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Abstract  

In this PhD thesis, the interaction of borate with lanthanides (III) and actinides (III, IV, V, VI) is 

investigated in dilute to concentrated saline solutions. An accurate knowledge of the aquatic chemistry 

and solubility of these systems is highly relevant for the long-term performance assessment of 

repositories for nuclear waste disposal. The investigation of lanthanide and actinide behaviour in 

concentrated brines (besides dilute solutions) provides key inputs for the assessment of nuclear waste 

disposal in salt rock formations, but also allows deriving more accurate thermodynamic and activity 

models to be used in geochemical calculations.  

Boron can be present as component of the emplaced waste in a nuclear waste repository. In certain 

rock salt formations, high boron concentrations can also occur in the intruding brine solutions. In this 

framework, it is very relevant to understand the impact of borate in the chemical behaviour of actinides 

(e. g. complexation, solubility phenomena or redox processes) under repository relevant conditions. 

In spite of this, only a limited number of studies on the interaction of borate with lanthanides and 

actinides are reported in the literature. This is also reflected by the absence of any thermodynamic data 

selection for actinide–borate aqueous complexes or solid compounds in the current NEA–TDB 

reviews. In order to gain a better understanding of the processes taking place in the Ln(III)– and An(III, 

IV, V, VI)–borate systems, comprehensive solubility experiments in combination with spectroscopic 

studies and a detailed solid phase characterization were performed in this PhD work under repository-

relevant conditions. 

The interaction Ln(III)– and An(III, IV, V, VI) with borate is investigated with a comprehensive series 

of solubility experiments in dilute to concentrated NaCl, CaCl2 and MgCl2 solutions, in combination 

with a detailed solid phase characterization using XPS, XRD, SEM–EDS and synchrotron-based 

spectroscopic techniques (XANES and EXAFS). These are also complemented with a characterization 

of the aqueous phase with spectroscopic techniques such as TRLFS and UV–Vis/NIR. 

Nd(III)/Cm(III), Th(IV), Np(V) and U(VI) have been taken as representatives of actinides in oxidation 

states +III, +IV, +V and +VI to assess the influence of borate. The study of Pu(III/IV) under near-

neutral pH conditions has been purposely targeted to assess the impact of borate on a redox-sensitive 

radionuclide under repository-relevant conditions. 

Cm(III)–TRLFS confirms the unequivocal formation of weak Cm(III)–borate complexes under near-

neutral pH-conditions and [B]tot ≥ 0.04 M. In spite of this, no significant increase in the Nd(III) 

solubility occurs in any of the investigated systems up to [B]tot = 0.4 M. On the contrary, a significant 

decrease in the solubility of Nd(III) is observed at pHm ≤ 9 in NaCl and MgCl2 systems with 

[B]tot ≥ 0.16 M. This observation together with a clear change in the slope of the solubility curve 

indicates the transformation of Nd(OH)3(am) into a so far unknown Nd(III)–borate secondary phase. 

SEM–EDS and XPS confirm that this solid phase is formed on the surface of the Nd(OH)3(am) 
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particles and has a stoichiometric contribution of boron (Nd / B ratio of 1:4.5 – 1:1 depending on 

background electrolyte and concentration). 

As for Ln(III)/An(III), UV–vis/NIR clearly indicates the formation of weak Np(V)–borate complexes 

under weakly alkaline pH-conditions, with the likely participation of B(OH)4
– in the complex 

formation. Similarly to Nd(III), the formation of Np(V)–borate complexes has only a minor impact on 

the solubility of Np(V) under near-neutral to weakly alkaline pH-conditions. On the contrary, a very 

significant drop in the Np(V) solubility (3 to 4 orders of magnitude) is observed in NaCl and dilute 

MgCl2 solutions with [B]tot = 0.16 M and pHm ≤ 9. The drop in the solubility is accompanied by a clear 

change in the colour of the solid phase (from green to white). XRD, XPS, SEM–EDS and EXAFS 

confirm the formation of the previously unreported solid phases NpO2[B5O6(OH)4]·2NaOH(cr) and 

(NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr). The absence of precipitation in concentrated MgCl2 solutions is 

rationalized with the competition of Mg2+ and NpO2
+ for the complexation with borate. 

Additional solubility experiments with Th(IV) and U(VI) were performed in dilute to concentrated 

saline solutions in NaCl and MgCl2 solution with various boron concentrations at 6.5 ≤ pHm ≤ 9. 

Hence, borate has a minor impact on the solubility of Th(IV) in the investigated systems, especially 

in view of the large overall uncertainties affecting the solubility of this actinide under alkaline pH 

conditions, both in the absence and presence of borate. In concentrated NaCl and MgCl2 solutions, a 

slight increase of the Th(IV) solubility is found with high boron concentrations and a minor effect of 

borate on Th(IV) speciation cannot be excluded. The lesser influence of borate on Th(IV) compared 

to tri- or pentavalent actinides is explained by the high tendency of tetravalent actinides towards 

hydrolysis, which outcompetes borate complexation under most of the investigated experimental 

conditions.  

Borate increases the solubility of U(VI) in NaCl solutions with pHm ≥ 9 and (in lesser extent) in MgCl2 

solutions with pHm  7.5 due to the formation of U(VI)–borate aqueous complexes. No complexation 

phenomena are observed at pHm ≤ 6.5 where B(OH)3(aq) prevails in solution, in line with the 

consideration of B(OH)4
– as ligand counterpart in the U(VI)–borate complex formation. In contrast to 

Nd(III) and Np(V), no solubility decrease caused by a solid phase transformation is observed in the 

U(VI) system in the presence of borate over the investigated timescale. This observation is explained 

by the significantly lower solubility, i.e. higher stability, of Na2U2O7H2O(cr) compared to 

Nd(OH)3(am) and NpO2OH(am,fresh) at pHm = 7–8, which makes unlikely its transformation into a 

hypothetical U(VI)-borate solid phase. In line with the experimental observations collected for 

Nd(III)/Cm(III) and Th(IV), borate has a minor impact on the chemistry of Pu under redox conditions 

where Pu(IV) prevails. In those redox conditions where Pu(III) forms, the decreased solubility with 

respect to Pu(OH)3(s) combined with the predominance of Pu(III) in the solid phase confirmed by 

XPS hint towards the formation of a Pu(III)–borate coating or solid phase transformation similar to 

the findings obtained for Nd(III) under analogous experimental conditions.  
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The comprehensive work undertaken within this PhD thesis provides key inputs for the source term 

estimation of An(III, IV, V, VI) in the presence of borate under repository-relevant conditions. In the 

case of Ln(III)/An(III) and An(V), preliminary thermodynamic models have been also derived. These 

are clearly restricted by the several assumptions taken in the model development, which affect not 

only An–borate interaction but also reflect the relevant uncertainties holding for the aquatic chemistry 

of borate. These models provide a first workable tool for a rough thermodynamic estimation of An–

borate interactions in waste disposal scenarios. 
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Kurzfassung 

Im Rahmen dieser Dissertation wurden erstmals systematische Untersuchungen zur Wechselwirkung 

von Actiniden (III, IV, V, VI) und Lanthaniden(III) mit Borat in verdünnt bis konzentrierten 

aquatischen Salzlösungen durchgeführt. Bor kann über zutretendes Wasser, den endgelagerten Abfall 

oder als Bestandteil des Wirtsgesteins selbst in ein Endlager eingebracht werden und stellt einen 

potentiell komplexbildenden Liganden für Radionuklide dar. Untersuchungen in konzentrierten 

Salzlösungen mit Actiniden sind von hoher Relevanz hinsichtlich eines möglichen Endlagers in 

Salzgesteinsformationen, bzw. in Salztonformationen. Es ist somit von großer Bedeutung den Einfluss 

von Borat auf das chemische Verhalten von Actiniden unter endlagerrelevanten Bedingungen zu 

untersuchen und spezifische Rückhaltemechanismen zu identifizieren und quantifizieren. Im Rahmen 

der hier vorliegenden Doktorarbeit konnte der Kenntnisstand zu dieser relevanten Thematik, wie 

nachfolgend dargestellt, endscheidend erweitert und ein signifikant verbessertes wissenschaftliches 

Prozessverständnis entwickelt werden. 

Trivalente Actiniden: TRLFS Messungen mit Cm(III) bestätigen die Bildung schwacher 

Ln(III)/An(III)-Boratkomplexe in der wässrigen Phase bei pHm = 8 und [B]tot ≥ 0.04 M. Ungeachtet 

dessen wurde keine deutliche Löslichkeitserhöhung in den untersuchten Systemen mit Nd(III) mit 

[B]tot bis zu 0.4 M beobachtet. Es trat hingegen ein deutliches Absinken der initial durch Nd(OH)3(am) 

kontrollierten Nd(III)-Löslichkeit in NaCl und MgCl2-Lösungen bei pHm ≤ 9 und [B]tot ≥ 0.16 M auf. 

SEM-EDS und XPS bestätigen die Bildung einer neuen borathaltigen Nd(III)-Festphase auf der 

Oberfläche der Nd(OH)3(am)-Festphase, was einen bisher nicht erkannten, neuen potentiellen 

Retentionsmechanismus für trivalente Radionuklide darstellt.  

Pentavalente Actiniden: Mithilfe von UV-Vis/NIR Messungen wurde die Bildung schwacher 

Np(V)-Boratkomplexe, mit B(OH)4
- als wahrscheinlichem Liganden, bei pHm = 8-9 und 

[B]tot ≥ 0.04 M nachgewiesen. Wie im Falle der Untersuchungen mit Ln(III)/An(III) haben diese 

jedoch keinen signifikanten Einfluss auf die Np(V)-Löslichkeit im untersuchten pH-Bereich. Ein 

deutliche Abnahme der Np(V)-Löslichkeit zusammen mit einer sichtbaren Umwandlung der 

ursprünglichen löslichkeitskontrollierenden Np(V)-Festphase trat in NaCl- und verdünnten MgCl2-

Lösungen bei pHm ≤ 9 und [B]tot = 0.16 M auf. XRD, XPS, SEM–EDS und EXAFS Untersuchungen 

bestätigen die Bildung von zwei neuen Np(V)-Boratfestphasen mit der Stöchiometrie 

NpO2[B5O6(OH)4]·2NaOH(cr) und (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr). Aufgrund dieser bisher 

unbekannten Umwandlung des löslichkeitsbestimmenden Np(V)-Bodenkörpers in eine wesentlich 

weniger lösliche sekundäre Np(V)-borat-Festphase kann es in bestimmten endlagerrelevanten 

Systemen potentiell zu deutlich niedrigeren Np(V) Löslichkeiten kommen als bisher angenommen.  

Tetravalente Actiniden: Löslichkeitsexperimente mit Th(IV), durchgeführt in NaCl- und MgCl2-

Lösungen und [B]tot = 0.16 M, zeigten im untersuchten pHm-Bereich 6.5.-11keinen eindeutigen Effekt 
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von Borat auf die Th(IV) Löslichkeit. Lediglich in hochkonzentrierten NaCl- und MgCl2-Lösungen 

wurde auf Basis der neuen experimentellen Daten ein geringer Löslichkeitsanstieg in Gegenwart von 

[B]tot = 0.16 M diskutiert, was ggf. eine schwache Wechselwirkung zwischen Borat und Th(IV) unter 

diesen speziellen Bedingungen nahelegt.  

Hexavalente Actiniden: Ein Anstieg der U(VI)-Löslichkeit wurde in NaCl-Lösungen in Gegenwart 

von [B]tot = 0.16 bei pHm ≥ 9 und (weniger ausgeprägt) in MgCl2-Lösungen bei pHm  7.5 beobachtet 

und mit der Bildung aquatischer U(VI)–Boratkomplexe korreliert. Eine Verringerung der U(VI)-

Löslichkeit aufgrund einer Festphasentransformation in Gegenwart von Borat, analog zu 

Untersuchungen mit Nd(III) und Np(V), wurde im Rahmen des Untersuchungszeitraums nicht 

beobachtet.  

Plutonium: Erste Untersuchungen im komplexen Plutonium-System zeigen, dass unter 

Redoxbedingungen, in welchen Pu(IV) vorliegt, Borat keinen eindeutigen Einfluss auf die Pu-

Löslichkeit hat, übereinstimmend mit den Untersuchungen mit Th(IV) in dieser Arbeit. In stärker 

reduzierendem Milieu, in welchem Pu(III) gebildet wird, deutet die in Bezug auf Pu(OH)3(s) niedrige 

Pu-Löslichkeit bei Anwesenheit von Borat sowie und das Vorliegen von hauptsächlich Pu(III) in der 

löslichkeitsbestimmenden Festphase auf die Bildung einer neuen Pu(III)-Boratfestphase analog zu 

Untersuchungen mit Nd(III) in dieser Arbeit hin. Auf Basis dieses Befundes wird ein neuer potentieller 

Retentionsmechanismus für Plutonium in stark reduzierenden borathaltigen aquatischen Systemen 

wahrscheinlich.  

Radionuklid-Quelltermableitungen: Die durchgeführten Arbeiten dieser Dissertation liefern für 

verschiedene Ionenstärken und verschiedene endlagerrelevanten wässrige Systeme belastbare 

experimentelle Daten zur An(III, IV, V, VI)–Löslichkeiten in Gegenwart von Borat. Auf Basis der in 

dieser Arbeit erarbeiteten empirischen Löslichkeitsdaten in aquatischen Systemen bei Anwesenheit 

von Borat, sind Radionuklid-Quelltermableitungen für entsprechende Szenarien in Zukunft auf einem 

eindeutig verbesserten wissenschaftlichen Niveau möglich. Für trivalente und pentavalente Actiniden 

konnte zudem erstmalig ein löslichkeitserniedrigender Prozess basierend auf einer bisher nicht 

bekannten Festphasenumwandlung im aquatischen borathaltigen System aufgedeckt werden. Für 

Ln(III)/An(III) und An(V) wurden erste vorläufige thermodynamische Modelle erstellt, welche 

perspektivisch eine modellbasierte, verbesserte Beschreibung der Actinid-Borat-Wechselwirkung in 

wässrigen Systemen erlauben.  
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1 Introduction 

 

 Background of the work  

Radioactive waste containing long-lived radionuclides is mainly generated in nuclear power plants, 

but also in the fabrication of nuclear fuel, reprocessing plants, dismantling of nuclear weapons, 

medical applications and nuclear research. The composition of this waste is strongly dependent on the 

source, and eventually includes actinides (U, Np, Pu, Am, etc.), fission products (99Tc, 79Se, etc.) and 

activation products (59,63Ni, 60Co, etc.). This radioactive waste needs to be safely disposed to avoid any 

exposure to humans and the environment.  

Deep geological repositories are generally accepted by the international scientific community as the 

safest option for the disposal of radioactive waste. These repositories are normally planned within 

250–1000 m underground in stable host rock formations. Three well established options are 

considered: crystalline (granite), clay rock and salt rock. The selection of the host rock material varies 

among countries depending on natural availability [1-3].  

Crystalline formations are the most common rock formation. The advantages of granite include its 

mechanical stability, low solubilites of rock forming minerals and low heat sensitivity. On the other 

hand, its fractured structure provides natural pathways for the migration of solutions and gases to the 

environment, thus emphasizing the need for technical barriers. In several countries (e.g. Sweden, 

Finland) granite has been chosen as host rock formation for the disposal of radioactive waste [2]. 

Clay formations and clay minerals are considered as host rock material because of their high sorption 

capacity and sealing properties in contact with water. Hence, the swelling of clay minerals in contact 

with water prevents the intrusion and migration of water in and out of the nuclear waste repository. 

Several countries have selected clay formations as host rock for deep geological disposal like 

Switzerland, France and Belgium [2].  

Salt rock formations provide many advantages such as self-sealing features, high temperature 

resistance and good self-healing properties. A nuclear waste repository located in salt rock is expected 

to be dry. On the other hand salt rock provides a limited actinide retention capacity, in case of water 

access and thus the knowledge of the solubility and sorption processes onto secondary mineral phases 

occurring in saline systems is needed for the safety assessment of a nuclear waste repository in salt 

rock. Repositories in salt rock formations are under consideration or already in operation in Germany 

(Morsleben) and USA (WIPP, Carlsbad New Mexico). 



Introduction 

 

2 

 

The assessment of the long-term safety of a nuclear waste repository requires the evaluation of the 

potential scenario of water intrusion and the consequent contact of the intruding water with the 

emplaced waste. Such a scenario may lead to the mobilization of radionuclides into the biosphere, and 

consequently needs to be properly investigated. The knowledge of the solution processes taking place 

in the geochemical conditions found in a nuclear waste repository is especially important. The 

speciation of actinides, redox transformations, colloid formation, sorption/precipitation and 

desorption/dissolution phenomena are strongly dependent upon composition of the intruding water, 

host rock material and waste forms, and need to be properly understood for the long term performance 

assessment of a repository for radioactive waste disposal.  

Groundwater and the pore water resulting after its interaction with geotechnical barriers and the waste 

containers contain dissolved salts. In the particular case of rock salt formations, highly saline brines 

(mainly NaCl and MgCl2 with 5 M < I < 15 M) can potentially form. In cementitious environments, 

the corrosion of cement in concentrated MgCl2 brines can also lead to highly concentrated CaCl2 

solutions [4]. Whereas the pH in NaCl dominated brines is not limited, in MgCl2 and CaCl2 the 

maximum pH is limited to pHmax = 9 and 12 due to the precipitation and consequent pH buffering of 

magnesium and calcium hydroxides or hydroxo-chlorides, respectively [5].  

The aqueous chemistry of actinides in these high saline conditions is significantly altered and cannot 

be derived from diluted systems. Hence, ion interaction processes influence the stability of actinides 

in solution. Furthermore, the presence of high concentrations of background cations and anions can 

lead to complexation or precipitation phenomena therefore resulting in a very different chemical 

behavior. To understand and predict the behavior of actinides under these conditions, systematic 

experiments in well-defined saline solutions are needed.  

Corrosion of iron steel canisters, emplaced as storage canisters in a repository is expected to cause 

strongly reducing conditions and production of H2(g) affecting the oxidation state of actinides. The 

released Fe(II)(aq) and the formation of Fe(II)-bearing solid phases will buffer the Eh in a repository 

to very reducing conditions. Fe(II)(aq) and the corresponding secondary phases have a very significant 

impact on redox transformations and sorption processes and therefore have to be considered in the 

prediction of the migration behavior of actinides.  

Boron can be present in repositories for radioactive waste disposal as component of the emplaced 

waste inventory. In repositories in rock salt formations, boron can further be a component of the 

intruding brine solutions. Large borax (Na2[B4O5(OH)4]∙8H2O) deposits are found at the Salado rock-

salt formation in New Mexico leading to relatively high boron concentrations (up to 0.045 M) [6] 

relevant for the WIPP project. Although the aqueous chemistry of actinides under repository-relevant 

conditions is mostly dominated by hydrolysis reactions, the role of other inorganic and organic ligands 

in complexing (and thus potentially mobilizing) actinides needs to be assessed properly. In contrast to 
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carbonate, phosphate or sulphate, little attention has been dedicated so far to the possible complexation 

of borate species with actinides. 

 Basic knowledge and aquatic chemistry of An(III/IV/V/VI) 

The chemical elements with the atomic numbers Z = 90–103 are referred to as actinides. The 

elements in this series are characterized by the occupancy of the 5f orbitals, starting with thorium 

(Z = 90). All actinides are radioactive and have no stable isotopes. In contrast to the lanthanides 

which are mainly present in the trivalent oxidation state, actinides have various thermodynamically 

stable oxidation states. The aquatic chemistry of actinides has been intensively studied over the last 

decades including fundamental studies, actinide coordination chemistry, complex formation with 

inorganic and organic ligands, structural investigations of aqueous and solid An phases, migration 

and retention reactions, among others [7-10]. The aquatic chemistry of actinides is mainly controlled 

by three key processes: 

 Actinide redox processes that define the dominant oxidation state in solution. 

 Solubility phenomena: solid actinide phases can form under given boundary conditions, thus 

defining upper limit concentrations for this actinide. 

 Complexation reactions with inorganic or organic ligands in solution can influence the 

stability of a given actinide and redox state, and consequently impact its solubility and alter 

its sorption properties. 

These key processes must be properly understood to adequately describe the chemistry of An in 

aqueous systems. Furthermore, the impact of additional parameters such as ionic strength or 

temperature, among others, or the effect of kinetics and microbial activity need to be assessed.  

In aqueous systems, actinides are stable in oxidized forms and therefore lose electrons from their 

highest orbitals 5f, 6d and 7s. The most stable electron configuration is that of the closest rare gas, 

radon for actinides. With the same electron configuration as radon, actinides are found as Th(IV), 

Pa(V) and U(VI), respectively. Np(VII) is extremely oxidized and it is not stable in aqueous solution, 

except in highly alkaline and oxidizing conditions. Th(IV) is the only stable oxidation state for thorium 

in water and this actinide is redox-insensitive. Heavier actinides can also be stable in their trivalent 

and tetravalent states with more electrons in their outer shell than radon, and with a partial occupation 

of the 5f and 6d atomic orbitals. Oxidation states stabilized in aqueous systems for the most relevant 

actinides in the context of waste disposal are summarized in Table 1.1. The table also highlights the 

most stable redox state for each actinide. 
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Table 1.1. Oxidation states stable in aqueous systems for a selection of actinides relevant 

in the context of waste disposal. Numbers highlighted in red correspond to the most stable 

oxidation state of each actinide. Numbers in brackets indicate less stable oxidation states. 

  6 (6) 6   

 5 (5) 5 5 5  

4 4 4 4 4 (4) (4) 

  (3)  3 3 3 

Th Pa U Np Pu Am Cm 

 

While An(III) and An(IV) form aquo ions An3+ and An4+, An(V) and An(VI) are not stable as simple 

cations in solution. On the contrary, both redox states form dioxocations AnO2
+ and AnO2

2+, the so 

called actinyl ions. This applies to U, Np, Pu and Am but not to Pa(V), for which PaO3
+ is defined as 

most stable species under acidic conditions [11, 12]. The actinyl ions are linear as a consequence of 

the covalent An=O double bond. Charge density transfer from the metal cation to the oxygen atoms 

in this structures leads to an effective charge (Zeff) of 2.3 and 3.3 for AnO2
+ and AnO2

2+, respectively 

[13, 14]. All An cations can be considered as hard Lewis acids and are therefore strong electron 

acceptors [15]. They tend to interact with strong electron donors as hydroxide or carbonate in solution. 

The strength of an actinide complex is thus correlated with on the effective charge of the An cation 

with An(IV) forming the most stable complexes and An(V) the weakest 

An(IV) > An(VI) > An(III) > An(V) 

The oxidation state of an actinide is one of the most relevant factors determining its chemistry in 

aqueous solution. In this respect, actinides in the same oxidation state show similar chemical behavior 

and are often considered as analogs. These analogies can be used to assess thermodynamic properties 

of actinides with more complex aqueous chemistry such as plutonium. For instance, Am(III) or the 

lanthanides Eu(III) and Nd(III) are often used as analogs of Pu(III), which shows a much complex 

redox chemistry. Cm(III) is also often used as a relevant probe for the investigation of An(III) due to 

its very favorable fluorescence properties which allow speciation studies at very low concentrations 

(10-8 M and below, depending upon matrix composition). With this analogy concept, it is possible to 

estimate activity coefficients and also complex formation constants for aqueous species. On the 

contrary, thermodynamic data for solid phases cannot be derived (or only with very large 

uncertainties) based on the analogy concept. This is mainly due to the fact that small changes in the 
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ionic radii can lead to pronounced changes in the stability of a solid and therefore the solubility 

product.  

Some actinides (especially U, Np and Pu) are characterized by the possible coexistence of several 

oxidation states in aqueous solutions. In the case of plutonium, up to four oxidation states can 

simultaneously exist under acidic conditions. Redox processes are also affected by kinetic effects. 

Some redox reactions e.g. between An3+/An4+ or AnO2
+/AnO2

2+ are very fast, whereas the 

transformation between An4+/AnO2
+ is slow due to required breaking/formation of the actinyl bond.  

In aqueous solution americium is mainly stable as Am(III). Am(V) is only stabilized in alkaline 

solutions under oxidizing conditions [16]. In aqueous systems, neptunium is mainly stable in 

tetravalent and pentavalent redox states with Np(V) as the most stable oxidation state. Tri- and 

hexavalent Np species are not relevant in the conditions expected in deep underground repositories 

for radioactive waste disposal. Uranium is mainly stable as U(IV) and U(VI). In slightly acidic and 

weakly reducing conditions, U(V) has a small stability field but a long term stability of U(V) is under 

discussion [17-20]. Compared to Np(IV), stronger reducing conditions are needed for the stabilization 

of U(IV). In the case of Pu, all oxidation states from three to six are present and have relatively large 

stability fields within the stability field of water. Under conditions in environmental aqueous systems, 

tetravalent and pentavalent Pu species are dominating. Under strongly reducing conditions as expected 

in most nuclear waste disposal concepts, Pu(III) becomes also relevant under near-neutral to weakly 

alkaline pH-conditions. 

1.2.1 Solubility and hydrolysis of actinides  

In the absence of other complexing ligands, the aquatic chemistry of actinides is dominated by 

hydrolysis species and oxy-hydroxide solid phases. An(IV) show the strongest hydrolysis and form 

sparingly soluble amorphous oxy-hydroxides, whereas An(V) have the weakest hydrolysis and form 

amorphous oxy-hydroxides with significantly higher solubility. An(III) and An(VI) lie in between 

regarding strength of hydrolysis and solubility of the corresponding oxy-hydroxides, principally due 

to the very similar effective charge of An3+ (Zeff = 3) and AnO2
2+ (Zeff = 3.2). Both An(V) and An(VI) 

show an amphoteric behavior (formation of positively and negatively charged hydrolysis species), 

whereas An(OH)3(aq) and An(OH)4(aq) are the most stable hydrolysis species of An(III) and An(IV), 

respectively, under alkaline to hyperalkaline pH conditions. 

 

 

Solubility of An oxy-hydroxides and hydrolysis equilibria can be described as a function of H+/H2O 

or OH-. In the NEA-TDB (Thermochemical Database project of the Nuclear Energy Agency, 
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explained in detail in section 1.6.1) equilibrium constants formulated in terms of H+/H2O are marked 

with * [21, 22]. Both formulations are connected by the ion product of water Kw:  

𝐻2𝑂 ⇋ 𝐻+ + 𝑂𝐻-                                 (1.1) 

with 

log 𝐾𝑤
′ = log [𝐻+] + 𝑙𝑜𝑔[𝑂𝐻−]                 (1.1a) 

log 𝐾𝑤
𝑜 = log (𝐻+) + 𝑙𝑜𝑔(𝑂𝐻−) − 𝑙𝑜𝑔 𝑎𝑤                            (1.1b) 

      = log 𝐾′𝑤 + 𝑙𝑜𝑔 𝛾𝐻+ + 𝑙𝑜𝑔 𝛾𝑂𝐻− −  log𝑎𝑤 

with log 𝐾𝑤
𝑜  = -14.00 ± 0.01 [21]. Notation (‘) stands for a conditional equilibrium constant at a given 

ionic strength (and temperature), whereas (°) corresponds to an equilibrium constant in the standard 

state (I = 0, T = 298.15 K, P = 1 bar). [X] is the concentration, (X) the activity and 𝛾𝑋 the activity 

coefficient of the species X in given solution. 𝑎𝑤 is the activity of water.  

The dissolution of an actinide oxy-hydroxide can be formulated as: 

𝐴𝑛(𝑂𝐻)𝑛(𝑠) + 𝑛𝐻+ ⇌ 𝐴𝑛𝑛+ + 𝑛𝐻2𝑂                                                       (1.2) 

with the solubility constant 

log *𝐾
𝑠,0
′ = log [𝐴𝑛𝑛+] − 𝑛 𝑙𝑜𝑔[𝐻+]                 (1.2a) 

log *𝐾𝑠,𝑂
0 = log (𝐴𝑛𝑛+) − 𝑛 𝑙𝑜𝑔(𝐻+) + 𝑛 𝑙𝑜𝑔 𝑎𝑤                           (1.2b) 

           = log *𝐾
𝑠,0
′ + 𝑙𝑜𝑔𝛾𝐴𝑛𝑛+ − 𝑛 𝑙𝑜𝑔 𝛾𝐻+ + 𝑛  log𝑎𝑤 

Similarly, the hydrolysis of actinides can be formulated as: 

𝐴𝑛𝑧+ + 𝑛𝐻2𝑂 ⇌ 𝐴𝑛(𝑂𝐻)𝑛
(𝑧−𝑛)

+ 𝑛𝐻+                    (1.3) 

with  

log 𝛽(1,𝑛)
′ = log [𝐴𝑛(𝑂𝐻)𝑛

(𝑧−𝑛)
] + 𝑛 𝑙𝑜𝑔[𝐻+] − 𝑙𝑜𝑔 [𝑀𝑧+]                             (1.3a) 

log 𝛽(1,𝑛)
𝑜 = log 𝛽(1,𝑛)

′ +log 𝛾
𝐴𝑛(𝑂𝐻)𝑛

(𝑧−𝑛) + 𝑛 𝑙𝑜𝑔 𝛾𝐻+ − 𝑙𝑜𝑔 𝛾𝑀𝑧+ − 𝑛 𝑙𝑜𝑔𝑎𝑤                           (1.3b) 

The conditional solubility constants log *𝐾
𝑠,0
′

 and log *𝐾
𝑠,(1,𝑛)
′ (=  log *𝐾

𝑠,0
′ + log *𝛽

(1,𝑛)
′ ) can be 

determined with comprehensive experimental studies and extrapolated to standard state conditions 
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log *𝐾°
𝑠,0

 and log *𝐾°
𝑠,(1,𝑛) using a given activity model. This extrapolation also allows the 

quantification of ion interaction parameters according with the activity model used. Both SIT (specific 

ion interaction theory) and Pitzer activity models are introduced in section 1.2.4. 

In the absence of other complexing ligands, the total An concentration in solution in equilibrium with 

a given oxy-hydroxide solid phase with solubility product log *𝐾°
𝑠,0

 can be easily calculated as a 

function of pH if all equilibrium constants and ion interaction coefficients are available: 

[𝐴𝑛]𝑡𝑜𝑡= [𝐴𝑛𝑧+] + ∑[𝑀(𝑂𝐻)𝑦
(𝑧−𝑦)

]                   (1.4a) 

[𝐴𝑛]𝑡𝑜𝑡= [*𝐾𝑠,0
′ [𝐻+]𝑛 + ∑ *𝐾𝑠,0

′ [𝐻+]𝑛 *𝛽′1,𝑛[𝐻+]−𝑦                             (1.4b) 

1.2.1.1 Solubility and hydrolysis of Ln(III) and An(III)  

Ln(III) and An(III) cations are strong Lewis acids and therefore they are expected to form relatively 

strong hydrolysis complexes in solution. Lanthanides and the actinides Am and Cm form 

predominantly complexes and compounds in their +III redox state. On the other hand, Pu, Np and U 

are only stabilized in the +III redox state under strongly reducing conditions. Although the stability 

field of U(III) and Np(III) is far from the Eh-pH conditions relevant in the context of waste disposal, 

Pu(III) does become relevant under near-neutral and weakly alkaline pH conditions, and therefore 

deserves close attention. Note that most of the available experimental studies focus on Am(III), 

Cm(III) and analogue lanthanides such as Nd(III) or Eu(III). 

There are only limited studies of the solubility and hydrolysis of Pu(III). Systematic experimental 

studies are very difficult due to the high tendency of this actinide and redox state to oxidize. The 

solubility of Pu(OH)3(s) was investigated by Felmy et al. in chloride solutions at pH 6–13 with iron 

powder as reducing agent [23]. Because of the low solubility of this solid phase, only data below 

pH 8 was used in their thermodynamic interpretation. The authors were able to determine the 

log *K°s,0 of the solid phase, but no hydrolysis species were considered to form within the evaluated 

pH-range. Hence, very limited information on the solubility and hydrolysis of Pu(III), and the use of 

thermodynamic data gained for the analogs Am(III), Cm(III) and the trivalent lanthanides Nd(III) and 

Eu(III) is often considered. Neck et al. investigated the solubility of Nd(III) in dilute to concentrated 

NaCl, CaCl2 and MgCl2 solutions in the pHm range 6–14 [24]. In NaCl solutions, the solubility 

behavior of Nd(III) was properly described with the aquo ion Nd3+ and the formation of mononuclear 

hydrolysis species Nd(OH)n
3-n (n= 1–3). No solubility increase was observed in the alkaline pH region 

due to the formation of anionic hydrolysis species. On the contrary, a significant increase in the 

solubility of Nd(OH)3(am) was observed in concentrated CaCl2 solutions within the pH-region 11–12. 

TRLFS experiments with Cm(III) confirmed the formation of ternary An(III) complexes 
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(Cap[M(OH)n]2p+3n stabilized with Ca2+ cations, in excellent agreement with observations made in the 

solubility experiments [25]. Wood et al. investigated the solubility of Nd(OH)3(cr) in non-complexing 

sodium trifluoromethanesulfonate (NaTr) from 30°C up to 290°C. The authors reported a decreasing 

Nd(III) solubility with increasing temperature in the pH region where Nd3+ is dominant, although also 

observed that Nd3+ hydrolyses readily with increasing temperatures [26].  

In the absence of complexing ligands other than hydroxide, the solubility of Ln(III) and An(III) is 

determined by the dissolution of Ln(OH)3(s) and An(OH)3(s), respectively. Different degrees of 

crystallinity (and consequently particle size) are defined in the literature for these solid phases. This 

has a direct impact on the solubility product, with smaller particle sized solids leading to greater 

solubility products. Amorphous solid phases (am) are expected to form in the context of radioactive 

waste disposal, and thus this crystallinity degree and consequent notation have been preferred in the 

following. Hence, the solubility product of Ln(OH)3(am) and An(OH)3(am) can be defined according 

with: 

𝐿𝑛/ 𝐴𝑛(𝑂𝐻)3(𝑎𝑚) + 3H+ ⇋  𝐿𝑛/𝐴𝑛3+ + 3H2O                             (1.5) 

With 

log *𝐾
𝑠,0
′ = log [𝐿𝑛/𝐴𝑛3+] − 3 𝑙𝑜𝑔[𝐻+]                            (1.5a) 

log *𝐾
𝑠,0
𝑜 = log (𝐿𝑛/𝐴𝑛3+) + 3 𝑙𝑜𝑔 𝑎𝑤 − 3 𝑙𝑜𝑔(𝐻+)                           (1.5b) 

           = log *𝐾′𝑠,0 + 𝑙𝑜𝑔 𝛾𝐿𝑛/𝐴𝑛3+ + 3 𝑙𝑜𝑔 𝑎𝑤 −  3 log 𝛾𝐻+ 

Above pH 6 (depending upon background electrolyte and ionic strength), Ln3+ and An3+ cations 

hydrolyze and the species Ln/An(OH)n
3–n become predominant in solution. Analogously to the 

solubility product, the hydrolysis of Ln3+ and An3+ can be described as: 

 𝐿𝑛/𝐴𝑛3+ + 𝑛H2O ⇋ 𝐿𝑛/𝐴𝑛(𝑂𝐻)𝑛
3−𝑛 + 𝑛H+; 𝑛 = 1,2,3                              (1.6) 

with 

log *𝛽
𝑛
′ = log [𝐿𝑛/𝐴𝑛(𝑂𝐻)𝑛

3−𝑛] + 𝑛 𝑙𝑜𝑔[𝐻+] − log [𝐿𝑛/𝐴𝑛3+]             (1.6a) 

log *𝛽
𝑛
𝑜 = log (𝐿𝑛/𝐴𝑛(𝑂𝐻)𝑛

3−𝑛) + 𝑛 𝑙𝑜𝑔(𝐻+) − log (𝐿𝑛/𝐴𝑛3+) − 𝑛 𝑙𝑜𝑔 𝑎𝑤                            (1.6b) 

         = log *𝛽′𝑛 + 𝑙𝑜𝑔 𝛾𝐿𝑛/𝐴𝑛(𝑂𝐻)𝑛
3−𝑛 + 𝑛 log 𝛾𝐻+ − 𝑛 log 𝛾𝐿𝑛/𝐴𝑛3+ − 𝑛 𝑙𝑜𝑔 𝑎𝑤 
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Hence, the overall aqueous concentration of Ln(III) and An(III) in equilibrium with Ln(OH)3(am) and 

An(OH)3(am), respectively, can be determined as the sum of Ln3+/An3+ ions and corresponding 

hydrolysis species  

[𝐿𝑛/𝐴𝑛(𝐼𝐼𝐼)]𝑡𝑜𝑡 = [𝐿𝑛/𝐴𝑛] +  ∑[𝐿𝑛/𝐴𝑛(𝑂𝐻)𝑛
3−𝑛]                                (1.7a) 

[𝐿𝑛/𝐴𝑛(𝐼𝐼𝐼)]𝑡𝑜𝑡 = (*𝐾𝑠𝑝 
′ [𝐻+]𝑛 + ∑ *𝐾𝑠𝑝 

′ [𝐻∓]𝑛*𝛽(1,𝑛)
′ [𝐻+]−𝑛                          (1.7b) 

Based on the thermodynamic data selection reported in Neck et al. (2009) for Nd(III) (mostly 

consistent with the NEA–TDB selection for Am(III)) [22], Fig. 1.1 (a) and (b) show the solubility 

curve of Am(OH)3(am) within 5  pHm  13 in 0.1 M NaCl, and the corresponding predominance 

diagram for the Am species prevailing in solution for 1 < pH < 13 and 25< pe < -17.  
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Figure 1.1. (a) Solubility of Am(OH)3(am) and (b) Pourbaix diagram for americium calculated for 

10 -8 M Am in 0.1 M NaCl solution. Calculations with SIT approach according to [22, 24]. 

 

1.2.1.2 Solubility and hydrolysis of An(IV) 

In aqueous solution thorium is only stable in the +IV oxidation state. U and Np can be stabilized in 

the +IV redox state under reducing conditions, whereas Pu(IV) shows a very large stability field 

extending from very reducing to oxidizing conditions. Considering the reducing conditions expected 

in a nuclear waste repository accurate knowledge of the behavior of tetravalent actinides is of high 

importance.  

In the absence of complexing ligands other than hydroxide, the solubility of An(IV) (with An = Th, 

U, Np and Pu) is controlled by sparingly soluble amorphous oxy-hydroxide solid phases [22, 27]. 
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Tetravalent actinides have a strong tendency towards hydrolysis. In the acidic pH region (pH < 5, 

depending upon actinide and ionic strength conditions) the aqueous speciation of Th(IV) is mainly 

dominated by monomeric hydroxide complexes, Th(OH)n
4-n with n= 1–3. In contrast to U(IV), Np(IV) 

and Pu(IV), several oligomeric cationic hydrolysis species of Th(IV) have been also described and are 

currently selected by the NEA–TDB [22, 27, 28]. Above this pH, the neutral species Th(OH)4(aq) is 

dominating the aqueous speciation of Th(IV), and defines a very low solubility limit in equilibrium 

with the corresponding ThO2(am,hyd). 

Thorium has been considered in this work to assess the chemistry of An(IV) in borate-bearing 

solutions. Previous solubility experiments with Th(IV) often show higher solubility or a large 

scattering in near-neutral and alkaline pH conditions, especially in the absence of a solid phase 

separation involving ultracentrifugation or ultrafiltration. This solubility increase has been attributed 

to the formation of neutral Th(IV) (intrinsic) colloids of the type ThmOmx(OH)m(4-2x)(H2O)n. The 

equilibrium of these colloids with the amorphous solid phase controlling the solubility, 

AnO2(am,hyd) ⇌ AnO2(coll,hyd), imposes a significantly higher upper limit concentration of Th in 

the aqueous phase [29] (log [ThO2(coll,hyd)] = -6.3 ± 0.5), which is about 2 orders of magnitude 

higher than the concentration of the neutral monomeric species Th(OH)4(aq) [29].  

The solubility and speciation of Th(IV) in alkaline dilute to concentrated CaCl2 solutions was 

investigated by Altmaier et al. and Brendebach et al. [30, 31]. In contrast to analogous experiments in 

NaCl solutions at comparable ionic strength, a significant increase of the Th(IV) solubility was 

observed in concentrated CaCl2 solutions (pHm > 10.5). EXAFS investigation at pHm = 12.2 in 4.5 M 

CaCl2 solution identified a hitherto unknown ternary complex Ca4[Th(OH)8]4+. Analogously to the 

ternary complexes determined for Nd(III) and Cm(III) in alkaline CaCl2 solutions, the highly 

hydrolyzed [Th(OH)8]4– needs to be charge-balanced by several Ca2+ ions. Later, Fellhauer et al. 

reported the formation of similar ternary complexes forming in alkaline CaCl2 solutions with Np(IV) 

and Pu(IV) at pHm > 11 [32]. 

Solubility studies with Th(OH)4(am,fresh) showed a significant decrease in the Th(IV) solubility at 

long equilibration times (t > 100 days), indicating a slow transformation of Th(OH)4(am,fresh) to the 

more stable Th(OH)(am,aged) [33]. Both solid phases are currently selected in the NEA-TDB review 

dedicated to thorium [27]. 

The solubility product of Th(OH)4(am) can be defined according with: 

𝑇ℎ(𝑂𝐻)4(𝑎𝑚) +  4𝐻+ ⇋  𝑇ℎ4+ + 4H2O                              (1.8) 

With 

log *𝐾
𝑠,0
′ = log [𝑇ℎ4+] − 4 𝑙𝑜𝑔[𝐻+]                             (1.8a) 
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log *𝐾
𝑠,0
𝑜 = log (𝑇ℎ4+) + 4 𝑙𝑜𝑔 𝑎𝑤 − 4 𝑙𝑜𝑔(𝐻+)                         (1.8b) 

           = log *𝐾′𝑠,0 + 𝑙𝑜𝑔 𝛾𝑇ℎ4+ + 4 𝑙𝑜𝑔 𝑎𝑤 −  4 log 𝛾𝐻+ 

The hydrolysis of Th4+ can be described as: 

 𝑚𝑇ℎ4+ + 𝑛H2O ⇋ 𝑇ℎ𝑚(𝑂𝐻)𝑛
4𝑚−𝑛 + 𝑛H+; 𝑛 = 1 − 4;  𝑚 = 1 − 6                            (1.9) 

with 

log *𝛽
𝑛
′ = log [𝑇ℎ𝑚(𝑂𝐻)𝑛

4𝑚−𝑛] + 𝑛 𝑙𝑜𝑔[𝐻+] − 𝑚 log [𝑇ℎ4+]                          (1.9a) 

log *𝛽
𝑛
𝑜 = log (𝑇ℎ𝑚(𝑂𝐻)𝑛

4𝑚−𝑛) + 𝑛 𝑙𝑜𝑔(𝐻+) − 𝑚 log (𝑇ℎ4+) − 𝑛 𝑙𝑜𝑔 𝑎𝑤                         (1.9b) 

         = log *𝛽′𝑛 + 𝑙𝑜𝑔 𝛾𝑇ℎ𝑚(𝑂𝐻)𝑛
4𝑚−𝑛 + 𝑛 log 𝛾𝐻+ − 𝑚 log 𝛾𝑇ℎ4+ − 𝑛 𝑙𝑜𝑔 𝑎𝑤 

Based on the NEA–TDB selection for Th(IV) [27], Fig. 1.2 (a) and (b) show the solubility curve of 

Th(OH)4(am,fresh) and Th(OH)4(am,aged) within 3  pHm  12 in 0.1 M NaCl, and the corresponding 

predominance diagram for the Th species prevailing in solution for 1 < pH < 13 and 25 < pe < -17.  
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Figure 1.2. (a) Solubility of Th(OH)4(am, fresh). Th(OH)4(am,aged) and (b) Pourbaix diagram for 

thorium calculated for 10 -8 M Th in 0.1 M NaCl solution. Calculations with SIT considering ion 

interaction parameters selected in [27].  

1.2.1.3 Solubility and hydrolysis of An(V) 

U, Np, Pu and Am form aqueous complexes and solid compounds in their +V redox state with the 

actinyl moiety [O=An=O]+. Among these, Np(V) has the largest stability field and is very often 
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considered in experimental studies due to its redox stability under a large variety of pH and Eh 

conditions. The solubility of Np(V) in dilute systems is mostly controlled by the amorphous 

NpO2OH(am). The solubility of this solid phase was investigated in several studies, mainly in NaCl 

and NaClO4 systems with various ionic strengths [34-36]. Solubility studies were further 

complemented with vis/NIR spectroscopy [36]. Neck et al. [36] and Runde [34] observed an aging 

effect of the fresh amorphous Np hydroxide together with a decreased solubility of about 0.6 log-units 

in 1.0 and 3.0 M NaClO4, as well as in 5.0 M NaCl, respectively. Consequently, the authors defined 

two solid phases with the same stoichiometry but slightly different solubility products, namely 

NpO2OH(am,fresh) and NpO2OH(am,aged). Note that none of the solid phases was characterized 

(mainly because of their amorphous nature), and thus the main conclusions derived from this work 

can be considered not sufficiently sound (see for instance the discussion between Neck and Rao in 

[37-39]). The NEA–TDB review relied in the interpretation of these authors and considered both solid 

phases in their final selection. A recent study by Petrov and co-workers reported the formation of 

ternary Na–Np(V)–OH solid phases under hyperalkaline conditions (pH ≥ 11.5) and concentrated 

NaCl solutions (≥ 1.0 M). These solid phases appear to have a solubility significantly lower than 

NpO2OH(am,fresh), and thus can play a relevant role in saline and cementitious environments [40]. 

Solubility studies showed that the aquo ion NpO2
+ is the dominant aqueous species in acidic, neutral 

and slightly alkaline region and that no hydrolysis species form until pH = 10. At pH 11-12 first the 

neutral NpO2OH(aq) complex and later NpO2(OH)2
- are forming. Note that a combined 

potentiometric, spectrophotometric and calorimetric study conducted afterwards by Rao and co-

workers suggested an earlier hydrolysis of Np(V) [37]. The presence of carbonate contamination in 

this study cannot be completely ruled out, and thus we retain in the discussion of this PhD work the 

thermodynamic data selection proposed by the NEA–TDB. 

Fellhauer investigated the solubility of Np(V) in dilute to concentrated CaCl2 solutions at pHm = 8-12. 

Three new Ca–neptunate solid phases were found, with Ca0.5NpO2(OH)2·1.3H2O as the most stable 

and solubility-limiting phase. Analogously to An(III) and An(IV), the solubility of Np(V) in CaCl2 

solution is increased compared to NaCl solutions due to the formation two ternary Ca–Np(V)-(OH) 

complexes at pH > 10.5 [41]. 

Based on the discussion above and focusing on the binary system Np(V)-H2O, the conditional 

solubility product of NpO2OH(am) (log *𝐾
𝑠,0
′

) and the corresponding log *𝐾
𝑠,0
°

 can be written as: 

𝑁𝑝𝑂2𝑂𝐻(𝑎𝑚) + 𝐻+ ⇋  𝑁𝑝𝑂2
+ + H2O                            (1.10) 

with 

log *𝐾𝑠,0
′ = log [𝑁𝑝𝑂2

+] − 𝑙𝑜𝑔[𝐻+]                           (1.10a) 
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log *𝐾
𝑠,0
𝑜 = log (𝑁𝑝𝑂2

+) + 𝑙𝑜𝑔 𝑎𝑤 −  𝑙𝑜𝑔(𝐻+)             (1.10b) 

           = log *𝐾′𝑠,0 + 𝑙𝑜𝑔 𝛾𝑁𝑝𝑂2
+ +  𝑙𝑜𝑔 𝑎𝑤 −   log 𝛾𝐻+ 

The hydrolysis of Np(V) can be formulated as: 

𝑁𝑝𝑂2
+ + 𝑛 𝐻2𝑂 ⇋  𝑁𝑝𝑂2 (𝑂𝐻)𝑛

1−𝑛 + 𝑛 H+; n= 1,2                            (1.11) 

with 

log *𝛽
𝑛
′ = log [𝑁𝑝𝑂2(𝑂𝐻)𝑛

1−𝑛] + 𝑛 𝑙𝑜𝑔[𝐻+] − log [ 𝑁𝑝𝑂2
+]               (1.11a) 

log *𝛽
𝑛
𝑜 = log (𝑁𝑝𝑂2(𝑂𝐻)𝑛

1−𝑛) + 𝑛 𝑙𝑜𝑔(𝐻+) − log (𝑁𝑝𝑂2
+) − 𝑛 𝑙𝑜𝑔 𝑎𝑤                      (1.11b) 

                = log *𝛽′𝑛 + 𝑙𝑜𝑔 𝛾
 𝑁𝑝𝑂2 (𝑂𝐻)𝑛

1−𝑛 + 𝑛 log 𝛾𝐻+ − 𝑛 log 𝛾𝑁𝑝𝑂2
+ − 𝑛 𝑙𝑜𝑔 𝑎𝑤                      

Based on the NEA–TDB selection for Np(V) [22], Fig. 1.3 (a) and (b) show the solubility curve of 

NpO2OH(am,fresh) and NpO2OH(am,aged) within 6  pHm  13 in 0.1 M NaCl, and the corresponding 

predominance diagram for the Np species prevailing in solution for 1 < pH < 13 and 25< pe < -17.  
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Figure 1.3. (a) Solubility of N𝑝𝑂2𝑂𝐻 (𝑎𝑚, 𝑓𝑟𝑒𝑠ℎ), N𝑝𝑂2𝑂𝐻 (𝑎𝑚, 𝑎𝑔𝑒𝑑) and (b) Pourbaix diagram for 

Neptunium calculated for 10 -8 M Np in 0.1 M NaCl solution. Calculations with SIT approach 

according to NEA-TDB selection [22].  
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1.2.1.4 Solubility and hydrolysis of An(VI) 

U(VI) is the most relevant hexavalent actinide in the context of radioactive waste disposal. Pu(VI) and 

Np(VI) show also a predominant region within the stability field of water, although only under 

oxidizing acidic and relatively alkaline pH conditions [22]. Recent studies conducted at KIT–INE have 

shown the increased stability of Np(VI) under hyperalkaline pH conditions relevant in cementitious 

systems [42, 43]. 

A number of binary U(VI) oxo-hydroxides have been reported in the literature, reflecting different 

crystallinity and number of hydration waters (UO2(OH)2(s), UO30.9H2O(cr), UO32H2O(cr), among 

others) [21, 22, 44, 45]. At room temperature and dilute solutions with 4 ≤ pH ≤ 9 (depending upon 

ionic strength and background electrolyte), the solubility limiting U(VI) oxo-hydroxides phase is 

meta-schoepite (UO32H2O(cr)) [21, 46-48]. 

Solubility experiments with meta-schoepite in NaCl solutions showed that above pH = 9 a 

transformation of meta-schoepite into sodium uranate Na2U2O7·H2O(cr) takes place [21, 22]. Such a 

transformation has been also reported to take place in dilute to concentrated CaCl2 solutions leading 

to the formation of CaU2O7·3H2O(cr) [49]. On the contrary, no transformation takes place in dilute to 

concentrated MgCl2 solutions and thus metaschoepite remains as solubility-limiting solid phase in 

these systems.  

Monomeric and oligomeric positively charged hydrolysis species of U(VI) are reported to occur in the 

literature [21, 22, 50, 51]. Negatively-charged monomeric hydrolysis species of U(VI) form under 

alkaline to hyperalkaline pH conditions. UO2(OH)4
2– is widely accepted as the limiting hydrolysis 

species, although the formation of UO2(OH)5
3– under very alkaline pH conditions has been hinted by 

several experimental and theoretical studies [52].  

Dissolution equilibria of UO32H2O(cr) and Na2U2O7·H2O(cr) can be described according with 

equations (1.12) and (1.13): 

𝑈𝑂3 ∙ 2H2O(𝑐𝑟) + 2H+ ⇋  𝑈𝑂2
+ + 3H2O                     (1.12) 

with 

log *𝐾
𝑠,0
′ = log  [𝑈𝑂2

+] − 2 𝑙𝑜𝑔[𝐻+]                     (1.12a) 

log *𝐾
𝑠,0
𝑜 = log  (𝑈𝑂2

+) + 3 𝑙𝑜𝑔 𝑎𝑤 − 2 𝑙𝑜𝑔(𝐻+)                   (1.12b) 

            = log *𝐾′𝑠,0 + 𝑙𝑜𝑔 𝛾 𝑈𝑂2
+ + 3 𝑙𝑜𝑔 𝑎𝑤 −  2 log 𝛾𝐻+ 
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and 

1

2
𝑁𝑎2𝑈2𝑂7 ∙ 𝐻2𝑂(𝑐𝑟) + 3 𝐻+ ⇋  𝑈𝑂2

+ + 𝑁𝑎+ + 2 H2O               (1.13) 

with 

log *𝐾
𝑠,0
′ = log  [𝑈𝑂2

+] − 3 𝑙𝑜𝑔[𝐻+] + 𝑙𝑜𝑔 [𝑁𝑎+]                  (1.13a) 

log *𝐾
𝑠,0
𝑜 = log  (𝑈𝑂2

+) + 𝑙𝑜𝑔 (𝑁𝑎+) + 2 𝑙𝑜𝑔 𝑎𝑤 − 3 𝑙𝑜𝑔(𝐻+)              (1.13b) 

           = log *𝐾′𝑠,0 + 𝑙𝑜𝑔 𝛾 𝑈𝑂2
+ + 𝑙𝑜𝑔 𝛾 𝑁𝑎+ + 2 𝑙𝑜𝑔 𝑎𝑤 −  3 log 𝛾𝐻+ 

The hydrolysis reactions can be formulated as follows: 

 𝑚𝑈𝑂2
+ + 𝑛H2O ⇋  (𝑈𝑂2

+)𝑚(𝑂𝐻)𝑛
2𝑚−𝑛 + 𝑛H+; 𝑛 = 1,2,3                              (1.14) 

with 

log *𝛽
𝑛
′ = log  [(𝑈𝑂2

+)𝑚(𝑂𝐻)𝑛
2𝑚−𝑛] + 𝑛 𝑙𝑜𝑔[𝐻+] − 𝑚 log[𝑈𝑂2

+]                 (1.14a) 

log *𝛽
𝑛
𝑜 = log  ((𝑈𝑂2

+)𝑚(𝑂𝐻)𝑛
2𝑚−𝑛) + 𝑛 𝑙𝑜𝑔(𝐻+) −𝑚 log (𝑈𝑂2

+) − 𝑛 𝑙𝑜𝑔 𝑎𝑤                 (1.14b) 

         = log *𝛽′𝑛 + 𝑙𝑜𝑔 𝛾(𝑈𝑂2
+)𝑚(𝑂𝐻)𝑛

2𝑚−𝑛 + 𝑛 log 𝛾𝐻+ − 𝑚 log 𝛾𝑈𝑂2
+ − 𝑛 𝑙𝑜𝑔 𝑎𝑤 

Based on the thermodynamic data reported in Altmaier et al. (2003) for U(VI) [53] in combination 

with the current NEA-TDB selection [22], Fig. 1.4 (a) and (b) show the solubility curves of 

UO3·2H2O(cr) and Na2U2O7·H2O(cr) within 4  pHm  12 in 0.1 M NaCl, and the corresponding 

predominance diagram for the U species prevailing in solution for 1 < pH < 13 and 25< pe < -17.  
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Figure 1.4. (a) Solubility of UO32H2O(cr) and Na2U2O7·H2O(cr) and (b) Pourbaix diagram for 

uranium calculated for 10 -8 M U in 0.1 M NaCl solution. Calculations with SIT approach according 

to with ion interaction coefficients reported elsewhere [22, 53].  

 

1.2.2 Definition of redox equilibrium 

To describe the behavior of actinides in solution the redox state is of high importance. The 

formation/predominance of different oxidation states, depending upon pH, Eh and composition of the 

aqueous solution will cause very significant changes in the chemical behavior of the considered 

actinide. 

The redox reaction of a redox couple in equilibrium is given by: 

𝑂𝑥 + 𝑛𝑒− ⇋ 𝑅𝑒𝑑                                                                                                   (1.15) 

The Nernst equation defines the electrode (half-cell) potential of a redox couple: 

𝐸 =  𝐸0 +
𝑅𝑇 𝑙𝑛 (10)

𝑛𝐹
 𝑙𝑜𝑔 (

𝑎𝑜𝑥

𝑎𝑟𝑒𝑑
)                                                                            (1.16) 

With E: the redox potential for a given medium, E°: the redox potential under standard conditions, n: 

the number of electrons participating in the reaction, R: the ideal gas constant, T: Temperature in K 

and F the Faraday constant. 

Since the absolute electrode potential cannot be measured experimentally, the electrode potential is 

determined as the redox potential relative to the standard hydrogen electrode (equal to zero by 
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definition) and referred to as Eh value. The redox potential of a system can be also defined as the 

negative logarithm of the electron activity (analogue to the pH) as pe: 

𝑝𝑒 =  −𝑙𝑜𝑔 (𝑎𝑒−)                                (1.17) 

Eh and pe can be correlated via:  

𝐸ℎ =  −
𝑅𝑇

𝐹
𝑙𝑛(𝑎𝑒−) =  

𝑅𝑇𝑙𝑛(10)

𝐹
𝑝𝑒                         (1.18) 

With pe = 16.9Eh [V] for T = 25° C 

Stability fields for different redox species can be shown in Pourbaix diagrams with the measured Eh 

(pe) and pH in aqueous solution [54]. Different predominance areas of the different systems are 

separated by borderlines which reflect a 50:50 % distribution between the given species. 

These borderlines can be calculated for the standard state or at a given ionic strength, provided that 

stability constants and ion interaction coefficients of the aqueous species are known. Fig. 1.5 

exemplarily shows the Pourbaix diagram of Pu within 1  pH  13 and 25  pe  –17 in 0.1 M NaCl.  

1 2 3 4 5 6 7 8 9 10 11 12 13

-15

-10

-5

0

5

10

15

20

25

Pu(OH)
2+

2 Pu(OH)
+

3

Pu(OH)
3(aq)

Pu(OH)
2+

Pu
3+

Pu(OH)
+

2

PuO
2+

2

1 bar H
2
(g)

[Pu] = 10
-8
M; NaCl 0.1 M

1 bar O
2
(g)

PuO
2
(OH)

+

PuO
2
(OH)

2(aq)

PuO
+

2

 

p
e

pH
m

Pu(OH)
4(aq)

-1,0

-0,5

0,0

0,5

1,0

1,5

E
h
 [

V
]

 

Figure 1.5. Pourbaix diagram of plutonium. Calculations performed for 10-8 M Pu concentration and 

0.1 M NaCl at 25°C based on data from NEA TDB[22]. 

1.2.2.1 Pu(III/IV) redox chemistry 

The redox chemistry of Pu was thoroughly evaluated based on existing literature and own 

experimental work by Neck et al. under oxidizing, redox neutral and reducing conditions [55-57]. In 

water, Pu can exist in the oxidation states III to VI.  
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Neck et al. stated that Pu4+ and PuO2
+ are not directly in equilibrium as the reversible redox couples 

Pu3+/Pu4+ and PuO2
+/PuO2

2+, but rather in indirect equilibrium via their reactions with Pu(IV) solid, 

colloids or polymeric species [56].  

The kinetics and mechanistic aspects of redox reactions with Pu aquo ions as well as thermodynamic 

constants are well known in acidic conditions [58]. In the near neutral or alkaline regions only very 

few systematic or kinetic studies on the redox chemistry of Pu are available. In this pH area, 

precipitation and hydrolysis must be taken into account. Recently, Fellhauer conducted a very 

comprehensive work on the redox chemistry of Pu under repository-relevant pH conditions [59]. The 

author concluded that available thermodynamic data explained well the experimental observations. 

Under the reducing conditions expected in a nuclear waste disposal only the oxidation states Pu(III) 

and Pu(IV) are stable. In near-neutral and slightly alkaline pH conditions, Pu(IV) prevails as the 

sparingly soluble PuO2(am,hyd), whereas the solubility of Pu(III) is strongly dependent on the pH and 

decreases from ~10–2 M at pH = 3 to 10–8 M at pH = 9 (see also section 1.2.1.1). In general Pu(OH)3(s) 

could be expected but Neck et al. showed that based on data from the NEA–TDB Pu(OH)3(s) is under 

all conditions meta stable and slowly transforms into PuO2(am,hyd). The calculated borderline for this 

reaction is close to the reductive decomposition of water. Recent work by Fellhauer has provided some 

hints on the possible overestimation of log *K°s,0 selected in the NEA-TDB for Pu(OH)3(s), thus 

hinting to the clear need of additional experimental studies focusing on this system [59]. 

𝑃𝑢(𝑂𝐻)3(𝑠) ⇌ 𝑃𝑢𝑂2(𝑎𝑚, ℎ𝑦𝑑) + 𝑒− + 𝐻+ + 𝐻2𝑂                         (1.19) 

with 

𝑙𝑜𝑔 𝐾°𝐼𝐼𝐼𝑠_𝐼𝑉𝑎𝑚 = 𝑙𝑜𝑔 𝑎𝑤 −  𝑝𝐻 − 𝑝𝑒 = 0.4 ± 1.0              (1.19a) 

 

 

 

The equilibrium between solid PuO2(am,hyd) and solved Pu3+ is very important and controls the total 

plutonium concentration in aqueous systems under reducing conditions at near neutral and slightly 

alkaline pH [55, 60]. Rai et al. investigated systematically the reductive dissolution of PuO2 (am,hyd): 

𝑃𝑢𝑂2(𝑎𝑚, ℎ𝑦𝑑) +  4 𝐻+ + 𝑒− ⇌ 𝑃𝑢3+ + 2 𝐻2𝑂                    (1.20) 

with  
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𝑙𝑜𝑔 𝐾°𝐼𝑉𝑎𝑚𝐼𝐼𝐼𝑎𝑞
= 𝑙𝑜𝑔 (𝑃𝑢3+) + 2 𝑙𝑜𝑔 𝑎𝑤 +  4 𝑝𝐻 + 𝑝𝑒               (1.20a) 

                             = 𝑙𝑜𝑔 [𝑃𝑢3+] +  𝑙𝑜𝑔 𝛾𝑃𝑢3+ + 2 𝑙𝑜𝑔 𝑎𝑤 +  4 𝑝𝐻 + 𝑝𝑒             (1.20b) 

Redox conditions were kept stable by addition of FeCl2 and 9,10 Anthrahydroquinone-2,6-disulfonate 

solution. The estimated log *K°IVam_IIIaq value is 15.6 ± 0.6. In the NEA-TDB a very similar value 

15.4 ±0.5 for this reaction is selected under consideration of the work by Rai et al [22]. The reductive 

dissolution of Pu was also investigated by Fujiwara et al. from pH 3.5 to 9. In this study Na2S2O4 was 

used as reducing agent but the measured redox conditions (pe + pH =10) are too positive, likely hinting 

to the potential oxidation of the original reducing agent.  

The redox equilibria of An3+/An4+ and AnO2
+/AnO2

2+ are very fast and reversible whereas the redox 

reaction of An4+/AnO2
+ is slower due to the breaking of the metal oxygen bond [22, 61].  

𝐴𝑛3+ ⇌  𝐴𝑛4+ + 𝑒−                                                                   (1.21) 

with 

𝑙𝑜𝑔 𝐾°𝐼𝐼𝐼𝑎𝑞_ 𝐼𝑉𝑎𝑞 =  𝑙𝑜𝑔(𝐴𝑛4+) − 𝑙𝑜𝑔(𝐴𝑛3+) − 𝑝𝑒                                                 (1.21a) 

                                              = 𝑙𝑜𝑔[𝐴𝑛4+] + 𝑙𝑜𝑔 𝛾𝐴𝑛4+ − 𝑙𝑜𝑔[𝐴𝑛3+] − 𝑙𝑜𝑔 𝛾𝐴𝑛3+ − 𝑝𝑒                      (1.21b) 

and 

𝐴𝑛4+ + 2𝐻2𝑂 ⇌  𝐴𝑛𝑂2
+ + 4𝐻+ + 𝑒−                                         (1.22) 

with 

𝑙𝑜𝑔 𝐾°𝐼𝑉𝑎𝑞_𝑉𝑎𝑞 = 𝑙𝑜𝑔(𝐴𝑛𝑂2
+) − 𝑙𝑜𝑔(𝐴𝑛4+) − 2 𝑙𝑜𝑔 𝑎𝑤 − 4 𝑝𝐻 − 𝑝𝑒                  (1.22a) 

                               = 𝑙𝑜𝑔[𝐴𝑛𝑂2
+] + 𝑙𝑜𝑔 𝛾𝐴𝑛𝑂2

+ − 𝑙𝑜𝑔[𝐴𝑛4+] −𝑙𝑜𝑔 𝛾𝐴𝑛4+                   

                                −2 𝑙𝑜𝑔 𝑎𝑤 − 4 𝑝𝐻 − 𝑝𝑒 

𝐴𝑛𝑂2
+ ⇌  𝐴𝑛𝑂2

2+ +  𝑒−                         (1.23) 

with 

𝑙𝑜𝑔 𝐾°𝑉𝑎𝑞_𝑉𝐼𝑎𝑞 
= 𝑙𝑜𝑔(𝐴𝑛𝑂2

2+) − 𝑙𝑜𝑔(𝐴𝑛𝑂2
+) − 𝑝𝑒            (1.23a) 

                                = 𝑙𝑜𝑔[𝐴𝑛𝑂2
2+] + 𝑙𝑜𝑔 𝛾𝐴𝑛𝑂2

2+ − 𝑙𝑜𝑔[𝐴𝑛𝑂2
+] − 𝑙𝑜𝑔 𝛾𝐴𝑛𝑂2

+ − 𝑝𝑒  
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At pH = 0 the standard potentials of the 3 redox pairs are very similar (~1 V), which allows a 

coexistence of all four oxidation states at the same time in similar concentrations. At pH > 2 however 

this is not possible anymore due to the increased stability field of Pu(IV). 

1.2.3 Activity models 

For the description of real systems with I ≠ 0, the interaction of ions in solutions and the resulting 

activity coefficients must be accounted for. In systems with I ≥ 0.1 M, activity coefficients have to be 

specifically calculated for the corresponding background electrolyte and concentration. In dilute to 

concentrated saline systems, SIT and PITZER approaches are normally used for the determination of 

activity coefficients.  

1.2.3.1 Specific ion interaction theory (SIT) 

The SIT approach is based on the extended Debye-Hückel law (theory) and includes the influence of 

electrostatic, non-specific long-range, non-binary interactions between charged ions in the 

calculations of activity coefficients [62]. The validity range of the method is normally considered up 

to I ≤ 3.5 M, although recent studies have shown the appropriate performance of this approach up to 

I = 13.5 M [32]. This method is adopted in the NEA-TDB for the correction of ionic strength effects 

[22]. Note however that the use of Pitzer activity models is normally preferred for the evaluation of 

concentrated brine solutions. 

According with the SIT formalism, the activity coefficient of an ion j is defined as  

𝑙𝑜𝑔𝛾𝑗 = 𝑧𝑗
2𝐷 + ∑ 𝜀(𝑗, 𝑘)𝑚𝑘𝑘                     (1.24) 

Where zj is the charge of the ion j, mk is the molality of the oppositely charged ion k and 𝜀(𝑗, 𝑘) is the 

specific ion interaction parameter for the given electrolyte, D is the Debye Hückel term defined as:  

𝐷 =  
𝐴√𝐼𝑚

1+ 𝐵𝑎𝑗 √𝐼𝑚
                      (1.25) 

The constants A and 𝐵𝑎𝑗 are temperature and pressure dependent and equal 0.509 ± 0.001 kg1/2  mol-1/2 

and 1.5 kg1/2 ∙mol-1/2 , respectively at 25°C and 1 bar. 

The activity coefficient of ion j can be thus calculated combining equations 1.24 and 1.25: 

𝑙𝑜𝑔𝛾𝑗 = −𝑧𝑗
2 0.509√𝐼𝑚

1+ 1.5√𝐼𝑚
+ ∑ 𝜀(𝑗, 𝑘)𝑚𝑘𝑘                     (1.26) 
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1.2.3.2 Pitzer 

Thermodynamic calculations and geochemical modeling in concentrated salt brine solutions with high 

ionic strength can be performed with the Pitzer approach [63]. The Pitzer formalism describes the 

effect of ionic strength with short range binary interactions (the second virial coefficient) and 

additional interactions between ions with the same charge, between neutral species and charged ions 

and triple interactions. These results in a large number of parameters for a given ion, but the resulting 

activity coefficients are more accurate especially at high ionic strength.   

The semi empirical activity model of Pitzer is based on a virial expansion of the excess Gibbs energy: 

𝐺𝑒𝑥

𝑤𝑤 𝑅𝑇
= 𝑓(𝐼) + ∑𝑖 ∑ 𝑚𝑖𝑚𝑗𝜆𝑖𝑗𝑗 (𝐼) +  ∑𝑖 ∑𝑗 ∑ 𝑚𝑖𝑚𝑗𝑚𝑘𝜇𝑖𝑗𝑘𝑘 (𝐼) + ⋯            (1.27) 

where 𝑤𝑤 is the number of kilograms of water, and 𝑚𝑖𝑚𝑗𝑚𝑘 are the molalities of all solved species. 

The first term is a Debye-Hückel term and depends only on the ionic strength, 𝜆𝑖𝑗(𝐼) and 𝜇𝑖𝑗𝑘(I) are 

virial coefficients representing the short-ranged interactions between the solved species. 

Activity coefficients for mixed electrolytes in the presence of cations M, c, c’ and anions X, a, a’ are 

described by the equations (1.28) and (1.29) for a cation M and an anion X, respectively: 

 

𝑙𝑛𝛾𝑀 = 𝑧𝑀
2 𝐹 + ∑ 𝑚𝑎(𝑎 2𝐵𝑀𝑎 + 𝑍𝐶𝑀𝑎) + ∑ 𝑚𝑐(2𝜙𝑀𝑐 + ∑ 𝑚𝑎𝜓𝑀𝑐𝑎)𝑎𝑐                             (1.28) 

              + ∑ ∑ 𝑚𝑎𝑚𝑎′𝜓𝑀𝑎𝑎′ + 𝑧𝑀 ∑ ∑ 𝑚𝑐𝑚𝑎𝐶𝑐𝑎 + 2 ∑ 𝑚𝑛𝜆𝑛𝑀𝑛𝑎𝑐<𝑎′𝑎<     

 

𝑙𝑛𝛾𝑋 = 𝑧𝑋
2𝐹 + ∑ 𝑚𝑐(𝑐 2𝐵𝑐𝑋 + 𝑍𝐶𝑐𝑋) + ∑ 𝑚𝑎(2𝜙𝑋𝑎 + ∑ 𝑚𝑐𝜓𝑐𝑋𝑎)𝑐𝑎                            (1.29) 

            + ∑ ∑ 𝑚𝑐𝑚𝑐′𝜓𝑋𝑐𝑐′ + |𝑧𝑋| ∑ ∑ 𝑚𝑐𝑚𝑎𝐶𝑐𝑎 + 2 ∑ 𝑚𝑛𝜆𝑛𝑋𝑛𝑎𝑐<𝑐′𝑐<  

 

with Z=∑ 𝑚𝑖|𝑧𝑖|𝑖  and F representing the Debye-Hückel term and the ionic strength dependence 

specific to the salt. In the Pitzer model binary parameters 𝛽𝑖𝑗
(𝑜)

, 𝛽𝑖𝑗
(1)

, 𝛽𝑖𝑗
(2)

 and 𝐶𝑖𝑗
𝜑

 specific to the 

interacting ions are defined. 𝛽𝑖𝑗
(𝑜)

 describes mainly repulsive forces between similar ions. 

𝛽𝑖𝑗
(1)

represents the attractions between oppositely charged ions and  𝛽𝑖𝑗
(2)

 corrects deviations caused by 

electrostatic ion-pair formation and is only considered for 2-2 or higher valence electrolytes. 

𝐶𝑖𝑗
𝜑

 becomes only significant at high ionic strength. 𝜃𝑖𝑖′(or 𝜃𝑗𝑗′) and 𝛹𝑖𝑖′𝑗(or 𝛹𝑖𝑗𝑗′) are mixing 

parameters for ternary and higher electrolyte systems. Their contribution is very small except when 
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non-identical charged species are mixed. λni (or λnj) define interactions between ions and neutral 

charged species. Bca and Cca can be calculated based on the binary parameters. Φij can be calculated 

based on the electrostatic nonsymmetrical mixing effects, depending on the charged species, ionic 

strength and solvent properties.  

 Aqueous borate speciation and actinide borate chemistry 

1.3.1 Boron chemistry and aqueous borate speciation 

Boron is a relatively rare element in the earth crust, with a natural occurrence of ~ 10–20 ppm [64]. 

Large boron resources can be found in Turkey and the West of the USA [65]. More than 150 different 

boron containing minerals are known. They can be divided in three main groups depending on their 

origin and geological environment: i. skarn minerals formed within magmatic movements by the 

intrusion of borate bearing solutions in into carbonate formations, mainly silicates and iron oxides; ii. 

magnesium oxides related to marine sediments; and iii. sodium and calcium borates formed by 

volcanic activity [66]. Most common boron minerals found in the environment are Borax 

(Na2B4O7∙10H2O), Ulexit (NaCa[B5O6(OH)6]∙5H2O), Kernit (Na2B4O7∙4H2O) and Colemanit 

(Ca2B6O11∙5H2O).  

Salts of the boric acid are called borates and consist of trigonal and tetragonal boron-oxygen units BO3 

and BO4. Borates tend to form polymeric networks containing the polymerized BO3 and BO4 units. 

These are bond together via corner sharing, edge sharing or shared oxygen atoms to form chains, 

clusters, layers and 3D frameworks [67, 68].  

One of the challenges encountered when quantitatively assessing An–borate interaction is the complex 

and yet relatively unknown aqueous speciation of boron. A number of experimental approaches 

including potentiometric titrations [69, 70], Raman spectroscopy [71], 11B–NMR [72-75], isopiestic 

measurements [76, 77] and solubility studies [78-80] have been considered in the literature to assess 

the speciation of boron in solution. The available thermodynamic data [69, 70, 81] allow the 

calculation of species distribution for some cases, although the accuracy of these calculations at 

elevated boron and salt concentration (especially in the case of MgCl2) is importantly hindered. 
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Figure 1.6. Suggestions for structures of borates in aqueous solution derived from naturally occurring 

minerals [23]. 

 

Monomeric species B(OH)3(aq) and B(OH)4
– prevail at low boron concentration under acidic and 

alkaline pH conditions, respectively (Fig. 1.6). Due to the neutral character of B(OH)3(aq) (pKa = 9.25 

[82]) and the delocalized charge in B(OH)4
–, these monomeric species have been reported to have a 

low tendency to complex hard Lewis acids such as actinide cations [15]. Polyborate species (e.g. 

B3O3(OH)4
–, B4O5(OH)4

2– and B5O6(OH)4
–, among others shown in Fig. 1.6) are known to form with 

increasing boron concentrations (Fig. 1.7) [69, 70]. These species have been postulated to form 

stronger complexes with actinides than the corresponding monomeric species [6, 83], although this 

hypothesis remains open. The main equilibria in aqueous solution are: 

B(OH)3 + H2O ⇋ B(OH)4
− + H+                                               (1.30) 

2B(OH)3 + B(OH)4
− ⇋ B3O3(OH)4

− + 3H2O                                                   (1.31) 

2B(OH)3 + 2B(OH)4
− ⇋ B4O5(OH)4

2− + 5H2O                                                (1.32) 

4B(OH)3 + B(OH)4
− ⇋ B5O6(OH)4

− + 6H2O                                              (1.33) 

Note that analogous oligomeric species have been reported for silicium (Si2O2(OH)5
–, Si3O5(OH)5

3–, 

Si4O7(OH)5
3–, among others[22], hence highlighting the similarities existing between B and Si.  
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The limited experimental data available to assess aqueous boron speciation is especially manifest for 

elevated ionic strength conditions and MgCl2 and CaCl2 brines. Raman studies conducted by Zhihong 

and co-workers showed a favored formation of polyborates in the presence of high Mg2+ 

concentrations, although no quantitative thermodynamic description was provided by the authors [84]. 
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Figure 1.7. Fraction diagram of aqueous boron species calculated for 4 ≤ pH ≤ 12 at I = 0 for a) 

[B]tot = 0.04 M, and b) [B]tot = 0.4 M. Thermodynamic data used in the calculations as reported in 

Ingri et al. (1957) and Ingri (1962) [69, 70].  

 

The solubility (as equilibrium concentration in saturated solutions) of the systems CaO–B2O3–H2O 

and MgO–B2O3–H2O was intensively investigated in the 40’s to 70’s by Soviet scientists, who 

reported the formation of several mixed solid phases between these alkaline-earth elements and boron 

(i.e. 2MgO3B2O315H2O, 2CaO3B2O313H2O, among others) [79, 80]. Very recently, Wang and co-

workers conducted a very comprehensive literature review with the aim of developing a mixed-solvent 

electrolyte (MSE) thermodynamic model covering the systems MnO + B2O3 + H2O (with M = Li, Na, 

Ca, Mg and n = 1, 2). In addition to B(OH)3(aq), B(OH)4
–, NaB(OH)4(aq) and LiB(OH)4(aq) 

monomeric species, the authors included in their model the polyborate species B2O(OH)5
–, 

B3O3(OH)4
–, B4O5(OH)4

2– and B5O6(OH)6
3–. No Ca–borate or Mg–borate binary aqueous species were 

considered by the authors in their thermodynamic model [85]. It should be noted that due to the fact 

that Wang and co-authors use the thermodynamic MSE approach, the results and data selections 

cannot be transferred to either the SIT [62] or Pitzer [63] approaches. Felmy et al developed a chemical 

model to describe the behavior of borates in natural waters using the Pitzer approach [81]. Activity 

coefficients for the system Na+-K+-Ca2+-Mg2+-H+-Cl--SO4
2--CO3

2--B(OH)4
--H2O were reported and 

allow calculations at high ionic strength and high boron concentrations. The thermodynamic model 
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by Felmy and co-workers for the interpretation of saline aqueous borate systems has been considered 

in this work to calculate the speciation of borate in NaCl and MgCl2 systems, and it is discussed in 

detail in chapter 3 and 9.  

1.3.2 Aquatic chemistry of actinide-borate systems 

Although the aquatic chemistry of An(III) and An(IV) under repository-relevant conditions is mostly 

dominated by hydrolysis reactions, the role of other inorganic and organic ligands in complexing (and 

thus potentially mobilizing) actinides needs to be assessed properly. In contrast to carbonate, 

phosphate or sulphate, little attention has been dedicated so far to the possible complexation of borate 

species with actinides [6, 7]. The lack of experimental studies assessing An–borate complexation is 

well-reflected in the publications of the OECD Nuclear Energy Agency thermodynamic database 

project (NEA–TDB), where no aqueous borate species or solid compounds are selected for any of the 

actinides evaluated (U, Np, Pu, Am, Th) [22, 27]. Borkowski and co-workers assessed the effect of 

borate on Nd(III) solubility in dilute to concentrated NaCl solutions at pHm = 8.6 and 

0 ≤ [B]tot ≤ 0.16 M [6]. The authors observed a slight increase in Nd concentration (in the range of 

5.0 10-8 M – 2.5·10-7 M) as a function of [B]tot, ionic strength and pH which was related to the 

formation of a NdHB4O7
2+-complex. Note that Borkowski and co-workers derived chemical and 

thermodynamic models assuming a boron speciation dominated by the species HB4O7
– under the 

particular conditions of their experiments. Recently, Schott et al. investigated the interaction of Eu(III) 

with borate in aqueous solution [83]. TRLFS experiments confirmed a weak Eu(III)–borate 

complexation at pH < 6. At pH 6 and in the presence of high boron concentrations 

(0.3 M ≤ [B]tot ≤ 0.7 M), the authors observed the formation of a Eu(III)–borate solid phase. The solid 

was characterized by XRD, IR and solid-state TRLFS, although these techniques provided 

inconclusive information on the stoichiometry of the newly formed compound. Kienzler et al. 

performed leaching experiments with simulated borosilicate glass doped with U(IV), U(VI), Pu(IV), 

Am(III), Np(IV) and Np(V) in concentrated NaCl solutions. Experiments were performed within 7.5  

pHm  8.5 at T = 110°C and 190°C [86]. The authors observed no enhanced release of radionuclides 

in spite of the high borate concentration in solution (~ 10–2 molkg–1). Chernorukov, Nipruk and co-

workers [87-97] conducted a very comprehensive series of thermochemical and solubility experiments 

with MI,II–U(VI)–B solid phases, with MI = Li, Na, K, Rb, Cs and MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, 

Zn. The uranoborates were prepared by a combination of hydrothermal and ion-exchange approaches. 

The authors reported both log Ks and enthalpy data for the synthesized phases. Since all these 

uranoborates were synthesized at high temperatures (~ 870°C) they are not relevant considering the 

conditions investigated in this work. 
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1.3.3 Actinide borate solid phases 

No actinide–borate minerals are known to naturally occur in the environment. One of the first reported 

synthetic crystalline actinide borate compound K6[UO2(B16O24(OH)8)]12H2O was obtained by 

evaporation of water at room temperature [98]. Gasperin and co-workers synthesized U(VI) and 

Th(IV) borate compounds such as ThB2O5, MgB2UO7 and NaBUO5 using molten B2O3 at 

temperatures above 1000°C [99-101]. A variety of borate compounds with lanthanides [102, 103] and, 

recently, Am(III) and Pu(IV) were prepared by using boric acid flux at moderate temperatures 

(200°C) [104-106]. Several uranium borates could be synthesized with this hydrothermal method by 

the group of Wang et al. In all these compounds, the linear UO2
2+ cation is surrounded by nine borate 

anions. The polymerized BO3/BO4 units build layers between the UO2
2+ cations. Additional BO3 

groups link the layers together and build a 3D framework. Water or cations like Na+ are located in 

large gaps within the structure. The structure of the uranium borate Na(UO2)[B6O10(OH)]∙2H2O(cr) is 

exemplarily shown in Fig. 1.8. 

 

Figure 1.8. (left) Depiction of Na[(UO2)B6O10(OH)]·2H2O(cr). UO8 hexagonal bipyramids are shown 

in magenta and BO3/BO4 units in blue. Green and red circles represent Na+ and H2O, respectively 

(right) Depiction of the structure of NpO2[B3O4(OH)2](cr). NpO7 pentagonal bipyramids are shown 

in green and BO3/BO4 units in red [104, 107]. 

 

A few solid neptunium borate compounds have been synthesized with the use of molten boric acid. 

The melting point for boric acid at 170 °C leads to the disproportionation of Np(V) into Np(IV) and 

Np(VI). To synthesize a pure Np(V) structure, methyl boric acid was adopted as alternate flux with a 

lower melting point (89–94°C). The pure NpO2[B3O4(OH)2](cr) was synthesized without 

disproportionation (structure shown in Fig. 1.8). In this solid compound, Np forms pentagonal 
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bipyramids with 7 oxygen atoms where every Np bipyramid is connected via cation cation interactions 

to four other Np bipyramids. A 3D framework is formed with chains containing of BO3 and BO4 units. 

In spite of the increasing number of studies reporting the formation of An– and Ln–borate crystalline 

compounds, only a very few experimental studies are available so far assessing the formation, stability 

and relevance of these compounds in aqueous systems at lower temperatures (e.g. 25°C). Note also 

that so far no systematic study on An-borate interactions and their impact on solubility and speciation 

under a large variation of geochemical boundary conditions (pH, [B], [NaCl], [MgCl2], [CaCl2]) has 

been performed. 

 Time resolved laser fluorescence spectroscopy (TRLFS) 

The Time resolved laser fluorescence spectroscopy (TRLFS) is a highly sensitive spectroscopic 

technique based on the spontaneous emission of light. Spontaneous emission of light also called 

luminescence is the emitting of electromagnetic radiation by the relaxation of an excited substance. If 

the relaxation process is between an excited state to the ground state of same spin multiplicities 

(ΔS = 0) the luminescence is called fluorescence. Intense Luminescence emission by relaxation in 

aqueous solutions can be observed by some f-elements like Am(III), Cm(III), Bk(III) Cf(III), Pa(IV), 

U(VI), Eu(III), Gd(III) and Tb(III). F-f transitions between partly filled 4f (lanthanides) and 5f 

(actinides) energy levels cause characteristic optical spectra for each element. This f-f transitions are 

sensitive to changes of the ligand field e.g. complexation by ligands and cause visible changes in the 

spectra. Therefore, it is possible to investigate the complexation of f-elements in aqueous solution 

even in low concentrations with TRLFS. Several Actinides show, depending on their oxidation state, 

characteristic fluorescence which can be used for spectroscopic investigations. To this belong UO2
2+ 

[108] Am(III) [109], Cm(III) [110], Pa(IV)[111], Bk(III) [112] and Cf(III)[109].  

1.4.1 Fluorescence properties of curium 

The ground state of the Cm(III)-ion with the electronic configuration [Rn]5f76d17s2 is 8S7/2. Excitation 

via electromagnetic radiation of a certain frequency is moving the Cm(III) ion to a F-, G- or H- state 

followed by a non-radiative relaxation to the 6D7/2 state (referred to as A in Fig. 1.9).  

Luminescence emission brings the Cm(III) ion back to the ground state. This emission is leading to 

the characteristic emission spectrum of Cm(III) with a peak maximum at 593.8 nm (see Fig 1.10).  

The crystal field splitting of the excited A-state of the Cm(III) ion of about 300 cm-1, occurs with the 

same magnitude as the thermal energy of electrons at room temperature (kT = 207 cm-1). Hence, not 

only the lowest crystal field state is occupied at room temperature, leading to a shoulder on the blue 

side of the emission spectra.  
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Figure 1.9. Simplified term diagram for fluorescence processes of the Cm(III) ion.  

 

Complexation of the Cm(III) ion influences the ligand field experienced by the Cm3+ ion. The energy 

gap between the excited A state and the ground state is minimized, leading to a shift to higher 

wavelengths in the spectra. The spectral properties such as peak position, peak shape and the 

fluorescence lifetime give information about the coordination of the Cm(III) ion in the measured 

environment. 
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Figure 1.10. Emission spectrum of Cm(III) in 0.1 M HClO4. 



Introduction 

 

29 

 

Investigations of Cm(III) complexation with organic or inorganic ligands in aqueous solution always 

compete with the hydrolysis of Cm(III). The peak maxima for the different Cm(III) hydrolysis species 

are shown in Table 1.2. The ternary complexes 1.4 and 1.6 can only be found in alkaline CaCl2 

solutions. 

Table 1.2. Peak maxima of Cm(III)-hydroxo complexes. 

Complex λmax [nm] Reference 

Cm(OH)2+ (1.1) 598.7  [113] 

Cm(OH)2
+ (1.2) 603.5 [113] 

Cm(OH)3 (1.3) 607.5 [25] 

Ca2[Cm(OH)4]3+ (1.4) 609.9 [25] 

Ca3[Cm(OH)6]3+ (1.6) 614.7 [25] 

 

More detailed information about the hydration state of the Cm(III) ion can be obtained from the 

fluorescence lifetime of the excited state. The fluorescence lifetimes of f-elements in aqueous solutions 

are relatively short due to energy transfer from the excited F-level to vibrational levels of surrounding 

water molecules in the first coordination sphere of the metal ion. This process is referred to as 

quenching.  

Fluorescence lifetimes can be obtained by measuring the fluorescence emission as function of the 

delay time (i.e. the time between laser pulse and detection of the camera). A system with n compounds 

and n lifetimes leads to a n-exponential decay. The Cm aquo ion has a lifetime (τ) of 68 ± 2 µs.  

Kimura et al. found a linear correlation between the lifetime and the number of hydration water 

molecules in the first coordination sphere of Cm(III) [114]: 

 𝑛(𝐻2𝑂) = 0.65 ∙ 𝑘𝑜𝑏𝑠 − 0.88                                                              (1.34) 

With the lifetime of 68 µs of the Cm(III) aquo ion a hydration sphere of nine water molecules is 

obtained. Complexation of the Cm(III) aquo ion leads to a replacement of water molecules with 

ligands and therefore to a longer lifetime. 
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 UV-Vis/NIR spectroscopy of neptunium 

UV-Vis/NIR spectroscopy is the absorption spectroscopy in the ultraviolet-visible and near infrared 

region. The absorption spectrum of a solved species in solution correlates with the concentration of 

the species. Hence, the Beer-Lambert law describes the relationship between the concentration of the 

species in solution and the extinction 𝐸 =  − log (
𝐼

𝐼0
)  

𝐸 =  − 𝑙𝑜𝑔 (
𝐼

𝐼0
) = 𝑙𝑜𝑔 (

𝐼0 

𝐼
) =  𝜀 · 𝑐 · 𝑑                (1.35) 

where I0 is the intensity of the initial photons, I is the intensity of the transmitted photons, ε is the 

extinctions coefficient [L·mol-1·cm-1], c is the concentration of the absorbed species [mol·L-1] and d 

is the path length [cm] [115]. 

 

UV-Vis/NIR spectroscopy can be applied to investigate the different redox states of Np from +III to 

+VI. Hence, the absorption spectra of the corresponding aquo ions are well known and can be used 

for their identification and corresponding quantification [116]. The wavelengths of the main 

absorption bands and extinction factors are listed in Table 1.3. Fig. 1.11 shows the absorption spectra 

of Np(V) in non-complexing perchloric acid. The use of UV-Vis/NIR spectroscopy is well suited for 

the investigation of Np under acidic conditions due to the very high solubility of all redox states in 

these conditions. Nevertheless, the applicability of this technique to the repository-relevant alkaline 

pH conditions is restricted to Np(V), due to the very low solubility shown by Np(IV) and Np(VI) 

under these conditions (note that Np(III) is not stable under alkaline conditions). 

 

Table1.3. Vis-NIR properties for Np(III)- Np(VI) aquo ions in 2 M HClO4. 

Species Wavelength [nm] ε [L∙mol-1∙cm-1] Reference 

Np3+ 786 44 [116] 

Np4+ 960 162 [116] 

NpO2
+ 980 395 [116] 

NpO2
2+ 1223 22 [116] 
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Figure 1.11. Absorption spectra of Np(V) collected in 1 mM HClO4  

 

The intensive absorption band at 980 nm of the hydrated NpO2
+ ion is often used in studies 

investigating the complexation of Np(V) with different ligands [41, 117]. The position and intensity 

of the band correlate with the coordination environment of the NpO2
+ ion. Hence, shifts of the band 

position are normally related to complex formation, although these can be also induced by changes in 

the background electrolyte or its concentration. Note that the 980 nm band is usually shifted to higher 

wavelengths if Np(V) is complexed and water is replaced in the first coordination sphere. Theoretical 

calculations of Matsika and Pitzer showed that the absorption band of Np(V) is linked to the symmetry 

of the Np(V) complexes [114, 118]. 

In the absence of carbonate, chloride is the only possible complexing ligand in NaCl and MgCl2 

solutions besides hydroxide. Several studies on the behaviour of Np(V) in the presence of chloride 

indicate a very weak interaction between NpO2
+ and Cl-. Runde et al. found a slight bathochromic 

peak shift of maximum 0.9 nm in the Vis-NIR absorption spectra of Np(V) in 0-5 M NaCl solution 

[16]. The peak shift was interpreted to be caused by the formation of inner-sphere NpO2Cl(aq) and 

NpO2Cl2
- complexes. In 3.5 M CaCl2 solution the formation of a ternary NpO2-Cl- complex was 

recently observed by Fellhauer, and the structure Ca[NpO2Cl]2+ could be identified with EXAFS 

analysis [41].  
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 Thermodynamic databases 

This section gives insight on some of the thermodynamic databases (TDB) available in the context of 

radioactive waste disposal, and thus with higher relevance in the framework of this PhD thesis. 

Furthermore, section 1.6.2 summarizes all equilibrium constants and SIT ion interaction coefficients 

considered in this work for thermodynamic calculations with Nd(III), Pu(III/IV), Th(IV), Np(V) and 

U(VI). 

1.6.1 NEA–TDB and THEREDA databases 

The prediction of the long-term safety of a nuclear waste repository needs a detailed description of the 

chemistry and migration behavior of radionuclides. To derive this information, geochemical 

calculations and modeling based on comprehensive and self-consistent thermodynamic databases are 

required. Databases gathered at national and international level provide the mandatory thermodynamic 

data such as solubility products, complex formation constants and activity coefficients (based on SIT 

and PITZER activity models, among others). Thermodynamic data compiled in these databases are 

normally selected from comprehensive experimental studies after a carefully review process with well-

defined guidelines. 

The Thermochemical Database (TDB) project of the Nuclear Energy Agency (NEA) provides the 

most comprehensive thermodynamic data selection currently available for radionuclides, fission 

products and other elements relevant in the framework of radioactive waste disposal (e.g. Fe). Because 

of its simplicity and extended applicability (up to I = 3.5 M), the NEA–TDB considers only SIT for 

ion activity corrections. In the context of this PhD thesis, it is noteworthy that no aqueous borate 

aqueous species or solid compounds are selected so far in the NEA–TDB for any of the evaluated 

actinides (U, Np, Pu, Am, Th) [22, 27].  

In Germany, the Thermodynamic Reference Database project (THEREDA) is currently under 

development by several national and international institutions (KIT–INE, GRS, HZDR, TU–BAF and 

AF Consult). The THEREDA database aims at a comprehensive selection of thermodynamic data for 

the modeling of geochemical processes occurring in the near and far field of a repository for nuclear 

waste disposal. THEREDA is compelled to geochemical calculations relevant for radioactive waste 

disposal in all possible host-rock formations. Because of the need of covering also saline systems and 

in contrast with NEA–TDB, THEREDA relies mainly in the Pitzer approach to account for ion activity 

corrections.  
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1.6.2 Actinide solubility and hydrolysis constants used in this work 

Table 1.4 summarizes all solubility and hydrolysis constants used in this work for thermodynamic 

calculations with Nd(III), Pu(III/IV), Th(IV), Np(V) and U(VI). 

 

Table 1.4. Solubility and hydrolysis constants used in this work for thermodynamic calculations 

with Nd(III), Pu(III/IV), Th(IV), Np(V) and U(VI). 

Reaction Constant Reference 

 log *K° ; log *β°   

Redox reactions 

Pu3+   ⇌  Pu4+ + e−  

-3.70 ± 0.17 [22]  

Solubility and hydrolysis of An(III)/Nd(III) Pu(III) Nd(III)   

 An(OH)3 (am) + 3H+ ⇋  An3+ + 3 H2O  - 17.2 ± 0.4  [24] 

 An(OH)3 (cr) + 3H+ ⇋  An3+ + 3 H2O  15.8 ± 1.5 16.0 ± 0.4 [22] [119] 

 𝐴𝑛3+ + 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)2+ + H+  -6.9 ± 0.3 -7.4 ± 0.5 [22] [24] 

 𝐴𝑛3+ + 2 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)2
+ + 2 H+  -15.1 ± 0.7a) -15.7 ± 0.70 [22] [24] 

 𝐴𝑛3+ + 3 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)3 + 3 H+  -26.2 ± 0.5a) -26.2 ± 0.5 [22] [22] 

 𝐴𝑛3+ + 4 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)4
− + 4 H+  -40.7 ± 0.7a) -40.7 ± 0.7 [22] [22] 

𝐴𝑛3+ + 𝐶𝑙− ⇌ 𝐴𝑛𝐶𝑙2+  - 0.24 ± 0.03  [22] 

𝐴𝑛3+ + 2 𝐶𝑙− ⇌ 𝐴𝑛𝐶𝑙2
+  - -0.74 ± 0.05  [22] 

Solubility and hydrolysis of An(IV) Pu(IV) Th(IV)   

 𝐴𝑛𝑂2 (𝑎𝑚, ℎ𝑦𝑑, 𝑓𝑟𝑒𝑠ℎ) + 4H+ ⇋  𝐴𝑛4+ + 4 𝐻2𝑂  -2.33 ± 0.52 9.3 ± 0.9 [22] [27] 

 𝐴𝑛𝑂2 (𝑎𝑚, ℎ𝑦𝑑, 𝑎𝑔𝑒𝑑) + 4H+ ⇋  𝐴𝑛4+ + 4 𝐻2𝑂  -8.03 ± 0.51 8.5 ± 0.9 [22] [27] 

 𝐴𝑛4+ + 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)3+ + H+  0.6 ± 0.2 -2.5 ± 0.5 [22] [27] 
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 𝐴𝑛4+ + 2 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)2
2+ + 2 H+  0.6 ± 0.3 -6.2 ± 0.5 [22] [27] 

 𝐴𝑛4+ + 3 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)3
+ + 3 H+  -2.3 ± 0.4 - [22] - 

 𝐴𝑛4+ + 4 𝐻2𝑂 ⇋  𝐴𝑛(𝑂𝐻)4 + 4 H+  -8.5 ± 0.5 -17.4 ± 0.7 [22] [27] 

 2 𝐴𝑛4+ + 2 𝐻2𝑂 ⇋  𝐴𝑛2(𝑂𝐻)2
6+ + 2 H+  - -5.9 ± 0.2  [27] 

 2 𝐴𝑛4+ + 3 𝐻2𝑂 ⇋  𝐴𝑛2(𝑂𝐻)3
5+ + 3 H+  - -6.8 ±0.2   [27] 

 4 𝐴𝑛4+ + 8 𝐻2𝑂 ⇋  𝐴𝑛4(𝑂𝐻)8
8+ + 8 H+  - -20.4 ± 0.4  [27] 

 4 𝐴𝑛4+ + 12 𝐻2𝑂 ⇋  𝐴𝑛4(𝑂𝐻)12
4+ + 12 H+  - -26.6 ± 0.2  [27] 

 6 𝐴𝑛4+ + 14 𝐻2𝑂 ⇋  𝐴𝑛6(𝑂𝐻)14
10+ + 14 H+  - -36.8 ± 1.2  [27] 

 6 𝐴𝑛4+ + 15 𝐻2𝑂 ⇋  𝐴𝑛6(𝑂𝐻)15
9+ + 15 H+  - -36.8 ± 1.5  [27] 

 𝐴𝑛4+ + 𝐶𝑙−  ⇋  𝐴𝑛𝐶𝑙3+  1.8 ± 0.3 1.7 ± 0.1 [22] [27] 

Solubility and hydrolysis of An(V) Np(V)    

 𝐴𝑛𝑂2 𝑂𝐻(𝑎𝑚, 𝑓𝑟𝑒𝑠ℎ) + H+ ⇋  𝐴𝑛𝑂2
+ + 𝐻2𝑂  5.3 ± 0.2  [22]  

 𝐴𝑛𝑂2 𝑂𝐻(𝑎𝑚, 𝑎𝑔𝑒𝑑) + H+ ⇋  𝐴𝑛𝑂2
+ +  𝐻2𝑂  4.7 ± 0.5  [22]  

 𝐴𝑛𝑂2
+ + 𝐻2𝑂 ⇋  𝐴𝑛𝑂2(𝑂𝐻)(𝑎𝑞) + H+  -11.3 ± 0.7  [22]  

 𝐴𝑛𝑂2
+ + 2 𝐻2𝑂 ⇋  𝐴𝑛𝑂2(𝑂𝐻)2

− + 2 H+  -23.6 ± 0.5  [22]  

Solubility and hydrolysis of An(VI) U(VI)    

 𝑈𝑂3 ∙ 2H2O(𝑎𝑚) + 2H+ ⇋  𝑈𝑂2
+ + 3H2O  5.35 ± 0.13  [53]  

1

2
𝑁𝑎2𝑈2𝑂7 · 𝐻2𝑂(𝑐𝑟) + 3𝐻+ ⇋  𝑈𝑂2

+ + 2 H2O+Na+  12.2 ± 0.2  [53]  

 𝑈𝑂2
2+ + 𝐻2𝑂 ⇋  𝑈𝑂2(𝑂𝐻)+ + H+  -5.25 ± 0.24  [22]  

 𝑈𝑂2
2+ + 2𝐻2𝑂 ⇋  𝑈𝑂2(𝑂𝐻)2 + 2H+  -12.15 ± 0.07  [22]  

 𝑈𝑂2
2+ + 3𝐻2𝑂 ⇋  𝑈𝑂2(𝑂𝐻)3

− + 3H+  -20.25 ± 0.42  [22]  

 𝑈𝑂2
2+ + 4𝐻2𝑂 ⇋  𝑈𝑂2(𝑂𝐻)4

2− + 4H+  -32.4 ± 0.68  [22]  
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2 𝑈𝑂2
2+ + 𝐻2𝑂 ⇋ (𝑈𝑂2)2(𝑂𝐻)3+ + H+  -2.7 ± 1  [22]  

2 𝑈𝑂2
2+ + 2𝐻2𝑂 ⇋ (𝑈𝑂2)2(𝑂𝐻)2

2+ + 2H+  -5.62 ± 0.04  [22]  

3 𝑈𝑂2
2+ + 4𝐻2𝑂 ⇋ (𝑈𝑂2)3(𝑂𝐻)4

2+ + 4H+  -11.9 ± 0.3  [22]  

3 𝑈𝑂2
2+ + 5𝐻2𝑂 ⇋ (𝑈𝑂2)3(𝑂𝐻)5

+ + 5H+  -15.5 ± 0.12  [22]  

3 𝑈𝑂2
2+ + 7𝐻2𝑂 ⇋ (𝑈𝑂2)3(𝑂𝐻)7

− + 7H+  -32.2 ± 0.8  [22]  

4 𝑈𝑂2
2+ + 7𝐻2𝑂 ⇋ (𝑈𝑂2)4(𝑂𝐻)7

+ + 7H+  -21.9 ± 1  [22]  

 𝑈𝑂2
2+ + 𝐶𝑙−  ⇋ 𝑈𝑂2𝐶𝑙+   0.17 ± 0.02  [22]  

 𝑈𝑂2
2+ + 2 𝐶𝑙−  ⇋ 𝑈𝑂2𝐶𝑙2  -1.1 ± 0.4  [22]  

a) In analogy with Am(III) [22] 
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Table 1.5. Sit parameters used in this work for thermodynamic calculations with Nd(III), 

Pu(III/IV), Th(IV), Np(V) and U(VI). 

i j εij Reference i j εij Reference 

H+ Cl- 0.12 ± 0.01 [22]     

Na+ Cl- 0.03 ± 0.01 [22] Mg2+ Cl- 0.19 ± 0.02 [22] 

An3+ Cl- 0.23 ± 0.02 [24] An(OH)2+ Cl- -0.04 ± 0.07 [24] 

An(OH)2
+ Cl- -0.06 ± 0.08 [24] An(OH)3(aq) Na+ -0.17 ± 0.1 [24] 

An(OH)4
- Na+ -0.03 ± 0.05 [24]     

Pu4+ Cl- 0.4 ± 0.1 [28] Th4+ Cl- 0.25 ± 0.03 [27] 

Pu(OH)3
+ Cl- 0.2 ± 0.1 [28] Th(OH)3

+ Cl- 0.19 ± 0.05 [27] 

Pu(OH)2
2+ Cl- 0.1 ± 0.1 [28] Th(OH)2

2+ Cl- 0.13 ± 0.05 [27] 

Pu(OH)3
+ Cl- 0.05 ± 0.1 [28] Th(OH)3

+ Cl- 0.06 ± 0.05 [27] 

NpO2
+ Cl- 0.09 ± 0.05 [22] Th2(OH)2

6+ Cl- 0.4 ± 0.16 [27] 

NpO2(OH)2
- Na+ -0.01 ± 0.07 [22] Th2(OH)3

5+ Cl- 0.29 ± 0.09 [27] 

UO2
2+ Cl- 0.21 ± 0.02 [22] Th3(OH)5

7+ Cl- - [27] 

UO2(OH)+ Cl- 0.05 ± 0.1 [59] Th4(OH)8
8+ Cl- 0.7 ± 0.2 [27] 

UO2(OH)3
- Na+ -0.09 ±0.05 [22] Th4(OH)12

4+ Cl- 0.25 ± 0.2 [27] 

UO2(OH)4
2- Na+ -0.1 ± 0.1 [59] Th6(OH)14

10+ Cl- 0.83 ± 0.3 [27] 

(UO2)2(OH)3+ Cl- 0.69 ± 0.07 [22] Th6(OH)15
9+ Cl- 0.72 ± 0.3 [27] 

(UO2)2(OH)2
2+ Cl- 0.81 ± 0.17 [22]     
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 Aim of the present work  

In the present work, the interaction of borate with actinide (III, IV, V, VI) is investigated in diluted to 

concentrated saline solutions with a combination of solubility experiments, spectroscopic methods 

(including TRLFS, EXAFS and UV–Vis/NIR) and comprehensive solid phase characterization 

(accomplished with XRD, XPS, SEM–EDS, XANES/EXAFS). The work comprises experimental 

conditions relevant for different concepts of radioactive waste disposal, and thus different background 

electrolytes (NaCl, MgCl2 and CaCl2) as well as a broad pH-range (6 ≤ pHm ≤ 13) are considered. The 

main objectives of this work are:  

 

 The solubility of Nd(III) is studied in dilute to concentrated NaCl, CaCl2 and MgCl2 

solutions with varying pH and boron concentration. Focus is given to the possible 

formation of Nd(III)–borate compounds and their eventual role on the immobilization 

of An(III). Thus a comprehensive solid phase characterization is performed using 

XRD, XPS and SEM–EDS. Additional TRLFS experiments with Cm(III) give 

information on the aqueous speciation of An(III)/Ln(III) in the presence of borate. 

With these data, a first thermodynamic description is proposed for the system 

Ln(III)/Cm(III)-Na+-Mg2+-Ca2+-H+-Cl--B(OH)4
- at 25°C. 

 The solubility of Np(V) is studied in dilute to concentrated NaCl and MgCl2 solutions 

with varying pH and boron concentration. As for Ln(III)/An(III), focus is given to the 

possible formation of Np(V)–borate compounds and their possible impact on the Np 

source term. Solid phase characterization is accomplished using XRD, SEM–EDS, 

XPS and EXAFS techniques. The aqueous speciation of Np under increasing 

concentrations of borate is investigated using UV–Vis/NIR. The combination of 

solubility data, spectroscopic results and solid phase characterization is aimed at 

deriving a first thermodynamic description for the system Np(V)-Na+-Mg2+-H+-Cl--

B(OH)4
- at 25°C. 

 Because of their stronger hydrolysis and the expectedly weaker interaction with 

borate, the solubility of Th(IV) and U(VI) is exemplarily investigated in dilute to 

concentrated NaCl and MgCl2 solutions and at various boron concentrations. 

Solubility measurements are complemented with solid phase characterization using 

XRD. The system Pu(III)–Pu(IV) is considered to gain insight on the effect of borate 

on the chemical behavior of redox sensitive actinides and allow a better assessment of 

the plutonium source term. 
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With the focus on practical application, the ultimate goal of this PhD thesis is to assess upper 

concentration limits of An(III), An(IV), An(V) and An(VI) in the presence of repository-

relevant pH, ionic strength and borate concentration, to be used in source term estimations 

in performance assessment exercises for nuclear waste repositories. For those cases where a 

relevant impact of borate is observed, this work aims also at providing a quantitative 

assessment supported by thermodynamic modeling. 
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2 Experimental 

 Chemicals and analytical methods 

2.1.1 Chemicals 

All chemicals used in the experiments were obtained from Merck or specifically prepared at INE and 

were not further purified (see Table 2.1). All solutions were prepared with purified water from a 

Milli-Q-academic apparatus (Millipore, 18.2 MΩ) purged with Argon before use.  

Hydrochloric acid and sodium hydroxide were prepared with HCl-Titrisol and carbonate-free NaOH 

(Merck, Titrisol) standard solutions, respectively. pH buffers used for calibration of the pH electrode 

were prepared with Titrisol standard buffer solutions by Merck. The pH of the different solutions was 

adjusted with HCl (Titrisol, Merck), NaOH (Titrisol, Merck), Ca(OH)2 and Mg(OH)2 of appropriate 

ionic strength. In MgCl2 and CaCl2 solutions, the maximum pH is limited to pHmax = 9 and 12 due to 

the precipitation and consequent pH-buffering of magnesium and calcium hydroxides or hydroxo-

chlorides, respectively [5]. Sufficiently long equilibration time (1 month) was allowed for all borate 

solutions in dilute to concentrated saline systems before use. This was especially important in the case 

of Cm(III)–TRLFS, where extensive evolution of the Cm(III) species was observed with time. 

Table 2.1. Chemicals used in the experimental work of this PhD thesis. 

Name Chem.Formula Purity Supplier 

sodium chloride NaCl p.a. Merck 

calcium chloride CaCl2∙2H2O p.a Merck 

sodium tetraborate Na2B4O7∙10H2O p.a Merck 

nitric acid HNO3 suprapur Merck 

sodium hydroxide NaOH  Merck/Titrisol 

hydrochloric acid HCl  Merck/Titrisol 

neodymium oxide Nd2O3(cr) a.r. Merck 

neodymium hydroxide Nd(OH)3(am) - INE 
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neodymium borate Nd[B9O13(OH)4](cr) - FZJ 

thorium nitrate Th(NO3)4·5H2O(cr) p.a. Merck 

thorium hydroxide Th(OH)4(am) - INE 

uranium(VI) nitrate UO2(NO3)2·6H2O(cr) a.r. Merck 

metaschoepite  UO3·2H2O(cr) - INE 

natrium diuranate Na2U2O7·H2O(cr) - INE 

neptunium hydroxide NpO2OH(am,fresh) - INE 

magnesium chloride MgCl2∙6H2O p.a. Merck 

calcium hydroxide Ca(OH)2 p.a. Merck 

magnesium hydroxide Mg(OH)2 p.a. Merck 

sodium dithionate Na2S2O4 (>87%). Merck 

hydroquinone C6H6O2 p.a. Merck 

 

2.1.2 Transuranium radionuclides used in the experiments 

The long-lived curium isotope 248Cm (t1/2 = 3.4×105 years) was used for the TRLFS measurements. 

The stock solution used in the experiments (2×10–5 M Cm(III) in 0.1 M HClO4) had an isotopic 

composition of 89.7% 248Cm, 9.4% 246Cm, 0.4% 243Cm, 0.3% 244Cm and 0.1% 247Cm. 

A 237Np stock solution was previously prepared with 2.5 g of 237Np (t1/2 = 2.14·106 years), which was 

purified from trace impurities of Pu and Am using an ion exchange method [120]. The resulting Np 

solution (0.32 M 237Np in 0.01 M HCl) was characterized by gamma spectrometry, liquid scintillation 

counting (LSC), UV–Vis/NIR and alpha spectrometry, which confirmed both the chemical and 

radiochemical purity of the 237Np stock solution. 

Pu solubility experiments were performed with 242Pu with the exact isotopic composition of 242Pu 

(99.4%), 239Pu (0.58%), 238Pu (0.005%) and 241Pu (0.005%). Since the main isotope is 242Pu 

(t1/2 = 375000 years), no radiolysis effects, occurring by the decay of short lived Pu isotopes in 

concentrated chloride solutions are expected. 
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2.1.3 pH measurements in dilute and concentrated saline solutions 

2.1.3.1 General 

The pH value of a solution is defined as the negative logarithm of the activity of the hydrogen ion 

(𝑎𝐻+) [121-123] 

𝑝𝐻 =  − log(𝑎𝐻+)  =  −𝑙𝑜𝑔 𝛾𝑚
𝐻+  −  𝑙𝑜𝑔 𝑚𝐻+  =  −𝑙𝑜𝑔 𝛾𝑐

𝐻+ − 𝑙𝑜𝑔 𝑐𝐻+                       (2.1) 

Where 𝑚𝐻+ and 𝑐𝐻+are the molal and molar concentrations of the hydrogen ion, mH+ and cH+ 

represent the absolute ion activity coefficients of H+. Since 𝑎𝐻+ and the pH of a solution are not 

directly measurable, an international accepted pH scale was introduced which provides a reproducible 

method to measure pH and compare the acidity of dilute solutions (I≤ 0.1 m) [123]. The method is 

based on the measurement of standard buffers of known pH with a H+ electrode without junction 

potential (Harned cell) 

PT|𝐻2|buffer S, 𝐶𝑙−|AgCl|Ag                   (2.2) 

The potential difference of this cell is given by 

𝐸 = 𝐸0 − (
𝑅𝑇

𝐹
𝑙𝑛10) 𝑙𝑜𝑔 [(𝑚𝐻+𝛾𝐻+)(𝑚𝐶𝑙−𝛾𝐶𝑙−)]                           (2.3) 

The reference standard potential 𝐸0of the Ag|AgCl electrode can be derived with an electrode filling 

solution of pure 0.01 m HCl. The activity coefficient of Cl- is not measurable but for low ionic strength 

(I≤ 0.1 m) it can be calculated using the Bates-Guggenheim convention (based on the Debye-Hückel 

theory) log𝛾𝐶𝑙−= -AI1/2/(1+1.5I1/2). Furthermore operational pH standards (secondary standards) are 

needed to account for the liquid junction potential. Generally inorganic or organic solutions with well-

known pH can be used. They need a small temperature dependence (± 0.01 K-1), low residual liquid 

junction potential and low ionic strength (I ≤ 0.1 m) to remain valid within the Bates Guggenheim 

convention. 

2.1.3.2 pH measurement with glass electrodes 

To measure pH experimentally in a solution, a electrochemical cell consisting of a glass electrode 

(GE) sensitive to hydrogen ions and a reference electrode (REF) connected with a salt bridge are 

needed. Both electrodes can be combined in a single glass body. With a sensitive electrometer the 

potential difference between the electrodes can be measured 

𝐸 = 𝐸0(𝑅𝐸𝐹) − 𝐸0(𝐺𝐸) − 𝐸𝐴𝑆 + [
𝑅𝑇𝑙𝑛(10)

𝐹
] ∙ 𝑙𝑜𝑔𝑎𝐻+ + 𝐸𝑗                        (2.4) 
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Where 𝐸0(𝑅𝐸𝐹) and 𝐸0(𝐺𝐸) are the temperature-dependent potential of the reference electrode and 

the glass electrode, respectively. 𝐸𝐴𝑆 is the asymmetry potential of the glass electrode and Ej the liquid 

junction potential at the interface between electrolyte in the reference and sample solution. With 25°C 

the Nernst slope ([
𝑅𝑇𝑙𝑛(10)

𝐹
]) is 59.16 mV. 

The unknown pH of a sample solution E(X) can be determined as the voltage difference between E(X)  

and the pH standard buffers E(S) (calibration) [124] 

𝑝𝐻(𝑋) = 𝑝𝐻(𝑆) + [𝐸(𝑆) − 𝐸(𝑋)] ∙
𝐹

𝑅𝑇𝑙𝑛(10)
+ [𝐸𝑗(𝑋) − 𝐸𝑗(𝑆)] ∙ 𝐹/𝑅𝑇𝑙𝑛(10)                       (2.5) 

For low ionic strength (I ≤ 0.1 m) the term [𝐸𝑗(𝑋) − 𝐸𝑗(𝑆)] ∙ 𝐹/𝑅𝑇𝑙𝑛(10) can be neglected but for 

the measurement in high acidity/alkalinity or at elevated ionic strength this term is not negligible 

anymore and a modified approach is needed [124]. 

2.1.3.3 pH measurement in saline solutions 

In solutions with I ≥ 0.1 m, ion interaction processes affect the activity coefficient of H+ (𝛾𝐻+) and 

the liquid junction potential. To determine pH in high salinity no longer the activity of H+ but the 

concentration of H+ are used [125]: 

𝑝𝐻𝑚 = − 𝑙𝑜𝑔(𝑚𝐻+)  𝑎𝑛𝑑 𝑝𝐻𝑐 = − 𝑙𝑜𝑔(𝑐𝐻+)                     (2.6) 

Where 𝑝𝐻𝑚 and 𝑝𝐻𝑐 are the negative logarithm of the molal and molar concentration of H+, 

respectively. 

The values pHm and pHc can be calculated from the operationally measured pHexp and an empirical 

correction factor (A) where liquid junction potential and the activity coefficient of H+ are included. 

𝑝𝐻𝑚 = 𝑝𝐻𝑒𝑥𝑝 + 𝐴𝑚 𝑎𝑛𝑑 𝑝𝐻𝑐 = 𝑝𝐻𝑒𝑥𝑝 + 𝐴𝑐                    (2.7) 

with  

𝐴𝑚 = 𝑙𝑜𝑔 𝛾𝑚
𝐻+ + ∆𝐸𝑗

𝐹

𝑅𝑇
𝑙𝑛(10)                    (2.7a) 

and  

𝐴𝑐 =  𝑙𝑜𝑔 𝛾𝑐
𝐻+ + ∆𝐸𝑗

𝐹

𝑅𝑇
𝑙𝑛(10)                   (2.7b) 

The correction factor A is experimentally determined for the respective salt system and concentration 

with a set of reference solutions with known proton concentration. 
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For pH measurements in this work, a combination glass pH electrode (type ROSS, Orion), freshly 

calibrated against dilute standard pH buffers (pH 7–13, Merck), was used to determine the molar or 

molal H+ concentration, [H+] and mH+, respectively. Whenever needed, pH adjustments were 

performed with HCl-NaCl-NaOH, HCl-MgCl2 and HCl-CaCl2 solutions of proper ionic strength. 

Alkaline solutions in MgCl2 and CaCl2 were adjusted with Mg(OH)2(s) and Ca(OH)2(s), respectively. 

All A factors used in this work for NaCl, CaCl2 and MgCl2 solutions were previously reported by 

Altmaier et al [5, 31] and are summarized in Table 2.2. The pHm measurements performed following 

this approach are assigned with an uncertainty of ± 0.04 pH units. Note that the impact of borate on 

the background electrolyte is not corrected for the determination of pH. Nonetheless, it cannot be 

excluded that high boron concentrations ([B]tot = 0.4 M) might have impact on pH measurements in 

this work. The uncertainty of pH measurements in these specific cases is considered ± 0.1 pH units. 

Table 2.2. Ac- and Am values used in this work for the quantification of pHc and pHm, respectively. 

Salt system Concentration Ac Am 

NaCl 0.1 M -0.08 -0.08 

NaCl 1.0 M 0.09 0.08 

NaCl 5.0 M 0.95 0.9 

CaCl2 0.25 M 0 -0.01 

CaCl2 1.0 M 0.34 0.33 

CaCl2 3.5 M 1.77 1.71 

MgCl2 0.25 M 0.03 0.03 

MgCl2 1.0 M 0.4 0.4 

MgCl2 3.5 M 1.98 1.93 
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2.1.4 Eh measurements 

The redox potentials in the Pu(III/IV) experiments were measured with Metrohm Pt combination 

electrodes with an Ag/AgCl reference system. The measured potential was converted to Eh by 

correction for the potential of the Ag/AgCl reference electrode 

𝐴𝑔𝐶𝑙(𝑠)  + 𝑒−  ⇌ 𝐴𝑔 +  𝐶𝑙−                   (2.8) 

with  

𝐸 =  𝐸°𝐴𝑔/𝐴𝑔𝐶𝑙 +
𝑅𝑇𝑙𝑛(10)

𝐹
· 𝑙𝑜𝑔 𝑎𝐶𝑙− = 0.208 𝑉 (𝑎𝑡 𝑇 = 25°𝐶 𝑖𝑛 3.0 𝑀 𝐾𝐶𝑙)                    (2.9) 

with 𝐸°𝐴𝑔/𝐴𝑔𝐶𝑙 = 0.222 V and (RT/F) = 0.02569 V at T = 25°C. The accuracy of the electrode was 

checked regularly with a standard redox buffer (+220 mV vs. Ag/AgCl, Schott Instruments).  

The measured redox potential of the system can also be used to calculate the pe value in analogy to 

the pH as negative logarithm of the electron activity.  

𝐸ℎ =  − (
𝑅𝑇

𝐹
) 𝑙𝑛 𝑎𝑒−                  (2.10) 

𝑝𝑒 =  −𝑙𝑜𝑔 𝑎𝑒− = 16.9 ∙ 𝐸ℎ[𝑉] 𝑎𝑡 𝑇 = 25°𝐶               (2.11) 

Eh was measured in the Pu(III/IV) samples until a stable value was reached (~20-30 minutes per 

sample).  

2.1.5 Speciation of boron in aqueous saline solutions 

2.1.5.1 11B-NMR in NaCl, CaCl2 and MgCl2 solutions 

11B-NMR spectra were recorded with a Bruker NMR-spectrometer (Avance III, 400 MHz) with a field 

strength of 9.4 T and a corresponding 11B resonance frequency of 128.4 MHz with a broadband 

observe probe. The 11B chemical shifts (δ) are referenced externally with respect to BF3 etherate in 

CDCl3. All spectra were evaluated with the software Top Spin (Bruker). For all spectra a pulse 

sequence with a very short delay time (100 µs) was used. The 11B-NMR measurements were 

performed under atmospheric conditions in teflon liners (Rototec-Spintec, PTFE-FEB-NMR Tube 

Liner 8’’, 5 mm) filled with 400 µL sample solution and mixed with 40 µL D2O at 25°C. Table 2.3 

summaries the samples prepared in dilute and concentrated NaCl, MgCl2 and CaCl2 with 0.04-0.4 M 

total boron concentration with varying pHm have been measured as shown in Table 2.3.  
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Table 2.3. Experimental conditions in the system investigated by 11B-NMR. 

System 
Concentration of 

background electrolyte 
[B]tot pHm 

NaCl 0.1 M 0.04 M, 0.16 M 8; 12 

NaCl 5.0 M 0.04 M, 0.16 M 2.6; 8; 12 

CaCl2 0.25 M 0.04 M 8; 12 

CaCl2 3.5 M 0.04 M 8; 12 

MgCl2 0.25 M 0.04 M, 0.16 M, 0.4 M 8 

MgCl2 3.5 M 0.04 M, 0.16 M, 0.4 M 8 

 

2.1.6 Determination of total metal concentration and aqueous speciation 

techniques used for Ln(III) and An(III/IV/V/VI) in solution 

2.1.6.1 ICP-MS 

The total aqueous concentration of Nd, Th and U was measured by ICP–MS after phase separation by 

10 kD ultrafiltration (1.5 nm, Pall Life Sciences) (Thermo scientific X-Series II for Nd(III) and 

Perkin Elmer Elan 6100 for Th(IV) and U(VI)). The detection limit of the technique in the investigated 

systems varied between 10–9–10-10 molL–1, depending upon the element, the salt concentration in the 

original sample and the required dilution steps.  

2.1.6.2 LSC 

The liquid scintillation counting technique is based on the detection of the ionization radiation that is 

resulting from radioactive decay [126]. The released energy of this process is transformed to photon 

emission by the photoactive organic molecules (e.g. Naphthalene, terphenyl, 1,4-Bis-(5-phenyloxazol-

2-yl)-benzol) in the LSC cocktail. A photocathode is converting the photon emission to electronic 

emission which is multiplied by a photomultiplier (105-107) before it can be measured by a detector 

(e.g. semiconductor detector). The electron emission is proportional to the energy of the radioactive 

decay of the measured sample. 

LSC measurements were performed in PP vials (20 mL, Zinsser Analytic). After 10 kD ultrafiltration 

(~1.5 nm, Pall Life sciences), a small aliquot of the sample was mixed with 10 mL LSC cocktail 
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(Ultima Gold XR, Fa. Perkin-Elmer). Samples were measured for 30 minutes with a Perkin Elmer 

1220 Quantulus. 

The α decay of 237Np (4.79 MeV) and the two β- decays of the daughter nuclide 233 Pa (0.3 and 0.6 keV) 

are measured by LSC. The resulting spectra of the α decay of 237Np and the high energetic β decay of 

233Pa are overlapping. To determine the 237Np concentration in solution it is mandatory to separate the 

peaks by α/β discrimination. The Quantulus apparatus used in this work provides a pulse shape 

analyzer (PSA) to perform a simultaneous alpha/beta gross counting, which allows the distinction 

between alpha and beta pulses. 

The Pu stock solution used in this work is composed of α-(242Pu, 239Pu, 238Pu) and β-(241Pu) emitters, 

as well as traces of the α-emitter 241Am resulting from the decay of 241Pu (t1/2 = 14.35 a). The energies 

of the α-peaks of 242Pu, 239Pu, 238Pu and 241Am are very close to each other and cannot be separated by 

LSC. In this work the Pu concentration in solution was determined using the low energetic β -emitter 

241Pu. To avoid uncertainties by matrix solution effects on the counting efficiency, standard additions 

with 50 µL of a well-defined 4.3610–7 M Pu stock solution with the same isotopic composition were 

used. The detection limits are 5·10−9 M for 237Np (α-radiation measured after α/β-discrimination of the 

counts from the daughter nuclide 233Pa) and 4·10−10 M for the Pu. 

2.1.6.3 Cm(III) TRLFS 

 A detailed description of the Cm(III) laser fluorescence spectroscopy is given in section 1.4. TRLFS 

spectra were measured with a Nd:YAG pumped dye laser system (Surelite II Laser, Continuum) at a 

repetition rate of 10 Hz and a maximum laser energy of 3.5 mJ. Spectra were recorded 1 µs after the 

exciting laser pulse in a time window of 1 ms at λex = 396.6 nm (laser dye: Exalite 398). A Shamrock 

spectrograph (A-SR-303i-B, Andor Technology) and an ICCD camera (iStar ICCD, Andor 

Technology) were used for the detection of the fluorescence signal. Both single emission spectra and 

fluorescence lifetimes were collected. 

Time resolved laser fluorescence spectroscopy (TRLFS) experiments were performed with 1·10-7 M 

Cm(III) per sample in dilute to concentrated NaCl, CaCl2 and MgCl2 solution. Total boron 

concentrations ranged from 0.004 M to 0.4 M. Spectra in NaCl and MgCl2 systems were collected at 

pHm = 8.0 ± 0.1, whereas spectra in CaCl2 were collected at pHm = 8.0 ± 0.1 and 12.0 ± 0.1. Cm(III)–

TRLFS spectra in NaCl an CaCl2 solutions with freshly prepared borate solutions ([B]tot ≥ 0.04 M) 

showed very pronounced kinetic effects. Therefore, sufficiently long equilibration times (~ two weeks) 

were allowed for all matrix solutions used in the TRLFS experiments shown in this work. After this 

equilibration time, the Cm(III) was spiked to the matrix solutions. The samples were measured within 

2 hours after the Cm(III) addition. Measurements with longer equilibration times (up to 2 days) did 
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not show any relevant kinetic effect on the fluorescence spectra. A detailed list of all investigated 

samples is given in Table 2.4. 

Table 2.4. Experimental conditions in the TRLFS study with Curium.  

System 
Concentration of 

background electrolyte 
[B]tot pHm 

NaCl 0.1 M 0.004 M; 0.04 M; 0.16 M 8; 12 

NaCl 5.0 M 0.004 M; 0.04 M; 0.16 M 8; 12 

CaCl2 0.25 M 0.004 M; 0.04 M; 8; 12 

CaCl2 3.5 M 0.004 M; 0.04 M; 8; 12 

MgCl2 0.25 M 0.04 M; 0.16 M; 0.4 M 8; 9 

MgCl2 3.5 M 0.04 M; 0.16 M; 0.4 M 8; 9 

 

2.1.6.4 UV-Vis/NIR spectroscopy 

A detailed description of the UV-Vis/NIR spectroscopy of neptunium in aqueous solution is provided 

in section 1.5. Absorption spectra of Np(V) were collected with a Varian UV-Vis spectrometer 

(Cary 5E) against a reference solution with the same background electrolyte and borate concentration 

as the measured sample. Spectra were recorded in the range λ = 850 – 1250 nm with a step width of 

0.2 nm. All measurements were performed with ~3 mL of sample solution in quartz cuvettes with 

d = 1 cm. 

2.1.7 Solid phase characterization (XRD, XPS, SEM-EDS, EXAFS) 

Solid phases from the Nd, Pu, Np and U solubility experiments were characterized by XRD, XPS and 

SEM-EDS after a given equilibrium time. Selected solid phases from the Np(V) solubility experiments 

were also investigated by EXAFS.  

2.1.7.1 XRD 

A small amount (~1 mg) of the solid was separated from the solution by centrifugation (4000 g) in the 

glovebox and washed 3 times with ethanol (2 mL) under an Ar-atmosphere to remove traces of the 

matrix solution (NaCl, MgCl2 or CaCl2) which would interfere with the XRD analysis. The prepared 



Experimental 

48 

 

solid was measured with a Bruker D8 Advance diffractometer (Cu Kα radiation) equipped with a Sol-

X detector. XRD data were collected within 5º ≤ 2Θ ≤ 60º, with a step size of 0.04º and 6 s 

accumulation time per step to allow for reliable counting statistics.  

2.1.7.2 XPS and SEM-EDS 

Solid samples for XPS analysis were prepared using the same approach as described for XRD, 

although the amount of sample was significantly reduced (10–50 µg). After drying, the washed solid 

phase was pressed on an indium foil and analyzed with an XP spectrometer (ULVAC-PHI, Inc., model 

PHI 5000 VersaProbe II) equipped with a standard dual anode X-ray source (Mg Kα (1253.6 eV), Al 

Kα (1486.6 eV)), and with a scanning microprobe X-ray source (monochromatic Al Kα). Calibration 

of the binding energy scale was performed using well-established binding energies of elemental lines 

of pure metals (monochromatic Al Kα: Cu 2p3/2 at 932.62 eV, Au 4f7/2 at 83.96 eV) [127]. Standard 

deviations of binding energies of isolating samples were within ±0.2 eV. Survey scans were recorded 

with a source power of 50 W of the scanning microprobe X-ray source and a pass energy of 187.85 eV 

of the analyzer, step size 0.8 eV, to identify the elements and to determine their atomic concentrations 

at the sample surface. Survey scans were recorded to identify the elements and to determine their 

atomic concentrations. To retrieve information about the chemical state of the elements, narrow scan 

spectra of elemental lines were recorded at a pass energy of 23.5 eV, step size 0.1 eV. All spectra were 

charge referenced to the C 1s elemental line of hydrocarbon (CxHy) at 284.8 eV. 

To gain additional information on the crystallinity, morphology and chemical composition of the solid 

phase, a second fraction of the washed solid was characterized by scanning electron microscope-

energy disperse spectrometry (SEM–EDS), using a FEI Quanta 650 FEG equipped with a Noran EDS 

unit. 

2.1.7.3 EXAFS 

EXAFS measurements were performed at the INE-beamline for Actinide Research at the ANKA 

synchrotron source, Karlsruhe, Germany. The measurements and data evaluation were performed in 

cooperation with the scientists of the INE-beamline. 

Approximately 1 mg of the investigated solid phase in contact with the supernatant solution was 

directly transferred to a polyethylene vial under Ar atmosphere. The vials were centrifuged at 4000 g 

for 5 minutes, mounted in a gas-tight cell with windows of Kapton® film (polyimide) inside the Ar-

glovebox and transported to the INE-beamline. The samples were measured under continuous Ar-flow 

within 1 day after preparation for EXAFS measurements.  

Bulk XAS data at the Np LIII-edge at 17610 eV were collected in fluorescence mode at room 

temperature using a Ge solid-state detector. The beamline is equipped with a Ge(422) double crystal 
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monochromator (DCM) coupled with a collimating and a focusing Rh coated mirrors before and after 

the DCM, respectively. The monochromator was calibrated for the Np-LIII edge by assigning the 

energy of 17,038 eV to the first inflection point of the K-edge absorption spectrum of the Y metal foil. 

All measurements were recorded at room temperature in fluorescence mode using a multi- element 

Ge-detector. Multiple scans were run on each sample. All EXAFS spectra were extracted from raw 

data with the Athena interface of the IFFEFIT software [128]. The Fourier transforms (FTs) were 

obtained from the k3-weighted (k) functions using a Kaiser-Bessel window function with an 

apodization parameter of 1. Multishell fits were performed in real space across the range of the first 

two shells. Amplitude and phase shifts functions were calculated using the FEFF 8.4 code [129]. The 

amplitude reduction factor S0
2 was set to the value of 0.8 [130]. Structural information was obtained 

by following a multi-shell approach for EXAFS data fitting. The fit was limited to parameters 

describing the Np coordination to surrounding oxygen and boron atoms (neighbouring atomic 

distances (R), EXAFS Debye–Waller factors (σ2), coordination numbers (N) and relative shift in 

ionization energy E0 (ΔE0)). 

 Ln(III)/An(III/IV/V/VI) solubility experiments 

2.2.1 Nd(III) and An(III/IV/V/VI) solid phase preparation 

Amorphous Nd(III) hydroxide used in the solubility experiments was prepared by hydration of 

crystalline neodymium hydroxide (Nd2O3(cr), Merck) in Milli-Q water under an argon atmosphere 

[24]. The complete transformation of the oxide into the hydroxide phase was confirmed by XRD 

(JCPDF file No: 70-0214, JCPDS 2001). Nd[B9O13(OH)4](cr) was prepared by the group of 

Dr. Evgeny Alekseev at the research center Jülich (FZJ). For the synthesis of crystalline 

Nd[B9O13(OH)4](cr), Nd2O3 and H3BO3 were taken as starting materials in a molar ratio 1:15. The 

mixture was placed in a Teflon liner and sealed in a hydrothermal reactor. The reactor was heated to 

220°C for 3 days, and let cool down to room temperature in another 2 days. Excess boric acid (H3BO3) 

was washed out with hot water (90°C). The purity of the material obtained was assessed by XRD.  

To prepare PuIVO2(am,hyd), a purified 242Pu(VI) stock solution was added to a pH-buffered (25 mM 

MES) and redox-buffered (1.5 mM hydroquinone) solution leading to an immediate formation of 

aqueous Pu(V) and a slow “reductive precipitation” of PuIVO2(am, hyd). The mild in situ “reductive 

precipitation” leads to a microcrystalline PuIVO2(am,hyd) solid phase which is less affected to aging 

effects than “fresh” PuIVO2(am,hyd) prepared by addition of NaOH to an acidic Pu(IV) solution. The 

washed PuIVO2(am,hyd) solid was characterized using XRD. 
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Th(OH)4(am) was prepared under argon atmosphere by titration of thorium chloride stock solution 

with carbonate-free NaOH up to pH 10. The precipitate was washed with Milli-Q water several times 

before further use in the solubility experiments. 

NpO2OH(am,fresh) was prepared under argon atmosphere by titration of a (radiochemically pure) 

acidic 237Np(V) stock solution with carbonate-free NaOH. The resulting precipitate 

(NpO2OH(am,fresh)) was separated from the solution by centrifugation and washed several times with 

water before use in the solubility experiments. 

Metaschoepite UO3·2H2O(cr) was prepared under argon atmosphere by a very slow titration of an 

acidic uranium(VI) chloride stock solution with carbonate-free NaOH. In the precipitation process, 

the pH was checked regularly and kept always below 5 to avoid the transformation of UO3·2H2O(cr) 

into sodium uranate or other Na–U(IV)–OH ternary phases. The washed precipitate was characterized 

by XRD before addition to the solubility experiments. 

Sodium uranate, Na2UO2O7·H2O(cr), was prepared by transformation of initial metaschoepite in 2.5 M 

NaCl solution at pHm ~12 for several months. The new formed solid was separated, washed and 

characterized with XRD before use in the solubility experiments. 

2.2.2 Sample preparation 

All experiments were prepared and carried out at 22±2 °C in Ar-gloveboxes under exclusion of O2(g) 

and CO2(g). Solubility samples in NaCl, MgCl2 and CaCl2 solutions were prepared from 

undersaturation conditions in polyethylene vials with 5-20 mL matrix solution and 1-14 mg of the 

respective Ln/An hydroxide. A detailed list of all prepared samples for Nd(OH)3(am), PuO2(am,hyd), 

Th(OH)4(am), NpO2OH(am,fresh), UO3·2H2O(cr) and Na2U2O7·H2O(cr) is given in Tables 2.5–2.10. 

Boron concentrations ([B]tot) in MgCl2, NaCl and CaCl2 solutions were restricted to 0.4 M, 0.16 M 

and 0.04 M, respectively. The limitations in solubility observed for these systems are likely related 

with the formation of stable Mg-, Na- and Ca-borate solid phases [85]. Preliminary spectroscopic 

experiments (Cm(III)–TRLFS) conducted with freshly prepared borate solutions showed 

Cm(III)-borate complex formation with pronounced kinetic effects, which decreased notably with the 

pre-equilibration of borate in the corresponding saline solution. Consequently, the boron containing 

saline solutions were equilibrated for at least 2 weeks before the addition of the Ln/An hydroxide 

phase. Solubility experiments with PuO2(am,hyd) were performed in 0.1 M NaCl solution and 

[B]tot = 0.16 M in the present of 2 mM Na2S2O4 and hydroquinone as reducing system. Ln/An 

concentrations, pH and Eh (Pu experiments) were determined at regular time intervals for up to 

860 days. The concentration of Ln/An(III) was quantified after phase separation by 10 kD 

ultrafiltration (~ 1.5 nm, Pall Life Sciences) by ICP-MS and LSC (see section 2.16). Selected 
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equilibrated alteration phases from solubility experiments were characterized using several techniques 

as described in section 2.1.7. 

 

Table 2.5. Experimental conditions in the solubility study with Nd(OH)3(am). 

System 
Concentration of 

background electrolyte 
[B]tot pHm 

Equilibration 

time 

NaCl 0.1 M 
0.004 M; 0.04 M; 

0.16 M 
7-13 7-142 days 

NaCl 5.0 M 
0.004 M; 0.04 M; 

0.16 M 
8-13 7-142 days 

CaCl2 0.25 M 0.004 M; 0.04 M 8-12 7-142 days 

CaCl2 3.5 M 0.004 M; 0.04 M 8-12 7-142 days 

MgCl2 0.25 M 
0.004 M; 0.04 M 

0.16 M; 0,4 M 
8-12 7-72 days 

MgCl2 3.5 M 
0.004 M; 0.04 M; 

0.16 M; 0.4 M 
8-12 7-72 days 

 

Table 2.6. Experimental conditions in the solubility study with Nd[B9O13(OH)4](cr). 

System 
Concentration of 

background electrolyte 
[B]tot pHm 

Equilibration 

time 

NaCl 0.1 M; 5.0 M 0.16 M 6-9 7-48 days 

MgCl2 0.25 M; 3.5 M 0.16 M 6-9 7-48 days 
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Table 2.7. Experimental conditions in the solubility study with PuO2(am,hyd). 

System 
Concentration of 

background electrolyte 
[B]tot 

Reducing 

chemical 
pHm 

Equilibration 

time 

NaCl 0.1 M 0.16 M Na2S2O4 7.5; 9 14-300 days 

NaCl 0.1 M 0.16 M Hydroquinone 7.5; 9 14-300 days 

 

 

Table 2.8. Experimental conditions in the solubility study with Th(OH)4(am). 

System 
Concentration of 

background electrolyte 
[B]tot pHm Equilibration time 

NaCl 0.1 M 0 M; 0.16 M 7; 9; 11 14-860 days 

NaCl 5.0 M 0 M; 0.16 M 8; 9; 11 14-860 days 

MgCl2 0.25 M 0 M; 0.16 M 7.5; 9 14-860 days 

MgCl2 3.5 M 0 M; 0.16 M 7.5; 9 14-860 days 

Table 2.9. Experimental conditions in the solubility study with NpO2OH(am,fresh). 

System 
Concentration of 

background electrolyte 
[B]tot pHm Equilibration time 

NaCl 0.1 M 0.04 M; 0.16 M 8-9 14-300 days 

NaCl 5.0 M 0.04 M; 0.16 M 8-9 14-300 days 

MgCl2 0.25 M 0.04 M; 0.16 M 8-9 14-300 days 

MgCl2 3.5 M 0.04 M; 0.16 M 8-9 14-300 days 
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Table 2.10. Experimental conditions in the solubility study with UO32 H2O(cr) and 

Na2U2O7H2O(cr). 

System 
Concentration of 

background electrolyte 
[B]tot pHm Equilibration time 

NaCl 0.1 M 0 M; 0.04 M;0.16 M 7; 9; 11 14-138 days 

NaCl 5.0 M 0 M; 0.04 M;0.16 M 8; 9; 11 14-138 days 

MgCl2 0.25 M 0 M; 0.04 M; 0.16 M 7.5; 9 14-138 days 

MgCl2 3.5 M 0 M; 0.04 M; 0.16 M 7.5; 9 14 138 days 
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3 11B-NMR in NaCl, CaCl2 and MgCl2 solutions 

 

The speciation of boron in aqueous solutions is very complex and strongly dependent on [B]tot, pH 

and ionic strength. Because of their different symmetry with respect to the boron atom, boron species 

can be investigated and determined by 11B-NMR spectroscopy. Many studies, mostly all at low ionic 

strength conditions have previously investigated boron speciation and the characteristic chemical 

shift of boron species forming under a wide pH range [72, 73, 75, 131, 132]. At low boron 

concentration ([B]tot < 0.025 M) and low background electrolyte concentrations, only one 11B 

resonance signal corresponding to the monomeric species B(OH)4
- and B(OH)3(aq) is observed. The 

chemical shift correlates to a mean of those of boric acid B(OH)3(aq) and B(OH)4
- weighted 

according to their relative concentrations at a given pH [133]. In strongly acidic pH conditions 

(pH ≤ 2) only B(OH)3(aq) is present with a chemical shift of 18-20 ppm [133]. Under strongly 

alkaline pH conditions (pH > 11), B(OH)4
- is the dominant boron species with a chemical shift in the 

11B-NMR spectra of 0–2 ppm [134]. Polyborates species such as triborate [B3O3(OH)4]-, tetraborate 

[B4O5(OH)4]2- and pentaborate [B5O6(OH)4]- have been reported to form at high boron 

concentrations [69, 70, 81]. The presence of these species in solution can be followed as multiple 

peaks in the 11B-NMR spectra [72]. In contrast to dilute systems, the influence of high ionic strength 

on the speciation of boron in aqueous salt solution and the effect on 11B-NMR spectra is not 

sufficiently investigated. Recent studies by Hertam in LiCl and MgCl2 solutions indicate no or only 

slight influence by monovalent cations like Li+ but a strong influence and peak broadening on the 

measured 11B-NMR spectra in the presence of Mg2+ [135]. Raman spectroscopy studies by Zhihong 

et al. observed a favoured formation of polyborates in presence of divalent cations like Ca2+ and 

Mg2+ [84].  

In this work, 11B-NMR spectra were collected in dilute to concentrated NaCl and MgCl2 solutions 

within 2.6 ≤ pHm ≤ 12 and 0.04 M ≤ [B]tot ≤ 0.4 M with the aim of gaining further insight on the 

speciation of boron, especially under the poorly investigated highly saline conditions. 

 11B-NMR studies in NaCl solutions 

11B-NMR spectra collected for 0.1 M and 5.0 M NaCl solutions with 0.04 M ≤ [B]tot ≤ 0.16 M at 

pHm = 2.6, 8 and 12 are shown in Fig. 3.1. A single reference signal corresponding to the exchange 

peak of the monomeric species (B(OH)3(aq)–B(OH)4
–) is observed in all systems with [B]tot ≤ 0.04 M. 

At this [B]tot no (or very few) polyborates are present in solution. In the NaCl system at pHm = 2.6, the 

peak at ~ 20 ppm can be unequivocally assigned to B(OH)3(aq). In dilute and concentrated NaCl 

systems and pHm = 8, the peak observed 17-18 ppm indicates the predominance of B(OH)3(aq) in the 

solution. For the same pH a broad second peak can be observed at [B]tot = 0.16 M. According to studies 

in KCl, NaCl and LiCl solutions this broad peak at ~12–14 ppm can be assigned to the triborate species 



11B-NMR in NaCl, CaCl2 and MgCl2 solutions 

56 

 

B3O3(OH)4
– [72, 135]. At pHm = 12, the chemical shift observed at 0–3 ppm agrees very well with the 

expected predominance of B(OH)4
– in the solution at high pHm. The results in NaCl solutions are in 

good agreement with data from Borkowski and co-workers measured in water at comparable [B]tot 

[136]. 
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Figure 3.1: 11B-NMR spectra collected in 0.1 M and 5.0 M NaCl solutions: (left) spectra with 

2.6 ≤ pHm ≤ 12 and [B]tot = 0.04 M, (right) spectra with pHm = 8 and a) 0.04 M [B]tot b) 0.16 M [B]tot 

in 0.1 M NaCl and c) 0.04 M [B]tot d) 0.16 M [B]tot in 5.0 M NaCl.  

 11B-NMR studies in CaCl2 and MgCl2 solutions 

11B-NMR spectra collected for 0.25 M and 3.5 M CaCl2 with [B]tot = 0.4 M at pHm = 8 and 12, and 

collected for 0.25 M and 3.5 M MgCl2 with 0.04 M ≤ [B]tot ≤ 0.4 M at pHm = 8 are shown in Fig. 3.2. 

For comparison purposes, peak positions for B(OH)3(aq) and B(OH)4
- in NaCl solutions are shown as 

dashed lines. Analogously to the NaCl system (Fig. 3.1), a single resonance peak is visible in the 

spectra collected for samples in CaCl2 and MgCl2 solutions with [B]tot = 0.04 M. Nevertheless, 

significantly broader peaks are detected in these salt solutions compared to the NaCl system. At 

pHm = 8, the peak at ~17–18 ppm observed in the NaCl system and indicating the predominance of 

B(OH)3(aq) is shifted to lower ppm in CaCl2 and MgCl2 solution. Note further that the peak broadening 

and peak shift are more pronounced in concentrated MgCl2 and CaCl2 solutions for the same pH 

(pHm = 8) and boron concentration ([B]tot = 0.04 M). This observation can be likely explained by the 

complexation of Mg/Ca with B, as presented in the thermodynamic calculations shown in Fig. 3.3 

conducted using the thermodynamic and activity models reported by Felmy and co-workers on the 

system Mg2+–B(OH)4
--Cl-–H2O [81].  
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In 0.25 M MgCl2 solutions with pHm = 8, the peak position is shifted from ~ 16 ppm to ~13 ppm when 

increasing [B]tot from 0.04 M to 0.4 M. The observed peak at [B]tot = 0.4 M is very broad and shows 

a pronounced shoulder at ~12 ppm and a second small peak at 0.7 ppm. The shoulder and the 

additional peak indicate the presence of more than one boron species present in the investigated 

solution. A significant peak broadening is also observed in 3.5 M MgCl2 solutions. The fraction 

diagram shown in Fig. 3.3 shows the predominance of B(OH)3(aq) and MgB(OH)4
+ species, and thus 

the observed peak broadening cannot be attributed to the presence of polyborate species. In contrast 

to the NaCl system, no peak assignment is possible in CaCl2 and MgCl2 systems at pHm 8 due to the 

lack of literature data.  
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Figure 3.2. 11B-NMR spectra collected in 0.25 M and 3.5 M CaCl2 and MgCl2 solutions: (left) spectra 

with 8 ≤ pHm ≤ 12 and [B]tot = 0.04 M, (right) spectra with pHm = 8 and a) 0.04 M [B]tot b) 0.16 M 

c) 0.4 M [B]tot in 0.25 M MgCl2 and d) 0.04 M [B]tot e) 0.16 M [B]tot f) 0.4 M [B]tot in 3.5 M MgCl2.  

 

At pHm = 12 in CaCl2 systems the peak position at ~ 2 ppm indicates B(OH)4
- as main borate species 

similar to observations made in NaCl systems. In contrast to systems at lower pH values, no 

broadening of this peak is observed at increased CaCl2 concentration. No further information on 

aqueous boron speciation in saline solution can be drawn from the measured NMR spectra.  
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Figure 3.3. Fraction diagram of aqueous borate species in 0.25 M and 3.5 M MgCl2 as calculated 

with the thermodynamic and activity models reported in Felmy et al. [81]. The highest pH in dilute to 

concentrated MgCl2 solutions is limited to pHmax 9 by the precipitation of Mg(OH)2(s) or Mg–OH–

Cl phases, and thus calculations above this pH represent only a modelling exercise giving insight on 

the possible interaction Ca–borate in CaCl2 systems (where pHmax 12) under the assumption of a 

comparable complexation behavior of Ca2+ and Mg2+. 

 Conclusions 

11B-NMR studies conducted in NaCl, CaCl2 and MgCl2 solutions at pHm = 2.6, 8 and 12 give insight 

in the complex borate speciation in saline solutions. Spectra measured in NaCl solutions are similar 

to spectra collected in water with the same pHm and comparable [B]tot. According to the collected 

spectra and consistently with literature data, the speciation of boron is only weakly influenced by the 
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presence of monovalent cations like Na+ , K+ and Li+ [72, 135]. Based on the reported literature data, 

the detected peaks can be correctly assigned to the expected boron species, although no quantitative 

analysis of the spectra is possible.  

In contrast to the NaCl systems, very broad peaks are observed in CaCl2 and MgCl2 solutions. At 

pHm = 8 the peak position in both CaCl2 and MgCl2 systems is significantly shifted compared to 

peaks at same pHm and [B]tot measured in NaCl solutions, indicating the formation of Ca/Mg–borate 

complex. This is in good agreement with thermodynamic calculations indicating the formation of 

the complex MgB(OH)4
+. For more specific information on the boron speciation in presence of high 

NaCl, CaCl2 and MgCl2 concentrations, additional comprehensive experiments are needed.  
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4 Interaction of Ln(III)/An(III) with borate 

 

The interaction of Ln(III)/An(III) with borate was investigated from undersaturation conditions with 

Nd(OH)3(am) in dilute to concentrated NaCl, CaCl2 and MgCl2 solutions with 0.04 M ≤ [B]tot ≤ 0.4 M 

at 6 ≤ pHm ≤ 13. Samples were equilibrated for up to 142 days, and pHm and [Nd(III)] were monitored 

at regular time intervals. After attaining equilibrium conditions, selected solid phases were 

characterized by XPS, SEM-EDS and XRD. For comparison purposes, additional solubility 

experiments with a well-defined Nd(III) borate solid phase, Nd[B9O13(OH)4](cr), were performed in 

NaCl and MgCl2 solutions with [B]tot = 0.16 M. The aqueous phase was further investigated by 

TRLFS with 10-7 M Cm(III) in 0.1 – 5.0 M NaCl, 0.25 – 3.5 M MgCl2 and 0.25 – 3.5 M CaCl2 with 

0.004 M ≤ [B]tot ≤ 0.4 M and pHm = 8. Additional Cm(III) TRLFS spectra were collected at pHm = 12 

for CaCl2 systems. Chemical and thermodynamic models based on the experimentally obtained 

solubility data, TRLFS and solid phase analysis were derived for the Nd3+-Na+-Mg2+-Ca2+-H+-

Cl--B(OH)4
--OH--H2O using the SIT approach. These are separately discussed in chapter 9. 

 Solubility of Nd(III) in NaCl, CaCl2 and MgCl2 solutions 

The experimental solubility data of Nd(III) determined in 0.1 M – 5.0 M NaCl and 0.25 M – 3.5 M 

MgCl2 and CaCl2 solutions in the presence of 0.004 M ≤ [B]tot ≤ 0.4 M are shown in Fig. 4.1-Fig. 4.6. 

Note that only data corresponding to thermodynamic equilibrium (constant pHm and [Nd(III)]) are 

presented in the figures. For comparison purposes, Fig. 4.1 – 4.6 also show the experimental solubility 

data and calculated solubility curves for Nd(OH)3(am) as reported by Neck et al. in the absence of 

borate under analogous pHm and ionic strength conditions [24]. In 0.1 M, 5.0 M NaCl and 0.25 M, 

3.5 M MgCl2 systems (Fig. 4.1, Fig. 4.3, Fig. 4.4 and Fig. 4.6), undersaturation solubility data obtained 

with Nd[B9O13(OH)4](cr) and [B]tot = 0.16 M are also provided.  

No significant effect of borate on Nd(III) solubility is observed in near neutral to slightly alkaline pHm 

values (7 ≤ pHm ≤ 9) and [B]tot ≤ 0.04 M (dilute salt systems: 0.1 and 1.0 M NaCl; 0.25 M MgCl2) or 

[B]tot ≤ 0.004 M (concentrated salt systems: 5.0 M NaCl; 1.0 and 3.5 M MgCl2). Under these 

conditions, the concentration of Nd(III) is in good agreement with borate-free solubility data obtained 

under analogous pHm and ionic strength conditions [24]. 
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Figure 4.1. Solubility of Nd(OH)3(am) and Nd[B9O13(OH)4](cr) in the presence of 

0.004 M ≤ [B]tot ≤ 0.16 M in 0.1 M NaCl solutions. Comparison with experimental (open symbols, 

black) and calculated (solid line) solubility data in the absence of borate as reported in Neck et al. 

(2009) [24]. 
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Figure 4.2. Solubility of Nd(OH)3(am) in the presence of 0.004 M ≤ [B]tot ≤ 0.16 M in 1.0 M NaCl 

solutions. Comparison with experimental (open symbols, black) and calculated (solid line) solubility 

data in the absence of borate as reported in Neck et al. (2009) [24]. 
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Figure 4.3. Solubility of Nd(OH)3(am) and Nd[B9O13(OH)4](cr) in the presence of 

0.004 M ≤ [B]tot ≤ 0.16 M in 5.0 M NaCl solutions. Comparison with experimental (open symbols, 

black) and calculated (solid line) solubility data in the absence of borate as reported in Neck et al. 

(2009) [24]. 
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Figure 4.4. Solubility of Nd(OH)3(am) and Nd[B9O13(OH)4](cr) in the presence of 

0.004 M ≤ [B]tot ≤ 0.4 M in 0.25 M MgCl2 and CaCl2 solutions. Comparison with experimental (open 

symbols, black) and calculated (solid line) solubility data in the absence of borate as reported in Neck 

et al. (2009) [24]. 
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Figure 4.5. Solubility of Nd(OH)3(am) in the presence of 0.004 M ≤ [B]tot ≤ 0.4 M in 1.0 M MgCl2 and 

CaCl2 solutions. Comparison with experimental (open symbols, black) and calculated (solid line) 

solubility data in the absence of borate as reported in Neck et al. (2009) [24]. 
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Figure 4.6. Solubility of Nd(OH)3(am) and Nd[B9O13(OH)4](cr) in the presence of 

0.004 M ≤ [B]tot ≤ 0.4 M in 3.5 M MgCl2 and CaCl2 solutions. Comparison with experimental (open 

symbols, black) and calculated (solid line) solubility data in the absence of borate as reported in Neck 

et al. (2009) [24]. 
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At enhanced [B]tot ≥ 0.16 M, a significant decrease in the Nd(III) concentration occurs for all NaCl 

and MgCl2 systems evaluated. The drop in solubility at [B]tot 0.16–0.4 M is accompanied with a 

changed slope of the solubility curve from –2 to approximately 0. This observation clearly indicates 

the transformation of Nd(OH)3(am) into a new solubility controlling borate-bearing solid phase. After 

an equilibration time of 72 to 142 days (depending upon salt system), the measured Nd(III) 

concentrations remain constant at 10–6.5 M (in 0.25 M MgCl2) to 10–5 M (in 3.5 M MgCl2). These 

solubility limits are more than three orders of magnitude lower than those observed in the absence of 

borate, as summarized in Table 4.1. The decrease in Nd(III) solubility in NaCl solutions is similar, 

although the overall solubility is slightly lower indicating that increasing MgCl2 concentrations and 

resulting high ionic strength enhances significantly the solubility of Nd(III) in the presence of borate 

as it is also the case in borate-free systems. No (or very limited) effect of borate on Nd(III) solubility 

is observed in CaCl2 solutions in contrast to NaCl and MgCl2 systems, very likely due to the lower 

boron solubility in this background electrolyte ([B]tot ≤ 0.04 M). 

Table 4.1. Comparison of experimental Nd(III) concentrations at [B]tot ≥ 0.16 M and calculated 

Nd(III) concentrations in borate-free NaCl and MgCl2 solutions. 

Matrix pHm 
log [Nd] 

borate free [24] 

log [Nd] 

[B]tot ≥ 0.16 M 
Δ log [Nd] 

0.1 M NaCl 7.1 –3.0 –6.6 3.3 

1.0 M NaCl 7.3 –3.4 –7.7 3.3 

5.0 M NaCl 8.0 –3.2 –7.8 4.6 

0.25 M MgCl2 7.0 –2.7 –6.4 3.7 

1.0 M MgCl2 7.3 –2.9 –6.6 3.7 

3.5 M MgCl2 7.2 –1.3 –5.5 4.2 

 

Additional Nd(III) solubility experiments from undersaturation conditions were performed in NaCl 

and MgCl2 systems using a well-defined Nd–borate solid phase Nd[B9O13(OH)4](cr). The measured 

solubility of this Nd-borate phase agrees well with the data measured for Nd(OH)3(am) in comparable 

[B]tot = 0.16 M, suggesting that similar processes or solid phases are controlling the solubility in both 

systems. Note that Nd[B9O13(OH)4](cr) was prepared with very high [B]tot at elevated temperatures 

and high pressure. The formation of this crystalline Nd(III)–borate solid phase appears unlikely under 

the conditions of the present study (T = 25°C, P = 1 bar) or in repository systems.  
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Under hyperalkaline conditions (pHm ≥ 10) very scattered solubility data are obtained. Similar 

observations have been reported previously for Nd(III) and Th(IV) in the absence of boron [24, 29] 

(see chapter 7), and are likely correlated to a combination of factors such as very low concentrations 

of Nd(III) and Th(IV) in solution (often close to the detection limit of ICP–MS), tendency of neutral 

species to sorb (i.e. Nd(OH)3(aq), Th(OH)4(aq)), and presence of colloidal nanoparticles not retained 

in the 10 kD filtration step. A slight increase in Nd(III) solubility compared to the borate free data 

could be claimed for some of the samples with [B]tot ≥ 0.16 M in this pHm region, especially in the 

case of 0.1 M and 1.0 M NaCl systems (Fig. 4.1 and Fig. 4.2). A similar effect at pHm = 9 is observed 

for Pu(III/IV) solubility data in the presence of comparable [B]tot (see chapter 6). Despite the very 

large scattering in the measured concentration of Nd(III), the absence of a relevant borate effect on 

Nd(III) solubility above pHm = 9 is proposed for both NaCl and CaCl2 solutions. This observation can 

be interpreted by a decreased interaction between Nd(III) and borate due to the enhanced hydrolysis 

of Nd(III) with increasing pHm. 

 Solid phase characterization 

Solid phases of selected solubility experiments were investigated after attaining equilibrium conditions 

by XRD, SEM–EDS and XPS. Fig. 4.7 a to d show the XRD diffractograms obtained for selected 

solid phases of the Nd(III) solubility experiments together with the initial Nd(OH)3(am). In all cases 

the characteristic pattern of Nd(OH)3(am) (JCPDF file No: 70-0215, JCPDS 2001[137]) is observed, 

indicating that the initial solid phase has been (at least partially) retained throughout the equilibration 

process in borate-bearing solutions. Note however that XRD is a bulk-sensitive technique which 

cannot detect surface coatings or the presence of amorphous phases. Fig. 4.7 also shows the 

diffractogram of the crystalline Nd[B9O13(OH)4](cr), synthesized at high [B]tot, and elevated 

temperatures and pressures (see section 2.2.1). Very distinct XRD pattern are observed for this solid 

phase, confirming that none of the solubility experiments initiated with Nd(OH)3(am) led to the 

formation of this solid phase (above the detection limit of XRD, 5%).  

In contrast to XRD, XPS analyses of the solid phases from solubility samples with [B]tot ≥ 0.16 M 

confirm the presence of a newly formed borate-bearing secondary phase on the surface of 

Nd(OH)3(am) (Fig. 4.8). The combination of these observations with solubility and XRD data strongly 

hints towards the formation of a borate-bearing Nd(III) surface coating, which is responsible of 

controlling the solubility of Nd(III) under these conditions. Note that similar XPS spectra were also 

obtained in the case of Nd[B9O13(OH)4](cr), thus hinting that a similar coating formed on the surface 

of both solid phases in boron-bearing saline solutions.  

The different outcome obtained by XRD and XPS basically reflects the different properties of these 

techniques: XRD is a bulk method insensitive to amorphous materials, whereas XPS is a surface-

sensitive technique that provides accurate information of the chemical composition of both amorphous 
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and crystalline materials within a depth of ~0.9 to ~2.7 nm (in the configuration considered in this 

study, see section 2.1.7.2). 
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Figure 4.7. XRD pattern of initial Nd(OH)3(am) (a) and Nd(OH)3(am) alteration phases collected 

from solubility experiments in 0.1 M NaCl at pHm = 7(b), 5.0 M NaCl at pHm = 8 (c) and 3.5 M MgCl2 

at pHm = 7.5 (d) in the presence of [B]tot = 0.04 M. Upper diffractogram corresponds to 

Nd[B9O13(OH)4](cr) after equilibrating for 100 days in a 3.5 M MgCl2 solution with [B]tot = 0.16 M 

and pHm = 7.3. 

 

Table 4.2. Composition of the newly formed Nd(III)-borate coating (in at. %) based on XPS 

analyses(analytical uncertainties lie within 10-20 %). 

Sample B O Na Mg Cl Nd(III) 

0.1 M NaCl / 0.16M [B]tot  27.1 62.8 3.1 - - 6.0 

5.0 M NaCl / 0.16M [B]tot 19.2 59.9 5.0 - 1.4 9.1 

3.5 M MgCl2 / 0.004M [B]tot  56.7 - 0.3 2.5 22.3 

3.5 M MgCl2 / 0.4 M [B]tot 15.0 63.4 - 4.6 1.5 10.1 

 

XPS analyses of the Nd(III) secondary phases formed as a coating in NaCl and concentrated MgCl2 

solutions confirm the stoichiometric presence of boron and Na+/Mg2+. The composition of these newly 
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formed solid phases (in at. %) are listed in Table 4.2. For dilute NaCl solution the formation of a solid 

phase with the stoichiometry NaNd[B3O4(OH)3]2(am) can be proposed.  
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Figure 4.8. Narrow scan of the B 1s spectra for Nd(III) solid phases in NaCl and MgCl2 solutions at 

pHm = 7–8 with various [B]tot obtained by XPS. 

 

SEM images of the surface of selected Nd(III) alteration phases are shown in Fig. 4.9, Fig. 4.10 and 

Fig. 4.11. A clear change of the surface of Nd(III) solid phases equilibrated in the presence of 

[B]tot ≥ 0.16 M can be observed in the SEM images indicating the formation of a secondary phase on 

the surface of the original solid. SEM images also show different surface transformations in the 

presence of borate depending on the salt system and salt concentration. The SEM image of the solid 

found in 0.1 M NaCl solution and at [B]tot = 0.16 M (Fig. 4.10 a) shows sharp crystalline platelets, 

whereas less ordered and smaller platelets can be observed in 3.5 M MgCl2 solution (Fig. 4.11 b). 

These findings are in good agreement with solid phase analysis of Np(V) borate solids (see chapter 

7), where the most crystalline structure was also formed in 0.1 M NaCl. The surface structure of the 

crystalline Nd[B9O13(OH)4](cr) (Fig. 4.9 b, initial material before equilibration with borate-bearing 

solutions) shows significant differences with the Nd(III) borate surface coatings found in the solubility 

experiments. As already hinted by the combination of XRD and XPS analysis, SEM indicates that the 

transformation of the original Nd(OH)3(am) in the presence of borate under the experimental 

conditions of this study lead to the formation of a new Nd(III)–borate solid phase but does not reach 

the very crystalline structure of Nd[B9O13(OH)4](cr), which was prepared under increased 

temperatures and pressure with very high [B]tot. 
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Figure 4.9. SEM images of the original Nd(OH)3(am) (a) and Nd[B9O13(OH)4](cr) (b) material before 

equilibrating with borate-bearing solutions. 

 

   

Figure 4.10. SEM images of alteration phases from Nd(III) solubility experiments in 0.1 M NaCl with 

[B]tot = 0.16 M at pHm = 7 (a) and in 5.0 M NaCl with [B]tot = 0.16 M at pHm = 8 (b). 

 

  

Figure 4.11. SEM images of alteration phases from Nd(III) solubility experiments in 3.5 M MgCl2 

with [B]tot = 0.004 M at pHm = 8 (a) and in 3.5 M MgCl2 with [B]tot = 0.4 M at pHm = 7.5 (b). 
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Under similar conditions as those investigated in the present study (pHm = 6, [B]tot ≥ 0.3 M), the 

formation of a Eu(III) borate solid phase was recently reported by Schott et al. [83]. The authors 

provided evidence (solid-phase TRLFS, IR) of the formation of a distinct Eu(III)–borate solid phase, 

whose amorphous character was also highlighted by the absence of relevant XRD reflections. 

 Cm(III) aqueous speciation in the presence of borate: TRLFS 

Fluorescence emission spectra of Cm(III) were measured with 0.004 M ≤ [B]tot ≤ 0.4 in 0.1 M–5.0 M 

NaCl and 0.25 M–3.5 M CaCl2 and MgCl2 solutions at pHm = 8. The normalised spectra in 0.1 M and 

5.0 M NaCl solution are presented in Fig. 4.7 and Fig. 4.8. Spectra at pHm = 8 in 0.25 M and 3.5 M 

MgCl2 solutions are presented in Fig. 4.12 and Fig. 4.13. In CaCl2 solutions additional spectra with 

0.004 ≤ [B]tot ≤ 0.04 M at pHmax ~12 were taken and are shown in Fig. 4.14. Furthermore, fluorescence 

decay measurements were performed for Cm(III) in NaCl, CaCl2 and MgCl2 solutions with 

0.004 M ≤ [B]tot ≤ 0.4 at pHm = 8. Note that boron concentrations in NaCl and CaCl2 solutions were 

restricted due to the precipitation of Na- and Ca-borate solid phases, to 0.16 M and 0.04 M, 

respectively. The resulting fluorescence lifetimes are presented in Table 4.3. 

4.3.1 Cm(III) TRLFS studies in NaCl solutions 

In the near neutral pHm region (pHm = 8) in the absence of borate, several Cm(III) species are expected 

to be present in solution simultaneously. Their relative contribution depends on the ionic strength and 

electrolyte composition of the respective solution. Besides the free Cm3+ aquo ion, also Cm(III) 

complexes such as CmCl2+, CmCl2
+, Cm(OH)2+ and Cm(OH)2

+ can be present in different proportions. 

At very low [B]tot = 0.004 M no significant influence of borate on Cm(III) aqueous speciation can be 

observed in all investigated samples (Fig. 4.12 and Fig. 4.13). The peak maximum, located at ~603 nm 

of the scattered spectra in 0.1 M NaCl solution can be associated mainly with the Cm(OH)2
+ complex 

as reported by Fanghänel et al. [113]. In the absence of complexing ligands other than hydroxide, 

generally a strong decrease in aqueous Cm(III) concentration at higher pHm (pHm ≥ 8) is observed due 

to sorption on surfaces and precipitation as hydroxide. This explains the low intensities and spectral 

scattering observed for these measured spectra at very low [B]tot.  

In 5.0 M NaCl and [B]tot = 0.004 M two peaks with maxima at 594 nm and 604 nm can be found. The 

first peak can be attributed to the Cm(III) aquo ion (with small contributions of chloro complexes very 

likely present in higher NaCl concentrations), the second peak can be assigned to the second hydrolysis 

species Cm(OH)2
+, as expected at pHm = 8 [113]. The measured spectra with low [B]tot in NaCl 

solutions are in good agreement with the corresponding solubility data (Fig. 4.1 and Fig. 4.3). 
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Figure 4.12. TRLFS emission spectra of Cm(III) in 0.1 M and 5.0 M NaCl solutions at pHm = 8 and 

various borate concentrations. 

 

With increasing [B]tot ([B]tot > 0.004M), an effect of borate on the Cm(III) speciation is observed in 

0.1 M NaCl solutions with a peak shift to shorter wavelengths in combination with an increased 

fluorescence intensity of the spectra. Such a hypsochromic peak shift appears when complexes with 

weaker ligands are formed as a consequence of their lower ligand field splitting. In the presence of 

more than one complexing ligand, weaker complexes will only form if the weak ligand concentration 

considerably exceeds the concentration of the stronger ligand (i.e. hydroxide anion) as it is the case at 

pHm = 8 for [B]tot > 0.004 M. At [B]tot = 0.16 M the competition between borate complexation and 

hydrolysis leads to a suppression of the Cm(III) hydrolysis species and the formation of a borate 

containing Cm(III) complex with a peak maximum at ~ 600 nm. A very short fluorescence lifetime 

(τ = 59 µs) at [B]tot = 0.16 M is observed in 0.1 M NaCl solutions. This decrease in the fluorescence 

lifetime together with a clear shift in the emission spectra in comparison to the Cm(III) aquo ion cannot 

be explained at the moment. The presence of Cm(III) containing colloids by precipitation of a Cm(III) 

borate solid, in accordance to the analogue Nd(III)-solubility experiments (Fig. 4.1), could lead to a 

decrease in the fluorescence lifetime. 

The double peak observed in 5.0 M NaCl solution and at [B]tot = 0.004 M indicates that the Cm(III) 

hydrolysis at pHm = 8 is less pronounced compared to 0.1 M NaCl and considerable amounts of 

uncomplexed Cm3+ are still present. By increase of [B]tot to 0.04 M, the peak maximum assigned to 

the second hydrolysis species at ~ 604 nm disappears due to competition with borate and a broad peak 

with a peak maximum at ~ 596 nm can be detected consisting of contributions of Cm3+ and a new 

formed Cm(III) borate component. Further increase of [B]tot up to 0.16 M leads to a decrease of the 
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Cm(III) aquo ion contribution, the fluorescence peak is shifted to ~ 601 nm which can be explained 

only by the formation of a Cm(III)–borate complex. At the same time an increase of the corresponding 

fluorescence lifetime from 77 µs at [B]tot = 0.04 M to 108 µs at [B]tot = 0.16 M is measured. The 

fluorescence decay curves in all investigated systems show a single averaged exponential decay for 

all spectra, caused by a faster ligand exchange than the lifetime of the excited state. Kimura et al. 

found a linear relation between the number of H2O entities in the first hydration sphere of the curium 

ion and the fluorescence decay constant [138]. According to this relation 4 H2O molecules are removed 

from the first hydration sphere of the Cm(III) complex at [B]tot = 0.16 M. Note that no influence of 

high ionic strength on this linear relation is considered. The peak positions (~ 600-601 nm) at 

[B]tot = 0.16 M for both 0.1 M and 5.0 M NaCl solutions are very similar implying that similar Cm–

borate species are formed. TRLFS investigations of Cm(III) with inorganic ligands such as Cl–, CO3
2– 

and SO4
2– show that peak positions of  ≥ 600 nm for the most part indicate the coordination of the 

Cm(III) ion with more than one ligand [139, 140]. The presence of hydrolysis species under the 

investigated conditions together with the limitation of the boron concentrations to 0.16 M allows no 

systematic investigations of the Cm(III) borate complexation in NaCl systems. 

 

Table 4.3. Fluorescence lifetimes (τ) and peak maxima (λmax ) in NaCl, CaCl2 and MgCl2 solutions at 

pHm = 8 and various [B]tot. 

Background 

electrolyte 

0.004 M [B]tot 0.04 M [B]tot 0.16 M [B]tot 0.4 M [B]tot 

τ [µs] 
λmax 

[nm] 
τ [µs] 

λmax 

[nm] 
τ [µs] 

λmax 

[nm] 
τ [µs] 

λmax 

[nm] 

0.1 M NaCl – 603 77 ± 5 601 59 ± 5 600 – – 

5.0 M NaCl 85 ± 5 604 77 ± 5 596 108 ± 5 601 – – 

0.25 M CaCl2 72 ± 5 594 78 ± 5 597 –  – – 

3.5 M CaCl2 73 ± 5 595 77 ± 5 596 –  – – 

0.25 M MgCl2 – – 85 ± 5 597 96 ± 5 600 114 ± 7 603 

3.5 M MgCl2 – – 87 ± 5 597 95 ± 5 600 121 ± 7 602 
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4.3.1 Cm(III) TRLFS studies in CaCl2 and MgCl2 solutions 

In contrast to NaCl systems, no Cm(III) hydroxide species are found in dilute to concentrated MgCl2 

solutions under near neutral pHm conditions (pHm = 8) and absence of borate [141]. Note that these 

findings are in contrast to studies with Nd(OH)3(am) in MgCl2 solutions, where hydrolysis species of 

Nd(III) species are prevailing at this pH [24]. In MgCl2 solutions spectra with high boron 

concentrations up to 0.4 M [B]tot could be measured and allow a systematic investigation of the Cm(III) 

borate complexation.A broad emission peak at ~597 nm at [B]tot = 0.04 M can be observed for both 

investigated MgCl2 concentrations. The shift of the peak maximum compared to the borate-free system 

indicates the complexation of Cm(III) with borate. The corresponding fluorescence lifetimes (77 µs – 

87 µs, depending upon salt system and ionic strength) are significantly increased compared to the 

fluorescence lifetime of the Cm(III) aquo ion with 64 µs± 3 µs [142]. 
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Figure 4.13. TRLFS emission spectra of Cm(III) in 0.25 M and 3.5 M MgCl2 solutions at pHm = 8 and 

various [B]tot. Comparison with a spectrum in the absence of borate as reported in Herm [141]. 

 

In contrast to NaCl systems, Cm(III)–borate complexation results in a bathochromic peak shift (shift 

to longer wavelengths). The different behavior observed in NaCl and MgCl2 systems (hypsochromic 

vs. bathochromic peak shift) is likely due to the absence of hydrolysis species forming in the latter 

system. With increasing [B]tot, the peak maxima of the fluorescence emission bands are further shifted 

to higher wavelengths, clearly indicating the formation of Cm(III) complexes with borate. These 

pronounced bathochromic peak shifts support the assumption that more than one Cm(III)–borate 

complexes exist under these conditions, as also proposed for the NaCl system. The bathochromic peak 

shift of the Cm(III) emission with increasing [B]tot is accompanied with an increase of the fluorescence 

lifetimes up to 121 µs for 3.5 M MgCl2 and [B]tot = 0.4 M (see Table 4.3). According to the Kimura 
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equation [138], 3 H2O molecules are removed in the Cm(III) complexes found in 0.25 M and 3.5 M 

MgCl2 with [B]tot = 0.16 M, and 4 to 4.5 H2O molecules for 0.25 M MgCl2 and 3.5 M MgCl2 with 

[B]tot = 0.4 M, respectively. The formation of Cm(III)–borate species in weakly alkaline MgCl2 

solutions shows no clear dependence on ionic strength of the solution within the uncertainty limits of 

the technique, as already observed in NaCl systems. 
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Figure 4.14. TRLFS emission spectra of Cm(III) in 0.25 M and 3.5 M CaCl2 at pHm = 12 and various 

borate concentrations in comparison with borate-free literature data [25]. 

 

Under highly alkaline conditions (pHm = 12), no influence of borate on the emission spectra can be 

observed in CaCl2 solutions and [B]tot ≤ 0.04 M (Fig. 4.11). The measured spectra and corresponding 

fluorescence lifetimes in presence of borate in both 0.25 M and 3.5 M CaCl2 solutions are in good 

agreement with the borate-free system [25]. As already discussed for the Nd(III) solubility data, borate 

is a weak ligand that can only compete with hydrolysis under near-neutral pH conditions and relatively 

high [B]tot, but cannot outcompete hydrolysis under hyperalkaline conditions.  

 Conclusions 

Solubility studies with Nd(OH)3(am) and TRLFS investigations with Cm(III) confirm the formation 

of aqueous complexes of Ln(III) and An(III) with borate in dilute to concentrated NaCl, MgCl2 and 

CaCl2 solutions under near-neutral pHm conditions and [B]tot ≥ 0.04 M. At [B]tot ≥ 0.16 M and near-

neutral pHm (pHm = 8), Cm(III)–borate aqueous species outcompete hydrolysis and become 

predominant. TRLFS indicates that (at least) two Cm(III)–borate species (maybe 1:1 and 1:2) form in 

NaCl and MgCl2 solutions, although the exact stoichiometry of the complexation reaction remains 
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unknown. A similar trend can be found in UV-Vis studies with Np(V) (see chapter 7) in MgCl2 

solutions with comparable [B]tot. Despite the clear formation of LnIII/AnIII–borate aqueous species in 

near neutral pHm conditions, no significant increase in solubility is observed for Nd(OH)3(am) in the 

presence of [B]tot ≤ 0.4 M in all investigated systems. Conversely, a clear drop in the Nd(III) solubility 

of 2–3 orders of magnitude occurs at 6 ≤ pHm ≤ 9, indicating the formation of a new solubility 

controlling borate-bearing solid phase. This mechanism is confirmed by XPS and SEM–EDS 

technique, which suggest that the formation of a Nd(III)-borate solid phase takes place as a coating on 

an unreacted Nd(OH)3(am) core. Unlike solubility studies with NpO2(OH)(am) (chapter 7), no 

complete transformation of the initial Nd(III) solid occurred in samples with [B]tot ≥ 0.16 M. The 

significant decrease observed in the Ln(III)/An(III) solubility at pHm < 9 related to the formation of 

secondary An(III)–borate alteration phases represents a hitherto unknown actinide retention 

mechanism in repository systems. A thermodynamic evaluation and model of the Ln(III)/An(III) 

interactions in the presence of borate in NaCl, CaCl2 and MgCl2 systems is proposed in chapter 9. 
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5 Solubility of Th(IV) in the presence of borate 

 

The solubility of Th(IV) was studied from undersaturation conditions in the presence of [B]tot = 0.16 M 

within 6.5 ≤ pHm ≤ 11 in dilute to concentrated NaCl and MgCl2 solutions. For comparison purposes, 

samples with Th(IV) in the same pHm and ionic strength conditions but absence of borate were 

prepared and measured following the same experimental approach as for the borate-bearing samples. 

The Th(IV) concentration was regularly quantified in combination with pHm measurements for up to 

860 days.  

 Solubility data of Th(IV) in dilute to concentrated NaCl and MgCl2 solutions 

Fig. 5.1 and Fig. 5.2 show the solubility of Th(OH)4(am) determined in 0.1 M – 5.0 M NaCl and 

0.25 M – 3.5 M MgCl2 solutions with [B]tot = 0 and 0.16 M and varying pHm. Data points below the 

detection limit were set to log mTh = –10 for dilute (0.1 M NaCl and 0.25 M MgCl2) and -9 and -8.5 

for concentrated (5.0 M NaCl and 3.5 M MgCl2) solutions, respectively, due to the different dilution 

steps needed in each case for ICP–MS measurements. For comparison purposes, Fig. 5.1 and Fig. 5.2 

also show the calculated solubility of Th(OH)4(am) (both for fresh and aged phases) in dilute NaCl 

and MgCl2 systems in the absence of borate [27]. Under these boundary conditions and provided the 

predominance of the neutral species Th(OH)4(aq) over the complete pH-range investigated in this 

work, no significant effect of ionic strength is foreseen according with thermodynamic calculations.  

Fig. 5.1 and  Fig. 5.2 show that the solubility of Th(OH)4(am) remains largely unaffected by borate in 

dilute NaCl and MgCl2 solutions over the entire pHm range considered in this work. However, a slight 

increase in the solubility of Th(IV) compared to borate-free systems can be claimed for samples with 

[B]tot = 0.16 M, both in concentrated NaCl and MgCl2 solutions at pHm  8–9. Although Th(IV)–borate 

complexation appears unlikely considering the strong tendency of Th(IV) towards hydrolysis, this 

hypothesis cannot be completely ruled out in view of the experimental data gained in this work. Large 

scattering of the measured data is observed in all samples. A similar behavior in this pHm region 

(pHm > 6) has been reported for Nd(III) and Th(IV) in the absence of boron. This observation can be 

likely explained by the tendency of neutral aqueous species to sorb (i.e Th(OH)4(aq)), the presence of 

colloidal nanoparticles not removed from the solution by ultrafiltration and the very low 

concentrations of Th(IV) in solution (close to the detection limit of ICP–MS) [24, 29]. Note further 

that especially tetravalent actinides tend to form stable colloids in saline solution. In the case of 

thorium, these have been reported to increase the total concentration in solution 2–3 orders of 

magnitude [29].  

The difficulties in evaluating the aquatic chemistry of Th(IV) within this pH region are also reflected 

on the quality (i.e. associated uncertainty) of the thermodynamic data available for this system in the 
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absence of borate. The solubility reaction controlling the aqueous chemistry of Th(IV) within the pH-

range 6–14 is provided in equations (5.1) and (5.2) for the two different Th(IV) oxy-hydroxides 

selected in the NEA–TDB, namely Th(OH)4(am,fresh) and Th(OH)4(am,aged). The equilibrium 

constants selected for both solubility reactions have a very large associated uncertainty (± 0.9 log-

units), accordingly supporting the very large dispersion obtained in the present work for the solubility 

of Th(IV) in the absence and presence of borate 

Th(OH)4(am,fresh) ⇌ Th(OH)4(aq)  log *K°s,0 = -8.1 ± 0.9                (5.1) 

Th(OH)4(am,aged) ⇌ Th(OH)4(aq)  log *K°s,0 = -8.9 ± 0.9                (5.2) 
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Figure 5.1. Solubility of Th(OH)4(am), experimentally determined in the presence of 

0 M ≤ [B]tot ≤ 0.16 M in 0.1 M and 5.0 M NaCl solutions. Comparison with solubility of 

Th(OH)4(am,fresh) and Th(OH)4(am,aged), as calculated for 0.1 M NaCl using the NEA-TDB 

thermodynamic selection [27]. 

 

In contrast to observations made for Nd(III) (see chapter 4) and Np(V) (see chapter 7), no evident 

decrease in solubility is observed for Th(OH)4(am) in NaCl and MgCl2 systems with [B]tot = 0.16 M 

and 6.5  pHm  9, hence disregarding a possible transformation of the initial oxy-hydroxide solid 

phase. This observation is related with the significantly lower solubility of Th(OH)4(am) compared to 

Nd(OH)3(am) and NpO2OH(am), as well as with the much stronger hydrolysis of An(IV), which is 

expected to outcompete any possible complexation with borate. Based on the lower Th(IV) 
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concentrations measured after longer equilibration times (t > 100 days, both in the absence and 

presence of borate), and in agreement with previous observations reported in the literature, 

Th(OH)4(am,fresh) slowly transforms into a more stable Th(OH)4(am,aged) phase with lower 

solubility [27, 33].   

 

4 5 6 7 8 9 10 11

-10

-8

-6

-4

-2

loweruncertainty for Th(OH)
4
(am,aged)

3.5 M MgCl
2

      0 M [B]
tot

 0.16 M [B]
tot

lo
g

 m
T

h

pH
m

0.25 M MgCl
2

      0 M [B]
tot

 0.16 M [B]
tot

 Th(OH)
4
(am,fresh)

 Th(OH)
4
(am,aged)

upper uncertainty for Th(OH)
4
(am,fresh)

 

Figure 5.2. Solubility of Th(OH)4(am) experimentally determined in the presence of 

0 M ≤ [B]tot ≤ 0.16 M in 0.25 M and 3.5 M MgCl2 solutions. Comparison with solubility of 

Th(OH)4(am,fresh) and Th(OH)4(am,aged), as calculated for 0.25 M MgCl2 using the NEA-TDB 

thermodynamic selection [27]. 

 Conclusions 

In contrast to Ln(III)/An(III), An(V) and An(VI) systems investigated in this work, no significant 

effect of borate on the Th(IV) solubility was observed in dilute NaCl and MgCl2 systems within 

6.5 ≤ pHm ≤ 11 and [B]tot = 0.16 M. A slight increase in the solubility of Th(IV) could be claimed for 

both concentrated NaCl and MgCl2 systems at pHm = 7.5–9, which may hint towards a weak Th(IV)–

borate complexation in this pHm region under these experimental conditions. Further experimental 

evidences would be needed to confirm this possibility. The weaker Th(IV)–borate interaction 

compared to Ln(III)/An(III), An(V) and An(VI) is in good agreement with the strong hydrolysis 

tendency of tetravalent actinides, which significantly outcompetes the formation of weaker complexes. 

The sparingly soluble Th(IV) oxy-hydroxide phase controlling the solubility in the conditions of this 

experiment retains very low Th(IV) concentrations in solution, and thus prevents the formation of any 

secondary phase in the presence of borate. Note that, under alkaline to hyperalkaline pH conditions, 
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only strong ligands (hard Lewis bases) such as carbonate or certain organic molecules (among others) 

are able to outcompete hydrolysis and enhance the solubility of Th(IV) [143-146]. 

The large scattering in the solubility data observed both in the absence and presence of borate is 

attributed to the predominance of the neutral aqueous species Th(OH)4(aq) and the possible formation 

of polymeric/colloidal Th(IV) species [29], and reflects also the large uncertainty associated to the 

thermodynamic data available for Th(IV) aqueous species and solid compounds forming in these 

conditions.  
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6 Interaction of Pu(III/IV) with borate 

 

The solubility of Pu(III/IV) was studied from undersaturation conditions with freshly prepared 

PuIVO2(am,hyd) in the presence of [B]tot = 0.16 M within 7.5 ≤ pHm ≤ 9.0 in 0.1 M NaCl solutions. 

Reducing conditions were set by addition of ~0.03 M Na2S2O4 and 0.01 M hydroquinone, 

respectively. In all samples [Pu]tot, pHm and Eh were regularly measured for up to 300 days. At the 

end of the solubility experiments, Pu solid phases contacted with the borate-bearing solution were 

characterized by XPS.  

 Solubility of Pu(III/IV) in NaCl solutions 

The solubility of PuIVO2(am,hyd) in 0.1 M NaCl solution with [B]tot = 0.16 M in the presence of 

Na2S2O4 and hydroquinone at pHm = 7.5 and 9.0 is presented in Fig. 6.1. Experimental Eh and pH 

values of the samples are displayed in the Pu Pourbaix diagram (Fig. 6.2). XPS spectra are shown in 

Fig. 6.3.  

Measured Eh values for the two samples with hydroquinone are in the stability field of 

PuIVO2(am,hyd). The experimental Pu(IV) solubility at pHm ~7.5 is at the detection limit for LSC, i.e. 

1·10-9 M. This upper limit value is consistent with the expected PuIVO2(am,hyd) solubility. XPS 

analysis confirm PuIVO2(am,hyd) as solubility controlling phase (Fig. 6.3). In conclusion, no 

significant effect of borate on the Pu(IV) aqueous and solid phase speciation is observed at pHm = 7.5 

in slightly reducing solutions which is consistent with the results obtained for Th(IV) (chapter 5). At 

pHm = 9.0 the experimental PuIVO2 (am,hyd) solubility is significantly enhanced compared to the Pu 

solubility expected for the measured (pe + pH) conditions (log [Pu(IV)] = -10.8) (Fig. 6.1). In the first 

two measurements (t ≤ 14 d), [Pu] was at ~10-7 M and slowly decreased to ~10-8 M within 300 days. 

Thus, no stable conditions were reached indicating that strong kinetics affect the equilibration process. 

Note that no change in the oxidation state of Pu in the solid phase was detected by XPS (Fig 6.1), 

although the low concentrations in solution prevent the accurate characterization of the redox state in 

the aqueous phase. Although the complexation of Pu(IV) with borate was considered unlikely due to 

the very strong tendency of An(IV) towards hydrolysis in alkaline solutions [147, 148], the 

experimental observations gained in this work could be explained properly on the basis of this 

hypothesis. Note that a similar increase in solubility is found for Th(OH)4(am) in concentrated NaCl 

and MgCl2 solutions at pHm = 9, thus indicating that the complexation of Pu(IV) and Th(IV) with 

borate cannot be completely ruled out (chapter 5). Note however that no Th(IV) solubility increase in 

these conditions was found for dilute NaCl solutions. The enhanced [Pu] can hardly be attributed to 

the initial presence of Pu(III) as the redox conditions (pe + pH) are clearly in the stability field of 

Pu(IV) (the hydroquinone sample at pHm = 7.5 is even closer to the stability field of Pu(III), but does 
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not show any indication for the presence of Pu(III)). More experimental data in the investigated 

conditions with longer equilibration times are needed to completely understand the observed 

processes. 

7 8 9 10 11 12
-11

-10

-9

-8

-7

-6

-5

-4

Pu
III
(OH)

3
(s)

Pu
IV

O
2
(am,hyd)

 

 

-l
o
g
 m

P
u

pH
m

0.1 M NaCl 0.16 M [B]
tot

 
 
0.03 M Na

2
S

2
O

4

 0.01 M Hydroquinone

Pu
IV

O
2
(am,hyd)
pe+pH=0

detection limit

 

Figure 6.1. Solubility of PuIVO2(am,hyd) in the presence of [B]tot = 0.16 M with 0.03 M Na2S2O4 and 

0.01 M hydroquinone in 0.1 M NaCl solutions. Comparison with calculated solubility data for 

PuIVO2(am,hyd) (black solid line) and Pu(OH)3(s) (blue solid line) and the calculated equilibrium of 

Pu(III)(aq) with PuIVO2(am,hyd) with pe + pH = 0 (dashed line) in the absence of borate as reported 

in NEA-TDB [22]. 

 

Redox conditions in the two samples with Na2S2O4 are very close to the borderline of 

PuIVO2(am,hyd)/Pu(OH)3(s). At pHm = 7.5, fast transformation of the initial PuIVO2 (am,hyd) into a 

dark solid phase occurred within one week. The main oxidation state of the latter is Pu(III) as 

confirmed by XPS analysis after 300 days. The peak shape and position of the 4f3/2 and 4f7/2 transitions 

are in agreement with Pu(III) reference spectra [149, 150]. The experimental Pu solubility within the 

first two measurements (~ 5·10-7 M) is clearly above the Pu(IV) solubility curve, but slightly lower 

than expected for Pu(OH)3(s) according to the data from NEA. The solubility constant log 

*K°s,0{Pu(OH)3(s)} = 15.8 ± 1.5 is reported with a large uncertainty of 1.5 log-units which can explain 

the deviations [22]. Recent results from Fellhauer further suggest a lower value for the solubility 

constant of ~ log *K°s,0{Pu(OH)3(s)} = 14.35 [59]. Therefore it is likely that the solubility for t ≤ 14 

d is controlled by Pu(OH)3(s). For t > 14 d (i.e. in the last two measurements) pe-values are slightly 

increasing, and [Pu]tot decreasing to ~2 10-8 M. Note that Na2S2O4 is only metastable in neutral pH 

conditions [151, 152]. The slightly increasing pe values for the sample at pHm = 7.5 points to slow 
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decomposition of Na2S2O4. While the measured (pe + pH) values suggest a solubility control by the 

reductive dissolution equilibrium (equation 6.1; implying a quantitative re-oxidation of Pu(OH)3(s) to 

PuO2(am,hyd)), XPS clearly revealed the presence of a rather oxidation state pure Pu(III) solid phase. 

Therefore, the decrease in [Pu]tot for t > 14 d is likely caused by the formation of a Pu(III) borate 

coating or borate containing Pu(III) solid phase similar to the findings in Nd(III) solubility studies 

(chapter 4).  
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Figure 6.2. Pourbaix diagram calculated for [Pu]tot =10-4 M in 0.1 M NaCl and absence of borate. 

Dashed and solid lines represent the calculated borderlines for the individual Pu redox species [22, 

55]. pe and pHm values are shown for the solubility samples in the presence of hydroquinone (blue) 

and Na2S2O4 (red). 

 

For the sample at pHm = 9 (Na2S2O4), XPS analysis indicates the presence of both Pu(III) and Pu(IV) 

in the solid phase after t = 300 d (Fig 6.3). The measured [Pu]tot at pHm = 9 after short equilibration 

time is enhanced compared to the solubility expected under these pe + pH conditions, i.e. the reductive 

dissolution equilibrium (equation 6.1).  

PuO2 (am,hyd)+ 4 H++e-⇌ Pu3++2 H2O                                        (6.1) 

As the experimental [Pu] is even higher than that of Pu(OH)3(s) in borate-free systems, the formation 

of Pu(III) borate complexes has to be considered, analogously to the Cm(III) borate complexes 

observed under comparable experimental conditions. In solubility studies with Nd(OH)3(am), the 
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increase in [Nd(III)] in 0.1 M and 1.0 M NaCl at pHm = 9 and 10 in presence of [B]tot ≥ 0.16 M is 

attributed to Nd(III)-borate complexes (see chapter 4). The initial [Pu] decreased with time 

(by ~ 1 order of magnitude after t = 300 d) indicates that no equilibrium has been attained. As for the 

sample at pHm = 7.5 (Na2S2O4), the decrease of initial [Pu] (i.e. [Pu(III)]) is consistent with the 

formation of a Pu(III) borate coating or borate containing Pu(III) solid phase as reported for Nd(III) 

in chapter 4.    
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Figure 6.3. Narrow scan of the 4f5/2 and 4f7/2 spectra of Pu of solid phases from 0.1 M NaCl with 

[B]tot = 0.16 M in the presence of Na2S2O4 and hydroquinone, respectively.  

 Conclusions 

Solubility studies with PuIVO2(am,hyd) under mildly reducing conditions controlled by hydroquinone 

and with [B]tot = 0.16 M show a differential behavior at pHm = 7.5 and pHm = 9.0. Hence, the very low 

solubility determined at pHm = 7.5 is in good agreement with the reported solubility of Pu(IV) in 

equilibrium with PuIVO2(am,hyd) in the absence of borate. The solubility increase observed at pHm = 9 

could be explained by a possible Pu(IV)-borate interaction, similar to observations made with Th(IV) 

in concentrated NaCl and MgCl2 solutions at same pH. Note however that a Pu(IV)-borate 

complexation leading to an increased Pu(IV) solubility was considered unlikely on the basis of the 

strong tendency of Pu(IV) towards hydrolysis, and thus additional experiments evidences are needed 

to clarify the influence of borate on the Pu(IV) solubility and speciation in this pHm region. The slow 

decrease of the measured Pu concentration at this pHm with time clearly indicates that no equilibrium 

conditions are reached after 300 days. XPS analysis of the alteration phases in the presence of 
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hydroquinone and [B]tot = 0.16 M showed no reduction of the initial Pu(IV) solid, as expected under 

the measured pe + pH conditions.  

In the presence of Na2S2O4, a complete (pHm = 7.5) and partial (pHm = 9) reduction of the initial 

PuIVO2(am,hyd) to a Pu(III) solid phase occurs according to XPS analyses. At pHm = 7.5, the measured 

Pu solubility at short equilibration times (t ≤ 14 d) are in agreement with a solubility control by 

Pu(OH)3(s). The continuous decrease in [Pu]tot (i.e. [Pu(III)]) with time and the XPS results at the end 

of the solubility experiments are consistent with the formation of a Pu(III) borate coating or formation 

of a Pu(III)-borate solid phase similar to observations gained for Nd(III) under analogues experimental 

conditions. At pHm = 9, the formation of Pu(III)-complexes likely occurs slightly enhancing the 

Pu(III) solubility compared to the borate-free system. The latter agrees with the findings for Cm(III) 

and Np(V) at this pHm with comparable [B]tot in NaCl media. In most samples, no stable Pu(III/IV) 

concentrations are measured clearly indicating that longer equilibration times than 300 days are 

needed. Additional experimental efforts are needed to gain a conclusive insight on the impact of borate 

on the Pu solubility and redox chemistry under weakly alkaline reducing conditions. 

  



Interaction of Pu (III/IV) with borate 

86 

 

 

 



Solubility of Np(V) and UV-Vis/NIR in the presence of borate 

 

87 

 

7 Solubility of Np(V) and UV-Vis in the presence of borate 

 

The solubility of Np(V) with borate was investigated from undersaturation conditions using 

NpO2OH(am) as starting material. Experiments were performed in NaCl and MgCl2 solutions with 

0.04 M ≤ [B]tot ≤ 0.16 M at 6 ≤ pHm ≤ 9. [Np(V)] and pHm were monitored at regular time intervals 

for up to 270 days. After reaching equilibrium conditions, solid phases from selected samples were 

characterized by XPS, SEM–EDS, XRD, XANES and EXAFS. The interaction of Np(V) with borate 

in the aqueous phase was further investigated in an independent batch series with ~10-4 M Np(V) in 

0.25 M and 3.5 M MgCl2 with 0.04 M ≤ [B]tot ≤ 0.16 M and pHm = 8 and 9 by UV-VIS/NIR 

spectroscopy. Based on the comprehensive experimental data chemical and thermodynamic models 

were proposed for the system NpO2
+-Na+-Mg2+-H+-Cl--B(OH)4

--OH--H2O using the SIT approach. 

These are separately discussed in chapter 9. 

 Solubility of Np(V) in NaCl and MgCl2 solutions 

The experimental solubility data of Np(V) in 0.1 M NaCl, 5.0 M NaCl, 0.25 M MgCl2 and 3.5 M 

MgCl2 solutions in the presence of 0.04 M ≤ [B]tot ≤ 0.16 M are shown in Figs. 7.1- 7.4. The figures 

also show experimental and calculated solubility of Np(V) in the absence of borate as reported by 

Petrov et al., Neck et al. and the NEA-TDB [22, 36, 40]. 

Within the timeframe of this study, low boron concentrations ([B]tot = 0.04 M) show no significant 

effect on the solubility of Np(V) in 5.0 M NaCl and 0.25 M and 3.5 M MgCl2 solutions with 

8 ≤ pHm ≤ 9.The experimentally measured Np(V) solubility in these systems is in good agreement 

with Np(V) solubility data in the absence of borate [36, 40, 153]. A slight increase in the Np(V) 

solubility is observed in 0.1 M NaCl solutions with pHm = 9 and [B]tot ≥ 0.04 M, indicating the possible 

formation of Np(V)–borate complexes in solution (Fig. 7.1). Similar to observations made for Nd(III) 

(see chapter 4), a distinct decrease in solubility occurs in 0.1 M and 5.0 M NaCl solutions with higher 

boron concentration ([B]tot = 0.16 M) and pHm ≤ 9 (Fig. 7.1 and Fig. 7.2). The drop in the solubility is 

accompanied by a transformation of the initial greenish NpO2OH (am) into a white-grayish solid 

phase. The solid phase transformation was fast in 5.0 M NaCl ( 2 weeks), but slower in 0.1 M NaCl 

where it occurred only for pHm ≤ 8.5. Note that samples prepared from oversaturation conditions in 

0.1 M NaCl and [B]tot = 0.16 M result in very similar experimental observations than samples prepared 

from undersaturation conditions: a slight increase of Np(V) concentration at pHm ~ 8.8 and a drop in 

the Np(V) solubility at pHm ≤ 8.5 together with a slow transformation of the solid phase. In both cases, 

the concentration of Np(V) in equilibrium with the newly formed solid phase is approximately three 

orders of magnitude lower than the solubility of NpO2OH(am,fresh). 
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Figure 7.1. Solubility of Np(V) in the presence of 0.04 M ≤ [B]tot ≤ 0.16 M in 0.1 M NaCl solutions 

(blue and red symbols). Comparison with experimental (open symbols, black) solubility data in the 

absence of borate as reported by Neck et al. (1992) and Petrov et al. (2011) [36, 40]. Solid line 

corresponding to the solubility of NpO2OH(am,fresh) in 0.1 M NaCl calculated according to the NEA–

TDB selection [22]. 

 

The transformation is tentatively faster at lower pHm values, see Figs. 7.1 – 7.4. It is therefore likely 

that the non-occurrence of a solid phase transformation in 0.1 M NaCl and pHm > 8.5 is due to 

insufficient equilibration time.  

A comparable decrease in Np(V) solubility accompanied by a transformation of the initial greenish 

NpO2OH(am) into a newly formed white–gray solid phase occurs in dilute MgCl2 systems at pHm < 9 

and [B]tot = 0.16 M (Fig. 7.3). Similarly to the dilute NaCl system the solubility of Np(V) decreased 

slowly and attained a constant value (~10-6.5 M) only after 270 days. In 3.5 M MgCl2 solutions with 

[B]tot = 0.16 M only a minor decrease in Np(V) solubility is observed after 270 days. As observed in 

Nd(III), Cm(III) and U(VI) solubility studies (see chapters 4 and 8) actinide borate interactions in 

MgCl2 solutions are less pronounced than in NaCl solutions at comparable pHm and ionic strength 

conditions. As discussed in chapter 3 based on the 11B-NMR data gained in this work in combination 

with the thermodynamic model reported by Felmy and co-workers [81], the formation of Mg–borate 

complexes decreases the concentration of free borate and outcompetes the formation of An–borate 

aqueous complexes and solid phases.  
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Figure 7.2. Solubility of Np(V) in the presence of 0.04 M ≤ [B]tot ≤ 0.16 M in 5.0 M NaCl solutions 

(blue and red symbols). Comparison with experimental (open symbols, black) solubility data in the 

absence of borate as Fellhauer et al (2015) and Petrov et al. (2011) [40, 153]. Solid line 

corresponding to the solubility of NpO2OH(am, fresh) in 5.0 M NaCl calculated according to the 

NEA–TDB selection [22]. Arrow indicates that the decrease in the concentration of Np for the same 

solubility sample was only completed after 270 days. 
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Figure 7.3. Solubility of Np(V) in the presence of 0.04 M ≤ [B]tot ≤ 0.16 M in 0.25 M MgCl2 solutions 

(blue and red symbols). Comparison with experimental (open symbols, black) solubility data in the 

absence of borate as reported by Petrov et al. (2011) [40]. Solid line corresponding to the solubility 

of NpO2OH(am,fresh) in 0.25 M MgCl2 calculated according to the NEA–TDB selection [22]. 
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Figure 7.4. Solubility of Np(V) in the presence of 0.04 M ≤ [B]tot ≤ 0.16 M in 3.5 M MgCl2 solutions 

(blue and red symbols). Comparison with experimental (open symbols, black) solubility data in the 

absence of borate as reported by Petrov et al. (2011) [40]. Solid line corresponding to the solubility 

of NpO2OH(am, fresh) in 0.25 M MgCl2 calculated according to the NEA–TDB selection [22]. 

Calculations were restricted to 0.25 M MgCl2 due to a lack of ion interaction parameters for high 

concentrated MgCl2 systems. 

7.1.1 Solid phase characterization 

Solid phases of selected solubility experiments in 0.1 M, 5.0 M NaCl and 0.25 M MgCl2 with 

[B]tot = 0.16 M were investigated after attaining equilibrium conditions by XRD, SEM–EDS and XPS. 

Np-LIII XANES and EXAFS spectra were also acquired for the alteration phases formed in 0.25 M 

MgCl2, 0.1 M NaCl and 5.0 M NaCl, all of them with [B]tot = 0.16 M and pHm ~ 8.5. Spectra were 

collected at the INE-Beamline for Actinide Research at ANKA [154], and were evaluated by Dr. 

Kathy Dardenne and Dr. Marika Vespa (KIT-INE). 

7.1.1.1 XRD, XPS and SEM–EDS measurements 

In contrast to the initial X-ray amorphous NpO2OH(am,fresh), XRD diffractograms of the transformed 

solid phases show a series of sharp peaks, indicating the crystalline character of the newly formed 

solid phase (Fig. 7.5). Although with certain similarities, the diffractograms obtained for the solid 

phases formed in NaCl and MgCl2 solutions are markedly different, indicating that the cation of the 

background electrolyte participates (or at least influences) in the formation of the secondary solid 

phase. Note that the collected diffractograms gave no positive match with any of the existing borate 
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entries in the JCPDS database. Note further that, in spite of the several washing steps with ethanol, all 

diffractograms collected for Np(V) secondary phases formed in 5.0 M NaCl solutions showed only 

very strong reflexes corresponding to NaCl (data not shown in Fig. 7.5). 
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Figure 7.5. Diffractograms of the solubility-controlling Np(V) solid phases in the absence and 

presence of borate ([B]tot = 0.16 M) in 0.1 M NaCl and 0.25 M MgCl2 solutions at pHm ~8.5. 

XPS analyses of the Np(V) secondary phases formed in dilute NaCl and MgCl2 solutions confirm the 

stoichiometric presence of boron and Na+/Mg2+. The composition of the newly formed solid phases 

(in at. %) are listed in Table 7.1, and hint towards the formation of solid phases with stoichiometry 

NpO2[B5O6(OH)4]·2NaOH and (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr), respectively.  

Table 7.1. Composition of the newly formed Np(V)-borate solids (in at. %) based on XPS and EDS 

analyses (analytical uncertainties lie within 10-20 %). 

Sample B O Na Mg Cl Np(V) 

0.1 M NaCl 0.16M [B]tot  24.4 62.0 9.4 -  4.2 

0.25 M MgCl2 0.16M [B]tot 21.1 68.2 - 6.3  4.5 

5.0 M NaCl phase I 2.1 21.2 40.5 - 32.5 1.3 

5.0 M NaCl phase II* 23.6 57.4 13.6 - 2.0 4.5 

*based on EDS analysis 
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SEM images of the surface of the Np(V)–borate solid phases formed in NaCl and MgCl2 solutions are 

shown in Fig. 7.6. Solid phases collected from samples in 0.1 M NaCl (Fig. 7.6 a) and 0.25 M MgCl2 

solutions (Fig. 7.6 b) show a homogeneous transformation and distribution of Np(V) in the entire 

investigated area. The sample equilibrated in 0.1 M NaCl contains very thin (~20 nm) hexagonal 

platelets with a diameter of ~ 500 nm. The structure of the sample equilibrated in 0.25 M MgCl2 looks 

similar in shape but appears more amorphous. The investigation of the Np(V)–borate solid phase 

formed in 5.0 M NaCl (Fig. 7.6 c and d) clearly shows the co-existence of two phases. Hence, massive, 

crystalline hexagonal blocks appear surrounded by an amorphous phase. EDS analyses indicated the 

predominance of Na and Cl in the block structures, whereas the amorphous phase (phase II in Table 

7.1) would correspond to the newly formed Np(V)–borate phase. The identification of NaCl and 

presence of an amorphous Np(V) phase is consistent with the observations collected by XRD, where 

only the pattern of NaCl could be identified and no additional peaks of a newly formed Np(V)–borate 

solid phase were observed.  

 

                         

                         

Figure 7.6. SEM-images of the new formed solubility-controlling Np(V) solid phases in the presence 

of borate ([B]tot = 0.16 M ) in 0.1 M NaCl (a) and 0.25 M MgCl2(b) and 5.0 M NaCl (c, d). 

a 

c 

b

  
b 

d 



Solubility of Np(V) and UV-Vis/NIR in the presence of borate 

 

93 

 

7.1.1.2 XANES and EXAFS measurements 

XANES and EXAFS spectra of the newly formed Np(V)-borate compounds were collected for the 

solid phases equilibrated in 0.1 M and 5.0 M NaCl and 0.25 M MgCl2 with [B]tot = 0.16 M and 

pHm ~8.5. XANES spectra of these three samples are shown in Fig. 7.7, together with the reference 

spectra of Np(V) (solid phase) as previously reported in the literature [42]. The shape and energy 

position of the inflection point of the XANES spectra unequivocally confirm the predominance of 

Np(V) in all measured samples, and disregards any (unlikely) reduction or oxidation process occurring 

in the course of the experiment. 
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Figure 7.7. Np-LIII edge XANES spectra of solid phases collected from solubility experiments in 0.1 

M NaCl, 5.0 M NaCl and 0.25 M MgCl2 with [B]tot = 0.16 M and pHm = ~8.5. 

 

Fourier Transforms and the k3-weighted EXAFS spectra for the Np(V)–borate phases are shown in 

Fig. 7.8 together with the corresponding best fit models. The k3-weighted χ(k) spectra of samples from 

0.1 M NaCl, 5.0 M NaCl and 0.25 M MgCl2 solutions are very similar. The greatest differences are 

observed in the k-space ~6-8 Å-1, where the oscillation splits showing a beat pattern between 6-7 and 

a maxima at ~7.7 Å-1 for the NaCl samples, whereas in the MgCl2 sample this oscillation is dampened 

with a maxima at ~ 7.4 Å-1. This difference can be explained with the presence of the different cations 

(Na+ and Mg2+) in the Np(V)–borate structure.  
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Figure 7.8. Np LIII-edge experimental spectra a) k3-weighted EXAFS spectra; b) corresponding 

Fourier transform of the EXAFS spectra and c) experimental (black solid line) and fitted (red line) 

k3-weighted EXAFS function of the Fourier-back transform spectra (range: ca. R+ΔR = 1.1-3.7 Å).  



Solubility of Np(V) and UV-Vis/NIR in the presence of borate 

 

95 

 

The spectral features observed in the k3-weighted χ(k) spectra are intensified in the k3-weighted 

EXAFS function of the Fourier-backtransform spectra (Fig. 7.8 c), especially for the MgCl2 sample. 

The first two shells of the Radial Structure Functions (RSF) (modulus, |FT|, and imaginary parts, 

ImFT) described at R+Δ ~1.4 and ~1.9 Å represent the axial (Oax) and equatorial oxygen atoms (Oeq) 

(Fig. 7.8 b). The distances to the axial oxygen atoms are very similar in all measured samples, whereas 

distances from Np(V) to the equatorial oxygen atoms of the sample from MgCl2 solution are slightly 

longer, although they lay within the error of the fit. 

A very small shift to longer distances is observed for the third shell (corresponding to B) depending 

upon concentration and type of background electrolyte. The structural parameters resulting from the 

EXAFS fit, using FEFF 8.4 calculated paths of an atomic cluster based on a starting structure of a 

Neptunyl-borate (Ba2(NpO2)6.59[B20O36(OH)2]H2O) are shown in Table 7.2 [155]. For the fit, the data 

was transformed in the k-space between ~ 4.3–11.9 Å-1 and in the R-space between ~ 1.1-3.7 Å. The 

fit was performed in the FT-1 space.  

To model the experimental obtained spectra, a step-by-step approach was used. First Oax were fitted, 

followed by Oeq and at last boron (B) was added to the structure. The best results are given by two 

model fits. In the first model (fit 1) all coordination numbers (CN) were fixed to the following values: 

Oax = 2, Oeq = 5, B = 2; in the second model (fit 2) the coordination numbers were fixed to: Oax = 2, 

Oeq = 6 and B = 3. These coordination numbers are consistent with previously published Np(V)– 

borate compounds [104, 155]. 

As already observed in the Radial Structure Functions (RSF) (Fig. 7.8 b), the Np–Oax distances are 

similar for all samples, and the Np–Oeq distances are comparable for all samples within error. The fit 

of the Np–B shell shows different Np–B distances depending on the type and concentration of 

background electrolyte. The shortest Np–B distance of ~ 3.02 Å is found in the sample from 0.1 M 

NaCl and the longest Np–B distance of 3.13 Å is observed in the sample from dilute MgCl2 solution. 

The sample from concentrated NaCl shows a distance of 3.09 Å. The relatively short Np–B distances 

found in the structures are comparable to the Np–B distance in the starting structure indicating a 

bicoordination of the boron atoms to two equatorial oxygens. 

Debye Waller (DW) values fitting Oax are relatively small and were fixed for the solids from 0.25 M 

MgCl2 and 5.0 M NaCl to the value resulted from the fits using only Oax. Debye Waller values of Oeq 

are generally higher (~ 0.01) in all fits of all three samples indicating a less stable structure. 
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Table 7.2. Structural parameters obtained from the EXAFS evaluation of Np(V) solid phases formed 

in borate-bearing NaCl and MgCl2 solutions. 

Sample Path CN R [Ǻ] σ2[Ǻ2] ΔE0 [eV] R-factor 

0.1 M NaCl / 0.16 M [B]tot / FIT 1 Np-Oax 2 1.82  0.001 9.56 0.166 

 Np-Oeq 5 2.50 0.009   

 Np-B 2 3.02 0.004   

 Np-Oax1-Np-Oax1 2 3.64 0.003   

 Np-Oax1-Np-Oax2 2 3.71 0.002   

0.1 M NaCl 0.16 M [B]tot / FIT 2 Np-Oax 2 1.82 0.001 9.14 0.168 

 Np-Oeq 6 2.50 0.011   

 Np-B 3 3.02 0.005   

 Np-Oax1-Np-Oax1 2 3.63 0.003   

 Np-Oax1-Np-Oax2 2 3.71 0.002   

5.0 M NaCl 0.16 M [B]tot / FIT 1 Np-Oax 2 1.84 0.001 13.56 0.096 

 Np-Oeq 5 2.52 0.010   

 Np-B 2 3.09 0.002   

 Np-Oax1-Np-Oax1 2 3.68 0.004   

 Np-Oax1-Np-Oax2 2 3.75 0.002   

5.0 M NaCl 0.16 M [B]tot / FIT 2 Np-Oax 2 1.84 0.001 13.6 0.099 

 Np-Oeq 6 2.53 0.013   

 Np-B 3 3.09 0.004   

 Np-Oax1-Np-Oax1 2 3.68 0.004   

 Np-Oax1-Np-Oax2 2 3.75 0.002   

0.25 M MgCl2 0.16 M [B]tot / FIT 1 Not possible - - - - - 

0.25 M MgCl2 0.16 M [B]tot / FIT 2 Np-Oax 2 1.85 0.001 15.17 0.065 

 Np-Oeq 6 2.51 0.017   

 Np-B 3 3.13 0.001   

 Np-Oax1-Np-Oax1 2 3.70 0.004   

 Np-Oax1-Np-Oax2 2 3.78 0.002   

0.25 M MgCl2 0.16 M [B]tot / FIT 3 Np-Oax 2.1 1.85 0.001 14.72 0.047 

 Np-Oeq 2.8 2.50 0.007   

 Np-B 3.1 3.13 0.001   

 Np-Oax1-Np-Oax1 2 3.70 0.004   

 Np-Oax1-Np-Oax2 2 3.78 0.002   
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The Debye Waller (DW) values fitting the Np–B distances lie within the range of 0.005- 0.002 for 

both solids from NaCl solutions. For the solid from MgCl2 solution the Debye Waller values behave 

slightly different. The structure could not be fitted with fit 1 due to negative Debye Waller values, 

whereas fit 2 provides good results. A third fit (fit 3) was performed in which the coordination numbers 

were left free and the Debye Waller factors were fixed to 0.005 – 0.002. The resulting CN for Oax 

remain 2, whereas Oeq have a CN = 2.8 with a relatively high error of 1.6. The CN for boron is 3.1 

with a relatively high error of 1.3. The results of the third fit suggest a CN for the equatorial oxygens 

between 1 -5 and for boron a CN between 2- 4. 

All fits confirmed the Np(V)–borate compound formed in 0.1 M NaCl as the most stable and well 

crystallized structure, whereas the structures formed in 5 M NaCl and in 0.25 M MgCl2 are less stable 

and undefined probably consisting of a mixture of different phases. Note that EXAFS analyses are in 

good agreement with the findings obtained by XRD and SEM–EDS techniques.  

7.1.2 Np(V)–borate interactions in MgCl2 solutions: aqueous speciation by 

UV–Vis/NIR spectroscopy 

Absorption spectra of Np(V) measured with 0 M ≤ [B]tot ≤ 0.16 M in 0.25 M and 3.5 M MgCl2 

solutions at pHm = 8 and 9 are presented in Figs. 7.9 and 7.10, respectively. Np(V) absorption spectra 

measured for the same background solutions but in the absence of borate show the characteristic 

NpO2
+ absorption band with a peak maximum at λ ~ 980 nm [156]. In 3.5 M MgCl2 a peak shift to 

higher wavelengths and peak broadening can be observed indicating the formation of Np(V)-chloro 

complexes, in good agreement to previous investigations in CaCl2 media [59]. At very low [B]tot 

([B]tot = 0.004 M), only a minor decrease in the absorbance of the main band can be observed, 

indicating that uncomplexed NpO2
+ predominates in solution. In 0.25 M MgCl2 systems and for 

[B]tot ≥ 0.04 M the intensities of the absorption band decrease, the widths increase, and peak maxima 

are shifted to higher wavelengths by ~ 2 nm at pHm = 8 and ~ 5 nm at pHm = 9, respectively. The 

results clearly indicate the formation of a Np(V)–borate complex in dilute MgCl2 systems. The more 

pronounced shift and broadening of the peak observed at pHm = 9 indicate stronger influence of borate 

on the Np(V) speciation at higher pHm and the possible formation of more than one Np(V) borate 

species. 

In 3.5 M MgCl2 solutions at pHm 8, an increase of the intensity of the main absorption band at 

~980.5 nm can be observed in the presence of 0.004 M [B]tot. The unexpected increase in the intensity 

is probably caused by an analytical or experimental error and cannot be explained at the moment. As 

already observed in dilute MgCl2 solutions, further increase of [B]tot leads to a peak shift of the main 

absorption band to higher wavelengths and a pronounced increase of the FWHM (full width at half 
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maximum). In contrast to the findings in 0.25 M MgCl2 solutions, no significant pHm dependence is 

observed in 3.5 M MgCl2 solution. 
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Figure 7.9. UV-Vis/NIR absorption spectra of Np(V) in 0.25 M MgCl2 solutions at pHm 8 -9 in the 

presence of borate (0 M ≤ [B]tot ≤ 0.16 M). 
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Figure 7.10 .UV-Vis/NIR absorption spectra of Np(V) in 3.5 M MgCl2 solutions at pHm 8-9 

in the presence of borate (0 M ≤ [B]tot ≤ 0.16 M). 

 

Based on the UV-Vis/NIR results, the formation of at least one Np(V)–borate complex has to be 

considered for MgCl2 solutions with [B]tot ≥ 0.04 M and pHm = 8 – 9. In order to quantify the 

concentration / fraction of the Np(V)–borate aqueous species, the NpO2
+ absorption band was 
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subtracted from the spectra measured in the presence of borate. The deconvoluted spectra of the 

samples at pHm = 8 with [B]tot = 0.04 M and 0.16 M are shown in Fig. 7.11. The figure clearly shows 

the contributions of NpO2
+ and Np(V)–borate complex at  = 980 nm and ~ 985 nm, respectively. 

Based on the known Np(V) concentrations, the extinction coefficient (ε) of the Np(V)–borate species 

was quantified as ~ 400 L mol-1 cm-1, and the ratio NpO2
+:Np(V)–borate was calculated as summarized 

in Table 7.3. As discussed above, the formation of a second Np(V)–borate species takes place at 

pHm = 9 and high [B]tot. The quantitative determination of the concentration of this second species was 

not possible due its minor contribution to the overall signal and to the limited number of spectra 

available at high [B]tot. 

Note that no quantitative data was obtained in 3.5 M MgCl2 solutions due to the unknown amount of 

additional Np(V)–Cl complexes present in solution. Experimental solubility studies with Np(V) in 

concentrated MgCl2 solutions are currently on-going at KIT–INE with the aim of deriving the 

corresponding thermodynamic and activity models. Although the formation of binary Np(V)–Cl 

species have been already reported in the literature, the possible formation of ternary Mg–Np(V)–Cl 

species analogous to those described for Np(V) in concentrated CaCl2 systems (Fellhauer, 2013) needs 

to be evaluated [59]. 
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Figure 7.11. Peak deconvolution of a Np(V) spectrum in 0.25 M MgCl2 at pHm = 8 with [B]tot = 0.04 M 

(left) and [B]tot = 0.16 M (right) showing the absorption band of the Np(V)–borate complex at 

 ~985 nm separated from the absorption band of NpO2
+ at 980 nm. 
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Table 7.3. Fraction of NpO2
+ and Np(V)–borate complex as calculated based on the peak 

deconvolution of UV–Vis/NIR spectra collected in 0.25 M MgCl2 solutions at pHm = 8 and 9 with 

0.004 M  [B]tot  0.16 M. 

Matrix [B]tot pHm NpO2
+ Np(V)–borate 

0.25 M MgCl2 0.004 M 8 99 % 1 % 

0.25 M MgCl2 0.04 M 8 88 % 12 % 

0.25 M MgCl2 0.16 M 8 69 % 31 % 

0.25 M MgCl2 0.004 M 9 84 % 16 % 

0.25 M MgCl2 0.04 M 9 73 % 27 % 

0.25 M MgCl2 0.16 M 9 36 % 64 % 

 

As already discussed in previous sections of this PhD thesis, the speciation of boron is highly complex. 

Several borate species, whose concentration is strongly dependent on pHm, [B]tot, type and 

concentration of background electrolyte, could behave as possible complexing ligands. In order to 

determine the most likely borate ligand in the Np(V)–borate system, the estimated 

[Np-borate]/[NpO2
+] ratio was plotted against the concentrations of the different possible borate 

species B(OH)4
-, B3O3(OH)4

- and B4O5(OH)4
-, as calculated with the Pitzer model reported by Felmy 

et al. [81] and described in chapter 3 and 9. As suggested by Schott and co-workers [83] for the systems 

Eu(III)-borate, a correlation with the contributions of all polyborate species was also evaluated. Only 

considering B(OH)4
- as complexing ligand a linear correlation with a suitable slope (slope ~1) could 

be achieved (see Fig. 7.12). Although the complex formation between actinides and polyborates has 

been suggested previously [83], the monomer B(OH)4
- has the highest Lewis base character compared 

to the bigger polyborate anions (with larger delocalization of the charge) and therefore appears as 

reasonable candidate for the complexation with Np(V). Based on this hypothesis, the complexation of 

Np(V) with borate can be described as:  

NpO2
++ B(OH)4

– ⇌ NpO2[B(OH)4](aq)                  (7.1) 

with  

log *β(1,1) = log [NpO2[B(OH)4](aq)] – log [NpO2
+] – log [B(OH)4]               (7.2) 
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With equation 7.2 a correlation between the logarithmic concentration ratios of the Np(V) species and 

the concentration of B(OH)4
- with the y-intercept log *β(1,1) can be formulated: 

𝑙𝑜𝑔
[ 𝑁𝑝𝑂2 [𝐵(𝑂𝐻)4] ]

[𝑁𝑝𝑂2
+][𝐵(𝑂𝐻)4

−]
= 𝑙𝑜𝑔 *𝛽(1,1) + 𝑙𝑜𝑔[𝐵(𝑂𝐻)4]                   (7.3) 
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Figure 7.12. Linear correlation of the spectroscopically determined log (Np(V)–borate] / [NpO2
+]) 

ratio with log [B(OH)4
–] in 0.25 M MgCl2 solution. For comparison the correlations of the 

spectroscopically determined log ([Np(V)–borate]/[NpO2
+]) ratio with log [B3O3(OH)4

-], log 

[B4O5(OH)4
2-] and log [B3O3(OH)4

- + B4O5(OH)4
2-] together with the fitted slopes are shown. 
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According to equation 7.3, a slope of ~ 1 is expected for the plot of log ([NpO2[B(OH)4](aq)] / 

[NpO2
+]) vs. log [B(OH)4

–]. The slope of 0.72 obtained in Fig. 7.12 does not allow a reliable estimation 

of log *β(1,1) for the investigated Np(V)–borate system. Note that a key point in this linear correlation 

is the [B(OH)4
-]free, which in the present work was calculated with the thermodynamic and activity 

models reported by Felmy and co-workers [81]. Hence, uncertainties affecting the borate speciation 

in this model will lead to deviations in the linear plot (and consequently in the slope) shown in Fig. 

7.12.  

 Conclusions 

Solubility studies with NpO2OH(am) combined with accurate solid phase characterization and 

UV-Vis/NIR investigations confirm that the presence of borate strongly affects both the aqueous and 

solid speciation of Np(V)) in dilute to concentrated NaCl and MgCl2 solutions at pHm = 8 and 9 and 

[B]tot ≥ 0.04 M. UV–Vis/NIR investigations confirm the formation of at least one Np(V)–borate 

complex in MgCl2 solutions. A much weaker interaction is observed in concentrated MgCl2 solutions, 

as a result of the competition between Mg2+ and NpO2
+ for borate complexation. The evaluation of the 

spectroscopic data collected suggests B(OH)4
- as most probable complexing borate species in the 

aqueous phase, although the exact stoichiometry of the complexation reaction and the determination 

of a formation constant was not feasible in this work. A similar trend in borate complexation was 

observed for Cm(III) in NaCl, CaCl2 and MgCl2 solutions with comparable [B]tot using TRLFS (see 

chapter 4).  

In spite of the clear formation of Np(V)–borate aqueous species in solution at moderate pHm, no 

significant increase in the solubility of NpO2OH(am, fresh) is observed in the presence of [B]tot ≤ 0.4 

M. On the contrary and similarly to Nd(III), a clear drop in the Np(V) solubility occurs in borate-

bearing NaCl and MgCl2 solutions with pHm ≤ 9. The drop in solubility is accompanied by a visible 

change of the initial solid (from green to white-gray), confirming the formation of a new solid phase. 

The formation of this previously unreported Np(V)–borate solid phase is further confirmed by XRD, 

XPS, SEM–EDS and EXAFS analysis. This solid phase transformation constitutes a previously 

unreported retention mechanism for the highly mobile Np(V). A first thermodynamic description and 

model of the Np(V) interactions in the presence of borate in NaCl and MgCl2 systems is proposed in 

chapter 9. 
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8 Solubility of U(VI) in the presence of borate 

 

The solubility of U(VI) was studied from undersaturation conditions in the presence of 

0 M ≤ [B]tot ≤ 0.16 M with 4.5 ≤ pHm ≤ 9.3 in 0.1 M and 5.0 M NaCl and 0.25 and 3.5 M MgCl2 

solutions. Samples in 0.1 M and 5.0 M NaCl systems with pHm ≥ 7.5 were prepared with 

Na2U2O7·H2O(cr) as initial solid phase. In all samples in 0.25 and 3.5 M MgCl2 systems and in 0.1 M 

and 5.0 M NaCl systems with pHm < 7.5 freshly prepared meta-schoepite UO3·2H2O(cr) was added as 

initial solid phase. For comparison purposes, samples with U(VI) in the same pHm and ionic strength 

conditions but without borate were prepared and measured following the same experimental approach. 

The U(VI) concentration was regularly quantified in combination with the measurement of pHm for 

up to 380 days. Solid samples from selected solubility experiments were characterized by XRD after 

attaining equilibrium conditions. 

 Solubility of U(VI) in NaCl and MgCl2 solutions 

The solubility of U(VI) in 0.1 M, 5.0 M NaCl, 0.25 M MgCl2 and 3.5 M MgCl2 solutions with 

0 M ≤ [B]tot ≤ 0.16 M is shown in Fig. 8.1 and Fig. 8.2. The figures also show the solubility of 

UO3·2H2O(cr) and Na2U2O7·H2O(cr) in NaCl and MgCl2 solutions as calculated using the 

thermodynamic and (SIT) activity models reported elsewhere [53]. 

No effect of borate on the solubility of U(VI) is observed in dilute to concentrated NaCl solutions at 

pHm ≤ 6.5 (solubility control by UO3·2H2O(cr)). The weak complexation capacity of borate is not 

sufficient to outcompete the cationic hydrolysis species of U(VI) prevailing in this pH region. Note 

also that in this pHm region the non-complexing B(OH)3(aq) species is dominating the aqueous 

chemistry of boron. These data are also in excellent agreement with the solubility of UO3·2H2O(cr) as 

calculated in the absence of borate. In 0.1 M and 5.0 M NaCl solutions at pHm ≥ 7.5, a solubility 

increase with increasing [B]tot is observed. This effect is more pronounced in 5.0 M NaCl solution 

with an increase in U(VI) solubility of about 1.5 orders of magnitude, rather than in 0.1 M NaCl 

solution where a slight increase of ~ ½ order of magnitude is seen. This solubility increase 

unequivocally hints towards the formation of U(VI)–borate aqueous complexes within the pH-range 

7.5–9. Lucchini et al. investigated the solubility of U(VI) in a synthetic brine solution (2.2-4.2 M NaCl 

and ~ 0.01 M [B]tot) and found no effect of borate on the U(V) solubility at pHm ~8.9 but the used 

[B]tot are significantly lower compared to the present experiments [157]. 

In contrast to the observations made for Nd(III) and Np(V), no decrease in the solubility of U(VI) is 

observed in NaCl solutions within the timeframe of the experiment (380 days). Hence, in spite of the 

observed U(VI)–borate interaction in the aqueous phase, such interaction did not progress further 
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towards the formation of a secondary U(VI)–borate solid phase. It is worth mentioning that [U(VI)] 

in equilibrium with Na2U2O7·H2O(cr) at pHm = 7.5 is significantly lower than the solubility-limit set 

by Nd(OH)3(am) and NpO2OH(am), and thus that the solubility product of a potentially-forming 

U(VI)–borate solid phase is not exceeded. Although not evaluated in the present work, the formation 

of a U(VI)–borate solid phase at pHm 9 and absence of Na+ (I  0) cannot be completely ruled out. 

In these conditions, UO3·2H2O(cr) allows significantly higher [U(VI)] in solution compared to 

Na2U2O7·H2O(cr) (1 to 2 log-units difference, see dashed lines in Fig. 8.1), which may lead to the 

formation of a secondary U(VI)–borate solid phase. 
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Figure 8.1. Solubility of UO3·2H2O(cr) and Na2U2O7·H2O (cr) in the presence of 0 M ≤ [B]tot ≤ 0.16 M 

in 0.1 M and 5.0 M NaCl solutions. Comparison with calculated solubility of UO3·2H2O(cr) (blue line) 

and Na2U2O7·H2O (cr) (black line) in the absence of borate as reported in Altmaier et al. [53]. 

 

A weaker effect of borate (compared to the NaCl system) on the U(VI) solubility can be observed for 

dilute to concentrated MgCl2 systems. This effect is especially visible at pHm = 7.5 and [B]tot = 0.16 M. 

As already observed in the Np(V) solubility studies, actinide borate interactions in MgCl2 solutions 

are less pronounced than in NaCl solutions at comparable pHm and ionic strength conditions. This 

effect is likely caused by a changed boron speciation in MgCl2 media due to an interaction of Mg2+ 

with borate species in solution. This effect was also hinted in 11B-NMR experiments (see chapter 3).  

In MgCl2 systems, the solubility data in the borate-free systems is partly scattered and lower than the 

expected solubility reported in the literature [53]. The lower solubility is likely caused by differences 

in the crystallinity and particle size of the initial solid phase controlling the solubility of U(VI).  
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Figure 8.2. Solubility of UO3·2H2O(cr) in the presence of 0 M ≤ [B]tot ≤ 0.16 M in 0.25 M and 3.5 M 

MgCl2 solutions. Comparison with calculated solubility of UO3·2H2O(cr) in the absence of borate 

(solid line) as reported in Altmaier et al. [53]. 

 

 Solid phase characterization 

XRD diffractograms obtained for selected solid phases are shown in Fig. 8.3. In all cases the measured 

patterns agree very well with those reported for UO3·2H2O (cr) JCPDF file No: 43-0364 [137] and 

Na2U2O7·H2O(cr) [53], indicating that the bulk U(VI) controlling solid phase in all investigated 

samples is not affected by the presence of borate. Chernorukov et al. prepared several solid 

uranoborates with Na+ and Mg2+ and investigated their stability [88-91, 93, 94]. Since high 

temperatures (T ≥ 870°C) are needed to synthesize these solid phases, it is very unlikely that similar 

uranoborates are forming under the investigated conditions.  
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Figure 8.3. XRD pattern of freshly prepared initial UO3·2H2O(cr), UO3·2H2O(cr) reference [137] and 

UO3·2H2O(cr) alteration phases from solubility experiments in NaCl and MgCl2 systems with 

0 M ≤ [B]tot ≤ 0.16 M at pHm 6–7.5 and initial Na2U2O2·H2O (cr) and Na2U2O2·H2O (cr) alteration 

phases from solubility experiment in 0.1 M NaCl and [B]tot = 0.16 M. 

 

 Conclusions 

Experimental data from U(VI) solubility studies in the presence of borate showed an increase in U(VI) 

solubility in NaCl systems at 7.5 ≤ pHm ≤ 9 for [B]tot ≥ 0.04 M likely caused by the formation of 

aqueous U(VI)-borate complexes. A weaker effect of borate is observed in dilute to concentrated 

MgCl2 solutions, where a slight solubility increase at pHm = 7.5 and [B]tot = 0.16 M can be seen. No 

drop in U(VI) solubility caused by the transformation of the initial solid phase as observed in Nd(III) 

(see chapter 4) and Np(V) systems (see chapter 7) is found in NaCl and MgCl2 solutions under the 

investigated conditions. This behavior is likely related with the very low uranium concentration 

imposed by Na2U2O7·H2O(cr) as solubility controlling-phase in NaCl media under weakly alkaline 
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conditions, although it could also be due to slow kinetics. In very dilute systems (absence of Na+), the 

higher uranium concentrations under weakly alkaline conditions set by UO3·2H2O(cr) may lead to the 

formation of secondary U(VI)–borate solid phases. The observations collected in this work allow 

neither confirming nor rejecting the latter hypothesis, and thus provide room for additional studies.  
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9 Chemical and thermodynamic model 

 

Experimental solubility data and speciation information described in chapters 4 and 7 are jointly 

evaluated in the following with the aim of deriving comprehensive chemical, thermodynamic and 

(SIT) activity models for Nd(III)/Cm(III) and Np(V). The thermodynamic and activity models 

reported in Felmy and Weare for the system Na–K–Ca–Mg–H–CI–SO4–CO2–B(OH)4–H2O have been 

used to calculate the speciation of borate in dilute to concentrated NaCl and MgCl2 solutions [81]. The 

Pitzer approach is used in the latter publication to calculate activity coefficients, and thus these have 

been converted to the SIT formulism using the approach described elsewhere [158]. A short 

description of the borate model derived by Felmy and Weare is provided in the following section. 

 Chemical and thermodynamic models reported by Felmy and Weare (1986) 

Felmy and Weare derived thermodynamic and Pitzer activity models for the system Na–K–Ca–Mg–

H–CI–SO4–CO2–B(OH)4–H2O at 25°C based on previous experimental studies by Ingri et al., among 

others [69, 70]. The authors coupled their model to the previously reported thermodynamic and Pitzer 

activity models by Harvie et al. describing the system Na–K–Ca–Mg–H–CI–SO4–CO2–H2O at 25°C, 

and included the proposed borate aqueous species and solid compounds [159]. Stability constants for 

the different borate species were evaluated from various studies on aqueous borate chemistry, 

including solubility, emf and isopiestic studies performed under a large variety of experimental 

conditions [69, 70, 160]. The stability constants for the different borate species and the estimated 

activity coefficients by the authors are summarized in Tables 9.1, 9.2 and 9.3. 

Table 9.1. Borate equilibria selected in the chemical and thermodynamic model reported by Felmy 

and Weare (1986).  

Reactions ΔrG°m (kJ/mol) log K° 

B(OH)3(aq) + H2O ⇋ B(OH)4
- + H+ 52.74 -9.24 

B(OH)3(aq) + Mg2+ + H2O ⇋ MgB(OH)4
+ + H+ 44.75 -7.84 

3 B(OH)3(aq) ⇋ B3O3(OH)4
- + 2H2O + H+ 42.97 -7.53 

4 B(OH)3(aq) ⇋ B4O5(OH)4
2- + 3H2O + 2H+ 92.09 -16.13 
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Table 9.2. Cation-anion interaction parameters estimated by Felmy and Weare for aqueous borate 

species. 

Cation Anion β(0) β(1) C(ϕ) 

Na+ B(OH)4
- -0.0427 0.089 0.0114 

Na+ B3O3(OH)4
- -0.056 0.91 - 

Na+ B4O5(OH)4
2- -0.11 -0.4 - 

MgB(OH)4
+ Cl- 0.16 - - 

CaB(OH)4
+ Cl- 0.12 - - 

 

Table 9.3. Anion-anion interaction parameters estimated by Felmy and Weare for aqueous borate 

species. 

Anion Anion Θ ψNa+ 

B(OH)4
- Cl- -0.065 -0.0073 

B3O3(OH)4
- Cl- 0.12 -0.024 

B4O5(OH)4
2- Cl- 0.074 0.026 

 

The Pitzer ion interaction parameters estimated by Felmy and Weare are converted to the SIT 

formulism as described in [161, 162], and are summarized in Table 9.4. The SIT ion interaction 

coefficient for the ion pair B(OH)4
-/Mg2+ was estimated based on charge analogies, as described in 

[163]. All ion interaction coefficients εij used in the thermodynamic calculations are shown in Table 

9.4. No ion interaction coefficients for the ion pairs B3O3(OH)4
-/Mg2+ and B4O5(OH)4

2- /Mg2+ were 

used in the calculations.  
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Table 9.4. SIT ion interaction coefficients used in the model calculations. 

Species i j  εij  Reference 

H+ Cl- 0.12 [22] 

Na+ Cl- 0.03 [22] 

Mg2+ Cl- 0.19 [22] 

B(OH)4
- Na+ -0.07 [81] 

B(OH)4
- Mg2+ 0.15 Charge analogy 

B3O3(OH)4
- Na+ -0.08 [81] 

B4O5(OH)4
2- Na+ -0.23 [81] 

MgB(OH)4
+ Cl- 0.05 [81] 

 

 Chemical, thermodynamic and activity models derived in this work for 

Ln/An(III) and Np(V) borate interactions 

In order to derive correct thermodynamic data it is essential to refer to a complete and correct chemical 

model. Only if there is an unambiguous model for the relevant chemical equilibrium reactions 

controlling an aqueous system established, it is possible to explicitly quantify these processes within 

the concepts of equilibrium thermodynamics. In this chapter, a first preliminary thermodynamic 

description is proposed for the assessment of Ln/An(III) and Np(V) borate interactions. Note that 

following the discussions in previous chapters of this work there still are significant uncertainties 

related to key aspects which are required to allow for a comprehensive thermodynamic treatment. For 

instance, uncertainties related to borate speciation, the composition of aqueous actinide–borate 

complexes, the stability and exact composition of solubility limiting solid phases, or overall kinetic 

effects remain to be considered. In spite of these shortcomings which preclude a final thermodynamic 

description, the present PhD study nevertheless tries to explore to which extend preliminary 

thermodynamic data and models can be derived, based upon the new experimental evidence derived 

in this work. It is to note that in view of the several assumptions required in this process, the proposed 

chemical and thermodynamic models can serve only as a first starting point and rough thermodynamic 
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estimation of an-borate interactions in waste disposal scenarios. It will be required to verify and most 

likely improve these models and data in future studies. 

In the following, a thermodynamic description for the systems Ln(III)/Cm(III)–Na–Mg–H–Cl–H2O 

and Np(V)–Na–Mg–H–Cl–H2O is developed based on the experimental solubility data, solid phase 

characterization and aqueous speciation data gained in this work. Note that a more accurate picture is 

obtained for Np(V), due to the appropriate knowledge of the Np(V)–borate solid phase stoichiometry 

and the simplified hydrolysis and consequent interpretation of the aqueous chemistry in the presence 

of borate. A much incomplete insight is achieved for Ln/An(III) because of the limited information on 

the stoichiometry of the solid phases and a more complex aqueous chemistry, both in the absence and 

presence of borate. 

The SIT approach has been used in this work to account for ion interaction processes. The decision to 

use the SIT approach is based upon the need to estimate model parameter for ion-interaction processes 

based on a limited number of experimental data (log *K’s). The number of parameters to be fitted in 

the thermodynamic modelling with Pitzer is significantly larger than for SIT, and thus consequently 

larger data sets are required. The thermodynamic model reported by Felmy and Weare (1986) is used 

in the present study to describe the aqueous borate speciation in dilute to concentrated NaCl and MgCl2 

solutions.  

9.2.1 Thermodynamic description of the Np(V)–borate system 

The experimental data obtained in solubility studies with Np(V) in NaCl and MgCl2 solutions with 

[B]tot = 0.16 M (chapter 7) showed a significant decrease of the Np(V) concentration at pHm ≤ 9 in 

NaCl and dilute MgCl2 solutions. Solid phase characterization by XPS, XRD, SEM–EDS and EXAFS 

clearly confirmed the transformation of the initial solid NpO2OH(am,fresh) to a hitherto unknown 

borate bearing Np(V) solid phase. Note that strong kinetics were observed in all the cases. This has 

relevant implications in the process of deriving the chemical and thermodynamic models, and only 

those samples with longer equilibration times have been considered in the thermodynamic 

interpretation of this system. These are properly marked in the corresponding figures and accordingly 

discussed in the text. 

XPS and EXAFS analyses confirmed that the most crystalline Np(V)-borate solid phase formed in 

dilute NaCl solutions (see section 7.1.1). Kinetics of solid phase transformation in 5.0 M NaCl were 

faster, and resulted in a significantly amorphous solid phase, which is expectedly more soluble than 

such obtained in 0.1 M NaCl. No accurate data on the stoichiometry of the Np(V)–borate solid phase 

forming in 5.0 M NaCl was obtained by XPS or SEM–EDS, and thus these data have been disregarded 

in the thermodynamic interpretation. Regarding MgCl2 systems, a solid phase transformation was only 

observed in dilute solutions. As discussed in chapter 3, a strong interaction of aqueous borate species 
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and Mg2+ takes place in concentrated MgCl2 solutions according to the model of Felmy et al., 

potentially outcompeting the interaction of borate with actinides. Based on the experimental evidences 

collected in this work, stoichiometries of the Np(V)–borate solid phases forming in dilute NaCl and 

MgCl2 solutions are considered as NpO2[B5O6(OH)4]·2NaOH(cr) and 

(NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr), respectively. 

UV–Vis/NIR spectroscopy confirmed the formation of a Np(V)–borate complex in MgCl2 solutions 

with [B]tot ≥ 0.04 M and pHm = 8–9 .The [NpO2
+] and [Np(V)–borate] could be determined based on 

the peak deconvolution of the UV–Vis/NIR spectra. The knowledge of [NpO2
+]free is of great 

importance in the determination of the log *K°s,0 of the Np(V)–borate solid phases formed in this 

system. Since no UV–Vis/NIR spectra were collected in 0.1 M NaCl solutions, it is assumed that the 

same aqueous speciation as for dilute MgCl2 systems is retained. 

Evaluation of the UV–Vis/NIR spectra collected in 0.25 M MgCl2 pointed to B(OH)4
– as the most 

likely ligand complexing NpO2
+ in solution. Unfortunately, no accurate stability constant for the 

formation of the NpO2B(OH)4(aq) complex could be determined from the spectroscopic data due to 

inconsistencies with the slope of log ([Np(V)–borate] / [NpO2
+]) vs. log [B(OH)4

–]. In spite of this and 

as a qualitative exercise, an estimate of log *°(1,1) for the complex NpO2B(OH)4(aq) has been 

calculated, and its impact on the solubility of Np(V) evaluated in a second iteration process. 

The assumptions made in the development of the thermodynamic and activity models are hence 

summarized in the following: 

- Not all the solubility data collected for the Np(V) system were in thermodynamic equilibrium. 

Only those experiments with longer equilibration times have been considered for the 

calculation of log *K°s,0. 

- The stoichiometries quantified by XPS and SEM–EDS for the Np(V)–borate solid phases 

(NpO2[B5O6(OH)4]·2NaOH(cr) and (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr)) are representative 

of the complete pH-range evaluated in this study. 

- The Np(V)–borate solid phase controlling the solubility in concentrated NaCl solutions 

(within the timeframe of this study) is of amorphous nature and thus holds greater solubilities 

than the crystalline counterpart forming in dilute systems. 

- The Np(V)–borate aqueous speciation in dilute NaCl and MgCl2 systems is the same. Hence, 

[NpO2
+]free experimentally determined for dilute MgCl2 systems has been also considered in 

the determination of log *K°s,0 in dilute NaCl systems. 

- Only one aqueous Np(V)-borate complex forms, with the stoichiometry NpO2B(OH)4(aq). 
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The steps followed in the development of the thermodynamic and activity model are: 

- Chemical model is taken from the inputs by XPS and SEM–EDS (Np(V)–borate solid phase) 

and UV–Vis/NIR (Np(V)–borate aqueous species), in combination with the speciation model 

of Np(V) in the absence of borate selected in the NEA–TDB. 

- Based on the chemical model derived and on the solubility data under equilibrium conditions, 

determination of log *K’s,0 for the ternary Na/Mg–Np(V)–borate solid phases forming in 

dilute NaCl and MgCl2 systems. Quantification based on [NpO2
+]free determined 

experimentally, without specifically accounting for the complex NpO2B(OH)4(aq). 

- Extrapolation of log *K’s,0 to I = 0 using the SIT ion interaction coefficients described in 

section 9.1. 

- Comparison of calculated solubility of Na/Mg–Np(V)–borate solid phases with available 

experimental data. Assessment of the role of Np(V)–borate aqueous complex, using an 

estimated value of log *°(1,1) for the complex NpO2B(OH)4(aq). 

 

Based on the assumptions summarized above, the solubility of Np(V) in dilute NaCl solutions can be 

described as:  

𝑁𝑝𝑂2[𝐵5𝑂6(𝑂𝐻)4] ∙ 2 𝑁𝑎𝑂𝐻(𝑐𝑟) + 8 𝐻2𝑂 ⇌ 𝑁𝑝𝑂2
+ +  5 𝐵(𝑂𝐻)4

− +  2 𝑁𝑎+ + 2 𝐻+                (9.1) 

with  

𝑙𝑜𝑔*K(s,0)
' = 𝑙𝑜𝑔[𝑁𝑝𝑂2

+] +  5 𝑙𝑜𝑔[ 𝐵(𝑂𝐻)4
−] + 2 𝑙𝑜𝑔[ 𝑁𝑎+] + 2 𝑙𝑜𝑔[ 𝐻+]             (9.1a) 

𝑙𝑜𝑔*K°(s,0) = 𝑙𝑜𝑔*K(s,0)
' + 𝑙𝑜𝑔  𝛾𝑁𝑝𝑂2

+ +  5 𝑙𝑜𝑔  𝛾𝐵(𝑂𝐻)4
−               (9.1b) 

                               +2 𝑙𝑜𝑔  𝛾𝑁𝑎+ + 2 𝑙𝑜𝑔  𝛾𝐻+ − 8 𝑙𝑜𝑔 𝑎𝑤 

Analogously, the solubility of Np(V) in dilute MgCl2 solutions can be described as: 

1

2
(𝑁𝑝𝑂2)2[𝐵5𝑂6(𝑂𝐻)4]2 ∙ 3 𝑀𝑔(𝑂𝐻)2(𝑐𝑟) + 7 𝐻2𝑂 ⇌ 𝑁𝑝𝑂2

+ + 5 𝐵(𝑂𝐻)4
− +

3

2
 𝑀𝑔2+ + 𝐻+      (9.2) 

with  

𝑙𝑜𝑔*K(s,0)
' = 𝑙𝑜𝑔[𝑁𝑝𝑂2

+] +  5 𝑙𝑜𝑔[ 𝐵(𝑂𝐻)4
−] +

3

2
𝑙𝑜𝑔[ 𝑀𝑔2+] + 𝑙𝑜𝑔[ 𝐻+]            (9.2a) 

𝑙𝑜𝑔*K°(s,0) = 𝑙𝑜𝑔*𝐾(𝑠,0)
′ + 𝑙𝑜𝑔  𝛾𝑁𝑝𝑂2

+ +  5 𝑙𝑜𝑔  𝛾𝐵(𝑂𝐻)4
−              (9.2b) 

                         +
3

2
𝑙𝑜𝑔  𝛾𝑀𝑔2+ + 𝑙𝑜𝑔  𝛾𝐻+ − 7 𝑙𝑜𝑔 𝑎𝑤  
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The conditional stability constants for reaction 9.1 and 9.2 are determined from experimental solubility 

data in 0.1 M NaCl and 0.25 M MgCl2 solutions and [B]tot = 0.16 M, respectively. Only data marked 

with (*) have been assumed to be in thermodynamic equilibrium, and thus have been used for the 

calculation of log *K’s,0. The resulting values are the unweighted average of the considered data. In a 

final step, the value of log *K°s,0 is determined by extrapolating the calculated conditional constants 

to I = 0 using Eqs 9.1b and 9.2b for NaCl and MgCl2, respectively. The assigned uncertainty accounts 

for the relevant assumptions made in the development of the thermodynamic model. 

 

Table 9.5. log *K°s,0 values derived in this work for NpO2[B5O6(OH)4]·2NaOH(cr) and 

(NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr) solid phases. 

Reaction log *K°s,0 

𝑁𝑝𝑂2[𝐵5𝑂6(𝑂𝐻)4] ∙ 2 𝑁𝑎𝑂𝐻(𝑐𝑟) + 8 𝐻2𝑂 ⇌ 𝑁𝑝𝑂2
+ +  5 𝐵(𝑂𝐻)4

− +  2 𝑁𝑎+ + 2 𝐻+  –34.1 ± 0.7 

1

2
(𝑁𝑝𝑂2)2[𝐵5𝑂6(𝑂𝐻)4]2 ∙ 3 𝑀𝑔(𝑂𝐻)2(𝑐𝑟) + 7 𝐻2𝑂 ⇌ 𝑁𝑝𝑂2

+ +  5 𝐵(𝑂𝐻)4
− +

3

2
 𝑀𝑔2+ +  𝐻+  –26.0 ± 0.7 

 

The formation of the aqueous complex NpO2B(OH)4(aq) can be described as: 

𝑁𝑝𝑂2
+ +  𝐵(𝑂𝐻)

4
−

⇌ 𝑁𝑝𝑂2𝐵(𝑂𝐻)
4
                    (9.3) 

𝑙𝑜𝑔β(1,1)
' = 𝑙𝑜𝑔[𝑁𝑝𝑂2 𝐵(𝑂𝐻)4] − 𝑙𝑜𝑔[𝑁𝑝𝑂2

+] −  𝑙𝑜𝑔[ 𝐵(𝑂𝐻)4
−]             (9.3a) 

𝑙𝑜𝑔β(1,1)
° = 𝑙𝑜𝑔*β(1,1)

' + 𝑙𝑜𝑔 𝛾𝑁𝑝𝑂2𝐵(𝑂𝐻)4
− 𝑙𝑜𝑔 𝛾𝑁𝑝𝑂2

+  −  𝑙𝑜𝑔  𝛾𝐵(𝑂𝐻)4
−               (9.3b) 

In spite of the inconsistencies with the slope of log ([Np(V)–borate] / [NpO2
+]) vs. log [B(OH)4

–], the 

stability constant for the formation of this complex has been calculated as unweighted average of all 

the experimental points in Fig. 7.12a. The extrapolation to I = 0 is done based on Eq. 9.3b using the 

SIT approach, and results in log °(1,1) = 1.6 ± 0.3. The reader should be cautioned that this value 

should be only considered in scoping calculations, and in the following is used to assess the impact of 

borate aqueous complexes on the solubility of Np(V). Figs. 9.1 and 9.2 show the calculated solubility 

of NpO2[B5O6(OH)4]·2NaOH(cr) in 0.1 M and 5.0 M NaCl with [B]tot = 0.04 M and 0.16 M, together 

with experimental data obtained in this work under the same boundary conditions. The measured low 

Np(V) concentrations at [B]tot = 0.16 M and pHm = 8 and 8.5 in 0.1 M NaCl are well described by the 

model. The high Np(V) concentrations measured at pHm = 9 clearly correspond to metastable 

conditions; longer equilibration times would be needed to attain thermodynamic equilibrium from 
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oversaturation conditions. As expected, the Np(V)–borate complexation is very weak and the 

formation of the estimated Np(V) borate complex NpO2B(OH)4(aq) is only slightly affecting the 

Np(V) solubility at 7.5 ≤ pHm ≤ 10. At lower boron concentrations ([B]tot = 0.04 M), the calculated 

solubility of NpO2[B5O6(OH)4]·2NaOH(cr) is higher, but still lies below the solubility of 

NpO2OH(am,fresh). It is evident that because of the smaller driving force for the transformation of 

NpO2OH(am,fresh) into NpO2[B5O6(OH)4]·2NaOH(cr), longer equilibration times are needed.  

The calculated solubility of NpO2[B5O6(OH)4]·2NaOH(cr) in 5.0 M NaCl and [B]tot = 0.16 M is 

several orders of magnitude lower than the experimentally measured concentration of Np under same 

conditions. Such discrepancies are clearly explained by the presence of an amorphous Na–Np(V)–

borate solid phase. Based on the thermodynamic calculations using the log *K°s,0 determined in this 

work for NpO2[B5O6(OH)4]·2NaOH(cr), it can be hypothesized that the Np(V) solubility in 

concentrated NaCl solutions will further decrease with longer equilibration times due to the 

transformation of the amorphous solid to the thermodynamically more stable crystalline phase. 

The calculated solubility of (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr) in 0.25 M MgCl2 solution with 

[B]tot = 0.04 M and 0.16 M is shown in Fig. 9.3 in combination with experimental solubility data 

determined in this work under analogous boundary conditions. As for the 0.1 M NaCl system, the 

distinct decrease of more than 3 orders of magnitude in the Np(V) solubility at pHm = 8-9 is well 

described with the thermodynamic and activity models derived in this work. Note that experimental 

solubility data at pHm = 9.3 are largely underestimated by the thermodynamic model, basically due to 

the incomplete solid phase transformation in this sample and consequent solubility control by 

NpO2OH(am,hyd). Np(V)–borate complexation has a slight influence on the Np(V) solubility. The 

effect is greater at pHm  9, in good agreement with the UV–Vis/NIR spectra collected at pHm = 8 and 

9. Note that the measured [Np(V)] at pHm ~8.8 was still decreasing slowly and probably will reach the 

calculated level with longer equilibration times. As in the case of dilute NaCl systems, the newly 

formed Mg–Np(V)–borate solid phase shows significantly greater solubility at lower borate 

concentrations ([B]tot = 0.04 M). Although still below the solubility limit of NpO2OH(am,hyd), longer 

equilibration times are needed to achieve a complete solid phase transformation in these experimental 

conditions. Also, it is definitely necessary to perform larger pH variation in the transformation phases 

in order to establish a clear pH dependence of solubility. 
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Figure 9.1. Comparison of experimental solubility data determined in this work for Np(V) in borate-

bearing 0.1 M NaCl solutions and model calculations using log *K’s,0 values derived in this work for 

NpO2[B5O6(OH)4]·2NaOH(cr). Dotted lines corresponding to the upper and lower solubility limits 

calculated with the uncertainty assigned to log*K°s,O. Solid and dashed lines indicate the calculated 

solubility in the absence and presence of NpO2B(OH)4(aq), respectively. 
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Figure 9.2. Comparison of experimental solubility data determined in this work for Np(V) in borate-

bearing 5.0 M NaCl solutions and model calculations using log *K’s,0 values derived in this work for 

NpO2[B5O6(OH)4]·2NaOH(cr). Dotted lines corresponding to the upper and lower solubility limits 

calculated with the uncertainty assigned to log*K°s,O. Solid and dashed lines indicate the calculated 

solubility in the absence and presence of NpO2B(OH)4(aq) in the calculations. 
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Figure 9.3. Comparison of experimental solubility data determined in this work for Np(V) in borate-

bearing 0.25 M MgCl2 solutions and model calculations using log *K’s,0 values derived in this work 

for (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr). Dotted lines corresponding to the upper and lower solubility 

limits calculated with the uncertainty assigned to log*K°s,O. Solid and dashed lines indicate the 

calculated solubility in the absence and presence of NpO2B(OH)4(aq) in the calculations. 

 

9.2.2 Thermodynamic description of the Nd(III)–borate system 

Solubility studies performed in this work with Nd(OH)3(am) (see chapter 4) showed a distinct drop in 

the Nd(III) solubility in NaCl and MgCl2 solutions with [B]tot ≥ 0.16 M. In contrast to similar findings 

in the Np(V) system, no complete solid phase transformation but rather the formation of a Nd(III)–

borate coating on the surface of Nd(OH)3(am) was confirmed by XPS. Based on the outcome of the 

XPS analyses, the stoichiometry of the Nd(III)–borate solid phase forming in 0.1 M NaCl solutions 

has been defined as NaNd[B3O4(OH)3]2(am). On the other hand, XPS provided no conclusive results 

on the stoichiometry of the solid phases forming in MgCl2 systems, and thus the latter have been 

disregarded in the thermodynamic evaluation carried out in this section.  

Similar to observations made for the Np(V)–borate system, the formation of Cm(III)–borate 

complexes at pHm = 8 in NaCl and MgCl2 systems is confirmed by TRLFS. No quantitative evaluation 

of the spectra could be performed for the reasons detailed in section 4.3. Similarly to the Np(V) case, 

the formation of Ln/An(III)–borate complexes has a very minor impact on the overall Nd(III) 

solubility. In this framework, a complex between Ln/An(III) and B(OH)4
– has been postulated in 
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analogy to Np(V). The approach has the same limitations as discussed in the Np(V) case, although 

Nd(III) shows even a more limited experimental database, higher degree of complexity (because of 

the hydrolysis of Ln(III)/An(III) within this pH range), and consequently higher uncertainty. A more 

detailed description is provided below. 

 

The assumptions made in the development of the thermodynamic and activity models are hence 

summarized in the following: 

- The stoichiometry quantified by XPS for the Nd(III)–borate solid phase 

(NaNd[B3O4(OH)3]2(am)) in 0.1 M NaCl is representative of dilute to concentrated NaCl 

systems and of the complete pH-range evaluated in this study. 

- The Nd(III)–borate aqueous species have no impact on the solubility of Nd(III). Hence, log 

*K°s,0 of NaNd[B3O4(OH)3]2(am) has been determined considering only the equilibrium 

between this solid phase and Nd(OH)n
3–n species.  

- The formation of the species NdB(OH)4
2+(aq) has been postulated based on the confirmed role 

of B(OH)4
– as ligand in the Np(V) studies. An upper limit of log *°(1,1) has been provided, so 

that the formation of this species has no effect on the solubility of NaNd[B3O4(OH)3]2(am). 

 

The steps followed in the development of the thermodynamic and activity model are: 

- Chemical model is taken from the inputs by XPS (Nd(III)–borate solid phase) and TRLFS, in 

combination with the speciation model of Nd(III) in the absence of borate derived in Neck et 

al. [24]. 

- Based on the chemical model derived and on the solubility data under equilibrium conditions, 

determination of log *K’s,0 for the ternary Na–Nd(III)–borate solid phase forming in dilute to 

concentrated NaCl systems. Quantification based on the assumption that aqueous Nd(III)–

borate complexes have no impact on Nd(III) solubility. 

- Extrapolation of log *K’s,0 to I = 0 using the SIT ion interaction coefficients described in 

section 9.1. 

- Comparison of calculated solubility of Na–Nd(III)–borate solid phase with available 

experimental data. Assessment of the role of Nd(III)–borate aqueous complexes, using an 

upper limit of log *°(1,1) for the complex NdB(OH)4
2+. 
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According with the assumptions described above, the solubility of NaNd[B3O4(OH)3]2(am) is 

postulated according to  

𝑁𝑎𝑁𝑑[𝐵3𝑂4(𝑂𝐻)3]2 + 10 𝐻2𝑂 ⇌ 𝑁𝑑3+ +  6 𝐵(𝑂𝐻)4
− +  𝑁𝑎+ + 2 𝐻+                          (9.4) 

with  

𝑙𝑜𝑔*K(s,0)
'   = 𝑙𝑜𝑔[𝑁𝑑3+] +  6 𝑙𝑜𝑔[ 𝐵(𝑂𝐻)4

−] + 𝑙𝑜𝑔[ 𝑁𝑎+] + 2 𝑙𝑜𝑔[ 𝐻+]            (9.4a) 

𝑙𝑜𝑔*K°(s,0) = 𝑙𝑜𝑔*𝐾(𝑠,0)
′ + 𝑙𝑜𝑔  𝛾𝑁𝑑3+ +  6 𝑙𝑜𝑔  𝛾𝐵(𝑂𝐻)4

−                            (9.4b) 

       + 𝑙𝑜𝑔  𝛾𝑁𝑎+ + 2 𝑙𝑜𝑔  𝛾𝐻+ − 10 𝑙𝑜𝑔 𝑎𝑤 

The conditional stability constant for reaction 9.4 is determined from the experimentally obtained 

Nd(III) solubility data in dilute to concentrated NaCl solutions with [B]tot = 0.16 M. The value for log 

*K°s,0 was determined by extrapolating the calculated conditional constant log *K’s,0 to I = 0 using Eq 

9.4b and the SIT approach. The value selected for log *K°s,0 in this work is provided in Table 9.6 and 

corresponds to the unweighted average of the values obtained for all NaCl systems. The assigned 

uncertainty accounts for the relevant assumptions made in the development of the thermodynamic 

model. 

 

Table 9.6. log *K’s,0 values derived in this work for the NaNd[B3O4(OH)3]2(am) solid phase. 

Reaction log *K°s,0 

𝑁𝑎𝑁𝑑[𝐵3𝑂4(𝑂𝐻)3]2(𝑎𝑚) + 10 𝐻2𝑂 ⇌ 𝑁𝑑3+ +  6 𝐵(𝑂𝐻)4
− +  𝑁𝑎+ + 2 𝐻+  –38.3 ± 1.2 

 

The formation of Cm(III)–borate complexes has been confirmed by TRLFS studies at pHm = 8 in NaCl 

and MgCl2 solutions, although no quantitative evaluation of the spectra was achieved in the present 

work. Ln(III) complexes with aqueous borate species in comparable conditions are reported in the 

literature. Borkowski et al. postulated the formation of the complex NdHB4O7
2+, with a stability 

constant of log β  = 4.55 ± 0.06 [6]. Note that the stoichiometry of the complex remains hypothetical, 

especially considering that experiments were performed at a single pH value and that the species 

HB4O4
– does not belong to the standard speciation scheme of boron in aqueous solution. Recently, 

Schott et al. reported a weak borate complexation with Eu(III) in aqueous solution at rather high boron 

concentrations (0.3M ≤ [B]tot ≤ 0.7 M) at pHm ~6. The authors defined a Eu(III)-polyborate complex 

assuming that all polyborate species present in solution have the same tendency to complex Eu3+(aq) 
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[83]. For the complex EuB(OR)4
2+ (R = H and or [BO3] units) a formation constant of log β = 2 was 

calculated. 

For the Np(V)–borate system investigated in this work, a very weak Np(V) borate complex with a 

formation constant of log β°(1,1) = 1.6 was estimated. In contrast to the complexes reported in the 

literature for the system Ln(III)–borate, the evaluation of the UV–Vis/NIR spectra of Np(V) in the 

presence of borate identified the monomeric B(OH)4
– as most probable ligand rather than a polyborate 

species. Hence, B(OH)4
– is also postulated as complexing ligand in the Ln/An(III) system. Based on 

the absence of a manifest impact of the complex formation on the solubility of Nd(III), only an upper 

limit for the stability constant of NdB(OH)4
2+ has been estimated (log β° ≤ 3). Both the stoichiometry 

and stability of the postulated complex are to be considered only for scoping calculations. 

𝑁𝑑3+ +  𝐵(𝑂𝐻)4
− ⇌ 𝑁𝑑𝐵(𝑂𝐻)4

2+                    (9.5) 

𝑙𝑜𝑔*β(1,1)
' = 𝑙𝑜𝑔[𝑁𝑑𝐵(𝑂𝐻)4

2+] − 𝑙𝑜𝑔[𝑁𝑑3+] −  𝑙𝑜𝑔[ 𝐵(𝑂𝐻)4
−]             (9.5a) 

𝑙𝑜𝑔*β(1,1)
° = 𝑙𝑜𝑔*β(1,1)

' + 𝑙𝑜𝑔 𝛾𝑁𝑑𝐵(𝑂𝐻)4
2+  − 𝑙𝑜𝑔 𝛾𝑁𝑑3+  −  𝑙𝑜𝑔  𝛾𝐵(𝑂𝐻)4

−              (9.5b) 

The calculated solubility of NaNd[B3O4(OH)3]2(am) in 0.1 M , 1.0 M and 5.0 M NaCl solutions with 

[B]tot = 0.16 M is shown together with experimental data obtained in this work under analogous 

conditions in Fig. 9.4 – 9.6. In 5.0 M NaCl solution the calculated solubility of 

NaNd[B3O4(OH)3]2(am) additional is shown for [B]tot = 0.04 M. In 0.1 M and 1.0 M NaCl with 

[B]tot ≤ 0.04 M and 5.0 M NaCl with [B]tot < 0.04 M NaNd[B3O4(OH)3]2(am) is less stable than 

Nd(OH)3(am) according to the calculations and therefore not shown in the corresponding graphs.  
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Figure 9.4. Comparison of experimental solubility data determined in this work for Nd(III) in borate-

bearing 0.1 M NaCl solutions and model calculations using log *K’s,0 values derived in this work for 

NaNd[B3O4(OH)3]2(am). Dotted lines corresponding to the upper and lower solubility limits 

calculated with the uncertainty assigned to log*K°s,O. 
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Figure 9.5. Comparison of experimental solubility data determined in this work for Nd(III) in borate-

bearing 1.0 M NaCl solutions and model calculations using log *K’s,0 values derived in this work for 

NaNd[B3O4(OH)3]2(am). Dotted lines corresponding to the upper and lower solubility limits 

calculated with the uncertainty assigned to log*K°s,O. 
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Figure 9.6. Comparison of experimental solubility data determined in this work for Nd(III) in borate-

bearing 5.0 M NaCl solutions and model calculations using log *K’s,0 values derived in this work for 

NaNd[B3O4(OH)3]2(am). Dotted lines corresponding to the upper and lower solubility limits 

calculated with the uncertainty assigned to log*K°s,O. 

 

The calculated solubility curves for the system Nd(III)–borate at [B]tot = 0.16 M are in moderate 

agreement with the experimental data at pHm = 8 in all three NaCl systems. The model derived is 

strongly hindered by the large dispersion of the solubility data experimentally determined. Based on 

the experience gained for the Np(V)–borate system, and considering that the equilibration times 

allowed in the latter system were significantly longer than for the Nd(III) case (300 vs. 90–150 days), 

it can be also hypothesized that not all the experiments were in thermodynamic equilibrium at the time 

of the completion of the experiment. Above pHm ~9.3, thermodynamic calculations predict that 

NaNd[B3O4(OH)3]2(am) becomes less stable than Nd(OH)3(am), and the latter phase is thus 

responsible for the solubility control in the Nd(III)–borate system. Note further that the crystallinity 

of the Na–Nd(III)–borate solid phase coating the original Nd(OH)3(am) may be susceptible to become 

more crystalline as thus decrease its solubility, as already observed for the Na/Mg–Np(V)–borate 

systems. 
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 Conclusions 

Preliminary thermodynamic and activity models for the systems Ln(III)/Cm(III)–Na–Mg–H–Cl–H2O 

and Np(V)–Na–Mg–H–Cl–H2O have been derived based on the experimental data generated in the 

present work (solubility, spectroscopy, solid phase characterization) in combination with the model 

for Na–K–Ca–Mg–H–CI–SO4–CO2–B(OH)4–H2O previously reported by Felmy and Weare. The 

main trends observed experimentally are reasonably well reproduced by the proposed model, 

especially for the Np(V) system. The need for these data are very relevant, as the formation of ternary 

Na/Mg–An(III)/An(V)–borate solid phases represent a previously unknown mechanism for the 

immobilization of these radionuclides.  

However, a number of key uncertainties remain, and thus these models must be considered as a 

preliminary working tool in the process of deriving comprehensive and self-consistent chemical, 

thermodynamic and activity models for the actinide–borate systems. Hence, the aqueous An–borate 

complexes remain ill-defined for the investigated actinide systems (+III to +VI), also reflecting the 

complexity of the borate speciation in dilute to concentrated saline systems. In spite of the existing 

models on the borate speciation in saline systems, there is a clear need for improvement in this respect. 

The complexity of the borate system is also mirrored in the An–borate solid phases forming in the 

investigated systems. Although a number of well-defined stoichiometries for An–borate compounds 

have been identified (mainly based on XPS data), the existence of a relatively broad spectra of 

stoichiometries and degrees of crystallinity is suspected. Furthermore, these processes are strongly 

kinetically hindered, and consequently pose important difficulties for their evaluation within the 

context of a PhD thesis.  
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10 Summary and Conclusions  

 

This PhD thesis has successfully addressed the impact of borate on the chemical behaviour of actinides 

under repository-relevant conditions, with special emphasis on complexation reactions, solubility 

phenomena and partly also on redox processes. The study extends from dilute to concentrated saline 

systems and from reduced (+III) to oxidized (+VI) actinide redox states, thus covering a wide spectrum 

of waste disposal concepts and scenarios. The newly generated experimental data provides key inputs 

for the assessment of the source term (maximum expected solubility) for actinides (III, IV, V, VI) in 

borate-bearing systems. In the case of Ln/An(III) and Np(V) where the strongest impact of borate has 

been observed, solubility data in combination with solid and aqueous phase characterization have been 

described and quantified in terms of equilibrium thermodynamics of aqueous systems using the SIT 

formulism. The derived preliminary thermodynamic models may represent a starting point for the 

quantitative modelling of the main processes observed for Ln/An(III) and Np(V) in borate-bearing 

repository-relevant conditions, which needs to be validated in subsequent future studies. 

The interaction of Ln/An(III) was systematically investigated in the presence of borate at 6 ≤ pHm ≤ 13 

in dilute to concentrated NaCl, MgCl2 and CaCl2 solutions with a series of comprehensive Nd(III) 

solubility experiments and Cm(III) TRLFS studies. TRLFS spectra confirmed the formation of weak 

Cm(III)–borate complexes under weakly alkaline conditions and [B]tot ≥ 0.04 M. No increase in the 

solubility of Nd(OH)3(am) was observed in the presence of borate, but instead a clear drop in the 

concentration of Nd(III) (2–4 orders of magnitude) took place at pHm ≤ 9 and [B]tot ≥ 0.04 M. XPS 

and SEM–EDS confirmed the presence of a previously unreported Nd(III)–borate solid phase, which 

formed as a coating of the unreacted Nd(OH)3(am) core. The strong hydrolysis of Ln(III) and An(III) 

under hyperalkaline pH conditions ( ≥ 10, predominance of Ln/An(OH)3(aq) in the aqueous phase) 

outcompetes any interaction of borate in this pH-range, both in the aqueous and solid phases.  

The solubility of NpO2OH(am,fresh) was studied in dilute to concentrated NaCl and MgCl2 solutions 

in the presence of borate under weakly alkaline pH conditions. This study was complemented with a 

comprehensive series of UV–Vis/NIR measurements under analogous experimental conditions to 

assess the interaction of Np(V) with borate in the aqueous phase. Spectroscopic data confirmed the 

formation of at least one Np(V)–borate complex, with B(OH)4
– being the most likely boron species 

participating in the complexation reaction. As for Nd(III), a very significant decrease of the Np(V) 

solubility accompanied by a change in the colour of the solid phase indicated the transformation of 

the original NpO2OH(am,fresh) into a secondary Np(V)–borate phase. Solid phase characterization 

achieved with XRD, XPS, SEM–EDS and EXAFS confirmed the formation of hitherto unknown 

Np(V)–borate forming in NaCl and dilute MgCl2, with a likely stoichiometry of 

NpO2[B5O6(OH)4]·2NaOH(cr) and (NpO2)2[B5O6(OH)4]2·3Mg(OH)2(cr).  
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The solubility of U(VI), Th(IV) and Pu(III/IV) was exemplarily investigated in dilute to concentrated 

NaCl and MgCl2 systems in the presence of borate at 6.5 ≤ pHm ≤ 9. Borate shows no clear impact on 

the solubility of Th(IV) in dilute NaCl and MgCl2 solutions. On the other hand, a slight increase of 

the Th(IV) solubility was found in concentrated NaCl and MgCl2 solutions with pHm = 7.5-9 and 

[B]tot = 0.16 M, which could be attributed to a weak Th(IV)–borate complex formation. The weaker 

interaction between Th(IV) and borate compared to An(III) and An(V) is related with the very strong 

tendency of Th(IV) (and tetravalent actinides in general) towards hydrolysis, which competes with the 

interaction of Th(IV) with borate under near-neutral to hyperalkaline pH conditions. Solubility studies 

with UO32H2O(cr) and Na2U2O7H2O(cr) performed in the presence of borate confirmed the 

formation of U(VI)–borate aqueous complexes under weakly alkaline conditions with [B]tot ≥ 0.04 M. 

No U(VI)–borate interaction was observed at pHm ≤ 6.5, likely due to the predominance of B(OH)3(aq) 

in this pH-range and the poor complexing character of this boron species. In contrast to Nd(III) and 

Np(V), no decrease in the U(VI) solubility was observed in the presence of borate. This finding may 

be explained by the significantly lower solubility of Na2U2O7H2O(cr), compared to Nd(OH)3(am) and 

NpO2OH(am,fresh) under weakly alkaline conditions. Solubility studies with Pu(III/IV) in dilute NaCl 

solutions showed only a slight effect of borate in redox conditions where Pu(IV) prevails. Under the 

very reducing conditions imposed by Na2S2O4, XPS confirmed the predominance of a Pu(III) solid 

phase with a slightly decreased solubility with respect to Pu(OH)3(s). As for Nd(III), this observation 

is likely linked to the solubility-control by a Pu(III)–borate solid phase.  

This PhD thesis represents a key contribution for understanding and predicting the so-far largely 

unknown role of borate on the aquatic chemistry of actinides under repository relevant conditions. The 

strength of the actinide–borate interaction can be rationalized in terms of the effective charge of the 

actinide cation and corresponding competition with hydrolysis reactions: An(V) (Zeff = 2.3) > An(III) 

(Zeff = 3) > An(VI) (Zeff = 3.2) > An(IV) (Zeff = 4). The formation of sparingly soluble Ln/An(III)– and 

An(V)–borate solid phases represents a so-far unknown retention mechanism for these redox states, 

and it is especially relevant for the highly mobile Np(V). These results highlight the need of accounting 

for borate interactions for the correct assessment of actinide behaviour under repository conditions.  
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