View metadata, citation and similar papers at core.ac.uk

-

-~
brought to you by .i CORE

provided by KITopen

AT

Karlsruher Institut fur Technologie

Karlsruhe Reports in Informatics 2015,9

Edited by Karlsruhe Institute of Technology,
Faculty of Informatics
ISSN 2190-4782

An Evaluation of Combinations of Lossy
Compression and Change-Detection
Approaches
(Technical Report ‘15)

Gregor Hollmig, Matthias Horne, Simon Leimkuhler, Frederik Schéll,
Carsten Strunk, Pavel Efros, Erik Buchmann, Klemens Bohm

2015

https://core.ac.uk/display/197532217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AT

Karlsruher Institut fur Technologie

KIT — University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

“=22" Fakultat fur Informatik

Please note:

This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/3.0/de.

An Evaluation of Combinations of Lossy Compression
and Change-Detection Approaches
(Technical Report ’15)

Gregor Hollmig
Frederik Scholl

Erik Buchmann

Matthias Horne

Carsten Strunk

Simon LeimkUhler

Pavel Efros

Klemens B6hm

Karlsruhe Institute of Technology (KIT), Germany
{gregor.hollmig, matthias.horne, simon.leimkuehler, carsten.strunk}@student.kit.edu
schoell@ira.uka.de
{pavel.efros, erik.buchmann, klemens.boehm}@kit.edu

ABSTRACT

Today, time series of numerical data are ubiquitous, for in-
stance in the Internet of Things. In such scenarios, it is often
necessary to compress the data and to detect changes on it.
More specifically, both methods are used in combination,
i.e., data is lossily compressed and later decompressed, and
then change detection takes place. There exists a broad vari-
ety of compression as well as of change-detection techniques.
This calls for a systematic comparison of different combina-
tions of compression and change-detection techniques, for
different data sets, together with recommendations on how
the values of the various (typically non-linear) parameters
should be chosen. This article is such an evaluation. Its de-
sign is not trivial, necessitating a number of decisions. We
work out the details and the rationale behind our design
choices. Next to other results, our study shows that the
choice of combinations of change detection and compression
algorithm and their parameterization does affect result qual-
ity significantly. Our evaluation also indicates that results
are highly contingent on the nature of the data.

1. INTRODUCTION

Nowadays, time-series data is ubiquitous. More and more
applications like the Smart Grid or the Internet of Things
that produce and/or process time-series data are proliferat-
ing. Such data is often used to detect certain events and
to react to them as soon as possible, i.e., change-detection
methods are indispensable. On the other hand, because of
the many devices generating data, the huge amount of data
and the high data-transfer rates, an efficient compression is

essential. Lossy compression yields compression rates that
applications can cope with in many situations. In this study,
we focus on this kind of compression. Putting things to-
gether, it often is necessary to combine lossy compression’
and change-detection techniques.

Ezxzample 1. Smart meters may deliver data to a central
analysis system via a wireless network. To save bandwidth
and to reduce costs, the data is compressed directly on the
device. The central data-analysis system can then do change
detection to react to events such as a sudden increase in
overall power consumption.

When combining lossy compression and change detection,
several issues arise. First, lossy compression introduces er-
rors. In particular, changes can be lost, or new false changes
can occur. Therefore a lossy compression method must be
chosen which preserves the change information as much as
possible. Furthermore, different use cases generate differ-
ent kinds of time-series data, as we will explain. Thus it is
necessary to choose a good combination of compression and
change-detection technique per use case. This is difficult
due to the large number of possible combinations. Next,
compression as well as change-detection algorithms usually
have several parameters, which often have non-obvious ef-
fects on the outcome. The expectation typically is that do-
main experts select the parameter values. This means that
these experts must have a deep insight into the algorithms
used. But even if they have selected the values, it is hard to
determine whether their selection is a good one. To investi-
gate how combinations of compression and change-detection
algorithms perform on different datasets, a systematic com-
parison is necessary. This article is such a study.

Designing our study has been challenging, partly due to
the issues just mentioned. To illustrate, one of the various
design decisions is as follows: It is difficult to choose the pa-
rameterization of the compression and the change-detection
algorithms such that the comparison is fair. Reusing the
parameter values suggested in the original publications may
not be the best option. This is because proper choices of

1For improved readability we usually refer to compression
and later decompression simply as compression.

parameter values depend on the data the algorithms are ap-
plied to. Thus, we have decided to perform an optimization
on each dataset that yields the parameter values that give
way to change-detection results after compression that are
closest to some carefully chosen reference point. This article
lists the design questions encountered in the context of our
comparison, together with explanations behind our choices.

In line with these design decisions, we have implemented
a framework that can be used for the evaluation of virtu-
ally any combination of compression and change-detection
methods. In our specific study, we examine five compres-
sion algorithms like APCA [16] and five change-detection
algorithms like Online-Kernel Change Detection [9] on five
datasets, resulting in 125 possible combinations. We focus
on result quality and leave aside criteria such as runtime
performance or total cost of ownership, which highly de-
pend on specifics of the implementations and the runtime
environment as well as on characteristics of the underlying
optimization framework.

The study shows that, while the choice of the dataset does
have a huge impact on which combination of compression
and change-detection technique performs best, some algo-
rithms like Chebyshev Approximation [6, 7, 4] and Bayesian
Online Change Detection [2] yield good results in many set-
tings. We also observe that a good change detection is pos-
sible even on strongly compressed data. Next, our results
are particularly interesting because studying the algorithms
in isolation (e.g., compression without subsequent change
detection) may yield a different picture. In [14] for instance,
competing algorithms have outperformed Chebyshev Ap-
proximation with regard to the compression ratio. In our
context in turn, this algorithm has proven to be suitable in
combination with many change-detection algorithms.

Paper outline: Section 2 describes some application sce-
narios. Section 3 explains our design decisions. Section 4
summarizes the algorithms evaluated. Section 5 describes
the experimental setup and Section 6 presents the results.
Section 7 concludes.

2. APPLICATION SCENARIOS

In this section we describe two scenarios with slightly dif-
ferent perspectives on compression and change detection.

2.1 Smart Grid

The Smart Grid is an intelligent communication network
which monitors and controls a power network. The integra-
tion into such networks of renewable energy producers alters
the conventional power flow [1]. These producers are incon-
sistent and have performance peaks, which in turn demand
intelligent power distribution systems.

Consider a company which has to manage a power-
distribution network. The company collects, stores and an-
alyzes the data delivered by the many devices (e.g., smart
meters, power plants) in its network. The data needs to be
analyzed in real-time, thus online change detection is indis-
pensable. To significantly reduce communication and stor-
age costs, the data must be lossily compressed. Now think
of a sudden increase in power consumption. The company
must react as soon as possible for example by powering up
additional power plants. To this end, it must detect the
change in the first place, which is not only the consumption
measured by one single device, but an aggregate of the en-
tire grid. As a takeaway, we observe that good compression

and high-quality change detection are both very important
in this scenario.

2.2 Internet of Things

Internet of Things (IoT) refers to large networks of small
or embedded devices, which communicate wirelessly. For
many loT entities, energy optimization is a primary con-
straint, as they are powered by batteries or use energy har-
vesting methods like micro solar panels. Thus, wireless data
transmission often is the biggest factor regarding energy con-
sumption, as the power required to transmit data increases
quadratically or even with the power of 4 with the distance
between sender and receiver [3]. The power consumption of
data compression in turn increases only linearly with the size
of the data. Thus, it is reasonable to send data that is lossily
compressed over a distance. Detecting changes is often com-
putationally heavy (e.g., overall computational complexity
Bayesian Online Change Point Detection is O(n°), where n
is the length of the sequence under consideration [2]) and
should be performed on the central unit; it therefore has to
take place on compressed and later decompressed data [17].
Now consider a home automation system, where a central
control unit can adapt the heating when several tempera-
ture or humidity sensors detect a change in the weather.
Online change detection is needed to react in short time.
This specific scenario benefits more from a high compres-
sion ratio than from better change detection, in contrast to
the previous scenario.

3. DESIGN DECISIONS

Designing the comparison study envisioned is challenging;
in particular, there are various design decisions that one
must address. In the following, we describe the respective
alternatives and the rationale behind our choices.

Benchmark Change Points To assess the quality of change-
detection methods, it is very common to compare the change
points detected to a ground truth. This however has at least
two issues. First, ground-truth metadata can diverge from
the detectable changes. To illustrate, the heart-rate dataset
PAMAP? comes together with the information when exactly
a test person has changed his activity. The heart naturally
takes some time to adapt to new activities. Second, most
change-detection algorithms can only detect specific kinds of
changes. ADWIN for instance is specialized on changes of
mean values. In other words, comparing to a ground truth
evaluates the suitability of the change-detection algorithm
for the dataset. Thus, rather than comparing to a ground
truth, we let the change-detection method identify change
points on the specific dataset without any compression, and
we use these change points as our benchmark, dubbed bench-
mark change points. See Section 5.4 for details. Compres-
sion is only used in the actual comparison study, i.e., when
looking for change points on the compressed data. We call
the change points identified on the compressed data com-
parison change points.

Parametrization The result quality and performance of
change-detection and compression algorithms depend on
their input parameters. In particular, setting the param-
eters of the change-detection algorithm when comparing al-
ternatives is intricate. One option is to use the parameters

2http://www.pamap.org/demo.html, May 18, 2015

recommended in the underlying publications. But this ig-
nores characteristics of the data the algorithms run on. An
alternative is to use the parameter values that give way to
good results on the data currently examined. If so, these
values obviously need to be found, and this is not trivial.
We for our part pursue this option nevertheless, as follows.
We use an optimization technique to find those parameter
values. This requires a reference point. Despite the lim-
its mentioned in the previous paragraph this reference point
is the ground truth. l.e., that optimization minimizes the
distance between it and the result of the change-detection
algorithm without compression.

Multi-objective Optimization With a focus on result qual-
ity, optimizing change-detection and compression algorithms
in combination has two objectives: low error rate of change
detection and good compression ratio. In general, there are
several kinds of methods to perform optimization with mul-
tiple objectives. One approach is to derive a single value,
using for example a weighted sum. This is easy to imple-
ment, but finding appropriate weights highly depends on the
specific use case (see Section 2) and is notoriously difficult.
A more sophisticated, but at the same time more costly ap-
proach is multi-objective optimization, resulting in a Pareto
frontier. We have chosen this second option because it is
more informative.

Error Measure Finding good parameter values requires a
measure for the change-detection error. One can use a rel-
atively simple measure, such as the number of correctly de-
tected change points. An alternative is to calculate individ-
ual errors for paired changes, misses and false positives, and
one can further refine this using application-specific weights.
While this is markedly more complex, it also provides more
insight. Because we aim to compare change points in detail,
we choose the latter option. We use a framework providing
that functionality, the MILTON distance measure [10].

Training Data The evaluation envisioned can take place
on the complete dataset or on a subsequence. We see two
advantages in using a subsequence. The first one is that
the parameter optimization is quicker. Second, we can do
so to validate the hypothesis that it is sufficient to run this
optimization on a data subsequence, and the result also per-
forms well on the complete dataset or on any other data of
the same kind. This is important, because we focus on on-
line algorithms that do not operate on complete datasets,
but on streams of data.

4. FUNDAMENTALS

In this section we review the compression and change-
detection algorithms covered in our study (Table 1). We
also review two evolutionary algorithms. We then say how
we quantify the deviation of change points. Here we can only
provide informal summary descriptions of those algorithms,
but the publications describing them contain detailed expla-
nations. They also specify the respective parameters. Fur-
ther information as well as code is available on the project
website?.

4.1 Compression Methods

A broad review of the literature has resulted in the follow-
ing categories of model-based compression algorithms: con-
stant, straight-line or polynomial model compression. For

Shttp://www.ipd.kit.edu/ efros/EvalCD/

Table 1: Overview of algorithms and their abbrevi-
ations

Compression Algorithms

APCA Adaptive Piecewise Constant Approx. [16]

SF Slide Filter [12]

CHEB Chebyshev Approximation [6, 7, 4]

WAVE Wavelet Approximation [19]

PPA Piecewise Compression Algorithm [11]

Change Detection Algorithms

ADWIN | Adaptive Windowing [5]

ED Event Detection from time series data [13]

CF ChangeFinder [18]

OKCD Online Kernel Change Detection Algorithm [9]

BOCD Bayesian Online Changepoint Detection [2]
Optimization Algorithms

SOEA Single Objective Evolutionary Algorithm

NSGA-II | Non-Dominated Sorting Genetic Algorithm [8]

each category we have chosen at least one representative,
typically one which has received a lot of coverage in the
scientific literature.

Adaptive Piecewise Constant Approzimation (APCA)
[16] adds data points to an adaptive window until the dif-
ference between the maximal and minimal value within this
window exceeds a given threshold. Each window then is
compressed by summarizing the data points as the arith-
metic mean of its maximal and minimal value.

Slide Filter (SF) [12] makes use of several functions which
approximate a set of data points. It starts by computing the
values of these functions for a window consisting of two data
points. Then more points are added to the window, while
the functions which do not fulfill the error threshold anymore
are left aside. This is continued until only one function
remains. This remaining function then is the approximation
of the window.

Chebyshev Approzimation (CHEB) [6, 7, 4] tries to rep-
resent fixed size windows by a linear combination of Cheby-
shev polynomials up to a given dimension. If the approxima-
tion deviates more than the given error threshold, it stores
the original data instead.

Wavelet (WAVE) [19] uses a discrete wavelet transform
(DWT) to compress time series. The data goes through a
low-pass filter and a bandpass filter to construct the corre-
sponding continuous wavelet function.

Piecewise Polynomial Algorithm (PPA) [11] proposes a
method which combines several compression methods. The
algorithm keeps adding data points to the current window
until the error threshold does not hold anymore. It then
compresses this window using the best compression algo-
rithm out of several ones.

4.2 Change Detection Techniques

Our study covers change-detection techniques of the fol-
lowing important categories: sequential analysis, maximum-
likelihood estimation, kernel based techniques and Bayesian
analysis techniques. Again, we have chosen one representa-
tive for each category.

Adaptive Windowing (ADWIN)* [5] uses a sliding window
which is partitioned into buckets. Each bucket can contain

4More specifically, we use ADWIN2, which is often referred
to as ADWIN.

several data points; it does so by storing their number and
an aggregate of their values. Each time a data point is
added to the window, it is put into a new bucket. When a
certain number of buckets is reached, the two oldest buckets
are merged. If the difference of the average values of two
neighboring buckets exceeds a dynamic threshold, a change
is reported and the last bucket is dropped. This dynamic
threshold is computed for each comparison of two buckets.
It depends on the difference of the numbers of data points
of the two buckets.

Event Detection (ED) [13] is based on maximum likeli-
hood estimation. It examines a data window to which data
points are added step by step. In each step, it determines
if the window can be split into two significantly different
segments. Each segment then is approximated by fitting
a model to it, and the error between the model and the
data is determined. The point which minimizes this error
for both segments is reported as change point. The models
used are derived from base classes such as algebraic poly-
nomials, radial, wavelet or Fourier. We for our part have
chosen algebraic polynomials, just as in [13].

ChangeFinder (CF) [18] describes a two-stage algorithm
which combines outlier detection and change detection. In
a first stage, the algorithm learns an auto regressive (AR)
model from a given time series. For each data point of the
time series, a score is obtained by calculating the loss, be it
the logarithmic one or the quadratic one. An outlier results
in an isolated high score, while changes manifest themselves
as series of high scores. Smoothing the scores removes the
outliers. The smoothed values from the first AR model are
then used to learn another AR model in the second stage of
the algorithm. The scores of the second model describe the
probability for data points being change points.

Online Kernel Change Detection (OKCD) [9] uses one-
class support vector machines for change detection. For each
data point of the time series, the immediate past subset 1
and the immediate future subset x:2 are mapped into a
feature space. A kernel method is used; it ensures that the
mapped input space is a subset of a hypersphere with radius
one, centered at the origin of the feature space. Support
vector classification then finds hyperplanes in the feature
space which separate the training vectors ®(x¢,1) and ®(z¢,2)
from the center of the hypersphere. To decide whether a
change point is present, the authors introduce a dissimilarity
measure in feature space:

~~

Dy = Ct,1Ct,2 7 (1)

VY VY
Ct,1Pt,1 + Ce2Dt 2

where ¢¢,1 and ¢;,2 are the centers of the hypersphere sections
intersected by the hyperplanes, and p;1 and p:2 are two
points where the hyperplanes intersect the hypersphere. The
arc represents the arc distance between the two points. If the
dissimilarity measure exceeds a given threshold, a change
point is reported.

Bayesian Online Changepoint Detection (BOCD) [2] uses
a Bayesian approach. It divides a time series into partitions
and assumes that for each partition there is an i.i.d. prob-
ability distribution of the data values. Thus, the change
points are the boundaries between the partitions. For each
new data point, the algorithm estimates the probability dis-
tribution since the last change point and then computes the

probability that the new point belongs to this distribution.
When this probability drops suddenly, a change is reported.

4.3 Optimization Techniques

On the technical level, some decisions like choosing an
optimization algorithm have been necessary as well. We for
our part use evolutionary algorithms. NSGA-II [8] is our
choice for multi-objective optimization. Calculating bench-
mark change points needs only single-objective optimization
(see Change Point Baseline in Section 3), which leads us to
the faster SOEA algorithm.

Single Objective Evolutionary Algorithms (SOEA) start
with a random set of problem solutions, referred to as ini-
tial population. The objective is to identify individuals, i.e.,
solutions, with low fitness. In each generation step, the in-
dividuals are sorted by their fitness, and two parents are
randomly selected from among the top 7 percent. They cre-
ate two children by crossing over, and these children are
mutated with a certain probability. Additionally a new ran-
dom individual is introduced in each generation. The three
newly created individuals replace the three individuals with
the worst fitness. The algorithm terminates after a certain
number of generations, or when the fitness falls below a cer-
tain threshold.

Non-dominated Sorting Genetic Algorithm [8] is an evo-
lutionary optimization algorithm with multi-objective sup-
port (NSGA-II). It approximates a Pareto-optimal frontier
over several generations. It starts with an initial, random
population, and each generation categorizes the individuals
into fronts, sorts the individuals within these fronts and uses
the best individuals to create a new population, which then
are added to the population of the next generation. More
specifically:

1. An individual belongs to a front if there does not exist
another individual in this current or in any previous
front dominating it. An individual x dominates an-
other individual y if and only if x is never inferior to y
in any objective and x is superior to ¥ in at least one
objective.

2. For the sorting within the fronts, a so-called density
value is assigned to each individual. It quantifies the
density of solutions surrounding this individual.

3. The best individuals are chosen based on front and
density. They are used to create a new population by
means of recombination and mutation.

After several generations, the first front typically is a nearly
Pareto-optimal frontier.

4.4 Measure for Quantifying the Impact of
Lossy Transformations on Subsequent
Change Detection (MILTON)

An important constituent needed for a study such as ours
is a measure quantifying the difference of two time series
containing change points ¢p and ép. dmirron is such a mea-
sure [10]. It categorizes the changes as paired changes (PC'),
false positives (F'P) and misses (MISS). Paired changes are
changes which occur in both time series and are mapped to
each other. False Positives are change points which occur in
¢p but not in c¢p, while misses are change points occurring
in ¢p but not in ¢ép. For each of these categories an error is

[Dataset and cpgmund}

|

Phase 0 Optimal param-
Benchmark Change results eters for change
Point Computation detection G?d and

i MILTON distance
-
Benchmark
L Change iPomts cp)
Evzlgziiir} of results Pareto frontier in
Compression Impact Aer x MILTON space
f Optimal Parameter
Set (ecompa 90(1)
Phase 2 results Acr and MILTON
Complete Data for complete data

Figure 1: Overview of the experiments

calculated (errPC, errFP, errMISS). These errors then are

combined into a total one:

errPC + errMISS + errFP @)
|PC|+ |MISS|+1

dmILToN (CP s C?J) =

We explain our parametrization of MILTON in Section 5.

S. EXPERIMENT SETUP AND INITIALIZA-
TION

Our evaluation consists of three phases which build on
each other, as shown in Figure 1. Phase 0 finds optimal
parameters for a change-detection algorithm on a subse-
quence of an uncompressed dataset, to provide benchmark-
change points (Section 5.4). Phase 1 (Section 5.5) uses
the benchmark-change points to find good parameters of
the compression and change-detection algorithms for any
combination of dataset, compression algorithm and change-
detection algorithm. This brings up the question under
which circumstances the parameters found on a subsequence
are also well suited for the complete dataset. We study this
question, i.e., the validity and applicability of good param-
eters on complete datasets, in Phase 2 (Section 5.6).

5.1 Framework

For the experimental evaluation we have designed and im-
plemented a flexible generic framework which supports the
different algorithms and is extensible to test further algo-
rithms. We have integrated existing implementations when-
ever available. For APCA, SF and CHEB we have used the
implementations of [14]°. The source code for ADWIN® and
BOCD” is publicly available as well. For the wavelet com-
pression we use a method from [19], which is part of the
MATLAB libraries. We also reuse existing implementations

Slsirwww.epfl.ch/benchmark/, May 18, 2015
Shttps://github.com/abifet/adwin, May 18, 2015
"hips.seas.harvard.edu/content /bayesian-online-
changepoint-detection, May 18, 2015

of PPA and MILTON. We have implemented the remaining
algorithms (ED, CF and OKCD) in MATLAB following the
original publications, and they can be downloaded from our
web page. Our framework handles algorithm implementa-
tions in C, C++, C#, R, MATLAB or Java.

The framework allows to define jobs for each experiment.
A job consists of the algorithms chosen for compression,
change detection and optimization, together with their pa-
rameters. It also includes the dataset and reference change
points. Jobs cover the workflow of the experiments depicted
in Figure 1. To distribute the work among several machines,
the jobs are stored in a database where any free node can
poll an open job. The results are then stored in the database
as well.

5.2 Datasets

For the experiments we use artificial datasets as well as
real world datasets (see Figure 2). We have generated the
artificial datasets so that they contain well-defined changes,
in line with earlier work [18, 15]. We use an autoregressive
function similar to the one in [15] which generates change
points at every 200th point of time. In the Rising Mean
dataset we increase the mean of normally distributed noise
by 1 at every change point. The Variance Change dataset
alters the variance of the noise between 1 and 3 at a change
point. The rationale is to study the behavior of the algo-
rithms under another kind of change. Algorithms 1 and 2
contain the pseudo code generating this data, the companion
web page contains them as MATLAB code.

p—0,0+1
2(0) « 0, (1) «+ 0
for t < 2 to t = length_of _dataset do
z(t) < 0.6 -z(t—1) = 0.5-x(t — 2) + N(u,0?)
if t mod 200 = 0 then
| p—p+1
end
end

Algorithm 1: Rising Mean

w001
z(0) <0, (1) <0
for t + 2 to t = length_of _dataset do
z(t) < 0.6 -2(t —1) — 0.5-z(t — 2) + N(u,)
if t mod 200 =0A o =1 then
| o+ 3

else if t mod 200 = 0 A o = 3 then
I o+1

end

Algorithm 2: Variance Change

In real-world datasets, defining change points unambigu-
ously is not possible in general. We use datasets from dif-
ferent fields that are annotated with change points as meta-
data: EEG data, heart rate monitoring and electricity data.

The EEG dataset® has been captured while the subject
was opening and closing his eyes; this leads to a noticeable

Shttps://archive.ics.uci.edu/ml/datasets/ EEG+Eye-+State,
May 18, 2015

peak. We have removed a one-value outlier at 898 by inter-
polating the neighboring values to get more stable change-
detection results.

The heart-rate dataset comes from the (PAMAP) project.
More specifically, we use the outdoor dataset of Subject 2.
It contains activities like sitting, walking, running or play-
ing soccer. Since the data has been captured with 100 Hz,
which is way above the resolution of the heart-rate monitor,
we have reduced the dataset by using every hundredth data
point, in order to reduce the data volume. This is because
the lighting is relatively independent of other household ap-
pliances.

We also use the REDD energy-consumption data®. It
records the power consumption of a house broken down into
different electrical consumers. For our evaluation we have
selected Channel 17 of House 1, which is the lighting in one
of the rooms.

Table 2 shows the lengths of the subsequences we have
selected according to the Training Data design decision. For
the EEG dataset the segment is slightly larger than for the
other data. This is because the ground-truth change points
are farther apart.

5.3 Notation
In this paper z(t) € R,t = 1,2,...,n is a real-valued

one-dimensional time series. cd(-|0.q) stands for a change-

detection algorithm with parameters 6.4. By applying it to

a time series z, we get ¢p(t) € {0,1},¢t =1,2,...,n where

1 if ¢t is a change point

cp (t) = . 3)

0 otherwise.

We further define a transformation trans (-|0¢rans) with pa-
rameters @yqns. This method takes the input time series x
and creates the time series Z(t) € R,t = 1,2,...,n, where
each value Z(t) is the result of a compression and subsequent
decompression step:

Z = trans (z|0trans) (4)
A, is the compression ratio:

size_of _compressed _data
size_of _original_data

Acr = (5)

Note that size_of_compressed_data cannot be derived from Z.
This is because it does not represent the compressed data.

Table 3: Symbols used and their meaning

Symbol | Meaning

T Original time series

z Compressed time series
CPyrouna | Gound truth change points

cp Benchmark change points on z
ép Comparison change points on &
Aer Compression ratio

PC Number of paired changes

FP Number of false positives
MISS Number of missed changes
errPC total error of paired changes
errFP total error of false positives
errMISS | total error of missed changes

“http://redd.csail.mit.edu/, May 18, 2015

Table 4: List of parameters for the optimization
algorithms, fitness function and MILTON distance
with their corresponding values used for our exper-
iments.

Algorithm | Parameter Value
SOEA population size 100
exit fitness 0.001
max. generations 500
mutation rate 0.2
mutation change 0.4
selection pressure 7 | 0.4
NSGA-II population size 500
exit fitness 0.001
max. generations 10
mutation rate 0.2
mutation change 0.4
Fitness weight o 0.5
MILTON frve (Ay) [A¢]
fscore (As) 0
Jumiss (s) (s +1)?
frp(s) s

5.4 Phase0:
Benchmark Change Point Computation

Recall that Phase 0 is not an experiment in its own right,
but an initialization step. It is described next. As stated
under Benchmark Change Points in Section 3 on Design
Decisions, we do not use the ground-truth change points
as reference for our evaluation. Instead we use benchmark
change points by minimizing the MILTON distance to the
ground truth:

arg min dMILTON (Cd ($|95d)7 Cpgru'u,nd) (6)
6

cd

To this end, we use an SOEA. Table 4 shows its parameter-
ization.

We have executed the further phases only for combina-
tions of change-detection techniques and datasets which lead
to acceptable results. We deem a result acceptable if the
number of paired changes exceeds the one of false positives
and the one of misses, so that most of the original change
points are found. To facilitate a comparison, Table 2 lists the
MILTON distance against the ground-truth change points.
-’ stands for results that have not been accepted. Most
algorithms have found a parametrization on Rising Mean
and Variance Change. The ADWIN and Variance Change
combination does not have a result, because ADWIN only
finds changes of mean values [5]. As expected, some change-
detection algorithms do not perform well on some real-world
datasets. This is because their ground truth is based on sec-
ondary observations that do not necessarily cause a change
in the data at exactly the same time.

5.5 Initialization of Phase 1:
Evaluation of Compression Impact

An important goal of our evaluation is to determine an op-
timal set of parameters which preserves the change points
cp found before compression as much as possible while max-
imizing the compression at the same time. This is a multi-
objective optimization problem with the objectives
duizron (ep, ép) and compression ratio A.r, where ép =

4,600 200

1 | |
4,500 1 150 N\ "
4,400 I 1 R 1
400 1 . 50 |- .
4,300 M 100 ;,/I\F\L//M‘\'\M» |
04 | I
4,200 \ \ 50 \ \ \ \ . .
500 1,000 200 400 600 800 200 400 600 800
15
0 10}
5 0
0 —10|
-5

200 400 600 800

200 400 600 800

Figure 2: Plots of excerpts of all datasets including ground truth. Top row shows real world datasets: EEG,
PAMAP and REDD (from left to right); bottom row shows the artificial datasets: Rising Mean and Variance

Change.

Table 2: Overview of datasets with their corresponding MILTON distance of initial parameter calculation,
where |[C'P| is the number of change points in the whole dataset and |C'Pse| in the segment

dMILTON
Name Length | |[CP| | Segment | |CPs,| | ADWIN | ED CF OKCD | BOCD
Rising Mean 10000 49 1000 4 2.006 | 1.049 | 1.009 0.202 0.003
Variance Change 10000 49 1000 4 - | 2.822 | 0.833 0.422 0.217
REDD 10000 144 1000 10 2.365 - | 0.104 - 0.464
PAMAP 2280 13 1000 6 1.018 - - 1.041 0.791
EEG 14979 23 1500 3 0.27 | 0.272 - 1.287 0.017

cd(#0eq). The parameter space consists of the parame-
ters for the compression and the change-detection algorithm:
0 = (Otrans,Bca). To evaluate the algorithms we study all
possible combinations on each dataset.

To find optimal parameter sets we use an adaptation of
NSGA-IT described in the next paragraph. See Table 4 for
the parameterization of NSGA-II. The weighting functions
for the errors in the MILTON distance are important as well.
See again Table 4, with functions similar to [10].

The parameters of the change-detection and compression
algorithms have a range of validity which must be kept
during the optimization. Therefore we modify NSGA-II
to calculate its random values in the range [Pmin, Pmax)
during the initialization of the population and for muta-
tions. For some parameters we have reduced this range
even further to reduce the search space and to speed up the
optimization process. Tables 5 and 6 list the parameters
and the ranges we have selected. An additional modifica-
tion is the distinction between float and integer parameters.
Random values for the float parameters are calculated as
&' = Pmin + 7 (Pmaz — Gmin), where 7 is an equally dis-
tributed random number in [0; 1). For integer parameters
this value is then rounded: ¢' = |¢’].

The result of this phase is a Pareto frontier that repre-
sents the best possible trade-offs between compression ratio
and the preservation of change points. Each individual con-

10T our case MSet specifies the maximum degree of the poly-
nomials for the approximation (cf. Subsection 4.2).

Table 5: List of parameters for all compression al-
gorithms and the ranges of the optimization

Algorithm | Parameter Min | Max | Type
All methods | threshold e 0 0.3 float
CHEB segment length | 4 || int
WAVE max. level 1 10 int
PPA max degree 2 5 int

sists of the MILTON distance, the compression ratio and
the root-mean-square error (RMSE) calculated for the cor-
responding set of compression and change-detection param-
eters. To select an individual of this frontier suitable for a
specific application scenario, a fitness is calculated:

fitness = a - durron (ep, ép) + (1 — @) - Acr (7)

where « is a parameter to weigh the addends. Note that «
is used only to select an individual in the result set after the
optimization is finished. This provides a lot of freedom and
flexibility during the evaluation.

5.6 Initialization of Phase 2:
Complete Datasets

Section 3 has explained the necessity to evaluate the best
performing combination of compression and change detec-
tion on a subsequence but also on the complete dataset.
The details of the experimental setup when it comes to the

Table 6: List of parameters for all change detection
algorithms and the ranges of the optimization

Algorithm | Parameter | Min | Max | Type
ADWIN M 2 10 int
1 0 1 float
ED o 0 1 float
P 1 200 int
MSet 1° 0 5 int
CF T 3 10 int
k 2 10 int
r 0 0.4 float
OKCD mi 2 200 int
mao 2 200 int
v 0.2 0.8 float
n 0 1 float
o 0 1 float
BOCD m 0 2 float
Ko 0 5 float
ap 0 5 float
Bo 0 5 float
A >0 500 float

complete dataset are as follows: The parameters for a spe-
cific « of the Phase 1 experiment are applied to the complete
dataset. For the Rising Mean dataset, we have divided the
€ threshold by 10, because it depends on the global maxi-
mum that is 10 times higher on the complete Rising Mean
dataset. As a reference, we use the parameters computed
in Phase 0 (Section 5.4) on the complete dataset. Then
the MILTON distance dyrron, compression ratio A, and
RMSE are calculated.

6. RESULTS

This section first describes and discusses our results of the
Phase 1 experiments and then presents the results of Phase 2
on the complete data. As an initial, exemplary illustration,
Figure 3 visualizes the data transformation in the different
phases for the combination REDD, BOCD and APCA. The
top plot, although not the focus of our study, shows the raw
data with ground-truth change points as vertical straight
lines. The middle plot shows the benchmark change points
calculated in Phase 0. The bottom plot shows the change
points on the compressed data with the best result parame-
ters of Phase 1. Comparing the top plot to the middle plot,
we can see that BOCD fails to detect two changes and incor-
rectly identifies two other ones. Taking benchmark change
points as a reference when run on the compressed data, i.e.,
comparing the middle plot to the bottom plot, BOCD fails
to detect two changes. Thus, the decrease in the perfor-
mance of BOCD on compressed data is small in this case,
compared to its performance on the original data.

6.1 Phase 1 - Results

The results of the Phase 1 experiments are Pareto fron-
tiers. To illustrate, Figure 4 shows a sample of the Pareto
frontiers on the Variance Change dataset. Each plot con-
tains all compression techniques for one change-detection
algorithm, except for ADWIN, which is not applicable to
this dataset (see Section 5.4). There is not any frontier
dominating all other frontiers, therefore no single best so-
lution exists. Dependent on the dataset and parameter «,

100 [—
z o 1 T I
g 50 B
z
1S
o
= l | \ \
100 © \ \ \ =
g L O O A ¥
= 50 |
3]
g
o
0 — | \ \
100 \ \ \ =
% |]
5 50 B
z
1S
o
01

! I \
0 200 400 600 800 1,000

time

Figure 3: BOCD and APCA on REDD. Top down:
raw data with ground-truth change points, result of
benchmark-change point computation, best result of
change detection with compression (a = 0.5).

different combinations of change-detection and compression
algorithm yield the best result.

We observe that comparing the large number of Pareto
frontiers produced by our experiments is difficult. Thus, we
select the individuals with the lowest fitness (see Equation 7)
of each Pareto frontier for different values of a and compare
their MILTON distance and compression ratio in Figures 5
and 6.

Earlier we have described two scenarios (SmartGrid, IoT)
where an approach such as ours is indispensable if one wants
to find a good combination of compression and change-
detection algorithms. These scenarios have different require-
ments. We therefore examine the Pareto frontiers for two
different « values, a = 0.5 for the Smart Grid, and o = 0.05
for IoT. For each solution on the Pareto frontier we calculate
a fitness value using the respective o value. We have chosen
the parametrization with the lowest fitness that indicates
the best result for the scenario. We get a triple (fitness,
MILTON distance, A.,) for each experiment. See Figures 5
and 6 for the MILTON distance and A, values, for « = 0.5
and a = 0.05. The MILTON distance is the value above the
horizontal axis, the compression ratio is below. For a = 0.5,
the best combinations of compression and change-detection
algorithm for each dataset are as follows:

e Rising Mean: BOCD with APCA clearly is the best
solution, because it achieves a MILTON distance of
almost zero and also has the best compression ratio.

e Variance Change: The best fitness is obtained with
BOCD and CHEB, closely followed by BOCD and

dMILTON

[\
T
e —o= -

dMIiLToN

dMILTON

w
T
3

dMriLToN
PEPIPPEEPP PP -
[J

Figure 4: Pareto frontiers for ED,CF,OKCD and
BOCD (from top to bottom) on the Variance Change
dataset.

PPA, although the compression ratio is not best.

e REDD: CF with SF is the best combination, as it has a
close to zero MILTON distance and a very good com-
pression ratio.

e PAMAP: The best algorithms are BOCD and CHEB,
mainly because of the low MILTON distance. BOCD
with WAVE also performs very well.

e EEG: BOCD with SF clearly is optimal.

Overall BOCD performs very well on all datasets and is
only beaten once by CF. We have made further noteworthy
observations:

e A MILTON distance larger than 3 means that no change
points have been found after compression. Thus, CF
on Rising Mean and ADWIN on the EEG data do not
work at all.

e The Variance Change dataset has relatively high com-
pression ratios. This is because the changes in variance
are difficult to compress, especially on combinations
OKCD with PPA and ED with CHEB.

e The REDD dataset is easy to compress while keeping
the change points, because of its very sharp edges and
low signal-to-noise ratio. It therefore has the lowest
average fitness of all datasets.

Comparing the results for & = 0.05 (Figure 6) to the ones
above, the compression ratios are smaller. However, the
MILTON distances are higher. Both effects are expected.
On the Variance Change dataset, the results with the lowest
MILTON distance for o = 0.5 has a very high compression
ratio. For a = 0.05, those combinations yield a much lower
compression ratio.

CAPCA SF mmm CHEB WAVE ml PPA

cocooo
[sisisiss] >
Z ANAAN BB
. —
E Q0 _© e N e
=1 PLovm —“olal N __NND oF o~
e) It Rae] Nl 1% 0 =)
o] NSO NHO N — 0 ogodNo
S I Zests 2e<e8ed Nl 1% S g93ee
2,5 ol S SoSoso Nl 1% I ; cCPcoo
Nl 1%
o0 = . — ~ 4 4 = =
o~ o Fm —~ OWmpEN VD o o 0
,E T~ Kar] — HN%%H OOmgO Ooggﬁ Hmwgo
5 Q2B 22332 22002 220382 2213<
£« COSRS SOSSSS ©9SSS 99530 SS353°
S
=)
o o
> S 85 S S
o S SHOES 2 B J%.s mr
a0 Pa AP Kool Ap S6 o
=) (0000 D - At
=ES (SO oy O LM A0 R~
£ 3 ’ Ssfe 2 g
= / T SPo
/
O'ﬁ J II I! 2
3 O o <ol
2 o FNR < < < FaP
S 9 coll® oo =Yg ocvovso
o So- P S 0 STES®
5< Cud S N SmoH
> 8 e s S
g 0
=) >
S
=)
2,
E ©o o < - D0
N QLIS D= RR M R
0N 000 D <f
= o= NeoSN SsNST g
A = ofPsse [=pupupte] oS
Q_g oo [ef=]=] o
=28 = He &3
— ’ = /| — 2
m N~ El) 00 — L’J 00 — 0
L N<en o SH O m — < 0 00 —
5 Soo®e SoB o coF=e
4 [=F=3pi~f=] oSNNS <= tnini=
© ©
2 =
QRN N
Z 882wl %13
O Zan”a 3
S acapa N
A 2
A S 7
< = 7
= -
< N <~
< HO%%H O
I = T= e
4 cossSo cos
cocoo o©
0S00S S = —
Z AN X aam 2
saaaa ! 33 =
Q Emmm;m ™) wmdsn § Q
S| ng S9N s L
Q RCN N Nooei 1=
~ A N A Yo R
E A dd e o
S
U'@ 7 E ; 1
[£a) = =84 4 ==
O AN P~ LD -0 o~ DN pe o0 ~o 0
B BEEBS sopes Sonle ox%ike
S @9ooe <Ceocoe Ceco2 29o0o<
4 SSc3S S9539 3350 SSoso

Figure 5: Overview of the best solutions for a =
0.5 on each combination of compression algorithm,
change detection algorithm and dataset.

On PAMAP and EEG the solutions for @« = 0.5 and
a = 0.05 are the same. The best results for « = 0.05
from Rising Mean and REDD Data are identical to those

from « = 0.5. This is because their low compression ra-
tios are not reduced further. Some of the other results have
slightly lower compression ratios. Our takeaway is that our
experiments do indeed help to find solutions for specific use
cases. The results of this phase also show that the quality
differs a lot between different combinations in the same set-
ting. Thus it is very important to be able to study different
combinations using a setup as elaborate as ours.

(o2}
(o=} (oY)
2 S5232 L3.8 588 <
N (o)
2 Q9 298 mem SRRY9 . WSYE¥SR] FIF_, o
S o Eagal Nk 8RR ao
s = 7 — .0 — v—U—‘oongf
= E 7 =) SHa
; ;
O3 L I
() =t t4 = == 4 =1 —
Q NN OCNepMY O NI ©anm®
IS IRk ILRSY FERON FhpoN
25 2558c 253838 25838c Ss&8c
§<1 OSSOC OSSCO OoIoC OSISoC
ADWIN ED CF OKCD BOCD

Figure 6: Solutions for o = 0.05 on Variance Change.

6.2 Phase 2 — Results

As explained in Section 5.6, we apply the parameters of
the results from Phase 1 to the complete data. For every set
we choose the combination with the lowest fitness. We ex-
pect that those parameter sets will achieve the same quality
of results, mainly in terms of stable ratios between PC, FP
and MISS, as on the subsequence datasets. Since durrron
grows quadratically for the number of FP and linearly for
the one of MISS (see Table 4), it is hardly comparable on
the complete dataset. On the other hand, we expect that
the compression ratio stays constant.

Table 7 shows our results. In contrast to our expecta-
tion, there are disproportionally more FPs and misses than
on small sets. From EEG we conclude that three change
points are not sufficient to train the change detection prop-
erly. The NSGA-II overfits the parameters on the training
data. To avoid this, we have also tested the other combi-
nations which do not show the best but nevertheless good
fitness. The lower part of Table 7 shows that these pa-
rameters yield results on the complete dataset which are as
good as the ones on the excerpts. On REDD for instance,
ChangeFinder detects eleven times as many change points
but only eight times as many FPs. In contrast to Section 6.1,
BOCD performs best in only two out of five cases. In every
case the compression ratio differs only slightly. To sum up,
we can say that the results from a short subsequence can be
used on the complete dataset without losing quality. How-
ever, it is necessary to rely on several results from Phase 1
to find the ones adapting best.

7. CONCLUSION

In many situations, compression and change-detection
methods must be used in combination. In such a setting
however, a number of questions are unclear, e.g.: Which
combination is best for a given scenario? How to find a
good parameterization of compression and change-detection
algorithms when these are used together? How well can

10

we trade compression ratio against change-detection qual-
ity? This article has featured a comprehensive experimental
evaluation that addresses these questions.

A study such as ours requires a number of non-trivial de-
sign decisions. This article has listed the important issues,
together with the respective options and our rationale be-
hind the ‘winner’ alternatives.

An important insight is that the overall picture is very dif-
ferentiated. Result quality highly depends on the dataset.
For instance, the change-detection method ChangeFinder is
the best performing algorithm on REDD, but the worst per-
forming one on the Rising Mean dataset. Our platform has
turned out to be an appropriate tool to find good param-
eterizations, at least if the dataset inspected is sufficiently
representative and large.

When data is compressed, the intention always is to de-
compress it later and use it in some way. Change detection
is one kind of data usage, but other kinds of usage obvi-
ously abound and are important as well. Just think of the
plethora of different stream-mining approaches which have
been proposed in the recent past. Generalizing the work de-
scribed here to other kinds of usage is important and is part
of our future work.

8. REFERENCES

[1] Communication Networks for Smart Grids. Computer
Communications and Networks. Springer London
(2014)

[2] Adams, R.P., MacKay, D.J.C.: Bayesian online
changepoint detection. arXiv preprint arXiv:0710.3742
(2007)

[3] Akyildiz, I.F., Weilian Su, Sankarasubramaniam, Y.,
Cayirci, E.: A survey on sensor networks. IEEE
Communications Magazine 40(8) (2002)

[4] Arion, A., Jeung, H., Aberer, K.: Efficiently
maintaining distributed model-based views on
real-time data streams. In: Global
Telecommunications Conference (GLOBECOM 2011),
IEEE

[5] Bifet, A., Gavalda, R.: Learning from time-changing
data with adaptive windowing. In: Proceedings of the
2007 STAM International Conference on Data Mining.
Society for Industrial and Applied Mathematics

[6] Cai, Y., Ng, R.: Indexing spatio-temporal trajectories
with chebyshev polynomials. In: Proceedings of the
2004 ACM SIGMOD

[7] Cheng, A.F., Hawkins III, S Edward, Nguyen, L.,
Monaco, C.A., Seagrave, G.G.: Data compression
using chebyshev transform (2007)

[8] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation 6(2) (2002)

[9] Desobry, F., Davy, M., Doncarli, C.: An online kernel

change detection algorithm. IEEE Transactions on

Signal Processing 53(8) (2005)

Efros, P., Buchmann, E., Englhardt, A., Bohm, K.:

How to quantify the impact of lossy transformations

on change detection. In: Proceedings of the 27th

International Conference on Scientific and Statistical

Database Management (2015)

(10]

Table 7: Comparison of dataset excerpts (left) and complete datasets (right) using the same parameters.

Best fitnesses

Combination dMILTON Aer RMSE Fitness |PC]| |FP| | |[MISS|
Rising Mean: APCA, BOCD 0.000 [0.674 | 0.010 |0.011 | 0.827 |0.690 | 0.010 |0.342 4 148 013 019
Variance Change: CHEB, BOCD | 0.181 |1.716 | 0.316 | 1.031 | 1.559 |0.000 | 0.249 |1.374 5|75 139 0 40
REDD: SF, CF 0.001 [0.957 | 0.041 |0.048 | 4.449 |4.479 | 0.021 [0.503 | 11 |126 | 0|9 037
PAMAP: CHEB, BOCD 0.177 10.476 | 0.039 [0.039 | 4.585 (4.873 | 0.108 |0.258 6|13 1|3 01
EEG: SF, BOCD 0.038 |3.104 | 0.030 | 0.017 | 14.95|17.305 | 0.034 | 1.560 319 0130 01
Best generalization
Combination dMILTON Aer RMSE Fitness |PC]| |FP| | |[MISS|
Rising Mean: APCA, ED 0.021 [0.432 | 0.014 |0.018 | 0.698 |0.669 | 0.035 |0.225 4143 01 015
Variance Change: SF, CF 0.681 [0.580 | 0.194 |0.182 | 2.153 |2.422 | 0.435 |0.762 7|56 2|5 118
REDD: WAVE, CF 0.083 [0.244 | 0.213 |0.207 | 0.921 |1.021 0.255 [0.225 | 11 | 155 118 018
EEG: PPA, BOCD 0.772 11.919 | 0.005 [0.002 | 36.01 |43.65 | 0.333 |0.960 3110 321 010

[11] Eichinger, F., Efros, P., Karnouskos, S., Bohm, K.: A
time-series compression technique and its application
to the smart grid. The VLDB Journal (2014)

[12]

Elmeleegy, H., Elmagarmid, A.K., Cecchet, E., Aref,

W.G., Zwaenepoel, W.: Online piece-wise linear
approximation of numerical streams with precision
guarantees. Proceedings of the VLDB Endowment

2(1) (2009)

Guralnik, V., Srivastava, J.: Event detection from

time series data. In: SIGKDD (1999)

[14]

Hung, N.Q.V., Jeung, H., Aberer, K.: An evaluation

of model-based approaches to sensor data
compression. IEEE Transactions on Knowledge and

Data Engineering 25(11) (2013)
[15]

Kawahara, Y., Sugiyama, M.: Change-point detection

in time-series data by direct density-ratio estimation.
In: Proceedings of the 2009 STAM International
Conference on Data Mining. Society for Industrial and

Applied Mathematics
[16]

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra,

S.: Locally adaptive dimensionality reduction for
indexing large time series databases. ACM SIGMOD

Record 30(2) (2001)
[17]

Miorandi, D., Sicari, S., Pellegrini, F.d., Chlamtac, I.:

Internet of things: Vision, applications and research
challenges. Ad Hoc Networks 10(7) (2012)

[18]

Takeuchi, J., Yamanishi, K.: A unifying framework for

detecting outliers and change points from time series.
IEEE Transactions on Knowledge and Data

Engineering 18(4) (2006)
[19]

Vishwanath, M.: The recursive pyramid algorithm for

the discrete wavelet transform. IEEE Transactions on

Signal Processing 42(3) (1994)

11

	2015,9_Titelbl.pdf
	Tech_Report_P_EFROS.pdf

