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Zusammenfassung auf Deutsch

In dieser Diplomarbeit entwickle ich einen neuen Algorithmus OPT zur Inver-
sion von Matrizen. Ich beweise Eigenschaften zur parallelen Laufzeit und zum
Arbeitsaufwand von OPT. OPT ist kombiniert aus Strassens Algorithmus zur
Inversion von Matrizen und aus Newton Approximation und basiert auf einer
Subroutine zur Matrixmultiplikation.

OPT ist ein arbeitsoptimaler Algorithmus, d.h. er benötigt höchstens einen
konstanten Faktor mehr Arbeit als jeder andere (arbeitsoptimale) Algorith-
mus. Außerdem benötigt OPT nur polylogarithmische Zeit auf höchstens O(n3)
Prozessoren, wobei die Prozessorzahl von der Multiplikationsroutine bestimmt
wird. Damit vereint er diese beiden Vorteile von Strassens Algorithmus und
Newton Approximation.

Ich beweise eine neue Abschätzung zur numerischen Stabilität von Strassens
Algorithmus kombiniert mit Newton Approximation.

Im Zuge der Diplomarbeit habe ich OPT, Strassens Inversionsalgorithmus
und Newton Approximation zusammen mit einer Matrixcontainerklasse in einem
flexiblen Testprogramm implementiert. Ich beschreibe das Design der Imple-
mentierung und die Verwendung und Schwierigkeiten von BLAS für die Matrix-
multiplikationsroutine.

Im experimentellen Teil vergleiche ich die Laufzeit und die numerische Sta-
bilität von OPT mit der Routine aus der Intel Math Kernel Library (MKL).
Die konstanten Faktoren des Arbeitsaufwands von OPT erweisen sich als nicht
mehr als doppelt so hoch wie die der MKL-Routine. Wie vorhergesagt skaliert
OPT sehr gut. Selbst auf einem Computer mit nur acht Kernen ist er bereits
deutlich schneller als die MKL-Routine.

Bezüglich der numerischen Stabilität werden OPT und Strassens Algorith-
mus dessen schlechtem Ruf nicht gerecht. Stattdessen erzeugen sie Ergebnisse
vergleichbar mit denen der MKL-Routine. Ich entdecke eine unerwartete Insta-
bilität von Newton Approximation wodurch sie schlechtere Ergebnisse erzeugt
als alle anderen Algorithmen in der Implementierung. Zu dieser Instabilität
präsentiere ich einige weitere Experimente.

Ich erkläre, die vorliegende Arbeit eigenständig und nur unter Verwendung der
angegeben Hilfsmittel angefertigt zu haben.





Abstract

In this thesis I present a new algorithm OPT for matrix inversion that
builds on a matrix multiplication subroutine. It is combined of Strassen’s
matrix inversion algorithm and Newton approximation. OPT overcomes
the linear lower bound in parallel runtime of Strassen’s inversion algorithm
and traditional Gaussian elimination without the log-factor more work of
Newton approximation. In particular I prove, that given a work-optimal
multiplication subroutine that runs in polylog time, OPT not only runs
in polylog time, too, but furthermore only needs a constant factor more
work than any work-optimal inversion algorithm.

Additionally, I present a new stability result for Strassen’s matrix in-
version algorithm combined with Newton approximation.

As part of this thesis, I implemented OPT, Strassen’s inversion algo-
rithm, and Newton approximation in a flexible test program along with
a matrix container class optimized for this purpose. I describe the design
of this implementation and the use and difficultys of BLAS for the matrix
multiplication subroutine.

In the experimental part, I compare the runtime of OPT to the routine
included in the Intel Math Kernel Library (MKL) and observe its numer-
ical stability. The constant factors on the amount of work of OPT show
to be no larger than twice those of the MKL routine. As predicted, OPT
shows to be very scaleable. Even on a computer with only eight cores it
is already significantly faster than the MKL routine.

Concerning numerical stability, OPT and Strassen’s algorithm do not
live up to its bad reputation. Instead they produce results comparable to
the MKL routine. I discover an unexpected instability of Newton approx-
imation that makes it produce worse results than any other algorithm in
the implementation. About this instability I present some further exper-
iments.
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1 Introduction

Gaussian elimination is well known as the basic matrix inversion algorithm.
It uses partial pivoting (i.e. row interchanging) by the first non-zero element
to ensure no division by zero occurs. It is considered to be numerically sta-
ble in practice when using partial pivoting by the absolute maximum element,
although counterexamples can be constructed. Numerical stability has been
proven for diagonally dominant and for positive definite matrices.[8] Gaussian
elimination with partial pivoting is a practical algorithm for single core applica-
tions with the additional benefit of (almost) inplace operation.[1] Parallelization
is only possible on a very low level, on O(n2) elements in subtracting the pivot-
row from all other rows and on O(n) elements in finding the maximum of a
column and in division of the pivot-row by the pivot. Blocked versions exist
that increase the number of elements for parallelization by a constant factor.

Strassen’s matrix inversion algorithm recursively breaks down the inversion
into matrix multiplications. Since most work is done in large matrix multipli-
cations and matrix multiplications parallelize quite well, Strassen’s algorithm
offers more coarse grained parallelism and is better suited for large parallel sys-
tems. Furthermore, it can benefit from advanced multiplication algorithms. It
recursively breaks down an inversion of size n into two dependent inversions of
size n

2 and some multiplications.[2] The recursive inversions have to be done in
serial; at the bottom of the recursion are n base inversions. Thus, Strassen’s
inversion algorithm has a critical path length in Θ(n). Also, it is infamous for
poor numerical stability.

Newton approximation can be used to invert matrices, too. Each iteration
squares the remaining error, while the initial error depends on the condition
and the size of the matrix. With a suitable initial approximation, the number
of necessary iterations to reach a constant error bound is in Θ(log n).[12] While
these iterations consist of full size matrix multiplications and thereby parallelize
well, their number adds a factor of Θ(log n) to the work-complexity. Since each
iteration does not depend on an exact intermediate result of the previous itera-
tion but only on an increasingly accurate approximation of the inverse, Newton
approximation has the unique advantage of being able to correct computational
errors.

The algorithm developed in this thesis combines Strassen’s algorithm with
Newton approximation to incorporate the advantages of both. It needs poly-
logaritmic parallel time while still doing only a constant factor times the work
of a work-optimal inversion algorithm. It is as numerically stable as Newton
approximation, while the experiments show even better results.

1.1 Previous Work in Parallel Matrix Inversion

With the arise of multi-core computers, research has been put into efficiently
parallelizing linear algebra operations including matrix inversion.

In the practical field, blocked versions of well known algorithms such as
Gaussian elimination have been established and are implemented in valued li-

[1]Only one additional column needs to be stored.
[2]In the general case, Strassen’s inversion algorithm needs six multiplications of size n

2
.

For symmetric matrices only four multiplications a necessary, two of which yield a symmetric
matrix.
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braries such as ATLAS[18] and, most likely, Intel’s MKL. Ongoing research
tries to further refine them and improve their implementation. Recently, the
technique of task scheduling has become popular. It offers greater flexibility
than fixed distribution of the workload and loosens the intrinsic sequentiality
of the greater parts of the algorithms. The tasks are generated from blocked
algorithms as operations on the blocks. An overview over a class of such al-
gorithms used in Netlib’s LAPACK[17] has been given by Buttari, Langou,
Kurzak, and Dongarra.[4] Song, YarKahn, and Dongarra and Kurzak, Ltaief,
Dongarra, and Badia published about decentral scheduling of the tasks.[2, 3]
However, all blocked algorithms sustain a critical path length in Ω(n).

In the theoretical field, research tries for algorithms that satisfy polylog time
bounds. In 1974, Csanky published the first algorithm to break the asymptotic
bound of Ω(n) but only by O(log2 n), i.e. his algorithm took 2n−O(log2 n) par-
allel steps, proving algorithms known before to be not optimal.[14] In 1976, he
published the first algorithm that works in polylog time, proving it possible.[13]
Many algorithms were published that are quite complicated and mostly work
with computing the characteristic polynomial as a critical intermediate step.
Additionally they usually require exact computation over a finite field or over
rational numbers.

In 1994, Reif proposed a recursive polylog time algorithm that directly com-
putes the inverse or, in variants, LU or QR decompositions.[9] However, it re-
mains unclear from his publication how the critical path can be shorter than n
without the help of other polylog inversion algorithms.

The only widely accepted algorithm of practical usability that works with
floating point represented real numbers and also satisfies polylog times bounds
is Newton approximation. It requires a suitable initial approximation, though,
of which was unknown how to compute it efficiently (i.e. without inverting the
matrix) until the publication of Pan and Reif 1985.[10,12] Codenotti, Leoncini,
and Preparata proposed Newton approximation to be the only known poly-
log time inversion algorithm admitting numerically stable implementations.[7]
Contrary to that, by the measures and calculations of Demmel, Dumitrui, and
Holtz, generally all linear algebra operations can be done in polylog time as
stable as they can be done in serial execution, but not necessarily with the same
work-complexity.[5]

1.2 Notation

Throughout this thesis n shall denote the sidelength of the input matrix.
Almost all of the logarithms in this thesis are of base 2. Therefore, if not

denoted otherwise, log = log2 = ld.
When analyzing the work-complexity and parallel runtime of an algorithm A,

WA(n) and TA(n) shall denote the number of operations in the RAM model and
the number of timesteps in the PRAM model, respectively. Because parallelism
comes from matrix multiplications, additions, and reductions, the number of
processors is determined by the matrix multiplication subroutine and is at most
n3. M and I stand for (hypothetical) optimal multiplication and inversion
algorithms.
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2 Known Algorithms

In this section I describe the two algorithms OPT is based on. I analyze their
work, parallel time and storage requirements. In sections 2.1.2 and 2.1.3 I
present new insight about the stability of Strassen’s inversion algorithm and
the use of symmetric positive definite matrices.

In the analysis I need two lower bounds for the work of a matrix multiplica-
tion WM (n): WM (n) ≥ n2 holds because the output alone has n2 elements that
have to be written. WM (n) ≥ 4WM (n2 ) is, on one hand, actually quite loose
but, on the other hand, not known to be true in all cases.

For now I will call the factor γ, i.e. I discuss why I assume γ = 4 in
WM (n) ≥ γWM (n2 ). γ corresponds to the highest order in WA(n). When
using (recursive) standard multiplication it is γ = 8. Strassen’s inversion algo-
rithm, neglecting lower order terms, reduces it to γ = 7. Other algorithms exist,
for example Winograd’s, that bring γ even closer to 4 at the cost of even more
work hidden in lower order terms. The asymptotically fastest known algorithm
reaches γ = 5.179 in average, i.e. requires O(n2.3727) operations.[1] It is believed
by some specialists, that there might be a family of inversion schemes which
asymptotically converges to γ = 4. However, there can be no algorithm that
gives γ < 4 for almost all n, because it would then violate the first bound.

2.1 Strassen’s Matrix Inversion Algorithm

In 1969 Volker Strassen published a recursive algorithm for matrix inversion.[15]
The algorithm breaks down the inversion into several matrix multiplications.
Thereby, Strassen showed that matrix inversion is not harder than matrix mul-
tiplication (see theorem 2.7). In the same paper, Strassen published his well
known algorithm for matrix multiplication that is asymptotically faster than
the classical multiplication algorithm and Gaussian elimination, showing that
those algorithms are not optimal.

Breaking down the inversion into multiplications brings another benefit: In
contrast to Gaussian elimination, matrix multiplications parallelize quite well.

2.1.1 Deriving Strassen’s Inversion Algorithm from Gaussian Elim-
ination

Let M be a matrix to invert, partitioned into four submatrices with square A
and B. Interpret it as 2× 2 matrix whose elements are also matrices.

M =
(
A E
C B

)
Assuming all necessary inverses exist, invert it by Gaussian elimination:(

A E 1 0
C B 0 1

)
(

1 A−1E A−1 0
C B 0 1

)
(

1 A−1E A−1 0
0 B − CA−1E −CA−1 1

)

10



input: M =
(
A CT

C B

)
operation type operation count
R = Inv(A) recursive inversion WS(n2 )
CÃ = C ·R multiplication WM (n2 )
S = B copy (n2 )2

S −= CÃ · CT multiplication WM (n2 )
S̃ = Inv(S) recursive inversion WS(n2 )
P = S̃ · CÃ multiplication WM (n2 )
P ′ = PT transposition (n2 )2

R −= (CÃ)T · P multiplication WM (n2 )

output: M̃ =
(
R P ′

P S̃

)
Figure 1: Pseudocode for Strassen’s matrix inversion algorithm for symmetric
matrices and operation count for each sub-operation.

S = B − CA−1E(
1 A−1E A−1 0
0 1 −S−1CA−1 S−1

)
(

1 0 A−1 +A−1ES−1CA−1 −A−1ES−1

0 1 −S−1CA−1 S−1

)
Thus, if A and S are non-singular:

M−1 =
(
A−1 +A−1ES−1CA−1 −A−1ES−1

−S−1CA−1 S−1

)
with S = B − CA−1E [3]

For symmetric matrices E = CT . Thus, if A = AT :

M−1 =
(
A−1 +A−1CTS−1CA−1 −A−1CTS−1

−S−1CA−1 S−1

)
with S = B − CA−1CT

From the second formula follow the pseudocode shown in figure 1 and the
DAG shown in figure 2.

Remark Gaussian elimination is the special case of Strassen’s formula where
A is chosen to be a 1× 1 matrix.

[3]S is called the Schur complement of A.
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2.1.2 Infeasibility of Pivoting

For general matrices, M being non-singular does not imply A to be non-singular,
e.g.

M =
(

0 1
1 0

)
is non-singular, but A = 0 is not. Gaussian elimination uses row-interchanges
to overcome this problem. This process of swapping the current with a better
suited row is called partial pivoting.[4] Gaussian elimination with partial pivot-
ing by an absolute maximum element is considered to be numerically stable in
practice, although there are counterexamples.[8, §3.4.6]

Baley and Ferguson proposed a non-functional method for pivoting for Stras-
sen’s inversion algorithm.[11] They mistakenly claimed that for any well condi-
tioned matrix M with a half-sized partitioning at least one of the left partitions
has to be well conditioned, too. That the claim does not hold can be easily seen
at the following counterexample.

M =


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


While M is a permutation matrix and thus has condition 1, none of the parti-
tions is even non-singular.

Though pivoting is still possible, it is more complicated and does not guar-
antee low conditions.

Theorem 2.1 (Partial Pivoting).
Given a non-singular matrix M ∈ Rn×n and k ∈ {1, . . . , n}[5].
Then there is a subset of k rows of M so that their first k columns form a
non-singular matrix A′.

Proof.
Let ML be the submatrix of M consisting of the left k columns.

M is non-singular.
⇒ All columns of M are linearly independent.
⇒ All columns of ML are linearly independent.
⇒ rank(ML) = k

⇒ ML has k linearly independent rows; those form a non-singular matrix A′.

There may be only one such subset of rows, e.g. in a permutation matrix
there are only k rows whose left k columns are non-zero. Additionally, partial
pivoting does not guarantee low conditions as can be seen at the following

[4]Full pivoting includes swapping columns as well but is uncommon in practice.
[5]Typically k ≈ n

2
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counterexample.

M =
1√
3


√

3 0 0 0
0 1

√
2 0

0 1 −
√

1
2

√
3
2

0 1 −
√

1
2 −

√
3
2

 k = 2

M is orthogonal, thus ∀x ∈ R4 : ‖Mx‖ = ‖x‖, thus cond(M) = 1.
Yet, all possible row selections yield A′ =

(
1 0
0 1√

3

)
and cond(A′) =

√
3.

Finally, it is unclear how selecting rows could be parallelized effectively. Any
algorithm that selects one row after the other would inevitably have a critical
path length of at least k.

2.1.3 An Alternative to Pivoting

Given a non-singular matrix M , M̄ = MTM is always symmetric positive defi-
nite (see lemma A.1). From the inverse of M̄ , the inverse of M can be computed
as

M−1 = M−1M−TMT = (MTM)−1MT = M̄−1MT . (1)

With this scheme, inversion of general matrices can be reduced to inversion of
symmetric positive definite matrices at the cost of two multiplications. The
condition of M̄ is bound by the square of the condition of M (see lemma A.2).

Inverting a symmetric positive definite matrix has benefits over inverting a
general one:

Theorem 2.2.
Let M =

(
A CT

C B

)
∈ Rn×n be symmetric positive definite with square A ∈ Rk×k.

Then A and S = B − CA−1CT are symmetric positive definite, in particular
non-singular.

Proof.
Symmetry of A and S follows from symmetry of M .

Let x̄ ∈ Rk \ 0

x =
[
x̄
0

]
∈ Rn \ 0

Then x̄TAx̄ = xTMx > 0
Thus, A is positive definite.
Observe

M =
(
A CT

C B

)
=
(

I 0
CA−1 I

)(
A 0
0 S

)(
I A−1CT

0 I

)
︸ ︷︷ ︸

=:J

⇒ J−TMJ−1 =
(
A 0
0 S

)
Let ȳ ∈ Rn−k \ 0

y =
[

0
ȳ

]
∈ Rn \ 0

13



Then ȳTSȳ = (yTJ−T )M (J−1y)︸ ︷︷ ︸
6=0

> 0

Thus, S is positive definite.

Theorem 2.3.
Let M =

(
A CT

C B

)
∈ Rn×n symmetric positive definite with square A ∈ Rk×k.

Then cond(A) ≤ cond(M).

The proof follows after two lemmata.

Lemma 2.4.

Let M ∈ Rn×n non-singular

Then cond(M) = ‖M‖ · ‖M−1‖ = max
‖x‖=1

‖Mx‖
/

min
‖y‖=1

‖My‖

Proof.

By definition ‖M‖ = max
‖x‖=1

‖Mx‖

It remains to show that ‖M−1‖ =
1

min
‖y‖=1

‖My‖

‖M−1‖ = a

⇔ max
‖ȳ‖=1

‖M−1ȳ‖ = a

⇔ ‖M−1ȳ‖ = a · ‖ȳ‖
ȳ=My⇔ ‖y‖ = a · ‖My‖

⇔ 1
a
· ‖y‖ = ‖My‖

⇔ 1
a

= min
‖y‖=1

‖My‖

Lemma 2.5. (without proof)
Let U ⊇ V ⊇W be vector spaces with orthogonal projections

U V W

x x̄ x′

.

Then the diagram commutes and ‖x‖ ≥ ‖x̄‖ ≥ ‖x′‖.

Proof of Theorem 2.3.
According to lemma 2.4, it suffices to show

1. max
‖x̄‖=1

‖Ax̄‖ ≤ max
‖x‖=1

‖Mx‖

14



2. min
‖ȳ‖=1

‖Aȳ‖ ≥ min
‖y‖=1

‖My‖

1.

∀x̄ ∈ Rk : ‖Ax̄‖ ≤
∥∥∥∥[Ax̄
Cx̄

]∥∥∥∥ =
∥∥∥∥M [

x̄
0

]∥∥∥∥ ≤ max
‖x‖=1

‖Mx‖

2. Let ȳ ∈ Rk with ‖ȳ‖ = 1

Let y =
[
ȳ
0

]
∈ Rn

It suffices to show that ‖Aȳ‖ ≥ min
‖y′‖=1

‖My′‖.

The following form a chain of vector spaces as in lemma 2.5:

Rn −→ Rk −→ 〈y〉 [6]

x =

x1

...
xn

 7−→

x1

...
xk

 7−→ 〈x,y〉 · y [7]

My 7−→ Aȳ 7−→ 〈My,y〉 · y

Thus ‖Aȳ‖ ≥ ‖〈My,y〉 · y‖ = 〈My,y〉

Since M is symmetric positive definite, it can be diagonalized with respect
to an orthonormal base:

M = QDQT

with QTQ = I and D =

d1 0
. . .

0 dn


Write y in that base:

z = QTy

Let d′ = min
‖y′‖=1

‖My′‖

Then 〈My,y〉 = 〈QDQTQz, Qz〉 = 〈QDz, Qz〉 = 〈Dz, z〉

=

〈d1z1

...
dnzn

 ,
z1

...
zn

〉

= d′‖z‖2 +

〈(d1 − d′)z1

...
(dn − d′)zn

 ,
z1

...
zn

〉

≥ d′ = min
‖y′‖=1

‖My′‖

[6]〈y〉 denotes the subspace spanned by y, i.e. 〈y〉 = {ay | a ∈ R}.
[7]〈·, ·〉 denotes the scalar product inducing ‖ · ‖.
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Theorem 2.6.
Let M =

(
A CT

C B

)
∈ Rn×n be symmetric positive definite with square A ∈ Rk×k

and S = B − CA−1CT . Then cond(S) ≤ cond(M).

Proof.
Remember

M−1 =
(
∗ ∗
∗ S−1

)
is symmetric positive definite.
Therefore by theorem 2.3:

cond(S) = cond(S−1) ≤ cond(M−1) = cond(M)

The algorithm proposed in this thesis works with symmetric positive def-
inite matrices. For general non-singular matrices I assume conversion via the
scheme (1). Therefore, for the remainder of this thesis, I focus on inversion of
symmetric positive definite matrices.

2.1.4 Work

From the pseudocode shown in figure 1, I easily get a recurrence for the operation
count.

WS(n) = 2WS

(n
2

)
+ 4WM

(n
2

)
+ 2

(n
2

)2

WS(1) = 1

Remark On current computers and matrix multiplication implementations, a
matrix multiplication may include constant factors and transpositions without
a penalty (see section 4.1 for details). For that reason, I do not count those
operations separately.

The recurrence solves to:

WS(n) = 2
(
WS

(n
2

)
+ 2WM

(n
2

)
+
(n

2

)2
)

= nWS(1) +
logn∑
i=1

2i
(

2WM

( n
2i
)

+
( n

2i
)2
)

WM ( n
2 )≤ 1

4WM (n)

≤ nWS(1) +
logn∑
i=1

2i
(

2
4i
WM (n) +

n2

4i

)

= nWS(1) +
logn∑
i=1

2
2i
WM (n) +

n2

2i

= nWS(1) +
(
WM (n) +

n2

2

) logn∑
i=1

(
1
2

)i−1

= nWS(1) +
(
WM (n) +

n2

2

)
1−

(
1
2

)logn

1− 1
2
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≤ nWS(1) +
(
WM (n) +

n2

2

)
1

1− 1
2

= nWS(1) +
(
2WM (n) + n2

)
n2≤WM (n)⇒ WS(n) ≤ 4WM (n) (2)

It follows

Theorem 2.7.
Matrix multiplication and matrix inversion are equally hard.

By this theorem in combination with his matrix multiplication algorithm,
Strassen has shown that inversion by Gaussian elimination is not optimal.

Proof of Theorem 2.7.
Let WI(n) be the number of operations done by an optimal matrix inversion al-
gorithm to invert a n×nmatrix. From inequation (2) followsWI(n) ≤WS(n) ∈ O(WM (n)).
On the other hand I A 0

0 I B
0 0 I

−1

=

I −A AB
0 I −B
0 0 I


and thus WM (n) ∈ O(WI(n)) for an optimal multiplication algorithm.

Note, that inequality (2) is very loose. Taking into account that practically
WM (n) >> n2 it is rather WS(n) ≈ 2WM (n).

2.1.5 Parallel Time

Figure 2 shows the DAG for Strassen’s inversion algorithm. It can be easily seen,
that all expensive operations are on the critical path. Similar to the operation
count, I get a recurrence for the parallel time.

TS(n) = 2TS
(n

2

)
+ 4TM

(n
2

)
TS(1) = 1

For a time-optimal multiplication subroutine with TM (n) ∈ O(log n), Strassen’s
inversion algorithm is in O(n log n) just as Gaussian elimination.

TS(n) = 2
(
TS

(n
2

)
+ 2TM

(n
2

))
= nTS(1) +

logn∑
i=1

2i · 2TM
( n

2i
)

≤ nTS(1) +
logn∑
i=1

2i · 2TM (n)

= nTS(1) + 4TM (n)
logn∑
i=1

2i−1

= nTS(1) + 4TM (n)
1− 2logn

1− 2
= nTS(1) + 4TM (n)(n− 1)
∈ O(n log n)
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A =
(
B CT

C D

)
A−1 =

(
B−1 +B−1CTS−1CB−1 −B−1CTS−1

−S−1CB−1 S−1

)
with: S = D − CB−1CT

input B C D

intermediate

B−1

I

CB−1

M

S = D − CB−1CT

M

C

output

S−1

I

S−1CB−1

M

B−1+B−1CTS−1CB−1

M

B−1CTS−1

T

Figure 2: DAG of Strassen’s matrix inversion algorithm.
The critical path ( ) consists of both recursive inversions (I) and all four
multiplications (M). The only operations outside of the critical path are one
copy (C) and one transpose (T) which are relatively cheap. Further addition,
transposition, and scaling operations can be done on-the-fly during the multi-
plications.
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However, the critical path is still in Ω(n):

TS(n) ≥ 2TS
(n

2

)
= nTS(1) ∈ Ω(n)

Remark On mediocre parallel systems, the length of the critical path is not
that important. They benefit from the main work happening in few, large
matrix multiplications which parallelize way better than the row operations in
Gaussian elimination.

2.1.6 Storage Requirements

In addition to the input and output matrix, Strassen’s inversion algorithm re-
quires storage for CÃ and S plus one recursive inversion (compare the pseu-
docode in figure 1). We get the recurrence for the additional storage SS(n)

SS(n) = 2
(n

2

)2

+ SS

(n
2

)
SS(1) = 0

which solves to

SS(n) = 2
logn−1∑
i=1

( n
2i
)2

=
1
2
n2

logn−2∑
i=0

1
4i

≤ 1
2
n2 1

1− 1
4

=
2
3
n2

Thus, Strassen’s inversion algorithm needs overall storage for about 8
3n

2 ele-
ments.

2.2 Matrix Inversion by Iterative Newton Approximation

Newton iterations can be used to approximate the inverse of a matrix. Given
a suitable initial approximation, the error converges quadratically so that the
”number of correct bits” doubles with each iteration. Because Newton ap-
proximation, except for the cheap initialization step, consists solely of full size
multiplications, it parallelizes well. It does, however, require a non-constant
number of iterations, each of which is as much work as complete inversion by
an optimal algorithm. Therefore it is not work-optimal.

Because numerical errors are automatically corrected, Newton approxima-
tion is popular for its numerical stability. Said stability will be tested in the
experimental part of this thesis, particularly in sections 5.3 and 5.4.
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2.2.1 Algorithm

The Newton approximation algorithm makes use of the following error measure.
Let X be an approximation of M−1.

Let R(X) = I−XM
err(X) = ‖R(X)‖

For an approximation Xi the next improvement is given by

Xi+1 = Xi + R(Xi) ·Xi

= (2I−XiM)Xi .
(3)

This at least squares the error:

err(Xi+1) = ‖I− (2I−XiM)XiM‖
= ‖I2 − 2XiM + (XiM)2‖
= ‖(I−XiM)2‖
≤ ‖R(Xi)‖2

= err(Xi)2

(4)

It is not obvious how to efficiently calculate an initial approximation X0

with err(X0) < 1. I make use of the method described by Pan and Reif.[10] For
a general non-singular matrix M̄ , choose

X̄0 = t̄I with t̄ =
1

‖M̄‖1 · ‖M̄‖∞
= 1

/
max
i

∑
j

|m̄ij | ·max
j

∑
i

|m̄ij | .

In case of a symmetric positive definite matrix M it suffices to choose

X0 = tI with t =
1

‖M‖∞
= 1

/
max
i

∑
j

|mij | . (5)

Theorem 2.8.
X0 as defined by equation (5) for a symmetric positive definite matrix M satisfies

err(X0) ≤ 1− 1√
n condM

.

The proof makes use of the following lemma.

Lemma 2.9.
Let X0 and t be as defined in equation (5). Then µ is eigenvalue of R(X0) = I−X0M
exactly if 1−µ

t is eigenvalue of M .

Proof.
Let v be an eigenvector to µ.

µv = R(X0)v
⇔ µv = v −X0Mv

⇔ µv = v − tMv

⇔ 1− µ
t

v = Mv
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Proof of theorem 2.8.
I make use of the fact, that for a diagonalizable matrix its norm is its largest
eigenvalue. Since M is diagonalizable, so is R(X0). Let µ be the largest eigen-
value of R(X0). Then by lemma 2.9 1−µ

t is the smallest eigenvalue of M and
by lemma 2.4 t

1−µ = ‖M−1‖.

1− µ
t

=
1

‖M−1‖

⇒ 1− µ =
t

‖M−1‖

⇒ err(X0) = ‖R(X0)‖ = µ = 1− t

‖M−1‖

On the other hand, it is

‖M−1‖
t

= ‖M−1‖ · ‖M‖∞ ≤ ‖M−1‖ ·
√
n‖M‖ =

√
n condM .

And thus

err(X0) ≤ 1− 1√
n condM

.

It remains the question, how many iterations are necessary to reach a desired
bound on the error ε.

Theorem 2.10.
Starting from X0 as defined by equation (5) for a symmetric positive definite
matrix M, k iterations of Newton approximation suffice to ensure err(Xk) ≤ ε,
with

k =
1
2

log n+ log log
1
ε

+ log condM .

Lemma 2.11.
For a > 1 hold:

1
a
≤ loge

a

a− 1
≤ 1
a− 1

1
a
≤ 1
a loge 2

≤ log2

a

a− 1
≤ 1

(a− 1) loge 2

Proof.

∀x ∈ [a− 1, a] :
1
a
≤ (loge x)′ ≤ 1

a− 1

⇒ 1
a
≤ loge(a)− loge(a− 1) ≤ 1

a− 1
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Proof of theorem 2.10.

Let err(X0) = ξ

By theorem 2.8 and lemma 2.11 it is

log
1
ξ
≥ log

√
n condM√

n condM − 1
≥ 1√

n condM
(6)

Then k = log log
1
ε

+
1
2

log n+ log condM

= log log
1
ε

+ log(
√
n condM)

= log log
1
ε
− log

1√
n condM

(6)⇒ k ≥ log log
1
ε
− log log

1
ξ

= log
log ε
log ξ

⇔ 2k ≥ log ε
log ξ

⇔ log ξ︸︷︷︸
<0

·2k ≤ log ε

⇔ 2log ξ·2k

≤ ε
⇔ ξ2k

≤ ε
(4)⇒ err(Xk) ≤ ε

To simplify further calculations, in the following I estimate k ≤ α log n.
Usually, one would want the output as precise as possible with the used number
format, what makes ε a constant of the machine. If a certain output precision
is necessary for further calculations, then it will depend on n and condM .
As long as 1

ε and condM are polynomial in n, α log n is an upper bound for
k. Furthermore, other, non approximative algorithms do not depend on the
condition of M , so it is unclear how to compare with them without assumptions
about the condition.

2.2.2 Work

Computing the initial inverse takes n2 operations. One iteration of Newton
approximation requires two matrix multiplications and one addition. By the-
orem 2.10, k ≤ α log n iterations suffice. Therefore the number of operations
necessary, WN (n), is:

WN (n) ≤ (2WM (n) + n2) · α log n+ n2

∈ O(WM (n) · log n)

By the factor of log n Newton approximation is not work-optimal.
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2.2.3 Parallel Time

All high level steps of Newton inversion have to be done in serial. Computation
of the initial approximation is binary reduction of n2 elements and can be done
in 2 log n timesteps. Addition is completely parallelizable and needs only one
timestep, that I will neglect. Thus

TN (n) ≤ 2TM (n) · α log n+ 2 log n
∈ O(TM (n) · log n)

With a time-optimal multiplication subroutine with TM (n) ∈ O(log n), Newton
approximation is a polylog time algorithm.

2.2.4 Storage Requirements

In addition to the input and output matrix, Newton approximation requires
storage for the product XiM and the improved approximation Xi+1. With a
multiplication subroutine that needs no additional storage, it requires storage for
4n2 elements total. However, a polylog multiplication needs a constant amount
of storage per processor which is in Ω(WM (n)

logn ) for logarithmic runtime.

3 A Work-Optimal Polylog Time Algorithm

In the previous section I have shown how Strassen’s inversion algorithm uses
matrix multiplications to effectively parallelize most of the work without in-
creasing the amount over a constant factor. Still, it has a critical path length of
n, because it can not effectively break up the small inversions that origin from
its recursive nature. Newton approximation, on the other hand, consists only of
sub-steps that operate on the full input size and can be parallelized effectively
(namely multiplications, additions, and reductions). Unfortunately, it requires
a log n factor more work.

A work-optimal, yet polylog parallelizable algorithm OPT can be created by
combining the two algorithms in the following way: Use Strassen’s algorithm
for the large size inversions, but use Newton approximation once the recursion
comes to small sizes. That way Strassen’s algorithm works on the parts it is
good at parallelizing, and Newton approximation gets small inputs and thereby
requires small amounts of additional work.

3.1 Algorithm

For the remainder of this section let

n′ =
n

log n
.

Obtain OPT by modifying Strassen’s algorithm for symmetric positive definite
matrices to a base size of ≤ n′ instead of 1. For the base inversions use Newton
approximation.

From theorem 2.2 we know that all base inversions are symmetric positive
definite. Furthermore, from theorems 2.3 and 2.6 we know that no condition
will exceed that of the input matrix M .
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3.2 Work

OPT gets the recurrence for the operation count from Strassen’s algorithm but
with Newton approximation as base case. The operation count is again for a
symmetric positive definite input matrix M .

WO(n) = 2WO

(n
2

)
+ 4WM

(n
2

)
+ 2

(n
2

)2

WO(n′) = WN (n′)
≤ (2WM (n′) + n′2) · α log n′ + n′2

≤ (2WM (n′) + n′2) · α log n for nα ≥ 4

The recurrence solves to:

WO(n) = 2
(
WO

(n
2

)
+ 2WM

(n
2

)
+
(n

2

)2
)

= log n ·WO(n′) +
log logn∑
i=1

2i
(

2WM

( n
2i
)

+
( n

2i
)2
)

︸ ︷︷ ︸
=:f

f ≤
log logn∑
i=1

2i
(

2
4i
WM (n) +

n2

4i

)

=
log logn∑
i=1

2
2i
WM (n) +

n2

2i

=
(
WM (n) +

n2

2

) log logn∑
i=1

(
1
2

)i−1

=
(
WM (n) +

n2

2

)
1−

(
1
2

)log logn

1− 1
2

≤
(
WM (n) +

n2

2

)
1

1− 1
2

= 2WM (n) + n2

log n ·WO(n′) ≤ α log2 n ·
(

2WM

(
n

log n

)
+ n′2

)
= α log2 n ·

(
1

log2 n
2WM (n) +

n2

log2 n

)
= 2αWM (n) + αn2

⇒ WO(n) ≤ 4αWM (n) + 2αn2 for α ≥ 1
∈ O(WM (n)) = O(WI(n))

Thus, this algorithm is work-optimal.

Remark If a non-symmetric matrix is inverted with the technique described
in section 2.1.3, two more multiplications are necessary. Still, OPT is work-
optimal with that extension.
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3.3 Parallel Time

As with the operation count, the recurrence for the parallel time comes from
Strassen’s algorithm with the base case from Newton approximation.

TO(n) = 2TO
(n

2

)
+ 4TM

(n
2

)
TO(n′) = 2TM (n′) · α log n′ + 2 log n′

≤ 2TM (n) · α log n for nα ≥ 4

The recurrence solves to:

TO(n) = 2
(
TO

(n
2

)
+ 2TM

(n
2

))
= log n · TO(n′) +

log logn∑
i=1

2i · 2TM
( n

2i
)

︸ ︷︷ ︸
=:f

f ≤
log logn∑
i=1

2i · 2TM (n)

= 4TM (n)
log logn∑
i=1

2i−1

= 4TM (n)
1− 2log logn

1− 2
= 4TM (n)(log n− 1)

⇒ TO(n) ≤ 6TM (n) · α log2 n

∈ O(TM (n) · log2 n)

With a time-optimal multiplication subroutine with TM (n) ∈ O(log n), this is a
polylog time algorithm.

Remark Just as with the work-optimality, inverting a non-symmetric matrix
with the technique from section 2.1.3 does not break the polylog time paralleliz-
ability of OPT.

3.4 Numerical Stability

Strassen’s inversion algorithm is unpopular for numerical instability. Baley and
Ferguson experimented with using iterations of Newton approximation to im-
prove the result.[11] They tried three variants of extra effort to put into the
improvement: First, they applied one iteration of Newton approximation on
the final output of Strassen’s algorithm. Second, they applied one iteration on
the output of every level of Strassen’s algorithm except on final result. Third,
they combined both.

This approach does neither break the property of work-optimality nor of
polylog parallelizability (of OPT), since it only adds a constant number of matrix
multiplications where there already are some.
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input: M =
(
A CT

C B

)
Ã = Inv(A)
CÃ = C · Ã
S = B − CÃ · CT
S̃ = Inv(S)
P = −S̃ · CÃ
R = Ã− (CÃ)T · P

M ′ =
(
R PT

P S̃

)
M̃ = (2I −M ′M)M ′

output: M̃

Figure 3: Pseudocode for OPT-S.

The results of their experiments where promising. While the output of Stras-
sen’s algorithm was quite erroneous, each variant of effort improved the result
significantly. The third variant even produced better results than the implemen-
tation of Gaussian elimination they used for reference. It remains to say, that
in addition to Strassen’s inversion algorithm they also used Strassen’s matrix
multiplication algorithm.

I will proof that the second variant, which I call OPT-S, is sufficient to
correct errors that origin in the inversion. To do that I assume that multiplica-
tions in one level of Strassen’s algorithm do only magnify the errors of recursive
inversions, and errors of the multiplications themselves can be neglected. Fur-
thermore, I do a first order error analysis, i.e. I neglect any squares of errors.

The pseudocode for OPT-S (see figure 3) results by adding the iteration
of Newton approximation to the pseudocode for Strassen’s algorithm (compare
figure 1). For consistency in the error calculation, I renamed R to Ã for the
period where it holds the inverse of A. Note, that for the second variant the
modified code is not to be applied for the outermost recursion.

Since I want a bound for the error of an inversion, I assume the recursive
inversion to satisfy error bounds χX .

For X ∈ {A,S,M} let χX = ‖X̃ −X−1‖.
Let f̄ be the exact (arithmetic) value of f .
Let δ(f) = ‖f − f̄‖.

Note: χS does not include the error δ(S) from the calculation of S but only the
error from the recursive inversion.

Theorem 3.1.

Let ε =
1

cond10A
Then χ

A, χS ≤ ε suffices for χM ≤ ε

Proof.

Let Λ = ‖M‖
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λ = ‖M−1‖
κ = condM = Λλ

Then δ(Ã) = χ
A ≤ ε

δ(CÃ) ≤ ‖C‖δ(Ã) ≤ εΛ
δ(S) ≤ δ(CÃ)‖CT ‖ ≤ εΛ2

δ(S̃) = ‖S̃ − S̄−1‖
≤ ‖S̃ − S−1‖+ ‖S−1 − S̄−1‖
≤ χS + ‖S−1‖‖S̄ − S‖‖S̄−1‖
≤ ε+ δ(S)λ2

≤ ε+ εκ2

δ(P ) ≤ δ(S̃)‖CÃ‖+ ‖S̃‖δ(CÃ) ≤ 2εκ+ εκ3

δ(R) ≤ δ(Ã) + δ(CÃ)‖P‖+ ‖CÃ‖δ(P )
≤ ε+ εκ+ 2εκ2 + εκ4

δ(M ′) ≤ δ(R) + 2δ(P ) + δ(S̃)
≤ 2ε+ 3εκ+ 3εκ2 + εκ3 + εκ4

≤ 2εκ4 for κ ≥ 3
From equation (4) we know

err(M̃) ≤ err(M ′)2

⇔ ‖I− M̃M‖ ≤ ‖I−M ′M‖2

⇒ ‖M−1 − M̃‖ 1
‖M−1‖

≤ ‖M−1 −M ′‖2‖M‖2 (7)

⇔ ‖M−1 − M̃‖ ≤ ‖M−1 −M ′‖2‖M‖2‖M−1‖
= ‖M−1 −M ′‖2Λ2λ

Thus χ
M = δ(M̃) ≤ δ(M ′)2Λ2λ

≤ 4ε2Λκ9

≤ 4Λκ9

κ20
for λ ≥ 4

≤ ε

Remark Inequation (7) is very loose. It is not possible to proof any better
bound in that step using only the axioms of matrix norms. Still, a much lower
error bound ε should be necessary in practice.

3.5 Storage Requirements

Just as for Newton approximation, the storage requirements depend on the mul-
tiplication subroutine. With no additional storage for the multiplication, OPT
needs about the same amount of storage as Strassen’s inversion algorithm, but
logarithmic runtime requires an amount of processors and storage in Ω(WM (n′)

logn′ ).
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4 Implementation

Purpose of my implementation was to do the experiments described in the next
section. It is structured as a full linear algebra library but only contains the
operations required for the experiments. For example, there is no operator +
defined, but an operation add that computes A = αA+βB. Additionally, there
are special functions for operations that would be less efficient when combined
of standard operations, e.g. subtract from alpha unity that computes A =
αI−A.

Mainly, the implementation consists of a matrix container class templated
to the type of an element, and a test program that parses the command line,
generates pseudorandom input and runs the tests. The matrix class offers high
level operations, as well as low level access for operations that require it for effi-
ciency. Built on the matrix class is an, again templated, class matrix inverse.
Its only data member is a matrix to hold the inverse, but its constructor takes
the matrix to invert and some parameters and performs the inversion. An
instance of matrix inverse can be used as matrix via its operator matrix.

To generate input for the experiments, a set of static methods is grouped
in the templated matrix generator class. It includes pseudorandom genera-
tion with the desired condition as parameter and some matrix families to test
correctness of the matrix operations. As pseudorandom number generator and
for the distribution I use boost::random from the Boost C++ librarys.[20]

4.1 BLAS and LAPACK Interface

Strassen’s inversion algorithm and inversion by Newton approximation build on
matrix multiplication. For an efficient multiplication subroutine, I decided to
link to a BLAS library.

BLAS is short for ”Basic Linear Algebra Subprograms” and refers to an
almost standard interface for a set of vector and matrix operations. Unfortu-
nately, even though BLAS is centrally defined by Netlib,[16] there is neither a
central, complete declaration of the interface, nor documentation of its exact
functionality, nor unique naming of the functions. Some libraries use function
names in capitals, others prefix the names with an underscore. Some even have
two versions of the same function, one which interprets matrices as stored in
column-major, the other in row-major. Due to the inconsistent naming issues,
the program code can not simply be linked to different libraries, but needs to be
adapted. Adapting is further complicated by the inconsistent functionality and
incomplete documentation. For example, ATLAS’s[18] documentation simply
refers to Netlib’s documentation of BLAS, which to begin with has incomplete
descriptions of the functions effects and secondly defines other function names
than implemented by ATLAS. The commercial product Intel MKL alone is much
more comfortable to use. It includes a manual[19] that describes the effects and
parameters of every function in detail. The only exception is, which dimension
parameter refers to which dimension of the matrices, what I managed to only
find out by interpreting the descriptions of different error cases.

Generally, every function has four names in BLAS for the four floating point
element types single and double precision, real and complex values, denoted by
the first part of the name being s, d, c, or z. The last part of the functions
names state the actual operation, while the middle part, depending on the
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0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

0 - - -
1 5 - -
2 6 10 -
3 7 11 15

0 - - -
1 4 - -
2 5 7 -
3 6 8 9

general matrix
column-major storage

(ge)

entrys above the main
diagonal ignored

(sy, lower)

packed storage of the
lower triangle

(sp, lower)

Figure 4: Overview over the three storage schemes for symmetric matrices de-
fined by BLAS. Numbers are the positions in the array at which the matrix
elements are stored.

dgemm dsymm dsyrk
C = αA ·B + βC C = αS ·A+ βC S = αA ·AT + βS
C = αAT ·B + βC C = αA · S + βC S = αAT ·A+ βS
C = αA ·BT + βC
C = αAT ·BT + βC

with A, B, and C general matrices, S a symmetric matrix,
and α and β scalars

Figure 5: Overview over the matrix multiplication operations for general and
symmetric matrices available in BLAS.

operation, distinguishes between special properties the input matrices may have.
Those properties include symmetry or symmetric positive definiteness, including
special storage formats for symmetric rsp. hermitian matrices. Because BLAS
libraries are usually implemented in Fortran, general matrices are assumed to
be stored in column-major in a single array as is default in Fortran. Symmetric
matrices can be stored either just as general matrices, or in the same format as
general matrices but with entries above or below the main diagonal ignored, or
in packed storage that skips the entries above/below the main diagonal, denoted
by ge, sy, and sp respectively (compare figure 4).

Matrix multiplication routines are available in BLAS for general input matri-
ces, which can be transposed on-the-fly, and for one symmetric and one general
matrix but without the possibility to transpose. Both routines add the product
to the previous content of the output matrix and apply scalar factors to both
summands (compare figure 5). Using the routine for one symmetric input ma-
trix mainly has the advantage, that only one triangle of said matrix has to be
written and does not need to be transposed to set the other entries. Unfortu-
nately, there is no routine that computes a matrix product that is known to be
symmetric beforehand. The only routine that explicitly outputs a symmetric
matrix, dsyrk, can only multiply a matrix with its own transpose.

LAPACK is an extension to the BLAS standard and a reference implementa-
tion build on it that adds routines for solving systems of linear equations, least
squares problems, eigenvalue and singular value problems, and related tasks.
It includes matrix inversion via LU factorization rsp. Cholesky factorization,
which I use as reference for runtime and numerical stability.

My implementation contains a wrapper layer for BLAS and LAPACK. Its
main function is to bridge between the templated matrix class and the type-
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specific BLAS and LAPACK names via template specialization. Additionally
it adapts from row-major matrix storage to the form required by the library
and takes care of ordering of the dimension arguments. Adapting between row-
major and column-major is efficient and only requires not to get confused by the
ordering and naming of parameters. For example, to calculate C = A · B, one
can instead calculate CT = BT · AT . The transposition happens implicitly by
the reinterpretation from row-major to column-major. Only proper swapping
of the matrix and dimension parameters is required. So, the second function of
the BLAS wrapper layer boils down to avoiding confusion.

4.2 Internal Data Structures

The matrix class internally uses a low level storage scheme that I designed
to easily allow use of BLAS subroutines as well as efficient algorithms for the
functions not included in BLAS. First of all, a matrix is represented by integers
for the height and width and an array to hold its elements. The array is
managed by a boost::scoped array from the Boost C++ libraries.[20] The
elements are stored in row-major. Other orders like Morton order may be more
efficient to use with recursive algorithms, but are not supported by BLAS.[8] In
addition to the size and element storage, the matrix class contains integers for
the offset of the first matrix element in the array and for the row-length in
the array (i.e. the distance in the array of an element and the one below in the
matrix) as well as a flag indicating that the matrix is known to be symmetric.

The offset and row-length members allow efficient construction of subma-
trices. A constructor for this purpose copies the scoped array (i.e. pointer and
reference counter, not the actual elements) and the row-length and and sets
offset and symmetric appropriately. That way, no extra storage is required
for the elements of the submatrix and changes to them automatically affect the
supermatrix as well. The scoped array takes care of freeing the array once
the supermatrix and all its (direct and indirect) submatrices have been deleted.
The technique of height, width, start (= array-pointer + offset), and row-length
is directly supported by BLAS.

Managing the array of elements with a boost::scoped array also allows to
easily implement an efficient copy constructor and assignment operator. Both
copy the members of the matrix what again means to only copy the pointer
and reference counter for the element array but not the actual elements. If
the original matrix object is destroyed afterwards, the boost::scoped array
simply decreases the reference counter, thus effectively transmitting ownership
of the array from the original to the new object.

4.3 Multiplication

The multiply member function of the matrix class offers the full functionality
of both BLAS routines, dgemm for two general and dsymm for one symmetric and
one general input matrix.[9] If an input matrix has its symmetric flag set, it
is ignored whether it shall be transposed. If none of the input matrices shall

[8]The only other order supported by BLAS apart from row-major is column-major.
[9]dgemm and dsymm are for double precision matrix multiplication. For single precision

or complex numbers my BLAS wrapper layer uses sgemm and ssymm, cgemm and csymm, or
zgemm and zsymm as appropriate.
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be transposed and at least one of them has its symmetric flag set, dsymm is
used with the first symmetric matrix as the symmetric input. That way, this
matrix’s entries above the main diagonal are ignored and need not be set by the
step producing the matrix. In all other cases, dgemm is called.

I defined a second multiplication member function multiply symmetric for
the case that the result it known to be symmetric beforehand. I will call a
multiplication with this additional information ”symmetric multiplication”, al-
though it does not imply commutativity or any symmetry in the factors. In
its final implementation, it does nothing more than call multiply and set the
symmetric flag.

Examination of the formulas that lead to OPT shows, that exactly every
other multiplication is symmetric. Obviously, making use of this fact can save
almost one fourth of the calculation (the diagonals still have to be computed
completely). Unfortunately, BLAS does not support use of this knowledge. I
tried implementing a recursive matrix multiplication routine that can take ad-
vantage of the symmetry of a multiplication. For a comparable efficient imple-
mentation it used BLAS multiplication as base case. Unfortunately there seems
to be a bug in the Intel MKL library that made the implementation unusable.[10]

When multiplications into different submatrices of the same result-matrix where
started by multiple parallel threads, the output had significantly large errors.
This did not happen, when multiple threads where started but all ran on a single
core.

4.4 Other Parallel Matrix Operations

All matrix operations that operate on the elements are implemented to be able
to use parallelism. Those that just do a single pass over the elements, like
addition and initialization, use pragma parallel for.

Reductions like one- and infinity-norms and the maximum absolute element
that is used as error measure by Newton approximations require special atten-
tion. To find the maximum in single threaded execution, one just stores the
maximum element so far in a variable. Doing so with multiple threads would
cause bugs due to unsynchronized writing and heavy false sharing. Instead, ev-
ery thread needs its own variable for the maximum element it found so far. That
is simple to implement by defining the variable inside a pragma omp parallel
block, what also puts it on the treads own stack. Afterwards, each thread
updates a global maximum variable in a synchronized block.

Operations that work recursively, like transposition and the failed symmetric
multiplication, pass an additional parameter down the recursion on how many
threads they should parallelize. Each time the recursion splits the task into
independent subtasks of equal size, the number of threads is divided accord-
ingly. The subtasks are parallelized with pragma parallel sections. Once
the number of threads to split on reaches one, the recursion switches to a purely
serial instance of the function. This prevents recursive calls in low levels, of
which there are very many, to spend time in unnecessary calls to OpenMP. Par-
allelizing is also stopped, if the size falls below a limit given by a preprocessor
macro. The value was automatically adjusted, see section 4.7. The number of

[10]The bug also occurred when linking to the GNU OpenMP library instead of the Intel
OpenMP library.
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threads is set to the number of available processors by the outermost call of the
function.

The matrix class provides a member function partition that partitions
the matrix into four submatrices and returns them in a structure. The provided
partitioning scheme is used by all recursive algorithms including Strassen’s in-
version algorithm and OPT.

Transposition and the similar make symmetric, that fills the upper trian-
gle with the transpose of the lower triangle, work recursively with the scheme
provided by partition. For very small matrices they switch to simple nested
for-loops, that are more efficient in this case.[6] The size is again automatically
adjusted.

4.5 Inversion

The matrix inverse class capsules all inversion methods. Its constructor takes
two arguments: The matrix to invert and a string that specifies the combination
of inversion methods to use.

4.5.1 Recursion Management

To allow higher flexibility for experiments, the recursive inversion functions do
neither take a parameter for the recursion depth or have it fixed, nor do they
use a fixed base inversion. Instead, a recursion object holds a list of function
pointers to the inversion functions to use. Recursive inversion functions perform
only one level of recursion and then call the recursion object via a callback
function object. The recursion object then calls them again or a different
function as desired. So that all inversion functions are of the same type, other
inversion functions are capsuled in wrappers that also take the callback object
but ignore it.

The function pointer list is initialized by parsing the string passed to the
matrix inverse constructor. Each entry corresponds to one level in the tree
of recursive calls with non-recursive methods as leaves. Because all recursive
calls are run in serial, the tree is traversed in pre-order. Thus a single iterator
suffices to find the inversion function to use; it is increased after starting the
call and decreased when the call returns. Thereby its position in the list always
corresponds to the current level in the recursion tree.

The ability to specify the method used for every level of recursion separately
allows not only to compose Strassen’s inversion algorithm, OPT, and OPT-S,
but also to make alterations at runtime. For example, to get OPT one would
specify the appropriate number of levels of Strassen’s inversion algorithm and
then Newton approximation. If one wishes, the number of levels can simply be
changed. As another example, OPT-S results by inserting single iterations of
Newton approximation in between the levels of Strassen’s inversion algorithm.
This can be altered to do more than one iteration at a time or by inserting them
only every k levels. Also, the LAPACK inversion (effectively MKL inversion)
can be used as base case to OPT, to examine the effects of Strassen’s algorithm
without those of Newton approximation.
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Figure 6: Typical evolution of the error value during a Newton approximation.
Also shown are the maximal error constant c and the ranges in that condition
(a) and (b) hold (compare section 4.5.2), as well as the point up to that single
precision computation would be sufficient (s) (compare section 4.8).

4.5.2 Inversion Methods

The implementation of one level of Strassen’s inversion algorithm follows the
pseudocode from figure 1. Multiplications that result in a symmetric matrix
use multiply symmetric. Possible parallelism between the copy and other op-
erations is not exploited. The transpose to compute P ′ is skipped completely
and P ′ left undefined. As intermediate result, P ′ is never read due to the use
of dsymm for further multiplications as described in section 4.3. The final result
undergoes a call to make symmetric, that fills in all missing parts. It would be
cleaner to specify if P ′ is needed as a parameter to the function, but that would
make the function itself and the callback object more complicated. Although
make symmetric sets some elements that where already correct from the base
case of the inversion, the amount of additional work is neglectable compared to
the rest of the inversion.

The implementation of Newton approximation uses, apart from the input
matrix, one matrix E for the error matrix plus I and two X, X new for the current
and the new approximation. I follows the formula Xi+1 = (2I−XiM)Xi. First,
E is set to 2I, then XiM is multiplied and subtracted in one operation. Instead,
one could subtract the product from 2I and store the difference in the same
matrix. I expect both methods to be equally efficient, because they both involve
a single pass over the elements with a conditional addition. In a few test runs, I
found no difference. Both methods use a special member function of the matrix
class that parallelizes as described in section 4.4. After the new approximation
has been calculated, the contents of Y and Y new are swapped (again including
the array pointers but not the elements themselves).

The implementation of Newton approximation does not calculate the num-
ber of iterations by the formula of theorem 2.10. This spares the dependence
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on the condition as an input parameter and saves superfluous iterations. In-
stead, it measures the remaining error of each approximation as described by
equation (8). To calculate the error measure, I is subtracted from E on-the-fly.
During the tests, the maximum absolute element has shown to give good re-
sults. Anyway, the value calculated as error measure is not incorporated in the
iterations in any way, but serves only to detect stagnation of improvement as
termination condition. The iteration continues as long as at least one of two
conditions holds: (a) The error of the new approximation is smaller than the
previous to a certain power p. (b) The remaining error is larger than a fixed
constant c. These conditions have shown to reliably detect two situations (com-
pare figure 6): (a) When the border of representability is close, the error is no
longer squared. Although little improvement is usually still possible, the itera-
tion should stop because the effort is not worth it. p should be less than 2 to
avoid misdetection due to numerical instability (e.g. 1.2). (b) At the beginning
of the inversion the improvement is small, so that (b) is sometimes not met due
to numerical instability. In that case the iterations shall still continue. c can be
chosen rather large (e.g. 0.01).

The LAPACK standard defines the interface to the inversion of symmetric
positive definite matrices to consist of two calls, dpotrf and dpotri. The first
calculates a Cholesky factorization of the matrix. The second calculates the
inverse from the Cholesky factorization. Both together are capsuled as one
inversion method available in the matrix inverse class. Those routines are
specialized for symmetric positive definite matrices and can thus make use of
all their benefits. I also implemented a function to call the versions for general
matrices, dgetrf and dgetri, that work with an LU factorization, but do not
use it for the experiments.

For the stabilization step of OPT-S, one iteration of Newton approximation
is also available as pseudo-recursive function. It first uses the callback with
the input (i.e. with the same size) to get an approximation and then performs
the Newton iteration. To compose pure Strassen’s inversion algorithm, simple
inversion of 1× 1 matrices is available as a separate function.

4.5.3 Singular Matrix Handling

The LAPACK inversion call dgetri, Newton approximation, and 1 × 1 inver-
sion can detect singular input matrices. dgetri returns an error code, Newton
approximation iterates infinitely, and 1 × 1 inversion divides by 0. In all cases
(for Newton approximation a large number of iterations depending on n), an ex-
ception is thrown containing appropriate information. The exception is caught
by the test program that records the failure in the output.

4.6 Profiling

For profiling, a global object of type matrix statistic is available. The matrix
operations, especially the inversion algorithms, call functions to store profiling
data and to start and stop timing. By replacing some of those functions with
empty ones, all overhead can be removed from the matrix operations trough
compiler optimization. After an operation finished, the test program can read
the profiling data from the matrix statistic object. All profiling data of
one test run is also available as a single line of text for printing to standard
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output. With these lines, the test data can easily be extracted and processed
by evaluation scripts. This is especially useful for automated calculation of
medians and generation of data-tables for plots.

All inversion functions call timer start and stop functions. Timer objects,
one per recursion level, are maintained in a list with an iterator to the current
level. That way is kept track of which start or stop call belongs to which level
and timings for each level are generated.

The constructor of matrix inverse stores the inversion method string and
the matrix generator stores the size, condition and the random seed of the
matrix. If used, the Newton approximations fill a list of iteration counts. After
the inversion, the error measure is stored in the matrix statistic object. With
the random seed, it is possible to reproduce to exact same input if exceptional
behavior shall be further investigated later.

4.7 Automatic Tuning

As described in section 4.4, the minimal size for parallelization and for recursive
transposition is set by an automatically adjusted preprocessor macro. To find
values for those parameters, series of automated tests where run that try to
narrow the possible range of the optimal value by binary search. They compile
a test program with the possible values and compare the runtime of predefined
tests. This builds on the assumption, that the gain of parallelization grows
monotone with the size. When the lower and upper limit get within a factor
of two, setting a value in between no longer makes a difference because OPT’s
recursions always halve their input size. Then a different input size has to be
chosen and two tests to be run with that size and different tuning parameters.
The results of these series of tests where so stable and plausible, that in the
end the tuning process could be completely automated. The found values are
automatically written to an include-file and used in future compiles.

4.8 Possible Improvements

Newton approximation starts off with a very rough approximation and itera-
tively improves it. Theoretically it takes only one iteration to double the number
of correct bits. One could start the approximation with single precision float-
ing point arithmetic and switch to double precision when approaching the end
(compare figure 6). Doing so would require conversion of the input and once
of an intermediate result, but speed up most of the multiplications by a factor
of two plus some advantage due to lower cache footprint. However, OPT only
uses Newton approximation on relatively small submatrices, so the gain in that
application is limited.

As described in section 4.3, exploiting symmetric multiplications can save
almost one fourth of the effort. However, adapting a highly tuned multiplication
subroutine to support that feature is not trivial. One has to take into considera-
tion, that for a submatrix on the diagonal not all elements have to be calculated
by multiplication. That may either waste valuable cache or it complicates the
aligning to cache-line-boundaries if the other elements are not to be stored at
their usual places. Also, the rows and columns of the input are not used equally
often, thus are different valuable to keep cached. Likewise, parallelization gets
more difficult. For full multiplications, splitting the in- and output matrices in
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parts of equal size results in subtasks of equal size. For symmetric multiplica-
tions, such splitting results in tasks of different sizes, which additionally contain
to copy the transpose of some parts of the result. Separating multiplication and
transposition may help with locality during the multiplication but on the other
hand requires reloading the results for the transposition.

Further benefits in parallelization may come from task scheduling. One
would define (recursive) inversions and multiplications as tasks that can be
split into subtasks by Strassen’s algorithm and some recursive multiplication
scheme, respectively. That can, for example, be beneficial in the following way:
Strassen’s inversion algorithm starts with a recursive inversion of the upper
left partition. This recursive inversion can begin, as soon as the multiplication
that produces the input for the whole inversion finished to compute this parti-
tion. The rest of the multiplication can proceed in parallel. In addition to such
overlapping, simple parts like copying a matrix can be moved into the multi-
plication that generates it or that uses it, saving one access to slower memory
levels. While the recursion is broken down further, the data-flow comes closer
to a streaming mechanism.

Breaking down tasks is not always ambiguous. For example, consider the
following multiplication:(

C11 C12

C21 C22

)
=
(
A11 A12

A21 A22

)
·
(
B11 B12

B21 B22

)
Breaking it down recursively yields, among other tasks, to compute

C11 = A11 ·B11 +A12 ·B21 .

If two cores are available, one would compute each product on one processor and
then add them afterwards. However, on one core, one could compute the first
product and then use the multiply-and-add function of the muladd processor-
instruction to add up the second product as it is computed, saving the addition
step. Thus, depending on the available parallelism in processing power, the task
of multiplication should be broken down differently.

5 Experiments

Main goal of the experiments was to verify the theoretical results claiming prac-
tical usability of OPT in that it neither needs too much runtime nor causes too
large numerical errors. Theory alone does not suffice in these points, because
it neglects cache effects and other factors that can easily increase runtime by
magnitudes of hundreds or thousands. Also, while the stability calculation uses
rather loose estimates, it still neglects higher order error terms and errors by
matrix multiplications that add to errors from recursion. The runtime on differ-
ent numbers of cores is compared, to examine the scaleability of the algorithms,
as well as for different input sizes to see what size is necessary to reach said
scaleability.

With additional tests, I examine the coherence between the recursion depth
of OPT and the resulting runtime.

I compare the numerical errors of the inverses produced by OPT, OPT-S,
Newton approximation, and the MKL inversion routine. During that I observe
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unexpected behavior of Newton approximation and do some further testing to
widen the view on this behavior.

5.1 Random Matrix Generation

As input for the tests, symmetric positive definite matrices are randomly gener-
ated to a specified condition. This is possible, because every symmetric positive
definite matrix M can be decomposed as M = QDQT where Q is an orthogonal
matrix and D is a diagonal matrix containing the eigenvalues. The distribution
of the eigenvalues determines the condition of the matrix. On the other hand,
every matrix composed according to above scheme is symmetric positive definite
(see lemma A.3). By choosing Q uniformly distributed, M is chosen uniformly
distributed among all symmetric positive definite matrices with the eigenvalues
of D.

5.1.1 Randomized Eigenvalue Selection

The difficulty to invert a symmetric positive definite matrix M does not depend
on the difference but on the ratio of its eigenvalues. Furthermore, this depen-
dence is not linear but logarithmic. Both manifest in the number of necessary
Newton iterations, that include a log Λ

λ summand, where Λ and λ are the largest
rsp. smallest eigenvalue of M (see theorem 2.10 and lemma 2.4).

As an illustrational example, consider a matrix M with a large and a small
eigenvalue Λ′ rsp. λ′ and a vector x with its defective floating point represen-
tation x + δx. Then log ‖x‖‖δx‖ gives the approximate number of correct bits in
the representation of x. In the worst case x is an eigenvector to λ′, but δx is
an eigenvector to Λ′. The number of correct bits in the representation of Mx
is given approximately by

log
‖Mx‖
‖Mδx‖

= log
λ′‖x‖
Λ′‖δx‖

= log
‖x‖
‖δx‖

− log
Λ′

λ′
.

We see, that the number of correct bits of the representation is reduced by

log
Λ′

λ′
= log condM .

Setting the condition of M is easy: Simply choose an arbitrary λ and
Λ = λ · condM . It remains to choose the other eigenvalues.

Randomly selecting eigenvalues λi ∈ [1, condM ] uniformly distributed does
not have the desired effect of an even distribution on the difficulty: Pick two
eigenvalues and let λa be the smaller and λb the larger. Then with probability

p ≥
(

1− `−1
condM−1

)2

it is λa ≥ ` and thus λb

λa
≤ condM

` .[11] For low ` ≥ 2, p is
high, but the difficulty is reduced significantly.

To follow the log-ratio relation of eigenvalues and difficulty, I selected eigen-
values λi = 2Xi with Xi chosen randomly uniformly distributed in the interval
[− 1

2 log condM, 1
2 log condM ]. This guarantees λi ∈ [ 1√

condM
,
√

condM ]. The

log-ratio of two eigenvalues is then log λa

λb
= Xa −Xb. In the implementation I

[11]Actually, the formula given for p is the probability of both λa and λb to be that large,
which is even smaller than p.
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skipped explicitly setting largest and smallest eigenvalues, since with high prob-
ability the condition is almost at its maximum anyway and I avoid a possible
source of undesired asymmetry in M .

5.1.2 Random Orthogonal Matrix Generation

To generate Q, first a matrix X is filled with random entries according to a
normal distribution N (0, 1). Then, X is decomposed into an orthogonal and an
upper triangular matrix Q′R′ = X. Last, the diagonal entries of R′ are made
positive, obtaining R and Q. This can be done by multiplying row i of R′ and
column i of Q′ with ζi = sign r′ii. The result is

QR = (Q′Z)(ZR′) = X with Z =

ζ1 0
. . .

0 ζn

 .

In case any ζi = 0, X is singular and the generation starts over.
This algorithm is equivalent to iteratively choosing column i of Q uniformly

distributed among all directions in Rn (stored as column i of X), projecting it
into the subspace orthogonal to that spanned by columns 1 through i− 1, and
scaling it to length 1 without changing its direction. I chose to make use of the
QR decomposition, because efficient implementations are available.

The resulting distribution of Q is uniform in terms of the Haar-Measure. In
particular, multiplying the output with an arbitrary orthogonal matrix does not
change the distribution.

5.2 Test Setup

The primary line of tests was run on an eight core UMA computer (PC121)
with two Intel Xeon 5345, each with four cores, running on 2.33 GHz. Each
core has two floating point units, so the theoretical limit on the floating point
operations is 4.66 GFLOP/s per core.

The Linux kernel allows to switch of cores separately while the system is
running. I use this feature to compare the performance on different numbers
of cores. That way it is impossible for any computations to be moved to other
cores. The cores to activate were chosen to be as close together as possible
(i.e. first activate all cores on one package) to increase the effects of using more
cores[12] and thus be able to observe them more easily.

The OpenMP library used for parallelization was instructed to distribute
threads evenly and to inhibit moving them between cores. It uses one thread
per core by default. For the duration of the tests, no other tasks were run on
the computer.

To further investigate the performance on even more cores, a secondary line
of tests was run on a larger, 32 core NUMA computer (PCS) with four Intel
Xeon X7560, each with 8 cores, running on 2.266 GHz. Each core has two
floating point units, so the theoretical limit on the floating point operations
is 4.532 GFLOP/s per core. While every socket has fastest access to its own
memory, there is no difference in accessing memory of the other sockets. In

[12]The effects in mind were larger combined cache and slower communication between the
furthest away cores.
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particular is the slowest access when using three or four sockets not slower than
when using only two. No mechanism to switch off cores was available. Instead,
the OpenMP library was instructed to use only the desired number of threads
and distribute all threads in the same fashion as described above. However,
tasks controlled by the operation system may have been moved to other cores.

It was made sure, that enough RAM was available, so that no swapping
should have occurred. All tests have been repeated multiple times. On PCS,
the hours long running test have been repeated only three times; all shorter tests
and all tests on the primary test line at least 30 times. Where not otherwise
indicated, the results shown are medians of all iterations.

My own code and the includes from Boost were compiled with GNU gcc
version 4.4.3 with maximum optimization and static linking. For the matrix
multiplication subroutine and as competitor to compare with, it was linked
to the appropriate routines of the Intel MKL 10.3 Update 6 which came as
part of Intel Composer XE 2011. This is a highly optimized library advertised
for use with the processors in use. The linked OpenMP library is also part
of Intel Composer XE 2011. I did not make experiments with ATLAS, as
compiling it for multi-core computers apparently works not automatically but
requires manually ”varying CacheEdge and iteratively compiling and running
x[pre]l3blastst pt until you have a number you are happy with”.[18, errata]
Therefore I could not expect to get representative results.

All tests use double precision (64-bit) floating point arithmetic. To quantify
the error of the results, I use the maximum absolute element of the error matrix,
i.e.

error(M,M̃) = maxij |rij | with (rij) = R(I − M̃M) . (8)

It might be better to compare M̃ with the exact inverse, but that would require
to compute the inverse with infinite precision.

5.3 Results

Figure 7 shows the absolute speedup compared to Intel MKL inversion on one
core. It can be seen how MKL inversion succeeds to parallelize on up to four
cores but struggles to make use of more. Note, that the first four cores are in
the same package (compare section 5.2). OPT and OPT-S parallelize without
problems, so that on eight cores OPT clearly outperforms MKL inversion.

Comparing OPT on one core with MKL inversion shows that the constant
factor on the work in practice is below two, compared to the theoretical four
derived in section 3.2.

Figure 8 shows the same test on PCS. The communication between the cores
seems to be better, as the MKL inversion makes better use of up to eight cores,
possibly because they share a faster higher level cache. Remember, that the
first eight cores are in the same package (compare section 5.2). With more than
eight cores the performance breaks off, clearly showing the high dependence of
the algorithm on good inter-core communication.

Now we examine how well the algorithms utilize the available computation
capacity. The total number of floating point operations (FLOP) done by one
algorithm depends only on the input size. The numbers for the MKL inversion
are taken from the MKL manual,[19] where they are denoted as approximately
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Figure 7: Absolute speedup of inversion methods and multiplication on PC121
compared to Intel MKL inversion on 1 core. Matrix size is 213.
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Figure 8: Absolute speedup of inversion methods and multiplication on PCS
compared to Intel MKL inversion on 1 core. Matrix size is 214.
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Figure 9: Percentage of the theoretical FLOP/s limit reached by different inver-
sion methods and multiplication on PC121. Matrix size is 213. The theoretical
limit of the computer is 4.66 GFLOP/s per core.
How the value for MKL on one core can be above 100% is discussed in sec-
tion 5.3.
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Figure 10: Percentage of the theoretical FLOP/s limit reached by different
inversion methods and multiplication on PCS. Matrix size is 214. The theoretical
limit of the computer is 4.532 GFLOP/s per core.
How the value for MKL on one through four cores can be above 100% is discussed
in section 5.3.
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2
3n

3 FLOP. The other numbers are calculated almost exactly, only neglecting
some small summands in total in O(n). The numbers are as follows:

GFLOP
algorithm n = 213 n = 214

MKL 366.50 2932.03
Strassen 366.60 2932.43
OPT 423.20 3385.04
OPT-S 605.70 4845.46
multiplication 549.75 4398.04

Division by the theoretical number of FLOP per second (FLOP/s) times the
time taken leads to the numbers shown in figures 9 and 10 for PC121 and PCS
respectively. Worth noticing is the fact, that the MKL inversion and my im-
plementation of Strassen’s algorithm use almost the same amount of FLOP,
while my Strassen-implementation does almost one quarter redundant compu-
tations (compare section 4.3). That means, that the MKL implementation uses
some sub-optimal inversion scheme, too. Additionally observing, that the MKL
supposedly achieves more than 100% usage of the floating point units, there
are some other interpretations: First, the number in the manual may be ex-
aggerated or rounded up roughly. Second, the MKL might make use of some
processor capabilities or optimization possibilities, that are not known to the
public. This is quite possible, since the MKL is a highly tuned library made by
Intel specifically for their processors. Third, the MKL may simulate some extra
floating point operations with integer calculations in the otherwise idle integer
ALU. An extreme variant of the first interpretation might be, that the MKL in
reality needs only as many operations as an implementation of Strassen’s algo-
rithm would need that can make use of the symmetry of some multiplication
results. In that case, it would really need only some more than 1

2n
3 FLOP.

The next test examines the input sizes necessary for effective parallelization.
Figure 11 shows that starting from n = 28 parallelization has a positive effect
on the runtime. OPT and OPT-S quickly strive towards the limit of eight, while
MKL inversion benefits only little from sizes larger than 210. Worth noticing is,
that MKL multiplication obviously even tries to parallelize on 32×32 matrices,
where the effort alone is much more expensive than the whole multiplication.

Again, figure 12 shows the same test on PCS. The picture is very similar with
about double sizes, except that MKL inversion does not reach a speedup between
three and four but only about 2.6. However, taken from figure 8 a speedup of
about six would probably be possible if the parallelization was properly limited
to eight cores on this computer.

To examine the numerical stability of OPT and OPT-S, I compare the er-
ror of the output as defined by equation (8) with MKL inversion. Figure 13
shows the results. It can be seen, that for not very high conditions (up to 212)
OPT is even better than MKL inversion. Against all expectations and common
knowledge, Newton approximation gives the worst results. That realized, it is
no wonder that OPT-S produces worse results than OPT, since its intermediate
results are worsened by the Newton iterations.

OPT performs dlog log ne levels of Strassen’s algorithm before it reaches
the base case. As discussed in section 3, the levels of Strassen’s algorithm
serve to parallelize most of the large inversion while Newton iterations serve

42



24 26 28 210 212 214

0

2

4

6

8

size n

sp
ee

du
p

mult
OPT-S
OPT
MKL

Figure 11: Speedup of inversion methods and multiplication on PC121 with 8
cores compared to the same algorithm on 1 core.
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Figure 12: Speedup of inversion methods and multiplication on PCS with 32
cores compared to the same algorithm on 1 core.
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Figure 13: Error (by equation (8)) of different inversion methods by matrix
condition for matrices of size 213 and double precision (64-bit) floating point
elements. Matrix size is 213. Calculation was done on PC121.
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Figure 14: Runtime of OPT altered to do different numbers of levels of recursion.
Matrix size is 213. The number of cores is 8.
0 iterations equal pure Newton approximation, 4 iterations equal OPT, and 13
iterations equal pure Strassen’s inversion algorithm.
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Figure 15: Error of one iteration of Newton approximation after MKL inversion.
Matrix size is 213.
Shown are results of single tests, not medians. On the x-axis are a series of 15
independent tests with different random inputs. Values with the same x-value
result from the same input matrix. The connecting lines in this plot indicate
no continuity but only serve to better visualize similarities between curves. The
values of variants 3 and 4 as well as 5 and 6 are different but so close together,
that they would be indistinguishable in the plot.

to parallelize the small base inversions. The boundary of log log n fits well for
the theory of work and parallel time. The test shown in figure 14 observes
the actual runtime for different numbers of levels. It can be seen, that some
levels of Strassen’s algorithm are necessary to avoid the log n-factor more work
of Newton approximation. On an eight core computer, however, the gain by the
parallelization of Newton iterations is not visible compared to the much larger
amount of work that happens in the outer levels of recursion.

5.4 Instability of Newton Approximation

To investigate the unexpected behavior of Newton approximation, I tried rewrit-
ing the formula for one iteration (equation (3)) using associative and distributive
laws. I tried the following six variants.

1: Xi+1 = 2Xi − (XiM)Xi

2: = 2Xi −Xi(MXi)
3: = Xi + (I−XiM)Xi

4: = (2I−XiM)Xi

5: = Xi +Xi(I−MXi)
6: = Xi(2I−MXi)

Figure 15 shows errors measured after one iteration of Newton approximation
has been applied to the (way less erroneous) result of MKL inversion. I used
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Figure 16: Example of the evolution of the error value during Newton approxi-
mation of a very ill conditioned matrix.
Indicated at the bottom are the three phases of evolution of the error (compare
section 5.4).

MKL inversion as initial approximation and applied only one iteration to speed
up the tests. In a few instances I compared the errors to running a full Newton
approximation and found only minor differences.

The similarity of the curves of 1 and 3/4 as well as 2 and 5/6 shows that
the (supposed) associativity of XiMXi has great influence on the error and, on
the other hand, suggests that these multiplications are an important source of
error. Compared to the others, variants 1 and 2 produce almost exactly twice
the error. These are the variants that double Xi and then subtract XiMXi,
while the others apply the correction directly to Xi.

My hypothesis is, that the error happens in the first multiplication. XiM is
supposed to yield almost the unity matrix, with very small differences ςij that
make up the correction. Outside of the main diagonal, the full range of the
floating point variable is available to store ςij . Not so inside the main diagonal:
Here, 1+ςii is stored in the variable, which leaves only the range of the mantissa
to store ςii. Thus, cancellation occurs on the main diagonal much more than
outside of it.

One more observation: The curves of variants 2 and 5/6 look more jittery
than those of 1 and 3/4. The multiplication in the error measure is the same as
the first multiplication of variants 1 and 3/4.

Figure 16 shows the evolution of the error during the Newton approximation
of a very ill conditioned matrix.

The evolution can be divided into three phases: First, the error converges
quadratically as expected. Second, the point with minimal error is reached.
Third, the supposed correction actually worsens the approximation. The ap-
proximations stay in an area where the correction matrix is always erroneous
and quadratic improvement never occurs again. Instead, the error fluctuates in
a range that is notably worse than the error reached in the second phase.
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The behavior in phase three indicates, that the remaining error is not due
to a limitation of the Newton formula that prohibits calculation of a better
approximation, but that the error matrix can not be computed to the neces-
sary precision. By that i mean, that (I − XiM) can be represented with high
enough precision to achieve further improvements but XiM can not, and thus
the computation of (I−XiM) makes it erroneous.

For better conditioned matrices, the errors in general are smaller and the
range of phase three is closer to the minimal error in phase two. Also, phase
two becomes longer: The improvement stagnates and approaches the minimal
error over multiple iterations before the first worsening. Phase two and three
can therefore not always be divided clearly.

6 Summary

With OPT, I presented a technique to create a new algorithm that combines the
benefits in work-complexity and parallel time of two others. The key properties
of the problem and the existing algorithms where:

• The work grows at least quadratically with the problem size: WI(n) ≥ n2

• Strassen’s inversion algorithm

– is work optimal.

– is recursive with a constant number of recursive calls.[13]

– The recursion divides the problem size by a constant factor in each
level.[13]

– Each of the other sub-operations is polylog time parallelizable.

– does not need to be polylog time parallelizable itself.

• Newton approximation is a polylog parallel time algorithm but causes an
additional factor of log n work compared to a work-optimal algorithm:
WN (n) = log n ·WI(n)

By unrolling the recursion for only log log n levels, there are only Θ(log n) re-
cursive calls in total and the remaining problem size is in Θ( n

logn ). Since there
are only Θ(log n) recursive calls, there are as many calls to sub-operations.

Two properties follow for the combined algorithm:

• With the polylog parallel time of Newton approximations, it is a polylog
parallel time algorithm, too.

• The Θ(log n) calls of size Θ( n
logn ) to Newton approximation cause work

in (all in Theta-calculus)

log n · log
n

log n
·WI(

n

log n
) ≤ log2 n ·WI(

n

log n
) ≤WI(n) .

Since the other operations done by Strassen’s algorithm are less than when
the recursion is unrolled completely, both parts of work and thus the whole
algorithm are work-optimal.

[13]Both constants are two, but that is less general and not necessary for the reasoning.
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In sections 2.1.2 and 2.1.3 we have seen, how an algebraic technique is su-
perior in a numerical sense to classic pivoting and swapping. It remains to
note, that by its data-oblivious it additionally provides a predictable instruc-
tion and data flow. This property should be especially useful for fine-grained
task-scheduling and cache prefetching.

In the experiments about numerical stability I stumbled on an unexpected
instability of Newton approximation. Strassen’s algorithm, on the other hand,
gave fine results.

6.1 Future Work

The technique resulting in OPT may be applicable in a wide area of algorithms.
In the closer area of linear algebra, it would be interesting to try and apply it to
related tasks such as LU and Cholesky decomposition and linear systems solving.
Recursive algorithms for those decompositions have already been presented, e.g.
by Reif.[9]

The surprising instability of Newton approximation raises the question of
either improvement of its calculations or a different practical polylog time algo-
rithm that does not need to be work-optimal.

Although OPT is not a blocked algorithm, the recursion and the many large
multiplications can be interpreted to generate many small tasks, too. Those
tasks can then be scheduled with techniques that are current interest of re-
search, similar as with Netlib’s LAPACK implementation that builds on MPI
for parallelization.[4] I described the possible benefits and complications of task-
scheduling to OPT in section 4.8.
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A Symmetric Positive Definite Matrices and Con-
dition

Lemma A.1.

Let M ∈ Rn×n non-singular
Then MTM is symmetric positive definite

Proof.
MTM is trivially symmetric.

Let x ∈ Rn \ 0
Then xTMT Mx︸︷︷︸

6=0

= ‖Mx‖2 > 0

Lemma A.2.

Let M ∈ Rn×n non-singular
Then cond(MTM) ≤ cond2M

Proof.

‖MTM‖ ≤ ‖MT ‖ · ‖M‖
‖(MTM)−1‖ = ‖M−1M−T ‖ ≤ ‖M−1‖ · ‖M−T ‖

Lemma A.3.

Let Q ∈ Rn×n orthogonal (i.e. QT = Q−1)
D ∈ Rn×n diagonal with positive diagonal entries dii

Then QDQT is symmetric positive definite

Proof.

QDQT is symmetric since D is symmetric.
Let x ∈ Rn \ 0

y =

y1

...
yn

 = QTx

Then y 6= 0 since Q is non-singular

xTQDQTx = yTDy =
n∑
i=1

diiy
2
i > 0

Thus QDQT is positive definite.
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