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Abstract We investigate the flavour-changing neutral cur-
rent decay of the lightest stop into a charm quark and the
lightest neutralino and its four-body decay into the lightest
neutralino, a down-type quark and a fermion pair. These are
the relevant stop search channels in the low-mass region. The
SUSY-QCD corrections to the two-body decay have been
calculated for the first time and turn out to be sizeable. In
the four-body decay both the contributions from diagrams
with flavour-changing neutral current couplings and the mass
effects of final state bottom quarks and τ leptons have been
taken into account, which are not available in the literature so
far. The resulting branching ratios are investigated in detail.
We find that in either of the decay channels the branching
ratios can deviate significantly from 1 in large parts of the
allowed parameter range. Taking this into account, the exper-
imental exclusion limits on the stop, which are based on
the assumption of branching ratios equal to 1, are consid-
erably weakened. This should be taken into account in future
searches for light stops at the next run of the LHC, where the
probed low stop mass region will be extended.

1 Introduction

With the discovery of a new scalar particle by the LHC exper-
iments ATLAS and CMS [1–4] we have entered a new era
of particle physics. The investigation of its properties, like
spin and CP quantum numbers and couplings to other stan-
dard model (SM) particles, have identified it as the long-
sought Higgs particle predicted by the Higgs mechanism [5–
9]. The absence of any discovery of new particles beyond the
SM, however, leaves the question of the underlying dynamics
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of the mechanism of electroweak symmetry breaking open.
Models with the Higgs boson emerging as composite bound
state from a strongly coupled sector [10–17] are compatible
with the LHC data, as well as extensions like supersymmetry
(SUSY) [18–32] based on a weakly interacting theory. One
of the main goals of the LHC is therefore the search for new
particles and the subsequent investigation of their properties
in order to pin down the true nature of the discovered Higgs
boson.

Among the plethora of beyond the SM extensions, SUSY
is one of the most extensively studied models. It requires the
introduction of at least two complex Higgs doublets, leading
in its most economic version, the minimal supersymmetric
extension of the SM (MSSM) [33–38], to five Higgs bosons,
among which the lightest CP-even state h can be identified
with the recently discovered SM-like boson. Within SUSY
models the hierarchy problem can be solved by the symmetry
between bosonic and fermionic degrees of freedom. Assum-
ing SUSY to be softly broken, the Higgs mass corrections
grow logarithmically with the square of the SUSY scale mS .
The loop corrections from the top loops and their SUSY part-
ners, the stops, are crucial in order to shift the mass of the
lightest SUSY Higgs boson above the upper tree-level bound
set by the Z boson mass MZ . With the SUSY scale given by
the average stop mass, m2

S = mt̃1mt̃2 , and the stop mixing
parameter Xt , the mass squared of the lightest Higgs boson
including the leading corrections in the SM limit, is given by

M2
h = M2

Z cos2 2β + 3m4
t

2π2v2

(
log

(
m2

S
m2
t

)
+ X2

t

(
1 − X2

t
12

))
,

(1)

with mt denoting the top-quark mass, v the vacuum expec-
tation value (VEV) with v ≈ 246 GeV and

Xt = At − μ cot β

mS
. (2)

The ratio of the two VEVs of the neutral components of the
MSSM Higgs doublets is given by tan β and At denotes the
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soft SUSY breaking trilinear coupling in the stop sector. A
large Higgs boson mass of around 125 GeV can hence be
obtained either through a large stop mixing Xt or through
heavy stops. Naturalness arguments suggest at least one of
the two stop mass eigenstates to be light, since the amount
of fine-tuning of the electroweak scale is significantly driven
by the stop sector [39]. The maximal mixing scenario, with
X2
t ≈ 6 and mS ≈ 500 GeV leading to the observed Higgs

mass value, therefore optimally reduces the amount of fine-
tuning [40]. In most SUSY models a light stop arises naturally
due to the mixing being proportional to the large Yukawa
coupling, which leads to a large mass splitting between the
stop mass eigenstates.

Light stops not only play a special role in view of the Higgs
mass and naturalness arguments. A light stop can also lead to
the correct relic density through co-annihilation, in particular
for mass differences between the stop and the lightest neu-
tralino χ̃0

1 of 15–30 GeV [41–46]. Moreover, light stops allow
for successful baryogenesis within the MSSM [47–59].1

Despite the LHC searches pushing the limits on the
coloured sparticles above the 1–1.5 TeV range for the first
two generations [65,66], the lightest stop can still be rather
light, with masses below the respective kinematical thresh-
olds for the decay into a top and a lightest neutralino χ̃0

1 ,
t̃1 → t χ̃0

1 , and for the decay t̃1 → χ̃0
1 Wb into a neutralino,

a W boson and a bottom quark b. Assuming the lightest
stop to be the next-to-lightest supersymmetric particle and
the χ̃0

1 to be the lightest SUSY particle (LSP), the light stop
can then decay into the LSP and a charm quark c or an up
quark u, t̃1 → (u/c)χ̃0

1 [67,68]. Another possible decay
channel is the four-body decay t̃1 → χ̃0

1 b f f̄
′ [69], with f

and f ′ denoting generic light fermions. The two-body decay
into charm/up and neutralino is flavour-violating (FV). The
MSSM in general exhibits many sources of flavour viola-
tion, so that the decay can already occur at tree level. High
precision tests in the sector of quark flavour violation and
limits on flavour-changing neutral currents from K , D and
B meson studies put stringent constraints on the amount of
possible flavour violation [70–72]. In order to solve this new
physics flavour puzzle the framework of minimal flavour vio-
lation (MFV) has been proposed [73–77], which requires all
sources of flavour and CP violation to be given by the SM
structure of the Yukawa couplings. The hypothesis of MFV is
not renormalisation group invariant [76], however, inducing
flavour off-diagonal squark mass terms through the Yukawa
couplings, which results in tree-level FCNC couplings. If the
FV stop-neutralino-up/charm quark coupling is very small,
the four-body decay can become important and has to be

1 This requires, however, a stop mass of about the top mass value or
below, which is in tension with the experimental direct stop search
limits, see e.g. [60–62], and the limits from the measurement of the t t̄
cross section [63,64].

taken into account for a reliable prediction of the t̃1 branch-
ing ratios.

Bounds on the stop masses have been set by LEP [78,79]
and tevatron [80,81], and more recently by the ATLAS [60]
and the CMS [82] collaborations. The strongest limits come
from the ATLAS analyses Refs. [61,62]. All these analyses
assume a branching ratio of 1 for the analysed decay channel
of the t̃1, either the FV two-body or the four-body decay.
However, in Ref. [68] it was already pointed out that the
competing FV two-body and four-body stop decays can lead
to substantial deviations from branching ratios of 1 in either
of the decay channels. This has a significant impact on the
stop mass bounds set by the experiments. The calculation
in Ref. [68] improved the existing approximate result for the
t̃1 → (u/c)χ̃0

1 decay of Ref. [67] by computing the exact one-
loop decay width in the framework of MFV. Resummation
effects, which can become important, have not been taken
into account in that approach. In this work, we therefore
include resummation effects through renormalisation group
running induced FCNC couplings already at tree level and
calculate the one-loop SUSY-QCD corrections to the two-
body decay. In order to correctly determine the t̃1 branching
ratios, also the four-body decay is computed by consistently
including FCNC couplings. Moreover, non-vanishing masses
for the third generation final state fermions have been taken
into account. These decay widths have been implemented
into the SDECAY [83,84] routine of SUSY-HIT [85] for the
calculation of the decay widths and branching ratios of SUSY
particles in the MSSM. With the thus obtained t̃1 branching
ratios we discuss the implications for the LHC stop searches
and the bounds obtained on the mass of the lightest stop
mt̃1 . The program with the newly implemented stop decays
is available at [86].

The outline of the paper is as follows. In Sect. 2 we present
the calculation of the SUSY-QCD corrections to the FCNC
two-body decay. The computation of the four-body decay is
deferred to Sect. 3. In Sect. 4 the details of our parameter
scan are given as well as the applied constraints. We discuss
our results in the numerical analysis in Sect. 5. Section 6
summarises our findings.

2 The flavour-violating two-body stop decay

The two-body decay of the lightest stop into a charm or an
up quark and the lightest neutralino is mediated at tree level
by a FCNC coupling. In the MSSM with flavour violation
the squark and quark mass matrices cannot be diagonalised
simultaneously any more. The squarks are no longer flavour
eigenstates and the SUSY partners of the left- and right-chiral
up-type quarks mix to form a six-component vector ũs (s =
1, . . . , 6). Analogously, the down-type squarks are described
by the six-component vector d̃s . We assume the entries to be
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ordered in mass, with ũ1 (d̃1) denoting the lightest up-type
(down-type) squark. The MFV approach naturally accounts
for small flavour violation, with the only source of flavour
violation being the CKM matrix. A way to implement it, is
by assuming that the squark and quark mass matrices can be
diagonalised simultaneously at a scale μ = μMFV, so that
there are no FCNC couplings at tree level. Flavour mixing
is induced through renormalisation group equation (RGE)
running at any scale μ �= μMFV. Due to the large mixing in
the stop sector, the lightest up-type squark ũ1 is hence mostly
stop-like. In the following, we will refer to ũ1 as the lightest
stop where appropriate, although it is understood that it has
a small flavour admixture from the charm- and up-flavours.
Considering a light stop with a mass close to the one of the
lightest neutralino, it mainly decays through the FV two-body
decays,

ũ1 → (u/c) + χ̃0
1 . (3)

Due to the smallness of the up-flavour admixture (because
of the small CKM matrix elements, which are responsible
for flavour mixing through RGE running) the decay into the
up quark final state is suppressed by about two orders of
magnitude compared to the charm quark final state. We have
performed our calculations for both final states, but will dis-
cuss here the one with the charm quark in the final state.

2.1 The squark sector

In order to set up our notation we start with the introduction
of the squark sector. Denoting by q̃ ′

L and q̃ ′
R , respectively, a

three-component vector in generation space, we define the
six-component vector q̃ ′ describing the squark interaction
eigenstates,

q̃ ′ =
(
q̃ ′
L

q̃ ′
R

)
. (4)

The squark mass matrix, written as a 2 × 2 Hermitian matrix
of 3 × 3 blocks,

M2
q̃ ′ =

⎛
⎝M2

q̃ ′
LL

M2
q̃ ′
LR

M2
q̃ ′
RL

M2
q̃ ′
RR

⎞
⎠ , (5)

is diagonalised by a 6 × 6 unitary matrix W̃ , rotating the
squark interaction eigenstates to the mass eigenstates q̃m ,

q̃m = W̃ q̃ ′, (6)

where the q̃m are ordered in mass. We can decompose the
squark mass eigenstate field into left- and right-chiral inter-
action eigenstates through (s = 1, . . . , 6, i = 1, 2, 3)

q̃ms = W̃si q̃
′
i L + W̃s i+3q̃

′
i R ≡ (W̃L q̃

′
L + W̃Rq̃

′
R)s, (7)

where i is the generation index. The matrices UuL ,R and
UdL ,R are the 3 × 3 unitary matrices that rotate the left- and
right-handed up- and down-type current eigenstates uL ,R and
dL ,R to their corresponding mass eigenstates, umL ,R and dmL ,R ,

umL ,R = UuL ,RuL ,R and dmL ,R = UdL ,RdL ,R . (8)

They define the CKM matrix VCKM as

VCKM = UuLUdL†. (9)

In the super-CKM basis the squarks are rotated by the same
unitary matrices as the quarks, implying that at scales μ �=
μMFV or in non-minimal flavour violation models, the squark
mass matrix is flavour-mixed, contrary to the quark mass
matrix. Otherwise, the squarks are flavour eigenstates after
rotation by UqL ,R , and we have

q̃L = UqL q̃ ′
L and q̃R = UqR q̃ ′

R, (10)

with the squared mass matrix in the flavour eigenstate basis
(q̃L , q̃R)T given by

M2
q̃ =

(
(M̃2

q̃L
+ m2

q)13 mq(Aq − μrq)13

mq(Aq − μrq)13 (M̃2
q̃R

+ m2
q)13

)
, (11)

where 13 denotes a 3×3 unit matrix.2 Here M̃q̃L ,R are given by
the left- and right-handed scalar soft SUSY breaking masses
Mq̃L ,R and the D-terms

M̃2
q̃L ,R

= M2
q̃L ,R

+ Dq̃L ,R , (12)

Dq̃L = M2
Z cos 2β(I 3

q − Qq sin2 θW ), (13)

Dq̃R = M2
Z cos 2βQq sin2 θW , (14)

with the third component I 3
q of the weak isospin of the quark

q, Qq its electric charge and θW denoting the Weinberg angle.
The soft SUSY breaking trilinear coupling is given by Aq ,
and μ stands for the higgsino mass parameter. In addition, we
have used the abbreviations rd = 1/ru = tan β for down-
and up-type quarks. The flavour eigenstates are rotated to
their mass eigenstates by the 6 × 6 unitary matrix W , (s, t =
1, . . . , 6, i = 1, 2, 3),

q̃ms = Wst

(
q̃L
q̃R

)
t
= Wsi q̃Li + Ws i+3 q̃Ri

≡ (WLq̃L + WRq̃R)s . (15)

The 6 × 3 matrices W̃L ,R can hence be factorised into the
6 × 3 matrices WL ,R , which are flavour-diagonal at μMFV,
and the 3 × 3 quark rotation matrices,

W̃L = WLU
qL and W̃R = WRU

qR , q = u, d, (16)

2 The mass mq in the off-diagonal matrix elements is an artefact of
re-writing the soft SUSY breaking trilinear scalar interactions in terms
of the Yukawa coupling and Aq .
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as can be inferred from comparing Eq. (15) with Eq. (7) and
using Eq. (10).

2.2 The loop-corrected stop two-body decay

Defining the 4×4 neutralino mixing matrix Z diagonalising
the neutralino mass matrix in the bino, wino, down- and up-
type higgsino basis (−i B̃,−i W̃3, H̃0

1 , H̃0
2 ), we can write the

coupling between an up-type quark ui (i = 1, 2, 3), an up-
type squark ũs (s = 1, . . . , 6) and a neutralino χ̃0

l (l =
1, . . . , 4) in terms of the left- and right-chiral couplings as

gLisl = −geuiRlW
†
i+3 s − gZl4mui δi j√

2MW sin β
W †

js (17)

gR
isl = −geuiLlW

†
is − gZl4mui δi j√

2MW sin β
W †

j+3 s . (18)

Here MW and mui denote, respectively, the mass of the W
boson and of the quark and g the SU (2) gauge coupling.
Furthermore, we have introduced the abbreviations

eqLl = √
2[Zl1tW (Qq − I 3

q ) + Zl2 I
3
q ], (19)

eqRl = −√
2QqtW Zl1, (20)

where tW is a short-hand notation for tan θW . We can then
write the leading order tree-level two-body decay width for
the decay of the lightest up-type squark into a charm quark
and the lightest neutralino as

�LO(ũ1 → cχ̃0
1 )

= mũ1

16π
λ(m2

c,m
2
χ̃0

1
;m2

ũ1
)

⎡
⎣ − 4gL211g

R
211

mcmχ̃0
1

m2
ũ1

+
⎛
⎝1 −

m2
c + m2

χ̃0
1

m2
ũ1

⎞
⎠(

(gL211)
2 + (gR

211)
2
)⎤⎦ , (21)

with the two-body phase space function

λ(x, y; z) =
√

(1 − x/z − y/z)2 − 4xy/z2 (22)

and the lightest up-type squark and neutralino masses, mũ1

and mχ̃0
1
. Note that for a non-vanishing decay width the

flavour off-diagonal matrix elements of the squark mixing
matrix W have to be non-vanishing. For simplicity, in the
following we set the charm quark mass to zero, which does
not have any significant effects unless the mass difference
between the decaying squark and the neutralino becomes
comparable with the charm quark mass or the lightest neu-
tralino becomes mostly higgsino-like. For a mass difference
of 5 GeV e.g. the difference between the leading order (LO)
decay width with mc = 0 and the one with non-vanishing
charm quark mass is about 3 % and less than 1 % for 10 GeV
mass difference. In mSUGRA models the lightest neutralino

for a top-quark mass of 173 GeV never becomes higgsino-
like [87]. The lightest neutralino can only be higgsino-like for
mass values close to the mass of the lightest chargino. While
the limits on the chargino masses are model-dependent, the
parameter space for light charginos gets more and more con-
strained by the LHC experiments [88,89]. In scenarios with
the lightest neutralino mass much lighter than the chargino
masses, the neutralino is mainly bino-like.

The decay width �NLO including the next-to-leading order
(NLO) SUSY-QCD corrections is composed of the LO width
�LO, of the contributions �virt from the virtual corrections,
�real from the real corrections and the one arising from the
counterterms, �CT,

�NLO = �LO + �virt + �real + �CT. (23)

2.2.1 The NLO SUSY-QCD corrections

The virtual corrections arise from the vertex diagrams shown
in Fig. 1 (upper) and the squark and quark self-energies,
depicted in Fig. 1 (middle) and (lower), respectively. The
vertex corrections involve gluons and gluinos. The gluinos
can in general couple to two different flavours of quarks and
squarks, which is taken into account by the quark and squark
indices i and s (i = 1, 2, 3, s = 1, . . . , 6) in the correspond-
ing second Feynman diagram.

The counterterm diagrams in Fig. 2 cancel the ultraviolet
(UV) divergences of the virtual corrections in the renormal-
isation procedure.

After renormalisation the virtual corrections still exhibit
infrared (IR) and collinear divergences. The real corrections,
shown in Fig. 3, arise from the radiation of a gluon off the
squark and off the charm quark line. In accordance with
the Kinoshita–Lee–Nauenberg theorem [90,91] the IR diver-
gences emerging from the real corrections cancel those of the
virtual corrections. As there are no massless particles in the
initial state, in our case also the collinear divergences of the
virtual and real corrections cancel. The computation of the
decay width is performed in D = 4−2ε dimensions. The UV
and IR divergences arise then as poles in ε. We distinguish
between the UV and IR divergences by denoting the corre-
sponding poles as 1/εUV and 1/εIR. The loop integrals are
evaluated in the framework of dimensional reduction [92,93]
in order to ensure the conservation of the SUSY relations.

The virtual corrections have been calculated with
FeynArts/FormCalc [94–97]. The results for the gluon
contribution are the same as for the squark decay into a quark
and a neutralino, q̃1,2 → qχ̃0

1 , given in Refs. [98–101]. In
order to regularise the UV divergences we adopt an on-shell
renormalisation scheme. The bare quark and squark fields
with superscript (0) are replaced by the corresponding renor-
malised fields according to
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Fig. 1 Generic diagrams of the
vertex corrections (upper) and
of the squark (middle) and quark
self-energies (lower)
contributing to the SUSY-QCD
corrections of the decay
ũ1 → cχ̃0

1 , with the quark
indices i, j = 1, 2, 3 and the
squark indices r, s, t = 1, . . . , 6

ũ1

c

χ̃0
1

g

ũ1

c

χ̃0
1

g̃

ui

ũs

ũs ũs

g

ũs ũt

g̃

ui

ũs ũt

ũr

ui ui

g

uj ui

g̃

ũs

Fig. 2 Counterterm diagrams

×ũ1

c

χ̃0
1

×ũ1

c

χ̃0
1

ũs
×

ũ1

c

ui

χ̃0
1

q̃(0) =
(

1 + 1

2
δZq̃

)
q̃, q(0)

L ,R =
(

1 + 1

2
δZL/R

)
qL/R .

(24)

In terms of the real parts of the squark self-energy �̃, the
squark wave function renormalisation constants δZq̃ are
given by (s, t = 1, . . . , 6)

δZq̃
st =

⎧⎪⎨
⎪⎩

−Re ∂�̃ss (p2)

∂p2

∣∣∣
p2=m2

q̃s

if s = t

2
m2
q̃s

−m2
q̃t

Re�̃st (p2 = mq̃2
t
) if s �= t.

(25)

The self-energies �̃ are obtained from the Feynman dia-
grams in Fig. 1 (middle). Here, the third diagram comprises
the quartic squark coupling. As we calculate only the O(αs)

corrections, in the quartic squark coupling consistently only
the terms proportional to αs are taken into account. Another
diagram, not shown in Fig. 1 (middle), involving a quartic
coupling between up- and down-type squarks, vanishes due
to the flavour structure.

Defining the following structure for the quark self-
energies (i, j = 1, 2, 3),

�i j (p
2) = /p�L

i j (p
2)PL + /p�R

i j (p
2)PR

+�Ls
i j (p2)PL + �Rs

i j (p2)PR (26)

ũ1

c

χ̃0
1

g

ũ1

c

χ̃0
1

g

Fig. 3 Diagrams contributing to the real corrections

with PL/R = (1∓γ5)/2, the off-diagonal chiral components
of the wave function renormalisation constants for the quarks
read

δZL
i j = 2

m2
qi − m2

q j

[
mqi Re�Ls

i j (m2
q j

) + mqj Re�Rs
i j (m2

q j
)

+ m2
q j

Re�L
i j (m

2
q j

) + mqimq j Re�R
i j (m

2
q j

)
]
,

δZ R
i j = 2

m2
qi − m2

q j

[
mqj Re�Ls

i j (m2
q j

) + mqi Re�Rs
i j (m2

q j
)

+ mqimq j Re�L
i j (m

2
q j

) + m2
q j

Re�R
i j (m

2
q j

)
]

for i �= j. (27)

The diagonal components read (i = j)

δZL/R
ii = −Re�L/R

ii (m2
qi )

−mqi
∂

∂p2 Re
(
mqi�

L/R
ii (p2) + mqi �

R/L
ii (p2)
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+ �
L/Rs
ii (p2) + �

R/Ls
ii (p2)

) ∣∣∣∣p2=m
q2
i

. (28)

The self-energies � appearing in the wave function renor-
malisation constants are obtained from the diagrams in Fig. 1
(lower). The gluon diagram does not contain any scale and
naively would be expected to be zero. However, it exhibits
UV and IR divergences. The diagram is proportional to
1/εUV − 1/εIR and has to be taken into account, in order
to ensure the separate cancellation of the UV and IR diver-
gences.

After the on-shell renormalisation of the quark and squark
wave functions we are only left with the one-loop vertex dia-
grams and the FCNC vertex counterterm. It is given by the
wave function renormalisation, the renormalisation of the
quark and squark mixing matrices [102–109] and the renor-
malisation of the quark masses. The mixing matrix countert-
erms δu and δw̃ relate the bare mixing matrices U (0) and
W̃ (0) with the renormalised ones,

U (0)L/R
i j = (δik + δuL/R

ik )UL/R
k j i, j, k = 1, 2, 3,

W̃ (0)
st = (δsr + δw̃sr )W̃rt r, s, t = 1, . . . , 6.

(29)

Both the bare and the renormalised mixing matrices are
required to be unitary leading to antihermitian counterterms.
We determine the UV divergent part of each counterterm
such that it cancels the divergent part of the antihermitian part
of the corresponding wave function renormalisation matrix
[105–109],

δuL/R = 1

4

(
δZL/R − δZL/R†

)
, (30)

δw̃ = 1

4
(δZq̃ − δZq̃†). (31)

The counterterms are defined on-shell. This definition of the
counterterms is known to be gauge dependent [107,108,110,
111]. In [108] it was stated, however, that the Feynman’t
Hooft gauge, which we adopt here, leads to a result which
coincides with the gauge independent result. In the Yukawa
part of the squark-quark-neutralino coupling given in terms
of the left- and right-chiral couplings in Eqs. (17) and (18), the
bare quark mass m(0)

ui needs to be renormalised (i = 1, 2, 3),

m(0)
ui = mui + δmui , (32)

with the counterterm δmui given by

δmui = 1

2
Re

[
mui

(
�L
ii

(
m2

ui

)
+ �R

ii

(
m2

ui

))

+ �Ls
ii

(
m2

ui

)
+ �Rs

ii

(
m2

ui

)]
. (33)

Even in case of a vanishing fermion mass, a mass counterterm
is generated due to the �Ls/Rs contributions from the gluino
diagram in Fig. 1 (lower); see e.g. also [112]. In the basis of
the mass eigenstates of the squark, quark and neutralino the

Lagrangian Lūũχ̃0
1

containing the vertex counterterm is then
given by

Lūũχ̃0
1

= ūi (g
L
isl + δgLisl)PL ũs χ̃

0
l

+ ūi (g
R
isl + δgR

isl)PRũs χ̃
0
l , (34)

with the left- and right-chiral coupling counterterms (i, j, k =
1, 2, 3, s, t = 1, . . . , 6, l = 1, . . . , 4)3

δgLisl

= −geuiRl

[
δZ R†

i j

2
W †

j+3 s + δuR
i jW

†
j+3 s + W †

i+3 t δw̃
†
ts + W †

i+3 t
δZũ

ts

2

]

− gZl4√
2MW sin β

[
δmui δi j W

†
js + δZ R†

i j

2
mu j δ jkW

†
ks + mui δu

L
i jW

†
js

+mui δi j W
†
j t δw̃

†
ts + mui δi j W

†
j t

δZũ
ts

2

]
, (35)

δgRisl

= −geuiLl

[
δZL†

i j

2
W †

js + δuLi jW
†
js + W †

i t δw̃
†
ts + W †

i t
δZũ

ts

2

]

− gZl4√
2MW sin β

[
δmui δi j W

†
j+3 s + δZL†

i j

2
mu j δ jkW

†
k+3 s

+mui δu
R
ikW

†
k+3 s + mui δi j W

†
j+3 t δw̃

†
ts + mui δi j W

†
j+3 t

δZũ
ts

2

]
.

(36)

Note that the wave function renormalisation constants δZũ
st

in Eq. (25), and δZL/R
i j in Eq. (27) have a vanishing denomi-

nator in case of equal masses for quarks i and j and squarks
s and t . This in particular turns out to be a problem when
the first and second generation quark masses are set to zero.
If both the fields and the mixing matrices are renormalised
on-shell, however, this problem does not occur, as the com-
bination of the renormalisation constants is non-singular; see
e.g. Ref. [113]. For degenerate fermions we hence make the
replacement (i, j = 1, 2, 3)

δZL/R†
i j

2
+ δuL/R

i j

= 1

4

(
δZL/R

i j + δZL/R†
i j

) mui =mu j−→ −1

2

[
Re�L/R

i j

(
m2

ui

)

−mui
∂

∂p2 Re
(
mui

(
�

L/R
i j (p2) + �

R/L
i j (p2)

)

+�
L/Rs
i j (p2) + �

R/Ls
i j (p2)

)]∣∣∣
p2=m2

ui

(37)

and
1

2
δZL/R†

i j mu j + δuR/L
i j mui = 1

2
δZL/R†

i j mu j

+1

4
(δZ R/L

i j − δZ R/L†
i j )mui

mui =mu j−→ 1

2
Re

[
mui �

R/L
i j (m2

ui ) + 2�
R/Ls
i j (m2

ui )
]

3 For a detailed derivation, see [68].
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−1

2

∂

∂p2 Re
[
m3

ui �
L/R
i j + m3

ui �
R/L
i j (p2)

+ m2
ui �

L/Rs
i j (p2) + m2

ui �
R/Ls
i j (p2)

]∣∣∣∣
p2=m2

ui

.

(38)

In Eqs. (37) and (38) we do not sum over common indices.
In the derivation of these equations we have used

δZ†
i j = δZi j (m

2
ui ↔ m2

u j
) (39)

in Eq. (27). This relation follows from the hermiticity of
the Lagrangian, implying that the self-energies obey �i j =
γ0�

†
i jγ0. For degenerate squark masses we use (s, t =

1, . . . , 6)

1

2
δZũ

st + δw̃
†
st = 1

4

(
δZũ

st + δZũ†
st

)
mũs=mũt−→ − 1

2
Re

∂

∂p2 �̃st (p
2)

∣∣∣∣
p2=m

ũ2
s

. (40)

Note finally that in our calculation we have chosen the quark
mass in the Yukawa terms of the squark–quark–neutralino
couplings given in Eqs. (17) and (18) to be the on-shell mass,
in consistency with our renormalisation scheme.

The real corrections have been evaluated in D = 4 − 2ε

dimensions with ε ≡ εIR. As we are only interested in the
total decay width, the D-dimensional phase space integra-
tion can be performed analytically. We checked explicitly
that the IR and collinear divergences of the real corrections
cancel those of the virtual corrections. Analogously we have
performed the computation of the decay width �(ũ1 → uχ̃0

1 )

at NLO SUSY-QCD. All computations presented here have
been performed in two independent calculations and have
been cross-checked against each other. In the Appendix we
give the explicit formulae for the full result of the partial
decay width at NLO SUSY-QCD.

3 The four-body decay

In the parameter region where the FV two-body decay of
the lightest squark plays a role, the four-body decay into the
lightest neutralino, a down-type quark and a fermion pair
can become competitive and even dominate. The latter is in
particular the case for a small FV coupling ũ1 −c−χ̃0

1 , as the
four-body decay contains flavour-conserving subprocesses.
We revisit this decay, which has been first calculated in [69],
by allowing for FV couplings at tree level and by taking into
account the full dependence on the masses of third generation
fermions. Because of possible flavour violation the four-body
decay that we consider is given by

ũ1 → χ̃0
1 di f f̄

′, (41)

where di denotes a down-type quark of any of the three
flavours, i = 1, 2, 3. The final state fermions are f, f ′ =
u, d, c, s, b, e, μ, τ, νe, νμ, ντ . Figure 4 shows the Feynman
graphs contributing to the process. They are mediated by
charged Higgs H±, W , chargino χ̃±

1,2, quark and sfermion
exchanges. With the exchanged particles being far off-shell
we do not take into account total widths in the propagators,
except for the one of theW boson. Additionally, there are dia-
grams in which neutral particles as e.g. neutralinos or gluinos
are exchanged and which can only proceed via FV couplings.

These will not be considered in the numerical analysis.
They are negligibly small, as we checked explicitly. The dia-
grams displayed in Fig. 4 contain fermion number flow vio-
lating interactions, which were treated following the recipe
given in Ref. [114]. The calculation of the process has been
performed in two independent approaches. One calculation
was done automatically by using FeynArts/FormCalc
[94–97]. The second calculation only usedFeynCalc [115]
to evaluate the traces. Both results were cross-checked
against each other.

We computed the analytic formula for the decay width in
the general Rξ gauge and explicitly verified that the depen-
dence on the gauge parameter ξ drops out so that gauge invari-
ance is manifest. In the result thus obtained we plugged in
the mass values of the various particles as obtained from
a spectrum calculator. The formulae of the final result are
quite cumbersome and lengthy, so that they are not displayed
explicitly here.

The FV two-body and four-body decays have been
implemented in SDECAY [83,84], which is part of the
program package SUSY-HIT [85]. Together with some
follow-up routines, for the former a new routine called
SD_lightstop2bod and for the latter a routine named
SD_lightstop4bod have been implemented. The origi-
nal version of SUSY-HIT features the SUSY Les Houches
Accord (SLHA) format [116]. As in the case of flavour viola-
tion the SUSY Les Houches Accord 2 (SLHA2) format [117]
needs to be read in, the read-in subroutine has been modified
accordingly.

4 The parameter scan

For the numerical analysis a scan was performed in the
MSSM parameter space. The value of tan β and the mass
of the pseudoscalar Higgs boson MA have been varied in the
ranges

1 ≤ tan β ≤ 15 and 150 GeV ≤ MA ≤ 1 TeV . (42)

In our scenarios, larger values of tan β are disfavoured due
to B-physics observables. At tree level, MA and tan β deter-
mine the MSSM Higgs sector, consisting of two neutral CP-
even Higgs bosons h and H , the pseudoscalar A and two
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Fig. 4 Generic Feynman
diagrams contributing to the
four-body decay
ũ1 → χ̃0

1 di f f̄
′ (i, j = 1, 2, 3,

s = 1, . . . , 6, k = 1, 2) ũ1

χ̃0
1

di

f

f̄ ′

uj

W

ũ1

di

χ̃0
1

f

f̄ ′

χ̃+
k

W

ũ1

di

χ̃0
1

f

f̄ ′

d̃s

W

ũ1

χ̃0
1

di

f

f̄ ′

uj

H+

ũ1

di

χ̃0
1

f

f̄ ′

χ̃+
k

H+

ũ1

di

χ̃0
1

f

f̄ ′

d̃s

H+

ũ1

di

f̄ ′

f

χ̃0
1

χ̃+
k

f̃

ũ1

di

f

f̄ ′

χ̃0
1

χ̃+
k

f̃ ′

charged Higgs bosons H±. In order to shift the SM-like neu-
tral Higgs boson mass, given in our scenarios by the lighter
scalar h, to about 125 GeV, as reported by the LHC experi-
ments [118,119], radiative corrections have to be taken into
account, which are dominated by the contributions from the
(s)top sector. This and the determination of the entire SUSY
spectrum requires the definition of the soft SUSY breaking
masses and trilinear couplings. The Higgs and SUSY spec-
tra have been obtained from the spectrum calculatorSPheno
[120,121], which allows for flavour violation.4 The program
package SPheno reads in the parameters in the SLHA2 for-
mat. In the SLHA format all input parameters listed here
below are understood as DR parameters given at the scale
Minput.5 After the application of renormalisation group run-
ning the parameters, masses and mixing values are given out
in the SLHA format at a user defined output scale Moutput.

4 We cross-checked the results against SOFTSUSY [122]. In general
the results agree well. However, in particular for low mass values of the
lightest squark, there can be differences in the mass values and in the
squark mixing matrix elements. They are due to a different treatment
of loop corrections in the squark mass matrices.
5 The only exception is tan β, which is defined as an DR parameter at
the scale of the Z boson mass MZ .

We chose the input scale Minput to be the GUT scale and the
output scale as

Moutput = 300 GeV. (43)

This is within the mass range of the lightest stop result-
ing from our parameter scan. The input soft SUSY breaking
gaugino mass parameters have been chosen as

75 GeV ≤ M1 ≤ 500 GeV, M2 = 650 GeV and

M3 = 1530 GeV. (44)

The lower bound on M1 restricts the neutralino masses to val-
ues in accordance with the bounds from the relic density and
the ones resulting from light stop mass searches. The chosen
value for M3 leads to heavy enough gluino masses to avoid
the LHC exclusion bounds. The higgsino mass parameter has
been set to

μ = 900 GeV. (45)

The chargino masses obtained are of the order of several hun-
dred GeV and not in conflict with any exclusion bounds. The
soft SUSY breaking trilinear couplings and mass parameters
of the slepton sector, the right-handed up-type squark mass
parameters and trilinear couplings of the first and second
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generations, and the right-handed down-type mass parame-
ters and trilinear couplings of all three generations have been
chosen as (E ≡ e, μ, τ , U ≡ u, c, D ≡ d, s, b)

MẼR
= ML̃1,2,3

= 1 TeV, AE = 0 TeV,

MŨR
= MD̃R

= 1.5 TeV, AU = AD = 0 TeV. (46)

We do not apply strict MFV, but allow the right-handed stop
mass parameter and the top trilinear coupling to vary in the
range

300 GeV ≤ Mt̃R ≤ 600 GeV and 1 TeV ≤ At ≤ 2 TeV.

(47)

Furthermore, in the input file of the spectrum generator
SPheno we chose two different flavour symmetries for the
squark sector, a U (2)QL × U (2)uR × U (3)dR symmetry, to
which we refer as U (2)-inspired or simply U (2) in the fol-
lowing, and a U (3)QL × U (2)uR × U (3)dR symmetry, to
which we refer as U (3)-inspired, respectively U (3), i.e.6

U (2) : MQ̃1
= MQ̃2

= 1.5 TeV and 1 TeV ≤ MQ̃3
≤ 1.5 TeV

U (3) : 1 TeV ≤ MQ̃1
= MQ̃2

= MQ̃3
≤ 1.5 TeV. (48)

One remark is here in order. In SPheno the flavour off-
diagonal mixing matrix elements are induced through renor-
malisation group running. We regard the masses and mixing
matrix elements thus generated as pure input values mea-
sured by the experiments, once SUSY will have been dis-
covered. This allows us to treat them independently of the
scheme that has been adopted in SPheno upon their cal-
culation, and exempts us from the necessity to adapt them
to our renormalisation scheme. The reason behind this is the
fact that SPheno is regularly updated, which may also entail
a change in the, for us, relevant renormalisation procedure
and would require again an adaption of the input values. Fur-
thermore, the user might choose to use a different spectrum
generator with yet another procedure in order to obtain the
masses and mixings, which then in turn would require to
transform these input values to our renormalisation scheme.
With our pragmatic approach such problems can be circum-
vented.

With these parameter values the squarks of the first two
generations are heavy enough not to be excluded by the exper-
iments. The choice of the soft SUSY breaking parameters in
the stop sector guarantees rather low lightest stop mass val-
ues, which we are interested in here. The SM input parameters
as required by the SLHA format are set to the particle data
group (PDG) [123] values

GF = 1.166379 · 10−5 GeV−2,

αs(MZ )MS = 0.1185,

6 After application of all constraints the induced flavour violation turns
out to be small, also in the non-MFV scenario that we apply in our
analysis.

mb(mb)MS = 4.18 GeV,

mt (pole) = 173.07 GeV,

mτ (pole) = 1.77682 GeV,

MZ (pole) = 91.1876 GeV. (49)

Finally, according to the SLHA2 format we need the CKM
matrix elements in the Wolfenstein parametrisation. The val-
ues given by the PDG are

λ = 0.22535, A = 0.811, ρ̄ = 0.131, η̄ = 0.345. (50)

From the scan only those points are retained that lead to a
mass difference �m between the lightest squark ũ1 and the
lightest neutralino χ̃0

1 of

5 GeV ≤ �m = mũ1 − mχ̃0
1

≤ 75 GeV, (51)

and that in addition fulfill the constraints we apply. The
constraints arise from the searches for Higgs boson(s) and
SUSY particles, from the relic density measurements and
from flavour observables.

In the following, these constraints will be explained in
detail.
Constraints from Higgs data The compatibility with the
experimental Higgs data is checked with the programs
HiggsBounds [124–126] and HiggsSignals [127].
The program HiggsBounds needs as inputs the effective
couplings of the Higgs bosons of the model under consid-
eration, normalised to the corresponding SM values, as well
as the masses, the widths and the branching ratios of the
Higgs bosons. It then checks for the compatibility with the
non-observation of the SUSY Higgs bosons, in particular
whether the Higgs spectrum is excluded at the 95 % con-
fidence level (CL) with respect to the Tevatron and LHC
measurements or not. The package HiggsSignals on the
other hand takes the same input and validates the compat-
ibility of the SM-like Higgs boson with the data from the
observation of a Higgs boson. As result a p-value is given
out, which we demanded to be at least 0.05, corresponding to
a non-exclusion at 95 % CL. For the computation of the effec-
tive couplings and decay widths of the SM and MSSM Higgs
bosons, the Fortran code HDECAY [128–132] is used, which
provides the SM and MSSM decay widths and branching
ratios including the state-of-the-art higher order corrections.
As HDECAY does not support flavour violation, the dominant
flavour-diagonal entries of the mass and mixing matrices pro-
vided by SPheno have been extracted before passing them
on to HDECAY. Since FV effects in the Higgs decays are tiny
and far beyond the experimental precision, the effect of this
procedure on the final results is negligible.
Constraints from SUSY searches In order not to be in conflict
with the SUSY mass bounds reported by the LHC experi-
ments for the gluino and squark masses of the first two gen-
erations [65,66] we required these SUSY particles to have
masses of
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mg̃ > 1450 GeV and

mq̃1,2 > 900 GeV (q = u, c, d, s). (52)

At the LHC, searches have been performed for the lightest
stop with mass close to the LSP assumed to be χ̃0

1 in the
two decay channels we are interested in here, the flavour-
changing two-body decay Eq. (3) and the four-body decay
Eq. (41). Based on monojet-like [60,61,82] and charm-
tagged event selections [60,61] and on searches for final
states with one isolated lepton, jets and missing transverse
momentum [62], limits are given on the lightest stop mass
as a function of the neutralino mass, assuming, respectively,
a branching ratio of 1, depending on the final state under
investigation. At present, the most stringent bounds have
been reported in [61,62] for t̃1 masses down to ∼ 100 GeV.
Giving up the assumption of maximum branching ratios, we
re-interpreted these limits for arbitrary stop branching ratios
below 1. The results are shown in Fig. 5 in the mχ̃0

1
–mt̃1

plane.7 The grey dashed lines limit the region in which

mχ̃0
1

+ mc ≤ mt̃1 ≤ mχ̃0
1

+ mb + mW . (53)

In this region the stop can be searched for in the FV two-body
decay Eq. (3) and the four-body decay Eq. (41). Neglecting
the two-body decay t̃1 → uχ̃0

1 , which is usually suppressed
by two orders of magnitude compared to the two-body decay
with the charm quark final state, the t̃1 branching ratios in
this mass region are given by

BR(t̃1 → cχ̃0
1 ) = �(t̃1 → cχ̃0

1 )

�tot
, (54)

BR(t̃1 → χ̃0
1 b f f̄

′) = �(t̃1 → χ̃0
1 b f f̄

′)
�tot

, with (55)

�tot = �(t̃1 → cχ̃0
1 ) + �(t̃1 → χ̃0

1 b f f̄
′).
(56)

The full pink line in the upper plot shows the 95 % CL
exclusion limit based on combined charm-tagged and mono-
jet ATLAS searches8 in the t̃1 → cχ̃0

1 decay [61], assuming
100 % branching ratio. For a t̃1 decaying exclusively into
the four-body final state ATLAS derived from the monojet
analysis [61] the exclusion given by the pink line (close to
the upper dashed line) in Fig. 5 (lower) and from the final
states with one isolated lepton the exclusion region delin-
eated by the green line (close to the lower dashed line)
[62]. With the information given in [61,62] we derived the
exclusion limits for the two- and the four-body final state
as a function of the branching ratio, which is given by
the colour code. In order to do so, we used the tabulated

7 To match the notation of the LHC experiments we here denote ũ1 by
t̃1, which is approximately the case for small flavour violation.
8 The exclusion limits do not apply for the uχ̃0

1 final state. In principle,
monojet searches could be used to derive limits in this decay channel.
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Fig. 5 Exclusion limits in the mχ̃0
1
–mt̃1 plane at 95 % CL, based on the

results for the t̃1 → cχ̃0
1 signature from [61] (upper) and on the results

for the t̃1 → χ̃0
1 b f f̄

′ signature from [61,62] (lower). The colour code
indicates the branching ratio down to which the exclusion limits are
valid

acceptance times efficiency A × ε of Refs. [61,62] and the
production cross section σprod for stop-pair production, but
checked the cross section explicitly with Prospino [133].
The σprod × A × ε are scaled by the respective branching
ratios. The two decay channels are then combined under the
assumption that BR(t̃1 → χ̃0

1 b f f̄
′) + BR(t̃1 → cχ̃0

1 ) = 1.9

For the exclusion limits of Ref. [61] we derived the limits with
the CLs method [134]. Uncertainties on both background
and signal were taken into account by Gaussian probabil-

9 We have not taken into account the effect of mixed topologies arising
from one of the pair-produced stops decaying into the two-body and
the other into the four-body final state. Such an investigation is beyond
the scope of our paper. Note, however, that mixed topologies only play
a role in the monojet searches and in case the branching ratios of both
final states are roughly equally important. From inspection of Fig. 5
and Fig. 11, which show the branching ratios, it can be inferred that
this concerns only a very small strip in the parameter space. The effect
would be at worst the removal of a few points in the region where
the mass difference of the light stop to the lightest neutralino is small.
Apart from this narrow region Fig. 5 gives a reasonable estimate of the
exclusion limits to be expected by the combination of both final states
with realistic branching ratios.
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ity distribution functions. In the derivation of the limits in
the four-body final state we assumed that the branching ratio
with jet final states, BR(t̃1 → χ̃0

1 bj j), makes up 66 %, and
the branching ratios BR(t̃1 → χ̃0

1 bl̄νl) (l = e, μ, τ ) each
account for 11 % of the four-body decay branching ratio, see
also the discussion on the four-body decay branching ratio
in Sect. 5.2.

From the plots it can be read off that stop masses with
a branching ratio above the one associated with a specific
colour are excluded. It is immediately evident that for smaller
branching ratios the exclusion limits become weaker. The
two plots can be combined to extract the exclusion limits for
stops of a given mass as a function of the neutralino mass and
the stop branching ratio. Thus it can be read off from Fig. 5
(upper) that t̃1 masses of 150 GeV can be excluded formχ̃0

1
=

80 GeV if their branching ratio into c + χ̃0
1 exceeds 0.43.

This in turn implies that the stop four-body branching ratio
is below 0.57. On the other hand the lower plot shows that
in the same region stops can be excluded if their branching
ratio into the four-body final state is larger than 0.88, which
implies that the two-body decay branching ratio is below 0.12
then. This means that mt̃1 = 150 GeV can be excluded for
mχ̃0

1
= 80 GeV for scenarios in which BR(t̃1 → cχ̃0

1 ) <

0.12 and BR(t̃1 → cχ̃0
1 ) > 0.43, respectively, BR(t̃1 →

χ̃0
1 b f f̄

′) > 0.88 and BR(t̃1 → χ̃0
1 b f f̄

′) < 0.57. The dark-
blue region corresponds to stop branching ratios that are zero,
so that all stop mass values associated with this region are
excluded.10 In Fig. 5 (upper) there is no smooth transition
between the dark-blue and its neighbouring regions, as the
exclusion limits in the two-body final state are related to
the ones in the four-body final state which here apply for
branching ratios �0.46, so that of course also in Fig. 5 (lower)
there is no continuous colour gradient here.

Our exclusion limits given by the border of the coloured
region at 100 % two-, respectively, four-body decay branch-
ing ratio, do not exactly match the ones derived by ATLAS.
The reason is that ATLAS provided information on the val-
ues of the excluded production cross section times branch-
ing ratio only for a few points in the mχ̃0

1
–mt̃1 plane and we

had to interpolate linearly between these points in order to
cover the whole region. Nevertheless, the agreement of our
results with the given exclusion limits is reasonably good.
We take the thus derived exclusion limits as a function of
the stop branching ratio in order to restrain our parameter
points to the experimentally allowed values. The advantage
of our approach is to take fully into account the information
on the actual stop branching ratios which can considerably
weaken the stop exclusion limits as is evident from Fig. 5.
As our plots can only be an approximation of what can be

10 Even if due to mixed topologies, some of these points should not be
excluded, then our analysis would be more conservative here, as we do
not include these points.

done much more accurately by the experiments, they should
be taken as an encouragement to provide results also as a
function of the stop branching ratios.
Constraints from relic density and B-physics measurements
The space telescope PLANCK [135] has measured the relic
density of dark matter (DM) to be

�ch
2 = 0.1199 ± 0.0027. (57)

In our set-up we assume the lightest neutralino to be the LSP
and hence the DM candidate. We have used the program
SuperIso Relic [136,137] to calculate the relic density
for neutralino DM and have compared the outcome to the
experimental value. SuperIso Relic does not take into
account FV effects in the calculaton of the relic density but
these effects are expected to be highly CKM-suppressed. We
require the relic density resulting from neutralinos to be

�ch
2(χ̃0

1 ) < 0.12, (58)

which means that neutralinos are assumed not to be the only
source contributing to the measured relic density.

Further constraints arise from flavour observables. In
particular, in models with FCNC couplings at tree level,
new particles can have a significant impact on rare meson
decays mediated by loops. We use the program SuperIso
[138,139] to calculate the relevant B meson branching ratios
and require them to be compatible within two standard devi-
ations with the experimentally measured values. With the
errors denoting the 1-sigma bounds, they are given by

B(B0
s → μ+μ−) = (2.9 ± 0.7) × 10−9 [140]

B(B0 → μ+μ−) < 8.1 × 10−10 at 95 % CL [141]
B(B+ → τ+ντ ) = (1.05 ± 0.25) × 10−4 [123]
B(B → Xsγ ) = (355 ± 24 ± 9) × 10−6 [142].

(59)

We do not use the measured value of the anomalous magnetic
moment aμ as constraint, as the SUSY contribution result-
ing from our parameter scan cannot explain the discrepancy
between the SM prediction and the experimental value.

For completeness we give the ũ1 masses that we obtain as
a result of our scan and after application of all constraints.
For the two flavour scenarios they are

U (2) : 246 GeV � mũ1 � 556 GeV,

U (3) : 197 GeV � mũ1 � 555 GeV. (60)

The charged Higgs boson masses range between about 392
and 1003 GeV, the chargino masses between approximately
652 and 661 GeV.
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Fig. 6 The SUSY-QCD
K -factor for the FCNC decay
ũ1 → cχ̃0

1 as a function of the
squark-neutralino mass
difference assuming a U (2)

(left) and a U (3) (right)
symmetry in the left-handed
squark sector

5 Numerical results

In the following we present results for the parameter points
of our scan that pass the constraints discussed in Sect. 4.
Two scenarios of flavour violation are investigated in the
left-handed squark sector, one with a flavour symmetryU (2)

and a second where the flavour symmetry is enhanced to
U (3), cf. Eq. (48). Furthermore, the decay ũ1 → uχ̃0

1 has
been included in the total width everywhere where applica-
ble. When we talk about the FCNC decay in the following,
we implicitly refer to the ũ1 → cχ̃0

1 decay, however, as the
decay with the up quark final state is negligible compared to
the one with the charm quark in the final state.

5.1 SUSY-QCD corrections to the FCNC two-body decay

We first analyse the effect of the SUSY-QCD corrections
on the two-body decay ũ1 → cχ̃0

1 . Figure 6 shows the K -
factor, i.e. the ratio of the NLO decay width with respect
to the LO decay width, as a function of the mass differ-
ence �m = mũ1 − mχ̃0

1
. The strong coupling constant has

been evaluated in the DR scheme at the scale mũ1 . As stated
in Eq. (51) we vary �m between 5 and 75 GeV, which
on the lower and upper bounds corresponds to the lightest
squark mass interval Eq. (53), in which the two-body (and
also the four-body) decay is relevant, modulo an off-set of
a few GeV. The lower off-set of 5 GeV accounts for the
fact that we have not taken into account the finite charm
quark mass in the two-body decay. With 5 GeV we are far
enough away from the threshold so that finite charm quark
mass effects are negligible. Note also that for a stop mass too
close to the neutralino mass its lifetime becomes larger than
the flight time within the detector. The upper bound takes into
account that for a meaningful prediction in the mass region
where the three-body off-shell decay becomes important a
smooth interpolation between the two- (also the four-) and
the three-body decays is required, which is not available at
present.

As can be inferred from the right plot in Fig. 6, the SUSY-
QCD corrections are significant and vary between at most

∼27 % to about 6 % forU (3) when going from �m = 5 GeV
to 75 GeV. The K -factor increases for small mass differ-
ences, where the real corrections become more important
and increase the partial width. The virtual corrections on the
other hand decrease the partial width, but less strongly, so
that the net effect is a ∼27 % increase of the loop-corrected
width for U (3). For large mass differences the K -factors for
the real and the virtual corrections approach 1 from above and
below, respectively, resulting in a residual 7 % correction for
the overall K -factor.11 Similar results hold for the majority
of the scenarios found in the U (2) case in Fig. 6 (left). For
some scenarios, however, the K -factor can become signifi-
cantly larger, reaching values of up to ∼2.1. The reason is
in the specific flavour mixings of the heavier squarks that
contribute to the gluino loop in the virtual corrections. These
are such that they lead to an enhancement of the K -factor.
In the parameter points passing all constraints this occurred
only when the charm- and top-flavour contributions to ũ4

and ũ6 were roughly equal. The tree-level decay, the real
corrections and the gluon loop, which only depend on the
flavour composition of ũ1, are not affected by this behaviour.
Furthermore, such flavour mixing only appears for a small
region of the parameter space and therefore only very few
points passing the constraints led to such a high K -factor in
our random scan. We did not find flavour mixings of that kind
in the U (3) case.

5.2 The four-body decay

The new element in our calculation of the four-body decay
ũ1 → χ̃0

1 di f f̄
′ compared to the literature [69] is the inclu-

sion of FCNC couplings at tree level and the inclusion of the
full mass dependence of the final state bottom quarks and τ

leptons.
The effect of taking into account non-vanishing mb and

mτ is shown in the plots of Fig. 7 (upper), which show the
ratio of the partial four-body decay width with non-vanishing

11 Note that in the branching ratios the effect of the SUSY QCD cor-
rections is less important, increasing them by a few percent at NLO.
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Fig. 7 Upper Ratio of the
partial width for the
ũ1 → χ̃0

1 di f f̄
′ (i = 1, 2, 3)

decay with non-zero mb and mτ

and of the corresponding decay
width with zero masses. Lower
Same as upper, but for the
branching ratios. In the
left-handed squark sector a U (2)

(left) or a U (3) (right)
symmetry is assumed

masses and the corresponding width, where mb = mτ = 0,
as a function of �m. As expected, as soon as �m crosses the
threshold of mb the ratio steeply increases to reach an almost
constant value of 0.92 for large �m, both for the U (2) and
the U (3) symmetry. Below the threshold the ratio does not
become zero due to the diagrams contributing to the four-
body decay which proceed via FCNC couplings leading to
massless final states, e.g. ũ1 → χ̃0

1 d1ēνe. The ratio scatters
over a wider range for U (2), cf. Fig. 7 (upper left), than for
U (3), cf. Fig. 7 (upper right), due to the lower flavour sym-
metry in the former case. While the mass effect in the partial
width with up to 8 % even in the region far above thresh-
old is non-negligible, in the branching ratio it gets more and
more washed out with increasing importance of the four-body
decay width, cf. Fig.7 (lower). As in case of the U (3) sym-
metry for large �m the four-body decay dominates over the
two-body decay, cf. next subsection, the mass effect becomes
almost zero in the branching ratio then. For theU (2) symme-
try it can still be up to 8 % for �m = 75 GeV. In the threshold
region, the mass effect in the branching ratios is important
and has to be taken into account as it is phenomenologically
relevant; see also the discussion of the comparison between
two- and four-body ũ1 decays below.

In Fig. 8 the branching ratios of the dominant final state
signatures to the four-body decay are shown, i.e. ũ1 →
χ̃0

1 bqq̄
′ and χ̃0

1 bl̄νl (l = e, μ, τ ), as a function of �m.
Among the various Feynman diagrams contributing to the
decay, the dominant contribution arises from the first dia-
gram in Fig. 4, with the virtual top-quark and W exchange.

This is because the squark mixing matrix elements, entering
the ũ1 − u j − χ̃0

1 coupling, have larger values in the diago-
nal entries (i.e. here for j = 3), and because of the smaller
top-quark mass compared to the chargino and charged Higgs
boson masses, which amount to several hundred GeV in our
scenarios.12 The branching ratios for the final states involv-
ing ēνe and μ̄νμ, marked by the green points, lie on top of
each other. The only difference in these final states arises
from the diagrams with virtual sleptons (last row in Fig. 4),
which are negligibly small. In Fig. 8 (left) we see that for
most parameter points the four-body decay is not important
and we again observe widespread results in the investigated
parameter space as a consequence of the smaller flavour sym-
metry. For the U (3) symmetry this is not the case, cf. Fig. 8
(right), and a clear hierarchy of the final states can be read
off in the large �m region. The χ̃0

1 bqq̄
′ final state makes up

∼66 % of the four-body decay branching ratio, the χ̃0
1 bl̄νl

(l = e, μ, τ ) final states each contribute ∼11 % which cor-
responds to the branching ratios of an on-shell W boson into
quark and lepton final states, respectively. In the threshold
region due to the non-vanishing τ mass, which is taken into
account in our calculation, the rise for the final state involv-
ing τ̄ ντ sets in later than for the decays with ēνe and μ̄νμ

final states.

12 In [69] the most important contribution was due to the diagram with
the virtual chargino and W boson exchange, because smaller chargino
masses were considered in the numerical analysis.
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Fig. 8 The dominant final state
branching ratios of the
four-body decay, assuming in
the left-handed squark sector a
U (2) (left) or a U (3) (right)
symmetry

Fig. 9 The two- and four-body
decays widths (upper), the total
widths (middle) and the
branching ratios (lower) as a
function of �m = mũ1 − mχ̃0

1
,

applying a U (2) (left) and a
U (3) (right) symmetry in the
left-handed squark sector

5.3 The stop total width and branching ratios and
phenomenological implications

In Fig. 9 (upper) the partial two-body and four-body decay
widths are displayed for the two chosen flavour symmetries.
As can be inferred from the figures the results for the two-
body decay width scatter much more than for the four-body
decay, and even more in case of the smaller flavour sym-

metry U (2), Fig. 9 (upper left). This is a consequence of
the former being mediated exclusively by FCNC couplings
while the latter also contains flavour-conserving diagrams. In
case of the U (3) symmetry, the off-diagonal squark mixing
matrix elements W12 and W15 for the charm admixture to
the top-flavour state, entering the ũ1 − c − χ̃0

1 coupling, are
much smaller, typically by four orders of magnitude, than if
U (2) is the applied symmetry. This leads to a correspond-
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Fig. 10 Values of the squark
mixing matrix elements W12 and
W15 for the points of the
parameter scan passing all
applied constraints. The colour
code indicates the corresponding
values of the branching ratios of
the FCNC two-body decay
assuming U (2) (left) and U (3)

(right) symmetry in the
left-handed squark sector

ing two-body FCNC decay width which is about six orders
of magnitudes smaller, cf. Fig. 9 (upper right). This is also
illustrated in Fig. 10, which shows the possible values of W12

and W15 for the U (2) and the U (3) symmetry and the cor-
responding value of the FCNC decay branching ratio, given
by the colour code. As expected, in both cases the right-
chiral scharm admixture to the right-chiral stop-like squark
(given by W15) is much smaller than the left-chiral scharm
admixture (W12). Overall due to the larger flavour symme-
try, for the case of U (3) shown in Fig. 10 (right) the mixing
matrix elements W12 and W15 are O(104) smaller than for
an assumed U (2) symmetry, leading to a much smaller two-
body decay branching ratio compared to Fig. 10 (left), where
we have branching ratios close to one for the major part of
the parameter points.

The four-body decay width is dominated by the diagrams
mediated by flavour-conserving couplings, so that it hardly
depends on the details of the assumed flavour symmetries and
both for U (2) and U (3) yields values of O(10−8) GeV for
�m = 75 GeV. Due to the smallness of the two-body decay,
it becomes the dominating decay channel already for mass
differences �m � 18 GeV for the enhanced flavour symme-
try, while for U (2) the dominating decay for most parameter
points is the FCNC two-body decay over large parts of �m.
The decay widths become comparable for �m � 60 GeV.
The determination of the relative size of the two decay chan-
nels to each other could hence be used to reveal information
on the underlying flavour symmetry.

The total widths given by the sum of the two- and four-
body decays in the investigated �m range are depicted in
Fig. 9 (middle). Dominated by the FCNC decay, for theU (2)

symmetry it reaches almost 10−6 GeV for �m = 75 GeV
and the values are widely spread in the investigated mass
range. Applying the U (3) symmetry, the values are spread
for �m � 18 GeV where the total width is dominated by
the FCNC decay and reaches maximum values of 10−8 GeV
given by the four-body decay width at �m = 75 GeV, see
Fig. 9 (middle right). The black line at �tot = 10−12 GeV
corresponds to the value of the total width where displaced
vertices can be observed. It corresponds to a ũ1 lifetime of the
order of pico-seconds, which is a flight time for the squark,

which is long enough to lead to displaced vertices in the
detector.13 Obviously, the more the FCNC couplings are sup-
pressed, the smaller is the total width, so that the observation
of displaced vertices allows for conclusions on the flavour
symmetry of the model as has been pointed out in [146,147].
In the case the total decay width is below 10−12 GeV even
two displaced vertices could be possible, one from the ũ1

decay and the second from the b-quark final state.
The branching ratios finally, are displayed in Fig. 9

(lower). In case of the smaller flavour symmetry, the branch-
ing ratio into cχ̃0

1 is close to 1 for �m � 15 GeV. Beyond
this value, however, the four-body decay becomes important
and both branching ratios can significantly deviate from 1, as
can be inferred from Fig. 9 (lower left).14 For the U (3) sym-
metry there is a transition region 10 GeV � �m � 30 GeV,
where the two-body and four-body decay branching ratios
cross, leading to a branching close to 1 for the four-body
decay above this �m range. In this transition region, how-
ever, again the branching ratios for the two final state sig-
natures can deviate significantly from 1. This demonstrates
that over large parts of the parameter space the assumption
of 100 % decay probability in either of the final states is not
valid. This therefore has to be taken into account by the
experiments by allowing also for deviations from 1 in the
branching ratios in the interpretation of their data. As evident
from Fig. 5 this has an important phenomenological impact,
as smaller branching ratios lead to considerably weakened
exclusion bounds on the lightest squark mass, i.e. the light-
est stop mass. In order to further illustrate this, we show in
Fig. 11 the values of the two-body decay branching ratios

13 For small decay widths the squark can hadronise before it decays. We
did not take into account any long distance effects from hadronisation.
Since we consider the inclusive decay, the long distance effects can be
estimated to be of O(�QCD/mũ1 ) or even O(�2

QCD/m2
ũ1

), if the energy
release in the decay is much larger than �QCD ≈ 200 MeV, which is
the scale where QCD becomes perturbative. See e.g. Refs. [143–145]
with a similar argument for rare B decays.
14 Taking this into account, the prospects for the FV two-body decay
mode at the LHC have been investigated in [148]. The role of the four-
body decay in the light stop mass window has been high-lighted in
[149,150].
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Fig. 11 Parameter points of the scan, surviving all applied constraints,
in the mχ̃0

1
–mũ1 plane. The colour code indicates the corresponding

values of the FCNC two-body decay branching ratios. The upper grey
line shows the threshold for the two-body decay, the lower grey line the
threshold for the ũ1 three-body decay into χ̃0

1 Wb. Upper U (2), lower
U (3) flavour symmetry applied in the left-handed squark sector

for our investigated scenarios in the mχ̃0
1
–mũ1 plane in the

region where the two- and four-body decays are relevant.
Displayed are the points that result from our parameter

scan and that survive the constraints, described in detail in
Sect. 4. In particular, the stop mass exclusion limits from the
LHC experiments have been applied in our refined approach,
where deviations of the branching ratios from 1 are taken
into account, cf. Fig. 5. In case of the U (2) symmetry
(upper plot) there are barely any viable parameter points for
mũ1 � 270 GeV. In the scenarios, where the two-body decay
dominates this is due to the stop mass exclusion bounds. In
the case the four-body decay is important (corresponding to
the blue points in the plot) it is either the mass bounds or the
constraints from the relic density, which exclude the points.
As the mass exclusions based on the four-body decay are
weaker, there are points that survive the constraints. This is
also why in case of the U (3) symmetry (lower plot), where

the four-body decay dominates in large parts of the parame-
ter space, there is a considerable amount of points down to
∼220 GeV. However, close to the two-body decay threshold,
i.e. the upper grey line, the two-body decay becomes more
important and the more stringent mass exclusions based on
this decay apply, so that there are fewer allowed points. In
this region of the mass plane, our constraint on the relic den-
sity is fulfilled due to stop co-annihilation. Close to the three-
body decay threshold, however, points are excluded due to the
restrictions from the relic density. In this range near the lower
grey line above ∼300 GeV, neutralino annihilation via Higgs
boson exchange becomes effective, so that the constraint on
the relic density can be fulfilled and there are somewhat more
points. This also applies in the U (2) case. The plots show in
particular that, contrary to the naive application of the LHC
exclusion limits, given by the full lines in the plots of Fig. 5,
there are viable parameter points for masses below these lines
both in the U (2) and even more in the U (3) scenario. Thus,
in the U (2) scenario, where the two-body decay dominates,
there are points below 290 GeV (given by the limits from the
searches in the cχ̃0

1 final state) down to about 246 GeV. In the
U (3) scenario, where ũ1 mostly decays into the four-body
final state, masses below the limit given from the four-body
final state searches, i.e. ∼270 GeV, down to approximately
197 GeV are allowed. This is because the assumption of a
two- or four-body decay branching ratio close to 1, as applied
by the experiments, is not valid.

Overall the picture for the branching ratios is as follows.
For the smaller flavour symmetryU (2) the dominating decay
is the two-body FCNC decay with branching ratios close
to 1, implying strongly suppressed branching ratios into the
four-body final state. However, for larger mass differences
between mũ1 and mχ̃0

1
, close to the lower grey line, the

four-body decay becomes increasingly important and the
displayed branching ratio differs from 1 for a considerable
amount of parameter points, cf. in Fig. 11 (upper) the dark-
pink to dark-blue points. For the enhanced flavour symmetry
U (3) the situation evidently is reversed. In large parts of the
�m region the four-body decay dominates implying sup-
pressed branching ratios for the FCNC decay. For small �m
values, i.e. close to the upper grey line, the FCNC decay,
however, takes over, and branching ratios close to 1 are pos-
sible, as can be inferred from Fig. 11 (lower). From the plots
for both flavour symmetries it is evident that the assumption
of branching ratios of 1 for either the two- or four-body decay
is not justified over large parts of the parameter space. Tak-
ing this into account and re-interpreting the exclusion limits
given by the experiments accordingly, the exclusion bounds
on the lightest squark, i.e. the light stop, are significantly
weakened. This should therefore be taken into account in
order to properly interpret the experimental data, in particu-
lar at the next run of the LHC where a more extended part
of the low stop mass range will be probed. For realistic, non-
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fine-tuned scenarios, there is hence still plenty of room in the
SUSY world for a light stop.

6 Conclusions

The supersymmetric partners of the top quark, the stops, play
an important role in the phenomenology of SUSY exten-
sions. Taking into account constraints from Higgs physics,
B-physics and relic density measurements, light stops are
still allowed by the LHC experiments. The direct searches
for the lightest stop-like squark ũ1 in the low-mass range are
based on signatures from the two-body decay ũ1 → cχ̃0

1
and from the four-body decay ũ1 → χ̃0

1 b f f̄
′, which are

the relevant decay channels in the low stop mass region
mχ̃0

1
+ mc � mũ1 � mχ̃0

1
+ mW + mb. We have revis-

ited these two decay channels with the aim of providing pre-
cise theoretical predictions and subsequently investigating
the implications for the exclusion limits on the stop mass.

Allowing for FCNC couplings already at tree level, we
have calculated for the first time the SUSY-QCD corrections
to the two-body decay of the lightest stop-like ũ1 into charm
and neutralino. They turn out to be important, increasing
the partial decay width by close to 27 % near the kinematic
threshold and approaching a constant value of about 6 % far
above. Additionally we found that for special flavour mix-
ings of the heavy up-type squarks the K -factor can reach
values of up to about 2. In the calculation of the four-body
decay we have taken into account the contributions from the
additional diagrams due to FCNC couplings and the finite
masses of the final state bottom quark and τ lepton. Both
effects have not been available in the literature so far. Evi-
dently, in the threshold region the mass effects play an impor-
tant role, but also far above they are still significant, chang-
ing the partial width by up to 8 %. Above the bottom and τ

mass threshold the four-body decay is mainly given by the
flavour-conserving diagrams and hence much less sensitive
to the details of the flavour symmetry of the squark sector than
the two-body decay. In the input of the spectrum generator
we have assumed two different flavour patterns in the left-
handed squark sector, based on aU (2) and aU (3) symmetry.
Accordingly, in the more symmetric U (3) case the flavour
off-diagonal mixing in the squark sector is smaller, leading to
smaller FCNC two-body decay widths, while the four-body
decay is mostly insensitive to the flavour pattern. Depending
on the flavour symmetry the relative importance of the two-
and four-body branching ratios to each other changes, so that
the knowledge on the branching ratios gives information on
the underlying flavour symmetry. In particular, for the U (3)

case the total ũ1 width can be very small leading to displaced
vertices in the detector, and even the observation of two dis-
placed vertices may be possible, from the ũ1 decay and from
the b-quark final state.

The detailed investigation of the size of the two- and
four-body decay branching ratios in our extensive param-
eter scan, which takes into account all relevant constraints,
reveals that the assumption of branching ratios of 1 for either
of the decay channels, which the experiments make in their
exclusion plots for the lightest stop quark, is not justified for
large parts of the parameter space. Taking into account infor-
mation given by the experiments we have re-examined the
exclusions as a function of the exact value of the ũ1 branch-
ing ratio. As expected, the bounds on the excluded lightest
stop masses are considerably weakened. Applying this infor-
mation on the scenarios of our parameter scan we find that
there is still a sizeable amount of scenarios with allowed stop
mass values below the presently given experimental exclu-
sion limits. This is in particular the case for scenarios where
the four-body decay dominates, i.e. for the U (3) symmetry
assumption, as here the exclusions given by the experiment
are weaker.

In summary, the precise prediction for the FCNC two-
body and the four-body decay of the lightest stop-like squark
in the low stop mass region, taking into account SUSY-QCD
corrections, mass effects and flavour violation at tree level,
as done here for the first time, is indispensable for the correct
interpretation of the experimental exclusion limits. Devia-
tions of either of the branching ratios from 1 in large parts of
the parameter space considerably weaken the stop exclusion
limits. This should be taken into account at the next run of
the LHC with higher centre-of-mass energy and luminosity
where a bigger part of the stop mass region dominated by
these two decay channels will be probed. Contrary to the
present naive picture, in the SUSY world there is actually a
larger range of light stop masses that is still allowed by the
LHC experiments.
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Appendix: The NLO decay width ũ1 → cχ̃0
1

In this appendix we give the result for the SUSY-QCD cor-
rected NLO decay width of the FCNC decay. We give the
finite part of the result that remains after the application of
the renormalisation procedure and performing the sum of the
virtual and real corrections. Furthermore, we assume mc to
be zero. The decay width at NLO is composed of, cf. also
Eq. (23),

�NLO = �LO + �virt + �real + �CT, (61)

with �LO as given in Eq. (21). The scalar integrals appearing
in the virtual and counterterm contributions, �virt and �CT,
are defined as

A(m2
1) = (2πμ)4−D

iπ2

∫
dDq

1

(q2 − m2
1)

, (62)

Bi (m
2
1,m2

2) = (2πμ)4−D

iπ2

×
∫

dDq
1

(q2 − m2
1)((q + pi )

2 − m2
2)

, (63)

pμB1(p2,m2
1,m2

2) = (2πμ)4−D

iπ2

×
∫

dDq
qμ

(q2 − m2
1)((q + p)2 − m2

2)
, (64)

Ci j (m
2
1,m2

2,m2
3) = (2πμ)4−D

iπ2

×
∫

dDq
1

(q2 − m2
1)((q + pi )2 − m2

2)((q + pi + p j )2 − m2
3)

.

(65)

The indices i, j of the four-momenta refer to either c, ũ1 or
χ̃0

1 and will be specified later. Applying on-shell renormali-
sation the virtual corrections �virt only receive contributions
from the gluon and gluino vertex corrections, �virt

g and �virt
g̃ ,

depicted in Fig. 1 (upper),

�virt = �virt
g + �virt

g̃ , (66)

with the specific contributions given by

�virt
g = −αs(μ)

24π2m3
ũ1

(
(gL211)

2 + (gR
211)

2
)

× Re

[
Bχ̃0

1
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) (
2m4
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1
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)
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χ̃0
1
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)2
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(
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) (
m4

χ̃0
1

− m4
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)

+ 2Cc,χ̃0
1

(
0, 0,m2

ũ1

) (
m2

χ̃0
1

− m2
ũ1

)3
]

(67)

and

�virt
g̃ = αs(μ)

12π2 mũ1

⎛
⎝1 −

m2
χ̃0

1

m2
ũ1

⎞
⎠ 3∑

i=1
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1
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)

×
[
−W ∗

1iW
∗
s5

(
gL211g

L
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)
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2
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211g
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, (68)

where here and in the following the A, B andC functions are
understood not to contain any divergent poles in εUV or εIR

any more. The gluino mass is denoted by mg̃ and μ denotes
the renormalisation scale. The decay width stemming from
the counterterms, �CT, reads

�CT = 1

8π
mũ1

⎛
⎝1 −

m2
χ̃0

1

m2
ũ1

⎞
⎠

2

(δgL211g
L
211+δgR

211g
R
211), (69)

with δgL/R as defined in Eqs. (35) and (36). For the compu-
tation of the counterterms the quark and squark self-energies
are needed. The squark self-energy can be cast into the form
(s, t = 1, . . . , 6)

�̃st (p
2) = αs(μ)

3π

6∑
r=1

[
A
(
m2
ũr

) 3∑
i=1

3∑
j=1

(W∗
siWri

− W∗
s i+3Wr i+3)(W∗

r jWt j − W∗
r j+3Wt j+3)

]

− 2αs(μ)

3π

3∑
i=1

[
A
(
m2
ui

)
(W∗

s i+3Wt i+3 + W∗
siWti )

+ A(m2
g̃)(W

∗
s i+3Wt i+3 + W∗

siWti )

+ Bp2

(
m2
ui ,m

2
g̃

) ((
m2
ui + m2

g̃ − p2
)
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× (
W∗
siWti + W∗

s i+3Wt i+3
)

−2mui mg̃
(
W∗
siWt i+3 + W∗

s i+3Wti
)) ] + αs(μ)

3π

× δst

[
A
(
m2
ũs

)
− 2

(
p2 + m2

ũs

)
Bp2

(
0,m2

ũs

)]
.

(70)

The symbol Bp2 is defined in analogy to Eq. (64), with
unspecified momentum p2. The quark self-energies read

�L
i j = −2αs(μ)

3π

6∑
s=1

B1

(
p2,m2

g̃,m
2
ũs

)
WsiW

∗
s j , (71)

�R
i j = −2αs(μ)

3π

6∑
s=1

B1

(
p2,m2

g̃,m
2
ũs

)
Ws i+3W

∗
s j+3,

(72)

�Ls
i j = −2αs(μ)

3π

6∑
s=1

mg̃Bp2

(
m2

g̃,m
2
ũs

)
W ∗

s i+3Ws j , (73)

�Rs
i j = −2αs(μ)

3π

6∑
s=1

mg̃Bp2

(
m2

g̃,m
2
ũs

)
Ws j+3W

∗
s i . (74)

For the computation of the real corrections we use the
parametrisation as in [151],

r2 ≡ (pũ1 − pc − pg)2

m2
ũ1

=
m2

χ̃0
1

m2
ũ1

, (75)

pc pg = m2
ũ1

2
(1 − r)2y, (76)

pũ1 pg = m2
ũ1

2
(1 − r2)(1 − z), (77)

in terms of the four-momenta of the squark, charm quark
and gluon, pũ1 , pc and pg , respectively. The squared matrix
element evaluated from the Feynman diagrams of the real
corrections, depicted in Fig. 3, is integrated over the three-
particle phase space in D = 4−2ε dimensions, with ε ≡ εIR.
The D-dimensional differential three-particle phase space
d�(3) reads

d�(3)(pc, pχ̃0
1
, pg; pũ1

)

= d�(2)(pc, pχ̃0
1
; pũ1

)
(1 − r)2

16π2

(m2
ũ1

)1−ε(4π)ε

�(1 − ε)

(
1 + r

1 − r

)2ε

×
∫ 1

0
dz(r2 + (1 − r2)z)−ε

∫ ymax

0
dy y−ε(ymax − y)−ε,

(78)

where d�(2) denotes the differential two-particle phase
space, pχ̃0

1
the four-momentum of the neutralino and � the

Gamma function. The upper integration limit ymax is given

by

ymax = (1 + r)2z(1 − z)

(z − r2z + r2)
. (79)

Neglecting the factor (4π)ε/�(1 − ε) in compliance with
the virtual corrections this leads to the following result for
the finite part of the real corrections:

�real = − αs(μ)

288π2 mũ1((g
L
211)

2 + (gR
211)

2)

×
[
10π2 − 99 + 204r2 − 20π2r2

− 105r4 + 10π2r4 − 6(−1 + r2)2 log2

(
m2

ũ1

μ2

)

+ 24r2 log(r2) − 18r4 log(r2)

+ 60 log(1 − r2) − 120r2 log(1 − r2)

+ 60r4 log(1 − r2) − 24 log2(1 − r2)

+ 48r2 log2(1 − r2) − 24r4 log2(1 − r2)

− 6(−1 + r2)2 log

(
m2

ũ1

μ2

)
(−5 + 4 log(1 − r2))

−24(−1 + r2)2Li2(1 − r2)
]
, (80)

with the Spence function

Li2(z) = −
∫ z

0
du

log(1 − u)

u
, z ∈ C \ [1,∞). (81)
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