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Abstract

The complicated heterogeneous nuclear reactor core geometries and fuel loading patterns
of the future nuclear reactors pose serious challenges to the currently used standard com-
putational tools. In the recent years there has been an increasing level of interest in the use
of Monte Carlo methods for performing high accuracy three dimensional nuclear reactor cal-
culations. As such they can provide reference solutions for the deterministic tools.The Monte
Carlo method provides the most accurate solution of the neutron transport problem. The
ability to efficiently utilize high performance computer architectures and the precise physics
models used by Monte Carlo codes, enable the accurate simulation of real reactor problems.
In reactor analysis calculations, nuclear and thermal-hydraulic performance is highly depen-
dent on local material temperatures throughout the reactor core. In order to achieve accurate
results, this temperature dependence should be included in nuclear calculations for reactor
analysis and design. Therefore, the main goal is the ability to perform full-core Monte Carlo
reactor calculations taking into account the distribution of temperature and density. Since the
fuel composition within a reactor core changes with time due to irradiation, a complementary
goal is the incorporation of depletion capability in the Monte Carlo solver.

This thesis presents the research and development of Monte Carlo methods for finding eigen-
vectors and eigenvalues of the stationary neutron transport equation, taking into account the
local values of the temperature, density and fuel depletion. The focus is on both improv-
ing the calculation algorithm and increasing the accuracy of the physics models. Therefore,
special attention is paid to improving the eigenvalue solution, the associated variance of the
Monte Carlo estimates, the temperature dependence of the nuclear data and the stability of
the depletion calculations.

The primary goal of this work is to develop Monte Carlo based multi-physics capability for real
large scale problems, such as a full commercial reactor core at single fuel pin cell resolution.
The superiority of the newly developed methods is proven and their accuracy validated by
comparing them to the existing methodologies for performing Monte Carlo transport calcula-
tions and by simulating international benchmark exercises.
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Kurzfassung

Die komplizierten heterogenen Reaktor-Geometrien und Kernbeladungen von zukünftigen
Kernreaktoren stellen eine große Herausforderungen an die verwendeten Rechenmethoden
dar. In den letzten Jahren gibt es ein zunehmendes Interesse an der Verwendung von Monte-
Carlo-Verfahren für die Durchführung von sehr genauen dreidimensionalen Berechnungen
von Kernreaktoren. Diese können als Referenzlösungen für die deterministischen Verfahren
eingesetzt werden. Die Monte-Carlo-Methode kann die genaueste Lösung des Neutronen-
transportproblem anbieten. Die Kombination, effiziente Hochleistungsrechner-Architekturen
und genaue physikalischen Modelle mit Monte-Carlo-Codes zu nutzen, ermöglicht genaue
Simulation von reellen Reaktorproblemen. In Reaktor-Analyseberechnungen hängen nu-
kleare und thermisch-hydraulische Leistung stark von lokalen Material-Temperaturen und
-Dichten im gesamten Reaktorkern ab. Um genaue Ergebnisse zu erzielen, sollte diese
Temperatur- und Dichte-Abhängigkeit in Kernberechnungen für Reaktor-Analyse und Aus-
legung enthalten sein. Daher ist das Hauptziel die Fähigkeit, Vollkern Monte-Carlo Reaktor-
Berechnungen unter Berücksichtigung der Temperatur- und der Dichteverteilung bereitzu-
stellen. Da sich die Brennstoffzusammensetzung innerhalb eines Reaktorkerns mit der Zeit
infolge der Bestrahlung verändert, ist das komplementäre Ziel eine Abbrand-Option in dem
Monte-Carlo-Löser einzuführen.

Diese Arbeit stellt die Forschung und Entwicklung von Monte-Carlo-Methoden zum Auffin-
den von Eigenvektoren und Eigenwerte der stationären Neutronentransportgleichung, unter
Berücksichtigung der lokalen Werte der Temperatur, Dichte und Brennstoffzusammenset-
zung dar. Der Schwerpunkt liegt sowohl auf der Verbesserung von Berechnungsalgorith-
men, als auch auf der Erhöhung der Genauigkeit der Physik-Modelle. Deswegen wird be-
sonders auf die Verbesserung der Eigenwertlösung, auf die zugehörige Varianz der Monte-
Carlo-Schätzungen, auf die Temperaturabhängigkeit der Kerndaten und auf die Stabilität der
Abbrand-Berechnungen geachtet.

Das primäre Ziel dieser Arbeit ist die auf Monte-Carlo basierte Multi-Physik-Fähigkeit für
reelle große Probleme, wie z.B. ein voller Leistunsreaktorkern bei einzelner Auflösung der
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Brennstabzelle zu entwickeln. Die Überlegenheit der neu entwickelten Methode wird gezeigt
und die Genauigkeit durch Vergleiche mit bestehenden Methoden zur Durchführung von
Monte-Carlo-Transportberechnungen und durch Simulation von internationalen Benchmark-
Untersuchungen validiert.
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1
Introduction

1.1 State of the art

The computational tools used to perform neutronics simulations are divided into two ma-
jor branches, namely deterministic and stochastic - Monte Carlo tools. Deterministic meth-
ods determine the average behaviour of particles in a system by numerically solving the
Boltzmann transport equation. This approach requires discretising the equations governing
the neutron transport in all independent variables. The integro-differential neutron transport
equation is converted into a system of algebraic equations that are used to approximate the
solution functions. In contrast, the Monte Carlo method is used to simulate the statistical
process of neutron and charged particle interaction with the medium they travel in, almost
without approximations. The events that comprise the process are simulated by following
the histories of individual particles. Individual events are statistically sampled to describe the
total phenomenon, where the particle distributions become better known with increasing the
number of simulated histories. The main obstacle to the establishment of the Monte Carlo
tools as the standard for reactor physics calculations is their computational expense.

Modern computing has made it possible to obtain high-fidelity solutions of extremely large
scale reactor simulations. The approximations for the energy, angle and spatial dependence
of the neutron flux are gradually lifted and tools capable of simulating the neutron trans-
port problem by considering a detailed description of the phase space, are being developed
worldwide.

In the case of deterministic tools, diffusion theory is being replaced by simplified transport
(SP3) [3],[4], [5]. Recently, deterministic tools capable of running three dimensional reactor
core neutron transport calculations have been developed [6], [7]. Careful analysis of the re-
sults, however, reveals some significant approximations. For instance, running three dimen-
sional neutrons transport is computationally prohibitive even with today’s high performance
computers. Therefore, the transport solution is run only in the radial direction and lower order
solution is used for the axial direction. Developing deterministic tools capable of efficiently
utilizing the modern high performance computing architectures is a very challenging task due
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20 Chapter 1. Introduction

to the solution mechanism of deterministic tools. Deterministic codes are usually sequential
and even codes using significant approximations such as SP3 take days to complete, if high
resolution solutions are demanded. Deterministic tools also require significant amount of
computer memory in order to store the data associated with the discretised computational
domain.

The deficiencies associated with the deterministic tools and the increased capabilities offered
by modern high performance computing architectures, have revived the interest in Monte
Carlo methods. Contrary to deterministic codes, Monte Carlo codes can efficiently scale to
hundreds of thousands of cores [8], [9]. The computational efficiency of Monte Carlo codes
and their ability to use continuous representation of the phase space makes them natural
candidates to meet the demand for high precision reactor physics solutions.

Nowadays, Monte Carlo codes are well suited for calculation of large reactor core problems,
but mainly for integral quantities, such as the eigenvalue. Estimating local quantities like the
fission heat deposition poses serious challenges, associated with the large statistical vari-
ances of the local Monte Carlo estimates. This is mainly due to the lack of variance reduction
techniques specially designed to improve the efficiency of the eigenvalue calculations. In
particular, the general purpose MCNP code used for this analysis completely lacks adequate
variance reduction techniques to be used in the eigenvalue calculation (criticality) mode.
Variance reduction techniques dedicated to this task have been implemented in [10], [11],
unfortunately due to distribution restrictions issues, the codes are not publicly available.

Running full core criticality calculations poses serious challenges due to the poor conver-
gence of the eigenvalue calculation. No solution of this problem is given in the available
computer codes. Miscalculating the convergence of the eigenvalue calculation results in
wrong Monte Carlo estimates and serves as significant barrier on the path towards large
scale reactor calculations. This deficiency strongly affects the estimation of local quantities
such as fission heat deposition and neutron flux.

In general, Monte Carlo codes are used to calculate the steady state spatial distribution of
neutrons in eigenvalue and fixed source problems. These calculations are highly dependent
on local material temperatures throughout the reactor core. The distribution of the tempera-
ture in the core is determined by the reactor operating conditions. In contrast to deterministic
codes, which are usually linked to thermal hydraulic modules, in Monte Carlo calculations
those conditions are approximated by homogeneous distributions. This is a rather strong
simplification and departure from the physical reality. In the recent years, there has been
a significant effort to introduce thermal hydraulic feedback to Monte Carlo criticality calcula-
tions. Due to the difficulties related to the temperature dependence of the nuclear data, the
large variance of the Monte Carlo estimates needed as boundary conditions for the thermal
hydraulic calculation and the lack of efficient thermal hydraulic handling methods, most of
this solutions use simplified thermal hydraulic models. In particular, either coarse meshes
are used for estimating the power density [12], [13] or are applied to small size problems
consisting of individual fuel pins [14]. A very advanced method for incorporating the varying
distribution of temperature was implemented in the the MC21 code [15]. Moreover, little to
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no work was done in clarifying measures needed for correcting the temperature dependence
of the nuclear data that describes the scattering of neutrons from water molecules.

Monte Carlo codes have been linked to depletion modules [16], [17], [18], [19], [20], [21] and
[22]. The inclusion of depletion capabilities, introduces the possibility to compute the changes
in the fuel isotopic content caused by the fuel irradiation inside the core. The important issue
of rapid buildup of fission isotopes having large thermal absorption cross sections, such as
135Xe is not properly addressed in the available Monte Carlo codes. The strong coupling
between the neutron flux distribution and the local 135Xe concentrations induces instabilities
and results in unphysical results for the Monte Carlo depletion calculations.

1.2 Thesis objective

Having in mind the deficiencies of the deterministic codes associated with the approximative
treatment of the energy, the space, the angular dependences and their inability to run full
three dimensional transport solutions Monte Carlo codes are the most natural candidates to
meet the demand for high accurate reactor physics calculations. As yet, none of the available
Monte Carlo transport codes are able to perform reactor core simulations taking into account
local distributions of density and temperatures and provide solutions having single fuel pin
resolution in both the neutronic and thermal hydraulic domains. Therefore, the overall goal
of the thesis is to perform accurate Monte Carlo based calculations using precise physics
and geometry models. This requires solving a complex problem that links numerics, physics
and high performance computing. To achieve this objective, various methods for improving
both the efficiency of the computational algorithm, the underlying variance of the Monte Carlo
estimates and the accuracy of the physics modeling are needed.

Even before introducing the thermal hydraulic feedback one has to significantly improve the
efficiency of the standard Monte Carlo based computational methodology used for running
criticality calculations. Running detailed transport calculations and estimating local fission
heat deposition within acceptable statistical accuracy in large scale reactor geometries, even
without taking into account the thermal hydraulic feedback, is a complicated task. In addition,
due to the poor performance of the Monte Carlo criticality calculation when applied to full core
problems, the local values of the fission heat deposition tend to be statistically biased.

Due to the small mean free path of the neutrons in a typical light water reactor core, the
neutrons born in a particular assembly are likely to end their path, by either absorption or fis-
sion, in the same assembly or its nearest neighbouring assemblies. Therefore, remote parts
of the core geometry are decoupled from each other and one speaks of a loosely coupled
transport problem. Monte Carlo transport solvers rely on a modified version of the power
iteration method. It simulates batches of individual neutrons to obtain global distributions of
flux and fission rate density throughout the problem. The fission sites sampled in a partic-
ular batch are used as starting fission sites for the neutrons in the next batch. The neutron
batches, closely resemble successive application of the transport operator that is required
for the power iteration solution of the eigenvalue problem. The fundamental neutron source
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distribution is unknown at the beginning of the calculation and one starts the calculation with
a pre-defined initial guess. A number of power iterations are need to converge the fission
source distribution. Therefore, Monte Carlo codes allow for some number of initial batches
to be disregarded at the beginning of the job. The number of initial cycles strongly depends
and increases with increasing the problem complexity. The decoupling of the spatial domains
slows down the convergence of the power iteration, since it takes large number of successive
batches before local changes in the fission heat deposition have their effect on the overall
source distribution. Miscalculating the convergence of the fission source would allow the
contribution from the initial batches to contaminate the final results. Taking into account that
large scale geometries have complex material compositions will be discussed, this thesis
aims at developing an improved method for performing the Monte Carlo power calculation.

Since the fission heat deposition is used as a boundary condition for the thermal hydraulic
calculations, it has to be estimated by the Monte Carlo code within acceptable variance, usu-
ally less than one percent. Another major issue is ensuring that all the quantities of interest
have acceptable statistical uncertainties. In principle, brute force increasing of the number
of simulated particle histories can improve the statistical uncertainties. This strategy is inef-
ficient, since it effects mainly the regions where the particle abundance is high. Therefore, a
method capable of not only reducing, but also homogenizing the statistical uncertainties for
different regions of the computational domain is has be developed. The criticality calculation
is to be modified to run nonanalog transport. Nonanalog transport increases the occurrence
frequency of statistically rare events, thereby ensuring reliable sampling. To keep the the
score for the Monte Carlo estimates such as the neutron flux or the fission heat deposi-
tion unbiased the score weight has to be properly defined. Moreover the variance reduction
technique to be developed has to have very small footprint on the overall computing time.

To make the criticality calculation accurate and minimize approximations, the computational
domain has to be modeled with minimal geometry approximations and taking into account
the local distribution of temperature and density. Varying temperatures on their side require
the evaluation of the nuclear data at the corresponding temperature of interest. This is valid
for the nuclear data describing both reaction rates and the inelastic scattering of thermal
neutrons inside the moderator.

A steady state of the system of interest is to be computed, thus a coupling between the
Monte Carlo and the thermal hydraulic calculations has to be developed. The coupled sys-
tem should be able to reach convergence and a reliable stable relaxation scheme is needed.
Since the fission heat distribution is estimated with a certain statistical uncertainty, it expe-
riences random fluctuation within its confidence interval. This behaviour poses significant
convergence challenges. To overcome this issue an accelerating scheme taking into ac-
count the stochastic nature of the simulation is needed. Each iteration of the coupled system
involves a criticality calculation, that estimates the fission heat deposition, and an updated
temperature and density distributions. Therefore, it suffers from all the deficiencies described
in this paragraph, and requires their improvement as input.

Taking into account the change of isotopic compositions introduces another level of com-
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plexity. The strong feedback of the fission poison buildup on the neutron flux distribution
introduces another level of complexity. The local fuel compositions need to be supplied as
a function of irradiation time and the stability of the calculation has to be ensured. Since
the fluxes suffer statistical fluctuations, that translates to artificial power changes leading
to unphysical ’feedback’ effects. The large thermal absorption cross section of 135Xe has
a significant impact on the flux distribution and the reactivity change and provides strong
feedback. This makes three dimensional Monte Carlo based depletion calculations unstable.
Currently, depletion systems are mainly applied to two dimensional problems. In this case,
the spacial coupling between the 135Xe feedback concentration and the neutron flux can be
dampened by either using very fine time discretisation or by applying semi implicit methods.
These methods were proven unstable [23]. Moreover, running very small time steps is con-
stitutionally prohibitive, since it increases the number of time three dimensional Monte Carlo
transport is run. Therefore ensuring the stability of the Monte Carlo depletion system serves
as prerequisite for performing three dimensional depletion calculations and new methods are
needed to tackle the problem.
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1.3 Organization of the Dissertation

To realise the overall goal of the thesis of performing high accurate and computationally effi-
cient neutron transport criticality calculations taking into account the local thermal hydraulic
and the fuel isotope distributions, various improvements and new modeling features were
introduced in MCNP . They aim at both improving the computational efficiency of the Monte
Carlo transport part of the solution and at increasing the accuracy of the physics models
used by the code.

It is also important to both verify the newly implemented methods and to prove their supe-
riority to the existing methods. Therefore, special attention was dedicated to code-to-code
comparison and validation using international benchmark exercises.

Chapters 1 and 2 are introductory chapters representing the thesis objectives and organiza-
tion as well as a general description of a nuclear pressurized reactor core.

Chapter 3 presents a theoretical introduction to the Monte Carlo transport theory and the
fundamental concepts needed for understanding the various developments presented in this
thesis. The Monte Carlo solution of the Boltzmann transport equation is described and the
collision density equations are derived. The concept of tally estimators is introduced and their
derivation from the collision equations are presented. The method of successive generations
used for estimating the fundamental eigenpair of the transport operator is introduced. The
convergence of the method is discussed and the concept of dominance ratio - the quotient of
the two largest eigenvalues of the stationary transport operator is introduced. The stochastic
method of simulating the neutron transport problem is compared to deterministic transport
and their differences are discussed. The Shannon entropy method for monitoring fission
source convergence is described. The chapter also explains the boundary conditions used
and their role at speeding up the calculation and reducing the dominance ratio of the problem.

Since the thermal hydraulic feedback is introduced in the neutron transport process via the
nuclear cross sections, Chapter 4 treats the temperature dependence of both the single
and double differential nuclear data. Theoretical explanation of the Doppler effect is given.
In addition, the theoretical description of incoherent inelastic scattering from bound hydro-
gen is presented. In this chapter the method of pseudo material mixing is introduced and
its accuracy proven. The developments done in this thesis for correcting the temperature
dependence of the double differential data are presented. The development and implemen-
tation of novel on-the-fly technique for treating the effect of varying moderator temperature
on the thermal scattering data is presented and its results validated. The newly implemented
methodologies for correcting the temperature dependence of both the double and single dif-
ferential nuclear data are verified by comparison with exact temperature processed nuclear
data. The techniques described in this chapter are later on used for introducing the thermal
hydraulic feedback to the neutron transport process.

The main goal of this thesis is to run full high resolution full core calculations, therefore,
Chapter 5 discusses the Wielandt shift method as a tool for improving the criticality calcu-
lation. The standard method, known from matrix calculations, is implemented in the Monte
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Carlo code by modifying the transport operator. The efficiency of the method and its effect on
the local reaction rate estimates is investigated. It is shown in practice, that the modified by
the Wielandt shift transport operator converges rapidly to the fundamental eigenvalue of the
system. The consistency of the method is proven by comparing the eigenvalues and eigen-
vectors to reference values obtained by analog simulation. The effect of shifting the spectrum
of the eigenvalues on the relative error distribution and tally symmetry is investigated. By ap-
plying the Wielandt shift method a general tool for improving the criticality calculation was
developed.

Since tallying the local distribution of the power significantly slows down the neutronic cal-
culation, Chapter 6 introduces the improvement of methodology used for tallying the Monte
Carlo estimates. It is shown, that by combining effective utilization of optimized coding and
improved spatial bin storage based on Morton ordering, it is possible to significantly speed
up the flux and reaction rate estimation. The newly developed techniques for accelerating
the tallying are applied later in this thesis to efficiently compute the fission heat deposition.
Since the newly implemented methodology represents an improved computational algorithm
estimating the same quantity of interest it must deliver identical results when compared to
the standard tallying procedures. Therefore, the consistency of the new algorithm is verified
by comparing it to the standard MCNP code.

To investigate the efficiency of the newly implemented power iteration techniques, the im-
plementation of additional computational techniques is needed. Chapter 7 treats the imple-
mentation of the Fission matrix technique used as a tool for investigating the efficiency of the
Wielandt shift method. Theoretical description of both the Fission Matrix technique and the
computational methods used for estimating the eigenvalues of large sparse matrices are de-
scribed. The advanced bin storage technique developed for improving the tallying, is used to
ensure compact storage of the matrix elements. The higher mode eigenvalues of the Fission
matrix are used to provide direct proof that the the Wieland shift Method reduces the dom-
inance ratio of the system and to motivate the implementation of the Wieland method. The
correctness of the implementation is verified by comparing the fundamental mode eigen-
values obtained by the standard Monte Carlo power iteration and the fundamental mode
eigenvalues of the fission matrix. Using the advanced bin storage techniques it was possible
for the first time to compute eigenvalues of the fission matrix at pin by pin resolution. Another
unique result was the computation of the higher mode eigenvalues taking into account the
thermal hydraulic boundary condition. This allowed the analysis of the the convergence of
the transport operator when applied to a real nuclear reactor core configuration.

Since the fission heat deposition is used as a boundary condition for the coupled Monte Carlo
- thermal hydraulic calculation, in Chapter 8 the methods used for improving the variance of
the Monte Carlo reaction rates are demonstrated. The newly implemented Uniform Fission
Site method and the Global Variance Reduction technique are implemented and their effi-
ciency is compared. By analysing of the figure of merit the superiority of the Uniform Fission
Site method is proven.

To overcome the deficiencies of the methods used for introducing the thermal hydraulic feed-



26 Chapter 1. Introduction

back, novel methodology for the introduction of local temperature and densities distribution is
developed. Chapter 9 describes the new methodology for running transport calculations with
thermal hydraulic feedback. This chapter relies on all the developments done in the previous
chapters. The newly developed internal coupling scheme for on-the-fly introduction of the
thermal hydraulic feedback is presented. It integrates the methods developed for treating
the temperature dependence of the nuclear data and allows to define a three dimensional
distribution of temperature and density. The novel methodology is proven superior to the
standard method of introducing the feedback by explicit geometry splitting. The stochastic
approximation technique is introduced and its application as convergence acceleration tool
is demonstrated.

Chapter 10 illustrates the practical application of the novel coupling scheme to the PWR UOX-
MOX benchmark. Using the novel strategy of coupling Monte Carlo and thermal hydraulic
and the improved criticality calculation it was possible for the first time to run coupled PWR
core problem at unprecedented resolution. To prove the consistency of the methodology,
comparison to reference solutions is needed. The verification of the results is done for both
three and two dimensional cases. The two dimensional model is used to verify the geometry
model and to prove the consistency of the newly implemented techniques for accelerated fis-
sion heat distribution tallying. The subsequent three dimensional problem takes into account
the thermal hydraulic feedback. It is used to verify the newly implemented methods for on
the fly feedback definition, the improved power iteration and the newly implemented variance
reduction techniques.

Chapter 11 discusses the development and integration of depletion capabilities into the
MCNP code. The internal coupling scheme is extended further to take into account fuel
depletion. For this purpose a coupled code system between MCNP and the in-house de-
pletion code KORIGEN is developed. The theoretical foundations of Monte Carlo based
depletion calculations are presented. The xenon feedback effect is discussed and the stabil-
ity of the depletion calculations is studied. The existing methodologies for performing three
dimensional Monte Carlo based depletion calculations are analysed. Based on their defi-
ciencies optimal methodology for stable depletion calculations is selected. The state of the
art technique for direct estimation of the xenon production using the Monte Carlo code is
implemented in MCNP . This technique imposes the correct xenon distribution and dampens
the divergence. Since the 135Xe concentration is estimated using high resolution neutron
transport, it ensures that the isotope having the largest impact on the flux and the power
distribution is reliably computed. The newly implemented scheme utilizes efficiently the inac-
tive Monte Carlo cycles used for converting the fission source and computes the equilibrium
135Xe concentration within a single Monte Carlo transport calculation. Due to the fact that the
equilibrium 135Xe concentration is computed within a single run, the calculation runs much
faster than the currently established strategies for stabilizing the depletion calculation, where
multiple runs of the Monte Carlo transport code are needed. Since the 135Xe concentration
is computed as a function of the neutron flux, instabilities are impossible to occur, proving the
superiority of the newly implemented methodology. The methodology is validated by com-
paring it to explicit depletion computations using fine step time discretisation. The strategy
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to compute the 135Xe concentration directly as a function of the neutron flux, paves the way
to large scale three dimensional depletion calculations by significantly reducing the compu-
tational expense of the depletion calculation.



2
The nuclear reactor core

There are many different types of power reactors. What is common to all of them is that
they produce thermal energy that can be used for its own sake or converted into mechanical
energy and ultimately, in the vast majority of cases, into electrical energy. The most common
type of nuclear reactors are the pressurized water reactors (PWR) and the boiling water
reactors (BWR). In these reactors, the fission of heavy atomic nuclei, produces heat that is
transferred to a fluid which acts as a coolant. During the fission process, the nuclear binding
energy is released and this first becomes noticeable as the kinetic energy of the fission
products generated and that of the neutrons being released. Following the fission reaction,
the fission products deposit their kinetic energy locally in the fuel and it is transformed into
heat. In this thesis both the neutronic and the thermal hydraulic calculations are applied to a
pressurized water reactor problem. Pressurized Water Reactor are characterised by a high
pressure coolant system in order to prevent boiling.

The primary attention of this work is dedicated to a PWR reactor core. The reactor core
consists of fuel assemblies in a square lattice arrangement. Each fuel assembly contains a
lattice of pins, typically 17 times 17 array, containing fuel clad in Zircaloy tubes. The core
power level is controlled by control rods, containing neutron absorbing material.

There are a large number of vessel internal structures to support the core, direct the coolant
flow etc. see fig. 2.1. The reactor is cooled by light water that circulates through the core.
The coolant temperature is typically 298 ◦C at the inlet to the reactor core. The temperature
rise across the core region is about 28 ◦C. PWRs typically have four coolant loops. The flow
rate trough each loop is about four tonnes per second.

The reactor vessel itself is a steel cylinder with a domed upper lower head. The cylindrical
section is about 4.5 meters. Attached to the pressure vessel are four inlet outlet nozzles.
These nozzles are symmetrically arranged around the vessel and connect the vessel to the
hot and cold legs of the primary circuit. The upper head is removable to insert and extract
the fuel assemblies.

28
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Figure 2.1: Pressurized water reactor core.
source: J.R. Lamarsh and A. J. Baratta "Introduction to nuclear engineering".



3
Monte Carlo solution of the neutron transport equation

3.1 The collision density equations

The general form of the stationary Boltzmann transport equation is given by (3.1)

(
Ω̂ · ∇+ Σt (r, E)

)
Ψ(r, E, Ω̂) =

=

∞∫
0

∫
4π

Σs

(
r, Ω̂ · Ω̂′, E′ → E

)
Ψ(r, E′, Ω̂′)dE′dΩ̂′ + S

(
r, E, Ω̂

)
.

(3.1)

The equation gives the balance of neutrons entering and leaving a certain phase space
volume VS = ∆r∆Ω̂∆E. The Ψ(r, E, Ω̂) representing the total track length of all neutrons in
VS per unit of phase space. The term Ω̂ · ∇ is the leakage of the neutrons from ∆Ω̂∆E and
ΣtΨ(r, E, Ω̂) gives the total reaction rate. The right hand side of (3.1) gives the number of
neutrons entering VS after scattering or after being emitted from the source S

(
r, E, Ω̂

)
.

As given this is an integro-differential equation unsuitable for direct use in the Monte Carlo
simulation. This equation can be written in a more suitable integral form. However, instead
of working with the flux equation, the strategy given in [24] will be followed by defining an
integral equations for the collision densities. Define the expected number of particles coming
out of a collision in a certain volume element dr around r and having energy and direction
within E + dE, Ω̂ + dΩ̂ by (3.2)

χ
(
r, Ω̂, E

)
drdΩ̂dE. (3.2)

The counterpart of (3.2), denoting the particles entering a collision in the volume element dr
around r and having energy and direction within E + dE and Ω̂ + dΩ̂ by (3.3)

ξ(r, Ω̂, E)drdΩ̂dE. (3.3)
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For brevity apply the convention [24] and denote the coordinates in the phase space by a
single letter (3.4)

P = (r, Ω̂, dE). (3.4)

For defining the equation governing the behavior of the collision densities, define the proba-
bility for a particle leaving a collision at r′ to have its next collision at r. This quantity is the
transport kernel given by (3.5)

T
(
r′ → r|Ω̂, E

)
= Σt (r, E) exp

−
s∫

0

Σt

(
r− sΩ̂, E

)
ds

 δ(Ω̂− ŝ)

s2

s = r− r′.

(3.5)

This quantity relates directly to the integral transport equation and contains the expected
result, that the probability of an interaction is proportional to the total cross section at that
point Σt (r, E).

The second quantity to be defined is the collision kernel C
(

Ω̂ · Ω̂′, E′ → E|r
)

determining
the number of particles coming from a collision at r and having energy and direction within
E + dE and Ω + dΩ by (3.6)

C
(

Ω̂ · Ω̂′, E′ → E|r
)

=

N∑
i=1

R∑
j=1

vi,jΣi,j(r,Ω̂ · Ω̂′, E′ → E)

Σt (r, E′)
, (3.6)

where N is the number of isotopes and R is the number of possible reactions. vi,j denotes
the number of outgoing particles and Σi,j is the differential cross section for a particular
reaction.

Having defined the transport and the collision kernels, the governing equations can be de-
fined. Particles with certain direction and energy are either emitted from the source or are
born after a collision. Therefore, the outcoming collision density satisfies the following equa-
tion (3.7)

χ (r,E) = Q (r,E) +

∫
dE′C (E′ → E|r) ξ (r,E′), (3.7)

where Q (r,E) is the source term emitting particles having E. In the above equation, the fact
that both the energy and the angle are usually changed after collision is used. In most of
the cases, they are also not independent [24]. Therefore, a simplified notation is introduced
E =

(
E, Ω̂

)
. The same can be achieved by introducing the vector velocity v.

Particles born at r′ can enter a subsequent collision at r if they have the proper direction
and energy. Using the definition of the transport kernel, (3.5) the governing equation of the
ingoing collision density is given by (3.8)
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ξ (r,E) =

∫
dr′T (r′ → r|E)χ (r′,E) (3.8)

In principle, by substitution, equations (3.8) and (3.7) can be reduced to a single equation.
Nevertheless keeping the equations separate provides a more simple way of explaining the
physical properties of the computation.

The solution of the Fredholm integral equations for the collision and the emission densities is
in the form of von Neumann series. Therefore, both collision densities defined above can be
expanded in series (3.9)

χ (P ) =

N∑
k=1

χk (P )

ξ (P ) =

N∑
k=1

ξk (P ).

(3.9)

The separate terms of the von Neumann expansion can be recursively generated using (3.7)
and (3.8)

χ0 (r,E) = Q (r,E)

ξ0 (r,E) =

∫
dr′T (r′ → r|E)χ0 (r′,E)

χi+1 (r,E) = Q (r,E) +

∫
dE′C (E′ → E|r) ξi (r,E′)

ξi+1 (r,E) =

∫
dr′T (r′ → r|E)χi (r′,E).

(3.10)

The zero order terms χ0 and ψ0 from (3.10) are the density of source particles and the par-
ticles entering from the first collision correspondingly. Here the benefit of using two separate
equations becomes evident. The quantity χi+1 denotes the density of particles leaving their
i+ 1 collision and ψi is the density of particles entering this collision. The Monte Carlo solu-
tion of the transport problem is an iterative update of the densities of particles entering and
leaving a collision. As mentioned above the two equations describing the collision densities
can be reduced to a single equation by substitution. Substitution of (3.8) in (3.7) yields (3.11)

ξ (r,E) =

∫
dr′Q (r,E)T (r′ → r|E) +

+

∫
dE′

∫
dr′T (r′ → r|E)C (E′ → E|r′) ξ (r′,E′).

(3.11)

Using the simplified notation for points in the phase space, denoting the kernel of (3.11) by

K(Q,Q′) and identifying
∫
dr′Q (r,E)T (r′ → r|E) with the zeroth term of the von Neumann

series ψ0(r,E) yields (3.12)
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ξ (P ) = ξ0 (P ) +

∫
dP ′K (P → P ′) ξ (P ′). (3.12)

In most of the cases, the collision desnities are not of interest but the functionals involving
them are, such as, reaction rates or detector responses. These quantities can be derived
from either the incoming or the outgoing particle densities

R =

∫
dPηχ (P )χ (P )

R =

∫
dPfξ (P ) ξ (P ),

(3.13)

where fψ (P ) and ηχ (P ) from (3.13) are the payoff functions. They are determined by the
physical quantity to be estimated. The definition of the payoff function can be used to esti-
mate differential quantities, in this case (3.13) transforms to (3.14)

R =

∫
dPfxξ (P ) ξ (P )

R =

∫
dPηxχ (P )χ (P ).

(3.14)

Here superscript x denotes the bin structure, for instance, energy intervals or geometric
subdivision. Important consequences can be drawn from the above definition. The bins x are
estimated using the same quantity and they are correlated. The estimates are independent of
the simulation process. One can build the estimates by evaluating the data after the transport
calculation. This was a common technique in the past with the aim of saving computer
resources.

The simplest type of response is the number of collisions within a certain domain Γ

R =

∫∫∫
dEdrdΩ̂hΓ(r)Ψ

(
r, E, Ω̂

)
. (3.15)

hΓ(r) from (3.15) is the characteristic function of the domain Γ i.e. hΓ(r)/ = 0 only if r ∈ Γ .
The same estimator can be used for determining reaction rates

R =

∫∫∫
dEdrdΩ̂hΓ(r)

Σr (r, E)

Σt (r, E)
Ψ
(
r, E, Ω̂

)
. (3.16)

The above formulas establish important relation to the flux integral. Rewriting (3.16) and
using the relationship ξ = ΨΣt yields (3.17)

R =

∫∫∫
dEdrdΩ̂hΓ(r)

ξ
(
r, E, Ω̂

)
Σt (r, E)

. (3.17)

In the Monte Carlo codes one usually associates a certain weight wi to each particle from
the simulation [25]. Using the concept of particle weight one obtains (3.18)
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R̂ =
1

N

N∑
i=1

wihΓ(ri)

Σt (ri, Ei)
. (3.18)

This type of estimator is unsuitable for low collision and void cells. However, for high collision
regions like the fuel pellets, it gives fairly good results. The main advantage when compared
with (3.19) is that the tally subroutines are called less frequently and the calculation of the
distance traveled by the particle is not needed.

To overcome the inefficiencies of the collision estimator in case of low collision cells, most
modern Monte Carlo codes use the track length estimator. It can be derived by substituting
(3.8) in (3.17) and using the abbreviation E =

(
E, Ω̂

)

R =

∫
dE

∫
dr

∫
dr′χ (r′,E)T (r′ → r|E)

Σt (r,E)
. (3.19)

From (3.19) the pay off function can be deduced and it can be proven [24] that

fχ (r,E) =

∫
dr′χ (r′,E)T (r′ → r|E)

Σt (r,E)
= 〈l〉 . (3.20)

Where 〈l〉 is the expected path length of the particle. Using the concept of particle weight the
final form as it is used by Monte Carlo codes is obtained

R̂ =
1

N

N∑
i=1

wili. (3.21)

Another important quantity is the criticality eigenvalue. It is by definition the ratio of the num-
ber of fissions in two successive iterations. MCNP uses three different estimators together
with a combined estimator for computing the eigenvalue. These are the collision (3.22), track
length (3.24) and absorption (3.24) estimators.

kCeff =
1

N

∑
i

wi

[
Σfν

Σt

]
(3.22)

kTeff =
1

N

∑
i

wiliΣfν (3.23)

kAeff =
1

N

∑
i

wi

[
σz,fνz

σz,f + σz,c

]
, (3.24)

where ν is the fission neutron yield. Note, that in contrast to the other two estimators, micro-
scopic capture σz,c and fission σz,f cross sections for the specific collision nuclide z are used
for the absorption estimator of keff.
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Since the Monte Carlo estimates are mean values accumulated by stochastic sampling, each
estimator have associated standard deviation S and is computed as a mean value < x > of
N samples. To indicate the statistical uncertainty, Monte Carlo codes report the results from
the calculation with their corresponding relative error, defined as

Relative error =
S

< x >
√
N
. (3.25)

This value is used later in this work to judge the quality of the Monte Carlo results.
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3.2 Fission source convergence

Monte Carlo methods rely on a modified version of the power method, often referred to as the
method of successive generations for estimating the fundamental eigenpair of the stationary
transport operator. This method uses successive cycles in which individual neutron histories
are followed and the fission events they are tallied. The estimated fission source distribu-
tion from each cycle is randomly sampled to provide starting fission sites for the neutrons in
next cycle. This strategy is similar to the power iteration method used in matrix calculations.
Being an iterative process, it requires a number of iterations until a stationary source distri-
bution is obtained. For the first criticality cycle the user specified initial source distribution is
needed. The quality of this initial source guess determines the fission source convergence
rate. Starting tallying before the source distribution has converged will result in a biased cal-
culation. The convergence rate of the source is determined by the dominance ratio of the
system. Consider the stationary transport equation (3.26)

[
Ω̂ · ∇+ Σt (r,E)

]
Ψ
(

r̄,E,Ω̂
)

=
χ(E)

keff

∫ ∫
νΣf (r,E′) Ψ

(
r,E′,Ω̂′

)
dE′dΩ̂′+

+

∫ ∫
Σs

(
r,Ω̂ · Ω̂′,E′ → E

)
Ψ
(

r̄,E′,Ω̂′
)
dE′dΩ̂′.

(3.26)

It would be more convenient to simplify the notation and write [26]

L̂Ψ = ŜΨ +
1

keff
F̂Ψ

Ψ =
1

keff

(
L̂− Ŝ

)−1

F̂Ψ =
1

keff
M̂Ψ.

(3.27)

Where the loss term is defined by L̂ = Ω̂ ·∇+Σt (r,E). This equation is solved by successive
iterations. The iteration starts with initial source guess Ψ0. Expanding Ψ0 in terms of the
eigenfunctions uj of (3.26) and substituting in the recurrence relation derived from (3.27)
yields [26]

Ψ(n+1) =
1

k(n)
M̂Ψ(n) =

1

k(n)k(n−1)
· · 1

k(0)
M̂nΨ(0) =

=
1

k(n)k(n−1)
· · 1

k(0)
M̂n {a0u0 + a1u1 + a2u2 + · · ·} =

=
kn0

k(n)k(n−1) · ·k(0)
× a0 ×

[
u0 +

a1

a0
(ρ)

(n+1)
u1 +

a2

a0

(
k2

k0

)(n+1)

u2 + · · ·

]

ρ =
k1

k0
,

(3.28)
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where {ki} is the set of eigenvalues of the transport operator. Here ρ denotes the dominance
ratio and according to (5.2) determines the convergence of the expansion. an are expansion
coefficients. If ρ approaches unity the system is stated to have large dominance ratio. Usu-
ally in the Monte Carlo calculations, one defines the number of skipped cycles needed to
converge the source. The number of those cycles should be carefully selected. To monitor
the convergence behavior MCNP offers the Shannon Entropy method. It consist of overlay-
ing a mesh of Ns elements and monitoring the number of source cites in a particular mesh
element #i. The superimposed mesh encompasses all the fissionable regions. Following the
definitions from [25] , [27] the fraction of source sites in a certain mesh element is defined as

PJ =
#i

Ns∑
i

#i

, (3.29)

The Shannon entropy is then defined to be

Hsrc = −
Ns∑
j=1

PJ ln (PJ) . (3.30)

Hsrc converges to a single steady state value as the source distribution approaches station-
ary. The values of Hsrc are computed and printed for each criticality cycle of MCNP . The
code computes the average < Hsrc > for the last half of the active cycles, as well as its
standard deviation. At the end of each run, MCNP reports the first cycle falling within one
standard deviation of its average over the last half cycles. This value is used as a sugges-
tion when tallying might be started [27]. In addition to the fission source, convergence of
the eigenvalue should also be monitored. Being an integral quantity, the convergence of the
eigenvalue is much easier to achieve.
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Figure 3.1: Evolution of the Shannon entropy Hsrc vs. criticality cycle.
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Two plots showing Hsrc and keffvs. criticality cycle are shown in fig. 3.1 and fig. 3.2. The
computation problem consists of a quarter PWR core. 1200 cycles with 106 neutrons per
cycle were simulated. As expected Hsrcconverges much slower, the vertical line in fig. 3.1
shows cycle 170, when MCNP detected source convergence.
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Figure 3.2: Evolution of the eigenvalue keffvs. criticality cycle.

Different methods have been applied to accelerate the fission source convergence. MCNP
offers the possibility to define sources via the SDEF card, user specified source subroutine
or by reading the fission source from some previous MCNP run. In this work two other
methods were developed. Acceleration of the fission source via the Wielandt method and
sampling the fission source distribution via power profile. Using the power profile to define
the fission source is a very convenient method, due to the possibility to use either power
coming out from an actual calculation or a user specified guess. For instance, a fair estimate
would be cosine axial and a flat radial distribution. The method can be further elaborated
by computing the radial power with a deterministic neutron transport code. The Wielandt
method is a much more elaborate procedure requiring modifications of the MCNP code. It
provides rapid convergence of the Monte Carlo power iteration by reducing the dominance
ratio of the system. The Monte Carlo implementation of the Wielandt acceleration will be
presented in Chapter 4.

3.3 Nonanalog Monte Carlo transport

The simplest form of Monte Carlo transport is analog transport. The analog transport model
uses the natural probabilities to sample the different reactions that occur along the path of
the simulated particles. Each subsequent event along a particle trajectory is sampled from
a number of possible events according to the natural probabilities. This model is directly
analogous to the naturally occurring transport and hence the name.
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Analog transport gives good results in the cases when significant number of the particles
contribute to the Monte Carlo estimate of interest. This situation can be significantly different
for some cases. Consider the problem of detecting particle flux behind a thick shielding mate-
rial e.g. gamma source and detector separated by a thick lead wall. In this case due to heavy
absorption, the fraction of particles that contribute to the detector response might be easily
×10−6. In such situations the analog transport model will produce very large uncertainties.

A heuristic approach to improve the statistical uncertainty of the shielding problem, would be
to simply run more particle histories. This methodology will be very inefficient in practices,
since the much larger number of simulated histories will increase significantly the computing
time.

Consider the situation where absorption is treated as scattering, meaning that all the particles
emitted will reach the detector. In this case the fraction of particles contributing to the detector
estimate will be unity and the variance will be substantially reduced. To keep the score
unbiased, the score weight must be modified. Since the probability for scattering is given by
the ratio of the scattering cross section Σs to the total cross section Σt, the wight w would
have to fulfill the condition

w×biased probability distribution = w0×unbiased probability distribution,

w×1 = w0×
Σs
Σt
,

w = w0×
Σs
Σt
,

after n collisions: w = w0×
(

Σs
Σt

)n
.

Note that in the non analog transport all collisions are treated as scattering, hence the prob-
ability is unity. Since all the particles are contributing to the score, the statistical uncertainty
will be significantly reduced. This nonananalog technique of reducing the variance is called
implicit capture and is standard tool in deep penetration problems. It is also used as a de-
fault option in the eigenvalue calculation mode of MCNP , where absorption is not explicitly
sampled. If the weight of the particle becomes smaller than a certain threshold, the particles
are either killed or have their weights increased according to a stochastic selection rule.

One can summarize that nonanalog Monte Carlo model attempts to follow “interesting” par-
ticles more often than “uninteresting” ones. An “interesting” particle is one that contributes a
large amount to the quantity (or quantities) that needs to be estimated [25]. Such nonanalog,
or variance reduction, techniques can often decrease the relative error by sampling naturally
rare events with an unnaturally high frequency and weighting the tallies appropriately.

To clarify further the concepts of Monte Carlo weights and variance reduction consider the
standard problem of computing averages. Let x(i) be a set of samples drawn according to
p(x). In this case, the expectation value of the function f(x) under p(x) can be approximated
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by the average of f(x) evaluated at those samples

< f >=

∫
f(x)p(x)dx ≈ 1

N

N∑
i=1

f(x(i)). (3.31)

Usually, it is possible to evaluate the values of p(x) at given x, but drawing samples directly
from p(x) is either inefficient or impossible. To deal with this, another distribution q(x) called
the sampling distribution is used to draw xi from. This strategy is refereed to as importance
sampling. The modified average value reads

< f > =

∫
f(x)

p(x)

q(x)
q(x)dx,

≈ 1

N

N∑
i=1

p(xi)

q(xi)
f(xi),

=
1

N

N∑
i=1

wif(xi)

wi =
p(xi)

q(xi)
.

In the above equation the concept of statistical weights wi is introduced. Coming back to the

scattering example we obtain p(x) =
Σs
Σt

and q(x) = 1.

The decision to draw samples form a modified distribution, has profound effect on the vari-
ance of the expectation value. Consider the expression for the variance

σ2(f) =

∫
(f(x)− < f >)

2
p(x)dx =

∫
f2(x)p(x)dx− (< f >)

2
. (3.32)

Substituting for the importance sampling case yields the following expression for the variance

σ2(f) =

∫
f2(x)

[
p(x)

q(x)

]2

q(x)dx− (< f >)
2
, (3.33)

=

∫
f2(x)

[
p(x)

q(x)

]
p(x)dx− (< f >)

2
.

Therefore, if the ratio w =
p(x)

q(x)
in (3.33) is chosen smaller than unity the variance is reduced,

that is
σ2(f) = σ2(f · p

q
). (3.34)

The condition
p(x)

q(x)
< 1 gives also a prescription how to select the modified sampling distri-

bution. The choice should be made such, so that the weight is reduced. This is confirmed in

the scattering example, since
p(x)

q(x)
=

Σs
Σt

< 1 and after each collision the weight is reduced.

More sophisticated examples of this technique will be presented in Chapter 7, where they
are used to improve the variance of the fission heat deposition.
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3.4 Monte Carlo and deterministic transport

Apart from Monte Carlo simulations another class of solution method for the neutron transport
equation exists, called deterministic methods. These methods discretize the phase space
and apply various approximations [28]. The discetized problem is reduced to a system of
algebraic equations. One approximation used by all the deterministic codes is the energy
discretization.

Consider the steady state neutron transport equation (3.35)

[
Ω̂ · ∇+ Σt (r,E)− 1

keff
F̂

]
Ψ
(
r,E,Ω̂

)
= ŜΨ

(
r,E,Ω̂

)

F̂Ψ
(
r,E,Ω̂

)
=
χ (E)

4π

∫ ∫
νΣf (r,E′) Ψ

(
r,E′,Ω̂′

)
dE′dΩ̂′

ŜΨ
(
r,E,Ω̂

)
=

∫ ∫
Σs

(
r,Ω̂ · Ω̂′,E′ → E

)
Ψ
(
r,E′,Ω̂′

)
dE′dΩ̂′

(3.35)

Instead of dealing with Ψ
(
r,E,Ω̂

)
as a continuous function of E, subdivide the energy inter-

val into G energy groups
∆Eg = [Eg, Eg1 ] with

g = {g ∈ N, g ≤ G}.
(3.36)

Using the approximation (3.36) and integrating over ∆Eg the neutron transport equation
(3.35) becomes (3.37)

Ω̂ · ∇
∫

∆Eg

dEΨ
(
r, E, Ω̂

)
+

∫
∆Eg

dEΣt (r, E) Ψ
(
r, E, Ω̂

)
=

∫
∆Eg

dE

G∑
g′=1

∫
∆Eg′

dE′
∫
4π

dΩ̂′Σs

(
r, Ω̂ · Ω̂′E′ → E,

)
Ψ
(
r, E′, Ω̂′

)
+

+

∫
∆Eg

dE
1

k

χ (E)

4π

G∑
g′=1

∫
∆Eg′

dE′
∫
4π

dΩ̂′νΣf (r, E′) Ψ
(
r, E′, Ω̂′

)
(3.37)

Assuming a separation Ansatz for the energy dependence and normalizing (3.38)

Ψ
(
r,E,Ω̂

)
= f(E) · φ

(
r, Ω̂

)
∫

∆Eg

f(E)dE = 1
(3.38)
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the energy discretized neutron transport equation becomes (3.39)

Ω̂ · ∇φg
(
r, Ω̂

)
+ Σg (r)φg

(
r, Ω̂

)
=

G∑
g′=1

∫
4π

dΩ̂′Σs,gg′
(
r, Ω̂ · Ω̂′

)
φg

(
r, Ω̂′

)
+

+
1

k

χg
4π

G∑
g′=1

∫
4π

dΩ̂′νg′Σf,g (r)φg′
(
r, Ω̂′

) (3.39)

This form of the neutron transport equation is the basis for all deterministic codes. It reduces
the continuous energy transport equation to a coupled system of equations [29]. This for-
mulation requires in advance prepared multigroup nuclear cross section data, which are in
turn collapsed from continuous energy. The number of energy groups varies, depending on
the application. Core simulators usually use two groups. Lattice solvers apply finer energy
discretization, usually few hundred groups.
To solve (3.39) with deterministic methods, both the space and the angular dependence
need to be discretized. Usually the spatial dependence is discredited by splitting the ge-
ometry into a number of spacial domains. To illustrate some of the strategies for treating
the angular dependence consider the one dimensional monochromatic form of the neutron
transport equation (3.40)

µ
∂ψ (x, µ)

∂x
+ Σt (x)ψ (x, µ) =

1

2

1∫
−1

Σs (x, µ0)ψ (x, µ) dµ+ S(x, µ), (3.40)

where µ0 = cos θ0 is the cosine of the angle between the directions µ = cos θ and µ′ = cos θ′.
If the angular dependence is expanded in orthogonal Legendre polynomials (3.41)

ψ (x, µ) =
∑
l=0

2l + 1

2
φl (x)Pl (µ)

Σs (x, µ0) =
∑
l=0

2l + 1

2
Σs,l (x)Pl (µ0)

S (x, µ0) =
∑
l=0

2l + 1

2
Sl (x)Pl (µ)

(3.41)

By this the following form of the transport equation is obtained

l + 1

2l + 1

dφl+1

dx
+

l

2l + 1

dφl−1

dx
+ [Σt (x)− Σs,l (x)]φl (x) = Sl (x) , l = 0, L− 1

l

2l + 1

dφL−1

dx
+ [Σt (x)− Σs,l (x)]φL (x) = SL (x) .

(3.42)
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In the general three dimensional case the flux is expanded in terms of spherical harmonics
Yl,m

(
Ω̂
)

ψ
(
r, E, Ω̂, t

)
=

L∑
l=1

l∑
m=−l

φl,m (r, E, t)Yl,m

(
Ω̂
)
.

To derive the equations (3.42), the closure relation
dφL
dx

= 0 , known as PL approximation
was used. Depending on the, problem different number of terms are used for the angular
expansion. If the zeroth order is used the neutron transport equation is reduced to diffusion
problem. This is a widely used approximation, unfortunately due to the neglected anisotropy
the solution near locations where strong anisotropy of the flux is present is inaccurate. For
instance, near reflectors or control rods. A more accurate approximation is made by consider-
ing the first order Legendre moments. In this case, on the basis of (3.42) a three dimensional
equations are derived. Replacing the derivatives with either gradient ∇ or divergence ∇·
depending whether the index l is even or odd. These are the simplified P3 or SP3 equations.
Since the truncation error in spatial discretisation is of significant concern in deterministic cal-
culations, several techniques are used, such as finite differencing, finite element and nodal
methods. Usually deterministic codes using low order approximation of the angular depen-
dence utilize homogenization theory. These cross sections are inserted into the homoge-
nized version of the transport equation and deliver the same results for certain important
quantities. The most important of them being the multiplication constant, the group reaction
rates averaged over the homogenization domain and the group currents averaged over the
surface of the homogenization region. The homogenized group constants Σ

g

Ri
are generated

such so that the integral reaction rate are preserved within the homogenization volume Vi

Σ
g

Ri
=

Eg−1∫
Eg

∫
Vi

ΣRi
(r, E)φ (r, E) drdE

Eg−1∫
Eg

∫
Vi

φ (r, E) drdE

. (3.43)

Since local physical properties within each nodal region are more dependent on the physi-
cal properties and the thermal hydraulic conditions inside the assembly, than on the global
position of the assembly in the reactor core [30],[31], the cross sections are prepared in ad-
vanced using detailed two dimensional calculations. Either lattice or stochastic codes codes
are used to prepare the homogenized group constants prior to the reactor physics calcula-
tions [32],[33],[20].

Another possibility for discretising the angular dependence is to apply numerical quadrature
for integrating the angular dependence. Instead of using the full set of angular directions, the
transport equation is enforced to hold only on a discrete set of values µM

µ1, µ2, · · · , µM . (3.44)
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Define further the following set of quadratue weights

w1, w2, · · · , wM . (3.45)

In this case, the angular expansion is

ψ (x, µn) =
1

2

L∑
l=1

wlφl (x)Pl (µn) . (3.46)

In terms of the discretized angular variable (3.40) becomes

µn
∂ψn (x)

∂x
+ Σt (x)ψn (x) =

M∑
n=1

(2l + 1)Pl (µn) Σs,l (x)ψn (x) + S(x, µn) (3.47)

Integrating the angular dependence using a numerical quadrature is known as the discrete
ordinates method. In one dimension only one angle is needed to specify the neutron angular
distribution. In a multidimensional problem, two angular variables are required to specify the
direction of neutron travel ω̂. The precise form of the discrete ordinates method in higher
dimensions depends on the geometry type.

The quadrature set is usually chosen symmetric around µ = 0 to assign the same importance
of particles streaming in different directions. To avoid the case of actually having µn = 0 even
number of directions M is chosen. Different choices of the quadrature set are possible. If
insufficient number of directions might result in unphysical ray effects. This might also occur
in regions with low absorption cross section or localized sources.

As seen from the previous examples different approximations are used in the deterministic
calculations. Increasing the resolution of the energy, angle and spatial discretization naturally
increases the computational effort. In principle, by choosing fine discretization very accurate
results can be provided by both the Pn and the Sn approximations.

The main advantage of the Monte Carlo method is that all the above described approxima-
tions are not needed. Violating the conditions that led to those assumptions typically results
in inaccurate calculations. This is why when using deterministic codes one has to carefully
consider, whether the physics of the problem is properly captured by the simulation Ansatz.
Monte Carlo codes treat the full angular, space and energy dependence of the neutron flux
without any approximations. Due to the fact that individual particles are tracked, it is possible
to model complicated geometries by representing their corresponding surfaces via analytic
equations. Deterministic codes can provide large a amount of information about the solution
within a single calculation. Since the solution is calculated within every discretization node
of the system, obtaining the flux (power) distribution is not an issue. On the contrary, sig-
nificant effort is needed to achieve the same with Monte Carlo codes. Later in chapter 4,
developments to tackle the problem of efficiently obtaining flux (fission heat) estimates for
large systems is presented.

Deterministic codes are difficult to scale to multiple processor cores and run time significantly
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deteriorates with increasing the model resolution. Since Monte Carlo codes simulate the
histories of individual particles, the codes can be very efficiently scaled to large number
of cores (10000 and more) just by distributing the number of particles and providing the
geometry and material description to each core. For instance, fixed source computations
scale almost linearly with the number of cores.

3.5 Boundary conditions

The Monte Carlo transport equation is subjected to a set of boundary conditions [34]. De-
pending on the problem, one can have reflective, periodic, vacuum or white boundary con-
ditions. The reflective boundary conditions can be either specular reflection, which as the
name suggests, indicates that the incident and reflection angle are equal

Ψ
(
r,E,Ω̂

)
= Ψ

(
r,E,Ω̂R

)
,

r ∈ Γ,

n · Ω̂ < 0.

(3.48)

The reflective boundary conditions can be used to model infinite systems. Reflective bound-
ary conditions are usually imposed on the symmetry cuts of a problem to reduce the com-
putational effort. r ∈ Γ indicates that the tip of the radius vector is located on the reflective
surface Γ. The unit vector n is the outward unit normal to the reflective surface. A variation
of the reflective boundary conditions is an albedo condition

Ψ
(
r,E,Ω̂

)
= αΨ

(
r,E,Ω̂R

)
r ∈ Γ

n · Ω̂ < 0.

(3.49)

The albedo α says that unlike in the case of the specular reflection (3.48) some of the par-
ticles might leave the volume. If a reliable estimate of the albedo is at hand, reflectors can
be modeled very efficiently, by substituting the physical reflector volume by the parameter α.
For infinite periodic geometries, periodic boundary conditions are usually used

Ψ
(
r,E,Ω̂

)
= Ψ

(
r + δ,E,Ω̂

)
. (3.50)

Periodic boundary conditions are typically used to model infinite lattices.
To speed up the calculations by not modeling the precise reflective surface, white or isotropic
reflection is used. In this case, the particles are reflected off the surface, with uniformly
sampled direction.

In the case of fixed source simulation one can define the surface source. This is done by
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equating the neutron flux to a function known in advance

Ψ
(
r,E,Ω̂

)
= F

(
r,E,Ω̂

)
r ∈ Γ

n · Ω̂ < 0.

(3.51)

The application of these boundary conditions will be presented in this thesis. Careful applica-
tion of the boundary conditions and exploiting the symmetry of the problem can significantly
reduce the computational effort. Therefore, special care should be taken when setting up the
problem.



4
Temperature dependence of the nuclear cross sections

In the past due to the limited computer resources, Monte Carlo codes have been used to
model limited in size problems. Usually the data was taken at room temperature and the
temperature driven effects were neglected. Although applicable to problems, such as the
simulation of particle detectors, this assumption fails when reactor cores are simulated. One
of the main objectives of this thesis is to develop an effective thermal hydraulic feedback
model for the Monte Carlo transport code MCNP . When operating at hot full power conditions
the coolant density, coolant temperature and the fuel temperature are represented by three
dimensional distributions. Densities and temperatures vary in different parts of the core
due to the different power and coolant flow distributions. These spatial variations should be
properly taken into account when running the transport simulation. In particular, this means
that the total cross sections have to be computed by taking into account the local medium
density and temperature. To solve this problem both the temperature dependence of the
microscopic nuclear data and the number densities of the different isotopes present in the
material have to be corrected. Since this thesis is focused on simulating light water reactors,
the moderation in the coolant is especially important. Therefore spatial attention was devoted
to developing a method for treating the temperature dependence of the thermal scattering
data for bound hydrogen. In this chapter the temperature dependence of the single and
double differential data is discussed. Techniques for correcting the temperature dependent
effects used in this thesis are presented and verified.

4.1 Temperature dependence of the single differential nu-
clear data

One of the most powerful features of the Monte Carlo codes is the use of ’continuous-energy’
nuclear data. Cross sections are reconstructed from resonance parameters and are stored
on an energy grid with hundred of thousands of energy points. This is a major difference
when compared to deterministic codes, where the energy dependence is usually averaged
over an energy interval. In fig. 4.1 cross sections describing the interaction of the 238

92 U

47
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nucleus with neutrons are plotted versus the incident neutron energy.

Figure 4.1: Cross sections of 238
92 U as a function of the incident neutron energy.

The nuclear cross sections depend on the relative velocity in the center of mass frame.
Temperature motion of the target nuclei results in the Doppler effect, which is one of the most
important phenomena in reactor physics. The temperature dependence of the nuclear data
is determined by the following convolution with the Maxwell-Boltzmann distribution P (v, T )dv

[35] [36]

ρvσ (v, T ) =

∫
dv′ρ|v − v′|σ (|v − v′|)P (v′, T )

P (v′, T )dv′ =

(
M

2kTπ

)3

2
exp

(
− M

2kT
v′

2
)
dv′.

(4.1)

Here v is the neutron velocity, v′ denotes the velocity of the target nucleus and v − v′ is the
relative velocity. It is possible to see clearly that the cross section depends on the relative
velocity between the neutrons and the target nuclei. As the nuclei are in thermal motion,
the relative velocity can change. This difference between the relative velocities rises to the
Doppler deviation effect. The effect of Doppler broadening is shown in fig. 4.2 for the 6.675
eV resonance of U238

92 . The resonances tend to become wider and reduce their amplitude.
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Exception are the v−1 cross section that remain unchanged. In general, the area under a

resonance does change unless E � kT

A
, where A is the mass number. In fact, each reso-

nance develops v−1 tail. Constant cross section (for example, elastic scattering) develops a
v−1 tail at low energies after Doppler-broadening [36].
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Figure 4.2: Capture cross section for U238

92 evaluated at 600K and 1800K showing the effect
of Doppler broadening.

In principle, nuclear data processing codes like NJOY [36] can process the single differential
data at all desired temperatures. However, in some cases this might be an impossible task.
In the case of a coupled calculation, the thermal hydraulic calculation supplies fuel tempera-
tures in the range 570K − 1200K. Evaluating the data at 1K increments for the entire range
would pose serious memory storage challenges. The main problem being the presence of
large amount of double precision data allocated on the heap. This will slow down the com-
putation significantly, therefore, another method for correcting the temperature dependence
is needed.

The temperature dependence of the nuclear data can be taken into account using pseudo
material mixing [37]. The method consists in mixing nuclear data evaluated at different tem-
peratures and bracketing the temperature of interest. Doing so the number of materials is
doubled. This method relies on the stochastic nature of the computation. The probability for
interaction with a particular nuclide is given by the atomic fraction of that nuclide. Therefore,
the temperature dependent atomic fractions introduce temperature dependent interaction
probabilities. In practical terms this yields an ’effective’ cross section (4.2) having the correct
temperature



50 Chapter 4. Temperature dependence of the nuclear cross sections

Σpseudo(Tactual) = flowΣlow(Tlow) + fhighΣhigh(Thigh). (4.2)

The weights determining the concentrations of the ’low’ and ’high’ temperature evaluations
in the case of square root wighting are given by (4.3)

fhigh = 1− flow

flow =

√
Thigh −

√
Tactual√

Thigh −
√
Tlow

.
(4.3)

Whereas in the case of linear weighting of the mixing coefficients they are given by (4.4)

fhigh = 1− flow

flow =
Thigh − Tactual

Thigh − Tlow
.

(4.4)

The consistency of this methodology was verified [2], [38], [39] by comparing calculations
performed with NJOY-BROADR processed data at specific temperature, and calculations
performed with interpolated cross sections at the same temperature by using pseudo mate-
rials. For the actual tests, a 17x17 PWR fuel assembly with 24 guide tubes was used. The
details of the computational problem are given by table 4.1 and fig. 4.3.

Figure 4.3: Geometry of the fuel assembly used for the numerical tests. The color code of
the figure indicates the different materials. For the calculation identical coolant was used
inside the guide tube and in between the fuel pins.
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Table 4.1: List of the geometry and material composition data for the fuel assembly geometry
specified in fig. 4.3.

Item Value
Fuel density 10.26 g/cm3

Coolant density 0.72 g/cm3

Coolant temperature 573.6 K
Coolant material Water
Fuel Material UOX or MOX
Fuel temperature Varies
Fuel pellet radius 0.412 cm
Fuel cladding radius 0.476 cm
Fuel cladding material Zirconium
Fuel cladding temperature 600 K
Fuel Material UOX or MOX
Guide tube outer radius 0.610 cm
Guide tube inner radius 0.570 cm
Guide tube material Zirconium
Guide tube cladding temperature 600 K

Two cases were studied with UOX and MOX fuel. MOX fuel was chosen because the mixture
of uranium and plutonium isotopes is expected to give higher sensitivity to thermal spectrum
shifts than the UOX fuel. The MOX fuel contained 14wt% plutonium, and the UOX was
enriched to 4wt%. Both cases had the same geometric dimensions. Results comparing the
eigenvalue computed with exact broadened and interpolated data are shown in table 4.2 and
table 4.3. Each temperature in the interpolated case is a mixture between the cross sections
evaluated at ±50K apart from it. Square root mixing given by (4.3) and linear mixing given
by (4.4) were used. The Standard deviation of the eigenvalue is shown in brackets. The
diffrence with respect to the exact broadened data is smaller in the case when linear mixing
is used.

Table 4.2: Comparison of the k∞ values computed using linear and square root (sqrt) pseudo
material mixing against the exact broadened reference data for the UOX case.

Temperature Exact value Pseudo material (sqrt) Pseudo material (linear)
1000 K 1.39495 (5) 1.39500 (6) 1.39497 (5)
1150 K 1.39077 (6) 1.39085 (5) 1.39089 (6)
1250 K 1.38803 (6) 1.38803 (6) 1.38804 (6)
1400 K 1.38419 (6) 1.38416 (6) 1.38414 (6)

Both calculation agree well with the reference case. This leads to the conclusion that the
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pseudo material approach gives sufficiently accurate results.

Table 4.3: Comparison of the k∞ values computed using linear and square root (sqrt) pseudo
material mixing against the exact broadened reference data for the MOX case.

Temperature Exact value Pseudo material (sqrt) Pseudo material (linear)
1000 K 1.21042 (5) 1.21047 (6) 1.21055 (7)
1150 K 1.20612 (6) 1.20596 (6) 1.20609 (7)
1250 K 1.20313 (7) 1.20312 (6) 1.20308 (7)
1400 K 1.19910 (6) 1.19921 (6) 1.19901 (6)

Based on the results obtained in this chapter it is possible to confirm the accuracy of the
pseudo material mixing methodology. This method is a unique feature of the Monte Carlo
codes. It allows to correct the temperature dependence of the nuclear data, by the introduc-
tion of temperature dependent interaction probabilities. Pseudo material mixing has been
used in the past by explicitly defining the pseudo material compositions in the MCNP in-
put. In chapter 7 of this thesis an effective method for the direct introduction of the pseudo
material mixing in the neutron transport is presented.
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4.2 Thermal neutron scattering

Light water reactors operate on thermal neutrons, meaning that the fission neutrons loose
their initial energy in collisions with the nuclei of the moderator. The hydrogen nucleus is
bound in a molecule, making the computation of the scattering reaction very complicated.
Since systems having dense energy levels is considered, inelastic scattering plays a domi-
nant role. Moreover, the local coolant temperature variation, introducing an additional degree
of complication. Therefore, the proper introduction of the coolant feedback, requires method-
ology for treating thermal neutron scattering at varying moderator temperatures.

The theory of the thermal neutron scattering is built in the frame work of the Born approxi-
mation. The scattering amplitude in this case is given [40] as an integral (4.5) over the wave
function Ψ(k, r) and the interaction potential V (r)

f (θ) = − m

2π~2

∫
dre−ik·rV (r)ψ (k, r) . (4.5)

The product of the interaction range and the wave vector is in this case very small kr0 < 10−4.
This means that the scattering length a can be represented by (4.6) [41] [42]

a = −f (θ)k→0 =
m

2π~2

∫
drV (r) . (4.6)

The Born approximation is not directly applicable to this problem, because the weak potential
condition is violated due to (4.7)

mV0r
2
0

~2
≈ 1 (4.7)

Since the scattering length is determined by the volume integral of the potential (4.6), and
since kr0 < 10−4 one can choose another potential having bigger range r0 but smaller depth
which will be used in place of the actual nuclear square well with depth V0. Doing so the
condition kr0 << 1, [41] [42] will be preserved. This choice of the potential is due to E.
Fermi. For a scattering target consisting of N nuclei the potential is given by

V (r) =
2π~2

m

N∑
l

alδ (r−Rl). (4.8)

Since the potential enters the expression for the scattering length (4.6) only as a volume
integral, the precise form is not important. Having in mind that the de Broglie wavelength is
much greater than the modified range of the potential, the interaction takes place only in a
small region of space.

Here r and Rl are the coordinates of the neutron and the scattering nucleus. This potential
can be substituted in the Schrödinger equation and the following expression is obtained (4.9)
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(∆ + kn)ψn =
2m

~2

∑
n

< n′|V |n > ψn′

Ψ(r, E) =
∑
n

|n > ψn(r)

kn =
2mεn
~2

(4.9)

Where the wave function was expended in the orthogonal basis |n > with eigenvalues εn of
the energy representation. Using the Born approximation the scattering amplitude can be
expressed as Fourier transform of the potential (4.10)

f(n0 → n) = −2π~2

m

∫
dr exp(i(ki − kn) · r) < n|V (r)|n0 >

= −
N∑
l

al < n| exp(i(ki − kn) ·Rl)|n0 >

= −
N∑
l

al < n| exp(iQn ·Rl)|n0 >.

(4.10)

The scattering cross section can be readily defined as the modulus squared of the scattering
amplitude (4.11)

d2σ

dΩdEf
=

1

N

∑
n

∑
n0

P (n0)
kf
ki
|f(n0 → n)|2δ(Ef + εn − Ei + ε0)

P (n) =
exp

(
− εn
kT

)
∑
s

exp
(
− εs
kT

) (4.11)

Here the quantity P (n) is the probability to find the target having temperature T in the state
|n >. The delta function ensures the conservation of energy in the system neutron plus
target. Substituting the integral form of the delta function yields (4.12)

d2σ

dΩdEf
=
kf
ki

1

2πN

∞∫
−∞

dte−it(Ef−Ei)/~χ(Q, t)

χ(Q, t) =
∑
n

∑
n0

P (n0) e−it(εf−εi)/~|f(n0 → n)|
2
.

(4.12)

The expression for χ(Q, t) can be further simplified (4.13)
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χ(Q, t) =
∑
ll′

alal′
∑
n0

P (n0)

N

∑
n

< n0|e−iQn·Rl′ e−itHs/~|n >< n|eiQn·RleitHs/~|n0 >

χ(Q, t) =
∑
ll′

alal′
∑
n0

P (n0)

N
< n0|e−iQn(t)·Rl′ eiQn·Rl |n0 > .

(4.13)

Hs is the Hamiltonian of the system. This yields for the double differential cross section (4.14)

d2σ

dΩdω
=

√
Ef
Ei
a2S(Q,ω)

S(Q,ω) =
1

2πN

∞∫
−∞

dteiωt
∑
ll′

< n0|e−iQn(t)·Rl′ eiQn·Rl |n0 >

~ω = Ef − Ei.

(4.14)

χ(Q, t) is called the dynamic structure factor and governs the entire scattering process of the
bound nucleus. The dynamic scattering factor is divided into coherent and incoherent parts
(4.15)

χincoh(Q, t) =
∑
ll′

alal′
∑
n0

P (n0)

N

∑
l

< n0|e−iQn(t)·Rl′ eiQn·Rl |n0 >

χcoh(Q, t) =
∑
l

a2
l

∑
n0

P (n0)

N

∑
l

< n0|e−iQn(t)·RleiQn·Rl |n0 >

(4.15)

Computing it requires knowledge of the initial state vector |n0 >. This is an intractable prob-
lem and significant approximations are required. Usually the incoherent approximation is
assumed, where χcoh = 0. The Gaussian approximation is assumed further, expressing
χincoh as (4.16)

χincoh(Q,ω) = exp

Q2

2m

−
∞∫

0

ρ(ζ)

~ζ
coth

(
~ζ

2kT

)
dζ +

∞∫
0

ρ(ζ)

~ζ
coth

(
~ζ

2kT
cos(ζt) + i sin(ζt)

)
dζ+


 .

(4.16)

The oscillation spectrum of the target nucleolus ρ(ζ) is decomposed as a sum of simple
oscillation spectra [43]

∫
ρ(ζ)dζ = 1

ρ(ζ) =
∑
k

pkρk(ζ).
(4.17)
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The summation in (4.17) runs over translation, diffusion, solid-type and discrete oscillator
spectra. The choice of the weights pk is done to best fit experimental data. In this manner the
entire physics of the problem is transformed in what is essentially a parameter optimization
problem. Another important consequence is that the spectrum depends on temperature. The
inelastic cross section is usually given in terms of the S(α, β) function

d2σ

dΩdEf
(Ei → Ef ,Ω→ Ω′) =

σincohb + σcohb
4πkT

√
Ef
Ei
e
−
β

2 S(α, β)

α =
Q2

2mkT

β =
Ef − Ei
kT

.

(4.18)

Where σb represents the bound scattering cross section. Plots of the inelastic scattering
cross section for bound hydrogen and the oscillation frequency spectrum of the target nu-
cleus are shown in fig. 4.4 and fig. 4.5 corresponding to different temperatures available from
the JEFF 3.1.1 nuclear data library.
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Figure 4.4: Inelastic scattering cross sections for bound hydrogen as a function of the incident
neutron energy.

Thermal scattering from bound scatterers is treated in MCNP utilizing additional thermal
scattering data files prepared by the LEAPR-THERMR-ACER modules sequence of NJOY.
While the Doppler broadening module of BROADR is capable of producing cross section files
at all desired temperatures, LEAPR requires frequency spectrum of the scattering nucleus
ρ(ζ) for each temperature as an input for generating the scattering law S(α, β). For the
current study the LEAPR input given in [43] was used. In addition, the THERMR module
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Figure 4.5: Oscillation spectrum ρ(ζ) of the target nucleus as a function of the oscillator
energy.

of NJOY was used to generate the point wise thermal scattering cross sections in PENDF
format and the ACER module of NJOY was used to generate thermal scattering data for
MCNP code in ACE format. The data used in the MCNP calculation contains the inelastic
scattering cross section, outgoing energy and directions. For each neutron having energy E0

before the collision an interpolation factor is computed

f =
E0 − Ei
Ei+1 − Ei

, (4.19)

where the following relation holds Ei ≤ E0 ≤ Ei+1. Based on the interpolation factor f the
outgoing energy bin is sampled from a uniform distribution and subsequently interpolated on
the incoming energy grid between energies corresponding to neighboring incoming energies

E = Ei,j + f (Ei+1,j − Ei,j) , (4.20)

where Ei,j is the j-th outgoing energy corresponding to the i-th incoming energy. For each
combination of incoming and outgoing energy bins (i, j) a set of k equally probable cosines
µi,j,k is available. The cosine is selected uniformly out of the k values available and interpo-
lated on the incoming energy grid

µ = µi,j,k + f (µi+1,j,k − µi,j,k) . (4.21)

When performing coupled calculations, moderator temperatures may be significantly different
from the temperatures for which thermal scattering data is available. If no action is taken the
thermal scattering data will always be used inaccurately. The standard approach to correct
for this effect is a simple extension of the pseudo material approach, presented hereafter.
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In the MCNP material card one can specify two materials and via changing the correspond-
ing atom fractions temperature correction via modified pseudo material mixing can be done.
However this is not possible in the case of thermal scattering data. The material transfor-
mation card will always apply to one isotope of hydrogen only. There exists a simple trick to
overcome this obstacle. One defines pseudo isotopes of hydrogen (1004, 1005, 1007, 1008) at
specific temperatures, coinciding with the temperatures at which the thermal scattering law is
defined. In coherence with this, the isotope index is changed correspondingly in the thermal
scattering data files. From this point on, MCNP treats the modified data files for hydrogen as
separate isotopes and it is possible to utilize more than one thermal scattering data files for
hydrogen in water, within single material transformation card. Interpolation is performed via
the atom fractions as usual. For the sake completeness, a sample MCNP material card is
shown in fig. 4.6 In this example, 1004.97c and 1006.99c are NJOY evaluations of hydrogen
for 523.6 K and 623.6 K, where lwal06.31t and lwal08.31t are the corresponding thermal
scattering data files produced by LEAPR-THERMR-ACER sequence. The temperature be-
ing interpolated is 573.6 K. The extension of the pseudo material mixing to double differential
data was proposed in [12]

Figure 4.6: Material composition illustrating the pseudo material mixing for thermal scattering
data.

4.3 Implementation of a new methodology for correcting
the temperature dependence of the thermal scattering
data.

Although very simple to implement, the modified pseudo material mixing for thermal scatter-
ing data gives some deviations in the flux below 0.6 eV on the order of magnitude of 5 %.
This effect is in practice undetectable if only the eigenvalue is considered. Tallying the flux
into multiple energy bins, however, reveals this difference [38]. Moreover, this is the energy
range to which most of the neutrons in the moderator belong fig. 4.7. Note that as expected
in the case of the colder moderator, more neutrons are slowed down to low energies.
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Figure 4.7: Linear logarithmic plot of the neutron flux as a function of energy evaluated for
two moderator temperatures: 573.6K and 623.6K.

Therefore, to keep the claim of high fidelity calculations this problem should be properly
addressed. Another approach was developed and implemented in the current work. One
important physical property leading to the difference in the spectra is the method for inter-
polating the equal probable emission elements. Proper treatment of the problem is given in
[44]. Since the extent of the data in the energy-angle phase space is inversely proportional to
the probability for that element, one has to use reciprocal interpolation law. This requirement
is violated when using the pseudo material mixing. In the pseudo material mixing case, the
interaction with bound nuclei at different temperatures is stochastic, where the probability for
selecting particular nuclide is given by the corresponding atomic fraction. Finally, the com-
bined effect of those separate cases is used to incorporate the temperature effects. This
method was abandoned and a deterministic temperature interpolation was implemented in
MCNP . The idea is to use two step interpolation processes. The first step interpolates the
inelastic scattering cross section for bound hydrogen, and the second step uses reciprocal
law to select the proper equal probable emission elements. Each time when a neutron enters
a moderator cell, an interpolated value for the total inelastic scattering cross section is being
computed. This cross section is an interpolation between two tables, having temperatures
bracketing the temperature of interest. The value of the inelastic cross section is stored in
the memory and is used to further process the neutron history and govern the scattering dy-
namics. The second step is executed when selecting the scattering cosine (4.21) and the out
scattering energy (4.20). Both of them are interpolated via reciprocal law [44]. This means
that (4.21) and (4.20) are modified and the selection of the outgoing energy and angle (4.22)
is done using temperature corrected values

E (T ) = Ei,j,T + f (Ei+1,j,T − Ei,j,T ) ,

µ (T ) = µi,j,T + f (µi+1,j,T − µi,j,T ) .

(4.22)
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Where the temperature dependence of the outgoing equal probable emission elements is
corrected using

µi,j,k,T =

(
x

µi,j,k,T1

+
1− x

µi,j,k,T2

)−1

Ei,j,T =

(
x

µi,j,T1

+
1− x

µi,j,T2

)−1

x =
T − T1

T2 − T1
.

(4.23)

The newly computed value for the scattering cosine is used to compute the scattered di-
rection. Using this methodology, the errors introduced by the pseuo material mixing were
reduced and precise control over the temperature dependence correction was established.
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Figure 4.8: Difference in the neutron flux spectrum evaluated using interpolated data and
exact evaluated data for the case of coolant temperature of 573.6 K.

The methodology was tested on the 17x17 PWR fuel assembly used to verify the pseudo
material mixing for single differential data. The details of the computational problem are
given by table 4.1 and fig. 4.3. The spectrum for moderator flux was tallied in 260 equally
spaced energy groups for the entire range of the thermal scattering data (0-3.75eV). As a
reference calculation thermal scattering data prepared by the nuclear processing code NJOY
was used. In fig. 4.8 and fig. 4.9 the difference for the part of the thermal neutron spectrum
below 1eV is shown. The statistical uncertainty of the tally estimates were propagated to
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Figure 4.9: Difference in the neutron flux spectrum evaluated using interpolated data and
exact evaluated data for the case of coolant temperature of 623.6 K.

the relative difference and shows that the differences are large and can not be explained by
poor variance. In fig. 4.10 and fig. 4.11 the pseudo material mixing and the direct on-the-fly
interpolation of the thermal scattering data is shown. As evident from fig. 4.10, the pseudo
material mixing gives worse results in all the cases. Due to the low number of neutrons
residing in the region above 1eV, the difference is suppressed by the large variance.

The validation calculation presented in fig. 4.11 confirms the validity of the new methodology.
It is in very good agreement with the reference calculation, where the maximum difference is
within 1 %. The newly developed on the fly treatment of the thermal scattering data allows the
proper introduction of the moderator temperature effect. The methodology was implemented
in the MCNP source code and is used in chapter 8 of this thesis for simulating the PWR
UOX-MOX benchmark.
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5
The Wielandt acceleration method

Running coupled Monte Carlo thermal hydraulics calculations applied to large loosely cou-
pled systems requires a reliable method to accelerate the fission source convergence. Typi-
cally in MCNP one uses precalculated fission source files. Another approach is followed here,
namely accelerating the fission source convergence, by modifying the transport operator.

5.1 Wielandt shift acceleration of the Monte Carlo power
iteration

It is well known from the theory of iterative methods that the dominance ratio of the system
can be reduced using the Wielandt acceleration technique. The essence of the method is to
split the fission source. The neutron transport equation without external sources is written in
the following form (5.1).

[
Ω̂ · ∇+ Σt (r,E)− 1

ke
F̂

]
Ψ
(
r,E,Ω̂

)
=

(
1

keff
− 1

ke

)
F̂Ψ

(
r,E,Ω̂

)
+ ŜΨ

(
r,E,Ω̂

)

F̂Ψ
(
r,E,Ω̂

)
=
χ (E)

4π

∫ ∫
νΣf (r,E′) Ψ

(
r,E′,Ω̂′

)
dE′dΩ̂′

ŜΨ
(
r,E,Ω̂

)
=

∫ ∫
Σs

(
r,Ω̂ · Ω̂′,E′ → E

)
Ψ
(
r,E′,Ω̂′

)
dE′dΩ̂′

(5.1)

Splitting the fission source yields the dominance ratio of the system as (5.2)

ρ′ =
ke − k0

ke − k1
ρ. (5.2)

The eigenvalues are selected so that ke > k0 > k1 holds. The Wielandt method has already
been implemented in MCNP [45] , [46]. Unfortunately this implementation is not publicly

64
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available and an implementation from scratch was realised in this work. Since in Monte Carlo
codes no matrix equations are used the implementation of the method, relies on the insight
of how the fission reaction is simulated . If fission occurs, the neutron path is terminated and
Nf fission neutrons (5.3) are stored in the fission bank array

Nf = w
νΣf

Σt keff
+ ξ. (5.3)

Here 0 ≤ ξ ≤ 1 is a random number. Only during the next criticality cycle those neutrons
are retrieved. Each neutron is started from the fission bank with uniformly sampled direction.
The energy is determined from a fission spectrum distribution immediately after starting the
history. In [46] a fixed source calculations has been used to track all the starting fission
neutrons and their progenies. Therefore, the criticality cycles are replaced by consecutive
fixed source runs. The most efficient implementation has been proposed in [45] and was
implemented in the current work. The idea is to monitor the fission events. Each time when
a fission event occurs, a flag is lifted by MCNP . At this point a reduced number of fission
neutrons NR (5.4) is stored in the fission bank

NR = w
νΣf
Σt

(
1

keff
− 1

ke

)
+ ξ. (5.4)

This corresponds to the splitting of the fission source from the right hand side of (5.1). The
rest of the neutrons given by (5.5) are stored in the memory and run within the current cycle

NC = w
νΣf
Σt ke

+ ξ. (5.5)

The Wielandt acceleration was originally developed to accelerate the power iteration method
for finding matrix eigenvalues. Given the eigenvalue problem (5.6)

Ax = λx, (5.6)

one can shift the spectrum by σ to obtain (5.7)

(A− σI)x = (λ− σ)x. (5.7)

This modifies the power iteration to compute the eigenvalues of the shifted operator B =

A− σI. In this case, the convergence rate is determined by the ratio

∣∣∣∣λ1 − σ
λ0 − σ

∣∣∣∣. (5.8)

Following numerical tests, it was determined that the best results are obtained when the
NC neutrons, are continued with random position and energy independently sampled from a
fission distribution. Due to the additional NC neutrons, the computational time is increased.
As it might be deduced from (5.4) and (5.5) in the limit ke → keff the computational effort
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will increase. The effect of the extra fission neutrons contributing to current cycle can be
estimated directly based on (5.1) [47]. Using the convention L̂ = Ω̂ ·∇+ Σt (r,E) the neutron
transport equation can be written in compact operator form

(
L̂− Ŝ− F̂

ke

)
Ψ =

(
1

keff
− 1

ke

)
F̂Ψ,

(
L̂− Ŝ− F̂

ke

)
Ψ =

F̂

kw
Ψ.

(5.9)

Inverting the left hand side of (5.9) one obtains

Ψ =

(
L̂− Ŝ− F̂

ke

)−1
F̂

kw
Ψ,

Ψ =

(L̂− Ŝ
)1−

(
L̂− Ŝ

)−1

F̂

ke



−1

F̂

kw
Ψ,

Ψ =

1−

(
L̂− Ŝ

)−1

F̂

ke


−1 (

L̂− Ŝ
)−1 F̂

kw
Ψ.

(5.10)

In the limit ke → ∞ from (5.10) the usual expression for the criticality power iterations is
obtained

Ψ =
(
L̂− Ŝ

)−1 F̂

keff
Ψ. (5.11)

The above expression can be expanded in power series

Ψ =

 1

ke
+

(
L̂− Ŝ

)−1

F̂

ke
+


(
L̂− Ŝ

)−1

F̂

ke


2

+


(
L̂− Ŝ

)−1

F̂

ke


3

+ · · ·+


(
L̂− Ŝ

)−1

F̂

kw
Ψ,

Ψ =

 1

ke
+

(
L̂− Ŝ

)−1

F̂

ke
+


(
L̂− Ŝ

)−1

F̂

ke


2

+


(
L̂− Ŝ

)−1

F̂

ke


3

+ · · ·+

 keff

kw
Ψ,

(5.12)

where in the last expression (5.11) is inserted. The expected number of extra neutrons
produced in the current cycle is obtained by taking the contribution k−1

e and integrating over
the entire phase space (5.13)
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Nextra =

∫
Vphase

 1

ke
+

(
L̂− Ŝ

)−1

F̂

ke
+


(
L̂− Ŝ

)−1

F̂

ke


2

+ · · ·+

 keff

ke
ΨdEdΩ̂dr,

Nextra =

(
keff

ke
+

(
keff

ke

)2

+

(
keff

ke

)3

+ · · ·+

)
.

(5.13)

Therefore, the expected number of neutrons per history N is given by

N = 1 +Nextra =
1

1− keff

ke

. (5.14)

According to (5.14) the expected number of neutrons per history will increase in the limit
ke → keff and as expected N → 1 as ke → ∞. This is a plausible result, since if no shift
is present only one neutron is expected to be run within a single history. This effect was
observed when running the modified version of MCNP , where with shifts of 900 pcm, run
times were observed to increase by seven times. Therefore, the efficiency of the method
has to be investigated in detail. To test the efficiency of the calculation, the figure of merit
(FOM) was computed and compared for different values of keff. The figure of merit is a
standard parameter for estimating the calculation efficiency. Usually, the estimated relative
error Re2 is proportional to 1/N , where N is the number of histories. The relative error is
defined in the introduction chapter and is given by equation (3.25). On the other hand the
computational time T , is proportional to the number of histories N . Therefore, the product
(5.15) is approximately constant for a given calculation.

FOM =
1

Re2 T
(5.15)

The aim is to have the FOM as large as possible. Since the performance of the method over
all tally bins is of interest, a modified FOM (5.16) as has been proposed in [48] is used

FOM =
NBINS

T

NBINS∑
k

Re2
k

. (5.16)

The summation in (5.16) runs over all the tally bins. The aim is to maximize the FOM, this
however, might lead to larger spatial averages of the relative error. Situation difficult to detect
using only equation (5.16) . Therefore, in [49] the standard deviation σRe for the relative error
set Rek has been introduced (5.17)
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σRe =

√√√√√ 1

NBINS


NBINS∑
k

Re2
k −

1

NBINS

(
NBINS∑
k

Rek

)2
. (5.17)

5.2 Testing the performance of the Wielandt method

As a test case a 1/4 PWR core was used. The geometry plot is included in fig. 5.1. Since
the aim is to test the numerical performance, a simplified fuel composition was used, ex-
plaining the larger then unity eigenvalue. Pin by pin calculation with each pin divided into
20 axial nodes was run. 1.0×106 neutrons per cycle were simulated. Reflective boundary
conditions were assigned for the symmetry cut boundaries. Void condition was used for all
other boundaries. Each calculation was started with a homogeneous fission source over all
the fuel assemblies. The choice of volumetric source distribution is motivated by the fact
that starting with a single or limited number of source points will put the convergence of the
reference calculation in serious jeopardy. This will make the comparison with the Wielandt
method meaningless.

The test calculations are summarized in table 6.4. Clearly both the FOM and σRe are im-
proved as ke → keff. It is also important to note that all the eigenvalues are very close to
each other. This clearly shows that the method was properly implemented. From the same
table, the rapid acceleration of the Hsrc convergence is evident. This is a considerable im-
provement in terms of source convergence and the number of initial skipped cycles needed
to converge the source distribution.

Table 5.1: Performance of Wielandt acceleration method for different ke showing the reduc-
tion of cycles needed to converge the fission source distribution.

Shift ke Eigenvalue keff FOM σRe Hsrc convergence
∞ 1.15099 (1) 25.2354 (6) 9.23724E-03 (5) 170 cycles
1.8 1.15098 (2) 51.4265 (5) 5.53555E-03 (6) 60 cycles
1.3 1.15098 (1) 82.5184 (6) 3.05351E-03 (6) 23 cycles
1.22 1.15097 (1) 88.2289 (6) 2.06565E-03 (6) 12 cycles
1.16 1.15098 (1) 87.2289 (6) 1.25620E-03 (6) 7 cycles

To further demonstrate the power of the method, consider the following figure fig. 5.2 showing
plots of Hsrc versus criticality cycle.
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Figure 5.1: Quarter PWR core geometry loaded with MOX and UOX fuel assemblies, denoted
by (MOX FA) and (UOX FA). The computational geometry is surrounded by water volume
serving the role of neutron reflector.
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Figure 5.2: Hsrc vs. criticality cycle for different values of ke and Hsrc vs. criticality cycle for
the cases ke =∞ and ke = 1.16 illustrating the reduction of the cycles needed for converging
the source entropy.
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As evident from the right hand side of the plot, Hsrc for the reference case shows clear trends
of regions with positive and negative slope. This is an undesired effect. As shown later, these
oscillations will deteriorate the tallying procedure. The clear trend of accelerating the Hsrc

convergence as ke → keff is also observed.

Since geometry having diagonal symmetry is dealt with, it is to be expected that the same
symmetry argument holds for the tallies. To qualify this result consider the notion of power
tilt for a particular axial node k defined via (5.18)

T ki,j = 100× |Fi,j,k − Fj,i,k|
Fi,j,k

,

for all i > j .
(5.18)

Define further the maximal value for the power tilt T ki,j for axial node k by (5.19)

||Tk|| = max
i,j

T ki,j . (5.19)

In the ideal case ||Tk|| = 0, although due to the statistical nature of the code and conver-
gence issues associated with the power iteration this does not hold. Therefore, an effective
method to accelerate the convergence of the source should force ||Tk|| to zero. Different test
calculations were done starting with a reference calculation and varying ke → keff . The val-
ues of ||Tk|| calculated for the twenty axial nodes, as well as the mean µ(T ki,j) and standard
deviation σ(T ki,j) are summarized in table 5.2.

Layer 1 Layer 10

Figure 5.3: Two dimensional plot of the relative error of the fission heat deposition distribution
in % for the case ke = ∞. Each point represents the value of the relative error for a single
fuel pin.
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Layer 1 Layer 10

Figure 5.4: Two dimensional plot of the relative error of the fission heat deposition distribution
in % for the case ke = 1.8. Each point represents the value of the relative error for a single
fuel pin.

Layer 1 Layer 10

Figure 5.5: Two dimensional plot of the relative error of the fission heat deposition distribution
in % for the case ke = 1.16. Each point represents the value of the relative error for a single
fuel pin.

Clearly the Wielandt method improves all three parameters ||Tk||, µ(T ki,j) and σ(T ki,j). The
large values of ||Tk|| for the first and the last node can be explained with the poor statistics
due to the neighboring vacuum boundaries causing low cell population. In particular, the
fission heat deposition in those cells is eleven times smaller than in the middle of the core.
Most notably this problem is visible in the case of the standard MCNP calculation (ke = ∞).
In this case, ||Tk|| has very large values. These are insulated cases occurring only for
small number of tally bins. The rarity of these events is most clearly shown by the values
of σ(T ki,j). The values of µ(T ki,j) give more information about the general behavior. For
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the case of the standard MCNP calculation µ(T ki,j) is bigger than the associated statistical
uncertainty ( 1 %). This is a clear problem, arising due to the biased fission source and
convergence issues of the power iteration. The same table shows the reduction of the power
tilt in the limit ke → keff. Having in mind that the statistical uncertainty in the upper and
lowermost axial levels is on the order of magnitude of 1 %, all the runs using the Wielandt
method are able to reduce the mean value of the power tilt to levels within the statistical
uncertainty of the calculation. Clearly judging based on the computer run time alone, one
can not effectively estimate the efficiency of the method. Moreover this comparison is not
very meaningful, since a fast running calculation that gives erroneous results is compared to
a time consuming high fidelity calculation. It should be also taken into account that to produce
results of the same quality as the Wielandt scheme, a significant increase in the number of
histories per criticality cycle would be needed. Later in this thesis, based on the fission matrix
eigenvalues, it will be shown that the Wielandt method actually reduces the dominance ratio
of the problem. This theoretical prediction will be demonstrated on an actual calculation. The
modified power iteration has completely different convergence behavior when compared to
the analog calculation. This is why a simple increase of the particle population will be a very
inefficient method of achieving the improvements due to the application of the spectrum shift.

The most important question is to determine whether the Wielandt method introduces a
bias in the MCNP calculation. This can be obtained by comparing it to unmodified MCNP
calculation. According to the theoretical description of the method, equal eigenfunctions are
to be expected. Clearly the analog calculation (ke = ∞) from table 5.2 has to be improved
to ensure meaningful comparison. This was done by increasing the number of histories
simulated per cycle to 2.0×106and running two MCNP iterations with a total of 240 recordings
of the fission source. For the initial source guess of the first iteration, the source from the run
with ke = 1.118 was used. The multiple recordings of the fission source were done to ensure
that the reference calculation will start from a well converged fission source having sufficient
number of starting neutrons. Doing this over two iterations is assumed to improve the results
even further. Hsrc convergence was reported after the first cycle for both runs. To mitigate
any potential bias, twenty skipped cycles were done before tallying was started. Following
this strategy, a consistent reference calculation is to be expected. To quantify the difference
between the runs having ke =∞ and ke = 1.18. Define the following operator for a particular
axial node by (5.20)

∆k
i,j = 100×

(
F ke=1.16
i,j,k − F ke=∞

i,j,k

)
F ke=1.16
i,j,k

. (5.20)

The maximal value of (5.20) is given by (5.21)

||∆k|| = max
i,j

∆k
i,j . (5.21)

The results are summarized in table 5.3. The statistical uncertainty of ||∆k|| was propagated
using partial derivatives. The values in the table clearly show that both methods deliver
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results that are on average close to each other. This is most clearly shown by the small mean
µ(∆k

i,j) and the small standard deviation σ(∆k
i,j). Never the less, the maximal difference

between the two methods is bigger than the statistical uncertainty of ∆k
i,j . This difference

has many reasons, firstly, the analog calculation has very large statistical uncertainties in
the top and the bottom nodes and near the core lateral boundaries. Secondly, the Wielandt
method makes the system more tightly coupled. This tight coupling due to the reduced
dominance ratio significantly improves the performance of the power iteration. This is most
clearly shown by observing the unphysical tilt present in the fission heat deposition shown
in table 5.2. It should be also taken into account that the two fold increase of the number of
histories in the case of the analog calculation was not able to match the performance of the
Wielandt method.

Table 5.3: Maximal relative difference between analog and calculation and the Wielandt shift
method.

Axial node k ||∆k|| µ(∆k
i,j) σ(∆k

i,j) Uncertainty ||∆k||
1 13.01 2.01 1.61 6.18662
2 8.00 1.31 1.03 4.25235
3 6.82 1.05 0.83 3.66962
4 6.90 0.92 0.73 2.96174
5 6.76 0.83 0.66 2.00374
6 7.06 0.75 0.59 2.03529
7 5.59 0.71 0.57 2.63148
8 4.29 0.69 0.54 1.57568
9 4.77 0.68 0.54 1.85162

10 4.01 0.67 0.53 1.71043
11 5.35 0.66 0.53 2.03951
12 4.65 0.68 0.54 1.78572
13 4.17 0.72 0.57 1.53779
14 5.09 0.74 0.58 1.42600
15 5.10 0.78 0.61 1.97829
16 5.70 0.82 0.65 2.41210
17 5.42 0.89 0.71 2.37587
18 6.23 1.04 0.82 3.16876
19 11.41 1.34 1.07 3.77037
20 14.53 2.05 1.64 5.00285

Summarizing the results from the comparisons shown in this chapter one can deduce that
the Wielandt method improves both the tally spacial distribution and the convergence ofHsrc.
Moreover the results are becoming better as ke → keff.

If the practical side of the calculations is to be considered, it should be pointed out that very
small shifts lead to very extensive computing times. This is a serious deficiency. A more
practical approach is to use the Wielandt acceleration only to converge the initial source and
disable it during the active cycles. This solution, however will not produce as symmetric
results as those presented in table 5.2 because the active cycles will be simple analog power
iteration. In the chapter on variance reduction, it will be shown that by using nonanalog
transport it is possible to achieve results that are on average very close to those produced
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by the Wielandt shift method within reasonable run time. The parameter ke does need not
be a constant. The constant ke should be guessed. If one knows the true eigenvalue of the
system, the value of ke can be adequately chosen. A possible strategy is to run a calculation
with no tallying just to estimate keff and then define the corresponding shift eigenvalue. The
shift can be also defined from previous run, as it will become apparent when the coupling to
thermal hydraulics will be discussed. A more flexible and general approach is implemented
using

kie = kieff + ∆i. (5.22)

The parameter ∆i, changes over the criticality cycles and is defined such so that ke ap-
proaches keff from above. Here, the index i is a running index denoting the criticality cycles.
Due to practical considerations too small ∆i should be avoided. Therefore, some minimal
value for ∆i should be imposed.



6
Accelerated flux tallying in MCNP

Although parallel execution of Monte Carlo calculation is very common, the reasons be-
hind the limited parallel efficiency are not sufficiently pointed out as modern general-purpose
Monte Carlo codes are still not effective for massively parallel reactor criticality calculations.
Therefore, in this chapter a number of essentials with regard to flux and fission heat deposi-
tion tallying that improve the parallel Monte Carlo calculation are discussed.

In this thesis Monte Carlo codes are coupled to subchannel analysis codes. Therefore, the
axial distribution of the fission heat deposition for each fuel pin needs to be computed (tal-
lied). The large number of fuel pins present in a light water reactor core makes the estimation
of the fission heat deposition very complicated. To solve this task one has to simultaneously
improve the algorithm used for accumulating the tallies and to provide adequate variance
reduction techniques so that the Monte Carlo variance is kept within acceptable limits. In this
chapter a newly developed strategy for improving the numerical performance of the tally esti-
mators is presented. It is shown that by exploiting the geometry structure of a nuclear reactor
core a very efficient tallying algorithm, specially designed to treat reactor core geometries,
can be realised.

Since all the calculations presented in this thesis are run on large scale parallel computer
architectures, the communication between the individual parallel processes among which
the calculation is divided, causes significant slowdown. Each time when communication
between the processes is executed, the code stops running and waits until all messages have
been distributed. This communication latency is one of the main reasons for deteriorating the
performance of parallel computer codes. Therefore, it has to be avoided if possible. Reducing
the variance of the Monte Carlo estimates will be presented in Chapter 7.

The methods presented hereafter, focus on the acceleration of the tallying by optimizing the
computer memory usage and reducing the communication overhead of the parallel compu-
tation. This is achieved by the implementation of a novel scheme to store the spatial bins
of the tally estimates and by reducing the communication between the individual processes
that comprise the parallel calculation. The later realises on the fact that the tally estimates
are integral quantities, accumulated as a side product of the transport calculation, that can
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be collected after the transport has finished.

6.1 Fission heat and flux estimators in MCNP

MCNP offers two types of general purpose tallies to tally volume integrated flux i.e. cell
and mesh based tallies [25]. In this work the cell averaged tallies estimated with the track
length estimator are to be discussed eq. (3.21). The cell based tallies are impractical to
use for repeated structure geometries. To define the core geometry, MCNP uses a repeated
structure representation, consisting of multiple levels of embedded lattices. The first level
in this case is the pin unit cell with the cladding, coolant and fuel cells. The second level
is the lattice defining the fuel pin location within the assembly lattice. The third level is the
lattice defining the fuel assembly loading pattern. To include all fuel pins MCNP , stores each
unit cell with its repeated structure indices together with the repeated structure indices of
the assembly it belongs to. If a three dimensional geometry is to be considered the axial
location needs to be included. It is known from practical experience that the computing time
increases almost linearly with the number of tally bins. Therefore, using the cell based tallies
is not advisory for large repeated structure geometries.

To solve this problem MCNP offers the mesh tally option. This option introduces a mesh
superimposed over the geometry. The quantity of interest is tallied in each mesh element.
In this case, the spacial tally bins are relatively easy to determine. Usually a single mesh
cell might encompass different material regions, therefore, tracks corresponding to different
material regions cannot be estimated separately. When tallying fission heat deposition, this
deficiency is compensated since fission is possible only in the fuel pellet and all other regions
will not contribute to the score. Although it is very efficient when compared to the cell tallies,
the mesh tally slows down the criticality calculation significantly and further optimization is
need.

The primary quantity of interest, the fission heat deposition is given by

H =

∫
V

∞∫
0

∑
n

QnNn (r)σf,n (r, E) dEdr. (6.1)

All tallies in MCNP are normalized per one source neutron and the resulting flux unit is
cm−2source-neutron−1 rather than the usual unit of cm−2s−1. ,therefore, it is not accurate to
call (6.1) power.

To overcome the deficiencies of the mesh tally, a new tallying approach was implemented
in MCNP . It consists of optimizing the spatial bin structure and improving the scalability by
reducing the communication between the parallel tasks.
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6.2 Data locality and bin structure optimization

To run operations the computer processor needs instructions and data that are supplied to
it and stored in the main memory. With the increase of the processor speed the delays in
transmitting data between the memory and the processor have become a serious issue. The
processor operates faster than the memory, so it must wait while the proper segment of the
memory is located and read. To overcome this delays, the computer uses multiple levels of
fast memory called cache. They are used to acquire and store data from frequently used
memory locations. The information form the main memory is copied in the cache in blocks of
fixed size called cache lines. If the processor is not able to find the data it needs in the cache
(cache miss), it has to search for it in the much slower main memory. To make room for the
data that needs to be copied upon a cache miss, the processor has to predict which existing
cache entry is least likely to be used in the future. The problem is that the cache can usually
hold only few hundred kilobytes of data. Arrays that are used to store the data accumulated
by the Monte Carlo code, in particular the tallies, are stored as a continuous contingent in
the main memory. They can have sizes easily exceeding the cache capacity. Therefore, if
the processor has to ’jump’ over large portions of a big array, that don not fit in the cache, it
will suffer many cache misses and this will slow down the computation. This can occur if the
tally bins are stored in a way in which the code needs to jump over large portions of the array
when the neutron goes from one cell to the other.

The strategy of improving the performance of the track length estimator is to use as much as
possible the geometric information already available in MCNP and store the information in a
compact form, so that the cache memory management can operate efficiently.

In reactor physics calculations one deals with repeated structure geometries. Usually a core
mesh containing the assemblies is defined. In addition, a second lattice defining the individ-
ual pin ordering is defined. Therefore, one can use this information to build a mesh structure
(6.2)

MI = IA + IC ×NP
MJ = JA + JC ×NP .
MK = KA

(6.2)

The indexes from (6.2) are defined in the following table table 6.1.
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Table 6.1: Description of the indexes used to describe the location of a particular cell in the
core geometry.

MI Mesh index for the x direction
MJ Mesh index for the y direction
MK Mesh index for the z direction
IA [1 : NP ] Assembly lattice index for the x direction
JA [1 : NP ] Assembly lattice index for the y direction
KA Assembly lattice index for the z direction
KA [1 : Naxial] Assembly lattice index for the z direction
IC [1 : N ] Core lattice index for the x direction
JC [1 : M ] Core lattice index for the y direction.

Using this structure one can define a 3D mesh. The resulting 3D array can be stored in
unrolled form using the following formula (6.3)

[x, y, z] = x+ WIDTH ∗ (y + DEPTH ∗ z). (6.3)

This strategy has a potential pitfall. Nonlocality is introduced by the index flattening scheme.
Consider two pin cells located on top of each other belonging to the same assembly. These
cells are close neighbors in the coordinate space. In the index space defined by (6.3) they
are WIDTH*DEPTH elements apart. This artificial nonlocality is undesirable. It makes cash
searches ineffective especially when dealing with large meshes. One can explore the fact
that the core and assembly indices define a 5D array structure and some geometric intuition
to reduce the nonlocality can be applied. This methodology is hard to implement and is highly
problem-dependent.

To resolve this problem the methodology of space filling (Peano) curves was introduced. A
space filling curve realises a mapping between one dimensional space and some higher
dimensional space R1 → Rd. Different curves of this type are known. In this work the
Morton Z-curve [50] is used. The Z-curve maps, multidimensional data to one dimensional
curve while preserving locality. The Z-order of a point is computed by interleaving the binary
representation of its coordinates.

Example of the mapping from R3 → Z-order is given in table 6.3. Note that 4 bit integers
were used for the coordinate indices.

Table 6.2: Z-ordering in three dimensional space. The integers representing the lattice in-
dices are converted to binary form and used to determine the z-order by interleaving the
binary representations.

I Binary I J Binary J K Binary K Z-ordered Binary Z-ordered
1 0001 1 0001 1 0001 7 000111
1 0001 2 0010 3 0011 53 110101
3 0011 2 0010 2 0010 57 111001

To further clarify the idea and give a graphical explanation fig. 6.1 was included. Both the
binary converted values and the z-ordering indices are given. The blue connecting line shows
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the path traversed in R2.
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Figure 6.1: Z-ordering in R2 for a 8 × 8 lattice using the space filling technique according to
Morton.

The most important consequence of this ordering is to preserve the locality of the data. To
illustrate this consider table 6.3. Clearly the Z-ordering preserves the locality to a much larger
degree than the usual mesh storage.

Table 6.3: Comparison of the z-ordering and the usual unrolled 3D array ordering, showing
that the array storage is much more compact and is less likely to cause cache misses. I, J
and K denote the coordinates used to describe the position in R3.

I ∈ 0-127 J ∈ 0-127 K ∈ 0-19 R3 ordered Z-ordered
7 7 1 17288 223
7 7 2 33672 251
7 8 1 17416 1101
7 9 1 17544 1103
9 7 1 17290 663
8 6 1 17161 660

6.3 Implementation in MCNP and performance testing

Modern high performance computers consists of individual computer nodes, connected
trough fast interconnect network. Each computer node, consists of multiple processor cores
that share common memory.

MCNP is usually run in a hybrid mode, using both shared memory and parallel memory
programming models. The first level of parallelisation is done by splitting the computation
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between processes that utilize distinct memory spaces. This is the so called distributed
memory parallelisation. Each parallel process gets a unique identification and all processes
together form a parallel communicator. One of the processes, usually the first according to
the communicator numbering is called master and the other are designated as slaves. The
master process is used to organize the communication, collect the results from the slaves
and do file input output operations. These processes share information by communicating
to each other by sending and receiving messages. As explained in the introduction to this
chapter, this is undesirable and the amount of communication has to be minimized. Usually,
one parallel process is placed on each computing node and the communication goes over
the internodal interconnect. The second level of parallelisation is over shared memory, where
the individual processes (threads) have access to the common memory. In this scenario, if
one process modifies certain value, this affects all other processes. Therefore, it has to be
ensured that no data races occur by ensuring that no two threads are trying to simultane-
ously update the same memory location. For instance, arrays are subdivided into different
chunks corresponding to the individual threads. By doing so, each thread updates a sepa-
rate portion of the array corresponding to its thread id TID fig. 6.2. The index I is determined
by the Z-ordering. The thread id TID is the unique identifier assigned to each thread in the
shared memory parallelisation model. The shared memory parallel model is used to utilize
the parallel cores present within a single computing node. Shared memory prallelisation is
done via the openMP library and the distributed memory parallelistion is done vie the MPI
library.

MPI RANK(N) 

TAL(I+TID0*SIZE) 

TAL(I+TID1*SIZE) 

TAL(I+TID2*SIZE) 

TAL(I+TID3*SIZE) 

TAL(I+TID4*SIZE) 

Figure 6.2: The strategy of splitting the arrays into chunks corresponding to the individual
threads by offsetting the cell location index I .

The efficiency of the newly developed bin storage technique and the optimized communica-
tion strategy is tested by simulating a quarter three dimensional PWR core. The fission heat
deposition (6.1) was tallied in each pin cell. Every pin was subdivided into 20 axial nodes.
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To compare the efficiency of the tallying subroutine the run time was compared with the case
where no tallying was done. A total of 2.6×105 tally volumes were used in the problem. As
shown in table 6.4 the newly implemented methodology clearly outperforms the standard
mesh tally. The test calculations were run on 240 parallel processors using MPI-OpenMP
hybrid parallel model [51], [52].

Table 6.4: Numerical performance of the improved tallying methodology applied to a quarter
PWR core. The same geometry as the one used for testing the Wielandt method is used.

No tallying 80.3 min
Standard mesh tally 117 min

Improved tally 83.2 min

It should be noted that the newly implemented tally subroutine preserves the mathematical
definition of estimator and produces results completely identical to the usual cell and mesh
tallies. The only variation that was observed was when estimating the relative error. Varia-
tions in the fourth decimal place were observed. This effect is due to the nondeterministic
nature of the floating point operations.

The track length estimators have to be called for every track segment and the value νΣf (r, E)

has to be computed and stored. Using the fact that the fission heat deposition occurs in
cells with large densities, one can use the alternative collision estimator (6.4) [53]. As the
name suggest, the collision estimator is scored only at collision sites and uses the same bin
structure as the one developed for the track length estimator. In fact both estimators are
included as alternative option in the newly developed tally routine. Using this method, the
flux is estimated by the total number of collisions for N histories in the volume V divided by
the total cross section. Here, the second sum runs over the sequence of collisions for history
i in the volume V . ζi,c is the phase space vector for history i at collision event c.

ψ =
1

NV

N∑
i=1

Ci∑
c=1

wi,c
Σt(ζi,c)

(6.4)

In addition, this less frequent invocation of the corresponding routines results in faster code
execution. The results were compared with the usual track length estimator and the differ-
ences were within the statistical uncertainty of the estimates [1]. As seen from table 6.4 the
improved track length estimator adds only an insignificant part to the total execution time.
Therefore, the track length estimator was used in this work.
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and higher order eigenpair analysis

In the introductory chapter, as well as in the chapter discussing the Wielandt acceleration

scheme, the concept of the dominance ratio of the system is used. It is the ratio
k0

k1
, where

k0 and k1 are the fundamental mode and first eigenvalue of the system. To gain a better
qualitative insight in the convergence of the power iteration, the higher mode eigenpairs are
needed. Only by explicitly calculating the dominance ratio it is possible to justify the appli-
cation of the Wielandt shift. A decrease of the dominance ratio via shifting the eigenvalue
spectrum can be demonstrated to reduce the dominance ratio and by doing so make remote
parts of the geometry more tightly coupled. The fundamental mode eigenvalue k0 is read-
ily available from the Monte Carlo calculation. Since power iteration is used, estimating the
higher mode eigenvalues and the corresponding eignevectors is not possible with the stan-
dard Monte Carlo strategy. In general, to estimate the higher mode eigenvalues and their
corresponding eigenvectors, deflation of the spectrum is needed. This is not possible with
the standard Monte Carlo codes, since no negative weights are used. To estimate the higher
mode eigenvalues and ultimately determine the dominance ratio of the system, the fission
matrix formalism was implemented in MCNP . The fission matrix was computed for 2D and
3D geometries. Due to the large computer memory demand, the main limitation of the fission
matrix is its spatial resolution.

7.1 The fission matrix technique in Monte Carlo criticality
calculations

It is known from the theory of distributions that the classical solution of the eigenvalue prob-
lem (7.1) (

L̂− λ
)
y = f (7.1)

83
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Is given by (7.2) [54]

y (x) =

x2∫
x1

G (x, x′|λ) f (x′)dx′. (7.2)

Where the G (x, x′|λ) is the Green function satisfying(
L̂− λ

)
G (x, x′|λ) = δ (x− x′) (7.3)

Defining (7.4)

X̂Ψ
(
r, E, Ω̂

)
= Ω̂ · ∇Ψ

(
r, E, Ω̂

)
+ Σt (r, E) Ψ

(
r, E, Ω̂

)
−

−
∫ ∫

dE′dΩ̂′ΣS

(
r, Ω̂ · Ω̂′, E′ → E

)
Ψ
(
r, E′, Ω̂′

)

S (r) =

∫ ∫
dE′dΩ̂′νΣf (r, E′)Ψ

(
r, E′, Ω̂′

) (7.4)

the transport equation can be written in the following form (7.5)

X̂Ψ
(
r, E, Ω̂

)
=

1

k

χ (E)

4π
S (r) . (7.5)

The Green function method can be applied to the transport operator (7.5) [55], [56]. The
Green function is then defined by (7.6)

L̂G
(
r′, E′, Ω̂′ → r, E, Ω̂

)
= δ (r′ − r) δ (E′ − E) δ

(
Ω̂′ − Ω̂

)
. (7.6)

Where the primed variables denote the initial point in the phase space. The solution of (7.5)
can be found by the Green function method (7.2) using (7.6) one obtains (7.7)

Ψ
(
r, E, Ω̂

)
=

1

4πk

∫ ∫
dr′dE′dΩ̂′χ (E′)S (r′)G

(
r′, E′, Ω̂′ → r, E, Ω̂

)
. (7.7)

Multiplying both sides of (7.7) by νΣf and integrating
∫∫

. . . dE′dΩ̂ the following integral equa-
tion for the fission source is obtained (7.8)

S (r) =
1

k

∫
dr′S (r′)Ĥ (r′ → r) . (7.8)

This integral equation can be integrated using the Monte Carlo transport code. The problem
is discretization, which is done by splitting up the region into in a number of spatial domains
Vi and accumulating S (r ∈ Vi). This discretization transforms (7.8) to a matrix equation of
the form

S(i)
m =

1

k(i)
S(i)
n Hn,m (7.9)

In general, the square matrix H ∈ Rn×n will have n eigenpairs. With k0 being the funda-
mental mode eigenvalue. The continuous energy estimate of H is in general not guaranteed
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to be symmetric, therefore, real and complex eigenvalues are to be expected. Since the
fundamental mode eigenvalue coincides with the estimate for keff, it should be real. Due
to the small mean free path of the neutrons in a thermal reactor, the fission matrix should
be sparsely populated. Indeed the neutrons born in one assembly would have the largest
chance of causing fission within the same assembly or in its nearest neighbours (local fis-
sion). Therefore, only a small percentage of the matrix elements will be nonzero.

7.2 Numerical analysis of sparse eigenproblems

To compute the eigenpairs of the fission matrix, a suitable numerical algorithm capable of
treating large asymmetric sparse eigenproblems has to be used. The logarithm of the fission
matrix is shown in fig. 7.1. To tally the fission matrix, a 128× 128 spatial mesh was overlayed
over a 2D core slice. The dimensions of the fission matrix are 1284 × 1284. Morton ordering
was used to store the matrix elements. As evident from the plot, the matrix is not symmetric.
Since the Morton ordering preserves the geometric locality, most of the nonzero entries are
located close to the main diagonal. The nonlocal fission corresponding to large spread in
the fission matrix indexes is rear and the corresponding fission matrix elements are small.
Significant portions of the matrix elements are zero, justifying the assumption about sparse
structure.

Figure 7.1: Plot of the fission matrix log10 Hi,j . The abscissa and the ordinate of the plot
represent the matrix indices i and j.
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To estimate the eigenvalues power iteration and Arnoldi iteration were used. Unlike the
case of discretized deterministic problems the structure of the fission matrix is not known in
advance, therefore the choice of the storage scheme is done a posteriori. For the smaller
problems dense storage was used and for the larger problems the storage scheme proposed
in [57] was used. Once the matrix is accumulated it is transformed into coordinate storage
format to be further processed by the eigenvalue algorithms. The coordinate storage uses
three vectors iloc(m) , jloc(m) and vals(m) to store the m nonzero elements of a
matrix. The following example illustrates the storage scheme. The matrix (7.10) is used to
demonstrate coordinate format table 7.1. Using this storage format the zero elements are
omitted and the memory consumption of the solver routines is significantly improved.



0 1 2 3 4

0 1 7 0 0 0

1 7 1 3 0 0

2 0 5 1 0 0

3 0 0 0 1 0

4 0 0 0 0 7

 (7.10)

Table 7.1: The coordinate storage format for sparse arrays. Each nonzero matrix element ai,j
of the matrix (7.10) is stored by recording its value and its corresponding row i and column j
indices.

iloc 0 0 1 1 1 2 2 3 4
jloc 0 1 0 1 2 1 2 3 4
vals 1 7 7 1 3 5 1 1 7

The coordinate storage format works by storing only non zero matrix element ai,j by record-
ing its value and corresponding matrix indices i and j. To illustrate this consider the element
a0,0 = 1 of (7.10). It will be stored by recording its coordinate values iloc(0) = 0, jloc(m) = 0

and the corresponding value of vals(m) = 1. This corresponds to the first column of table 7.1.

Initially the power iteration was used to estimate the eigenvalues of H. Suppose A ∈ Rn×n

has eigenvalues |λ0| > |λ1| > |λ2| > · · · > |λn|. In addition, the iteration process is started
with the initial vector x0 continuously multiplied by A to form the sequence (7.11)

x(k+1) = Ax(k). (7.11)

If A is diagnosable then the eigenvectors of A form a basis. As any vector in Rn can be
expressed as a linear combination of the eigenvectors of A. For x0 the following expansion
holds (7.12)

x0 = a0v0 + a1v1 + a2v2 + . . . . (7.12)

Substituting this expression in (7.11) gives (7.13)
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x(k) = Akx(0)

= λk0

[
a0v0 +

n∑
i=1

ai

(
λi
λ1

)k
v0

]
.

(7.13)

Due to the condition |λ0| > |λi|,∀i ∈ 1 . . . n, taking the limit k → ∞ (7.13) converges to the
dominant eigenvector v0. Knowing the eigenvectors the corresponding eigenvalues can be
computed using the Rayleigh quotient (7.14)

λk =
< vk|A|vk >
< vk|vk >

(7.14)

Since not only λ0 is of interest but also the subsequent eigenvalues, deflation of the spectrum
of A is used. Suppose that at each iteration n

x(n+1) = Ax(n), (7.15)

subtracting
x(n+1) = x(n+1) − a1v1. (7.16)

Where a1 is given by

a1 =
< v1|x(n+1) >

|x(n+1)|
. (7.17)

In this manner the projection of the iterate x(n+1) along v1 is eliminated and the power iter-
ation converges to the the next largest eigenvalue. In principle, if the matrix A is symmetric,
this technique can be iteratively applied to obtain all the eigenvalues. A custom code was
written to perform the iteration (7.11) and apply deflation to estimate the second mode eigen-
value. The consistency of the method was verified against MATLAB [58]. The estimated
eigenvalues were identical up to eleven places after the decimal. Although the power itera-
tion was able to compute the fundamental eigenvalue in all the cases, the deflation algorithm
failed to resolve the eigenvalues when computing 3D problems. To overcome this difficulty a
more refined method for computing the eigenvalues was used.
The Arnoldi iteration [59],[60],[61] was chosen for computing the eigenvalues of the fission
matrix in the cases where the power iteration with deflation had failed. The power iteration
computes normalized sequences in the form (7.18)

b,Ab,A2b,A3b, · · · . (7.18)

The elements of the sequence (7.18) all reside in the Krylow spaces

K1 ⊆ K2 ⊆ · · · ⊆ Kn ⊆ · · · ⊆ Km ⊆ Rm

Kn = span
({

b,Ab,A2b, · · · ,An−1b
})

b ∈ Rm
(7.19)

The idea of the Arnoldi iteration is to keep the information from all the iterations (7.11) and to



88
Chapter 7. Implementation of the fission matrix technique in MCNP and higher order

eigenpair analysis

construct iteratively the orthogonal bases for the Krylow space

Kn = span
({

b,Ab,A2b, · · · ,An−1b
})

= span ({x1,x2,x3, · · · ,xn}) (7.20)

Define the upper Hessenberg matrix by (7.21), i.e. a matrix that has zero elements below
the first subdiagonal

H =


h11 h12 . . . h1m

h21 h22 . . . h2m

0
. . . . . .

...
0 0 hm,m−1 hm,m

 . (7.21)

Consider the similarity transformation of A to upper Hessenberg form (7.22), where A,Q and
H are matrices in Rm,m

A = QHQT

AQ = QH
. (7.22)

since the matrix H is obtained via similarity transformation from A, its eigenvalues are related
to the eigenvalues of A. Those eigenvalues are referred to as Ritz values. The above
equation can be explicitly written in matrix form

 A



q1 · · · qn

 =

q1 · · · qm





h11 h12 . . . h1m

h21 h22 . . . h2m

h31 h32 . . . h3m

. . . . . .
...

hm,m−1 hm,m


. (7.23)

Considering only the first n columns of (7.23) i.e. the (n+ 1)× n upper left section of H

 A



q1 · · · qn

 =

q1 · · · qn+1





h11 h12 . . . h1n

h21 h22 . . . h2n

. . . . . .
...

hn,n−1 hn,n

hn+1,n


. (7.24)

The nth column of the above equation gives the recurrence expression for the Arnoldi itera-
tion

Aqn = h1nq1 + h2nq2 + · · ·+ hnnqn + hn+1,nqn+1. (7.25)

Equation (7.25) can be written in a more compact form

qn+1 =

Aqn −
n∑
i=1

hi,nqi

hn+1,n
. (7.26)

Equation (7.27) is the explicit formula for computing the columns of the unitary matrix Q and
represents the Arnoldi iteration. The iteration process starts with an arbitrary normalized
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vector q1. According to (7.27)

q2 =
Aq1 − h11q1

h2,1
. (7.27)

The coefficient h11 should be chosen such that the scalar product fulfills < q1|q2 >= 0, that
is

< q1|A|q1 > −h11 < q1|q1 >= 0. (7.28)

Since < q1|q1 >= 1

h11 =
< q1|A|q1 >

< q1|q1 >
=< q1|A|q1 > . (7.29)

The coefficient h11 is given by the Rayleigh quotient (7.29). The last remaining coefficient
h21 is given by

h21 = ‖Aq1 − h11q1‖ (7.30)

Therefore, (7.27) represents a modified Gram-Schmidt method, constructing an orthonormal
basis of the Krylov space. In pseudocode the Arnoldi iteration has the follwoing structure.

Algorithm 1 Arnoldi iteration

1: q1 =
b

‖b‖
. Start with an initial vector b

2: for n=1:N do
3: x = Aqn
4: for j=1:n do
5: hjn =< qj |x >
6: x = x− hjnqj . Subtract the projection on qj

7: end for
8: hn+1,n = ‖x‖
9: qn+1 =

x

hn+1,n

10: end for

The most computational expensive part of the method is the matrix-vector product. Since
only the product Aqn is needed, a suitable subroutine capable of computing it has to be
supplied. For the computations presented here, both the stand-alone version of ARPACK
and the wrapper available in MATLAB were used [62]. It should be noted that the Arnoldi
algorithm does not compute the eigenvalues of A. At each step n, or at occasional steps the
eigenvalues of the Hesseneberg Matrix are computed. These are the Ritz values. Since the
matrix H is of a modest size, the Ritz values can be efficiently computed. The Ritz eigenval-
ues converge to the eigenvalues of A. Since the size of H is smaller then the size of A the
method can not be used to compute all the eigenvalues of A. The Arnodli iteration actually
computes the eigenvalues corresponding to the edge of the spectrum of A. This is quite
useful in the case of the fission matrix, since these are precisely the eigenvalues of interest.
As evident from (7.27), storing all the q1, · · · ,qn is rather expensive. Furthermore the com-
putational effort increases linearly with increasing the number of iterations. Therefore, the
Arnoldi iteration is usually restarted after a number of iterations [62].
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7.3 Practical implementation and numerical computation
of higher mode eigenstates

To tally the fission matrix a spatial discretization mesh with N over the geometry is superim-
posed. The cell of birth m and the cell n, where the neutron born in m causes fission are tal-
lied. This is done by directly evaluating the fission bank array. Therefore the fission matrix will
have N2 elements. For instance, if a spatial mesh with (Nx = 128)× (Ny = 128)× (Nz = 20)

elements is used, the memory needed to store all the values of H if 8-bit reals are used, will
be significantly more than what most modern computers can provide ( 860GB). The fact that
the matrix is only sparsely populated, together with suitable sparse storage scheme can sig-
nificantly reduce the amount of memory needed. As shown in fig. 7.1 the fission matrix have
diagonal structure. Moreover, due to the limited mean free path of thermal neutrons, the el-
ements having small spread in the indexes (m,n) are much larger than those corresponding
to nonlocal fission. The first 15 eigenvalues estimated using different fission matrix resolution
are shown in table 7.2. In all the cases the fission matrix was capable of precisely estimat-
ing the fundamental eigenvalue k0, which showed excellent agreement with the Monte Carlo
power estimate. The higher order eigenvalues showed larger susceptibility to the mesh reso-
lution. To ensure that no bias is introduced, the mesh study was further improved by refining
the mesh to 256 × 256 elements corresponding to quarter pin resolution. The k1 in this case
showed good agreement with the 128 × 128 case.

Table 7.2: Higher mode eigenvalues of the fission matrix as a function of the mesh resolution
and the number of histories used for the simulation.

Histories 5× 106 5× 105 1× 106

Estimated keff 1.00635 (2) 1.00635 (2) 1.00635 (2)
Mesh 60 × 60 128 × 128 256 × 256
k0 1.00633681 1.00633682 1.00633681
k1 0.98734693 0.98776299 0.98758907
k2 0.97818760 0.97891091 0.97854092
k3 0.95377283 0.95495717 0.95446119
k4 0.92188236 0.92374119 0.91736150
k5 0.91630770 0.91817160 0.90305064
k6 0.90179636 0.90407502 0.92289377
k7 0.87260013 0.87548326 0.87429778
k8 0.84831091 0.85167208 0.85020312
k9 0.83525601 0.83846278 0.83094840
k10 0.82888577 0.83181008 0.83727213
k11 0.80167342 0.80503211 0.80423848
k12 0.78321471 0.78753893 0.78579037
k13 0.76450511 0.76914195 0.76725934
k14 0.73978934 0.74406155 0.74224522

For the sake of completeness, the eigenvectors corresponding to the first sixteen largest
eigenvalues are shown in figs. 7.2(a) to 7.2(h) and 7.3(a) to 7.3(g).
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Figure 7.2: The eigenvectors corresponding to eigenvalues k0 to k7.

(a) k0 = 1.00633682 (b) k1 = 0.98776299

(c) k2 = 0.97891091 (d) k3 = 0.95495717

(e) k4 = 0.92374119 (f) k5 = 0.91817160

(g) k6 = 0.90407502 (h) k7 = 0.87548326
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Figure 7.3: The eigenvectors corresponding to eigenvalues k8 to k15.

(a) k8 = 0.85167208 (b) k9 = 0.83846278

(c) k10 = 0.83181008 (d) k11 = 0.80503211

(e) k12 = 0.78753893 (f) k13 = 0.76914195

(g) k14 = 0.74406155 (h) k15 = 0.74312169
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Only the fundamental mode eigenvector fig. 7.2(a) has direct physical interpretation. The
convergence of the power iteration scheme to the fundamental eigenmode solution involves
iterating until the higher eigenmodes are small enough to be neglected. The standard power
iteration in both the deterministic and the Monte Carlo cases converges to the fundamental
mode eigenvalue rather slowly. Precisely to overcome this deficiency the Wielandt accelera-
tion was implemented in MCNP . The effect of the Wielandt acceleration on the convergence
of the Monte Carlo power iteration will be presented in the next section.
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7.4 The Wielandt acceleration and its effect on the Monte
Carlo power iteration

According to the description of the Wielandt acceleration, the system becomes more tightly
coupled by increasing the length of the neutron histories. In the classical Monte Carlo trans-
port the neutrons are removed from the transport calculation once they cause fission and
the histories of the neutrons newly produced are started during the subsequent cycle. Thus
fission is treated as capture. Using the Wielandt acceleration following each fission event a
number of neutrons are stored in the particle bank and their histories are continued in the
same cycle. This can be effectively demonstrated using the fission matrix. In contrast to the
sparse structure observed in fig. 7.1, the fission matrix corresponding to the calculation with
Wielandt shift is dense fig. 7.4. This shows that the spread of the matrix indices, denoting
the start and the end regions of each history have much larger spread. Or in other words,
distinct regions have significantly increased chance of exchanging neutrons.

Figure 7.4: Plot of the fission matrix log10 Hi,j . The abscissa and the ordinate of the plot
represent the matrix indices i and j.

The theory of the Wielandt acceleration shows that the power iterations are accelerated by
reducing the dominance ratio. This effect is shown in table 7.4 for two dimensional geometry.
The second column of the table shows the Wielandt shifted eigenvalues, the third column is
the back transformed values and in the last column, the reference analog eigenvalues are
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shown. The calculation shows that the dominance ratio for the shifted spectrum is λWielandt =

0.5182. The reference analog value is λanalog = 0.9815. Due to the reduced dominance ratio,
the power iteration in the case of the shifted operator is significantly improved. Using the

back transformation formula
1

kwiel
=

1

keff
− 1

ke
it is possible to recover all the eigenvalues of

the original spectrum as the theory suggests. To increase the fidelity of the calculation, the
fission matrix with single pin resolution was used.

Table 7.3: Fission matrix eigenvalues with shift (two dimensional case)

Case Shifted eigenvalues Back-transformed Analog calculation
k0 43.84717401 1.00635992 1.00633682
k1 22.72174319 0.98533380 0.98776299
k2 17.89174532 0.97393223 0.97891091
k3 12.31823398 0.95052132 0.95495717
k4 8.37390612 0.91718518 0.92374119
k5 7.96613385 0.91207156 0.91817160
k6 7.59842687 0.90704595 0.90407502
k7 6.13117778 0.88185398 0.87548326
k8 4.84414158 0.84939489 0.85167208
k9 4.59598843 0.84142869 0.83846278
k10 4.27345593 0.82996063 0.83181008

The eigenvalues spectrum for three dimensional calculations were also computed and the
results are shown in table 7.4. For tallying the fission matrix X = 64 × Y = 64 × Z =

20 mesh was used. Both cases have a high dominance ratio close to unity. The first two
columns show the eigenvalues corresponding to the coupled PWR MOX-UO2 benchmark
described in [63],[64]. The second two columns show the eigenvalues corresponding to the
case summarized in table 6.4. Having computed the dominance ratio, the large asymmetries
of the fission heat deposition shown in table 5.2 can be explained. The dominance ratio for
both the cases is above 0.98. Therefore, many iterations are needed before the higher mode
eigenvalues are damped. In the analog case due to the decoupling of the system many
more iterations are needed. Since the large tilt in power is still present, tallying was done at
a stage when the source distribution was still ill converged. This situation was not detected
by the source entropy. To resolve this problem the number of criticality cycles should have
been significantly increased. According to (5.14) for eigenvalue shift of ke = keff + 2 × 10−2

and keff = 1.15099 about 60 extra neutrons are produced and to a large extent, tally results
obeying the symmetry of the problem are obtained. Since the analog calculation runs with
the original high dominance ratio, more than 60 extra histories would be needed to achieve
the same quality of results. This can be explained by the fact that in the analog calculation
the locality is preserved and the increase of the particle population will not be as effective as
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in the case when the Wielandt acceleration is used.

Table 7.4: Fission matrix eigenvalues with shift (three dimensional case)

Shifted eigenvalues Back-transformed Shifted eigenvalues Back-transformed
k1

k0
=0.56892

k1

k0
=0.98521

k1

k0
=0.49732

k1

k0
=0.98385

k0 50.47995806 0.99979804 70.87623553 1.15099970
k1 28.71921661 0.98501589 35.24794216 1.13241139
k2 27.96514844 0.98410576 20.57907311 1.10705939
k3 26.40712812 0.98206675 13.80865722 1.07860997
k4 18.87507174 0.96770564 9.24478054 1.03856180
k5 18.70897967 0.96726539 8.90365601 1.03411090
k6 17.66129405 0.96430793 7.25299170 1.00748055
k7 17.20757142 0.96292163 7.09321651 1.00433812
k8 15.44619338 0.95681600 6.09896472 0.98167882
k9 14.52331122 0.95306446 5.28202365 0.95783401
k10 13.31685938 0.94743181 4.83469176 0.94202826
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calculations

In chapter 4 a method for accelerating the flux and fission heat tallying is presented. This
method relies on optimizing the coding of MCNP . Having fast tallying solves only partially the
problem of local fission heat estimation, since the tallies still have large statistical uncertain-
ties. In this thesis the fission heat deposition is tallied at a pin by pin resolution and supplied
to the subchannel code. To reduce the statistical uncertainties, a novel highly efficient vari-
ance reduction method, uniform fission site, was implemented in MCNP and its effectiveness
was compared against the well established variance reduction methods available in MCNP
. It is shown in particular, that variance of less than 1.4 % can be obtained for local fission
heat estimates even when simulating large LWR core geometry. The most important part of
the newly implemented uniform fission site method is that it does not slow down the criticality
calculation. Reducing the variance is essential for reaching convergence of the coupled sys-
tem system MCNP - SCF. Practical calculations showed that supplying power distributions
with large statistical uncertainties results in failed convergence of the subchannel code.

In Monte Carlo simulations the expectation value < x > for a certain event x is sampled

< x >=

∫
xp(x)dx. (8.1)

This is done by sampling individual random particle walks and assigning a score xito each
random walk. In general, the probability density p(x) is not known and the integral (8.1) can
not be computed analytically. Therefore, the law of large numbers is used and this integral is
approximated by

∫
xp(x)dx = lim

N→∞

1

N

N∑
i=1

xi, (8.2)

thereby estimating the expectation value < x > or the true mean by the sample mean x̄.
The unbiased estimator for the standard deviation after applying the Bessel correction and

97
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replacing N with N − 1 is given by

S2 =
1

N − 1

N∑
i=1

(xi − x̄) ≈ x2 − x̄2. (8.3)

The estimated variance of x̄, Sx̄ is given by (8.4)

Sx̄ =
S√
N
. (8.4)

In Monte Carlo codes each Monte Carlo estimate is reported with the corresponding relative
error defined by (8.5)

R =
Sx̄
x̄

(8.5)

The aim of the different variance reduction techniques is to make Sx̄ as small as possible.
The essence of the variance reduction techniques can be readily understood by taking into
account the expression for the expectation value. Using variance reduction, p(x) is modified
so that the spread from the mean is reduced.

Reducing the variance is especially important in the case of coupled calculations. A power
distribution that has large local statistical uncertainties, has in general a non-smooth shape.
This significantly complicates the convergence of the thermal hydraulic solution and might
result in convergence failure. As shown in practice, simple brute force increase of the particle
population is very inefficient. Due to the nonuniform distribution of the fission power, only
a minor influence is exerted on the low power regions. Having in mind that the relative
error in Monte Carlo calculations is inversely proportional to the square root of the number
of histories r =

σ√
Nhist

, simple increase of Nhist would result in unacceptable run-times.

Therefore, one has to run nonanalog transport. A nonanalog Monte Carlo technique will
have the same expected tallies as an analog technique if the expected weight executing
any given random walk is preserved. Non analog transport can significantly reduce the
tally variance by sampling naturally rare events with increased frequency and weighting the
tallies appropriately. In the particular case of the power estimate in a heterogeneous loosely
coupled system, a variance reduction technique capable of homogenizing the relative error
distribution is needed. In the ideal case, if homogenized relative error was achieved, one
would be able to reduce the relative error proportionally in all parts of the domain.

8.1 The Global Variance Reduction Technique

To reduce the variance of the power estimate a Global Variance Reduction (GVR) technique
has been proposed [49]. The idea relies on the Weight-Windows capability that has been im-
plemented in MCNP [25]. The Weight-Window (WW) technique consists of defining a mesh
of upper and lower particle weight bounds. These weight bounds are user defined, and can
be made to encompass the entire particle phase space. Particles having weights exceed-
ing the upper weight-window bound, are split into N individual particles. The weights of the
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newly created particles are reduced so that they fit in the WW boundaries. Particles having
weights smaller than the lower WW bound are either killed or have their weight increased to
a predefined survival weight WS based on a stochastic selection mechanism. The concept
is illustrated in the following fig. 8.1.

Figure 8.1: Principle of the Weight Windows technique.

In MCNP both WS and WU are integer multiples CS and CU of the lower bound WL. The
basic idea of GVR is to obtain a uniform nonanalog particle density. The analog particle
density in a particular volume V is given by (8.7)

nk =
φk
V
≈ mkwk. (8.6)

mkwk is the product of the nonanalog particle density times the average weight. By setting
(8.7)

wk ∝ φk, (8.7)

the nonanalog particle density will be approximately constant. Therefore, a weight window
mesh is set over the geometry. The lower bound of the weight window in this case is (8.8)

WL =

(
β + 1

2

)
φk

maxk φk
. (8.8)

Therefore in this thesis, a special optimized routine was implemented in MCNP with the aim
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to tally the fluxes simultaneously with the power density. This was achieved by including
an additional dimension to the tally array. This was done because the power distribution is
needed as a boundary condition for the thermal hydraulics code. The track length estimator
was used for tallying. For the upper bound the standard options WU = 5WL and β = 5 were
unaltered. The particle weights are selected such, so that the total source weight of each
cycle is a constant N. That is, the weight of each source particle is (8.9)

w0 =
N = Nominal Source Size

M = Actual number of neutrons started in the current cycle
, (8.9)

so all normalizations occur as if N rather than M particles are started in each cycle. Usually
w0 ≈ 1. According to the definition of the weight windows method and using (8.8), the
regions having very low flux estimates will have very low WU and, therefore, the density of
the nonanalog particles mk will be significantly increased. In this manner more nonanalog
particles are created in the regions of interest reducing the statistical uncertainty. Due to
(8.7) both the eigenvalue and eigenvector estimates remain unbiased.

To implement this scheme, an initial run is needed to estimate the cell fluxes φk. The most
promising results were obtained when the mesh WW mesh was defined to overlap precisely
the pin cell mesh. One can run several iterations obtaining ever better tally estimates. The
special WW input files were written with an internal subroutine to avoid potential I/O errors
and to minimize the code - user interaction. It was observed that using the GVR technique
significantly slows down the calculation, often resulting in more than two fold computational
time increase. This can be easily understood by making the following observation. Formula
(8.8) tells us that for the cells having φk ≈ maxk φk the population will remain unaltered,
on the contrary cells satisfying φk << maxk φk large number of additional particles will be
produced. Thus to improve the variance, additional particles are created in low populated
regions. Following the histories of the extra particles slows down the execution. An additional
drawback is the necessity to run the code twice. This drawback is diminished when running
coupled iterations with the thermal hydraulic code. In this case, the flux estimate from the
previous iteration might be used for generating the WW mesh.
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8.2 The Uniform Fission Site method

Having in mind the drawback of GVR, the decision was made to implement a less compu-
tationally expensive variance reduction technique - the Uniform Fission Site method (UFS)
[10]. The basic idea of this method is to redistribute the fission source so that artificially
more fission neutrons are created in low power regions. The calculation is kept unbiased
by reducing the initial source weight of the fission neutrons. The additional number of neu-
trons is obtained by redistributing the fission source from the high-power regions. Since the
total number of neutrons remain unaltered, no additional computational time is lost. The
idea behind the method is again ensuring uniform nonanalog particle density. This is done
by directly redistributing the fission source rather then splitting the particles. In contrast to
the GVR technique, implementing the UFS method requires significant modification to the
source code.

When a fission event is sampled, Nf neutrons are stored in the fission bank (8.10)

Nf = w
νΣf

Σtkeff
. (8.10)

Since the aim of the method is increasing the number of fission neutrons in low-power cells,
the number of neutrons produced per fission is modified by multiplying it with a coordinate
dependent factor λ(r)

Nmod
f = λ(r)× w νΣf

Σtkeff
. (8.11)

To compute λ(r), a source mesh was implemented in MCNP . This mesh compromises the
entire domain where fissionable material is present. In each mesh element, the fraction of
fission source sk is stored. The coordinate function λ(r) is accumulated during the inactive
cycles, according to (8.12)

λ (r)
−1

=
sk

< sk >
. (8.12)

Thus, using UFS the inactive cycles are effectively used in the calculation. To keep the
transport unbiased, the starting weight (8.9) of all the neutrons produced according to (8.11)
is modified to

wufs =
N

Λ
. (8.13)

This is related to the fact that the starting weights of the MCNP calculation are not equal to
unity but are selected such so that the total source weight is constant. Here Λ is the total
starting weight of the neutrons in the current cycle and N is the nominal source size. In the
standard MCNP calculation Λ is equal to the actual number of particles that have started in
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the current cycle i.e. M from equation (8.9). If UFS is used, it is computed by summing the
weight of the neutrons located in the current batch of the fission source

Λ =
∑

i∈current batch

1

λ(ri)
. (8.14)

In addition, equation (8.14) has to be divided by the local value of λ (r). The parameter λ(r)

has to be stored together with the fission energy and the coordinates r of the fission site. The
additional information was stored in the fission bank array. This information is retrieved during
the next cycle, when the histories of the fission neutrons are initiated and simulated. Some
wufs might be lower than the predefined default minimum weight and will therefore be forced
to play ’Russian roulette’. That is, the particle is either killed or survives with probability

w

wsurv
,

where w is the weight of the particle entering the ’Russian roulette’. wsurv is the user defined
survival weight. The averaged particle weight after ’Russian roulette’ is given by (8.15)

< w >= wsurv ×
w

wsurv
+ 0× (1− w

wsurv
) = w, (8.15)

meaning that the process is unbiased. The weight-cutoff for the ’Russian roulette’ must be
smaller than the survival weight, that is

wc < wsurv, (8.16)

with a typical value wc = 0.5× wsurv.

This would have negated the benefit of the UFS method, by the undesired modification of the
particle weight. To minimize this undesired effect the default minimal weight, it was reduced
to wc = 0.01 and the survival weight wsurv correspondingly [10].

In addition to the method outlined above, it is possible to use the fundamental eigenvector of
the fission matrix to estimate λ(r).

8.3 Numerical performance of the variance reduction tech-
niques

To estimate the efficiency of the variance reduction schemes described in the previous sec-
tions, the same quarter core with the same geometry as the one shown in fig. 5.1 was used.
For the GVR scheme, a mesh having the resolution of single pin cell was used. In the case of
UFS, each assembly was split into 16 subvolumes. A total of 1×109 histories were simulated.
Each calculation simulated 1000 criticality cycles, with 200 of them inactive. Since neither
density nor temperature distributions were modeled, the power profile was axially symmet-
ric. The power distribution was calculated using the optimized power tallying subroutines
described in chapter 4.
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Two dimensional plots of the pin power relative error is shown in fig. 8.2 and fig. 8.3. As
expected, the relative error homogeneity is significantly improved in the UFS case. This
effect is most pronounced in the lower-most core slice and at the core periphery.

Reference analog simulation UFS nonanalog simulation

Figure 8.2: Two dimensional plot of the relative error of the fission heat deposition distribution
in %. Each point represents the value of the relative error for a single fuel pin.

Reference analog simulation UFS nonanalog simulation

Figure 8.3: Two dimensional plot of the relative error of the fission heat deposition distribution
in %. Each point represents the value of the relative error for a single fuel pin.

As expected, the GVR produced relative errors lower than the UFS in fig. 8.4. Due to the large
number of additional particles produced by the WW splitting, this is a misleading comparison.
The large number of additional particles, caused three times longer execution time in the case
of GVR. Judging based on the run-time, the actual number of particles being simulated during
GVR is at least 2.5 times larger than in the UFS case. Therefore, comparing the magnitude
of the relative errors and the wall clock time separately is not a conclusive comparison. To
investigate the quality of the simulation, comparison of the figures of merit is necessary
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(5.16).

GVR - bottom core slice GVR - core mid plane

Figure 8.4: Two dimensional plot of the relative error of the fission heat deposition distribution
in %. Each point represents the value of the relative error for a single fuel pin.

All the runs are summarized in table 8.1. According to the relative error distribution, the GVR
scheme manages to reduce the relative errors and to homogenize their distribution through-
out the core. Due to the additional histories followed, the computational time is significantly
increased. Since UFS only redistributes the fission source, it adds an insignificant amount to
the total run time. The effect of the source redistribution can be clearly seen in fig. 8.3. Since
part of the source particles are taken and shifted to improve the statistics in regions with low
power, the variance in the case of the UFS is higher in the center of the core when compared
to the analog simulation. But in contrast to the analog calculation, in the case of UFS, the
error is uniformly distributed, meaning that by increasing the number of histories the relative
errors in the entire geometry are reduced uniformly. In contrast, due to the heterogeneous
distribution of the relative error in the analog simulation, mostly the high power regions will
be effected by increasing the number of histories, leaving the periphery almost unaffected.
In the case of the homogeneous error, one can easily estimate of the number of histories
needed Ntarget to reach a target statistical uncertainty σtarget. Due to the statistical uncertainty
being inversely proportional to the square root of the number of particles one has

Ntarget =

√
σold

σtarget
Nold. (8.17)

Comparing the figures of merit, UFS outperforms GVR since it maximaizes the figure of
merit. Moreover, since GVR operates in automatic mode it makes it much easier to use, and
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it requires no additional input files.

Table 8.1: Performance summary of the variance reduction techniques. 750 active cycles
with 1×106 histories per cycle.

Calculation Eigenvalue keff FOM run time (min)
Analog 1.15100 (2) 29.09 81.70
GVR 1.15096 (3) 33.15 240.32
UFS 1.15100 (3) 36.80 85.03

Being an integral quantity keff, is not a sensitive enough comparison parameter. Therefore,
to ensure the consistency of the method, the fission heat deposition tallies were compared
for the entire geometry. One additional run, with 1.3×106 histories per cycle, was done in the
case of UFS. Results from the comparison are shown in table 8.2, where the additional run
is given is summarized in the last row of the table and is colored red.

Table 8.2: Performance summary of the variance reduction techniques. 750 active cycles
with 1×106 histories per cycle were run together with an additional run suing 1.3×106 parti-
cles per cycle.

Calculation Eigenvalue keff FOM Max. Difference from GVR % run time (min)
GVR 1.15096 (3) 33.15 240.32
UFS 1.15100 (3) 36.80 8.5 85.03
UFS 1.15102 (3) 41.6 3.4 109.6

As shown in table 8.2 increasing the number of histories ensures the convergence of UFS
to the power values computed via the GVR. Never the less, the UFS method runs more than
twice faster than the GVR.

Since the UFS, the GVR and Wielandt shift reduce the relative error it is interesting to see
whether they produce the same results. For the twenty axial nodes, the absolute value of
the maximum difference in the estimated fission heat deposition was computed. The same
notation as in table 5.3 is used. For the comparison, the UFS is run with 1.3×106 histories.
The results are shown in table 8.3. As shown in table 8.3 both methods produce results that
are very close. The statistical uncertainty of ||∆k|| was estimated using partial derivatives.
The notation uses the formulas given in (5.21) and (5.20). The maximum difference for all
the axial nodes is larger than the associated statistical uncertainty. As predicted by theory
and as presented later in this thesis, the Wielandt shift modifies the dominance ratio of the
system. This is the reason why it is difficult to achieve the same degree of fidelity using the
standard power iteration. Unfortunately the large increase in run time makes it impractical to
run Wielandt calculations using small ke. Besides the large maximum differences, the values
in the table clearly show that both methods deliver results that are on average close to each
other. This is shown by the small mean µ(∆k

i,j) and the small standard deviation σ(∆k
i,j).

The small standard deviation makes the average departure from the mean small. Therefore,
the large maximum differences are rare events. This comparison motivates the decision to
use the Wielandt shift only to converge the fission source and disable it during the active
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cycles. Running the Wielandt shift method over the active cycles will be computationally
expensive and will in essence try to improve statistically rare events that contribute little to
the final result. This strategy was used when running coupled calculations. Doing otherwise
would have resulted in massive run times, and would have made the coupled calculation
rather impractical. The other strategy of reducing the run time is by using larger shifts quickly
deteriorates the performance of the Wielandt method as ke − keff becomes large. The fact
that tree methods having different numerical background converge to the same result further
proves their correctness.

Table 8.3: Difference between the Wielandt shift method (ke = 1.16) the GVR and the UFS
schemes.

Axial node UFS GVR

k
||∆k|| µ(∆k

i,j) σ(∆k
i,j) Uncertainty

||∆k||
||∆k|| µ(∆k

i,j) σ(∆k
i,j) Uncertainty

||∆k||
1 7.95 1.55 1.16 2.30 7.10 1.11 0.84 1.54
2 8.87 1.31 1.00 1.79 5.26 0.99 0.75 1.33
3 6.49 1.24 0.95 1.78 4.69 0.95 0.71 1.58
4 7.60 1.24 0.95 1.78 4.98 0.94 0.70 1.14
5 6.97 1.22 0.94 2.14 4.97 0.89 0.68 1.29
6 7.34 1.18 0.90 1.54 5.01 0.86 0.67 1.37
7 6.63 1.15 0.89 1.70 5.38 0.88 0.67 1.65
8 6.25 1.15 0.89 1.67 5.16 0.88 0.67 1.25
9 6.69 1.23 0.94 1.59 5.79 0.90 0.69 1.51
10 6.13 1.27 0.96 1.78 4.60 0.87 0.67 1.37
11 6.80 1.20 0.92 1.81 6.03 0.88 0.66 1.32
12 6.11 1.11 0.85 1.66 4.59 0.88 0.68 1.24
13 7.40 1.09 0.84 1.94 5.59 0.93 0.71 1.74
14 6.05 1.09 0.84 1.69 4.64 0.92 0.71 1.38
15 6.32 1.14 0.89 1.47 5.05 0.90 0.69 1.31
16 8.50 1.22 0.94 1.83 4.41 0.89 0.67 0.96
17 7.03 1.33 1.01 1.76 5.55 0.88 0.67 1.18
18 7.91 1.36 1.02 1.74 5.02 0.87 0.67 1.25
19 8.03 1.36 1.04 2.16 5.08 0.87 0.67 1.39
20 8.37 1.58 1.23 2.73 5.19 1.01 0.77 1.25
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Coupled Monte Carlo - thermal hydraulics calculations

Coupled Monte Carlo/thermal hydraulics code systems have been developed and applied
as reference calculation tools [2],[65],[14],. However, a close inspection of the work done
reveals that all those coupled systems have been applied to either small problems or in
the case of [13], a coarse mesh thermal hydraulics model. This can be easily explained
with the fact that in all these systems, the codes exchange information via the input files.
Increasing the resolution of the thermal hydraulic model leads to massive inputs that can
take hours for MCNP to process. This is a very large penalty in terms of the run-time, and
clearly an unacceptable option. To overcome the limitations and to pave the way for high
fidelity full core simulations at pin level resolution, innovatios were developed in this thesis.
Namely the thermal hydraulic feedback is interchanged via the memory, and the macroscopic
cross sections are computed by taking into account coordinate dependent temperature and
density fields. This approach simplifies the entire strategy of thermal hydraulic feedback
immensely, and since the materials are dynamically assigned, the user must provide only
proper geometry dimensions.

In addition to the effective scheme for providing the thermal hydraulic feedback, a methodol-
ogy to accelerate the convergence of the coupled system was developed. The new conver-
gence acceleration scheme is based on the stochastic approximation method due to Robbins
and Monro. Using this methodology it was possible to reach uniform convergence within a
limited number of iterations. The theoretical description of the acceleration technique is pre-
sented hereafter.

9.1 Fundamentals of the stochastic approximation method

The steady state neutron transport equation with no external sources can be transformed
into integral form (9.1), the complete derivation can be found in [53].

φ(ζ) =

∫ ∫
Γ

K(ζ, ζ ′)φ(ζ ′)dζ ′ (9.1)
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Here Γ denotes the integration domain of the phase space and ζ represents the phase
space variables. This is a Fredholm integral equation. The precise form of the kernel
is described in Chapter 3. Being a fixed point problem the existence of the solution is
determined by the Banach fixed point theorem [66],[67]:

Theorem 1: Let M be a complete metric space with distance between two points A and B
given by ρ(A,B). Moreover, let L : M → M be a contraction operator, for which there exists
k ∈ (0, 1) such that for all A,B ∈ M, ρ(L(A),L(B)) ≤ kρ(A,B). Then, there exists a unique
A ∈ M such that L(A) = A. The point A, can be generated by the iteration L(An−1) = An ,
with A0 being arbitrary.

Here the distance is defined to have the following properties: For all A,B,C ∈M, ρ(A,A) =

0, ρ(A,B) ≥ 0 , ρ(A,B) = ρ(B,A) and ρ(A,B) ≤ ρ(A,C) + ρ(B,C). These important
properties of the space M allow us to define convergence. In fact, the proof of the theorem
is based on showing that ρ(An, Am) for An, Am ∈ M is a Cauchy sequence converging due
to the metric space M being complete by definition. Therefore, the following limit exists (9.2)

lim
n→∞

An = lim
n→∞

L(An−1)

A∗ = L(A∗).
(9.2)

The Banach fixed point theorem gives an important insight into the solutions of (9.1) and the
space they reside on. It should be noted that to fulfill the conditions of a contraction operator,
the kernel of the integral transport equation should be bounded and continuous [66]. As
pointed out in [67], the estimation of the power profile distribution results in the solution of
the following generalization of (9.1)

φ = G(T (φ), H(φ)), (9.3)

where H(φ) and T (φ) are the density and temperature distributions and the value of the
functional G(T (φ), H(φ)) is estimated by the Monte Carlo codes with superimposed statistic
noise ξ. This noise has zero mean and the oscillations are symmetric around the mean. The
Monte Carlo estimate of the left hand side of (9.3) is defined as (9.4)

Y (φ) = G(T (φ), H(φ)) + ξ (9.4)

The problem given by (9.4) can be in principle solved by an iterative scheme, consecutively
updating H(φ) and T (φ). However, this is a very inefficient method. Moreover, the con-
vergence will be limited by the magnitude of ξ. Therefore, in order to achieve convergence
one must run a large number of iterations and applying a huge number of particle histories.
Based on this, it is recommended to use an acceleration scheme. In the past a relaxation
scheme acting on the thermal hydraulic parameters only was used [2]. The old relaxation
scheme is described by the equation set (9.5), where i is the iteration step number.



9.1. Fundamentals of the stochastic approximation method 109

Tweighted
fuel,i+1 = (1− ω)Tfuel,i−1 + ωT actual

fuel,i

Tweighted
H2O,i+1 = (1− ω)T actual

H2O,i−1 + ωT actual
H2O,i

ρweighted
H2O,i+1 = (1− ω)ρactual

H2O,i−1 + ωρactual
H2O,i

(9.5)

This scheme accelerates the solution. Unfortunately, the convergence rate is still correlated
to the statistical noise. If the Fission heat deposition P (pin, z) within a certain volume V

around z ∈ R corresponding to a particular pin is tallied by a Monte Carlo code, the asso-
ciated variance is propagated to the hydraulic distributions. To illustrate this effect, consider
the variation of the fuel temperature over two consecutive coupled iterations (9.6)

max
pin,z

∣∣∣∣∣∣
T i+1

fuel,P (pin,z) − T
i
fuel,P (pin,z) + δT i+1

fuel,P (pin,z)
− δT i

fuel,P (pin,z)

T i+1
fuel,P (pin,z) + δT i+1

fuel,P (pin,z)

∣∣∣∣∣∣ . (9.6)

Clearly if the variation of the hydraulic parameters is used as convergence estimator, it is
affected by the induced variance δTfuel,P (pin,z) . Therefore, to reach the desired convergence one
has to reduce the variance of the fission heat deposition. The natural method of accelerating
the convergence of (9.3) is to use the stochastic approximation technique. Although the same
method of acceleration as in [67] is used, different reasoning concerning its applicability is
applied. Namely, in [67] the function we wish to find root of is not directly considered but the
gradient of another function, called the objective function, is. Here another approach is used
by utilizing alternative formulation of the Robbins and Monro theorem [68], stated hereafter.
The formulation of the theorem as well as the proof can be found in [69],[70]. The basic
idea is that by observing random variables Y (Xn) of an unknown distribution, roots of the
unknown underlying distribution can be found. In the particular case this is the estimate of
(9.4).

Consider the following formulation of the Robbins-Monro theorem [70]: Let the sequence
(9.7) being an iterative estimate of the equation K(θ) = α

Xn+1 = Xn − γn(α− Y (Xn)). (9.7)

Where the following conditions on γn are imposed (9.8)

∞∑
n=1

γn =∞,
∞∑
n=1

γ2
n <∞. (9.8)

Theorem 2: If K(X) and Y (X) fulfill the following conditions

∀X ∈ < : |K(X)| ≤ A|X|+B, (A,B ∈ <), (9.9)

E[(Y (X)−K(X))2] <∞, (9.10)

∀ε ∈ (0, 1),∀X : 1/ε > |X − θ| > ε⇒ inf
X
|K(X)− θ| > 0. (9.11)

Then lim
n→∞

E(Xn − θ) = 0, so that the random variable sequence Xn converges to θ in mean
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square and hence in probability.

Since a fixed point of (9.3) is searched (9.7) transforms to

Xn+1 = Xn −
1

n
(Xn − Y (Xn)), (9.12)

with γn =
1

n
. The theorem has to be proven to be applicable to the particular case (9.3).

Since a fixed point problem is being discussed, K(θ) = α translates to K(θ) = θ. As
already shown, Theorem 1 allows the definition metric on the solution space of (9.3) and
lim
n→∞

E(Xn − θ)2 = 0 can be defined. Theorem 2, however, requires proving the additional
conditions (9.9),(9.10),(9.11). Condition (9.9) holds since G(T (φ), H(φ)) has to be a contrac-
tion operator. According to Theorem 1, choosing any φ, φ′, one obtains (9.13)

|G (T (φ) ,H (φ))−G (T (φ′) ,H (φ′)) | ≤ A|φ−φ′| (9.13)

Since φ and φ′ are arbitrary let φ′ = 0. If φ′ = 0 the integral on the LHS of (9.3) vanishes i.e.
G(T (φ′), H(φ′)) = 0. Then (9.10) follows, the real constant B = 0

|G (T (φ) ,H (φ)) | ≤ A|φ| (9.14)

The condition (9.11) holds since the counterparts of K(X) and Y (X), G(T (φ), H(φ))

and Y (φ) are both bounded and they differ only by the stochastic noise ξ. The disc
1/ε > |X − θ| > ε translates to compacts in the space of φ. Moreover G(T (φ), H(φ))

is continuous and G(T (φ), H(φ)) 6= φ for all φ 6= φ∗, where φ∗ is the fixed point of
interest. Therefore the minimum of |G(T (φ), H(φ)) − φ| is attained on a compact and
infX G|T (φ), H(φ))− φ| > 0 follows.

As pointed out in [67] equation (9.7) can be further simplified. The notation in (9.7) is adapted
for the case of the flux

φ(n+1) =

(
1− 1

n

)
φ(n) +

1

n
Y (φn) (9.15)

Equation (9.15) simplifies to (9.16)

φ(n+1) =
1

n

n∑
i=1

Y (φi) (9.16)

This can be easily shown by induction, first assume (9.15) holds for n and then check if it
holds for n+ 1. Substituting (9.16) in (9.15) the following equation is obtained (9.17)

φ(n+1) =

(
1− 1

n

)
1

n− 1

n−1∑
i=1

Y (φi) +
1

n
Y (φn) =

1

n

n∑
i=1

Y (φi) (9.17)
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Formula (9.16) gives us the explicit formulation of the relaxation scheme. The flux (power pro-
file) in the next iteration is obtained to be the mean value of all iterations. Since in essence
the tally estimates from all the runs are added together, simple error propagation with par-
tial derivatives on (9.16) shows the error decreases when more coupled iterations are run.
Moreover, from (9.16) follows that the power distributions from all the iterations are reflected
in the final solution with weight of 1/n. Thereby, improving the variance with each coupled
iteration. Therefore, any desired convergence parameter (9.6) can be achieved if enough
iterations are run. This is still possible even at low number of histories. Never the less, the
number of histories and the number of inactive cycles should be chosen adequate to ensure
the fission source is converged. Moreover, the effect of increasing the number of histories in
the old scheme is achieved by running a large number of iterations in the new scheme.
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9.2 The internal coupling between Monte Carlo transport
and thermal hydraulics

Due to the small mean free path ot the neutrons in a typical LWR core, providing precise ge-
ometric description of the core components is essential. Therefore refining both the thermal
hydraulic and the neutronci meshes is essential.

The MCNP code does not support the definition of thermal hydraulic distributions. This fact
is a source of major inconvenience when the thermal hydraulic feedback is modeled. The
subchannel (SC), thermal hydraulic codes provide detailed distributions of density and tem-
perature. Using the standard methods, these distributions can be introduced in MCNP by
subdividing the geometry in a large number of subunits. In each of those subunits, one has
to provide distinct material and temperature, this is done by supplying the proper Doppler
broadened neutron cross section data and the proper energy corresponding to the most
probable velocity of the Maxwell distribution. Following this approach, one can easily gener-
ate massive inputs, which can take a significant time for MCNP to process.

Therefore the method of internal code coupling and on the-fly material definition is suggested
as an efficient alternative. It should be taken into account that one also needs a fast running
TH code, capable of modeling steady state solutions. Moreover, the thermal hydraulic code
of choice should be able to model the coolant flow, the lateral mixing effects and provide re-
sults at pin by pin resolution. Subchannel codes seem to be the ideal compromise between
precision and run time and are therefore used in the current study. Changing the thermal
hydraulic feedback affects the microscopic nuclear cross sections via the Doppler effect and
the macroscopic cross sections via the density. As a result, the behaviour of the neutrons in
the core changes, and this is subsequently reflected in the flux distribution. Therefore, pro-
viding realistic thermal hydraulic conditions to MC calculations is a more accurate description
of the physical reality. The material distribution present in the MCNP input, instructs the code
how to build the macroscopic cross sections present in the different parts of the geometry.
This opens up a possibility for a very elegant treatment of the thermal hydraulic feedback.
Instead of relying on the initial input, one can build the macroscopic cross sections according
to the distributions obtained from the thermal hydraulic calculation [1],[71],[72]. In this man-
ner the feedback effects are introduced on the fly as the neutron explores the geometry. The
methodology is illustrated in fig. 9.1(a).

The necessary nuclear data, both single and double differential, is preloaded into the mem-
ory. This includes all the nuclides of interest evaluated at different temperature covering the
temperature range defined by the thermal hydraulic run. Subsequently a routine retrieves
the data and builds the proper macroscopic cross sections using the correct temperature
evaluations to perform pseudo material mixing [73], [74]. For the single differential data the
JEFF 3.1.1 nuclear data library was used [75]. The thermal scattering data [43] was used
for describing the scattering from bound scatters. Depending how fine the temperature in-
terpolation grid is, the amount of memory needed might vary. However, in all our cases, the
required memory never exceeded 1GB. Note how in fig. 9.1(b) the neutron is receiving the
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Determine the neutron  
location (x,y,z) 

Compute the macroscopic Σ𝑥 
based on the MCNP input 

Sample reactions, continue the 
neutron transport 

Determine the neutron  
location (x,y,z) 

Retrieve form the TH calculation 
ρcoolant 𝑥, 𝑦, 𝑧  
𝑇coolant 𝑥, 𝑦, 𝑧  
𝑇fuel 𝑥, 𝑦, 𝑧  

Search the memory for the proper nuclear 
data and build macroscopic Σ𝑥 taking into 
account the distribution of ρcoolant, 𝑇coolant, 
𝑇fuel. Use pseudo materials to correct for the 
temperature dependence. No reference to 
the MCNP input. 

Sample reactions, continue the 
neutron transport 

Supply the proper temperature 
for sampling  the target velocity 

(a) Calculation flow of the coupled system. In red the modified part of MCNP is shown.

𝑇𝑓𝑢𝑒𝑙(𝑥1, 𝑦1, 𝑧1) 

𝑇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 𝑥2, 𝑦2, 𝑧2  
ρ𝑐𝑜𝑜𝑙𝑎𝑛𝑡(𝑥2, 𝑦2, 𝑧2) 

𝑇𝑓𝑢𝑒𝑙(𝑥3, 𝑦3, 𝑧3) 𝑇𝑓𝑢𝑒𝑙(𝑥4, 𝑦4, 𝑧4) 

(b) On-the-fly feedback interchange.

Figure 9.1: The internal coupling scheme
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material distribution at each collision during the trajectory, making the material identification
dynamic. The effect of the dynamic material distribution can be demonstrated by making an
example with the total cross section. If just the standard code features are used, the total
macroscopic cross section Σt(r, E, Tinput) at position r located in a material consisting of N
isotopes is computed as follows (9.18)

Σt(r, E, Tinput) = ρ
input

(r) ·
N∑
k=1

fk ·
R∑
x

σx,k(r, E, Tinput). (9.18)

The microscopic cross section has the temperature defined via the input. The density is also
given by the value specified in the input. Using the dynamic material definition the following
expression (9.19) is computed when the neutron enters a new cell

Σt(r, E, TTH) = ρTH(r) ·


(
TTH − Tlow

Thigh − Tlow
) ·

N∑
k=1

fk ·
R∑
x

σx,k(r, E, Tlow)+

+(1− TTH − Tlow

Thigh − Tlow
) ·

2N∑
k=N+1

fk ·
R∑
x

σx,k(r, E, Thigh)

 . (9.19)

Note that in this case the temperature and the density are taken from the thermal hydraulics
code as computed in the current coupled run. This is indicated by the subscript TH. Mi-
croscopic cross sections having temperatures bracketing the temperature computed by the
thermal hydraulic code, have replaced the microscopic cross section defined in the input.
The pseudo material mixing also alters in the procedure for selecting the interaction nucleus.
The probability to interact with a certain nuclide is given by the atomic fraction fk. As evident
from equation (9.19), each isotope in the case of pseudo material is listed twice, therefore
the neutrons interact with one isotope evaluated at two distinct temperatures with probabil-
ities depending on the temperature mixing factors. The combined effect of this interaction
corrects for the temperature dependence. Note that this is a purely stochastic effect, relying
on the Monte Carlo methodology of sampling the interaction nuclei. The pseudo material
mixing also effects in addition the various estimators, for instance, the track length estimator
for the multiplication factor now reads (9.20)

keff =

Trajectories∑
i=1

wiρTH(ri)di
N


(
TTH − Tlow

Thigh − Tlow
) ·

N∑
k=1

νkfk · σf,k(ri, E, Tlow)+

+(1− TTH − Tlow

Thigh − Tlow
) ·

2N∑
k=N+1

νkfk · σf,k(ri, E, Thigh)

 .

(9.20)

The flow of the coupled calculation is shown in fig. 9.1. Another major issue is the cell
tracking in MCNP. A number of numerical tests showed that the most efficient method is to
work directly with the neutron coordinates. To interchange the thermal hydraulic, feedback
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a special mesh is superimposed over the computational geometry. This new feature was
introduced as an additional procedure in the source code of MCNP. Since the neutron coor-
dinates are known at every instance, the local thermal hydraulic data can be readily retrieved
from the superimposed thermal hydraulics mesh. The utilization of the additional feature has
a negligible effect on the total run time.

Different codes have been already coupled with MCNP via the input files. This method,
although simple is very inefficient, due to the resulting massive inputs. For instance, a MCNP
input describing 9 PWR assemblies with subchannel level thermal hydraulics and 20 axial
nodes requires more than one million lines of input. This input takes 1.5 hours for MCNP to
process. On the contrary, loading the input and the necessary nuclear data for the quarter
PWR core using the internal coupling strategy described in this paper takes about 7 minutes,
where most of the time is lost reading the cross sections. Therefore, coupling via the inputs is
not practical for realistic (large) geometries. It should be clearly understood that the on-the fly
material definition is completely equivalent to the MCNP input and should produce identical
results. This was tested on various geometries and in all the cases the methodology was
confirmed.

In [12] similar to the presented here idea, was implemented. Simplified coarse mesh thermal
hydraulics was used, which introduces a significant degree of averaging. Due to the lack of
adequate variance reduction methodology, the authors have also used a coarse mesh for
estimating the power distribution. A potential pitfall is the use of tallies for tracing the particle
location. This method is computationally expensive and was not used in this work. Instead
a custom build tallying subroutine with bin structure optimized for dealing with reactor core
lattices was developed and particle location was tracked directly using the absolute coordi-
nates. Therefore, the standard tallying subroutines and bin structures in MCNP were not
used. The differences between the standard and modified MCNP input reported in [12], un-
der normal circumstances should not be present. According to the authors the scheme was
applied to a problem consisting of multiple assemblies, however, each assembly is treated as
a single channel, therefore, simplifying the coupled calculation immensely by both reducing
the number of tally bins and using a simplified thermal hydraulics model.

An internal thermal hydraulics module was implemented in [15]. Unfortunately the MC21
Monte Carlo reactor physics code is not available for use outside the Knolls Atomic Power
laboratory.
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Application of the internal coupling scheme to the
quarter core PWR UOX-MOX benchmark problem

10.1 Validation of the geometry modeling with the bench-
mark reference solutions

To verify that no mistakes were done when modeling the material and the geometry distribu-
tions, the 2D HZP benchmark exercise was done. In this case, reflective boundary conditions
are imposed on the axial bounding planes and the geometry cut planes. Vacuum boundary
conditions are imposed on the lateral surfaces. The thermal hydraulic conditions are held
fixed. The entire core has a homogeneous temperature of 560 K. The moderator density is
0.75206 g/cm3 and the soluble boron concentration is 1000 ppm. An analog MCNP calcula-
tion with total of 2×109 histories was run. The results were compared against the benchmark
data. Namely: DeCART 47 energy groups heterogeneous transport solution provided by
the Seoul National University and KAERI, Korea (last update: February 1, 2006) and DORT
16 energy groups heterogeneous transport solution, provided by GRS, Germany (last up-
date: February 1, 2006) [63],[64], [76], [77]. Unfortunately the MCNP data provided by the
benchmark participants contains information only about the eigenvalue.

The core loading pattern is shown in the following figure fig. 10.2. To prevent power peaking in
the pins at the boundary between MOX and UOX fuel elements, pins of different enrichment
are used. The power peaking is caused by the different spectra, this is illustrated in fig. 10.1.
In particular, the flux depression due to the large absorption resonance of 240

94 U at 1eV is
clearly seen.
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Figure 10.1: Neutron spectrum in the twice burn MOX assembly D4 and the fresh UOX
assembly E4 plotted as function of energy.

The large thermal cross sections of the plutonium isotopes cause a clear shift in the spec-
trum. If pins with uniform enrichment were used, large power peaking in the MOX pins
located at the periphery would have been observed.

Figure 10.2: The PWR MOX-UOX core loading pattern as given by [63].



118
Chapter 10. Application of the internal coupling scheme to the quarter core PWR

UOX-MOX benchmark problem

The eigenvalues computed by MCNP and DeCART showed good agreement. In the case
of DORT the observed difference was larger shown in table 10.1. Since Monte Carlo trans-
port provides an accurate solution with almost no approximations, differences between the
stochastic and the deterministic solutions are to be expected. In general, the DeCART has
higher fidelity when compared to DORT . DeCART does not involve a priori homogenized
few-group constant generation, but uses online cross section generation. In order to deal with
the heterogeneity at the pin cell level, the method of characteristic (MOC) is used and the
multigroup cross section data is obtained directly from a cross section library that is normally
used in lattice transport codes [78],[79],[80]. In the case of DORT pin cell homogenized with
16 energy groups and and P1 scattering expansion was used. S1−4 quadrature was used for
representing the angular dependence.

Table 10.1: Eigenvalue estimates

MCNP 1.05858 (2) Continuous energy
DeCART 1.05852 (0) 47 Energy groups MOC

DORT 1.06036 (0) 16 Energy groups Sn

In addition, the assembly averaged power and the pin power distributions for the diagonal as-
semblies, for which the data is available, was compared. The results are shown in table 10.2
and table 10.3. In both the cases MCNP predicted higher power towards the core periphery.
The differences in the assembly power are of the same order of magnitude for both compar-
isons and follow similar patterns. These differences might be explained by the fact that in the
MCNP calculation the reflector was modeled precisely by the defining reflector water volume
and separate steel baffle.

Table 10.2: Assembly power relative difference between DeCART and MCNP given in %.

1 2 3 4 5 6 7 8
A 3.77 4.08 3.20 1.81 0.08 -1.50 -2.42 -2.19
B 4.11 3.97 2.99 1.05 0.26 -1.54 -2.76 -2.00
C 3.20 3.01 2.26 1.04 -0.50 -2.17 -2.76 -2.72
D 1.86 1.10 1.11 -0.13 -0.76 -2.01 -2.83 -1.72
E 0.13 0.20 -0.41 -0.66 -1.87 -2.15 -2.09
F -1.38 -1.63 -2.05 -1.97 -2.09 -2.33 -1.58
G -2.34 -2.75 -2.82 -2.74 -2.02 -1.54
H -2.36 -2.14 -2.61 -1.96

It should be taken into account that the maximum statistical uncertainty for the entire set
of tally bins accumulated during the MCNP calculation was less than 1%. Therefore, the
differences between the stochastic and the deterministic calculations are not due to poor
variance. To ensure proper convergence of the fission source, the initial run was done and
the accumulated fission source was used for the final calculation. As shown by the fission
matrix calculations carried out in chapter five, the dominance ratio of the system under con-
sideration is high and special care should be taken to avoid bias due to an ill converged initial
source distribution. Close observation of the relative errors listed in table 10.2 and table 10.3
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reveals that they have a symmetric distribution, proving that the solution is symmetric when
comparing the values across the diagonal.

Table 10.3: Assembly power relative difference between DORT and MCNP given in %.

1 2 3 4 5 6 7 8
A 2.82 2.16 1.65 0.87 0.41 -1.43 -1.82 -1.41
B 2.19 1.97 1.67 0.71 -0.03 -0.71 -2.47 -1.77
C 1.65 1.69 1.18 0.66 0.04 -1.27 -1.52 -1.59
D 0.91 0.76 0.73 0.91 -0.09 -0.82 -2.02 -1.31
E 0.47 -0.02 0.13 0.00 0.16 -0.89 -0.96
F -1.31 -0.70 -1.14 -0.70 -0.84 -1.45 -0.40
G -1.75 -2.46 -1.58 -1.94 -0.89 -0.36
H -1.61 -1.92 -1.49 -1.25

In addition to the assembly averaged powers, the pin power distribution for the diagonal
assemblies are shown in fig. 10.3 and fig. 10.4. In the case of DORT the difference has
definite a structured pattern. In the case of DeCART a tilt of the pin power distribution is
observed, this is most notable in assemblies C3 , D4 and E5 .

In general, the agreement with the benchmark results is fairly good and it can be safely as-
sumed that the geometry and the material modeling was properly done. Due to the difference
in the mathematical modeling of the neutron transport, differences are to be expected.
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(a) Assembly B2 (b) Assembly C3

(c) Assembly D4 (d) Assembly E5

(e) Assembly F6

Figure 10.3: Relative difference of the pin power distribution of the diagonal assemblies
between DeCART and MCNP given in %.
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(a) Assembly B2 (b) Assembly C3

(c) Assembly D4 (d) Assembly E5

(e) Assembly F6

Figure 10.4: Relative difference of the pin power distribution of the diagonal assemblies
between DORT and MCNP given in %.
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UOX-MOX benchmark problem

10.2 Simulation of the PWR MOX-UO2 benchmark with the
internal coupling MCNP - SUBCHANFLOW

The internal coupling was applied to the hot full power case of the PWR MOX/UO2 bench-
mark [63]. The full definition of the benchmark was used and no approximations were as-
sumed. To avoid user induced mistakes, the material specifications and the geometry data
of the benchmark was processed with the PIRS preprocessor for MCNP [81]. Pin by pin
thermal hydraulics was coupled to the three dimensional Monte Carlo neutron transport.
To tally the fission heat deposition each pin was subdivided into twenty equally sized vol-
umes. JEFF3.1.1 Doppler- broadened data prepared at 50K increments was used and
the temperature dependence of the single differential data was corrected using the pseudo
material mixing approach. The temperature dependence of the thermal scattering data was
corrected using on-the-fly direct interpolation. The variance of the power estimate was im-
proved using the UFS method. The UFS mesh with resolution of quarter of an assembly was
used. The fission source redistribution function (8.11) was tallied over the inactive cycles. To
speed up the calculations the Wielandt acceleration was used only to converge the fission
source distribution and was disabled during the active cycles. The shift parameter ke can
be effectively estimated using the eigenvalue from the previous coupled iteration, since the
eigenvalue of the coupled system computed in the current iteration is close to the eigenvalue
computed during the previous iteration. The fission source convergence according to the
Shannon entropy criterion was met within 20 criticality cycles for all the MCNP runs. Dis-
abling the Wielandt acceleration restores the original dominance ratio of the system. Using
the stochastic approximation technique, this effect is corrected and results in no negative
effects in contrast to the standalone calculations. The final estimate of the power profile is
the combination of all the power profile estimates during the N coupled iterations, taken with
weight 1/N . Therefore, the combined power profile has the combined statistics from all the
runs and does not suffer from the deficiencies of the usual standalone criticality calculations.
This result is a unique consequence of the relaxation scheme, that further justifies its ef-
fectiveness. Moreover, in the chapter on variance reduction it shown that by using the UFS
scheme it is possible to reach results that are on average close to the ones obtained by using
the Wielandt method.

This coupled calculation would have been impossible if coupling via the input files had been
used. This would have resulted in millions of lines of MCNP input. These massive inputs take
unacceptably long time for MCNP to process. For comparison, a nine assembly MCNP input
having the same resolution as the one used for the current model takes three hours to be
processed. In contrast the internal coupling takes about six minutes to set up the problem,
where most of the time is lost reading the cross section data. To further improve the file I/O
the cross section data was stored in binary format.

Each coupled iteration was run with a total of 1× 109 histories and an ensured maximal vari-
ance of 1.9% over all tally bins. This quality of the tally estimates would have been difficult to
achieve if analog transport had been used, especialty taking into account that approximately
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3× 105 tally bins were accumulated. In principle, since the power profile in the current run is
a weighted sum of the power profiles from the previous runs, any desired convergence can
be achieved and the utilization of the UFS scheme at first glance might seem unnecessary.
In practice, to suppress the large statistical uncertainties a significant number of coupled it-
erations would be needed. The variance reduction has the effect of reducing the propagated
uncertainties from equation (9.6). Numerical tests on smaller models showed that improving
the variance using UFS in addition to the stochastic approximation scheme reduces the num-
ber of coupled iteration needed by more than a half before the same degree of convergence
is reached.

The coupled calculation was stopped after reaching ε = 0.16% and completing N = 23

coupled iterations. The value of ε should be regarded as an additional uncertainty on the
power estimate. As evident from fig. 10.5 the convergence parameter behaves as N−1, as
expected by the theory of stochastic approximation. The same figure also shows the pin
power distribution.

Figure 10.5: Convergence ε as a function of the coupled iteration N and two dimensional pin
power distribution.

The results from the internal coupling between MCNP and SUBCHANFLOW were com-
pared against the PARCS two energy groups nodal diffusion solution provided by the Purdue
University, USA (last update: February 1, 2006) and the SKETCH-INS two energy groups
nodal diffusion solution provided by JNES, Japan (last update: February 1, 2006). For com-
paring the axial averaged power profile, the eight and the two energy groups PARCS solu-
tions were used. The eight energy groups PARCS solution does not provide pin by pin data,
only the total assembly power was compared.

The comparison of the axial core averaged power distributions and the core averaged fuel
temperature distributions is shown in fig. 10.7. Both parameters show good agreement with
the data available from the benchmark. Due to the high pressure in the system of 15.5 MPa,
the axial variation of the coolant density was limited. Therefore the change of the moderation
in the coolant was not strong enough to induce strong power shift towards the core inlet.
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The situation would have been much different if a BWR geometry had been simulated. An
example of a large power shift due to boiling in the upper plenum are shown in [2]. The three
dimensional fuel temperature and coolant density are shown in fig. 10.6.

Figure 10.6: Three dimensional coolant dentistry and fuel temperature distributions, having
single fuel pin resolution, computed by the coupled system MCNP - SUBCHANFLOW .

It is interesting to note that the fuel temperature predicted with SKETCH-INS does not coin-
cide by the values provided by MCNP - SUBCHANFLOW and PARCS-8G, where the power
shows very good agreement. This also holds for the regions having the lowest power i.e. the
lower and uppermost core slices, which suggests that different thermal conduction models
were most probably used in SKETCH-INS.

Figure 10.7: Core averaged fuel Doppler temperature and power distributions plotted as
functions of the core height.

The comparison of the pin and assembly power distributions is shown in ta-
ble 10.4,figs. 10.8(a) to 10.8(f),table 10.5,table 10.6 and figs. 10.9(a) to 10.9(f). In all the
cases, the differences increase approaching the core periphery. One possible explanation is
the anisotropic effect present near reflectors that violates the assumptions of diffusion theory.
In addition, to fulfill the condition of a low leakage core once and twice burned assemblies
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are located at the core periphery. The difference between PARCS 2 and 8 groups and MCNP
is smaller than the difference between MCNP and SKETCH-INS 2G . These differences are
to be expected since a very precise and very approximate solution are compared. Never the
less, the differences are not large. This fairly good agreement might be explained with the
fact that no control rods are inserted and the core represents a standard PWR core loading.
The absence of control rods and heterogeneities typical for the modern designs, such as
generation four reactors, ensures that the conditions for applying the diffusion approximation
hold. For instance, if a reduced moderated PWR having axial and radial breeding blankets
[82] was considered. The differences with respect to the reference deterministic calculations
provided by the benchmark participants are shown hereafter and are computed using the
following formula

Difference = 100× Daterminisitc case−MCNP
Daterminisitc case

(10.1)

Table 10.4: Assembly power relative difference between SKETCH-INS 2G and MCNP
given in %.

1 2 3 4 5 6 7 8
A -3.59 -3.92 -2.95 -1.48 -0.13 1.94 3.61 3.45
B -3.91 -3.36 -2.27 -1.32 -0.73 1.19 2.58 3.81
C -2.93 -2.26 -2.14 -1.08 -0.42 0.47 3.45 3.73
D -1.51 -1.37 -1.09 0.14 -0.74 0.27 1.24 2.41
E -0.27 -0.86 -0.51 -0.79 -0.31 1.01 1.49
F 1.71 1.06 0.39 0.22 0.98 -1.51 -0.01
G 3.53 2.49 3.40 1.19 1.49 0.05
H 3.39 3.79 3.65 2.36

Table 10.5: Assembly power relative difference between PARCS 2G and MCNP given in
%.

1 2 3 4 5 6 7 8
A -1.99 -2.27 -1.37 -0.66 0.34 0.61 1.37 2.01
B -2.26 -2.01 -0.90 -0.15 0.01 1.09 0.50 1.97
C -1.35 -0.89 -0.74 -0.18 0.06 0.52 1.55 2.71
D -0.69 -0.20 -0.19 0.71 -0.04 0.19 -0.13 1.35
E 0.20 -0.12 -0.02 -0.08 0.29 -0.12 0.00
F 0.37 0.96 0.44 0.14 -0.15 -1.13 0.13
G 1.29 0.41 1.48 -0.18 -0.01 0.19
H 1.95 1.95 2.63 1.30
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Table 10.6: Assembly power relative difference between PARCS 8G and MCNP given in
%.

1 2 3 4 5 6 7 8
A -0.65 -1.32 -0.52 -0.18 0.83 -0.17 0.80 1.55
B -1.31 -1.05 -0.08 -0.18 0.27 1.19 -0.99 1.38
C -0.50 -0.07 -0.04 0.26 0.43 -0.25 0.98 1.72
D -0.21 -0.23 0.24 0.93 0.18 0.16 -1.59 1.24
E 0.69 0.14 0.35 0.14 0.70 -0.32 -0.06
F -0.41 1.06 -0.32 0.11 -0.35 -2.52 0.20
G 0.72 -1.08 0.93 -1.64 -0.06 0.26
H 1.49 1.36 1.64 1.19

The final estimated value for the eigenvalue was keff = 0.99981 at 1600 ppm of soluble
boron concentration. The pin power distribution also shows a difference with respect to the
benchmark data. These differences are in most of the cases within ±3% and are in good
agreement with the benchmark data. It should be taken into account that the pin power
distributions are tallied directly by MCNP . Whereas in the case of deterministic codes the
pin power distribution is reconstructed using the data from the nodal calculation and the data
available from the lattice calculation used to produce the homogenized cross sections [83],
[84]. The pin data is normalized by dividing by the mean. Using this normalization to obtain
the pin power one should multiply the corresponding pin power value by the corresponding
assembly power.

The pin powers have different magnitudes but close observation shows a similar pattern.
This can be explained with the fact that the both deterministic codes used similar pin power
reconstruction methodology for calculating the pin powers.

In addition to the power distribution data, the distributions of the assembly averaged fuel
temperature, the assembly averaged coolant temperature and the coolant densities were
compared. For the latter two quantities no comparison is shown because the difference is
less than 1.0% for all the values. In the case of the internal coupling MCNP - SCF the as-
sembly averaged quantities were computed by computing the average of the heterogeneous
data obtained from the subchannel calculation. In the case of PARCS and SKETCH-INS
2G coarse mesh thermal hydraulics was used. The comparison is shown in table 10.7,ta-
ble 10.9,table 10.9. Good agreement was found in all the cases compared.
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Table 10.7: Assembly averaged fuel temperature relative difference between SKETCH-INS
2G and MCNP given in %.

1 2 3 4 5 6 7 8
A -0.88 -1.02 1.21 -1.91 0.16 -2.22 1.55 1.89
B -1.02 -2.42 0.06 -3.66 1.62 2.76 -2.19 -4.17
C 1.23 0.06 1.11 -0.05 0.44 -2.06 1.89 0.64
D -1.92 -3.69 -0.06 -5.83 2.14 1.94 -5.60 7.03
E 0.09 1.55 0.39 2.11 4.62 0.42 -9.36
F -2.37 2.69 -2.11 1.91 0.41 3.80 11.95
G 1.51 -2.24 1.85 -5.63 -9.36 11.96
H 1.87 -4.18 0.61 7.03

Table 10.8: Assembly average fuel temperature relative difference between PARCS 2G and
MCNP given in %.

1 2 3 4 5 6 7 8
A -0.63 -0.13 -0.13 0.87 0.68 -2.43 1.41 0.69
B -0.12 -0.35 0.03 -3.02 1.06 1.04 -2.49 0.81
C -0.11 0.03 0.22 1.05 0.77 -2.57 1.47 -0.67
D 0.86 -3.05 1.04 -2.31 0.99 0.78 -2.80 0.38
E 0.60 0.98 0.72 0.96 0.59 0.54 0.09
F -2.58 0.96 -2.63 0.75 0.52 -3.00 0.04
G 1.37 -2.55 1.44 -2.84 0.08 0.05
H 0.68 0.80 -0.70 0.37

Table 10.9: Assembly averaged fuel temperature relative difference between PARCS 8G
and MCNP given in %.

1 2 3 4 5 6 7 8
A 0.25 0.61 0.48 1.29 1.02 -2.85 1.13 0.57
B 0.61 0.35 0.57 -2.95 1.31 1.15 -3.33 0.63
C 0.49 0.58 0.73 1.43 1.08 -2.99 1.20 -0.97
D 1.27 -2.98 1.42 -2.11 1.22 0.84 -3.57 0.37
E 0.95 1.23 1.03 1.19 0.87 0.49 0.11
F -3.00 1.09 -3.05 0.80 0.47 -3.64 0.07
G 1.09 -3.39 1.17 -3.61 0.11 0.08
H 0.55 0.62 -1.00 0.36

As seen from table 10.7, there are insignificant differences in the fuel temperature between
MCNP - SUBCHANFLOW and SKETCH-INS 2G . There are similarly large differences
between the benchmark reference solution of PARCS 8G and SKETCH-INS 2G . The
comparison is shown in table 10.10 and table 10.11.
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Table 10.10: Assembly power relative difference between SKETCH-INS 2G and PARCS
8G given in %.

1 2 3 4 5 6 7 8
A -3.03 -2.68 -2.52 -1.40 -1.07 2.01 2.73 1.83
B -2.68 -2.40 -2.29 -1.25 -1.11 -0.10 3.44 2.35
C -2.52 -2.29 -2.21 -1.44 -0.96 0.61 2.39 1.94
D -1.40 -1.25 -1.44 -0.90 -1.03 0.01 2.68 1.08
E -1.07 -1.11 -0.96 -1.03 -1.12 1.22 1.44
F 2.01 -0.10 0.61 0.01 1.22 0.88 -0.31
G 2.73 3.44 2.39 2.68 1.44 -0.31
H 1.83 2.35 1.94 1.08

Table 10.11: Assembly averaged fuel temperature relative difference between SKETCH-INS
2G and PARCS 8G given in %.

1 2 3 4 5 6 7 8
A -0.77 -1.17 0.51 -2.29 -0.58 0.42 0.29 0.80
B -1.17 -1.94 -0.35 -0.47 0.23 1.09 0.76 -2.91
C 0.51 -0.35 0.27 -1.06 -0.46 0.63 0.47 0.96
D -2.29 -0.47 -1.06 -2.45 0.66 0.78 -1.31 4.03
E -0.58 0.23 -0.46 0.66 2.54 -0.05 -5.72
F 0.42 1.09 0.63 0.78 -0.05 4.79 7.17
G 0.29 0.76 0.47 -1.31 -5.72 7.17
H 0.80 -2.91 0.96 4.03

These differences can not be easily explained because the details of the thermal hydraulic
modeling in SKETCH-INS 2G are not available. The overall behavior of the difference is
similar to table 10.7. Close observation also shows that the difference in fuel temperature in
some cases does not exactly match the difference in power. This is due to the different heat
conduction models used for the fuel by the thermal hydraulic codes.

In this comparison the results of the newly developed coupled code system MCNP - SUB-
CHANFLOW were compared to the international PWR UOX-MOX benchmark. Since low
order diffusion approximation, where the angular dependence is ignored is compared to high
resolution transport, one can ask whether the validation is credible. To answer this ques-
tion, one has to understand in detail the main idea of the internal coupling. Namely, that
the methodology of introducing the thermal hydraulic feedback is completely identical to the
standard MCNP input. This was proven in special research paper [71]. Meaning, that the in-
ternal coupling is an advanced method of introducing internal mesh, which delivers the same
results as the standard MCNP input by supply the information via the memory and avoiding
using external input. Therefore, the accuracy and the physics of the validated general pur-
pose Monte Carlo code MCNP is not altered. Or alternatively formulated, the same results
could have been obtained at the expense of creating massive input files, containing explicitly
defined pseudo materials, and waiting many hours for MCNP to process them and to load
the information in the memory.
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Since the internal coupling is not the sole code modification, one might argue that the newly
implemented UFS method, the Wielandt acceleration or the thermal scattering data are intro-
ducing errors. The Wielandt method was extensively verified by comparing it to the standard
MCNP calculation and it was proven to be consistent in all the cases. Moreover, since the
Wielandt acceleration is used only during the inactive cycles of the coupled calculation, even
if it was erroneous the final results would have not been biased, because the inactive ini-
tial cycles used to converge the fission source are not reflected in the final estimate and
the source distribution is continuously updated after each criticality cycle. The only problem
would have been a not sufficiently converged fission source distribution and an error mes-
sage form MCNP regarding the standard deviation of the Shannon entropy. No such error
messages were detected.

Since the pseudo material mixing performed by the internal coupling is completely equiva-
lent to the standard pseudo material mixing done via the input files, no errors are possible.
The pseudo Material mixing is a standard technique used in MCNP and is well accepted
and validated with respect to experimental data [74]. The only potential error might come
form the new methodology for interpolating the thermal scattering data. This methodology is
extensively tested and consistent results are reported in both Chapter 4 and in [85].

The tally subroutine is a highly optimized equivalent of the standard MCNP tallies and was
proven to deliver completely identical values as the standard MCNP tallies. Regarding the
introduction of nonanalog transport, the consistency of the newly implemented UFS method
was validated against the GVR scheme. The maximum difference observed over all the
3×105 tally bins was 3%. The eigenvalues were identical and the absolute difference was
less than the statistical uncertainty table 8.2.

Therefore, each step of the coupled calculation can be verified and proven correct both as
single units and as an integrated system. Much can be said about the quality of the results by
taking into account the precise nature of the code modifications. The difference between the
deterministic and the Monte Carlo solutions of the benchmark are therefore due to the much
less accurate deterministic solution. Since the test problem is precisely formulated so that
the assumptions utilized by the deterministic code are valid, the deterministic solution is close
to the full transport Monte Carlo solution. The situation would have been much different if
heterogeneous core with control rods inserted or an advanced design with breeding blankets
and seed assemblies was used. For this case, the anisotropy assumption would no longer
be true and the deterministic codes are known to fail in the regions where strong anisotropy
exists. Nevertheless, as part of a future study the scheme can be compared with respect to
experimental data, but this goes beyond the scope of this thesis and is not an urgent issue.
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Figure 10.8: Relative difference of the pin power distribution between SKETCH-INS 2G and
MCNP given in %.

(a) Assembly A1 (b) Assembly B2

(c) Assembly C3 (d) Assembly D4

(e) Assembly E5 (f) Assembly F6
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Figure 10.9: Relative difference of the pin power distribution between PARCS 2G and
MCNP given in %.

(a) Assembly A1 (b) Assembly B2

(c) Assembly C3 (d) Assembly D4

(e) Assembly E5 (f) Assembly F6
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Monte Carlo based depletion calculations

Monte Carlo codes have been linked to depletion modules [16], [17], [18], [19], [20], [21] and
[22]. Those coupled systems use either external depletion codes or internal modules. The
depletion capability significantly broadens the scope of Monte Carlo codes by simulating the
time dependence of nuclear inventories using accurate estimates of the neutron flux distri-
bution. The main disadvantage Monte Carlo based depletion calculations have been the sig-
nificant computational effort to obtain accurate estimates of the neutron flux distribution and
the reaction rates needed by the depletion modules. Therefore, application of those codes
has been limited to problems of modest complexity. Another major issue that has prohibited
the wide application of Monte Carlo based depletion systems is the numerical stability of the
algorithms used for solving the depletion equation system [86]. This is especially problem-
atic when simulating three dimensional depletion problems [87], [23]. This instability is due
to solving the depletion equation system by explicit methods [88], [89] and [90]. This problem
results in an inaccurate flux distribution and is not due to the variance of the Monte Carlo flux
estimate. The stability of the explicit schemes can be in principle improved by using fine dis-
cretization i.e. small depletion steps. Due to the significant computational effort required by
Monte Carlo this is not a very efficient strategy. Another problem is the efficient information
exchange between the stochastic transport code and the depletion modules. Both the stabil-
ity of the depletion calculation and the efficient code to code data interchange are addressed
in this thesis. The backward Euler method is used as an alternative to the explicit schemes.
Being an unconditionally stable, the method can be used to increase the depletion step size
and ensure accurate solution. The stochastic approximation scheme was applied to solve
the non linear equations arising when applying the backward Euler method. This strategy
has been shown to stabilize the depletion calculation even when using depletion steps larger
than one month [91].

132
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11.1 Fuel depletion calculations

The long term reactor evolution is governed by the changes in composition due to fuel de-
pletion and the manner in which these are compensated. The objective of the depletion
calculation is to determine the evolution of the isotope field ni (r, t) as a function of time. The
spatial dependence of the nuclide field subsequently determines the distribution of the neu-
tron flux both as a function of energy and coordinates. Each fission event usually produces
two intermediate mass nuclei, in addition to releasing two or three neutrons. The mass spec-
trum of the fission products is determined by the double peak distribution having a maxima
at about 100 and 140 amu. The fission products are neutron rich and have a large probability
of undergoing β+ or β− decay. Some of the fission products like 135Xe and 149Sm have large
thermal absorption cross sections and strongly effect the reactivity. The general equations
[31] governing the production and destruction of a fission product “i” are given by

dni (r, t)

dt
= γiΣi +

∑
i

(
λj→i + σj→iφ

)
ni (r, t)−

(
λi + σiaφ

)
ni (r, t) . (11.1)

The above equations can be written in compact matrix form [91]

N (r, t)

dt
= M (φ)N (r, t) , (11.2)

with

M (φ) =

∫ ∞
0

φ (r, E, t)X (T (r, t)) dE + D. (11.3)

Where X is the cross section and fission yield matrix, D is the decay matrix and T (r, t) is the
temperature field. According to the theory [86] (11.2) is solved by

N (r, t) = N0 (r) exp (M (φ) ∆t) (11.4)

Different methods have been implemented to compute the matrix exponential (11.4). The
most recent implemented technique is the Chebyshev rational approximation method [92].
This method has been implemented in the SERPENT continuous energy Monte Carlo code.
Equation (11.4) gives the nuclide concentration at the end of the depletion step. The most
simple scheme is to use the the beginning of time constant flux approximation ( BOT ) given
by algorithm 2.

Algorithm 2 Beginning of time constant flux approximation scheme.

1: N (r, t0) . Initial nuclide concentration
2: for n ← 0:N do
3: φn ← φB(N (r, tn))
4: N (r, tn+1)← N (r, tn) exp (M (φn) ∆tn)

5: end for
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Where φB is the fundamental mode solution. Since the BOT scheme does not take into
account the changes of the flux and the nuclide field that occur over the depletion step ∆tn,
this method is conditionally stable, where the stability strongly depends on the depletion step
size. This method was implemented in [18]. The strategy of the method can be readily
illustrated by considering the following ordinary differential equation problem

dy

dt
= f (t, y) . (11.5)

The BOT in this case would be similar to the explicit Euler method

yn+1 = yn + f (tn, yn) ∆t. (11.6)

Other methods have been developed with the aim of enabling larger depletion steps, by
correcting for the changes that occur over the depletion step. Integrating (11.5) from tn to
tn+1

∫ tn+1

tn

dy

dt
dt =

∫ tn+1

tn

f (t, y) dt. (11.7)

The above integral is solved using trapezoidal rule to obtain

yn+1 − yn
∆t

=
f (tn, yn) + f (tn+1, yn+1)

2
+ O

(
∆t2

)
. (11.8)

This is the Euler predictor-corrector method ( PC ), being an implicit method because infor-
mation at step n+1 is needed to evaluate the right hand side. Instead of using f(xn+1, yn+1)

a predictor value is used

Predictor step: y∗ = yn + f (tn, yn) ∆t+ O
(
∆t2

)
Corrector step: yn+1 = yn +

(f (tn, yn) + f (t∗, y∗)) ∆t

2
+ O

(
∆t2

) (11.9)

The PC method has been implemented in many Monte Carlo based depletion systems [16],
[20] and [93]. The following algorithm 3 is used.

Algorithm 3 The predictor-corrector scheme.

1: N (r, t0) . Initial nuclide concentration.
2: for n ← 0:N do
3: φn ← φB(N (r, tn))
4: N∗ (r, tn+1)← N (r, tn) exp (M (φn) ∆tn) . Predictor step.
5: φn ← φB (N∗ (r, tn+1))
6: N (r, tn+1)← N (r, tn) exp (M (φn) ∆tn) . Corrector step.

7: N (r, tn+1)← N∗ (r, tn+1) + N (r, tn+1)

2
. Combining the predictor and the corrector.

8: end for
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Although, both the above methods have been shown to give wrong results when applied to
three dimensional depletion problems [23]. It is well known from the theory of the ordinary
differential equations that the step size limitation can be lifted by using an implicit scheme.
One such choice is the backward Euler method. At first glance it is similar to (11.6) besides
one crucial modification, the right hand side is evaluated at time n+ 1

yn+1 = yn + f (tn+1, yn+1) ∆t. (11.10)

This modification changes the scheme completely. To obtain yn+1 in the general case, one
has to solve a non linear problem. This can be done using different methods. In [91] it has
been proposed to use a similar to the backward Euler method called the Stochastic Implicit
Euler method SIE . Equation (11.4) can be transformed to nonlinear problem by noting that

φn+1 = φB (N (r, tn+1)) . (11.11)

Substituting (11.11) in (11.4) one obtains

N (r, tn+1) = N (r, tn) (r) exp (M (φB (N (r, tn+1))) ∆t). (11.12)

This equation is similar to the solution of the nonlinear problem that arises when using the
backward Euler method (11.10). The root of the nonlinear equation can be estimated by the
Stochastic Approximation Scheme. The depletion scheme corresponding to the SIE scheme
with relaxation of the nuclear field is shown in algorithm 4.

Algorithm 4 The SIE implicit scheme with relaxation of the nuclide field.

1: N (r, t0) . Initial nuclide concentration.
2: φ0 ← φB(N (r, t0))
3: for i ← 0:N do
4: N

0
(r, ti+1)← N (r, ti) exp (M (φi) ∆t)

5: for n ← 1:C do
6: φni+1 ← φB(N

n−1
(r, ti+1))

7: Nn (r, ti+1)← N (r, ti) exp
(
M
(
φni+1

)
∆t
)

8: N
n

(r, ti+1)← 1

n

n∑
j=1

Nj (r, ti+1) . Relaxation of the nuclide fields.

9: end for
10: N (r, ti+1)← N

C
(r, ti+1)

11: φi+1 ←
1

n

C∑
j=1

φji+1

12: end for

According to the above algorithm , the SIE scheme is very similar to the scheme used in the
coupled thermal hydraulics calculations where the power estimate is relaxed. The difference
here is that the nuclide field is relaxed. As claimed in [87] the scheme allows longer times
steps. Tests cases have been run with time steps of 60 days. The method of relaxing the
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nuclide field is considered unstable because the fuel is depleted with the flux which might
have large statistical errors [91]. In general, the effect of the large variances on the credibility
of the calculation is not known. Therefore, a modified algorithm relaxing the neutron flux
is proposed in algorithm 5. In this case the variance of the neutron flux is reduced with the
number of inner iterations and every subsequent depletion calculation is run with an improved
flux distribution.

Algorithm 5 The SIE implicit scheme with relaxation of the neutron flux.

1: N (r, t0) . Initial nuclide concentration.
2: φ0 ← φB(N (r, t0))
3: for i ← 0:N do
4: N

0
(r, ti+1)← N (r, ti) exp (M (φi) ∆t)

5: for n ← 1:C do
6: φni+1 ← φB(N

n−1
(r, ti+1))

7: φ
n

i+1 ←
1

n

n∑
j=1

φji+1 . Relaxation of the neutron flux.

8: Nn (r, ti+1)← N (r, ti) exp
(
M
(
φ
n

i+1

)
∆t
)

9: end for
10: N (r, ti+1)← N

C
(r, ti+1)

11: φi+1 ←
1

n

C∑
j=1

φji+1

12: end for
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11.2 Xenon buildup and oscillations

Since the stability of the depletion scheme is to be tested by searching for unphysical xenon
oscillations. The theoretical description of the 135Xe oscillations is presented hereafter. 135Xe
has an extremely large thermal absorption cross section of approximately 2.6×106 barns and
a high cumulative fission yield. Following the initial start up, a rapid buildup of 135Xe follows.
Within 30 to 40 hours an equilibrium concentration is reached at constant power. 135Xe is
produced directly from fission and is a product of the β− decay chain 135Te→ 135I→ 135Xe.
The direct fission yield is about 0.2% while the combined yield of the precursors is about 5.8
%. The 135Xe concentration is governed by the following system of equations [31]

C
(

135I
)

dt
= γ

135IΣfφ− λ
135IC

(
135I
)

C
(

135Xe
)

dt
= γ

135XeΣfφ+ λ
135IC

(
135I
)
−
(
λ

135Xe + σ
135Xe
a φ

)
C
(

135Xe
)
.

(11.13)

The large absorption in 135Xe fig. 11.1, strongly affects the spatial distribution of the neutron
flux. 135Xe is depleted through the reaction 135Xe(n, γ)136Xe. 136Xe has a thermal absorption
cross section of only few barns, and has only limited influence on the flux distribution. In fact,
136Xe has the highest probability of undergoing elastic scattering. If the flux level in some
region are changed, the immediate effect is in the high flux regions and the 135Xe is depleted,
whereas in regions with low flux level 135Xe builds up via the β− decay of 135I. The latter
corresponds to removing the flux terms from (11.13). These changes reinforce the flux level
shift, which subsequently leads to even larger changes. Eventually saturation is reached and
the process turns over. In the regions of high flux levels, the 135Xe concentration starts to
increase and the power flux shift is reversed. These oscillations are eventually damped and
an equilibrium 135Xe concentration is reached. The equilibrium C

(
135Xe

)
eq and C

(
135I
)

eq

concentrations can be obtained from (11.13)

C
(

135Xe
)

eq = Σfφ
γ

135I + γ
135Xe

λ135Xe + σ135Xe
a φ

,

C
(

135I
)

eq =
γ

135IΣfφ

λ135I

(11.14)
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Figure 11.1: Neutron cross sections of 135Xe as a function of incident neutron energy.

The coupling between the neutron flux level and the 135Xe concentration is obtained with the
MCNP - KORIGEN system, as shown in the following figures fig. 11.2. The geometry and
material data are taken from [2]. The fuel is depleted with depletion steps of 0.5 MWd/t.
Initially no 135Xe is present in the system and the flux level is high. After the first depletion
step 135Xe begins to build and the flux level is depressed. Subsequently through the reaction
135Xe(n, γ)136Xe, 135Xe is depleted and the flux rises again. This cycle continues over the
next steps.

Figure 11.2: Flux distribution and 135Xe concentration for different depletion steps showing
the instability of the depletion calculation.

These oscillations are due to the large time step. One should take into account that the
oscillations occur at a constant power and significantly after the time needed for 135Xe to
reach equilibrium and are purely due to the explicit coupling scheme. One might be misled
into believing that these oscillations will be damped, unfortunately this is not the case. Since
the time constant of the 135Xe oscillations is much smaller than the depletion step size, the
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concentration of xenon should be reached within the depletion step. Moreover, from (11.14)
follows that the equilibrium concentration should have the symmetry of the flux distribution.
Therefore, the 135Xe oscillations and the unphysical flux tilts observed in Monte Carlo deple-
tion calculations are a purely numerical effect related to the stability of the depletion scheme.
To dampen these oscillations, deterministic core solvers usually impose equilibrium xenon
concentration obtained by multiple neutronics solutions [94]. The equilibrium xenon concen-
tration has been implemented in the Monte Carlo depletion systems. An optimized algorithm
has been implemented in [95] the skipped cycles of the criticality calculation are divided into
a number of xenon update cycles. Each xenon update cycle encompasses a number of criti-
cality power iterations, during which the relevant reaction rates are tallied. At the end of each
xenon update cycle they are used to recalculate C

(
135Xe

)
eq. Another option is to use implicit

depletion scheme [91].
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11.3 The coupling between MCNP and KORIGEN

To perform the depletion analysis, MCNP was coupled to the depletion module BURNUP of
the in house development code KANEXT , via the interface MCBURN [96]. Where KANEXT
is the successor of KAPROS-E [97], [98]. The depletion module of KANEXT is based on
the KORIGEN code [99],[100]. It have been validated using experimental data [98]. The
new material compositions are computed after each depletion step and supplied via the
internal coupling. To do this a coordinate and irradiation dependent composition vector,
having components ρk (r,BT) is introduced and supplied via the internal coupling

Σt(r, E, Tinput) =

N∑
k=1

ρk (r,BT) ·
R∑
x=1

σx,k(r, E, Tinput), (11.15)

where BT denotes the irradiation level. The internal coupling once again takes the feedback
(in this case the depleted compositions) on-the-fly during the transport calculation and no
artificial splitting of the geometry into sub volumes is necessary. By replacing the number
densities supplied by the MCNP input ρcell · fk with the number densities provided by the
depletion calculation ρk (r,BT) in (9.19). The thermal hydraulic feedback can be also taken
into account using the internal coupling.

Since the depletion calculations need one group transmutation cross sections. These can be
in principle tallied directly by the Monte Carlo code. This approach results in several times
computational time increase and was not considered practical. Therefore, a multigroup ap-
proach was used for generating the one group transmutation cross sections. The 350 group
library structure developed for KANEXT [101] was used. The neutron spectrum distribution
from MCNP is subsequently used to collapse the 69 group library to the problem dependent
one group transmutation cross sections.

Since tallies in MCNP are normalized per one source neutron, the neutron flux should be
scaled to the user specified power level [16],[102]. Denoting the energy released per fission

by Qfiss, the fission reaction in a system having power output Ptot produces
νPtot

Efiss
neutrons.

Therefore, the value of the flux normalized to the system power is given by (11.16)

φ

[
n

cm2 − s

]
=

ν × Pcell

[
J
s

]
1.602× 10−13 ×

[
J

MeV

]
×Qfiss [MeV]× keff

φn. (11.16)

Where φn is the tallied track length flux estimate as provided by MCNP . Since the cell
averaged fluxes are needed for the depletion calculation, the power output of the cell of
interest needs to be computed. This is done by multiplying the total system power by the
ratio of the fission heat deposition in the cell of interest by the total fission heat deposition in
the entire geometry (11.17)
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Pcell = Ptot ×

∫ ∞
0

∫
Vcell

Qfiss (r, E) ΣF (r,E)φ (r, E) dEdr∫ ∞
0

∫
Vtotal

Qfiss (r, E) ΣF (r,E)φ (r, E) dEdr

. (11.17)

In practice, both the flux and the fission heat deposition are needed. Since in all the calcula-
tions the Wieland shift was used to accelerate the fission source convergence, keff(11.17) is
replaced by the shifted eigenvalue computed by the Wieland shift kw.

The properly normalized fluxes and the spectra for the individual depletion cells are sub-
sequently supplied to KORIGEN via specially designed interface. Since all the depletion
calculations are independent of each other, they are run as independent MPI jobs. This
helps to accelerate the depletion part of the calculation. Since there is no data interchange
between the depletion calculations almost a linear speedup was obtained.



142 Chapter 11. Monte Carlo based depletion calculations

11.4 Practical analysis of the stochastic implicit Euler
method

According to the general theory of the backward (implicit) Euler method, stability does not
guarantee convergence to the true solution and in general deviates significantly as the step
h becomes large. Consider the ordinary differential equation

dy

dx
= −ky. (11.18)

The solution of this problem for k = 10 is shown in below. As evident from fig. 11.3 although
the stable implicit solution deviates significantly from the analytic solution for large step size.

(a) Step h = 1.50E − 1 (b) Step h = 1.00E − 1

(c) Step h = 5.00E − 2 (d) Step h = 1.00E − 3

Figure 11.3: Deviation from the analytic solution as a function of step size, showing that
stability does not guarantee convergence to the true solution.

For the case of the stochastic implicit Euler method with a timestep of 60 days, 14 internal
iterations were run, where each MCNP - KORIGEN coupled run took 2.5 hours to complete.
Although the solution remained stable, there were some discrepancies when it was compared
with a refined explicit solution using time step of 2 hours. Suggesting that the timestep has
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to be reduced. This is a significant computational penalty for practical calculations, since
a typical operation cycle of a conventional PWR takes 12 months. To avoid these practical
deficiencies a state of the art method proposed in [95] was implemented in the coupled
system MCNP - KORIGEN . The method and the implementation are shown in the following
section.
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11.5 Monte Carlo estimation of the equilibrium 135Xe con-
centration

In general, the rapid change of the 135Xe concentration, at the beginning of the fuel cycle
can be properly estimated by running very fine time steps. After the initial large reactivity
drop due to the build up of xenon, the reactivity change is significantly reduced. Besides the
rapid change of the 135Xe and 135I concentrations the overall isotope fractions remain largely
in tact. Therefore, the balance equations (11.14) can be used to estimate the equilibrium
concentrations. This step saves the large number of initial steps needed otherwise during
the initial xenon build up stage. Consider the equilibrium 135Xe values, written in detail the
expectation values of the unbiased estimators for the reaction rates read

〈
γ

135IΣfφ
〉

=
1

V

∫
V

∫ ∞
0

γ
135I(E)Σf (r, E)φ (r, E) dEdr

〈
γ

135XeΣfφ
〉

=
1

V

∫
V

∫ ∞
0

γ
135Xe(E)Σf (r, E)φ (r, E) dEdr

〈
σ

135Xe
a φ

〉
=

1

V

∫
V

∫ ∞
0

σ
135Xe
a (E)φ (r, E) dEdr.

(11.19)

The estimators (11.19) are reaction rates that can be tallied directly in MCNP . A special
equilibrium xenon subroutine was implemented. There is an important question that has to
be properly addressed. In the language of the Monte Carlo calculation the equilibrium 135Xe
concentrations from (11.20) involve ratio of random variables. The equilibrium concentrations
are now given by the estimators

〈
C
(

135Xe
)〉

eq =

〈
γ

135IΣfφ
〉

+
〈
γ

135XeΣfφ
〉

λ135Xe +
〈
σ135Xe
a φ

〉 ,

〈
C
(

135I
)〉

eq =

〈
γ

135IΣfφ
〉

λ135I

(11.20)

Therefore, it is not easy to find an unbiased estimator for the equilibrium 135Xe concentration.
In [95] it has been shown that

〈
C
(

135Xe
)〉

eq and
〈
C
(

135I
)〉

eq are indeed unbiased estimators.

The necessary fission yield data needed in (11.19) was taken from the JEFF 3.1.1 [103]. The
reaction rates were tallied using spatially written for the purpose routine and using continuous
energy nuclear data. The reaction rates (11.19) are tallied directly in the code by efficiently
utilizing the cross sections computed by MCNP and adapting the energy grid to match the
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discretization used by the fission yields data of JEFF 3.1.1. One particular problem was that
the flux estimates had to be scaled to the reactor power. To achieve this, formula (11.17)
is used. This introduces a significant level of complication, because besides the production
rates, the fission heat generation νΣfφ has to be tallied simultaneously. This was done by
estimating an average number of neutrons released per fission by the subroutine used for
tallying the 135Xe production rates. To normalize the flux the number of neutrons produced
per fission is also needed. In the normal case, its value is computed at the end of each MCNP
run. At the stage when the equilibrium xenon is computed, the number of fission neutrons
is not directly available. To compute ν, the total weight produced from the source wt,s and
lost to fission wt,f was accumulated during the transport calculation. Using this values the
averaged number of neutrons produced per fission can be computed using (11.21). Where
< k > is the averaged eigenvalue from all the completed criticality cycles.

ν =< k >
wt,s

wt,s
. (11.21)

Although, the number of source neutrons per cycle are chosen to provide a representative
sample of the global fission source, it is often not sufficient to produce well converged re-
sults for local reaction rates. These large uncertainties can have a significant impact on
the estimators (11.20) and might lead to erroneous and biased results. Therefore, the equi-
librium concentrations are estimated over the batches of source update cycles. The 135Xe
concentrations are estimated during the inactive cycles of the criticality calculation. Using
this methodology, the I initial criticality cycles are split into M batches containing containing

P =
I

M
cycles of N histories each. For each of those batches the mean was estimated

using

xj =
1

P N

M∑
j=1

xj . (11.22)

After each batch, the 135Xe concentration is updated. The number of histories according to
the nominal source size as specified by the MCNP input is used to normalize the reaction
rate estimators per one starting source neutron. As with the fission source iterations, some
allowance must be done to disregard early estimates of (11.20). At the beginning of the
Monte Carlo Power iteration, the fission source is far from its stationary value and tallying
produces biased results. When running standard criticality calculations, no tallying is done
at that stage. This is unfortunately impossible in the case of the equilibrium 135Xe and 135I
calculation. In this case the reaction rates that are needed (11.19) are part of the feedback
calculation itself. Therefore, to avoid contaminating the final equilibrium concentrations with
biased results, after an initial number of skipped batches (usually 5) the estimators are reset
after each update. Following this initial stage, the tallies are no longer reset, allowing the
estimators to accumulate over a few batches. To obtain a reliable estimate of the 135Xe
concentration, 30 concentration updates were done.

Since the equilibrium concentration of the neutron poisons are calculated as the derivatives
of the flux at the equilibrium values, (11.20) no oscillations are possible. Explicit calculations
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showed that the equilibrium concentrations are reached after 30 hours from the beginning of
the cycle. Therefore, the other isotope concentrations change only by a small amount and
in principle the equilibrium 135Xe calculation can be done with the concentrations of the fuel
isotopes from the beginning of the cycle. However, the best agreement with the explicit fine
step calculation is obtained using the concentrations at the time 135Xe reaches equilibrium
[95].
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11.6 Numerical results

As discussed in the introductory chapter, rapid buildup of 135Xe follows the reactor startup.
This is illustrated in fig. 11.4. The calculation represents a pin cell depleted at constant power

density of 0.2418
kW
g

. For the depletion calculation the 350 energy groups library of KANEXT

was used. To verify the results the SERPENT continuous energy Monte Carlo depletion code
was used [20]. As evident from the plots very good agreement was found. For the Monte
Carlo transport simulation Jeff 3.1.1 data was used. This explains the small difference of only
40pcm for the fresh fuel calculation. Therefore, the difference of 200pcm in the eigenvalue
at the end of the 5 day irradiation period is due to the different data used as input for the
Bateman equations.

(a) Eigenvalue change flowing startup. (b) 135Xe buildup following start up, shown as a
function of irradiation time.

Figure 11.4: Pin cell depletion calculation showing the evolution of the eigenvalue and the
135Xe concentration as a function of irradiation time as computed by

A corresponding three dimensional calculation illustrating the same effect is shown in figures
fig. 11.5 and fig. 11.6.

The results are compared to a deterministic solution obtained by DANTSYS [104]. In this
case the deterministic code replaces MCNP and computes the neutron flux distribution. The
transport model used S8 angular quadrature with P1 scattering expansion and 69 energy
groups. The deterministic system was used to study the general properties of the system.
Since deterministic transport runs considerably faster than the corresponding Monte Carlo
calculation and no stochastic variation of the fission heat deposition are present, the sys-
tem was used as a ’low cost’ comparison tool. As expected, the results are not completely
identical. Since both codes use the same depletion module, the difference is due to the ap-
proximations used by the deterministic system. Moreover, the difference is observed also for
the first depletion step where no depletion feedback is present. Both the calculations predict
similar evolution of the eigenvalue and the 135Xe buildup. As in the case of the pin cell cal-
culation, following the initial accumulation of fission poison and drop in reactivity, the 135Xe
buildup reaches saturation. Due to the stochastic noise, the calculation become unstable
after 20 coupled runs. This can be seen by observing the 135Xe behavior during the last
iterations shown in fig. 11.6.



148 Chapter 11. Monte Carlo based depletion calculations

Figure 11.5: Eigenvalue change flowing startup, shown as a function of irradiation time.

Based on multiple trial runs, the stochastic noise and the bias due to the wrong estimated
neutron source were determined as additional causes for the 135Xe - flux oscillations. To
reduce the stochastic noise and improve the convergence of the fission source, the Wileandt
acceleration method presented in chapter 4 was used. The time step is also chosen small
(0.05 days), so that the instability due to the explicit coupling scheme is prohibited. This made
the calculation computationally expansive. To reduce the dominance ratio of the system,
the spectral shift of the transport operator was kept small. According to (5.14) this large
number of additional neutrons were produced within each cycle. To speedup the calculation,
an analog computation with doubled number of histories was run. This strategy produced
numerical oscillation within few cycles and was not proceeded further. Besides the extra
precocious measures, the explicit calculation started oscillating after 20 depletion steps. This
oscillation was purely numerical in nature, and was caused by the asymmetries of the flux
distribution, caused by the Monte Carlo stochastic effects.

To test the equilibrium xenon concentration two calculations were run. The first was the pin
cell calculation shown in fig. 11.4. Since no spatial oscillations are possible, the pin cell calcu-
lation was used as a validation tool to study the consistency of the new methodology. Using
the simplified numerical model all the features of the new method can be tested, without in-
terferences due to numerical effects. In the case of the pin cell no Wielandt acceleration was
necessary. Equilibrium was assumed to occur after 5 days of irradiation, this assumption is
confirmed further by fig. 11.4. It should be noted that after 5 days of irradiation, the isotopic
content changes. To take this into account, the equilibrium 135Xe concentration was run with
the depletion compositions obtained after 5 days of irradiation. Otherwise, inconsistent re-
sults for the eigenvalue would have been produced, since the Monte Carlo code would have
imposed equilibrium 135Xe concentration using fresh fuel loading. In this case the eigenvalue
would have been higher when compared to the explicit calculation [95].
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Figure 11.6: 135Xe buildup following start up, shown as a function of irradiation time. Shown
are deterministic and Monte Carlo solutions.

Table 11.1: Summary of the eigenvalues and equilibrium 135Xe concentrations for a pin cell
calculation computed by SERPENT and MCNP . The explicit solutions are used to validate
the equilibrium 135Xe computation.

Caluclation Eigenvalue keff
135Xe (at/b-cm) runs time for one run (min)

Explicit SERPENT 1.38654 (14) 1.00595E-08 25 20
Explicit MCNP 1.38431 (12) 1.07115E-08 25 30

MC 135Xe estimate 1.38396 (14) 1.07543E-08 1 33

As evident from table 11.1 the equilibrium values for the multiplication factor are about 250
pcm apart from each other, when comparing the SERPENT and MCNP calculations. The
explicit calculation by MCBURN and the calculation, where the 135Xe production was tallied
by MCNP , show precise agreement. This agreement is kept also for the energy spectrum
fig. 11.7. The large differences in the high energy region are due to poor tally statistics. The
low number of neutrons having energies within this domain resulted in insufficient sampling
and high statistical uncertainty. In this energy region, the 135Xe effect plays no role and the
uncertainties are numerical in nature. To indicate the underlying variance, the associated
uncertainties of the flux estimates were propagated and plotted in fig. 11.7.

The eigenvalue predicted by the direct Monte Carlo tallying of the equilibrium 135Xe concen-
tration is computed using continuous energy fluxes, taking into account the precise geometry,
whereas in the case of the explicit calculation, 350 energy group fluxes were used. Moreover,
the nuclear data for the fission yields, fission cross sections and the decay constants from
distinct libraries were used. In the case of the explicit calculation the data from the KANEXT
libraries was used. Whereas in the case of the Monte Carlo 135Xe estimate, JEFF 3.1.1 data
was used. The main difference between the fission yield data used by the depletion module
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Figure 11.7: Neutron spectrum difference in the fuel pellet between the explicit depletion
calculation and the new method as a function of neutron energy. The corresponding statistical
uncertainties from the Monte Carlo calculation are propagated and shown together with the
computed difference.

of KANEXT and MCNP is the fact that in the latter case, the fission yields are selected based
on the neutron energy and no spectral weighting is used. Via the input of KANEXT is is
possible to define JEFF-based fission yields data as input. The spectral weighting Ansatz
is used in all the cases. This was essential for making the depletion part of the calcula-
tion coherent. In spite of the different nuclear data, the explicit calculation and the Monte
Carlo method for tallying the equilibrium 135Xe concentration produced very close results,
verifying the implementation. The differences observed are small for both the eigenvalue
and the neutron spectrum. In general, it can be concluded that the Monte Carlo equilibrium
135Xe concentration produces reasonable results. Meaning, that the method for normalizing
the flux and the strategy for computing the reaction rates (11.19) were consistently imple-
mented. This difference between MCBURN and SERPENT is also to be expected, since the
codes use different methods for solving the Bateman equations and different nuclear data
sets as input. Clarifying the differences due to the nuclear data goes beyond the scope of
this thesis. In [95] identical set of data was used, and perfect agreement between the Monte
Carlo equilibrium 135Xe calculation and reference explicit calculation was found. This result
was confirmed in this work when the same depletion code was used for solving the depletion
equations.

Clearly the new method outperforms the explicit calculation, since the equilibrium concen-
trations were obtained within a single run, whereas in the case of the explicit calculation 25
runs were needed. This together with the fact that the oscillation are damped, since equi-
librium 135Xe concentration is allays imposed, motivates the decision to implement the new
methodology.
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The primary goal of the research and development presented in this thesis is to enable
Monte Carlo simulation of large scale reactor geometries, using detailed physics models.
Accomplishing this goal involved numerous developments and implementations in the gen-
eral purpuse code MCNP , which are unique and original contributions. Questions related to
the physics of neutron interactions, improving the efficiency of the Monte Carlo method and
optimizing the computational scheme were addressed.

The first step in achieving the objective was to introduce varying material field properties, by
both taking into account the thermal hydraulic feedback and by introducing depletion capa-
bility. A novel method of dynamic material definition, capable of taking into account detailed
three dimensional temperature, density and isotopic compositions was introduced. Since the
thermal hydraulic feedback is introduced via the thermal effects experienced by the nuclear
cross sections, methods capable of correcting for temperature dependence of the nuclear
data were implemented. Special attention was dedicated to the temperature dependence of
the thermal scattering nuclear data. This is especially important since it governs the slowing
down of the neutrons in the moderator. The new methodologies were validated against exact
processed reference nuclear data.

Since large scale geometries were considered, significant improvements of the Monte Carlo
eigenvalue calculation were needed. It was discovered that due to ill convergence of the
power iteration the tallies had significant bias. This is most notable when the symmetry of
the tallies was examined. To overcome this problem the Wielandt acceleration method was
implemented. It was observed that in the limit where the shifted eigenvalue approaches the
true eigenvalue of the system, significant improvement of the source entropy convergence
can be achieved. The effect of the method on reducing the dominance ratio of the system was
analysed by investigating the higher mode eigenvalues. For the analysis the fission matrix
technique was implemented in MCNP . Significant developments were needed to accumulate
the large sparse matrices produced by the fission matrix technique and to estimate their
eigenvalues. The efficiency of the modified power iteration was studied using detailed two
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and three dimensional models. The newly implemented Wielandt shift method was validated
by numerical comparison.

The fission matrix technique implemented in MCNP has enabled for the first time to compute
higher mode eigenvalues of the neutron transport operator at pin by pin resolution and taking
into account the thermal hydraulic conditions in the core.

Since tallying the fission heat deposition using detailed spatial mesh was needed, novel vari-
ance reduction techniques were introduced. It was proven, that the global variance reduc-
tion technique is computationally expensive, and can not be used for practical calculations.
Therefore, the state of the art uniform fission site method was implemented in MCNP. The
results from both the variance reduction schemes were compared using a generalized defi-
nition of the figure of merit. It was proven that the uniform fission site method is capable of
delivering results close to the global variance reduction scheme, at significantly lower com-
putational cost. Since the global variance reduction scheme is standard available in MCNP
, it was used to validate the newly implemented variance reduction scheme. In addition, a
computational algorithm for efficiently storing the accumulated Monte Carlo estimators was
developed.

Following the integration of the new developments, the stability of the coupled system MCNP
- SUBCHANFLOW was investigated. To improve the convergence, the stochastic approxi-
mation technique was implemented. It represent a stochastic numerical scheme capable of
finding fixed points by observing random values having unknown an underlying distribution. It
was shown that this scheme is capable of ensuring uniform convergence within limited num-
ber of coupled iterations. Since the solution following each iteration of the coupled scheme
shown to be a combination of all the previous runs, the scheme not only accelerates the
convergence but improves the uncertainty of the Monte Carlo estimates for the fission heat
deposition.

The coupled scheme was applied to the PWR UOX-MOX benchmark. This international
benchmark exercise was used to validate the new methodologies. Since the coupled cal-
culation combines all the developments related to improving the statistics, accelerating the
criticality calculation, the fission heat deposition tallying and the temperature dependence of
the nuclear data, it serves as an integral test for all the developments done in this thesis. Us-
ing the advanced code modifications it was possible for the first time to run a coupled Monte
Carlo - thermal hydraulics problem at pin-by-pin resolution.

The internal coupling methodology was further extended to take into account fuel depletion.
For the purpose, the coupling between MCNP and the in-house code KORIGEN was devel-
oped. Monte Carlo estimates of the neutron spectrum and flux level are used to prepare the
reaction rates required as input for the fuel depletion equations. The new internal coupling
greatly simplified the information exchange between the two codes. To overcome the instabil-
ity of the Monte Carlo depletion calculation, a state of the art method of imposing equilibrium
xenon concentrations was implemented. This method, uses the inactive cycles of the criti-
cality calculation to compute the equilibrium xenon distribution for the given power and fuel
irradiation level. Since, the xenon concretion is obtained as a function of the neutron flux, no
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oscillations are possible. Moreover, the equilibrium concentrations are estimated within a sin-
gle Monte Carlo run, which is a serious advantage in terms of the computing time needed for
ruining the calculation. The consistency of the newly implemented depletion capability was
verified by comparing it to deterministic and Monte Carlo reference solutions. For the first
time depletion calculations were done using the improved power iteration technique, which
shifts the eigenvalue spectrum via the Wielandt acceleration technique. This strategy helped
to reduce the bias of the Monte Carlo flux estimate.

Additional topics remain to be further investigated in the future. For instance, the parallel
scalability of the Monte Carlo criticality calculation can be further improved. In particular, the
collection of the fission source by the Master process. It is also possible to eliminate the inter
process communication completely by running independent Monte Carlo jobs. This strategy
has already been proven effective by some of the currently available Monte Carlo codes.

The newly implemented methodology for computing the equilibrium xenon concentrations
paves the way to stable large scale deterministic calculations. Due to time constrains, the
accuracy of the new methodology is verified by code to code comparison. Therefore, it
should be tested on a large scale three dimensional problem, for which the existing depletion
systems are known to be unstable.

In principle, the coupled system as such, can only simulate steady state problems and lacks
the ability to treat transient scenarios needed for reactor safety analysis. In the recent years
there has been a significant effort towards the development of time dependent Monte Carlo
reactor analysis codes. Therefore, the introduction of transient capability is currently under
development. This computational tool will be able to run spacial kinetics problems, taking
into account all the advantages of the Monte Carlo codes, breach the gap left over by deter-
ministic tools.

An open question is the validation using experimental data. In this work the main focus fell on
the development and implementation of new numerical methodologies aimed at solving the
challenges of the high-fidelity large-scale reactor core simulations. The experimental valida-
tion was left as part of a future effort, since it goes beyond the scope of this thesis. Although
the coupled system was verified using the PWR UOX-MOX benchmark, the comparison with
measured data is important. Since the code numerical modifications were tested and proven
correct by code to code comparison, experimental validation would mainly test the ability of
the general purpose code MCNP and the newly implemented thermal hydraulics and deple-
tion capabilities to capture the physics of large scale reactor core computations and test the
validity of the physics models. Among others, this validation analysis will test not only the
computational method but also the accuracy of the nuclear data and the thermal hydraulic
models. Such comparisons should be done for both hot full power and cold zero power, to
test the precise effect of the thermal hydraulic feedback on the neutron transport calculation.
One particular example is the BEAVRS benchmark, recently published by MIT [105]. It
would be also interesting to test the coupled system on a problem for which deterministic
codes are known to experience problems, for instance, a Generation 4 design.
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