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Abstract

In this paper we study an SU(5) × A5 flavour model which exhibits a neutrino mass sum rule and golden 
ratio mixing in the neutrino sector which is corrected from the charged lepton Yukawa couplings. We give 
the full renormalisable superpotential for the model which breaks SU(5) and A5 after integrating out heavy 
messenger fields and minimising the scalar potential. The mass sum rule allows for both mass orderings 
but we will show that inverted ordering is not valid in this setup. For normal ordering we find the lightest 
neutrino to have a mass of about 10–50 meV, and all leptonic mixing angles in agreement with experiment.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Experimental results in the lepton sector have shed some new light on the origin of flavour. In 
contrast to the quark sector, lepton mixing angles have the distinctive feature that the atmospheric 
angle θPMNS

23 and the solar angle θPMNS
12 , are both rather large [1]. Direct evidence for the reactor 

angle θPMNS
13 was first provided by T2K, MINOS and Double Chooz [2–4]. Subsequently Daya 

Bay [5], RENO [6], and Double Chooz [7] Collaborations have measured sin2(2θPMNS
13 ) to a high 

precision, see also Table 1.
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Table 1
The best-fit values and the 3σ ranges for the parameters taken from [8]. There are two 
minima for θPMNS

23 . The first one corresponds to the normal hierarchy whereas the second 
one corresponds to the inverted hierarchy.

Parameter Best-fit (±1σ ) 3σ range

θPMNS
12 in ◦ 33.48+0.77

−0.74 31.30 → 35.90

θPMNS
13 in ◦ 8.52+0.20

−0.21 7.87 → 9.11

θPMNS
23 in ◦ 42.2+0.1

−0.1 ⊕ 49.4+1.6
−2.0 38.4 → 53.3

δPMNS in ◦ 251+67
−59 0 → 360

�m2
21 in 10−5 eV2 7.50+0.19

−0.17 7.03 → 8.09

�m2
31 in 10−3 eV2 (NH) 2.458+0.002

−0.002 2.325 → 2.599

�m2
32 in 10−3 eV2 (IH) −2.448+0.047

−0.047 −2.590 → −2.307

Among the many proposals trying to address the mixing patterns we will focus here on models 
exhibiting the so-called golden ratio (GR) mixing, where θPMNS

12 is connected to the golden ratio 

φg = 1+√
5

2 .
A possible connection was first mentioned as a footnote in [9] and afterwards implemented 

in two different types of golden ratio models. In Refs. [9–14] they find the prediction θPMNS
12 =

tan−1( 1
φg

) ≈ 31.7◦ (golden ratio type A) to leading order while in Refs. [14–17] they found 

θPMNS
12 = cos−1(φg/2) = 36◦ (golden ratio type B). More details on the history can be found 

as well in the excellent introduction of Ref. [13]. In this work we will find the first relation to 
leading order.

The neutrino mixing matrix UGR will have the form

UGR =

⎛
⎜⎜⎜⎜⎝

√
φg√

5

√
1

φg

√
5

0

−
√

1
2φg

√
5

√
φg

2
√

5
1√
2√

1
2φg

√
5

−
√

φg

2
√

5
1√
2

⎞
⎟⎟⎟⎟⎠P0, (1.1)

which is given in the convention of the Particle Data Group [1] with the diagonal matrix P0 =
Diag(exp(− iα1

2 ), exp(− iα2
2 ), 1) containing the Majorana phases. In Refs. [10] and [12] it was 

shown that this mixing pattern can emerge from an A5 family symmetry. Hence, we will adopt 
here as well an A5 family symmetry. The mixing pattern which arises in GR type B models can 
be realised by using a D10 symmetry [17] but will not be discussed here any further.

A5 was utilised as well to construct a four family lepton model [18] and its double cover 
A′

5 was then used to construct a four family model including quarks [19] and a flavour model 
explaining cosmic-ray anomalies [20].

If we assume a diagonal charged lepton basis the physical mixing angles are given as

θPMNS
12 = tan−1

(
1

φg

)
≈ 31.7◦, (1.2)

θPMNS
13 = 0◦, (1.3)

θPMNS = 45◦. (1.4)
23
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Especially, θPMNS
13 is outside of the 3σ -range of its experimental value, cf. Table 1 and therefore 

golden ratio mixing can only be a leading order estimate for the mixing angles which have to be 
corrected properly.

In Ref. [21] an A5 flavour model was proposed which accommodates built in perturbations 
to golden ratio mixing which predict correlations between the mixing angles. In [13] corrections 
to golden ratio mixing were achieved by introducing an additional flavon which perturbs the 
structure of the Majorana mass matrix and thereby adjusts the mixing angles to be in agreement 
with experimental data.

In our work we will use another approach based on the idea of Grand Unification were such 
corrections from the charged lepton sector to the neutrino mixing are well motivated. In such a 
setup one can expect θe

12 to be of the order of the Cabibbo angle θC leading to a θPMNS
13 of a few 

degrees as we will discuss later in more detail. But due to the precise measurement of the reactor 
angle only a few of the vast amount of flavour models are realistic and include Grand Unification 
[22–25]. Furthermore, we are not aware of any A5 golden ratio GUT model.

To be more precise, the model presented in this paper features SU(5) unification. Hence, we 
can exploit the recently proposed new Yukawa coupling relations [26,27] which are in very good 
agreement with experimental results and are an essential ingredient in an SU(5) GUT context for 
the prediction θPMNS

13 ≈ θC/
√

2 ≈ 9◦ [22,23,26,28].
The corrections from the charged lepton sector are indeed not the only ones which have to 

be taken into account. Due to a mass sum rule in the neutrino sector the neutrino spectrum 
is rather heavy especially for inverted ordering which will induce large renormalisation group 
(RG) running effects that exclude the inverted ordering as we will see. For normal ordering the 
running is much smaller but still should be taken into account.

The paper is organised as follows: In Section 2 we will discuss the model including the sym-
metry breaking sector and the resulting effective Yukawa and mass matrices. In Section 3 the 
phenomenological implications of the model are discussed including RGE effects which rule out 
the inverted hierarchy neutrino mass pattern. In Section 4 we summarise and conclude and in the 
appendices we present more technical details about the family symmetry A5 and the messenger 
sector of the model.

2. The model

In this section we present the SU(5) × A5 flavour model before we discuss phenomenological 
implications. Our discussion is split into two parts. In the first part we will discuss the sector 
responsible for the necessary symmetry breaking of the SU(5) gauge group and the A5 fam-
ily symmetry. Then it will become clear why we have arranged for certain flavon alignments 
when we couple the symmetry breaking fields to the visible matter sector. Namely, the resulting 
Yukawa and mass matrices will give us GR mixing in the neutrino sector and a non-diagonal 
charged lepton Yukawa matrix of the desired structure.

2.1. The symmetry breaking sector

The symmetry breaking sector can be split into two parts. The first sector contains adjoints of 
SU(5) and breaks the GUT gauge symmetry and the second sector contains non-trivial represen-
tations of A5 which will break the family symmetry in the desired directions.
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2.1.1. The SU(5) breaking superpotential
We start our discussion with the more compact SU(5) breaking sector. The GUT group is 

broken by the vacuum expectation values (vevs) of the two adjoint fields H24 and H ′
24. The field 

H24 will couple to the matter sector resulting in non-trivial Clebsch–Gordan (CG) coefficients 
and hence non-standard GUT scale Yukawa coupling ratios. The superpotential for the adjoint 
fields reads

W24 = M24 TrH24H
′
24 + λH Tr

(
H ′

24

)3 + λSS3 + κ S TrH 2
24, (2.1)

where we have also introduced a singlet field S. The scalar potential is minimised by the vevs

〈
H ′

24

〉 = V ′
24 Diag

(
1,1,1,−3

2
,−3

2

)
, (2.2)

〈H24〉 = V24 Diag

(
1,1,1,−3

2
,−3

2

)
, (2.3)

〈S〉 = VS, (2.4)

which fulfil the relations

(V24)
3 = 1

15

λS

κ3λH

M3,
(
V ′

24

)2 = 2

3

MV24

λH

, (VS)2 = 5

2

κ

λS

(V24)
2. (2.5)

The vevs of the adjoints break SU(5) to the Standard Model gauge group SU(3)C × SU(2)L ×
U(1)Y .

The above mentioned superpotential is a modified, combined version of superpotential (b) and 
(c) of [29] extended by a singlet. In that work the so-called double missing partner mechanism 
— a possible solution to the doublet–triplet-splitting problem in these kind of models — was 
discussed. This mechanism could be applied here as well but the construction of the full potential 
goes beyond the scope of the current work.

2.1.2. The flavon alignment
Now we turn to the flavon alignment sector. Before we discuss the corresponding superpoten-

tials we want to first give an overview of all the flavons and their alignments. First of all, there 
are a couple of flavons which transform as one-dimensional representations under A5

〈θi〉 = vθi
, i = 1,2,3, 〈εj 〉 = vεj

, j = 1, . . . ,5. (2.6)

Then we have two flavons in three-dimensional representations

〈φ2〉 = v
(2)
φ (0,1,0), 〈φ3〉 = v

(3)
φ (0,0,1), (2.7)

two flavons in five-dimensional representations

〈ω〉 =
(√

2

3
(v2 + v3), v3, v2, v2, v3

)
, 〈ω̃〉 = v1(1,0,0,0,0), (2.8)

and one flavon in a four-dimensional representation of A5

〈λ〉 = vλ(1,1,1,1). (2.9)

The alignment for the four- and five-dimensional flavon fields closely resembles the alignment 
in [13] and [15] and hence we will not discuss it here in detail. The superpotential for them reads

Wf = g1ωλDω + g2λ
2Dλ + g3ω̃

2Dω̃. (2.10)
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For the three-dimensional flavons the superpotential is of the form

Wt = g4φ2ω̃D
(2)
ωφ + g5φ3ω̃D

(3)
ωφ + g6φ

2
2D

(2)
φ + g7φ

2
3D

(3)
φ , (2.11)

which upon inserting 〈ω̃〉 yields the non-trivial F-terms

∂Wt

∂D
(2)
ωφ,1

= √
3g4v1φ2,1, (2.12)

∂Wt

∂D
(3)
ωφ,1

= √
3g5v1φ3,1, (2.13)

∂Wt

∂D
(2)
φ

= 2g6φ2,2φ2,3, (2.14)

∂Wt

∂D
(3)
φ

= 2g7φ3,2φ3,3. (2.15)

It is easy to see that these terms vanish given the alignments in Eq. (2.7).
Finally for the one-dimensional flavons we have used the mechanism described in [29,30]. 

The superpotential reads

Ws = P

(
θ6

1

Λ4
− M2

)
+ P

(
θ12

2

Λ10
− M2

)
+ P

(
θ12

3

Λ10
− M2

)

+ P

(
ε3

1

Λ1
− M2

)
+ P

(
ε12

2

Λ10
− M2

)
+ P

(
ε6

3

Λ4
− M2

)

+ P

(
ε12

4

Λ10
− M2

)
+ P

(
ε12

5

Λ10
− M2

)
+O

(
P 3), (2.16)

where for clarity all driving fields, messenger scales and mass parameters are denoted by 
the same symbols P , Λ and M respectively. It should be noted that the driving fields only 
couple to one flavon each although all possible combinations are permitted by charge con-
servation. This form can always be achieved by a suitable rotation of the driving fields as 
described in [30]. Higher orders in P are not relevant for the alignment due to the vanishing 
vev of P .

All the flavon fields and their charges under shaping symmetries, as well as their SU(5) and 
A5 representations are listed in Table 2. The messenger sector for the flavon alignment will be 
described in Appendix A.

2.2. The Yukawa and mass matrices

In this section we give the effective operators that determine the structure of the Yukawa 
matrices and the right-handed neutrino mass matrix for the type I seesaw [31] we implement. 
Note that the symmetries including shaping symmetries are not sufficient to forbid all unwanted 
operators. Therefore we have also studied a “UV completion” in Appendix A where we give 
the renormalisable superpotential including messenger fields. After integrating out the heavy 
vector-like messenger fields we end up with the operators we are going to discuss in this sec-
tion.
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Table 2
The Zn charges, SU(5) and A5 representations of the flavons and driving fields.

SU(5) A5 Z
R
4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

φ2 1 3 0 0 0 0 0 1 2 0 0 1
φ3 1 3 0 1 1 0 2 0 2 2 0 1
ω̃ 1 5 0 0 0 1 2 1 2 0 0 1
ω 1 5 0 0 0 0 0 0 2 0 0 0
λ 1 4 0 1 0 1 1 2 2 0 0 1

θ1 1 1 0 1 1 0 2 2 1 1 0 0
θ2 1 1 0 1 1 0 2 1 2 1 0 3
θ3 1 1 0 0 1 0 0 1 0 1 1 3
ε1 1 1 0 0 0 0 1 1 1 0 0 0
ε2 1 1 0 0 0 0 2 0 0 0 0 3
ε3 1 1 0 1 0 1 2 0 0 0 0 0
ε4 1 1 0 0 0 2 2 2 2 0 0 3
ε5 1 1 0 1 0 1 0 2 2 0 0 3

D
(2)
φ 1 1 2 0 0 0 0 1 2 0 0 2

D
(3)
φ 1 1 2 0 0 0 2 0 2 2 0 2

Dω̃ 1 4 2 0 0 1 2 1 2 0 0 2

D
(2)
ωφ 1 3′ 2 0 0 2 1 1 2 0 0 2

D
(3)
ωφ 1 3′ 2 1 1 2 2 2 2 1 0 2

Dω 1 3′ 2 1 0 2 2 1 2 0 0 3
Dλ 1 5 2 0 0 1 1 2 2 0 0 2
P 1 1 2 0 0 0 0 0 0 0 0 0

Table 3
Charges under Zn and SU(5) and A5 representations of the matter and Higgs fields.

SU(5) A5 Z
R
4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

F 5̄ 3 1 0 0 0 0 1 2 0 0 0
N 1 3 1 0 0 0 0 0 2 0 0 2
T1 10 1 1 1 0 2 2 2 2 0 0 0
T2 10 1 1 0 0 0 2 1 1 0 0 3
T3 10 1 1 0 0 0 0 2 2 0 0 3

H5 5 1 0 0 0 0 0 2 2 0 0 2
H̄5 5̄ 1 0 0 0 2 1 2 0 0 1 0
H24 24 1 0 0 0 1 2 0 0 0 2 0
H ′

24 24 1 2 0 0 2 1 0 0 0 1 0
S 1 1 2 0 0 1 2 0 0 0 2 0

The matter content of our model is organised in ten-dimensional representations of SU(5), 
Ti with i = 1, 2, 3, five-dimensional representations F , and one-dimensional representations N
which transform as one-, three- and three-dimensional representations of A5 respectively, see 
also Table 3.

The superpotential for the neutrino sector reads

W = yn
1 FNH5 + yn

2 NNω. (2.17)

After symmetry breaking this results in the Majorana mass matrix
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MRR = yn
2

⎛
⎜⎜⎜⎜⎝

2
√

2
3 (v2 + v3) −√

3v2 −√
3v2

−√
3v2

√
6v3 −

√
2
3 (v2 + v3)

−√
3v2 −

√
2
3 (v2 + v3)

√
6v3

⎞
⎟⎟⎟⎟⎠ (2.18)

for the right-handed neutrinos and the neutrino Yukawa matrix reads in our basis

Yν = yn
1

⎛
⎝1 0 0

0 0 1

0 1 0

⎞
⎠ . (2.19)

Note that we are using the right-left convention for the Yukawa matrices, which means that the 
first index of the matrix corresponds to the SU(2)L doublets. Using the type I seesaw formula 
we end up with the mass matrix for the light Majorana neutrinos

mLL = v2
u

(yn
1 )2

yn
2

⎛
⎝a b b

b c d

b d c

⎞
⎠ , (2.20)

where vu denotes the SU(2)L Higgs doublet vev of H5 and the coefficients a, b, c, d are functions 
of v2 and v3:

a ≡ −
√

3/2(v2 − 2v3)

4v2
3 + 2v3v2 − 11v2

2

,

b ≡ − 3
√

3v2

−8v2
3 − 4v3v2 + 22v2

2

,

c ≡ 3
√

3/2(4v2
3 + 4v3v2 − 3v2

2)

x
,

d ≡
√

3/2(4v2
3 + 8v3v2 + 13v2

2)

x
,

x ≡ 32v3
3 + 24v2v

2
3 − 84v3v

2
2 − 22v3

2 .

The phenomenology of these structures will be discussed in the next section.
The effective superpotentials for the charged lepton and down-type quark sector is

Wd,l = y33

Λ2
T3(Fφ2)1H24H̄5 + y22

Λ3
T2(Fφ3)1θ1H̄5H24 + y21

Λ4
T1(Fφ3)1θ3H

2
24H̄5

+ y12

Λ4
T2

(
F(φ2φ3)3

)
1θ2H̄5H24 + y32

Λ3
T2(Fφ2)1ε1H̄5H24, (2.21)

where Λ denotes a generic mass scale of the messenger fields (see Appendix A for more details). 
Note that the messenger sector plays a crucial role here. Only by symmetries additional operators 
would be allowed and we would not end up with the desired structures.

After plugging in the SU(5) and A5 breaking vevs we find the following Yukawa matrices for 
the down-type quarks

Yd =
⎛
⎜⎝

0 1
Λ4 y12v

(3)
φ v

(2)
φ vθ2 0

y21
Λ4 vθ3v

(3)
φ

y22
Λ3 v

(3)
φ vθ1 0

y32 (2) y33 (2)

⎞
⎟⎠ ≡

⎛
⎝ 0 a12 0

a21 a22 0

0 a32 a33

⎞
⎠ , (2.22)
0
Λ3 vφ vε1 Λ2 vφ
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and for the charged leptons

Ye =
⎛
⎝ 0 −1/2a21 0

6a12 6a22 6a32

0 0 −3/2a33

⎞
⎠ . (2.23)

Note, first of all, that we find the SU(5) relation Yd = YT
e up to order one CG coefficients. These 

coefficients are arranged such that we have realistic Yukawa coupling ratios, cf. [26–28], and we 
will as well be able to correct the reactor mixing angle to realistic values.

In the up-type quark sector we have only used singlet flavons which acquire a non-zero vev. 
The effective superpotential reads

Wu = yu
11

Λ3
ε1ε2ε4T1T1H5 + yu

12

Λ3
T1T2H5ε1ε2ε3

+ yu
22

Λ2
T2T2H5ε1ε1 + yu

31

Λ2
T1T3H5ε1ε5 + yu

32

Λ
T3T2H5ε1 + yu

33T3T3H5, (2.24)

and from that we find for the up-type quark Yukawa matrix

Yu =

⎛
⎜⎜⎝

yu
11

Λ2 vε1vε2vε4

yu
12

Λ2 vε1vε2vε3

yu
31

Λ2 vε5vε1

yu
12

Λ2 vε1vε2vε3

yu
22

Λ2 v2
ε1

yu
32
Λ

vε1

yu
31

Λ2 vε5vε1

yu
32
Λ

vε1 yu
33

⎞
⎟⎟⎠ ≡

⎛
⎝b11 b12 b13

b12 b22 b23

b13 b23 b33

⎞
⎠ . (2.25)

The complete matter and Higgs field content of the model and their charges under additional 
shaping symmetries is collected in Table 3. We have checked that there are no new additional 
effective operators contributing to the Yukawa matrices up to mass dimension eight. Hence, we 
expect possible higher order corrections to be negligible small. We will comment more on this in 
Appendix A where we discuss the messenger sector of the model.

3. Phenomenology

In this section we present the phenomenological implications of our model. First we discuss 
the quarks and charged leptons. We put a special emphasis on the Yukawa coupling ratios of the 
charged leptons and down-type quarks which arise in our model. Afterwards we discuss briefly 
a numerical fit to the low energy charged lepton and quark masses and CKM mixing parameters. 
In the second part of this section we cover the neutrino sector of our model. We revise the 
neutrino mass sum rule and show how corrections for the leptonic mixing parameters occur due 
to a non-diagonal charged lepton Yukawa matrix and RGE corrections. Finally, we show the 
predictions of our model for the leptonic mixing parameters and for observables testable in the 
near future in neutrino experiments.

3.1. The quark and charged lepton sector

In the last section we derived the Yukawa matrices for the quark and the charged lepton sector 
which fulfil the minimal SU(5) relation Yd = Y T

e up to O(1) CG coefficients. This deviation 
from the minimal relation gives better agreement to the observed fermion masses [26–28]. To be 
concrete, we have the ratios

ye ≈ 1
,

yμ ≈ 6,
yτ ≈ 3

, (3.1)

yd 2 ys yb 2
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where yτ , yμ, ye , yb , ys and yd are the eigenvalues of the Yukawa matrices Ye and Yd . Especially, 
the relation for the third generation was already realised to be very promising in [26] and then its 
phenomenology was further studied in subsequent publications, e.g. [32–34].

In [35] the double ratio

yμ

ys

yd

ye

≈ 10.7+1.8
−0.8 (3.2)

was studied which depends only weakly on RGE corrections and supersymmetric threshold cor-
rections. Plugging in our results for the Yukawa coupling ratios we get yμ

ys

yd

ye
= 12 which is within 

1σ as was already realised in [35]. In contrast, the very popular Georgi–Jarlskog relations [36], 
yμ/ys = 3 and ye/yd = 1/3, yield yμ

ys

yd

ye
= 9 which deviates more than 2σ from the best fit result.

Since we use right-left convention we have to diagonalise Ye via U
†
e Y

†
e YeUe =

Diag(y2
e , y2

μ, y2
τ ) where Ue = U12U13U23 is a unitary matrix. U23, U13 and U12 are given as

U23 =
⎛
⎜⎝

1 0 0

0 ce
23 se

23e−iδe
23

0 −se
23eiδe

23 ce
23

⎞
⎟⎠ (3.3)

and analogous expressions for U12 and U13. We use the abbreviation cos(θe
ij ) = ce

ij and
sin(θe

ij ) = se
ij . Bearing in mind that θe

13 = θe
23 = 0 in a very good approximation, the matrix 

Ue is parameterised only by one angle θe
12 and one phase δe

12.

If we compare both sides of U†
e Y

†
e YeUe = Diag(y2

e , y2
μ, y2

τ ) we find at leading order

θe
12 =

∣∣∣∣a12

a22

∣∣∣∣ and δe
12 = arg

a12

a22
. (3.4)

The eigenvalues of Ye and Yd are not sufficient to fix the values of a12 and a21 independently 
since at leading order only their product appears in the expression for the eigenvalues. And 
importantly, the phase δe

12 is essentially undetermined by the quark and charged lepton sector 
only. Nevertheless, neglecting mixing from the up-type quark sector the same procedure for the 
down-type sector leads to the relation θC ≈ | a21

a22
| for the Cabibbo angle. And in this case it follows 

for θe
12 [28]

θe
12 ≈ θC, (3.5)

and subsequently θPMNS
13 ≈ θC/

√
2 [22,23,28].

The main focus of this paper lies on the neutrino sector and for that especially yτ and θe
12 are 

important. To quantify them we have fitted the parameters of the Yukawa matrices at the high 
energy scale to the low energy observables with the help of the REAP package [37]. The Yukawa 
coupling ratios we discussed before are only valid in a regime with rather large tanβ ≈ 30 where 
we have to consider so-called SUSY threshold corrections for the masses and mixing parame-
ters [38].

The approach we have used here is documented, for instance, in [32,39,40] so that we will not 
go into much detail here. For the up-type quarks we have used the tree-level MSSM matching 
relation

Y MSSM
u = Y SM

u (3.6)

sinβ
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Table 4
Parameters of the quark and charged lep-
tons Yukawa matrices at the GUT scale 
with tanβ = 30 and MSUSY = 1 TeV.

Parameter Value

a12 4.46 · 10−4

a22 2.12 · 10−3

a21 5.95 · 10−4

a32 −1.22 · 10−3

a33 1.5 · 10−1

b11 −2.22 · 10−7

b12 9.54 · 10−5

b13 1.19 · 10−3

b22 1.72 · 10−3

b23 1.29 · 10−2

b33 5.19 · 10−1

δu
12 5.78

δu
13 6.16 · 10−1

δu
23 0

εq tanβ 0.36
εA tanβ 0.19

at the SUSY scale MSUSY = 1 TeV. For the Yukawa couplings of the charged leptons and down-
type quarks we have included the tanβ enhanced threshold corrections in the matching formulas

yMSSM
e,μ,τ = ySM

e,μ,τ

cosβ(1 + εl tanβ)
, (3.7)

yMSSM
d,s = ySM

d,s

cosβ(1 + εq tanβ)
, (3.8)

yMSSM
b = ySM

b

cosβ(1 + (εq + εA) tanβ)
. (3.9)

Also the quark mixing parameters are modified by this matching via

θMSSM
i3 = θSM

i3 (1 + (εq + εA) tanβ)

1 + εq tanβ
, (3.10)

θMSSM
12 = θSM

12 , (3.11)

δMSSM
CKM = δSM

CKM. (3.12)

Hence, apart from the parameters in the Yukawa matrices we have two additional parame-
ters to describe the SUSY threshold corrections. For definiteness we have fixed tanβ = 30 and 
MGUT = 2 · 1016 GeV.

We performed a χ2-fit to the low energy observables (nine fermion masses, three mixing 
angles, one phase). Since we have more parameters than observables it is not surprising that we 
find χ2 ≈ 0.05 where we stopped the time consuming minimisation procedure because the fit is 
sufficiently good. Note, that in principle χ2 can be made arbitrarily small. The numerical results 
for the parameters can be found in Table 4. For convenience we have also collected the low energy 
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Table 5
Experimental data for the quark and charged leptons 
Yukawa couplings at low energy taken from [41] and 
the mixing angles were taken from [1]. The uncer-
tainties for the charged lepton Yukawa couplings were 
assumed to be 1%, for more details see the text. Our 
fit to these observables has χ2 ≈ 0.05.

Quantity (at mt (mt )) Experiment

yτ in 10−2 1.00
yμ in 10−4 5.89
ye in 10−6 2.79

yb in 10−2 1.58 ± 0.05
ys in 10−4 2.99 ± 0.86
ys/yd 18.9 ± 0.8

yt 0.936 ± 0.016
yc in 10−3 3.39 ± 0.46
yu in 10−6 7.01+2.76

−2.30

θCKM
12 0.2257+0.0009

−0.0010

θCKM
23 0.0415+0.0011

−0.0012

θCKM
13 0.0036 ± 0.0002

δCKM 1.2023+0.0786
−0.0431

observables including their uncertainties in Table 5. Note, that we have assumed an uncertainty 
of 1% of the Yukawa couplings for the charged leptons which is larger than their experimental 
errors. But since we use only one-loop RGEs we cannot expect a very high precision.

3.2. Neutrino sector

In this section we present the phenomenological implications for the neutrino sector of our 
model. First, we revise the mass sum rule present in our model which was also discussed before 
in other golden ratio models with an A5 family symmetry [10,13]. Then we discuss two important 
corrections in our model. First we study RGE corrections and then corrections from the charged 
lepton sector to the neutrino mixing angles and phases in terms of sum rules. Especially, the latter 
is crucial to predict the reactor mixing angle, within its experimentally allowed range.

Including RGE effects rules out the inverted neutrino mass hierarchy in our setup because 
of incompatible constraints from the mass and the mixing sum rule on the one hand and the 
experimental value for θPMNS

12 on the other hand.
Finally, we will discuss the results from a numerical parameter scan for various observables 

in the neutrino sector.

3.2.1. The neutrino mass sum rule
The neutrino sector is described by the superpotential from Eq. (2.17). The right-handed neu-

trino mass matrix in Eq. (2.18) is diagonalised by the golden ratio mixing matrix UGR from 
Eq. (1.1)

UT MRRUGR = Diag(M1,M2,M3) (3.13)
GR



550 J. Gehrlein et al. / Nuclear Physics B 890 (2015) 539–568
with the heavy neutrino masses

M1 = y2(v2(6φg − 2) + 4v3)√
6

, (3.14)

M2 =
y2(4v3 − v2(

6
φg

+ 2))
√

6
, (3.15)

M3 = y2
√

2(v2 + 4v3)√
3

. (3.16)

These masses obey the sum rule

M1 + M2 = M3, (3.17)

which was already noted in [13].
The light neutrino mass matrix mLL in Eq. (2.19) is as well diagonalised by UGR after a matrix 

P ′ = Diag(1, 1, −1) with unphysical phases has been applied to UGR [13].
The resulting complex light neutrino masses mi read

m1 =
√

6y2v2
u

y2(v2(6φg − 2) + 4v3)
, (3.18)

m2 =
√

6v2
uy

2

y2(4v3 − v2(
6
φg

+ 2))
, (3.19)

m3 =
√

3
2y2v2

u

(v2 + 4v3)y2
(3.20)

which obey the inverse sum rule [13,15]

1

m1
+ 1

m2
= 1

m3
. (3.21)

In this sum rule the neutrino masses are still complex. If we want to discuss the physical 
masses we have to consider the absolute values of the masses |mi|. We reexpress the mass mi

as mi = |mi | exp(−iαi). One phase αi is unphysical since it corresponds to a global phase of the 
neutrino mass matrix. We choose the mass m3 to be real and set α3 = 0. The phases α1 and α2
are then the Majorana phases.

Writing down the Majorana phases explicitly the sum rule from Eq. (3.21) reads

ei α1

|m1| + ei α2

|m2| = 1

|m3| . (3.22)

One can rewrite the sum rule using the mass squared differences which yields a mass range for 
the lightest neutrino mass in both hierarchies [42], see also Ref. [43]. But note that this sum rule 
is valid at the seesaw scale and hence the mass sum rule should be evaluated at this high scale.

3.2.2. Renormalisation group corrections
Since the experimental values for the mixing angles and the mass squared differences were 

measured at a low energy scale in contrast to the model parameters which are defined at a high 
energy scale, possible effects due to RGE corrections have to be considered.
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The RGE corrections for the mass squared differences were derived, for instance, in [44]

8π2 d

dt
�m2

21 = α�m2
21 + Cy2

τ

[
2s2

23

(
m2

2c
2
12 − m2

1s
2
12

) + Fsol
]
, (3.23)

8π2 d

dt
�m2

32 = α�m2
32 + Cy2

τ

[
2c2

23m
2
3c

2
13 − 2m2

2c
2
12s

2
23 + Fatm

]
, (3.24)

where

Fsol = (
m2

1 + m2
2

)
s13 sin 2θPMNS

12 sin 2θPMNS
23 cos δPMNS

+ 2s2
13c

2
23

(
m2

2s
2
12 − m2

1c
2
12

)
, (3.25)

Fatm = −m2
2s13 sin 2θPMNS

12 sin 2θPMNS
23 cos δPMNS − 2m2

2s
2
13s

2
12c

2
23 (3.26)

and t = lnμ. In our analytical estimates we will neglect Fsol and Fatm because they are pro-
portional to the small s13. The term proportional to α ≈ 1/137 is negligible as well. If we also 
neglect the running of the parameters in the β functions we can integrate the RGEs and obtain 
approximations for the mass squared differences at the seesaw scale MS ≈ 1013 GeV using the 
best-fit values for the observables. Together with the mass sum rule this implies an allowed range 
for the neutrino mass scale

0.011 eV �m1 for NH, (3.27)

0.028 eV �m3 � 0.454 eV for IH. (3.28)

Note that the sum rule only implies a lower bound on the mass scale for the normal hierarchy.
The analytical RGE expressions for the mixing angles of the PMNS matrix are [44]

θ̇PMNS
12 = − Cy2

τ

32π2
sin 2θPMNS

12 s2
23

|m1eiα1 + m2eiα2 |2
�m2

21

+O
(
θPMNS

13

)
, (3.29)

θ̇PMNS
13 = Cy2

τ

32π2
sin 2θPMNS

12 sin 2θPMNS
23

m3

�m2
32(1 + ζ )

[
m1 cos(α1 − δPMNS)

− (1 + ζ )m2 cos(α2 − δPMNS) − ζm3 cos δPMNS
] +O

(
θPMNS

13

)
, (3.30)

θ̇PMNS
23 = − Cy2

τ

32π2
sin 2θPMNS

23
1

�m2
32

[
c2

12

∣∣m2eiα2 + m3
∣∣2 + s2

12
|m1eiα1 + m3|2

1 + ζ

]
+O

(
θPMNS

13

)
. (3.31)

Here the abbreviation ζ = �m2
21

�m2
32

was used. In the MSSM C = 1 and Cy2
τ

32π2 ≈ 0.3 ·10−6(1 + tan2 β), 

where we set tanβ = 30.
The running of θPMNS

12 can be enhanced by the small mass squared difference in the denom-
inator if the mass scale is much larger than the splitting. Hence, for heavy masses all mixing 
angles can change considerably. This will be especially important for the inverted hierarchy.

Before we will come back to this we just want to give here the value for θPMNS
12 at MS de-

pending on the mass scale. In order to determine the value of θPMNS
12 (MS) we need to calculate 

the difference of the Majorana phases � = α1 −α2 at the seesaw scale. The absolute value of the 
mass sum rule, cf. Eq. (3.21), implies

cos� = 1

2
m1m2

(
1

m2
− 1

m2
− 1

m2

)
, (3.32)
3 2 1
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where the masses label here the absolute values of the neutrino masses. Inserting this expression 
as well as the mass squared differences at the high scale leads to

θPMNS
12 (MS) ≈

(
23.00 − 2170.02

m2
3

eV2
− 0.013

m2
3

eV2
)◦

for IH. (3.33)

The same expression for the normal hierarchy is rather lengthy and not that relevant for our 
discussion so that we do not quote it explicitly here. With the minimal value of m3 from Eq. (3.28)
we find the maximal value for θPMNS

12 (MS)

θPMNS
12 (MS) ≈ 5.65◦ for IH. (3.34)

Performing the same analysis for the normal hierarchy with the minimal value for m1, 
cf. Eq. (3.27), yields

θPMNS
12 (MS) ≈ 33.44◦ for NH. (3.35)

As we can see for the inverted hierarchy case we find an inevitable sizeable running for 
tanβ = 30.

3.2.3. Corrections from the charged lepton sector
If we assume a non-diagonal Yukawa matrix of the charged leptons, their mixing angles in-

fluence the parameters of the PMNS matrix via UPMNS = UeU
†
ν with the neutrino mixing matrix 

Uν and the mixing matrix of the charged leptons Ue. As we discussed before in our model Uν is 
of the golden ratio form UGR, cf. Eq. (1.1).

Approximate expressions for the leptonic mixing angles in terms of sum rules of neutrino 
mixing angles and the charged lepton mixing angles were derived, for instance, in [45–47]. In 
leading order in the small mixing angles they read

sPMNS
23 e−iδ23 ≈ sν

23e−iδν
23 − θe

23c
ν
23e−iδe

23, (3.36)

θPMNS
13 e−iδ13 ≈ θν

13e−iδν
13 − θe

13c
ν
23e−iδe

13 − θe
12s

ν
23ei(−δν

23−δe
12), (3.37)

sPMNS
12 e−iδ12 ≈ sν

12e−iδν
12 + θe

13c
ν
12s

ν
23ei(δν

23−δe
13) − θe

12c
ν
23c

ν
12e−iδe

12 . (3.38)

In our model we have arranged θe
12 ≈ θC and θe

13 ≈ θe
23 ≈ 0. This can easily be seen in the 

Yukawa matrix Ye from Eq. (2.23) where the mixing between the generations is governed to 
leading order by the ratios of the elements in the rows.

Using these estimates as well as the golden ratio mixing angles of the A5 model from 
Eqs. (1.2)–(1.4) the expressions from Eqs. (3.36)–(3.38) simplify to

sPMNS
23 e−iδ23 ≈ 1√

2
e−iδν

23 + θ rad
23 , (3.39)

θPMNS
13 e−iδ13 ≈ − 1√

2
θe

12ei(−δν
23−δe

12) + θ rad
13 , (3.40)

sPMNS
12 e−iδ12 ≈ sν

12e−iδν
12 − 1√

2
θe

12c
ν
12e−iδe

12 + θ rad
12 , (3.41)

where the extra terms θ rad
ij are complex numbers representing the RGE corrections.

It follows from Eq. (3.40) that θPMNS
13 is dominated by θe

12 as long as the RGE corrections are 
not very large which leads to the already mentioned relation θPMNS ≈ θC/

√
2.
13
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At the seesaw scale we can neglect the radiative corrections and find the sum rule [45]

θPMNS
12 + 1√

2
θe

12 cos(δPMNS − π) ≈ θν
12. (3.42)

Since θPMNS
13 ≈ θC/

√
2 the possible values for θPMNS

12 at the seesaw scale are hence restricted to 
be in the range (24–39)◦.

3.2.4. Results for inverted hierarchy
Using the previous results it is easy to understand that for the inverted hierarchy we do not find 

any allowed parameter points for tanβ = 30. As we have discussed before the allowed range for 
θPMNS

12 at the seesaw scale is (24–39)◦ cf. Eq. (3.42). On the other hand from Eq. (3.34) we find 
θPMNS

12 at the seesaw scale to be smaller than 5.65◦ and hence the inverted hierarchy is not viable.
In this way we can also estimate that the inverted hierarchy is only possible in this setup for 

tanβ � 17 to keep the RGE corrections small enough which is nevertheless in tension with our 
Yukawa coupling ratios, cf. Ref. [26].

Note that the RGE running is quite sizeable and hence our approximations might not be justi-
fied. But even in a numerical scan using the REAP package [37] we did not find any viable points 
which we can understand at least qualitatively from our estimates.

3.2.5. Results for normal hierarchy
In our analytical estimates we find an overlap for the allowed ranges for θPMNS

12 , cf. Eq. (3.35)
and (3.42), and hence the normal hierarchy is feasible here.

We find an allowed parameter space which is compatible within 3σ with all observables. In 
our setup the neutrino sector is completely determined by four parameters. Two real parameters 
and one phase in the effective light neutrino mass matrix and one additional phase from the 
charged lepton sector (δe

12). Note, that θe
12 was already fixed in the fit and we will find that θPMNS

13
is in the correct range. For our parameter scan we have used again the REAP package [37], where 
we have set the seesaw scale to about 1013 GeV and yn

1 = 0.1.
Our numerical scan results for the leptonic mixing parameters are displayed in Fig. 1, where 

the allowed 3σ (1σ ) regions are limited by blue (red) dashed lines. The black dashed lines repre-
sent the 1σ range for the not directly measured CP phase δPMNS from the global fit [8]. The blue 
points are the result from our parameter scan to which we have applied the experimental data as 
constraints.

Note that θPMNS
23 is not within the 1σ region. And hence, if it is confirmed that the atmospheric 

mixing is not close to maximal this concrete model would be ruled out. Nevertheless, it is rather 
straightforward to introduce a θe

23 mixing which would allow to fit θPMNS
23 but would make the 

model much less predictive.
For the Majorana phases α1 and α2 we find values between 0◦ and 90◦ or between

270◦ and 360◦ for α1 and between 70◦ and 290◦ for α2. We find the Dirac phase δPMNS to be in 
the region from 57◦ and 108◦ or from 244◦ and 303◦. The Jarlskog invariant which determines 
the CP violation in neutrino oscillations is given by [48]

JCP = Im
(
Uμ3U

∗
e3Ue2U

∗
μ2

)
= 1

8
cos

(
θPMNS

13

)
sin

(
2θPMNS

12

)
sin

(
2θPMNS

13

)
sin

(
2θPMNS

23

)
sin δPMNS. (3.43)

We obtain JCP ≈ ±(0.027–0.035).
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Fig. 1. Results of our parameter scan for the normal hierarchy (blue points). The allowed experimental 3σ (1σ ) regions 
are limited by blue (red) dashed lines. The black dashed lines represent the 1σ range for the not directly measured CP 
phase δPMNS from the global fit [8]. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)
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Fig. 2. Prediction for the effective neutrino mass mee accessible in neutrinoless double beta decay experiments as a 
function of the lightest neutrino mass m1. The blue dashed region represents the allowed region for normal ordering 
whereas the pink dotted region indicates the inverted ordering region which is not allowed in our setup. The grey region 
on the right side shows the bounds on the lightest mass from cosmology [52] and the grey region in the upper part 
displays the upper bound on the effective mass from the EXO experiment [51]. The red lines represent the sensitivity of 
GERDA phase I respectively GERDA phase II [50]. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

We would like to mention here the work done in [49] where among other things a similar 
setup was studied and constraints for the phases were found. Nevertheless, the authors neglected 
RGE running effects which they can do by assuming a small tanβ or no supersymmetry at all and 
furthermore they have no mass sum rule and therefore neutrino masses can be light in their setup. 
Nevertheless, in the normal hierarchical setup where RGE effects do not have a large impact we 
find similar results.

As we mentioned before the mass sum rule only implies a lower bound for the mass scale 
for the normal hierarchy. But here we find as well an upper bound due to the constraint that 
θPMNS

13 should stay within the experimental 3σ region. This can be clearly seen in the last plot 
in Fig. 1 where we have plotted cos(α2) against θPMNS

13 . The mass sum rule implies cos(α2) to 
be in the range from −1 to about 0.48, where larger values imply larger masses and larger RGE 
corrections to θPMNS

13 .
The effective neutrino mass accessible in neutrinoless double beta decay experiments like 

GERDA [50] or EXO [51] is given by

|mee| =
∣∣m1U

2
e1 + m2U

2
e2 + m3U

2
e3

∣∣
= ∣∣m1c

2
12c

2
13e−iα1 + m2s

2
12c

2
13e−iα2 + m3s

2
13e−i2δPMNS

∣∣. (3.44)

A graphically representation of our prediction for mee as a function of m1 is shown in Fig. 2. We 
find values for mee in the range from 0.02 eV to 0.04 eV corresponding to the lightest neutrino 
mass m1 in the region from 0.01 eV to 0.05 eV. This results are beyond the sensitivity of the 
GERDA experiment but might be tested by a future experiment.

With the value for the lightest neutrino mass m1 between about 0.01 eV and 0.05 eV and 
the experimental mass squared differences from Table 1 we obtain for the sum of the neutrino 
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masses 
∑

mν = (0.074–0.171) eV. This prediction is compatible with the cosmological bound 
for the sum of the neutrino masses [52]∑

mν < 0.23 eV. (3.45)

The quantity which will be measured in the experiment KATRIN [53] is the kinematic neu-
trino mass mβ which is given as

m2
β = m2

1c
2
12c

2
13 + m2

2s
2
12c

2
13 + m2

3s
2
13. (3.46)

Applying the range for m1 as well as the measured mass squared differences we arrive at mβ ≈
(0.014–0.052) eV. Regarding the sensitivity of the experiment which is mβ > 0.2 eV our model 
prediction is beyond the reach of KATRIN.

4. Summary and conclusions

In this paper we have presented the first SU(5) × A5 SUSY Flavour Model to our knowledge. 
It features to leading order the appealing prediction θPMNS

12 = tan−1( 1
φg

) ≈ 31.7◦ where φg is the 

golden ratio φg = (1 + √
5 )/2. The reactor mixing angle is predicted to be vanishing at leading 

order and the atmospheric mixing angle to be maximal. Furthermore, the neutrino masses exhibit 
a sum rule, which turns out to be very important for the phenomenology.

The prediction of a vanishing reactor mixing angle is excluded by several standard deviations 
and hence the leading order predictions have to be corrected to make the model seem realistic. 
In grand unified theories nevertheless, it is natural to expect that the charged lepton Yukawa 
matrix is not diagonal because it is related to the down-type quark sector which is well motivated 
to be non-diagonal in flavour space. This is furthermore suggested by the approximate relation 
θPMNS

13 ≈ θC/
√

2, where θC is the Cabibbo angle. But in our setup we do not only have relations 
between quark and lepton mixing angles, but also between down-type quark and charged lepton 
Yukawa couplings which are non-standard, yτ/yb ≈ −1.5 and yμ/ys ≈ 6, and for the double ratio 
(yμ/ys)(yd/ye) = 12 which are all in perfect agreement with experimental data. The Yukawa 
coupling ratios for the third and second generation put furthermore two non-trivial constraints on 
the SUSY spectrum which might be tested at the LHC or one of its successors.

To achieve the desired Yukawa coupling ratios and a non-diagonal charged lepton Yukawa 
matrix we have presented a complete symmetry breaking sector for SU(5) and A5. The SU(5) 
breaking sector is peculiar because it is in principle compatible with the double missing part-
ner mechanism as discussed in [29], a mechanism to decouple the coloured triplets and hence 
suppress proton decay sufficiently. In the A5 symmetry breaking we have introduced a few non-
trivial representations which break A5 in the desired groups such that we end up with golden ratio 
mixing type A to leading order in the neutrino sector including also a sum rule for the neutrino 
masses. We have also studied a messenger sector for the model which is important for choosing 
between different Yukawa coupling relations in the effective higher-dimensional operators and 
forbidding other unwanted effective operators which might be allowed by the symmetries alone.

Apart from corrections from the charged lepton sector, RGE corrections can also play a major 
role. In fact, RGE corrections rule out the inverted neutrino mass hierarchy. The neutrino mass 
sum rule allows both mass hierarchies but in both cases only a certain mass range. For inverted 
hierarchy the neutrino masses turn out to be rather heavy and since tanβ is as well rather large 
the RGE corrections to θPMNS

12 are so large that although at the high scale we are at most a few 
degrees away from the observed value at low energies we are far outside the allowed 3σ region 
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for θPMNS
12 . Hence, only the normal hierarchy is possible in our model setup and we find all 

three mixing angles to be in the 3σ regions and JCP ≈ ±0.03 with the lightest neutrino mass 
m1 ≈ 0.01–0.05 eV. Due to the mass and angle sum rules we also find constraints on the phases, 
most phenomenologically relevant for the near future, δPMNS to be in the region from 57◦–108◦
or 244◦–303◦.

Hence, our model can be tested from neutrino and collider experiments in several different 
ways in the near future.

5. Note added in proof

During the finalisation of this work an update of the nu-fit global fitting collaboration ap-
peared [54]. Nevertheless, the results which we used in our analysis changed only very little 
compared to their updated fit and hence our conclusions remain unchanged.
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Appendix A. The messenger sector

In this section we discuss the renormalisable superpotential of the model. As mentioned before 
the heavy messenger fields are integrated out to obtain the higher dimensional operators of the 
effective superpotential. The complete messenger field content can be found in Tables 6 and 7.

We will first discuss the renormalisable superpotentials for the up- and down-type quark sec-
tors including additional operators not seen in our supergraphs but allowed by symmetry. We will 
then do the same for the flavon sector. At last we will discuss higher dimensional operators.

We begin with the mass terms for the messenger fields

W ren
Λ = MΣi

ΣiΣ̄i + MΩi
ΩiΩ̄i + MΞi

ΞiΞ̄i + MΓi
ΓiΓ̄i + MΥf 6Υf 6Ῡf 6

+ M�f 6�f 6�̄f 6 + MΥf 12Υf 12Ῡf 12 + M�f 12�f 12�̄f 12

+ MΛf 12Λf 12Λ̄f 12, (A.1)

where a summation over i is implied. The indices f 6 and f 12 denote the singlet flavons which 
occur as 6th and 12th power respectively in their aligning superpotentials. It is f 6 ∈ {θ1, ε3}
and f 12 ∈ {θ2, θ3, ε2, ε4, ε5} where a summation over these flavons is implied. Each messenger 
field has a mass higher than the GUT scale. The individual messenger masses are related to the 
messenger mass scale Λ by order one coefficients which are often not explicitly stated to simplify 
the notation.

The renormalisable superpotential for the up-quark sector is

W ren
u = T3T3H5 + T3ε1Ω̄1 + Ω1T2H5 + ε2

1 Γ̄3 + Γ3T2Ω̄1 + ε1T1Ω̄2

+ Ω2ε2Ω̄3 + Ω3Ω̄1ε3 + Ω3Ω̄4ε4 + Ω4T1H5 + Ω̄4Ω1ε5, (A.2)

where the coupling constants have been omitted to increase clarity. The supergraphs for this 
sector can be found in Fig. 3. In order to get the effective operators in Section 2, the messenger 
fields have to be integrated out.
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Table 6
The Zn charges, SU(5) and A5 representations of the messenger fields for the Yukawa couplings.

SU(5) A5 Z
R
4 Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

Σ1 5 3 1 0 0 2 1 2 1 0 1 0
Σ̄1 5̄ 3 1 0 0 1 2 1 2 0 2 0
Σ2 5 1 1 0 0 2 1 1 2 0 1 3
Σ̄2 5̄ 1 1 0 0 1 2 2 1 0 2 1

Ξ1 45 3 1 0 0 2 1 2 1 0 1 0
Ξ̄1 4̄5 3 1 0 0 1 2 1 2 0 2 0
Ξ2 45 3 1 0 1 2 1 1 1 2 0 1
Ξ̄2 4̄5 3 1 0 1 1 2 2 2 1 0 3
Ξ3 45 1 1 1 0 2 2 1 2 0 0 0
Ξ̄3 4̄5 1 1 1 0 1 1 2 1 0 0 0
Ξ4 45 1 2 0 0 0 0 1 0 0 0 0
Ξ̄4 4̄5 1 0 0 0 0 0 2 0 0 0 0

Γ1 1 3 0 0 0 0 1 1 1 0 0 0
Γ̄1 1 3 2 0 0 0 2 2 2 0 0 0
Γ2 1 3 0 0 0 0 1 2 0 0 0 1
Γ̄2 1 3 2 0 0 0 2 1 0 0 0 3
Γ3 1 1 0 0 0 2 2 2 0 0 0 0
Γ̄3 1 1 2 0 0 0 1 1 1 0 0 0

Ω1 10 1 1 0 0 0 1 0 0 0 0 3
Ω̄1 1̄0 1 1 0 0 0 2 0 0 0 0 1
Ω2 10 1 1 1 0 2 0 0 0 0 0 0
Ω̄2 1̄0 1 1 1 0 1 0 0 0 0 0 0
Ω3 10 1 1 1 0 2 2 0 0 0 0 3
Ω̄3 1̄0 1 1 1 0 1 1 0 0 0 0 1
Ω4 10 1 1 1 0 1 1 2 2 0 0 2
Ω̄4 1̄0 1 1 1 0 2 2 1 1 0 0 2
Ω5 10 3 1 0 0 1 2 0 1 0 2 0
Ω̄5 1̄0 3 1 0 0 2 1 0 2 0 1 0
Ω6 10 1 1 0 0 1 1 1 1 0 2 3
Ω̄6 1̄0 1 1 0 0 2 2 2 2 0 1 1
Ω7 10 3 1 0 0 1 1 2 0 0 2 0
Ω̄7 1̄0 3 1 0 0 2 2 1 0 0 1 0

The renormalisable superpotential for the charged lepton and down-type quark sector is

W ren
d,l = H24FΣ1 + Σ̄1φ2Σ2 + Σ̄2T3H̄5 + FH24Ξ1 + Ξ̄1θ3Ξ2

+ Ξ̄2φ3Ξ3 + Ξ̄3Ξ̄4T1 + Ξ4H̄5H24

+ FH̄5Ω5 + Ω̄5Ω6Γ2 + Ω̄6H24T2 + Γ̄2φ3θ1

+ Ω̄5Ω7Γ1 + Γ̄1θ2φ3 + Ω̄7Ω6φ2 + Ω̄5Ω7ε1, (A.3)

where again coupling constants have been omitted. The charges under the shaping symmetries 
are listed in Table 6 for the messenger fields and Table 3 for the matter and Higgs fields of 
the model. The supergraphs for this sector can be found in Fig. 4. There are a few additional 
couplings which are not forbidden by shaping symmetries. These are

Wadditional = Γ̄ 3 + Γ̄3Γ
2 + Γ3Ω5Ω̄7 + Γ1Γ̄2φ2 + Γ̄2ε1φ2. (A.4)
3 1
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Table 7
The Zn charges, SU(5) and A5 representations of the messenger fields for the flavon sector.

SU(5) A5 Z4R Z2 Z2 Z3 Z3 Z3 Z3 Z3 Z3 Z4

Υε2 1 1 2 0 0 0 2 0 0 0 0 2
Ῡε2 1 1 0 0 0 0 1 0 0 0 0 2
Υε3 1 1 2 0 0 1 2 0 0 0 0 0
Ῡε3 1 1 0 0 0 2 1 0 0 0 0 0
Υε4 1 1 2 0 0 2 2 2 2 0 0 2
Ῡε4 1 1 0 0 0 1 1 1 1 0 0 2
Υε5 1 1 2 0 0 1 0 2 2 0 0 2
Ῡε5 1 1 0 0 0 2 0 1 1 0 0 2
Υθ1 1 1 2 0 0 0 2 2 1 1 0 0
Ῡθ1 1 1 0 0 0 0 1 1 2 2 0 0
Υθ2 1 1 2 0 0 0 2 1 2 1 0 2
Ῡθ2 1 1 0 0 0 0 1 2 1 2 0 2
Υθ3 1 1 2 0 0 0 0 1 0 1 1 2
Ῡθ3 1 1 0 0 0 0 0 2 0 2 2 2

Λε2 1 1 2 0 0 0 1 0 0 0 0 0
Λ̄ε2 1 1 0 0 0 0 2 0 0 0 0 0
Λε4 1 1 2 0 0 1 1 1 1 0 0 0
Λ̄ε4 1 1 0 0 0 2 2 2 2 0 0 0
Λε5 1 1 2 0 0 2 0 1 1 0 0 0
Λ̄ε5 1 1 0 0 0 1 0 2 2 0 0 0
Λθ2 1 1 2 0 0 0 1 2 1 2 0 0
Λ̄θ2 1 1 0 0 0 0 2 1 2 1 0 0
Λθ3 1 1 2 0 0 0 0 2 0 2 2 0
Λ̄θ3 1 1 0 0 0 0 0 1 0 1 1 0

�ε2 1 1 2 0 0 0 2 0 0 0 0 0
�̄ε2 1 1 0 0 0 0 1 0 0 0 0 0
�ε3 1 1 2 0 0 2 1 0 0 0 0 0
�̄ε3 1 1 0 0 0 1 2 0 0 0 0 0
�ε4 1 1 2 0 0 2 2 2 2 0 0 0
�̄ε4 1 1 0 0 0 1 1 1 1 0 0 0
�ε5 1 1 2 0 0 1 0 2 2 0 0 0
�̄ε5 1 1 0 0 0 2 0 1 1 0 0 0
�θ1 1 1 2 0 0 0 1 1 2 2 0 0
�̄θ1 1 1 0 0 0 0 2 2 1 1 0 0
�θ2 1 1 2 0 0 0 2 1 2 1 0 0
�̄θ2 1 1 0 0 0 0 1 2 1 2 0 0
�θ3 1 1 2 0 0 0 0 1 0 1 1 0
�̄θ3 1 1 0 0 0 0 0 2 0 2 2 0

It is important to note that the vertices above which contain Γ3 or ε1 and any messenger field 
of the down-sector are the only allowed couplings that mix messenger fields of the up- and 
down-sector. We will discuss the implications of these terms on potential higher dimensional 
operators later.

The operator Γ̄2φ2ε1 generates a second leading order diagram for the 3-2 element of Yd

(and the 2-3 element of Ye respectively). Since it generates the same effective operator as the 
supergraph shown in Fig. 4 with the same CG coefficient in the charged lepton sector, we have 
omitted the diagram. The same reasoning applies to the term Γ1Γ̄2φ2 which generates a second 
leading order diagram for the 1-2 element of Yd (and the 2-1 element of Ye respectively).
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Fig. 3. The supergraphs before integrating out the heavy messenger field for the up-type quark sector.

There are more couplings between the messenger fields of the singlet flavons. These will be 
further discussed below, since there are no couplings mixing the singlet messenger fields with 
messenger fields from any other sector.

In the flavon sector only the singlet alignment requires the introduction of new messenger 
fields, since the superpotential for the flavon fields in the three-, four- and five-dimensional rep-
resentations of A5 is already renormalisable. The messenger fields for the flavon sector and their 
charges under the various symmetries of the model can be found in Table 7. For ε1 the renormal-
isable superpotential reads

W ren
s3 = ε2

1 Γ̄3 + Pε1Γ3. (A.5)

The renormalisable superpotentials of ε3 and θ1 are of the form

W ren
s6 = f 2

i Υf i + Ῡ 2
f i�f i + P�̄f iῩf i, (A.6)

where fi denotes one of the above mentioned flavons. After integrating out the heavy messenger 
fields we get an effective operator which contains the respective flavon to the power of six. The 
remaining singlets have superpotentials of the form

W ren
s12 = f 2

i Υf i + Ῡ 2
f iΛf i + Λ̄2

f i�f i + P�̄f iΛ̄f i, (A.7)

where fi again denotes one of the mentioned flavons. This superpotential results in an effective 
operator containing the singlet flavon to the power of 12. The corresponding supergraphs can be 
found in Fig. 5.
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Fig. 4. The supergraphs for the down-type quark and charged lepton sector.
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Fig. 5. The supergraphs for the sector of the singlet flavons.

As already discussed in the matter sector there are additional couplings among the messenger 
fields of the flavon sector not forbidden by symmetry. However, note that these messenger fields 
do not couple to any other sector with the exception of one term which will be discussed in detail 
later. These terms will not be displayed here, since they do not lead to new leading order effective 
operators. We have checked this already on the effective level without resorting to messenger 
selection rules.
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The only non-trivial operator left to discuss is D(2)
φ Υθ2�θ1 which generates an effective op-

erator D(2)
φ P 2θ2

1 θ10
2 which nevertheless, due to the vanishing of 〈P 〉, does not have any effect 

whatsoever.
We turn now to the additional effective operators for the Yukawa matrices. It is useful to recall 

their structure here to leading order. In the down-type quark and charged lepton sector we have

Y LO
d =

⎛
⎝ 0 Λ−4 0

Λ−4 Λ−3 0

0 Λ−3 Λ−2

⎞
⎠ , (A.8)

and in the up-type quark sector

Y LO
u =

⎛
⎝Λ−3 Λ−3 Λ−2

Λ−3 Λ−2 Λ−1

Λ−2 Λ−1 1

⎞
⎠ . (A.9)

For both sectors we have checked for possible additional effective operators using only the sym-
metries of the model, i.e. without considering messenger fields. In the up-type quark sector the 
largest corrections come from operators with a mass dimension at least two higher than the lead-
ing order operator. We therefore have Yu = Y LO

u + Y HO
u , where

Y HO
u �

⎛
⎝Λ−6 Λ−6 Λ−5

Λ−6 Λ−5 Λ−4

Λ−5 Λ−4 Λ−3

⎞
⎠ . (A.10)

Hence, we can neglect them.
In the down-type quark sector we have as well calculated higher order effective operators 

based on symmetry arguments only, where operators containing φ2
2 or φ2

3 where ignored, because 
〈φ2〉2 = 〈φ3〉2 = 0. We find five additional effective operators

WHO = 1

Λ4
H24H̄5FT1φ2ε3ε2 + 1

Λ4
H24H̄5FT1φ2ε5ε1 + 1

Λ4
H24H̄5FT1φ3ε5θ1

+ 1

Λ5
H24H̄5FT1φ2φ3θ2ε5 + 1

Λ5
H24H̄5FT3φ3θ1ε1ε1. (A.11)

Upon close inspection of the terms in Eq. (A.11) it becomes clear, that those terms are forbidden 
due to messenger arguments. As stated above there are no couplings other than to Γ3 and ε1 that 
mix up-type quark and down-type quark messenger fields. Since ε5 and ε3 do not immediately 
couple to Γ3 it is impossible to generate the terms containing only those flavons, since further 
external legs from the up-sector would arise. The last term in Eq. (A.11) cannot be realised since 
T3 couples only to Σ̄2, a messenger field in the 5̄ representation of SU(5). There are no couplings 
mixing this messenger field with any of the fields in other representations of SU(5), making the 
effective operator containing T3 and ε1 impossible.

In conclusion we found for the down-type Yukawa matrix Yd = Y LO
d + Y HO

d

Y HO
d �

⎛
⎝Λ−6 Λ−6 Λ−6

Λ−6 Λ−6 Λ−6

Λ−6 Λ−6 Λ−5

⎞
⎠ , (A.12)

which can again be safely neglected.
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Appendix B. A5 Clebsch–Gordan coefficients

For convenience we give here the Clebsch–Gordan coefficients of the group A5, taken 
from [13]. We use the notation ai (bi ) for elements of the first (second) representation. The 
subscript a (s) denotes antisymmetric (symmetric) representations.

3 ⊗ 3 = 1s ⊕ 3a ⊕ 5s 3′ ⊗ 3′ = 1s ⊕ 3′
a ⊕ 5s

1s ∼ a1b1 + a2b3 + a3b2 1s ∼ a1b1 + a2b3 + a3b2

3a ∼
⎛
⎜⎝

a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

⎞
⎟⎠ 3′

a ∼
⎛
⎜⎝

a2b3 − a3b2

a1b2 − a2b1

a3b1 − a1b3

⎞
⎟⎠

5s ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

2a1b1 − a2b3 − a3b2

−√
3a1b2 − √

3a2b1√
6a2b2√
6a3b3

−√
3a1b3 − √

3a3b1

⎞
⎟⎟⎟⎟⎟⎟⎠

5s ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

2a1b1 − a2b3 − a3b2√
6a3b3

−√
3a1b2 − √

3a2b1

−√
3a1b3 − √

3a3b1√
6a2b2

⎞
⎟⎟⎟⎟⎟⎟⎠

3 ⊗ 3′ = 4 ⊕ 5

4 ∼

⎛
⎜⎜⎜⎜⎝

a3b2 + √
2a2b1

−a3b3 − √
2a1b2

−a2b2 − √
2a1b3

a2b3 + √
2a3b1

⎞
⎟⎟⎟⎟⎠ 5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3a1b1

−√
2a3b2 + a2b1

−√
2a3b3 + a1b2

−√
2a2b2 + a1b3

a3b1 − √
2a2b3

⎞
⎟⎟⎟⎟⎟⎟⎠

3 ⊗ 4 = 3′ ⊕ 4 ⊕ 5 3′ ⊗ 4 = 3 ⊕ 4 ⊕ 5

3′ ∼
⎛
⎜⎝

−√
2(a2b4 + a3b1)√

2a1b2 − a2b1 + a3b3√
2a1b3 + a2b2 − a3b4

⎞
⎟⎠ 3 ∼

⎛
⎜⎝

−√
2(a2b3 + a3b2)√

2a1b1 + a2b4 − a3b3√
2a1b4 − a2b2 + a3b1

⎞
⎟⎠

4 ∼

⎛
⎜⎜⎜⎝

a1b1 − √
2a3b2

−a1b2 − √
2a2b1

a1b3 + √
2a3b4

−a1b4 + √
2a2b3

⎞
⎟⎟⎟⎠ 4 ∼

⎛
⎜⎜⎜⎝

a1b1 + √
2a3b3

a1b2 − √
2a3b4

−a1b3 + √
2a2b1

−a1b4 − √
2a2b2

⎞
⎟⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
6(a2b4 − a3b1)√
22a1b1 + 2a3b2

−√
2a1b2 + a2b1 + 3a3b3√

2a1b3 − 3a2b2 − a3b4

−2
√

2a1b4 − 2a2b3

⎞
⎟⎟⎟⎟⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
6(a2b3 − a3b2)√

2a1b1 − 3a2b4 − a3b3

2
√

2a1b2 + 2a3b4

−2
√

2a1b3 − 2a2b1

−√
2a1b4 + a2b2 + 3a3b1

⎞
⎟⎟⎟⎟⎟⎟⎠
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3 ⊗ 5 = 3 ⊕ 3′ ⊕ 4 ⊕ 5 3′ ⊗ 5 = 3′ ⊕ 3 ⊕ 4 ⊕ 5

3 ∼
⎛
⎜⎝

−2a1b1 + √
3a2b5 + √

3a3b2√
3a1b2 + a2b1 − √

6a3b3√
3a1b5 − √

6a2b4 + a3b1

⎞
⎟⎠ 3 ∼

⎛
⎜⎝

a2b4 + √
3a1b1 + a3b3

−√
2a2b5 + a1b2 − √

2a3b4

−√
2a3b2 − √

2a2b3 + a1b5

⎞
⎟⎠

3′ ∼
⎛
⎜⎝

√
3a1b1 + a2b5 + a3b2

a1b3 − √
2a2b2 − √

2a3b4

a1b4 − √
2(a2b3 + a3b5)

⎞
⎟⎠ 3′ ∼

⎛
⎜⎝

−2a1b1 + √
3a2b4 + √

3a3b3√
3a1b3 + a2b1 − √

6a3b5√
3a1b4 − √

6a2b2 + a3b1

⎞
⎟⎠

4 ∼

⎛
⎜⎜⎜⎝

a3b3 − √
6a2b1 + 2

√
2a1b2

−3a3b4 − √
2a1b3 + 2a2b2

3a2b3 + √
2a1b4 − 2a3b5

−a2b4 − 2
√

2a1b5 + √
6a3b1

⎞
⎟⎟⎟⎠ 4 ∼

⎛
⎜⎜⎜⎝

3a2b5 + √
2a1b2 − 2a3b4

a3b5 − √
6a2b1 + 2

√
2a1b3

−a2b2 − 2
√

2a1b4 + √
6a3b1

−3a3b2 − √
2a1b5 + 2a2b3

⎞
⎟⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3(a2b5 − a3b2)

−a1b2 − √
3a2b1 − √

2a3b3

−2a1b3 − √
2a2b2

2a1b4 + √
2a3b5

a1b5 + √
2a2b4 + √

3a3b1

⎞
⎟⎟⎟⎟⎟⎟⎠

5 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3(a2b4 − a3b3)

2a1b2 + √
2a3b4

−a1b3 − √
3a2b1 − √

2a3b5

a1b4 + √
2a2b2 + √

3a3b1

−2a1b5 − √
2a2b3

⎞
⎟⎟⎟⎟⎟⎟⎠

4 ⊗ 4 = 1s ⊕ 3′
a ⊕ 3a ⊕ 4s ⊕ 5s 4 ⊗ 5 = 3′ ⊕ 3 ⊕ 4 ⊕ 51 ⊕ 52

1s ∼ a1b4 + a2b3 + a3b2 + a4b1 3 ∼
⎛
⎜⎝2

√
2(a1b5 − a4b2) + √

2(a3b3 − a2b4)

−√
6a1b1 + 2a2b5 + 3a3b4 − a4b3

a1b4 − 3a2b3 − 2a3b2 + √
6a4b1

⎞
⎟⎠

3a ∼
⎛
⎜⎝

−a1b4 + a2b3 − a3b2 + a4b1√
2(a2b4 − a4b2)√
2(a1b3 − a3b1)

⎞
⎟⎠ 3′ ∼

⎛
⎜⎝

√
2(a1b5 − a4b2) − 2

√
2(a3b3 − a2b4)

−√
6a2b1 + 2a4b4 + 3a1b2 − a3b5

a2b2 − 3a4b5 − 2a1b3 + √
6a3b1

⎞
⎟⎠

3′
a ∼

⎛
⎜⎝

a1b4 + a2b3 − a3b2 − a4b1√
2(a3b4 − a4b3)√
2(a1b2 − a2b1)

⎞
⎟⎠ 4 ∼

⎛
⎜⎜⎜⎝

√
3a1b1 + √

2(a3b4 − a2b5 − 2a4b3)√
2(−a1b2 + a4b4 + 2a3b5) − √

3a2b1√
2(a1b3 + 2a2b2 − a4b5) − √

3a3b1√
2(−2a1b4 + a2b3 − a3b2) + √

3a4b1

⎞
⎟⎟⎟⎠

4s ∼

⎛
⎜⎜⎜⎝

a2b4 + a3b3 + a4b2

a1b1 + a3b4 + a4b3

a1b2 + a2b1 + a4b4

a1b3 + a3b1 + a2b2

⎞
⎟⎟⎟⎠ 51 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2(a1b5 − a2b4 − a3b3 + a4b2)

−√
2a1b1 − √

3(a3b4 + a4b3)√
2a2b1 + √

3(a1b2 + a3b5)√
2a3b1 + √

3(a2b2 + a4b5)

−√
2a4b1 − √

3(a1b4 + a2b3)

⎞
⎟⎟⎟⎟⎟⎟⎠

5s ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3(a1b4 − a2b3 − a3b2 + a4b1)

−√
2(a2b4 + a4b2 − 2a3b3)√

2(−2a1b1 + a3b4 + a4b3)√
2(a1b2 + a2b1 − 2a4b4)√

2(−a1b3 + 2a2b2 − a3b1)

⎞
⎟⎟⎟⎟⎟⎟⎠

52 ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

2(a1b5 + a4b2) + 4(a2b4 + a3b3)

2(2a1b1 + √
6a2b5)

−√
6(a1b2 + a3b5 − 2a4b4) + 2a2b1√

6(2a1b3 − a2b2 − a4b5) + 2a3b1

2(
√

6a3b2 + 2a4b1)

⎞
⎟⎟⎟⎟⎟⎟⎠
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5 ⊗ 5 = 1s ⊕ 3a ⊕ 3′
a ⊕ 4s ⊕ 4a ⊕ 51,s ⊕ 52,s

1s ∼ a1b1 + a2b5 + a3b4 + a4b3 + a5b2

3a ∼
⎛
⎜⎝

a2b5 − a5b2 + 2(a3b4 − a4b3)√
3(a2b1 − a1b2) + √

2(a3b5 − a5b3)√
3(a1b5 − a5b1) + √

2(a2b4 − a4b2)

⎞
⎟⎠

3′
a ∼

⎛
⎜⎝

2(a2b5 − a5b2) − a3b4 + a4b3√
3(a1b3 − a3b1) + √

2(a4b5 − a5b4)

−√
3(a1b4 − a4b1) + √

2(a2b3 − a3b2)

⎞
⎟⎠

4s ∼

⎛
⎜⎜⎜⎝

3
√

2(a1b2 + a2b1) − √
3(a3b5 − 4a4b4 + a5b3)

3
√

2(a1b3 + a3b1) − √
3(−4a2b2 + a4b5 + a5b4)

3
√

2(a1b4 + a4b1) − √
3(a2b3 + a3b2 − 4a5b5)

3
√

2(a1b5 + a5b1) − √
3(a2b4 − 4a3b3 + a4b2)

⎞
⎟⎟⎟⎠

4a ∼

⎛
⎜⎜⎜⎝

√
2(a1b2 − a2b1) + √

3(a3b5 − a5b3)√
2(a3b1 − a1b3) + √

3(a4b5 − a5b4)√
2(a4b1 − a1b4) + √

3(a3b2 − a2b3)√
2(a1b5 − a5b1) + √

3(a4b2 − a2b4)

⎞
⎟⎟⎟⎠

51,s ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

2(a1b1 − a3b4 − a4b3) + a2b5 + a5b2

a1b2 + a2b1 + √
6(a3b5 + a5b3)√

6a2b2 − 2(a1b3 + a3b1)√
6a5b5 − 2(a1b4 + a4b1)√

6(a2b4 + a4b2) + a1b5 + a5b1

⎞
⎟⎟⎟⎟⎟⎟⎠

52,s ∼

⎛
⎜⎜⎜⎜⎜⎜⎝

2(a1b1 − a2b5 − a5b2) + a3b4 + a4b3√
6a4b4 − 2(a1b2 + a2b1)

a1b3 + a3b1 + √
6(a4b5 + a5b4)√

6(a2b3 + a3b2) + a1b4 + a4b1√
6a3b3 − 2(a1b5 + a5b1)

⎞
⎟⎟⎟⎟⎟⎟⎠
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