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Abstract. This paper unifies the representations of different kinds of computer arithmetic. It
is motivated by ideas developed in the book The End of Error by John Gustafson [5]. Here
interval arithmetic just deals with connected sets of real numbers. These can be closed, open,
half-open, bounded or unbounded.
The first chapter gives a brief informal review of computer arithmetic from early floating-point
arithmetic to the IEEE 754 floating-point arithmetic standard, to conventional interval arith-
metic for closed and bounded real intervals, to the proposed standard IEEE P1788 for interval
arithmetic, to advanced computer arithmetic, and finally to the just recently defined and pub-
lished unum and ubound arithmetic [5].
Then in chapter 2 the style switches from an informal to a pure and strict mathematical one.
Different kinds of computer arithmetic follow an abstract mathematical pattern and are just
special realizations of it. The basic mathematical concepts are condensed into an abstract ax-
iomatic definition. A computer operation is defined via a monotone mapping of an arithmetic
operation in a complete lattice onto a complete sublattice. Essential properties of floating-point
arithmetic, of interval arithmetic for closed bounded and unbounded real intervals, and for
advanced computer arithmetic can directly be derived from this abstract mathematical model.

Then we consider unum and ubound arithmetic. To a great deal this can be seen as an extension
of arithmetic for closed real intervals to open and halfopen real intervals. Essential properties
of unum and ubound arithmetic are also derived from the abstract mathematical setting given
in chapter 2. Computer executable formulas for the arithmetic operations of ubound arithmetic
are derived on the base of pure floating-point arithmetic. These are much simpler, easier to
implement and faster to execute than alternatives that would be obtained on the base of the
IEEE 754 floating-point arithmetic standard which extends pure floating-point arithmetic by a
number of exceptions.
The axioms of computer arithmetic given in section 2 also can be used to define ubound arith-
metic in higher dimensional spaces like complex numbers, vectors and matrices with real and
interval components. As an example section 4 indicates how this can be done in case of matrices
with ubound components. Execution of the resulting computer executable formulas once more
requires an exact dot product.
In comparison with conventional interval arithmetic The End of Error may be a too big step to
easily get accepted by manufacturers and computer users. So in the last section we mention a
reduced but still great step that might easier find its way into computers in the near future.

1 Introduction

The first chapter briefly reviews the development of arithmetic for scientific computing from a math-
ematical point of view from the early days of floating-point arithmetic to conventional interval arith-
metic until the latest step of unum and ubound arithmetic.

1.1 Early Floating-Point Arithmetic

Early computers designed and built by Konrad Zuse, the Z3 (1941) and the Z4 (1945), are among
the first computers that used the binary number system and floating-point for number representa-
tion [4, 25]. Both machines carried out the four basic arithmetic operations of addition, subtraction,



multiplication, division, and the square root by hardware. In the Z4 floating-point numbers were rep-
resented by 32 bits. They were used in a way very similar to what today is IEEE 754 single precision
arithmetic. The technology of those days was poor (electromechanical relays, electron tubes). It was
complex and expensive. To avoid frequent interrupts special representations and corresponding wirings
were available to handle the three special values: 0, ∞, and indefinite (for 0/0, ∞·0, ∞−∞, or ∞/∞
and others).

These early computers were able to execute about 100 flops (floating-point operations per second).
For comparison: With a mechanic desk calculator or a modern pocket calculator a trained person can
execute about 1000 arithmetic operations somewhat reliably on a day. The computer now could do
this in 10 seconds. This was a gigantic increase in computing speed by a factor of about 107.

Over the years the computer technology was permanently improved. This permitted an increase of
the word size and of speed. Already in 1965 computers were on the market (CDC 6600) that performed
105 flops. At these speeds a conventional error analysis of numerical algorithms, that estimates the
error of each single arithmetic operation, becomes questionable. Examples can be given which illustrate
that computers after very few operations deliver a completely absurd result [29]. It easily can be shown
that for a certain system of two linear equations with two unknowns even today computers delivers a
result of which possibly not a single digit is correct. Such results strongly suggest to use the computer
more for computing close bounds for the solution instead of murkey approximations.

1.2 The Standard for Floating-Point Arithmetic IEEE 754

Continuous progress in computer technology allowed extra features such as additional word sizes
and differences in the coding and numbers of special cases. To stabilize the situation a standard for
floating-point arithmetic was developed and internationally adopted in 1985. It is known as the IEEE
754 floating-point arithmetic standard. Until today the most used floating-point format is double
precision. It corresponds to about 16 decimal digits. A revision of the standard IEEE 754, published
in 2008, added another word size of 128 bits.

During a floating-point computation exceptional events like underflow, overflow or division by zero
may occur. For such events the IEEE 754 standard reserves some bit patterns to represent special
quantities. It specifies special representations for −∞, +∞, −0, +0, and for NaN (not a number).
Normally, an overflow or division by zero would cause a computation to be interrupted. There are,
however, examples for which it makes sense for a computation to continue. In IEEE 754 arithmetic
the general strategy upon an exceptional event is to deliver a result and continue the computation.
This requires the result of operations on or resulting in special values to be defined. Examples are:
4/0 = ∞, −4/0 = −∞, 0/0 = NaN, ∞ − ∞ = NaN, 0 · ∞ = NaN, ∞/∞ = NaN, 1/(−∞) = −0,
−3/(+∞) = −0, log 0 = −∞, log x = NaN when x < 0, 4 − ∞ = −∞. When a NaN participates in
a floating-point operation, the result is always a NaN. The purpose of these special operations and
results is to allow programmers to postpone some tests and decisions to a later time in the program
when it is more convenient.

The standard for floating-point arithmetic IEEE 754 has been widely accepted and has been used
in almost every processor developed since 1985. This has greatly improved the portability of floating-
point programs. IEEE 754 floating-point arithmetic has been used successfully in the past. Many
computer users are familiar with all details of IEEE 754 arithmetic including all its exceptions like
underflow, overflow, −∞, +∞, NaN, −0,+0, and so on. Seventy years of extensive use of floating-point
arithmetic with all its exceptions makes users believe that this is the only reasonable way of using the
computer for scientific computing.

By the time the original standard IEEE 754 was developed, early microprocessors were on the
market. They were made with a few thousand transistors, and ran at 1 or 2 MHz. Arithmetic was
provided by an 8-bit adder. Dramatic advances in computer technology, in memory size, and in speed
have been made since 1985. Arithmetic speed has gone from megaflops (106 flops), to gigaflops (109

flops), to teraflops (1012 flops), to petaflops (1015 flops), and it is already approaching the exaflops
(1018 flops) range. This even is a greater increase of computing speed since 1985 than the one from a
hand calculator to the first electronic computers! A qualitative difference goes with it. At the time of
the megaflops computer a conventional error analysis was recommended in every numerical analysis
textbook. Today the PC is a gigaflops computer. For the teraflops or petaflops computer conventional
error analysis is no longer practical.
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Computing indeed has already reached astronomical dimensions! With increasing speed, problems
that are dealt with become larger and larger. Extending pure floating-point arithmetic by operations
for elements that are not real numbers and perform trillions of operations with them appears ques-
tionable. What seemed to be reasonable for slow speed computers needs not to be so for computers
that perform trillions of operations in a second. A compiler could detect exceptional events and ask
the user to treat them as for any other error message.

The capability of a computer should not just be judged by the number of operations it can perform
in a certain amount of time without asking whether the computed result is correct. It should also be
asked how fast a computer can compute correctly to 3, 5, 10 or 15 decimal places for certain problems.
If the question were asked that way, it would very soon lead to better computers. Mathematical
methods that give an answer to this question are available for many problems. Computers, however,
are at present not designed in a way that allows these methods to be used effectively. Computer
arithmetic must move strongly towards more reliability in computing. Instead of the computer being
merely a fast calculating tool it must be developed into a scientific instrument of mathematics.

1.3 Conventional Interval Arithmetic

For reasons just mentioned interval arithmetic was invented. Conventional interval arithmetic just
deals with bounded and closed real intervals. Formulas for the basic arithmetic operations for
these are easily derived. Interval arithmetic became popular after the book [23] by R. E. Moore was
published in 1966. It was soon further exploited by other well known books by G. Alefeld and J.
Herzberger [1, 2] or by E. Hansen [6, 7] for instance, and others. Interval mathematics using conven-
tional interval arithmetic has been developed to a high standard over the last few decades. It provides
methods which deliver results with guarantees.

Since the 1970-ies until lately [12, 13, 26, 32] attempts were undertaken to extend the arithmetic
for closed and bounded real intervals to unbounded intervals. However, inconsistencies to deal with
−∞ and +∞ have occured again and again. If the real numbers R are extended by −∞ and +∞ then
unusual and unsatisfactory operations are to be dealt with like ∞−∞, 0 · ∞, or ∞/∞.

1.4 The Proposed Standard for Interval Arithmetic IEEE P1788

In April 2008 the author of this article published a book [19] in which the problems with the infinities
and other exceptions are definitely eliminated. Here interval arithmetic just deals with sets of real
numbers. Since −∞ and +∞ are not real numbers, they cannot be elements of a real interval. They
only can be bounds of a real interval. Formulas for the arithmetic operations for bounded and closed
real intervals are well established in conventional interval arithmetic. It is shown in the book that
these formulas can be extended to closed and unbounded real intervals by a continuity principle. For
a bound −∞ or +∞ in an interval operand the bounds for the resulting interval can be obtained
from the formulas for bounded real intervals by applying well established rules of real analysis for
computing with −∞ and +∞. It is also shown in the book that obscure operations like ∞ − ∞ or
∞/∞ do not occur in the formulas for the operations for unbounded real intervals. This new approach
to arithmetic for bounded and unbounded closed real intervals leads to an algebraically closed calculus
which is free of exceptions. It remains free of exceptions if the operations are mapped on a floating-
point screen by the monotone, upwardly directed rounding, for definition see 3.2. Intervals bring the
continuum on the computer. An interval between two floating-point bounds represents the continuous
set of real numbers between these bounds.

A few months after publication of the book [19] the IEEE Computer Society founded a committee
IEEE P1788 for developing a standard for interval arithmetic in August 2008. A motion, presented
by the author, to include arithmetic for unbounded real intervals where −∞ and +∞ may be bounds
but not elements of unbounded real intervals has been accepted by IEEE P1788.

With little hardware expenditure interval arithmetic can be made as fast as simple floating-
point arithmetic. The lower and the upper bound of an arithmetic operation easily can be computed
simultaneously. With more suitable processors, rigorous methods based on interval arithmetic could
be comparable in speed to today’s approximate methods. As computers speed up, interval arithmetic
becomes a principal and necessary tool for controlling the precision of a computation as well as the
accuracy of the computed result.
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The standard for interval arithmetic IEEE P1788 takes the elements of the standard IEEE 754
for floating-point arithmetic as the basic set of numbers. This introduces all the IEEE 754 exceptions
into interval arithmetic. It makes interval arithmetic clumsy and complicates its implementation and
understanding. This can be avoided if interval arithmetic is developed over the set of real numbers as
demonstrated in [19]. All kinds of speculation should be removed from computer arithmetic.

1.5 Advanced Computer Arithmetic

The book [19] deals with computer arithmetic in a more general sense than usual. It shows how the
arithmetic and mathematical capability of the digital computer can be enhanced in a quite natural
way. This is motivated by the desire and the need to improve the accuracy of numerical computing
and to control the quality of computed results.

Advanced computer arithmetic extends the accuracy requirements for the elementary floating-
point operations as defined by the arithmetic standard IEEE 754 to the customary product spaces of
computation: the complex numbers, the real and complex intervals, the real and complex vectors and
matrices, and the real and complex interval vectors and interval matrices. All computer approximations
of arithmetic operations in these spaces should deliver a result that differs from the correct result by
at most one rounding. For all these product spaces this accuracy requirement leads to operations
which are distinctly different from those traditionally available on computers. This expanded set of
arithmetic operations is taken as a definition of what is called advanced computer arithmetic
in [19]. Programming environments that provide advanced computer arithmetic have been available
since 1980 [9, 10, 12, 21, 32, 33].

Advanced computer arithmetic is then used to develop algorithms for computing highly accurate
and guaranteed bounds for a number of standard problems of numerical analysis like systems of linear
equations, evaluation of polynomials or other arithmetic expressions, numerical integration, optimiza-
tion problems, and many others [12, 13]. These can be taken as higher order arithmetic operations.
Essential for achieving these results is an exact dot product.

In vector and matrix spaces1 the dot product of two vectors is a fundamental arithmetic operation.
It is fascinating that this basic operation is also a mean to increase the speed of computing besides
of the accuracy of the computed result. Actually the simplest and fastest way for computing a dot
product of two floating-point vectors is to compute it exactly. Here the products are just shifted and
added into a wide fixed-point register on the arithmetic unit. By pipelining, the exact dot product
can be computed in the time the processor needs to read the data, i.e., it comes with utmost speed.
This high speed is obtained by totally avoiding slow intermediate access to the main memory of the
computer.

Any method that computes a dot product correctly rounded to the nearest floating-point number
also has to consider the values of the summands. This results in a more complicated method with the
outcome that it is necessarily slower than a conventional computation of the dot product in floating-
point arithmetic. Experience with a prototype development in 1994 [3, 17] shows that a hardware
implementation of the exact dot product can be expected to be three to four times faster than the
latter. The main difference, however, is accuracy. There are many applications where a correctly
rounded or otherwise precise dot product does not suffice to solve the problem. For details see [27, 28,
30] and [19].

The hardware needed for the exact dot product is comparable to that for a fast multiplier by an
adder tree, accepted years ago and now standard technology in every modern processor. The exact
dot product brings the same speedup for accumulations at comparable costs.

In 2009 the author prepared a motion that requires inclusion of the exact dot product as essential
ingredient for obtaining high accuracy in interval computations into the standard IEEE P1788. The
motion was accepted. But in 2013, however, the motion was weakened by the committee to now just
recommending an exact dot product. In practice a recommendation guarantees nonstandard behavior
for different computing systems.

Advanced computer arithmetic certainly is a much more useful extension to pure floating-point
arithmetic than all the exceptions provided by IEEE 754. All forms of speculation need to be removed
from computing.

1 for real, complex, interval, and complex interval data
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1.6 Unum and Ubound Arithmetic

While about 70 scientists from all over the world have been working on a standard for interval arith-
metic for more than 6 years since August 2008, all of a sudden like out of nothing John Gustafson
publishes a book: The End of Error [5]. Reading this book became a big surprise. It is a sound piece
of work and it is hard to believe that a single person could develop so many nice ideas and put them
together into a sketch of what might become the future of computing. Reading the book is fascinating.
The situation very much reminds me to a text by Friedrich Schiller in his work Demetrius. It says:

Was ist die Mehrheit? Die Mehrheit ist der Unsinn,
Verstand ist stets bei wen’gen nur gewesen.

.........
Man soll die Stimmen waegen und nicht zaehlen;

der Staat muss untergehn, frueh oder spaet,
wo Mehrheit siegt und Unverstand entscheidet.

For almost 60 years interval arithmetic was defined for the set IR of closed and bounded real intervals.
The End of Error expands this to the set JR of just connected sets real numbers. These can be
closed, open, half-open, bounded, or unbounded. The book shows that arithmetic for this expanded
set is closed under addition, subtraction, multiplication, division, also square root, powers, logarithm,
exponential, and many other elementary functions needed for technical computing, i.e., arithmetic
operations for intervals of JR always lead to intervals of JR again. The calculus is free of exceptions. It
remains free of exceptions if the bounds are restricted to a floating-point screen, for proof see section
3.4. John Gustafson shows in his book that this new extension of conventional interval arithmetic
opens new areas of applications and allows getting better results.

This paper is an attempt to describe different kinds of computer arithmetic by a unique repre-
sentation. It might help to integrate unum and ubound arithmetic into the arithmetic standard IEEE
P1788 after this has been released from the IEEE 754 exceptions.

2 Axiomatic Definition of Computer Arithmetic

Frequently mathematics is seen as the science of structures. Analysis carries three kinds of structures:
an algebraic structure, an order structure, and a topological or metric structure. These are coupled
by certain compatibility properties, as for instance: a ≤ b ⇒ a + c ≤ b + c.

It is well known that floating-point numbers and floating-point arithmetic do not obey the rules
of the real numbers R. However, the rounding is a monotone function. So the changes to the order
structure are minimal. This is the reason why the order structure plays a key role for an axiomatic
definition of computer arithmetic.

This study considers the two elementary models that are covered by the two IEEE arithmetic
standards IEEE 754 and IEEE 1788, computer arithmetic on the reals and on real intervals, but also
more recent refined developments called unum and ubound arithmetic. Abstract settings of computer
arithmetic for higher dimensional spaces like complex numbers, vectors and matrices for real, complex,
and interval data can be developed following similar schemes. We briefly sketch this in section 4. For
more details see [19] and the literature cited there.

We begin by listing a few well-known concepts and properties of ordered sets.

Definition 1. A relation ≤ in a set M is called an order relation, and {M,≤} is called an ordered
set2 if for all a, b, c ∈ M the following properties hold:

(O1) a ≤ a, (reflexivity)
(O2) a ≤ b ∧ b ≤ c ⇒ a ≤ c, (transitivity)
(O3) a ≤ b ∧ b ≤ a ⇒ a = b, (antisymmetry)

An ordered set M is called linearly or totally ordered if in addition

(O4) a ≤ b ∨ b ≤ a for all a, b ∈ M . (linearly ordered)

2 Occasionally called a partially ordered set.
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An ordered set M is called

(O5) a lattice if for any two elements a, b ∈ M , the inf{a, b} and the sup{a, b} exist. (lattice)

(O6) It is called conditional completely ordered if for every bounded subset S ⊆ M , the inf S and the
supS exist.

(O7) An ordered set M is called completely ordered or a complete lattice if for every subset S ⊆ M ,
the inf S and the supS exist. (complete lattice)

With these concepts the real numbers {R,≤} are defined as a conditional complete linearly ordered
field.

In the definition of a complete lattice, the case S = M is included. Therefore, inf M and supM
exist. Since they are elements of M , every complete lattice has a least and a greatest element.

If a subset S ⊆ M of a complete lattice {M,≤} is also a complete lattice, {S,≤} is called a
complete sublattice of {M,≤} if the two lattice operations inf and sup in both sets lead to the same
result, i.e., if

for all A ⊆ S, infM A = infS A and supM A = supS A.

Definition 2. A subset S of a complete lattice {M,≤} is called a screen of M , if every element
a ∈ M has upper and lower bounds in S and the set of all upper and lower bounds of a ∈ M has
a least and a greatest element in S respectively. If a minus operator exists in M , a screen is called
symmetric, if for all a ∈ S also −a ∈ S.

As a consequence of this definition a complete lattice and a screen have the same least and greatest
element. It can be shown that a screen is a complete sublattice of {M,≤} with the same least and
greatest element, [19].

Definition 3. A mapping : M → S of a complete lattice {M,≤} onto a screen S is called a
rounding if (R1) and (R2) hold:

(R1) for all a ∈ S, a := a. (projection)

(R2) a ≤ b ⇒ a ≤ b. (monotone)

A rounding is called downwardly directed resp. upwardly directed if for all a ∈ M

(R3) a ≤ a resp. a ≤ a. (directed)

If a minus operator is defined in M, a rounding is called antisymmetric if

(R4) (−a) = − a, for all a ∈ M . (antisymmetric)

The monotone downwardly resp. upwardly directed roundings of a complete lattice onto a screen
are unique. For the proof see [19].

Definition 4. Let {M,≤} be a complete lattice and ◦ : M × M → M a binary arithmetic operation

in M . If S is a screen of M , then a rounding : M → S can be used to approximate the operation
◦ in S by

(RG) a ◦ b := (a ◦ b), for a, b ∈ S.

If a minus operator is defined in M and S is a symmetric screen of M , then a mapping : M → S
with the properties (R1,2,4) and (RG) is called a semimorphism3.

Semimorphisms with antisymmetric roundings are particularly suited for transferring properties
of the structure in M to the subset S. It can be shown [19] that semimorphisms leave a number of
reasonable properties of ordered algebraic structures (ordered field, ordered vector space) invariant.

If an element x ∈ M is bounded by a ≤ x ≤ b with a, b ∈ S, then by (R1) and (R2) the rounded

image x is bounded by the same elements: a ≤ x ≤ b, i.e., x is either the least upper
(supremum) or the greatest lower (infimum) bound of x in S. Similarly, if for x, y ∈ S the result of
an operation x ◦ y is bounded by a ≤ x ◦ y ≤ b with a, b ∈ S, then by (R1), (R2), and (RG) also

a ≤ x ◦ y ≤ b, i.e., x ◦ y is either the least upper or the greatest lower bound of x ◦ y in S. If the
rounding is upwardly or downwardly directed the result is the least upper or the greatest lower bound
respectively.

3 The properties (R1,2,4) and (RG) of a semimorphism can be shown to be necessary conditions for a homo-
morphism between ordered algebraic structures. For more details see [19]
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3 Particular Models

3.1 Floating-Point Arithmetic

The set {R,≤} with R := R∪{−∞,+∞} is a complete lattice. Let F denote the set of finite floating-
point numbers and F := F∪ {−∞,+∞}. Then F is a screen of {R,≤}. The least element of the set R

and of the subset F is −∞ and the greatest element is +∞.

Definition 5. With a rounding : R → F arithmetic operations ◦ in F are defined by

(RG) a ◦ b := (a ◦ b), for a, b ∈ F and ◦ ∈ {+,−, ∗, /}, 4

with b 6= 0 in case of division.5

If a and b are adjacent floating-point numbers and x ∈ R with a ≤ x ≤ b, then because of (R1)

and (R2) also a ≤ x ≤ b, i.e., there is never an element of F between an element x ∈ R and its

rounded image x. The same property holds for the operations defined by (RG): If for x, y ∈ F,

a ≤ x ◦ y ≤ b then by (R1), (R2), and (RG) also a ≤ x ◦ y ≤ b, for all ◦ ∈ {+,−, ∗, /}, i.e., x ◦ y is
either the greatest lower or the least upper bound of x ◦ y in F.

Frequently used roundings : R → F are antisymmetric. Examples are the rounding to the
nearest floating-point number, the rounding toward zero, or the rounding away from zero. A semimor-
phism transfers a number of useful properties of the real numbers to the floating-point numbers. The
mathematical structure of F can even be defined as properties of R which are invariant with respect
to semimorphism, [19].

For the monotone downwardly resp. upwardly directed roundings of R onto F often the special
symbols ▽ resp. △ are used. These roundings are not antisymmetric. They are related by the
property:

▽ (−a) = − △ a and △ (−a) = − ▽ a. (1)

Arithmetic operations defined by (RG) and these roundings are denoted by ▽◦ and △◦ , respectively,
for ◦ ∈ {+,−, ·, /}. These are heavily used in interval arithmetic.

3.2 Interval Arithmetic

Conventional interval arithmetic extends the arithmetic for real numbers to closed and connected sets
of real numbers.6 Originally it was developed for closed and bounded real intervals [2, 23]. The set
of all such intervals is denoted by IR. An interval of IR is written as an ordered pair [a1, a2], with
a1, a2 ∈ R and a1 ≤ a2. The first element is the lower bound and the second is the upper bound.

Later it was discovered [19] that the formulas for the arithmetic operations +,−, ·, / for bounded
intervals of IR can be extended to unbounded intervals in an exception-free manner. For the notation
of unbounded real intervals −∞ and +∞ are used as bounds. Since −∞ and +∞ are not real numbers
a bound −∞ or +∞ of an unbounded interval is not an element of the interval. Thus unbounded real
intervals are written as (−∞, a] or [b,+∞) or (−∞,+∞)7 with a, b ∈ R. No exceptional operations
like ∞ − ∞, ∞/∞ occur in the explicit formulas for the arithmetic operations of unbounded real
intervals. For proof see [19]. An international standard IEEE 1788 now defines the notation of the
set of closed and bounded real intervals to be IR and IR for closed, bounded and unbounded real
intervals.

With respect to the subset relation as an order relation the set of real intervals {IR,⊆} is a
complete lattice. The subset of IR where all finite bounds are floating-point numbers of F is denoted
by IF. {IF,⊆} is a screen of {IR,⊆}. In both sets IR and IF the infimum of a subset of IF is the
intersection and the supremum is the interval hull. The least element of both sets IR and IF is the
empty set ∅ and the greatest element is the set R = (−∞,+∞).

4 Here operations like ∞−∞ or ∞/∞ can occur which in IEEE 754 are set to NaN . In the interval operations,
however, such constellations do not occur. For proof see [19].

5 In real analysis division by zero is not defined. It does not lead to a real number.
6 A set of real numbers is called closed, if its complement in R is open. A set M ⊂ R is called open if for all

a ∈ M also an ǫ-neighborhood (a − ǫ, a + ǫ) is entirely in M .
7 These intervals are closed sets of real numbers. Nevertheless we use round brackets at the bounds −∞ and

+∞ to indicate that the bounds are not elements of the interval.
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Definition 6. For intervals a, b ∈ IR arithmetic operations ◦ ∈ {+,−, ·, /} are defined as set opera-
tions

a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}. (2)

Here for division we assume that 0 6∈ b.

It is a well established result of interval arithmetic that under this definition IR is a closed calculus,
i.e., the result a ◦ b again is an element of IR. For details see [19]. For a = [a1, a2] ∈ IR we obtain by
(2) immediately

−a := (−1)·a= [−a2,−a1] ∈ IR.8 (3)

With (3) the subtraction can be reduced to the addition by a − b = a + (−b).
If in (3) a ∈ IF, then also −a ∈ IF, i.e., IF is a symmetric screen of IR.
Between the complete lattice {IR,⊆} and its screen {IF,⊆} the monotone upwardly directed

rounding ♦ : IR → IF is uniquely defined. It is characterized by the following properties:

(R1) ♦ a = a , for all a ∈ IF. (projection)

(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ IR. (monotone)

(R3) a ⊆ ♦ a , for all a ∈ IR. (upwardly directed)

For a = [a1, a2] ∈ IR the result of the monotone upwardly directed rounding ♦ is

♦ a= [ ▽ a1, △ a2]. (4)

Using (1) and (2) it is easy to see that the monotone upwardly directed rounding ♦ : IR → IF

is antisymmetric, i.e.,

(R4) ♦ (−a) = − ♦ a , for all a ∈ IR. (antisymmetric).

An interval a= [a1, a2] is frequently interpreted as a point in R2. This very naturally induces the
order relation ≤ of R2 to the set of intervals IR. For two intervals a = [a1, a2] and b = [b1, b2] the
relation ≤ is defined by a ≤ b :⇔ a1 ≤ b1 ∧ a2 ≤ b2.

For the ≤ relation for intervals compatibility properties hold between the algebraic structure and
the order structure in great similarity to the real numbers. For instance:

(OD1) a ≤ b ⇒ a + c ≤ b + c, for all c.
(OD2) a ≤ b ⇒ −b ≤ −a .
(OD3) [0, 0] ≤ a ≤ b ∧ c ≥ [0, 0] ⇒ a ∗ c ≤ b ∗ c.
(OD4) [0, 0] < a ≤ b ∧ c > [0, 0] ⇒ [0, 0] < a/c ≤ b/c ∧ c/a ≥ c/b > [0, 0].

With respect to set inclusion as an order relation arithmetic operations in {IR,⊆} are inclusion
isotone by (2), i.e., a ⊆ b ⇒ a ◦ c ⊆ b ◦ c or equivalently

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ◦ c ⊆ b ◦ d , for all ◦ ∈ {+,−, ∗, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

Setting c,d = −1 in (OD5) delivers immediately a ⊆ b ⇒ −a ⊆ −b which differs significantly
from (OD2).

Definition 7. With the upwardly directed rounding ♦ : IR → IF binary arithmetic operations in IF

are defined by semimorphism:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a, b ∈ IF and all ◦ ∈ {+,−, ·, /}.

Here for division we assume that a/b is defined.

If an interval a ∈ IF is an upper bound of an interval x ∈ IR, i.e., x ⊆ a , then by (R1), (R2),

and (R3) also x ⊆ ♦ x ⊆ a . This means ♦ x is the least upper bound, the supremum of x in
IF. Similarly if for x ,y ∈ IF, x ◦ y ⊆ a with a ∈ IF, then by (R1), (R2), (R3), and (RG) also

x ◦ y ⊆ x ♦◦ y ⊆ a , i.e., x ♦◦ y is the least upper bound, the supremum of x ◦ y in IF. Occasionally
the supremum x ♦◦ y of the result x ◦ y ∈ IR is called the tightest enclosure of x ◦ y .

Arithmetic operations in IF are inclusion isotone, i.e.,

8 An integral number a in an interval expression is interpreted as interval [a, a].
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(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ♦◦ c ⊆ b ♦◦ d , for ◦ ∈ {+,−, ·, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

This is a consequence of the inclusion isotony of the arithmetic operations in IR, of (R2) and of (RG).
Since the arithmetic operations x ◦ y in IR are defined as set operations by (2) the operations

x ♦◦ y for intervals of IF defined by (RG) are not directly executable. The step from the definition of
interval arithmetic by set operations to computer executable operations still requires some effort. But
it is straight forward. For details see [19].

Comments: A frequent argument says that −∞ and +∞ must be considered as real numbers since
they occur as values of real functions like lnx for x = 0 or tan x for x = π/2. A closer look at details,
however, shows that this is not the case. The logarithm is defined as lnx :=

∫ x

1
(1/t)dt, for x > 0. It

is not defined for x = 0. −∞ is a lower bound of the function’s values but not a value of the function
lnx.
The function tanx is defined as the quotient tanx := sin x/ cos x. Since cos π/2 = 0, tan x is not
defined for x = 0. +∞ is an upper bound of the function’s values but not a value of the function tanx.

Remark 1, Irregularity: In real analysis division by zero is not defined. In interval arithmetic,
however, the interval in the denominator of a quotient may contain zero. If division by an interval
that contains zero is permitted the result can consist of two unbounded intervals. The general rule for
computing the set a/b with 0 ∈ b is to remove its zero from the interval b and perform the division
with the remaining set.9 When zero is an interior point of the denominator, the set [b1, b2] splits into
the two distinct sets [b1, 0) and (0, b2]. Division by these sets delivers two distinct unbounded intervals.
This irregularity has successfully been used to develop the extended interval Newton method. It allows
to compute all zeros of a function in a given domain. For details see [19].

Remark 2, Mincing: Evaluating an arithmetic expression or function for an interval X leads
to a superset of the range of the function’s values over the interval X. This overestimation decreases
with the width of the interval X. It decreases quadratically if the centered form is used to represent
the function. Subdivision or mincing is a common method for decreasing the overestimation. Its power
is rather limited on a sequential computer. On a large parallel machine, however, it can be a very
powerful and useful tool.

3.3 Unum and Ubound Arithmetic

In his recently published book The End of Error [5] John Gustafson develops a computing environ-
ment for real numbers and for sets of real numbers which is superior to conventional floating-point and
interval arithmetic. A new number format, the unum10, can more efficiently be used on computers with
respect to many desirable properties like power consumption, storage requirements, bandwidth, paral-
lelism concerns, and even speed. It gets mathematical rigor that even conventional interval arithmetic
is not able to attain.

By obvious reasons John Gustafson’s book strives for being upward compatable with IEEE 754
floating-point arithmetic and with traditional interval arithmetic. From the mathematical point of
view, however, there is no need for doing this. Here we show that the new computing environment
perfectly fits into an abstract mathematical approach to computer arithmetic as sketched in section
2. Like conventional closed real intervals also unums and ubounds just deal with sets of real numbers.
−∞ and +∞ are not real numbers. They are just used as bounds to describe sets of real numbers.
They are, however, themselves not elements of these sets. There is absolutely no need for introducing
non mathematical entities like −0,+0, NaN (not a number) or NaI (not an interval) in this new
computing environment. Focusing on the mathematical core of the new computing scheme leads to
several additional simplifications.

A unum is a bit string of variable length that has six subfields: the sign bit s, exponent, fraction,
uncertainty bit u (ubit), exponent size, and fraction size. The first three subfields describe a floating-
point number. If the ubit is 0, the number is exact. If it is 1, it is inexact. An inexact unum represents
the set of all real numbers in the open interval between the floating-point part of the unum and the
floating-point number one bit further from zero. The last two subfields, the exponent size and the
fraction size are used to automatically shrink or enlarge the number of bits used for the representation

9 This is in full accordance with function evaluation: When evaluating a function over a set, points outside
its domain are simply ignored.

10 stands for universal number.
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s exponent fraction u exp.size fract.size

Fig. 1. The universal number format unum.

of the exponent and the fraction part of the unum depending on results of operations. This automatic
scaling adapts the word size to the needs of the computation. The set of all unums is denoted by U.
By the definition of unums −∞ and +∞ are elements of U.

A ubound is a single unum or a pair of unums that represent a mathematical interval of the real
line. Closed endpoints are represented by exact unums (ubit = 0), and open endpoints are represented
by inexact unums (ubit = 1). So the ubit in a unbound’s bound describes the kind of bracket that is
used in the representation of the ubound. It is closed, if the ubit is 0 and it is open, if the ubit is 1.
We denote the set of all ubounds by JU. Later we shall occasionally denote an element a ∈ JU by a

= 〈a1, a2〉 where a1, a2 are floating-point numbers of F and each one of the angle brackets 〈 and 〉 can
be open or closed.

The ubit after the floating-point part of a unum can be 0 or 1. So the set of unums U is a superset
of the set of floating-point numbers, U ⊃ F. Nevertheless the unums are a linearly ordered set {U,≤}.
For positive floating-point numbers the unum with ubit 0 is less than the unum with ubit 1 and for
negative floating-point numbers the unum with ubit 0 is greater than the unum with ubit 1. In section
3.1 it was shown that with the following notations R := R∪ {−∞,+∞} and F := F∪ {−∞,+∞} the
ordered set {F,≤} is a screen of {R,≤}. It is now easy to see that the ordered set of unums {U,≤} is
also a screen of {R,≤}. It is a larger, i.e., a finer screen than {F,≤}.11

The directed roundings ▽ resp. △ can now be extended as mappings from the extended set of
real numbers R onto the set of unums U, ▽ : R → U and △ : R → U. It is easy to see that (1) also
holds for these newly defined mappings.

These roundings ▽ and △ can most frequently be used to map intervals or sets of real numbers
onto ubounds. Here ▽ delivers the lower bound and △ the upper bound. This allows to express the
ubit of the unum by the bracket of the ubound. Exact unums are expressed by closed endpoints, by
square brackets. A closed endpoint is an element of the ubound. Inexact unums are expressed by open
endpoints, by round brackets. An open endpoint is just a bound but not an element of the ubound.

We illustrate these roundings by simple examples. We use the decimal number system, a fraction
part of three digits, and a space before the ubit. The following results are possible:

▽ (0.543216) = 0.543 1 = (0.543, △ (0.543216) = 0.543 1 = 0.544),
▽ (0.543) = 0.543 0 = [0.543, △ (0.543) = 0.543 0 = 0.543],
▽ (−0.543216) = −0.543 1 = (−0.544, △ (−0.543216) = −0.543 1 = −0.543),
▽ (−0.543) = −0.543 0 = [−0.543, △ (−0.543) = −0.543 0 = −0.543].

Let now JR denote the set of bounded or unbounded real intervals where each bound can be open
or closed. So JR12 denotes the set of open or closed or half-open intervals of real numbers. Besides of
the empty set every interval of JR can be expressed by round and/or square brackets. If the bracket
adjacent to a bound is round, the bound is not an element of the interval; if it is square the bound is
an element of the interval.

With set inclusion as an order relation the ordered set {JR,⊆} is a complete lattice. The infimum
of two or more elements of {JR,⊆} is the intersection and the supremum is the convex hull. The
subset of JR where all bounds are unums of U is denoted by JU. Then {JU,⊆} is a screen of {JR,⊆}.
In both sets JR and JU the infimum of two or more elements of JR and JU is the intersection and the
supremum is the interval (convex) hull. The least element of both sets JR and JU is the empty set
∅ and the greatest element is the set R = (−∞,+∞). Elements of JR and JU are denoted by bold
letters.

11 This makes it plausible that unum arithmetic can lead to better results than floating-point arithmetic.
12 We do not introduce a separate symbol for the subset of bounded such intervals here as in the case of real

intervals.
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Definition 8. For elements a, b ∈ JR we define arithmetic operations ◦ ∈ {+,−, ·, /} as set operations

a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}. (5)

Here for division we assume that 0 /∈ b.

Explicit formulas for the operations a ◦ b, ◦ ∈ {+,−, ·, /} can be obtained in great similarity to
the operations in IR. For derivation see [19]. However, each bound of the resulting interval in JR can
now be open or closed.

It is a well established result that under Definition (5) JR is a closed calculus, i.e., the result a ◦b

is again an element of JR. For details see [5].

Remark 3: A bound of the result a ◦ b in (5) is closed if and only if the ubit of the adjacent number
is zero, i.e., the number is an exact unum. This can only happen if both operands for computing the
bound come from closed interval bounds or if one of the operands is zero. In case of an inexact unum
in any of the operands the bound is open.

Let us now denote an interval a ∈ JR by a = 〈a1, a2〉, where each one of the angle brackets 〈 and
〉 can be open or closed. Then we obtain by (5) immediately

−a := 13(−1)·a= (−1) · {x | a1 ≤ x ≤ a2} = {x | −a2 ≤ x ≤ −a1} = 〈−a2,−a1〉 ∈ JR. (6)

−〈a1, a2〉 = 〈−a2,−a1〉. (7)

More precisely: If the lower bound of the interval a is open (resp. closed) then the upper bound of
−a is open (resp. closed), and if the upper bound of a is open (resp. closed) then the lower bound in
−a is open (resp. closed).

With (7) subtraction can be reduced to addition by a − b = a + (−b).
If in (7) a ∈ JU, then also −a ∈ JU, i.e., JU is a symmetric screen of JR.
Between the complete lattice {JR,⊆} and its screen {JU,⊆} the monotone upwardly directed

rounding ♦ : JR → JU is uniquely defined by the following properties:

(R1) ♦ a = a , for all a ∈ JU. (projection)

(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ JR. (monotone)

(R3) a ⊆ ♦ a , for all a ∈ JR. (upwardly directed)

For a = 〈a1, a2〉 ∈ JR the result of the monotone upwardly directed rounding ♦ can be expressed
by

♦ a= 〈 ▽ a1, △ a2〉. (8)

where again each one of the angle brackets 〈 and 〉 can be open or closed.
Similarly to the case of closed real intervals of IR we now define an order relation ≤ for in-

tervals of JR. For intervals a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ JR, the relation ≤ is defined by a ≤ b

:⇔ 〈a1 ≤ 〈b1 ∧ a2〉 ≤ b2〉. So we have for instance: [1, 2) ≤ (1, 2], or [−2,−1) ≤ (−2,−1].
For the ≤ relation for intervals compatibility properties hold between the algebraic structure and

the order structure in great similarity to the real numbers. For instance:

(OD1) a ≤ b ⇒ a + c ≤ b + c, for all c.
(OD2) a ≤ b ⇒ −b ≤ −a .
(OD3) 0 ≤ a ≤ b ∧ c ≥ 0 ⇒ a · c ≤ b · c.
(OD4) 0 < a ≤ b ∧ c > 0 ⇒ 0 < a/c ≤ b/c ∧ c/a ≥ c/b > 0.

With respect to set inclusion as an order relation arithmetic operations in {JR,⊆} are inclusion
isotone by (5), i.e., a ⊆ b ⇒ a ◦ c ⊆ b ◦ c or equivalently

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ◦ c ⊆ b ◦ d , for all ◦ ∈ {+,−, ·, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

Setting c,d = −1 in (OD5) delivers immediately a ⊆ b ⇒ −a ⊆ −b which differs significantly
from (OD2).

Using (1) and (5) it is easy to see that the monotone upwardly directed rounding ♦ : JR → JU

is antisymmetric, i.e.,

13 An integral number a in a ubound expression is interpreted as ubound [a, a].
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(R4) ♦ (−a) = − ♦ a , for all a ∈ JR. (antisymmetric).

Definition 9. With the upwardly directed rounding ♦ : JR → JU binary arithmetic operations in
JU are defined by semimorphism:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a, b ∈ JU and all ◦ ∈ {+,−, ·, /}.

Here for division we assume that a/b is defined.

If a ubound a ∈ JU is an upper bound of a ubound x ∈ JR, i.e., x ⊆ a , then by (R1), (R2),

and (R3) also x ⊆ ♦ x ⊆ a . This means ♦ x is the least upper bound, the supremum of x in
JU. Similarly if for x ,y ∈ JU, x ◦ y ⊆ a with a ∈ JU, then by (R1), (R2), (R3), and (RG) also

x ◦ y ⊆ x ♦◦ y ⊆ a , i.e., x ♦◦ y is the least upper bound, the supremum of x ◦ y in JU. Occasionally
the supremum x ♦◦ y ∈ JU of the result x ◦ y ∈ JR is called the tightest enclosure of x ◦ y .

Arithmetic operations in JU are inclusion isotone, i.e.,

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ♦◦ c ⊆ b ♦◦ d , for ◦ ∈ {+,−, ·, /}, 0 /∈ b,d for ◦ = /. (inclusion isotone)

This is a consequence of the inclusion isotony of the arithmetic operations in JR, of (R2) and of (RG).
Ubound arithmetic as conventional interval arithmetic deals with sets of real numbers. Three

kinds of unbounded intervals can occur in JR and JU: (−∞, a〉, 〈b,+∞) and (−∞,+∞) with a, b ∈ R,
where the angle brackets can be open or closed. Since −∞ and +∞ are not real numbers the brackets
adjacent to −∞ and +∞ can only be open, i.e., −∞ and +∞ are not elements of the unbounded
intervals. This very naturally leads to the following rules:

(−∞, a〉 · 0 = 〈b,+∞) · 0 = (−∞,+∞) · 0 = 0.

Since the arithmetic operations x ◦ y in JR are defined as set operations by (5) the operations

x ♦◦ y for ubounds of JU defined by (RG) are not directly executable. The step from the definition of
arithmetic by set operations to computer executable operations still requires some effort. We discuss
this question in the next section. For details see also [19] and [5].

3.4 Executable Ubound Arithmetic

We now consider the question how executable formulas for ubound arithmetic can be obtained. Let
a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ JR. Arithmetic in JR is defined by

a ◦ b := {a ◦ b | a ∈a ∧ b ∈ b}, (9)

for all ◦ ∈ {+,−, ·, /}, 0 /∈ b in case of division. The function a ◦ b is continuous with respect to both
variables. The set a ◦ b is the range of the function a ◦ b over the product set a × b with or without
the boundaries depending on the open-closedness of a and b. Since a and b are intervals of JR the

set a × b is a simply connected subset of R
2
, (R := R∪ {−∞,+∞}). In such a region the range a ◦ b

of the function a ◦ b is also simply connected. Therefore

a ◦ b = 〈inf(a ◦ b), sup(a ◦ b)〉, (10)

i.e., for a , b ∈ JR, 0 /∈ b in case of division, a ◦ b is again an interval of JR.
The angle brackets on the right hand side of (10) depend on the open-closed endpoints of the

intervals a and b. The elements −∞ and +∞ can occur as bounds of real intervals. But they are
themselves not elements of these intervals.

Neither the set definition (9) of the arithmetic operations a ◦b, ◦ ∈ {+,−, ·, /}, nor the form (10)
can be executed on the computer. So we have to derive more explicit formulas.

We demonstrate this in case of addition. By (OD1) we obtain a1 ≤ a and b1 ≤ b ⇒ a1 + b1

≤ inf(a + b). On the other hand inf(a + b) ≤ a1 + b1. From both inequalities we obtain by (O3):
inf(a + b) = a1 + b1. Analogously one obtains sup(a + b) = a2 + b2. Thus

a + b = 〈inf(a + b), sup(a + b)〉 = 〈a1 + b1, a2 + b2〉.

12



Similarly by making use of (OD1,2,3,4) for intervals of JR and the simple sign rules −(a · b) =
(−a) · b = a · (−b),−(a/b) = (−a)/b = a/(−b) explicit formulas for all interval operations can be
derived, [19].

Actually the infimum and supremum in (10) is taken for operations with the bounds. For bounded
intervals a = 〈a1, a2〉 and b = 〈b1, b2〉 the following formula holds for all operations with 0 /∈ b in case
of division:

a ◦ b = 〈 min
i,j=1,2

(ai ◦ bj), max
i,j=1,2

(ai ◦ bj)〉 for ◦ ∈ {+,−, ·, /}. (11)

In summary we can state:
Arithmetic in JR is an algebraically closed subset of the arithmetic in the powerset

of the real numbers.
Now we get by (RG) for intervals of JU

a ♦◦ b := ♦ (a ◦ b) = 〈 ▽ min
i,j=1,2

(ai ◦ bj), △ max
i,j=1,2

(ai ◦ bj)〉

and by the monotonicity of the roundings ▽ and △ :

a ♦◦ b = 〈 min
i,j=1,2

(ai
▽◦ bj), max

i,j=1,2
(ai △◦ bj)〉.

For bounded and nonempty intervals a = 〈a1, a2〉 and b = 〈b1, b2〉 of JU the unary operation
−a and the binary operations addition, subtraction, multiplication, and division are shown in the
following tables. For details see [19]. Therein the operator symbols for intervals are simply denoted by
+,−, ·, /.
Minus operator −a = 〈−a2,−a1〉.

Addition 〈a1, a2〉 + 〈b1, b2〉 = 〈a1 ▽+ b1, a2 △+ b2〉.

Subtraction 〈a1, a2〉 − 〈b1, b2〉 = 〈a1 ▽− b2, a2 △− b1〉.

Multiplication 〈b1, b2〉 〈b1, b2〉 〈b1, b2〉

〈a1, a2〉 · 〈b1, b2〉 b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

〈a1, a2〉, a2 ≤ 0 〈a2
▽· b2, a1 △· b1〉 〈a1

▽· b2, a1 △· b1〉 〈a1
▽· b2, a2 △· b1〉

a1 < 0 < a2 〈a2
▽· b1, a1 △· b1〉 〈min(a1

▽· b2, a2
▽· b1), 〈a1

▽· b2, a2 △· b2〉

max(a1 △· b1, a2 △· b2)〉

〈a1, a2〉, a1 ≥ 0 〈a2
▽· b1, a1 △· b2〉 〈a2

▽· b1, a2 △· b2〉 〈a1
▽· b1, a2 △· b2〉

Division, 0 /∈ b 〈b1, b2〉 〈b1, b2〉

〈a1, a2〉/〈b1, b2〉 b2 < 0 b1 > 0

〈a1, a2〉, a2 ≤ 0 〈a2
▽/ b1, a1 △/ b2〉 〈a1

▽/ b1, a2 △/ b2〉

〈a1, a2〉, a1 < 0 < a2 〈a2
▽/ b2, a1 △/ b2〉 〈a1

▽/ b1, a2 △/ b1〉

〈a1, a2〉, 0 ≤ a1 〈a2
▽/ b2, a1 △/ b1〉 〈a1

▽/ b2, a2 △/ b1〉

In real analysis division by zero is not defined. In interval arithmetic, however, the interval in the
denominator of a quotient may contain zero. We consider this case also.

The general rule for computing the set a/b with 0 ∈ b is to remove its zero from the interval b

and perform the division with the remaining set.14 Whenever zero in b is an endpoint of b, the result
of the division can be obtained directly from the above table for division with 0 /∈ b by the limit
process b1 → 0 or b2 → 0 respectively. The results are shown in the table for division with 0 ∈ b. Here,
the round brackets stress that the bounds −∞ and +∞ are not elements of the interval. When zero
is an interior point of the denominator, the set 〈b1, b2〉 splits into the distinct sets 〈b1, 0) and (0, b2〉,

14 This is in full accordance with function evaluation: When evaluating a function over a set, points outside
its domain are simply ignored.
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Division, 0 ∈ b b = 〈b1, b2〉 〈b1, b2〉

〈a1, a2〉/〈b1, b2〉 〈0, 0〉 b1 < b2 = 0 0 = b1 < b2

〈a1, a2〉 = 〈0, 0〉 ∅ 〈0, 0〉 〈0, 0〉

〈a1, a2〉, a1 < 0, a2 ≤ 0 ∅ 〈a2
▽/ b1, +∞) (−∞, a2 △/ b2〉

〈a1, a2〉, a1 < 0 < a2 ∅ (−∞, +∞) (−∞, +∞)

〈a1, a2〉, 0 ≤ a1, 0 < a2 ∅ (−∞, a1 △/ b1〉 〈a1
▽/ b2, +∞)

and the division by 〈b1, b2〉 actually means two divisions. The results of the two divisions are already
shown in the table for division by 0 ∈ b.

However, in the user’s program the two divisions appear as a single operation, as division by an
interval 〈b1, b2〉 with b1 < 0 < b2, an operation that delivers two distinct results.

A solution to the problem would be for the computer to provide a flag for distinct intervals. The situation
occurs if the divisor is an interval that contains zero as an interior point. In this case the flag would be raised
and signaled to the user. The user may then apply a routine of his choice to deal with the situation as is
appropriate for his application. This routine could be: return the entire set of real numbers (−∞, +∞) as
result and continue the computation, or set a flag and continue the computation with one of the sets and
ignore the other one, or put one of the sets on a list and continue the computation with the other one, or
modify the operands and recompute, or stop computing, or some other action.

An alternative would be to provide a second division which in case of division by an interval that contains
zero as an interior point generally delivers the result (−∞, +∞). Then the user can decide when to use which
division in his program.

Deriving explicit formulas for the result of interval operations a ◦b, ◦ ∈ {+,−, ·, /}, it was assumed
so far that the intervals a and b are nonempty and bounded. Four kinds of extended intervals come
from division by an interval of JU that contains zero:

∅, (−∞, a〉, 〈b,+∞), and (−∞,+∞).

To extend the operations to these more general intervals the first rule is that any operation with the
empty set ∅ returns the empty set. Intervals of JU are connected sets of real numbers. −∞ and +∞
are not elements of these intervals. So multiplication of any such interval by 0 can only have 0 as the
result. This very naturally leads to the following rules:

(−∞, a〉 · 0 = 〈b,+∞) · 0 = (−∞,+∞) · 0 = 0.

For intervals of JU we can now state:
Arithmetic for closed, open, and half-open, bounded or unbounded real intervals of JU is
free of exceptions, i.e., arithmetic operations for intervals of JU always lead to intervals
of JU again.

This is in sharp contrast to other models of interval arithmetic which consider −∞ and +∞ as
elelements of unbounded real intervals. In such models obscure arithmetic operations like ∞−∞,∞/∞,
0 · ∞ occur which require introduction of unnatural superficial objects like NaI (Not an Interval).

High speed by support of hardware and programming languages is vital for all kinds of interval
arithmetic to be more widely accepted by the scientific computing community. Right now no com-
mercial processor provides interval arithmetic or unum and ubound arithmetic by hardware. In the
author’s book Computer Arithmetic and Validity - Theory, Implementation, and Applications, second
edition 2013 [19] considerable emphasis is put on speeding up interval arithmetic. The book shows
that interval arithmetic for diverse spaces can efficiently be provided on the computer if two features
are made available by fast hardware:
I. Fast and direct hardware support for double precision interval arithmetic and

II. a fast and exact multiply and accumulate operation or, an exact dot product (EDP).

Realization of I. and II. is discussed at detail in the book [19]. It is shown that I. and II. can be ob-
tained at very little hardware cost. With I. interval arithmetic would be as fast as simple floating-point
arithmetic. The simplest and fastest way for computing a dot product is to compute it exactly. To
make II. conveniently available a new data format complete is used together with a few very restricted

14



arithmetic operations. By pipelining the EDP can be computed in the time the processor needs to read
the data, i.e., it comes with utmost speed. I. and II. would boost both the speed of a computation
and the accuracy of the result. Fast hardware support for I. and II. must be supported by future
processors. Computing the dot product exactly even can be faster than computing it conventionally
in double or extended precision floating-point arithmetic.

Modern processor architecture is coming considerably close to what is requested here. See [8], and
in particular pp.1-1 to 1-3 and 2-5 to 2-6. These processors provide register space of 16 K bits. Only
about 4 K bits suffice for a complete register which allows computing a dot product exactly at extreme
speed for the double precision format. In the following section we discuss a frequent application of
this.

4 A Sketch of Arithmetic for Matrices with Ubound Components

The axioms for computer arithmetic shown in section 2 also can be applied to define computer arith-
metic in higher dimensional spaces like complex numbers, vectors and matrices for real, complex,
interval and ubound data, for instance. Here we briefly sketch how arithmetic for matrices with inter-
val and ubound components could be embedded into the axiomatic definition of computer arithmetic
outlined in section 2.

Let {R,+, ·,≤} be the completely ordered set of real numbers and {U,≤} the symmetric screen
of unums. In the ordered set of n×n matrices {MnR,+, ·,≤} we consider intervals JMnR and JMnU
where all bounds can be open or closed. Let PMnR denote the power set15 of MnR. Then PMnR ⊃
JMnR ⊃ JMnU. JMnR is an upper16 screen of PMnR and JMnU is a screen of JMnR. We consider
the monotone upwardly directed roundings : PMnR → JMnR and ♦ : JMnR → JMnU . They are
uniquely defined.

For matrices A,B ∈ JMnR the set definition of arithmetic operations

A ◦B := {A ◦ B | A ∈A ∧ B ∈ B}, ◦ ∈ {+, ·} (12)

does not lead to an interval again. The result is a more general set. It is an element of the power set
of matrices. To obtain an interval again the upwardly directed rounding from the power set onto the
set of intervals of : PMnR → JMnR has to be applied. With it arithmetic operations for intervals
A,B ∈ JMnR are defined by

(RG) A ◦ B := (A ◦B), ◦ ∈ {+,−, ·}.

As in the case of conventional intervals subtraction can be expressed by negation and addition.
The set JMnU of intervals of computer representable matrices is a screen of JMnR. To obtain

arithmetic for intervals A,B ∈ JMnU once more the monotone upwardly directed rounding, now
denoted by ♦ : JMnR → JMnU is applied:

(RG) A ♦◦ B := ♦ (A ◦ B), ◦ ∈ {+, ·}.

This leads to the best possible operations in the interval spaces JMnR and JMnU .

Because of the set definition of the arithmetic operations, however, these best possible operations
are not directly executable on a computer. Therefore, we are now going to express them in terms of
computer executable formulas. For details see [19].

To do this, we consider the set of n×n matrices MnJR. The elements of this set have components
that are intervals of JR. With the operations and the order relation ≤ of the latter, we define operations
+ , · , and an order relation ≤ in MnJR by employing the conventional definition of the operations
for matrices. With A = (a ij), B = (b ij) ∈ MnJR let be

A + B := (a ij + b ij) ∧ A · B :=

(

n
∑

ν=1

a iν · bνj

)

∧ A ≤ B :⇔ a ij ≤ b ij, i,j = 1(1)n.

15 The power set of a set M is the set of all subsets of M .
16 For definition see [19].
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Here +, · are the operations in JR as defined in (5) and
∑

denotes the repeated summation in JR.

Remark 4: The bounds of the components of the product matrix A · B will be open in the majority
of cases. This is a simple consequence of Remark 3. In a bit weaker form this also holds for the addition
A + B.

We now define a mapping
χ : MnJR → JMnR

which for matrices A = (a ij) ∈ MnJR with a ij = 〈a
(1)
ij , a

(2)
ij 〉 ∈ JR,17 i, j = 1(1)n, has the property

χA = χ(a ij) = χ(〈a
(1)
ij , a

(2)
ij 〉) := 〈(a

(1)
ij ), (a

(2)
ij )〉. (13)

Obviously χ is a one-to-one mapping of MnJR onto JMnR and an order isomorphism with re-
spect to ≤. It can be shown that χ is also an algebraic isomorphism for the operations addition and
multiplication, i.e.,

χA ◦ χB = χ(A ◦ B), ◦ ∈ {+, ·}.

For the proof in case of closed intervals a ij, b ij ∈ IR see [19].
Whenever two structures are isomorphic, corresponding elements can be identified with each other.

This allows us to define an inclusion relation even for elements A = (a ij), B = (b ij) ∈ MnJR by

A ⊆ B :⇔ a ij ⊆ b ij, for all i,j=1(1)n.

and
(aij) ∈ A = (Aij) :⇔ aij ∈ Aij , for all i, j = 1(1)n.

This convenient definition allows for the interpretation that a matrix A = (a ij) ∈ MnJR also
represents a set of matrices as demonstrated by the following identity:

A = (Aij) ≡ {(aij) | aij ∈ Aij , i,j=1(1)n}.18

Both matrices contain the same elements.
With the monotone upwardly directed rounding ♦ : JR → JU a rounding ♦ : MnJR → MnJU

and operations in MnJU can now be defined by

♦ A := ( ♦ a ij),

A ♦◦ B := ♦ (A ◦ B), ◦ ∈ {+, ·}.

Now it can be shown (for the proof in case of closed intervals see [19]) that the mapping χ
establishes an isomorphism

χA ♦◦ χB = χ(A ♦◦ B), ◦ ∈ {+, ·},

i.e., the structures {MnJU, ♦+ , ♦· ,≤,⊆} and {JMnU, ♦+ , ♦· ,≤,⊆} can be identified with each other.
This isomorphism reduces the optimal, best possible but not computer executable operations in

JMnU, to the operations in MnJU. We analyze these operations more closely.
For matrices A = (a ij), B = (b ij) ∈ MnJU,a ij, b ij ∈ JU arithmetic operations are defined by

A ♦+ B := ♦ (A + B) ∧ A ♦· B := ♦ (A · B)

with the rounding ♦ A := ( ♦ a ij). This leads to the following formulas for the operations in MnJU:

A ♦+ B = ( ♦ (a ij + b ij)) = (a ij ♦+ b ij), (14)

A ♦· B = ♦ (A · B) =

(

♦

n
∑

ν=1

(a iν · bνj)

)

. (15)

These operations are executable on a computer. The componentwise addition in (14) can be
performed by means of the addition in JU. The multiplications in (15) are to be executed using the

17 The angle brackets 〈 and 〉 here denote the interval bounds. Each one of them can be open or closed.
18 The round brackets here denote the matrix braces.
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multiplication in JR. Then the lower bounds and the upper bounds are to be added in R. Finally the
rounding ♦ : JR → JU has to be executed.

With a ij=〈a1
ij , a

2
ij〉, b ij=〈b1

ij , b
2
ij〉 ∈ JU, (15) can be written in a more explicit form:

A ♦· B =

(

〈 ▽
n
∑

ν=1

min
r,s=1,2

(ar
iνbs

νj), △
n
∑

ν=1

max
r,s=1,2

(ar
iνbs

νj)〉

)

. (16)

Here the products ar
iνbs

νj are elements of R (and in general not of U). The summands (products
of double length) are to be correctly accumulated in R by the exact scalar product. Finally

the sum of products is rounded only once by ▽ resp. △ from R onto U. The angle brackets in (16)
denote the interval bounds. Each one of them can be open or closed. The large round brackets denote
the matrix braces. In the vast majority of cases the angle brackets will be open. Only in the very rare
case that a sum before rounding is an exact unum the angle bracket is closed.

5 Short Term Progress

Compared with conventional interval arithmetic The End of Error [5] means a huge step ahead. For
being more energy efficient and other reasons it controls the word size of the interval bounds in depen-
dence of intermediate results and keeps it as small as possible. To avoid mathematical shortcomings it
extends the basic set from closed real intervals to connected sets of real numbers. All this are laudable
and most natural goals. The entire step, however, may be too big to get realized on computers that
can be bought on the market in the near future.

So it may be reasonable to look for a smaller step which might have a more realistic chance. As
such the introduction of the ubit into the floating-point bounds at the cost of shrinking the excessive
exponent sizes of the IEEE 754 floating-point formats by one bit would already be a great step ahead.
It would allow an extension of conventional interval arithmetic to closed, open, half-open, bounded,
and unbounded sets of real numbers. By the way it would reduce the register memory for computing
the dot product exactly in case of the double precision format, for instance, from excessive 4000 to
only about 2000 bit. As side effect the exact dot product brings speed and associativity for addition.

Acknowledgement: The author owes thanks to Goetz Alefeld and Gerd Bohlender for useful
discussions and comments on the paper. He gratefully acknowledges frequent e-mail exchange with
John Gustafson on the contents of the paper.
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