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Abstract

Ongoing climate change will lead to more extreme weather events, including severe

drought periods and intense drying rewetting cycles. This will directly influence

microbial nitrogen (N) turnover rates in soil by changing the water content and the

oxygen partial pressure. Therefore, a space for time climate change experiment

was conducted by transferring intact beech seedling-soil mesocosms from a

northwest (NW) exposed site, representing today’s climatic conditions, to a

southwest (SW) exposed site, providing a model climate for future conditions with

naturally occurring increased soil temperature (+0.8˚C in average). In addition,

severe drought and intense rainfall was simulated by a rainout shelter at SW and

manual rewetting after 39 days drought, respectively. Soil samples were taken in

June, at the end of the drought period (August), 24 and 72 hours after rewetting

(August) and after a regeneration period of four weeks (September). To follow

dynamics of bacterial and archaeal communities involved in N turnover, abundance

and activity of nitrifiers, denitrifiers, N2-fixing microbes and N-mineralizers was

analyzed based on marker genes and the related transcripts by qPCR from DNA

and RNA directly extracted from soil. Abundance of the transcripts was reduced

under climate change with most pronounced effects for denitrification. Our results

revealed that already a transfer from NW to SW without further treatment resulted in

decreased cnor and nosZ transcripts, encoding for nitric oxide reductase and
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nitrous oxide reductase, respectively, while nirK transcripts, encoding for nitrite

reductase, remained unaffected. Severe drought additionally led to reduced nirK

and cnor transcripts at SW. After rewetting, nirK transcripts increased rapidly at

both sites, while cnor and nosZ transcripts increased only at NW. Our data indicate

that the climate change influences activity pattern of microbial communities

involved in denitrification processes to a different extend, which may impact

emission rates of the greenhouse gas N2O.

Introduction

Beech (Fagus sylvatica L.) dominates the natural forest vegetation from moderate

dry to moist areas of sub-mountainous altitude in Central Europe [1]. It often

grows on calcareous, limestone derived soils which have low water retention

capacity and are poor in bioavailable nitrogen (N) [2, 3]. However, N is an

essential component of proteins, nucleotides, coenzymes, photosynthetic

pigments, secondary metabolites and other molecules, and is one of the major

growth limiting factors for plants [4]. Consequently, productivity of forest

ecosystems is strongly dependent on an efficient microbial N turnover

characterized by low N losses via denitrification or leaching and rapid recycling of

organically bound nutrients by mineralization [5]. Furthermore, in N-limited

ecosystems strong competition between microorganisms and plants for N exists,

leading to a fragile balance of microbial N mineralization and N immobilization

by microbes and plants, which is determined mainly by abiotic factors, including

soil temperature, oxygen partial pressure, pH and nitrogen and carbon (C)

availability [6, 7]. Consequently, altered environmental conditions induced by

global change may lead to a significant disturbance of unfertilized forest

ecosystems. Mainly an increase in extreme weather events, including a higher

frequency of intense precipitation and thus rapidly changing soil moisture

regimes, extreme temperature events, heat waves and an increase in frequency and

duration of drought periods [8] might affect the interplay of soil biota and plants

in the future.

It is well accepted that drought decreases microbial activity and biomass due to

osmotic regulation (accumulation of compatible solutes in cells to avoid

dehydration), limited diffusive transport of substrates and extracellular enzymes

and decreased microbial motility [9]. Furthermore, root biomass and conse-

quently root exudates are reduced [10], resulting in additional C limitation for

soil microorganisms. However, increased oxygen content due to lower soil

moisture in combination with reduced competition for N due to reduced plant

performance might lead to enhanced nitrification, which is an aerobic process

performed by autotrophic bacteria and archaea independent from labile C sources

[11]. Increased nitrification will lead to nitrate formation, which may leach to the
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ground water depending on soil type, reducing the available N pools in soil to a

large extend.

Rewetting of dry soils induces additional osmotic stress for microbes, resulting

in release of cytoplasmic solutes to avoid bursting [12]. However, microbial

activity was shown to increase within minutes [13] or hours [14] after rewetting,

mainly due to reconstituting mineralization of both newly exposed organic matter

and dead microbial cells accumulated during drought [15]. This nutrient flush in

combination with reduced oxygen levels due to high soil moisture leads to

enhanced denitrification activities [16, 17] and thus increased N losses from the

ecosystem. Nevertheless, the response of microbial processes to environmental

stress conditions is not only related to soil moisture and the availability of

nutrients and organic matter, but also to changes in microbial community

structure [16, 17]. Recent studies on the dynamics of microbes involved in N

turnover under different environmental stress factors provide contradictory

results. When investigating the influence of temperature and water content on

bacterial, archaeal and denitrifying microbial communities, Stres et al. [18] found

no significant response of bacterial and denitrifier abundance and community

structure, while archaeal communities were strongly influenced by temperature.

In contrast, denitrifying communities in a pristine forest soil were highly affected

by water content, and both archaeal ammonia oxidizers (AOA) and their bacterial

counterpart (AOB) responded to different temperatures and water regimes [19].

These contradicting results indicate that the effects of climate change conditions

on microbial communities and their functional traits are still poorly understood

and cannot be easily transferred from one ecosystem to another.

Whereas most studies so far investigated either the effects of drought or

intensive rainfall on soil microbial communities, data on extreme drought

rewetting cycles are still rare, despite their relevance for future climate change

scenarios [8]. Thus, in the frame of this project we performed a transplant

experiment where intact beech seedling-soil mesocosms from a northwest (NW)

exposed site, representing today’s climatic conditions, were transferred to a site of

southwest (SW) exposure, serving as model for changed climatic conditions.

Additionally, a rainout shelter was established at SW to simulate severe drought.

After 39 days drought, intense precipitation was simulated by manual rewetting of

the mesocosms at both NW and SW site. Soil samples were taken in June (before

the rainout shelter was established), at the end of the drought period (August), 24

and 72 hours after rewetting (August) and at the end of the beech vegetation

period in September.

In contrast to previous studies investigating climate change effects on soil

microflora focusing on shifts in microbial community structure [16, 17] or on

effects on single N transformation steps [18, 19], in the present study for the first

time consequences for activity pattern of N2-fixers, nitrifiers, denitrifiers and

microbes involved in N-mineralization were investigated in addition to shifts in

abundance of bacterial and archaeal communities involved in N cycling.

Therefore, the abundance of marker genes of prokaryotes encoding for enzymes

catalyzing key processes in N turnover as well as their transcripts were quantified
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using quantitative real-time PCR (qPCR) based on extracted DNA and mRNA

from soil (N2 fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS,

cnor and nosZ)). The second known gene encoding for nitric oxide reductase,

qnor, was not considered, as it was also found in many non-denitrifying

microorganisms, suggesting a function in detoxifying NO [20]. From the large

pool of genes encoding for N mineralization enzymes alkaline metalloprotease

(apr) and chitinase (chiA) were chosen as marker genes in this study. In temperate

forest ecosystems, most tree species form ectomycorrhizal fungal (EMF)

associations, and especially beech roots are usually 100% colonized by EMF [21],

resulting in a high soil chitin concentration. Proteins comprise up to 40% of the

total soil N [22], and there is evidence that proteolysis could be the rate-limiting

step in soil organic N mineralization [23]. Hence, the hydrolysis of proteins and

chitin is particularly important to supply the soil N pool with plant available N.

Furthermore, it was shown that the abundance of chiA and apr genes correlates

positively with chitinolytic and proteolytic enzyme activities [24] and that both

chitinase and protease activity correlates positively with N mineralization rate

[23, 25].

Materials and Methods

Study site description

Permits for performing the experiment were issued by the Landratsamt

Tuttlingen, Germany. The experiment was conducted at the Tuttlingen Research

Station, a long term ecological beech research forest site in the Swabian Jura, a low

mountain range in Southern Germany (8 4̊59E/47 5̊99N) at an altitude of 800 m

above sea level with an atmospheric N deposition of ,10 kg N ha21 year21 [26].

The soil was classified as Rendzic Leptosoil (Sceletic) according to the IUSS [27]

with the following characteristics: 68% clay, 28% silt, 4% sand, pH 6.0 (measured

in 0.01 M CaCl2), 0.5% total nitrogen content, 6.1% organic carbon content,

0.05% inorganic carbon content and a maximum water holding capacity (WHC)

of 118% [28]. To simulate climate change, two sites with opposing exposure (NW

and SW) of a narrow valley within a distance ,1 km of each other were selected

as model ecosystems. At both sites, beech was the dominant species and trees

showed similar population genetics [29]. The NW site showed a cool-moist

climate representing present climatic conditions typical of a beech stand in

Central Europe with mean annual air temperature of 6.6 C̊, mean air temperature

during growing season (April to October) of 11.5 C̊, mean annual precipitation of

810 mm and mean precipitation during growing season of 86 mm [30]. The SW

site was characterized by higher radiation, resulting in increased daily maximum

of air and soil temperature and thus reduced water availability [31], representing

future climatic conditions [8]. During the experimental period, mean soil

temperature/volumetric soil moisture at NW and SW were 10.3 C̊/0.26 m3 m23

and 11.1 C̊/0.23 m3 m23, respectively [28].
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Experimental design

This study was part of a transplant experiment investigating N turnover in

European beech forests under climate change conditions. The transfer of the

intact plant-soil mesocosms was described in detail by Bimueller et al. [28]. In

brief, stainless steel cylinders (diameter 16.8 cm, height 15 cm) were used to

sample 80 soil cores centered around a beech seedling of 2 mm stem diameter and

30 cm height without disturbing the root architecture. Sampling was done in July

2010 on a preselected sampling area on the NW site of the beech forest, where

intensive drilling had revealed similar soil profiles with weathered bedrock

occurring at . 15–20 cm depth. Forty randomly selected mesocosms were

transferred from the NW to the SW site. The remaining 40 mesocosms were

transferred within the NW site at the same elevation, representing in situ controls.

After transfer, all plant-soil mesocosms were irrigated with 500 ml water within

two hours (corresponding to a typical summer precipitation event of 23.7 l m22)

to avoid drying or death of enclosed beech seedlings after transfer.

After a pre-incubation period of 11 months for acclimatization, eight intact

mesocosms were sampled at both NW and SW on 22nd June 2011 (Sampling T1,

representing ambient climate change). In order to simulate intensive summer

drought, a translucent rain sheltering roof was established at SW from 27th June

2011 to 9th August 2011. Trenches around the 1 m tall rain shelter avoided

influence of slope water. After 39 days of enhanced drought at SW, eight

mesocosms from both NW and SW were sampled on 2nd August 2011 (Sampling

T2, representing ambient/intensive summer drought). For simulation of a severe

precipitation event, the remaining plant-soil mesocosms of both sites were

irrigated three times with 280 ml water each within two hours on 5th August 2011.

On 6th August and 8th August 2011, respectively, eight mesocosms were sampled

at both NW and SW (Sampling T3 and T4, representing intensive precipitation).

After deconstruction of the rainout shelter at SW on 9th August 2011, the

remaining mesocosms were left under ambient climate conditions at NW and SW,

respectively, until the final sampling on 27th September 2011 (Sampling T5).

Sampling of the plant-soil mesocosms

For each sampling time, eight plant-soil mesocosms at both NW and SW were

taken and treated as independent replicates. The intact mesocosms were carefully

excavated by hand and processed within two hours after excavation. The beech

seedlings were cut and separated into leaves and stems. The remaining soil-root

mesocosms were manually separated into soil, gravel, dead organic material and

living roots, which were washed with tap water to remove adhering soil. The plant

parts were dried at 60 C̊ for 48 hours for determination of dry biomass, which was

significantly reduced at SW compared to NW for both above- and belowground

plant biomass (Table S1).

The remaining mesocosm soil was homogenized by manual mixing for 10 min.

A soil subsample was immediately frozen on dry ice and stored at 280 C̊ for

DNA/RNA extraction. A second soil subsample was freeze-dried for
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determination of carbon and nitrogen content. A third subsample of soil (100 g

fresh weight) was immediately extracted 1:1.5 (soil:solution) with 0.5 M K2SO4 on

a rotary shaker for one hour. Afterwards, extracts were vacuum filtered using

pumps and glass fibre filters [2] and stored at 220 C̊ for analysis of extractable

soil C and N pools.

Total soil carbon and nitrogen content

For analysis of soil C and N content, the freeze-dried soil samples were ball-milled

(Retsch MM2, Retsch GmbH, Haan, Germany), weighed into tin capsules (1.5 mg

soil per capsule) and analyzed in duplicates using an Elemental Analyzer ‘Euro-

EA’ (Eurovector, Milano, Italy).

Extractable soil carbon and nitrogen pools

Extractable soil C and N pools were analyzed as described by Dannenmann et al.

[2]. For determination of ammonium and nitrate concentrations, a subsample of

the filtered extracts was analyzed colorimetrically by a commercial laboratory (Dr.

Janssen, Gillersheim, Germany). Total organic carbon (TOC) and total nitrogen

(TN) in the extracts was quantified on an Infrared TOC analyzer with a coupled

chemoluminescence-based total N module (DIMATEC GmbH, Germany). TOC

concentrations of extracts were referred to as extractable dissolved organic carbon

(DOC), while extractable dissolved organic nitrogen (DON) was calculated as the

difference between TN and dissolved inorganic N (ammonium plus nitrate).

Nucleic acid extraction

DNA and RNA from 0.4 g homogenized soil were co-extracted using the protocol

described by Lueders [32] and the Precellys24 Instrument (PeqLab, Erlangen,

Germany). Quality and quantity of the extracted nucleic acids were checked with a

spectrophotometer (Nanodrop, PeqLab, Erlangen, Germany) and gel electro-

phoresis. Afterwards, the extract was divided into two subsamples. One was used

for DNA analysis without further treatment. The second subsample was used to

prepare RNA by digestion of co-extracted DNA with RNase free DNase I

(Promega, Mannheim, Germany) according to manufacturer’s instructions and

subsequent purification using 3 M RNase free sodium acetate (pH 5.2) and

isopropanol. Quality and quantity of the extracted RNA were checked with a

spectrophotometer (Nanodrop, PeqLab, Erlangen, Germany) and gel electro-

phoresis. The absence of DNA was confirmed by performing PCR targeting the

16S rRNA gene using universal primers 968f (59- AAC GCG AAG AAC CTT AC -

39) and 1401r (59- CGG TGT GTA CAA GAC CC -39) and the amplification

protocol described by Schreiner et al. [33]. Afterwards, cDNA was synthesized

using the ‘High capacity cDNA reverse transcription kit’ (Life Technologies,

Darmstadt, Germany) according to manufacturer’s instructions. The success of

cDNA synthesis was confirmed by performing PCR targeting the 16S rRNA gene

as described above. Both DNA and cDNA extracts were stored at 220 C̊ until use.
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Real-time PCR assay

Quantitative real-time PCR (qPCR) was performed using an ABI 7300 Cycler

(Life Technologies, Darmstadt, Germany) with the following assay reagents:

dimethyl sulfoxid (DMSO) and bovine serum albumin (BSA) (Sigma, Germany),

primers listed in Table 1 (Metabion, Martinsried, Germany) and 2x Power SYBR

Green master mix (Life Technologies, Darmstadt, Germany). The respective

reaction mixtures (total volume 25 ml) for quantification of the genes listed in

Table 1 consisted of: 12.5 ml SYBR Green master mix, 5 pmol of each primer (for

apr gene: 10 pmol of each primer), 0.5 ml 3% BSA and 2 ml DNA template. For the

amplification of nirS and nirK genes, 0.5 ml DMSO was added additionally.

For quantification, standard curves were calculated using serial dilutions (101 to

106 gene copies ml21) of plasmid DNA containing PCR products of the respective

genes listed in Table 1. PCR detection limit was assessed to 1 gene copy ml21. In

order to prevent PCR inhibition, the optimal dilution for each amplification assay

was determined by dilution series of randomly chosen DNA and cDNA extracts in

advance (data not shown). The qPCR assays were performed in 96-well plates

(Life Technologies, Darmstadt, Germany) for all target genes as described in

Table 1. All PCR runs started with a hot start at 95 C̊ for 10 minutes. After each

run, the specifity of the SYBR Green-quantified amplicons was checked by melting

curve analysis and gel electrophoresis. The amplification efficiency was calculated

from the formula Eff 5 [10(21/slope)21] and resulted in the following average

efficiencies (standard deviation less than 5% of mean): nifH, 86%, chiA, 88%, apr,

89%, amoA ammonium-oxidizing archaea (AOA), 94%, amoA ammonium-

oxidizing bacteria (AOB), 91%, nirK, 98%, nirS, 91%, cnor, 93%, and nosZ, 89%.

Statistical analysis

Statistical analysis was performed using SPSS 11.5 (SPSS, Inc.). Data was

evaluated by multivariate analysis of variance (ANOVA) at the significance level P

,0.05. The normal distribution of the data was checked by the Kolmogorov-

Smirnov test and histograms. If necessary, the data was log-transformed prior to

analysis. The homogeneity of the variances was checked by the Levene test. For the

pairwise comparison of means with the ANOVA, either the Tukey test or, if the

homogeneity of the variances was not given, the Games-Howell test was used. In

order to test significant effects between the sites at each time point, Student’s T-

test for independent samples was performed.

Results

Soil moisture

Mean values of gravimetric soil water content normalized to WHC are presented

in Table 2. As expected, transferring plant-soil mesocosms from NW to SW

resulted in a decrease in soil moisture from 63.5% WHC to 54.4% WHC after 11

months of acclimatization (T1). This reduced soil water content at SW compared
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Table 1. Thermal profiles and primer used for real-time PCR quantification of different functional genes and transcripts.

Target gene Source of standard Primer References Thermal profile No. of cycles

nifH Azospirillum irakense nifH-f, nifH-r [63] 95˚C-45s/55˚C-45s/72˚C-45s 40

amoA AOA Nitrosomonas europaea amo19F, CrenamoA16r48x [49, 64] 94˚C-45s/55˚C-45s/72˚C-45s 40

amoA AOB Fosmid clone 54d9 amoA1F, amoA2R [65] 94˚C-45s/59˚C-45s/72˚C-45s 40

nirS Pseudomonas stutzeri cd3aF, R3cd [66, 67] 95˚C-45s/57˚C-45s/72˚C-45s 40

nirK Azospirillum irakense nirK876, nirK5R [68, 69] 95˚C-15s/63-58˚C-30s/72˚C-30s 5 a

95˚C-15s/58˚C-30s/72˚C-30s 40

cnor Sinorhizobium meliloti cnorB2f, cnorB6r [20] 95˚C-15s/60-55˚C-30s/72˚C-30s 5 a

95˚C-15s/55˚C-30s/72˚C-30s 40

nosZ Pseudomonas stutzeri nosZ2F, nosZ2R [70] 95˚C-15s/65-60˚C-30s/72˚C-30s 5 a

95˚C-15s/60˚C-30s/72˚C-30s 40

chiA Streptomyces griseus chiF2, chiR [71] 95˚C-30s/60˚C-30s/72˚C-60s 40

apr Pseudomonas aeruginosa FPapr1, RPapr2 [72] 95˚C-20s/53˚C-30s/72˚C-60s 40

aTouchdown: 21˚C per cycle.

doi:10.1371/journal.pone.0114278.t001

Table 2. Gravimetric soil moisture related to water holding capacity (WHC), total N and C contents as well as extractable N and C pools of soil of soils at NW
and SW, sampled in June (T1), after 39 days drought in August (T2), 24 and 72 hours after rewetting in August (T3, T4) and in September (T5) (n58,
standard deviation of the mean in parentheses).

NW SW P site

P

time

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

Water content 63.5 (4.0)
*

57.2 (8.6)
*

62.3 (7.0)
*

61.0 (11.0)
*

60.3 (10.4)
*

54.4 (7.0)
*

44.5 (6.4)
*

53.0 (9.1)
*

48.8 (6.5)
*

50.7 (10.6)
*

0.000 0.02-
1

% WHC a a a a a a b a ab ab

N total 4.6 (0.3) 4.3 (0.7) 4.7 (0.8) 4.3 (1.0) 4.7 (1.0) 4.4 (0.7) 4.8 (1.0) 5.0 (0.8) 4.1 (1.1) 4.8 (0.9) 0.643 0.21-
6

mg g21 sdw a a a a a a a a a a

NH4+ 3.8 (1.8) 3.3 (1.1) 5.9 (1.0) 3.9 (0.8) 3.2 (1.6) 3.5 (2.2) 3.6 (1.0) 6.0 (1.1) 3.8 (1.5) 3.1 (1.0) 0.964 0.00-
0

mg g21 sdw a a b a a a a b a a

NO32 4.5 (2.5) 4.2 (2.5) 3.1 (1.3) 5.0 (2.8) 0.3 (0.1) 4.1 (2.9) 4.3 (2.3) 3.1 (0.9) 5.1 (2.1) 0.5 (0.3) 0.976 0.00-
0

mg g21 sdw a a ab a b ab ab ab a b

DON 9.1 (3.5) 1.0 (1.5) * 2.3 (2.2) 3.3 (2.5) 5.9 (1.3) 9.8 (3.6) 5.4 (3.0) * 5.0 (3.6) 3.4 (1.8) 3.8 (2.9) 0.063 0.00-
0

mg g21 sdw a b bc bc c a ab ab b b

C total 58.6 (4.3) 57.4 (9.6) 60.7 (10.7) 58.5 (15.8) 64.6 (16.6) 58.7 (10.8) 60.7 (13.1) 66.8 (8.2) 59.6 (13.5) 67.2 (11.8) 0.322 0.30-
5

mg g21 sdw a a a a a a a a a a

DOC 72.2 (11.5) 20.5 (7.1) 51.5 (14.3) 48.9 (17.2) 52.2 (11.5) 71.2 (13.8) 23.6 (5.3) 55.7 (12.7) 57.4 (25.9) 45.2 (20.6) 0.654 0.00-
0

mg g21 sdw a b c c c a b ac ac bc

Asterisks indicate significant differences between NW and SW at the respective sampling times (Student’s T test), whereas lower case letters indicate
differences among the sampling period for the respective site (multivariate ANOVA). Significant differences between the factors site and sampling time
calculated by multivariate ANOVA are indicated by P values ,0.05 (bold letters).

doi:10.1371/journal.pone.0114278.t002
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Figure 1. Transcript abundance of functional genes involved in the nitrogen cycle (chiA, apr, amoA AOA, nirK, cnor and nosZ) are shown for NW
(black bar) and SW (grey bar) in June (T1), after 39 days drought in August (T2), 24 and 72 hours after rewetting in August (T3, T4) and in
September (T5) (n58, error bars represent standard deviation of the mean). Asterisks indicate significant differences between NW and SW at the
respective sampling times (Student’s T test), whereas lower case letters indicate differences among the sampling period for the respective site (multivariate
ANOVA). Significant differences between the factors site and sampling time calculated by multivariate ANOVA are indicated by P values ,0.05 (bold letters).

doi:10.1371/journal.pone.0114278.g001

Climate Change and Nitrogen Turnover in Forest Soils

PLOS ONE | DOI:10.1371/journal.pone.0114278 December 2, 2014 9 / 20



to NW was observed during the whole sampling period and was especially

pronounced at T2, where roof-intensified drought at SW reduced soil moisture to

44.5% WHC, while soil moisture at NW was not significantly changed by ambient

summer drought (57.2% WHC). Simulated precipitation increased the soil water

content to 62.3% WHC (NW, P . 0.05) and 53.0% WHC (SW), respectively.

With ongoing season, soil moisture remained constant at both sites (on average

60.6% WHC at NW and 49.8% WHC at SW).

Soil biochemical parameters

As expected, neither total soil N nor C contents differed between NW and SW or

during sampling times and were 4.6 mg N g21 soil dry weight (sdw) and 61.3 mg

C g21 sdw in average. Contrary, the measured labile pools (ammonium, nitrate,

DON and DOC) were highly influenced by drought and rewetting with similar

intensities and trends at NW and SW (except for DON). Therefore, data of NW at

the respective time points were described as example in this result section (except

for DON). Ammonium contents increased from 3.8 mg N g21 sdw (NW, T1) to

5.9 mg N g21 sdw (NW, T3) and declined again to 3.2 mg N g21 sdw (NW, T5).

Nitrate contents decreased from 4.5 mg N g21 sdw (NW, T1) to 3.1 mg N g21 sdw

(NW, T3, P . 0.05), increased to 5.0 mg g21 sdw (NW, T4, P . 0.05) and

decreased to 0.3 mg N g21 sdw (NW, T5). DON contents were similar between

NW and SW at T1 (9.1 mg N g21 sdw respective 9.8 mg N g21 sdw), but while

DON at SW declined continuously during sampling time to 3.8 mg g21 sdw (T5),

at NW the lowest DON value was observed at T2 (1.0 mg g21 sdw) followed by a

continuously increase to 5.9 mg g21 sdw (T5). For DOC contents no difference

between NW and SW was observed: DOC decreased from 72.2 mg C g21 sdw

(NW, T1) to 20.5 mg C g21 sdw (NW, T2), increased after rewetting 51.5 mg C g21

sdw (NW, T3) and remained constant hereafter. All data regarding soil

biochemical parameters is summarized in Table 2.

Abundance of functional transcripts involved in nitrogen cycling

In general, the genetic potential (based on the abundance levels of the investigated

functional groups) was not or not consistently affected by the investigated climate

change scenario (Fig. S1). In contrast, transcription pattern showed a significant

site effect for all quantified genes with lower transcript numbers at SW compared

to NW in average (Fig. 1). Transcripts of nifH, amoA AOB and nirS genes were

undetectable in all samples.

Concerning mineralization, transcript numbers of chiA were within the range of

105 transcripts g21 sdw in average and thus 50 times lower compared to apr

transcript abundance. Independent from the site, both chiA and apr transcript

numbers were highest 24 hours after the simulated intense precipitation event

(T3), with 2.36105 transcripts g21 sdw (NW) and 1.46105 transcripts g21 sdw

(SW) for chiA respective 8.76106 transcripts g21 sdw (NW) and 7.36106
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transcripts g21 sdw (SW) for apr. However, due to high variations among the

replicates the increase was not significant.

In terms of ammonia oxidation, amoA transcripts of AOA dominated clearly

over AOB, which were undetectable in all samples. On NW, AOA transcript

numbers remained constant over time (7.96104 transcripts g21 sdw in average),

while at SW 72 hours after rewetting (T4) a significant but temporarily decrease

from 3.16104 to 8.66103 transcripts g21 sdw was observed, followed by an

increase to 2.66104 transcripts g21 sdw (T5).

Regarding denitrification, transcripts of the functional genes nirK, nirS, cnor and

nosZ were quantified, targeting the stepwise reduction of nitrite (NO2
2) to dinitrogen

via nitric oxide (NO) and nitrous oxide (N2O). While nirS transcripts were

undetectable in all samples, functionally redundant nirK transcript numbers ranged

from 3.86102 to 5.16105 transcripts g21 sdw and were highly affected by site,

drought and simulated precipitation. At NW, nirK transcripts were highest 24 hours

after rewetting (5.16105 transcripts g21 sdw at T3) and lowest at T5 with 6.96103

transcripts g21 sdw. In contrast, nirK transcript numbers at SW were severely

decreased by roof-intensified drought at T2 (3.86102 transcripts g21 sdw). Although

rewetting led to an temporarily increase in nirK abundance up to 8.06103 transcripts

g21 sdw (T3, P . 0.05), transcripts decreased afterwards and remained lower hereafter

compared to T1 at SW. However, transcript numbers of nirK were significantly

reduced at SW compared to NW at the drought and rewetting treatment (T2–T4). In

contrast to nirK, cnor transcripts at NW were more affected by drought and rewetting

than at SW. At NW, a decrease of cnor transcript numbers from 1.56106 to 1.86105

transcripts g21 sdw at T2 (drought) was observed (P . 0.05), followed by a

temporarily increase to 1.96106 transcripts g21 sdw after rewetting (P . 0.05). At SW,

cnor decreased from 6.66104 transcripts g21 sdw (T1) to 3.86104 transcripts g21 sdw

(T2, P . 0.05), remained constant during rewetting and increased to 8.96104

transcripts g21 sdw at T5 (P . 0.05). Although the time-dependent effects were not

significant, cnor transcript numbers were significantly lower at SW compared to NW

for T1-T4. For nosZ transcripts, similar time patterns as for cnor were observed.

Transcription levels of nosZ at NW decreased during drought to 8.16103 transcripts

g21 sdw (P . 0.05), increased significantly after rewetting (3.96106 transcripts g21

sdw at T3) and declined again to 6.46104 transcripts g21 sdw at T5 (P . 0.05). At SW,

nosZ transcripts were highest at T1 (4.16104 transcripts g21 sdw), declined to

4.66103 transcripts g21 sdw after rewetting (T3) and increased again to 7.66103

transcripts g21 sdw at T5 (P . 0.05). However, also nosZ transcripts were lower at SW

compared to NW, except after drought (T2) and in September (T5).

Discussion

Biological nitrogen fixation is negligible in the investigated beech

forest ecosystem

Despite general N limitation of forest ecosystems and the presence of nifH genes

in all of our samples (26107 to 56107 copies g21 sdw, Fig S1), no nifH
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transcripts were detected, indicating a negligible role of biological nitrogen

fixation (BNF) in the investigated ecosystem. This is in contrast to other studies

showing abundant BNF in temperate and boreal forests [34, 35, 36]. However, it

might be possible that atmospheric N deposition in this study was sufficient to

outbalance ecosystem N losses by gaseous emissions and leaching, thus providing

no advantage in the highly energy demanding N2 fixation [37].

Activity of bacteria involved in N mineralization

In terrestrial ecosystems, the majority of soil N is present in organic

macromolecules like chitin, proteins and nucleic acids [22, 38], which cannot be

assimilated by plants directly [39]. Therefore, abundances of apr and chiA

transcripts were used as proxy for soil N mineralizing microbes [24, 40, 41]. For

both apr and chiA transcript numbers a significant site effect was observed with

lower transcripts under climate change conditions (increased soil temperature and

decreased water availability) in average. This was surprising, as soil warming was

shown to enhance biological processes like decomposition and N mineralization

in general [42, 43]. However, reduced soil moisture may result in decreased

microbial activity due to osmotic regulation (accumulation of compatible solutes

in microbial cells), limited diffusive transport of substrates and extracellular

enzymes and lower microbe motility [9]. In the investigated ecosystem, the

negative effect of low water availability seamed to dominate over temperature-

induced higher activity of microorganisms. This is in line with previous studies

showing that net N mineralization rate was more limited by low soil moisture

than promoted by increased temperature [44, 45]. Surprisingly, transcript levels

for both apr and chiA remained unaffected by drought and rewetting at both NW

and SW, which is in contrast to other studies showing rapidly increasing N

mineralization after rewetting of dry soil due to accumulated plant and microbial

necromass and microbial cell lysis caused by osmotic stress [15, 46].

It has to be taken into account that transcript abundances of chiA and apr must

not necessarily reflect in situ mineralization rates because of post-transcriptional

and –translational modifications of the underlying mRNA and/or enzymes [47].

Moreover, besides chitinases and proteases a lot of other enzymes contribute to N

mineralization in soil. When relating total mineralization rates to abundance and

activity of microbes the role of fungal proteases has to be considered especially in

forest soils. However, here the molecular basis is fairly unknown so far, as

sequenced fungal isolates are rare.

Activity pattern of ammonia oxidizers

Nitrification, the stepwise oxidation of ammonia to nitrate via nitrite, was

quantified via expression of archaeal and bacterial amoA genes. Abundance of

AOA ranged from 46107 to 26108 copies g21 sdw and was thus 100-times

higher than AOB abundance (Fig S1). Consequently, on transcript level AOB was

undetectable. This numerical dominance of AOA over AOB was found in several

Climate Change and Nitrogen Turnover in Forest Soils

PLOS ONE | DOI:10.1371/journal.pone.0114278 December 2, 2014 12 / 20



studies [19, 48, 49]. Although nitrification as aerobic process could be expected to

be positively influenced by climate change (increased soil temperature and

reduced soil moisture and thus higher oxygen content) as reported previously

[50, 51], our results revealed lower AOA transcript numbers at SW compared to

NW in average. It is likely that this was due to a soil moisture threshold for

optimal nitrification, which is in the range of 60–65% of WHC at the investigated

study site [3]. While water availability at NW was within this range, soil moisture

at SW was reduced far beyond this optimum. Surprisingly, although AOA were

thought to be highly responsive to changing environmental conditions and more

dynamic than AOB [19], no drought or rewetting effect on AOA transcript

abundance was observed in this study. This was also reflected in soil ammonium

concentrations which remained constant during the sampling period, with the

exception of temporarily increased ammonium levels after rewetting. As archaeal

amoA transcripts were not reduced, this might be due to decreased expression of

bacterial amoA genes because of lower oxygen availability (which could not be

measured as AOB were below detection limit) and/or increased mineralization as

described above. However, ammonium concentrations declined within 72 hours

after rewetting, indicating high ammonium immobilization by heterotrophs and/

or rapid plant uptake.

Transcript abundances of different genes involved in

denitrification related processes

The nitrate produced during nitrification may serve as substrate for denitrifica-

tion, resulting in the stepwise reduction to gaseous compounds (NO, N2O, N2)

and consequently in a loss of N from the ecosystem. In the present study, the last

three steps of denitrification (the reduction of NO2
2, NO and N2O) were

investigated by quantifying the transcripts of nirK/nirS, cnor and nosZ genes,

respectively. Denitrification is closely linked to labile C and nitrate availability as

well as oxygen partial pressure [52] and thus can be assumed to be highly sensitive

to climate change with increased temperature and fluctuating water regimes.

The reduction of NO2
2 is catalyzed by two functionally redundant enzymes

encoded by nirK and nirS genes which do never co-occur in one organism [53].

The numerical dominance of nirK over nirS gene abundance observed in this

study (Fig S1) was reported previously in soil ecosystems [41, 54, 55]. However,

the low nirS gene abundance in our samples resulted in undetectable transcript

numbers of nirS. Interestingly, transfer from NW to SW representing ambient

climate change did not decrease nirK transcripts. This might be explained by

enhanced microbial activity because of increased temperature which outbalanced

the negative effect of higher soil oxygen content [3] and/or the presence of

anaerobic microsites due to elevated soil respiration and clayey texture promoting

denitrification [56, 57]. This would be in agreement with the observation that nirK

was not decreased during ambient summer drought at NW. In contrast, roof-

intensified drought at SW resulted in a dramatic decline of nirK transcripts,

indicating that soil moisture and consequently substrate diffusion and presence of
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anaerobic microsites were decreased to an extent that could not be compensated

by higher temperature. However, rewetting led to a rapid increase of nirK

transcript numbers on both sites, which resulted consequently in reduced soil

nitrate concentrations. This rapid recovery from drought stress after rewetting was

reported previously for nirK harbouring microorganisms [19].

In contrast to nirK, cnor and nosZ transcripts were already influenced by

ambient climate change conditions, resulting in decreased transcript levels of both

genes at SW compared to NW at T1. Denitrifiers are heterotrophic organisms and

among others dependent on labile C sources [52]. As plant biomass was

Figure 2. Scheme of the microbial nitrogen cycle under different climate change conditions. (A)
comparison between NW and SW at ambient climate change (T1), (B) comparison between NW and SW at
ambient/roof-intensified summer drought (T2) and (C) comparison between NW and SW after rewetting (T3,
T4). Decreased N turnover processes under climate change indicated by significantly lower transcripts at SW
compared to NW are shown in grey (P ,0.05).

doi:10.1371/journal.pone.0114278.g002
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significantly reduced at SW, it is likely that also root exudation and consequently

labile C compounds were lowered [2], resulting in decreased denitrification

activity. On the other hand, the different response might be due to higher oxygen

sensitivity of cnor and nosZ compared to nirK, which at least is known for nosZ

[58, 59]. Accordingly, after ambient summer drought at NW as well as after roof-

intensified drought at SW both cnor and nosZ transcripts showed decreasing

trends, but with different intensities. Interestingly, after rewetting a relative

increase of cnor and nosZ was only observed at NW, although nitrate

concentrations and DOC availability were similar at both sites. It might be

speculated that roof-intensified drought at SW reduced soil moisture far beyond

the optimum threshold for NO2
2 and N2O reduction, thus causing severe

environmental stress [60]. Consequently cnor and nosZ harboring microorganisms

need time for recovery when environmental conditions become more favorable

again. Such resilience according to changing moisture systems was observed

previously for nosZ harboring microorganisms.[61] On the other hand, rewetting

of dry soil might have caused increased cell lysis due to high osmotic stress [16],

which would also explain the lack of immediate response.

Synthesis

In conclusion, climate change conditions including higher temperature and lower

soil moisture resulted in significant site effects with decreased expression of

investigated functional genes at SW while the genetic potential was not or not

consistently affected. Our data revealed that particularly transcripts related to

denitrification were affected by climate change. Already transfer from NW to SW

without further treatment resulted in significant reduction of cnor and nosZ

transcripts while nirK remained unaffected (Fig. 2A), suggesting the possibility of

higher NO losses at moderately increased soil temperatures and decreased water

availability. Besides its potential as greenhouse gas, NO is an important signaling

molecule for plants participating in a variety of physiological processes including

seed germination, root formation, programmed cell death as well as defense and

stress responses [62]. Therefore, a possible increase in NO production under

climate change may also directly affect plant performance in near future. Severe

drought decreased additionally nirK transcripts (Fig. 2B), which could indicate N2

as main gaseous denitrification product at SW. This is in contrast to ambient

summer drought at NW, where decreasing trends for cnor and nosZ transcripts

were observed while nirK remained unaffected. This is similar to the activity

pattern at SW in June (T1) and could suggest higher gaseous NO losses at NW

after natural summer drought. Although all investigated denitrification transcripts

were significantly lower at SW compared to NW after rewetting (Fig. 2C), nirK

increased, cnor remained constant and nosZ decreased relative to the abundance at

severe drought, suggesting possible higher gaseous NO and N2O losses. In

contrast, rewetting resulted in an increase of all denitrification transcripts at NW.

Taken all together, our data suggest that climate change could increase the

emission of greenhouse gases (NO, N2O), but this effect might be only
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temporarily as in September no difference between the denitrification transcript

numbers at NW and SW was observed.

As amoA AOA transcripts were reduced after rewetting at SW but chiA and apr

transcripts were not affected (Fig. 2C), this suggests that climate change triggered

a truncation of soil microbial N cycling in this ecosystem type with decreasing

importance of microbial nitrate production and consumption, whereas the effect

on N mineralization was not thus pronounced.

Overall, the observed shifts in N turnover appeared to be more related to

altered transcription patterns due to environmental factors than to changes in the

genetic potential of the microbial community. Accordingly, transcript levels

recovered at the end of the growing season under climate change conditions,

indicating resilience of the respective microorganisms.

Although our study provides evidence that analysis of N cycle transcript

abundances is a useful tool to reconstruct the microbial N cycle and to analyze the

response of N cycle processes to climate change at the level of genes encoding for

single enzymatic steps, it has to be taken into account that transcript levels of

functional genes may allow prediction but must not reflect actual turnover rates.

Therefore, more long-term studies measuring gross/net N fluxes additionally to

functional genes and their transcripts are required, which would offer the

possibility to link biogeochemical quantification of gross N turnover with gene

expression for single enzymatic steps. With respect to functional redundancy

within microbial populations, also community structure should be investigated to

further sharpen our understanding of climate change effects on resilience and

vulnerability of N cycle processes.

Supporting Information

Figure S1. Copy numbers of functional genes involved in the nitrogen cycle

(nifH, chiA, apr, amoA AOA, amoA AOB, nirK, nirS, cnor and nosZ) are shown

for NW (black bar) and SW (grey bar) in June (T1), after 39 days drought in

August (T2), 24 and 72 hours after rewetting in August (T3, T4) and in

September (T5) (n58, error bars represent standard deviation of the mean).

Asterisks indicate significant differences between NW and SW at the respective

sampling times, whereas lower case letters indicate differences among the

sampling period for the respective site.

doi:10.1371/journal.pone.0114278.s001 (PDF)

Table S1. Dry plant biomass at NW and SW, sampled in June (T1), after 39

days drought in August (T2), 24 and 72 hours after rewetting in August (T3,

T4) and in September (T5) (n58, standard deviation of the mean in

parentheses). Asterisks indicate significant differences between NW and SW at

the respective sampling times (Student’s T test), whereas lower case letters

indicate differences among the sampling period for the respective site (multi-

variate ANOVA). Significant differences between the factors site and sampling
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time calculated by multivariate ANOVA are indicated by P values ,0.05 (bold

letters).

doi:10.1371/journal.pone.0114278.s002 (PDF)
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