6.4.2 we

proved that our cache optimization significantly reduced the number of cache
misses during the execution of U-tasks. This is a first indication for the accu-
racy of our tile-cache model. In this section, we want to support the tile-cache
model with additional experimental data. Then, we will try to interpret the
experimental data with the help of the tile-cache model.
Evaluation of the Tile-Cache Model Before analyzing experimental data with
the theoretical tile-cache model, it is important to know how many tiles can
fit into the shared tile-cache. Therefore, we have to analyze the physical cache
memory of the machine. On SandyBridge32 the L3 hardware caches have a size
of 20MB (L1 and L2 caches are not shared; Additionally, L1 and L2 are inclusive
which means that they cannot store anything that is not already stored in the L3
cache). The matrix is distributed in tiles of 256× 256 double precision floating-
point numbers, which have 512KB = 1

2MB. Therefore, in theory, 40 tiles can fit
into the shared cache simultaneously.
By analyzing the MKL’s memory allocations, we found that each core exe-

cuting MKL BLAS routines reserves enough memory to store two whole matrix
tiles. We believe that this memory is used to copy input tiles and to store in-
termediary results. As it is constantly used, it remains cached and reduces the
memory that is available for data sharing between cores. Thus, in reality the
maximum number of tiles within each tile-cache is lower than 40. We estimate
that the shared tile-cache on SandyBridge32 can hold approximately 24 full tiles.
To analyze experimental data we programmed a simulator for our tile-cache

model. This simulator stores the contents of all tile caches (one per node).
Given a task and the corresponding core/node the simulation can check if the tile
accesses inside the task would have been cache hits. Afterwards, the simulation
computes the changes that the task would have on the contents of the tile-cache.
To analyze the practical execution, one simulates all task executions in the order
given by the executions log (ordered by starting time). With the help of this
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simulation we find out which input tiles of each task execution would have been
tile-cache hits or misses (within the theoretical model).
With this data we first analyze the validity of our model. We believe that our

model can predict the number of actual cache misses and the running time of
a U-task by analyzing which tasks were executed before it. Therefore, we use
the simulation data to categorize the U-tasks depending on the expected tile-
cache hits that they caused during our simulation. Each U-task U

(k)
ij computes

A
(k)
ij = A

(k−1)
ij − A

(k)
ik · A

(k)
kj , where A

(k)
ik (= L) is a tile within the panel, and

A
(k)
kj (= H) is a tile at the top of the matrix. We distribute all U-tasks into the

following categories (represented in Figure 32): (1) as the U-task begins to be
executed, both, the corresponding panel tile and the corresponding tile at the
top of the matrix are already loaded into the tile-cache (see top-middle), (2) only
the panel tile L is cached (see top-right), (3) only tile H at the top of the matrix
is cached (see bottom-left), and (4) neither of both tiles is cached within the
simulated tile-cache (see bottom-right). The tile A

(k−1)
ij is not considered for this

categorization because even in the cache optimized version there are practically
no tile-cache hits for this tile (only one U-task per iteration works on any specific
tile).
In Figure 32 one can clearly see that these four groups are discernible by their

position within the density map. This means that our theoretical cache model
can “predict” the running time and the number of physical cache misses of a
U-task by analyzing preceding task executions. This is a strong sign that our
cache model represents the behavior of the L3 cache during the execution of the
algorithm.
Using the Tile-Cache Model to Explain Running Time Through the distri-
bution of U-task executions into four groups we can explain some specific effects.
In Section 6.4.2 we pointed out that we can divide all U-tasks into two groups,
one group with all U-tasks having less than 8000 cache misses and the other
with all U-tasks having more than 8000 cache misses. Now we can see that this
categorization effectively separates groups (1) and (2), from groups (3) and (4).
Which means that practically all tasks below 8000 cache misses operate on a
cached panel tile L. We can discern that the number of cache misses and the
running time of a U-task is much more dependent on the cache status of L than
the status of H. We believe the reason for this is the way in which tile L is ac-
cessed. It is the first tile of the multiplication, therefore, it is generally accessed
row-wise. Row-wise access is bad considering that the tile is stored in a column
major format. Reading a row equates to reading every 256-th value of an array
(b = 256). Therefore, one only reads one element per cache line which makes it
hard for the prefetcher to keep up.
Another reason why tile-cache misses for tile L are worse for the running

time than tile-cache misses for tile H lies in the NUMA-optimization. In version
M3col, tile H can always be read locally while tile L is not guaranteed to be local
(only ∼ 1

4 of all accessed L tiles is local). This is the reason why in M3col group
(2) is only 0.06ms slower than group (1), while in M3nN group (2) is 0.15ms
slower than group (1) (0.07ms between group (3) and group (4) in M3col, and
0.13ms between group (3) and group (4) in M3nN)
An interesting fact that can be observed through the analysis of the tile-cache
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Figure 32: U-tasks categorized with the tile-cache model. For this figure we cat-
egorized all U-tasks of one M3col execution (nglob = 32768) into four
groups depending on the position of their input sizes within our cache
simulation (expected tile-cache size 24 tiles).

model is that there are a lot more tile-cache hits for tile H than there are tile-
cache hits for tile U . The tasks within one meta-task are unpacked in a column
major order. In Section 4.3 we analyzed that during the execution of a solitary
U-meta-task there should be four tasks in group (1), two tasks in groups (2)
and (3) respectively, and one task in group (4). For the access on tile L this
prediction is correct. About 2

3 of all accesses to the panel tile are cache hits. But
for the access to tile H we reach a 9

10 hit rate. The reason for this is that tiles
can be shared between meta-tasks. If two subsequent meta-task are somewhere
within the same meta-tile-column, the corresponding H tiles could still be in
the tile-cache and, thus, cause tile-cache hits. As we mentioned in Section 4.3,
the probability that two consecutive meta-tasks operate on the same meta-tile
column is reasonably high because two U-meta-tasks that operate on the same
column (during the same iteration) have the same priority and become ready
simultaneously. This maximizes the chance that they are executed consecutively.
During the NUMA-optimized variant they are also scheduled to the same node
(preferably), further increasing the chance for possible tile reuses.
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Figure 33: Number of tile-cache hits on varying tile-cache sizes. Interestingly,
this plot is nearly independent from the tile/matrix size, as the actual
tile size only influences the number of tiles that can be cached.

Optimizing Meta-Tile Size For data reuse to work, the cache has to be big
enough to hold all tiles that are read between the reading of a tile and its reuse.
In Figure 33 we show how many tile accesses are considered a cache hit over a
varying tile-cache size. To compute these plots we used an execution order taken
from the experiments measured on a matrix with nglob = 32768 and computed
the number of tile-cache hits/misses with the help of our simulation.
From these plots one can extrapolate how many tiles the cache should be able

to hold to properly use certain meta-tile sizes. In Figure 33a there is only one big
gain in the number of tile-cache hits. This gain is around cache-size = 2 ·m + 1.
From that cache size on around m−1

m
of all accesses to tile L are cache hits. In

Figure 33b, there are two distinct gains of tile-cache hits. The first rise happens
very early at a tile-cache size of three tiles (independent from the meta-tile size).
The reason for this is that two consecutive subtasks within one meta-task share
the same H tile. This rise is also around m−1

m
of all executions high. The second

rise happens when the tile-cache is big enough to hold all tiles that are read
during the execution of one meta-task. This is the point at which tiles can be
shared between different meta-tasks. Interestingly, the number of tile-cache hits
after that second rise is practically independent from the meta-tile size.

6.6 Different Performance Metrics
In this section, we want to analyze the performance of our implementation with
other performance metrics (apart from execution time and cache behavior). We
already saw that our optimizations achieves improved running times and that
it greatly reduces the number of cache faults. In this section, we want to talk
about the power usage and about the CPU utilization.

6.6.1 Power Consumption

Programmers have very little influence on the power usage of algorithms. Usually,
there are only two ways to influence the power needed for a computation. The
first option is to adapt the algorithm to a power efficient setup. For example, by
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Figure 34: Power measurements. To make sure that the power usage is not heat
(time) dependent, we measured two factorizations with M3col, then
three with PLASMA b = 512 (one as warm up), and then another two
factorizations with M3col. For this measurement, we factorize huge
matrices (nglob = 65536) to allow the energy usage to settle.

using a machine that has more energy efficient processors or a different cooling
system. The second option is to increase the performance, thus, reducing the
time needed for the computation instead of the power usage per time.
We want to show that the power consumption of a computer can be changed

by the computation that is executed. We believe that the power consumption
can be reduced by reducing the number of cache misses.
To measure the amount of power that is needed for the computation, we use

a “watt’s up? PRO” power measurement tool. This tool is plugged in between
the electrical outlet and the power supply unit of the computer. It logs the
power usage in regular intervals (∼ 1 second). For the power usage to settle,
we used big input matrices with nglob = 65536. On SandyBridge32 we had
some problems with the fan regulation. During the computation, the fans would
accelerate and disrupt the measurement. To reduce this problem, we turned the
fans to maximum ventilation for the whole duration of the computation. With
these settings, we measured a reduction of around 30W (4% ; 820W PLASMA
with b = 512 and 790W for M3col). The results on IvyBridge16 can be seen in
Figure 34. On Ivybridge, we measured a power reduction by 8W (3%; 305W
PLASMA b = 512 and 207W M3col) between M3col and PLASMA.
It is interesting that even on IvyBridge16 – where we could not achieve better

running times through our cache optimizations – we can save power by scheduling
tasks in a way that reduces cache misses.

6.6.2 Theoretical Upper Bounds

Theoretically, SandyBridge32 has a peak performance of 614.4Gflop
s

. With our
solution we achieve 517Gflop

s
, which is 84% of the peak performance of Sandy-

Bridge32 (Theoretically, even more than 100% might be possible through speed-
stepping). The question is how much more performance is possible to achieve
with this numerical algorithm and the BLAS libraries available. A first estimate
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could be the performance of a single core with the same algorithm. A single core
on SandyBridge32 has 2.4GHz and can execute 4 additions and 4 multiplications
per cycle (through AVX). Therefore, it has a peak performance of 19.2Gflop

s
. In

our scalability tests a single core reached 18.7Gflop
s

which is exactly 97.5% of its
peak performance.
Estimating from one core to 32 cores can be problematic since there are many

resources that are shared between cores. For example, the memory bandwidth,
and the cache system, but also the cooling capacity. A single core can profit
much more from the turbo mode’s overclocking than all cores working together.
Therefore, we want to estimate the theoretical performance peak through a mea-
surement made within a bigger, more realistic computation. Hence, we look at
the performance of U-tasks. A U-task that has a tile-cache hit on both of its
input tiles (see Section 6.5) has an average running time of 1.92ms. It computes
2563 ·2flop (2563 multiplications and additions). Therefore, it has a performance
of 17.4Gflop

s
which is around 90.6% of the peak performance. Considering that

there are also other kinds of (less efficient) subtasks and that in praxis not every
U-task can have a cache hit, we believe 84% is a satisfactory result.

7 Conclusion

7.1 Overview
Our goal was to use scheduling techniques to improve the performance of the
LU-decomposition. The submatrix update, which is the most work intensive step
during the LU-decomposition, has long been considered to be compute bound.
But modern processors have become faster and faster. With AVX and AVX2,
processors can compute many computations per cycle. The improvements in
memory bandwidth and latency on the other hand have not been as drastic.
Because of NUMA-effects, memory accesses have the potential to be even more
costly. Through all these effects the computation of the LU-decomposition can
become memory bound, especially on four socket machines. To counteract this
problem and reduce the influence that memory accesses have on the running
time of computations, manufacturers build bigger and bigger cache hierarchies.
Optimally using these cache hierarchies has, therefore, become an important and
difficult task for programmers.
Our approach is to group tasks that share common input tiles into meta-tasks.

Then we schedule these meta-tasks to nodes such that the common input tiles
can be shared through the shared L3 cache. To do this, we use a two level
hierarchical scheduler. On the global level, we schedule the meta-tasks to nodes.
On the local level, we unpack the grouped subtasks and schedule them with
a local FIFO queue. This way, we ensure that grouped tasks are executed in
parallel. Each input tile is loaded by the first subtask accessing it. Afterwards,
all subsequent tasks can read the already loaded tile from the shared cache. Using
this method we can nearly cut in halve the number of cache misses during the
computation (from 9941 per U-task on average using M1nN to 5475 per U-task
on average using M3col).
Additionally, we propose a NUMA-optimization. For this optimization, we
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distribute the matrix between all NUMA-nodes meta-column wise. Then we
schedule meta-tasks such that each node preferably works on tasks whose input
tiles are stored in the local memory, accelerating loading times of tiles that
are not already cached. This optimization is especially effective on four socket
machines like SandyBridge32, where it improves the average running time of U-
tasks even more than the cache optimization (from 2.13ms with M3nN to 2.00ms
with M3col).
Through the combination of these techniques we improved the performance

of the current state of the art implementation by up to 29% (on small matrices
nglob = 8192) and by at least 15% (on big matrices with nglob = 32768). This
performance increase is very significant, considering that we perform the very
same numerical operations as the implementation of our competitors, which is
already very optimized. Our implementation reaches up to 517Gflop

s
, which is

over 84% of our machines peak performance.

7.2 Future Work
In the beginning of this thesis we chose the LU-decomposition for our research
because it is characteristic for many numerical workloads. Hence, it is logical
to generalize the concepts developed within this thesis to other similar com-
putations. Especially the tile-cache model and the our cache optimization can
easily be adapted for other numerical algorithms. The general concept of group-
ing subtasks by their data dependencies and scheduling them accordingly, has
applications in many other scheduling scenarios.
As we have seen in Section 6.6.2, there is still a little room for improvement

within the LU-decomposition. Some approaches that might have potential for
further improvements are non-square meta-tasks and other NUMA-distributions.
Especially, if the LU-decomposition is only one algorithm within a bigger appli-
cation, it might be important to fit the NUMA-distribution to the needs of other
parts of the application.
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A.1 SandyBridge32
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Figure 35: Density map for M3nN. This plot shows all U-tasks of one M3nN
execution on a matrix with nglob = 32768 and b = 256, separated with
a simulated cache size of 24 tiles.

Figure 35 shows that using the simulation, described in Section 6.5, we can sep-
arate all U-tasks, during the execution of M3nN, into four groups, according to
their tile-cache hits. Comparable to M3col these groups each have a distinct po-
sition within the density map (distinct combination of cache misses and running
time).
When we compare the plots between M3col and M3nN we see:

• the running time variance is greater in M3nN
• the number of cache misses per group is comparable
• in M3nN tile-cache misses accessing the H tile are worse, than they are

during M3col

71



A Density Maps for other Parametrizations

1.5

2.0

2.5

3.0

3.5

ti
m

e
 i

n
 m

s

combined (100%) L and H hit (61%) L hit H miss (13%)

1.5

2.0

2.5

3.0

3.5

ti
m

e
 i

n
 m

s

L miss H hit (23%) L and H miss (1%)

0 2 4 6 8 10 12 14
cache misses in 1000

0.0

0.5

1.0

d
is

tr
ib

u
ti

o
n

0 2 4 6 8 10 12 14
cache misses in 1000

0 2 4 6 8 10 12 14
cache misses in 1000

0 2 4 6 8 10 12 14
cache misses in 1000

0.0

0.5

1.0

d
is

tr
ib

u
ti

o
n

0 2 4 6 8 10 12 14
cache misses in 1000

100

101

102

103

104

Figure 36: Density map for M4col. This plot shows all U-tasks of one M4col
execution on a matrix with nglob = 32768 and b = 256, separated with
a simulated cache size of 24 tiles.

In Section 6.3.2 we discovered that a meta-tile size of four leads to an unusually
bad running time. Interestingly, Figure 36 shows that the classification computed
with our simulation is not distinct. There is a number of U-tasks that has around
6000 cache misses and takes around 2.2ms. These U-tasks are distributed onto
multiple different groups.
Our assumption is that two tasks, within one meta-task, that share a common

L tile are executed nearly simultaneously. Our simulation discretizes the execu-
tion, therefore, we assume that the first U-task produces a tile-cache miss, and
the second U-task produces a tile-cache hit. In reality this might not be the case.
The task that is started “later” might overtake the original task, thus, the two
tasks are sharing their cache misses. Both tasks have to wait for the task, to be
loaded into the L3 cache.
To verify this thesis, we looked into the logs of the execution and found, only

tasks within the first and second tile-column of a meta-tile belong to this group.
All tasks within the third and fourth tile columns have regular tile-cache hits on
tile L. We also found that whenever a task belongs to this group its neighbor
there is a neighbor, that also belongs to this group.
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It is interesting that this synchronization happens only on 4 × 4 meta-tasks.
The reason for this might be that in this scenario the number of tasks (16) within
one meta-task is a multiple, of the number of cores on one node. A sign for this
theory might be that this effect does also happen on IvyBridge16, where there
are also 8 cores per node, but the effect does not happen on Haswell24, where
there are 12 cores per node.

A.2 IvyBridge16
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Figure 37: Density map for different variations on IvyBridge16

In Figure 37 we see that the execution time of a U-task is practically inde-
pendent from the number of its cache misses (nearly no slope). Comparable to
our tests on SandyBridge32 there is a group of U-tasks that cause less than 8000
cache misses. Thus, the cache optimization seems to work as expected. As on
SandyBridge32 this group consists of all U-tasks that have a tile-cache hit when
accessing the panel tile (L).
Interestingly, on IvyBridge16 there is a small number of U-tasks, that take

significantly longer to execute than an average U-task, even though they have
even less cache misses. This has not been the case on other machines.

73



A Density Maps for other Parametrizations

A.3 Haswell24
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Figure 38: Density map for different variations on Haswell24 (with nglob = 32768
and b = 320). As 32768 is no multiple of 320, there are cutoffs on
the rightmost tile-column and the bottom tile-row. Within the plot we
omitted U-tasks that operated on tiles with cutoffs to show the running
time of average U-tasks.

In Figure 38 we see that the cache optimization also works on Haswell24. It
reduces the number of cache faults significantly. Comparable to IvyBridge16, the
correlation between cache misses and running time is relatively weak. Haswell24
has more cache misses per task, because the loaded tiles are significantly larger
(b = 320) compared to the tiles used on SandyBridge32 and IvyBridge16.
The NUMA-optimization does not change the running times of U-tasks signif-

icantly. It only improves the variance of running times.
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