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Introduction

A decade has passed since the discovery of graphene [1]. Since then, it has stimulated active research
in condensed matter and material science and triggered numerous discoveries [2, 3]. However it still
gives rise to open questions from a very broad spectrum. Among those are very fundamental ones in
the context of the quantum �eld-theoretical description of many-particle systems as well as application
oriented problems regarding the fabrication of actual devices and the description of transport and
optical properties of these systems.
Graphene properties sometimes read like a list of superlatives. First of all being a single-atom-thick

layer of carbon atoms it is the �rst truly two-dimensional material. It occurs naturally in graphite
which consists of multiple layers of carbon atoms. Within each layer the sp2 hybridized carbon atoms
arrange in a honeycomb lattice. Graphene was �rst synthesized using an exfoliation technique with
adhesive tape on graphite to isolate a single layer of carbon atoms that we now call graphene.1 It is
also the strongest known material on earth. Measurements of the Young's modulus yield a value of
1TPa [4]. Furthermore it shows exceptional heat conductivity as well as remarkable electronic transport
properties [5�7]. More speci�cally, the mobilities in graphene are of the order ∼ 2× 105 cm2/Vs [3]. In
suspended graphene, mobilities of even ∼ 106 cm2/Vs have been measured [8]. Here suspended means
that graphene is placed on a sca�old formed by the contact electrodes for example. If graphene is
placed on a gate the carrier density can be tuned down to very small values for a semimetal [1].
The pristine graphene exhibits a gapless band structure which renders it a semimetal. Remarkably the

band structure is not only gapless. At the nodal points, where the conduction and valence band touch,
the energy dispersion becomes linear in the momentum signifying the emergence of massless quasipar-
ticles. More speci�cally, the low energy excitations of graphene are massless Dirac fermions. The latter
fact has been found theoretically even before the actual synthesis of graphene [9, 10]. Graphene is
therefore an experimental test ground for quasirelativistic physics. The Dirac nature is also responsi-
ble for an unconventional quantum Hall e�ect that persists even up to room temperatures [11]. This
unconventional Hall e�ect serves as a clear evidence for Dirac fermions.
Moreover, graphene does not only host Dirac fermions. Since they are intrinsically interacting, it is

considered a condensed matter realization of two-dimensional quantum electrodynamics. However the
massless Dirac carriers do not move with the speed of light c which is the characteristic velocity of the
electromagnetic �eld but rather with the Fermi velocity vF ∼ c/300. Therefore the interaction can be
regarded instantaneous. Due to the ratio vF /c ∼ 1/300 the dimensionless coupling constant αg of the
electron-electron interaction in graphene is correspondingly αg ∼ 2.2 for suspended graphene instead
of the well-known value of αQED ∼ 1/137 for the high energy quantum electrodynamics. It becomes
clear that the study of interaction in graphene is not only interesting it is even necessary to include
interactions.
First of all, suspended graphene is genuinely strongly correlated. Moreover it exhibits a quantum

critical point. The critical point is situated between the electron-doped and the hole-doped Fermi
liquid. Both phases are separated by the critical region for �nite temperatures. In this critical region
1Ironically, in contrast to graphene adhesive tape is in fact roughly hundred years old. Graphite is known to mankind
far beyond that.
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the system is described by a relativistic Dirac liquid and the low-frequency response is determined by
relativistic hydrodynamics. Correspondingly graphene is exactly at criticality at zero temperature and
half �lling, i.e. when the chemical potential is situated exactly at the Dirac points where the conduction
and valence band touch. In this case the system is charge neutral. In the quantum critical regime the
relaxation rates in graphene deviate from the Fermi liquid expectation. Although we emphasized that
the suspended graphene is apparently strongly interacting, the weak coupling analysis seems to explain
all experimental data so far even for the suspended graphene.
In other experimental realizations the dielectric screening of a substrate can lead to a weak Coulomb

interaction with αg < 1. However, instantaneous Coulomb interaction can a�ect transport properties at
the Dirac point signi�cantly. In particular in the regime of high temperatures and in clean samples. The
high-temperature regime is certainly realized in experiments under strong driving [12]. Here Coulomb
interaction will eventually dominate over disorder and phonon processes. On the other hand interaction
induced scattering rates will limit the transport characteristics of very clean samples and therefore pose
limits on the intrinsic properties of graphene. The latter fact is also important to understand limitations
for possible devices in optical and optoelectronic applications.
In the context of optical experiments the interaction is not merely a limiting factor. It is also the

fastest scattering mechanism determining the equilibration of optically excited carriers in graphene.
More speci�cally, it is responsible for the thermalization of high energy electrons as they are created in
time resolved pump-probe measurements. The understanding of the short-time dynamics is mandatory
for applications of graphene in laser physics and photovoltaics. As an example graphene has already
been used in mode-locked lasers as a saturable absorber [13]. The relaxation dynamics of electrons in
particular in the presence of high-energy photons is a genuine non-equilibrium situation. A theoretical
description of this non-equilibrium needs to describe the evolution of the microscopic degrees of freedom
and the e�ect of interactions on the microscopic population. Recently there has also been an increasing
interest in post-quench dynamics of systems driven out of equilibrium by a sudden quench in system
parameters. This sudden change can be realized in optical lattices where speci�c parameters of the
Hamiltonian describing the particles in the lattice can be tuned by modifying the con�ning traps.
However the laser excitation in pump-probe measurements, where graphene is excited by a pump
pulse, can also be considered a sudden quench of the system. In particular systems close to critical
points are expected to give nontrivial relaxation dynamics [14]. All these topics need to take into
account interactions in the evolution of microscopic quantities.
On the other hand we mentioned high �eld experiments as reported in Ref. [12]. In order to un-

derstand such experiments taking into account �nite size e�ects and electrostatic surroundings it is
advantageous to develop an e�ective macroscopic description that does not rely on the microscopic
details as it is unavoidable for optical frequencies. Still this e�ective description needs to take into
account scattering properly. In order to do so one starts from a microscopic description as one would
employ for the pump-probe setup and has to develop an e�ective non-equilibrium description for large
length scales. Graphene in the interaction-dominated regime enables such an e�ective hydrodynamic
description on large length scales. The emerging hydrodynamics is controlled by electron-electron in-
teraction and moreover is given by relativistic hydrodynamics as was pointed out in pioneering works
by Sachdev and Müller [15] (see also Ref. [16]).

These two regimes of non-equilibrium phenomena in graphene, the microscopic description for opti-
cal experiments and the e�ective collision-dominated hydrodynamics for graphene are the main topics
of this thesis. In both cases we will in particular be concerned with the relaxation dynamics due to
electron-electron interactions. In the microscopic theory for pump-probe measurements in graphene
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we will study the relaxation of high energy electrons in phase space. The microscopic analysis in the
presence of interaction is motivated by a number of pump-probe experiments performed in recent years.
Within the hydrodynamic theory we study the relaxation of a macroscopic perturbation in the energy
density, i.e. a hot spot, in real space. While the microscopic theory is suitable for high frequencies and
short pulses the hydrodynamics deals with low-frequency perturbations.

Pump-probe experiments on graphene started with the early works by Dawlaty et al [17] and Sun et
al [18]. In general, optical pump-probe measurements are a versatile tool to study short-time dynamics
of physical systems. The system is initially driven out of equilibrium by the pump laser. Subsequently
the probe yields a snapshot of the system's state and allows experiments to track the evolution of
chemical reactions and relaxation of solid state systems. Developments and improvements over the last
years in mode-locked lasers for example have led to temporal resolution in the femtosecond regime.
In this regard, free-electron lasers certainly hold the record of the shortest pulse duration since they
achieve attosecond pulse lengths. Semiconductors have been studied by means of optical pump-probe
measurements before the above mentioned works reported in Refs [17, 18].
The early stage of the temporal evolution that is initialized by the excitation of the system by the

pulse is characterized by a coherent evolution of the microscopic polarization and population. Within
this �rst regime there is no mixing of di�erent momentum states [19, 20]. With the achievement of
femtosecond time resolution the coherent regime becomes accessible by experiments. Subsequently the
fastest scattering mechanism leads to a redistribution of the population and �nally to the thermalization
of graphene electrons.
The theoretical description of these processes is largely based on numerical methods to simulate the

coherent dynamics of populations and polarizations as well as the decay and thermalization due to
di�erent scattering mechanisms like electron-electron interaction and phonons [21]. These numerical
simulations are usually based on the optical semiconductor Bloch equations [20] including various
di�erent stages of approximations. In Ref. [22] it was theoretically predicted that electron-electron
interaction in graphene leads to the fast redistribution of electrons in momentum space on the time
scale of 250 fs. After this interaction-dominated regime phonons cool the system on a picosecond time
scale.
Following active experimental [21, 23�26] and theoretical work [22, 27�29] in the �eld of pump-probe

spectroscopy on graphene another aspect of interaction in the relaxation dynamics was uncovered in
Ref. [30]. It was found that optical excited electrons in graphene relax towards lower energies in a
cascade with on average constant step size determined by the equilibrium parameters of the graphene.
A �rst theoretical zero temperature analysis of the cascade was performed in Ref. [31]. The cascade
emerges due to Coulomb interaction with only little in�uence of phonons [30, 31].
In view of these experimental and theoretical �ndings this thesis will study the relaxation dynamics

of high-energy electrons as they are created in optical pump-probe measurements. First of all the char-
acteristics of the relaxation cascade due to electron-electron interaction needs to be studied beyond the
zero temperature analysis. Moreover, the relaxation cascade can be reformulated as a random walk.
However this description necessitates a detailed analysis of the statistics of the relaxation process.
While Ref. [31] was primarily concerned with the average step size in the cascade this work presents a
detailed statistical description. This includes the speci�c distribution of the step sizes in the cascade.
The central question this thesis is going to address in the context of pump-probe measurements is
whether the relaxation cascade of high-energy electrons in graphene can be understood in terms of a
di�usive motion in energy space. More speci�cally, what are the characteristics of this di�usive motion
deriving from the microscopics of the Coulomb interaction in graphene. Moreover, how do the di�usive
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Introduction

parameters change with temperature. To answer these questions we are going to develop an analytical
model for the microscopic evolution of photoexcited high-energy electrons in graphene including relax-
ation due to electron-electron interaction.

The second main topic of this thesis is the emergent hydrodynamics in graphene due to Coulomb scat-
tering. On the one hand the hydrodynamic theory in graphene is an e�ective description for transport,
in particular nonlinear transport. Furthermore, it represents a macroscopic description of relaxation
processes whenever the system is driven out of global equilibrium. From another perspective, graphene
can serve as a test ground for relativistic hydrodynamics.
Testing hydrodynamics also became feasible not only due to increasing device quality but also due

to the implementation of experimental techniques to locally map the charge densities. For example
the scanning near-�eld microscopy (SNOM) enables the measurement of optical near-�elds. Here an
AFM tip is used as an antenna to convert optical near �elds that are a measure of the local charge
density into far-�elds that can be detected using standard optical techniques. The SNOM technique in
particular found applications in the study of plasmons in graphene [32, 33]. In fact graphene promises
to be an excellent platform for plasmonics [34]. Plasmons, the collective excitations of coupled elec-
tromagnetic �elds and density �uctuations are very long-lived in graphene and tunable [32�36]. In
view of the description of nonlinear transport, high-�eld experiments like the one reported in Ref. [12]
naturally entail very high temperatures. In Ref. [12] electronic temperatures up to 1200 K have been
measured. In this high-temperature regime interactions become the dominant scattering mechanism.
The hydrodynamic description can serve as an e�ective theory in this regime.
Hydrodynamic transport simulations have been applied to semiconductor �eld-e�ect transistors [37]

explaining for example current saturation due to channel depletion. It is therefore interesting to develop
an equivalent theory for graphene. Previous theoretical approaches have often employed phenomeno-
logical hydrodynamic models [38�40] or considered the dissipationless limit [41].
Within linear response the hydrodynamic theory has been developed from the Boltzmann equation

in Ref. [42]. This thesis pursues a similar approach deriving the nonlinear hydrodynamics in the
collision-dominated regime from the microscopic kinetic equation. In the context of the hydrodynamic
description of transport in graphene this thesis addresses a description of the low-frequency optical
response by hydrodynamics. More speci�cally this work investigates the in�uence of interaction-limited
transport coe�cients as for example the viscosity in the nonlocal optical response.
Moreover, we study the relaxation of graphene driven out of equilibrium. We investigate the re-

laxation of a hot spot. Such a hot spot might occur after excitation by a laser pulse. Therefore
the relaxation dynamics in the hydrodynamic regime represent a natural extension of our study of
relaxation processes in graphene after laser excitation. Whereas the �rst part is concerned with the re-
laxation in phase space for ultra short pulses, the hydrodynamics describes the relaxation in real space.
Such systems far away from global equilibrium have also been studied theoretically in one-dimensional
systems [43, 44].

Structure of the thesis

The structure of the thesis is the following:
In Chapter 1 we give a brief introduction to the properties of graphene that are relevant for our

theoretical studies. In particular we describe the �eld theoretical description of its electronic properties.
We emphasize the relevance of the Coulomb interaction. Furthermore we discuss the peculiarities of
the electron-electron interaction in graphene. Finally we discuss the notion of criticality in graphene
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and review the Wilson renormalization group (RG) calculation for the Coulomb interaction.
The Chapter 2 summarizes some of the results on the linear transport properties of graphene.

Here the linear response transport is conveniently calculated in the Kubo formalism. Interestingly,
graphene exhibits universal values of conductivity in di�erent regimes of frequencies. We also explain
the connection between the optical conductivity and optical transmission. The latter is a relevant
observable in pump-probe measurements. We close the discussion of the linear transport in graphene
within the Kubo formalism with a review on our results for the linear magnetotransport including
disorder.
While Chapt. 2 was devoted to the computation of the linear conductivity in the Kubo formalism

we develop the kinetic equation for graphene in Chapter 3. The latter is more convenient to describe
interaction e�ects and in particular non-equilibrium setups. We give a brief introduction to the non-
equilibrium �eld theory which we then apply to graphene taking into account the specialties due to the
Dirac nature of low energy excitations. We also study the coherent regime of particle-hole pair creation
by a laser pulse. Along those calculations we derive the e�ective rate equation for the generation of
photoexcited carriers that will be employed in the following chapter.
The Chapter 4 analyses the relaxation of high energy electrons due to Coulomb interaction in view

of the cascade picture as explained above. We study �rst a single cascade step for �nite temperatures.
In order to describe the relaxation cascade as a di�usive process we give a brief introduction to the
theory of stable distributions and Lévy processes. After this excursion we reformulate the relaxation
cascade in terms of anomalous di�usion culminating in the formulation of the fractional Fokker-Planck
equation (FFPE) for the relaxation of high energy electrons in graphene due to Coulomb interaction.
We also combine the e�ective rate equation derived in Chapt. 3 with the FFPE. This allows us to make
the connection to experiments and discuss the di�erential change in transmission as well as the time
evolution of the distribution of photoexcited electrons.
The Chapter 5 describes the derivation of the nonlinear collision-dominated hydrodynamics in

graphene. We discuss the plasmon spectrum as well as the nonlocal optical conductivity. Finally we
show results from numerical simulations of nonlinear hydrodynamics in graphene driven out of global
equilibrium. Furthermore we explain the relevant numerical techniques employed in those simulations.
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1 Chapter 1

Field theory and Coulomb interaction in
graphene

In this section we recall, mainly for notational purpose, the basic properties of graphene and its �eld
theoretical description. We will also review the results on the e�ects of electron-electron interaction
in graphene. In this context we discuss the RG analysis of graphene, the notion of criticality and
the quantum critical point (QCP). We also discuss the random phase approximation (RPA) at �nite
temperatures as well as chemical potentials.

1.1 Field theory in graphene

Nowadays graphene is widely known in the condensed matter community as one of the �rst strictly two-
dimensional materials. In contrast to two-dimensional electron gases in semiconductor heterostructures
[45] graphene was for a long time not even believed to exist, since the Mermin-Wagner theorem forbids
the breaking of long-range order in two dimensions [2]. However graphene exists in three dimensional
space. Therefore the bending of the graphene into the third dimension the so-called ripples and the
presence of a substrate lead to the stability of the graphene and many of its relatives derived from Van
der Waals heterostructures, for example the transition metal dichalcogenides [46].
Graphene has been studied theoretically long before its actual synthesis in 2004 [1].1 Those early

studies of the hexagonal carbon lattices revealed that the low energy theory of graphene is described
in terms of massless Dirac fermions [9, 10]. This made it promising from a theoretical as well as from
the application oriented standpoint.
The theoretical interest was primarily triggered by the fact that electrons in graphene are described

by massless fermions which in addition to this interact intrinsically by Coulomb interaction, in other
words by the electromagnetic �eld. This renders the graphene system a solid state toy model for
quantum electrodynamics. However, when it comes to the comparison between graphene and high
energy QED (2+1) one has to emphasis two major di�erences.
It must be noted that electrons in graphene are only quasi-relativistic. They do not move with the

speed of light but rather with the Fermi velocity vF as we will see below. The latter is approximately
300 times smaller than the speed of light c and is roughly given by vF ' 106 m/s [3]. Thus due to
the small ratio vF /c, relativistic retardation e�ects in the electromagnetic �eld are usually ignored and
the Coulomb interaction in graphene is assumed to be instantaneous. This limit however is ful�lled
1A patent on a production method of graphene has been �led in 2002, see "United States Patent: 7071258".
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1 Field theory and Coulomb interaction in graphene

only for the bare Fermi velocity. For a large renormalized value of vF in the infrared this assumption
of instantaneous Coulomb interaction might break down. However this does not lead to any practical
problems if �nite temperature cuts o� the RG �ow before the Fermi velocity reaches the speed of light.
More speci�cally the RG �ow is terminated when the renormalized temperature reaches the cut-o� [47].
We will discuss the Wilson-RG for graphene in more detail in Sec. 1.3.
Another di�erence between the �eld theory in graphene and QED (2+1) is that in the case of graphene

the electrodynamic �eld lives in three spatial dimensions. Thus the e�ective Coulomb potential between
two electrons in graphene, the propagator of the electromagnetic �eld, is given by

V (~q) =
2πe2

|~q |
. (1.1)

Here ~q = (qx, qy)
T is the transferred in-plane momentum. If this is Fourier-transformed into real space

one obtains V (~r ) = e2/|~r |. It is this di�erence in the photon propagator, compared to the truly two-
dimensional electrodynamics where V2D(~r ) ∼ ln(r), that leads to the special features in the interacting
graphene that distinguish it from real QED(2+1). The system is rather similar to QED (3+1) since it
exhibits scale invariance with the dimensionless coupling constant given by the graphene �ne structure
constant

αg =
e2

vF~
, (1.2)

where we have restored ~. Due to the fact that c/vF ∼ 300, we have αg ' 2.2 for graphene in vacuum.
Therefore freestanding graphene is generically a strongly interacting system. All this said, one can
conclude that graphene is rather similar to QED (3+1). It can also be shown that it exhibits a critical
point [48]. We will come back to that in Sec. 1.3, where we review the RG in graphene that is the
systematic way to sum up the logarithmic self-energy corrections expected for a system at criticality.

1.1.1 The Hamiltonian of the non-interacting graphene

In this section we are going to introduce the necessary notations and the methodological framework
for the subsequent chapters. Our approach towards the description of transport phenomena and non-
equilibrium dynamics in graphene will largely be based on the �eld-theoretical method. We assume
that the reader is familiar with basic concepts of the afore mentioned method. A useful introduction
can be found for example in Refs. [49, 50].
As was pointed out by early works [9, 10] and already hinted at in the introduction of this chapter,

the low-energy physics of the electrons in graphene is described in terms of massless Dirac electrons.
This is in fact a consequence of the symmetry of the graphene lattice shown in Fig. 1.1(a) and also
tightly connected to the fact that the honeycomb lattice is a lattice with a basis of two atoms [51].
As we will explain later in more detail, there are in fact two species of Dirac electrons present in
graphene, see Eq. (1.5) and the following discussion. Both species are eigenstates with de�nite and
most importantly opposite chirality. In this sense the presence of two species is also necessary to ful�ll
the fermion doubling theorem lattice theories with chiral symmetry [52]. Furthermore, the relativistic
nature of the theory, thus the presence of Dirac electrons, is robust against perturbations that do not
violate parity, time reversal and do not mix the two Dirac species [53], i.e. break the chiral symmetry
in graphene [see Eq. (1.5) and the following discussion].
In the Figure 1.1(b) we show the �rst Brillouin zone of graphene and the band structure. The

graphene Bravais-lattice is the triangular lattice as depicted in Fig. 1.1(a), where the blue diamond
illustrates the primitive unit cell. Hence the reciprocal lattice is also a triangle lattice with a hexagon
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1.1 Field theory in graphene

Figure 1.1: (a) The honeycomb lattice of graphene with inequivalent lattice sites A and B forming
two shifted triangular lattices. (b) The schematic band structure of graphene and the
�rst Brillouin zone. The two inequivalent Dirac points are denoted as K and K ′.
Close to them the dispersion becomes linear.

as a �rst Brillouin zone. The high symmetry points of importance for the low energy theory are the
so-called Dirac points, of which we �nd two inequivalent called K and K ′. In Fig. 1.1(b), we show the
resulting band structure of the graphene honeycomb lattice [see Fig. 1.1(a)] derived from a nearest-
neighbor tight-binding description [3]. We observe that the band structure shows two bands which are
particle-hole symmetric if one takes into account only nearest neighbor hopping in the tight-binding
description. More importantly the two bands touch at the Dirac points and close to them the dispersion
of electrons is linear in momentum, i.e. the energy of the low energy quasi-particles is ε

λ,~k
= λvF |~k|

with the Fermi velocity vF = 106m/s [3] and we introduced the band index λ = +1 for the conduction
band and λ = −1 for the valence band. Note also that at half-�lling the Fermi energy lies exactly
at zero energy thus at the nodal point where the two bands touch [see Fig. 1.1(b)]. Starting from a
tight-binding description of the graphene lattice as depicted in Fig. 1.1(a) the low energy Hamiltonian
of the free theory in the continuum limit reads as

Ĥ =

∫
d2r Ψ†(~r)(−ivF~σ · ∇)Ψ(~r) . (1.3)

Here the �eld Ψ is a two component spinor in sublattice space. The Pauli matrices ~σ = (σx, σy)
T

in Eq. (1.3) operate in the sublattice space. Furthermore ∇ = (∂x, ∂y)
T is the in-plane derivative.

For simplicity we only consider one Dirac cone and extend the theory to both cones at the end of
this section. In the low energy continuum limit the sublattice degree of freedom takes the role of the
so-called pseudo-spin in analogy to the spinor character of the electronic wave function in the Dirac
equation that encodes the electron spin in relativistic quantum mechanics. For the spinor �elds in
graphene we have the commutation relations

{Ψα(~r),Ψ†β(~r ′)} = δαβδ(~r − ~r ′) . (1.4)

In the following we choose dimensionless units for which vF = 1.
The fact that we have two Dirac cones that are connected by time reversal symmetry, see e.g.

Ref. [54], can be taken into account by writing the low energy theory in terms of an additional set of
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1 Field theory and Coulomb interaction in graphene

Pauli matrices τi acting in valley space,2

Ĥ ′ =

∫
d2r Ψ†(~r)[−ivF (τ3 ⊗ ~σ) · ∇]Ψ(~r) . (1.5)

For the resulting four component spinors Ψ in Eq. (1.5) one can de�ne the familiar Dirac matrices
~γ = −iτ2 ⊗ ~σ and γ0 = τ1 ⊗ σ0, where σ0 is the 2 × 2 unit matrix. From these we can furthermore
construct the matrix γ5 = iγ0γ1γ2γ3. Chirality is then de�ned as the eigenvalues of the matrix γ5 = τ3

and indeed the two Dirac points do have opposite chirality [54]. However, we are not considering any
chirality breaking perturbations in this work. For example we do not assume that the electron-electron
interaction leads to chiral symmetry breaking (see Sec. 1.2). The latter assumption is valid in the weak
coupling regime where the graphene is infrared stable in the presence of Coulomb interaction even at
the Dirac point (see Sec. 1.2). In the absence of chiral symmetry breaking the two Dirac points are
equivalent and together with the real spin of the electrons they merely lead to a degeneracy factor of
N = 4 for all practical purposes.

1.1.2 Non-interacting eigenstates

The Hamiltonian of the non-interacting graphene was introduced in the previous section. We will
brie�y introduce the single-particle eigenstates and eigenenergies as we will need them later on. The
single-particle Hamiltonian

H = −i~σ · ∇ , (1.6)

possesses the following set of eigenstates

φ
λ,~k

(~r) = e+i~k·~r u
λ,~k

(~r) , (1.7)

where the eigenspinors u are given by

u
λ,~k

=
1√
2

(
e−iϕ~k/2

λ e+iϕ~k/2

)
. (1.8)

Here we have introduced the angle ϕ~k of the momentum ~k in addition to the already familiar band
index λ = ±1. Furthermore, we used our personally preferred choice of gauge. We will sometimes use
the Dirac notation |λ,~k〉 for the basis independent representation of the eigenstates (1.7). The energy
corresponding to the state |λ,~k〉 are ε

λ,~k
= λ|~k|, as was mentioned in Sec. 1.1.1. All this leads us to

the density of states of the clean graphene [3], which reads as

ν(ε) =
|ε|

2πv2
F

. (1.9)

Furthermore the retarded Green's function is readily obtained as

GR(ε, ~p) =
ε+ ~σ · ~p

(ε+ i0)2 − ε2
k

. (1.10)

Here ~σ is the vector of Pauli matrices acting in sublattice space, and we have the advanced Green's
function GA = [GR]†.
2We have chosen the ordering A,B,B,A for the columns of the matrix τ3 ⊗ σ in Eq. (1.5), where A and B denote the
sublattice A and B in Fig.1.1(a)
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1.2 Aspects of electron-electron interaction in graphene

The velocity associated with an electronic state |λ,~k〉 is given by

v̂
λ,~k

= λ~k/k . (1.11)

Note that in contrast to a Galilean invariant system the velocity is up to a sign fully determined by
the direction of the momentum. And the absolute value of the velocity is always given by the Fermi
velocity. For a parabolic spectrum of massive particles with mass m the velocity would simply be
proportional to the momentum in the form ~v ∼ ~k/m. This di�erence is at the heart of the relativistic
hydrodynamics close to the Dirac point and more importantly it explains why electron interactions in
graphene can lead to a �nite dc conductivity right at the Dirac point (see Chapt. 5).
The fact that Dirac electrons are described by spinors encodes their nontrivial topological character.

Due to this, for example the matrix elements of Coulomb scattering in the eigenbasis (1.7) contain the
nontrivial overlap of the eigenspinors (1.8) in the form

Θ
λ,~k;λ′,~k ′ = u†

λ,~k
u
λ′,~k ′ =

1

2

(
1 + v̂

λ,~k
· v̂
λ′,~k ′

)
. (1.12)

We will refer to them as the so-called Dirac factors. The Dirac factors encode the nontrivial Berry
phase of Dirac particles. It is well known that Dirac particles acquire an additional minus sign under
2π rotations. Likewise backscattering can be expressed as a π-rotation that creates an orthogonal
spinor to the initial one and hence the matrix element vanishes. Therefore backscattering is suppressed
for Dirac particles, a fact that leads for example to the phenomenon of Klein tunneling [2].

1.2 Aspects of electron-electron interaction in graphene

In the context of short-time dynamics after laser excitations for example as well as in the interaction-
dominated transport regime electron-electron interaction plays an important role in graphene. Regard-
ing the �rst point, interactions are probably the fastest process and important for the thermalization
of carriers. Secondly, electron-electron interaction is an intrinsic property of graphene that behaves
slightly di�erent at the Dirac point compared to usual Fermi liquids. This is revealed in particular in
the RG analysis as discussed in Sec. 1.3. Interactions can be tuned to some extend by the dielectric
environment but it will still limit speci�c properties of graphene and also graphene devices.
We already mentioned in the beginning of this chapter that it is the similarity to QED that makes

the interacting graphene so interesting also from a purely theoretical standpoint. We will relegate a
discussion of the physical details mainly to Sec. 1.3 while we �rst introduce the technical framework to
deal with electron-electron interaction in the following chapters.
The interaction Hamiltonian of the Coulomb interaction with the instantaneous Coulomb potential

given by Eq. (1.1) reads as

Hint =
1

2

∫
~r

∫
~r ′

Ψ†(~r)Ψ†(~r′)
e2

|~r − ~r ′|
Ψ(~r ′)Ψ(~r) . (1.13)

The fact that the Coulomb interaction is taken to be instantaneous leads to a peculiar result in the
Keldysh theory (see Chapt. 3 and Appendix B). This peculiar result concerns the propagator of the
electromagnetic �eld. More precisely, the bare propagator of the electromagnetic �eld which describes
the plasmons can be obtained from a Hubbard-Stratonovich transformation of the four-fermion inter-
action (1.13). To do so we use the path integral representation of the partition function in graphene

Z =

∫
D(Ψ,Ψ†) e−S[Ψ,Ψ†] , (1.14)
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1 Field theory and Coulomb interaction in graphene

where the action in imaginary time is given by

S[Ψ,Ψ†] =

∫
1

Ψ†(1)[∂τ − i~σ · ∇ − µ]Ψ(1) +
e2

2ε

∫
1,2

Ψ†(1)Ψ†(2)Ψ(2)Ψ(1)

|~r1 − ~r2|
. (1.15)

Here we used the short-hand notation
∫
i =

∫ β
0 dτi

∫
~ri
. We omitted an explicit sum over spin and valley

degrees of freedom for each fermion since they e�ectively lead to a degeneracy factor of N = 4 in the
�nal result as discussed in the previous section. Similarly we simply wrote Ψ(1) for Ψ(~r1, τ1) and Ψ(2)
for Ψ(~r2, τ2) respectively.
We also introduced the dielectric constant ε = (ε1 + ε2)/2 in Eq. (1.15), where ε1,2 are the dielectric

constants of the materials on either side of the graphene sheet. For suspended graphene ε = 1, while
for SiO2 εi ' 3.9 [45] and for SiC εi ' 10 [55]. The presence of the dielectric screening can be easily
understood if one solves the electrostatic problem of the interaction between two charges in the graphene
sheet embedded in two dielectric media. The presence of the substrate therefore also allows a weak
coupling analysis, since, due to the substrate, the previously given value αg ' 2.2 can be tuned to
αg � 1.
If we decouple the four-fermion interaction in Eq. (1.15) by means of a Hubbard-Stratonovich trans-

formation using the real scalar �eld Φ, i.e. we decouple in the density-density channel, we end up with
the action

S2[Ψ,Ψ†,Φ] =

∫
1

Ψ†(1)[∂τ − i~σ · ∇ − µ+ Φ(1)]Ψ(1) +

∫
q

∫ β

0
dτ

q

4π
Φ−q(τ)Φq(τ) . (1.16)

The corresponding bare propagator of the plasmon �eld in the Keldysh theory (see Sect. 3.1)

D(1, 2) = −i〈TcΦ(1)Φ(2)〉 , (1.17)

has no Keldysh component since the interaction is instantaneous, i.e. V (q) is independent of ω. How-
ever, in perturbation theory the plasmon propagator acquires a �nite Keldysh orD≷ component through
the interaction with the fermions and the resulting retardation e�ects. This is illustrated in Fig. 1.2(b)
where the leading order diagram contributing to the plasmon propagator is illustrated. The triangles
in the same �gure denote the vertex in the Keldysh space of forward and backward time contour3 (see
Chapt. 3) that reads as [56],

γkij = δij [σ3]jk , (1.18)

where i and j are the contour index of the electron �eld Ψ, σ3 is here the third Pauli matrix acting
in the space of forward and backward contour and the index k is related to the contour index of the
plasmon �eld Φ. This said, it immediately follows that the plasmon temperature for example is given
by the electron temperature in equilibrium.

1.2.1 Kinematics of electron-electron interaction

The electron-electron interaction in graphene includes a couple of peculiarities. Among those are
foremost the kinematic constraints on scattering processes that govern the physics for example in
the Boltzmann collision integral that will be discussed in Sec. 3.2.4 and derived in more detail in the
Appendix B. We will start with the simple analysis of kinematics of two-particle scattering in graphene.
3Here we consider the Keldysh space before rotating to the Larkin-Ovchinnikov representation [56]. That means we are

dealing with the Green's function GT,T̃ and G≷ as in Chapt. 3.
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1.2 Aspects of electron-electron interaction in graphene

Figure 1.2: (a) The interaction vertex in the double-time contour space as given in Eq. (1.18).
See also Sec. 3.1 and in particular Fig. 3.1 for more details on the Keldysh theory. (b)
The RPA bubble of Coulomb interaction on the contour. The indices 1 and 2 denote
the forward and backward part of the contour. As the bare Coulomb interaction V is
instantaneous, thus diagonal in Keldysh space, we see that the o�-diagonal component
in Keldysh space is only generated by the interaction with the electrons as described
in the main text.

Suppose we are considering the following real scattering event due to electron-electron interaction in
graphene,

|λ1, ~k1〉 ⊗ |λ3, ~k3〉 → |λ2, ~k2〉 ⊗ |λ4, ~k4〉 . (1.19)

Momentum is always conserved by electron-electron scattering while for the real process also energy
is conserved. We introduce the transferred momentum ~q = ~k2 − ~k1. Since all particles are assumed
to be on-shell and due to the linear dispersion relation there is, up to a sign, no di�erence in energy
and absolute value of momentum. Thus if one combines the conservation of momentum with the
conservation of energy one obtains the relation

λ1|~p1|+ λ3|~p3| = λ2|~p1 + ~q|+ λ4|~p3 − ~q| , (1.20)

between initial and �nal state energies. We can then classify the possible scattering processes according
the the combinations of (λ1, λ3;λ2, λ4). The result is shown in Tab. 1.1. The processes I − II that are
allowed by energy conservation are also illustrated in Fig. 1.3.

I
(++,++) particle and hole

number separately
conserved

(+−,+−)
(+−,−+)

II.1
(++,+−)

Auger recombination
(+−,−−)

II.2
(+−,++)

impact ionization
(−−,+−)

III (++,−−) not possible

Table 1.1: The classi�cation of the di�erent scattering processes due to Coulomb interaction in
graphene. Here we used the signature (λ1λ3, λ2λ4) for the band indices of the initial,
(λ1, λ3), and �nal states, (λ2, λ4), for a process according to Eq. (1.19).

For the processes II.1 and II.2 in Tab. 1.1, one can further show that the constraint (1.20) can only be
ful�lled for collinear scattering. Collinear scattering means that the initial and �nal momenta as well as
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1 Field theory and Coulomb interaction in graphene

the momenta of the two scattering partners ~p1 and ~p2 are parallel. For example the scattering signature
(++; +−) implies p1 +p3 = |~p1 +~q|− |~p3−~q|. With the triangle inequalities |~a−~b| ≤ |~a+~b| ≤ |~a|+ |~b|,
it follows that

|~p1|+ |~p3| = |~p1 + ~q| − |~p3 − ~q| ≤ |p1 + p3| ≤ p1 + p3 . (1.21)

Obviously, the inequalities in Eq. (1.21) must be equalities and we have that ~p1 and ~p3 need to point
in the same direction. Furthermore ~q lies on the same line as ~p1 and ~p3.
We observe that the collinear scattering processes therefore have a negligible phase space. Math-

ematically speaking this means that the phase space of forward scattering is of zero measure. This
statement only holds true for the clean graphene not taking into account additional perturbations. The
latter manifests o�-shell evolution of states thus the perfect quasiparticle picture is no longer valid. For
perfect quasiparticles the conservation of energy (1.20) was a strict constraint. However, broadening
of this energy constraint due to a �nite quasiparticle lifetime would transform the strict δ-function
expressing energy conservation into a Lorentzian to �rst approximation. The �nite particle lifetime
would thus open up the phase space for these forward scattering processes, namely Auger recombina-
tion and impact ionization. We will use the term Auger processes for both of them in the following.
The associated phase space for Auger processes would in this case be controlled by the scattering rate
which in turn de�nes the width of the quasiparticle peak.
In fact, the question regarding the relevance of Auger processes is an intricate problem since the

scattering matrix elements for these processes usually diverge on the bare level. However, within the
random phase approximation (RPA) (see Sec. 1.2.2) the forward scattering divergence in the bare
matrix element of scattering is compensated by a similar divergence in the polarization operator [35]
thus rendering the screened Coulomb interaction non-singular. Still, the forward scattering singularity
leads to a logarithmic enhancement of certain relaxation rates [39, 57, 58].
In fact, it has been suggested that singular forward scattering might lead to the breakdown of Fermi

liquid theory in 2D [59].4 This is related to the fact that under strong collinear scattering the system is
expected to behave rather like a Luttinger liquid than a Fermi liquid. For graphene this is con�rmed to
some extend by the fact that the RG analysis of graphene reveals some similarities between graphene
and the Luttinger liquid. However, it appears that there is no breakdown of the quasiparticle picture
in the sense that the quasiparticle weight remains �nite. We will brie�y touch upon this in Sec. 1.3.
We will also talk about forward scattering in more detail in the context of relaxation dynamics of
optically excited carriers due to Coulomb interaction in Chapt. 4 and in the context of hydrodynamics
in Chapt. 5, where the dominant forward scattering can be employed to obtain solutions of the transport
parameters analytically.
If we exclude Auger processes we observe that the number of conduction- and valence-band electrons

is separately conserved under the scattering due to electron-electron interaction. We emphasize that
this is only true to leading order in the graphene coupling constant αg [60]. Higher order terms
corresponding to three-particle collisions are expected to violate this conservation law [31, 60]. So does
the interplay of disorder and phonons [61].

1.2.2 The random phase approximation (RPA)

The treatment of Coulomb interaction in graphene at zero chemical potential and zero temperature
bears some di�culties. A prominent example is the calculation of the interaction corrections to the

4It was proposed that in the presence of a �nite upper Hubbard band singular forward scattering leads to the breakdown
of Fermi-liquid theory.
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1.2 Aspects of electron-electron interaction in graphene

Figure 1.3: Some of the scattering mechanisms as classi�ed in Tab. 1.1 in the main text. The
processes I conserve separately conduction and valence band densities. The processes
II.1 describe Auger recombination, while II.2 is called impact ionization. Both violate
the separate conservation of conduction and valence band electrons. However, they
are constraint to be forward scattering.

universal high frequency optical conductivity [62] in graphene [63�65]. The individual diagrams con-
tributing to the optical conductivity need to be regularized since they cancel occurring divergences
among each other. However, the result for the interaction corrections to the optical conductivity are
depending on the regularization scheme. This issue was resolved by a proper tight-binding calculation
of the optical conductivity on the honeycomb lattice [66].

Physically the reason for the complication is the fact that the electronic density vanishes at the Dirac
point. Hence no screening can take place at zero temperature. This generally leads to logarithmic
divergences in the �rst order self-energy corrections. These logarithmic divergences need to be cut-o�
by higher order self-energy contributions [39]. And this is in fact what happens in the regime of �nite
temperature by means of the random phase approximation, that is the summation of the electronic
bubble diagram in Fig. 1.2(b) into an e�ective Coulomb interaction [50]. This resummation is formally
an expansion in the number of �avors N , which in graphene is N = 4. From such a large-N RG analysis
it furthermore follows that the RPA at small frequencies sums up the leading log contributions to the
self-energy [67].

We have mentioned earlier that collinear scattering processes are suppressed due to a similar forward
scattering resonance in the polarization operator. This can already be seen in the T = 0 case, where
the polarization operator reads as [35, 58, 67]

Π(ω, q) =
q2

8
√
q2 − ω2

. (1.22)

In the general case of �nite temperature and chemical potential the real and imaginary part of the
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polarization operator are given by

ImΠR(Ω, Q) =
TQ

8π

{
Θ(1− |β|)√

1− β2

∫ ∞
1

dξ
∑
s=±1

√
ξ2 − 1

sinh(βQ)

cosh(βQ) + cosh(sξQ− µ̃)

− Θ(|β| − 1)√
β2 − 1

∫ 1

−1
dη
√

1− η2
sinh(βQ)

cosh(βQ) + cosh(sign(β)ηQ+ µ̃)

}
,

(1.23)

ReΠR(Ω, Q) =− TQ

8π2
P

∫ 1

−1
dη

∫ ∞
1

dξ
∑
s=±1

{
1

β − sη

√
ξ2 − 1

1− η2

sinh(sηQ)

cosh(sηQ) + cosh(sξQ− µ̃)

− 1

β − sξ

√
1− η2

ξ2 − 1

sinh(sξQ)

cosh(ξQ) + cosh(sηQ+ µ̃)

}
.

(1.24)

Here we use the dimensionless momentum Q = q/2T and frequency Ω = ω/2T , where T is the
temperature. In Eq. (1.24) P

∫
denotes the Cauchy principle value. The polarization operator has

been studied in various regimes in Ref. [58]. We extended this work into the regime of �nite chemical
potential as we reported in Ref. [68]. The results are summarized in Tab. 1.2 where we introduce the
dimensionless chemical potential µ̃ = µ/T .

|β| < 1 |β| > 1
Q� µ̃ Q� µ̃ Q� µ̃ Q� µ̃

ReΠR |µ|
2π

TQ

16
√

1−β2
− T

8π
I1(Q)
β2

µ̃2

Q − T
4πβ2Q

ImΠR |µ|
2π

Ω√
Q2−Ω2

T
4
√

2πQ
e−(1−β)Q, for (1− β)Q� 1 − T

16
Q2√

Ω2−Q2

sinh(Ω)
cosh(Ω)+cosh(µ̃) − T

16
Q2 tanh Ω√

Ω2−Q2

Table 1.2: The asymptotics of the polarization operator in graphene for |µ̃| � 1 in the di�erent
regimes from Eqs. (1.23) and (1.24). Here I1(z) denotes the modi�ed Bessel function
of the �rst kind. Furthermore, we use the dimensionless momentum Q = q/2T and
frequency Ω = ω/2T , where T denotes the temperature. The parameter β = ω/q,
discriminates between inter- and intraband processes.

1.2.3 Collinear scattering resonance in graphene

For the description of transport and relaxation processes in interacting systems the description by a
kinetic equation is most suitable. The kinetic equation for weakly interacting gases or plasmas was
pioneered by Landau [69]. The collision integral for Coulomb interaction contains the so-called Coulomb
logarithm. The latter is a manifestation of the singular forward scattering in plasmas and contains the
ratio of the average thermal energy of the particle and the screening length. A similar logarithmically
divergent Coulomb scattering integral is encountered in graphene as will be discussed in further detail in
Chapt. 4. Here we will brie�y review how the singularity due to collinear scattering occurs in graphene
simply due to kinematics in the Coulomb scattering. We will demonstrate this using the collision
integral due to electron interactions in the semi-classical Boltzmann equation as discussed in detail in
Sec. 3.2.4.
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1.2 Aspects of electron-electron interaction in graphene

The linearized Coulomb collision integral C acts on the deviation δf from the equilibrium Fermi-Dirac
distribution f (0)

ν,~k
and reads as

Cδfλ,~p =
∑
ν,ν′,λ′

∫
~k,~p′,~k′

|M |2 (2π)3δ(ελp + ενk − ελ′,p′ − εν′,k′) δ(~p+ ~k − ~p ′ − ~k )

× f (0)
λ,pf

(0)
ν,k (1− f (0)

λ′,p′)(1− f
(0)
ν′,k′)

[
δfλ,p + δfν,k − δfλ′,p′ − δfν′,k′

]
.

(1.25)

Here M is the matrix element of Coulomb interaction discussed in Chapt. 3.2.4 and Appendix B.2. As
also discussed in Chapt. 5, the quantity to consider is the projected or integrated collision integral∫

p
g(~p) Cδfλ,~p , (1.26)

where g can be considered as some test function at this point. For simplicity let us set g = 1.5 We thus
average the collision integral (1.25) over the momentum ~p. Let us for simplicity assume only intraband
processes in the upper band, corresponding to the process (I.2) in Fig. 1.3. Furthermore we introduce
the transferred momentum ~q = ~k−~k′ and distinguish the longitudinal momenta p‖ = ~p · q̂ and k‖ = ~k · q̂
from the transverse momenta p⊥ = ~p · (ẑ × q̂) and k⊥ = ~k · (ẑ × q̂). We expand the collision kernel for
small perpendicular momenta to study the vicinity of collinear scattering which yields∫

p
Cδf~p ∼

∫
q

∫
k‖,p‖

∫
p⊥

V (q)2 1

q|p⊥|

√
p‖k‖(p‖ + q)(k‖ − q) . . . . (1.27)

Now it is apparent that the integration over the transverse momentum p⊥ leads to a logarithmic
divergence at small momenta that is for ~k, ~p ‖ ~q. For large transverse momenta the integral over k⊥
will be cut o� at k itself. The reason is that the divergences at large momenta only occur due to
the fact that we approximated the collision kernel for small p⊥. That means the upper cut o� will
be the average kinetic energy determined by temperature for T � |µ|. The lower cut o� will be due
to screening e�ects that are contained in higher order self-energies. As a consequence the resulting
logarithm contains the ratio of both quantities. This logarithm reappears in Chapt. 4. We refer to
Fig. 4.2 in particular and the discussion in the main text of Sec. 4.3.2.
Note also that in graphene the divergence is more severe than in a system with a parabolic spectrum

due to the linear dispersion relation. In fact the 1/|p⊥| term stems from the δ-function of the energy
constraint, which yields for small transverse momenta,

δ(ελp + ενk − ελ′,p′ − εν′,k′) ' δ
(q

2

{ p2
⊥

p‖(p‖ + q)
−

k2
⊥

k‖|k‖ − q|

})
. (1.28)

A quadratic dispersion relation however yields

δ(ελp + ενk − ελ′,p′ − εν′,k′) ' δ(2(k⊥ − p⊥)q) . (1.29)

We observe that compared to Eq. (1.28), there is only a divergence due to small q after evaluating the
δ-function in Eq. (1.29), whereas in graphene we had the additional factor ∼ 1/|p⊥|.
5The projected collision integral can be understood as a scalar product of the linearized collision operator with the
test function g in a functional space of all possible distribution functions. More speci�cally, the projection of the
linearized collision integral on a particular set of basis functions in this function space leads to the matrix elements
of the collision operator in the particular basis. See also Sec. 5.3.1 in Chapt. 5.
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1 Field theory and Coulomb interaction in graphene

1.2.4 Plasmons in graphene

As we have already mentioned in the introduction graphene is also believed to be a promising platform
for plasmonics since it hosts tunable 2D plasmons. Due to the truly 2D nature of graphene its plasmon
excitations are sometimes referred to as surface plasmons. For two dimensional materials it is known
that the plasmon dispersion is proportional to the square root of the momentum, i.e. ω(q) ∝ √q.
Interestingly in pristine graphene at �nite doping, thus in the Fermi liquid regime of |µ| � T , the
plasmon dispersion

ω(q) = ω0
√
q , ω0 = (2e2√πn)1/2 , (1.30)

can be tuned by the gate voltage or in other words by the equilibrium charge density n in the graphene
sheet. The square root dispersion relation forbids the excitation of plasmons by light in a broad
spectral range and therefore also for most experimental frequencies. This is simply a consequence
of the momentum mismatch between the electromagnetic �eld that is the photon and the plasmon.
However, optical gratings, prisms and microantennas can be utilized to bridge the mentioned momentum
mismatch and convert light into tightly con�ned plasmons [34]. Chapter 5 will largely be motivated by
this prospect of creating and observing plasmon waves in graphene.
While to date most experiments focus on the Fermi liquid regime, plasmons in the regime T � |µ|

have been proposed theoretically [58, 70]. In the Refs. [35, 58] the plasmon dispersion was derived from
the RPA (see Sec. 1.2.2). The result is shown in Fig. 1.4 that we took from the same reference [35]. It is
interesting to note that plasmons in graphene within the RPA do not cross into the intraband particle
continuum. However they can decay by interband excitation above the energy 2µ − q in the case of
µ � T . This fact is illustrated in Fig. 1.4 by the region denoted SPEinter (single particle excitation).
The intraband particle-hole continuum is depicted by the region SPEintra.

Figure 1.4: The plasmon dispersion (solid line) calculated from RPA in graphene at �nite Fermi
energy EF . The regions SPEinter and SPEintra show the range of energies and fre-
quencies where inter- and intraband particle excitations are possible. The dashed line
illustrates a generic 2D plasmon dispersion. Note that the plasmons in RPA do not
cross into the intraband continuum. Reprinted �gure with permission from: Hwang,
Das Sarma, PRB 75, 205418 (2007).

In Chapt. 5 we will consider a di�erent limit compared to the RPA. In the hydrodynamic, thus
collision-dominated regime the natural excitations close to the Dirac point become energy waves with
linear dispersion relation. The latter are known as cosmic sound in the generic relativistic liquid when
the pressure is the dominant contribution to the dispersion [71]. Upon doping away from the Dirac

12



1.3 RG analysis and quantum criticality

point these energy waves quickly hybridize with the charge sector and develop into the 2D graphene
plasmon with square-root dispersion (see Chapt. 5).
Furthermore di�erent damping mechanisms of graphene plasmons have been discussed [32, 33, 36].

Among those are interactions with optical and polar surface phonon modes of the substrate. Intrinsic
optical phonons in graphene and scattering from the edges have been identi�ed as important scattering
mechanisms in the mid-infrared regime [36]. In particular on SiO2 hybridization of plasmons with
phonons leads to a dramatic change in the plasmon dispersion. These hybridization e�ects usually
become relevant at higher frequencies compared to the frequencies we are going to consider in the
hydrodynamic theory in Chapt. 5 and we can therefore neglect them. We will add to the analysis of
damping of graphene plasma waves a study of intrinsic e�ects due to electron-electron interaction in
the collision-dominated hydrodynamic regime.

1.3 RG analysis and quantum criticality

Figure 1.5: The phase diagram of graphene close to the Dirac point as a function of density n
and temperature T . The �gure is calculated for the vacuum with ε = 1. The dashed
lines illustrate the crossover from the Fermi liquid into the Dirac liquid. The quantum
critical point is situated at T = n = 0. Reprinted �gure with permission from: Sheehy
and Schmalian, PRL, 99, 226803 (2007).

In this section we are going to review the Wilson renormalization group (RG) procedure of the
interacting graphene described by the action (1.15). The calculation can be found in Ref. [47], whereas
Refs. [48, 72, 73] pursue a more �eld-theoretical approach to RG. Generally speaking the RG is the
tool of choice to sum up logarithmic self-energy corrections. It is therefore interesting for graphene at
the Dirac point since the latter is exactly at its upper critical dimension D = 3. It exhibits at quantum
critical point. The crossover behavior at �nite temperatures in the vicinity of the quantum critical
point has been studied in Ref. [47]. The result is illustrated in Fig. 1.5 from the same reference. For a
system at criticality logarithmic corrections are expected, that we are going to discuss in the following.
Moreover, the fact that graphene at the Dirac point exhibits only a Fermi point in contrast to a Fermi
line simpli�es the RG procedure.
In the condensed matter context of quantum �eld theory we usually have a natural cut-o� in the

theory through the band width of the model under consideration. In high energy �eld theory the situ-
ation is usually di�erent since the microscopic theory is not known. There, it is of primary importance

13



1 Field theory and Coulomb interaction in graphene

to distinguish the renormalizable �eld theories. For the latter ultraviolet divergences can be absorbed
into bare coupling constants. More speci�cally, a �nite number of renormalized couplings su�ces to
cancel all of the ultraviolet divergences. For a renormalizable theory the renormalized theory should
not depend on the intermediate regularization of those divergences which becomes merely a technical
issue. However as pointed out above we anyway choose a simple high energy cuto� that is physically
motivated. Still we can speak of a renormalizable theory in the condensed matter context, when no
extra terms are generated under the RG or at least the extra terms are marginal.
Given a natural high energy cut-o� Λ in graphene, as becomes apparent from Fig. 1.1(b), the general

procedure of the Wilson RG is to divide the momentum space into high energy modes with momenta
k > Λ/b and low energy modes k < Λ/b, where b > 1 is the RG parameter usually written as b = el.
Subsequently the high energy modes are integrated out so that we are left with a theory in terms of the
low energy modes. Finally the momenta are rescaled in order to restore the connection to the initial
theory albeit with renormalized parameters.
For graphene it follows from the action (1.15) that the engineering dimension of the �eld operators

Ψ is [Ψ] = −2.6 This is due the fact that we choose the non-interacting action to be invariant under
the scale transformation. Using this scaling dimension in the emerging Coulomb interaction of the slow
�elds Ψ<

k for momenta k < Λ/b we see that the Coulomb interaction is marginal. Thus kinetic energy
scales similarly as the Coulomb interaction. Therefore higher order corrections due to fast �elds have
to decide whether the interaction becomes relevant or irrelevant in the infrared. This is in contrast to
the usual Fermi liquid scenario, where for spatial dimension d ≥ 2, Coulomb interaction is irrelevant.
The di�erence is due to the fact that for graphene with zero chemical potential we only have a Fermi
point instead of an extended Fermi line or surface. As a consequence we have a simple scaling between
energy and absolute value of momentum ω′ = bω and k′ = bk, whereas a �nite Fermi surface will break
this symmetry in scaling since only the momentum perpendicular to the Fermi surface will scale [74].
Interestingly the presence of only two Fermi points rather than lines is reminiscent of the Luttinger
liquid state in one dimension. We already mentioned this similarity before and will come back to this
fact below.
Taking into account the corrections due to integrating out the high energy modes we see that this

amounts to taking into account the Fock self-energy diagram for the slow modes

ΣHF(ω,~k) =

∫
Λ/b<|~k ′|<Λ

~k · σ
ω2
n + k′2

2πe2

ε|~k − ~k ′|
, (1.31)

whereas the Hartree bubble does not contribute due to the overall charge neutrality of the system. For
similar reasons there is no renormalization of the chemical potential µ = 0 that is pinned to zero, thus
total charge is conserved. Evaluating the integral in Eq. (1.31) for b = el with l� 1 (l > 0) one obtains

ΣHF(ω,~k) =
e2

4ε
~k · ~σ . (1.32)

Thus one observes that after rescaling the �elds and momenta as well as the temperature, the new
action resembles the old one with a renormalized Fermi velocity

vF → vF

(
1 +

e2

4εvF
ln b

)
. (1.33)

6Here we use the notation [E] = 1 for units of energy. Remember that we have set ~ = 1.
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1.3 RG analysis and quantum criticality

We observe that the e�ective coupling of the theory is αg/4. The temperature is a relevant perturbation
under the RG procedure and is rescaled as T ′ = Z−1

T T , where

ZT = b−1

(
1 +

αgl

4

)
. (1.34)

We choose the rescaling of the �elds according to Ψk = ZΨΨ′k′ such that the free part of the action
remains of the same form under the RG procedure but with a di�erent Fermi velocity. This yields

ZΨ = b2

(
1 +

αgl

4

)−1

. (1.35)

According to the general RG scheme the procedure outlined above is now repeated for in�nitesimal
l. Successive RG steps then lead to the �ow equations

dαg(b)

d ln b
= −αg(b)2/4 ,

dT (b)

d ln b
= T (b)(1− αg(b)/4) . (1.36)

From Eq. (1.36) it again becomes apparent that the interaction �ows to smaller values thus it is marginal
irrelevant close to the Dirac point.
Finally we note that due to a Ward identity connected to the conservation of charge, the electric

charge e is not renormalized in the model with a static Coulomb potential. Therefore the renormaliza-
tion of the �ne structure constants in graphene is only due to velocity renormalization in αg = e2/vF .
We observe that lowering the energy leads to an increase in the Fermi velocity and thus a decrease in
the coupling constant. While the engineering dimension of the interaction was marginal, we can say
now that the electron interaction in graphene is marginal irrelevant. In this sense we can also say that
at least starting from a weak coupling analysis valid for example for graphene on a substrate the system
is infrared stable. There is no occurrence of a symmetry broken state. The latter has been predicted
by some strong coupling theories. The most discussed candidate is the excitonic condensate leading to
a charge density wave formation [75, 76]. However the excitonic gap has not been observed, even in
suspended graphene.
One might be surprised what happens at very low temperatures when the renormalization of the

Fermi velocity (1.33) will ultimately reach the speed of light c and thus relativistic scales. However,
performing a truly relativistic RG calculation reveals a nontrivial infrared �x point for which vF = c
and Lorentz invariance is restored [73].
Finally we comment on the presence of a quantum critical point in graphene and its marginal or

strange Fermi liquid behavior. First of all the fact that highly electron doped graphene exhibits a
circular Fermi surface and so does the highly hole doped case implies that in between a quantum
critical region has to exist in which we go from an electron doped Fermi liquid to a hole doped one
[15]. This conjecture is strengthened by the �ndings that the quasiparticle decay rates scale linear with
particle energy [73, 77] or that relaxation rates at �nite temperature scale linear in temperature in the
intrinsic graphene of T � |µ| [58]. This is apparently due to the fact that temperature is the only
scale close to the quantum critical point and the dominant perturbation away from criticality. In fact
there is a quantum critical region close to the Dirac point for |µ|/T � 1 for clean graphene [47]. The
fact that relaxation rates are linear in energy suggest the similarity to the marginal Fermi liquid phase
proposed for the cuprates [78]. However, this scenario also suggests that the quasiparticle weight goes
to zero similar as in the case of the Luttinger liquid. This is however not the case in graphene, where
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1 Field theory and Coulomb interaction in graphene

the quasiparticle weight goes to a �nite �xed value [67]. Also the anomalous exponent of the correlation
function η depends on the interaction strength [48] and is thus similar to the Luttinger liquid [79]. In
this sense one might argue that graphene rather constitutes a strange Fermi liquid [48] showing some
aspects of non-Fermi liquid behavior but not �tting in a general scheme of the Luttinger liquid for
example.
In the presence of a quantum critical point and a quantum critical regime for |µ|/T � 1, the low

frequency response of the clean graphene is suggested to be described by hydrodynamics [15, 39]. More
speci�cally by relativistic hydrodynamics. The latter bears some peculiarities in comparison to usual
hydrodynamics. For example the 2nd or bulk viscosity is supposed to vanish [71]. The latter is true
for all scale invariant systems [80]. We are going to derive the relativistic hydrodynamics for graphene
from the microscopic Boltzmann equation in Chapt. 5. Our analysis yields explicit expressions for the
equations of state of the relativistic liquid describing graphene. We will also give explicit expressions
for the relevant transport parameters in terms of microscopic scattering rates. Furthermore the fact
that we have the full set of equations including all equations of state allows us to simulate nonlinear
e�ects in graphene in the collision-dominated hydrodynamic regime.
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2 Chapter 2

Linear response within the Kubo
formalism

This chapter is devoted to the theory of linear transport in graphene within the Kubo formalism. We
will review results on the dc transport in disordered graphene and at �nite frequency. In the end we will
brie�y discuss the results for �nite frequency response in magnetic �elds obtained in our work [81]. This
includes Shubnikov-de Haas oscillation in the dc and optical conductivity as well as magnetoresponse
in the regime of separated Landau levels. In particular the results for the universal conductivities will
serve as a reference later on in this thesis.

2.1 Kubo formalism

The Kubo formula relates the linear response function of a certain observable to �eld theoretical cor-
relation functions [49, 82]. More speci�cally, we are interested in the conductivity, that is the response
of the electric current to an electric �eld. With the help of the response function

χRαβ(t− t′, ~r − ~r′) = −i Θ(t− t′)〈[jα(~r, t), jβ(~r ′, t′)]〉 , (2.1)

we obtain the conductivity

σαβ(ω, q) = −χ
R(ω, q)

iω
. (2.2)

Here an in Eq. (2.1) the greek indices α and β take values among the Cartesian coordinates x, y. In
Eq. (2.1) we introduced the current operator j that for graphene reads as

~j = eΨ†(~r)~σΨ(~r) . (2.3)

The current operator can either be obtained from the Heisenberg equation of motion of the density
n = Ψ†Ψ, which must take the form of a continuity equation due to the correspondence principle. From
the latter the form of the current density operator can be deduced. Alternatively one might employ
Noether's theorem to obtain the current density from the action (1.15).
The retarded response function (2.1) is calculated most conveniently within the Matsubara technique

[50, 83] and then obtained by analytical continuation. That means one calculates

σMαβ(iΩ, q) =
1

Ω

∫
dτ e+iΩτ 〈jα(τ, ~q)jβ(0,−~q)〉 , (2.4)

17



2 Linear response within the Kubo formalism

and obtains σ(ω, q) from σ(ω, q) = σM (ω + i0, q). Here iΩ is a bosonic Matsubara frequency. This
procedure also yields the expression

σ(ω) =

∫
dε

4π

f
(0)
ε+ω − f

(0)
ε

ω
tr
[(
ĜRε1 − Ĝ

A
ε1

)
ĵx

(
ĜRε2 − Ĝ

A
ε2

)
ĵx

]
, (2.5)

where f (0) is the Fermi Dirac distribution and ĜR,A(ε) is the retarded and advanced Green's function
in graphene de�ned in Sec. 3.1. We see that the optical conductivity and thus also the transmission
is an average of the microscopic state of the system encoded in the distribution function f (0) and the
spectral Green's functions GR,A. Therefore pump-probe transmission measurements are an indirect
measurement on the state of the system.

2.2 Linear response in disordered and clean graphene

The conductivity in graphene shows a couple of peculiarities due to the linear dispersion relation that
leads to the absence of scales in the high frequency interband response. Very early on in the graphene
research following its discovery in 2004 [1] it was found that indeed the high frequency conductivity of
graphene possesses a universal value1

σopt(ω) =
e2

4~
, (2.6)

due to this absence of any other scale given ω � T, |µ|. Small corrections to this universal value due to
interaction e�ects have been discussed and di�erent values have been under debate [63�65] until just
recently [66].
Neglecting all corrections due to �nite temperature, disorder and interaction, the universal value of

the high frequency conductivity, Eq. (2.6), is a property of the intrinsic graphene and a result of the
linear quasi-relativistic dispersion relation. On the other hand, the vicinity of a quantum critical regime
close to the Dirac point leads to another universal limit of the dc conductivity, i.e. at small frequencies.
More speci�cally, this universal value of the conductivity arises due to disorder in contrast to the high
frequency result (2.6).2 Here the model of disorder is crucial to determine the precise value [53]. The
result for the conductivity in the self-consistent Born approximation and diagonal weak disorder [53]
as well as weak chiral disorder at the Dirac point is given by

σ0 =
2e2

π2~
. (2.7)

Furthermore �nite size e�ects and the speci�c type of the infrared regulator in�uence the universal
value signi�cantly at the Dirac point. The hydrodynamic theory presented in Chapt. 5 is suited to
explore the �nite size e�ects to the conductivity in the collision dominated regime of α2

gT � τ−1
d .

Here τd is the characteristic scattering time due to disorder, T is the temperature and αg denotes the
graphene �ne-structure constant. This is in particular interesting since Coulomb interaction can lead
to a �nite conductivity at the Dirac point [39, 57] in the collision-dominated regime. This fact can
be understood in the following way. The conductivity is determined by the product Dνth. Here the
di�usion constant D is temperature-dependent through the scattering time due to Coulomb interaction

1We restore Planck's constant in this section for convenience.
2Another universal value of the conductivity close to the Dirac point due to Coulomb interaction will be discussed in
Chap. 5.
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2.3 Optical conductivity and transmission

D ∼ 1/T . The thermodynamic density of states however scales as νth ∼ T . The product Dνth is
therefore temperature-independent. The fact that the scattering rate scales linear with temperature is
precisely due to the presence of the quantum critical point as discussed in Chapt. 1, where temperature
is the dominant perturbation away from the critical point in the interaction-dominated regime. This
result will also be obtained within the hydrodynamic description of transport in graphene in Chapt. 5.
Interestingly, experimental measured values for the dc conductivity at the Dirac point are either

σ0 = 4e2/h or more recently in very clean samples a universal conductivity σ0 = 1.7× 4e2/πh has been
reported in Ref. [84]. However, the value of the conductivity might very well depend on the speci�c
sample quality, the geometry and the substrate. Long and wide samples for example show qualitatively
di�erent behavior compared to short and long samples, see e.g. Ref. [42]. Here the length should be
compared for example with the characteristic mean free paths of carriers.

2.3 Optical conductivity and transmission

In the context of optical experiments on graphene it is interesting that there is a direct relation between
the optical conductivity and the transmission coe�cient in linear response. The relation is obtained
from solving the Maxwell equations in the presence of a graphene sheet with conductivity σ(ω) [85]. If
the graphene is in vacuum and one considers normal incident light the transmission coe�cient T reads
as

T =
1

(1 + 2πσ(ω)/c)2
. (2.8)

Interestingly due to the universal value of the conductivity at high frequencies, Eq. (2.6), one observes
that the transmission of the graphene is determined by the �ne structure constant of real quantum
electrodynamics αQED ' 1/137, more speci�cally it holds for weak absorption T ' 1 − παQED. This
yields the familiar universal high frequency transmission of graphene for normal incident light T '
0.977. Likewise one obtains for the re�ectivity the simple relation

R =
π2α2

QED

4
T . (2.9)

The universal value of the transparency of the graphene and its connection to the �ne structure constant
has been measured in Ref. [62].

2.4 Linear magnetotransport in graphene

We also discuss the magnetotransport in graphene. The results can be found in our work reported in
Ref. [81]. Furthermore a discussion of the magnetotransport can be found in Ref. [86]. Magnetotrans-
port in graphene is interesting since Dirac fermions show unusual Landau quantization and quantum
Hall e�ect [11] as pointed out in the introduction.
The Landau levels (LLs) in graphene are unconventional due to the Dirac nature of carriers. First of

all LLs are not equidistant as in a usual two-dimensional electron gas with parabolic dispersion. Their
energies are given by

εn = sign(n)ωc
√
|n| , (2.10)

where n ∈ Z is the LL index. This means that we have Landau levels with negative energy from the
hole band and Landau levels with positive energy from the electron band as well as a zeroth LL with
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2 Linear response within the Kubo formalism

εn = 0. From Eq. (2.10) we see that the LL move closer together at higher energies. The cyclotron
frequency in Eq. (2.10) is given by ωc = 1/lB with the magnetic length lB = 1/

√
eB. Thus the

cyclotron frequency of the zeroth LL ωc ∼
√
B. For higher LLs it is advantageous to introduce the

local cyclotron frequency ωc,n = |ε|n|+1 − ε|n||, that goes like ωc,n ' ωc/2
√
|n| for high LL index n.

If one considers magnetotransport in the presence of disorder the LLs will �rst of all be broadened
by disorder. The broadening within the self-consistent Born approximation is given by the scattering
rate Γ due to disorder. Except for the zeroth LL which has the width

√
2Γ in comparison to the other

LLs, the scattering rate is independent of the LL index in the case of diagonal white-noise disorder
[81]. As a consequence an energy independent scattering rate is expected in experiments with dominant
short-range scattering. Due to the fact that the zeroth LL has a di�erent width we will nevertheless
retain the notation Γn for the scattering rate due to disorder. Taking into account that the LLs move
closer together with higher LL index it is obvious that they have to overlap at a certain index or energy
respectively. We will denote the energy scale where LLs start to overlap as εov.

2.4.1 Intra-Landau level transitions

We will give the results on the dc limit (ω → 0) of the magnetotransport in graphene. That means due
to the limit ω → 0 only intra-LL transitions can take place.3 We �nd two distinct temperature regimes
set by the disorder scattering rate Γ: a) T � Γ and b) T � Γ. We assume the chemical potential to
lie within one LL which we denote by LN , i.e. as the LL with index N and energy εN . We introduce
the coe�cient cn = 1 for n 6= 0 and cn = 2 for n = 0. This is necessary due to the peculiar role played
by the zeroth LL.
a) When the temperature is the smallest scale, T � Γ, only the level LN , determined by the position

of the chemical potential, contributes. The conductivity becomes (σ0 = 2e2/π2) [87]

σ = σ0
cNω

2
c

2ω2
N

(
1− (µ− EN )2

Γ2
N

)
. (2.11)

Note that one recovers the universal conductivity at the Dirac point for Γ → 0 as discussed in the
previous section.
b) In the limit of high temperature, i.e. T � Γ the conductivity reads as

σ = σ0

∞∑
n=−∞

cnω
2
cΓn

6ω2
nT cosh2[(En − EN )/2T ]

. (2.12)

Here the sum is over all LLs. The summation limits are sent to in�nity since the contribution of large
energies where LLs overlap is exponentially small. In Eq. (2.12) the zeroth LL is again special since its
width is bigger by a factor of

√
2 and its oscillator strength is enhanced by a factor of two. However, its

contribution is signi�cant only for N = 0 and T . ωc. From Eq. (2.12) we obtain the following three
high T regimes:
b.1) For Γ� T � ωN only LN contributes, while the contribution from the levels farther away from

the chemical potential is exponentially suppressed. The conductivity in this limit is given by

σ = σ0
cNω

2
cΓN

6ω2
NT

. (2.13)

3The results for the optical conductivity at very small but �nite frequencies ω < Γ in Landau quantized graphene can
be found in Ref. [81].
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2.4 Linear magnetotransport in graphene

The conductivity σ is determined by the phase space ∼ ΓN/T .
b.2) For the intermediate temperature regime ωN � T � µ < εov, the in�uence of zeroth LL can be

neglected since µ � T . Furthermore, due to T � ωN the sum in Eq. (2.12) can be converted into an
integral, which gives

σ = σ0
64Γ|µ|3

6ω4
c

. (2.14)

The conductivity in this regime is T -independent.
b.3) For ωN , µ� T < εov we obtain

σ = σ0
48ζ(3)ΓT 3

ω4
c

, (2.15)

where ζ(z) is the Riemann ζ-function. We observe that the temperature takes the role of the chemical
potential in Eq. (2.14).

2.4.2 Inter-Landau level transitions

Figure 2.1: (a) The SdH oscillations in the dynamic conductivity (solid line) and the envelope
function showing slow modulation due to nonequidistant spectrum of LLs (dashed line)
calculated according to Eq. (2.17) for εF /ωc = 6. (b) Magnetoconductivity σD,±(ω) +

σ
(q)
± (ω) of graphene at high temperatures normalized to the Drude value (2.16) and

calculated according to (2.18) for εF /ωc = 6. Vertical lines mark the position of
integer harmonics of the cyclotron resonance.

In the limit of �nite frequency the optical conductivity in graphene shows a rich pattern of resonances
depending on the chemical potential and the frequency. This is primarily due to the fact that LLs in
graphene are non-equidistant. Also remember that the regimes of overlapping and separated LLs are
nearly always realized simultaneously. For realistic disorder strength and high magnetic �elds LL start
to overlap at higher energies εov. The results are qualitatively di�erent depending on whether the
probed energy range is within the regime of separated or overlapping LL. In the latter simple analytical
results can be obtained and the connection to the classical system with parabolic spectrum are possible.
Additional quasiclassical and quantum correction due to the Landau quantized graphene are small in

21



2 Linear response within the Kubo formalism

the Dingle factor δ = e−π/ω
loc
c τq where the quantum time due to disorder is τq = 1/κπ|ε| [81]. Here,

the constant κ is the dimensionless disorder strength. Furthermore we introduced the local cyclotron
frequency ωlocc = ω2

c/2|ε|, that is the continuous version of ωc,n given above. Here for T � |µ| it follows
that ε ∼ µ in ωlocc is the local characteristic energy scale determining the cyclotron frequency.
For high chemical potentials and ω < ||µ|−εov|, the conductivity to leading order in δ indeed assumes

the Drude value [81],

σD,±(ω) =
1

π

D/τtr
(ω ± ωlocc )2 + τ−2

tr

, D =
e2|εF |

2
. (2.16)

Here we introduced the transport time in graphene τtr = 2τq. In a conventional parabolic spectrum the
transport time and the quantum time would be identical for white-noise disorder. However, due to the
Dirac electron's Berry phase, the leading order Shubnikov-de Haas (SdH) oscillations are [81],

σ
(1)
± (ω) = 4σD,±δ cos

(
2π(ε2

F + ω2)

ω2
c

)
sin 2πω

ωlocc

2πω/ωlocc
. (2.17)

In addition to the SdH oscillations we have higher order quantum corrections that read as [81]

σ
(q)
± (ω) ' 2 σD,± δ

2
sin 2πω2

ω2
c

2πω2/ω2
c

cos
2πω

ωlocc
. (2.18)

The common feature of the magnetooscillations in the classically strong magnetic �eld is that due to the
unusual Landau quantization the oscillations show a slow beating with increasing frequency ω [81]. The
behavior of the �rst order quantum corrections (2.17) and second order quantum corrections (2.18) is
illustrated in Fig. 2.1. We observe that indeed on top of the quantum oscillations with the local
cyclotron frequency ωlocc a slow beating with a frequency given by the cyclotron frequency of the �rst
Landau level ωc is visible.
If the system is close to the Dirac point and the regime of separated LLs is explored by the �nite

frequency a complicated pattern of resonances is occurring that can be tuned quite strongly by the
chemical potential. For a detailed discussion we refer to our work in Ref. [81] that extends the results
from Ref. [86], and to the experimental works in Refs. [88�91]. Quite recently also interaction e�ects
on the Landau level quantization in graphene have been studied in a joint experimental and theoretical
work in Ref. [92]. This work is interesting since it is situated in between our work on linear magne-
totransport presented here and in Ref. [81] and the theory for interaction e�ects in graphene that we
will discuss in the Chapts. 4 and 5. We will discuss the mentioned experimental works in the following
chapter including a comparison with our �ndings for the optical conductivity in the regime of separated
LLs.

2.5 Comparison with experiments

Measurements of magnetotransport phenomena are a versatile tool to investigate transport coe�cients
and the interplay of di�erent scattering mechanisms. For example optical spectroscopy of Landau levels
in graphene gives access to the quantum times and other scattering times due to disorder [89, 91, 93].
As we have seen in Sec. 2.3 the optical conductivity is directly related to the transmission of graphene.
Therefore, optical transmission experiments are able to measure for example the cyclotron resonance,
Eq. (2.16), in the case of overlapping LLs. Similarly the cyclotron resonance in the regime of separated
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2.5 Comparison with experiments

LLs can be explored. Here the width of the cyclotron resonance is determined by the spectral width of
the LLs. As a consequence two direct measurements of disorder-related parameters are possible. First,
Dingle plots of the SdH oscillations, i.e. a �nite temperature analysis of the conductivity in Eq. (2.17)
in the limit ω → 0 yields the quantum time. At the same time, mobility measurements in the disorder-
dominated regime access the transport scattering time τq. Second, Landau level spectroscopy yields
the line width of the cyclotron resonance in the regime of well separated LLs. The latter is determined
by the scattering rate Γ as introduced in the previous section. In the following we summarize typical
values found in the literature. We also calculate the disorder strength for the measured values of τq and
Γ within the model of diagonal white-noise disorder. These values are important to relate our �ndings
to future experiments and to test the model of short-range scattering. The latter predicts in particular
the relation τtr = 2τq.
In Tab. 2.1 we give an overview of common quantum times τq and the corresponding scattering rate

Γq = 1/2τq. Both are obtained from Dingle plots of the temperature dependence of the Shubnikov-de
Haas oscillations in graphene. The experiments are performed at �nite doping leading to a �nite charge
density ρ. If available we also provide the ratio τtr/τq, where the transport time τtr is obtained from
mobility measurements. For diagonal white-noise disorder a ratio of τtr/τq = 2 is expected. We see
that this is indeed the case for the samples in Ref. [93]. From the chemical potential µ corresponding
to the charge density ρ and the relation τq = 1/κπ|µ| we determine the disorder strength κ for the
samples. The obtained disorder strength ranges from 0.01 to 0.05 in all samples.

ρ [1/cm2] τq Γq τtr/τq κ µ [cm2/Vs] Ref.
3 · 1012 34 fs 9.7 meV − 0.03 [94]
3 · 1012 25− 74 fs 4.5− 13 meV 2.2− 5.1 0.01− 0.04 [94]
2 · 1012 20 fs 16.5 meV 2 0.06 2000− 4000 [93]
3.1 · 106 53.5 fs 6.15 meV − 0.02 4400− 17000 [95]

Table 2.1: Typical values for the quantum time τq and the corresponding scattering rate Γq due to
disorder obtained from Dingle plots of SdH oscillations as reported in the Refs. [93�95].
The experiments are performed at �nite doping characterized by the charge density ρ. If
available, we also show the ratio between the quantum time and the transport scattering
time. The latter is obtained from the mobility which is also given for the last two
experiments. Furthermore, from the charge density ρ and the values for the quantum
time we determine the disorder strength κ with the help of the formula τq = 1/κπ|ε|.
Here ε ' µ, where µ is the chemical potential derived from ρ.

In the case of separated Landau levels only recently experiments were able to measure the actual
width of the cyclotron resonance. We give values from experiments in Tab. 2.2. For the values in the
second line of Tab. 2.2 the system is in the regime of overlapping Landau levels yielding an energy
dependent width of the cyclotron resonance. Let us relate these �ndings to our theoretical predictions.
The cyclotron resonance is given by Eq. (2.16). From this equation we see that the width of the
cyclotron resonance is indeed characterized by the transport time τtr. Remember that for the model of
diagonal white-noise disorder considered here, we have τtr = 2τq. We also mentioned that 1/τq depends
linearly on energy. If we identify the measured width with our de�nition of the transport time we can
determine the disorder strength κ from the relation τq = 1/κπ|ε|. The obtained value is also listed
in Tab. 2.2. For lower LLs the authors of Ref. [91] �nd that the width of the Landau levels becomes
energy independent. This is in agreement with the scenario that the LLs at lower energies are well
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2 Linear response within the Kubo formalism

separated. Using the obtained parameters and the given magnetic �eld strength, let us check for the
condition that the Landau levels overlap. For the calculated disorder strength of κ ' 0.017 the zeroth
and �rst Landau level should be separated [86]. In fact, we expect the Landau levels to overlap above
the third Landau level. For comparison we also mention typical values that we extracted from other
measurements of the cyclotron resonance in graphene [93, 94].

n [1/cm2] B 1/τq Γ κ Ref.
1 · 1012 16 T 11− 16.5 meV 20− 30 meV 0.03− 0.05 [93, 94]
' 1010 4 T τ−1

q = κπ|ε| Γ = κπ|ε| 2 · 0.026/π ' 0.017 [91]

Table 2.2: The scattering rate due to disorder and the quantum time τq obtained from the mea-
surements of the width of the cyclotron resonance. The �rst line is a measurement in
the regime of separated LLs yielding an energy independent value of the width. The
second line shows results for lower magnetic �elds yielding an energy dependent scat-
tering rate. The latter is an indication for the regime of overlapping LLs as explained
in the main text.

We compare our results on the conductivity in the regime of separated LLs qualitatively with the
mentioned experimental spectroscopy studies. The regime of separated LLs is discussed in more detail
in our work in Ref. [81]. In Fig. 2.2(a) we show the transmission spectrum of graphene in a magnetic
�eld of 0.4 T. The experiment was performed at a temperature of T = 1.9 K. The transmission T is
connected to the optical conductivity according to Eq. (2.3). The absorption of graphene is strongest
for the cyclotron resonances corresponding to the selection rules of the clean graphene. The selection
rules allow optical transitions from the LL with index n to the LL with index n′ with a change in the
LL index of n−n′ = ±1. The relevant transitions for the given window of frequencies are shown in the
inset of Fig. 2.2(a). We use the same nomenclature for the transitions between LLs in the Figs. 2.2(b)-
(d). As a comparison to the experimental results in Fig. 2.2(a) we show in Figs. 2.2(b)-(d) results for
the optical conductivity from our work, Ref. [81], for di�erent chemical potentials. We see that the
conductivity and hence the transmission varies signi�cantly with the chemical potential. For example,
comparing Fig. 2.2(c) with (d), we see that the transition A, i.e. the transition from the LL with n = 1
to the LL with n′ = 2, only becomes visible as soon as the chemical potential jumps into the �rst LL.
Similarly, we conclude from the comparison of Fig. 2.2(d) with Fig. 2.2(b) that the relative intensity of
the transition (A) and (B) is an indication for the position of the chemical potential in the �rst LL. At
the same time we can conclude that the experiment in Fig. 2.2(a) corresponds to the Fig. 2.2(b). The
position of the chemical potential is illustrated in the insets of Figs. 2.2(b)-(d).
In closing this section on the linear transport and in particular the linear magnetotransport we would

like to highlight the in�uence of interaction e�ects on the transport in magnetic �elds. In particular
the interplay of interaction and disorder leads to prominent corrections of the low-�eld transport in
two-dimensional systems. For example, logarithmic corrections to the weak �eld magneto-resistance of
graphene have been measured in Ref. [96]. As the origin of the logarithmic corrections weak localization,
Kondo-physics as well as Altshuler-Aronov corrections have been proposed. A detailed analysis of the
temperature dependence of the magnetoresistance in Ref. [96] revealed that the relevant mechanism
is indeed electron-electron interaction. Furthermore the analysis allowed for the extraction of the
interaction strength. In view of the spectroscopy measurements, just recently the in�uence of electron-
electron interaction on the width of LLs has been investigated in Ref. [92]. This study is also interesting
as it is situated in between the work presented in this chapter and the analysis of the subsequent chapters
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of this thesis which are devoted to the e�ects of interaction on the relaxation dynamics of electrons in
graphene. It appears promising to bring both topics together in the future.

2.6 Summary

This chapter was devoted to the linear transport in graphene within the Kubo formalism. We reviewed
general results regarding the universal values of the conductivity at high frequencies as well as the
universal dc conductivity due to disorder. In particular the universal high frequency conductivity
yields the universal absorption of a single graphene sheet of 2.3%. The main results of this chapter
concerned the conductivity of disordered graphene in quantizing magnetic �elds. More speci�cally,
we assumed the model of diagonal white-noise disorder and calculated the dynamic conductivity in
the regime of overlapping as well as for separated Landau levels. The Landau levels in graphene are
nonequidistant and as they become broadened by disorder the regime of separated and overlapping
Landau levels can be realized simultaneously at di�erent energies.
i) In the regime of overlapping Landau levels we �nd that the Shubnikov-de Haas oscillations in the

dynamic conductivity as well as in the higher order quantum corrections reveal the nonequidistant Lan-
dau level spectrum. More speci�cally, the fact that transitions take place between Landau levels with
di�erent cyclotron frequency, leads to a beating in the magnetooscillations. We also extract relevant
parameters as the quantum and scattering time as well as the disorder strength from experiments.
ii) The regime of separated Landau levels is characterized by a rich spectrum of resonances for �nite

frequencies. They can be tuned to a large extend by the chemical potential, i.e. the �lling factor. We
compared the results with experiments and extracted the disorder strength for our model similar as in
the case of overlapping Landau levels. In particular in the dc limit where only intraband Landau level
transitions can occur we make prediction for the temperature dependence of the conductivity: a) For
Γ� T � ω2

c/|µ| we �nd σ ∼ 1/T . b) For ω2
c/|µ| � T � |µ| on the other hand σ ∼ const. c) Whereas

in the case of |µ| � T � εov, we have σ ∼ T 3.
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2 Linear response within the Kubo formalism

Figure 2.2: (a) The transmission spectrum of Landau quantized graphene from Ref. [89]. The
experiment was performed in a magnetic �eld of 0.4T at a temperature of T = 1.9K.
The inset associates the absorption peaks to transitions in the Landau staircase. Here
and in the following (A) denotes the transition L1 ↔ L2, (B) stands for the transition
L0 ↔ L±1 and (C) for the transitions L−1 ↔ L2 and L−2 ↔ L1. The transmission
is connected to the optical conductivity according to Eq. (2.8). Reprinted �gure with
permission from: Sadowski et al, PRL, 97, 266405 (2006). (b) The predicted optical
conductivity as a function of the frequency from our work [81]. The chemical potential
is located in the lower half of the disorder broadened LL. (c) The optical conductivity
from the same reference for the chemical potential located in the center of the zeroth
LL; and (d) for the chemical potential situated in the center of the �rst LL. The
transitions (A) − (C) in Fig. (b)-(d) are the same as in the inset of Fig. (a). In
addition the transition (I) denotes the intra-LL transition which occurs for small
frequencies. Furthermore the position of the chemical potential is illustrated in the
insets of (b)-(d).
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3 Chapter 3

Quantum kinetic equation for graphene

While the previous section was devoted to the theoretical study of linear transport in graphene within
the Kubo formalism, we are now going to develop the quantum kinetic equation for graphene which
will give us an alternative and more versatile tool to study non-equilibrium setups and interaction
e�ects in transport. Furthermore we will later derive the nonlinear hydrodynamics in graphene from
the Boltzmann limit. The hydrodynamic theory also allows for the description of �nite size e�ects.

3.1 Diagrammatic Keldysh formalism and Kadanoff-Baym ansatz

We begin our derivation of the quantum kinetic equation for graphene with a short introduction to
the non-equilibrium �eld theory. The aim of the non-equilibrium �eld theory is to calculate real-time
correlation functions, for example the two-point function

G(~r, t;~r ′, t′) = −i〈T̂ Ψ̂(~r, t)Ψ̂†(~r ′, t′)〉 . (3.1)

Here we have chosen the real space basis. Remember that the Green's function can be introduced
independent of a basis. For example in the case of time-translation invariance one can de�ne the
retarded Green's function as the resolvent operator

ĜR(ε) = (ε− Ĥ + i0)−1 . (3.2)

We will therefore and for a more compact notation sometimes omit the spatial arguments. In the zero
temperature �eld theory the correlation functions are calculated using the adiabatic theorem. However,
for �nite temperatures the density matrix is no longer a projector on the ground state. Secondly, even
if we were to restrict ourselves to the groundstate, in some situations we cannot rely on the adiabatic
theorem. That means the �nal groundstate of the system, after switching on the interaction, might
not be connected to the initial non-interacting groundstate. Therefore we would like to eliminate any
reference to the state of the system after the perturbation has been switched on.
The Matsubara technique [50, 83] might as well fail in the sense that the density matrix need not be a

simple exponential function. On the contrary there are situations where we rather want to compute the
speci�c form of, for example, the reduced single-particle density matrix - the distribution function. It
is known that under certain conditions the distribution function can be distinctly non-thermal [97, 98].
In this context the non-equilibrium �eld theory also represents a natural way to derive the Boltzmann
equation and its quantum kinetic variants. The ultimate aim of this chapter is to derive the quantum
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3 Quantum kinetic equation for graphene

kinetic equation for graphene, taking into account the fact that we are dealing with Dirac fermions and
thus e�ectively with a two band model.
The way to circumvent the above mentioned complications was �rst formulated by Schwinger [99] in

a work on coupled oscillators in which he introduced a two-time contour, later named the Schwinger-
Keldysh contour (see Fig. 3.1), and the concept of quantum and classical source �elds. The theory
was developed in the many-particle framework by Keldysh [100] and Craig [101]. An equivalent for-
mulation, that is in principle a generalization of the Matsubara Green's function method [83] to the
non-equilibrium situation, was developed by Kadano� and Baym as well as Langreth and Wilkins
[102, 103]. Our introduction to non-equilibrium �eld theory here is limited and merely serves as an
introduction to our notations. A more detailed introduction to the non-equilibrium �eld theory, in
particular the diagrammatic formulation can be found for example in Refs. [20, 56, 82, 102].

3.1.1 Keldysh contour and non-equilibrium Green’s functions

Figure 3.1: The two-time Keldysh contour consisting of a forward C+ and backward time-contour
C−.

Suppose we want to calculate the two-point correlation function

iG(~r, t;~r ′, t′) = 〈Φ(−∞)|S(−∞,+∞)T̂ [S(+∞,−∞)Ψ̂(~r, t)Ψ̂†(~r ′, t′)]|Φ(−∞)〉 . (3.3)

Here T̂ is the usual time-ordering operator that arranges operators according to their time argument,
the latest to the left. We also introduced the time-evolution operator in the interaction picture which
we denoted S(t, t′). It is also called the S-matrix and is given by

S(t, t′) = T̂ exp

(
−i

∫ t

t′
dτ H1,int(τ)

)
, (3.4)

where H1,int is the perturbation in the interaction picture. At this point it is not possible to move the
left S-matrix through the time ordering which is necessary to establish the perturbation theory with the
help of Wick's theorem [50, 104]. This complication is overcome if we introduce a two-branch contour
that is depicted in Fig. 3.1, and will be denoted C in the following. It consists of the forward C+ and
backward branch C−. Furthermore we de�ne time ordering along the contour arranged by a contour
ordering operator T̂c. This procedure is sometimes referred to as the analytical continuation of time.
The Green's function on the contour reads as

iG(~r, τ ;~r ′, τ ′) = 〈T̂cΨ̂(~r, τ)Ψ̂†(~r ′, τ ′)〉 . (3.5)

Similarly we can de�ne the Green's function (3.5) for �nite temperatures,

iG(~r, τ ;~r ′, τ ′) = tr
[
ρ(−∞)T̂c

{
Sc Ψ̂(~r, τ)Ψ̂†(~r ′, τ ′)

}]
. (3.6)
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3.1 Diagrammatic Keldysh formalism and Kadano�-Baym ansatz

Here Sc is the S-matrix on the contour and will be given below in Eq. (3.8). It is now rather obvious
that we have the following connections between the contour-time Green's function and the four possible
real-time Green's functions,

G(~r, τ ;~r ′, τ ′) =


GT (~r, t;~r ′, t′) , τ, τ ′ ∈ C+ ,

G<(~r, t;~r ′, t′) , τ ∈ C+, τ
′ ∈ C− ,

G>(~r, t;~r ′, t′) , τ ∈ C−, τ ′ ∈ C+ ,

GT̃ (~r, t;~r ′, t′) , τ, τ ′ ∈ C− .

(3.7)

Here, GT and GT̃ denote the time ordered and anti time ordered Green's functions. The four Green's
function in (3.7) are not independent and usually a di�erent set of linear combinations including the
retarded and advanced correlation functions is more suitable. The latter describe the kinetics of the
quasiparticles whereas the correlation functions G≷ encode the noise and statistics of the particles. For
further properties and the rules for analytical continuation of products and convolutions of multiple
Green's functions see Appendix A.

Contour Dyson equation

Similar to the equilibrium �eld-theory one can perform the perturbation theory in the Schwinger-
Keldysh formalism by expanding the S-matrix

S = T̂c exp

(
−i

∮
C

dτ H1,int(τ)

)
. (3.8)

In passing, remember that the standard perturbation theory is based on Wick's theorem. However,
application of Wick's theorem is only possible if either thermal averages are performed with respect to
a non-interacting single-particle density matrix or a quadratic action in the zero temperature case. We
did not touch upon the modi�cations that this requirement usually entails within the non-equilibrium
formalism. Bear in mind however that for the decay of specially prepared initial correlations more
care must be taken. We refer for example to the Refs. [14, 102, 105, 106]. For our later derivation of
the kinetic equation in graphene it is of importance that one may introduce the self-energy Σ for the
particles' Green's function in a similar manner as in the zero temperature case for example. Likewise
it is possible to write a Dyson equation for the single-particle Green's function[

G−1 − Σ
]
◦G = δ(τ − τ ′) . (3.9)

Here we introduced the inverse Green's function

G−1 =

[
i
∂

∂τ1
− Ĥ(τ1)

]
δ(τ1 − τ2) , (3.10)

and wrote simply ◦ for the convolution in time and space here. The Dyson equation (3.9) can also be
written in terms of the real-time Green's functions from Eq. (3.7). In this case it usually becomes a
matrix equation in the space of Keldysh indices ±, referring to the branches of the Keldysh contour.
The equation of motion for the corresponding matrix Green's function

G(~r1, t1;~r2, t2) =

(
GT (~r1, t1;~r2, t2) G<(~r1, t1;~r2, t2)

G>(~r1, t1;~r2, t2) GT̃ (~r1, t1;~r2, t2)

)
, (3.11)
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is given by

[i∂t1 −H1]G(~r1, t1;~r2, t2)−
∫

Σ(~r1, t1;~r3, t3)τ3G(~r3, t3; ~r2, t2)d~r3dt3 = τ3δ(~r1 − ~r2)δ(t1 − t2) . (3.12)

Here τ3 is the third Pauli matrix acting in the space of forward and backward contour. From Eq. (3.12)
follows the equation of motion for the Green's function G< as

G−1G< − ΣR ◦G< −G< ◦ ΣA = 0 . (3.13)

This can easily be seen from the Langreth-Wilkins rules as explained in Appendix A.
Our subsequent goal is to write an equation of motion for the Green's function G< from Eq. (3.7).

The reason is that the equal-time limit of the Green's function G< is connected to the single-particle
distribution function. One can see this from the following considerations. Suppose the system is
translational invariant. Then the Fourier transform of the single-particle density matrix ρ(~k, t) of the
momentum state |~k〉 is given by

G<(~k; t1, t2)|t1→t2 = iρ(~k, t1) . (3.14)

Here and in the following we are only dealing with fermions. The theory for bosons is similar. There
have been developed several approaches to derive an equation of motion of the semi-classical single-
particle distribution function. In the following we are going to pursue the strategy put forward by
Kadano� and Baym [105] and subsequently extended by Lipavsky et al [107]. In this procedure one
performs the limit t1 → t2 in the equation of motion (3.13). However the self-energy entering the
resulting equation will still contain strictly two-time correlation functions. Thus the equation is not
closed in the sense that it is an equation for the equal-time Green's function alone. The question
is whether the two-time distribution function can be recovered from the equal-time or time-diagonal
part and the spectral functions, i.e. the retarded and advanced Green's functions (see Appendix A).
This very fundamental problem also touches the very question whether there is possible semiclassical
distribution function that can follow from a quantum mechanical correlation function. It is usually
referred to as the reconstruction problem.

3.1.2 The reconstruction problem - the generalized Kadanoff-Baym ansatz

In this section we are going to review the so-called reconstruction problem, that means the reconstruc-
tion of the two-time Green's function G<(t1, t2) from its time-diagonal part. There is a very general
representation of the non-equilibrium Green's function G< in terms of the spectral functions GR and
GA and another unknown function F ,

G<(t1, t2) = GR(t1, t3) ◦ F (t3, t2)− F (t1, t3) ◦GA(t3, t2) . (3.15)

This ansatz is simply motivated by the antihermitian character of the distribution function G<. The
function F (t1, t2) can be regarded as a precursor to the semiclassical distribution function. More
speci�cally for a homogeneous system in equilibrium, the Fourier transformed correlation function (3.15)
reads as

G<(ω, ~p ) = F (ω)[GR(ω, ~p )−GA(ω, ~p )] . (3.16)

As a consequence we identify the time-diagonal part of Eq. (3.15), in this case of thermal equilibrium, as
the single-particle density matrix, that is given by the Fermi-Dirac distribution F = f (0) in equilibrium,

ρ<(~p ) = iG<(t1, t2; ~p )|t1=t2 = i

∫
dω

2π
G<(ω; ~p ) = f (0)(ε(~p )) . (3.17)
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3.2 Multiband quantum kinetics in graphene

For a system away from equilibrium we assume that the relations (3.16) and (3.17) still give us access
to the single-particle distribution function, which however need not be of Fermi-Dirac type.
For most practical purposes it is too complicated to calculate the two-time correlation function

F (t1, t2). However an approximate ansatz for the expression of the correlation function (3.15) in terms
of the single-time distribution function (3.14) was put forward by Kadano� and Baym and assumes
that a similar relation to Eq. (3.16) also holds for the non-equilibrium situation [105], or at least close
to equilibrium [107]. This ansatz reads as

G≷(t1, t2) = i
[
GR(t1, t2)G≷(t2, t2)−G≷(t1, t1)GA(t1, t2)

]
. (3.18)

This is called the generalized Kadano�-Baym ansatz. It generalizes the somewhat simpler Kadano�-
Baym ansatz

G≷(t1, t2) = iG≷(t)
[
GR(t1, t2)−GA(t1, t2)

]
. (3.19)

However, the latter violates the causal structure of the Keldysh theory as it is incompatible with
the Langreth-Wilkins rules (see Appendix A). Furthermore, corrections to the gradient expansion and
renormalization e�ects are only taken into account incompletely [108, 109]. The di�erence however is
of no importance in the quasiclassical Boltzmann limit of the kinetic equation, the equation of motion
of the single-particle density matrix.

3.2 Multiband quantum kinetics in graphene

In the preceding section we have introduced the necessary concepts for deriving the quantum kinetic
equation. We are now going to apply these concepts to the case of graphene. That means we are
seeking the equation of motion for the equal-time correlation function (3.14), the single-particle density
matrix. There are a couple of interesting specialties in graphene regarding its quantum kinetic equation.
The most trivial one is due to the fact that we are e�ectively dealing with a two-band system. As a
consequence the distribution function becomes a 2×2-matrix and similarly the quantum kinetic equation
becomes a matrix equation. The latter furthermore contains intraband as well as interband driving
terms in comparison to the semi-classical Boltzmann equation. A more exotic ingredient is the Dirac
nature of the carriers in graphene. This for example leads to the appearance of the graphene speci�c
Dirac factors.

3.2.1 Projected gauge-invariant Green’s function

In order to derive a gauge invariant quantum kinetic equation we need to introduce a gauge invariant
Green's function. This is necessary since otherwise the corrections to the Boltzmann equation will be
ambiguous and depend on the way the �eld is introduced. But we rather seek a general expression,
in which only the �elds appear from the very beginning. As pointed out in Refs. [110, 111] as well as
[112], the gauge invariant Green's function can be obtained as

g(~r1, t1;~r2, t2) = e−iW(~r1,~r2,t1,t2)G(~r1, t1;~r2, t2) , (3.20)

where

W(~r1, ~r2, t1, t2) =(t1 − t2)
e

c

∫ 1/2

−1/2
dλ φ(~R+ λ~r, T + λτ)

− (~r1 − ~r2) · e
c

∫ 1/2

−1/2
dλ ~A(~R+ λ~r, T + λτ) .

(3.21)
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3 Quantum kinetic equation for graphene

Here ~A(~r, t) is the vector potential and φ is the electrostatic potential describing the external �eld. In
the case of homogeneous electric �eld ~E = −∂t ~A we have ~A = − ~Et and φ = 0. The gauge invariant
Green's function thus reads as

g(~r1, t1;~r2, t2) = e
+i

~r1−~r2
t1−t2

·
∫ t1
t2

dt ~A(t)G(~r1, t1;~r2, t2) . (3.22)

Let us de�ne the phase factor

I(~r, t1, t2) = i
~r1

t1 − t2
·
∫ t1

t2

dt ~A(t) . (3.23)

We already pointed out that for graphene the Green's function (3.20) is also a matrix in the sublattice
space. In the following it is useful to chose a proper basis for the representation of this matrix. In the
absence of a magnetic �eld the eigenstates of the free graphene are such a suitable basis. The kinetic
equation and the Green's function (3.20) needs to be represented in this basis. Therefore we introduce
the projected Green's function

gν1ν2(t1, t2) =

∫
d~r1

∫
d~r2φ

†
ν1

(~r1)g(~r1, t1;~r2, t2)φν2(~r2) . (3.24)

Here φν with ν = (λ,~k) and λ = ±1, are the eigenstates of graphene, given in Eqs. (1.7) and (1.8).
The inverse transformation of Eq. (3.24) is given by

g(~r1, t1;~r2, t2) =
∑
ν1,ν2

φν1(~r1)gν1ν2(t1, t2)φ†ν2
(~r2) . (3.25)

Shifting the phase factors eI(~r1,2,t1,t2) into the graphene states, we obtain the gauge-invariant eigenstates

φ̃ν =
ei~k·~r
√

2

(
e−iϕk/2

λe+iϕk/2

)
eiI(~r1,t1,t2) . (3.26)

In the following we are going to discuss a constant electrical �eld. The Hamiltonian is then given by

H = ~σ ·
(
~p− e

c
~A

)
. (3.27)

Here the vector potential is ~A = − ~Et. In this case of a homogeneous electrical �eld the phase factor I
is given by

I(~r, t1, t2) = +
e

c

(t1 + t2)

2
~r · ~E . (3.28)

And thus we obtain for the gauge-invariant Green's function,

gν1ν2(t1, t2) =

∫
d~r1

∫
d~r2φ̃

†
ν1

(~r1)G(~r1, t1;~r2, t2)φ̃ν2(~r2) . (3.29)
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3.2 Multiband quantum kinetics in graphene

3.2.2 Quantum kinetic equation

We are now going to derive the equation of motion (EOM) for the projected Green's function. This
projected Green's function is a 2 × 2-matrix in the graphene band space. The single-particle Green's
function is in general a function of two spatial coordinates ~r1 and ~r2 and needs not to be translational
invariant. However if we introduce the relative coordinate ~r = ~r1−~r2 and the center o� mass coordinate
~R = (~r1+~r2)/2 and assume that the Green's function only varies slowly in ~R, we can perform a gradient
expansion in the variable ~R. A parallel reasoning assures that the projected Green's function is diagonal
in the momentum if the system is translational invariant. In this case we have to leading order in the
gradient expansion for the equal-time limit of the Green's function (3.29) written as a 2× 2-matrix in
band space,

g<p (t) = i

(
ρp,+(t) Pp(t)
P ∗p (t) ρp,−(t)

)
, (3.30)

where the o�-diagonal elements P are the interband polarization of the graphene while ρp,± are the
conduction and valence band populations. A macroscopic polarization P leads to a �nite dipole moment
in the system that can in turn couple to electromagnetic waves.
The projection of the equation of motion (3.12) onto the eigenstates of graphene leads us to the

kinetic equation in the basis of the free graphene eigenstates,

[i∂t1δν1ν3 − ξν1ν3 ]gν3ν2(t1, t2)− [Sν1ν3gν3ν2 − gν1ν3Sν3ν2 ]−Kν1ν2 [g] = τ3δν1ν2δ(t1 − t2) . (3.31)

Here a convolution of the products is implied. We will now discuss the individual terms occurring the
equation of motion (3.31). First, we introduced the kinetic part of the left-hand side of the EOM, the
Liouvillian,

ξν1ν3 =

∫
d~r φ̃†ν1

(~r)Hφ̃ν3(~r) . (3.32)

With the Hamiltonian (3.27) this evaluates to

ξν1ν3 = δν1ν3εν1 +
e

2c
τEν1ν3 , (3.33)

where we abbreviated the relative time as τ = t1 − t2. Note that the last term in Eq. (3.33) is purely
quantum and vanishes in the limit of equal times τ → 0. It contains the matrix element of the electric
�eld,

Eν1ν2 = (2π)2δ(~k1 − ~k2)[λ1δλ1λ2 k̂1 · ~E + iλ2δλ1,−λ2
~E · (ẑ × k̂1)] . (3.34)

The second term on the left-hand side of Eq. (3.31) describes the intraband as well as interband coupling
of the electric �eld,

Sν1ν2 =
e

2c
(2π)2δ(~k1 − ~k2)

[
δλ1λ2

~E · i∇k2 − δλ1,−λ2

Ek2,⊥
k2

2

]
. (3.35)

The intraband term will lead to the usual driving term in the Boltzmann limit. More precisely the
standard driving term is obtained if one performs the gradient expansion as described in the Appendix B.
The interband term however is genuine for graphene. It is a major di�erence compared to the full
Boltzmann limit where the polarization is neglected entirely. In the case of the constant electrical �eld
it is responsible for the Landau-Zener physics [113, 114] taking place in the presence of strong electrical
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3 Quantum kinetic equation for graphene

�elds. In other contexts the same e�ect is sometimes called Schwinger mechanism [115]. More details
on the di�erent driving terms can be found in the Sec. 3.2.3.
Let us introduce the decomposition of the driving terms in Eq. (3.35) due to the electrical �eld

S = S(1) + S(2), where the intraband driving is given by

S(1)
ν1ν2

=
e

2c
(2π)2δ(~k1 − ~k2)δλ1λ2

~E · i∇k2 . (3.36)

The Schwinger mechanism manifests the interband coupling

S(2)
ν1ν2

= −π
2

2c
(2π)2δ(~k1 − ~k2)δλ1,−λ2

Ek2,⊥
k2

2

, (3.37)

which will couple polarization and population as we will see below in Sec. 3.2.3.
At last we introduced the following abbreviation for the self-energy that will later constitute the

collision integral. We only consider the collision integral in the zero �eld limit, i.e. E → 0. In principle
the collision integral will also depend on the electrical �eld though the phase factors I in the gauge
invariant formulation, see Sec. (3.2.1). We therefore neglect the intra-collisional �eld e�ect [20]. We
arrive at the following expression for the projected self-energies that will make up the collision integral

Kν1ν2 =
∑
ν3

∫
dt3σν1ν3(t1, t3)τ3gν3ν2(t3, t2) . (3.38)

In particular for K< we have according to the Langreth-Wilkins rules (see Appendix. A).

K<
ν1ν2

=
∑
ν3

∫
dt3

[
σRν1ν3

(t1, t3)g<ν3ν2
(t3, t2) + σ<ν1ν3

(t1, t3)gAν3ν2
(t3, t2)

]
. (3.39)

We denote the projected self-energies as σR,Aν1ν2 . Here and in Eq. (3.38) the self-energies σR,Aν1ν2 are
given explicitly in Appendix B for the Coulomb interaction in graphene. The collision integral has
the diagrammatic representation shown in Fig. 3.2. Further discussion of the collision integral can be

Figure 3.2: The two diagrams contributing to the out-scattering term of the collision integral
according to Eq. (B.23) from Appendix B.2. The in-scattering term is obtained by in-
terchanging g< ↔ g>. Here the equal time limit of t1 = t2 has already been performed.

found in Sec. 3.2.4. In order to obtain the �nal kinetic equation one considers the lesser component of
Eq. (3.31) and its adjoint equation. One then subtracts the two equations from each other [56, 105].
This is done in order to remove explicit dependence on the relative time t1 − t2 on the left-hand side
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3.2 Multiband quantum kinetics in graphene

of the resulting equation, at least to leading order in the gradient expansion. Finally the limit of equal
times t1 = t2 = t is taken and we later identify the equal time Green's function −ig<(t1, t1) with the
distribution function. This procedure leads us to

i∂tg
<
ν1ν2

(t)− 1

2
[ξ, g<(t)]ν1ν2 − [S, g<(t)]ν1ν2 −

1

2

(
[σ, g<]− [σ<, g]

)
=

1

4
{σR − σA, g<} − 1

4
{gR − gA, σ<} = −St[g] .

(3.40)

Again the convolution of products is implied and we introduced the matrix collision integral in graphene
which is given by

St[g] =
1

4
{σR − σA, g<} − 1

4
{gR − gA, σ<} . (3.41)

Furthermore, the last term on the left-hand side of the �rst line of Eq. (3.40) is a renormalization of
the Liouvillian on the left-hand side. We will drop it in the following. We will now discuss the physical
meaning of the remain terms individually.

3.2.3 Driving terms

We turn now to the intraband driving term, Eq. (3.36) occurring in the quantum kinetic equation (3.40).
Furthermore we study the diagonal part of the matrix kinetic equation, that means we set ν1 = ν2 in
Eq. (3.40), where ν = (λ,~k). In this case we obtain for the commutator

[S(1), g<]νν =
(−→
S (1)
νν g

<
νν(t)− g<νν(t)

←−
S (1)
νν

)
. (3.42)

Here no summation over the quantum numbers ν is performed and the arrows indicate that the deriva-
tive acts to the right or left. Taking into account that −i

−→
∇k is hermitian with the adjoint operator

+i
←−
∇k, we obtain

[S(1), g<]νν = −i
e

c
~E · ∇kg<k,λ(t) . (3.43)

and with the distribution function de�ned in Eq. (3.30) this becomes

[S(1), g<]νν =
e

c
~E · ∇kρk,λ(t) . (3.44)

While the intraband term (3.37) leads to the usual driving term known from the Boltzmann equation,
the interband term S(2) has no classical analog. It rather represents the coherent creation of particle
hole pairs [113, 114, 116, 117]. Due to this it couples the diagonal elements of the single-particle density
matrix (3.30) with the o�-diagonal polarizations. From Eq. (3.37) and the kinetic equation (3.40), we
obtain for the interband driving term in the diagonal equations that are obtained for ν1 = ν2 in
Eq. (3.40) [ν = (λ,~k)],

[S(2), g<(t)]νν =
e

c

Ek⊥
k2

λ ImP (t) . (3.45)

Here we have abbreviated
k⊥ = (ẑ × ~k) · Ê . (3.46)

Similarly in the o�-diagonal equations of the matrix kinetic equation (3.40), which is obtained for
ν2 = ν̄1 in Eq. (3.40), where ν̄1 = (−λ,~k), is given by

[S(2), g<(t)]νν̄ = λ
e

2c

Ek⊥
k2

i
(
ρλ,k(t)− ρ−λ,k(t)

)
. (3.47)

We observe that the interband term couples the populations with the polarization P according to
Eq. (3.45), and the polarization to the imbalance between conduction and valence band due to Eq. (3.47).
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3 Quantum kinetic equation for graphene

3.2.4 The collision integral

We introduced the collision integral previously in Eq. (3.41) in an implicit form expressed by the so
far unspeci�ed self-energies σ. We are interested in the collision integral due to Coulomb interactions.
Explicit expression for the self-energies in Eq. (3.41) are given in Appendix B.2. There we also explain
the Markov approximation necessary to derive the collision integral in the form presented below. In
this approximation the collision integral has the diagrammatic representation in Fig. (3.2).
The collision integral is also a 2× 2 matrix. The diagonal part yields the usual Boltzmann collision

integral

Stλ1λ1 [ρλ1(~p1)] = −N
2

∫
d2q

(2π)2

∫
dω

2π
|V (q, ω)|2

×
∑
λ̄1=±1

2π δ(ελ̄1,~p1−~q − ελ2,~p1
− ω) Θλ1,~p1;λ̄1,~p1−~q ρλ1(~p1)

[
1− ρλ̄1

(~p1 − ~q )
]

×
∑

λ′1,λ̄
′
1=±1

∫
~p ′1

2π δ(ελ̄′1,~p ′1−~q
− ελ′1,~p ′1 + ω) Θλ′1,~p

′
1;λ̄′1,~p

′
1−~q

ρλ̄′1
(~p ′1 − ~q )

[
1− ρλ′1(~p ′1)

]
− {ρ↔ (1− ρ)} ,

(3.48)

We observe that again the overlap elements of eigenstates in graphene, the Dirac factors, as introduced
in Sec. 1.1 appear in the collision integral (3.48). They read as

Θ
λ,~k;λ′,~k ′ =

1

2

(
1 + v̂

λ,~k
· v̂
λ′,~k ′

)
, (3.49)

where v̂
λ,~k

= λ~k/|~k|. They are given by the overlap of the graphene eigenstates and prohibit backscatter-
ing. We neglected corrections to the Boltzmann collision integral due to a �nite interband polarization
P . In doing so we obtain the Boltzmann limit of the kinetic equation if we further neglect the interband
polarization in the driving terms in the diagonal parts (3.56), which then decouple entirely from the
equation for P . In this case we write for the density matrix ρλ(~k) simply fλ(~k). And we obtain the
semiclassical Boltzmann equation for the distribution function f ,

Lfλ(~k) = St[f ] , (3.50)

where the Liouvillian is given by

L = ∂t + v̂ · ∇r +
[
e ~E + e(v̂ × ~B)

]
· ∇k . (3.51)

The collision integral is a complicated nonlinear operator acting on the distribution function ρ. For
practical purposes it is advantageous to consider the linearized collision integral which is denoted C. The
latter is obtained by assuming that the system is close to equilibrium and the density matrix is given
by ρ = f (0) + f (0)(1− f (0))δf , where f (0) is the Fermi Dirac distribution function that annihilates the
collision integral. The function δf is a small deviation from this equilibrium. The linearized collision
integral is a linear operator acting on the deviation δf . Linearizing the collision integral with respect
to the small deviations one obtains,

Cδfλ,~p =
∑
ν,ν′,λ′

∫
~k,~p′,~k′

|M |2 (2π)3δ(ελp + ενk − ελ′,p′ − εν′,k′) δ(~p+ ~k − ~p ′ − ~k )

× f (0)
λ,pf

(0)
ν,k

(
1− f (0)

λ′,p′

)(
1− f (0)

ν′,k′

)[
δfλ,~p + δf

ν,~k
− δfλ′,~p ′ − δfν′,~k ′

]
.

(3.52)
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3.2 Multiband quantum kinetics in graphene

Here the matrix element |M |2 is given by

|M |2 = NV (ω, q)Θλ1~p1;λ̄1,~p1−~qΘλ′1~p
′
1;λ̄′1,~p

′
1+~q . (3.53)

The Dirac factors Θ have been introduced in Sec. 1.1, see Eq. (1.12).
Similarly the o�-diagonal part is responsible for the decay of the polarization due to Coulomb inter-

action. In principle it is also a complicated nonlinear operator, see Appendix B.2. However, assuming
that the polarization is small we restrict it to the terms linear in the interband polarization which reads
as

Stλ1,λ2 = −N
2

∫
d2q

(2π)2

∫
dω

2π
|V (q, ω)|2

×
∑
λ̄1=±1

2π δ(ελ̄1,~p1−~q − ελ2,~p1
− ω)

1

2
(1− λ2λ̄1 cosϕ12) Pλ2(~p1)∗

[
1− ρλ̄1

(~p1 − ~q )
]

×
∑

λ′1,λ̄
′
1=±1

∫
p′1

2π δ(ελ̄′1,~p ′1−~q
− ελ′1,~p ′1 + ω) Θλ′1,~p

′
1;λ̄′1,~p

′
1−~q

ρλ̄′1
(~p ′1 − ~q )

[
1− ρλ′1(~p ′1)

]
+ {ρ↔ (1− ρ)} .

(3.54)

Here ϕ12 is the angle between the momenta ~p1 and ~p2 = ~p1 − ~q. We observe that in the o�-diagonal
collision integral the Dirac factors are of a di�erent form. As a consequence the integral kernel for the
decoherence time will be suppressed at the forward scattering resonance in contrast to the collision
kernel for the diagonal collision integral.

3.2.5 Multiband quantum kinetic equation: Semiconductor Bloch equations

In this section we are going to combine the results from the previous sections and give the �nal quantum
kinetic equations for graphene including the external �eld to leading order in the gradient expansion.
In addition to the dc �eld discussed for example in Sec. 3.2.3 we will also take into account a classical
time-dependent electric �eld. In this case we are able to study the response of graphene to an external
laser pulse. We will brie�y discuss the physics in Sec. 3.3, which will serve as a preparation for Chapt. 4,
where we study the relaxation dynamics of optically excited carriers in graphene due to electron-electron
interactions.
We also take into account a time dependent electric �eld

~E(t) = ~E0(t) cosωt , (3.55)

with a slowly varying envelope function E0(t) in addition to the dc electrical �eld Edc. The envelope
E0(t) will be speci�ed in Sec. (3.3), where we consider the speci�c problem of a Gaussian laser pulse.
For the time dependent �eld we performed the rotating wave approximation. Thus we neglect in the
following the o�-resonant intraband-driving due to the time-dependent electrical �eld.
We write the matrix quantum kinetic equation component-wise. The diagonal part is obtained for

ν1 = ν2 = ν in Eq. (3.40), where ν = (λ,~k) and λ = ±1. Let us introduce the interband dipole moment
~d = e(ẑ × ~k)/k2, where ẑ is the unit vector in z-direction. In the notation of the previous section the
diagonal equations read as

∂tρλ,k(t) +
1

2
[ξ, g<]νν +

e

c
~Edc · ∇kρλ,k +

e

c

Edck⊥
k2

λIm[Pk(t)]− λ~E(t) · ~dkIm[Pk(t)] = Stνν [g] . (3.56)
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The single-particle density matrix ρλ,k(t) was de�ned in Eq. (3.30). Furthermore k⊥ was de�ned in
Eq. (3.46). On the other hand the equation for the complex polarization is obtained from the kinetic
equation (3.40) for ν2 = ν̄1 with ν1 = (λ,~k) and ν̄1 = (−λ,~k) and it reads as

∂tPk(t) + iδkPk +
e

c
~Edc · ∇kPk + i

e

2c

Edck⊥
k2

[ρ−,k − ρ+,k]− i ~E(t) ·
~dk
2

[ρ−,k − ρ+,k] = Stνν̄ [g] . (3.57)

Here we introduced the level spacing δk = ε+,k − ε−,k = 2ε+,k = 2k. Thus the imaginary part of P
obeys

∂tIm[Pk](t)+δkRe[Pk]+
e

c
~Edc ·∇kIm[Pk]+

e

2c

Edck⊥
k2

[ρ−,k−ρ+,k]− ~E(t)·
~dk
2

[ρ−,k−ρ+,k] = StImP . (3.58)

Semiconductor Bloch equations

We now assume that only a time-dependent electric �eld is present. Furthermore we introduce the
slowly varying polarization

pk(t) = e+iωt Pk(t) . (3.59)

We then observe that the total population ρ = ρ− + ρ+ is conserved. Thus only the inversion

∆ρ = (ρ− − ρ+)/2 , (3.60)

and the complex polarization pk are dynamical variables. If we assume linearly polarized light, i.e.
~E0(t) = x̂E0(t), we can write the quantum kinetic equations (3.56) and (3.57) into the standard form
of the optical Bloch equations [20]

∂t~S =

 0 ∆k 0

−∆k 0 − eky
k2 E0(t)

0 +
eky
k2 E0(t) 0

 ~S . (3.61)

Here the Bloch vector is
~S =

(
Re(p) Im(p) ∆ρ

)T
. (3.62)

We also introduced the detuning
∆k = 2εk − ω . (3.63)

Note that only slowly varying functions pk(t) and E0(t) enter this equation. In Sec. (3.3) we are going
to discuss the simple problem of a Gaussian laser pulse impinging on graphene and study the short-time
coherent dynamics directly after the laser quench.

Schwinger mechanism

In this section we brie�y discuss the graphene Bloch equations (3.61) in the presence of a constant
electric �eld that is switched on at time t = 0. The system is assumed to be in equilibrium before the
time t = 0. In general we can understand the interaction of the graphene with an optical or constant
electric �eld in terms of spins or equivalently - two level systems. Here a conduction and a valence
band state with the same momentum form the two-level system. As a consequence the weak �eld
result (3.66) below resembles the Rabi formula for spin �ips in spectroscopy of spin systems.
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We start out from the Bloch equations

∂t~S(t) =


0 −δk̃ 0

+δk̃ 0 − eEky
k̃2

0 +
eEky
k̃2

0

 ~S(t) . (3.64)

Here we have ∆ = δ = 2εk for ω = 0 and we introduced the shifted momentum ~̃k = ~k + e ~Et. The
Bloch vector is given in Eq. (3.62).
We seek the solution of Eq. (3.64) for weak electrical �eld. In this case we neglect the shift of the

energy dispersion by the electric �eld. As a result we obtain

Im[p(t)] = ∆ρ(−∞)
eEky
k2

sin(δkt)

δk
. (3.65)

From this we get the inversion

∆ρ(t)−∆ρ(−∞)

∆ρ(−∞)
=

(eEky)
2

2k6
sin2(kt) . (3.66)

This formula resembles the exact Rabi result for Rabi �ops in spin systems. It has also been obtained
in Ref. [118] within a �rst quantization scheme, directly from the Dirac equation.

3.3 Ultrashort laser pulses in graphene

We apply the semiconductor Bloch equations to the graphene excited by a Gaussian laser pulse and we
study the possibility of inversion. The main aim is however to obtain an e�ective rate equation that is
used in Chapt. 4 to describe pump-probe experiments in graphene.
Let us assume that a graphene sheet is exposed to a short laser pulse described by the electrical �eld

~E(t) with central frequency ω, polarization in x̂-direction and envelope function

E0(t) ∼ Ē√
2πτ

exp[−(t− t0)2/2τ2] . (3.67)

Here we can chose without loss of generality t0 = 0. The amplitude Ē is connected to the �uence of
the pulse. From the Bloch equations (3.61) we immediately see that the change in the inversion after
the laser pulse is given by

∆ρ(+∞)−∆ρ(−∞) =
eky
k2

∫ +∞

−∞
dtE0(t)Im[p(t)] . (3.68)

Interestingly, for a short laser quench, i.e. in the regime of energies for which ∆kτ � 1 one can obtain
an explicit expression for the change in the inversion. The calculation is given in Appendix C. The
result reads as

∆ρ(+∞)−∆ρ(−∞)

∆ρ(−∞)
= −ekyĒ

k2
sin

(
ekyĒ

k2

)
. (3.69)

From Eq. (3.69) it is now obvious that we only have a population inversion if

x sin(x) > 1 , x =
ekyĒ

k2
. (3.70)
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From Eq. (3.70) we obtain the phase diagram for population inversion. Along the direction of strongest
light matter coupling, i.e. for ~k ‖ x̂, it is depicted in Fig. 3.3(a). We plot the regions where Eq. (3.70)
is ful�lled in the plane spanned by the amplitude Ē and the energy k. Those shaded regions indicate
population inversion. We observe that for a given �eld strength the regions of population inversion
organize into stripes. This is indicated by the red line in Fig. 3.3(a). The red line also indicates that
there is a maximal energy where population inversion can occur. In Fig. 3.3(b) the regions of possible

Figure 3.3: The possible regions for population inversion (green areas) in momentum space. Fig-
ure (a) shows the phase diagram along the direction of strongest coupling. For a given
energy ky, we can extract the minimal �eld strength Ēmin at which population inver-
sion is possible. Conversely, at a �xed �eld strength there is a certain maximal energy
kmax at which population inversion can occur. Figure (b) illustrates the phase diagram
in the 2D momentum space for a �xed �eld strength eĒ =

√
2πω. The phase diagram

of population inversion clearly shows a self similar structure as can be seen in Fig.
(c).

population inversion are shown in the 2D momentum space for a given �eld strength Ē =
√

2πω.
We observe that due to the electrons' Berry phase the coupling is the strongest perpendicular to the
polarization of the �eld.
The occurrence of the regions where population inversion is obtained at short times can be understood

in the following way. As pointed out already in Sec. 3.2.3 we can indeed interpret the combination of
an electronic valence and conduction band state with the same momentum in graphene as a two level
system. The argument of the sine in Eq. (3.69) can be understood as the pulse area of the pump pulse
[119]. The regions where population inversion occurs are those states for which the given pulse area in
combination with the momentum dependence of the dipole matrix element ful�lls the condition for a
π-pulse [119]. From Fig. 3.3(c) it becomes even more apparent that the pattern of population inversion
in principle shows a self-similar structure. In fact, without interactions the graphene is scale invariant
and a fractal structure like the pattern in Fig. 3.3(c) might have been expected. However, we must
bear in mind that the slow envelope approximation for E0 means that ωτ > 1, which means that there
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3.3 Ultrashort laser pulses in graphene

is a �nite strip around the resonance ∆ = 0 for which this simple picture expressed in Fig. 3.3 holds.
From Fig. 3.3(a), we infer that at a given energy there exists a minimal �eld strength at which

population inversion can occur. On the other hand, for a �xed �eld strength there is a maximal energy
at which population inversion can occur. If we express Ē in terms of the pump �uence density Ip of
the laser pulse, we obtain for the maximal energy at which population inversion can be observed

εmax =
4π3/4evF τ

xmin

(
Ip
τc

)1/2

, (3.71)

which depends on the square root of the pump �uence Ip as well as the pulse length τ . In Eq. (3.71) we
have restored the Fermi velocity vF for convenience and c is the speed of light. The constant xmin in
Eq. (3.71) is the smallest solution of Eq. (3.70) for x. We obtain xmin ∼ 1.114. It is interesting to note
that the maximal energy (3.71) depends of the square root of the pump �uence and thus is linear in
the amplitude of the laser �eld. The square root is also con�rmed in numerical studies [see discussion
below and Fig. 3.5].
The analytical result for short laser pulse agrees well with numerical solutions to the Bloch equa-

tions (3.61). The numerical solution of the Bloch equations is shown as a density plot in Fig. 3.4.
Here the inversion after the laser pulse, i.e. for t� τ is depicted. The regions of population inversion
obtained from the analytical result, Eq. (3.70) are indicated by the dashed black lines.

Figure 3.4: (a) The inversion ∆ρ for long time, i.e. t � t0 and t − t0 � τ . The inversion is
obtained from the numerical integration of the non-interacting Bloch equations for a
Gaussian quench with eĒ =

√
2πω and ωτ = 1. The regions of population inversion,

i.e. ∆ρ(+∞) < 0 agree with the predicted fractal structure in Fig. 3.3. The black
dashes lines denote the analytical result (3.70). (b) The absolute value of the relative
inversion (∆ρ(+∞)−∆ρ(−∞))/∆ρ(−∞) from the same simulation as in (a). Values
larger than 1 indicate population inversion, i.e. ∆ρ(+∞) < 0.

We stress that we do not take into account any relaxation mechanism here. In a realistic setup
the inversion will quickly decay due to super-di�usive relaxation by electron-electron interaction (see
Chapt. 4) and also due to electron-phonon interaction. However, there is evidence for short-time
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population inversion in non-degenerate pump-probe measurements [25, 120]. We will brie�y discuss
the possibility of population inversion. We already mentioned two major relaxation mechanisms. The
relaxation due to optical phonons alone is quenched for energies below the optical phonon frequency
[24, 121]. Below the optical phonon frequencies only intervalley acoustic phonons relax electrons [122].
These processes are generally slow and of minor importance at small time scales. Although it should be
said that combined scattering of electrons o� phonons and disorder leads to very fast energy relaxation,
the so-called supercollisional cooling mechanism [61]. Another pathway of relaxation is due to electron-
electron interaction where the energy remains in the electronic system. The inverted regions, depicted
in Figs 3.3 and 3.4 will be redistributed in momentum space due to electron-electron interaction (see
Chapt. 4). More speci�cally, the excited carriers at higher energies that make up the inverted regions
will move quasi-di�usively towards the Dirac-point to thermalize [68]. The rate of thermalization is
of the order ∼ α2

gT if the graphene is close to the Dirac point. It is also known that to leading order
in the coupling constant electron-electron interaction conserves the number of particles in the valence-
and conduction-band separately [60]. Therefore interaction cannot alter the total inversion, i.e. the
inversion integrated over the momentum. All this said, we can conclude that the upper bound (3.71)
on the highest energy at which inversion occurs remains valid. In fact the square root dependence
agrees qualitatively well with numerical simulations of carriers dynamics by Malic et al, reported in
Ref. [28]. Their result is depicted in Fig. 3.5, where the result from the numerical simulation from
Ref. [28] is shown. The �gure shows the maximal energy at which population inversion is observed at
very short times in a numerical integration of the semiconductor Bloch equations. The �ndings should
be compared with our formula (3.71). Indeed they �nd a square root dependence of the minimal energy
as a function of the pump �uence as depicted in Fig. 3.5. Furthermore, if we take into account the
relaxation of the inversion in the relaxation time approximation (see Appendix C) the condition in
Eq. (3.70) is altered to x sin(x) > eΓ1τ . Here Γ1 is the energy relaxation rate. The expression contains
the pulse length τ since in the presence of relaxation the condition for inversion necessarily depends on
time. We thus evaluate the condition for inversion right after the pulse has passed.

Figure 3.5: The maximal probe energy at which population inversion is observed 40 fs after the
excitation by the pump pulse as a function of the pump �uence Ip. The values were
obtained in numerical simulations of the semi-conductor Bloch equations of Ref. [28].
Reprinted �gure with permission from: Winzer et al, PRB, 87, 165413 (2013).
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Effective rate equation

Along the calculation that leads us to the result (3.69) for the inversion we also obtain the polarization
as a function of time (see Appendix C). In general this relation is implicit. To leading order in the �eld
envelope E0(t) this relation reads as

Im[p~k(t)] = −∆ρ~k(−∞)
eky
k2

∫ t

−∞
dt1 E(t1) cos[∆(t− t1)] . (3.72)

For the Gaussian pulse (3.67), one can evaluate the integral in Eq. (3.72), which yields

Figure 3.6: The �gure shows the product E0(t)R(∆t,∆τ) for di�erent values of ∆τ as indicated
in the �gure. The function R is given in Eq. (3.74). The Gaussian pulse E0 is given
in Eq. (3.67). We have set t0 = 0.

∂t∆ρ~k(t) = −∆ρ~k(−∞)

(
eky
k2

)2

Ē E0(t)R(∆(t− t0),∆τ) . (3.73)

Here the function R(x, y) is given by

R(x, y) =
1

2
e−y

2/2 Re

{
e−ix

[
1 + Erf

(
x− iy2

√
2y

)]}
. (3.74)

Given the frequency ω we can also compare ∆/ω with ωτ to discriminate between short and long
pulses. Using this normalization the behavior of the product E0(t)R(∆(t − t0),∆τ) is depicted in
Fig. 3.6. One observes that the generation rate in Eq. (3.73) decreases for large ∆/ω. The product
E0(t)R(∆(t − t0),∆τ) also starts to oscillate and even becomes negative for increasing ∆/ω. As
a consequence of this oscillations around zero, as for example in the case of ∆/ω = 2 in Fig. 3.6,
the excitation of electron hole pairs o�-resonance becomes less e�cient. The characteristic quantity
determining the deviation from resonance is the dimensionless product ∆τ . This variation of the
generation rate with detuning ∆ is an expression for the uncertainty relation. Short pulses have a
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broadband optical spectrum and excite electron hole pairs also o�-resonance, whereas for longer pulses
e�ectively only ∆ = 0 is relevant. Interestingly the product of the �eld envelope E0(t) and the function
R(∆(t− t0),∆τ) entering the generation rate on the right-hand side of Eq. (3.73) yields simply∫ +∞

−∞
dt E0(t)R(∆(t− t0),∆τ) =

1

2
e−∆2τ2

, (3.75)

when integrated over time t.
Finally, in the very extreme case ∆τ → 0 we obtain from the equation (3.73),

∂t∆ρ~k(t) = −∆ρ~k(−∞)

(
eky
k2

)2

Θ(t− t0) Ē E0(t) . (3.76)

Here we used that from ∆τ � 1 follows ∆(t − t0) � 1 and Θ is the Heaviside Theta function with
Θ(0) = 1/2. Finally one can rewrite the kinetic equation again for ρ

λ,~k
using the relation ρ

λ,~k
=

ρ~k/2− λ∆ρ~k. This yields the e�ective rate equation for the distribution function for t0 = 0,

∂t∆ρλ~k(t) = +λ∆ρ~k(−∞)

(
eky
k2

)2

ĒE0(t)R(∆t,∆τ) . (3.77)

We end up with a single equation for the distribution function ρ
λ,~k

, that does not contain the polar-
ization explicitly anymore. The rate equation (3.77) is used later in Chapt. 4.

3.4 Discussion and comparison with other theoretical works

We comment on the relation of the semiconductor Bloch equations derived so far for the description
of optical pump-probe experiments with other theoretical approaches in the literature. The Bloch
equations have been used extensively in the context of semiconductor pump-probe experiments, see
for example Ref. [20]. In the equations derived here in particular the interband matrix element is
characteristic for graphene. As a side remark, the overlap 〈u

+,~k
|∇k|u−~k〉 that determines the interband

matrix element is also called the Berry connection. Interestingly these matrix elements, the Berry
connection, appear to be divergent for small energies and we comment on that below.
In the context of graphene similar equations have been employed in Refs. [123, 124] and Refs. [21,

22, 28, 29]. Here, the Refs. [21, 22, 28, 29] performed numerical simulation of the semiconductor
Bloch equations in the presences of collisions in contrast to the analytical analysis presented here.
Here the works reported on in Refs. [123, 124] employed a phenomenological approach to dephasing
without further collisions and performed perturbative solution of the Bloch equations. Interestingly
the perturbative solutions including a momentum independent phenomenological dephasing lead to a
divergent nonlinear response at the Dirac point [124]. Since we also obtain an expression for the o�-
diagonal collision integral due to Coulomb interaction we can estimate the dephasing due to electron-
electron interaction. The calculation (see Appendix B.2) yields that in fact the dephasing also diverges
approaching the Dirac point. Therefore it is expected to compensate the divergence in the optical
interband matrix element.
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3.5 Summary

In this chapter we present the derivation of the quantum kinetic equation for graphene. Since graphene
is a two-band system the resulting quantum kinetic equation is a 2× 2 matrix equation in band space.
More importantly the distribution function exhibits the same matrix structure. Here the o�-diagonal
elements represent the microscopic interband polarization also called interband coherence. In particular
a classical light �eld couples the diagonal populations with the o�-diagonal interband coherence. This
coupling is mediated by the matrix element of the optical interband transition. The latter is the
Berry connection of the two-band system. The matrix element also yields the angular dependence
of the coupling to the electric �eld. We �nd that the coupling is the strongest perpendicular to the
polarization of the external light �eld. This fact is a consequence of the pseudospin conservation along
the direction of the polarization of the electromagnetic �eld.
Finally we derive expression for the collision integral due to electron-electron interaction which con-

tains the graphene speci�c Dirac factors. The latter are again a manifestation of the multiband character
of the system. It is a direct consequence of the two bands being gapless and therefore representing
massless Dirac particles. Apart from the diagonal part of the collision integral due to Coulomb inter-
action we also derive the out-scattering part to leading order in the polarization. The latter describes
for example dephasing of the interband decoherence due to Coulomb scattering.
The resulting system of equations makes up the semiconductor Bloch equations for graphene includ-

ing Coulomb interaction. These equations represent a versatile formalism, in particular suitable to
study pump-probe setups. The formalism also represents the basis of our following discussion of the re-
laxation of high-energy electrons due to Coulomb interaction that is important for optical pump-probe
experiments.
We apply the equations to the problem of laser pulses impinging on a graphene sample. Here we

include the relaxation in terms of a phenomenological relaxation time. For very short pulses we obtain
an analytical expression for the population inversion after the pulse. This result is strictly nonlinear in
the �elds as there is no population inversion to leading order in the electric �eld. From the analytical
result for the population inversion in the nonlinear regime and short pulses we derive the central result
of this part. We �nd that there is a maximal energy at which population inversion can occur after the
pulse has passed the system. More speci�cally, we �nd that the threshold scales with the square root
of the pump �uence and also with the square root of the pulse length. If we turn the above statement
around, we can also say that for any given energy there exists a minimal pump �uence to achieve
population inversion after the pulse. This result is in accordance with numerical calculations including
the relaxation.
While the semiconductor Bloch equations include the �eld to all orders we also derive an e�ective

rate equation for the populations in the conduction and valence band alone. In this e�ective equations
the interband polarization disappears. Still the resulting equation contains the energy and angular
dependence of the optical matrix element. Furthermore it contains the full time dependence of the
generation rate of particle-hole pairs due to the laser pulse. This result is distinctly di�erent from the
often encountered time integrated generation rate. The latter is proportional to the Fouriertransform
of the laser pulse. In particular in the analysis of experimental data this simpli�cation has been used
before.
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4 Chapter 4

Pump-probe measurements in graphene

This chapter is devoted to the relaxation of optically excited carriers as they are created in pump-probe
experiments. In this section we are going to utilize the techniques developed in the previous chapter to
explore the early stage of the relaxation of high-energy electrons after laser excitation. We are going
to analyze the relaxation of electrons due to Coulomb interaction and �nally make connection to the
experiments on the basis of the e�ective rate equation derived in Chapt. 3.

4.1 Pump-probe experiments

This section serves as a brief overview of the recent experimental activity on pump-probe experiments
in graphene in various regimes of parameters.
Pump-probe experiments are a powerful tool to investigate short-time dynamics in various types of

systems. Advances in pump-probe measurements over the recent years have given access to femtosecond
time-scales. And those techniques have become the predominant tool to study transient non-equilibrium
dynamics.
The basic idea is as follows. First, the system is excited by the pump pulse. The pump creates an

initial non-equilibrium state. This can be an excited state of an atom. Or in the case of semiconductors,
and in particular in the case of graphene, the pump excites electron-hole pairs. The pump pulse is
usually of high intensity. In experiments on graphene the pump �uence ranges between I ' 300 −
3800 µJ/cm2 [17, 21, 22, 25, 30]. Above �uences of Ip ' 1800 µJ/cm2 the experiment shows nonlinear
pump �uence dependence in the probe signal [25]. Apart from the �uence a desired frequency can be
chosen among the available laser sources. The temporal resolution is naturally limited by the pulse
length of the initial pump as well as the length of the probe pulse following the pump after a certain
delay time. The variation of the time delay between the pump and the probe enables the observation
of the time-evolution of the system. The probe is usually a second laser pulse that measures the
change in transmission of the sample. However it is also possible to use ARPES, Raman or �uorescence
spectroscopy as a probe. In general direct and indirect measurements of the system's state must be
distinguished. We discuss two di�erent techniques for pump probe measurements that are important
for our theoretical study.
First, the probe can simply measure the transmission or re�ectivity of the graphene after the ex-

citation by the pump. More speci�cally the most common observables are the di�erential change in
transmission ∆T /T0 or the di�erential change in re�ectivity ∆R/R0. Here ∆R = R(t) − R0 and
∆T = T (t) − T0 are the change in re�ectivity and transmission, where R(t) and T (t) are the total
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re�ectivity or transmission at time t. On the other hand R0 and T0 are the equilibrium values as given
in Sec. 2.3 for high frequencies in graphene. These kind of experiments are an indirect measurement
of the state of the system since the macroscopic transmission is already an average of all microscopic
states. We have also seen this in Sec. (2.3), where the connection between the transmission and the
optical conductivity has been established. Furthermore, the probe can measure the transmission of the
sample at the same frequency as the pump, in which case the setup is called a degenerate pump-probe
measurement, or the probe pulse measures the transmission at a di�erent frequency. In a common
setup for graphene the system is excited in the ultraviolet and probed in the THz region. This basically
implies a measurement of the e�ective electron temperature by the probe pulse as in Ref. [30]. This
work also established the cascade picture that we will discuss in the following section.
Other experiments at higher pump �uences, see for example Ref. [25], investigated the possibility of

population inversion in graphene, a topic we have brie�y touched upon in Sec. 3.3. Here the system
was pumped with a source exhibiting the frequency ω = 1.55 eV and probed in the degenerate setup as
well as with low energy probes with frequencies ω = 1.16 eV and ω = 1.33 eV. At the highest �uence
of I = 3.9mJ/cm2 the system shows a population inversion at the low-energy probe frequency whereas
the threshold for population inversion at the pump frequency has not been reached. The result is
qualitatively consistent with our �ndings in Sec. 3.3. There we have seen that indeed at a given �eld
strength a maximal energy where population inversion can occur exists.
A third group of experiments we want to discuss within the group of indirect pump-probe measure-

ments is devoted to the study of possible Auger processes in graphene, as for example in Ref. [22].
However, there seems no unambiguous evidence for the presence of Auger processes. As we have men-
tioned in Chapt. 1, there are severe restrictions for Auger processes. We will again comment on the
possibility of Auger processes later in this chapter (see Sec. 4.3.2). However, we will disregard them in
the following analysis, again for reasons stated in Sec. 1.2.1.
Another more recent avenue of research for graphene is a direct measurement of the electronic state

of the graphene after the pump pulse by means of ARPES measurements. Here the ARPES laser
pulse constitutes the probe and the technique directly measures the electronic distribution function. A
prominent example is the work in Ref. [125]. With down to femtosecond time resolution the very early
stage of electronic relaxation has been measured directly from the distribution function. We will come
back to this experiment at the end of this chapter.

4.2 Previous theoretical work

Since the �rst pump-probe experiments on graphene [17, 18] there has been intensive theoretical work
on the description of the relaxation mechanisms in graphene. Those works of course follow the experi-
mental trends and questions that we have brie�y reviewed in the preceding section. Initial theoretical
work focused on pump-probe transmission spectroscopy while numerical studies also accessed the time-
evolution of the distribution function. Several theoretical works explored the possibility of population
inversion [28, 126, 127]. Regarding the calculation of the relaxation rates the theoretical studies so far
focused on the relaxation rates of thermal electrons using static or dynamical screening in the random
phase approximation as in Refs. [35, 39, 57, 58, 73, 128].
Speci�cally for the pump probe experiments comprehensive numerical studies elucidated the interplay

of the electron-electron interactions and phonon interactions [22, 129] as well as the importance of
di�erent scattering channels in particular in the context of carrier multiplication via Auger processes
[130]. The relaxation of optically excited carriers in doped graphene was theoretically studied [31] at
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zero temperature. Here, the cascade picture was developed that we will explain below. The latter was
experimentally con�rmed in Ref. [30].
This chapter extends the calculation of relaxation rates to high energies ε� max(|µ|, T ). Therefore

we are also considering �nite temperature in contrast to previous works. Furthermore we develop
an analytical theory to describe the electronic relaxation of high-energy electrons due to Coulomb
scattering in pump-probe experiments. As we have seen in Sec. 3.3 the semiconductor Bloch equations
developed in Sec. 3.2.5 are also suitable to study the nonlinear response as for example in Ref. [131].

4.3 The relaxation of high-energy electrons - anomalous diffusion and
Lévy flights

In this section we will present the results of our �ndings on the relaxation of high-energy carriers as
they arise in the optical pump-probe experiments described in the beginning of this chapter. More
speci�cally, we are going to explore the relaxation of high-energy electrons due to electron-electron
interaction. Experiments [30] and numerical simulations [22, 28] suggest that electron-electron inter-
action is the fastest scattering process and is responsible for the relaxation cascade of optically excited
carriers after laser excitation.

4.3.1 The relaxation cascade

Among the experiments mentioned in the previous section the work reported in Ref. [30] established
the concept of the cascade picture describing the relaxation processes of the optically excited carriers
in graphene. We brie�y explain the relevant ideas.
In the above mentioned work, Ref. [30], the authors studied the relaxation of optically excited carriers

in a pump-probe setup. They considered the graphene at �nite chemical potential µ. The main goal
was to �nd evidence for carrier multiplication. While they did not see any evidence for interband carrier
multiplication due to Auger processes (see Sec. 1.2.1), they could conclude that during the relaxation
process the high-energy electrons successively excite particle-hole pairs within the conduction band. In
order words the high-energy electrons scatter with thermalized electrons at low energies and promote
them above the Fermi surface. The characteristic energy transfer in a single scattering event could
be shown to be of the order of the Fermi energy. The latter �nding was supported by a theoretical
analysis of the scattering process where an average transferred energy of the order of the Fermi energy
was con�rmed [31]. The fact that the high-energy electrons relax in successive steps of the size of the
Fermi energy is exactly what is meant by the term relaxation cascade. The evidence for a �xed step
width is the following. The temperature after thermalization is a measure of the number of excited
electrons above the Fermi energy. The latter in turn is proportional to the number of steps in the
cascade. A simple approximately linear scaling between the temperature and the frequency of the light
that sets the length of the cascade thus implies an on average constant step size.
Within the cascade picture, the frequency of the pump sets the length scale of the relaxation cascade.

The temperature after thermalization is a measure for the number of hot electrons that have been
promoted above the Fermi surface. The approximately linear scaling again implies that the electrons
relax on average in successive steps. Very importantly, the interpretation above also implies that
the cascade is due to electron-electron collisions [30]. Phonon-processes are much slower and become
important at a later stage to reduce the electronic temperature [24, 121]. In contrast, during the cascade
the energy of the pump-pulse stays nearly entirely in the electronic system.
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The question we are now concerned with is �rst what is the detailed statistics of the cascade for �nite
temperatures. More speci�cally, what is the character of a single scattering event in the limit |µ| � T
and T � |µ| respectively. With respect to the entire cascade the �uctuations of the average step size
are also important.

4.3.2 A single cascade step

Our aim is to understand the relaxation cascade (see Sec. 4.3.1) in terms of a random walk. To this end
we are �rst going to study a single cascade step. We are going to study the relaxation step by means of
the semi-classical Boltzmann equation for a homogeneous graphene sheet. Therefore the occupation of
a given state will be given by the distribution function measuring the local probability or phase space
density. For moderate pump �uence the phase space density of the excited electrons is much lower
then the one of thermal electrons. Scattering and energy relaxation of a high-energy excited electron is
therefore predominantly due to interaction with thermal electrons. We neglect the mutual scattering
of high-energy electrons and assume that the low energy electrons remain thermal with temperature T .
For small �uences we also neglect the change in T due to illumination. We are also not going to ask
for the generation of the excited electrons by the initial laser pulse at this stage of the analysis. The
quantum kinetic equation in the form of the Bloch equations is suitable to study this broader question.
In this limit the diagonal part of the optical Bloch equations assumes the Boltzmann form and we will
therefore use the notation ρ

λ,~k
→ fλ(~k) for the distribution function in the following. Since our aim is

�rst to understand the relaxation dynamics we simply look at an initially prepared disturbance to the
thermal distribution f (0)(ε) = 1/[1 + exp((ε− µ)/T )], of the form

fλ(~k) = f (0)(λk) + δfλ(~k) , δfλ(~k) = δλ,+1δ~k,~p . (4.1)

Based on the approximations mentioned above we now follow the evolution of a single electron added
due to the correction δfλ(~k). The excited electron starts its relaxation process at momentum ~p as it
relaxes due to scattering with the thermal electrons with energies ε � εp. Since we focus here on
the dynamics of the high-energy electrons rather than the questions associated with the equilibration
of the low energy thermal electrons we do not consider changes to the distribution function at low
energies. Remember that strictly speaking, we also restrict our analysis to the earliest stage dominated
by electron-electron interactions as explained previously, in which the energy remains entirely in the
electronic system. Therefore, within the cascade picture the excited electrons with an energy of the
order ωpump/2 are relaxing in consecutive steps due to the interaction with a thermal bath of low energy
electrons at equilibrium. The time-evolution of the perturbation δf in Eq. (4.1) is governed by the
semi-classical Boltzmann equation. The relaxation rate for the high-energy electron is therefore de�ned
via the Boltzmann equation according to

∂tδfλ(~k) = St[fλ(~k)] . (4.2)

The collision integral St[f ] describes the electron-electron scattering and is explicitly given in Sec. 3.2.4.
We emphasize again that we are considering an electronic state with momentum ~p in the conduction
band and energy εp = |~p |, see also Eq. (4.1).
With the ansatz (4.1) inserted into Eq. (4.2), we observe that the relaxation rate of the high-energy

electron is determined by the out-scattering rate in the collision integral. The latter reads as

St[f+1(~p)] = −
∑
2,3,4

W12,34f3(1− f4)(1− f2) . (4.3)
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In Eq. (4.3) we used the short-hand notation i = (εi,~ki). The transition rate of Coulomb scattering
W12,34 is given in Appendix D. Here, we remind the reader that in the case of Dirac particles it contains
the overlap of the eigenstates 〈λj ,~kj |λi,~ki〉, that leads to a suppression of backscattering, in addition
to the semiclassical matrix element of Coulomb scattering. We have also seen this in Chapt. 3 where
we derived the quantum kinetic equation. In the following analysis of the random walk in energy space
that will describe the cascade it is advantageous to express the rate in terms of the transferred energy ω
and momentum q. For the energies εi of the scattering states in the transition rateW in the Boltzmann
equation (4.2) we have, ε1 = εp, ε2 = εp − ω, ε3 = ε4 − ω and ~k2 = ~p − ~q, ~k3 = ~k4 − ~q, due to the
conservation of energy and momentum.
According to the discussion of the kinematics of the electron-electron interaction in graphene in

Sec. 1.2.1 we can classify the possible scattering processes in terms of interband, |ω| > q, and intraband
scattering, |ω| < q. Collinear scattering occurs exactly at |ω| = q. But as we have also discussed in
Sec. 1.2.2, the phase space is not only negligible, dynamical screening in the random phase approxima-
tion also leads to an additional suppression of collinear scattering, though the presence of additional
scattering mechanisms may invalidate this statement.
We now make progress on the scattering rate. Combining Eqs. (4.2) and (4.3) we obtain an expression

for the relaxation rate Γp of the photoexcited electron, de�ned by the Boltzmann equation

∂tδf+1(~p) = −Γ(p) = St[f+1(~p)] . (4.4)

Interestingly the scattering rate Γ can be written in terms of the following integral over all transferred
energies ω,

Γ =

∫ +∞

−∞
dω P (ω) . (4.5)

Here P (ω) is the scattering rate per frequency interval (ω, ω + dω). On the other hand it de�nes the
distribution of the transferred energy in a single scattering event or cascade step. We thus refer to
P (ω) as the jump-size distribution (JSD) of the relaxation cascade. This is exactly the probability
distribution we are seeking for to describe the relaxation process as a random work. And all its
characteristics will be derived from the JSD P (ω).

Figure 4.1: The kernel K(ω, q), Eq. (4.9), determining the phase space of scattering for thermal
electrons for di�erent frequencies ω and (a) µ = 0, (b) µ/T = 10. The regions of
intraband (q > |ω|) and interband (q < |ω|) scattering are separated by the dashed
line.
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As long as ω < εp the excited electron is scattered within the conduction band, which implies q > |ω|.
Since the particle number in the conduction and valence band are separately conserved in pair collisions,
the thermal electron that scatters with the high-energy electron also performs an intraband transition
[60]. We �nd that the contribution for ω > εp corresponding to interband transitions is negligible for the
relaxation rate Γ, Eqs. (4.4) and (4.5), as well as for the statistics of the entire cascade (see Sec. 4.3.1).
Moreover, calculation shows that the relevant transferred energies satisfy |ω| � εp. Scattering in this
case is predominantly in forward direction, which simpli�es the overlap functions

|〈λ2,~k2|+ 1, ~p〉|2 =
1 + λ2(~p · ~k2)/pk2

2
' 1 . (4.6)

Taking into account that f2 ' 0 for |εp − ω| � max(|µ|, T ) in Eq. (4.3), we obtain the compact
expression for the JSD,

P (ω) =

∫ ∞
|ω|

dq q
N |V (ω, q)|2

|q2 − ω2|
K(ω, q) . (4.7)

Here we assumed εp � max(|µ|, T ) and as a consequence P (ω) is independent of the particle energy
εp. In Eq. (4.7) the RPA-screened matrix element of Coulomb scattering

V (ω, q) = V0(q)/ε(ω, q) , (4.8)

where the dielectric function ε(ω, q) = 1 + V0(q)NΠ(ω, q). The RPA polarization operator Π(ω, q)
is given in Sec. 1.2.2. The bare Coulomb interaction V0(q) = 2παg/q has also been introduced in a
broader discussion in Sec. 1.1. The number of �avors N = 4 and the coupling constant in graphene
αg = e2/ε~vF in our notations is αg = e2/ε. Remember that in the presence of a dielectric environment
with dielectric constant ε � 1 the coupling constant can be small, αg � 1, which we assume in the
following. Therefore we adopt the weak coupling assumption already employed in the RG analysis in
Sec. 1.3. Finally the integral kernel K in Eq. (4.7) describes the phase space of the thermalized electrons
that scatter with the photo-excited electron under consideration. It is de�ned according to

K(ω, q) =

∫ +∞

−∞
dε4

√
(ω − 2ε4)2 − q2 fT (ε4 − ω)[1− fT (ε4)] . (4.9)

We will call the kernel K in the following the kinetic kernel. The asymptotics can be found in Ap-
pendix D. It is furthermore related to the vertex function Γ(0) introduced in Appendix. E.3. The
relation reads as

K(ω, q) =
T
√
|q2 − ω2|

1 + e−ω/T
Γ(0)(ω, q) . (4.10)

The latter naturally arises when solving the linearized Boltzmann equation. It has a simple diagram-
matic correspondence in the high temperature Boltzmann limit as will also be explained in Appendix E.
This diagrammatic correspondence agrees with the interpretation as a phase space weight as adopted
here. The kinetic kernel is illustrated in Fig. 4.1.
At this point we brie�y need to comment on the validity of the RPA. We refer mainly to our review

in Sec. 1.2.2. We have mentioned in Chapt. 1.2.2 that the RPA is also logarithmically accurate for
small frequencies |ω| < max(|µ|, T ). This follows from the RG calculation justi�ed in the large N
limit. That means for |ω| > max(T, |µ|) the RPA as well as the results derived on the basis of the
RPA screening here are correct in the large N limit. The RPA screening is important for the following
analysis since we immediately realize that the denominator of the integrand in Eq. (4.7) is singular in the
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case of collinear scattering |ω| = q, which in the absence of screening would lead to the logarithmically
divergent Coulomb scattering integral [39, 69, 132]. However the polarization operator in RPA is also
divergent in the case of collinear scattering, thus the total scattering amplitude remains �nite. We
refer to Sec. 1.2.2 for more details and a discussion thereof. In passing we remark that the singular
nature of the scattering of Dirac particles with linear dispersion also manifests itself in the phase space
kernel (4.9). Figure 4.1 shows K for intrinsic graphene (|µ| � T ) as well as for |µ| � T . In either
case K exhibits a jump at collinear scattering. One observes that for µ = 0 [Fig. 4.1(a)] the phase
space of intraband processes is strongly suppressed and controlled by T . On the contrary, for |µ| � T
[Fig. 4.1(b)] K is dominated by intraband processes.
We now have derived the de�nition of the probability density of the random walk � the jump-size

distribution (JSD). Let us now discuss the JSD separately for T � |µ| and |µ| � T , before we move
on to reformulate the relaxation cascade �nally as a random walk in Sec. 4.4.

The quantum critical region in the limit T � |µ|

Close to the Dirac point or in other words in the quantum critical regime of T � |µ|, we expect
anomalous relaxation rates as we have discussed in Chapt. 1 and as it is known in literature [58, 73].
For the regime T � |µ|, the JSD is depicted in Fig. 4.2. For T � |µ|, there are two important scattering
processes. The �rst one is intraband scattering with small momentum transfer q < 2T , which leads
to a logarithmic divergence in the JSD for frequencies |ω| < αgT , depicted as the dash-dotted line in
Fig. 4.2(b). The logarithmic divergence is a characteristic feature of the Coulomb collision integral in
particular in two dimensions. As we discussed in Chapt. 1 a similar logarithmically divergent electron-
electron collision integral is known as the Landau collision integral in plasma theory. Here, that means
in the JSD as depicted in Fig. 4.2(b), the logarithm occurs due to the failure of screening at small
frequencies and momenta which enables resonant forward scattering. The logarithmic divergence is
however integrable since it is cut o� by screening e�ects at larger momenta.
The contribution of scattering with q < 2T , that is responsible for the logarithmic divergence de-

creases monotonically with increasing frequency and vanishes for |ω| ≥ 2T since |ω| > q forbids intra-
band scattering.
The second kind of process is intraband scattering with large momentum transfer q > 2T . This

contribution increases with increasing frequency up to ω = 2T . It dominates over scattering with
small momentum transfer for ω ∼ 2T and higher frequencies. For frequencies ω > 2T it decreases
monotonically. Speci�cally, we �nd that at large ω the JSD falls of as ω−5/2, shown in Fig. 4.2(a).
There is a �nite probability for the excited electron to gain energy from the bath of thermal elec-

trons. However negative frequencies are exponentially suppressed as shown in Fig. 4.2(a). This fact is
simply an expression of the irreversible and dissipative character of the interaction of the high-energy
electron with the thermal electrons. In principle one can also view the ratio between gain and loss
P (−|ω|)/P (+|ω|) ∼ exp(−|ω|/2T ) as a manifestation of �uctuation relations that are well established
in equilibrium thermodynamics however under debate in the generic non-equilibrium situation [133].
The slow decay of the JSD for large frequencies has important implications for the �uctuations of ω

as discussed in Sec. 4.3.1. In particular it is di�erent from the JSD of a Fermi liquid which is �at in the
range 0 < ω < εp. Thus an electron in a Fermi liquid would lose most of its energy by a single jump.
The Fermi liquid regime is realized under the conditions |µ| � T and εp � |µ|.
Important for the cascade is also the characteristic timescale associated with a single scattering event.

Therefore we calculate the total scattering rate Γ, given by Eq. (4.5). It turns out that for the scattering
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Figure 4.2: The jump-size distribution (4.7) for T � |µ|. The inset (b) shows the contributions of
q > 2T (dashed line) and q < 2T (dash-dotted line) to P (ω) (solid line) for |ω| < 2T .
Both curves are calculated for αg = 0.75. For details of the calculation, see App. D.

rate (4.5) the region |ω| < 2T is most important and

Γ = καgT , |µ| � T, αg � 1 , (4.11)

where κ = 4π2(1 + ln 2 +G/2) ' 84.92 and G ' 0.916 is the Catalan constant. We remind the reader
that the linear dependence on T is a characteristic feature of intrinsic graphene that distinguishes it
from the Fermi liquid [73]. It is a manifestation of the quantum critical point and temperature as the
dominant perturbation away from criticality is the only important scale determining the relaxation
rate. Furthermore, due to screening the rate (4.11) is independent of the number of �avors N and
linear in αg contrary to the Golden rule result Γ ∝ α2

gT [58]. The rate (4.11) is also independent of the
particle energy εp � max(|µ|, T ).

The Fermi liquid limit of |µ| � T

For |µ| � T the JSD is dominated by the region |ω| < 2|µ| as can be seen in Fig. 4.3(a) while the
weight of the tail is strongly reduced. In particular the mean jump-size will be of the order |µ|. At the
lowest frequencies |ω| < αgT , the JSD P (ω) shows a logarithmic divergence due to unscreened collinear
scattering. Here the JSD recovers the Fermi liquid form P (ω) ∝ (T/|µ|) ln |µ/ω| (see Ref. [128]) in
contrast to the result for T � |µ|, where we obtain P (ω) ∝ ln(αgT/|ω|). Furthermore in the T = 0
limit the logarithmic divergence at small energies vanishes, see Fig. 4.3(b). In this case P (ω) reproduces
qualitatively the result of Ref. [31].
The dominant process for |ω| < 2|µ| is the intraband scattering with small momentum transfer,

q < 2|µ|. Similar to the case T � |µ|, such small-momentum scattering is not possible for ω > 2|µ|
where scattering with q > 2|µ| leads to the fat tail ∝ ω−5/2. The contribution of negative frequencies
P (ω < 0) ∝ exp(−|ω|/2T ) is again exponentially small just as in the quantum critical regime of
T � |µ|.
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Figure 4.3: The JSD (4.7) for µ/T = 10. In the region |ω| < 2|µ| processes with q < 2|µ|
are dominant. For |ω| > 2|µ| processes with q > 2|µ| determine the fat tail of the
JSD. The inset (b) illustrates the evolution of the forward scattering resonance with
lowering temperature. Both curves are calculated for αg = 0.75. For details of the
calculation, see Appendix D.

In the case T � |µ|, the relaxation rate was determined by |ω| < 2T . The total rate for |µ| � T , is
dominated by 0 < ω < 2|µ| and is given by

Γ = 8αgπ
2|µ| , |µ| � T, αg � 1 . (4.12)

Remember that the rate Γ determines the characteristic time scale associated to a single scattering
event as in the case of T � |µ|.

Additional comments

At this point a brief remark regarding the stability of the results in the presence of other scattering
mechanism is in order. The rates (4.12) and (4.11) are calculated in the ballistic regime Tτdis � 1,
where we neglect the in�uence of disorder with the characteristic scattering time τdis. In the FL case it
is known that the presence of disorder has strong in�uence on the inelastic relaxation of particles in the
di�usive regime Tτdis � 1 [134�136]. However, even in the di�usive regime the tails of the JSD ∝ ω−5/2

are preserved for ωτdis � 1, since they emerge due to scattering with large momentum transfer.
We �nish this section with a short discussion of corrections to the results above due to the possibility of

Auger processes. We have ruled out Auger processes primarily due to the restriction of the phase space
as discussed in Sec. 1.2.1. We here discuss one mechanisms to open up phase space for Auger processes.
More speci�cally we consider the nonlinearity of the spectrum at high energies ε∗ . Λ, where Λ is the
cuto� energy. The nonlinear correction to the dispersion relation reads ελ(p)−λk ∝ k2 sinϕk/Λ, where
ϕk is the angle of the direction of ~k. The parameter that controls violations of the linear dispersion
relation is therefore ε∗/Λ. Here ε∗ ∼ ωpump is a characteristic energy. A positive curvature of the
spectrum opens a phase space for Auger processes. Auger processes thus also contribute to the tail of
the JSD. From a simple estimate we obtain that Auger processes dominate over intraband processes for
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ω & T (T 1/3Λ2/3/ε∗)2. This region is irrelevant if ε∗ . Λ(T/Λ)5/9. Under this condition the nonlinearity
does not modify the tail of P (ω). For room temperature and the cuto� Λ = 1 eV, even near-infrared
to visible light is within the range of validity of the results of this section. Since positive curvature
only occurs in certain directions, Auger processes should be even weaker than in the simple estimate
above. We furthermore want to stress that a negative curvature prevents Auger processes. Negative
curvature appears due to intrinsic band curvature in certain directions of the reciprocal space and due
to renormalization of the electronic spectrum due to interactions (see Sec. 1.3).

4.3.3 Stable distributions and Lévy flights

In view of the �ndings on the jump-size distribution in the last section and also in view of our �nal
goal to describe the relaxation process of electrons in graphene as a random walk we need to discuss
the notion of Lévy processes also called Lévy �ights and stable distributions. The reason is primarily
the fat tail of the JSD as found in Sec. 4.3.2. We return to the discussion of the relaxation cascade in
Sec. 4.3.4.
Stable distributions occur in the context of a generalized limiting theorem for sums of identical and

independently distributed random variables. Suppose we have such independently distributed random
variables ln, which have the probability density p(l). We then ask whether the sum

Sn =
1

Bn

∑
k=1

lk −An , (4.13)

has a limiting distribution for n → ∞, i.e. Gn(x) = prob(x < Sn < x + dx). Furthermore one is
interested in the general properties of the limiting distribution if it exists and under which conditions
imposed on the distribution p(l) does the sum converge towards a speci�c limiting distribution. Math-
ematically speaking one is interested in the domain of attraction of the distribution Gn(x) = G(x).
The central limit theorem for distributions with �nite �rst and second moments, i.e. �nite mean and

variance, is well known. In this case the limiting distribution of the sum (4.13) will be the Gaussian
distribution, determined solely by the �rst two moments mentioned above. However the more general
case seems to be less known and we will therefore give a brief introduction into the theory of stable
distributions and Lévy processes in the following.
We start out with the notion of a stable distribution. A stable distribution is de�ned by the following

property, expressing a certain linearity in the argument of the probability density. Suppose we have two
independent identical copies x1 and x2 of the random variable x distributed according to the probability
density G(x). The variable x and its distribution are called stable if the linear combination a1x1 +a2x2

has the same distribution as the variable cx + d for a given c, d ∈ R with c, d > 0 in our case. The
above stated property is equivalent to the invariance under convolution of the distribution G(x) which
reads as

G(cz + d) =

∫ +∞

−∞
dx G(a1(z − x) + b1)G(a2x+ b2) . (4.14)

For example the Gaussian as well as the Cauchy distribution belong to the class of stable distributions.
Besides these two examples stable distributions include many more. Interestingly there exists a full
parametrization of all stable distributions due to Lévy and Khintchine [137]. They showed that the
characteristic function of a stable distribution Gn(x), i.e. the expectation value Φn = 〈eikx〉 can be
speci�ed fully in terms of the four real parameters µ, α, β and c. Here the brackets 〈. . . 〉 denote the
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average with respect to the distribution G(x). For an observable O(x) this reads as

〈O(x)〉 =

∫
dxO(x)G(x) . (4.15)

We have furthermore the restrictions 0 < α ≤ 2 and −1 < β < +1. The parameter µ is related to
the mean of the stable distribution and referred to as the location parameter, whereas the parameter
c is called scale parameter. They determine the overall position of the stable distribution and can be
adjusted by means of a scale transformation. The shape parameters β and α determine the skewness and
the asymptotics of the distribution. The parameter α is called the characteristic exponent. Although
β is referred to as the skewness, note that the second moment need not exist for a generic stable
distribution. The latter is reproduced by α = 2. In the following we exclude α = 1, which is not
important for our subsequent application of Lévy �ights to the physics in graphene. The characteristic
function of a stable or also called α-stable distribution reads as

Φn(α, δ, β, c; z) = eiznδ−nc|z|α(1−iβsign(z) tan(απ/2)) , (4.16)

where n labels the number of terms in the sum (4.13). From the Lévy-Khintchine representation follows
that indeed the characteristic exponent α determines the asymptotics of the stable distribution at large
values of x. If for example we have β = 0, an α-stable distribution G(x) has the asymptotic behavior

G(x) ' 1

|x|α+1
, (4.17)

for x→ ±∞. In the case of β = 1 the distribution furthermore becomes single-sided. That means the
distribution shows the power law tail according to Eq. (4.17) for x → +∞ and is exponentially small
for x→ −∞.
In the beginning of this section we were also asking for the criterion for the convergence of the

sum (4.13) towards a stable distribution. It was found that the initial distribution exactly lies in
the domain of attraction of a stable distribution with scale parameters c and α if it possesses the
asymptotics [137],

p(x) ' cα(1 + sign(x)β) sin(απ/2)Γ(α+ 1)/π

|x|α+1
. (4.18)

Interestingly Lévy processes also show scaling behavior. This is not surprising in view of the power
law tail that indicates scale invariance. The scaling relation for Lévy �ights reads as

Gn(Sn) = n−1/αG1(Y/n1/α)|δ=0 , (4.19)

where the variable Y = Sn − nδ describes the �uctuations of the cascade after the constant drift has
been subtracted.

Lévy process

Having de�ned the notion of the stable distributions we now sketch how they naturally arise in random
walks. A very general class of random walks is the Lévy process. The latter is a random process of the
random variable X(t), that means the variable X(t) changes randomly over the course of time. For the
Lévy process one demands that the increments of the random process X(t2) −X(t1), X(t3) −X(t2),
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..., up to X(tn) − X(tn−1) are independent random variables. Furthermore it is demanded that the
increments are stationary, which means

X(t1 + h)−X(t1) ∼ X(t2 + h)−X(t2) , (4.20)

for arbitrary times t1 and t2 and h ∈ R. The equivalence in Eq. (4.20) means that X(t1 + h)−X(t1)
is equivalent in probability to X(t2 + h) − X(t2), i.e. both increments in Eq. (4.20) have the same
probability distribution.
Important for our case is the discrete Lévy process. Here the time steps separating tn are of �xed

length ∆t, i.e. tn = n∆t and the Lévy process Xn is given by

Xn =

n∑
k=0

lk , (4.21)

where the lk are distributed according to the same distribution function. The Lévy process thus
constitutes a random walk with so far arbitrary distribution for the increments ln.
It now becomes clear that the relaxation cascade can be understood as a random walk in the following

sense. We are considering a discrete Lévy process or random walk where the length of one time-step is
given by the characteristic scattering time of the high-energy electron. This will be the total scattering
rate Γ and the time step will therefore be ∆t ∼ Γ−1, where Γ is determined by Eq. (4.4). The
distribution of increments is the jump-size distribution calculated in the previous section 4.3.2 in the
quantum critical regime as well as in the Fermi liquid regime. Bear in mind that the electron loses
energy, except for a negligible probability to actually gain energy from the bath of thermal electrons.
Therefore whenever we are talking about increments we mean increments in the cascade which means
decrease in the electrons energy. The cascade of course stops when the high-energy electron reaches
energies of the order of the chemical potential or temperature.

The truncated Lévy flight

The unique behavior of Lévy α-stable distributions originates from the fat tails of the distributions.
These tails lead to a divergence in the second moment of the distribution as we mentioned above.
However, in the real world the divergence of the second moment is cut-o� by some scale. The latter can
be system size, measurement time or in our case the initial energy of the particle that is determined
by the frequency of the pump pulse. It is therefore interesting to study the truncated Lévy �ight. The
latter exhibits all characteristics of the canonical Lévy �ight up to a certain scale Λ beyond which
the power law tail is suppressed. Truncated Lévy �ights have been studied in the literature both
numerically [138] as well as analytically [139]. Both studies reveal the following picture. By increasing
n in the sum (4.13), the distribution of Sn �rst converges to a Lévy distribution and �nally for very
large n crosses over into the normal distribution. The convergence to the Gaussian was however found
to be very slow. The analytical theory predicts that the crossover to the normal distribution happens
at large values of n > Λα, where α is the characteristic exponent of the Lévy �ight that emerges before
the transition to the normal distribution. This slow convergence of the truncated Lévy �ights to the
Gaussian is con�rmed by our numerical sampling in Sec. 4.3.4, a result that is important for our later
discussion of the relaxation cascade in the following sections.

4.3.4 The relaxation cascade revisited

We are now ready to continue our analysis of the relaxation cascade of photoexcited electrons in
graphene. In particular we will apply the concepts of stable distributions and Lévy processes from
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Sec. 4.3.3. in the following to the cascade. More speci�cally, we will review the cascade picture
proposed in Ref. [30] in terms of the �uctuations of the number of cascade steps and the �rst passage
time of the underlying Lévy process.
We have seen that the JSD of a high-energy electron with energy εp � max(|µ|, T ) in graphene

implies an average jump size of the order of either temperature or chemical potential. This is in
contrast to the FL result where the JSD is �at up to the particle's energy. In graphene, the excited
carriers relax in a cascade, with on average 〈n〉 ∼ εp/〈ω〉 jumps, where 〈. . . 〉 is the average according
to the JSD as de�ned in Eq. (4.15). The time scale of the cascade is then t ∼ n/Γ [30, 31] and the
time scale of a single scattering event is naturally given by 1/Γ and constitutes the time increment of
the Lévy process that describes the relaxation cascade (see Sec. 4.3.3). The above conclusion concerns
the mean number of steps in the cascade as well as the average cascade time. We now discuss the
statistics of the random walk modeling the relaxation cascade in more detail with an emphasis on the
�uctuations of the number of cascade steps.
Due to the fact that the JSD exhibits the fat tail P (ω) ∝ ω−5/2, it does not possess a second

moment. Therefore, the �uctuations of the number of cascade steps should show an unusual behavior.
The particle energy provides a natural cuto� for the JSD, rendering its variance �nite. But on an
intermediate scale, before the electron energy reaches max(|µ|, T ), the distribution behaves as if it
possessed no �nite variance. This is also demonstrated in Fig. 4.4(a)-(b) where we conducted an
analysis of the relaxation cascade in the presence of a �nite cut o� by numerically sampling the random
walk from the JSD in the regime T � |µ|.
According to the concepts presented in the previous section in particular in the context of the Lévy

process the relaxation cascade is given by

Sn = ω1 + · · ·+ ωn . (4.22)

Here the ωi are the jump lengths of the successive scattering events in which the electron loses the
energy ωi. The steps ωi are independent and identically distributed. The statistics of the cascade
following from the simulation of the random walk is illustrated in Fig. 4.4(b). For not too large n, a
�nite cuto� in the JSD does not change the distribution of Sn in Fig. 4.4(b). It �ts nicely to the Lévy
distribution with the characteristics drawn from the results of Sec. 4.3.2, that means in particular an
index of stability of α = 3/2 and β = 1. Further details on the simulation of the cascade is given below.

As a consequence of the fat tail of the JSD, the large-n limit of the distribution of the cascade Sn
does not approach the normal distribution. It rather lies in the domain of attraction of an α-stable law
Gn(Sn). We introduced these as generalized limiting distributions for random processes with stationary
and independent jumps [137] including fat-tailed distributions as well as the normal distribution (α = 2)
in Sec. 4.3.3. Their characteristic function as given in Eq. (4.16) of Sec. 4.3.3, is fully parameterized
by four parameters. The index of stability α = 3/2 follows from the condition that Gn(Sn) lies in the
domain of attraction of an α-stable law formulated in Eq. (4.18). Since the large-ω asymptotic of the
JSD, P (ω), is given by

P (ω)T/Γ ' c (ω/2T )−5/2 . (4.23)

The scale parameter c is obtained from Eqs. (D.16) and (D.19). It will be related to the anomalous
di�usion constant in Sec. 4.4, Eq. (4.32). The skewness β = 1 in the case of graphene, rendering the
distribution single sided - the electron loses energy in the cascade. The location parameter δ = 〈ω〉.
For |µ| � T we have δ ∼ αg|µ| whereas δ ∼ αgT for T � |µ|.
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Figure 4.4: (a) Sample of the JSD for T � |µ| (see Fig. 4.2). (b) Sample of the cascade variable
Sn = ω1 + · · · + ωn from the JSD for n = 4 with a high energy cuto� for the JSD
given by the particle energy εp/T = 100. The solid line is the stable distribution with
α = 3/2 and β = 1. (c) The average number of steps sampled from the JSD as a
function of the cascade length ∆ε. The error bars show the typical �uctuations σn
of the number of cascade steps. (d) The �uctuation σn as a function of the cascade
length ∆ε. The solid line is the ∆ε2/3 law (4.28). The dashed line illustrates Gaussian
�uctuations for comparison. The inset shows a typical distribution of cascade steps
for ∆ε/2T = 50.

The random variable Y = Sn − nδ, describing the �uctuations of the cascade, obeys a strictly
stable distribution. The random motion on top of the drift during the relaxation processes is thus
not the standard Brownian motion that would be described by a Gaussian distribution. It is rather
superdi�usive and contains long jumps. We discuss three important consequences for the statistics of
the cascade. These concern, �rst the relaxation rate of the entire cascade. Second, we discuss the
secondary electrons excited above by the high-energy electrons since they take over a portion of its
energy. And �nally we take a look at the �uctuations in the cascade time.
The relaxation rate γc of the entire cascade is given by the rate Γ divided by the average number of

steps. The latter is given by εp/〈ω〉. Thus we obtain

γc ∼ α2
g

µ2/εp , |µ| � T

T 2/εp , T � |µ|
. (4.24)

Regarding the second consequence, we ask whether we can say anything about the distribution of
the secondary electrons excited to higher energies by scattering with the primary high-energy electron.
The high-energy tail of the JSD P (ω∗), ω∗ � max(|µ|, T ), gives also the probability density for a
secondary electron or hole to be created in the energy interval ω∗ . |ε| . ω∗ + max(|µ|, T ). More
precisely, in the case µ� T (−µ� T ) only hot electrons (holes) are created with probability density
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P (ω∗), while in the case T � |µ| electrons and holes are created with equal probability P (ω∗)/2. Using
P (ω∗) � P (〈ω〉), the probability to create a secondary electron at energy ε ∼ ω∗ during the entire
cascade is then given (up to the factor 1/2) by P (ω∗)εp/〈ω〉. We conclude that the energy scale

ω0 ∼

T (εp/αg|µ|)2/5 , |µ| � T

T (εp/αgT )2/5 , T � |µ|
, (4.25)

separates the regions where the density of downstream particles is smaller (ω∗ < ω0) and larger (ω∗ >
ω0) than the density of secondary particles. In the former region the distribution function should show
traces of the tail of the JSD accordingly. However secondary electrons generated during the cascade
will also relax. The account for this relaxation requires the full solution of the kinetic equation.
The third consequence concerns the scaling behavior of �uctuations of the cascade time - the �rst

passage time of the Lévy process on the �nite distance ∆ε in the energy space - which is directly related
to the random variable Y . The distance ∆ε can be for instance given by ∆ε = (ωpump−ωprobe)/2, the
di�erence between the excitation and probing frequency. We use the scaling of Lévy stable distributions,

Gn(Sn) = n−1/αG1(Y/n1/α)|δ=0 , (4.26)

that follows from Eq. (4.16) and obtain

〈Y 2〉 ∼ ∆ε2/αT 2(α−1)/α . (4.27)

The mean square �uctuation of the number of steps is then given by σ2
n = 〈n2〉− 〈n〉2 = δ−2〈Y 2〉 while

the �uctuation of the cascade time

σt = Γ−1σn = T (α−1)/α∆ε1/α/Γ〈ω〉 . (4.28)

Using Eq. (4.11) and (4.12) in Eq. (4.28) we obtain,

σt ∼

(
∆ε

T

)1/α
T/µ2 , |µ| � T

T−1 , T � |µ|
. (4.29)

Both for |µ| � T and for T � |µ| we �nd a nontrivial dependence on σt(T ) determined by the index
of stability α. Since α = 3/2 in our case, the �uctuations increase ∝ T 1/3 at T � |µ| and decrease
∝ T−5/3 at T � |µ|.
The dependence of the �uctuations in the number of cascade steps n on the length of the cascade

∆ε is demonstrated in Figs. 4.4(c)-(d). Here the cascade is simulated by generating a sequence of steps
from the JSD until the cascade length ∆ε is reached. The average number of steps 〈n〉 in Fig. 4.4(c)
scales linearly with the cascade length ∆ε. On the other hand, the �uctuations of the number of steps
σn in Fig. 4.4(d) obey the relation (4.28).
At last we would like to comment on the relation between the Lévy �ight and the fractal dimension

of the random walk. The exponent of ∆ε in the �uctuations σt, Eq. (4.28), is known as the Hurst
exponent H = 1/α [140, 141]. There are di�erent ways to de�ne the fractal dimension of the random
walk [142]. One way is to associate the characteristic exponent with the fractal dimension [142] such
that we would have Df = 3/2. Sometimes the fractal dimension of the random walk is related to
the Hurst exponent Df = 2 − H = 4/3 [143]. In any case the fractal dimension is between the one
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and two dimensional random walk. The fractal nature of the relaxation cascade in graphene can be
understood in terms of a fast one-dimensional backbone of forward scattering as discussed in Sec. 1.2.3,
augmented by other less e�cient channels in the 2D momentum space. If the scattering was purely
collinear scattering, the random walk would also be one dimensional. However the fact that electrons
in fact exist in two-dimensional space and scatter into a small cone around the collinear case intuitively
leads to the fractional dimension.

Sampling of the Lévy flights

We conducted a numerical simulation of the relaxation cascade on the basis of the JSD as calculated
in Sec. 4.3.2. The main goal here was to investigate the convergence of the statistics of the cascade
towards a stable distribution. In particular in the presence of a �nite cut o� in the fat tail of the JSD we
tested the convergence of the thus truncated Lévy �ight (see Sec. 4.3.3) towards a stable distribution.
We use a numerical implementation of the inversion method to sample random numbers from the

JSD in the quantum critical regime of T � |µ| as depicted in Fig. 4.4(a). When sampling from the
analytical result shown in Fig. 4.4, we enforce a �nite cut o� in the JSD that is of the order of the
particle energy itself which also de�nes the length of the cascade. The random walk that is the cascade
is then simulated by successively reducing the particle energy by the random number until it reaches the
scale of temperature that means its energy is zero. In doing so we obtain nearly all interesting statistics
of the cascade for a truncated Lévy �ight that we can then check against our analytical formulas.
First, we checked that the cascade variable, more speci�cally the distribution of sum (4.22) does still

converge to the α-stable distribution in the presence of a �nite cut o�. This is true for not too large
cascade length as is illustrated in Fig. 4.4(b). Here the distribution of S4 is shown. It agrees well with
an α-stable distribution with the expected parameters α = 3/2, β = 1 and c extracted from Eqs. (D.16)
and (D.19). Also all other characteristics of the cascade agree well with our �ndings from the previous
section. For example in Fig. 4.4(c) the average number of steps is depicted as a function of the cascade
length. We observe that the average number of steps is indeed in good agreement with an average step
length of the size T thus the average number of steps 〈n〉 is indeed given by 〈n〉 ∼ εp/〈ω〉. Similarly the
�uctuations in the number of steps show good agreement with the analytical result (4.29) as is apparent
from Fig. 4.4(d). Here the �uctuation in the number of steps is shown as a function of the length of the
cascade ∆ε and reveals the Lévy �ight speci�c scaling ∼ ∆ε2/3. Note that the �uctuations are distinct
from the usual Gaussian statistics which are indicated as the dashed line in Fig. 4.4(d).

4.4 Fractional kinetics and effective rate equation

In the following we reformulate the random walk, that is the relaxation cascade, in the continuum limit
using a fractional Fokker-Planck equation. Since the fractional kinetics is based on the calculation of
the JSD from Sec. 4.3.2, the same approximations as before apply here. Furthermore we want to extend
the description towards the e�ective rate equation for the distribution function. To this end we employ
the generation rate as calculated in Sec. 3.3 and look at the isotropic part of the distribution function
that only depends on the particle energy and is obtained after angular average of the full distribution.
The photo-emission measurements directly measure the distribution function that follows the e�ective
rate equation. The transmission spectroscopy however measures the state of the graphene indirectly.
We therefore also make the connection to the di�erential change in transmission.
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4.4.1 Fractional kinetics

In the previous section we showed that the statistics of the relaxation dynamics is given by Lévy �ights.
The continuum description of the Lévy �ight is by means of the fractional Fokker-Planck equation. The
latter generalizes the known Fokker-Planck approximation of the collision integral to scattering kernels,
i.e. the JSD P (ω), with power law tail. The dynamics of the distribution function is then given by the
fractional Fokker-Planck equation (FFPE) [144], which reads as

∂tW (ε, t) = Γ〈ω〉 ∂εW (ε, t) +D∇α(β)W (ε, t) . (4.30)

Here W (ε, t) with W (ε, t = 0) = δ(ε) is the propagator of the FFPE which will be given below. We
also introduced the Riesz-Feller fractional derivative [145], which is de�ned by its Fourier transform,

∇α(β)f(ε) =

∫
dz

2π
ln[Φ1(α, 0, β, 1; z)]f(z)eizε , (4.31)

where Φ1 is the characteristic function of the underlying stochastic process. In our case it is a Lévy
α-stable law with α = 3/2 and β = 1, see Eq. (4.16). In the FFPE (4.30) we also introduced the average
energy loss rate Γ〈ω〉 and the anomalous di�usion constant D = Γc, where c is the scale parameter of
the Lévy process, see Eqs. (4.16) and (4.23). From these formulas we obtain for the anomalous di�usion
constant

D =
2α128

√
2π

N/4
Tα+1 . (4.32)

In contrast to the conventional di�usion constant it has the anomalous dimension [D] ∼ Energyα/s.
Usually the Fokker-Planck equation follows from an underlying Langevin equation. The emergence of

the fractional kinetics expressed by the FFPE (4.30) can be understood on the basis of a Langevin-type
rate equation for the electron energy,

∂tε(t) = −Γ〈ω〉+ η(t) , (4.33)

where η(t) is a random variable which is distributed according to an α-stable law and describes the noise
in the relaxation process due to the interaction of the high-energy electron with the bath of thermal
electrons.
The general solution F (ε, t) of the FFPE with initial conditions F (ε, t = 0) = f(ε) is obtained with

the propagator according to

F (ε, t) =

∫
dε′W (ε− ε′, t)f(ε′) . (4.34)

In our case we choose the initial probability density to be

f(ε) = n0δ(ε− ωpump/2) . (4.35)

Here n0 is the integrated �ux density of the pump pulse. We have F (ε, t) = n0W (εt, t), where

εt = ε− ωpump/2 + Γ〈ω〉t , (4.36)

is the running energy. The propagator W (ε, t) and thus the solution F (ε, t) in our case of α = 3/2 and
β = 1 can be calculated explicitly. We obtain

W (ε, t) =
πT

α
(Dt)−1/αK(s) (4.37)
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for the propagator in terms of the dimensionless variable

s = εt/(Dt)
1/α . (4.38)

In Eq. (4.37) the function K(s) is given by,

K(s) = −e
s3

27

 3
√

2/3 sAi

(
s2

3
√

486

)
+

3
√

12 Ai′
(

s2

3
√

486

) . (4.39)

Here Ai(z) is the Airy function and Ai′(z) its derivative. In particular,W has the following asymptotics
for large times,

W (ε, t) ' TDt√
2πα

|ε− ε0 + Γ〈ω〉t|−(α+1) . (4.40)

Using Eq. (4.32) and the results from Sec. 4.3.2 we obtain,

W (ε, t) ∼ t−α
T (T/µ2)α+1 , |µ| � T

T−α , T � |µ|
. (4.41)

We see that the tail of F for large times but �xed ε is proportional to t−3/2 and scales as T−3/2 for
T � |µ| and as T (T/µ2)5/2 for |µ| � T .
The evolution of the probability distribution W (ε, t) due to the fractional kinetics is illustrated in

Fig. 4.5. The solid line depicts the solution of the FFPE (4.30), given by the Eqs. (4.37)-(4.39), while the
dashed lines show the Gaussian solution of the usual Fokker-Planck equation. The fractional kinetics
leads to a strong asymmetry, compared to the Gaussian drift-di�usion, since the �uctuations in the
underlying Lévy process are single-sided, i.e. β = 1 in Eq. (4.16) and (4.30).

Figure 4.5: The solution [see Eqs. (4.37)-(4.39)] of the FFPE (4.30) (solid line) as a function of
energy in comparison to the result obtained for Gaussian di�usion (dashed line) for
di�erent times.
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4.4.2 The effective rate equation

We will now merge the �ndings of the previous section with the e�ective rate equation (see Sec. 3.3)
obtained from the quantum kinetic equation derived in Chapt. 3. More speci�cally we will incorporate
the fact that the relaxation of high-energy electrons due to electron-electron interactions is given by
Lévy �ights and shows fractional kinetics into the e�ective rate equation. We will then compare the
results obtained from the most simple rate equation usually employed to �t experiments with the one
containing the fractional kinetics.
As we pointed out in the preceding section the FFPE (4.30) is an equation for the homogeneous part

of the distribution function. In order to include also the generation of carriers by the laser pulse we
use the e�ective rate equation (3.76) from Sec. 3.3, for the isotropic part of the distribution function.
We denote the isotropic part of the distribution function

fλ(k) = 〈ρ
λ~k
〉ϕ = f (0) +N(ε, t) . (4.42)

Here ρ is the single-particle density matrix introduced in Sec. 3 and 〈...〉ϕ denotes the angular average.
Moreover f (0) is the Fermi-Dirac distribution function. We denote the correction to the Fermi-Dirac
distribution function N(ε, t) and it describes the distribution of photoexcited electrons in the following.
Averaging the rate equation

∂tρλ,~k(t) = λ∆ρ~k(−∞)

(
eky
k2

)2

Ē E0(t)R(∆t,∆τ) , (4.43)

over all angle of the momentum ~k yields

∂tN(ε, t) = λ∆ρ(ε,−∞)
e2

2k2
Ē E0(t)R(∆t,∆τ) = λP (ε, t) . (4.44)

Here and in Eq. (4.43) ∆ρ(ε,−∞) = [f
(0)
− (k) − f

(0)
+ (k)]/2 with k = |ε| is the initial equilibrium

inversion of the population. All functions in Eq. (4.44) only depend on the energy ε = λ|~k| now. Here
we introduced P (ε, t) for the generation rate in the rate equation. Now let us add on the right-hand
side of Eq. (4.44) the relaxation term from the FFPE (4.30) and we obtain

∂tN(ε, t) = −N(ε, t)

τ1
+ Γ〈ω〉N(ε, t) +D∇α(β)N(ε, t) + P (ε, t) . (4.45)

Here we also added another decay channel in the relaxation time approximation described by the time
τ1. From the previous section we know the Green's function G(ε, t) of the FFPE which obeys[

∂t + Γ〈ω〉∂ε −D∇α(β)

]
G(ε− ε′, t− t′) = δ(t− t′)δ(ε− ε′) . (4.46)

Namely G(ε, t) is given by
G(ε, t) = Θ(t)W (εt, t) , (4.47)

where Θ(t) is the Heaviside Theta function and W (ε, t) is the solution of the FFPE (4.30) with initial
conditionW (ε, 0) = δ(ε). The latter is given by Eq. (4.37) and in the de�nition of the Green's function,
Eq. (4.47), the energy argument is the running energy εt = ε+ Γ〈ω〉t, also given in Eq. (4.36).
From Eqs. (4.45) and (4.46) we see according to the standard approach that the solution of the rate

equation is given by

N(ε, t) =

∫ t

−∞
dt′
∫ +∞

0
dε′ e−(t−t′)/τ1 W (εt−t′ − ε′, t− t′)P (ε′, t′) . (4.48)
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4.5 Discussion and connection to experiments

In order to draw the connection to experiments we show results for two observables. First, the dif-
ferential change in transmission in the interaction-dominated regime. Second, the evolution of the
distribution function according to the solution (4.48). The latter is measured in time resolved ARPES
measurements as explained in Sec. 4.1.
First, we discuss the di�erential change in transmission for pump-probe experiments. As we have

seen in Sec. 2.2, the transmission of the graphene is connected to the change in the optical conductivity.
The latter can be related to the change in the distribution function f . We are mainly interested in the
evolution of the transmission after the pulse has passed. Therefore we assume that the correction to
the distribution function is simply given by Eq. (4.35) at time t0 = 0. We also consider the isotropic
part of the distribution function only, as we have already done in the previous section. Then the change
in the conductivity is given by

∆σ(t)/σ0 = −
[
F (ωprobe/2, t)− F (−ωprobe/2, t)

]
. (4.49)

Here the universal conductivity at high frequencies σ0 was introduced in Sec. 2.2. Given the particle
hole symmetry of the correction to the distribution function at high energies, i.e. F (−ε, t) = −F (ε, t),
we �nally have for the relative di�erential transmission

∆T (t)

T0
= 2n0W (ωprobe/2, t) . (4.50)

Here T0 is the transmission due to σ0 (see Sec. 2.2). We remind the reader n0 is the integrated �ux
density of the pump pulse. The behavior of ∆T as a function of time, Eq. (4.50), is illustrated in
Fig. 4.6. The solid line depicts the result (4.37) due to the fractional kinetics in graphene, while the
dashed line is the expected result for conventional Gaussian drift-di�usion. We see that the di�usion
in the case of Lévy �ights (solid line) is stronger due to the fact that the α-stable law is single sided,
i.e. β = 1. Therefore �uctuations enhance the drift in energy space, see also Fig. 4.5. Furthermore the
transient di�erential transmission shows power law behavior with time and temperature according to
Eq. (4.41), instead of exponential decay in the case of usual di�usion [see Fig. 4.6(b)]. We stress that
Eq. (4.50) does not take into account the initial rise of the transmission. This is due to the fact that
we approximated the initial correction to the distribution function by Eq. (4.35). This initial regime
will be included in the following where we illustrate the evolution of the distribution function taking
into account the generation of carriers, see Eq. (4.48).
Second, we investigate the evolution of the distribution function itself. This study is relevant for

photo-emission measurements. We have mentioned the work from Ref. [125] in Sec. 4.1 that pioneered
the photo-emission studies in graphene on picosecond time scales. More recent experiments [146] ex-
plored even shorter time scales of the order of a few femtoseconds. Those experiments reveal nonthermal
carriers for the �rst time as depicted in Fig. 4.7. In �gure 4.7 the number of electrons emitted in photo-
emission experiments is plotted as a function of energy. The energy resolution yields a snapshot of the
transient carrier distribution function. The dashed lines are �ts of Fermi-Dirac functions to the data.
We observe that at very short times the distribution shown in Fig. 4.7 is nonthermal. The di�erence
between the data and the Fermi-Dirac �t is an estimate for the density of nonthermal electrons. The
latter is depicted in blue in Fig. 4.7. The density of nonthermal carriers is described by the solution
of the e�ective rate equation (4.45). Their relaxation is in particular discussed in the previous section.
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Figure 4.6: The normalized di�erential transmission ∆T /∆Tmax as a function of the dimension-
less time tT . Here ∆Tmax denotes the maximum value of ∆T . Figure (b) shows the
results on a logarithmic scale. The solid curves are calculated according to Eq. (4.50)
and Eqs. (4.37) and (4.39), for ∆ε/T = (ωpump − ωprobe)/T = 25 and Γ〈ω〉/T 2 = 20
as well as D/Tα+1 from Eq. (4.32). The dashed lines in (a) and (b) illustrate the
result for usual di�usion in comparison to the fractional kinetics (solid line).

There we found that the high-energy electrons relax by anomalous di�usion. The corresponding theo-
retical prediction to the experimentally measured density depicted in blue in Fig. 4.7, is illustrated in
Fig. 4.5.
The analysis of the experimental data in Ref. [146] included the time evolution of the temperature

obtained from the Fermi-Dirac �ts. The latter is shown in Fig. 4.8(a) together with the time evolution
of the number of nonthermal carriers (NTC). The experiment was analyzed with a simple model of
relaxation of nonthermal carriers. More speci�cally, a relaxation time ansatz was used to �t the red
and blue curves in Fig. 4.8(a). The relaxation time ansatz yields the simpli�ed rate equation

∂tN(ε, t) = −N(ε, t)

τ1
+ P ∗(ε, t) , (4.51)

for the distribution of nonthermal carriers. In contrast to Eq. (4.45) the superdi�usive relaxation due
to electron-electron interaction is not included here. Moreover, a simpler generation rate P ∗ than the
one from Eq. (4.45), is used in the analysis of the experimental data in Ref. [146]. For simplicity
an energy-independent matrix element was assumed. Furthermore, the function R in Eq. (4.45) was
replaced by the time integrated generation rate.
The result that one obtains from Eq. (4.48) is compared to the result we get from Eq. (4.51) in

Fig. 4.8 for the nondegenerate case. We observe that indeed a di�erence between the two models exists
at short times. Further analysis on more re�ned data is therefore interesting to analyze whether the
decay follows the power law decay suggested by Eq. (4.41).

4.6 Summary

This chapter presents a theoretical description of pump-probe experiments with emphasis on the role
of electron-electron interaction in the relaxation dynamics. We also reviewed the experimental status
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Figure 4.7: The number of electrons emitted in ARPES. The energy resolution yields a snapshot
of the carrier distribution in the graphene sample. The dashed lines are �ts of Fermi-
Dirac functions to the data. The density of nonthermal electrons is illustrated as the
blue area. Reprinted �gure from Ref. [146].

of pump-probe measurements on graphene. Most important in this context is the cascade picture of
the relaxation in graphene which was introduced in Ref. [30].
Motivated by these early works we ask the question whether the cascade can be described in terms

of di�usive relaxation in energy space. The central ingredient of a possible description in terms of
di�usion is the distribution of the jump-size in the relaxation process, i.e. the probability distribution
of the transferred energy in a single scattering event. Therefore we performed a detailed analysis of
the energy resolved scattering probability for high-energy electrons due to Coulomb interaction. The
latter is exactly the desired jump-size distribution since the transferred energy is the length of a single
relaxation step in the cascade.
We obtain results for �nite temperature in the quantum critical regime of T � |µ| as well as in the

Fermi liquid regime at �nite chemical potential where |µ| � T . There are two important features of
the obtained results in the case of T � |µ| as well as |µ| � T . First, the jump-size distribution shows a
logarithmic divergence at small transferred energies. This logarithmic divergence is the known Coulomb
logarithm that we discussed in Sec. 1.2.3. It contains the ratio of the average kinetic energy of the low
energy thermal electrons and the transferred energy in the cascade step. However, we �nd that the
main contribution of the relaxation process of high-energy electrons comes from larger energy transfers
ω. Most importantly at large step sizes the jump-size distribution shows a power law tail. In both
cases of T � |µ| as well as |µ| � T , the power law is ∼ ω−5/2. From the energy resolved scattering
probability we also obtain the total scattering rate Γ for a single cascade step. The latter sets the
characteristic time scale Γ−1 for the cascade. We �nd that the scattering rate is linear in the coupling
strength Γ ∼ αg. This deviates from the expectation based on the Golden rule but can be explained
due to the peculiar screening in graphene. Furthermore, the relaxation rate scales as Γ ∼ max(T, |µ|).
The Coulomb logarithm is of little importance for the relaxation rate as the high-energy electrons have
a large phase space of �nal states. As a consequence the rate is determined by large energy transfer
whereas the Coulomb logarithm occurred for small energy transfer compared to the temperature.
We apply our �ndings to the relaxation cascade. Due to the fat tail of the jump-size distribution

the cascade can not be described by ordinary di�usive motion. The underlying random walk rather
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Figure 4.8: (a) The time-evolution of the temperature (red curve) that is obtained from the �t
of the Fermi Dirac function to the data shown in Fig. 4.7. Furthermore the time-
evolution of the number of nonthermal carriers (NTC) is shown in blue. The number
of NTC is the grey area in Fig. 4.7. Reprinted �gure from Ref. [146]. (b) The qual-
itative comparison between the solution of the relaxation time ansatz formulated in
equation (4.51) and the FFPE (4.48). The energy at which the density of photoex-
cited electrons N(ε, t) is evaluated is given by 2ε/ω = 0.8.

represents Lévy �ights and leads to anomalous di�usion. In particular, the Lévy �ight is character-
ized completely by the results regarding a single scattering event, i.e. the energy resolved scattering
probability mentioned above. The anomalous character of the relaxation process has important con-
sequences for the statistics of the entire cascade. First, the �uctuations σt of the time it takes the
electron to complete the entire relaxation cascade, scale anomalous with the length of the cascade and
with temperature. Regarding the length ∆ε of the cascade, we �nd that σt ∼ ∆ε2/3. Moreover, we
have for T � |µ| that σt ∼ T−5/3 while for |µ| � T it holds that σt ∼ T−5/3(T/µ)2. We found that
the relaxation rate for a single cascade step is linear in the coupling strength αg. Interestingly, the rate
γc for the entire cascade is proportional to α2

g. At the same time it depends on the length ∆ε of the
cascade according to γc ∼ max(T, |µ|)/∆ε.
Finally, we formulate the relaxation cascade in the continuum limit. In this limit usual di�usive

relaxation was described by a Fokker-Planck equation. The fact that in the case of graphene the
relaxation due to electron-electron interaction is characterized by Lévy �ights is captured by a fractional
Fokker-Planck equation. This formulation allows us to include the relaxation due to electron-electron
interaction in the e�ective rate equation derived in Chap. 3.
We calculate two observables relevant for pump-probe experiments. First, the time dependent dif-

ferential change in transmission. Second, the time evolution of the density of nonthermal carriers.
We compare the resulting model qualitatively with recent experiments which performed pump-probe
experiments on graphene at ultra short time scales. These works revealed the existence of nonthermal
electrons for the �rst time. A further quantitative comparison of both works is promising.
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5 Chapter 5

Hydrodynamics in graphene

In this section we will construct an e�ective macroscopic model of transport in terms of hydrodynamic
currents and densities. The hydrodynamic theory is derived from the microscopic description of graphene
in terms of the kinetic equation in the Boltzmann limit. The emergent hydrodynamics will be due to the
presence of electron-electron interaction.

5.1 Introduction to hydrodynamics

Hydrodynamics is a classical �eld theory for the description of �uids, where the �elds are the relevant
densities and hydrodynamic velocities. Both of them depend on the position ~r in space. Our aim is to
describe the electronic transport in graphene by a suitable classical hydrodynamic �eld theory. The hy-
drodynamic theory is mainly motivated by two experimental trends. First, the fabrication of very clean
samples on boron nitride [147, 148] yields very homogeneous charge densities. Second, experimental
techniques to directly image the local charge density [32, 33] are suitable to image hydrodynamics in
graphene. These techniques have been applied in particular to the study of plasmons.
So far we have mostly dealt with a microscopic description of the electronic properties of graphene.

In particular Chapt. 4 was devoted to the distribution function of graphene after laser excitation. The
quantum kinetic equation from Chapt. 3 is able to describe the nonlinear response of the system. For
example in the simple case of graphene without any interactions we obtained the relation (3.69) for
the inversion of the population after excitation by a laser pulse. However the inclusion of interactions
and the coupling to a bath render many questions regarding the nonlinear response a formidable task.
Furthermore, in �nite size samples boundary condition are important. They create inhomogeneities
of the densities such as particle number or energy density. These inhomogeneities add an additional
degree of complexity. Luckily, in some situations the distribution function contains more information
than needed to describe the transport in the system. This idea is at the heart of the hydrodynamic
description. The distribution function that in general also depends on the position in space is a
complicated function of the single-particle states, more speci�cally the single-particle energies ε. It
contains information on all moments1 that can be generated by averages with respect to the distribution
function f(ε, ~r). A hydrodynamic description is possible if only a �nite number of these local moments
is important. Whether this is indeed the case can be ensured by the presence of interactions that want
to thermalize the system locally.

1A de�nition of the local moments can be found in Sec. 5.4.
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We will focus on this limit of collision-dominated hydrodynamics due to Coulomb interaction. There
are two consequences of the Coulomb scattering. First, it drives the system towards local equilibrium
with a speci�c temperature and chemical potential. As a consequence both temperature and chemical
potential are functions of position ~r. Second, Coulomb interaction leads to dissipation in the system.
In the case of graphene in the quantum critical regime of T � |µ| electron-electron interaction leads
to a �nite conductivity at the Dirac point and also causes di�usion of the particle density as well as
thermal di�usion.
Interestingly, there are also systems that can be described by dissipationless quantum hydrodynam-

ics. Examples are the Luttinger liquid [43] and the Calogero-Sutherland model. The latter describing
fractional quantum Hall edge states. Here hydrodynamics mainly emerge due to the fact that those sys-
tems are genuinely correlated. Furthermore, in the one-dimensional case they are naturally described
by densities and velocities.2 The dissipationless hydrodynamics in those systems shows instabilities
towards the formation of shock waves and the subsequent formation of solitons [43, 44]. The dissi-
pationless or Euler limit of the hydrodynamics in graphene will be studied numerically in Sec. 5.7.
Although dissipative systems are less prone to develop shock waves there are other interesting phe-
nomena occurring speci�cally in di�usive systems. The easiest and most interesting ones are coupled
two-component systems. Commonly known as reaction-di�usion systems. Graphene close to the Dirac
point is such a two-component system since the number of electrons and holes is separately conserved
as we discussed in Sec. 1.2.1 and in Chapt. 4.
Moreover we mentioned in Sec. 1.3 that the graphene exhibits a quantum critical point at T = 0 and

µ = 0. Therefore, in the critical region of T � |µ| the system is described by relativistic fermions and
the emergent hydrodynamics will be a relativistic theory. The dissipative corrections mentioned above
are determined by the transport rates in the critical regime that scale as α2

gT . Here αg is the graphene
�ne structure constant and T is the temperature. We observe that for high temperatures scattering rates
due to interaction can therefore become dominant. In experiments under high bias as for example in
Ref. [12] temperatures as high as 1200K are achieved. Therefore the collision-dominated hydrodynamics
will be an adequate description of transport. Furthermore it is usually more convenient to incorporate
boundary e�ects in the hydrodynamic theory than in the case of the microscopic Boltzmann equation.
Finally we mention three possible applications of the hydrodynamic theory.
First, the graphene has been found to exhibit a remarkably small viscosity [40] which yields a low

threshold for turbulent �ow. In the collision-dominated hydrodynamics the viscosity is one of the
transport parameters generated by electron-electron interactions. In view of the remarkably small value
of viscosity it is also interesting to �nd experimental ways to measure it. In fact, the hydrodynamic
theory yields the low-frequency optical response of the system and the latter also contains the viscosity
in graphene as shown in Sec. 5.5. Therefore, nonlocal optical measurements might give access to this
transport parameter.
Second, the excitation of the graphene by a laser pulse will naturally lead to the formation of hot-

spots. The latter arise after local thermalization. The early stage of the thermalization of high energy
electrons was studied in Chapt. 4. Subsequently the system thermalizes globally. This process is
described by hydrodynamics. In view of this we will also study the relaxation of a hot spot in Sec. 5.7.
At last we note that recently experimental techniques have been developed that can give access to the

hydrodynamics in graphene. Among those are the SNOM technique mentioned in the introduction to
this thesis [32, 33]. But very recently also nanoantennas directly fabricated on the graphene enable the
excitation of plasma waves in the graphene [149]. Speci�c shapes of the antenna can be used to focus

2Note that for example in the Luttinger liquid there is in fact no strict distinction between densities and currents.
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plasma waves in those experiments. For the intensities in current experiments, the systems are in the
linear regime but it appears promising to investigate the nonlinear hydrodynamics also experimentally
in the future.

5.2 Previous theoretical works on the hydrodynamics in graphene

The hydrodynamic description of graphene was pioneered by Sachdev et al in Refs. [38] and [39]. There
it was realized that the vicinity of the quantum critical point (see Sec. 1.3) in graphene gives rise to
relativistic hydrodynamics. The authors of Ref. [39] reasoned that due to criticality there is a single
transport parameter determined by the graphene �ne structure constant αg and temperature T . There
are in fact additional transport parameters. However, except for the viscosity they become irrelevant
at the Dirac point as we will see later in Sec. 5.4. The viscosity η in graphene close to the Dirac point
shows similar behavior as the other transport parameter and scales as η ∼ T 2/v2

Fα
2
g [40]. Note that

the viscosity does not change under the renormalization group �ow since the product αgvF does not
change [40].3 In fact, it was found that the ratio of viscosity and entropy4

η(T )

s(T )
∼ [ln(TΛ/T )]2 , (5.1)

grows only logarithmically with lowering temperature and for relevant temperatures graphene is a more
perfect liquid than helium. More speci�cally its viscosity to entropy ratio is smaller than the one for
liquid helium. It even comes close to the lower bound of the ratio in Eq. (5.1) for strongly correlated
systems [150]. A perfect liquid would be realized for η = 0.
The hydrodynamic theories in Refs. [38, 39] and [40] have been adapted from standard relativistic

hydrodynamics. Furthermore the fact that there is only a single transport parameter apart from
viscosity is now understood as the two-mode ansatz as we will explain in the following Sec. 5.3. The
linear hydrodynamic theory was extended to the three-mode ansatz in Ref. [42]. In the latter reference
the hydrodynamics is also derived from the Boltzmann equation and analyzed in linear response also
for �nite samples and in the presence of a magnetic �eld.
The hydrodynamics is in particular suitable to study the nonlinear transport regime. The nonlinear

hydrodynamics in graphene has been studied for homogeneous systems in Ref. [151]. The possibility
of soliton formation has been explored in Ref. [41]. The latter work does not include dissipative
corrections due to electron-electron interactions that is however intrinsic to the graphene and has
important consequences on nonlinear waves as we will see in Sec. 5.7.

5.3 Microscopic description

The hydrodynamic theory is a coarse grained prescription of the system with local �uid elements of the
size l2hydro. Since we assume lhydro � 1/T , the electrons in a given �uid element are characterized by
the local distribution function. We want to develop an e�ective macroscopic theory that is capable to
describe transport in graphene in the collision-dominated regime at large length scales. More speci�cally
on length scales larger than lhydro. We assume that the Coulomb interaction is the dominant scattering
mechanism. In this case electron-electron interaction has the tendency to thermalize the system locally.
3Remember that the renormalization of the coupling constant αg was caused by the �ow of vF alone as we have seen in
Sec. 1.3.

4Here TΛ is the temperature determined by the high energy cut-o�.
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This thermalization is the necessary mechanism to reduce the number of independent dynamic moments
of the Boltzmann equation that we have to take into account as we will explain later. The rate of
thermalization is of the order ∼ α2

gT if the graphene is close to the Dirac point. More precisely the rate
of isotropization is of the order α2

gT . The latter is the rate at which di�erent momentum directions
equilibrate among each other. In contrast, energy relaxation is logarithmically enhanced and the rate
is proportional to α2

g lnαg [58]. In the end electron-electron interactions determine the mentioned
microscopic scale lhydro above which we expect that hydrodynamic behavior emerges. The scale is
of the order of the mean free path that is given by lhydro ∼ 1/α2

gT in the quantum critical regime
close to the Dirac point, i.e. for T � |µ|. This length scale is assumed to be much shorter than the
scattering length due to disorder. While at the Dirac point Coulomb interaction alone leads to a �nite
dc conductivity, for �nite charge density the dc-conductivity is divergent for ω → 0. We therefore keep
disorder as an infrared regulator. However, the optical response of graphene in the frequency window
α2
gT > ω > τ−1

dis will be given by the hydrodynamic response of the system and the relevant transport
coe�cients are determined by electron-electron scattering alone. For most results in this frequency
window we can thus safely assume ωτdis � 1.
The �nal theory will be formulated in terms of a �nite number of macroscopic densities and currents

that constitute the e�ective �uid which describes the transport in the low frequency limit as outlined
in the introduction.
The distribution function of electrons is given by f = f

λ,~k
(~r) and is governed by the Boltzmann

equation
Lf = Stee[f ]− τ−1

dis (f − 〈f〉ϕ) . (5.2)

Here Stee[f ] is the electron-electron collision integral which was discussed in Sec. 3.2.4. We emphasize
that the distribution function f might explicitly depend on the coordinate ~r now. This inhomogeneity
of the microscopic state is due to �nite gradients in the Liouvillian L in Eq. (5.2). The latter reads as

L = ∂t + v̂ · ∇r +
[
e ~E + e(v̂ × ~B)

]
· ∇k . (5.3)

Furthermore Eq. (5.2) contains the average

〈f〉ϕ =

∫
ϕ
f =

∫ +π

−π

dϕ

2π
fϕ , (5.4)

over the angle ϕ of ~k in Eq. (5.2). The last term on the right-hand side of Eq. (5.2) takes into account
disorder in the relaxation time ansatz, where τdis is the characteristic relaxation time due to disorder.
In accordance with the standard approach to hydrodynamics [71] as outlined in the introduction to

this chapter, we assume that the system is close to equilibrium in the local �uid element. To a �rst
approximation the distribution function f

λ,~k
(~r), is given by the local equilibrium function [41, 152]

f
(0)

λ,~k
(~r) =

{
1 + exp

[
β(ε

λ,~k
− µλ(~r)− ~u(~r) · ~k)

]}−1

. (5.5)

Here the coe�cient β = 1/T (~r) with the local temperature T (~r). Furthermore we have the local
chemical potential µλ(~r) for conduction (λ = +1) and valence band electrons (λ = −1). Finally the
quantity ~u(~r ) is the hydrodynamic velocity �eld as will become apparent later. This form of the
distribution function is chosen for two reasons. First, the function annihilates the collision integral.
On the other hand it maximizes the entropy in the local �uid element under the constraints of a �xed
local density of conduction and valence band electrons as well as energy and momentum density.

74



5.3 Microscopic description

The inhomogeneity of the system, i.e. the spatial variation of the parameters T , µλ and ~u in Eq. (5.5),
lead to deviations δf of the distribution function f = f (0) + δf from its equilibrium value, Eq. (5.5).
However, the fast thermalization allows us to treat the corrections to Eq. (5.5) as a weak perturbation
away from local equilibrium. More speci�cally, they are small corrections as long as the thermodynamic
parameters µλ, T and ~u vary slowly on the scale lhydro, set by interactions. In this case, the corrections
δf will be proportional to the gradients of the parameters T , µλ and ~u and additional forces. The latter
include for example the self-consistent electric �eld. Therefore, if the gradients have the characteristic
scale l∇, the corrections δf will be controlled by the Knudsen number Kn = lhydro/l∇. We can
thus reformulate the condition for the validity of the hydrodynamic theory in the following way. The
dissipative corrections to the hydrodynamic �ow, that originate from the corrections δf , need to be
small in the Knudsen number. We will come back to this issue in the next section were we sketch a
common strategy to solve the Boltzmann equation. We will see there that we ultimately have to invert
the linearized collision integral which is possible perturbatively in the coupling αg.
We parametrize the corrections δf to the local equilibrium distribution function, Eq. (5.5), in the

local �uid rest frame, i.e. the reference frame in which ~u = 0 holds. As a consequence of the fast ther-
malization, the deviations δf are small in the Knudsen number. In general, they are still complicated
functions of energy. However, due to the fast collinear scattering, this additional degree of complexity
can be reduced. We have seen in Sec. 1.2.3 that the collision integral in graphene exhibits a severe
logarithmic divergence originating from collinear scattering. It has been shown that this divergence
enables one to solve the Boltzmann equation to logarithmic accuracy analytically [39, 57]. We explain
this in more detail in Sec. 5.3.1 below. To leading logarithmic accuracy in the coupling constant αg,
the corrections δf to the distribution function f (0) can be parametrized in the following way:

δf =

(
−∂f

(0)

∂εk

)[
δf (1) + δf (2)

]
, (5.6)

where the �rst term in Eq. (5.6) is proportional to the velocity and reads as

δf (1) =
vα
T

3∑
j=1

φjh
(j)
α . (5.7)

The second part is given by

δf (2) =
vαvβ
T 2

3∑
j=1

φj g
(j)
αβ . (5.8)

In both cases, Eqs. (5.7) and (5.8), we introduced the modes φj corresponding to the conserved quan-
tities under electron-electron collisions, which are

φj =


1, j = 1

λ, j = 2

ε/T, j = 3

, (5.9)

where λ = ±1 is the band index. Furthermore, as a consequence of the collinear scattering, the
coe�cients h(j)

α in Eq. (5.7) as well as g(j)
αβ in Eq. (5.8) are independent of the energy. Moreover, we do

not consider perturbations of the form

δf (0) ∼
3∑
j=1

φjl
(j) , (5.10)
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5 Hydrodynamics in graphene

with some coe�cients l(j). The reason is, corrections of the form (5.10) correspond to changes in the
local parameters T (~r ) and µ(~r ). Therefore, they would also change the densities of electrons and holes
as well as the energy density. However, we assume that the local equilibrium already contains the right
densities. The conditions that any correction to the densities vanish are usually called the Landau
Lifshitz conditions in hydrodynamics [71].
We stress that to leading logarithmic accuracy we only need to take into account the modes (5.9)

that correspond to the conserved quantities under electron-electron scattering. Other coe�cients are
suppressed by a factor ∼ 1/ ln(αg). If one only takes into account the modes φ1 and φ3 one obtains the
two-mode ansatz mentioned in Sec. 5.2. It is accurate exactly at the Dirac point however neglects the
coupling between the densities of conduction and valence band electrons. Note that the coe�cient h(3)

in Eq. (5.7) can be understood as a shift of the velocity ~u. This mode is related to an overall change in
the momentum density of the �uid element. Since it is connected to a conservation law of the electron-
electron interaction, the momentum conservation, it cannot be damped by Coulomb interaction. At the
Dirac point it leads to a divergent heat conductivity in the dc limit, whereas away from the Dirac point
it also entails an in�nite dc conductivity [57]. In this context disorder is again needed as a regulator
in the limit ωτdis � 1. Furthermore, we demand the coe�cients g(k)

αβ to be traceless in order to leave
the densities unchanged by the local collision integral. We have the additional constraint that the
�uctuations of the energy current δ~jE are zero in the local �uid rest frame. Since the densities are also
conserved this translates into δ~u = 0.
Generally speaking, the coe�cients h(i)

α and g(i)
αβ are determined from the Boltzmann equation [39, 153]

which becomes a matrix equation in the restricted subspace of modes φj . Inverting the matrix collision
integral yields the coe�cients h(i)

α and g(i)
αβ . The following chapter is devoted to the general framework

that leads to the matrix collision integral and subsequently to the solution of the Boltzmann equation.

5.3.1 The functional formulation of the Boltzmann equation

We will brie�y present the functional formulation of the Boltzmann equation. Within this functional
formalism the solution of the Boltzmann equation is represented in a suitable basis. This functional
basis naturally leads to the representation of the collision integral as a matrix. This section follows the
work presented in Ref. [153] and introduces the notation that becomes useful in the development of the
hydrodynamic theory.
We consider a linearized ansatz for the distribution function

fλ,~p = f
(0)
λ,~p + f

(1)
λ,~p = f

(0)
λ,~p + f

(0)
λ,~p

[
1− f (0)

λ,~p

]
δf
λ,~k

, (5.11)

where f (0)
λ,~p shall be the local equilibrium distribution function (5.5). The equilibrium distribution is

selected by the symmetries of the collision integral and remember that it ful�lls St[f (0)] = 0 and it
maximizes the local entropy density. We start from the linearized Boltzmann equation

Lfλ,~p(~r, t) = −Cδf , (5.12)

where the linearized collision operator C is given in Sec. 3.2.4 and the Liouvillian L was introduced in
Eq. (5.3).

The driving terms

We illustrate the concepts of the functional formulation with the calculation of the viscous response of
a system. Therefore we only consider gradients in the velocity ~u(~r ) here. Using the derivative of the
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Fermi Dirac function
df

(0)
λ,~p(~r) = f (0)

[
1− f (0)

]
d
[
β~u · ~p− βελ,p + βµλ

]
, (5.13)

we obtain for the left-hand side of the Boltzmann equation (5.12) in the static limit

Lf = βf
(0)
λ

(
1− f (0)

λ

)
λ|~p|

[
pipj
p2
∇r,iuj

]
. (5.14)

We rewrite the expression in the brackets as

pipj
p2
∇iuj =

√
2

(
pipj
p2
− 1

2
δij

)
1

23/2

(
∇iuj +∇jui − δij∇ · ~u

)
+

1

2
∇ · ~u . (5.15)

Let us for now consider a divergence free velocity �eld, for which

pipj
p2
∇iuj = IijXij . (5.16)

Here we introduced the following tensors for convenience

Iij =
√

2

(
pipj
p2
− 1

2
δij

)
, (5.17)

Xij =
1

23/2

[
∇iuj +∇jui − δij∇ · ~u

]
. (5.18)

We have chosen the normalization such that I2 = 1 and both tensors are traceless. The tensor Xij

is proportional to the viscous part of the energy stress tensor and it couples to the Iij that can be
understood as the corresponding charge in this situation. In this notation the driving term on the
left-hand side of Eq. (5.12) assumes the form,

Lf = βf
(0)
λ

(
1− f (0)

λ

)
λ|~p|IijXij . (5.19)

In the local �uid rest frame it holds ~u = 0. Note that in Eq. (5.19) we only considered the leading
contribution in the gradients of the velocity �eld. These sources are described by the tensor Xij from
Eq. (5.18). From Eq. (5.12) it becomes clear that, within this linear analysis, the corrections δf on the
right-hand side of Eq. (5.12) must also be proportional to the driving Xij . Moreover, since the collision
operator is invariant under rotation in the local �uid rest frame, the angular dependence in δf must
be proportional to the product IijXij . Therefore, the solution must be given by

δfλ,~p(~r, t) = β2XijIijχ(λ, |~p|) = β2Xijχij(λ, |~p|) . (5.20)

The linearized Boltzmann equation in the basis of the Xij therefore assumes the form

Sλij(~p) = (Cχij)(λ, ~p) . (5.21)

Where we introduced the abbreviation Sij for the driving term,

Sλij = −Tλ|~p|f (0)
λ

(
1− f (0)

λ

)
Iij(p̂) . (5.22)
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The functional for the Boltzmann equation

The Boltzmann equation (5.21) can in principle be solved by discretizing the momentum and solving
a large matrix equation. However, it is usually more e�cient to consider the following variational
approach, which is equivalent to the Boltzmann equation (5.21). Let us �rst de�ne the inner product

(f, g) = N
∑
λ

∫
~p
fλ(~p)gλ(~p) , (5.23)

where as usual
∫
~p =

∫ d2p
(2π)2 and N = 4 is the degeneracy. Note that the linearized collision operator

C is hermitian with respect to the above de�ned inner product (5.23). This allows us to obtain the
Boltzmann equation (5.21) as a minimal solution of the following functional

Q[χ] = (χij , Sij)−
1

2
(χij , Cχij) . (5.24)

The functional Q[χ] is minimal if χ(λ, |~p|) satis�es the linear equation (5.21). More explicitly, the two
terms in Eq. (5.24) are

(χij , Sij) = −β−1N
∑
λ

∫
~p
f

(0)
λ

(
1− f (0)

λ

)
λ|~p| (~p)χ(λ, |~p|) , (5.25)

(χij , Cχij) =
N

4

∑
λ...

∫
~p...
|M |2(2π)3δ(~p+ ~k − ~p ′ − ~k ′)δ(εp + εk − εp′ − εk′)

× f (0)
λ f (0)

ν

(
1− f (0)

λ′

)(
1− f (0)

ν′

) [
χλij(~p) + χνij(

~k)− χλ′ij (~p ′)− χν′ij (~k ′)
]2
. (5.26)

The factor 1/4 takes care of the double counting under symmetrization of the functional.
If one uses an approximation for the function χ, only a restricted subspace of the full functional space

containing all possible functions χ is explored. For example one can consider the Taylor expansion
of χij(ε) as a function of ε. This means that in particular an approximation for the function χ
that minimizes the functional in the restricted subspace also has to satisfy the linear equation (5.21).
Let us assume we perform a Taylor expansion of the functions χ(ε) and terminate the series after
a �nite number of terms. Then the linearized equation (5.21) becomes a �nite dimensional matrix
equation for the coe�cients of the Taylor expansion. Then the task of minimizing the functional (5.24)
is reformulated into inverting the matrix collision integral in the linearized equation (5.21). When
inverting the collision integral the eigenmodes with the smallest eigenvalue contribute the most. This
is the basic idea to solve the Boltzmann equation to leading logarithmic accuracy. More speci�cally,
we only have to take into account the modes or coe�cients in the sense of a suitable expansion that
do not lead to a logarithmic eigenvalue. Those modes are exactly those that are zero modes in the
collinear limit of the collision integral. We will brie�y touch upon this in the next section before we
continue with the hydrodynamic description for graphene in Sec. 5.4. The hydrodynamic description
can be easily formulated in the language we have introduced in this section.

5.3.2 The collinear scattering resonance

We have seen in Sec. 1.2.3 that the electron-electron collision integral possesses a singularity for for-
ward scattering. This forward singularity can also be employed to minimize the functional (5.24) to
logarithmic accuracy [39, 57]. It can be used to reduce the dimension of the functional space we have
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5.4 Macroscopic description - collision-dominated hydrodynamics

to consider. In order to see this, we expand the kernel of the collision integral for small perpendicular
momenta as was done in Sec. 1.2.3. The perpendicular momenta k⊥ and p⊥ are de�ned according to
k⊥ = (ẑ× q̂ ) ·~k and p⊥ = (ẑ× q̂ ) · ~p where q̂ = ~q/q and ~q = ~p− ~p ′ is the transferred momentum due to
Coulomb interaction. The vector ẑ is the unit vector in z-direction. In this limit the tensor Iij reads as

Iij '
1√
2

(
2q̂iq̂j −

δij
2

)
, (5.27)

to leading order in the perpendicular momenta. With this representation we obtain

(χij , Cχij) ∼
N

4

∫
q

∫
k‖,p‖

∫
p⊥

|M |2 1

q|p⊥|

√
p‖k‖(p‖ + q)|k‖ − q|

× f (0)
λ f

(0)
λ

(
1− f (0)

λ

)(
1− f (0)

λ

){
Iij(q̂)

[
χλ(p) + χλ(k)− χλ(p+ q)− χλ(k − q)

]}2

.

(5.28)

Here we only consider intraband scattering since the interband scattering has reduced phase space and
from λ = λ′ follows also ν = ν ′ in the collinear limit. In the collinear limit expressed by Eq. (5.28)
there are three zero modes that do not lead to the collinear scattering resonance. Namely the functions
χ of the form

χ = g(1) + λg(2) + εg(3) , (5.29)

annihilate the collision integral in the collinear limit. Therefore the ansatz χij = χIij with χ from
Eq. (5.29) will not lead to a logarithmically large value of the matrix collision integral as discussed in
the previous section. The ansatz (5.29) is exactly the parametrization we have chosen in Eq. (5.8).
The parametrization (5.29) is a zero mode of the collinear limit because the three coe�cient g(i) are
multiplied by conserved quantities of the Coulomb interaction. More speci�cally, in Eq. (5.28), the
bracket [

χλ(p) + χλ(k)− χλ(p+ q)− χλ(k − q)
]
, (5.30)

vanishes for the ansatz (5.29) due to the conservation laws of Coulomb interaction.

5.4 Macroscopic description - collision-dominated hydrodynamics

The aim of this section is to discuss the emergent macroscopic hydrodynamics. The theory will be
formulated in terms of a �nite number of hydrodynamic densities and currents. On large scales the
relevant densities and currents are selected by the symmetries of the electron-electron interaction and
are precisely the locally conserved quantities. For the Coulomb interaction those conserved quantities
are the densities of conduction- and valence band electrons, n±, the energy density nE and the energy
current ~jE . This means that in local equilibrium they do not mix with other macroscopic densities
and currents due to collisions and can thus be understood as the hydrodynamic normal modes. Only
gradients and �elds will establish a coupling between them. Furthermore all macroscopic observables
must be expressed in terms of the hydrodynamic normal modes.
As before we use the following short-hand notation for the integration measure,∫

~k
→ N

∫
d2k

(2π)2
,

∫
λ,~k
→
∑
λ=±1

∫
~k
, (5.31)

79



5 Hydrodynamics in graphene

where N = 4 accounts for the spin and valley degeneracy in graphene. As a side remark we note that
for explicit calculations one has to introduce a high energy cut-o� ∆ in the integral in Eq. (5.31). Such
that for example the energy density at half �lling and zero temperature is given by

nE0 =

∫
~k
ε−1,k →

∫
|~k|<∆

ε−1,k . (5.32)

For the coarse grained hydrodynamic description we assume that within a local �uid element of the
size l2hydro > 1/T 2 the system is described by the distribution function f

λ,~k
(~r ). Guided by the principles

outlined in the introduction we then de�ne the local densities according to

n+ =

∫
~k
f

+1,~k
, (5.33)

n− =

∫
~k

(
1− f−1,~k

)
, (5.34)

nE =

∫
λ,~k

ελ,kfλ,~k − nE0 . (5.35)

Here we measure the energy density relative to the energy density at charge neutrality and zero tem-
perature (5.32). From the conduction-, Eq. (5.33), and valence band densities, Eq. (5.34), we form the
linear combinations

n = n+ − n− , (5.36)

nI = n+ + n− , (5.37)

which are the total charge density in units of the electric charge e, Eq. (5.36), and total quasiparticle
number density or imbalance density, Eq. (5.37). All densities are conserved quantities with respect to
the electron-electron collisions. However, remember that the separate conservation of conduction- and
valence-band electron numbers only holds to leading order in the coupling strength αg [60]. If three
particle collisions are taken into account only the net particle number n is conserved as we already
mentioned in Sec. 1.2.1.
Apart from the densities we de�ne the hydrodynamic currents which are given by

~j+ =

∫
~k
v̂

+1,~k
f

+1,~k
, (5.38)

~j− =

∫
~k
v̂−1,~k

(1− f−1,~k
) , (5.39)

~jE =

∫
λ,~k

ελ,kv̂λ,~k fλ,~k . (5.40)

These are the particle current due to electrons, Eq. (5.38); and holes, Eq. (5.39); as well as the energy
current, Eq. (5.40). As in the case of the densities it is more convenient to introduce the linear
combinations:

~j = ~j+ +~j− , (5.41)
~jI = ~j+ −~j− . (5.42)

Here ~j is the electric current and ~jI is the imbalance current . The latter is related to the quasiparticle
current. Note that the electric as well as the imbalance current or their counterparts, Eqs. (5.38)
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and (5.39), are not hydrodynamic in the sense that they do mix with other densities by collisions.
In contrast the energy current (5.40) is the only hydrodynamic current density. This means that
ultimately the dynamic quantities of the theory will be the densities from Eqs. (5.33)-(5.37) and the
energy current. The electric and imbalance currents however will be related to the latter by their
equations of state (5.53) below.
The hydrodynamic densities, Eqs. (5.35)-(5.37), and currents, Eqs. (5.40)-(5.42), can be understood

as averages of the microscopic modes from Eq. (5.9) with respect to the distribution function f
λ,~k

. In
the following we write this using the the short-hand notation (f, g) for the average of a test function g
with respect to the distribution function and related integrals. The scalar product (·, ·) was de�ned in
the context of the functional formulation of the Boltzmann equation in Eq. (5.23). The hydrodynamic
equations of motion for the densities and currents are now obtained by averaging the Boltzmann
equation (5.2) with respect to the modes (5.9). Explicitly this is done by means of

(φj ,Lf) = −(φj , Cδf) = 0 . (5.43)

Note that the hydrodynamic modes (5.9) do not generate a �nite collision integral since they are
conserved. Equation (5.43) immediately leads us to the continuity equations for the hydrodynamic
densities,

∂tn+∇ ·~j = 0 , (5.44)

∂tnI +∇ ·~jI = 0 , (5.45)

∂tnE +∇ ·~jE = e ~E ·~j . (5.46)

Only the energy current is a current in the hydrodynamic sense. It can also be interpreted as the
momentum density of the system. This is connected to the quasi-relativistic character of the theory
such that the electric and energy current, or more precisely the momentum density which is equal to
the energy current in graphene, are di�erent. Only in the Fermi liquid limit of high chemical potential
the Galilean invariance is restored. In this limit, momentum density as well as particle current become
proportional to each other again. The corresponding equation of motion for the energy current ~jE ,
which will ultimately be the Navier-Stokes equation in our theory, is then obtained from (εv̂,Lf) = 0
and given by

∂t~jE,α +∇βΠE
βα − enEα − en(~u× ~B)α = −~jE,α/τdis . (5.47)

Here we introduced the energy-stress tensor

ΠE
αβ =

∫
λ~k
ε
λ,~k
v̂αv̂βfλ,~k . (5.48)

Furthermore the electric �eld in Eq. (5.47) and (5.46) is the e�ective �eld and thus also includes the
Vlasov �eld ~EV generated self-consistently by the charge �uctuations δn(~r) = n(~r) − n0, where n0 is
the background charge density,

~EV (~r) = −∇r
∫
r′
V (~r − ~r′)δn(~r ′) . (5.49)

Here V (~r) = e2/r is the 3D Coulomb potential. We observe that Eq. (5.40), the equation for the
energy current, couples to the yet unknown energy-stress tensor (5.48). Similarly the yet unknown
electric and imbalance current appear in the continuity equations for the densities, Eqs. (5.44)-(5.46).
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The occurrence of the energy stress tensor in Eq. (5.47) leads in general to an in�nite hierarchy of
equations which is the main di�culty in the hydrodynamic formulation. However, the presence of
electron-electron interaction allows us to truncate the hierarchy of equations arising in the so far generic
hydrodynamic formulation. More speci�cally, the local equilibrium ansatz (5.5), with the deviations
from local equilibrium (5.7), leads to the desired equations of state that express the electric current,
the imbalance current as well as the energy-stress tensor in terms of the hydrodynamic quantities given
in Eqs. (5.33)-(5.37) and (5.40).
First of all we obtain from the de�nition of the energy current, Eq. (5.40), and the distribution

function according to Eqs. (5.6)-(5.8), the following equation of state for the energy current:

~jE =
3nE~u

2 + u2
. (5.50)

The relation (5.50) allows us to replace the energy current by the velocity �eld ~u(~r). The equations
of state for the electric and imbalance current are obtained from their equations of motion which in
contrast to the energy current, Eq. (5.47), generate a �nite collision integral. The latter even mixes the
two currents which results in the matrix equation

∂t

(
~j
~jI

)
+

1

2

(
∇n− e ~E∂µn
∇nI − e ~E∂µnI

)
= − CJ

(
~j − n~u
~jI − nI~u

)
. (5.51)

Here the matrix collision integral of the currents CJ contains the scattering times

CJ =

(
τ−1

11 τ−1
12

τ−1
21 τ−1

22

)
, C−1

J =

(
τ1 τ2

τ3 τ4

)
. (5.52)

The energy current however decouples from the other two currents since the �uctuations (5.6) cannot
decay into a conserved mode. After inversion of the collision integral CJ in Eq. (5.51) we obtain the
equations of state for the electric and imbalance currents,

(
~j
~jI

)
=

(
n~u
nI~u

)
+ C−1

J

 n
3nE
∇nE − 1

2∇n−
(

2en2

3nE
− e

2∂µn
)
~E

nI
3nE
∇nE − 1

2∇nI −
(

2ennI
3nE

− e
2∂µnI

)
~E

 . (5.53)

Explicit expressions for the scattering time τi that occur in the matrix C−1
J can be found in Appendix E.

Strictly speaking they depend on the charge density and energy density, i.e. the local chemical potentials
and temperature. In the following simulations of the hydrodynamic equations we assume that the
scattering rates are given by their constant equilibrium value. In particular the scattering times τ2 and
τ3 vanish at the Dirac point.
A similar procedure as in the case of the electric and imbalance current densities leads to the expres-

sion of the energy-stress tensor in terms of the hydrodynamic modes which reads as

ΠE
αβ =

nE
2 + u2

[
δαβ(1− u2) + 3uαuβ

]
− η
[
∇αuβ +∇βuα − δαβ∇ · ~u

]
, (5.54)

Here we assumed that the viscosity η is determined by the equilibrium background densities and thus
does not vary in space. Details on the calculation of the viscosity can be found in Appendix E. We note
here that the second or bulk viscosity is zero in graphene due to the Landau Lifshitz conditions that we
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have formulated in Sec. 5.3. Technically the trace of the energy stress tensor does not acquire corrections
due to deviations from local equilibrium (5.5) since the coe�cients gαβ are traceless. The bulk viscosity
is however connected to corrections to the trace of the energy stress tensor. In order to generate a
�nite bulk viscosity one therefore needs to relax the condition that the coe�cients gαβ are traceless.
This can only be done when one of the densities n, nE and nI is not conserved under electron-electron
interactions. In fact, this is true for the imbalance density to higher order in the coupling constant αg
as we mentioned earlier. Three-particle collision indeed lead to a violation of separate conservation of
conduction and valence band electrons [60]. As a consequence, to higher orders in the coupling constant
αg the bulk viscosity is �nite. These corrections are however beyond the study presented in this thesis.
If we introduce the dissipative corrections to the electric current δ~j = ~j − n~u, we can rewrite the

equation of the energy current in the standard form of relativistic hydrodynamics

W∂tuα +W (~u · ∇)uα +∇αP + uα∂tP + uα e ~E · δ~j = en[ ~E − ~u(~u · ~E)] + η∇2uα . (5.55)

Here we introduced the nonlinear enthalpy W and pressure P ,

W =
3nE

2 + u2
, P =

(1− u2)nE
2 + u2

. (5.56)

There are several features of the graphene Navier-Stokes equation (5.55) that distinguish it from the
standard case. First, we are dealing with relativistic hydrodynamics which manifests in the term ∂tP in
Eq. (5.55). Second, the relations of pressure and enthalpy (5.56) contain the velocity explicitly. If the
enthalpy and the pressure are not chosen as in Eq. (5.56) the equations do not assume the standard form
as in Ref. [41]. However both relations (5.56) follow immediately from the local equilibrium ansatz (5.5).
One observes that the pressure vanishes in the ultrarelativistic limit of u→ 1. Furthermore, the electric
�eld does only change the direction of the velocity in the limit u→ 1, the absolute value is limited by
the Fermi velocity.

5.5 Linear analysis

We will brie�y discuss certain features of the hydrodynamic equations in graphene presented in the
previous section.
First we consider the linear response conductivity of an in�nite sample. After linearizing the hydro-

dynamic equations (see Appendix E.2) one obtains for the conductivity

σ(ω, q) = σ0 +
2ie2n2

3nEω

[
1 +

iq2

ω2

(
1

2
− 2iηω

3nE

)]

+
iq2

ω

{
τ2

1 + τ2τ3

2

(
2e2n2

3nE
+ e2∂µn

)
+
τ2(τ1 + τ4)

2

(
2e2nnI

3nE
+ e2∂µnI

)}
.

(5.57)

Here the �nite dc conductivity at the Dirac point due to electron-interactions [57] is given by

σ0 = e2

τ1

(
∂µn

2
− 2n2

3nE

)
+ τ2

(
∂µnI

2
− 2nnI

3nE

) . (5.58)

Related results have been found in Ref. [38], where the authors calculate the conductivity for �nite
frequency and momentum also from a hydrodynamic description. However only a single transport
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parameter τ1 has been taken into account in contrast to the work presented here which also includes
the coupling between imbalance and the charge densities by the scattering times τ2 and τ3 through
the 3-mode ansatz (5.6). Furthermore Ref. [38] calculates the reducible conductivity. The latter is the
response to the external electric �eld and includes a linear in q term due to screening. The result (5.57) is
the irreducible conductivity. Compared to Ref. [38] we do not only calculate the irreducible conductivity
but also consider the corrections of order q2 and take into account a �nite background charge density
n(0). The latter leads to the fact that the coupling of the charge and imbalance densities becomes
apparent in the nonlocal conductivity (5.57). Moreover we observe that the viscosity directly enters
the nonlocal conductivity away from the Dirac point, i.e. for �nite charge density n(0) in Eq. (5.57).
As a consequence nonlocal optical measurements in the graphene can give access to the shear viscosity.
The fact that the in�uence of the shear viscosity on the nonlocal conductivity vanishes at the Dirac
point can be understood as follows. The viscosity is connected to gradients in the energy current or
momentum density. The conductivity however is the response of the particle current. Right at the
Dirac point both currents decouple and therefore the e�ect due to viscosity vanishes for n(0) → 0.
Second, let us consider the graphene at the Dirac point in the absence of any dissipative terms. It

follows from Eqs. (5.55) and (5.46) that the system at the Dirac point supports energy waves with linear
dispersion ωq = vsq, where the sound velocity is vs = vF /

√
2. The latter are sometimes denoted cosmic

sound and known for cosmic plasmas [71]. Thus the system shows ballistic energy transfer at the Dirac
point which results in an in�nite thermal conductivity. On the other hand the charge density or the
particle density is transported di�usively close to the Dirac point. This is in contrast to the Galilean
invariant system where the energy is transported di�usively and the mass density travels ballistically.
It must be stressed that close to the Dirac point the di�usive motion is only due to the Coulomb
interaction and present without any disorder. However, for �nite charge density the Vlasov �eld also
establishes coupling between the energy density and the charge density and leads to a hybridization of
the energy waves with charge oscillations leading to the formation of standard 2D plasmons with square
root dispersion. From the linear analysis of the hydrodynamic equations (5.44)-(5.46) and (5.55) we
obtain the real part of the plasmon dispersion

ω(q) =

{
q2

2

(
1 +

4αgn
2

3nEq

)
− q4

9

(
η

nE
− 3σ0

2e2

αg
q

+
3(τ1 + τ4)

4
+

3

2τdq2

)2}1/2

. (5.59)

The dispersion (5.59) is illustrated in Fig. 5.1. The evolution from the linear dispersion towards the
2D plasmon behavior ω ' √q is apparent. Furthermore we observe that the dissipative corrections
lead to a modi�cation of the plasmon dispersion. The hydrodynamic theory can cover small momenta
and agrees with the RPA (see Sec. 1.2.4) in this limit. And as depicted in Fig. 5.1(b) the presence of
disorder a�ects the hydrodynamic plasmon dispersion at small momenta.

5.6 Hydrodynamic simulation techniques

In this section we are going to explain some of the techniques employed in the simulation of the nonlinear
hydrodynamics in graphene formulated in the previous section.
We will brie�y explain the implementation of the semi-implicit scheme, also called implicit-explicit

scheme (IMEX) [131, 154], for the numerical computations. We will also mention how we calculate the
Vlasov �eld for the evolution of the hot spot shown in Sec. 5.7.
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Figure 5.1: (a) The plasmon dispersion, Eq. (5.59), for di�erent chemical potentials. The dashed
lines are the dispersion relations without dissipative terms. The solid lines are the
dispersions including corrections due to �nite viscosity and conductivity. (b) The
dispersion of plasmons for small momenta where the disorder scattering 1/Tτdis =
0.001 a�ects the plasmons strongly.

5.6.1 The semi-implicit solver

A variety of methods have been developed for the simulation of hydrodynamic �ow in the �eld of
computational �uid dynamics. Among those are the �nite-di�erence time-domain, the �nite element
and spectral methods to name only a few. For the nonlinear hydrodynamics in graphene we developed a
�nite-di�erence time-domain simulation code for the system of equations constituted by the continuity
equations (5.44)-(5.46) and the graphene Navier-Stokes equation (5.55). Those have to be solved in
conjunction with the equations of state (5.53) for the electric and imbalance current and the equation
for the Vlasov �eld, Eq. (5.49).
The Navier-Stokes equation (5.55) in the presence of �nite dissipative corrections, Eq. (5.53), belongs

to the class of convection-di�usion systems. The convective term is a major nonlinearity of the Navier-
Stokes equation (5.55), while di�usion due to electron-interaction close to the Dirac point is contained
in the dissipative corrections in Eq. (5.53). Structurally the viscous terms are of similar type. It is
known that for convection-di�usion systems an explicit discretization of the di�erential equations in
time and space leads to a sti� system. This can be seen from a straightforward application of the
�nite-di�erence scheme to the di�usion equation

∂tn = D∇2n , (5.60)

which reads as
nkt+1 = nt(1− 2D∆t)nkt + . . . . (5.61)

Here ∆t is the time step and nkt denotes the density at time t and space point k. The explicit Euler
scheme expressed by Eq. (5.61) only yields reliable results for small D∆t. That means that for a
�nite di�usion constant very small time steps have to be chosen to reach convergence. Mixed implicit
and explicit discretization have been successfully employed to circumvent this problem [154]. More
speci�cally, the convective terms are discretized explicitly on a staggered grid that is explained in the
next section. We use an Euler scheme for these parts of the hydrodynamic equations. A generalization
to multi-step methods is however possible [154]. Here convective terms denote the Euler limit of the
nonlinear hydrodynamic equations that is obtained when the viscosity and all dissipative corrections
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Figure 5.2: The staggered grid consists of two grids for the velocities and the pressure shifted by
half a lattice constant. As a result the two components of the velocity vector u and
v are given on the sidewalls of the cells shown in the picture while the densities and
thus the pressure are calculated in the middle of the cell.

are neglected. The dissipative terms are then discretized by a backward Euler scheme. This implicit
formulation leads to a sparse, positive-de�nite and symmetric matrix equation that can be solved in a
reasonable amount of time fore each time step.
In each of these time steps we also have to solve for the Vlasov �eld. The integral representation is

equivalent to the Poisson equation with suitable boundary conditions at in�nity. We also use an implicit
scheme for the Poisson equation. The linear system is solved at each time step. For the evolution of
the energy density bump in Sec. 5.7 we can furthermore eliminate the boundary conditions by the
following procedure. In each time step we solve the Poisson equation twice. First for the homogeneous
initial charge density. Then we solve the Poisson equation for the total charge density pro�le. Since
the Poisson equation is linear we can subtract the solution for the homogeneous background from the
second solution. The result is the desired electric �eld of the localized charge bump alone without any
in�uence of the boundaries. In a more general case a volume large enough to remove e�ects due to
boundary conditions has to be simulated.
Technically the implicit scheme as well as the discretization of the Poisson equation lead us to sparse

linear systems that need to be solved. As we have mentioned before they are symmetric and positive-
de�nite. We therefore use the LDLT decomposition of the Eigen libraries for C++ to accomplish this
task.

5.6.2 The staggered grid

The analog of the Navier-Stokes equation in graphene shows a couple of similarities to its classical analog
and of course certain di�erences discussed in the previous chapter. Many of the numerical di�culties
encountered in the treatment of the Navier-Stokes equation therefore also occur in our problem.
When discretizing the Navier-Stokes equation special care must be taken in the study of nonlinear

e�ects, e.g. in the regime of dominant convective terms. In general it might happen that the discretized
version possesses solutions and properties not shared with the continuous equations.
It is known that for large convective terms for example the method of central di�erences for the
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Figure 5.3: (a) The initial energy density nE normalized to the equilibrium background energy

density n
(0)
E . The maximum height of the initial energy perturbation is n̂E = 0.8 n

(0)
E .

The width is given by 5a, where a is the high energy cut o� a ∼ 1/T . (b) The time
evolution of the energy density at the origin. The inset shows the energy density on a
double logarithmic plot. (c) The time evolution of the energy density in the absence of
the Vlasov �eld and dissipative corrections. The plot depicts a cut through the energy
density pro�le at y = 0 for di�erent time steps.

spatial derivatives can lead to unnatural oscillations in the solution if the discretization in space is
chosen too small [131]. However, in terms of convergence central di�erences are favorable over forward
or backward di�erence schemes [131].
Another problem that also leads to unphysical oscillations is associated with the fact that we need

not only solve for the velocities but also for the pressure. If we use a single grid for all of the quantities
u, v and the pressure p, that means we evaluate all three quantities on the same grid point, then the
discretized version of the Navier-Stokes equation for zero velocities allows for arbitrary oscillations in
the pressure pro�le. To avoid this the velocities and the pressure are speci�ed on di�erent grids that
are shifted by half a lattice spacing [131]. The resulting arrangement is shown in Fig. 5.2. Here the
two-component vector velocity ~u, i.e. the hydrodynamic velocity �eld from Sec. 5.4, is rewritten in
terms of

~u(~r) =

(
u(~r)
v(~r)

)
, (5.62)

which is then evaluated on the �nite-di�erence grid as depicted in Fig. 5.2. In our case, the pressure
is associated to the densities. The latter are given in the center of the cells shown in Fig. 5.2, whereas
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the velocities are given on the boundaries. When velocities are now needed on the pressure grid or
vice versa then appropriate averages of the surrounding grid points are chosen to compute velocities on
the pressure grid and the pressure in the Navier-Stokes equation. We give explicit expressions for the
discretization of the derivatives in the Appendix F.

5.6.3 Dimensionless variables

In the numerical scheme we introduce a high energy cut o� in the theory, due to the �nite-di�erences
on the staggered grid. We denote this cut o� as a ∼ vF~/T0 and chose it of the order of the inverse
equilibrium background temperature T0 as it corresponds to the validity of the hydrodynamics. The
system is initially prepared in equilibrium with a background energy density n(0)

E . We therefore nor-
malize the energy density in the following with respect to the background energy density n(0)

E . The
charge density is normalized as a2n ∼ n/T 2. The latter is the particle density in one plaquette of the
staggered grid as depicted in Fig. 5.2. Note furthermore that a2n also measures the deviation from
the Dirac point. From the inspection of the Poisson equation one obtains the dimensionless Vlasov
coupling constant

g =
4παg
ε

vF~
a3n

(0)
E

, (5.63)

where we restored ~ and vF for convenience. In equation (5.63) we introduced the dielectric constant
ε of the surrounding.

5.7 Nonlinear hydrodynamics: Relaxation of hot spots

This section presents a �rst application of the nonlinear hydrodynamics developed in Sec. 5.4. We
conduct a numerical study of the time evolution of a hot spot and investigate its relaxation. This
speci�c initial perturbation was partly motivated by the theoretical studies of hydrodynamics in 1D
systems as described in Refs. [43, 44]. On the other hand, as was mentioned in the introduction to this
thesis, a number of experimental techniques have been developed to create and detect plasmon waves
in graphene. Moreover, the study of the relaxation dynamics of a hot spot continues our work from
Chapt. 4. The hydrodynamic theory describes the spatial relaxation of the system after it has been
heated locally, for example by a laser pulse.
The initial perturbation studied here is the following. Suppose the graphene is initially in equilib-

rium with energy density n(0)
E and particle number n(0) as well as imbalance density n(0)

I . The initial
hydrodynamic �ow is zero. The latter conditions can be translated into the initial temperature of the
graphene and chemical potentials for electrons and holes. The system is then driven out of equilibrium
by adding a localized energy density. We assume a Gaussian pro�le for the perturbation in the energy
density as depicted in Fig. 5.3(a). We consider a system at temperature T = 300K. The dimensionless
initial particle density is n(0) = 0.5, which translates into a charge density of 1.7 · 109 cm−2. The
corresponding Vlasov coupling is given by g = 5.

5.7.1 Dissipationless limit

We start the discussion of the nonlinear hydrodynamics with the dissipationless limit of the hydrody-
namic equations. At �rst we neglect all corrections due to Coulomb interaction.5 More speci�cally,
5Note however that for stability in the implicit scheme we chose the dissipative terms negligible small.
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Figure 5.4: (a) A snapshot of the dimensionless hydrodynamic particle density n at time t =
0.15ps after preparation of the disturbance away from equilibrium given in Fig. 5.3(a).
The evolution is due to the hydrodynamic equations without Vlasov �eld and dissipative
corrections. (b) The time evolution of the particle density in the absence of the Vlasov
�eld and dissipative corrections. The plot depicts a cut through the particle density
pro�le at y = 0 for di�erent times.

we neglect the Vlasov �eld for now and neglect the terms proportional to the scattering times τi in
Eq. (5.52) as well as the viscosity.
For this limit of free propagation, the evolution of the energy density is illustrated in Fig. 5.3.

Figure 5.3(a) depicts the initial perturbation at time t = 0. The system is rotational symmetric at all
times we therefore plot the cut of the energy density at y = 0 and di�erent times in Fig. 5.3(c). We
observe that the initial energy bump evolves into an energy wave emitted from the origin. This energy
wave carries a �nite hydrodynamic velocity. Moreover we observe that behind the wave front the energy
density becomes depleted again. However, due to the fact that we are considering two-dimensional
hydrodynamics the density at the origin does not vanish immediately as is shown in Fig. 5.3(b). It
rather shows an after glow which is typical for two-dimensional hydrodynamics. The inset of Fig. 5.3(b)
reveals the after glow in a double logarithmic plot at long times. The power law decay that manifests
this e�ect is due to the t−1 asymptotics of the Green's function of the two-dimensional wave equation.
Later, we will �nd that the density at the origin is strongly a�ected by interactions, in particular by
the Vlasov �eld at short times. The power law decay is then changed. The energy wave emitted by the
hot spot at the origin carries a �nite hydrodynamic velocity ~u. Since we also have a �nite background
charge density n(0) = 0.5 this entails the emergence of a similar hydrodynamic wave in the particle
density that follows the wave in the energy density according to Eq. (5.44). At the Dirac point this
e�ect vanishes since n~u = 0 everywhere and as a consequence only an energy wave propagates in the
system. Interestingly, in contrast to the energy density that is depleted behind the wave front in the
situation of Fig. 5.3(c), the particle density develops a dip at the origin, see Fig. 5.4. This can be
understood in the following way. The wave front in the energy density is generated by the additional
energy in the hot spot. More speci�cally the gradient in the pressure is the source for the velocity �eld
~u. However as the energy wave drags the particle density along due to the �nite velocity ~u it creates
a dip at the position of the initial hot spot. Without dissipative terms and without the presence of a
Vlasov �eld this dip can not relax, simply because the gradient of the pressure has already vanished and
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Figure 5.5: (a) A snapshot of the dimensionless hydrodynamic particle density n after prepara-
tion of the disturbance away from equilibrium given in Fig. 5.3(a) The evolution is
due to the hydrodynamic equations including the Vlasov �eld but without dissipative
corrections. (b) The inset shows the energy density as well as the charge density at
the initial location of the hot spot. Both are plotted along the line y = 0 for the time
t = 0.05 ps. The arrows indicate the direction of the forces due to the pressure (red
arrow) and the Vlasov �eld (blue arrow).

the local velocity is zero. Therefore a charge dip remains at the origin as one can see in Fig. 5.4(b). We
come back to the fate of this structure in the presence of a �nite Vlasov term in the following paragraph.
Moreover, we discuss the e�ects of �nite dissipative corrections in the following section 5.7.2.
Let us now consider the same initial condition as in the previous paragraph [see Fig. 5.3(a)] but

including a �nite Vlasov �eld. A snapshot of the evolution of the particle density in the presence of a
�nite Vlasov �eld is shown in Fig. 5.5. The Vlasov term leads to a hybridization of the charge density
and the energy density and the energy waves turn into a plasmonic wave showing rapid oscillations. The
latter are emitted by the hot spot. Interestingly the dip in the charge density at the origin remains even
in the presence of the Vlasov �eld. In general the self-consistent electric �eld favors a homogeneous
background charge density pro�le. However, here the dip in the charge density is accompanied by
a positive bump in the energy density at the origin. This positive energy bump creates a pressure
gradient that compensates the Vlasov �eld of the charge inhomogeneity. This interplay is depicted
in the inset (c) in Fig. 5.5. Here, the energy density (red curve) as well as the charge density (blue
curve) are shown in the vicinity of the origin. We observe that the charge density (blue curve) forms
an oppositely directed dip with respect to the bump in the energy. The direction of the pressure is
indicated by the red arrow, whereas the action of the Vlasov �eld is illustrated by the blue line. We will
see in the next section that this complex becomes metastable in the presence of dissipative corrections.

5.7.2 Relaxation dynamics including dissipation

Finally we leave the dissipationless limit and consider the relaxation of the same initial condition
as before in the presence of the Vlasov �eld and, moreover, including dissipative corrections. For
simplicity we set the scattering times τi (i = 1, ..., 4), which describe the dissipative corrections de�ned
in Eq. (5.52), all equal to τi = 1 fs. The resulting time evolution of the charge density is depicted in
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Figure 5.6: (a) The time evolution of the corrections to the particle density δn = n−n(0), in the
presence of the Vlasov �eld including dissipative corrections due to the following values
of the scattering times from Eq. (5.52): τi = 1 fs (i = 1, ..., 4). The plot depicts a cut
through the particle density pro�le at y = 0 for di�erent times. The initial condition
is depicted in Fig. 5.3(a). (b) The time evolution of the corrections of particle density,

δn = n − n(0), (blue line) and the energy density, δnE = nE − n(0)
E , (red line) at the

origin, i.e. the initial position of the hot spot.

Fig. 5.6.
The time evolution of the particle density is shown in Fig. 5.6(a) along the line y = 0. We observe

that in contrast to the previous case the hot spot emits a short train of charge oscillations. More
speci�cally we observe that there is a short time after the simulation has started, in which the energy
density starts to collapse. This is illustrated in Fig. 5.6(b). Here the deviations of the energy density
as well as the charge density at the origin are plotted as a function of time. The gray region I demarks
the mentioned initial stage of the collapse of the hot spot characterized by a sudden drop in the energy
density. At the same time the charge density starts to drop as well. This collapse remains incomplete
as the hot spot stabilizes in a metastable state. The latter is based on the same mechanisms as in the
previous section and depends on a compensation between pressure and Vlasov �eld, which we illustrated
in Fig. 5.5(c). In the regime I the system also emits waves as shown in Fig. 5.6(a).
After the regime I, the train of waves has left the hot spot and the system enters the regime II.

This second regime is characterized by a slow decay of the densities at the origin [see Fig. 5.6(b)], while
the wave train propagates away from the hot spot. In contrast to the dissipationless propagation the
emitted waves have a �nite propagation length within the regime II. This can be seen in Fig. 5.6(a)
if one follows the trajectory of a wave maximum. The decay of the wave is due to the �nite viscosity
and dissipative terms which lead to a �nite life time of the hydrodynamic plasmons.

5.7.3 Discussion

We see that the decay of a hot spot in the hydrodynamic regime contains an interesting interplay be-
tween di�erent mechanisms. We �nd that the Vlasov term is essential to describe the correct relaxation
dynamics. Moreover we �nd two distinct time regimes. The �rst one is characterized by the onset of
collapse of the hot spot and excitation of waves in the charge density which are emitted by the hot
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Figure 5.7: (a) The time evolution of the corrections of particle density, δn = n−n(0), (blue line)

and the energy density, δnE = nE − n(0)
E , (red line) to the equilibrium background

values at the origin, i.e. the initial position of the hot spot. The evolution is plotted
on a logarithmic scale. The latter reveals the exponential decay of the hot spot at long
times. (b) The time evolution of δn for di�erent initial heights n̂E of the hot spot.

spot. More importantly the collapse of the hot spot remains incomplete. It rather forms a metastable
state as discussed in the previous sections and illustrated in Fig. 5.5(c). Following this initial short time
regime that leads to the formation of this metastable state accompanied by the emission of plasmons,
the second regime II is characterized by a slow decay of the hot spot while the emitted waves propagate
away from the origin. More speci�cally, the quasi-equilibrium between the energy and charge density
means a compensation of pressure and electrostatic forces in the hot spot. This is illustrated in the
inset, Fig. 5.5(c). The relaxation is then only due to dissipative correction and slow compared to the
initial stage I. These two regimes are illustrated in Fig. 5.7(a), where we show the densities at the
origin on a logarithmic plot. From Fig. 5.7(a) we conclude that the regime II is characterized by an
exponential decay of the hot spot. We emphasize that the decay is solely due to the Coulomb inter-
action close to the Dirac point. In Fig. 5.7(b) the evolution of the density �uctuations at the origin is
depicted for di�erent initial heights nE,max of the hot spot. We observe that the regime I is increasing
with decreasing height of the hot spot.
We discuss the emergence of the exponential decay in more detail. In the regime II the velocity at

the hot spot is negligible. We neglect the coupling fo the imbalance density and the charge density
due to Coulomb scattering. Finally, we neglect the Vlasov �eld in the dissipative corrections (5.53) for
simplicity. In this case we have

∂tn ' τ1

(
n

3nE
∇nE −

1

2
∇n
)
. (5.64)

Let us assume that the deviations δnE of the energy density as well as the charge density, δn, on top
of their respective equilibrium values, n(0)

E and n(0), are given by Gaussians,

δnE = Be−r
2/L2

, (5.65)

δn = −Ae−r
2/L2

. (5.66)
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Figure 5.8: (a) Schematic of the excitation of plasmons within the SNOM technique (upper image)
and the resulting standing wave patter in a tapered graphene ribbon (lower images).
The image of the standing wave pattern is also obtained by means of SNOM as reported
in Ref. [33]. The lower image shows a magni�ed view of the ribbon tip. Reprinted
�gure with permission from: Chen et al, Nature 487, 77�81 (2012). (b) Measured
standing wave pattern of plasmon waves from Ref. [32]. The data is also obtained
from SNOM and the �gure shows the optical near-�eld intensity. Reprinted �gure
with permission from: Fei et al, Nature 487, 82�85 (2012).

The amplitudes A and B are related since in the metastable state the pressure as well as the Vlasov
�eld must compensate. We assume in the following a simli�ed model for the self-consistent Vlasov �eld.
Assuming we had a nearby gate that screens the Coulomb potential, the Vlasov �eld is proportional to
the local density gradients and we have ~EV = −G∇n. Here G is the e�ective coupling. In this model
B/A ' 2Gn(0). With this we obtain within the linear analysis for the slowly varying amplitude A(t),

∂tA(t) = −2τ1

L2

2G[n(0)]2

3n
(0)
E

+
1

2

A(t) . (5.67)

We see that the amplitude is always decaying due to the dissipative term that is proportional to τ1.
The decay is however slowest close to the Dirac point. Although we should mention that in contrast
to the simulation the simple analysis here is restricted to the linear regime. Close to the Dirac point
however we eventually have n(0) ∼ δn.

5.8 Relation to experiments

At the end of this chapter we review the relevant experiments which are related to the theory of nonlinear
hydrodynamics as developed in this thesis. We have already mentioned several experimental works in
the introduction to this thesis and the current chapter. We describe their relation and importance to
our work in more detail now.
In the two seminal works of Ref. [33] and [32] the SNOM techniques was �rst applied to study

graphene plasmons. In Fig. 5.8 we illustrate results from both works. Figure 5.8(a) depicts a schematic
of the experimental technique performed on a tapered graphene ribbon. The image is taken from
Ref. [33]. An AFM tip, shown in yellow, is used to launch plasmons when illuminated by the far-�eld
radiation. At the same time the scattered light is used to detect the optical near-�eld, which allows
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monitoring the subsequent propagation of the plasmons. The re�ection of plasmons at the boundaries
gives rise to standing waves. The resulting pattern of standing waves is also illustrated in Fig. 5.8(a).
Similar results from Ref. [32] are shown in Fig. 5.8(b). Here the standing wave pattern due to re�ection
at the boundary is used in order to determine the plasmon wavelength and the plasmon life time.
From Fig. 5.8(a) the similarity between the problem of a hot spot that we considered before and the
excitation of plasmons within the SNOM is apparent. In the experiments depicted in Fig. 5.8 the AFM
tip is a source that excites the charge density whereas we studied the evolution of a initially prepared
energy bump. The developed formalism can be extended to the experimental situation. In summary,
we stress two important aspects. First, the precited evolution of the charge density in the previous
section can be measured by means of SNOM. Second, what is measured in current experiments can
be simulated by means of the developed hydrodynamics. In this regard, both the experimental as
well as the theoretical techniques are complementary in testing future graphene device concepts, in
particular graphene based plasmonic devices. We have also seen that the plasmonic waves, for example
in Fig. 5.6(a), acquire a �nite life time due to interactions. It is therefore interesting to compare
quantitatively the experimentally obtained plasmon life times and with thoses which we obtain in the
simulations.
One such plasmonic device concept is the fabrication of nanoantennas on the graphene as reported

in Ref. [149]. The experiment is shows in Fig. 5.9 along with the measured plasmon wavelength and
the near-�eld amplitudes from Ref. [149]. The fabrication of the nanoantenna on top of the graphene
sheet enables the creation and the detection with two di�erent experimental techniques. Furthermore
speci�cally shaped antennas can be used to focus plasmon waves. In view of this experiments it is also
possible to study hydrodynamics in the nonlinear regime in the future. Here, the hydrodynamic theory
is in particular suitable to test the upcoming design concepts.

5.9 Summary

On the one hand this chapter was devoted to the development of collision-dominated hydrodynamics
in graphene. Apart from the theoretical formalism we also developed a numerical hydrodynamic solver
designed for the description of transport in graphene. The numerical tool incorporates dissipative
corrections due to Coulomb intercation as well as the self-consistent Vlasov �eld. On the other hand,
we applied the developed formalism to the speci�c problem of the relaxation of hot spots in graphene.
This numerical study is a �rst application of the developed formalism and simulation tools.
We investigated the interaction-dominated regime for which the emergent hydrodynamics has been

proposed theoretically before in Refs. [16, 38]. In view of these previous works, we developed a formalism
to treat nonlinear hydrodynamics in graphene taking consistently into account dissipative corrections
due to electron-electron interaction. Close to the Dirac point the theory assumes the form of relativistic
hydrodynamics. As a consequence, the dynamical densities in the hydrodynamic sense are the energy,
particle and imbalance density. In contrast to conventional systems the energy current is the only
hydrodynamic current. The electric as well as the imbalance, i.e. the neutral quasiparticle current, are
obtained through their equations of state and fully determined by the hydrodynamic densities.
The resulting macroscopic description includes:
i) The Navier-Stokes equation for graphene including the nonlinear equations of state for the pressure

and enthalpy,
ii) equations of state for the macroscopic electric and imbalance current that include dissipative terms

due to Coulomb scattering,
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Figure 5.9: (a) The experimental setup of Ref. [149]. (b) Topography of the sample. (c)-(d) The
measured near-�eld intensity. (e)-(f) Simulated �eld amplitude. (g)-(h) Cut through
the measured �eld amplitude. (i) Plasmon wavelength as a function of the wavelength
of the incident radiation. Reprinted �gure with permission from: Alonso-González et
al, Science 344 ,6190, 1369-1373 (2014).

iii) an explicit formalism to calculate the relevant scattering times entering the macroscopic hydrody-
namic equations from the microscopic collision integral. The scattering times determine the dissipative
terms which describe various interaction-induced phenomena. In particular, interactions a�ect the
transport in graphene in the critical regime of T/|µ| & 1 strongly in contrast to Galilean invariant
systems. Most prominently, the Coulomb interaction leads to a �nite dc-conductivity at the Dirac
point, see e.g. Refs. [39, 57, 153]. This is due to the interplay between the anomalous scaling of re-
laxation times close to the QCP and the linear density of states. Since the relaxation time τ scales
as 1/T and the thermodynamic density of states reads as νth ∼ T the product τνth is independent of
the temperature. Beyond that, Coulomb interaction gives rise to di�usion close to the Dirac point and
a thermoelectric e�ect. In addition, interactions lead to a �nite viscosity in graphene that assumes a
remarkably small value for graphene as reported elsewhere [40].
iv) Finally our theoretical formalism is complemented by a numerical solver for two-dimensional hy-

drodynamics in graphene. The tool includes dissipative corrections due to electron-electron interaction
and the self-consistent Vlasov �eld.
Using the developed framework we obtain the following physical results:
First, in view of the small value of the viscosity to entropy ratio in graphene, that comes close to

the universal bound for interacting systems, it is interesting to �nd observables that are sensitive to
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the viscous damping. We �nd that the nonlocal conductivity reveals e�ects due to the viscosity in
graphene. Within linear response the e�ect only appears if the system is doped away from the Dirac
point. Otherwise the viscous corrections decouple from the electric current. At the same time the
viscosity a�ects the dispersion of plasmons in the hydrodynamic regime giving another access to the
viscosity in graphene.
Second, the nonlinear hydrodynamics is suitable to describe a broad class of physical setups. As

a �rst example we performed a numerical analysis of the relaxation dynamics of a hot spot close
to the Dirac point. This analysis takes into account the convective nonlinearities and the Coulomb
interaction. In the macroscopic equations, the latter manifests the self-consistent electric �eld due to
charge �uctuations and the dissipative corrections.
Although the system exhibits ballistic energy modes, due to the presence of electron interactions the

relaxation of the hot spot is not fully ballistic. The presence of Coulomb interactions rather lead to
a slow relaxation in contrast to the non-interacting case, where the hot spot decays into fully ballistic
energy waves. Moreover, we �nd that the relaxation dynamics of the hot spot due to electron-electron
interactions can be separated into two time regimes:
i) The �rst regime is characterized by the onset of the collapse of the hot spot. If the system is

away from charge neutrality this collapse excites �uctuations in the charge density and the hot spot
emits plasmonic waves. In this sense the initial stage is similar to the non-interacting limit. However
the Vlasov �eld represents additional dispersive terms that lead to a modulation of the emitted waves
and the formation of plasmons. Interestingly, due to interactions, the collapse of the hot spot is not
complete. The hot spot rather evolves into a metastable state. The latter is reached after the wave has
left the hot spot where a �nite excess energy remains which is stabilized by a local charge at the origin.
ii) In the following second stage of the relaxation, the Vlasov �eld and the dissipative terms are

the most important mechanisms for the subsequent relaxation of the hot spot. While the interaction
between the outgoing wave and the hot spot is negligible, the latter decays due to the dissipative
corrections in the second regime. This longer time scale compared to the �rst one is of the order of
picoseconds. At the same time the plasmonic waves experience damping due the Coulomb interaction,
more speci�cally, due to viscous and di�usive damping.

96



Conclusion

This thesis is devoted to the study of non-equilibrium phenomena in graphene and the in�uence of
Coulomb interaction on the relaxation towards equilibrium. Thanks to advances in experimental tech-
niques the physics of non-equilibrium phenomena is a rapidly growing �eld of research. In general
nonlinear response and out of equilibrium phenomena enable a deeper look into microscopic parame-
ters and mechanisms.
In particular optical experiments are suitable to explore the dynamics of such transient non-equilibrium

states. For example pump-probe experiments yield time-resolved snapshots of the system's state and
allow the detailed investigation of the relaxation process. Recently, this kind of measurements have
been conducted on graphene. In particular it was found that the relaxation of high-energy electrons
takes place in successive steps, a fact that led to the concept of the relaxation cascade [30, 31]. This
cascade is entirely due to electron-electron interaction and determines the initial stage of the relaxation.
In view of these �ndings we asked the question whether one can understand the relaxation cascade in
terms of a di�usive motion in energy space. Such a description would be similar to the description of
relaxation cascades in plasmas. However the peculiar forward scattering resonance in graphene (see
Sec. 1.2.3), that is more severe than in massive systems, leads to a qualitatively di�erent result as we
will explain below.
Apart from short-time dynamics investigated in pump-probe experiments graphene also promises

new ways to tailor optical near-�elds due to its tunable plasmons. Those have been studied recently
by optical near-�eld techniques [32, 33]. Motivated by the possibility to image the optical near-�eld
we extended our study of relaxation dynamics due to Coulomb interaction to the macroscopic regime.
Here the time evolution in the low frequency regime is given by relativistic hydrodynamics. Close to
the Dirac point the Coulomb interaction alone gives rise to di�usion and additional dissipative terms
in the hydrodynamic equations. Those dissipative terms are important for the relaxation dynamics of
hot spots in graphene.
Before we review our �ndings in detail let us summarize the most important results of this work.

The key results of the theoretical work presented in this thesis are the following:

• We derive the quantum kinetic equation for graphene in the presence of classical electromagnetic
�elds including Coulomb scattering. The kinetic equation takes the form of the semiconductor
Bloch equations. The formalism is reduced to an e�ective rate equation for the distribution of
photoexcited electrons.

• We perform a detailed analysis of the distribution of transferred energies ω in a single scatter-
ing event of high-energy electrons due to Coulomb interaction. The central result is that the
distribution of transferred energies has a power law tail with ω−5/2.

• This analysis yields the average transferred energy 〈ω〉 as well as the total scattering rate for one
scattering event Γ. We �nd that Γ ∼ αgmax(T, |µ|). Due to screening the scattering rate is only
linear in the graphene coupling constant αg.
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• We furthermore analyze the statistics of the entire relaxation process which is given by Lévy
�ights. We obtain expressions for the average time t of the relaxation process as well as the
�uctuations σt of this quantity. We �nd in particular that σt ∼ T 1/3 for |µ| � T and σt ∼ T−5/3

in the case of T � |µ|. The analysis also yields the relaxation rate γc of the entire cascade which
reads as γc ∼ α2

gmax(T, |µ|)/∆ε, where ∆ε is the length of the relaxation cascade and of the order
of the optical frequency of the pump, i.e. ∆ε ∼ ωpump/2. We perform numerical calculations to
con�rm our analytical results.

• We devise a continuum description of the relaxation process by means of a fractional Fokker-
Planck equation. The latter contains the anomalous di�usion constant D, due to electron-electron
interaction which captures the Lévy �ights in the relaxation process. We obtain for the temper-
ature dependence of the anomalous di�usion constant D ∼ T 5/2.

• The fractional Fokker-Planck equation yields two interesting observables: i) the time evolution
of the di�erential change in transmission in the interaction-dominated regime, ii) the time evo-
lution of the distribution of high-energy electrons at very short times when Coulomb interaction
dominates the relaxation process. Both cases show power law decay due to the underlying Lévy
�ight in the relaxation process.

• We obtain an e�ective macroscopic hydrodynamic theory from the Boltzmann limit of the kinetic
equation. At the Dirac point the normal modes of the theory are ballistic energy waves.

• We implemented the theoretical formalism in a semi-implicit numerical solver for nonlinear hy-
drodynamics in graphene. The simulation tool includes dissipative corrections as well as the
calculation of the self-consistent electric �eld.

• Within linear response we obtain expression for the plasmon dispersion and the conductivity at
�nite frequency and wave vector. Both results take into account e�ects due to Coulomb scattering.
In particular we predict the in�uence of the viscosity on the conductivity.

• We applied the framework for nonlinear hydrodynamics to the relaxation of hot spots. We �nd
that the relaxation process is divided into two stages. The �rst one is characterized by the
emission of plasmonic waves and the formation of a metastable state at the hot spot. During the
second much longer stage, the plasmonic waves as well as the hot spot decay due to viscous and
di�usive damping.

In the following we review our �ndings regarding the relaxation dynamics due to Coulomb interaction
in graphene in more detail and put them in perspective. First we discuss the microscopic analysis of
relaxation of electrons in energy space due to Coulomb scattering. Second, we comment on our results
regarding the nonlinear hydrodynamics in graphene. In particular we discuss the application of the
framework to the spatial relaxation in the hydrodynamic regime. This analysis extends the investiga-
tion of the microscopic relaxation to the macroscopic domain and the relaxation of inhomogeneities as
they occur due to local heating.

We begin with the microscopic relaxation of graphene in the context of optical pump-probe measure-
ments. For the description of pump-probe experiments we developed a theory capturing the short-time
dynamics of high-energy electrons in the presence of external laser �elds and Coulomb interaction. A
detailed analysis of the scattering processes due to electron-electron scattering revealed that the prob-
ability distribution of the transferred energy in a single scattering event shows a power law tail. This

98



result is in contrast to the result for a low-energy electron in the Fermi liquid regime. Contrary to the
naive expectation the �uctuations 〈ω2〉 of the transferred energy are of the same order as the average
〈ω〉. As a consequence one should query whether the average 〈ω〉 has much meaning.
The emergence of the power law can be attributed to the dominant collinear scattering. The collinear

scattering singularity is present in many systems interacting via long range interaction, in particular
in systems with Coulomb interaction. In graphene though, the singular collinear scattering is not
only present for small momentum transfer but due to the linear dispersion relation it also occurs for
scattering with large momentum transfer. The latter gives rise to the power law tail in the distribution
of the transferred energy.
Due to the fat tail, i.e. the power law mentioned above, it is not possible to understand the relaxation

of high-energy electrons in terms of a simple di�usive motion in energy space. In this sense we have
to negate the initial question regarding the character of the relaxation cascade. There is no usual
Fokker-Planck type description of the Coulomb scattering for high-energy electrons in graphene. Such
a description meant usual Gaussian di�usion. This would neglect the rare scattering events with large
energy transfer. Interestingly those rare events are actually present in many physical systems. Usually
they are di�cult to describe theoretically and even more di�cult to predict. Underestimating them or
neglecting them can however lead to dramatic mispredictions. Fat tailed distributions arise for example
in the statistics of environmental catastrophes and �nancial market crashes as well as in the movements
of albatrosses or sharks. A special kind of random processes with power law probability distributions
that are relevant for us and describe rare but large scale events are referred to as Lévy �ights. They
are discussed in Chapt. 4.
Being unable to describe the relaxation cascade in terms of Gaussian di�usion there is still an alter-

native to the usual Fokker-Planck description of the Coulomb scattering. The fact that the relaxation
is described by Lévy �ights gives rise to anomalous di�usion. In the continuum limit this anomalous
di�usion can be formulated in terms of a fractional Fokker-Planck equation. The latter employs frac-
tional derivatives to capture the fat tail of the distribution of the step size in the underlying random
walk. All characteristics of the anomalous di�usion derive from the statistics of a single scattering
event. They were therefore obtained in our initial analysis of the distribution of the transferred energy.
As a consequence, we have to reconsider the preliminary negative answer to the question whether the
relaxation cascade can be described by di�usion. Indeed, we cannot describe it in terms of ordinary
di�usion. It is rather given by a superdi�usive motion containing rare but long jumps. This anomalous
di�usion is due to Lévy �ights in the relaxation cascade.
The emergence of the fractional kinetics is caused by the power law of the distribution of the step

size in the random walk constituting the relaxation cascade. Both the power law and therefore also
the anomalous di�usion arise due to the strong collinear scattering in graphene. Qualitatively we
understand the anomalous di�usion in the following way. The relaxation is dominated by fast collinear
scattering. If the scattering was strictly collinear, the di�usive motion was one-dimensional. However,
due to the fact that the Dirac electrons in graphene do scatter in two-dimensional space the e�ective
dimensionality of the relaxation process is neither truly one-dimensional nor really two-dimensional.
This fact is indeed captured by the anomalous di�usion. As an example, anomalous di�usion has also
been found on self-similar networks. Here the fractal dimension of the random walk on the network
gives rise to Lévy �ights.
Our �ndings on the character of the relaxation cascade of high-energy electrons in graphene are

important for the interpretation of experimental data in pump-probe experiments. One fundamental
objective is to separate the in�uence of Coulomb scattering and phonon scattering on the relaxation
of high-energy electrons. In order to do so one has to take into account that the fast relaxation due
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to Coulomb scattering leads to power law decay in the distribution of high-energy electrons and the
di�erential transmission. Regarding numerical simulations of carrier dynamics in the context of pump-
probe experiments we stress that rare events in the Coulomb scattering are crucial. This is in particular
important for Monte Carlo simulations.
In order to facilitate this analysis of experimental data, we make speci�c predictions for the time-

dependence of two important observables. First, we determine the di�erential change in transmission
and, second, we calculate the density of photoexcited electrons. In both cases we give expressions for
the temperature dependence of the relevant quantities describing the relaxation cascade as for example
the anomalous di�usion constant.

We studied the microscopic relaxation of photoexcited electrons in the �rst part of this thesis. The
second part was devoted to the nonlinear hydrodynamics in graphene. On the one hand, it presents
a framework to describe transport in graphene in the interaction-dominated regime. This includes the
theoretical formalism as well as the necessary computational tools. On the other hand, the second
part extends our study of relaxation processes to the relaxation of inhomogeneities in space. More
speci�cally, we investigate the relaxation of hot spots using the developed framework.
We develop an e�ective description of nonlinear transport by hydrodynamics. This formalism is in

particular interesting for graphene device simulations. This emergent hydrodynamics shows unusual
properties close to the Dirac point. First of all it is formulated in terms of relativistic hydrodynamics.
Second, graphene close to the Dirac point is a generic two-component system. It is described by the
densities of electrons and holes as well as the energy density. Interestingly, the only hydrodynamic
current is the energy current. In graphene this is related to the momentum density due to the linear
spectrum. Moreover there is a clear distinction between the electric and the energy current at the Dirac
point. The decoupling of the electric current from the momentum density also leads to the unusual
result that the Coulomb interaction causes a �nite dc conductivity at the Dirac point. On the other
hand the system exhibits ballistic energy modes. The latter entails an in�nite heat conductivity at the
Dirac point.
In contrast to previous works we performed a microscopic derivation of the nonlinear hydrodynamics

in the presence of Coulomb interaction. This construction also yields dissipative corrections that de-
scribe the �nite conductivity at the Dirac point as well as the thermoelectric e�ect and di�usion caused
by Coulomb interaction. In contrast to the conventional situation the di�usion is due to interactions
alone. No disorder needs to be present. Another dissipative correction caused by Coulomb interaction is
a �nite viscosity. From a fundamental point of view the viscosity in graphene is an interesting quantity.
While a perfect liquid is characterized by a vanishing viscosity, real liquids always include interactions
that lead to a �nite viscosity. One might ask how perfect a real liquid can be. For strongly correlated
systems there indeed exists a lower bound for the ratio of viscosity and entropy [150]. For graphene it
was found that the viscosity to entropy ratio is remarkably small. In view of these �ndings we asked
for the in�uence of the viscosity on the nonlocal optical response at the beginning of this thesis. As
it turns out the optical response at �nite wave vector indeed reveals the viscosity if the system is not
strictly at the Dirac point. Right at the Dirac point, i.e. for µ = 0, the energy current decouples from
the charge current. However, the optical conductivity is the response of the electric current and the
viscosity is connected to the dissipation for the energy current. Therefore if both currents decouple the
in�uence of the viscosity on the optical conductivity must vanish in linear response.
We continued the study of relaxation dynamics in the hydrodynamic regime. One of the main

questions raised in the introduction concerned the relaxation of hot spots in graphene due to Coulomb
interaction. While we investigated the relaxation in energy space in the �rst part of our work, we
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now turn to the spatial relaxation of a hot spot. Here, the in�uence of the Coulomb interaction
is twofold. First, the Coulomb interaction generates a self-consistent electric �eld. If the system is
away from charge neutrality this electric �eld couples the charge density and the energy density. This
hybridization eventually leads to the formation of generic two-dimensional plasmons. Second, the
Coulomb interaction leads to di�usion and viscous damping of waves. Both mechanisms are important
for the relaxation and determine the dynamics of the hot spot at di�erent times. More speci�cally, we
identify two di�erent regimes. During the �rst stage the hot spot excites plasmon waves. The second
longer time scale is characterized by di�usive relaxation of the hot spot while the emitted waves are
spatially separated from the hot spot.
In conclusion, the second part of this thesis presents a derivation of the collision-dominated hydrody-

namics that includes a consistent description of dissipative corrections due to Coulomb scattering. We
emphasize that Coulomb scattering is an intrinsic property of the graphene and thus a limiting factor
even for ultra clean samples. The hydrodynamic theory represents an e�ective method to understand
and predict transport properties of devices in the nonlinear regime. In view of this agenda we also
developed a hydrodynamic solver for the simulation of nonlinear hydrodynamics in graphene. As a �rst
application we applied this tool to the relaxation dynamics of hot spots. However, we believe that the
hydrodynamic theory has the potential to describe even more complicated transport setups.

This prospect of future applications also brings us to the limitations of the theory presented in this
thesis as well as an outlook regarding future studies.
We have emphasized the fact that the hydrodynamics is due to Coulomb interaction. We did include

disorder on the level of the relaxation time approximation. Phonons can be added in a similar fashion.
In contrast to disorder phonons would a�ect the local energy density. Future studies should therefore
elucidate the interplay between the di�usive relaxation by Coulomb interaction and the cooling due to
the interaction with the lattice. Moreover, the simulations should be extended towards �nite system
sizes including proper boundary conditions. Finally, an extension to systems with �nite magnetic �elds
promises new e�ects. In particular in view of the possible neutral currents ~jI . The latter did not play
an important role in the setups discussed here, but becomes relevant in the presence of magnetic �elds.
Regarding the microscopic theory devoted to the study of relaxation in the context of pump-probe

measurements we stress the following two important limitations of the theory. First, the results from
Chapt. 4 are limited to the linear regime. We did not consider the scattering among photoexcited
electrons themselves as it should occur for high pump �uences. Second, we did not include phonons
in the analysis. We focused on the very early stage where Coulomb interaction dominates. However,
the result (4.48) can be extended to include phonons in the relaxation time approximation. Studies of
the nonlinear regime are a promising topic for future studies. The coupling to an external bath is also
important to answer the question how the system at criticality, i.e. for µ = T = 0, relaxes towards
equilibrium. We have seen that our results yield that the high-energy electrons do not relax at all. In
this limit one should also reconsider the importance of Auger processes. Furthermore, it is interesting
to extend the analysis of relaxation dynamics to the regime of quantizing magnetic �elds. In view of
the �ndings of Refs. [123, 124], as discussed in Sec. 3.4, it is also interesting to include dephasing of the
interband polarization. As a �rst step we calculated the dephasing time (see Appendix B.3). Those
preliminary results indicate that the divergences occurring in the phenomenological approach towards
dephasing (see e.g. Ref. [124]), are mitigated due to decoherence by Coulomb scattering.

At the end of this thesis let us reconsider the initial objective of this work. We set out to theoretically
study non-equilibrium situations in graphene. In particular we wanted to investigate the relaxation
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Conclusion

dynamics due to Coulomb interaction. More speci�cally we asked two major questions.
First, can one understand the relaxation of high-energy electrons in terms of a di�usive motion?

The simple answer is no. However sometimes a negative answer reveals even more interesting physics.
In this case it turns out that the relaxation is described by anomalous di�usion and the underlying
random walk describes Lévy �ights. As a consequence one obtains power law decay of deviations from
the equilibrium distribution function at high energies.
Second, this anomalous di�usion is in particular in contrast to the result we obtain for the relaxation

of a hot spot in the hydrodynamic regime. Within the e�ective macroscopic description in terms of
hydrodynamics we �nd that the relaxation of a spatially localized hot spot close to the Dirac point
follows an exponential decay. The latter is due to dissipative corrections caused by Coulomb scattering.
We see from these two examples that Coulomb scattering in graphene manifests in many di�erent

ways. We searched for di�usion in the relaxation of electrons in energy space but found anomalous
di�usion, recovered however the usual di�usion in the spatial relaxation of hot spots due to Coulomb
interaction. In both cases the interaction is the driving force for equilibration but the character of
the time evolution is completely di�erent. These results also underline a paradigm that has grown
strong over the past years in condensed matter physics. Systems far away from equilibrium can reveal
completely novel e�ects and give deeper insight into the character of speci�c scattering mechanisms.
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A Appendix A

Langreth-Wilkins rules

We brie�y give a short overview of the necessary rules for analytical continuation of contour ordered
correlation functions and their convolution as well as products, the way they are needed in the main
text. The de�nition follow the standard literature on non-equilibrium Green's function methods, see for
example Refs. [102, 103].

Given the real-time two-point correlation functions

X≷(t1, t2) , (A.1)

we de�ne the following set of additional correlators

XR(t1, t2) = Θ(t1 − t2)[X>(t1, t2)−X<(t1, t2)] , (A.2)

XA(t1, t2) = Θ(t2 − t1)[X<(t1, t2)−X>(t1, t2)] , (A.3)

XT (t1, t2) = Θ(t1 − t2)X>(t1, t2) + Θ(t2 − t1)X<(t1, t2)] , (A.4)

X T̃ (t1, t2) = Θ(t1 − t2)X<(t1, t2) + Θ(t2 − t1)X>(t1, t2)] . (A.5)

They are not independent but ful�ll the following relations:

XR −XA = X> −X< , (A.6)

X< +X> = XT +X T̃ , (A.7)

XR(t1, t2) = [XA]†(t2, t1) , (A.8)

X<(t1, t2) = −[X<]†(t2, t1) , (A.9)

X>(t1, t2) = −[X>]†(t2, t1) . (A.10)

From the correlation functions (A.1) we can construct new two-point functions by convolution on the
Keldysh contour,

Z(t1, t2) =

∮
C

dτ X(t1, τ)Y (τ, t2) . (A.11)

The Langreth-Wilkins rules are simple book-keeping formulas to recover the convolution Z(t1, t2) in
terms of the real-time correlation functions X(t1, t2) and Y (t1, t2),

Z≷ = XR ◦ Y ≷ +X≷ ◦ Y A , (A.12)

ZR,A = XR,A ◦ Y R,A . (A.13)
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A Langreth-Wilkins rules

Here we used the short-hand notation

A ◦B =

∫
dt3 A(t1, t3)B(t3, t2) . (A.14)

Similarly for the product
D(τ1, τ2) = A(τ1, τ2)B(τ2, τ1) , (A.15)

the retarded correlator is for example given by

DR(t1, t2) = A<(t1, t2)BA(t2, t1) +AR(t1, t2)B<(t2, t1) . (A.16)
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B Appendix B

Derivation of the kinetic equation

In this section we are going to give additional details on the derivation of the quantum kinetic equation
in graphene. We will also discuss the connection between the Wigner transformation and the projected
Green's function technique laid out in Sec. 3.2.1.

B.1 The gradient expansion

We are going to establish a connection between the Wigner transformation of the Green's function
in real space representation and the projected GF in the momentum representation. The Wigner
transform in real space coordinates of a single particle GF G(~r1, ~r2) reads as

G(~R,~k) =

∫
ddr

(2π)d
e+i~k·~r G(~R+ ~r/2, ~R− ~r/2) . (B.1)

Presume that we have a projected Green's function gk1k2 for example as in Sec. Sec. 3.2.1 that depends
on two momentum indices. In this case the connection with the Wigner representation is given by

gk1k2 =

∫
d~R′d~r e−i~k·~R′e−i ~K·~rg(~r, ~R′) , (B.2)

where ~k = ~k1 − ~k2 and ~K = (~k1 + ~k2)/2. We see that assuming ~k1 = ~k2 leads to an average over
the center of mass variable ~R′. On the other hand the Green's function in the mixed representation is
obtained as

g(~R− ~R0, ~K) =

∫
d~k

(2π)2
e+i~k(~R−~R0)gk1k2 . (B.3)

This yields simply g( ~K) = gKK if we assume that gk1k2 ∼ δk1k2 .
We are now able to obtain the Liouvillian [ξ, g] in Eq. (3.40) from the main text for equal times

(τ = 0) and to leading order in the gradient expansion,

[ξ, g] =

∫
d~k

(2π)2

∫
d~R′

∫
d~r

[(
~K + ~k/2

| ~K + ~k/2|
+

~K − ~k/2
| ~K + ~k/2|

)
· i∇R′

+
1

2

(
~K + ~k/2

| ~K + ~k/2|
−

~K − ~k/2
| ~K + ~k/2|

)
· i∇r

]
e−i~k(~R′−~R)e−i ~K~rg(~r, ~R′) .

(B.4)
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B Derivation of the kinetic equation

Expanding the di�erential operator in the bracket in Eq. (B.4) in small ~k we obtain to leading order

[ξ, g] = 2K̂ · i∇R
∫

d2r e−i ~K~rg(~r, ~R) = 2K̂ · i∇R g ~K ~K(~R) . (B.5)

The last equation yields the usual driving term of the Boltzmann equation and links the Wigner
transformation with the projection method.

B.2 The collision integral

We will now derive the collision integral of the quantum kinetic equation due to Coulomb scattering.
We take into account that the distribution function is in leading order of the gradient expansion linear
in the momentum but a 2× 2 matrix in sublattice space.
We start out with the projected lesser (greater) component of the self energy due to Coulomb inter-

action which is given by

σ≷ν1ν2
= i

∫
d2r1,2 φ

†
ν1

(~r1)g≷(1, 2)φν2(~r2)V ≷(1, 2) . (B.6)

Here φν1 denotes the eigenstates of the clean non-interacting graphene as introduced in Sec. 1.1. The
projection of the kinetic equation was explained in the main text in Sec. 3.2.1. For the Coulomb
potential we have in Keldysh space

V = V0 + V0 ◦Π ◦ V . (B.7)

Here ◦ again denotes convolution in time and space. Furthermore V0 denotes the bare Coulomb Po-
tential, Eq. (1.1), and Π is the polarization operator de�ned in Eq. (B.15) below. From the retarded
component of the dresses Coulomb potential, Eq. (B.7), we obtain

(V R)−1 = V −1
0 −ΠR . (B.8)

We now replace ΠR from this expression in the Keldysh component of Eq. (B.7), which reads as

V ≷ = V0 ◦ΠR ◦ V ≷ + V0 ◦Π≷ ◦ V A . (B.9)

We then obtain for the lesser component of the Coulomb potential the expression

V ≷ = V R ◦Π≷ ◦ V A . (B.10)

Inserting Eq. (B.10) into Eq. (B.6) and further use the inverse projection as in Eq. (3.25), we arrive at

σ≷ν1ν2
= i

∫
d2r1,2 φ

†
ν1

(~r1)

∑
ν3ν4

φν3(~r1)gν3ν4φ
†
ν4

(~r2)

φν2(~r2)V R(1, 1′)Π≷(1′, 2′)V A(2′, 2) . (B.11)

We rearrange and Fourier transform the polarization operator Π≷, which yields

σ≷ν1ν2
(t1, t2) = i

∑
ν1̄ν2̄

g≷ν1̄ν2̄
(t1, t2)

∫
d~k1,2

(2π)2

∫
dt1′,2′

(∫
d~r1,1′φ

†
ν1

(~r1)φν1̄
(~r1)V R(1, 1′)ei~k1·~r1′

)

×

(∫
d~r2,2′φ

†
ν2̄

(~r2)φν2(~r2)V A(2, 2′)e−i~k2·~r2′

)
Π≷( ~k1, t1′ ;~k2, t2′) .

(B.12)

130



B.2 The collision integral

Inserting the explicit form of the graphene eigenstates (1.7), we obtain the result

σ≷ν1ν2
(t1, t2) = i

∑
λ1̄λ2̄

g≷ν1̄ν2̄
(t1, t2)

∫
d~q1,2

(2π)2

∫
dt1′,2′ [u

†
ν1
uν1̄

][u†ν2̄
uν2 ]

× V R(~q1; t1, t1′)V
A(~q2; t2, t2′)Π

≷(~q1, t1′ ; ~q2, t2′) .

(B.13)

It is advantageous to introduce the 2× 2 matrices

Θν1ν1̄
= [u†ν1

uν1̄
] , (B.14)

which are the prototype of the Dirac factors from the main text. We proceed with explicit expressions
for the polarization operator Π(~k1, t1;~k2, t2). The basic de�nition in the Keldysh theory is

Π≷(1, 2) = −iNtr[G≷(1, 2)G≶(2, 1)] . (B.15)

Inserting the inverse projections (3.25) for the Green's function we obtain

Π≷(1, 2) = −iN
∑

νi,i=1,...,5

G≷
ν2ν3

G≶
ν4ν5

∫
d2r1,2

(
φ†ν1

(~r1)φν2(~r1)φ†ν5
(~r1)φν1(~r1)e−i~k1~r1

)

×
(
φ†ν3

(~r2)φν2(~r4)e+i~k2~r2

)
.

(B.16)

Here N = 4 denotes the degeneracy factor in graphene due to valley and spin. Which after using the
explicit expression of the graphene eigenstates and their completeness yields

Π≶(~k1, t1;~k2, t2) = −iN
∑
ν1ν2

∑
λ1̄λ2̄

Θν2ν2̄
Θν1̄ν1 g

≶
ν1ν2

(t1, t2)g≷ν2̄ν1̄
(t2, t1) , (B.17)

Within the Keldysh-theory the gradient expansion of the collision integral leads to the local Boltzmann
collision integral. We pursue a strategy developed by Kadano� and Baym [102] and subsequently re�ned
by others [20, 107] to include higher order correlations on the quantum level. The reconstruction of
the two time distribution function from its time diagonal part, usually refered to as the generalized
Kadano�-Baym ansatz, to leading order in the relaxation times in the system reads [107]

G≶(t1, t2) = i
[
GR(t1, t2)G≶(t2, t2)−G≶(t1, t1)GA(t1, t2)

]
. (B.18)

Since the quantum terms in the kinetic equation are diagonal in momentum space we assume that
the Keldysh Green's function remain diagonal in the momentum but may be o�-diagonal in the band
indices. We write νi = {λi, pi} and obtain,

G≶
ν1ν2

= G≶
λ1,p1;λ2,p2

= δp1p2G
≶
λ1λ2

. (B.19)

We therefore allow for interband coherences expressed by the o�-diagonal elements of the Green's
function (B.19), that will later be identi�ed with the polarization of graphene. In fact, this represents
the zeroth order gradient expansion and is not su�cient to restore the convective term v̂ · ∇R in the
Boltzmann equation which is only obtained �rst order in the gradients (see Appendix B.1). With the
relation (B.19), the polarization bubble, Eq. (B.17), becomes diagonal in momentum,

Π≶(~k1, t1;~k2, t2) = −iNδk1,k2

∑
p1

∑
λ1λ2λ1̄λ2̄

g≶ν1ν2
(t1, t2)Θν2ν2̄

g≷ν2̄ν1̄
(t2, t1)Θν1̄ν1 . (B.20)
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B Derivation of the kinetic equation

where ~p1 = ~p2 and ~p1̄ = ~p1 − ~k1 and ~p2̄ = ~p2 − ~k2. Using the Langreth-Wilkins rules (see Appendix A)
the collision integral from the main text, Eq. (3.41), can be written as

St(t, t) =
1

4

∫ t

−∞
dt3

[
σ> ◦ g< − g> ◦ σ< + g< ◦ σ> − σ< ◦ g>

]
. (B.21)

Here t3 is the intermediate time in the convolutions of the form σ>(t, t3)g<(t3, t). With this we obtain
for the out-scattering term of the collision integral (3.41)

− St(out)ν1ν2
(t) =

1

4

∫ t

−∞
dt3
∑
ν3

[
σ>ν1ν3

(t, t3)g<ν3ν2
(t3, t) + g<ν1ν3

(t, t3)σ>ν3ν2
(t3, t)

]
, (B.22)

the following expression:

− Stout =
N

4

∫
d2q

(2π)2

∫
d2p′1
(2π)2

∫ t

−∞
dt3

∫ +∞

−∞
dt′1

∫ +∞

−∞
dt′3

{
V R(q, t, t′1)V A(q, t′3, t3)

×Θp1,p1−qg
>
p1−q(t, t3)Θp1−q,p1g

<
p1

(t3, t) tr
[
g>p′1

(t′1, t
′
3)Θp′1,p

′
1−qg

<
p′1−q

(t′3, t
′
1)Θp′1−q,p′1

]
+ V A(q, t, t′1)V R(q, t′3, t3)

× g<p1
(t, t3)Θp1,p1−qg

>
p1−q(t3, t)Θp1−q,p1 tr

[
g>p′1

(t′3, t
′
1)Θp′1,p

′
1−qg

<
p′1−q

(t′1, t
′
3)Θp′1−q,p′1

] }
.

(B.23)

Here Θp1p2 and g≶p are understood as matrices in band space such that

Θp1,p2 =

(
cosϕ12/2 i sinϕ12/2
i sinϕ12/2 cosϕ12/2

)
, (B.24)

where ϕ12 = ^(~p1, ~p2) and

g≶p (t1, t2) =

(
g≶p,++(t1, t2) g≶p,+−(t1, t2)

g≶p,−+(t1, t2) g≶p,−−(t1, t2)

)
. (B.25)

We now insert the Kadano�-Baym ansatz (B.18) into the collision integral (B.23). Furthermore, we
substitute

GRν1ν2
(t1, t2) = −iδν1ν2Θ(t1 − t2)e−iεν1 (t1−t2) , (B.26)

GAν1ν2
(t1, t2) = +iδν1ν2Θ(t2 − t1)e−iεν1 (t1−t2) . (B.27)

Here, the spectrum is assumed to be unaltered by the external �elds. The resulting collision integral is
non-Markovian. However if we perform the Markov approximation, that means we set the distribution
functions occurring in the collision integral on the external time t and extend the limits of integration
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B.2 The collision integral

to in�nity, we obtain the simpler expression

− Stout =
N

4

∫
dω

(2π)

∫
d2q

(2π)2

∫
d2p′1
(2π)2

{
|V R(q, ω)|2 Θp1,p1−qg

>
p1−q(t)Θp1−q,p1g

<
p1

(t) tr
[
g>p′1

(t)Θp′1,p
′
1−qg

<
p′1−q

(t)Θp′1−q,p′1

]
×
∫ +∞

−∞
dt3

∫ +∞

−∞
dt′1

∫ +∞

−∞
dt′3 e−i(ω+εp1−q−εp1 )t e

−i(ω+εp′1
−εp′1−q

)t′1

× e
−i(−ω+εp′1−q

−εp′1
)t′3 e−i(ω+εp1−εp1−q)t3

+ |V R(q, ω)|2 g<p1
(t)Θp1,p1−qg

>
p1−q(t)Θp1−q,p1 tr

[
g>p′1

(t)Θp′1,p
′
1−qg

<
p′1−q

(t)Θp′1−q,p′1

]
×
∫ +∞

−∞
dt3

∫ +∞

−∞
dt′1

∫ +∞

−∞
dt′3 e−i(ω+εp1−εp1−q)t e

−i(ω+εp′1−q
−εp′1

)t′1

× e
−i(−ω+εp′1

−εp′1−q
)t′3 e−i(ω+εp1−q−εp1 )t3

}
.

(B.28)

Similar expressions hold for the in scattering term. After evaluating the time integrals which yield the
on-shell conditions, we obtain for the diagonal part of the collision integral (λ1 = λ2),

− St =
N

2

∫
d2q

(2π)2

∫
dω

2π
V R(q, ω)V A(q, ω)

× (2π)2δ(ελ̄′1,p′1−q
− ελ′1,p′1 + ω)δ(ελ̄1,p1−q − ελ2,p1 − ω)

× Re

{
Θp1,p1−qg

>
p1−q(t)Θp1−q,p1g

<
p1

(t) Tr[g>p′1(t)Θp′1,p
′
1−qg

<
p′1−q

(t)Θp′1−q,p′1 ]− {<↔>}

}
,

(B.29)

where the trace also means summation over the intermediate momentum p′1 now. We now de�ne the
distribution matrix

g<p (t) = i

(
ρp,+(t) Pp(t)
P ∗p (t) ρp,−(t)

)
, (B.30)

where the o�-diagonal elements P are the polarization of the graphene while ρp,± are the conduction
and valence band populations. With this de�nition we obtain for the trace appearing in the collision
integral,

tr[δ(ελ̄′1,p1
− ελ′1p2

+ ω)Θp1,p2g
>
p2

(t)Θp2,p1g
<
p1

(t)] =
∑
λ′1,λ̄

′
1

δ(ελ̄′1,p1
− ελ′1p2

+ ω)

{
1

2
(1 + λ′1λ̄

′
1 cosϕ12)ρλ̄′1

(p1)
(

1− ρλ′1(p2)
)

+
i sinϕ12

2

[
ρλ̄′1

(p1)Pλ′1(p2)− Pλ̄′1(p1)∗
(

1− ρλ′1(p2)
)]

− 1

2
(1 + λ′1λ̄

′
1 cosϕ12)Pλ̄′1

(p1)∗Pλ′1(p2)

}
(B.31)
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B Derivation of the kinetic equation

Here we introduced the notation P+1 = P and P−1 = P ∗. Furthermore we have for the diagonal parts

[δ(ελ̄1,p2
− ελ1p1 − ω)Θp1,p2g

>
p2

(t)Θp2,p1g
<
p1

(t)]λ1λ1 =
∑
λ̄1

δ(ελ̄1,p1
− ελ1p2 − ω)

{
1

2
(1 + λ1λ̄1 cosϕ12)ρλ1(p1)

(
1− ρλ̄1

(p2)
)

+
iλ1λ̄1 sinϕ12

2

[
ρλ1(p1)Pλ̄1

(p2)−
(

1− ρλ̄1
(p2)

)
Pλ1(p1)

]

− 1

2
(1 + λ1λ̄1 cosϕ12)Pλ1(p1)∗Pλ̄1

(p2)

}
,

(B.32)

while the o�-diagonal part reads (λ2 = −λ1),

[δ(ελ̄1,p2
− ελ2p1 − ω)Θp1,p2g

>
p2

(t)Θp2,p1g
<
p1

(t)]λ1λ2 =
∑
λ̄1

δ(ελ̄1,p2
− ελ2p1 − ω)

{
iλ̄1λ2 sinϕ12

2
ρλ2(p1)

(
1− ρλ̄1

(p2)
)

+
1

2
(1− λ2λ̄1 cosϕ12)

[
Pλ2(p1)∗

(
1− ρλ̄1

(p2)
)
− Pλ̄1

(p2)ρλ2(p1)

]
− iλ̄1λ2 sinϕ12

2
Pλ2(p1)∗Pλ̄1

(p2)

}
.

(B.33)

We observe that if the polarization is zero the usual collision integral of Coulomb scattering in graphene
including the graphene speci�c Dirac factors is restored from Eqs. (B.31)-(B.33). We will here only
give the total diagonal collision integral neglecting the polarization. And for the o�-diagonal collision
integral we will assume weak polarization and only consider the out-scattering term that leads to the
decay of polarization and de�nes the decoherence time. In this approximation the usual diagonal part
of the collision integral reads

Stλ1λ1 = −N
2

∫
(d2q)

∫
(dω) |V (q, ω)|2

×
∑
λ̄1

2πδ(ελ̄1,p1−q − ελ2,p1 − ω)
1

2
(1 + λ1λ̄1 cosϕ12)ρλ1(p1)

(
1− ρλ̄1

(p1 − q)
)

×
∑
λ′1,λ̄

′
1

∫
p′1

2π δ(ελ̄′1,p′1−q
− ελ′1,p′1 + ω)

1

2
(1 + λ′1λ̄

′
1 cosϕ12)ρλ̄′1

(p′1 − q)
(

1− ρλ′1(p′1)
)

+ {ρ↔ (1− ρ)} .

(B.34)
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On the other hand for the o�-diagonal part in the approximation discussed above we have

Stλ1,λ2 = −N
2

∫
(d2q)

∫
(dω) |V (q, ω)|2

×
∑
λ̄1

2πδ(ελ̄1,p1−q − ελ2,p1 − ω)
1

2
(1− λ2λ̄1 cosϕ12)Pλ2(p1)∗

(
1− ρλ̄1

(p1 − q)
)

×
∑
λ′1,λ̄

′
1

∫
p′1

2π δ(ελ̄′1,p′1−q
− ελ′1,p′1 + ω)

1

2
(1 + λ′1λ̄

′
1 cosϕ12)ρλ̄′1

(p′1 − q)
(

1− ρλ′1(p′1)
)

+ {ρ↔ (1− ρ)} .

(B.35)

We observe that in the o�-diagonal collision integral the Dirac factors are of a di�erent form. As a
consequence the integral kernel for the decoherence time will be suppressed at the forward scattering
resonance in contrast to the collision kernel for the diagonal collision integral. As a consequence the pure
dephasing time τϕ will not be enhanced by forward scattering and therefore fairly long, i.e. τϕ ∼ α2.

B.3 Calculation of the dephasing rate

We calculate now the dephasing time de�ned in the previous section. According to Eq. (B.35) for
λ1 = +1 and λ2 = −1 we de�ne the dephasing time as

τ−1
ϕ =

1

2

∫
(d2q)

∫
(dω) |V (q, ω)|2

×
∑
λ̄1

2πδ(ελ̄1,p1−q − ελ2,p1 − ω)
1

2
(1 + λ̄1 cosϕ12)

(
1− ρλ̄1

(p1 − q)
)
K(ω, q) .

(B.36)

Here we introduced the kinetic kernel known from Chapt. 4, see Eq. (4.10). After the standard algebra
that can be found in Appendix D we have for the decoherence time de�ned as the out-scattering term
in the collision integral for the polarization

τ−1
ϕ =

α2
g

8p1

∫ +∞

0
dq

∫ +∞

−∞
dω

1

q

1− ρ(ω − p1)√
(2p1 − ω)2 − q2

K(ω, q) . (B.37)

Physically, coherences decay into population as can be seen from the factor [1 − f(λp − ω)] in the
scattering rate, expressing the �nal state of scattering. We split it up into two parts, which we will
study separately, i.e.

τ−1
ϕ,1(p) =

N

8πp

∫
dω

∫
dq q

|V (ω, q)|2√
sgn(q2 − ω2)(2p− ω)2 − q2

K(ω, q)[1− f(p− ω)] , (B.38)

τ−1
ϕ,2(p) =

N

8πp

∫
dω

∫
dq q

|V (ω, q)|2√
sgn(q2 − ω2)(−2p− ω)2 − q2

K(ω, q)[1− f(−p− ω)] . (B.39)

Such that
τ−1
ϕ (p) = τ−1

ϕ,1(p) + τ−1
ϕ,2(p) . (B.40)

In fact the second time is irrelevant close to the Dirac point and we can concentrate on the �rst
contribution or

τ−1
ϕ (p) = τ−1

ϕ,1(p) . (B.41)
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B Derivation of the kinetic equation

Intraband contribution to the scattering rate

We calculate �rst the intraband contribution to the decoherence time for small chemical potential,
i.e. |µ| � T . We introduce the dimensionless quantities Q = q/2T , Ω = ω/2T and P = p/T . In
dimensionless variables the decoherence time reads,

τ−1
ϕ,1(p)

∣∣∣
intra

=
Nα2T 2

2p

∫ P/2

−∞
dΩ

∫ P−Ω

|Ω|
dQ
K̃(Ω, Q)[1− f(P − 2Ω)]

Q
√

(P − Ω)2 −Q2︸ ︷︷ ︸
I11

. (B.42)

Here the dimensionless kinetic kernel K̃ = K/2T 2, where K has been de�ned in Eq. 4.10. We split up
the integral in the following subregion amenable to analytic evaluation

I11 =

∫ P/2

−∞
dΩ[1− f(P − 2Ω)]

{
Θ(1− |Ω|)

∫ 1

|Ω|
dQ [...] +

∫ P−Ω

max(|Ω|,1)
dQ [...]

}
. (B.43)

We �nd that the last integral contains an additional scale given by P/(1 +
√

2),

I11 =

∫ +∞

−∞
dΩ[1− f(P − 2Ω)]

{
Θ(1− |Ω|)

∫ 1

|Ω|
dQ [...]

+ Θ

(
P

1 +
√

2
−max(|Ω|, 1)

) ∫ (P−Ω)/
√

2

max(|Ω|,1)
dQ [...] +

∫ P−Ω

max[(P−Ω)/
√

2,|Ω|,1]
dQ [...]

}
.

(B.44)

The �rst integral yields the known logarithmic divergence for small momentum transfer as in the case
of the JSD in Appendix D,

J11 =

∫ 1

|Ω|
dQ

K̃(Ω, Q)

Q
√

(P − Ω)2 −Q2
=
K̃(Ω, Q→ Ω+)

P − Ω
ln

1

|Ω|
. (B.45)

The second integral yields

J12 =

∫ (P−Ω)/
√

2

max(|Ω|,1)
dQ

K̃(Ω, Q)

Q
√

(P − Ω)2 −Q2
=

e+Ω√
(P − Ω)2 − [max(|Ω|, 1)]2

∫ (P−Ω)/
√

2

max(|Ω|,1)

√
2πe−Q√
Q

= C P−1/2 ,

(B.46)

where we used K̃ =
√

2πQe−(Q−Ω) for large momentum transfer and Q > |Ω|. Furthermore, we assumed
large momenta P > 1 in the last line. The last integral �nally gives

J13 =

∫ P−Ω

max[(P−Ω)/
√

2,|Ω|,1]
dQ

K̃(Ω, Q)

Q
√

(P − Ω)2 −Q2
=
K̃(Ω, Q→ Ω+)

P − Ω
arccos

[
max(1, |Ω|, (P − Ω)/

√
2)

P − Ω

]
,

(B.47)
For further integration over Ω we use the approximations for the kinetic kernel K̃. Now that we have all
contributions set we evaluate the scattering rate τϕ1 |intra. We see that for high energies the contribution
of J11 vanishes as 1/P ,∫ +1

−1
dΩ [1− f(P − 2Ω)]︸ ︷︷ ︸

'1

K̃(Ω, Q→ Ω+)

P − Ω
ln

1

|Ω|
=

2K̃(, Q→ 0+)

P
. (B.48)
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B.3 Calculation of the dephasing rate

The second integral gives the major contribution for P > 1, where

∫ P/(1+
√

2

−∞
dΩ [1− f(P − 2Ω)]︸ ︷︷ ︸

'1

C P−3/2 ' 2
√
π P−1/2 . (B.49)

The contribution from the last integral, basically the peak at Ω ∼ P/2, is exponentially small, since

∫ P/2

P/(1+
√

2)
dΩ [1− f(P − 2Ω)]︸ ︷︷ ︸

'1

J13 =

√
2π23/2e−P√

P

∫ P/2

P/(1+
√

2)
dΩ

√
Ω(P/2− Ω)

P − Ω
∼
√
P e−P . (B.50)

Interband contribution to the scattering rate

The interband contribution to the decoherence rate τϕ,2 is much easier to calculate. Interestingly it is
also the dominant contribution for large momenta. Whereas it vanishes for small momenta, where the
intraband contribution is more dominant. The latter in turn vanishes essentially as p−3/2 as we have
seen above.
Again we write the integrals in dimensionless quantities Q = q/2T and Ω = ω/2T and P = p/T ,

τ−1
ϕ,1(p)

∣∣∣
inter

=
Nα2T 2

2p

∫ P

P/2
dΩ

∫ |Ω|
|P−Ω|

dQ
K̃(Ω, Q)[1− f(P − 2Ω)]

Q
√
Q2 − (P − Ω)2︸ ︷︷ ︸

I21

. (B.51)

We only need one integration region for the integral I21, namely

I21 =

∫ P

P/2
dΩ [1− f(P − 2Ω)]J21 . (B.52)

J21 =

∫ |Ω|
|P−Ω|

dQ
K̃(Ω, Q)

Q
√
Q2 − (P − Ω)2

. (B.53)

In the case of interband transition we always have large momentum transfer since the dominant inte-
gration region is Ω ' P/2. For higher energies the kernel is exponentially suppressed. Therefore the
lower limits of integration in Eq. (B.53) ful�lls |P −Ω| > 1. In this limit we use again the asymptotics
of the kinetic kernel K ' πQ2/2 for Ω > 0. This yields,

J21 =
π

2

∫ |Ω|
|P−Ω|

dQ√
1− (P − Ω)2/Q2

=
π

2

√
P (2Ω− P ) . (B.54)

So that we �nally obtain

I21 =
π

2

∫ P

P/2
dΩ
√
P (2Ω− P )e−(2Ω−P ) =

π3/2P 1/2

8
. (B.55)
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B Derivation of the kinetic equation

The dephasing time

We have seen that close to the Dirac point (|µ| � T ) the dominant contribution to the decoherence
time comes from τϕ,1. The latter includes two contributions. First intraband scattering (q > |ω|) and
second interband scattering (q < |ω|). We �nd that the latter is dominant for high energies. According
to the result (B.55), and Eq. (B.51), the contribution to the rate τ−1

ϕ from interband transitions reads,

τ−1
ϕ

∣∣∣
inter

=
α2π3/2T 3/2

4p1/2
. (B.56)

On the other hand the contribution due to intraband decay according to the result (B.46) and (B.42),
is given by

τ−1
ϕ

∣∣∣
intra

=
α2 4π1/2 T 5/2

p3/2
. (B.57)

The decoherence time is not logarithmically enhanced. This is due to the Dirac electrons topology.
More speci�cally, it is due to the overlap of eigenstates in di�erent bands. In contrast to the usual
scattering rates originating from the diagonal collision integral they suppress forward scattering in the
decoherence time. In this way the o�-diagonal collision integral is intrinsically protected from the
forward scattering resonance in the collision integral due to Coulomb scattering.
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C Appendix C

Short laser pulses in graphene

In this Appendix we are going to apply the quantum kinetic equation to the problem of short laser pulses
in graphene. We will in particular derive the formula (3.69) from the main text.

In this section we outline the calculation of the inversion after short laser pulse from Sec. 3.3. In
addition to the noninteracting Bloch equations we also introduce a phenomenological dephasing rate Γ2

and relaxation of the inversion Γ1 towards its equilibrium values ∆ρ(−∞). We start with the solution
of the Bloch equations, which we write as

∂t~S(t) = [M1 +M2(t)]~S(t) +M3[∆ρ(t0)ê3 − ~S] . (C.1)

Here we introduced the matrices

M1 =

−Γ2 ∆k 0
−∆k −Γ2 0

0 0 0

 , (C.2)

M2(t) =

0 0 0

0 0 − eky
k2 E0(t)

0 +
eky
k2 E0(t) 0

 , (C.3)

and

M3(t) =

0 0 0
0 0 0
0 0 −Γ1

 , (C.4)

First, we introduce the deviation of the Bloch vector from its equilibrium value,

~u = ∆ρ(t0)ê3 − ~S , (C.5)

for which ~u(t0) = 0 and

∂t~u(t) = [M1 −M3 +M2(t)]~u(t)−∆ρ(t0)M2(t)ê3 . (C.6)

Now we transform into the interaction picture according to

~u(t) = e(M1−M3)t~r(t) . (C.7)
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C Short laser pulses in graphene

The Bloch equations (C.1) in the interaction picture read

∂t~r(t) = M I
2 (t)~r(t)−∆ρ(−∞)e−(M1−M3)tM2(t)ê3 . (C.8)

and again ~r(0) = 0. The last term can be rewritten as

e−(M1−M3)tM2(t)ê3 = M I
2 (t)ê3 e−Γ1t , (C.9)

so that we obtain
∂t~r(t) = M I

2 (t)[~r(t)−∆ρ(−∞)ê3 e−Γ1t] . (C.10)

We see that in the limit Γ1 → 0 the inhomogeneity can simply be eliminated. The general homogeneous
solution of Eq. (C.1) (Γ1 = 0) is given by

~rh = Texp

(∫ t

ta

dt′M I
2 (t′)

)
~r(ta) = O(t, ta)~r(ta) . (C.11)

We make the following ansatz for the solution of Eq. (C.1),

~r(t) = O(t, t0)~v(t) , (C.12)

with the boundary condition ~v(t0) = 0. We �nally obtain for ~v(t),

∂t~v(t) = O(t0, t)M
I
2 (t)ê3∆ρ(t0)e−Γ1t , (C.13)

which has the solution

~v(t) =

∫ t

t0

dt′O(t0, t
′)M I

2 (t′)e−Γ1t′∆ρ(t0)ê3 . (C.14)

Thus we obtain for the initial Bloch vector

~S(t) = ∆ρ(t0)

(
ê3 − e+(M1−M3)t

∫ t

t0

dt′e−Γ1t′ [O(t, t′)M I
2 (t′)ê3]

)
. (C.15)

Finally, partial integration in the last time integral yields

~S(t) = ∆ρ(t0)e+(M1−M3)t

(
O(t, t0) + Γ1

∫ t

t0

dt′e−Γ1t′O(t, t′)

)
ê3 . (C.16)

We are now interested in the imaginary part of the polarization for which we have

Im[p(t)]

∆ρ(t0)
= êT2 e+(M1−M3)t

(
O(t, t0) + Γ1

∫ t

t0

dt′e−Γ1t′O(t, t′)

)
ê3 . (C.17)

Writing out the time ordered exponential of the �rst part this yields

êT2 e+(M1−M3)tO(t,−∞) ê3 = eΓ1t
∞∑

k=0,(n=2k+1)

(−1)k+1

(
eky
k2

)n

×
∫ t

−∞
dtn

∫ tn

−∞
dtn−1 . . .

∫ t2

−∞
dt1 E(tn) · ... · E(t1)

× e−(Γ1+Γ2)(t−tn) cos[∆k(t− tn)]× · · · × e−(Γ1+Γ2)(t2−t1) cos[∆k(t2 − t1)] .

(C.18)
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The second part yields

Γ1ê
T
2 e+(M1−M3)t

∫ t

t0

dt′e−Γ1t′O(t, t′)ê3 = Γ1

∞∑
k=0,(n=2k+1)

(−1)k+1

(
eky
k2

)n

×
∫ t

−∞
dt′
∫ t

t′
dtn

∫ tn

t′
dtn−1 . . .

∫ t2

t′
dt1 e+Γ1(t−t′) E(tn) · ... · E(t1)

× e−(Γ1+Γ2)(t−tn) cos[∆k(t− tn)]× · · · × e−(Γ1+Γ2)(t2−t1) cos[∆k(t2 − t1)] .

(C.19)

In the limit ∆kτ → 0 the following integrals can be evaluated (t0 = 0):∫ t

−∞
dtn

∫ tn

−∞
dtn−1 . . .

∫ t2

−∞
dt1 E(tn) · ... · E(t1)

× e−(Γ1+Γ2)(t−tn) cos[∆k(t− tn)]× · · · × e−(Γ1+Γ2)(t2−t1) cos[∆k(t2 − t1)]

' e−(Γ1+Γ2)t cos[∆kt]

∫ t

−∞
dtn

∫ tn

−∞
dtn−1 . . .

∫ t2

−∞
dt1 E(tn) · ... · E(t1)

= e−(Γ1+Γ2)t cos[∆kt]
1

n!

1

2n

1 + Erf

(
t√
2τ

)n .
(C.20)

Therefore we have for ∆τ � 1 and t > τ

êT2 e+(M1−M3)tO(t,−∞) ê3 = −Θ(t) sin

(
ekyĒ

k2

)
cos(∆t)e−(Γ1+Γ2)t . (C.21)

Here we have replaced

1

2n

1 + Erf

(
t√
2τ

)n → Θ(t) (C.22)

The second part of the imaginary polarization, Eq. (C.17) yields

−Θ(t) sin

(
ekyĒ

k2

)
cos(∆t)

[
e−Γ2t − e−(Γ1+Γ2)t

]
. (C.23)

Such that we obtain for the imaginary part of the polarization

Im[p(t)]

∆ρ(t0)
= −Θ(t) cos(∆t) sin

(
ekyĒ

k2

)
e−Γ2t

(
2− e−Γ1t

)
. (C.24)

Inserting Eq. (C.24) into

∆ρ(t)−∆ρ(−∞) =
eky
k2

∫ t

−∞
dt′E−Γ1(t−t′)E0(t′)Im[p(t′)] . (C.25)

for the change in the inversion we obtain for t− t0 > ∆τ2 using again ∆τ � 1,

∆ρ(t)−∆ρ(−∞)

∆ρ(−∞)
= −e−Γ1t

(
ekyĒ

k2

)
sin

(
ekyĒ

2k2

)
. (C.26)
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D Appendix D

Calculation of the relaxation rate and the
JSD from the Boltzmann equation

In this section we derive Eq. (4.7) for the JSD and the relaxation rates from the main text. Furthermore
we give the asymptotics of the kinetic kernel.

D.1 Preliminaries

We start from a generic fermionic collision integral as introduced in Sec. 3.2.4,

St[f(λ, ~p)] =
∑
λ3

∫
d2p3

(2π)2

{
W (λ, ~p|λ3, ~p3)fλ3(~p3)[1−fλ(~p)]−W (λ3, ~p3|λ, ~p)fλ(~p)[1−fλ3(~p3)]

}
, (D.1)

where the transition rates for the Coulomb interaction

W (~p2, λ2|~p1, λ1) = (2π)−1
∑
λ3,λ4

∫
d~p3,4

∫
d~qdωδ(λ2p2 + ω − λ1p1)δ(λ4p4 − ω − λ3p3)

× δ(~p2 + ~q − ~p1)δ(~p4 − ~q − ~p3)|M(~q, ω, {λi}, {~vi})|2 f(~p3, λ3)[1− f(~p4, λ4)] .

(D.2)

Here the interaction kernel

|M(~q, ω, {λi}, {~vi})|2 = N |V (ω, q)|2Θ1,2Θ3,4 , (D.3)

contains the RPA screened Coulomb matrix element (see Sec. 1.2.2)

|V (ω, q)|2 =
4π2α2

g

(q + 2παgNReΠ)2 + (2παgN ImΠ)2
, (D.4)

as well as the Dirac factors (~vi = λi~ki/ki) Θ1,2 = (1 + ~v1 · ~v2)/2. Upon inserting the ansatz (4.1) from
the main text, Sec. 4.3.2, into the collision integral (D.1), we obtain the explicit expression for the
relaxation rate

Γ =
∑
λ1

∫
d2k

(2π)2
W0(λ1,~k|+ 1, ~p)[1− fλ1(~k)] +W0(+1, ~p|λ1,~k)fλ1(~k) . (D.5)
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D Calculation of the relaxation rate and the JSD from the Boltzmann equation

For ω < εp, where interband processes are forbidden, the second term in Eq. (D.6) can be dropped.
Using Eqs. (D.2)-(D.3) we then obtain

Γ = (2π)2
∑
λ1,3,4

∫
d2q

(2π)2

dω

2π

d2k4

(2π)2
δ(λ2|~p− ~q|+ ω − p)δ(λ4k4 − ω − λ3|~k4 − ~q|)

×N |VRPA(ω, q)|2 Θ1,2

∣∣∣
1=(λ1,~p−~q)

Θ3,4

∣∣∣
3=(λ3,~k4−~q)

fT (λ4k4 − ω)[1− fT (λ4k4)] .

(D.6)

Next we perform the angular integration in the integrals over ~k4 and ~q. The arising functional deter-
minants are (λ = +1),∣∣∣∣∣ ∂∂ϕq λ2|~p− ~q|

∣∣∣∣∣ =
pq| sin(ϕq − ϕp)|

|~p+ ~q|
=

√
q2 − ω2[(ω − 2λp)2 − q2]1/2

2|λp− ω|
, (D.7)∣∣∣∣∣ ∂∂ϕ4

λ3|~k4 − ~q|

∣∣∣∣∣ =
k4q| sin(ϕ4 − ϕq)|

|~k4 − ~q|
=

√
q2 − ω2[(ω − 2λ4k4)2 − q2]1/2

2|λ4k4 − ω|
. (D.8)

The corresponding Dirac factors are (λ1 = λ = +1)

Θ1,2 =
1

2

(
1 +

λ1λ2
~k1 · (~p− ~q)
k1|~p− ~q|

)
=
|(ω − 2λp)2 − q2|

4p|λp− ω|
, (D.9)

Θ3,4 =
1

2

(
1 +

λ2λ3
~k4 · (~k4 − ~q)
k4|~k4 − ~q|

)
=
|(ω − 2λ4k4)2 − q2|

4k4|λ4k4 − ω|
. (D.10)

D.2 The JSD P (ω)

Putting together Eqs. (D.6)-(D.10) we �nally obtain the JSD

P (ω) =

∫ ∞
0

dq
q Re

√
sign(q2 − ω2)[(ω − 2λp)2 − q2]

2p

N |V (ω, q)|2

|q2 − ω2|
K(ω, q) . (D.11)

Here the kinetic kernel is given by Eq. (D.13) below and was also introduced in Sec. 4.3.2. If we assume
p� ω, q we obtain the result (4.7) stated in the main text,

P (ω) =

∫ ∞
|ω|

dq q
N |V (ω, q)|2

|q2 − ω2|
K(ω, q) . (D.12)

In the following we again use the dimensionless variables Ω = ω/2T , Q = q/2T , β = ω/q and µ̃ = µ/T .
We also give the asymptotics of the kinetic kernel

K(Ω, Q) = 2T 2eΩ

∫ +∞

−∞
dξ

Re[sign(1− |β|)(ξ2 −Q2)]1/2

4 cosh ξ−Ω−µ̃
2 cosh ξ+Ω−µ̃

2

, (D.13)

for all integration regions. Remember that the kinetic kernel K roughly describes the phase space
of scattering and is connected to the vertex function Γ(0) de�ned in Eq. (E.43) in Appendix E. The
asymptotic are summarized in Tab. D.1. Using the asymptotics for the RPA bubble from Sec. 1.2.2
and the asymptotics of the kinetic kernel from Tab. D.1 we obtain limiting expressions for the JSD
P (Ω) presented below for various regimes of temperature, chemical potential and frequency.
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D.2 The JSD P (ω)

|µ̃| � 1
β < 1 β > 1

Q� µ̃ Q� µ̃ Q� µ̃ Q� µ̃

K 4T 2Ω|µ̃|(1 + coth Ω) 2T 2
√

2πQe−(1−β)Q T 2πQ2e−(1−sign(Ω))|Ω| T 2πQ2e−(1−sign(Ω))|Ω|

|µ̃| � 1
β < 1 β > 1

Q� 1 Q� 1 Q� 1 Q� 1

K 4T 2 ln 2eβQ 2T 2
√

2πQe−(1−β)Q T 2πQ2e−(1−sign(Ω))|Ω| T 2πQ2e−(1−sign(Ω))|Ω|

Table D.1: The asymptotics of the kinetic kernel (D.13) expressing the phase space for the thermal
electrons participating at the scattering event.

D.2.1 The limit T � |µ| for |Ω| < 1

The contribution for small momentum transfer (Q < 1) reads,

P (Ω)
∣∣∣
Q<1

= 4 ln 2 α2
gπ

2NeΩ

∫ 1

|Ω|
dQ

Q

|Q2 − Ω2|(Q+ αgN ln 2)2 + (αgN ln 2Ω)2
=

4π2

N ln 2
ln
αgN ln 2

|Ω|
.

(D.14)
Here the last equality is valid for |Ω| < αgN ln 2. The contribution to the JSD with large momentum
transfer (Q > 1) for frequencies |Ω| < 1 is,

P (Ω)
∣∣∣
Q>1

= 2α2
gπ

2NeΩ

∫ ∞
1

dQ

√
2πQ3/2e−Q

(
√
Q2 − Ω2Q+ αgπNQ2/16)2 + (αgπNe−Q

√
Q/2π)2

. (D.15)

The latter can be neglected for |Ω| < αg.

D.2.2 The limit T � µ| for |Ω| > 1 (Q > 1)

For |Ω| > 1, where only intraband transitions with Q > 1 are possible, the JSD reads,

P (Ω) = 2α2
gπ

2NeΩ

∫ ∞
|Ω|

dQ

√
2πQ3/2e−Q

(
√
Q2 − Ω2Q+ αgπNQ2/16)2 + (αgπNe−Q

√
Q/2π)2

' 29
√

2π

N
|Ω|−5/2 ,

(D.16)
where the asymptotics is valid for |Ω| � 1.

D.2.3 The limit |µ| � T for |Ω| < |µ̃| (Q < |µ̃|)

P (Ω) = 4α2
gπ

2N Ω|µ̃|(1 + coth(Ω))

∫ |µ̃|
|Ω|

dQ
Q

(Q2 − Ω2)(Q+ αgN |µ̃|/2)2 + (αgNµ̃Ω/2)2
. (D.17)

Equation (D.17) can be integrated analytically, similar to Eq. (D.14), yielding a lengthy expression.
For brevity we give the limit for |Ω| � αg|µ|,

P (Ω) ' 1

32π

lnαgN |µ/2Ω|
|µ|2

. (D.18)
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D Calculation of the relaxation rate and the JSD from the Boltzmann equation

D.2.4 The limit |µ| � T for |Ω| > |µ̃| (Q > |µ̃|)

As in the case |µ̃| � 1, here for |Ω| > |µ̃| the JSD is determined by scattering with large momentum
transfer,

P (Ω) = 2α2
gπ

2N e+Ω

∫ ∞
|Ω|

dQ

√
2πQ3/2e−Q

(
√
Q2 − Ω2Q+ αgπNQ2/16)2

' 29
√

2π

N
|Ω|−5/2 . (D.19)

D.3 The relaxation rate Γ

D.3.1 The limit T � |µ|

We �rst calculate the relaxation rate for T � |µ|. We �nd that the contribution from the region with
Q > 1 is of order α2

g, whereas |Ω| < 1 yields the leading contribution ∝ αg:

Γ/2T =

∫ αN ln 2

0
dΩ P (Ω)

∣∣∣
Q<1

+

∫ 1

αN ln 2
dΩ P (Ω)

∣∣∣
Q<1

. (D.20)

Here, P (Ω)
∣∣∣
Q<1

is given by Eq. (D.14) and we anticipate that the integrand contains the scale αgN ln 2

that separates the logarithmic divergence at small frequency from the rest. The �rst part in Eq. (D.20)
yields,∫ αgN ln 2

0
dΩ P (Ω)

∣∣∣
Q<1

=4 ln 2 α2
gπ

2N

∫ αgN ln 2

0
dΩ

{
1

(αgN ln 2)2
ln
αgN ln 2

|Ω|
+

∫ 1

αgN ln 2
dQ

1

Q(Q2 − Ω2)

}
=4αgπ

2(1 + ln 2) .

(D.21)

The second part in Eq. (D.20) yields∫ 1

αgN ln 2
dΩP (Ω)

∣∣∣
Q<1

= 4 ln 2α2
gπ

2N

∫ 1

αgN ln 2
dΩ

arccot(αgN ln 2Ω)− arctan(Ω/αgN ln 2)

2αgN ln 2Ω
= 4αgπ

2G/2,

(D.22)
where G = 0.916 is the Catalan constant. Together, Eqs. (D.21) and (D.22) yield the result (4.11) from
the main text.

D.3.2 The limit |µ| � T

In the case |µ| � T we �nd that the rate Γ is determined by small energy and momentum transfer,
|Ω|, Q < αgN |µ̃|/2.

Γ = 2T

∫ αgN |µ̃|/2

0
dΩ

(
αgN |µ̃|

2

)−2 ∫ αgN |µ̃|/2

|Ω|

dQ

Q
= 8αgπ

2|µ| . (D.23)
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E Appendix E

Calculations for the collision-dominated
hydrodynamics in graphene

In this Appendix we give more details on the calculations for the collision dominated hydrodynamics in
graphene. These include explicit expressions for all relevant scattering rates to calculate the dissipative
corrections to the currents and the viscosity as introduced in the main text.

E.1 Derivation of the hydrodynamic equations

E.1.1 The continuity equations of the densities

Integrating the Boltzmann equation with respect to
∫

d2p..., one obtains

∂tn+ +∇ ·
∫

d2p

(2π)2
v̂f+,~p + e ~E ·

∫
d2p

(2π)2
∇pf+,~p + e

∫
d2p

(2π)2
(v̂ × ~B) · ∇pf+,~p = 0 . (E.1)

The terms that are proportional to the electric and the magnetic �eld drop out such that we obtain

∂tn+ +∇ · 1

2
(~j +~jI) = 0 . (E.2)

Similarly we get

∂tn− +∇ · 1

2
(−~j +~jI) = 0 . (E.3)

From these two equations one obtains the continuity equations for the charge and imbalance density
from the main text.
For the energy density we integrate the Boltzmann equation with respect to

∫
d2p p..., and obtain

∂tnE,+ +∇ ·
∫

d2p

(2π)2
εv̂f+,~p + e ~E ·

∫
d2p

(2π)2
ε∇pf+,~p + e

∫
d2p

(2π)2
ε(v̂ × ~B) · ∇pf+,~p =

∫
d2p

(2π)2

|ε|
2
St[f ] .

(E.4)
The term proportional to the magnetic �eld drops out. Partial integration in the term proportional to
the electric �eld yields

∂tnE,+ +∇ · 1

2
(~jE +~jE,I)− e ~E ·

1

2
(~j +~jI) = ... . (E.5)
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E Calculations for the collision-dominated hydrodynamics in graphene

Here ~jE = ~jE,+ − ~jE,− and ~jE,I = ~jE,+ + ~jE,−. Together with the equation for nE,− one obtains the
continuity equation from the main text. In this case the �nite collision integral on the right-hand site
vanishes in the �nal continuity equation.

E.1.2 The equations of motion for the currents

Averageing the Boltzmann equation with respect to
∫

d2p v̂... we get (α and β are Cartesian indices),

∂t
1

2
(~j +~jI)α +∇β

∫
d2p

(2π)2
v̂αv̂βf+,~p + eEβ

∫
d2p

(2π)2
v̂α∇p,βf+,~p =

∫
d2p

(2π)2
v̂α St[f ] . (E.6)

Here the term proportional to the magnetic �eld droped out. Similarly we obtain

∂t
1

2
(~jI−~j)α+∇β

∫
d2p

(2π)2
v̂αv̂β(1−f−,~p)+eEβ

∫
d2p

(2π)2
v̂α∇p,β(1−f−,~p) = −

∫
d2p

(2π)2
v̂αSt[f ] . (E.7)

If we subtract both equations we obtain the equation of motion for the electric current. Partial inte-
gration in the term proportional to the electric �eld and some algebraic manipulation yields

∂t~jα +∇βΠαβ − eEβ∂µ0(δαβn−Παβ) =

∫
d2p

(2π)2
v̂α St[f ] . (E.8)

Similarly adding Eqs. (E.6) and (E.7), yields

∂t~jI,α +∇βΠI,αβ − eEβ∂µ0(δαβnI −ΠI,αβ) =

∫
d2p

(2π)2
v̂α St[f ] . (E.9)

E.1.3 Local equilibrium and equations of state

We use the local equilibrium ansatz

fλ,~p =
1

1 + eβ(ελp−µλ−~u·~p)
, (E.10)

to obtain the equations of state.

n+ =

∫ +∞

0

dεε

2π

∫ +π

−π

dϕ

2π
f+,~p . (E.11)

Shifting the momentum ~p yields

n+ =

∫ +π

−π

dϕ

2π

1

(1− u cosϕ)2

∫ +∞

0
dp

p

2π

[
f+,~p

]
~u=0

. (E.12)

We can perform the angular integration and obtain

n+ = (1− u2)−3/2

(
−T 2

2π
Li2(−e+βµ+)

)
= (1− u2)−3/2 n+,0 . (E.13)

Similarly we obtain expressions for

n− =

∫ 0

−∞

dε|ε|
2π

∫ +π

−π

dϕ

2π
(1− f) . (E.14)
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From which we get n = n+ − n− and nI = n+ + n−.
For the energy density of electrons and holes one obtains

nE,+ =

∫ +∞

0

dε ε2

2π

∫ +π

−π

dϕ

2π
f =

2 + u2

2(1− u2)5/2

(
−2T 3

2π

)
Li3(−e+βµ+) , (E.15)

and

nE,− =

∫ 0

−∞

dε (−ε2)

2π

∫ +π

−π

dϕ

2π
(1− f) = − 2 + u2

2(1− u2)5/2

(
−2T 3

2π

)
Li3(−e−βµ−) . (E.16)

The total energy density than reads as nE = nE,+ − nE,−.
Finally we calculate the equation of state for the energy current as well as the electric and imbalance

current. In the case of the electric and imbalance current we only calculate the hydrodynamic part
without dissipative corrections here. The dissipative corrections are discussed in the main text. For
the electric current due to electrons we get

~j+ =

∫ +∞

0

dk k

2π

∫ +π

−π

dϕ

2π

~k

|~k|
f

+,~k
= n+~u , (E.17)

whereas holes contribute

~j− = −
∫ +∞

0

dk k

2π

∫ +π

−π

dϕ

2π

~k

|~k|
(1− f−,~k) = n−~u . (E.18)

From this we get ~j = ~j+ +~j− and ~jI = ~j+ −~j−.
The equation of state for the energy current that is in particular used to replace the energy current

by the hydrodynamic velocity �eld ~u is obtained from the relations

~j+,E =

∫ +∞

0

dk k

2π

∫ +π

−π

dϕ

2π
~k f

+,~k
, (E.19)

~j−,E =

∫ +∞

0

dk k

2π

∫ +π

−π

dϕ

2π
~k (1− f−,~k) . (E.20)

From these we obtain the total energy current according to ~jE = ~jE,+ −~jE,−. This yields the desired

~jE =
3nE~u

2 + u2
, (E.21)

from the main text.

E.2 Linear response functions

In linear response we linearize the hydrodynamic equations with respect to the linear �uctuations
δn, δnI , δnE , δu, in the hydrodynamic quantities,

n→ n+ δn , (E.22)

nI → nI + δnI , (E.23)

nE → nE + δnE , (E.24)

u→ δu . (E.25)
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We furthermore introduce the response functions to the external perturbation ~E

δn = χnE , (E.26)

δnI = χIE , (E.27)

δnE = χEE , (E.28)

δu = χuE , (E.29)

(E.30)

The electrical conductivity in linear response for an in�nite system follows from δj = enδu + δν, for
which we obtain

σ = σ0 + enχu +
ieq

3nE
[τ1n+ τ2nI ]−

ieq

2

[
τ1χn + τ2χI

]
. (E.31)

The linear response functions are �nally obtained from the matrix equation
−iω + τ2

2 q2 + τ2
2 q2 −

(
nτ1+nIτ2

3nE

)
q2 +iqn

+ τ3
2 q2 −iω + τ4

2 q2 −
(
nIτ4+nτ3

3nE

)
q2 +iqnI

0 0 −iω 3
2 inE q

0 0 + i
3nE

q −iω + τ−1
d + 2η

3nE
q2




χn
χI
χE
χu

 =


−i qσ0

e

−i
qσ∗0
e

0
2en
3nE

 ,

(E.32)
that follows from the linearized hydrodynamic equations. Inverting the matrix in Eq. (E.32) and using
the resulting susceptibilities in Eq. (E.31) yields the results (5.57) and (5.58) from the main text.

E.3 Vector-Vertex functions and transport rates

In this section we will give explicit expressions for the scattering times τij constituting the matrix
collision integral in the space of macroscopic currents, Eq. (5.52) in the main text, appearing in the
EOM (5.51) of the currents. We recall that the EOM for the particle and imbalance current is obtained
by averaging the BE with respect to the particle velocity v̂ and the direction of momentum λv̂. Therefore
the right-hand side of the de�ning equation (5.51) is equal to

CJ

(
δ~j

δ~jI

)
=

(
(v̂, Cδf (1))

(λv̂, Cδf (1))

)
=

3∑
j=1

h
(j)
β

(
(v̂, Cφj v̂β/T )

(λv̂, Cφj v̂β/T )

)
. (E.33)

The scalar product (·, ·) was de�ned in Eq. (5.23). Since φ3v̂ = εv̂ = ~p and the momentum is conserved
under electron-electron collisions the term for j = 3 drops out. Furthermore, note that the dissipative
corrections to the macroscopic currents can be de�ned in a very compact form as

δ~jk =
(
φkv̂,−δf (1)∂εf

(0)
)
, (E.34)

with the modes (5.9), and here we labeled the corrections to the macroscopic currents as

δ~jk =


δ~j , k = 1

δ~jI , k = 2

T−1δ~jE , k = 3

. (E.35)
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With this notation there is an easy relation between the coe�cients h(j)
α that parametrize the corrections

to the distribution function, Eq. (5.7), and δjk,α. This relations reads as

δjk,α =

3∑
j=1

h
(j)
β

(
φkv̂α,−φj v̂β∂εf (0)/T

)
=

1

2

3∑
j=1

h(j)
α

(
φk,−φj∂εf (0)/T

)
=

3∑
j=1

Mkjh
(j)
α . (E.36)

We used the fact that the matrix elements of the linearized collision integral are diagonal in the
Cartesian indices α, β. Therefore no summation over the Cartesian index α is implied in Eq. (E.36)
and we de�ned

Mkj =
1

2

(
φk,−φj∂εf (0)/T

)
. (E.37)

Using the inverse of Eq. (E.36) in Eq. (E.33), we obtain

CJ

(
δ~jα
δ~jI,α

)
=

2∑
k=1

2∑
j=1

[M−1]jk

(
(v̂α, Cφj v̂α/T )

(λv̂α, Cφj v̂α/T )

)
δ~jk,α +

2∑
j=1

[M−1]j3

(
(v̂α, Cφj v̂α/T )

(λv̂α, Cφj v̂α/T )

)
δ~jE,α .

(E.38)
Let us drop the last term for now. It will ultimately correspond to a renormalization of the hydrody-
namic velocity ~u in the local �uid rest frame and is therefore zero due to the LL-condition. If we thus
disregard the second term on the right-hand side of Eq. (E.38), we can immediately read o�

[CJ ]lk = τ−1
lk =

2∑
j=1

[M−1]jk(φlv̂α, Cφj v̂α/T 2) . (E.39)

We now discuss the second term in Eq. (E.38). Using the expression (E.39) for the collision integral
and applying its inverse to Eq. (E.38), we obtain for the right-hand side(

δ~jα
δ~jI,α

)
+

2

3nE

(
n
nI

)
δ~jE,α . (E.40)

Motivated by Eq. (5.50) for small velocity and using the fact that also δnE = 0, we introduce the shift
of the hydrodynamic velocity δ~u via

δ~jE,α =
3nE

2
δ~u . (E.41)

From this relation it becomes clear that the second term in Eq. (E.40) is just a shift of the local hydro-
dynamic velocity �eld, which however was ruled out by the LL-conditions. From another perspective
one can always add or subtract the LL-conditions δ~jE = 0 to the collision integral an thus eliminate
the second term on the right-hand side of Eq. (E.38).
From Eq. (E.39) we see that in order to calculate the τlk we need to evaluate the matrix elements

(φlv̂α, Cφj v̂α/T 2). In order to prepare for the following section we review a method to calculate these
matrix elements, given in Refs. [42, 155]. This method relies on the fact that in the integrated electron-
electron collision integral, i.e. in the matrix elements (φlv̂α, Cφj v̂α/T 2), the summation over scattering
states {|λ,~k〉, |λ′,~k′〉} and {|ν, ~p〉, |ν ′, ~p′〉} separates and the matrix elements take the form

(φvα, Cφ′vβ/T 2) =
1

16π

∫
dω

∫
d2q

|V (ω, q)|2

sinh2(ω/2T )

[
Γ

(2)
φφ′,αβ(ω, q)Γ(0)(ω, q)− Γ

(1)
φ,α(ω, q)Γ

(1)
φ′,β(ω, q)

]
.

(E.42)
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Here the vertex functions are de�ned as [λ′ = sign(ελ,p + ω)],

Γ(0)(ω, q) =
1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ~p;λ′,~p+~q , (E.43)

Γ
(1)
φ,α(ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

[
φλ′,~p+~q v̂λ′,~p+~q − φλ~p v̂λ~p

]
α
,

(E.44)

Γ
(2)
φφ′,αβ =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

×
[
φλ′,~p+~q v̂λ′,~p+~q − φλ~p v̂λ~p

]
α

[
φ′λ′,~p+~q v̂λ′,~p+~q − φ

′
λ~p v̂λ~p

]
β
. (E.45)

The here de�ned scattering times and matrix elements of the collision integral are relate to the times
τee, τs and τss de�ned in Ref. [42] in the following way:

τ−1
ee =(v̂α, Cv̂α) , (E.46)

τ−1
s =(λv̂α, Cv̂α) , (E.47)

τ−1
ss =(λv̂α, λCv̂α) . (E.48)

In the Fermi liquid limit the scattering rates vanish, whereas at the Dirac point τ−1
s = 0. The de-

composition into the vertex functions has a simple diagrammatic interpretation illustrated in Fig. E.1.
The product Γ

(1)
α Γ

(1)
β represents the drag or Aslamazov-Larkin type diagram in the Boltzmann limit

[156]. Whereas the product Γ(0)Γ
(2)
αβ contains self-energy corrections [diagram b) in Fig. E.1] as well as

Maki-Thompson type diagrams [c) in Fig. E.1].

Figure E.1: a) The diagrammatic correspondence of the term Γ
(1)
α Γ

(1)
β , the Aslamazov-Larkin

type diagram. The diagrammatic representation of the product Γ(0)Γ
(2)
αβ , that contains

self-energy corrections b) as well as Maki-Thompson type diagrams c).

E.4 Tensor-Vertex functions and viscosity

In this section we are going to give expressions for the collision integral for the energy-stress tensors, and
show how the formalism of the vector vertex functions from the preceding section can be generalized
for the stress tensors, yielding ultimately the viscosity in graphene. The stress tensors were de�ned
according to

Π
(l)
αβ =

∫
λ~k

φl v̂αv̂β fλ~k . (E.49)
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Here the modes φl where de�ned in Eq. (5.9) in the main text. The tensor equations acquire a �nite
collision integral since they are not hydrodynamic quantities. This collision integral mixes the stress
tensors from Eq. (E.49) in the equation of motion

(φlv̂αv̂β,Lf) = −(φlv̂αv̂β, Cδf) = [Cπ]lkδΠ
(k)
αβ . (E.50)

Here the matrix collision integral Cπ is given by

Cπ

 δΠαβ

δΠI,αβ

T−1δΠE,αβ

 =

 (v̂αv̂β, Cδf (2))

(λv̂αv̂β, Cδf (2))

(εv̂αv̂β/T, Cδf (2))

 =
3∑
j=1

g
(j)
αβ

 (v̂αv̂β, Cφj v̂αv̂β/T 2)
(λv̂αv̂β, Cφj v̂αv̂β/T 2)

(εv̂αv̂β/T, Cφj v̂αv̂β/T 2)

 . (E.51)

We used that the matrix elements (φv̂αv̂β, Cφ′v̂γ v̂δ/T 2) are diagonal in Cartesian indices, i.e.

(φv̂αv̂β, Cφ′v̂γ v̂δ/T 2)→ δαγδβδ . (E.52)

Therefore no summation over α and β is implied in Eq. (E.51). From these equations we obtain the
compact expression for the dissipative corrections of the stress tensors in terms of the coe�cients g(l)

αβ

de�ning the deviations from equilibrium,

δΠ
(k)
αβ =

(
φkv̂αv̂β,−δf (2)∂εf

(0)
)
. (E.53)

Using the representation of the �uctuations δf (2), Eq. (5.8),

δΠ
(k)
αβ =

3∑
j=1

g(j)
γν

(
φkv̂αv̂β,−φj v̂γ v̂ν∂εf (0)/T 2

)

=
1

4

3∑
j=1

g
(j)
αβ

(
φk,−φj∂εf (0)/T 2

)
=

1

2T

3∑
j=1

Mkjg
(j)
αβ

. (E.54)

Here we encounter again the matrixM given in Eqs. (E.37). We then use this expression in the collision
integral (E.51). We note that the coe�cients g(j)

αβ are traceless and thus

g
(j)
αβ v̂αv̂β = g

(j)
αβ(v̂αv̂β − δαβ/2) = g

(j)
αβIαβ , (E.55)

where

Iαβ = I
αβ,~k

=
√

2

(
v̂αv̂β −

1

2
δαβ

)
, (E.56)

with tr[I] = 0. We then obtain

Cπ

 δΠαβ

δΠI,αβ

T−1δΠE,αβ

 =
√

2T

3∑
j=1

3∑
k=1

[M−1]jkδΠ
(k)
αβ

 (v̂αv̂β, CφjIαβ/T 2)
(λv̂αv̂β, CφjIαβ/T 2)

(εv̂αv̂β/T, CφjIαβ/T 2)

 . (E.57)

From this we see that

[Cπ]lk = T

3∑
j=1

[M−1]jk(φlv̂αv̂β, CφjIαβ/T 2) . (E.58)
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As we mentioned above, the trace of the collision integral in Cartesian indices (Greek subscript α, β)
vanishes we can even write,

[Cπ]lk = 2T
3∑
j=1

[M−1]jk(φlIαβ, CφjIαβ/T 2) . (E.59)

In order to obtain the collision integral Cπ, we thus have to calculate the matrix elements (φlIαβ, CφjIαβ/T 2).
Due to the symmetries of the collision integral it holds (φlIαβ, CφjIαβ/T 2) = (φlv̂αv̂β, Cφj v̂αv̂β/T 2).
Similarly to the preceding section the computation can be simpli�ed by the introduction of vertex
functions. In fact, the matrix elements can be written as

(φIαβ, Cφ′Iγδ/T 2) =
1

16π

∫
dω

∫
d2q

|V (ω, q)|2

sinh2(ω/2T )

[
Ξ

(2)
φφ′,αβγδ(ω, q)Γ

(0)(ω, q)−Ξ
(1)
φ,αβ(ω, q)Ξ

(1)
φ′,γδ(ω, q)

]
.

(E.60)
Here we introduced the tensor vertex functions [λ′ = sign(ελ,~p − ω)],

Ξ
(1)
φ,αβ(ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

[
φλ′,~p+~q Iαβ,~p+~q − φλ~p Iαβ,~p

]
,

(E.61)

Ξ
(2)
φφ′,αβγδ(ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

×
[
φλ′,~p+~q Iαβ,~p+~q − φλ~p Iαβ,~p

][
φ′λ′,~p+~q Iγδ,~p+~q − φ

′
λ~p Iγδ,~p

]
. (E.62)

For further calculations it is useful to express the tensor Iαβ in terms of the basis vectors {q̂ = ~q/q, q̂⊥ =
ẑ × q̂},

Iαβ = A~k,~q(2q̂αq̂β − δαβ) +B~k,~q(q̂⊥,αq̂β + q̂αq̂⊥,β) , (E.63)

where

A~k,~q =
√

2

(
(~k · ~q)2

(kq)2
− 1

)
+

1√
2

= Ã~k,~q +
1√
2
, (E.64)

B~k,~q =
√

2
(~k · ~q⊥)(~k · ~q)

k2q2
. (E.65)

Due to the conservation laws of the electron-electron interaction we e�ectively have A→ Ã. Using the
δ-function in Eqs. (E.61) and (E.62) one obtains (ε = ελ,k),

Ã~k,~q = (ω2 − q2)
(2ε+ ω)2 − q2

4
√

2ε2q2
. (E.66)

Furthermore, the coe�cient B drops out in the vertex function Ξ(1) since it is antisymmetric in the
angle between ~q and ~k. In the tensor vertex function Ξ

(2)
αβγδ(ω, q) we get a separate contribution from

A and B but they are orthogonal. For B we obtain with the help of the δ-functions (ε = ελ,k),

B~k,~q = sign(~k · q̂⊥)

√
(q2 − ω2)[(2ε+ ω)2 − q2] (ω2 − q2 − 2εω)

2
√

2ε2q2
. (E.67)
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Finally, with the help of the angular averages∫
dϕq q̂αq̂β q̂γ q̂δ =

π

4
(δαγδβδ + δαδδβγ + δαβδγδ) , (E.68)∫

dϕq (2q̂αq̂β − δαβ)(2q̂γ q̂δ − δγδ) = π(δαγδβδ + δαδδβγ − δαβδγδ) , (E.69)∫
dϕq (q̂⊥,αq̂β + q̂αq̂⊥,β)(q̂⊥,γ q̂δ + q̂γ q̂⊥,δ) = π(δαγδβδ + δαδδβγ − δαβδγδ) , (E.70)

and the projected Ξ(1,2) obtained after averaging over the angle ϕq of the transfered momentum ~q,

Ξ
(1)
φ (ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

[
φλ′,~p+~q Ã~k+~q,~q

− φλ~p Ã~k,~q
]
,

(E.71)

Ξ
(2)
‖,φφ′(ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q

×
[
φλ′,~p+~q Ã~p+~q,~q − φλ~p Ã~p,~q

][
φ′λ′,~p+~q Ã~p+~q,~q − φ

′
λ~p Ã~p,~q

]
, (E.72)

Ξ
(2)
⊥,φφ′(ω, q) =

1

T

∫
λ,~p
δ(ελ,p − ελ′,~p+~q + ω)

(
f

(0)
λ,p − f

(0)
λ′,~p+~q

)
Θλ,~p;λ′,~p+~q (E.73)

×
[
φλ′,~p+~q B~p+~q,~q − φλ~p B~p,~q

][
φ′λ′,~p+~q B~p+~q,~q − φ

′
λ~p B~p,~q

]
, (E.74)

we can write the matrix elements for the viscosity as

(φIαβ, Cφ′Iγδ/T 2) =(δαγδβδ + δαδδβγ − δαβδγδ)
1

16π

∫
dω

∫
d2q

|V (ω, q)|2

sinh2(ω/2T )

×

[
Ξ

(2)
‖,φφ′(ω, q)Γ

(0)(ω, q) + Ξ
(2)
⊥,φφ′(ω, q)Γ

(0)(ω, q)− Ξ
(1)
φ (ω, q)Ξ

(1)
φ′ (ω, q)

]
.

(E.75)

Here we can drop the terms proportional to δαβ since the energy stress tensors are traceless. Due to
their symmetry in α↔ β we e�ectively have

δαγδβδ + δαδδβγ − δαβδγδ → 2δαγδβδ . (E.76)
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F Appendix F

Hydrodynamic equations on the staggered
grid

In this appendix we give explicit expressions for the �nite di�erence derivatives on the staggered grid
which was explained in Sec. 5.6.2. We also give expressions for the conservation laws of energy that
are used to check the numerical simulations. Furthermore we brie�y discuss the implementation of the
implicit scheme.

F.1 The discrete Navier-Stokes equation for graphene

For the numerical simulations it is advantageous to use instead of the velocity uα the scaled velocity

ũα =
3uα

2 + u2
. (F.1)

From this it follows that uα = ũαf(ũ) where

f(ũ) =
3−
√

9− 8ũ2

2ũ2
. (F.2)

Let for now n and m denote the indices of the spatial grid point and the index i gives the time step.
The we will also write for the function f explicitly f inm. We will write in the following

~̃u =

(
u
v

)
. (F.3)

We �rst give expressions for the �nite-di�erence version of the Euler limit of the Navier-Stokes equa-
tion (5.55) from the main text. This means we drop the dissipative terms for now. As described in the
main text the second order gradients are implemented implicitly and thus discussed below in Sec. F.3.
The dissipative terms including linear terms are easily implement analogous to the convective terms.
The discretization follows the scheme put forward in Ref. [131]. The spacial discretization in x-direction
is given by δx and by δy in y-direction. The subscripts i and j denote the discrete grid index on the
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F Hydrodynamic equations on the staggered grid

staggered grid depicted in Fig. 5.2. The �nite-di�erence Navier-Stokes equation reads as

∂tuij =
1

nE

 uij

 n̂(1)
E,i+1,jui+1,j − n̂(1)

E,ijuij

δx
+
n̂⊗E,i+1,jv

⊗
i+1,j − n̂

⊗
E,iju

⊗
ij

δx


− 1

δx

nE,ij û2
ij

(
3−

√
9− 8(û2

ij + v̂2
ij)

2
)

2(û2
ij + v̂2

ij)
−
nE,i−1,j û

2
i−1,j

(
3−

√
9− 8(û2

i−1,j + v̂2
i−1,j)

2
)

2(û2
i−1,j + v̂2

i−1,j)



− 1

δy

[ n̂⊗E,i,j+1û
⊗
i,j+1v̂

⊗
i,j+1

(
3−

√
9− 8

(
[û⊗i,j+1]2 + [v̂⊗i,j+1]2

)2
)

2
(

[û⊗i,j+1]2 + [v̂⊗i,j+1]2
)

−
n̂⊗E,i,j û

⊗
i,j+1v̂

⊗
i,j+1

(
3−

√
9− 8

(
[û⊗ij ]

2 + [v̂⊗ij ]
2
)2
)

2
(

[û⊗ij ]
2 + [v̂⊗ij ]

2
) ]

+ eEx,ijn
(1)
ij − uij

(
Ex,ijiij + Ê

(2)
y,ij v̂

(2)
ij

)
en̂

(1)
ij

3−
√

9− 8
(
u2
ij + [v̂(2)]2

)
2
(
u2
ij + [v̂(2)]2

)
 = Fu[...] .

(F.4)

Here we introduced the following averages on the staggered grid:

ûij =
ui+1,j + uij

2
, (F.5)

v̂ij =
vi+1,j + vi,j−1

2
, (F.6)

n̂E,i,j =
nE,i−1,j + nE,ij

2
, (F.7)

v̂
(2)
ij =

vij + vi,j−1 + vi−1,j + vi−1,j−1

4
, (F.8)

û
(2)
ij =

uij + ui+1,j + ui,j+1 + ui+1,j+1

4
, (F.9)

n̂⊗E,ij =
nij + ni−1,j + ni,j−1 + ni−1,j+1

4
, (F.10)

û⊗i,j+1 =
ui,j+1 + uij

2
, (F.11)

v̂⊗i,j+1 =
vij + ui−1,j

2
. (F.12)
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F.2 Conservation of energy

The equation for v looks analogous. The continuity equations are discretized in the standard manner.
The �nite-di�erence equation for the particle density reads as

∂tnij = − 1

δx

[
ni+1,j + nij

2

3−
√

9− 8
(
u2
i+1,j + [v̂

(2)
i+1,j ]

2
)

2
(
u2
i+1,j + [v̂

(2)
i+1,j ]

2
) ui+1,j

− nij + ni−1,j

2

3−
√

9− 8
(
u2
ij + [v̂

(2)
ij ]2

)
2
(
u2
ij + [v̂

(2)
ij ]2

) uij

]

− 1

δx

[
ni,j+1 + nij

2

3−
√

9− 8
(

[û
(2)
ij ]2 + v2

ij

)
2
(

[û
(2)
ij ]2 + v2

ij

) vij

− nij + ni,j−1

2

3−
√

9− 8
(

[û
(2)
i,j−1]2 + v2

i,j−1

)
2
(

[û
(2)
i,j−1]2 + v2

i,j−1

) vi,j−1

]
= Fn[...] .

(F.13)

The continuity equations for the energy density and the imbalance density are analogous.

F.2 Conservation of energy

In the absence of dissipative terms the energy and in either case with or without dissipative terms the
particle number is conserved. Using the expression

eEαn = ∂t(nE ũα) +∇βΠαβ , (F.14)

for the electrical, which is obtained from the equation for the energy current without dissipative terms,
in the continuity equation for the energy one obtains

∂t

∫
dV nE =

∫
dV nE [∂tũ]

3−
√

9− 8ũ

2ũ
. (F.15)

Here we integrated the resulting equation over the volume of the system. Therefore without dissipative
terms the total energy, i.e. the integral

E =

∫
dV nE

1− 1

2

[
ln

(
3 +

√
9− 8ũ2

)
−
√

9− 8ũ2

] , (F.16)

is conserved. As long as boundary e�ects can be neglected the energy (F.16) is well preserved by the
numerical simulation scheme employed for the hydrodynamic simulation in Chapt. 5.

F.3 The second order gradients - the semi-implicit scheme

We consider �nite di�erences in time and space now. we use the subscripts n and m for the position
of the spatial grid point and the index i for the time step. The di�erence in two time steps is denoted
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F Hydrodynamic equations on the staggered grid

δt and we assume δx = δy = δl. If we include the �nite viscosity η in the Navier-Stokes equation
and parametrize the viscous terms by a backward Euler scheme as explained in the main text the
�nite-di�erence equation for the velocity component u from Eq. (F.3) reads as

ui+1
nm

(
1 +

ηδt

nEδl
2 4f inm

)
− ηδt

nEδl
2

(
f in+1,mu

i+1
n+1,m + f in−1,mu

i+1
n−1,m

)
− ηδt

nEδl
2

(
f in,m+1u

i+1
n,m+1 + f in,m−1u

i+1
n,m−1

)
= Fu[...] .

(F.17)

Here the right-hand site Fu[...] stands for the �nite-di�erence on the staggered grid given by Eq. (F.4).
It is now obvious that Eq. (F.17) is a tridiagonal matrix equation for the velocity component u. Sim-
ilarly the matrix equation for v is obtained. Both have to be solved in the hydrodynamic simulations
in Chapt. 5 in conjunction with the continuity equations. In the latter the coupled di�usion between
imbalance and particle density makes it necessary to solve the coupled matrix equation that is schemat-
ically depicted in the following equation:M1 M2 0

M3 M4 0
0 0 I


 n

nI
nE

 =

 Fn[...]

F I [...]

FE [...]

 . (F.18)

Here we used

n =


...
nij
...

 , nI =


...

nI,ij
...

 , nE =


...

nE,ij
...

 . (F.19)

Here nij , nI,ij and nE,ij label the densities on every grid point. We note that we evaluate the function
f from Eq. (F.2) explicitly at the current time step. The matrices Mi operating in the space of grid
points are proportional to the scattering times τi from Sec. 5.4. They represent the standard discrete
version of the Laplace operators on the lattice [131]. Furthermore Fdens denotes the right-hand site
of the continuity equations on the staggered grid as shown in Eq. (F.13) for the particle density. All
the linear gradients due to dissipative terms are discretized in the standard manner and added to the
right-hand site of Eq. (F.18).
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