
IEKP-KA/2013-17

Parallel Triplet Finding for
Particle Track Reconstruction

Zur Erlangung des akademischen Grades eines
MASTER OF SCIENCE

von der Fakultät für Informatik des
Karlsruher Instituts für Technologie (KIT)

genehmigte

MASTER THESIS

von

Daniel Funke

Referent: Prof. Dr. G. Quast
Institut für Experimentelle Kernphysik

Korreferent: Prof. Dr. P. Sanders
Institut für Theoretische Informatik

Betreuer: Dipl.-phys. H. Hauth
CERN, Genève, CH

Betreuer: Dipl.-phys. Dipl.-inform. D. Schieferdecker
Institut für Theoretische Informatik

Deutsche Zusammenfassung

Das Compact Muon Solenoid (CMS) Experiment am Teilchenbeschleuniger Large Hadron
Collider (LHC) der Organisation Européenne pour la Recherche Nucléaire (CERN) nahe
Genf, Schweiz, führte bereits zu zahlreichen Erkenntnissen, die unser Verständnis über die
Interaktion der elementarsten Teilchen des Universums beträchtlich erweiterten. Insbe-
sondere die Entdeckung eines Higgs-ähnlichen Bosons im Jahr 2012 [43] gilt bereits jetzt
als einer der Meilensteine der modernen Physik. Diese Studien wurden durch die präzise
Rekonstruktion der Spuren von Teilchen, die in den Proton-Proton-Kollisionen mit einer
Schwerpunktenergie von 7 TeV entstanden sind, ermöglicht. Die Flugbahnen der Teilchen
durch den CMS Spurdetektor – Tracker – werden von 16 588 Detektormodulen auf 75
Millionen Kanälen erfasst [44]. Die Rekonstruktion der Bahnen aus dieser Vielzahl an
Messpunkten, genannt Hits, stellt eine enorme algorithmische Herausforderung dar. Wenn
der LHC im Jahr 2015 seinen Dienst mit erhöhter Schwerpunktenergie (14 TeV) und
Strahlintensität wieder aufnimmt, wird diese Herausforderung nochmals gesteigert, da
mehr Spuren durch eine erhöhte Anzahl simultaner Proton-Proton-Interaktionen entste-
hen. Hierdurch erhöht sich der kombinatorische Aufwand der Teilchenspurrekonstruktion
und damit die Laufzeit der involvierten Algorithmen beträchtlich.
Verschärfend kommt hinzu, dass die Taktfrequenz von Prozessoren die Grenzen des

physikalisch Möglichen erreicht hat und daher Leistungssteigerungen bei CPUs in den
letzten Jahren vor allem durch Einführung neuer Technologien wie Mehrkernprozessoren
und Vektoreinheiten erzielt wurden. Die Nutzung dieser Technologien ist unabdingbar
um den zukünftigen, steigenden Anforderungen gerecht zu werden, erfordert jedoch die
Anpassung der zur Spurrekonstruktion eingesetzten Verfahren. Parallele und daten-lokale
Algorithmen sind am besten geeignet, das Potenzial moderner Mehrkernprozessoren auszu-
nutzen. Als Alternative zum momentan verwendeten iterativen Kalman-Filter-Verfahren
[59] empfiehlt sich Spurrekonstruktion auf Basis eines Zellularautomaten [6, 80, 107].
Hierbei werden Teilchenspuren aus geeigneten Tripeln von Hits in benachbarten Detek-
torlagen gebildet, die aufgrund von simplen und lokalen Eigenschaften auf Kompatibilität
geprüft werden.
Die vorliegende Arbeit befasst sich mit dem Entwurf eines parallelen Algorithmus

zum Finden gültiger Hit-Tripel, d.h. Tripel von Messpunkten, die von ein und demselben
Teilchen bei dessen Weg durch den Detektor erzeugt wurden. Die Anzahl an Tripeln, die
sich aus Hits von verschiedenen Teilchen zusammensetzen – fakes – soll dabei gleichzeitig
reduziert werden. Um die Kombinatorik beim Erzeugen der Tripel einzuschränken, soll
der mögliche Detektorbereich für einen weiteren Hit mit Hilfe der Informationen gegeben

iii

durch einen einzelnen Hit oder ein Hitpaar prädiziert werden. Sowohl für die Prädiktion
als auch für die Identifizierung gültiger Tripel sollen einfache und lokale geometrische
Berechnungen verwendet werden, um das Potenzial moderner CPUs und GPUs durch
Parallelisierung auszuschöpfen. Die Daten des CMS-Detektors werden im heterogenen
Worldwide LHC Computing Grid (WLCG) verarbeitet. Daher muss das verwendete
Parallelisierungsframework eine Vielzahl an CPU- und GPU-Plattformen unterstützen
können. Um schnell auf Hits innerhalb des prädizierten Bereiches zugreifen zu können,
sollen diese in einer geeigneten geometrischen Datenstruktur organisiert werden.

Der nächste Abschnitt stellt die entworfenen Algorithmen zur Hitpaarbildung, Tripelt-
prädiktion und Tripeltfilterung vor. Untersuchungen sowohl zur erzielten Datenqualität
als auch zu Laufzeitmessungen werden im darauffolgenden Abschnitt dargelegt.

Algorithmen

Vor der Beschreibung der entwickelten Algorithmen sollen zunächst deren technologischen
und physikalischen Grundlagen umrissen werden.
Um der Anforderung nach portabler Ausnutzung von Parallelismus auf Prozessoren

und Grafikkarten verschiedener Hersteller gerecht zu werden, bildet die Open Computing
Language (OpenCL), als offenes Framework für die Entwicklung massiv-paralleler Algo-
rithmen [102], die Grundlage der präsentierten Implementierung. OpenCL ermöglicht
es, einen Code sowohl auf CPU als auch GPU zur Ausführung zu bringen, erfordert
jedoch die Berücksichtigung einiger Eigenheiten und Einschränkungen im Design der
Algorithmen. Für maximalen Durchsatz auf dem Compute Device ist eine fein-granulare
Parallelisierung ohne Verzweigungen im ausgeführten Kernel notwendig. Weiterhin er-
fordert das Fehlen von dynamischer Speicherallokation innerhalb eines Kernels, dass
sämtlicher benötigter Speicher vor Kernelausführung vom Host alloziert wird. Daher
verwenden alle im folgenden dargelegten Algorithmen einen Zwei-Phasen-Ansatz [152]: In
einem ersten Durchlauf – der Count-Phase – wird nur die Anzahl der gefunden Ausgaben,
z.B. Hitpaare, gezählt. Jeder Thread führt einen eigenen Zähler, über die nach Ablauf der
ersten Phase eine Präfixsumme [159] gebildet wird. Der Host kann nun für die bekannte
Anzahl von Ausgaben Speicher allozieren und den zweiten Durchlauf – die Store-Phase –
initiieren, in dem die Ausgaben tatsächlich geschrieben werden. Die Berechnungsergeb-
nisse des ersten Schrittes werden dem Zweiten hierbei durch einen „Orakel“-Bitstring zur
Verfügung gestellt.

Die physikalischen Grundlagen sind durch die Detektorgeometrie und das Verhalten ge-
ladener Teilchen im Magnetfeld gegeben. Im Inneren des zylinderförmigen CMS-Detektors
erzeugt eine supraleitende Spule ein 3.8 T starkes Magnetfeld, das die Flugbahn geladener
Teilchen in der Ebene senkrecht zum Strahlrohr – transversale Ebene – krümmt, jedoch
entlang des Strahlrohrs – longitudinale Ebene – unberührt lässt. Diese Eigenschaften
können sowohl zur Prädiktion von Suchfenstern als auch Filterungen von Hittripeln
herangezogen werden, wie in Abbildung 0.1 verdeutlicht. Ein weiteres Kriterium für die
Identifikation valider Tripel, neben dφ und dθ, ist der minimale Abstand zum nominalen
Interaktionspunkt, sowohl in der transversalen (d0) als auch longitudinalen (z0) Ebene.

iv

θ

θ′

r

z

(a) In der longitudinalen Ebene bleibt
die Flugbahn eines geladenen Teil-
chens unberührt vom Magnetfeld
des Detektors. Die Bahn kann des-
halb durch eine Gerade angenähert
werden. Abweichungen zwischen den
Winkeln θ und θ′ sind auf Streuung
und Messungenauigkeiten zurückzu-
führen. Daher kann des Verhältnis
zwischen beiden Winkeln für gülti-
ge Tripel durch θ′

θ ≤ dθ beschränkt
werden.

y

x

φ
φ′

(b) Die Krümmung der Spur in der
transversalen Ebene verhält sich um-
gekehrt proportional zum Transver-
salimpuls des Teilchens. Daher kann
die maximale Krümmung durch
|φ′ − φ| ≤ dφ beschränkt werden.

Abbildung 0.1.: Schematische Abbildung der geometrischen Eigenschaften von gültigen Hittripeln.

Damit Hittripel in den Detektordaten effizient gefunden werden können, wird für jede
Detektorlage eine uniforme Grid-Datenstruktur aufgebaut. Diese partitioniert die Lage
in gleich große Zellen in z (longitudinale Ebene) und φ (transversale Ebene). Auf eine
Gridzelle kann in O(1) Zeit zugegriffen werden; die Granularität des Grids bestimmt
hierbei, wie dicht jede Zelle mit Hits besetzt ist. Die Grid-Datenstruktur wird in einem
Zwei-Phasen-Algorithmus auf dem Compute Device erzeugt.
Der eigentliche Tripelfindungsprozess verläuft in drei Schritten:

1. Paarfindung generiert aus Hits in zwei gegebenen Detektorlagen Paare, die zu
einer plausiblen Teilchenspur führen können. Das Suchfenster für den zweiten Hit
wird basierend auf minimalen Transversalimpuls pT und (d0, z0) eingeschränkt, um
die Anzahl zu inspizierender Hits in der zweiten Detektorlage zu minimieren.

2. Tripelprädiktion erstellt Tripelkandidaten aus einem Hitpaar und Hits in ei-
ner gegebenen dritten Detektorlage. Der Pfad des Teilchens wird basierend auf
dem Hitpaar und dem minimalen pT auf die dritte Lage extrapoliert, um den
kombinatorischen Aufwand zu begrenzen.

3. Tripelfilterung prüft Tripelkandidaten anhand der vorgestellten Kriterien auf
Validität. Die erforderlichen Werte für das dφ- und dθ-Kriterium können direkt
aus den Hitpositionen berechnet werden. Um den transversalen Abstand d0 zum
Strahlrohr zu ermitteln, müssen die Parameter des durch das Tripel beschriebenen

v

Kreises in transversaler Ebene berechnet werden. Hierfür wird das Riemann-Fit-
Verfahren von Strandlie et al. [173] verwendet.

Alle Schritte werden durch Zwei-Phasen-Algorithmen auf dem Compute Device realisiert,
die mit besonderem Hinblick auf Verzweigungsfreiheit und Ausnutzung der vorhanden
Speicherhierarchie entworfen werden.

Resultate
Die entworfenen Algorithmen werden unter Verwendung simulierter Kollisionsereignisse
validiert und evaluiert. Sowohl die erzielte Datenqualität als auch die Laufzeit hängen
maßgeblich von den gewählten Parametern für die Filterkriterien dφ, dθ und d0 ab. Zu
stark selektierende Werte senken die Effizienz, d.h. die Anzahl gefundener simulierter
Spuren, während zu großzügige Werte die Fake-Rate, d.h. die Zahl der Tripel die sich aus
Hits von unterschiedlichen simulierten Teilchen zusammensetzen, erhöht. Parameter, die
beide Kriterien abwägen, werden durch die Analyse von tt̄-Ereignissen, die sich durch eine
komplexe Topologie auszeichnen, bestimmt. Abbildung 0.2 zeigt die mit den ausgewählten
Parametern erzielte Datenqualität.

1-2-3 2-3-4 3-4-5 4-5-8 combined
layer triplet

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies
efficiency
fake rate
clone rate

Abbildung 0.2.: Übersicht der erzielten Datenqualität für unterschiedliche Detektorlagenkombi-
nation in tt̄-Ereignissen. Die ersten drei Lagen befinden sich im hochpräzisen Pixeldetektor
und erlauben daher sehr stark selektierende Filterparameter. Ab der vierten Lage kommen
weniger präzise Siliziumstreifen zum Einsatz. Daher müssen großzügigere Filterwerte gewählt
werden, um eine ähnliche Effizienz wie im Pixeldetektor zu erzielen, die aber auch eine höhere
Fake-Rate bedingen. Die Clone-Rate gibt den Anteil der Spuren an für die mehr als ein Tripel
gefunden wurde, z.B. aufgrund überlappender Detektormodule.

vi

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−82−62−42−22022242628

ra
tio

fine grid

Abbildung 0.3.: Laufzeitverhalten des entworfenen Algorithmus auf CPU und GPU in Abhängigkeit
von der Anzahl Spuren im Ereignis. Die Kernel Time beinhaltet die vom Compute Device
benötigte Zeit zum Ausführen der Algorithmen. Die Wall Time umfasst neben der Kernel
Time die Zeit für Datentransfers zwischen Host und Compute Device, sowie den Overhead
der OpenCL Laufzeitumgebung. Um diese Fixkosten zu amortisieren werden 30 Ereignisse
simultan auf dem Compute Device prozessiert. Die Laufzeit für CMSSW umfasst das Finden
von Tripeln im ersten von insgesamt sieben spezialisierten Rekonstruktionsschritten.

Die Laufzeit wird maßgeblich von der Anzahl der Spuren im Kollisionsereignis bestimmt.
In Abbildung 0.3 ist das Laufzeitverhalten der entworfenen Algorithmen im Vergleich zu
den aktuell verwendeten Rekonstruktionsalgorithmen aus dem CMS Software Framework
(CMSSW) dargestellt,

Schlussfolgerungen
Der präsentierte Algorithmus zeigt, dass trotz einfacher geometrischer Berechnungen eine
hohe Effizienz bei der Findung von Hittripeln erzielt werden kann. Durch die Implementie-
rung mit OpenCL ist es möglich sowohl CPUs als auch GPUs zur Ausführung zu nutzen.
Die Vorteile der GPU zeigen sich vor allem bei der gleichzeitigen Verarbeitung vieler
Ereignisse mit starker Aktivität. Ist dies gegeben, so erzielt die Grafikkarte gegenüber
der CPU einen Geschwindigkeitsvorteil von einem Faktor 64. Wie Abbildung 0.3 zeigt,
wird dieser Faktor auch gegenüber der aktuellen Experimentsoftware erreicht.

Daher eignet sich der entworfene Algorithmus, den bevorstehenden Herausforderungen
bei der Rekonstruktion von LHC-Daten ab 2015 entgegenzutreten.

vii

Motivation

Scientific endeavor is one of mankind’s noblest traits. For millennia, curiosity drove
humans to ponder upon the workings of the universe, explore even the most remote
places and devise intricate experiments to scrutinize their hypotheses about nature.
The Large Hadron Collider (LHC) at the Organisation Européenne pour la Recherche
Nucléaire (CERN) is one of the largest scientific apparatus ever built. As the world’s
most-powerful particle accelerator, it allows to study the fundamental constituents of
matter at unprecedented energies. The proton-proton collisions are observed with the
most sophisticated particle detectors conceived to date. The Compact Muon Solenoid
(CMS) detector – one of the two general-purpose experiments at the LHC – allows the
tracking of particles to highest precisions. The interactions of traversing particles with
the detector material are measured by 16 588 detector modules in 75 million individual
readout channels. Reconstructing paths of physical objects from this immense amount of
data poses a tremendous computational challenge. Operations were suspended at the
LHC in early 2013 to upgrade the machine to even higher energies and beam intensities.
When experiments resume in 2015, this will result in more particle interactions, hence
further increasing the computational load.
The situation is aggravated by the stagnating processor clock speeds of recent years.

Instead, increases in computing capability have been due to multiple cores and vector
units. Additionally, graphics cards, suitable for general-purpose computation, have been
introduced to high performance computing. These new technologies can only be exploited
by algorithms specifically tailored towards massive data-parallelism. To cope with the
data volumes anticipated for 2015, track reconstruction methods adhering to these
requirements must be examined. In Cellular Automaton-based track finding, particle
tracks are reconstructed by identifying compatible triplets of measurements through
simple and local computations and therefore being well-suited for data-parallel execution.

The present thesis examines suitable methods to produce valid triplets of measurements,
i. e. measurements originating from the same particle’s interaction with the detector
material. To lower the combinatoric complexity of finding triplets, the physical properties
of a particle’s path should be exploited to predict search ranges based upon a given
individual measurement or pair of measurements. Furthermore, efficient spatial data
structures should be used, pertinent to the required range queries and parallel execution.
The triplet finding should exploit all available parallelism in a portable manner, due to
the diversity of the LHC computing infrastructure.

1

Outline The thesis is structured as follows: Part I introduces the LHC particle accel-
erator and CMS detector (Chapter 1) as well as the currently employed algorithms for
particle track reconstruction (Chapter 2). The following Chapters 3 through 5 outline the
foundations of parallel computing, Cellular Automaton-based track finding and spatial
data structures. The devised parallel triplet finding algorithm is presented in Part II,
Chapter 6 et seq. Following the discussion of properties of valid triplets of measurements
in Chapter 7, the employed data structures and algorithms are detailed in Chapters 8
and 9, respectively. The second part is concluded by an evaluation of the achieved data
quality and runtime (Chapter 10) and a summary of the findings (Chapter 11).

2

Contents

I Foundations 7
1 The Large Hadron Collider and CMS Detector at CERN 9

1.1 Large Hadron Collider . 10
1.2 The CMS Detector . 12

1.2.1 Coordinate System . 12
1.2.2 Inner Tracking System . 13
1.2.3 Calorimeters and Muon Chambers 15

1.3 Luminosity and Pile-Up Events . 17

2 CMS Event Reconstruction 19
2.1 The World-wide LHC Computing Grid . 19
2.2 Software Framework CMSSW . 21
2.3 Event Processing . 22

2.3.1 Trigger and Data Acquisition . 23
2.3.2 Reconstruction of Physical Objects 24
2.3.3 Iterative Kalman Filter-based Track Finding 26
2.3.4 Triplet Seeding . 29

2.4 Event Generation . 33

3 Parallel Computing 35
3.1 CPU Technologies . 36
3.2 General-Purpose-GPUs . 38
3.3 OpenCL . 40
3.4 Performance Metrics . 44

4 Cellular Automata 47
4.1 Cellular Automata for Track Finding . 48
4.2 CA-based Track Finding in CMS . 52

5 Spatial Data Structures 55
5.1 CMSSW Triplet Seeding – φ-sorted List 55
5.2 k-d Tree . 56
5.3 Quadtree . 57
5.4 R-Tree . 58
5.5 Uniform Grid . 59

3

Contents

II Parallel Triplet Finding with OpenCL 61
6 Overview 63

7 Filter Criteria 67
7.1 Angular Constraints . 67
7.2 Transverse Impact Parameter Constraint 69

8 Data Structures 73
8.1 Detector Geometry . 73
8.2 Event Hit Data . 75

9 Algorithms 81
9.1 Two-pass Algorithms . 81
9.2 Prefix Sum Algorithm . 83
9.3 Pair Building . 86

9.3.1 Grid-based Pair Building . 87
9.3.2 Prediction-based Pair Building . 89
9.3.3 Implementation Details . 91

9.4 Triplet Prediction . 93
9.4.1 Angular-based Prediction . 93
9.4.2 Extrapolation-based Prediction . 95
9.4.3 Implementation Details . 97

9.5 Triplet Filtering . 99

10 Evaluation 101
10.1 Evaluation Setup . 101

10.1.1 Simulated Events . 101
10.1.2 Hardware and Software Configuration 102

10.2 Physics Performance . 104
10.2.1 Determination of Cutoff Values for Filter Criteria 104
10.2.2 Physics Performance for QCD Events 108
10.2.3 Physics Performance for tt̄ Events 110
10.2.4 Physics Performance for Muon Events 110

10.3 Algorithmic properties . 112
10.3.1 Work-Group Size . 113
10.3.2 Concurrent Events . 115
10.3.3 Grid Granularity . 116
10.3.4 Runtime Composition . 117
10.3.5 Tracks per Event . 118

11 Conclusion 121

4

Contents

III Appendices 123
A Supplement to Physics Performance 125

B Supplement to Algorithmic Performance 129

C Configuration Parameters 141

D List of Figures 143

E List of Tables 147

F Acronyms 151

G Bibliography 155

5

Part I.

Foundations

7

Chapter 1

The Large Hadron Collider and CMS Detector at
CERN

The Organisation Européenne pour la Recherche Nucléaire (CERN) was founded in
1954 to foster the research of the fundamental constituents of matter in Europe [142].
Originally established by 12 European countries, the number of member states grew to
20 by 1999 [65]. Several particle accelerators were installed at CERN’s site over the
years, including the original linear accelerator LINAC 11, the Low Energy Antiproton
Ring (LEAR)2 and the Large Electron-Positron Collider (LEP)3, which was installed in
the tunnel now occupied by the Large Hadron Collider (LHC). Today, six accelerators
are operating at CERN in an interlinked manner, each increasing the energy of the
accelerated particles before delivering them to either experiments or the next acceleration
stage, refer to Figure 1.1. The numerous experiments operating at CERN’s acceleration
facilities made large contributions to mankind’s knowledge about the particles of the
universe. The discovery of W and Z bosons by the UA1 and UA2 experiments in 1983 [176,
177] greatly advanced the understanding of the weak force, one of the four fundamental
forces governing the behavior of matter. The Nobel Prize in physics was awarded to the
discovery in 1984. In 1989, experiments at LEP established the existence of three lepton
families [71] and in 1995 antihydrogen atoms were first created at the PS210 experiment
[18] and have been further studied ever since [8]. In 2009, the LHC started its operation
as the world’s largest and most powerful particle accelerator [38]. Section 1.1 gives an
overview of the accelerator, its scientific program and encompassed experiments. One
of the experiments, the Compact Muon Solenoid (CMS), is described in more detail in
Section 1.2.
Besides contributions to the physics community, scientists at CERN also contributed

to computer science. By proposing a project called ENQUIRE, Berners-Lee [25] started
the development of the World Wide Web, which greatly influences everybody’s life today.
Furthermore, CERN became a center for grid computing to cope with the tremendous
amount of data produces by the LHC. The data processing at the LHC is discussed in
Chapter 2.

11958-1992
21982-1996
31989-2000

9

1. The Large Hadron Collider and CMS Detector at CERN

Figure 1.1.: Overview of particle acceleration facilities and experiments at LHC [116].

1.1. Large Hadron Collider
The LHC was designed with a diverse scientific program in mind [38, 113], including

• validation and refined measurement of the standard model of particle physics,

• search for the Higgs boson, which lets particles interact with the Higgs field, thus
giving them mass,

• unification of gravity with the other fundamental forces via supersymmetric parti-
cles,

• exploration of dark matter and dark energy, accounting for 94 % of the universe

• scrutinizing the matter-antimatter imbalance in the universe,

• study of the quark-gluon plasma to gain insights into the first microseconds after
the universe’s birth.

To be able to address this program 10 000 scientists and engineers from over 100 countries
built an particle accelerator ring of 27 km circumference near Geneva, Switzerland.
Located in a tunnel buried as deep as 175 m beneath the Franco-Swiss border, the LHC
accelerates two proton beams in opposing direction of travel via 16 high frequency cavity
resonators to up to 14 TeV center-of-mass energy [51]. The beams are controlled via 9 593

10

1.2. The CMS Detector

superconducting magnets to keep the protons on the ring trajectory and focus them
as tightly as possible – 16.7 µm nominal transverse beam size [31] – for a high chance
of head-on collisions at the four intersection points of the beam pipes. Due to space
constraints in the tunnel, the magnets adopt a twin-bore design, accommodating both
beam pipes within the same cold mass and cryostat [51]. Protons circulate the ring in
2 808 bunches of 1.15× 1011 protons each with a design spacing of 25 ns between bunches.
Thus, bunches collide at a rate of 40 MHz at the beam pipe’s crossing points, referred
to as bunch crossing. Each interaction point is equipped with a highly sophisticated
particle detector, refer to Figure 1.1. Two of them, A Toroidal LHC Apparatus (ATLAS)
and CMS, are large, general-purpose detectors designed for a broad range of physics
analyses. In a major breakthrough in 2012, both collaborations announced the discovery
of a new „higgs-like“ boson [14, 43]. The further detectors, LHC-beauty (LHCb) and A
Large Ion Collider Experiment (ALICE), are specifically tailored towards the study of
bottom quarks physics and the quark-gluon plasma, respectively. The latter is studied in
the Heavy Ion (HI) mode of the LHC, colliding stripped lead ions instead of protons at
2.76 TeV center-of-mass energy [51].

C ompac t Muon S olenoid

Pixel Detector

Silicon Tracker

Very-forward
Calorimeter

Electromagnetic�
Calorimeter

Hadronic
Calorimeter

Preshower

Muon�
Detectors

Superconducting Solenoid

Figure 1.2.: Schematic of the CMS detector [44].

11

1. The Large Hadron Collider and CMS Detector at CERN

y

z

x

θφ

r
ρ

Figure 1.3.: Coordinate system as employed by the CMS collaboration.

1.2. The CMS Detector
More than 3 000 scientists from 38 countries worldwide participate in the CMS collabora-
tion, responsible for the design, manufacturing and operation of the CMS detector [115].
As a general-purpose detector it must cater to a wide range of physical analyses, hence a
multitude of performance requirements have been identified, such as high precision mass,
momentum and missing energy resolution [44]. To cope with these requirements, a 21.6 m
long, cylindrical detector has been constructed with 14.6 m diameter and a total weight
of 12 500 t. It is located in a cavern 100 m beneath the French village of Cessy. Figure 1.2
illustrates the major components of the CMS detector, which are built around the central,
12.5 m long, superconducting solenoid with an inner-diameter of 6 m (ibid.). The solenoid
creates a magnetic field of 3.8 T in its inner volume, which is required to bend the path
of charged particles for precise charge and momentum measurements. The 2158 turns of
niobium-titanium wire are cooled to 4 K to exploit their superconducting properties. The
solenoid is surrounded by a 10 000 t iron yoke, which returns the magnetic flux to the
inner detector. The particle detector components of CMS are detailed in the subsequent
sections, with a focus on the inner tracking system. The following descriptions are based
on the elaborate account by the CMS Collaboration [44] if not otherwise stated.

1.2.1. Coordinate System
The nominal Interaction Point (IP) corresponds to the origin of the CMS coordinate
system and the center of the detector. The z-axis is defined along the the beam line

12

1.2. The CMS Detector

Figure 1.4.: Major components of the CMS silicon tracker [44]. The pixel barrel and endcap
detectors are not labeled individually.

in anti-clockwise direction, with the x- and y-axis spanning the perpendicular plane
in a right-handed coordinate system, i. e. y points towards the surface and x towards
the center of the LHC ring, refer to Figure 1.3. In the spherical coordinate system, the
xy-plane is referred to as transverse plane, or r-φ-plane, and defines the azimuthal angle
φ with respect to the positive x-axis. The polar angle θ is defined with respect to the
positive z-axis in the longitudinal plane, also referred to as r-z-plane. The radius of a
point is defined twofold: its radius in the sphere is referred to as ρ, whereas r denotes
the radius in the transverse plane. Instead of the polar angle θ, the pseudorapidity η is
often used to describe a particles relation to the beam pipe:

η = − ln
[
tan θ2

]
.

1.2.2. Inner Tracking System

As Figure 1.2 depicts, the tracker is the inner-most sub-detector and thus experiences
the highest particle flux of up to 1 000 particles per interaction. This entails the need for
high precision spatial measurements and radiation-resistant components. The tracker is
entirely silicon-based and extends to a length of 5.8 m and a radius of 1.25 m, covering
an area of 200 m2, rendering it the largest silicon tracker built to date [154]. These
dimensions allow for the precise tracking of charged particles with |η| < 2.5.
A charged particle traversing the tracker induces small ionization currents in the

silicon-based semi-conductors, which are amplified and measured by read-out chips. The
point of interaction between the particle and the detector module is referred to as hit.
As the tracker is contained within the solenoid, charged particle tracks are bent due to
the magnetic field. The curvature of the track is a direct measure for the transverse
momentum pT of the particle.

13

1. The Large Hadron Collider and CMS Detector at CERN

Barrel Endcap

Sub-Detector Layer r [cm] Sub-Detector Layer ±z [cm]

Pixel Barrel (PXB) 1 4.4 Pixel Forward (PXF) 1 34.5
2 7.3 2 46.5
3 10.2

Tracker Inner Barrel (TIB) 4 25.5 Tracker Inner Disk (TID) 3 78.8
5 39.9 4 91.8
6 41.9 5 104.7
7 49.8

Tracker Outer Barrel (TOB) 8 60.8 Tracker End Cap (TEC) 6 136.0
9 69.2 7 150.0
10 78.0 8 164.0
11 86.8 9 178.0
12 96.5 10 192.0
13 108.0 11 209.5

12 228.5
13 249.0
14 270.5

Table 1.1.: Sub-detectors of the the CMS tracker with their abbreviations and comprised layers
[44, 169]. The given measurements are averages of each layer.

The tracker is partitioned into six sub-detectors, each containing several layers of
detector modules, and is presented pictorially in Figure 1.4. Table 1.1 introduces the
abbreviations used to refer to the sub-detectors and provides details of the layer con-
figuration. The three innermost barrel (PXB) and two innermost endcap (PXF) layers
consist of 1440 silicon pixel detector modules with a total of 6.6× 107 pixels, covering
an area of 1 m2. Pixel detectors provide three-dimensional measurements with a spatial
resolution of 10 µm in the transverse plane and 20 µm in the longitudinal plane.

Adjacent to the pixel detectors are 10 and 12 silicon strip detector layers in the barrel
and endcap, respectively. Strips vary in length between 85.2 mm to 201.8 mm and are
mounted parallel to the z-axis in the barrel and perpendicular to it in the endcaps. Thus,
individual silicon strip detectors can only provide measurements of φ, with a resolution
of 23 µm to 35 µm in the TIB/TID, 10 µm to 40 µm in the TOB and at least 53 µm in
the TEC. To mitigate this shortcoming, double-sided modules are employed in the first
two TIB and TOB layers, as well as the inner rings of TID and TEC, as depicted in
Figure 1.5. Two silicon strip modules are mounted back-to-back with a stereo angle of
100 mrad, enabling the measurement of z with a resolution of 230 µm in the TIB and
530 µm in the TOB, as well as the measurement of r in the TID and TEC with varying
resolution. In total 9.3× 106 strips provide an active silicon area of 198 m2.

The measurements need to be amplified, buffered and digitized before further processing.
In the pixel detector, 16 000 read-out chips, directly mounted to the detector modules,
process the data of 53 rows · 52 columns of pixels each [100]. The read-out rate of 40 MHz
corresponds to the design collision rate with the designated bunch spacing of 25 ns.
In the strip detector, amplification is performed by 73 000 APV25 Application-specific

14

1.2. The CMS Detector

Figure 1.5.: One quarter of the CMS silicon strip tracker [108]. Red and blue lines represent
single- and double-sided silicon strip modules, respectively.

Integrated Circuits (ASICs) utilizing radiation-hard 0.25 µm CMOS technology [56]. Each
APV is capable of reading 128 silicon strips at 40 MHz sampling rate. Digitization is
performed by Front End Driver (FED) modules, located in a separated room in the
cavern. The data acquisition system of CMS and the further processing of the gathered
data is described in Section 2.3.

1.2.3. Calorimeters and Muon Chambers

After traversing the tracker, a particle passes through further detection elements, as shown
in Figure 1.6. The Electromagnetic Calorimeter (ECAL) is contiguous to the tracker and
measures the energy of electrons and photons. It is a scintillation calorimeter, composed
of 75 848 lead tungstate (PbWO4) crystals, used as both absorber and scintillation
material. An incoming electromagnetic particle creates a cascading shower of electrons,
positrons and photons within the crystals, with the number of created photons being a
direct measure for the incident particle’s energy. The scintillation light is measured by
avalanche photodiodes in the barrel and vacuum phototriodes in the endcap, the former
being insensitive to axial magnetic fields and the latter withstanding the high radiation
exposure. Lead tungstate was chosen due its short scintillation decay time. Within
25 ns, 80 % of all scintillation photons are emitted, aiding the separation of consecutive
collisions.
Similar to the tracker, barrel and endcap are treated by different sub-detectors. The

ECAL Barrel (EB) covers the pseudorapidity range |η| < 1.479, the ECAL Endcaps (EEs)
detect particles with |η| ∈ [1.479, 3.0]. In addition, pre-shower detectors are mounted
in front of the EE, consisting of lead absorbers and silicon detectors, to separate high
energetic single photons from photon pairs originating in π0 decays.

15

1. The Large Hadron Collider and CMS Detector at CERN

1m 2m 3m 4m 5m 6m 7m0m

Transverse slice
through CMS

2T

4T

Superconducting
Solenoid

Hadron
Calorimeter

Electromagnetic
Calorimeter

Silicon
Tracker

Iron return yoke interspersed
with Muon chambers

Key:
Electron
Charged Hadron (e.g. Pion)

Muon

Photon
Neutral Hadron (e.g. Neutron)

Figure 1.6.: Schematic CMS detector slice with passing particles [17]

The Hadronic Calorimeter (HCAL) surrounds the electromagnetic one and determines
the energy of passing hadrons, such as protons and pions. As sampling calorimeter it
is constructed of alternating brass absorber layers and plastic scintillators. An incident
hadron induces a cascade of particle showers, which are mainly absorbed in the brass
material and only a fraction being used for detection in the scintillation layers. Hybrid
photodiodes, insensitive to axial magnetic fields, measure the scintillation light, which
has been gathered by wavelength-shifting fibres.

Four sub-detectors constitute the HCAL. The HCAL Barrel (HB) and HCAL Endcaps
(HEs) cover the pseudorapidity ranges of |η| < 1.3 and |η| ∈ [1.3, 3.0], respectively.
Both are contained within CMS’s solenoid. To extend the absorbing capabilities of
the calorimeter, an additional Outer HCAL (HO) is installed outside the solenoid as
„tail-catcher“, covering the same η-range as the HB. Two Forward HCALs (HFs) complete
the system, which are installed at z = ±11.2 m outside the solenoid, accepting particles
with |η| ∈ [3.0, 5.0].

The muon detection system is integrated into the iron return yoke. Muon identification
and momenta measurement are crucial for a wealth of physical analyses, including the
study of the Higgs boson. Three sub-detectors constitute the muon system of CMS. In
the barrel, covering |η| < 1.2, Drift Tubes (DTs) filled with 85 % argon and 15 % CO2
detect passing muons via 172 000 wires in the gaseous volume. Cathode Strip Chambers
(CSCs) are installed in the endcaps, accepting particles of |η| ∈ [0.9, 2.4]. The 468 CSCs
are filled with a mixture of argon, CO2 and CF4 and contain 2× 106 wires. Both DTs

16

1.3. Luminosity and Pile-Up Events

and CSCs provide a good spatial resolution, with CSCs operating reliably even in a
spatially varying magnetic field. To compensate for the lower time resolution of both
detector types compared to scintillators, Resistive Plate Chambers (RPCs) are installed
in both barrel and endcap. Due to the fast response time of RPCs, their signal is used in
the Level-1 triggering of CMS, refer to Section 2.3.

1.3. Luminosity and Pile-Up Events
The instantaneous luminosity is a characteristic quantity of a particle collider and is
given by

L = NaNbfrev
Aeff

= NaNbfrev
4πσT,aσT,b

,

with two beams of Na and Nb particles respectively, colliding at a frequency of frev with
an effective collision area Aeff [51]. Assuming a Gaussian beam distribution, the effective
area is determined by the mean transverse beam sizes σT,{a,b} of the beams. As the
beams are not colliding precisely head-on but at an small crossing angle θc of about
200 µrad (ibid.), the luminosity must be reduced by

F = 1√
1 + θcσ2

z

2σ2
T

,

with mean longitudinal beam size σz and mean transverse beam size σT , assumed to
be equal for both beams. Taking into account the relativistic gamma factor γrev, the
instantaneous luminosity is given by

L = NaNbfrevγrev
4πσ2

T

F.†

The probability for a specific physical process, e. g. a Higgs boson decaying into four
muons, to happen during a proton-proton collision is referred to as production cross
section σprod. Given the instantaneous luminosity L and cross section σprod, the number
of generated events per second equals

Ṅevent = L · σprod.

Integrating the instantaneous luminosity over time yields the integrated luminosity L,
denoting the amount of accumulated collision data

Nevent =
∫
Lσproddt = L · σprod.

† Evans and Bryant [51] characterize the quadratic mean transverse beam size σ2
T by the normalized

transverse beam emittance εn and the beta function at the collision point β∗

πσ2
T = εnβ

∗.

17

1. The Large Hadron Collider and CMS Detector at CERN

0 5 10 15 20 25 30 35 40

Mean number of interactions per crossing

0

10

20

30

40

50

60

R
e
c
o
rd

e
d

 L
u
m

in
o
s
it

y
 (
p
b
¡
1
/0

.0
4
) <¹> = 21

0

10

20

30

40

50

60

CMS Average Pileup, pp, 2012, ps = 8 TeV

(a) Distribution of number of interac-
tions per bunch crossing in 2012 [81].

(b) Event from 2012 high pile-up run
with 78 reconstructed vertices [86].5

Figure 1.7.: Pile-up events in the CMS detector.

The instantaneous luminosity is not constant over time. During the time between
injection and extraction of the proton beam – referred to as fill – the intensity and
emittance of the beam deteriorates. Therefore, the instantaneous luminosity is measured
every 23 s with four rings of the Forward HCAL [41]. During this time, denoted luminosity
section, L is assumed to be constant. Data taking with a specific detector configuration
is labeled run. A fill spans several runs, each containing many luminosity sections with
approximately 9.2× 108 events per luminosity section at design luminosity.
One recorded event, may contain energy deposits and interactions with the detector

material of several collisions, denoted as pile-up events. Two kinds of pile-up need to be
distinguished:

In-time pile-up is due to interactions within the same bunch crossing, hence it increases
with the number of protons per bunch.

Out-of-time pile-up is caused by the finite time resolution of the CMS detector compo-
nents. Energy deposits and observed interactions with the detector material from
prior bunch crossings are still present in the detector at the time of the next event
recording. Therefore, a smaller bunch spacing increases this effect.

In 2012, the bunches were separated by 50 ns, so out-of-time pile-up was minimized.
As shown in Figure 1.7a, on average 21 interactions took place during one bunch crossing.
The beam parameters foreseen for the upcoming data-taking period in 2015 will double
the beam intensity and reduce the spacing between bunches to the design value of 25 ns
[37]. During a high pile-up run in 2012, some of the resulting effects could be studied.
Figure 1.7b depicts an event with 78 reconstructed vertices, which are proportional to
the number of interactions in the event [72]. Such high occupancy does not only pose
a challenge to the detector components but also to the entire event processing chain,
particularly the particle track reconstruction.

5Run: 198609, Lumi: 56, Event: 3565522.

18

Chapter 2

CMS Event Reconstruction

The experiments at the LHC produce an enormous amount of data. At design luminosity,
proton-proton collisions occur at a rate of 40 MHz in each of the detectors, generating
40 TByte s−1 of data [26]. It is neither feasible nor desirable to process every event as
only a minuscule fraction of events, approximately 0.01 h, contain interesting physical
processes [44]. To reduce the data rate, CMS employs a two-stage triggering system to
identify events worth studying. The trigger system and the subsequent reconstruction of
physical objects from the raw detector data is described in Section 2.3. The preceding
Sections 2.1 and 2.2 elucidate the basis for event processing, the computing infrastructure
and application framework, respectively. Section 2.4 concludes the chapter by discussing
the simulation of particle interactions.

2.1. The World-wide LHC Computing Grid
All experiments at the LHC rely on an amply scaled, reliable computing infrastructure,
catering to the following requirements [26]:

• storage of large data volumes, delivered at high data rates,

• long-term data archiving in a robust manner,

• data access for thousands of users and

• provision of raw computing capacity.

Facing 25 PByte of data a year [36] and 4 000 users from ATLAS and CMS alone, the
multi-tier Worldwide LHC Computing Grid (WLCG) [49] was devised to cope with this
tremendous challenge.
As Figure 2.1 illustrates, CERN’s own Data Centre (DC) acts as Tier 0, primarily

responsible for immediately archiving RAW data from the experiments at full data rate,
≈ 1.3 GByte s−1, on tape [26]. To ensure reliability, the data is distributed to the Tier 1
centers via the dedicated LHC Optical Private Network (LHCOPN) with 10 GByte s−1

bandwidth (ibid.). Furthermore, the Tier 0 is responsible for the prompt reconstruction
of event data for data taking guidance as well as detector alignment and calibration.
Coordinating the overall operation of the grid also falls within the Tier 0’s responsibilities.

19

2. CMS Event Reconstruction

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier
2/3

Tier 2/3
Aachen

Tier 2/3
DESY

Tier 3
Karlsruhe

Tier 1

RAL
United Kingdom

Tier 1

ASGC
Taiwan

Tier 1

CNAF
Italy

Tier 1

PIC
Spain

Tier 1

CC-IN2P3
France

Tier 1

FNAL
United States

Tier 0

CMS
WLCG

Structure

Tier 2
Warsaw

Tier 2
CSCS

Tier 1

GridKa
Germany

Figure 2.1.: Schematic view of the WLCG grid tier hierarchy including CMS Tier 1 sites and
German CMS Tier 2 centers [156].

Currently, there are 30 PByte of disk and 100 PByte of tape storage as well as 65 000
processing cores installed at CERN, which will be augmented by 5.5 PByte disk storage
and 20 000 cores at a secondary Tier 0 location at the Wigner Research Centre for Physics
in Budapest, Hungary [35].

Large-scale organized analyses are mainly performed at Tier 1 sites [26]. Data archiving
aside, these centers distribute data to the connected Tier 2 sites. Tier 1 centers are
primarily large-scale national computing centers supporting several experiments. Seven of
the 11 Tier 1 sites provide services to the CMS collaboration. Tier 2 sites provide storage
and computing resources and are accessible to regular grid users for job submission. In
addition to the reconstruction of data, these sites also serve the generation and simulation
of Monte Carlo (MC) events, which are crucial to relate the obtained experimental
measurements to the underlying theory under scrutiny [130]. End-user analysis is
performed on Tier 3 sites, which are connected to a Tier 2 center for data access. These
sites cover a wide range of data center sizes, ranging from institute local clusters to
national facilities.
A grid, as a federation of computer resources, is, unlike other forms of distributed

systems such as clusters, not centrally administered [55]. Thus, it features a heterogeneous
computing environment. The WLCG is governed by a Memorandum of Understanding
(MoU) [181] between CERN and the national funding agencies. It prescribes which services
a computing center participating in the WLCG has to offer and defines service levels
to be fulfilled. However, the MoU does not regulate hardware specifics, hence a variety
of components can be found in different WLCG sites, ranging from hardware featuring
the latest technology to rather geriatric equipment. Software for the WLCG needs to
be designed with this heterogeneity in mind, being easily deployable and performant on

20

2.2. Software Framework CMSSW

diverse computer systems. As of 2013, the lowest common denominator for all WLCG
sites is the use of x86-based processors operating under Scientific Linux CERN (SLC)
5.0 [124].

2.2. Software Framework CMSSW
The CMS Software Framework (CMSSW) is the primary tool for the processing and
analysis of events recorded with the CMS detector [44]. The modular C++ framework is
centered around the Event Data Model (EDM) and is used for both online and offline
processing [19]. The former addresses the High Level Trigger (HLT) and prompt event
reconstruction (refer to Section 2.3), whereas the latter is devoted to the meticulous
re-reconstruction of recorded data. The development of the application was guided by
the following design goals [93]:

Utilization of a clear data model Modules communicate only through a central Event
container. The container stores data produced by a module and provides access
to it for subsequent ones. Each datum is uniquely identified by its data type and
a combination of module label and instance label, as defined by the producing
module.

Provenance tracking for all data All algorithms involved in the production of a partic-
ular datum must be traceable, including their specific configuration parameters.

Clear separation of concerns Modules should address a specific task and store all their
data in the Event to allow for individual testing in isolation.

Provision of browsable ROOT files ROOT is the standard tool in High-Energy Physics
(HEP) for histogram production, data fitting and visualization [30]. Providing
output files directly usable in ROOT eases the process of output validation for
CMSSW modules.

CMSSW defines five module types [93]. Sources provide the initial Event instance to
the process, either reading event data from disk or directly accessing the Data Acquisition
(DAQ) system. Producers generate new data to be stored in the Event, based upon
already existing information. For instance, compatible hits in adjacent detector layers, as
stored in the Event, are combined to form triplets, which are later used as seeds for the
track finding routines. Filters decide whether a given event should be further processed
or discarded, based upon specific criteria such as contained particle types or minimum
pT requirements. Analyzers are read-only modules, studying particular properties of the
event, e. g. pT distribution for specific particles. The product of the analysis is usually
written to disk in a separate ROOT file. Output modules store the data collected in the
Event container on disk.

The individual modules are orchestrated into a process via a Python-based configuration
file [179]. Figure 2.2 shows a sample process with a execution schedule comprising two
sequences, each containing several modules. A module specification consists of a C++

21

2. CMS Event Reconstruction

InputSource

Event EventSetup Database(s)

ModuleA1 ModuleAN

ModuleB1 ModuleBN

Schedule Output1

Output2

Output3

ParameterSetConfigfile

Figure 2.2.: CMSSW process containing a path with two sequences, each containing several
modules [44].

class, that implements the desired function and inherits from an appropriate CMSSW
superclass, e. g. edm::EDAnalyzer, and a ParameterSet, configuring the parameters
of the algorithm, e. g. minimum pT . These module specifications can be arranged in
Sequences and Paths. Whereas Sequences are merely an organizational tool to ease the
reuse of predefined sequences, Paths define the actual execution order – Schedule – of
the process. Even though dependencies between modules may be stated in the Path
specification, there is only a sequential processing stream in CMSSW at the moment.
The mitigation of this shortcoming is currently under active research and is introduced
in Section 3.1.
There is a wealth of predefined sequences in CMSSW, which can be reused and

customized by users in their own analyses. The following section introduces the standard
reconstruction sequence.

2.3. Event Processing

The reconstruction of physical objects from the raw detector data is a most intricate
task. Hundreds of steps are required to transition from individual energy deposits in the
detector material to the comprehensive description of a particle’s trajectory, energy and
momenta. First, Section 2.3.1 elaborates on the CMS trigger system, which reduces the
event rate from 40 MHz down to manageable 100 Hz. Sections 2.3.2 to 2.3.4 outline the
reconstruction sequence with a focus on Kalman filter-based track finding and triplet
seeding. A comprehensive account of the entire reconstruction process is given by Acosta
et al. [2].

22

2.3. Event Processing

Detector Front-Ends

Computing Services

Readout
Systems

Filter
Systems

Event
Manager

Level 1
Trigger

Control
and

Monitor
Builder Network 100 GB/s

40 MHz
60 TBs-1

100 kHz
150 GBs-1

100 Hz
150 MBs-1

(a) Components of the DAQ system
with design event and data rates.

(b) Level-1 Trigger decision based upon
calorimeter and muon triggers.

Figure 2.3.: Schematics of the CMS trigger and data acquisition system [44].

2.3.1. Trigger and Data Acquisition

The trigger system comprises two levels [44]. The Level-1 trigger analyzes every bunch
crossing. At an event rate of 40 MHz, a complete reconstruction is not possible. Thus,
the decision whether an event contains interesting characteristics must be based on a
subset of the available information. As depicted in Figure 2.3b, the calorimeter and muon
system are responsible for the L1 triggering. The complete detector readout is buffered
in the FED, before a L1 decision is reached. As the L1 must determine the relevance of
an event within 3.2 µs, L1 algorithms are implemented in hardware. Field-programmable
Gate Arrays (FPGAs) are the preferred hardware technology, due to their flexibility, but
speed and radiation requirements demand for some components to be implemented as
ASICs (ibid.).

Given a positive L1 decision, the detector readout is moved from the FED buffers to
the High Level Trigger (HLT), as depicted in Figure 2.3a. The design event rate for the
Level-1 trigger is 100 kHz, which equals a data rate of 150 GByte s−1, given an event size
of approximately 1.5 MByte/event (ibid.). Whereas the L1 trigger is implemented in
hardware and located in a control room next to the detector cavern, the HLT is performed
on a dedicated commodity computer farm located on the surface with currently 13 200
Central Processing Unit (CPU) cores [21]. The HLT algorithms are similar to the ones
employed in the offline reconstruction, therefore trigger decisions can be made upon
physical objects in the event. Being implemented in software, the HLT offers great
flexibility to treat different kind of physical processes. A set of trigger criteria is referred
to as HLT menu and can be adapted to the needs of manifold analyses [4]. About 400
individual trigger algorithms contribute to the HLT decision, requiring a total runtime
of ≈ 165 ms/event [21]. Due to runtime limitations, some algorithms are simplified
in comparison with the offline reconstruction or use tighter constraints and boundary
conditions [2].
The design event rate for the HLT was originally set to 100 Hz. Due to advances in

storage technology, it currently operates with 300 Hz to 350 Hz event rate, resulting in
approximately 500 MByte s−1 data rate.

23

2. CMS Event Reconstruction

For underlying event studies, trigger calibration and impartial physical exploration,
CMS additionally records zero- and minimum-bias events, with no or only a minimal
selection of L1 and HLT triggers, respectively [39, 167].

2.3.2. Reconstruction of Physical Objects

In the reconstruction, RAW detector readouts obtained from the DAQ, called Digis, are
incrementally processed into higher-level physical objects [2]. Each step builds upon the
objects produced by previous ones and is further influenced by

EventSetup Non-event data such as geometrical description of the detector, alignment
and calibration data, as well as the magnetic field conditions. These information
are not tied to an event but have a specific Interval of Validity (IOV), spanning
many events. The EventSetup provides the appropriate data for a given Event as
non-event data can have varying IOVs;

ParameterSet As described in Section 2.2, this data provides the configuration parame-
ters of a module’s algorithm.

The reconstruction consists of three coarse-grained steps

1. local reconstruction within a detector module, e. g. a pixel detector module,

2. global reconstruction within a sub-detector, e. g. the tracker or ECAL,1

3. combined reconstruction, aggregating the information from all sub-detectors.

The following outline of these three steps, with a focus on the tracker, is based on the
elaborate description by Acosta et al. [2] if not otherwise stated. Figure 2.4 illustrates
the process and the products of each step.

Local Reconstruction uses only information from one detector module and processes
the digitized readout, Digis, to reconstructed hits, RecHits, including spatial information
about a particle’s interaction with the detector and the amount of deposited energy. The
specifics vary between the sub-detectors, e. g. local reconstruction already produces track
segments within the superlayers of the muon DTs. In the tracker, different algorithms
are employed for pixel and silicon strip detector.
The FEDs of the pixel detector produce a zero-suppressed readout with adjustable

threshold charge – currently 3 200 e [162]. In the local reconstruction, adjacent pixels
are formed to clusters with a minimum charge of 4 000 e. The cluster’s position and
uncertainty is then determined in the local coordinate frame of the sensor (u, v) by the
cluster’s centroid, corrected for the Lorentz shift. In a second approach, the observed
cluster charge distribution is compared to templates, expected cluster shapes for particles
passing the detector module at various angles of incidence, obtained from MC studies.

1 The name is somewhat misleading, as it suggests that information from the entire detector is used.

24

2.3. Event Processing

Muon

Tracker RecHits

Tracker Digis

DAQ

Tracks

Readout

Local Reco

Global Reco

Tracker

Muon RecHits

Muon Digis

DAQ

Readout

Local Reco

Global Reco

Muon System

Muon Candidate

Combined Reconstruction

Figure 2.4.: Muon reconstruction steps in CMS [adapted from 2]. The particle is treated
independently in the tracker and muon system during the local and global reconstruction. Only
in the combined reconstruction, high-level physical objects with aggregated information from
all sub-detectors are created.

In the silicon strip detector, strips pass the zero-suppression if their charge exceeds
five times the channel noise or if a strip and one of its neighbors both exceed two times
the channel noise. Clusters are formed starting from Digis exceeding three times the
channel noise. Neighboring strips are added to the cluster, if they exceed two times the
strip noise. The final cluster must exceed five times the cluster noise to be accepted for
further processing. The charge-weighted average of the strip positions, corrected for the
Lorentz shift, yields the cluster’s position (ibid.). For double-sided modules, the two
two-dimensional hits from the r-φ-plane and the stereo-plane, rotated by 100 mrad, are
matched to three-dimensional MatchedRecHits.

Global Reconstruction is performed on all reconstructed hits from the same sub-detector
to form higher-level physical objects. In the tracker, compatible hits are combined to
Tracks in an iterative approach. The discussion of track finding is deferred to Section 2.3.3.
Further objects of interest in the tracker’s global reconstruction are the primary vertices
of the event, which correspond to the locations of proton-proton interactions in the bunch
crossing. The number of primary vertices is thus proportional to the pile-up of the event.
The primary vertices are reconstructed from tracks originating close to the beam line in
the transverse plane, i. e. with a small Transverse Impact Parameter (TIP). The selected
tracks are clustered according to their z-coordinate at the point of closest approach to the
Interaction Point (IP) by a deterministic annealing algorithm [148]. An adaptive vertex
fitter is applied to the resulting clusters to obtain the vertex position and associated

25

2. CMS Event Reconstruction

uncertainty [178].
In the calorimeters, matching clusters in the ECAL and HCAL are linked to form

calorimetric towers – CaloTowers – with a definite position in the η-φ-plane.
Reconstruction in the muon system produces MuonCandidates, also referred to as

„standalone muons“, since they are not linked to tracker hits. The algorithm uses locally
reconstructed track segments of the innermost muon chambers as seeds and builds
trajectories via a Kalman filter-based method in the radially-increasing direction. The
propagation uses a detailed material and magnetic field map to account for the energy
loss and bending of the muon’s path. When the outermost muon chamber layer is reached,
the track is propagated backwards to the inner layers and finally extrapolated to the
nominal IP. Kalman filter-based track building is discussed with the tracker’s global
reconstruction in Section 2.3.3.

Combined Reconstruction combines the global tracking results from all sub-detectors
of CMS to produce a number of high-level physics objects. Standalone muons are paired
with a compatible Track in the tracker and refitted to obtain the final track parameters.
If CaloTowers can be matched to tracks in the pixel detector they are identified as
electron, otherwise they are flagged as photon. The hadronization of free quarks and
gluons produces narrow cones of hadrons, referred to as jets. A wealth of algorithms for
jet reconstruction exist [160], most relying on clustering calorimetric towers which are
close in (η, φ) to a high transverse energy ET tower.

2.3.3. Iterative Kalman Filter-based Track Finding
Goal of the track finding is to identify a sequence of hits, belonging to the trajectory of a
charged particle among the set of all RecHits reconstructed in the tracker. The identified
hit sequence is used to fit the track’s parameters

τ = (d0, z0, φ, cot θ, pT)

at the point of closest approach to the beam line, referred to as impact point. The impact
point is defined by the transverse coordinates (x0, y0), given by d0 = y0 cosφ− x0 sinφ,
and the longitudinal coordinate z0. The momentum vector at the impact point is
described by azimuthal angle φ and polar angle θ and its transverse magnitude pT [2].
CMS uses a Combinatorial Track Finder (CTF). Given k detector layers with ni,

i ∈ [1, k], hits in layer i, the number of possible hit combinations is given by∏
i∈[1,k]

ni ∈ O(nk).†

Restricting the physical properties of a track, such as transverse momentum pT or
transverse distance to the interaction point TIP, drastically reduces the number of
possible hit combinations. In iterative tracking, early iterations search for tracks with
high pT and small TIP, which can be found with tight constraints on possible hit
† f(n) ∈ O(g(n)) ≡ f(n) ≤ k · g(n) for some positive k and sufficiently large n.

26

2.3. Event Processing

candidates [144]. Hits associated with a track are masked and no longer considered
in subsequent iterations, thus reducing the combinatorial complexity and allowing the
search for more difficult to find tracks. This class includes tracks with low pT and tracks
originating further away from the beam line, thus possibly not traversing all three pixel
layers. Seven iterations are currently used in CMSSW track finding. As the parameters of
an iteration mainly influence the seeding procedure, they are presented in Section 2.3.4.
Each iteration proceeds as follows [2]:

Seeding generates pairs or triplets of hits in the inner detector to provide an initial
estimate of the track parameters.

Track Finding extrapolates the seed along the predicted path of the particle to assign
additional hits to the track.

Track Fitting aims to provide the best possible estimate of the track parameters, based
upon all assigned hits.

Track Selection examines quality criteria for the produced tracks, discarding insufficient
ones and flagging tracks with particularly low errors on the track parameters as
high purity.

Seeding is discussed in Section 2.3.4. Track finding and fitting are based on the Kalman
filter technique [96, 97] used for estimating the state of a discrete linear dynamic system
via a series of measurements. Frühwirth [59] is generally credited with establishing the
Kalman filter for track finding and fitting in the HEP community. A track in space is
regarded as dynamic system, described by a state vector τ , i. e. the track parameters. At
each point in space x, τ (x) uniquely describes the trajectory of a particle. Considering the
state vector only at discrete points xk, the intersection points of the particle’s trajectory
and the detector layers, leads to the following system equation

τ (xk) := τ k = fk−1(τ k−1) + wk−1,

with fk−1 denoting the track propagator from detector layer k−1 to k and wk−1 describing
disturbances during the traversal, such as multiple scattering. Multiple scattering is a
stochastic effect due to non-uniformities in the traversed medium between two detector
layers, repeatedly deflecting a particle from its original trajectory. The state vector can
only be observed via measurements mk, suffering from measurement noise εk,

mk = hk(τ k) + εk.

If both fk and hk are linear, the Kalman filter is the optimal recursive state estimator
[96]. However, in the presence of a magnetic field, the track propagator is non-linear.
Frühwirth [59] notes, that the measurement equation can be linearized by an appropriate
choice of state vector and the non-linear propagator fk can be approximated by its first
order Taylor expansion

f̂k(τ ∗k) = fk(τ k) + ∂fk
∂τ k

(τ ∗k − τ k).

Given this system model, the following estimation operations can be applied:

27

2. CMS Event Reconstruction

• Prediction of the future state τ k+1 given the current one τ k.

• Filtering the present state τ k given all measurements m1 . . .mk.

• Smoothing a past state τ j , j < k, with all measurements m1 . . .mk.

An elaborate presentation of the mathematical formulation of these operations, in
particular the calculation of the covariance matrix and residuals, is given by Frühwirth
and Regler [61].

Track Finding is initialized with the coarse track parameter estimation from the trajec-
tory seed [162]. The trajectory is extrapolated from the seed’s outermost hit to determine
compatible adjacent detector layers, taking into account the current uncertainty of the
track and the detector material to be crossed. While adjacency is well-defined in the
barrel, the process is more involved in the endcap and barrel-endcap transition region.
Given a (set of) compatible layer(s), suitable detector elements within these layers are
searched. If the trajectory intercepts the detector surface within a configurable number of
standard deviations, the detector element is considered compatible (ibid.). The positions
and uncertainties of the hits on the selected detector elements are refined with the
trajectory’s direction on the detector surface to more accurately reflect the Lorentz shift.
A hit’s compatibility with the track is determined by a χ2 test. The trajectory state
is updated for every hit with χ2 value below a configurable threshold. To limit the
increase in track candidates, only a limited number of new trajectory states are chosen
for further processing, determined by the best normalized χ2 values. To account for
detector inefficiencies, invalid hits may be introduced to the track if no suitable hit is
found on a compatible detector element, resulting in a penalty to the χ2 value.

The process is continued until the outermost layer is reached or a configurable number
of hits have been added by the outward propagation. All assigned hits – except the
seed – are used to fit the trajectory’s parameters. Thereafter, starting at the innermost
non-seed hit, the track is propagated inwards towards the beam line. Hereby, additional
compatible hits in the seeding layers can be found and if not the innermost layers are
used for seeding the track may be extended further inwards.

Track Fitting is a two-phase process to obtain the best possible track parameter
estimation and eliminate any bias introduced to the track parameters by the constraints
of the seeding and track building algorithms (ibid.). In the filtering phase, the Kalman
filter is initialized at the innermost hit with the trajectory parameters obtained from
seeding. The algorithm proceeds outwards, updating the trajectory estimate at each hit.
Again, the hit positions and uncertainties are corrected for the Lorentz shift with the
current track parameters. At a given detector layer i, the state estimate incorporates all
measurements m1 . . .mi. In the smoothing phase, the Kalman filter is initialized with
the result of the first phase at the outermost hit and propagated inwards to the beam
line. The smoothed trajectory estimate at layer i can be obtained by averaging the track
parameters from the first and second phase, as the second phase yields a state estimate
at i with measurements mi . . .mk for a k layer detector.

28

2.3. Event Processing

Step Seeding Layers pt [GeV] d0 [cm] z0 [cm]
1 initial triplets PXB, PXF 0.6 0.02 4.0 σ
2 low pT triplets PXB, PXF 0.2 0.02 4.0 σ
3 pixel pairs PXB, PXF 0.6 0.015 0.09
4 detached triplets PXB, PXF 0.3 1.5 15
5 mixed triplets PXB, PXF, TIB (1,2), TEC (1,2) 0.4-0.6 1.5 10
6 pixel-less pairs TIB (1,2), TID/TEC (1,2) 0.7 2.0 10
7 TOB/TEC pairs TOB (1,2), TEC (5) 0.6 6.0 30

Table 2.1.: Configuration of the CMS seeding in the iterative tracking steps [162, 170]. Either
pairs or triplets are used, as indicated by the second column. For sub-detectors other than
pixel, the used layers are indicated in parentheses. Minimum pT , maximum transverse, d0,
and longitudinal, z0, impact parameter are given by the following columns. The Gaussian
longitudinal width of the beamspot is denoted by σ.

Track Selection applies a set of quality measures to reduce the number of fake tracks,
i. e. tracks not associated with a charged particle (ibid.). These criteria include the number
of associated hits and traversed layers, number of consecutive invalid hits, normalized
χ2 value and compatibility with the reconstructed primary vertices. Tracks excelling in
some or all of the above criteria are tagged as high purity tracks, which are the subject
of most physics studies.

2.3.4. Triplet Seeding

The seeding procedure, requiring about 16 % of the overall reconstruction runtime [79],
provides the first estimate of a track’s parameters and is the basis for the subsequent
Kalman filter-based track finding [162]. To fit the track parameters τ , at least three hits
are required or two hits and a beamspot constraint. To avoid the full combinatorics of all
hits in the seeding layers, seeds must exhibit a minimum transverse momentum, maximum
transverse impact parameter and be compatible with the beamspot position, i. e. the
luminous region of the proton-proton collision. These parameters vary with the iterations
of the iterative tracking and are presented in Table 2.1. The first, second and forth
iteration require the track to produce hits in each of the three pixel layers. As Sguazzoni
et al. [162] state, 85 % of the charged particles produced within the geometrical acceptance
of the tracker, |η| < 2.5, fulfill this requirement. To account for pixel detector inefficiencies,
such as gaps in the coverage, non-functioning modules and readout saturation, the third
iteration is seeded by pairs of hits. Later iterations are targeted towards particles not
produced directly in the proton-proton collision and include double-sided layers of the
silicon strip detector in the seeding.

Triplet finding can be considered as pattern recognition problem in a three-dimensional
volume.3 Exploiting the layered construction of the CMS detector, the problem can be
reduced to two dimensions, by treating barrel and endcap layers separately. As Figure 2.5
illustrates, the detector geometry defines the radius r or z position of a barrel or endcap

3The same applies to pair finding.

29

2. CMS Event Reconstruction

z

r

(a) In the endcap, the detector geometry defines zlayer, therefore
a hit is completely defined by (φ, r).

y

x
φ

r

(b) Detector geometry
defines rlayer, hit de-
scribed by (φ, z).

Figure 2.5.: Distinction of seeding in the barrel and the endcap region. Using information given
by the detector geometry, the three-dimensional problem can be reduced to two dimensions.

outer hit

search range

z0

0

(a) For pair finding, the outer hit is
used in conjunction with the track
parameter constraints to restrict the
search range for the inner hit.

hit pair

triplet candidates

search range

(b) In triplet finding, the hit pair is ex-
trapolated following the track param-
eter constraints to limit the search
range for the outer hit.

Figure 2.6.: Search range restriction for pair and triplet finding in CMSSW.

layer, respectively. This quantity is known with high precision. Given that,

x = r · sinφ and y = r · cosφ,

a hit in a barrel layer is fully defined by its φ and z coordinate. Accordingly, endcap hits
are completely described by φ and r.

If no restrictions were applied, triplet finding would be in O(n3). Considering the high
pile-up event pictured in Figure 1.7b with 3 627 reconstructed tracks, this would result
in approximately 5× 1010 triplet candidates. Given a minimum transverse momentum
pT and maximal transverse and longitudinal displacement d0 and z0, respectively, the
number of candidates can be reduced drastically. In the considered event, about 1× 107

triplet candidates are considered as seeds by the CMSSW seeding step.

30

2.3. Event Processing

Algorithm 2.1 CMSSW pair finding algorithm for the barrel region.
Require: seeding layer pair, min pT , max d0 and z0
1: for all outer hits ∈ outer layer do
2: φ-range ← compatibleφ(EventSetup, inner layer, pT , d0, z0, outer hit{φ,pT })
3: for all inner hits ∈ { inner layer ∩ φ-range } do
4: z-range ← compatiblez(EventSetup, inner layer, pT , d0, z0, inner hitr)
5: if z-range ∩ {inner hitz ± error} 6= ∅ then
6: valid pair
7: end if
8: end for
9: end for

Pair Finding is used as sole seeding procedure in iterations three, six and seven and as
sub-operation in the other steps. Algorithm 2.1 describes the employed procedure for
the barrel region. Given a pair of seeding layers, all hits of the outer layer are inspected
by the algorithm. As depicted in Figure 2.6a, the range of feasible φ-values is computed
based upon the outer hit’s φ and pT , taking into account the track’s bending due to
the magnetic field and the effects of multiple scattering. The latter is approximated
using the multiple scattering parametrization of Highland [83]. Hits of a detector layer
are stored in a φ-sorted manner, thus all inner hits inside the predicted φ-range can
be retrieved quickly. For a given outer hit - inner hit pairing, the feasible z-range is
computed, considering the track parameter constraints and the radius r of the inner
hit. The radius is defined by the position of the hit’s detector element in the barrel and
therefore known with little uncertainty. If the inner hit is inside the predicted z-range,
the pair is regarded as valid seed. In the endcap, instead of predicting the z-range based
on r, the r-range is determined using the detector geometry-defined z coordinate.

Triplet Finding generates the seeds for most reconstructed tracks [162]. The procedure
is given by Algorithm 2.2 and visualized in Figure 2.6b. Initially, hit pairs are constructed
according to the algorithm outlined in the preceding paragraph. Multiple layers for the
third hit of a triplet can be specified, refer to Table 2.1. Thus, for each generated hit
pair, all defined outer layers are inspected for third hit candidates. Again considering the
barrel, the feasible z-range of the third hit is extrapolated on a straight line based upon
the hit pair and the detector geometry of the outer layer. The prediction is then corrected
for effects due to track bending and multiple scattering, using the same parametrization as
in pair finding [83]. Given the z-range in conjunction with the imposed track parameters,
the feasible detector region can be constrained. To determine the φ-range within that
region, an approximation of the helical path of a charged particle is employed. In the
transverse plane, the particle’s helix can be described by a circle

(x− a)2 + (y − b)2 = R2,

with circle center (a, b) and radius R. A mapping

f : U → V with U, V ⊂ Rn

31

2. CMS Event Reconstruction

Algorithm 2.2 CMSSW triplet finding algorithm for the barrel region.
Require: seeding layer triplet, min pT , max d0 and z0
1: pairs ← hit pairs in inner two seeding layers
2: for all pairs do
3: for all outer layers do
4: z-range ← predictLinez(outer layer, pair)
5: z-range ← correctMSz(EventSetup, pT , outer layer, pair, z-range)
6: φ-range ← predictHelixφ(outer layer, pair, pT , d0, z0, z-range)
7: φ-range ← correctMSφ(EventSetup, pT , outer layer,pair, φ-range)
8: for all outer hits ∈ { outer layer ∩ φ-range } do
9: z-range ← predictLinez(outer layer,pair, outer hitr)
10: z-range ← correctMSz(EventSetup, pT , outer layer,pair, z-range)
11: φ-range ← predictHelixφ(outer layer,pair, pT , d0, z0, outer hitr)
12: φ-range ← correctMSφ(EventSetup, pT , outer layer, pair, φ-range)
13: if z-range ∩ {outer hitz ± error} 6= ∅

∧ φ-range ∩ {outer hitφ ± error} 6= ∅ then
14: found triplet
15: end if
16: end for
17: end for
18: end for

is conformal at a point u0, if it preserves the angles between curves passing through u0.
Transforming (x, y) coordinates to the (u, v) plane according to

u = x

x2 + y2

v = y

x2 + y2 ,

translates circles in (x, y) into straight lines in (u, v) [61]. Imposing

R2 = a2 + b2, (2.1)

yields the straight line equation

v = 1
2b − u

a

b
. (2.2)

By fitting the transformed hit pair and the borders of the feasible detector region to
this line, the center and curvature of the track’s path can be determined. However,
since Equation (2.1) forces the circle to pass through the origin, the transverse impact
parameter d0 is lost. Hansroul et al. [77] mitigate this shortcoming by introducing a δ to
Equation (2.1)

R2 = a2 + b2 + δ.

32

2.4. Event Generation

For δ � R2, the circle in (x, y) can be approximated by a parabola with very small
curvature

v = 1
2b − u

a

b
− u2d0

(
R

b

)3
,

with d0 = R−
√
a2 + b2 ≈ δ

2R , thus preserving the transverse impact parameter (ibid.).
The obtained φ-range is then, after being corrected for bending and multiple scattering
effects, used to retrieve possible third hits for the pair from the outer layer. For each
third hit candidate, the feasible z- and φ-range is re-evaluated using the outer hit’s radius
r. If the outer hit is within these extrapolated ranges, the triplet is accepted as valid seed.
The treatment of the endcap region differs only in the interchanged roles of z and r.

2.4. Event Generation

Probing a physical theory requires the verification or falsification of theoretical predictions
about natural processes. By simulating the interaction of particles according to the
theory under scrutiny, the response of the CMS detector can be anticipated and compared
to the measurements of real particle collisions. These interactions can only be modeled
in a non-deterministic manner, therefore Monte Carlo (MC) methods are required for
their simulation [50, 130]. Several established tools exist for collision simulation and
are used by the CMS collaboration, e. g. PYTHIA [168], MadGraph [9] and Herwig++
[16]. PYTHIA is one of CMS’s main MC generators, as it is specifically designed to
simulate the hard proton-proton interaction. More than 300 Standard Model, minimal
supersymmetric and non-standard physical processes are implemented in the framework.
The interaction of the particles produced by the MC generator with the detector is

simulated by the Geant4 software package [7]. A detailed detector description, including
geometrical layout and material composition, has been modeled in Geant4 to accurately
simulate particles’ energy depositions in the detector elements and the influence of the
material and magnetic field on their trajectories. The simulation yields digitized detector
readouts, equal to the Digis of the Data Acquisition system. Hence, the identical
reconstruction software can be employed for the simulated collisions.
Therefore, simulated events are of crucial importance for algorithmic studies as well.

Comparing the output of a reconstruction algorithm to the simulated particles, referred
to as MC truth, gives insights into the physical performance of the algorithm. The ability
to reconstruct the tracks of simulated charged particles is measured by the efficiency

Eff = nvalid reconstructed
nsimulated

, (2.3)

for a simulated event with nsimulated particle tracks, out of which nvalid reconstructed were
successfully reconstructed. The number of reconstructed tracks not associated to a
simulated particle – fake tracks – defines the fake rate

FR = nfake tracks
ntotal reconstructed

. (2.4)

33

2. CMS Event Reconstruction

The trajectory of one simulated particle might result in several reconstructed tracks –
denoted clones. The number of produced clones yields the clone rate

CR = nclones
ntotal reconstructed

. (2.5)

Furthermore, MC generators can be configured to produce a specific number of tracks
within one event, enabling the study of the runtime behavior of the algorithm.

34

Chapter 3

Parallel Computing

For many years software designers could rely on ever increasing clock speeds of CPUs to
speed up their single-threaded applications with minimal effort on their part. Driven
by Moore’s Law [126] of an exponentially growing number of transistors on integrated
circuits in conjunction with Pollack’s Rule [29] of computing performance increasing
roughly proportional to the square root of the increase in complexity, developers could
rest assured that their software would automatically meet increasing computational
demands1. However, clock speeds have been approaching the limits of the physically
possible and large performance gains can no longer be expected from increasing operation
frequency. Instead, new technologies have been introduced to modern CPU architectures,
such as multiple cores and vector units. These technologies need to be actively exploited
by software developers, dawning an end to the „free lunch“ era [175].
Additionally, the computational power of Graphical Processing Units (GPUs) has

attracted much research attention in the past decade [139]. Outperforming CPUs in peak
performance by an order of magnitude – refer to Figure 3.1 – they have been successfully
utilized for compute-intense applications such as DNA sequencing [33], simulation of
molecular dynamics [11] or climate modeling [46]. In particular, GPUs have been
used to execute the Game of Life Cellular Automaton by Harris et al. [78], who also
coined the term General Purpose Graphical Processing Unit (GPGPU) for non-graphical
computations performed on a GPU. While GPU programming using low level shader
programming languages is an arduous, error-prone task, the introduction of high level
Software Development Kits (SDKs) such as NVIDIA’s CUDA in 2007 [137] and Open
Computing Language (OpenCL) in 2008 [12] greatly eased the process of using GPUs
for general purpose computations and helped GPGPUs attain the popularity they enjoy
today. The latter is maintained by the non-profit technology consortium Khronos Group
[101] and allows the development of programs executing across heterogeneous platforms
such as CPUs as well as GPUs of different vendors. As platform independence is crucial
for applications developed for the Worldwide LHC Computing Grid, OpenCL was chosen
as basis for this work and is described in more detail in Section 3.3. The prior Sections 3.1
and 3.2 give an overview of current CPU and GPU technologies, respectively. Section 3.4
introduces metrics used to evaluate the quality of parallel algorithms.

1e. g. increased data volume, growing user base, etc.

35

3. Parallel Computing

2000 2002 2004 2006 2008 2010 2012 2014
release date

1

10

100

1000

10000

pe
ak

pe
rfo

rm
an

ce
[G

FL
O

PS
]

Ti500

FX 5900

7950 GT

8800 GTX

GTX 285
GTX 580

GTX 680
GTX 780

Pentium 4 3.4Ghz

Pentium D 840

QX6700 i7-965

i7-3960X

i7-4770K

Peak Performance over Rlease Date

NVIDIA GPUs
Intel CPUs

Figure 3.1.: Comparison of peak performance of CPUs and GPUs.

3.1. CPU Technologies
Multi-core processors have been the predominant trend in CPU technology [66]. In 2001,
IBM released the POWER4 [87], the first non-embedded microprocessor to integrate two
independent processing units, cores, on a single die. With the introduction of the first
dual-core consumer CPU, AMD’s Athlon 64 X2, in 2005 [3] multi-core processors also
became the standard in consumer hardware.2 Today, up to 12 cores can be found within
one processor. To exploit this trend, existing applications need to be redesigned in a
multi-threaded manner.

Fortunately, reconstructing particle tracks from independent collisions is embarrassingly
parallel on an event level [125]. However, CMSSW was not designed with parallelism in
mind, thus processing multiple events concurrently within one instance of the application
is currently not possible. This limitation is circumvented by running several CMSSW
instances in parallel on the same machine, each processing its own set of events. With
a memory footprint of over ≈ 1.5 GByte/instance for events with ten pile-up collisions,
this approach quickly reaches the limits of memory capacity and bandwidth. Therefore,
reducing the memory footprint would allow to process more CMSSW instances concur-
rently. Running isolated instances of CMSSW in parallel to concurrently process events

2Intel’s Pentium D, although released earlier, was not an actual dual-core processor but rather a
traditional Symmetric Multiprocessing (SMP) system within one package.

36

3.1. CPU Technologies

suffers from the lack of sharing of common data between the processes. A multi-threaded
framework, using shared detector geometry and magnetic field data, allows for a higher
level of concurrency due to a lower memory footprint and is under active research e. g. by
Hegner et al. [82]. Still, with many-cores on the horizon, the one core per event approach
does not scale with memory requirements, thus intra-event-parallelism is required to
fully exploit the future hardware’s capabilities. The CMS collaboration pursues two
approaches

1. Module-level parallelism As described in Section 2.3, the event’s processing is
already decomposed into a multitude of modules. Identifying dependencies between
those modules allows for concurrent execution of independent ones. This concept is
scrutinized by Jones [94] as well as Hegner et al. [82].

2. Algorithm-level parallelism Using parallel algorithms instead of sequential ones
within a module is the lowest level of exploitable parallelism. For instance, several
hits, tracks or detector layers could be processed concurrently by multiple cores, in
the CPU’s vector units or on a GPGPU. This level of parallelism is the focus of
Hauth et al. [79] and this thesis.

According to Flynn [54], parallelization using multiple concurrent threads is charac-
terized as Multiple Instruction Multiple Data (MIMD) as threads may execute different
operations on different data. In another processing scheme – Single Instruction Multiple
Data (SIMD) (ibid.) – the same instruction is performed on multiple data points, e. g.
addition of two vectors, hence the term vector processing. Specialized vector super-
computers of the 1970s and 1980s processed up to 64 000-dimensional vectors [58, 112]
but were superseded by commodity hardware-based supercomputers. Vector processing
regained interest with the introduction of SIMD extensions to the Instruction Sets (ISs)
to commodity processors. Intel’s first SIMD extension, „MMX Technology“ introduced
in 1996 [92], was quickly superseded and expanded by the Streaming SIMD Extensions
(SSE) in 1999 [88] and finally, after four iterations of SSE, by Advanced Vector Extensions
(AVX) in 2011 [90]. Each IS features dedicated SIMD registers3 and a growing number
of instructions to operate on packed integer or floating point values. AVX comprises
fifteen 256 Bit registers to hold either 4/8 double/single-precision floating point values,
respectively, or 4/8/16/32 long/int/short/char numbers. The instructions cover the
movement of data between main memory and vector registers, with the possibility to
specify the stride of successive elements in main memory, value and bitwise comparison as
well as basic arithmetic operations, such as add, multiply, divide and square root, which
can operate in a predicated manner – refer to [89] for the complete AVX specification.
Exploiting SIMD instructions in algorithm implementations can be a tedious task,

involving low level, IS-specific optimizations (intrinsics). Only recently, compilers started
offering auto-vectorization features [133]. Through dependency analysis of the innermost
loop of an algorithm, the compiler may be able to package independent loop iterations for
vector processing. In some circumstances, vectorization is even possible in the presence

3Except for MMX, which reuses the Floating Point Unit (FPU) registers.

37

3. Parallel Computing

of control flow instructions in the loop [165]. Still, the process is rather fickle and loop
bodies need to be sufficiently simple to be analyzable by the compiler and refrain from
calling non-intrinsic functions. Hauth et al. [79] explore this algorithm-level parallelization
opportunity by developing a vectorizable math library and applying it to the vertex
clustering in CMSSW. Gorbunov et al. [69] present a Kalman filter-based track fitter
tailored towards SIMD processing.
OpenCL allows the software developer to exploit both, multiple cores and SIMD

instructions, in an accessible and portable manner, refer to Section 3.3 for further details.

3.2. General-Purpose-GPUs
Graphics hardware is designed to render three-dimensional primitives into a two-dimen-
sional image, viewable on a computer monitor [70]. The rendering process encompasses
several distinct steps to transform the vertices – points defining corners and intersections
of geometric shapes – describing the three-dimensional primitives into colored pixels for
display (ibid.):

Vertex Shading Vertices are positioned in the scene and transformed according to their
appearance in the two-dimensional image, influencing the shape and lightening of
the described geometrical objects.

Rasterization In this step, the vertex-based scene description is transformed into pixel-
based fragments. Polygons in the scene are represented by a set of triangles which
are determined by three vertices. The rasterizer transforms those vertices into two-
dimensional points and fills the resulting two-dimensional triangle appropriately,.

Pixel Shading Textures can be assigned to objects of the scene to display different
materials. These textures are stored as flat bitmap images (texture maps), which
need to be translated into the correct perspective in three-dimensional space and
applied to the pixels of the object in the fragment. This step yields the final image
for output.

The hardware components of a GPU closely resemble this processing pipeline and are
depicted in Figure 3.2. Historically, the vertex and pixel shader as well as the rasterizer

Vertex
Buffer

Vertex
Processor

Fragment
ProcessorRasterizer Frame

Buffer

Textures

Figure 3.2.: Schematic of the GPU pipeline. In modern GPUs, the vertex and fragment processors
are freely programmable and realized as unified shaders.

38

3.2. General-Purpose-GPUs

were fixed-function components [139]. With increasing demands on graphics quality,
the pipeline components needed to become more flexible to accommodate more realistic
lighting and texturing. Therefore, the vertex and fragment processors transitioned
from fixed-function units to programmable components (ibid.). Graphics Application
Programming Interfaces (APIs), such as Khronos Group’s OpenGL or Microsoft’s DirectX
[70], supported this development with the introduction of shader programming languages.
In 2005, this development culminated with the introduction of Unified Shader Models
(USMs) [127], providing one large grid of general data-parallel floating-point processors
instead of separate custom processors for vertex and pixel shading [118]. The USM allows
for better utilization of the GPU’s capabilities, as more resources can be allocated to the
compute-intense shader programs, regardless whether they are concerned with vertices or
pixels. Furthermore, this paved the way for general-purpose computing on GPUs [139].

Scientists have been using GPUs to accelerate computations as early as 1994 [32], but
efforts were rather isolated. Momentum picked up with the development of OpenVIDIA
by Fung and Mann [63], a GPU-accelerated framework for computer vision and image
analysis, in collaboration with NVIDIA, which later released the CUDA SDK [137].
GPGPU computing exploits the stream processing of the GPU’s hardware. Vertices and
pixels can be treated individually, therefore GPUs are optimized for high-throughput of
massively-parallel data points [118]. A function, called kernel, is applied to each data
point independently, which should be arithmetically intense in order to mitigate the
memory access latencies. Recent GPU architectures such as NVIDIA’s Kepler feature up
to 1 536 cores, organized in 15 Streaming Multiprocessors (SMXs), on a single graphics
card, as illustrated by Figure 3.3. The GeForce GTX 680 top model, reaches a memory
bandwidth of 192 GByte s−1 and 3 090 GFLOPS [138], a Intel Core i7 3960x features
51 GByte s−1 memory bandwidth and 140 GFLOPS [91]. Care should be taken when
comparing those numbers as CPUs are designed for low-latency, control flow intense
computations. The principles of GPU programming are closely coupled to the design of
respective APIs, thus they will be detailed in the subsequent Section 3.3.

GPUs are exploited to accelerate particle track reconstruction in the HLT of the ALICE
experiment [6]. NVIDIA’s CUDA SDK is used to implement the Cellular Automaton
(CA)-based tracking algorithm described in Chapter 4. Further research on GPUs in the
physics community include the work by Lamanna et al. [114], who employ GPUs in the
low level trigger at the NA62 experiment, and Perez-Ponce et al. [141] as well as Seiskari
et al. [157], who explore GPUs to accelerate the Geant4 simulation toolkit.

39

3. Parallel Computing

(a) Block diagram of NVIDIA GK110
chip with 15 multiprocessors [138].

(b) Block diagram of NVIDIA SMX. It
includes 192 single-precision comput-
ing cores, augmented by 64 double-
precision units, 32 special function
units and 32 load/store units [138].

Figure 3.3.: Schematic of NVIDIA’s Kepler architecture.

3.3. OpenCL

OpenCL is an open framework maintained by the Khronos Group for developing massive-
ly-parallel applications, executing across heterogeneous compute devices such as CPUs and
GPUs [128]. The framework encompasses a C-derived programming language to specify
functions, so-called kernels, for execution on the compute device and an API for the host
application to steer memory movements between host and device as well as schedule
kernels for execution. Its platform independence makes OpenCL an ideal candidate for
developing parallel algorithms destined for execution in the WLCG. However as a cross-
vendor, cross-platform framework it can not leverage the latest hardware developments.
Therefore, it stands to reason that OpenCL could be outperformed by platform or vendor
specific solutions. For multi-core CPU compute devices Shen et al. [164] show that
initial performance gaps between OpenCL and OpenMP, a well established API for
shared-memory parallel programming [47], can be mitigated by forgoing GPU-specific
optimizations. After tuning their OpenCL implementation towards CPUs, Shen et al.
[164] even report OpenCL outperforming OpenMP in 80 % of their test cases. Even
though NVIDIA’s CUDA is the most advanced framework for GPU computing, offering
features such as C++ templates in kernels and dynamic parallelism [134], Fang et al.
[52] attest OpenCL a similar performance for a wide range of problems and CUDA
outperforming OpenCL by at most 30 % on a few. They attribute performance differences
partly to the immaturity of the OpenCL compilers, a point that is also raised by Shen
et al. [164]. Improvements by the platform vendors on the compiler quality could thus

40

3.3. OpenCL

(a) Platform model illustrating relation-
ship between host and its compute
device(s) [128].

(b) Execution model of work-items, or-
ganized in more coarse-grain work-
groups, mapped onto an index space
[128].

(c) Memory model of a compute device
exhibiting the memory hierarchy of
OpenCL [128].

Figure 3.4.: Schematic of the OpenCL platform, execution and memory model.

further alleviate existing performance differences.
In order to provide platform independence, OpenCL needs to present an abstracted

model of the underlying hardware to the developer. The key elements of this model are
described in the following [128].

Platform Model Figure 3.4a illustrates the platform model of OpenCL. One host is
connected to one or more compute devices which are further partitioned into compute
units each containing one or several processing elements. Processing elements of one
compute unit execute a kernel either as SIMD unit, i. e. in lockstep, or as Single Program
Multiple Data (SPMD) unit, i. e. each processing element maintains its own program
counter. Table 3.1 summarizes the mapping of OpenCL entities to CPU and GPU
components. The host interacts with the compute device via commands submitted to a
command queue.

Execution Model Kernels are executed within an OpenCL context. The context
comprises a set of compute devices, memory objects – handles to data in the device’s

41

3. Parallel Computing

OpenCL CPU GPU

Compute Device CPU GPU
Compute Unit thread multiprocessor
Processing Element processor core computing core
Global Memory DRAM DRAM
Constant Memory DRAM DRAM
Local Memory DRAM shared memory
Private Memory registers registers
Caches L1/L2 per core L1 per SMX

L3 per CPU L2 per GPU

Table 3.1.: Mapping of OpenCL entities to CPU and GPU components [150].

memory – and a command queue. The host can enqueue memory transfers, kernel
executions or synchronization points into the command queue, which are then executed
by the device either in- or out-of-order. Kernels are executed in a one, two or three
dimensional index space, refer to Figure 3.4b. Each point of the index space is handled
by a work-item, an instance of the kernel with its index position (global ID) as implicit
input. Via the global ID, the symmetry between the work-items is broken and the
appropriate memory locations for processing identified. The work-items are organized in
work-groups. All work-items of one work-group are executed on the processing elements
of a single compute unit and are scheduled in batches referred to as warps. Work-items
of one work-group are able to synchronize at work-group barriers. There are no means to
synchronize work-items of different work-groups.

Memory Model OpenCL employs a hierarchical memory model, depicted in Figure 3.4a.
Table 3.1 relates the abstract entities to the hardware components of CPUs and GPUs.
The state of the memory visible to a work-item might not be consistent across a collection
of work-items at all times since a relaxed consistency model is used.

Global Memory is accessible by all work-items of all work-groups and offers read and
write access. Depending on device capabilities, accesses might be cached for latency
reduction. The host can transfer data to and from global memory. No consistency
guarantee is made for work-items of different work-groups accessing global memory.
Within a work-group, memory consistency is ensured at work-group barriers placed
by the programmer.

Constant Memory is allocated and initialized by the host and remains unchanged
during kernel execution. All work-items of all work-groups are able to read from
this memory area.

Local Memory can only be accessed by work-items of one work-group. Its consistency
is ensured at a work-group barrier for all work-items of that work-group. The host
can allocate local memory for work-groups but has no read/write access to it.

42

3.3. OpenCL

(a) The work-items process consecu-
tive data points. Therefore, the con-
currently running work-items of a
work-group access non-consecutive
memory segments, resulting in non-
coalesced memory accesses.

(b) A work-item processes memory seg-
ments separated by the work-group
size. Therefore, work-items of the
work-group concurrently access con-
secutive segments in a coalesced
memory access.

Figure 3.5.: Mapping of index space to memory locations. Boxes represent memory locations,
work-items of one work-group are represented by different colors.

Private Memory is exclusively associated to one work-item for local variables of the
kernel.

Programming Model Data parallel execution is the primary model of OpenCL. The
same sequence of operations is applied to multiple data points. The index space maps
work-items to the data to be processed. Parallelism is achieved by processing huge
amounts of data. OpenCL is also capable of task parallel processing, i. e. executing a
single kernel instance. A multitude of enqueued tasks is the source of parallelism in this
model.

Since OpenCL employs a C-derived language, kernel source code should look familiar to
most developers. The OpenCL specification augments traditional C by functions to query
a work-item’s position in the work-group local or global index space, atomic operations
on local and global memory as well as synchronization commands. Furthermore, vector
versions of various data types are introduced to the language, for instance two-, three-,
or four-dimensional floats – float2, float3 and float4, respectively. Notwithstanding
the familiarity of the OpenCL programming language to most developers, the design of
kernels requires the consideration of general GPGPU and specific OpenCL peculiarities
[106].

• In general, data transfers between host and device should be minimized [106]. This
includes executing computations on the device which would perform equally well
on the host in order to avoid data transfers between the two. Overlapping kernel
execution and memory transfer of independent data is also an apt approach.

• As of OpenCL 1.2 [128], kernels are not able to allocate memory (global or local)
dynamically. Thus, all memory needs to be allocated by the host prior to kernel
submission. This aggravates kernel development, where the memory demand
depends on the outcome of the kernel computation itself.

• Accessing global memory suffers from high latency, thus local memory should be
preferred for read/write operations [136]. Data transfer between both memory
areas needs to be explicitly handled by the developer, albeit more recent GPUs
feature caches for global memory on each SMX. Accessing consecutive segments
of memory results in the highest possible throughput. Therefore, the mapping

43

3. Parallel Computing

from index space to data points should be devised accordingly as illustrated by
Figure 3.5.

• Control flow instructions, such as branches, are an essential building block of most
algorithms. On CPUs, branches incur little overhead if predicted correctly by
the instruction unit, otherwise a pipeline flush is required. Threads possess their
own program counter, therefore thread divergence cause no penalty other than
cache inefficiencies. On GPUs, the threads of one SMX are processed in lockstep,
therefore threads, taking different branches of a control flow instruction, must be
scheduled sequentially. Even though NVIDIA introduced MIMD processing in its
vertex processors in 2005 [103], it is still advised to avoid divergent execution paths
within one warp [136]. Techniques to avoid branches include moving flow-control
decisions up the pipeline, i. e. treating the interior and the border of a grid in
two individual kernels, and predication, computing both sides of a branch and
discarding one of the results. Branch avoidance and dynamic warp formation based
on taken branches is still a field of active research [64, 76].

The implications of the raised peculiarities of OpenCL become more evident in Chap-
ter 9, when discussing the algorithms designed and implemented in this thesis.

3.4. Performance Metrics
An essential step of developing algorithms for modern hardware platforms is the thorough
evaluation of the merit of certain optimizations and technology usages. As real-world
hardware more and more deviates from analytically tractable machine models, experiments
are of increasing importance in the analysis of the performance of new algorithms.
Furthermore, insights gained from experiments can shape the further development of the
algorithm, as promoted by the algorithm engineering discipline [151].

In order to derive insights from experiments, meaningful metrics need to be employed
[15]. For serial algorithms, the CPU time spent on varying input sizes provides an
understanding of the efficiency and scalability of the implementation. The runtime of
parallel algorithms not only depends on the input but also on the machine size – i. e. the
number of used processors – and is influenced by synchronization and message passing
between them. Therefore, elapsed wall time is a more meaningful measure than CPU
time (ibid.).
To measure the success of an algorithm’s parallelization, the speedup relates the

execution times of the implementation for varying machine sizes p and is defined as

S(p) = T (1)
T (p) . (3.1)

Two kinds of speedup can be distinguished: the absolute speedup relates the processing
time T (p) of the parallel algorithm on p processors to the runtime T (1) of the best known
sequential algorithm, thus quantifying the merit of using a parallel algorithm, taking
into account potential costs due to the parallelization; relating T (p) to the runtime of

44

3.4. Performance Metrics

the parallel algorithm with just one processor – thus T (1) includes the parallelization
overhead – yields the relative speedup, measuring the scalability of the algorithm with
machine size. Ideally, S(p) should be linear in p with S(p) = p. The utilization of
processors by the algorithm is measured by the efficiency

E(p) = S(p)
p

. (3.2)

A scalable algorithm should have an efficiency close to one in order to effectively utilize a
large number of processors.
The attainable speedup is governed by Amdahl’s law [10]

S(p) = 1
s+ 1−s

p

,

with s denoting the proportion of the application which is inherently sequential and does
not benefit from parallelization. Even small values of s drastically limit the reachable
speedup,

lim
p→∞

S(p) = 1
s
.

For instance, given a 90 % parallelizable application, the maximum possible speedup is
10. Hence, careful algorithm design is required to reduce s to the smallest possible value.
Karp and Flatt [99] introduce a method to determine s experimentally either instead or
in addition to deriving it analytically:

s =
1

S(p) − 1
p

1− 1
p

. (3.3)

Whereas Amdahl’s law considers the speedup for a fixed input size and therefore
concludes the domination of the serial portion when p → ∞, Gustafson’s law [73] is
concerned with a problem size growing monotonically in p, proposing

S(p) = p− s(p− 1).

Given a sufficiently large problem and number of processors, the limitations due to
inherently sequential computations can be mitigated by increasing the amount of total
computations.

45

Chapter 4

Cellular Automata

Cellular Automata (CA) as a computation model were first studied by Neumann [129]
to calculate the motion of liquids. The liquid is partitioned into discrete units and each
unit’s motion is calculated based upon the behavior of its neighbors in discrete time
steps. More formally, consider a regular grid of cells R = Z1 × · · · × Zd in d dimensions.
For each cell i with i = (i1, . . . , id) we define a neighborhood N = {n1, . . . ,nk} ⊂ Zd
with nj representing coordinate differences, thus the jth neighbor of i is cell i + nj .
Figure 4.1 illustrates two widely used neighborhoods for CAs, the Moore and von Neumann
neighborhood. Every cell is in one of a finite number of Q states. For each time step
t, the configuration ct : R → Q describes the state of cell i, given by cti ∈ Q. A CA
is characterized by its transition function δ : QN → Q determining the new state ct+1

i
of a cell i based on the states of cells in its neighborhood cti+N . By definition CA are
homogeneous, i. e. the same transition function and neighborhood is used for all cells. We
consider synchronous CAs where all cells simultaneously change their state.
Cellular Automata provide an apt model to design parallel algorithms [120]. Their

spatial properties can be well mapped to physical or logical computer and network
architectures and their localized communication pattern translates into predictable
memory and network accesses. Hence, CA-based parallel algorithms can be applied to a

(a) Moore neighborhood with radius
r = 1 (green) and r = 2 (yellow).

(b) Von Neumann neighborhood with
radius r = 1 (green) and r = 2 (yel-
low).

Figure 4.1.: Illustration of two widely used neighborhood functions for Cellular Automata.

47

4. Cellular Automata

wealth of problems (ibid.). For physics applications, Glazov et al. [68] were the first to
apply a CA to suppress noise hits in the event reconstruction of the ARES experiment.
CAs can also be employed for track finding in particle collisions as discussed in the
subsequent Section 4.1. Section 4.2 outlines a CA for particle track reconstruction in the
CMS detector.

4.1. Cellular Automata for Track Finding

The concept of Cellular Automata is used by several HEP experiments. Abt et al. [1]
describe a CA-based track finding algorithm for the HERA-B experiment; Kisel [107]
adapts that algorithm to the CBM experiment. At the LHC, CAs are employed by the
ALICE collaboration in the High Level Trigger (HLT) [6]. The following deliberations
outline a general CA-based track finding algorithm, mainly based on [1, 107]. Subsequently,
some peculiarities of ALICE’s algorithm are discussed. All cited papers consider a
less formal model of computation than presented in the previous section, therefore
the applicability of the term „Cellular Automaton“ is scrutinized by evaluating the
implementability of the algorithm in the formal CA model.

The cells of a track finding CA are defined by track segments – formed by hits in adjacent
detector layers. Figure 4.2 illustrates a detector with five layers and the segments defined
by the reconstructed particle interactions with the detector material. Each segment (cell)
s is defined by its two hits s = (si, so) where si is a hit on the inner layer and so is on the
outer one. Given the set of segments S, a track can be seen as sequence t = s1, . . . , sn
of segments. Following Abt et al. [1], track searching can be seen as an optimization

1

2

3

4

5

Figure 4.2.: Five detector layers with CA cells defined via segments – two hits in adjacent layers.

48

4.1. Cellular Automata for Track Finding

problem

maximize
t∈P(S)

u(t) = n− γ
n−1∑
i=1

ϕ(si, si+1) (4.1)

subject to ∀i ∈ {1, . . . , n− 1} : soi = sii+1. (4.2)

Equation (4.1) favors long, smooth tracks by introducing a penalty for the breaking
angle between two neighboring segments, given by ϕ(si, si+1) and weighted by γ (ibid.).
Constraint (4.2) ensures a shared hit in the common detector layer of two neighboring
segments. Many tracks my be contained in set S, hence all local maxima to Equation (4.1)
are viable track candidates.

With the CA cells being defined by the segments of S, a neighborhood function can be
obtained from Constraint (4.2)

N(si) := N↓(si) ∪N↑(si) = {sj ∈ S : soj = sii} ∪ {sj ∈ S : sij = soi }.

This generic definition needs to be refined to reflect the experimental setup and employed
track model of an experiment, for instance by introducing a maximum breaking angle
between two neighboring segments or imposing a constraint on the transverse and
longitudinal impact parameter when extrapolating a segment to the beam line.
Given the neighborhood definition, the track finding CA proceeds in three steps:

1. Track formation joins compatible segments starting at the outermost layer pro-
ceeding inwards towards the beam line.

2. Track selection determines the longest tracks formed in the first step.

3. Track collection gathers the segments belonging to the selected tracks and marks
them for further processing.

The following paragraphs elaborate on each step.

Track Formation The state of a cell i represents the length of the track candidate, in
track segments, that was successfully formed up to i. Hence, given N detector layers,
Q := {1, . . . , N − 1}. All cells are initialized to unity. The transition function

δ(q) = max
n∈N↑

cti+n + 1

realizes a simple counter over the finite set Q. It requires at most N − 1 time steps
to update the states of the cells belonging to the longest track candidate. Figure 4.3
illustrates the configuration of the CA after two and four steps. In the example, two
track candidates comprising four segments could be found. The „criss-cross“ segments
do not possess neighboring cells in N↑ and therefore remain in state 1.

49

4. Cellular Automata

1

2

3

4

5

1

2

1

1

1

2

1

1

1

1

1

1

(a) Configuration after two steps.
1

2

3

4

5

1

2

3

4

1

2

3

4

1

1

1

1

(b) Configuration after four steps.

Figure 4.3.: CA-based track formation. The cell states represent the number of successfully
joined segments from the outermost layer. In Figure (b), the colored dashed circles denote the
expected locations of track model compliant hits for the colored criss-cross segments.

1

2

3

4

5

1

2

3

4

1

2

3

4

1

1

1

1

Figure 4.4.: Selection of the longest found tracks by the CA. Starting from the innermost cells
with the highest state, collect the cell in the next layer with a state lower by unity until the
outermost cell is reached.

Track Selection Subsequent to track candidate forming, the best track candidates need
to be identified. In the first phase of the CA, candidates of different lengths have been
formed. In order maximize the first part of Equation (4.1), the longest candidates need
to be selected. This is trivial when considering the CA merely as an conceptual tool as
the longest tracks can be identified from the „outside“ [1, 107].
Within the CA model, maximum finding can be considered a variation of the Queen

Bee Problem (QBP) – also known as leader election – introduced by Smith [166]. The
QBP asks to elect a unique leader (queen bee) among a connected pattern in a CA. For

50

4.1. Cellular Automata for Track Finding

arbitrary patterns in d dimensions, Stratmann and Worsch [174] describe an algorithm
requiring Θ(diam log(diam)) time, with diam being the diameter of the pattern in
number of cells.1 The adaption to the maximum selection problem is straightforward.
The connected pattern is defined by the detector layers and the extent of each layer. A
von Neumann neighborhood connects a cell of layer k to its neighbors within the detector
layer and to the closest – even incompatible in the sense of the track model – cells in
layers k±1. The borders of the detector are marked by dedicated dead cells, i. e. sentinels.
The leader election criterion is the state of a cell. In contrast to the original QBP, the
existence of several equally long tracks needs to be taken into account.

Track Collection With the longest track candidate(s) being selected in the preceding
phase of the CA, their constituting segments need to be collected and marked for output.
This step is again trivial when adapting the notion of a simulated CA.

In the formal CA model, the procedure starts at the end of the track, i. e. the segment
with the highest state identified during the previous phase, and proceeds in the opposite
direction as the track formation. To mark a segment for output, the state set Q :=
{1, . . . , N − 1} is extended by {1o, . . . , (N − 1)o}. The end segment is immedialty marked
for output. The transition function for the further processing is described by

δ(q) =
{
qo if (q + 1)o ∈ n↓
q else,

i. e. a cell is marked for output if it observes a cell with a state higher by unity than
its own state within its downward neighborhood. Figure 4.4 illustrates this process.
All segments between layer four and five are in state 1 and observe a cell with state
2 in their neighborhood. To avoid the criss-cross segments being marked as output
track constituents, the transition function can be extended to only mark the segment
for output that minimizes the second term of Equation (4.1) – the breaking angle – if
several segments in layer k are eligible for output due to the same segment in layer k − 1
[1]. Capturing this constraint in the formal CA model is rather involved and requires
signaling within the layer, thus necessitating an extended neighborhood definition, with
subsequent minimum determination.
Phases two and three are repeated, with cells already marked for output not partici-

pating in the track selection, thus allowing the second longest track(s) to be identified
and marked for output. The process ends when a preconfigured lower threshold for track
length is reached.

ALICE’s CA To accelerate the track reconstruction in the HLT, ALICE employs a
CA-based track finding routine in their TPC detector, implemented on GPGPUs ALICE
Collaboration [6]. A TPC is a gas-filled cylindrical chamber with MWPC endplates [123].
A MWPC is a set of thin, parallel, equally spaced and positively charged anode wires
between negatively charged cathode planes in a gas volume [155]. A bypassing charged

1f(n) ∈ Θ(g(n)) ≡ k1 · g(n) ≤ f(n) ≤ k2 · g(n) for some positive k1, k2 and sufficiently large n.

51

4. Cellular Automata

(a) View of a MWPC perpendicular
to the anode wires. Wires are de-
picted by black dots, cathode planes
by gray thick lines. The dashed lines
represent the collection area of each
wire mask.

(b) ALICE’s TPC endplate configura-
tion with 159 rows of wires [6].

Figure 4.5.: Illustration of a MWPC and its application in the ALICE TPC endplates.

particle causes a localized cascade of ionization in the gas which is collected on the wire
due to the external magnetic field, resulting in an electric current proportional to the
energy of the detected particle (ibid.). The TPC cylinder is halved along the z-axis
by an electric-field induced by a central high-voltage electrode disc. A particle passing
through the chamber ionizes the contained gas. The ions drift towards the MWPC
endplates due to the electric field, the drift time determines the z-coordinate of the
interaction. The wires of the MWPC measure the interaction’s x and y coordinate, refer
to Figure 4.5b illustrating the TPC of ALICE featuring 159 rows of wires. Due to this
abundance of measurement points, the multitude of tracks in Heavy Ion events as well as
the homogeneous geometry of a TPC, a simple track model and strong track candidate
selection criteria can be employed ALICE Collaboration [6].
ALICE completely eliminates combinatorics in the segment forming. Their cells are

based on triplets of hits tk = (hk−1, hk, hk+1) in adjacent detector layers k ± 1. For each
hit hki in detector layer k only the best triplet, i. e. the triplet most closely resembling a
straight line , is accepted to form a cell. If two hits hki and hk+1

j are both contained in
each other’s best triplet they are considered neighbors. Therefore, criss-cross segments as
shown in Figure 4.2 are already eliminated at the CA cell level. The further processing
of ALICE’s algorithms follows the general track finding CA outlined above, with the
addition of a Kalman filter-based χ2 quality check in the track selection and collection.

4.2. CA-based Track Finding in CMS
As the foreseen LHC beam parameters for the next data taking period – starting in 2015 –
will double the the number of expected pile-up interactions per event, fast alternatives to
Kalman filter-based track finding need to be explored. The CMS collaboration identifies
two approaches as viable candidates [161]: Hough transformation- [40] and CA-based

52

4.2. CA-based Track Finding in CMS

track reconstruction techniques.
Hauth et al. [80] examine the suitability of the Cellular Automaton-based approach

for CMS. Since CAs are prone for a massively-parallel implementation, Hauth et al.
[80] strive to leverage modern CPU and GPU technology in a portable manner as
demanded by the heterogeneous nature of the Worldwide LHC Computing Grid. The
CMS detector features a complex geometry with barrel, endcap and transition region
as well as inhomogeneous detector modules – pixel and silicon strip detectors – with
varying precision, thus previous work, particularly [6], can not be easily adapted to CMS.
Therefore Hauth et al. [80] propose a new algorithm, following the general processing of
the track finding CA presented in Section 4.1 but tailored towards the specific features of
the CMS detector. The CA cells are defined via triplets of reconstructed hits which are
more related to the hit triplets obtained from CMSSW seeding than the triplet notion of
[6]. This gives rise to the need for an efficient – both in the physical as well as in the
algorithmic sense – triplet finding algorithm as the foundation of the automaton. The
design, implementation and evaluation of the OpenCL-based triplet finding algorithm
is presented in Part II of this thesis. As the track model of both the triplet finding
algorithm and the track reconstruction CA are closely related, its discussion is deferred
to Part II.

53

Chapter 5

Spatial Data Structures

A data structure describes a particular method to organize and store data for efficient
access via associated algorithms – such as insertion, search, deletion etc. Spatial objects
like points in space, lines, surfaces and volumes do not only possess individual properties,
including position and extent, but also feature a spatial relation to one another. Spatial
data structures need to capture and exploit the geometric structure and properties of
these objects in order to efficiently answer spatial queries, e.g. point location, nearest
neighbor or range queries [149].
Range queries for points in space are of particular importance for particle track

reconstruction. In general, given a set P of n points in d-dimensional space, a range
query asks for all points inside a rectilinearly oriented d-orthotope Q. As presented
in Section 2.3.4, the three-dimensional nature of the track reconstruction problem can
be reduced to two dimensions by exploiting the layered structure of the CMS detector
and treating barrel and endcap layers separately. Furthermore, even though hits are
reconstructed from clusters of energy deposits, as discussed in Section 2.3.2, they are
defined by a single position plus uncertainty and can thus be treated as point data.
Therefore, a query for hits in detector layer k, which are compatible with a particle’s
trajectory, is defined by a query rectangle Q given by the extrapolation of the trajectory
from layer k − 1 to k. In the barrel region for instance, Q is defined by the predicted φ-
and z-ranges.

This chapter introduces spatial data structures for two-dimensional range queries. The
current CMSSW triplet seeding which is described in Section 5.1, employs a φ-sorted list
to store the hits of a detector layer. Section 5.2 describes k-d trees, which have been
recently introduced to CMSSW in order to decrease the number of retrieved hits during
triplet finding. The following sections present quadtrees and r-trees as further spatial
indices. While the former tree data structures are constructed in a data-driven manner,
Section 5.5 discusses the space-driven uniform grid data structure.

5.1. CMSSW Triplet Seeding – φ-sorted List

As shown in Algorithms 2.1 and 2.2, the current pair and triplet finding algorithms use
only one-dimensional range queries to retrieve compatible hits for seed building. All hits
of a detector layer within the predicted φ-range are retrieved for compatibility checking.

55

5. Spatial Data Structures

Despite computing the admissible z-range – or r-range in the endcap – in the triplet
finding algorithm, the information is disregarded for hit retrieval. For pair finding, the
feasible z-range is not predicted, nevertheless the reduced number of retrieved hits could
outweigh the effort for calculating the appropriate values of z.

Due to the one-dimensionality of the current queries, The hits of a particular detector
layer are stored in a simple list, sorted by φ. Given a layer with n hits, constructing this
data structure requires O(n logn) time and O(n) space. A query for hits in [φl, φu] can
be answered in O(logn + r) time using binary search, with r denoting the number of
retrieved hits. A wealth of sorting algorithms suitable for GPU-based processing exist in
the literature, for instance odd-even merge sort [184] or sample sort [117]. Therefore this
data structure could be used in a OpenCL-based triplet finding algorithm. However, the
number of retrieved hits and the resulting combinatoric effort can be reduced by adding
the z/r dimension to the search queries as facilitated by the data structures described in
the following.

5.2. k-d Tree

A k-dimensional tree is a space-partitioning binary tree for points in Rk introduced by
Bentley [23] and depicted in Figure 5.1. Each non-leaf node of the tree splits the space
associated to it into two half-spaces by a k − 1 dimensional hyperplane. The splitting
dimension d ∈ [1, . . . , k] is chosen cyclically for each level of the tree, with the splitting
hyperplane being spanned perpendicular to the d-axis. The hyperplane separates points
smaller than a chosen pivot on the d-axis in the left subtree from the points greater than
the pivot in the right subtree. To ensure a balanced k-d tree, the median of the points
with respect to their coordinate in d is used as pivot. This would either require sorting
the points in O(n logn) or employing the complex linear time algorithm by Blum et al.

p4

p1

p5

p3

p2

p7

p9

p10

p6

p8

1

2

3

4

5

6

7

8

9

p1 p2

8

4

2

1

5

p3 p4 p5

p6 p7

p8 p9 p10

76

9

3

Figure 5.1.: Illustration of a k-d tree for two-dimensional space points [24]. The node numbers in
the tree on the right correspond to the splitting lines on the left and exhibit the alternating
splitting dimension with each tree level.

56

5.3. Quadtree

[28]. However, sampling-based median selection approaches yield sufficiently balanced
trees for most inputs in constant time O(1) [22]. The splitting continues recursively until
a half-space contains only one point, which is then added to the tree as leaf.
A k-d tree can be constructed in O(n logn) time and O(n) space, using either the

linear time median selection algorithm by Blum et al. [28] or a sample-based approach
with a fixed sample size. Employing a sorting-based median computation results in
a runtime of O(n log2 n). Range queries with an axis-parallel query orthotope can be
answered in O(n1− 1

k + r) time, with r reported points [23].
In preparation for high pile-up events, k-d trees have been introduced to the particle

flow algorithm in the combined reconstruction of CMSSW [67]. The algorithm links
reconstructed tracks to calorimetric clusters in the (η, φ)-plane and thus uses nearest
neighbor queries on the data structure, which can be answered in average O(logn) time.
Recently, Reid [146] adapted CMSSW’s triplet seeding algorithm to k-d trees. The
modified algorithm performs a two-dimensional range query for compatible hits to a
given hit pair. Reid [146] duplicates hits with an offset of 2π in φ in order to simplify the
treatment of the angular wraparound. Furthermore, he expands the predicted z-range
to maintain the algorithms physical efficiency. Construction of the k-d tree incurs some
overhead in the triplet finding, nevertheless Reid [146] reports a reduction in overall
seeding runtime of 5.6 % to 22 %, due to the reduced number of retrieved hits.
In graphics processing, k-d trees are widely spread, particularly in ray tracing appli-

cations. Therefore, several GPU-based algorithms exploiting this data structure exist.
Santos et al. [153] review k-d tree traversal algorithms implemented in NVIDIA’s CUDA.
They propose a new traversal algorithm, minimizing global memory accesses by intro-
ducing ropes, pointers in each leaf to neighboring nodes. Zhou et al. [185] study the
construction of k-d trees on GPUs and report favorable results both in speedup as well
as quality of the built tree. Thus, k-d trees are a viable candidate for a triplet finding
algorithm based on OpenCL, due to their proven applicability for triplet seeding and
GPU suitability.

5.3. Quadtree

A quadtree partitions two-dimensional space by recursively dividing it into four quadrants
[53]. Each internal node posses four children, either subtrees further partitioning the
associated quadrant or leafs representing a single point in space, as shown in Figure 5.2.
Therefore, the height h of a quadtree depends on the smallest distance d between any
two points and is bound by log l

d + 3
2 for an initial square space of length l. It can be

constructed in O(hn) time in linear space [163]. The worst case bound for range queries
is O(n), for instance if all contained points are spread closely along the sides of the initial
square and the inner region is queried.
Due to their simplicity, quadtrees are widely applied in graphics algorithms, e.g. for

collision detection or rendering, but also for simulating Cellular Automata [147]. Zhang
et al. [183] employ quadtrees to encode geospatial data on GPUs; Yusov and Turlapov
[182] present a GPU-optimized quadtree for terrain rendering.

57

5. Spatial Data Structures

NW SWNE SE

Figure 5.2.: Illustration of a quadtree for two-dimensional space points [24]. The exhibited
quadtree is unbalanced due to the non-uniform spatial distribution of the data points.

Quadtrees can be considered as an „adaptive“ grid data structure as the size and number
of the grid cells varies with the densities of points in that region. Due to a particle’s
multiple interactions with the detector material, several hits may be reconstructed in close
proximity, resulting in a needlessly fine-grained quadtree. This effect can be mitigated by
imposing a minimum quadrant size and collecting several hits within one leaf. Moreover,
the unbalanced height of a quadtree seems unfavorable for lockstep processing in the
OpenCL execution model. Therefore, quadtrees should not be the primary choice for an
OpenCL-based triplet finding algorithm.

5.4. R-Tree

R-trees partition two-dimensional space by recursively grouping nearby objects within
their Minimum Bounding Rectangle (MBR) [74]. A leaf’s MBR contains a single space
point. An inner node’s MBR envelopes the MBRs of its subtrees and can therefore be
considered a more coarse-grained approximation of the data points. Figure 5.3 illustrates
a R-tree for two dimensional space. R-trees are balanced search trees and are optimized
for external memory, being similar to B-trees [20]. Nodes are stored in pages of up to M
nodes, with a minimum guaranteed fill of m. Objects are inserted into the node whose
MBR needs to be enlarged the least to encompass the new item. The operation requires
O(M logn) time if no pages need to be split due to overfilling, since all nodes of a page
are inspected to determine the most suitable one. For page splitting however, O(M2)
operations are performed in order to minimize the total area of the two created pages.
Furthermore, the overlap of the two created pages ought to be minimized as well, since
range queries can be answered in O(logn) in the absence of overlap, yet require O(n) in
the worst case in the presence of overlapping MBRs.
A plethora of variants of R-trees is proposed in literature and practice [121], e.g.

R+-trees prohibit overlapping nodes by allowing the storage of one point multiple times
in the tree [158]. Kim and Nam [104] present a three-phase R-tree traversal algorithm
for multi-dimensional range queries on GPU. Luo et al. [119] describe a parallel R-tree
construction algorithm suitable for GPU execution.

58

5.5. Uniform Grid

R1

R3

R4

R9

R11

R13

R10

R12

R16

R15

R14R8

R2

R6

R7

R17

R18

R19

R5

R1 R2

R3 R4 R5 R6 R7

R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19

Figure 5.3.: Illustration of a R-tree for two-dimensional MBRs [111]. Due to the overlapping
Minimum Bounding Rectangles – e. g. R3 and R4 – range queries have a worst case time
complexity of O(n).

As R-trees are balanced, they are more appropriate for the OpenCL execution model
than quad trees. Notwithstanding, they bear the same disadvantage of suffering from
many points in close proximity, as common with reconstructed hits. Furthermore, the
proposed GPU-based construction and query algorithms are more complex than the ones
for other spatial data structures. Thus, preference should be given to a simpler data
structure for efficient hit retrieval in triplet finding.

5.5. Uniform Grid

A grid is a regular tessellation of a d-dimensional space into contiguous cells [57]. Figure 5.4
illustrates a grid data structure as a uniform overlay over space – independent of the
distribution of the data points. Given a unit d-hypercube, each dimension i is subdivided
into Gi cells of size 1

Gi
, i ∈ [1, . . . d], yielding a total of c = ∏d

i=1Gi cells. The data
structure requires O(n+ c) space and can be constructed in-situ in O(dn logn) time or
ex-situ in linear time and extra space [5]. A uniform distribution of points in space is
most suitable for grid data structures. In the worst case, point and range queries require
O(n) time, viz. if all points are gathered by one cell. Assuming evenly spread space
points, a cell is occupied on average by m = n

c points, resulting in a point location time
of O(m) and range query time of O(dm+ r), with r retrieved points.
Grid data structures haven been applied to manifold applications [5]. Kalojanov and

59

5. Spatial Data Structures

y

x

0 5 8

10 18 21

22 29 29

y

x

Figure 5.4.: A grid data structure as uniform overlay over two-dimensional space. The left grid
depicts the data points and their distribution over the grid cells. The right grid shows the
associated data structure with offsets into the array of data points, sorted by their grid cell
affiliation.

Slusallek [98] construct a uniform grid on a GPU, using a multi-pass approach, for ray
tracing. Joselli et al. [95] employ a grid for crowd simulation studies on GPU. The ALICE
Collaboration [6] constructs a grid data structure ex-situ on CPU, before transferring
the data to the device.

Due to its simplicity, a grid data structure appears to be an ideal candidate for OpenCL-
based triplet finding. Even though k-d trees achieve lower query times, particularly
for non-uniformly distributed points, their construction and traversing is much more
cumbersome in the OpenCL programming model [98].

60

Part II.

Parallel Triplet Finding with OpenCL

61

Chapter 6

Overview

In CMSSW, hit triplets are seeding the Kalman filter-based track reconstruction, as
they provide an initial estimate of the track parameters. For Cellular Automaton-based
tracking approaches, cells are often defined as the track segment given by a hit pair.
However, defining cells via hit triplets allows for the elimination of implausible hit
combinations at an early stage by applying filter criteria not applicable to pairs of hits.
Thus, the computational effort invested in triplet finding results in lower combinatoric
complexity for the later reconstruction steps. Since triplets need to be found for all
detector layers in CA-based track reconstruction, the need for an efficient and performant
triplet finding algorithm becomes more evident. Hauth et al. [79] proof the parallelization
potential of CMSSW’s triplet finding by concurrently processing the hit pairs generated
in the first step of Algorithm 2.2 with Intel’s Threading Building Blocks (TBB) [105,
180]. Finding triplets in all detector layers simultaneously further increases the level of
exploitable parallelism. By reimplementing triplet finding in OpenCL, this parallelism
becomes accessible to a wide range of hardware platforms, including multi-core and
many-core CPUs as well as GPUs, in a portable manner as required for software designed
for execution in the Worldwide LHC Computing Grid (WLCG).
As described in Section 2.2, CMSSW is implemented in C++ and makes extensive

use of inheritance and polymorphism. The Event and EventSetup containers are vital
for data transportation along the module execution chain and provide access to the
data via smart pointers [93]. The triplet finding algorithm itself relies on abstract
classes to interface various pair generators, third hit predictors and multiple scattering
parameterizations. Furthermore, the required computations are scattered amongst a
vast set of interwoven classes, particularly for multiple scattering effects. OpenCL is not
object-oriented but data-centered, requiring plain memory layouts, such as arrays-of-
structs or structs-of-arrays, and „C-style“ function implementation [140]. Therefore, a
complete reimplementation of the algorithm is necessary to be compliant with OpenCL’s
requirements. This gives rise to the opportunity to completely redesign triplet finding in
order to tailor it towards performant parallel processing, disposing some of the „over-
engineered“ calculations in favor of simpler geometric computations and parameterizations
[110]. The design of the novel triplet finding pursues the following goals:

• parallelization of the entire pair and triplet finding process on the intra-event level
– finding triplets in several layer combinations concurrently – and the inter-event

63

6. Overview

Third Hit Prediction

Pair Building

Triplet Filtering

Triplet Joining

Track Selection
Compute Device

Host
Control Flow and Memory Management

Figure 6.1.: High level processing steps of OpenCL-based CA track finding. Algorithms for
the steps required for triplet finding (boldface font) are presented in this thesis. The track
formation steps are described by Hauth et al. [80].

level – processing events of the same luminosity section simultaneously;

• use of computationally inexpensive criteria to distinguish valid triplets – belonging
to the track of a charged particle – from fake ones before employing more involved
filters;

• storage of required non-event data, such as detector geometry and alignments, and
event data, i. e. hits, in data structures pertinent to the OpenCL execution and
memory model and

• algorithm implementation in accordance with OpenCL peculiarities, i. e. branch-
avoidance, local memory and lack of dynamic memory allocation within kernels.

Figure 6.1 depicts the high level processing steps of the newly designed triplet finding
algorithm (boldface font). Albeit not within the scope of this thesis, the figure moreover
presents the further processing of the triplets in the CA-based track finding algorithm
outlined in Section 4.2. All operations are executed as kernels on the OpenCL compute
device in order to minimize data transfers between device and host. Since the number of
results a kernel produces is unpredictable, the host needs to compensate for the lack of
dynamic memory allocation in a kernel. Allocating ample amounts of memory prior to
kernel execution to accommodate all possible combinations is infeasible, as the number
of combinatorial possible triplets can reach 1010, refer to Section 2.3.4. Hence, every
processing step is designed as a two-pass algorithm: a counting pass to determine the
number of outputs produced and a storing pass to actually write the output to memory
[34, 45, 152]. Between both passes, the host allocates memory on the device for the
identified amount of output. Algorithm 6.1 provides a high-level overview of the interplay

64

Algorithm 6.1 Data flow of OpenCL triplet finding algorithm.
Require: event hits, detector geometry
1: geom ← Build geometry lookup table
2: transfer geom to device
3: transfer event hits to device
4: kernel build grid data structure for event hits
5: parfor triplets of detector layers do
6: kernel n ← number of valid pairs . pair building
7: transfer n to host
8: allocate memory for n pairs
9: kernel store valid pairs

10: kernel n ← number of triplet candidates . third hit prediction
11: transfer n to host
12: allocate memory for n triplet candidates
13: kernel store triplet candidates
14: kernel n ← number of valid triplets . triplet filtering
15: transfer n to host
16: allocate memory for n triplets
17: kernel store valid triplets
18: end parfor . continue with CA-based track finding

of host and compute device in the execution of the triplet finding algorithm. Details of the
two-pass concept are described in Chapter 9 together with the geometric computations
performed by each step. As discussed in Section 3.3, thread divergence due to branching
is one of the main concerns when designing algorithms for OpenCL. A major source of
branching are differences in the geometric calculations required for the barrel, endcap
and transition regions. In order to avoid thread divergence during execution, each region
should be addressed by a specific kernel. In this thesis, the validity of the pursued
algorithmic approach and the merit of employing OpenCL for triplet finding are assessed
with algorithms designed for the barrel region. However, the developed concepts can
be applied to the endcap and transition regions as well, even though their treatment is
beyond the scope of this work.
Algorithm 6.1 not only highlights the algorithms involved in triplet finding but also

the employed data structures for event and non-event data. The detector geometry
is stored as a compressed lookup table to reduce the memory required for non-event
data. As identified by Chapter 8, a uniform grid data structure is used to efficiently
query for hits within a detector region of interest. Chapter 8 further details the utilized
data structures. Prior to the discussion of algorithmic aspects of the new triplet finding,
Chapter 7 introduces the criteria used to distinguish valid triplets from fake ones. In
Chapter 10 the physical and algorithmic properties of the developed triplet finding are
evaluated.

65

Chapter 7

Filter Criteria

In a trivial approach, a track finding CA would comprise a cell for every possible
combination of three hits in adjacent detector layers. In high pile-up scenarios, this
would result in an unfeasibly large automaton. Thus, discriminating valid hit triplets,
originating from a single particle’s trajectory, from those composed of hits from several
particles’ interactions with the detector material, referred to as fakes or background, at an
early stage is vital to limit the automaton’s size and hence the runtime of the CA-based
track finding algorithm. In this chapter, properties of valid hit triplets are examined and
suitable criteria are derived to distinguish them from background triplets. In Section 7.1,
the properties of a triplet’s azimuthal and polar angles are studied. Section 7.2 describes
an efficient method to obtain the parameters of the helical path defined by a triplet in
order to compute the path’s minimum distance to the beam line. This chapter presents
the physical concepts of the employed filter criteria; the algorithmic implementations are
described in the appropriate sections of Chapter 9.

The derived criteria can not only be used to assess triplets, but are also applicable to
determine suitable combinations of triplets in the later processing of the CA.

7.1. Angular Constraints

A charged particle follows a helical trajectory in a magnetic field, due to the Lorentz
force

FL = q(E + v×B),

where q and v denote the charge and velocity of the particle, respectively. The particle
is subject to a magnetic field B and an electric field E. Neglecting the electric field E
and expressing v in terms of the particle’s momentum p yields

FL = q

(p
m
×B

)
. (7.1)

The magnetic field produced by the CMS solenoid is mainly directed along the z-axis and
can be idealized to B =

(
0 0 Bz

)T
[44]. Thus, considering an arbitrary momentum

67

7. Filter Criteria

θ

θ′

r

z

(a) Constraint on longitudinal bending
by restricting θ′

θ ≤ dθ.

y

x

φ
φ′

(b) Constraint on transversal bending
by restricting |φ′ − φ| ≤ dφ.

Figure 7.1.: Schematic angular criteria to discriminate valid and fake triplets.

vector p =
(
px py pz

)T
,

FL = qBz
m

 py
−px

0

 , (7.2)

i.e. a charged particle experiences the Lorentz force merely in the transverse plane,
orthogonal to its instantaneous path of motion.
In general, the curvature κ of a curve in three-dimensional space is given by

κ = ‖v× a‖
‖v‖3

.

In conjunction with Equation (7.1)

κ = q
‖p× (p×B)‖

‖p‖3
= q

∥∥∥(p ·B)p− ‖p‖2 B
∥∥∥

‖p‖3
.

Considering the idealized magnetic field B =
(
0 0 Bz

)T
, the Lorentz force influences

solely the particle’s transverse motion and depends only on the its pT , as shown by
Equation (7.2). Therefore, p can be projected onto its transverse components, pT =(
px py 0

)T
, for the derivation of the curvature κ due to the Lorentz force. Since

pT ⊥ B, κ is given by

κ = q

∥∥∥∥−‖pT ‖2 (0 0 Bz
)T
∥∥∥∥

‖pT ‖3
= qBz

pT
. (7.3)

Ideally, the particle’s trajectory is thus bent merely in the transverse plane and follows a
straight line in the longitudinal one.
A valid hit triplet, associated with a charged particle, should therefore be compliant

with this track model. This leads to the following filter criteria, defined by the two
segments constituting the triplet, as depicted by Figure 7.1:

68

7.2. Transverse Impact Parameter Constraint

Longitudinal Bending Considering the idealized magnetic field, the track’s polar angle θ
should be constant along all segments, refer to Figure 7.1a. Even though a particle’s
trajectory might be bent in the longitudinal plane due to multiple scattering or
non-ideal magnetic field conditions, the ratio of the θ angles of a triplet’s segments
should by bound by ∣∣∣∣θ′θ − 1

∣∣∣∣ ≤ dθ. (7.4)

The bound dθ also needs to account for the uncertainty of a hit’s position due to
the limited detector resolution.

Transversal Bending The curvature of a particle’s path is inverse proportional to its pT .
Thus, bounding the difference of the φ angles of a triplet’s segments by imposing∣∣φ′ − φ∣∣ ≤ dφ (7.5)

constrains the admissible minimum pT of the associated particle. Furthermore,
energy loss due to the particle’s interaction with the detector material and multiple
scattering influence the trajectory and need to be considered in dφ. Similarly to
dθ, the detector resolution needs to be accounted for as well. Figure 7.1b depicts
the dφ filter criterion schematically.

As fake triplets do not resemble a particle’s path, they are not confined by these
requirements. Thus, the two criteria are suitable to discriminate between fake and
valid triplets. The choice of values for dθ and dφ influences the achievable efficiency
(Equation 2.3) and resulting fake rate (Equation 2.4) of the two filter criteria. Section 10.2
presents the derivation of suitable values for dθ and dφ.

7.2. Transverse Impact Parameter Constraint
Tracks of particles emerging from the initial proton-proton collision originate close to the
Interaction Point. The transversal distance of a trajectory’s point of closest approach to
the beam line is referred to as Transverse Impact Parameter, denoted by d0 and depicted
in Figure 7.2. As detailed in Section 2.3.4, restricting d0 reduces the combinatorial
complexity of CMSSW’s triplet seeding significantly. Hence, the TIP is employed as
discriminator for valid and fake triplets in the presented triplet finding algorithm as well.
In order to determine the TIP, a circle must be fitted to the three hits of the triplet.

The CMSSW triplet seeding utilizes a conformal mapping technique for circle fitting [77].
Strandlie et al. [173] present an alternative approach, transforming the problem of fitting
a circle to points in the plane to fitting a plane to points on a Riemann sphere. The
method bears the merit of being capable to address the effects of multiple scattering [172]
and is found to be computationally more efficient than the conformal mapping approach
by Frühwirth et al. [62]. The number of required divisions for the mapping of the points
in the plane to the three-dimensional surface can be reduced by employing a circular
paraboloid instead of a Riemann sphere [60]. The presented triplet finding algorithm
therefore employs this circle fitting technique.

69

7. Filter Criteria

y

xd0

Figure 7.2.: Schematic of the Transverse Impact Parameter d0, i.e. the distance of a trajectory’s
point of closest approach to the beam line in the xy-plane.

Given a hit’s transverse coordinates (x, y), it is mapped to the circular paraboloid in
(u, v, w) space by

u = x v = y w = x2 + y2.

Points on the (x, y)-plane lying on a circle with center c = (a, b) and radius R are subject
to

(x− a)2 + (y − b)2 = R2.

Algebraic manipulation and mapping (x, y) to the paraboloid reveals (ibid.)−2a
−2b

1

uv
w

 = R2 − a2 − b2. (7.6)

Equation (7.6) resembles the equation of a plane in space, nx = −c, with unit normal
vector n and distance from the origin c. Therefore, the parameters of the circle in (x, y)
can be easily obtained from the plane fitted to the mapped hits in (u, v, w). Frühwirth
et al. [60] fit n mapped hits ui to a plane by minimizing

S =
n∑
i=1

nui + c

with respect to n and c. For triplet finding with only mapped hits u1...3, fitting is futile,
as n can be obtained directly by

n =
−−−→u1u2 ×−−−→u1u3
‖−−−→u1u2 ×−−−→u1u3‖

,

with −→xy denoting the vector from x to y. The value of c is then given by

c = −nui

70

7.2. Transverse Impact Parameter Constraint

c

o

R

R

pca

p′ca

d0

d′0

Figure 7.3.: Calculating d0 based on the point of closest approach pca of the particle’s trajectory.
The intersection between the circle’s circumference and the line −→co between circle center and
origin uniquely defines pca.

for arbitrary i ∈ [1, 2, 3]. Thus, the circle parameters are (ibid.)

c =
(
a
b

)
= − 1

2nz

(
nx
ny

)

R =
√

1− n2
z − 4cnz
4n2

z

.

The TIP d0 can be obtained from the distance of the point of closest approach, pca,
to the origin o. As Figure 7.3 depicts, pca is uniquely defined by the intersection of the
circle’s circumference with the line −→co, thus

d0 = ‖pca‖ =
∥∥∥∥∥c +R ·

−→co
‖−→co‖

∥∥∥∥∥ . (7.7)

Proof. Suppose ∃p′ca 6∈ −→co, with ‖p′ca‖ < ‖pca‖, as shown in Figure 7.3. Every point
on the circle’s circumference has distance R to the circle’s center. If p′ca existed then
‖p′ca‖ + R < ‖−→co‖ = ‖pca‖ + R, violating the triangle inequality. Hence, pca ∈ −→co,
yielding the correctness of Equation (7.7).

Furthermore, the z-coordinate of pca defines the longitudinal impact parameter z0 of
the track. The parameter can be obtained by either using a straight line approximation
of the trajectory in the r-z-plane or by employing a circle fit as described above, mapping
coordinates (r, z) to the circular paraboloid. As presented in Table 2.1, tracks may
originate at z up to ±30 cm, therefore z0 was not chosen as primary discriminator for
valid and fake triplets.

The derivation of suitable d0 values to reject a large portion of the fake background
while still remaining high efficiency is presented in Section 10.2.

71

Chapter 8

Data Structures

Data structures are a fundamental building block of all data processing applications. The
choice of data representation and access techniques is influenced by

• the structure and properties of the data to be stored, e. g. pointers, numbers, one-
or multi-dimensional point data, volumes, etc.;

• the calculations to be performed with the data and their requirements on value
ranges and precision;

• the access pattern to the data – for instance sequential access or random access via
point or range queries – and

• the underlying architecture’s memory and programming model, including memory
hierarchies, available data types and preferred model of concurrency.

This chapter introduces the employed data structures in the presented OpenCL-based
triplet finding algorithm. Two main types of data can be distinguished for this application

• event-independent data, such as detector geometry and alignment information or
magnetic field data, and

• event data, namely hits – energy deposits of traversing particles in the detector
material.

Since effects due to the magnetic field are captured by the parameterized filter criteria
introduced in the previous chapter, solely the geometric description of the detector layout
is required for the presented algorithm. Section 8.1 introduces the data structure used to
store this information on the compute device. Data structures pertinent to space point
storage are discussed in Chapter 5, with the uniform grid being identified as the most
suitable for OpenCL-based triplet finding. Section 8.2 describes the implementation of
the grid data structure.

8.1. Detector Geometry
The CMS inner tracking system comprises 1 440 detector modules in the pixel- and 15 148
modules in the silicon strip detector [154]. Each module is defined by a three-dimensional

73

8. Data Structures

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

y

x

(a) Plot of radius of the 10 548
DetUnits of the barrel, exhibiting
their clustering around a few discrete
values.

x

y

(b) Illustration of overlapping detector
modules within one detector layer.

Figure 8.1.: Layered construction of the CMS inner tracking system.

Detector Geometry
index detId [uint] radiusIdx [byte]

0 id0 r2
1 id1 r2
2 id2 r0
...

...
...

Radius Dictionary
index radius [float]

0 r0
1 r1
2 r2
...

...

Figure 8.2.: Schematic drawing illustrating the compressed DetUnit radius storage.

position in the global coordinate system, a bounded surface describing the extent of the
module in module local coordinates and a rotation to obtain the global r-, φ- and z-span
of the module. Storing the position and surface extents requires two float3 vectors in
OpenCL, the rotation is given by a 3× 3 matrix. In total, the description of all detector
modules occupies 995 kByte of memory.

In the presented triplet finding algorithm, the geometric description of the barrel region
of the detector is merely utilized for prediction purposes. Given a hit on detector layer
k, the feasible z-range for a hit in layer k + 1 is calculated based on the radial distance
traveled by the particle between the two layers, refer to Section 9.4 for details. Therefore,
only the radial component of the detector modules’ positions need to be stored on the
compute device. Thus, 43 kByte suffice to store the radial positions of the 10 548 detector
modules in the barrel region – for the entire tracker 67 kByte are required.
The detector geometry is read in a random access pattern during third hit prediction

since hits, even of small Euclidean distance, can reside on different detector modules,
particularly in overlapping regions. As random accesses to global memory are slow, the
geometry information should be stored in local memory. Modern GPU architectures,

74

8.2. Event Hit Data

such as NVIDIA’s Kepler architecture, provide 48 kByte of local memory per compute
unit [138], Intel’s Core i7 3960x features 32 kByte local memory (L1 cache) per core [91].
Therefore, reducing the amount of memory required for geometrical information storage
is required on the CPU, but also beneficial on the GPU as further data may be cached
in local memory.
Figure 8.1a illustrates the distribution of r-values for all 10 548 detector modules of

the barrel region. As the layered construction of the CMS detector would suggest, the
module radii cluster around a few discrete values. However, there are more clusters than
the number of layers in the barrel – 13 – due to the overlapping assembly of the detector
modules within one layer, depicted in Figure 8.1b.
Since the radial detector module positions are solely employed for prediction and not

for final triplet validation, it suffices to compute the feasible z-range with approximations
of the radii. Therefore, the regular structure of the radii can be exploited by a dictionary-
based compression [143]. Figure 8.2 depicts the employed compression scheme. A radius
dictionary stores the approximated radial positions as float values. In the detector
geometry data structure, each detector module is associated to its nearest radius value
via an index into the dictionary. Approximating the radii with two digit precision results
in 120 entries in the dictionary, thus being addressable by a single byte index; three digit
approximation would lead to 290 values, hence exceeding the byte value range. Therefore
the less precise approximation is chosen, as the inaccuracy can be mitigated by employing
a slightly larger prediction window, refer to Section 9.4. In that scheme, the information
about the detector modules’ radial position occupies 11 kByte of memory, resulting in a
compression ratio of 0.26. Additionally, the minimum and maximum radius of each layer
is stored in a supplement to the detector geometry structure, requiring two floats per
layer, thus 104 Byte.

In later iterations of the hit pair building and triplet prediction algorithms, the lookup
of a hit’s detector module radius is replaced by calculating the hit’s radius based on
its reconstructed position. Therefore, only the information about the minimum and
maximum radii of the detector layers is required by the algorithms. Nevertheless, the
presented concept of compressed detector geometry storage might of interest to other
algorithms implemented on GPGPUs/in OpenCL. For instance in the simulation of
particle passage through the detector, where hits need to be „placed“ on detector modules
along the particle’s trajectory.

8.2. Event Hit Data

Reconstructed hits from particles’ interactions with the detector material are the central
data for triplet finding. Hit data is accessed in both sequential and random access
manner via range queries. The three-dimensional measurement points are grouped by
detector layer, therefore reducing the dimensionality of their spatial information to two
dimensions. As described in Section 2.3.3, a hit in a barrel layer is defined by its φ- and
z-coordinate, since r is defined by the detector geometry. Due to the overlapping of
detector modules in one layer (refer to Figure 8.1b), hits of a layer can differ in their

75

8. Data Structures

−20 −10 0 10 20
z

−3

−2

−1

0

1

2

3

φ

Hit Distribution in the PXB

0

1

2

3

4

5

6

7

8

9

10

hi
ts

/b
in

10 tt̄ events

(a) Pixel barrel layers PXB.

−100 −50 0 50 100
z

−3

−2

−1

0

1

2

3

φ

Hit Distribution in the TIB

0

4

8

12

16

20

24

28

32

36

hi
ts

/b
in

10 tt̄ events

(b) Inner silicon strip layers TIB.

Figure 8.3.: Occupancy of the PXB and TIB during tt̄ events over z and φ. Apart from a few
clusters, the hits are distributed in a nearly uniform manner in the z-φ-plane.

actual r value. Nevertheless, triplet finding considers three hits from different, adjacent
detector layers, therefore validating this simplification.
Chapter 5 introduces various spatial data structures applicable for two-dimensional

point data. Out of the presented data structures, the k-d tree and the uniform grid
appear to be the most viable candidates. A grid data structure is employed in this work
for the following reasons:

• grid data structures are most suitable for uniformly distributed points. Due to
particle jets which have a high local track density, the uniformity of the input
must be scrutinized. Figure 8.3 shows the occupancy of the PXB and double-sided
TIB layers during simulated tt̄ events, which can contain six or more jets [42].
Moderate clustering can be identified. Particularly in the PXB, the central z-region
|z| < 2 cm is more occupied than the outer areas. However, most regions of the
detector exhibit a uniform distribution of hits, thus rendering grid data structures
a suitable choice.

• accessing a particular grid cell takes O(1) time. By aligning grid size and prediction
window size, no search within a grid cell must be performed to determine the
beginning or end of a search range. The hits within a cell occupy contiguous
memory, allowing efficient prefetching of hits within the predicted range.

• construction of the data structure can be performed efficiently on the compute
device, exploiting standard operations – in particular prefix sums – which are
employed for other steps of the triplet finding as well, refer to Chapter 9.

Each hit h is characterized by

• a hit identification number hid (uint),

• its global coordinates hx, hy and hz (floats),

76

8.2. Event Hit Data

(a) Contiguous memory layout of multiple events (outer boxes) and detector layers (small boxes).
Within each layer, hits are stored in a grid data structure.

0-10-20-30 302010
z

−π
2

π
2

π

−π

φ 0

(b) Schematic of grid data structure partitioning the detector layer in z and φ cells.

Figure 8.4.: Event hit data organization on the compute device

• the detector layer hl it is associated with,

• the detector module hdet the particle interacted with, represented as index into the
geometry data structure, and

• the event number he (all uints).

The data is organized as struct-of-arrays to allow coalesced memory accesses when
properly aligned work-items read a specific hit characteristic concurrently. Figure 8.4a
illustrates the contiguous memory layout of multiple events and detector layers. Within a
detector layer, hits are partitioned by the uniform grid data structure, reaching from zmin
to zmax and φmin = −π to φmax = π, as depicted in Figure 8.4b. The detector geometry
defines the extent in the z-dimension, ranging from −300 cm to 300 cm for the CMS
tracker. The z and φ dimensions are subdivided into #z and #φ segments, respectively,
yielding cells of size zmax−zmin

#z
× 2π

#φ
. The impact of the choice of grid granularity on the

algorithmic and physical performance is examined in Chapter 10. For each grid cell, an
index into the hit array with the first hit belonging to that cell must be stored. Therefore,
considering E concurrently processed events and L detector layers with a total of N hits,
the memory consumption for event data storage is given by

N · 28 Byte + E · L ·#z ·#φ · 4 Byte.

An ex-situ two-pass algorithm is employed for grid construction, presented in Algo-
rithm 8.1:

77

8. Data Structures

Algorithm 8.1 Ex-situ algorithm for grid data structure construction.
Input: E concurrent events, L detector layers, Ne,l hits in layer l of event e

hi,l,e event hits
[zmin, zmax] [φmin, φmax] grid extent
#z, #φ number of grid cells

Output: h′i,l,e restructured event hits
grid indices

1: transfer event hits to device
2: allocate grid size E · L ·#z ·#φ on device
3: kernel determine cell bounds begin
4: (t, l, e)← (globalID1, globalID2, globalID3) . (thread, layer, event)
5: allocate gridLocal size #z ·#φ on local . if 4#z ·#φ Byte < local memory
6: for i = t

+work-group size−−−−−−−−−−→ Ne,l do
7: h← hi,l,e
8: cellz ← b hz−zmin

zmax−zmin
c

9: cellφ ← b hφ−φmin
φmax−φmin

c
10: atomicInc(gridcellz ,cellφ) . if allocated: gridLocal
11: end for
12: gridl,e ← gridLocal . if required
13: end
14: kernel prefixSum(grid)
15: allocate h′ size N on device
16: allocate written size E · L ·#z ·#φ on device . if 4#z ·#φ Byte > local memory
17: kernel store hits in cells begin
18: (t, l, e)← (globalID1, globalID2, globalID3) . (thread, layer, event)
19: allocate gridLocal size #z ·#φ on local . if 8#z ·#φ Byte < local memory
20: gridLocal← gridl,e
21: allocate written size #z ·#φ on local . if 4#z ·#φ Byte < local memory
22: for i = t

+work-group size−−−−−−−−−−→ Ne,l do
23: h← hi,l,e
24: cellz ← b hz−zmin

zmax−zmin
c

25: cellφ ← b hφ−φmin
φmax−φmin

c
26: pos← gridcellz ,cellφ + atomicInc(writtencellz ,cellφ) . if allocated: gridLocal
27: h′pos,l,e ← h
28: end for
29: end

1. In the first pass, the number of hits within each grid cell is counted. Each work-
group processes the hits of one layer of a single event. Figure 8.5 illustrates the
three-dimensional index space. The index space is of size (T ,L, E) with work-
groups of size (T , 1, 1). The work-items increase a counter via an atomicInc for
the according grid cell of a hit. The local memory of the compute device is used

78

8.2. Event Hit Data

EventsHits

Layers

Figure 8.5.: Schematic of three-dimensional index space for E = 3 events with L = 3 detector
layers each. The hits of a layer of an event are processed by T work-items.

to store the grid for the layer if possible, otherwise the data is stored in global
memory. For coalesced access to the hit data in global memory, the main work
loop is given by

for(uint i = globalID; i < nHits; i+= nThreads).
Therefore, all work-items of a work-group access contiguous memory segments.
Subsequent to processing the assigned hits, the local counter is stored in the global
counter if necessary.

2. The prefix sum of the global counter yields the grid cell bounds. Refer to Section 9.2
for the implementation of the prefix sum algorithm.

3. Before invoking the second pass, the host allocates a new hit array in global memory.
Additionally, if the grid size exceeds the local memory size, a counter for the hits
written to each grid cell is allocated in global memory. Otherwise local memory is
preferred to store these values as they must be incremented atomically. Furthermore,
if the local memory is large enough, it is used to cache the grid cell bounds for
the detector layer of the work-group. For each hit, the appropriate grid cell is
determined, the offset of that grid cell is obtained and the counter of written hits
for that cell is increased atomically. The atomicInc(x) operation returns the value
of x before the incrementation. Having determined the position of a hit in the new
array, it can be written to that location.

The algorithm requires O(N + #z ·#φ) space and O(N) atomic operations, all of them
in local memory if feasible. In the second pass, preference is given to the counter of
written hits per grid cell for local memory storage. The data structure needs to be built
once per event and henceforth is accessed many times in the subsequent steps of the
triplet finding. The runtime performance of the construction algorithm and the impact
of local memory utilization is evaluated in Section 10.3.

79

Chapter 9

Algorithms

Triplets are the foundation of the CA-based track reconstruction for CMS. Each triplet
defines a cell in the automaton; neighboring cells, representing compatible triplets, can
interact to form longer track candidates. Therefore, triplets must be found throughout
all detector layers. This requires an efficient triplet finding algorithm, leveraging the
inherent parallelism of the problem. As detailed in Section 3.3, OpenCL constitutes an
open framework for high performance, parallel computing in heterogeneous environments.
Its programming model closely resembles that of GPU-tailored frameworks, such as
NVIDIA’s CUDA, albeit being designed for multi-core CPU execution as well. Thus,
many results about branch avoidance, memory hierarchy usage or work distribution
derived on CUDA can be applied to OpenCL as well [48, 131].
This chapter introduces the algorithms employed for OpenCL-based triplet finding.

Before describing the individual steps of the triplet finding process – pair building
(Section 9.3), triplet prediction (Section 9.4) and triplet filtering (Section 9.5) – the
concept of two-pass algorithms is detailed in Section 9.1. Section 9.2 explains the prefix
sum operation, a common building block of all three triplet finding steps.

9.1. Two-pass Algorithms
As outlined in Algorithm 6.1, all three steps of the triplet finding process are designed
as two-pass algorithms. Two-pass algorithms are a common approach for both CPU- as
well as GPU-based algorithms [34, 45, 117, 152]. Facing an unknown, conceivably large,
number of outputs, the lack of dynamic memory allocation within a kernel necessitates
the use of two passes – a counting pass and a storing pass – with interwoven memory
allocation from the host. In the counting pass, each input is examined for fulfillment of
some specific property, with each work-item tracking the number of valid items. The
global counter can be realized twofold:

• as a single number nvalid. Each work-item adds its locally determined number of
valid inputs to nvalid in an atomic manner. Thus, assuming a total number of T
work-items, O(T) atomic operations are required.

• as an array counter of length T + 1. The locally determined number of valid
inputs of work-item i is stored in counteri. After concluding the counting pass,

81

9. Algorithms

Algorithm 9.1 Generic two-pass algorithm with oracle.
Input: N inputs (on device), processed by T work-items
Output: a priori unknown number of outputs
1: allocate counter size T + 1 [uint] on device
2: s← 8 · sizeof(uint) . bits in uint
3: allocate oracle size dN 2

s
8
e [uint] on device

4: kernel count begin
5: nv ← 0
6: for i = globalID +T−−→ N do
7: [bool] v← check(inputi)
8: oracleb i

s
c ← oracleb i

s
c ∨ (v� (i mod s)) =: setOracle(i,v)

9: nv ← nv + v
10: end for
11: counterglobalID ← nv
12: end
13: kernel prefixSum(counter)
14: transfer counterT +1 to host
15: allocate output size counterT +1 on device
16: kernel store begin
17: p← countert
18: for i = globalID +T−−→ N do
19: [bool] v← oracleb i

s
c ∧ (1� (i mod s)) =: readOracle(i)

20: if v = true then
21: outputp ← inputi
22: p← p+ 1
23: end if
24: end for
25: end

the exclusive prefix sum of the count array is determined. Entry counterT +1 then
contains the total number of valid inputs.

The latter approach avoids the atomic operations at the cost of O(T) extra space and a
prefix sum operation. However, the prefix sum serves a further purpose in the store pass,
as counteri determines the position of the first valid input of work-item i in the output
array.

If the property under scrutiny is computationally expensive to verify, the result of the
verification in the counting pass should be made available to the store pass. This can
be achieved by the employment of an „oracle“ bit-string of the length of the maximum
conceivable output [152]. For instance, given N hits in layer one and two each, the oracle
is of length N 2 Bit. Algorithm 9.1 gives the details of the use of the oracle bit-string
in a two-pass algorithm. The number of processed inputs by each work-item N

T should
be aligned with the size of the data type used for the oracle to avoid atomic operations.

82

9.2. Prefix Sum Algorithm

Assuming 32 bit uints are employed, then

N
T mod 32 ≡ 0

ensures, that no entry of the oracle array is accessed by two different work-items.
The generic two-pass Algorithm 9.1 is adapted by each step of the triplet finding

process and modified to suit its particular requirements. Sections 9.3 through 9.5 discuss
the details for each algorithm.

9.2. Prefix Sum Algorithm

One of the most essential building blocks for parallel algorithms is the prefix sum – or
scan – operation [27]. A prefix sum operates on a monoidM with binary associative
operation ⊕ :M×M→M and identity element ε⊕. Given an input sequence

I = {i0, i1, . . . , in−1} ∀k ∈ [0, n− 1] : ik ∈M,

the exclusive prefix sum yields

O = {o0, o1, . . . , on−1} = {ε⊕, i0, i0 ⊕ i1, . . . ,
n−2⊕
k=0

ik},

whereas the inclusive prefix sum is given by

O′ = {o′0, o′1, . . . , o′n−1} = {i0, i0 ⊕ i1, . . . ,
n−1⊕
k=0

ik}.

The operation appears to be inherently sequential, since on−1 depends on all inputs
i0, . . . , in−2. A sequential implementations performs O(n) additions to produce output O.
Hillis and Steele [84] present a parallel prefix sum algorithm computing O in O(logn) steps
with O(n logn) additions. Blelloch [27] introduces a work-efficient algorithm requiring
O(n) additions in O(logn) steps. The algorithm is adapted to GPGPUs by Sengupta
et al. [159] and presented in this section.
The prefix sum is computed using a balanced tree with n leafs and thus d = logn

levels. The tree is traversed two times to built the prefix sum in place. The first traversal
proceeds from the leafs of the tree towards the root, hence referred to as up-sweep, and
computes

∀l = d− 1→ 0 : ox =
{⊕x

k=x−2d−l+1 ik if (x+ 1) ≡ 0 mod 2d−l

ix else

for node x ∈ [0, n − 1]. After logn steps, on−1 equals ⊕n−2
k=0 , therefore the up-sweep

performs a reduction of the inputs [122]. Figure 9.1a illustrates the up-sweep. Before

83

9. Algorithms

i0 i1 i2 i3 i4 i5 i6 i7

(i0 . . . i1) (i2 . . . i3) (i4 . . . i5) (i6 . . . i7)

(i0 . . . i3) (i4 . . . i7)

(i0 . . . i7)

(a) Up-sweep phase.

ε⊕ i0 (i0 . . . i1) (i0 . . . i2) (i0 . . . i3) (i0 . . . i4) (i0 . . . i5) (i0 . . . i6)

i0 ε⊕ i2 (i0 . . . i1) i4 (i0 . . . i3) x6 (i0 . . . i5)

(i0 . . . i1) ε⊕ (i4 . . . i5) (i0 . . . i3)

(i0 . . . i3) ε⊕

(i0 . . . i7)

(b) Down-sweep phase.

Figure 9.1.: Schematic of the balanced trees employed in the two phase prefix sum algorithm by
Blelloch [27]. The node entries (ia, . . . , ib) denote

⊕b
k=a ik.

commencing the second traversal, the down-sweep, the last element on−1 is set to identity
ε⊕ in order to calculate an exclusive prefix sum. The down-sweep computes

∀l = 1→ d : ox =

ox ⊕ ox−2d−l if (x+ 1) ≡ 0 mod 2d−l+1

ox+2d−l if (x+ 1) ≡ 0 mod 2d−l ∧ (x+ 1) 6≡ 0 mod 2d−l+1

ox else

for node x ∈ [0, n− 1], refer to Figure 9.1b.
Algorithm 9.2 presents pseudocode for the prefix sum kernel. Each work-item processes

two inputs, thus the maximum length for the input array is bound by 2T ∗ – T ∗ denoting
the maximum work-group size – if only one work-group is employed. Processing larger
arrays requires the use of multiple work-groups. However, work-items across multiple
work-groups are not synchronizable, therefore the input is partitioned into chunks. Chunks
are twice as large as the work-group size and can be processed independently. An array
p of length d nT e is used to store the partial sum of each work-group after the reduction
phase, refer to Line 17. The prefix sum of the partial sum array p is computed in a
recursive manner. Subsequently, each work-group i ∈ [0, d nT e] uniformly adds pi to its
inputs. Algorithm 9.3 describes the details of the recursive prefix sum computation.
The shared memory of a GPU’s Streaming Multiprocessor is organized in several

memory banks. If multiple work-items access the same memory bank a bank conflict
occurs [159], unless all work-items access the same word. Bank conflicts result in a
serialization of the processing, as the memory accesses are served sequentially. In tree

84

9.2. Prefix Sum Algorithm

Algorithm 9.2 Prefix sum kernel.
Input: I = {i0, . . . , in−1}

array p length d nT e if n > work-group size T
Output: ∀g ∈ [0, b nT c] :

I = {. . . , i2gT = ε⊕, i2gT +1 = i2gT , . . . , i4gT −1 = ⊕n−2
k=0 i2gT +k, . . . }

pg = ⊕n−2
k=0 i2gT +k if n > T

1: l← localID1
2: g ← workGroupID1
3: allocate local size 2T + padding on local
4: offset← 2 · g · T
5: locallocalIdx(l) ← ioffset+l
6: locallocalIdx(l+T) ← ioffset+l+T

7: k ← 1
8: for d = T /2−→ 0 do
9: if l < d then

10: a← k · (2l + 1)− 1
11: b← k · (2l + 2)− 1
12: locallocalIdx(b) = locallocalIdx(a) + locallocalIdx(b)
13: end if
14: k ← 2k
15: end for
16: if l = 0 then
17: pg ← locallocalIdx(2s−1) . only for multiple work-groups
18: locallocalIdx(2s−1) ← 0
19: end if
20: for d = 1 ·2−→ T do
21: k ← k

2
22: if l < d then
23: a← k · (2l + 1)− 1
24: b← k · (2l + 2)− 1
25: t← locallocalIdx(a)
26: locallocalIdx(a) = locallocalIdx(b)
27: locallocalIdx(b) = t+ locallocalIdx(b)
28: end if
29: end for
30: ioffset+l ← locallocalIdx(l)
31: ioffset+l+T ← locallocalIdx(l+T)

traversal algorithms, the memory access stride doubles at each level of the tree, resulting
in twice as many bank conflicts. Bank conflicts can be mitigated by introducing a
memory bank offset to shared memory accesses. Therefore, each shared memory address

85

9. Algorithms

Algorithm 9.3 Recursive prefix sum computation.
Input: I = {i0, . . . , in−1}

T work-group size
#M number of memory banks per SMX

Output: I = {ε⊕, i0, i0 ⊕ i1, . . . ,
⊕n−2

k=0 ik}
1: n̂← max

(
1, d n

2·T e
)

2: padding← 2·T
#M

3: if n̂ = 1 then
4: l← max

(
1, n2

)
5: l← 2dlog le

6: kernel prefixSum(I) . 1 work-group with l work-items
7: else
8: allocate partial size n̂ on device
9: kernel prefixSum(I, partial) . n̂ work-groups with T work-items each
10: recursive prefix sum on partial
11: kernel uniformAdd begin . n̂ work-groups with T work-items each
12: l← localID1
13: g ← workGroupID1
14: x← partialg
15: offset← 2 · g · T
16: ioffset+l ← ioffset+l + x
17: ioffset+l+T ← ioffset+l+T + x
18: end
19: end if

in Algorithm 9.2 is mapped to

localIdx(x) = x+ x

#M

with #M shared memory banks (ibid.). To accommodate the offset memory addresses,
the amount of reserved local memory for each work-group needs to be increased by 2l

#M
,

with l work-items per work-group.
Sengupta et al. [159] use NVIDIA’s CUDA SDK to implement the introduced prefix

sum algorithm. An OpenCL version is provided by Apple Inc. [13]. However, the
implementation is overly complicated and suffers from a difficult-to-use interface. Hence,
the algorithm is reimplemented, achieving a modest speedup over Apple’s implementation,
refer to Chapter 10.

9.3. Pair Building
Pairs of hits in adjacent detector layers are the basis for later triplet finding. However,
two hits reveal limited information about a particle’s track. Therefore, only very general
filter criteria can be applied to limit the combinatorics and discard background hit pairs.

86

9.3. Pair Building

x

y

sφ

sφ

Figure 9.2.: Schematic of φ-slicing of the detector induced by the the grid data structure. A hit’s
slice and its sφ neighboring ones are considered for pair building.

The grid-based pair building described in Section 9.3.1 imposes no origin constraint
on the particle track and strives for the highest efficiency attainable. Later evaluation
showed that an origin constraint is inevitable in order to contain the number of generated
hit pairs within a feasible range. Therefore, a second approach employs more advanced
predictive calculation to restrain the combinatorics, detailed in Section 9.3.2.

9.3.1. Grid-based Pair Building
Given a hit in the first layer, the search window in the second layer is defined by coarse
proximity constraints. Proximity is determined by an asymmetric Moore neighborhood
of radii (sz, sφ) grid cells. Figure 9.2 illustrates the neighborhood in sφ. The parameters
are obtained by the general geometric acceptance of the CMS tracker and evaluation of
simulated tt̄ events.

The inner tracker is designed for the tracking of charged particles with |η| < 2.5, thus θ
is approximately in ±[0.05π, 0.95π] rad. The maximum longitudinal distance ∆z traveled
by a particle between layers of radius r1 and r2 can be limited to

|∆z| ≤ (r2 − r1) cot (0.05π) .

In the transverse plane, triplet filtering and pair building use the same bounds on the
change of φ of a valid track. Section 10.2 presents the conducted studies to attain ∆φ.

Given the values for ∆z and ∆φ, the radii of the Moore neighborhood are chosen such
that

|∆z| ≤ sz
zmax − zmin

#z

|∆φ| ≤ sφ
φmax − φmin

#φ
,

(9.1)

for a grid partitioning (z, φ)-space ranging from [zmin, zmax] and [φmin, φmax] into (#z,#φ)
cells.

87

9. Algorithms

Algorithm 9.4 Grid-based pair building count kernel.
Input: E concurrent events, L detector layers, Ne,l hits in layer l of event e

hi,l,e event hits
[zmin, zmax] [φmin, φmax] grid extent
#z, #φ number of grid cells
(sz, sφ) neighborhood size

Output: counter of found hit pairs
oracle for store kernel

1: (t, l, e)← (globalID1, globalID2, globalID3) . (thread, layer, event)
2: nv ← 0
3: for i = t

+work-group size−−−−−−−−−−→ Ne,l do
4: h1 ← hi,l,e . predict z-φ-range
5: minCellz ← b h1

z−zmin
zmax−zmin

c
6: maxCellz ← min(minCellz + sz + 1,#z)
7: minCellz ← max(0,minCellz − sz)
8: minCellφ ← b

h1
φ−φmin

φmax−φmin
c − sφ

9: maxCellφ ← minCellφ + 2sφ + 1
10: [bool] b← (minCellφ < 0) ∨ (maxCellφ > #φ) . wraparound at ±π
11: minCellφ ← minCellφ + (minCellφ < 0) ·#φ

12: maxCellφ ← maxCellφ − (maxCellφ > #φ) ·#φ

13: for z ∈ [minCellz,maxCellz] do . z-slice loop
14: j ← gridl+1,e

z,minCellφ
15: w ← gridl+1,e

z,#φ+1 − gridz,0
16: e← gridl+1,e

z,maxCellφ + b · w
17: for j < e do . second hit loop
18: h2 ← h[j−(j≥gridl+1,e

z,#φ+1)·w],l+1,e

19: setOracle(i · nl+1 + j − (j ≥ gridl+1,e
z,#φ+1) · w, 1)

20: increment nv
21: end for
22: end for
23: end for
24: counteri ← nv

Algorithm 9.4 presents the details of the pair building count kernel. The algorithm
determines the grid cell of a hit h in the first layer by

cellz = b hz − zmin
zmax − zmin

c cellφ = b hφ − φmin
φmax − φmin

c

and inspects the grid of the second layer in the cells within the neighborhood of cell
(cellz, cellφ). Each hit within the search window in the second layer is counted and the

88

9.3. Pair Building

corresponding bit in the oracle bit-string is set. The further processing follows the general
two-pass algorithm scheme described by Algorithm 9.1. The store kernel iterates for each
hit in the first layer over all hits in the second one and uses the information from the
oracle to decide whether a given hit combination is accepted as hit pair. The set of all
hit pairs (h1, h2) is stored in an array henceforth denoted by H2. Implementation details
of Algorithm 9.4 are discussed in Section 9.3.3.

9.3.2. Prediction-based Pair Building
The computationally inexpensive grid-based pair building suffers from an tremendous
amount of hit pairs when facing events with many tracks – refer to Section 10.2 for
details. Thus, a more fine-grained prediction is needed to limit the number of generated
hit pairs while still retaining high efficiency. Similar to CMSSW, the predictive pair
building imposes constraints on the transverse and longitudinal impact parameter of a
track – z0 and d0, respectively – and the maximum transverse curvature, corresponding
to a minimum pT .
In the transverse plane, the minimum pT as well as the admissible transverse impact

parameter d0 constrain the ∆φ between the first and the second hit of a pair. The
minimum pT defines the maximum transverse curvature of the particle’s track in the
magnetic field according to Equation (7.3)

1
rmin

= κmax = qBz
pT,min

.

Therefore, ∆φ can be limited to

|∆φ| ≤
∣∣∣∣

α︷ ︸︸ ︷
arccos

(
r2

2rmin

)
−

β︷ ︸︸ ︷
arccos

(
r1

2rmin

)∣∣∣∣+
γ︷ ︸︸ ︷

arctan
(
d0(r2 − r1)

r1r2

)
.

The angles α, β and γ refer to the pictorial representation of the formula in Figure 9.3.
The ∆φ constraint can be used for both inward and outward prediction. In order to

limit the z-range for the second hit of a pair, a backward prediction is geometrically
simpler. Given a hit in the outer layer,

θ′ = arctan z2 + z0
r2

θ′′ = arctan z2 − z0
r2

. (9.2)

Figure 9.4 illustrates the angles θ′ and θ′′. For simplicity, d0 is not accounted for in
Equation (9.2). A compatible hit in the first layer must therefore be contained in the
z-range [

r1 cot θ′ − z0, r1 cot θ′′ + z0
]
.

Algorithm 9.5 displays the required computations to backward predict both z- and
φ-range. The algorithm replaces Line 4 through Line 12 marked in green in Algorithm 9.4.
Furthermore, layer l is accessed in the z-slice and second hit loop instead of layer l + 1 –
marked in blue – as hits in the first layer are predicted based upon a hit in the second.

89

9. Algorithms

α
β

x

y

r2r1

rmin

rmin
rmin

c

(a) ∆φ ≥ |α− β| due to rmin ∝ pT,min.
x

y

r2r1

γ

d0

A A′

(b) ∆φ ≥ γ due to TIP d0, assuming a high
pT track and small γ. Therefore, A′ is
approximated by (x, r1) and the intercept
theorem can be applied.

Figure 9.3.: Schematics for calculating the maximum ∆φ = |α− β|+ γ for pair finding.

1

2

z

r

0
z0 z0

θ′ θ′′

Figure 9.4.: Calculating the feasible z-range for the inner hit of a hit pair. The maximum
longitudinal impact parameter z0 limits the width of the search window.

Due to the more accurate prediction of the z-φ-range, not all hits within the grid cell span
need to be accepted as hit pairs. In a tight prediction mode, only hits actually within
the predicted range are selected. Therefore the update of the oracle and incrementation
of nv (Lines 18 and 19) are conditional on

h1
φ ∈ [predφ,min,predφ,max] ∧ h1

z ∈ [predz,min, predz,max].

The store kernel for the prediction-based pair building follows the design of the general
store kernel described in Algorithm 9.1 and used in the grid-based pair building as well,
adapted to the interchanged roles of outer and inner layer. The kernel produces the hit
pair collection H2.

90

9.3. Pair Building

Algorithm 9.5 Prediction of z-φ-range in pair building count kernel.
Input: rl,min/rl,max minimum/maximum radius of inner layer

(z0, d0) longitudinal and transverse impact parameter
rmin minimum radius of the trajectory’s curvature

Output: (minCellz,maxCellz), (minCellφ,maxCellφ) prediction window
1: h1 ← hi,l+1,e

2: cot θ′ ← h2
z+z0
h2
r

3: cot θ′′ ← h2
z−z0
h2
r

4: predz,min ← min(rl,min · cot θ′ − z0, rl,max · cot θ′ − z0)
5: predz,max ← max(rl,min · cot θ′′ + z0, rl,max · cot θ′′ + z0)
6: minCellz ← max

(
0, bpredz,min−zmin

zmax−zmin
c
)

7: maxCellz ← min
(
bpredz,max−zmin

zmax−zmin
c,#z

)
8: dφ← max

(∣∣∣arccos h2
r

2rmin
− arccos rl,min

2rmin

∣∣∣ , ∣∣∣arccos h2
r

2rmin
− arccos rl,max

2rmin

∣∣∣)
9: dφ← dφ+ max

(
arctan d0

h2
r−rl,min
h2
r·rl,min

, arctan d0
h2
r−rl,max
h2
r·rl,max

)
10: predφ,min ← h2

φ − dφ
11: predφ,max ← h2

φ + dφ

12: [bool] b← predφ,min 6∈ [−π, π] ∨ predφ,max 6∈ [−π, π] . wraparound at ±π
13: predφ,min ← predφ,min + 2π · (predφ,min < −π)− 2π · (predφ,min > π)
14: predφ,max ← predφ,max + 2π · (predφ,max < −π)− 2π · (predφ,max > π)

15: minCellφ ← bpredφ,min−φmin
φmax−φmin

c
16: maxCellφ ← bpredφ,max−φmin

φmax−φmin
c

9.3.3. Implementation Details

The hit pairs identified by the count kernel are stored in an oracle bit-string of length

4
∑
e<E
l<L−2

dNe,l · Ne,l+1
32 eByte.

Furthermore, an offset into the oracle bit-string is provided for each work-group, requiring
another E · L−2

3 Byte. For each event and triplet of layers, T partial sums are stored by
the work-items. Thus, the array for the prefix sum operation comprises 4L−2

3 T + 1 Byte.
Algorithm 9.4 exhibits several subtleties concerning the determination of the appro-

priate grid cell span and the indexing of hits in the hit array. The boundary conditions
for the z-span are enforced via min and max operations, refer to Line 5 onward. To
reduce the register usage of the kernel, the minCellz register serves as both temporary
variable and final minimum grid cell in z. Starting Line 8, the φ-span is determined.
The procedure needs to address the wraparound at ±π as exemplified in Figure 9.2. If
a wraparound occurs, it is ensured that minCellφ points to the appropriate grid cells

91

9. Algorithms

−π π

z-slice

i

Figure 9.5.: Illustration of φ-wraparound. The selected grid cells (shaded in gray) from the third
quadrant are mapped behind the grid cells of the second quadrant.

Operation Grid-based Prediction-based

division/modulo 2 + 2nrecall 12 + 2nrecall
square root 0 1
trigonometric 1 5 + nrecall‡
global memory 3 + 4n†cells,z 9 + 4n†cells,z + 4nrecall‡
atomic nrecall nrecall

Table 9.1.: Overview of expensive operations performed by the pair building count kernels per
first hit. The number of grid cells within the z-range is denoted by ncells,z; nrecall marks the
number of hits within the predicted range.
† : only if grid does not fit in local memory. ‡ : only if tight prediction is used.

in second quadrant of the unit circle, [π2 , π], and maxCellφ to the ones in the third
quadrant, [−π,−π

2]. Predicated multiplications are used to avoid branching. As depicted
in Figure 9.5, if a wraparound in φ occurs, the hits of the third quadrant are mapped
behind the ones of the second quadrant by index manipulation, refer to Algorithm 9.4
Line 14 onward.

In order to accelerate the access to the hit positions (12 Byte per position) in the inner
loop, a prefetch instruction for each z-slice is issued in Line 14. Prefetching the entire
z-slice avoids complications due to possible φ-wraparounds. Considering the 1 536 kByte
L2 cache of NVIDIA’s Kepler architecture [138] and the 256 kByte L2 cache of Intel’s
Core i7 [91], ample amounts of cache are available to justify this simplification.

If the local memory is sufficiently large, the grid data structure for the second layer (grid-
based pair building) or for the first layer (prediction-based pair building) is cached before
entering the main loop. This reduces the required global memory accesses significantly.
Refer to Table 9.1 for an overview of expensive operations performed by both variants
of pair building. It becomes apparent that the reduced number of generated hit pairs
by the prediction-based approach comes at the cost of many more compute intense
operations. In Section 10.2, the reduction of hit pairs is quantified and the merit of the
more expensive calculations examined.

The kernel is executed in the same three-dimensional index space as employed for grid
building, refer to Figure 8.5. Each work-group processes the hits of one detector layer –
for the first hit of the pair – of a single event.

92

9.4. Triplet Prediction

Algorithm 9.6 Angle-based prediction of the z-range.
Input: (h1, h2) hit pair, l third layer

pθ prediction window size
rl,min / rl,max minimum/maximum radius of outer layer

Output: [predz,min, predz,max] admissible z-range
1: s← sgn

(
h2
y

)
2: θ ← arctan

(
s

√
(h2
x−h1

x)2+(h2
y−h1

y)2

h2
z−h1

z

)
=: θ(h1,h2)

3: θmin ← (1− pθ) · θ
4: [char] w ← 1− 2 · (|θmin| > π) . −1 indicates wraparound
5: θmin ← θmin − 2π · (θmin > π)
6: θmin ← θmin + 2π · (θmin < −π)
7: θmin ← θmin · w . θ-wraparound changes sign
8: θmax ← (1 + pθ) · θ
9: same overflow treatment

10: r ← s ·
√

(h2
x − h1

x)2 + (h2
y − h1

y)2

11: ∆r,min ← s · rl,min − r
12: ∆r,max ← s · rl,max − r
13: predz,min ← min(h2

z + ∆r,min cot θmin, h2
z + ∆r,min cot θmax) . see Algorithm 9.7

14: predz,max ← max(h2
z + ∆r,min cot θmin, h2

z + ∆r,min cot θmax)

15: predz,min ← min
(
predz,min, h

2
z + ∆r,max cot θmin, h2

z + ∆r,max cot θmax
)

16: predz,max ← max
(
predz,max, h

2
z + ∆r,max cot θmin, h2

z + ∆r,max cot θmax
)

9.4. Triplet Prediction
Restricting the number of generated triplet candidates, given a set of hit pairs, is of
paramount importance to cope with the combinatoric challenge posed by high pile-up
events. By extrapolating the track „defined“ by a hit pair to the third layer, the feasible
z- and φ range can be limited. In one approach, the prediction is based on the filter
criteria derived in Section 7.1. The prediction is based on the two hits of a pair in the
lower layers and two speculative hits in the third layer – one representing the minimum
acceptable value and one the maximum acceptable value with respect to the filter criteria.
Alternatively, the prediction can be based on the extrapolation of the track subject to a
minimum pT and transverse as well as longitudinal impact parameter.

Sections 9.4.1 and 9.4.2 elaborate on the extrapolation methods. Their use within the
triplet prediction kernels is detailed in Section 9.4.3.

9.4.1. Angular-based Prediction

In this approach, the prediction of the admissible φ and z ranges is based upon the
maximum dφ and dθ given by the filter criteria introduced in Section 7.1.

93

9. Algorithms

Algorithm 9.7 Branch-less min/max determination.
Input: h2 hit in second layer

∆r,min/∆r,max minimum/maximum traversed radial distance
cot θmin/cot θmax cotangents of minimum/maximum polar angle

Output: (predz,min,predz,max) feasible z-range
1: tmp← h2

z + ∆r,max cot θmin . treatment of ∆r,max
2: predz,max ← h2

z + ∆r,max cot θmax
3: predz,min ← (tmp < predz,max) · tmp + (tmp > predz,max) · predz,max
4: predz,max ← (tmp < predz,max) · predz,max + (tmp > predz,max) · tmp
5: tmp← h2

z + ∆r,min cot θmin . treatment of ∆r,min
6: predz,min ← (tmp < predz,min) · tmp + (tmp > predz,min) · predz,min
7: predz,max ← (tmp > predz,max) · tmp + (tmp < predz,max) · predz,max
8: tmp← h2

z + ∆r,min cot θmax
9: predz,min ← (tmp < predz,min) · tmp + (tmp > predz,min) · predz,min
10: predz,max ← (tmp > predz,max) · tmp + (tmp < predz,max) · predz,max

Algorithm 9.8 Angle-based prediction of the φ-range.
Input: (h1, h2) hit pair

pφ prediction window size
Output: [predφ,min, predφ,max] admissible φ-range

b indicates φ-wraparound
1: φ← arctan

(
h2
y−h1

y

h2
x−h1

x

)
=: φ(h1,h2)

2: predφ,min ← min((1− pφ) · φ, (1 + pφ) · φ)
3: predφ,max ← max((1− pφ) · φ, (1 + pφ) · φ)
4: [bool] b← predφ,min 6∈ [−π, π] ∨ predφ,max 6∈ [−π, π]
5: predφ,min ← predφ,min + 2π · (predφ,min < −π)− 2π · (predφ,min > π)
6: predφ,max ← predφ,max + 2π · (predφ,max < −π)− 2π · (predφ,max > π)

The prediction of the feasible z-range in the third layer for a hit pair (h1, h2) is
presented in Algorithm 9.6. The hit pair defines the polar angle θ of the line segment
between both points,

θ = arctan

sgn
(
h2
y

)
·
√

(h2
x − h1

x)2 + (h2
y − h1

y)2

h2
z − h1

z

 .
A signed radius is used to indicate the detector half above (positive) and below (negative)
the beam pipe. Assuming a straight line trajectory over the signed radial distance ∆r

between the second and third detector layer, the particle’s z-coordinate in the third layer
is given by

h3
z = h2

z + ∆r cot θ.

94

9.4. Triplet Prediction

Algorithm 9.9 Extrapolation-based prediction the z-range.
Input: (h1, h2) hit pair, l third layer

tolerance for z-prediction σz
rl,min/rl,max minimum/maximum radius of outer layer

Output: [predz,min, predz,max] admissible z-range

1: d2
0 ←

(h1
y ·(h2

x−h1
x)−h1

x·(h2
y−h1

y))2

(h2
x−h1

x)2·(h2
y−h1

y)2

2: ro ←
√

(h1
x)2 + (h1

y)2 − d2
0

3: cot θ ← h2
z−h1

z√
(h2
x)2+(h2

y)2−d2
0

4: predz,min ← min
(
h1
z +

(
r2
l,min − d2

0
)
· cot θ, h1

z +
(
r2
l,max − d2

0
)
· cot θ

)
− σz

5: predz,max ← max
(
h1
z +

(
r2
l,min − d2

0
)
· cot θ, h1

z +
(
r2
l,max − d2

0
)
· cot θ

)
+ σz

As the magnetic field of the CMS solenoid is not ideal, particle tracks might be bent in
the longitudinal plane. Furthermore, the resolution in z varies between pixel and silicon
strip detector, with the latter featuring a significantly lower resolution than the former.
Thus, the θ of the line segment between h2 and the predicted h3 is allowed to span the
range [θmin, θmax],

θmin = (1− pθ) · θ θmax = (1 + pθ) · θ,

with pθ specifying the size of the prediction window, pθ > dθ as defined by Equation (7.4).
If either |θmin| or |θmax| is greater than π, a wraparound at ±π occurred. The angles are
normalized to the interval [−π, π] by predicated additions to avoid branching. Further-
more, the wraparound entails a transition from the upper to the lower half of the detector,
thus requiring changing the sign of the radius accordingly. Since |θmin| and |θmax| could
point to different halves, the radius’s sign may differ between the two. Separate variables
for the respective sign can be omitted by employing the identity cot(−x) = −x and
encoding the radius’s sign into the angle variable, refer to Line 7.
Detector modules of one layer are mounted at differing radii, therefore the minimum

and maximum radius of the third layer are both used for z-range prediction. The
minimum/maximum finding – lines marked in green in Algorithm 9.6, starting Line 13
– is implemented in a branch-less manner as detailed in Algorithm 9.7. In addition to
branch avoidance, the algorithm also highlights the reuse of registers to minimize private
memory consumption.

Algorithm 9.8 describes the prediction of the feasible φ-range. The calculations closely
follow the ones for the θ-range, with the same branch-less wraparound treatment. The
φ-prediction window size pφ is chosen such that pφ > dφ.

9.4.2. Extrapolation-based Prediction

In order to more accurately predict the path of a charged particle through the detector,
this approach employs calculations similar to the ones used in CMSSW.

95

9. Algorithms

1

2

3

z

r

0

d0

z′

θ

Figure 9.6.: Prediction of the feasible z-range of the third hit based upon a straight line extrapo-
lation. The transverse impact parameter d0 is determined by the distance of the line to the
origin.

The z-range of the hit in the third layer is extrapolated based upon a straight line
approximation of the particle’s track in the longitudinal plane. As Figure 9.6 illustrates,
the extrapolation takes into account the effects of the transverse impact parameter d0,
defined by the distance of the track to the origin. The distance of a function f(x) to the
origin can be determined by minimizing

d(x) =
√
x2 + f(x)2).

For a straight line
f(x) = mx+ n,

the quadratic distance is given by

d2
0 = n2

m2 + 1 . (9.3)

Given the hit pair (h1, h2), Equation (9.3) yields

d2
0 ←

(
h1
y · (h2

x − h1
x)− h1

x · (h2
y − h1

y)
)2

(h2
x − h1

x)2 · (h2
y − h1

y)2 .

Algorithm 9.9 presents the details of the computation. The size of the prediction window
is governed by parameter σz, which accounts for measurement uncertainties, multiple scat-
tering etc. The minimum and maximum (Line 4) is determined similarly to Algorithm 9.7
in a branch-less manner.

The φ-range is predicted in a similar manner as in prediction-based pair building. The
minimum pT defines the minimum radius of the curvature rmin – refer to Equation (7.3) –
that bounds the maximum change in φ between two hits of the same track

|∆φ| ≤
∣∣∣∣arccos

(
d

2rmin

)
− arccos

(
r3

2rmin

)∣∣∣∣ ,
with r3 denoting the radius of the third layer and d the radial distance between h1 and
h2. The transverse impact parameter does not increase the ∆φ, since the effect is already
accounted for by radial distance d. As Algorithm 9.10 shows, a wraparound of φ is treated
in the same manner as in Algorithm 9.8.

96

9.4. Triplet Prediction

Algorithm 9.10 Extrapolation-based prediction of the φ-range.
Input: (h1, h2) hit pair, l third layer

rl,min/rl,max minimum/maximum radius of outer layer
rmin minimum radius of the trajectory’s curvature

Output: [predφ,min,predφ,max] admissible φ-range
b indicates φ-wraparounds

1: dφ←
∣∣∣h2
φ − h1

φ

∣∣∣
2: d←

√
(h2
x − h1

x)2 +
(
h2
y − h1

y

)2

3: dφ′ ← max
(∣∣∣arccos d

2rmin
− arccos rl,min

2rmin

∣∣∣ , ∣∣∣arccos d
2rmin

− arccos rl,max
2rmin

∣∣∣)
4: dφ← max(dφ, dφ′)
5: predφ,min ← h2

φ − dφ
6: predφ,max ← h2

φ + dφ

7: [bool] b← predφ,min 6∈ [−π, π] ∨ predφ,max 6∈ [−π, π] . wraparound at ±π
8: predφ,min ← predφ,min + 2π · (predφ,min < −π)− 2π · (predφ,min > π)
9: predφ,max ← predφ,max + 2π · (predφ,max < −π)− 2π · (predφ,max > π)

Operation Angular-based Extrapolation-based

division/modulo 4 12
square root 2 10
trigonometric 2 4 + nrecall†
global memory 20 + 4ncells,z 16 + 4ncells,z + 4nrecall†
atomic 0 0

Table 9.2.: Overview of expensive operations performed by the triplet prediction kernels per
hit pair. The number of grid cells within the z-range is denoted by ncells,z; nrecall marks the
number of hits within the predicted range.
† : only if tight prediction is used.

9.4.3. Implementation Details

The count and store kernel employed for triplet prediction is given by Algorithm 9.11,
which is executed in a one-dimensional index space. Each work-item processes one hit
pair, resulting in an index space of size

∥∥H2∥∥. Consequently, the count array is of size
(4
∥∥H2∥∥+ 1) Byte). No oracle bit-string is used to tie the count and store kernel together.

The size of the oracle would quickly reach tremendous magnitudes of several hundred
MByte per event. Moreover, looping over all hits in the third layer for every hit pair
in the store kernel is prohibitive for large events, thus, the predictive calculations need
to be repeated inevitably. Therefore, both kernels differ only slightly as highlighted in
Algorithm 9.11. In addition to incrementing the counter of found triplet candidates nv,
the store kernel writes the triplet candidate to its appropriate position in the triplet
candidate collection HC .

97

9. Algorithms

Algorithm 9.11 Triplet prediction count/store kernel.
Input: hi,l,e event hits

H2 hit pair collection
[zmin, zmax] [φmin, φmax] grid extent
#z, #φ number of grid cells
prefixSum of found triplet candidates . store kernel

Output: counter of found triplet candidates . count kernel
HC triplet candidate collection . store kernel

1: i← globalID1 . thread
2: (h1, h2)← H2

i

3: (l, e)← (layer, event) of h1

4: nv ← 0 nv ← prefixSumi . count / store respectively
5: (predz,min,predz,max)← predictz(h1, h2, l + 2)
6: minCellz ← max(bpredz,min−zmin

zmax−zmin
c, 0)

7: maxCellz ← min(bpredz,max−zmin
zmax−zmin

c,#z)
8: (predφ,min,predφ,max, b)← predictφ(h1, h2) . [bool] b indicates wraparound
9: minCellφ ← bpredφ,min−φmin

φmax−φmin
c

10: maxCellφ ← bpredφ,max−φmin
φmax−φmin

c
11: for z ∈ [minCellz,maxCellz] do
12: j ← gridl+2,e

z,minCellφ
13: w ← gridl+2,e

z,#φ+1 − gridz,0
14: k ← gridl+2,e

z,maxCellφ + b · w
15: for j < k do
16: h3 ← h[j−(j≥gridl+2,e

z,#φ+1)·w],l+2,e

17: if h3
φ ∈ [predφ,min,predφ,max] ∧ h3

z ∈ [predz,min,predz,max] then . tight mode
18: HCnv ← ((h1, h2), h3) . store kernel
19: increment nv
20: end if
21: end for
22: end for
23: counteri ← nv

The inner loop of the kernels resembles the one of the pair building kernel (Al-
gorithm 9.4), employing the same index manipulation to avoid branching due to φ
wraparounds – refer to Figure 9.5.

The more precise prediction of the extrapolation-based triplet prediction allows for a
tight third hit candidate selection, accepting only hits within in the predicted range as
opposed to all hits of the selected grid cells, refer to Line 17. This limits the number of
produced triplet candidates, however requires an arctan operation per hit in the selected

98

9.5. Triplet Filtering

grid cells. Table 9.2 gives an overview of the performed compute-intense operations
by the triplet prediction kernels. Similar to pair building, the more precise prediction
requires more expensive operations,
A prefetch instruction is issued in Line 14 for the entire z-slice, following the same

rational as in Section 9.3.3.

9.5. Triplet Filtering

Given the hit triplet candidates produced by the (coarse) extrapolation of the previous
step, a more fine-grained analysis is required to separate valid from fake triplets. The
criteria employed to distinguish triplets belonging to a particle’s track from background
ones are discussed in Chapter 7. Algorithm 9.12 shows the details of the performed
computations. First, the change in θ and φ is calculated and verified against the
maximum admissible values dθ and dφ, respectively. From Line 7 onward, the transverse
impact parameter is calculated following the deliberations of Section 7.2. Standard
OpenCL operations are used for all vector operations to exploit native implementations
of the underlying hardware.
The index space is one-dimensional and of size

∥∥∥HC∥∥∥, i. e. each work-item processes
a single triplet candidate. In order to count the number of valid triplets, a counter of
length 4

(∥∥∥HC∥∥∥+ 1
)

Byte would be needed. To limit the amount of memory used by

Algorithm 9.12 Triplet filtering count kernel.
Input: HC triplet candidate collection

(dθ, dφ, d0) filter criteria
Output: oracle as counter and for store kernel
1: i← globalID1 . thread
2: (h1, h2, h3)← HCi
3: bool v ← 1− dθ ≤ θ(h2,h3)

θ(h1,h2) ≤ 1 + dθ

4: ∆φ ← φ(h2, h3)− φ(h1, h2)
5: ∆φ ← ∆φ − (∆φ > π) · 2π + (∆φ < −π) · 2π
6: v ← v · (|∆φ| ≤ dφ)
7: ∀i ∈ {1, 2, 3} : ĥi ←

(
hix, h

i
y, (hix)2 + (hiy)2

)
8: float3 n←

−−−→
ĥ1ĥ2×

−−−→
ĥ1ĥ3∣∣∣−−−→ĥ1ĥ2×
−−−→
ĥ1ĥ3

∣∣∣
9: float2 c←

(
− nx

2nz ,−
ny
2nz

)
. center of circle

10: float r ←
√

1−n2
z+4nz(n·ĥ1)

4n2
z

. radius of circle
11: float2 d← c− r · c

|c| . point of closest approach to beam line
12: v ← v · (|d| ≤ d0)
13: setOracle(i, v)

99

9. Algorithms

Algorithm 9.13 Hamming weight calculation [109].
Input: oracle bit-string
Output: counter of valid triplets
1: i← globalID1 . thread
2: v ← oraclei
3: v ← v − ((i� 1) ∧ 0x55555555)
4: v ← (v ∧ 0x33333333) + ((v � 2) ∧ 0x33333333)
5: counteri ← (((v + (v � 4)) ∧ 0x0F0F0F0F) · 0x01010101)� 24

Operation Triplet Filtering

division/modulo 7
square root 5
trigonometric 4
global memory 13
atomic 1

Table 9.3.: Overview of expensive operations performed by the triplet filtering kernel per triplet
candidate.

the kernel, the oracle bit-string of size 4
⌈‖HC‖

32

⌉
Byte serves two purposes: it stores

the outcome of the validation of a triplet candidate to be accessible by the store kernel
and it is used as basis for the prefix sum. For the latter, for each uint of the oracle
bit-string, the Hamming weight is calculated [75]. The Hamming weight – also referred to
as population count or popcount [109] – denotes the number of set bits (1 bits) within a
bit-string. It is computed by a separate kernel subsequently to the count kernel. OpenCL
1.2 specifies popcount as standard operation [102]. Since NVIDIA only supports OpenCL
1.1 in its current drivers, the Hamming weight is computed following Algorithm 9.13.
Prior to kernel execution, a counter array of size 4

(⌈‖HC‖
32

⌉
+ 1

)
Byte is allocated. The

one-dimensional index space of the popcount kernel is of size
⌈‖HC‖

32

⌉
.

The store kernel follows the principal scheme of Algorithm 9.1. Each work-item
processes one uint of the oracle bit-string, therefore requiring only a single global
memory access to obtain the oracle information for 32 triplet candidates..

Table 9.3 summarizes the expensive operations performed by the triplet filtering kernel.

100

Chapter 10

Evaluation

The evaluation of heuristic algorithms needs to address two aspects [145]: the quality
of the algorithm’s results and the time required to produce it. In the case of particle
track reconstruction, the quality of the produced results is described by the efficiency
(Equation 2.3), fake rate (Equation 2.4) and clone rate (Equation 2.5). The runtime
behavior is characterized by the kernel time – the time spent by the compute device
executing the kernel – and the wall time – including the kernel time, data transfers,
scheduling overhead etc.
Before scrutinizing the physical and algorithmic properties of the presented OpenCL-

based triplet finding in Sections 10.2 and 10.3, respectively, the setup for the evaluation
is presented in Section 10.1.

10.1. Evaluation Setup

This section presents the simulated event types employed to assess the quality of the
reconstructed triplets and the hardware and software configurations used for measuring
the runtime behavior of the algorithm.

10.1.1. Simulated Events

The physical performance of the algorithm is studied with Quantum Chromodynamics
(QCD) and tt̄ events. Both are generated with Pythia 6 [168], version 4.26, with a
center-of-mass energy of

√
s = 14 TeV. QCD processes are the predominant interactions

observed in the CMS detector and therefore constitute a suitable benchmark to measure
the performance of the triplet finding in average events. The transverse momentum of
the interacting quarks is set to be in the range of 80 GeV c−1 to 120 GeV c−1, resulting
in on average 110 of tracks per event. Collisions producing a top and antitop quark
feature a complex topology, including many jets, and thus allow the evaluation of the
performance of the algorithm in more intricate events. The produced sample contains on
average 144 tracks per event. For both types of processes, 2 000 events are generated. As
particles of high energy and transverse momentum are the primary target of physical
analyses, particles below 1 GeV c−1 pT are excluded from the set of to be found tracks.
Furthermore, only tracks comprising a hit in all considered barrel layers are deemed

101

10. Evaluation

OpenCL term CPU GPU

vendor Intel NVIDIA
model Core i7-3930K GTX 660
clock speed 3.20 GHz 1.03 GHz
cores compute units 6 · 2 5
L1 cache local memory 32 kByte 48 kByte
L2 cache 256 kByte 1 536 kByte
L3 cache 12 MByte –
main memory global memory 16 GByte 3 GByte
memory bandwidth 51.2 GByte s−1 144.2 GByte s−1

throughput 2.83 GByte s−1 32.9 GByte s−1

Table 10.1.: CPU and GPU used for runtime evaluations. The Core i7 features Intel’s „Hyper-
Threading“ technology, offering two logical cores to the operating system per physical one. The
throughput is determined experimentally by evaluating a simple addition kernel.

findable, discarding about 5 % of the generated tracks.
In order to study the runtime behavior of the algorithm, fine-grained control of the

number of tracks per event is necessary. Thus, a „random particle gun“ – simulating the
path of a individual particle through the detector – is used to generate a specified number
of particle tracks. The produced samples features 1 to 4 096 muon tracks, originating at
the transverse origin (0, 0), with a pT uniformly distributed in U [1, 10] GeV c−1 and η in
U [−1, 1].

10.1.2. Hardware and Software Configuration
The algorithm is evaluated on an Intel Core i7 3930K processor and a NVIDIA GTX 660
graphics card. The details of the hardware specifications are listed in Table 10.1. The
graphics card is paired with an AMD Athlon II X2-220 with 4 GByte of main memory in
a machine running Ubuntu Linux 12.04 with version 319.23 of NVIDIA’s Linux driver,
supporting OpenCL 1.1. The NVIDIA driver also provides the OpenCL compiler for the
kernels; for the host application, GCC version 4.7.3 is used. The Core i7 CPU is installed
in a machine operating under Scientific Linux CERN (SLC) 6.4 with Intel’s OpenCL
SDK 2012 for OpenCL 1.1, providing OpenCL compiler version 1.0.2. GCC version 4.7.2
is used to compile the host application. All runtime measurements are performed on an
otherwise unoccupied system and repeated ten times.
In order to gain an understanding of the relative performance of both devices, the

runtime for calculating the prefix sum of 220 uints is determined for varying work-group
sizes in [1, 1024]. Figure 10.1 shows the obtained speedup measurements. The relative
speedup for a device is given with respect to the runtime of the prefix sum algorithm on
the same device with work-group size 1,

Srel(n) = Tx(1)
Tx(n) x ∈ {CPU,GPU.}

102

10.1. Evaluation Setup

20 21 22 23 24 25 26 27 28 29 210

work-group size
2−3

2−2

2−1

20

21

22

23

24

25

26

27

ra
tio

Prefix Sum - Speedup

GTX 660 - relative
GTX 660 - absolute
GTX 660 over Core i7

Core i7 - relative
Speedup over ref.

Figure 10.1.: Study of the relative performance of CPU and GPU used in the runtime evaluation.
Relative speedup is with respect to the runtime with a work-group of size 1 on the same device
type. The absolute speedup for the GPU is with respect to the minimum runtime of the CPU.
The ratio refers to the speedup of the GPU over the CPU for the same work-group size. The
reference implementation is provided by Apple Inc. [13]

The absolute speedup for the GPU is calculated with respect to the minimum runtime of
the algorithm on the CPU,

Srel(n) =
minx∈[1,1024] TCPU(x)

TGPU(n) .

The ratio relates the runtime on CPU over GPU for the same work-group size.
As Figure 10.1 reveals, the GPU is very sensitive to the choice of work-group size.

Setting the work-group size to 128 work-items yields a speedup of factor 64 over work-
group size 1. The CPU is more robust to the parameter, showing a maximum gain of
factor 3 for work-groups of size 16. The maximum speedup of the GPU over the CPU is
a factor 16.
Comparing the achieved peak throughputs for the kernel – 0.66 GByte s−1 on the

CPU and 9.14 GByte s−1 on the GPU – with the experimentally determined maximum
throughputs (refer to Table 10.1) indicates a compute-bound prefix sum implementation.
The maximum throughputs are determined by a simple kernel – reading one value from
global memory, adding a constant and writing back the result to global memory – in
1 000 iterations.

The physical and algorithmic performance of CMSSW is studied for version 6.0.0,
incorporating the k-d tree data structure by Reid [146].

103

10. Evaluation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
dθ Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(a) Triplets in the pixel layers 1-2-3.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
dθ Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(b) Triplets in the pixel and silicon strip layers
3-4-5.

Figure 10.2.: Study of the longitudinal bending of particle tracks for the
∣∣∣ θ′

θ − 1
∣∣∣ ≤ dθ filter

criterion. The percentage of real and background triplets passing the filter criterion for varying
cutoff values as well as the resulting fake rate is given for the pixel layers and a combination of
pixel and silicon strip layers.

10.2. Physics Performance

The attained quality of the produced results depends on the cutoff values used for the
filter criteria introduced in Chapter 7. Looser cutoffs result in a higher efficiency but
also entail more fakes passing the filter. Furthermore, a larger number of produced
outputs incurs longer processing times for subsequent steps of triplet finding and track
reconstruction. Therefore, the chosen cutoff values must carefully balance the need for
efficiency with the desire for low fake rates and fast processing times. The following
Section 10.2.1 elaborates on the determination of the cutoff values for the dθ, dφ and d0
filter. Subsequently, the resulting physical performance for QCD and tt̄ events as well as
for the muon samples is presented in Sections 10.2.3 to 10.2.4.

10.2.1. Determination of Cutoff Values for Filter Criteria

In order to determine suitable cutoff values for the dφ, dθ and d0 filter criteria presented
in Chapter 7, tt̄ events are studied due to their complex topology. For each filter criterion,
the fraction of real – i. e. valid – and background – i. e. fake – triplets passing the criterion
for various cutoff values is scrutinized. The criteria are examined for triplets of hits in
layers

• 1-2-3, therefore using only pixel layers in the PXB;

• 2-3-4, using the first stereo layer of the silicon strip TIB; and

• 3-4-5, employing both stereo layers of the TIB.

104

10.2. Physics Performance

0.0 0.1 0.2 0.3 0.4
dφ Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(a) Triplets in the pixel layers 1-2-3.

0.0 0.1 0.2 0.3 0.4
dφ Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(b) Triplets in the pixel and silicon strip layers
3-4-5.

Figure 10.3.: Study of the transverse bending of particle tracks for the |φ′ − φ| ≤ dφ filter criterion.
The percentage of real and background triplets passing the filter criterion for varying cutoff
values as well as the resulting fake rate is given for the pixel layers and a combination of pixel
and silicon strip layers.

0.0 0.5 1.0 1.5 2.0
TIP Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(a) Triplets in the pixel layers 1-2-3.

0.0 0.5 1.0 1.5 2.0
TIP Cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cutno cutno cut

Real
Background
Fakerate

(b) Triplets in the pixel and silicon strip layers
3-4-5.

Figure 10.4.: Study of the transverse impact parameters of particle tracks for the d0 filter criterion.
The percentage of real and background triplets passing the filter criterion for varying cutoff
values as well as the resulting fake rate is given for the pixel layers and a combination of pixel
and silicon strip layers.

Figure 10.2 shows the results for the dθ filter. As discussed in Section 7.1, a straight
line approximates the path of a charged particle in the longitudinal plane. Given the
high precision measurements of the pixel detector, a small tolerance on θ′

θ suffices to
accept most valid triplets, refer to Figure 10.2a. Background triplets can be successfully
rejected using small enough dθ values, while still obtaining high efficiency. On the other
hand, hits in the stereo silicon strip layers suffer from a more coarse-grained resolution

105

10. Evaluation

Cut Flow

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cut

Real
Background
Fakerate

(a) Percentage of real and background triplets
passing the consecutive application of the dθ,
dφ and d0 filter. Furthermore, the resulting
fake rate is given.

Cut Flow100

101

102

103

104

105

106

O
ve

ra
ll

C
ou

nt
[1

]

no cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cut

Real
Background

(b) Number of real and background triplets pass-
ing the consecutive filter step.

Figure 10.5.: Consecutive application of the proposed filter criteria for the chosen cutoff value for
each filter. The plots show the data for the pixel layers 1-2-3.

Cut Flow

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

[1
]

no cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cut

Real
Background
Fakerate

(a) Percentage of real and background triplets
passing the consecutive application of the dθ,
dφ and d0 filter. Furthermore, the resulting
fake rate is given.

Cut Flow100

101

102

103

104

105

106

O
ve

ra
ll

C
ou

nt
[1

]

no cut phi cut theta cut TIP cutno cut phi cut theta cut TIP cut

Real
Background

(b) Number of real and background triplets pass-
ing the consecutive filter step.

Figure 10.6.: Consecutive application of the proposed filter criteria for the chosen cutoff value for
each filter. The plots show the data for combination of pixel and silicon strip layers 3-4-5.

in z of 230 µm, as opposed to 20 µm in the PXB. Hence, the tolerance on dθ needs to
be an order of magnitude larger to achieve similar efficiency as in the pixel detector
as shown by Figure 10.2b. The background rejection for a given dθ value in the 3-4-5
layer combination is even stronger than in the PXB; still, the immense number of fake
combinations – refer to Figure 10.6b – results in a very high fake rate.

106

10.2. Physics Performance

Layer Combination dφ dθ d0

1-2-3 0.075 0.01 0.5
2-3-4 0.2 0.2 0.5
3-4-5 0.4 0.4 1.0
4-5-8 0.4 0.5 3.5

Table 10.2.: Cutoff values for the dφ, dθ and d0 filter criteria.

The results of the dφ filter studies are presented in Figure 10.3. A trajectory’s transverse
curvature depends on the particle’s transverse momentum pT , refer to Equation (7.3).
Thus, a certain change in φ is expected between hits of the track in adjacent detector
layers. The CMS detector features a high resolution in φ in both the PXB and the TIB,
with 10 µm and 23 µm to 35 µm, respectively. Nevertheless, Figures 10.3a and 10.3b show
that a much larger tolerance on dφ is required in the 3-4-5 layer combination than in
the pixel layers to attain similar efficiency. This is due to the greater radial distance
traveled by the particle between the layers of the TIB than between the layers of the
PXB. The pixel layers are mounted at radii ≈ 3 cm apart, whereas the silicon strip layers
are separated by ≈ 15 cm. Between the third PXB layer and the first TIB layer, the
particle traverses ≈ 15 cm of radial distance. For a detailed description of the detector
layers’ positions refer to Table 1.1. The background rejection is of similar order for both
layer configurations; for the fake rate, the same observations as for the dθ criterion apply.

The transverse impact parameter d0 is determined by the Riemann fit method described
in Section 7.2. As illustrated by Figure 10.4, the filter achieves similar efficiency in both
layer combinations for the same cutoff value, as the varying radial distances between the
layers are accounted for by the fitted circle parameters. Particularly in the 3-4-5 layer
configuration, the d0 criterion is very efficient in rejecting background triplets.

The cutoff values chosen for the further analysis of the OpenCL-based triplet finding
algorithm are listed in Table 10.2. They are chosen to attain an efficiency of about 90 %
in order to limit the background triplets. Tracks not within the scope of this parameter
configuration can be found by a second iteration of the algorithm. As hits already covered
by a reconstructed track are masked off in later iterations, less restrictive cutoff values
can be applied. The cutoff values for the outermost layer combination – 4-5-8, involving
the first layer of the TOB detector – are derived from the values of the 3-4-5 configuration
as it is introduced in later stages of the studies.

Whereas the previous plots addressed the filter criteria in isolation from one another,
Figures 10.5 and 10.6 show the effects of the consecutive application of the dφ, dθ and dφ
filters with the chosen cutoff values. While accepting approximately the same percentage
of valid and fake triplets – ≈ 90 % and < 0.1 %, respectively – in both layer configurations,
the number of passing fakes is an order of magnitude higher in the TIB than in the PXB,
explaining the high fake rate.

107

10. Evaluation

1-2-3 2-3-4 3-4-5 4-5-8 combined
layer triplet

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies
efficiency
fake rate
clone rate

Figure 10.7.: Overview of physics performance for all considered layer combinations for QCD
events.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 1-2-3

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 1-2-3

(b) Physics performance measures over pT .

Figure 10.8.: Efficiency, fake rate and clone rate for QCD events in the pixel layers 1-2-3.

10.2.2. Physics Performance for QCD Events

QCD processes are the most observed interactions in proton-proton collisions. Hence,
they provide good insight into the performance of the triplet finding for the average case.
Figure 10.7 summarizes the quality of the results produced by the OpenCL-based

triplet finding algorithm. The performance is shown for prediction-based pair building
and extrapolation-based triple prediction, both with tight selection. The rationale of this
choice is discussed in Section 10.2.4. For all PXB and TIB layers, the efficiency is about

108

10.2. Physics Performance

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 3-4-5

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 3-4-5

(b) Physics performance measures over pT .

Figure 10.9.: Efficiency, fake rate and clone rate for QCD events in the combined pixel and silicon
strip layers 3-4-5.

80 %. For the last layer configuration, including layer eight in the outer silicon strip
detector (TOB), the efficiency drops to 70 %, due to the large radial distance traversed by
the particle between layer five and eight (≈ 20 cm) and the lower resolution in φ (40 µm)
as well as z (530 µm). The fake rate increases from ≈ 10 % in the pixel layers to 40 % to
50 % in the silicon strip layers because of the looser cutoff values required to maintain a
reasonable efficiency. Clones are mainly due to overlapping detector modules within one
layer, refer to Figure 8.1b. If both modules record a particle’s traversal, two triplets will
be generated from the reconstructed hits; one using the inner module’s hit and another
including the outer hit. The clone rate fluctuates around 7 % throughout all studied layer
combinations.
The efficiency remains constant throughout the η range of the PXB, as illustrated by

Figure 10.8a. Since the implementation of the presented algorithm is restricted to the
barrel region, the drop in efficiency for the outer η = 1.5 bin is expected as the transition
of particles from the barrel into the endcap region needs to be considered to find tracks
in the higher η-range. The fake rate increases with growing η due to larger predicted
z-range in pair building, refer to Figure 9.4. Studying the performance measures over
pT in Figure 10.8b reveals a constant efficiency, with a slight drop for low transverse
momentum tracks. The greater change in φ between layers for low pT particles due to the
CMS solenoid exceeds the thresholds imposed by the dφ filter. The same behavior can
be observed in Figure 10.9 for layer configurations involving TIB layers, with increased
fake rate because of the less restrictive filter cutoffs.

Even though the filter cutoff values are derived from the study of tt̄ events, they show
good performance for QCD processes as well. Thus, the approach of using the more
complex event topology to determine the cutoff values is validated.

Detailed plots for the physics performance of the presented algorithm in the other layer
configurations are presented in Appendix A.

109

10. Evaluation

1-2-3 2-3-4 3-4-5 4-5-8 combined
layer triplet

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies
efficiency
fake rate
clone rate

Figure 10.10.: Overview of physics performance for all considered layer combinations for tt̄ events.

10.2.3. Physics Performance for tt̄ Events

The complex topology of the top-antitop production provides a good benchmark for the
performance of the triplet finding for more challenging events.
The efficiency in tt̄ events – as shown by Figure 10.10 – is comparable to the one in

QCD events, with ≈ 80 % for the PXB and TIB layer configurations and a moderate
decrease when including the TOB. The fake rate increases by about 10 % in the silicon
strip detectors compared to QCD events. The increase can be attributed to the parton
jets present in tt̄ events. The jets produce many hits within a narrow cone, therefore
allowing the creation of many invalid triplets that are still passing the filter criteria due
to their close proximity.
The performance measures exhibit a similar behavior over η and pT as described in

the previous section and confirm the gained insights. Detailed plots are displayed in
Appendix A.

10.2.4. Physics Performance for Muon Events

The muon samples are specifically produced for runtime evaluation purposes. Their
topology – with up to 4 096 muon tracks originating at the nominal transverse beamspot
– does not resemble any physical processes of proton-proton interactions. Nevertheless,
the artificial sample is well suited for runtime studies, providing a similar workload as
anticipated for the data-taking period starting 2015, with 1 000 to 2 000 tracks per event.
Therefore, the algorithm’s physical performance for the sample needs to be verified in
order for meaningful runtime measurements.

110

10.2. Physics Performance

100 101 102 103 104

tracks

0.0

0.2

0.4

0.6

0.8

1.0

Physics Performance over Tracks

OCL efficiency
OCL fake rate
OCL clone rate
CMSSW efficiency
CMSSW fake rate
CMSSW clone rate

Figure 10.11.: Physics performance for muon events over number of simulated tracks. Solid lines
represent the performance of the OpenCL-based triplet finding. Dashed lines indicate the
performance of the initial seeding step of CMSSW.

CMSSW OpenCL
Pair Generator grid-based prediction-based tight prediction-based
Triplet Predictor angular-based angular-based tight extrapolation-based
Pairs 256 327 7 827 618 616 535 235 596

×0.90 ×7.30 ×6.34 ×1.97
Candidates 231 427 57 296 731 3 902 299 463 367

×0.25 ×0.000 56 ×0.009 0 ×0.046 2
Triplets 58 632 33 788 35 482 21 409

Efficiency 68 % 90 % 99 %† 97 %
Fake rate 95 % 90 % 90 % 83 %
Clone rate 0.8 % 1.3 % 1.4 % 2.3 %

Table 10.3.: Number of combinations processed by CMSSW and different configurations of
OpenCL-based triplet finding for an event with 4 096 muon tracks. The first factor gives the
number of produced triplet candidates per hit pair; the second factor indicates the fraction of
valid triplets per candidate.
† the increase in efficiency is due to an enhanced φ-prediction in the triplet prediction step.

Comparing the presented algorithm’s physical performance with the one of CMSSW
suffers from many caveats. As several iterative steps are employed by CMSSW, each
with highly tuned parameters, evaluating the efficiency and fake rate for a single step can
only provide limited insights into the performance of CMSSW’s triplet finding algorithm.
Evaluating the combined performance of all steps would constitute an unfair comparison
for the presented OpenCL-based algorithm, since many special cases could be treated
by the individual steps that would be prohibitive in an algorithm geared towards fast
processing.

The parameters of the muon sample are deliberately chosen to produce tracks findable

111

10. Evaluation

by the initial step of CMSSW’s seeding, with no transverse impact parameter and
a minimum pT of 1 GeV c−1 for the simulated particles. Still, the comparison of the
performance measures presented in Figure 10.11 allows only qualitative insights. Both
algorithms feature fake rates of the same order. For large samples with more than a
thousand tracks originating at the same point, the occupancy of the pixel layers is very
high, explaining the tremendous fake rate.

The efficiencies of the algorithms differ by 30 % to 40 %. While the presented algorithm
is able to find triplets for almost all of the simulated tracks, CMSSW’s initial step only
reconstructs triplets for 60 % of them. Tracks not found by the initial step of CMSSW
are reconstructed in later iterations, employing less restrictive seeding algorithms. Using
these algorithms in the initial step, however, would not be representative for the runtime
behavior of CMSSW.
Nevertheless, the qualitative insight that the presented algorithm achieves a physical

performance of the same order as CMSSW remains and gives credence to the runtime
measurements presented in the following section.
The merit of more precise calculations in pair building and triplet prediction are

studied with the largest produced event, containing 4 096 muon tracks. The grid-based
pair generator produces over 7.8× 106 pairs, a factor 32 more than CMSSW, as listed in
Table 10.3. By predicting the z- and φ-range in pair building, the number of pairs can be
reduced by factor 10. The more precise prediction also enables the use of tight selection
as introduced in Sections 9.3 and 9.4, further decreasing the number of pairs by factor
three to about the same order as CMSSW. Extrapolation-based triplet prediction is also
essential to contain the amount of processed combinations. For every hit pair, it produces
≈ 2 triplet candidates, opposed to over 6 candidates per pair with angular-based triplet
prediction. Combining both methods reduces the the number of found triplet candidates
by two orders of magnitude, thus justifying the more complex calculations involved.

10.3. Algorithmic properties

The primary goal of this thesis is the design of a fast and efficient triplet finding
algorithm, capable to cope with the increased event complexity of the upcoming run
period in 2015. Having established the physical efficiency of the algorithm in the previous
section, alongside the derivation of the appropriate physical configuration parameters,
the runtime behavior of the implementation is examined in the following.

A central algorithmic tuning parameter of OpenCL-based algorithms is the work-group
size, which determines the number of work-items executed by a single compute-unit [171].
Factors influencing the choice of work-group size are

• the underlying hardware’s maximum work-group size, which is 1 024 for both Intel’s
and NVIDIA’s OpenCL SDK;

• the private memory demand of the executed kernel, limiting the work-group size
for kernels with many local variables;

112

10.3. Algorithmic properties

cell size

Configuration #z #φ z [cm] φ [rad] local memory

coarse 300 8 2 π
4 local grid count and store

local pair gen
medium 300 16 2 π

8 local grid count
grid store only local written
local pair gen

fine 600 32 1 π
16 no local memory

Table 10.4.: Configuration of the grid data structure and resulting usage of local memory in grid
building and pair generation kernels.

• the available local memory of a compute unit if the local memory consumption of
the kernel depends on the work-group size; and

• the desired sequential work-load for every work-item, for kernels processing a fixed
number of data points with a variable number of work-items.

The latter point is of particular significance to grid building and pair generation, as the
three-dimensional index space – refer to Figure 8.5 – employed for both kernels foresees
one work-group to process all hits of its assigned detector layer. Hence, an increasing
work-group size decreased the sequential load. In the one-dimensional index space used
in the triplet prediction and filter kernels, the sequential work-load is not sensitive to the
work-group size.

Local memory is only used in grid building and pair generation. The amount of required
local memory does not depend on the work-group size, but rather on the granularity
of the grid-data structure. Table 10.4 lists the grid configurations used in the further
runtime studies and their resulting usages of local memory. In the medium configuration,
preference is given to the counter of written elements per grid cell for local memory storage
in the grid building store kernel, since it needs to be accessed via atomic operations –
refer to Section 8.2.
The following sections present studies on the impact of the work group size (Sec-

tion 10.3.1), event parallelism (Section 10.3.2), the grid granularity (Section 10.3.3) and
the track multiplicity (Section 10.3.5) on the runtime of OpenCL-based triplet finding.
All studies are conducted with the muon track sample.

10.3.1. Work-Group Size
Figure 10.12 illustrates the total kernel time of all triplet finding steps for varying work-
group sizes. The experiments are conducted for small (100 tracks) and large (1 000 tracks)
events, with one and fifty concurrently processed events. The CPU is not sensitive
to the choice of work-group size and exhibits similar performance for all tested sizes.
Processing more events concurrently results in a modest decrease of processing time per
event. The GPU displays the contrary behavior: for one, the runtime depends strongly

113

10. Evaluation

20 21 22 23 24 25 26 27 28 29 210

work-group size
0

5

10

15

20

tim
e

/
ev

en
t[

m
s]

Processing Time with Work-Group Size
total GPU - 1:100
total GPU - 1:1000
total GPU - 50:100
total GPU - 50:1000

(a) GPU.

30
35
40
45
50
55
60
65 Processing Time with Work-Group Size

total CPU - 1:100
total CPU - 1:1000

total CPU - 50:100
total CPU - 50:1000

20 21 22 23 24 25 26 27 28 29 210

work-group size
0
1
2
3
4
5

tim
e

/
ev

en
t[m

s]

(b) CPU.

Figure 10.12.: Kernel time of triplet finding for varying work-group sizes. The label e : t indicates
the number of concurrently processed events e and the number of tracks per event t.

20 21 22 23 24 25 26 27 28 29 210

work-group size
20

21

22

23

24

25

26

sp
ee

du
p

Speedup for Varying Work-Group Sizes
GPU - relative
GPU - absolute
GPU over CPU
CPU - relative

Figure 10.13.: Speedup over work-group size for 50 concurrently processed events with 1 000 tracks
each. Relative speedup is with respect to the runtime with a work-group of size 1 on the same
device type. The absolute speedup for the GPU is with respect to the minimum runtime of the
CPU. The ratio refers to the speedup of the GPU over the CPU for the same work-group size.

on the work-group size, showing gains of more than an order of magnitude for the right
parameter choice. Moreover, the kernel time per event is reduced by a factor of two when
processing 50 events concurrently.
Studying the speedup of the algorithm with respect to work-group size reveals fur-

114

10.3. Algorithmic properties

ther insights. Figures 10.13 and 10.1 show, that the triplet finding algorithm behaves
comparably to the prefix sum implementation with respect to work-group size sensitiv-
ity. The prefix sum algorithm reaches its peak relative speedup of 64 for work-group
size 128, whereas the triplet finding peaks at 32 for 256 work-items per work-group.
The lower maximum speedup can be attributed partly to the higher number of global
memory accesses for triplet finding, as well as to the thread divergence induced by the
different number of hits processed within the search window in the pair building and
triplet prediction steps. In both algorithms, the CPU achieves its maximum speedup for
work-group size 32. The achieved maximum relative speedup of ≈ 1.2 for triplet finding –
compared to 3 for the prefix sum algorithm – indicates that the algorithm scales worse
on the CPU than on the GPU. The CPU’s performance is hampered by the immaturity
of the auto-vectorization features in Intel’s OpenCL compiler, thus the hardware’s SIMD
capabilities remain unexploited. Contact with Intel’s OpenCL compiler team has been
established in order to investigate the matter [132].
Plots of the behavior of individual processing steps with varying work-group sizes

are presented in Appendix B. All further experiments are conducted with the devices’
optimal work-group sizes of 32 for the CPU and 256 for the GPU.

10.3.2. Concurrent Events
The study of various work-group sizes already evinced the importance of high workloads to
fully leverage the hardware’s – particularly the GPU’s – potential. To further substantiate
the insight, the kernel time and wall time for concurrently processed events is studied,
refer to Figure 10.14. The wall time is measured for the entire triplet finding algorithm
but does not comprise the transfer of hits to the compute device. Including the transfer
time of the hit data to the measured wall time would add a constant offset per event
that could hide more subtle differences of kernel and wall time due to

• allocation of memory for counters and oracle bit-strings,

20 21 22 23 24 25 26 27 28 29 210 211

events
10−2

10−1

100

101

102

103

tim
e

/
ev

en
t[

m
s]

Processing Time for Concurrent Events
GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 100

(a) 100 tracks per event.

20 21 22 23 24 25 26

events
10−1

100

101

102

103

tim
e

/
ev

en
t[

m
s]

Processing Time for Concurrent Events

GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 1000

(b) 1 000 tracks per event.

Figure 10.14.: Runtime per event for concurrent triplet finding in many events of different size.

115

10. Evaluation

• transfer of total number of found outputs after prefix sum kernel execution,

• allocation of the output array by the host between count and store kernel and

• overhead due to the OpenCL implementation of the hardware’s vendor.

The larger gap between kernel time and wall time on the GPU is partly due to the higher
memory allocation and data transfer times and partially due to the improvable quality of
NVIDIA’s OpenCL implementation [85]. Hence, more and larger events are required to
amortize the overhead of the GPU. For small events (100 tracks, Figure 10.14a), the gap
is still quite pronounced for 2 048 concurrently processed events, indicating that GPU
employment is only beneficial for events with many tracks. As shown in Figure 10.14b,
the overhead amortizes more quickly for large events with 1 000 tracks. The 3 GByte of
main memory on the available GPU restricts the number of concurrently processed large
events to merely 64. Increasing the device’s main memory could therefore further aid the
amortization of the incurred overhead.

10.3.3. Grid Granularity
The grid data structure’s influence on the algorithm’s performance is manifold and
depicted in Figure 10.15. For small events, fine-grained grids incur a performance penalty
due to the loss of local memory caching in the grid building and pair generation kernels,
resulting in an increase in high-latency global memory accesses. Furthermore, since the
size of the data structure grows with the number of grid cells – E · L ·#z ·#φ · 4 Byte1

– more data needs to be transfered between host and device. Considering large events,
these initially higher costs amortize as fewer hit combinations are processed, reflected in
both runtime as well as transfered data volume.

1E concurrently processed events, L detector layers and #z ·#φ grid cells.

10−4

10−3

10−2

10−1

100

101

102

tim
e

[m
s]

Processing Time over Tracks
coarse grid - CPU
coarse grid - GPU

medium grid - CPU
medium grid - GPU

fine grid - CPU
fine grid - GPU

100 101 102 103 104

tracks / event
0.0
0.5
1.0
1.5
2.0
2.5

ra
tio

(a) Runtime and ratio of varying grid granulari-
ties.

3

4

5

6

7

8

9

ba
nd

wi
th

[G
B/

s]

Data Transfer per Track
write - GPU
read - GPU

write - CPU
read - CPU

20 21 22 23 24 25 26 27 28 29 210 211 212

tracks
10−2
10−1
100
101
102

[M
B]

written - coarse grid
read - coarse grid

written - fine grid
read - fine grid

(b) Bandwidth and transfered data volume.

Figure 10.15.: Influence of grid granularity on runtime and data volume for one processed event.
The configuration of grid granularities follow Table 10.4.

116

10.3. Algorithmic properties

10.3.4. Runtime Composition

Studying the share of the individual processing steps of the entire runtime reveals further
understanding of the algorithm’s behavior. Figure 10.16a depicts the runtime composition
for GPU execution of the algorithm. The I/O time includes the hit data transfer in order
to present its relation to the execution time of triplet finding. Building the grid data
structure requires a sizable portion of the runtime for events with fewer than ≈ 250 tracks,
a trait that is even more pronounced in the CPU’s runtime profile (Figure 10.16b). For
larger events, triplet building becomes the predominant contributor to the algorithm’s
runtime. Many accesses to global memory for hit positions and thread divergence in

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

(b) CPU.

Figure 10.16.: Share of individual processing steps of total runtime for the medium granularity of
the grid data structure.

117

10. Evaluation

the inner loop of the kernel impair the runtime. Data transfer times on CPU are
negligible since only pointers to the data need to be provided to the OpenCL runtime.
Appendix B presents further plots of runtime compositions for other grid granularities.
The main observed features remain identical, with the I/O contribution becoming more
predominant as processing times lessen because of fewer processed hit combinations with
a more fine-grained grid.

10.3.5. Tracks per Event
The runtime behavior for growing input sizes is one of the most basic characteristics of
an algorithm. Figure 10.17 displays the runtime of OpenCL-based triplet finding and
CMSSW for varying number of tracks. OpenCL suffers from significant constant overhead
which dominates the runtime for events with less than 200 tracks. The overhead can be
mitigated by processing several events concurrently. The GPU’s main memory limits the
event parallelism to merely 30 due to the largest sample with 4 096 tracks. however, the
overhead amortization for large events is apparent. The OpenCL-based triplet finding
outperforms CMSSW for events with more than 1 000 tracks by a factor of 64 if executed
on a GPU. If a CPU serves as compute device, it achieves a performance similar to
CMSSW. As discussed in Section 10.3.1, improvement’s to Intel’s OpenCL compiler
could aid the algorithm in surpassing CMSSW when performed on a CPU. Furthermore,
OpenCL-based triplet finding processes about twice as many triplet candidates as CMSSW
(Table 10.3) due to the simpler geometric calculations, even in the extrapolation-based

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−82−62−42−22022242628

ra
tio

fine grid

Figure 10.17.: Runtime of OpenCL-based triplet finding in comparison to the initial seeding
step of CMSSW. The OpenCL implementation processes 30 events concurrently to study the
amortization of wall time overhead.

118

10.3. Algorithmic properties

triplet prediction. Further limiting the number of candidates, e. g. by employing a circular
trajectory extrapolation to reduce the predicted φ-range, could improve the algorithm’s
performance.
In Figure 10.17, the fine grid configuration is used, yielding a runtime sweet spot

for events with ≈ 800 to 2 000 tracks. Employing a more coarse-grained grid results
in a sweet spot for fewer tracks per event, refer to Appendix B. Hence, the grid data
structure’s parameters need to be adapted to the anticipated number of tracks per event.

119

Chapter 11

Conclusion

The CMS experiment at the LHC particle accelerator has already led to many profound
insights into the fundamental interactions of the universe’s particles, most noticeably the
ground-breaking discovery of a Higgs-like boson in 2012. These insights were enabled
by the study of precisely reconstructed particle trajectories, produced by proton-proton
collisions with an unprecedented center-of-mass energy of 7 TeV. The reconstruction of
tracks from the interaction of traversing particles with the detector material poses a
tremendous computational challenge. When the LHC resumes operation in 2015 with an
increased luminosity and center-of-mass energy of 14 TeV, this challenge becomes even
greater. As the number of simultaneous proton-proton collisions increases with the leap in
energy, more particles will be traversing the detector. Hence, the reconstruction of particle
tracks – a combinatorial pattern recognition problem – needs to cope with a significantly
higher combinatorial complexity for the involved algorithms. The combination of increased
combinatorics and the stagnation of clock frequencies of individual CPU cores for the last
years gives rise to the need to examine alternatives more suitable for parallelization and
modern computing technology than the currently employed iterative Kalman filter-based
track finding. One of the pursued approaches is Cellular Automaton-based track finding,
using simple, local and parallelizable computations to form particle tracks by joining
compatible triplets of energy deposits – hits – in adjacent layers of the tracking system.

This thesis presents the design of a parallel algorithm to identify valid triplets of hits,
originating from the same particle’s path through the detector, while discarding fake
ones – triplets comprising hits of different particles’ trajectories. Even though facing the
complex detector geometry of CMS, simple filter criteria are employed to separate valid
from fake triplets. In order to limit combinatorics in the search for triplets, the feasible
range for an additional hit is predicted based on the information from a given individual
hit or hit pair. A uniform grid data structure is used to efficiently answer queries for hits
within the predicted range.

Parallelism is exploited on three levels, processing multiple events and layer configura-
tions concurrently as well as treating individual hits, pairs of hits and triplet candidates
simultaneously. The diverse computing landscape of the Worldwide LHC Computing
Grid requires to address this parallelism in a portable manner, exploiting the capabilities
of various processor- and graphic card types – the latter in a first attempt to bring GPU
computing to CMS. OpenCL as an open framework for heterogeneous, massively-parallel

121

11. Conclusion

computing provides the ideal platform to implement the presented algorithm, however
requires careful consideration in the algorithm design.
The presented algorithm is validated by studying simulated tt̄ and QCD collision

events. It achieves high quality of the physical output – identifying on average 80 % of
the simulated particle tracks. The number of fake triplets in the produced results varies
with the detector region, being as low as 15 % in the inner, most precise, pixel detector
and as high as 60 % in the less precise silicon-strip detector. Several prediction methods
for pair generation and triplet finding are studied, attesting the more complex ones a
dramatic decrease in the inspected hit combinations. Since all subsequent processing
steps benefit from the reduced combinatorics, the more compute-intense calculations are
justified.

In benchmarks, the algorithm proves to be very suitable to address many concurrently
processed events with high activity. In comparison to the initial triplet seeding algorithm
of the CMS experiment software, the presented algorithm achieves a speedup of 64 for
events with more than 1 000 tracks when executed on a GPU. Performed on the CPU,
it exhibits a similar runtime as the experiment software’s algorithm. To fully exploit
the capabilities of a GPU and amortize associated OpenCL overheads, a high workload
is essential. Therefore, the processing of multiple concurrent events is eminent. For
small events with about 100 tracks, using the GPU yields little merit even for a large
number of concurrent events, thus they should be processed solely by the CPU. The
recently announced next generation of GPUs [135] promises even greater gains in the
face of multiple, large events. OpenCL proves to be capable to exploit both hardware
platforms with no effort required to switch between the two. The grid data structure
provides efficient access to the measured hits in the predicted range. The granularity of
the data structure needs to be carefully weighed to balance the time and space required
for data structure construction and storage with the merit of fewer hits per grid cell. A
fine-grained grid is most beneficial for large events.

The triplet finding algorithm is implemented outside the experiment’s software frame-
work. Therefore, its integration remains for future work. Processing multiple events
concurrently requires restructuring the current framework’s data flow; a matter addressed
by [82]. As the algorithms performance depends highly on properly tuned parameters
– grid granularity and number of concurrently processed events – for the event size,
heuristics based on the expected number of proton-proton interactions for the current
particle beam parameters should be examined. As the goal of the presented work is to
assess the validity of a simplified algorithmic approach to triplet finding and the merit
of exploiting modern CPUs and GPUs, the geometric calculations are restricted to the
barrel region of the CMS detector. For productive use, the endcap and transition regions
need to be addressed as well.
In conclusion, an efficient, both in the physical as well as algorithmic sense, triplet

finding algorithm is presented in this thesis, capable of coping with the processing
challenges ahead.

122

Part III.

Appendices

123

Appendix A

Supplement to Physics Performance

Performance in QCD Events

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 1-2-3

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 1-2-3

(b) Physics performance measures over pT .

Figure A.1.: Efficiency, fake rate and clone rate for QCD events layers 1-2-3.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 2-3-4

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 2-3-4

(b) Physics performance measures over pT .

Figure A.2.: Efficiency, fake rate and clone rate for QCD events in layers 2-3-4.

125

A. Supplement to Physics Performance

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 3-4-5

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 3-4-5

(b) Physics performance measures over pT .

Figure A.3.: Efficiency, fake rate and clone rate for QCD events in layers 3-4-5.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 4-5-8

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

QCD Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 4-5-8

(b) Physics performance measures over pT .

Figure A.4.: Efficiency, fake rate and clone rate for QCD events in layers 4-5-8.

126

Performance in tt̄ Events

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 1-2-3

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 1-2-3

(b) Physics performance measures over pT .

Figure A.5.: Efficiency, fake rate and clone rate for tt̄ events layers 1-2-3.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 2-3-4

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 2-3-4

(b) Physics performance measures over pT .

Figure A.6.: Efficiency, fake rate and clone rate for tt̄ events in layers 2-3-4.

127

A. Supplement to Physics Performance

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 3-4-5

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 3-4-5

(b) Physics performance measures over pT .

Figure A.7.: Efficiency, fake rate and clone rate for tt̄ events in layers 3-4-5.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
η

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over η
efficiency
fake rate
clone rate

layers 4-5-8

(a) Physics performance measures over η.

100 101 102

pt in [GeV/c]

0.0

0.2

0.4

0.6

0.8

1.0

tt̄ Simulated Event Studies over pT

efficiency
fake rate
clone rate

layers 4-5-8

(b) Physics performance measures over pT .

Figure A.8.: Efficiency, fake rate and clone rate for tt̄ events in layers 4-5-8.

128

Appendix B

Supplement to Algorithmic Performance

Work-Group Size Studies

In the following plots, the label e : t indicates the number of concurrently processed
events e and the number of tracks per event t.

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e

/
ev

en
t[

m
s]

Processing Time with Work-Group Size
build grid GPU - 1:100
build grid GPU - 1:1000
build grid GPU - 50:100
build grid GPU - 50:1000

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

tim
e

/
ev

en
t[m

s]

Processing Time with Work-Group Size
build grid CPU - 1:100
build grid CPU - 1:1000
build grid CPU - 50:100
build grid CPU - 50:1000

(b) CPU.

Figure B.1.: Kernel time of grid building for varying work-group sizes.

129

B. Supplement to Algorithmic Performance

20 21 22 23 24 25 26 27 28 29 210

work-group size
0

2

4

6

8

10

tim
e

/
ev

en
t[m

s]

Processing Time with Work-Group Size
pair gen GPU - 1:100
pair gen GPU - 1:1000
pair gen GPU - 50:100
pair gen GPU - 50:1000

(a) GPU.

6
8

10
12
14
16
18
20 Processing Time with Work-Group Size

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

tim
e

/
ev

en
t[

m
s]

pair gen CPU - 1:100
pair gen CPU - 1:1000

pair gen CPU - 50:100
pair gen CPU - 50:1000

(b) CPU.

Figure B.2.: Kernel time of pair generation for varying work-group sizes.

20 21 22 23 24 25 26 27 28 29 210

work-group size
0

1

2

3

4

5

tim
e

/
ev

en
t[m

s]

Processing Time with Work-Group Size
triplet predict GPU - 1:100
triplet predict GPU - 1:1000
triplet predict GPU - 50:100
triplet predict GPU - 50:1000

(a) GPU.

20

25

30

35

40 Processing Time with Work-Group Size

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

tim
e

/
ev

en
t[

m
s]

triplet predict CPU - 1:100
triplet predict CPU - 1:1000
triplet predict CPU - 50:100
triplet predict CPU - 50:1000

(b) CPU.

Figure B.3.: Kernel time of triplet prediction for varying work-group sizes.

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.0

0.5

1.0

1.5

2.0

tim
e

/
ev

en
t[m

s]

Processing Time with Work-Group Size
triplet filter GPU - 1:100
triplet filter GPU - 1:1000
triplet filter GPU - 50:100
triplet filter GPU - 50:1000

(a) GPU.

2
3
4
5
6
7
8
9

10 Processing Time with Work-Group Size

20 21 22 23 24 25 26 27 28 29 210

work-group size
0.00
0.05
0.10
0.15
0.20
0.25

tim
e

/
ev

en
t[

m
s]

triplet filter CPU - 1:100
triplet filter CPU - 1:1000
triplet filter CPU - 50:100
triplet filter CPU - 50:1000

(b) CPU.

Figure B.4.: Kernel time of triplet filtering for varying work-group sizes.

130

Grid Granularity Studies

The following plots demonstrate the behavior of individual processing steps with different
grid data structure granularities. The granularities are defined according to Table 10.4.

10−6

10−5

10−4

10−3

10−2

10−1

100

101

tim
e

[m
s]

Grid data structure construction

coarse grid - GPU
medium grid - GPU
fine grid - GPU

coarse grid - CPU
medium grid - CPU
fine grid - CPU

100 101 102 103 104 105

hits / event
0.2
0.4
0.6
0.8
1.0

ra
tio

(a) Grid building.

10−5

10−4

10−3

10−2

10−1

tim
e

[m
s]

Pair Generation

coarse grid - GPU
medium grid - GPU
fine grid - GPU

coarse grid - CPU
medium grid - CPU
fine grid - CPU

100 101 102 103 104

tracks / event
0.40.60.81.01.21.41.61.82.0

ra
tio

(b) Pair generation.

10−5

10−4

10−3

10−2

10−1

100

tim
e

[m
s]

Triplet Prediction
coarse grid - GPU
medium grid - GPU
fine grid - GPU

coarse grid - CPU
medium grid - CPU
fine grid - CPU

100 101 102 103 104

tracks / event
0.5
1.0
1.5
2.0
2.5
3.0

ra
tio

(c) Triplet prediction.

10−5

10−4

10−3

10−2

10−1

tim
e

[m
s]

Triplet Filtering
coarse grid - GPU
medium grid - GPU
fine grid - GPU

coarse grid - CPU
medium grid - CPU
fine grid - CPU

100 101 102 103 104

tracks / event
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3

ra
tio

(d) Triplet filtering.

Figure B.5.: Kernel time of individual processing steps for varying grid granularities.

131

B. Supplement to Algorithmic Performance

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

coarse grid Events: 30

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

coarse grid Events: 30

(b) CPU.

Figure B.6.: Contribution of individual processing steps for coarse grid configuration.

132

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

medium grid Events: 30

(b) CPU.

Figure B.7.: Contribution of individual processing steps for medium grid configuration.

133

B. Supplement to Algorithmic Performance

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

fine grid Events: 30

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210 211

tracks
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

fine grid Events: 30

(b) CPU.

Figure B.8.: Contribution of individual processing steps for fine grid configuration.

134

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−6
2−4
2−2
20
22
24
26

ra
tio

coarse grid

Figure B.9.: Runtime for muon track sample for coarse grid configuration.

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−6
2−4
2−2
20
22
24
26

ra
tio

medium grid

Figure B.10.: Runtime for muon track sample for medium grid configuration.

135

B. Supplement to Algorithmic Performance

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−82−62−42−22022242628

ra
tio

fine grid

Figure B.11.: Runtime for muon track sample for fine grid configuration.

10−1

100

101

102

103

104

105

tim
e

/
ev

en
t[

m
s]

Processing Time over Tracks
wall time GPU
kernel time GPU

wall time CPU
kernel time CPU

CMSSW 6.0.0

100 101 102 103

tracks / event
2−122−102−82−62−42−22022242628

ra
tio

super fine grid

Figure B.12.: Runtime for muon track sample for super fine grid configuration.

136

Concurrent Events Studies

The following figures illustrate the behavior of the algorithm for processing multiple
small (100 tracks) and large (1 000 tracks) events.

20 21 22 23 24 25 26 27 28 29 210 211

events
10−1

100

101

102

103

104

tim
e

[m
s]

Processing Time for Concurrent Events
GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 100

(a) Small events.

20 21 22 23 24 25 26

events
100

101

102

103

104

tim
e

[m
s]

Processing Time for Concurrent Events
GPU wall time
GPU kernel time

CPU wall time
CPU kernel time

Tracks: 1000

(b) Large events.

Figure B.13.: Kernel time for processing multiple events concurrently.

1

2

3

4

5

6

7

8

9

ba
nd

wi
th

[G
B/

s]

Data Transfer for Concurrent Events

write - GPU
read - GPU

write - CPU
read - CPU

20 21 22 23 24 25 26 27 28 29 210 211

events
10−510−410−310−210−1100101

[M
B]

written - 100 tracks
read - 100 tracks

written - 1000 tracks
read - 1000 tracks

Figure B.14.: Transferred data volume and bandwidth for processing multiple events.

137

B. Supplement to Algorithmic Performance

20 21 22 23 24 25 26 27 28 29 210 211

events
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

Tracks: 100

(a) GPU.

20 21 22 23 24 25 26 27 28 29 210 211

events
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

Tracks: 100

(b) CPU.

Figure B.15.: Contribution of individual processing steps for small events.

138

20 21 22 23 24 25 26

events
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - GPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

Tracks: 1000

(a) GPU.

20 21 22 23 24 25 26

events
0.0

0.2

0.4

0.6

0.8

1.0

ru
nt

im
e

sh
ar

e
[%

]

Composition of Event Processing Runtime - CPU

Filter triplets
Predict triplets - store
Predict triplets - count
Generate pairs
Build grid
IO - write
IO - read

Tracks: 1000

(b) CPU.

Figure B.16.: Contribution of individual processing steps for large events.

139

Appendix C

Configuration Parameters

Grid Data Structure Configuration

Parameter Technical Remarks

zmin minZ grid extend – zmin = −300 for tracker
zmax maxZ grid extend – zmin = 300 for tracker
φmin minPhi grid extend – φmin = −π
φmax maxPhi grid extend – φmax = π
#z nSectorsZ number of grid cells in z
#φ nSectorsPhi number of grid cells in φ

sectorSizeZ derived – zmax−zmin
#z

sectorSizePhi derived – φmax−φmin
#φ

Table C.1.: Parameters for the grid data structure.

Event Data Loading Configuration

Parameter Technical Remarks

eventDataSrc data file with event data
maxEvents number of events to process

L maxLayer outermost layer to load – derived – max l3
∗ maxTracks number of tracks to load per event
∗ pT,min minPt minimum pT of tracks to load
∗ onlyTracks merely consider tracks with a hit in each layer

Table C.2.: Parameters for event data loading. Parameters marked with ∗ are only valid for
simulated data.

141

C. Configuration Parameters

Layer Configuration and Triplet Parameters

Parameter Technical Remarks

l1 layer1 inner layer of triplet
l2 layer2 middle layer of triplet
l3 layer3 outer layer of triplet
dθ dThetaCut quality measure on θ′

θ Equation (7.4)
dφ dPhiCut quality measure on |φ′ − φ| Equation (7.5)
d0 d0 maximum Transverse Impact Parameter
z0 z0 maximum Longitudinal Impact Parameter
pθ dThetaWindow prediction window for θ in Algorithm 9.6
pφ dPhiWindow prediction window for φ in Algorithm 9.8
sz pairSpreadZ neighborhood size in z for pair building Algo-

rithm 9.4
sφ pairSpreadPhi neighborhood size in φ for pair building Algo-

rithm 9.4
σz sigmaZ extra tolerance for z-range prediction Algorithms

9.5 / 9.9
σφ sigmaPhi extra tolerance for φ-range prediction Algorithms

9.5 / 9.10

Table C.3.: Parameters to define a layer triplet for triplet finding. All parameters are per layer
combination.

Execution Configuration

Parameter Technical Remarks

T threads work-group size
E eventGrouping number of events to process concurrently

useCPU force using CPU instead of GPGPU
verbose verbose output
config configuration file to use

Table C.4.: Execution parameters for triplet finding.

142

Appendix D

List of Figures

1.1 Overview of particle acceleration facilities and experiments at LHC [116]. 10
1.2 Schematic of the CMS detector [44]. 11
1.3 Coordinate system as employed by the CMS collaboration. 12
1.4 Major components of the CMS silicon tracker [44]. 13
1.5 One quarter of the CMS silicon strip tracker [108]. 15
1.6 Schematic CMS detector slice with passing particles [17] 16
1.7 Pile-up events in the CMS detector. 18

2.1 Schematic view of the WLCG grid tier hierarchy including CMS Tier 1
sites and German CMS Tier 2 centers [156]. 20

2.2 CMSSW process containing a path with two sequences, each containing
several modules [44]. 22

2.3 Schematics of the CMS trigger and data acquisition system [44]. 23
2.4 Muon reconstruction steps in CMS [2] 25
2.5 Distinction of seeding in the barrel and the endcap region. 30
2.6 Search range restriction for pair and triplet finding in CMSSW. 30

3.1 Comparison of peak performance of CPUs and GPUs. 36
3.2 Schematic of the GPU pipeline. 38
3.3 Schematic of NVIDIA’s Kepler architecture. 40
3.4 Schematic of the OpenCL platform, execution and memory model. . . . 41
3.5 Mapping of index space to memory locations. 43

4.1 Illustration of two widely used neighborhood functions for Cellular
Automata. 47

4.2 Five detector layers with CA cells defined via segments. 48
4.3 CA-based track formation. 50
4.4 CA-based track selection. 50
4.5 Illustration of a MWPC and its application in the ALICE TPC endplates. 52

5.1 Illustration of a k-d tree for two-dimensional space points [24]. 56
5.2 Illustration of a quadtree for two-dimensional space points [24]. 58
5.3 Illustration of a R-tree for two-dimensional MBRs [111]. 59

143

D. List of Figures

5.4 A grid data structure as uniform overlay over two-dimensional space. . . 60

6.1 High level processing steps of OpenCL-based CA track finding. 64

7.1 Schematic angular criteria to discriminate valid and fake triplets. 68
7.2 Schematic of the Transverse Impact Parameter d0. 70
7.3 Calculating d0 based on the point of closest approach pca of the particle’s

trajectory. 71

8.1 Layered construction of the CMS inner tracking system. 74
8.2 Schematic drawing illustrating the compressed DetUnit radius storage. 74
8.3 Occupancy of the PXB and TIB during tt̄ events over z and φ. 76
8.4 Event hit data organization on the compute device 77
8.5 Schematic of three-dimensional index space. 79

9.1 Schematic of the balanced trees employed in the two phase prefix sum
algorithm by Blelloch [27]. 84

9.2 Schematic of φ-slicing of detector induced by the the grid data structure. 87
9.3 Schematics for calculating the maximum ∆φ = |α− β|+ γ for pair finding. 90
9.4 Calculating the feasible z-range for the inner hit of a hit pair. 90
9.5 Illustration of φ-wraparound. 92
9.6 Prediction of the feasible z-range of the third hit based upon a straight

line extrapolation. 96

10.1 Study of the relative performance of CPU and GPU used in the runtime
evaluation. 103

10.2 Study of the longitudinal bending of particle tracks. 104
10.3 Study of the transverse bending of particle tracks. 105
10.4 Study of the transverse impact parameters of particle tracks. 105
10.5 Consecutive application of filter criteria in the pixel layers. 106
10.6 Consecutive application of filter criteria in the pixel layers. 106
10.7 Overview of physics performance for all considered layer combinations

for QCD events. 108
10.8 Efficiency, fake rate and clone rate for QCD events in the pixel layers

1-2-3. 108
10.9 Efficiency, fake rate and clone rate for QCD events in the combined pixel

and silicon strip layers 3-4-5. 109
10.10 Overview of physics performance for all considered layer combinations

for tt̄ events. 110
10.11 Physics performance for muon events over number simulated tracks. . . 111
10.12 Kernel time of triplet finding for varying work-group sizes. 114
10.13 Speedup over work-group size. 114
10.14 Runtime per event for concurrent triplet finding in many events. 115
10.15 Influence of grid granularity on runtime and data volume. 116
10.16 Share of individual processing steps of total runtime. 117

144

10.17 Runtime of OpenCL-based triplet finding in comparison to the initial
seeding step of CMSSW. 118

A.1 Efficiency, fake rate and clone rate for QCD events layers 1-2-3. 125
A.2 Efficiency, fake rate and clone rate for QCD events in layers 2-3-4. . . . 125
A.3 Efficiency, fake rate and clone rate for QCD events in layers 3-4-5. . . . 126
A.4 Efficiency, fake rate and clone rate for QCD events in layers 4-5-8. . . . 126
A.5 Efficiency, fake rate and clone rate for tt̄ events layers 1-2-3. 127
A.6 Efficiency, fake rate and clone rate for tt̄ events in layers 2-3-4. 127
A.7 Efficiency, fake rate and clone rate for tt̄ events in layers 3-4-5. 128
A.8 Efficiency, fake rate and clone rate for tt̄ events in layers 4-5-8. 128

B.1 Kernel time of grid building for varying work-group sizes. 129
B.2 Kernel time of pair generation for varying work-group sizes. 130
B.3 Kernel time of triplet prediction for varying work-group sizes. 130
B.4 Kernel time of triplet filtering for varying work-group sizes. 130
B.5 Kernel time of individual processing steps for varying grid granularities. 131
B.6 Contribution of individual processing steps for coarse grid configuration. 132
B.7 Contribution of individual processing steps for medium grid configuration.133
B.8 Contribution of individual processing steps for fine grid configuration. . 134
B.9 Runtime for muon track sample for coarse grid configuration. 135
B.10 Runtime for muon track sample for medium grid configuration. 135
B.11 Runtime for muon track sample for fine grid configuration. 136
B.12 Runtime for muon track sample for super fine grid configuration. 136
B.13 Kernel time for processing multiple events concurrently. 137
B.14 Transferred data volume and bandwidth for processing multiple events. 137
B.15 Contribution of individual processing steps for small events. 138
B.16 Contribution of individual processing steps for large events. 139

145

Appendix E

List of Tables

1.1 Sub-detectors of the CMS tracker with their abbreviations and comprised
layers [44, 169]. 14

2.1 Configuration of the CMS seeding in the iterative tracking steps [162, 170]. 29

3.1 Mapping of OpenCL entities to CPU and GPU components [150]. . . . 42

9.1 Expensive pair building operations. 92
9.2 Expensive triplet prediction operations. 97
9.3 Expensive triplet filtering operations. 100

10.1 CPU and GPU used for runtime evaluations. 102
10.2 Cutoff values for the dφ, dθ and d0 filter criteria. 107
10.3 Number of combinations processed by CMSSW and different configura-

tions of OpenCL-based triplet finding. 111
10.4 Configuration of the grid data structure and resulting usage of local

memory in grid building and pair generation kernels. 113

C.1 Parameters for the grid data structure. 141
C.2 Parameters for event data loading. Parameters marked with ∗ are only

valid for simulated data. 141
C.3 Parameters to define a layer triplet for triplet finding. All parameters

are per layer combination. 142
C.4 Execution parameters for triplet finding. 142

147

List of Algorithms

2.1 CMSSW pair finding algorithm for the barrel region. 31
2.2 CMSSW triplet finding algorithm for the barrel region. 32
6.1 Data flow of OpenCL triplet finding algorithm. 65
8.1 Ex-situ algorithm for grid data structure construction. 78
9.1 Generic two-pass algorithm with oracle. 82
9.2 Prefix sum kernel. 85
9.3 Recursive prefix sum computation. 86
9.4 Grid-based pair building count kernel. 88
9.5 Prediction of z-φ-range in pair building count kernel. 91
9.6 Angle-based prediction of the z-range. 93
9.7 Branch-less min/max determination. 94
9.8 Angle-based prediction of the φ-range. 94
9.9 Extrapolation-based prediction the z-range. 95
9.10 Extrapolation-based prediction of the φ-range. 97
9.11 Triplet prediction count/store kernel. 98
9.12 Triplet filtering count kernel. 99
9.13 Hamming weight calculation [109]. 100

149

Appendix F

Acronyms

ALICE A Large Ion Collider Experiment. pp. 11, 39, 48, 51, 52, 143

API Application Programming Interface. pp. 39, 40

ASIC Application-specific Integrated Circuit. pp. 14, 23

ATLAS A Toroidal LHC Apparatus. pp. 11, 19

AVX Advanced Vector Extensions. pp. 37

CA Cellular Automaton. pp. 1, 2, 35, 39, 47–53, 57, 63–65, 67, 81, 121, 143, 144

CERN Organisation Européenne pour la Recherche Nucléaire. pp. iii, 1, 9, 19, 20

CMS Compact Muon Solenoid. pp. iii, iv, 1, 2, 9, 11–26, 29, 33, 37, 48, 52, 53, 55, 67,
73–75, 77, 81, 87, 95, 101, 107, 109, 121, 122, 143, 144, 147

CMSSW CMS Software Framework. pp. vii, 21, 22, 27, 30–32, 36, 38, 53, 55, 57, 63, 69,
95, 103, 111, 112, 118, 143, 145, 147, 149

CPU Central Processing Unit. pp. iii, iv, vii, 23, 35–37, 39–42, 44, 53, 60, 63, 81, 102,
103, 113–115, 117, 118, 121, 122, 129, 130, 132–134, 138, 139, 142–144, 147

CSC Cathode Strip Chamber. pp. 16, 17

CTF Combinatorial Track Finder. pp. 26

DAQ Data Acquisition. pp. 21, 23, 24, 33

DC Data Centre. pp. 19

DT Drift Tube. pp. 16, 24

EB ECAL Barrel. pp. 15

ECAL Electromagnetic Calorimeter. pp. 15, 24, 26

EDM Event Data Model. pp. 21

151

Acronyms

EE ECAL Endcap. pp. 15

FED Front End Driver. pp. 15, 23, 24

FPGA Field-programmable Gate Array. pp. 23

FPU Floating Point Unit. pp. 37

GPGPU General Purpose Graphical Processing Unit. pp. 35, 37, 39, 43, 51, 75, 83, 142

GPU Graphical Processing Unit. pp. iv, vii, 35, 36, 38–44, 53, 56–60, 63, 74, 81, 84, 102,
103, 113–118, 121, 122, 129, 130, 132–134, 138, 139, 143, 144, 147

HB HCAL Barrel. pp. 16

HCAL Hadronic Calorimeter. pp. 16, 26

HE HCAL Endcap. pp. 16

HEP High-Energy Physics. pp. 21, 27, 48

HF Forward HCAL. pp. 16, 18

HI Heavy Ion. pp. 11, 52

HLT High Level Trigger. pp. 21, 23, 24, 39, 48, 51

HO Outer HCAL. pp. 16

IOV Interval of Validity. pp. 24

IP Interaction Point. pp. 12, 25, 26, 69

IS Instruction Set. pp. 37

LEAR Low Energy Antiproton Ring. pp. 9

LEP Large Electron-Positron Collider. pp. 9

LHC Large Hadron Collider. pp. iii, vii, 1, 2, 9–11, 13, 19, 48, 52, 121, 143

LHCb LHC-beauty. pp. 11

LHCOPN LHC Optical Private Network. pp. 19

LIP Longitudinal Impact Parameter. pp. 142

MBR Minimum Bounding Rectangle. pp. 58, 59, 143

MC Monte Carlo. pp. 20, 24, 33, 34

152

Acronyms

MIMD Multiple Instruction Multiple Data. pp. 37, 44

MoU Memorandum of Understanding. pp. 20

MWPC Multiwire Proportional Chamber. pp. 51, 52, 143

OpenCL Open Computing Language. pp. iv, vii, 35, 38, 40–44, 53, 56–60, 63–65, 73–75,
81, 86, 99–102, 107, 108, 111–113, 115, 116, 118, 121, 122, 143–145, 147, 149

PXB Pixel Barrel. pp. 14, 76, 104, 106–110, 144

PXF Pixel Forward. pp. 14

QBP Queen Bee Problem. pp. 50, 51

QCD Quantum Chromodynamics. pp. 101, 104, 108–110, 122, 125, 126, 144, 145

RPC Resistive Plate Chamber. pp. 17

SDK Software Development Kit. pp. 35, 39, 86, 102, 112

SIMD Single Instruction Multiple Data. pp. 37, 38, 41, 115

SLC Scientific Linux CERN. pp. 21, 102

SMP Symmetric Multiprocessing. pp. 36

SMX Streaming Multiprocessor. pp. 39, 40, 42–44, 84, 86

SPMD Single Program Multiple Data. pp. 41

SSE Streaming SIMD Extensions. pp. 37

TBB Threading Building Blocks. pp. 63

TEC Tracker End Cap. pp. 14

TIB Tracker Inner Barrel. pp. 14, 76, 104, 107–110, 144

TID Tracker Inner Disk. pp. 14

TIP Transverse Impact Parameter. pp. 25, 26, 69–71, 90, 142, 144

TOB Tracker Outer Barrel. pp. 14, 107, 109, 110

TPC Time Projection Chamber. pp. 51, 52, 143

USM Unified Shader Model. pp. 39

WLCG Worldwide LHC Computing Grid. pp. iv, 19–21, 35, 40, 53, 63, 121, 143

153

Appendix G

Bibliography

[1] I. Abt et al. „CATS: a cellular automaton for tracking in silicon for the HERA-B
vertex detector“. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 489.1-3 (Aug.
2002), pp. 389–405. issn: 0168-9002.

[2] D. Acosta et al., eds. CMS Physics: Technical Design Report Volume 1: Detector
Performance and Software. Technical Design Report CMS. CERN-LHCC-2006-001;
CMS-TDR-8-1. Geneva, CH: CERN, 2006. isbn: 9290832681.

[3] Advanced Micro Devices, Inc. AMD Showcases Wide-Ranging Motherboard Support
For Dual-Core AMD64 Processors. press release. May 2005.

[4] L. Agostino et al. „Commissioning of the CMS High Level Trigger“. In: Journal
of Instrumentation 4.10 (2009), P10005.

[5] W. Akman et al. „Geometric computing and uniform grid technique“. In: Computer-
Aided Design 21.7 (Sept. 1989), pp. 410–420. issn: 0010-4485.

[6] ALICE Collaboration. „ALICE HLT High Speed Tracking on GPU“. In: IEEE
Transactions on Nuclear Science 58.4 (Aug. 2011), pp. 1845–1851. issn: 0018-9499.

[7] J. Allison et al. „Geant4 developments and applications“. In: Nuclear Science,
IEEE Transactions on 53.1 (Feb. 2006), pp. 270–278. issn: 0018-9499.

[8] ALPHA Collaboration. „Trapped antihydrogen“. In: Nature 468 (Dec. 2010),
pp. 673–676.

[9] J. Alwall et al. „MadGraph 5: going beyond“. English. In: Journal of High Energy
Physics 2011.6 (June 2011), pp. 1–40.

[10] G. M. Amdahl. „Validity of the single processor approach to achieving large scale
computing capabilities“. In: Proceedings of the AFIPS Spring Joint Computer
Conference. AFIPS ’67 (Spring). Atlantic City, New Jersey: ACM, 1967, pp. 483–
485.

[11] Q. An et al. „Elucidation of the dynamics for hot-spot initiation at nonuniform
interfaces of highly shocked materials“. In: Phys. Rev. B 84 (22 Dec. 2011),
p. 220101.

155

G. Bibliography

[12] Apple Inc. Apple Previews Mac OS X Snow Leopard to Developers. press release.
June 2008.

[13] Apple Inc. OpenCL Parallel Prefix Sum (aka Scan) Example. OpenCl examples.
Sept. 2009.

[14] ATLAS Collaboration. „Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC“. In: Physics
Letters B 716.1 (Sept. 2012), pp. 1–29. issn: 0370-2693.

[15] D. A. Bader, B. M. Moret, and P. Sanders. „Algorithm Engineering for Parallel
Computation“. In: Experimental Algorithmics. Ed. by R. Fleischer, B. Moret, and
E. M. Schmidt. Vol. 2547. Lecture Notes in Computer Science. Berlin: Springer,
2002, pp. 1–23.

[16] M. Bähr et al. „Herwig++ physics and manual“. English. In: The European
Physical Journal C 58.4 (Dec. 2008), pp. 639–707. issn: 1434-6044.

[17] D. Barney. CMS slice. CMS 5581-v1. Sept. 2011.
[18] G. Baur et al. „Production of antihydrogen“. In: Physics Letters B 368.3 (1996),

pp. 251–258. issn: 0370-2693.
[19] G. L. Bayatyan et al. CMS computing: Technical Design Report. Technical Design

Report CMS. Geneva, CH: CERN, 2005.
[20] R. Bayer and E. McCreight. „Organization and maintenance of large ordered

indexes“. In: Acta Informatica 1.3 (1972), pp. 173–189. issn: 0001-5903.
[21] S. Beauceron. The CMS High Level Trigger. conference report CERN-CMS-CR-

2012-355. Geneva: CERN, Nov. 2012.
[22] J. L. Bentley. „K-d trees for semidynamic point sets“. In: Proceedings of the 6th

Annual Symposium on Computational Geometry. Berkley, California, USA: ACM,
1990, pp. 187–197. isbn: 0-89791-362-0.

[23] J. L. Bentley. „Multidimensional binary search trees used for associative searching“.
In: Communications of the ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782.

[24] M. Berg et al. Computational Geometry. Berlin: Springer, 1997.
[25] T. Berners-Lee. „Information Management: A Proposal“. project proposal. Mar.

1989.
[26] I. Bird. „Computing for the Large Hadron Collider“. In: Annual Review of Nuclear

and Particle Science 61.1 (Nov. 2011), pp. 99–118.
[27] G. Blelloch. „Scans as primitive parallel operations“. In: IEEE Transactions on

Computers 38.11 (Nov. 1989), pp. 1526–1538. issn: 0018-9340.
[28] M. Blum et al. „Time bounds for selection“. In: Journal of Computer and System

Sciences 7.4 (Aug. 1973), pp. 448–461. issn: 0022-0000.
[29] S. Borkar. „Thousand core chips: a technology perspective“. In: Proceedings of the

44th annual Design Automation Conference. San Diego, California: ACM, 2007,
pp. 746–749. isbn: 978-1-59593-627-1.

156

[30] R. Brun and F. Rademakers. „ROOT - An object oriented data analysis frame-
work“. In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 389.1-2 (Apr.
1997), pp. 81–86. issn: 0168-9002.

[31] O. S. Brüning et al., eds. LHC Design Report. Vol. 1. Geneva, CH: CERN, 2004.
[32] B. Cabral, N. Cam, and J. Foran. „Accelerated volume rendering and tomographic

reconstruction using texture mapping hardware“. In: Proceedings of the 1994
Symposium on Volume Visualization. VVS ’94. Tysons Corner, Virginia, USA:
ACM, 1994, pp. 91–98. isbn: 0-89791-741-3.

[33] D. A. Carr, C. Paszko, and D. Kolva. SeqNFinD: A GPU Accelerated Sequence
Analysis Toolset Facilitates Bioinformatics. Nature Methods - Application Notes.
Aug. 2011.

[34] D. Cederman and P. Tsigas. „GPU-Quicksort: A Practical Quicksort Algorithm
for Graphics Processors“. In: Journal of Experimental Algorithms 14 (Jan. 2010),
4:1.4–4:1.24. issn: 1084-6654.

[35] CERN. CERN awards major contract for computer infrastructure hosting to
Wigner Research Centre for Physics in Hungary. press release. May 2012.

[36] CERN. CERN Data Centre passes 100 petabytes. press release. Feb. 2013.
[37] CERN. The first LHC protons run ends with new milestone. press release. Dec.

2012.
[38] CERN Communication Group. LHC - The Guide. Brochure. CERN-Brochure-

2009-003-Eng. Geneva, CH, Feb. 2009.
[39] Y. Chao.Minimum-Bias and Underlying Event Studies at CMS. preprint 0810.4819.

arXiv, 2008.
[40] C. Cheshkov. „Fast Hough-transform track reconstruction for the ALICE TPC“.

In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 566.1 (Oct. 2006), pp. 35–39.
issn: 0168-9002.

[41] CMS Collaboration. Measurement of CMS Luminosity. Tech. rep. CMS-PAS-
EWK-10-004. Geneva, CH: CERN, 2010.

[42] CMS Collaboration. Measurement of the ttbar production cross section in the
all-jet final state in pp collisions at sqrt(s) = 7 TeV. preprint 1302.0508. CERN-
PH-EP-2012-358. arXiv, Feb. 2013.

[43] CMS Collaboration. „Observation of a new boson at a mass of 125 GeV with the
CMS experiment at the LHC“. In: Physics Letters B 716.1 (Sept. 2012), pp. 30–61.
issn: 0370-2693.

[44] CMS Collaboration. „The CMS experiment at the CERN LHC. The Compact
Muon Solenoid experiment“. In: Journal of Instrumentation 3 (Aug. 2008). Also
published by CERN Geneva in 2010, S08004.

157

G. Bibliography

[45] J. Cornwall. „Efficent multiple pass, multiple output algorithms on the GPU“. In:
Proceedings of the 2nd IEE European Conference on Visual Media Production,
2005. New York, NY, USA: IEEE, 2005, pp. 255–264.

[46] N. Cuntz et al. „GPU-based Dynamic Flow Visualization for Climate Research
Applications“. In: Simulation und Visualisierung 2007. Erlangen: SCS Publishing
House e.V., 2007, pp. 371–384.

[47] L. Dagum and R. Menon. „OpenMP: an industry standard API for shared-memory
programming“. In: Computational Science and Engineering 5.1 (Jan. 1998), pp. 46–
55. issn: 1070-9924.

[48] P. Du et al. „From CUDA to OpenCL: Towards a performance-portable solution
for multi-platform GPU programming“. In: Parallel Computing 38.8 (Aug. 2012),
pp. 391–407. issn: 0167-8191.

[49] C. Eck et al., eds. LHC computing Grid: Technical Design Report. Technical Design
Report LCG. Geneva, CH: CERN, 2005.

[50] R. Eckhardt. „Stan Ulam, John von Neumann, and the Monte Carlo Method“. In:
Los Alamos Science special issue (1987), pp. 131–143.

[51] L. R. Evans and P. Bryant. „LHC Machine“. In: Journal of Instrumentation
3 (Aug. 2008). This report is an abridged version of the LHC Design Report
(CERN-2004-003), S08001.

[52] J. Fang, A. Varbanescu, and H. Sips. „A Comprehensive Performance Comparison
of CUDA and OpenCL“. In: Proceedings of the International Conference on
Parallel Processing. New York, NY, USA: IEEE, 2011, pp. 216–225.

[53] R. Finkel and J. Bentley. „Quad trees a data structure for retrieval on composite
keys“. In: Acta Informatica 4.1 (1974), pp. 1–9. issn: 0001-5903.

[54] M. Flynn. „Some Computer Organizations and Their Effectiveness“. In: IEEE
Transactions on Computers C-21.9 (Sept. 1972), pp. 948–960. issn: 0018-9340.

[55] I. Foster, C. Kesselman, and S. Tuecke. „The Anatomy of the Grid: Enabling
Scalable Virtual Organizations“. In: International Journal of High Performance
Computing Applications 15.3 (2001), pp. 200–222.

[56] C. Foudas et al. „The CMS tracker readout front end driver“. In: IEEE Transac-
tions on Nuclear Science 52.6 (Dec. 2005), pp. 2836–2840. issn: 0018-9499.

[57] W. R. Franklin. „Adaptive Grids For Geometric Operations“. In: Cartographica:
The International Journal for Geographic Information and Geovisualization 21.2
(Oct. 1984), pp. 160–167.

[58] K. A. Frenkel. „Evaluating two massively parallel machines“. In: Communications
of the ACM 29.8 (Aug. 1986), pp. 752–758. issn: 0001-0782.

[59] R. Frühwirth. „Application of Kalman filtering to track and vertex fitting“. In:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 262.2-3 (Dec. 1987), pp. 444–
450. issn: 0168-9002.

158

[60] R. Frühwirth, A. Strandlie, and W. Waltenberger. „Helix fitting by an extended
Riemann fit“. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 490.1-2 (Sept.
2002), pp. 366–378. issn: 0168-9002.

[61] R. Frühwirth and M. Regler, eds. Data analysis techniques for high-energy physics.
2. ed. Cambridge monographs on particle physics, nuclear physics, and cosmology
11. Cambridge, UK: Cambridge University Press, 2000. isbn: 0-521-63219-6; 0-
521-63548-9.

[62] R. Frühwirth et al. „A review of fast circle and helix fitting“. In: Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 502.2-3 (Apr. 2003), pp. 705–707. issn:
0168-9002.

[63] J. Fung and S. Mann. „OpenVIDIA: parallel GPU computer vision“. In: Proceedings
of the 13th Annual ACM International Conference on Multimedia. MULTIMEDIA
’05. Hilton, Singapore: ACM, 2005, pp. 849–852. isbn: 1-59593-044-2.

[64] W. W. L. Fung et al. „Dynamic Warp Formation and Scheduling for Efficient
GPU Control Flow“. In: Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. Washington, DC, USA: IEEE Computer Society,
2007, pp. 407–420. isbn: 0-7695-3047-8.

[65] L. Georghiou. „Global cooperation in research“. In: Research Policy 27.6 (Sept.
1998), pp. 611–626. issn: 0048-7333.

[66] P. Gepner and M. Kowalik. „Multi-Core Processors: New Way to Achieve High
System Performance“. In: Proceedings of the International Symposium on Parallel
Computing in Electrical Engineering. New York, NY, USA: IEEE, 2006, pp. 9–13.

[67] D. Giordano and G. Sguazzoni. „CMS reconstruction improvements for the tracking
in large pile-up events“. In: Journal of Physics: Conference Series 396.2 (2012),
p. 022044.

[68] A. Glazov et al. „Filtering tracks in discrete detectors using a cellular automaton“.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 329.1-2 (May 1993), pp. 262–
268. issn: 0168-9002.

[69] S. Gorbunov et al. „Fast SIMDized Kalman filter based track fit“. In: Computer
Physics Communications 178.5 (Mar. 2008), pp. 374–383. issn: 0010-4655.

[70] S. J. Gortler. Foundations of 3D computer graphics. Cambridge, MA, USA: MIT
Press, 2012. isbn: 978-0-262-01735-0; 0-262-01735-0.

[71] D. Griffiths. Introduction to Elementary Particles. Weinheim, DE: John Wiley &
Sons, Sept. 2008.

[72] K. Grimm et al. „Methods to quantify the performance of the primary vertex
reconstruction in the ATLAS experiment under high luminosity conditions“. In:
Journal of Physics: Conference Series 396.2 (2012), p. 02204. issn: 1742-6596.

159

G. Bibliography

[73] J. L. Gustafson. „Reevaluating Amdahl’s law“. In: Communications of the ACM
31.5 (May 1988), pp. 532–533. issn: 0001-0782.

[74] A. Guttman. „R-trees: a dynamic index structure for spatial searching“. In: ACM
SIGMOD Record 14.2 (June 1984), pp. 47–57. issn: 0163-5808.

[75] R. W. Hamming. „Error detecting and error correcting codes“. In: The Bell System
Technical Journal 29 (1950), pp. 147–160. issn: 0005-8580.

[76] T. D. Han and T. S. Abdelrahman. „Reducing branch divergence in GPU pro-
grams“. In: Proceedings of the Fourth Workshop on General Purpose Processing
on Graphics Processing Units. GPGPU-4. Newport Beach, California: ACM, 2011,
3:1–3:8. isbn: 978-1-4503-0569-3.

[77] M. Hansroul, H. Jeremie, and D. Savard. „Fast circle fit with the conformal
mapping method“. In: Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 270.2-
3 (July 1988), pp. 498–501. issn: 0168-9002.

[78] M. J. Harris et al. „Physically-based visual simulation on graphics hardware“. In:
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. Saarbrucken, Germany: Eurographics Association, 2002, pp. 109–118.
isbn: 1-58113-580-7.

[79] T. Hauth, V. Innocente, and D. Piparo. „Development and Evaluation of Vec-
torised and Multi-Core Event Reconstruction Algorithms within the CMS Software
Framework“. In: Journal of Physics: Conference Series 396.5 (2012), p. 052065.

[80] T. Hauth et al. „Parallel track reconstruction in CMS using the cellular automaton
approach“. In: Proceedings of the 20th International Conference on Computing in
High Energy and Nuclear Physics (CHEP2013). in preparation. 2013.

[81] J. Hegeman. Public CMS Luminosity Information. Feb. 2013.
[82] B. Hegner, P. Mato, and D. Piparo. „Evolving LHC Data Processing Frameworks

for Efficient Exploitation of New CPU Architectures“. In: Proceedings of the IEEE
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). to
appear. New York, NY, USA: IEEE, 2012.

[83] V. L. Highland. „Some practical remarks on multiple scattering“. In: Nuclear
Instruments and Methods 129.2 (Nov. 1975), pp. 497–499. issn: 0029-554X.

[84] W. D. Hillis and J. G. L. Steele. „Data parallel algorithms“. In: Communications
of the ACM 29.12 (Dec. 1986), pp. 1170–1183. issn: 0001-0782.

[85] V. Hindriksen. „NVIDIA’s Industry-Leading “Support” For OpenCL“. In: Stream
Computing Performance Engineers (Sept. 2012).

[86] A. Holzner. 78 reconstructed vertices in event from high-pileup run 198609. CMS-
PHO-EVENTS-2012-006. Sept. 2012.

[87] IBM. IBM Launches World’s Most Powerful Server: "Regatta" Transforms the
Economics of UNIX Servers at Half the Price of Competition. press release. Oct.
2001.

160

[88] Intel Cooperation. Intel Announces New Pentium(R) III Brand for Next Genera-
tion Processors. press release. Jan. 1999.

[89] Intel Cooperation. Intel Architecture Instruction Set Extensions Programming
Reference. Tech. rep. 319433-014. Intel Cooperation, Aug. 2012.

[90] Intel Cooperation. Intel Brings ’Eye Candy’ to Masses with Newest Laptop, PC
Chips. press release. Jan. 2011.

[91] Intel Cooperation. Intel Core i7-3960X Processor Extreme Edition (15M Cache,
up to 3.90 GHz). specification. Nov. 2011.

[92] Intel Cooperation. Intel Releases MMX (TM) Technology Details to Software
Community to Drive New Multimedia, Game and Internet Applications. press
release. Mar. 1996.

[93] C. D. Jones et al. „The New CMS Event Data Model and Framework“. In:
Proceedings of the 15th International Conference on Computing in High Energy
and Nuclear Physics. Ed. by S. Banerjee. Trieste, IT: ICTP-OEA, 2006, p. 242.

[94] C. Jones. „Study of a Fine Grained Threaded Framework Design“. In: Journal of
Physics: Conference Series 396.2 (2012), p. 022027.

[95] M. Joselli et al. „A Neighborhood Grid Data Structure for Massive 3D Crowd
Simulation on GPU“. In: Games and Digital Entertainment (SBGAMES), 2009
VIII Brazilian Symposium on. New York, NY, USA: IEEE, 2009, pp. 121–131.

[96] R. E. Kalman. „A New Approach to Linear Filtering and Prediction Problems“.
In: Journal of Fluids Engineering 82.1 (Dec. 1960), pp. 35–45.

[97] R. E. Kalman and R. S. Bucy. „New Results in Linear Filtering and Prediction
Theory“. In: Jou 83.1 (Mar. 1961), pp. 95–108.

[98] J. Kalojanov and P. Slusallek. „A parallel algorithm for construction of uniform
grids“. In: Proceedings of the Conference on High Performance Graphics 2009.
New Orleans, Louisiana: ACM, 2009, pp. 23–28. isbn: 978-1-60558-603-8.

[99] A. H. Karp and H. P. Flatt. „Measuring parallel processor performance“. In:
Communications of the ACM 33.5 (May 1990), pp. 539–543. issn: 0001-0782.

[100] H. Kästli et al. „Design and performance of the CMS pixel detector readout chip“.
In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 565.1 (Sept. 2006), pp. 188–
194. issn: 0168-9002.

[101] Khronos Group. The Khronos Group Releases OpenCL 1.0 Specification. press
release. Dec. 2008.

[102] Khronos Group. The Khronos Group Releases OpenCL 1.2 Specification. press
release. Nov. 2011.

[103] E. Kilgariff and R. Fernando. „The GeForce 6 series GPU architecture“. In: ACM
SIGGRAPH 2005 Courses. SIGGRAPH ’05. Los Angeles, California: ACM, 2005.

161

G. Bibliography

[104] J. Kim and B. Nam. „Parallel multi-dimensional range query processing with
R-trees on GPU“. In: Journal of Parallel and Distributed Computing (2013). in
press. issn: 0743-7315.

[105] W. Kim and M. Voss. „Multicore Desktop Programming with Intel Threading
Building Blocks“. In: IEEE Software 28.1 (Jan. 2011), pp. 23–31. issn: 0740-7459.

[106] D. Kirk and W.-m. W. Hwu. Programming massively parallel processors : a
hands-on approach. Amsterdam: Elsevier, Morgan Kaufmann, 2010. isbn: 978-0-
12-381472-2.

[107] I. Kisel. „Event reconstruction in the CBM experiment“. In: Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 566.1 (Oct. 2006), pp. 85–88. issn: 0168-9002.

[108] K. Klein. „Lessons learned during CMS tracker end cap construction“. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 579.2 (Feb. 2007), pp. 731–735. issn:
0168-9002.

[109] D. E. Knuth. The Art of Computer Programming: Bitwise Tricks & Techniques;
Binary Decision Diagrams. Vol. 4, Fascicle 1. Upper Saddle River, NJ, USA:
Addison-Wesley, 2009.

[110] M. Konecki. „Meeting on Pixel Triplet Seeding“. private communication. Sept.
2012.

[111] S. de Konink and R. Baca. R-tree example. wikimedia commons. Apr. 2010.
[112] E. Kozdrowicki and D. Theis. „Second Generation of Vector Supercomputers“. In:

Computer 13.11 (1980), pp. 71–83. issn: 0018-9162.
[113] N. V. Krasnikov and V. A. Matveev. „Physics at the large hadron collider“. In:

Physics of Particles and Nuclei 28.5 (Sept. 1997), pp. 441–470.
[114] G. Lamanna, G. Collazuol, and M. Sozzi. „GPUs for fast triggering and pattern

matching at the CERN experiment NA62“. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 628.1 (Feb. 2011), pp. 457–460. issn: 0168-9002.

[115] M. Lapka. CMS General Brochure. brochure. CMS Document 4263-v1. Mar. 2011.
[116] C. Lefèvre. The CERN accelerator complex. Complexe des accélérateurs du CERN.

CERN-DI-0812015. Dec. 2008.
[117] N. Leischner, V. Osipov, and P. Sanders. „GPU sample sort“. In: Proceedings of

the 2010 IEEE International Symposium on Parallel Distributed Processing. New
York, NY, USA: IEEE, 2010, pp. 1–10.

[118] D. Luebke and G. Humphreys. „How GPUs Work“. In: Computer 40.2 (Feb. 2007),
pp. 96–100. issn: 0018-9162.

[119] L. Luo, M. D. F. Wong, and L. Leong. „Parallel implementation of R-trees on
the GPU“. In: Proceedings of the 17th Asia and South Pacific Design Automation
Conference (ASP-DAC). New York, NY, USA: IEEE, 2012, pp. 353–358.

162

[120] W. A. Maniatty, B. Szymanski, and T. Caraco. „Parallel Computing With Gener-
alized Cellular Automata“. In: Parallel and Distributed Computing Practices 1.1
(1998), pp. 31–50.

[121] Y. Manolopoulos et al. R-Trees: Theory and Applications. Berlin: Springer, 2006.
[122] P. Martin et al. „Algorithmic strategies for optimizing the parallel reduction

primitive in CUDA“. In: High Performance Computing and Simulation (HPCS),
2012 International Conference on. New York, NY, USA: IEEE, 2012, pp. 511–519.

[123] J. N. Marx and D. R. Nygren. „The Time Projection Chamber“. In: Physics Today
31.10 (Oct. 1978), pp. 46–53.

[124] M.Górski. „10 years of WLCG“. In: Proceedings of the Cracow Epiphany Confer-
ence. Jan. 2013.

[125] C. Moler. „Matrix Computation on Distributed Memory Multiprocessors“. In:
Proceedings of the First Conference on Hypercube Multiprocessors. Philadelphia,
PA, USA: Society for Industrial & Applied Mathematics, 1985, pp. 181–195.

[126] G. E. Moore. „Cramming more components onto integrated circuits“. In: Elec-
tronics 38.8 (Apr. 1965), pp. 4–7.

[127] S. Morein et al. „Graphics processing architecture employing a unified shader“.
6897871 (Ontario, CA). May 24, 2005.

[128] A. Munshi, ed. The OpenCL Specification. Beaverton, OR, USA: Khronos Group,
Nov. 2012.

[129] J. von Neumann. Theory of Self-reproducing Automata. Ed. by A. W. Burks.
Urbana, IL, USA: University of Illinois Press, 1966.

[130] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics.
Oxford, UK: Clarendon Press, 2004. isbn: 0-19-851797-1; 0-19-851796-3.

[131] J. Nickolls et al. „Scalable Parallel Programming with CUDA“. In: Queue 6.2
(Mar. 2008), pp. 40–53. issn: 1542-7730.

[132] A. Nowak. „Intel OpenCL Compiler“. private communication. Mar. 2013.
[133] D. Nuzman, I. Rosen, and A. Zaks. „Auto-vectorization of interleaved data for

SIMD“. In: Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’06. Ottawa, Ontario, Canada: ACM,
2006, pp. 132–143. isbn: 1-59593-320-4.

[134] NVIDIA Cooperation. NVIDIA CUDA Toolkit v5.0 Release Notes. release notes.
Oct. 2012.

[135] NVIDIA Cooperation. NVIDIA Introduces GeForce GTX TITAN: DNA of the
World’s Fastest Supercomputer, Powered by World’s Fastest GPU. press release.
Feb. 2013.

[136] NVIDIA Cooperation. NVIDIA OpenCL Best Practices Guide. white paper. Aug.
2009.

163

G. Bibliography

[137] NVIDIA Cooperation. NVIDIA Tesla GPU Computing Processor Ushers In the
Era of Personal Supercomputing. press release. June 2007.

[138] NVIDIA Cooperation. NVIDIA‘s Next Generation CUDA Compute Architecture:
Kepler TM GK110. white paper. Santa Clara, CA, USA, 2012.

[139] J. D. Owens et al. „A Survey of General-Purpose Computation on Graphics
Hardware“. In: Computer Graphics Forum 26.1 (Mar. 2007), pp. 80–113. issn:
1467-8659.

[140] S. Pennycook et al. „An investigation of the performance portability of OpenCL“.
In: Journal of Parallel and Distributed Computing (2012). in press. issn: 0743-7315.

[141] H. Perez-Ponce et al. „Implementing Geant4 on GPU for medical applications“.
In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging
Conference. New York, NY, USA: IEEE, 2011, pp. 2703–2707.

[142] D. Pestre and J. Krige. „Some Thoughts on the Early History of CERN“. In: Big
Science: The Growth of Large-Scale Research. Ed. by P. L. Galison. Stanford, CA,
USA: Stanford University Press, 1992. Chap. 3, pp. 78–99.

[143] J. Pike. „Text compression using a 4 bit coding scheme“. In: The Computer
Journal 24.4 (1981), pp. 324–330.

[144] M. Pioppi. Iterative Tracking. internal note CMS-IN-2007-065. Geneva, CH: CERN,
Nov. 2007.

[145] R. L. Rardin and R. Uzsoy. „Experimental Evaluation of Heuristic Optimization
Algorithms: A Tutorial.“ In: Journal of Heuristics 7.3 (2001), pp. 261–304.

[146] I. Reid. Update on kd-tree triplet generator. slides. PH-DPG Tracking Meeting.
Aug. 2012.

[147] T. G. Rokicki. An Algorithm for Compressing Space and Time. article. Dr. Dobbs.
Apr. 2006.

[148] K. Rose. „Deterministic annealing for clustering, compression, classification, re-
gression, and related optimization problems“. In: Proceedings of the IEEE 86.11
(Nov. 1998), pp. 2210–2239. issn: 0018-9219.

[149] H. Samet. „Spatial data structures“. In: Modern Database Systems: The Object
Model, Interoperability and Beyond. Ed. by W. Kim. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1995, pp. 361–385. isbn: 0-201-59098-0.

[150] J. van der Sanden. „Evaluating the Performance and Portability of OpenCL“.
master thesis. Eindhoven, NL: Eindhoven University of Technology, Aug. 2011.

[151] P. Sanders. „Algorithm Engineering - An Attempt at a Definition“. In: Efficient
Algorithms. Ed. by S. Albers, H. Alt, and S. Näher. Vol. 5760. Lecture Notes in
Computer Science. Berlin: Springer Berlin Heidelberg, 2009, pp. 321–340.

[152] P. Sanders and S. Winkel. „Super Scalar Sample Sort“. In: Algorithms - ESA 2004.
Ed. by S. Albers and T. Radzik. Vol. 3221. Lecture Notes in Computer Science.
Berlin: Springer, 2004, pp. 784–796. isbn: 978-3-540-23025-0.

164

[153] A. dos Santos et al. „kD-Tree Traversal Implementations for Ray Tracing on
Massive Multiprocessors: A Comparative Study“. In: Proceedings of the 21st Inter-
national Symposium on Computer Architecture and High Performance Computing.
New York, NY, USA: IEEE, 2009, pp. 41–48.

[154] A. Satpathy. „Overview and status of the CMS silicon strip tracker“. In: Journal
of Physics: Conference Series 110.9 (2008), p. 092026.

[155] F. Sauli. Principles of operation of multiwire proportional and drift chambers.
Tech. rep. CERN-77-09. Geneva, CH: CERN, 1977.

[156] A. Scheurer. „German Contributions to the CMS Computing Infrastructure“. In:
Journal of Physics: Conference Series 219.6 (2010), p. 062064.

[157] O. Seiskari, J. Kommeri, and T. Niemi. GPU in Physics Computation: Case
Geant4 Navigation. preprint 1209.5235. arXiv, Sept. 2012.

[158] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. „The R+-Tree: A Dynamic
Index for Multi-Dimensional Objects“. In: Proceedings of the 13th International
Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1987, pp. 507–518. isbn: 0-934613-46-X.

[159] S. Sengupta et al. „Scan primitives for GPU computing“. In: Proceedings of the
22nd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware.
San Diego, California: Eurographics Association, 2007, pp. 97–106. isbn: 978-1-
59593-625-7.

[160] M. H. Seymour. „Searches for new particles using cone and cluster jet algorithms:
a comparative study“. English. In: Zeitschrift für Physik C Particles and Fields
62.1 (1994), pp. 127–138. issn: 0170-9739.

[161] G. Sguazzoni, K. Stenson, and G. Cerati. Tracking in 2013: how to get ready for
2015. slides. Special CMS Week Tracking POG Meeting. Dec. 2012.

[162] G. Sguazzoni et al. Description and Performance of the CMS Track and Primary
Vertex Reconstruction. Analysis Note CMS AN-2011/172. Draft. Geneva, CH:
CMS Collaboration, May 2011.

[163] C. A. Shaffer and H. Samet. „Optimal quadtree construction algorithms“. In:
Computer Vision, Graphics, and Image Processing 37.3 (Mar. 1987), pp. 402–419.
issn: 0734-189X.

[164] J. Shen et al. „Performance Gaps between OpenMP and OpenCL for Multi-core
CPUs“. In: Proceedings of the 41st International Conference on Parallel Processing
Workshops (ICPPW). New York, NY, USA: IEEE, 2012, pp. 116–125.

[165] J. Shin, M. Hall, and J. Chame. „Superword-level parallelism in the presence of
control flow“. In: Proceedings of the International Symposium on Code Generation
and Optimization. New York, NY, USA: IEEE, Mar. 2005, pp. 165–175.

165

G. Bibliography

[166] A. R. Smith. „Two-dimensional formal languages and pattern recognition by
cellular automata“. In: Proceedings of the 12th Annual Symposium on Switching
and Automata Theory. New York, NY, USA: IEEE Computer Society, 1971,
pp. 144–152.

[167] W. Smith et al., eds. CMS TriDAS project: Technical Design Report, Volume
1: The Trigger Systems. Technical Design Report CMS CERN-LHCC-2000-038;
CMS-TDR-6-1. Geneva, CH: CERN, 2000.

[168] T. Söstrand et al. „High-energy-physics event generation with Pythia 6.1“. In:
Computer Physics Communications 135.2 (Apr. 2001), pp. 238–259. issn: 0010-
4655.

[169] D. Sprenger. „Track-based Alignment of a CMS Tracker Endcap“. diploma thesis.
Aachen: RWTH Aachen University, July 2008.

[170] K. Stenson. Iterative Tracking. CERN. Oct. 2011. url: https://twiki.cern.
ch/twiki/bin/view/CMSPublic/SWGuideIterativeTracking.

[171] J. E. Stone, D. Gohara, and G. Shi. „OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems“. In: Computing in Science and Engineering
12.3 (2010), pp. 66–73.

[172] A. Strandlie, J. Wroldsen, and R. Frühwirth. „Treatment of multiple scattering
with the generalized Riemann sphere track fit“. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 488.1-2 (Aug. 2002), pp. 332–341. issn: 0168-9002.

[173] A. Strandlie et al. „Particle tracks fitted on the Riemann sphere“. In: Computer
Physics Communications 131.1-2 (Sept. 2000), pp. 95–108. issn: 0010-4655.

[174] M. Stratmann and T. Worsch. „Leader election in d-dimensional CA in time
diam log(diam)“. In: Future Generation Computer Systems 18.7 (Aug. 2002),
pp. 939–950. issn: 0167-739X.

[175] H. Sutter. „The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software“. In: Dr. Dobb‘s Journal 30.3 (Mar. 2005), pp. 202–210.

[176] UA1 Collaboration. „Experimental observation of isolated large transverse energy
electrons with associated missing energy at

√
s = 540GeV “. In: Physics Letters B

122.1 (Feb. 1983), pp. 103–116. issn: 0370-2693.
[177] UA2 Collaboration. „Observation of single isolated electrons of high transverse

momentum in events with missing transverse energy at the CERN pp collider“.
In: Physics Letters B 122.5-6 (1983), pp. 476–485. issn: 0370-2693.

[178] W. Waltenberger, R. FrÃ¼hwirth, and P. Vanlaer. „Adaptive vertex fitting“. In:
Journal of Physics G: Nuclear and Particle Physics 34.12 (2007), N343.

[179] R. Wilkinson, B. Hegner, and C. D. Jones. „Usage of the Python programming
language in the CMS experiment“. In: Journal of Physics: Conference Series 219.4
(2010), p. 042026.

166

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideIterativeTracking
https://twiki.cern.ch/twiki/bin/view/CMSPublic/SWGuideIterativeTracking

[180] T. Willhalm and N. Popovici. „Putting Intel Threading Building Blocks to Work“.
In: Proceedings of the 1st International Workshop on Multicore Software Engi-
neering. Leipzig, Germany: ACM, 2008, pp. 3–4. isbn: 978-1-60558-031-9.

[181] WLCG Collaboration. Memorandum of Understanding. CERN-C-RRB-2005-01.
Mar. 2011.

[182] E. Yusov and V. Turlapov. „GPU-optimized efficient quad-tree based progressive
multiresolution model for interactive large scale terrain rendering“. In: Proceed-
ings of the 17th International Conference on Computer Graphics and Vision
(GraphiCon 07). 2007, pp. 23–27.

[183] J. Zhang, S. You, and L. Gruenwald. „Parallel quadtree coding of large-scale raster
geospatial data on GPGPUs“. In: Proceedings of the 19th ACM SIGSPATIAL In-
ternational Conference on Advances in Geographic Information Systems. Chicago,
Illinois: ACM, 2011, pp. 457–460. isbn: 978-1-4503-1031-4.

[184] K. Zhang et al. „GPU accelerate parallel Odd-Even merge sort: An OpenCL
method“. In: Proceedings of the 15th International Conference on Computer
Supported Cooperative Work in Design. New York, NY, USA: IEEE, 2011, pp. 76–
83.

[185] K. Zhou et al. „Real-time KD-tree construction on graphics hardware“. In: ACM
Transactions on Graphics 27.5 (Dec. 2008), 126:1–126:11. issn: 0730-0301.

167

Acknowledgements

First and foremost I would like to thank Prof. Günter Quast for welcoming me to
his research group, giving me the opportunity to work on this fascinating topic and
his excellent supervision and counseling. I would like to extend my gratitude to Prof.
Peter Sanders for taking over the computer science-related supervision of the work. His
invaluable input and motivation helped attaining the results that could be presented in
this thesis.
Furthermore, I would like to thank Thomas Hauth for all his efforts. Without his

supervision, the fruitful discussions and his input and feedback, this work would have not
been possible. I would like to extend my thanks and appreciation to Dennis Schieferdecker
for his supervision, insights and feedbacks that were always of great value to me.
At EKP, I would like to thank the entire group for providing a productive and fun

working atmosphere. Particularly, I would like to recognize Joram Berger, Fred-Markus
Stober, Manuel Zeise, Max Fischer and Marcus Schmitt for their physical and computing
input. I would like to thank Georg Sieber for proofreading my thesis. Moreover, my
thanks go to Corinna Günth, Dominik Haitz, Oliver Oberst, Klaus Rabbertz, Raphael
Friese, Thomas Müller and Fabio Colombo.

At CERN, I thank Vincenzo Innocente for his guidance and vision. Additionally, I would
like to recognize Marcin Konecki for his insights into the CMSSW track reconstruction
code and Danilo Piparo for his ideas and feedback.
At ITI, I thank Vitaly Osipov for his input on GPGPUs.
Last but not least, I would like to express my deepest gratitude to my girlfriend Margit

for all her support and patience during the last months. Finally, I would like to extend
my sincerest thanks and appreciation to my parents, Manuel and Stefanie, that supported
me in all my endeavors.

169

Hiermit versichere ich, die vorliegende Arbeit selbstständig verfasst
und nur die angegebenen Hilfsmittel verwendet zu haben.

Daniel Funke

Karlsruhe, den 28. Juni 2013

	Foundations
	The Large Hadron Collider and CMS Detector at CERN
	Large Hadron Collider
	The CMS Detector
	Coordinate System
	Inner Tracking System
	Calorimeters and Muon Chambers

	Luminosity and Pile-Up Events

	CMS Event Reconstruction
	The World-wide LHC Computing Grid
	Software Framework CMSSW
	Event Processing
	Trigger and Data Acquisition
	Reconstruction of Physical Objects
	Iterative Kalman Filter-based Track Finding
	Triplet Seeding

	Event Generation

	Parallel Computing
	CPU Technologies
	General-Purpose-GPUs
	OpenCL
	Performance Metrics

	Cellular Automata
	Cellular Automata for Track Finding
	CA-based Track Finding in CMS

	Spatial Data Structures
	CMSSW Triplet Seeding – -sorted List
	k-d Tree
	Quadtree
	R-Tree
	Uniform Grid

	Parallel Triplet Finding with OpenCL
	Overview
	Filter Criteria
	Angular Constraints
	Transverse Impact Parameter Constraint

	Data Structures
	Detector Geometry
	Event Hit Data

	Algorithms
	Two-pass Algorithms
	Prefix Sum Algorithm
	Pair Building
	Grid-based Pair Building
	Prediction-based Pair Building
	Implementation Details

	Triplet Prediction
	Angular-based Prediction
	Extrapolation-based Prediction
	Implementation Details

	Triplet Filtering

	Evaluation
	Evaluation Setup
	Simulated Events
	Hardware and Software Configuration

	Physics Performance
	Determination of Cutoff Values for Filter Criteria
	Physics Performance for QCD Events
	Physics Performance for tbart Events
	Physics Performance for Muon Events

	Algorithmic properties
	Work-Group Size
	Concurrent Events
	Grid Granularity
	Runtime Composition
	Tracks per Event

	Conclusion

	Appendices
	Supplement to Physics Performance
	Supplement to Algorithmic Performance
	Configuration Parameters
	List of Figures
	List of Tables
	Acronyms
	Bibliography

