
Relational Reasoning

Constraint Solving, Deduction, and Program Verification

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Aboubakr Achraf El Ghazi

aus Casablanca

Tag der mündlichen Prüfung: 27. Oktober 2015

Erste Gutachterin: Prof. Dr. Mana Taghdiri
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Bernhard Beckert
Karlsruher Institut für Technologie

Dritter Gutachter: Prof. Dr. Shmuel Tyszberowicz
Academic College of Tel Aviv-Yafo

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197531482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements
In the name of God, the most compassionate, the most merciful. All praises are
due to God the Lord of the worlds and peace and blessings be upon his messenger
Muhammad. The Prophet Muhammad, peace and blessings be upon him, said, as
reported by Ahmad, Abu Dawud, Tirmidhi and others, “He has not thanked God
who has not thanked people.”

In this context, I would like to express my special appreciation and thanks to my
advisor Professor Dr. Mana Taghdiri for giving me the opportunity to undertake this
project and for her excellent personal and scientific comportment which helps me
growing as a scientist.

I would also like to thank my second reviewer Professor Dr. Bernhad Beckert for
fulfilling his role with commitment and my third and external reviewer Professor Dr.
Shmuel Tyszberowicz for his detailed corrections and comments. I also address my
thanks to all other defense committee members, Professor Dr. Hartmut Prautzsch,
Professor Dr. Ralf H. Reussner, Professor Dr. Heinz Wörn and Professor Dr. Dennis
Hofheinz.

Working as a member of the formal methods groups at KIT has been always a
pleasure not least because of the colleagues. In this context, my thanks go to Dr.
Mattias Ulbrich, Mihai Herda, Tianhai Liu, Dr. Christoph Gladisch, Ulrich Geilmann,
David Faragó, Markus Iser, Dr. Vladimir Klebanov, Thorsten Bormer, Sarah Grebing,
Simon Greiner, Dr. Daniel Grahl, Dr. Olga Tveretina, Florian Merz, Dr. Stephan Falke,
Dr. Carsten Sinz, Dr. Christoph Scheben, Dr. Benjamin Weiß, Alexander Sebastian
and Michael Kirsten. I want also to express my gratitude to Professor Dr. Peter H.
Schmitt for getting me interested in formal methods by his excellent lectures.

I would also like to express my thanks to Dr. Fouad Omri , Abdelhakim El Fadil
and Dr. Martin Do for their poof readings.

I owe my deepest gratitude to my mother Zohra Laaroubi, and my father Mohamed
El Ghazi as well as all members of my family.

Lastly, but most importantly, infinitely many gratitude to my wife Alev El Ghazi for
her love and care and to my son Abdulmalik El Ghazi for just being there, thank you.

Karlsruhe, 23. November 2015 Aboubakr Achraf El Ghazi

i

Relational Reasoning
Solving, Deducing, and Java Verification

(Deutsche Zusammenfassung)
Software-Systeme spielen eine immer größere und wichtigere Rolle in unserem All-
tag. Dadurch steigt der Bedarf an gesicherten Aussagen über ihr Verhalten. Dies
betrifft nicht nur sicherheitskritische Bereiche wie die Medizintechnik, sondern auch
nicht sicherheitskritische Bereiche in Betracht der immensen Auswirkung von Soft-
warefehlern auf die Wirtschaft.

Um Aussagen über das Verhalten von Softwaresystemen zu bewerten, benötigt
man: (1) formale Sprachen für die Spezifizierung ihres erwarteten Verhaltens sowie
für die Beschreibung des Softwaresystems selbst, und (2) ein Rahmenwerk und eine
Methodologie um die Korrektheit des spezifizierten Verhaltens zu bemessen. Dabei
kann die Korrektheitsbemessung über Testverfahren – Testing – bis hin zu formalen
Korrektheitsbeweisen – formale Verifikation – erfolgen.

Diese Arbeit beschäftigt sich mit der formalen Verifikation von Softwaresystemen
bezogen auf formale Spezifikationen, die auf dem Formal-Methods Ansatz beruhen.
Dabei wird das Software-System zusammen mit seiner Spezifikation zu einer Formel
transformiert, die genau dann valid ist, wenn das Softwaresystem die Spezifikation
erfüllt. Im Gegensatz zum in der Industrie gängigem Testing Ansatz, bittet der Formal-
Methods Ansatz die höchst mögliche Zuverlässigkeit, ist allerdings im Allgemeinen
teuer. In den letzen Jahren hat der Formal-Methods Ansatz in der Industrie sig-
nifikant an Bedeutung gewonnen. Der jüngste Standard des europäischen Komitees
für Steuerungs- und Schutzsysteme im Schienenverkehr [1]1 sei an dieser Stelle als
Beleg für diese Entwicklung genannt. Auch der Umfang an Ausgaben für Formal-
Methods, $1.5B in 2000 [15, page 5], bestätigt diesen Trend.

Zusätzlich zum eigentlichen Beweisprozess, wird die formale Softwareverifika-
tion vom Stil und der Ausdruckmächtigkeit der Spezifikationssprache und ihrer
zugrundelegenden Logik in zwei Weisen beeinflusst: (1) Je mehr das erwartete Soft-
wareverhalten, das im Allgemeinen auf einem hohen Abstraktionslevel angesiedelt

1Formal methods are explicitly identified as relevant. More precisely, they are “highly recommended” for
the safety integration levels 3 and 4.

ii

ist, direkt ausgedrückt werden kann, desto besser können Spezifikationsfehler ver-
mieden werden, (2) je mehr Implementierungsdetails abgekapselt werden können,
desto genauer kann der Kern der Software erfasst und verifiziert werden.

Diese Arbeit zielt drauf ab, ein Beweis-Rahmenwerk für die funktionale Verifikation
von Softwaresystemen bezogen auf relationale Spezifikationen in einer relationalen
Logik erster Stufe wie Alloy [47] zu schaffen. Dabei kann die Systembeschreibung
wahlweise in dem relationalen Abstraktionslevel, am Beispiel von Alloy, oder in
dem detaillierten Implementationslevel, am Beispiel von Java erfolgen. Bei so einem
hoch angesetzten Ziel ist der Bedarf an Experten-Interaktion in hohem Maß erforder-
lich. Eine ganz spezielle Anforderung an das Beweis-Rahmenwerk ist von daher die
Reduktion von Interaktionen.

Um dieses Ziel zu erreichen, wurden zwei zueinander komplementäre Tools en-
twickelt. Das erste Tool , namens AlloyPF, bietet ein kosteneffektives Rahmenwerk für
das Beweisen und Widerlegen von Alloy Spezifikationen an. Dafür werden sowohl
automatisch als auch interaktiv entwickelte Beweistechniken miteinander kombiniert.
Das zweite Tool, namens JKelloy, bietet einen deduktiven Beweisassistent für die
Verifikation von Java Programmen bezügliche Alloy Spezifikationen.

Da der Versuch, unerfüllbare Beweisverpflichtungen zu beweisen, besonders teuer
ist, startet AlloyPF zunächst in einem begrenzten Verifikationsmodus. Dabei wird die
Kardinalität der Sorten der Alloy Beweisverpflichtung auf ein vom Benutzer gegebenes
Maximum – genannt scope – begrenzt und die Beweisverpflichtung auf Gegenbeispiele
untersucht. Dies erlaubt dem Benutzer den scope zu erhöhen und so immer mehr
Konfidenz über die Korrektheit der Alloy Beweisverpflichtung zu gewinnen bevor die
eigentliche volle Verifikation gestartet wird. Diese Korrelation zwischen der Größe des
scope innerhalb dessen keine Gegenbeispiele existieren und der Konfidenz über die
Korrektheit der Alloy Beweisverpflichtung beruht auf einer nicht bewiesenen aber im
Kontext von Alloy verbreiteten Hypothese, die besagt, wenn Gegenbeispiele existieren,
dann existieren sie auch innerhalb von kleinen scopes. Die begrenzte Verifikation
wird von dem Alloy Analyzer durchgeführt. In diesem Kontext integriert AlloyPE die
vollständigkeitserhaltenden Grundtermmengen (SufGT) Technik, die für jede universale
quantifizierte Variable eine vollständigkeitserhaltenden Grundtermmenge ausrechnet.
Dadurch kann AlloyPE Sorten der Alloy Beweisverpflichtung erkennen, die einen
vollständigkeitserhaltenden scope aufweisen, d.h., wenn keine Gegenbeispiele innerhalb
dieses scope existieren, dann existieren überhaupt keine. Falls alle Sorten einer Alloy
Beweisverpflichtung einen vollständigkeitserhaltenden scope aufweisen, dann kann
die begrenzte Verifikation binnen dieses scope auch die Korrektheit beweisen.

Nachdem eine initiale Konfidenz über die Korrektheit der Alloy Beweisverpflich-
tung durch die begrenzte Verifikation gewonnen wurde, startet der volle Verifikation-
smodus mit der auf satisfiability modulo theories (SMT) [2] basierenden und automatis-
chen Beweisengine AlloyPE. AlloyPE übersetzt die negierte Alloy Beweisverpflichtung
zu einer erfüllbarkeitsäquivalenten Formel in einer relationalen SMT Logik namens
RFOL. Die aus der Übersetzung resultierenden Formeln werden durch zwei Techniken
vereinfacht.

iii

Die erste Vereinfachungstechnik heißt extended semantics blasting (SB+) und eli-
miniert durch die RFOL Axiome induzierte Kardinalitätseinschränkungen. Diese
Simplifikation ist unabdingbar für die Analysierbarkeit der aus der Alloy Überset-
zung nach RFOL resultierenden Formeln, verletzt aber im Allgemeinen die Erfüll-
barkeitsäquivalenz. Um dieses Problem zu lösen wurde das logische Fragment für
welche SB+ erfüllbarkeitsäquivalent ist, zusammen mit einem kosteneffektiven Test-
system für die Prüfung von RFOL Formeln auf Enthaltensein in diesem Fragment
definiert.

Die zweite Vereinfachungstechnik basiert auf der zuvor erwähnten SufGT Technik.
In diesem Kontext wird die SufGT Technik benutzt, um universal-quantifizierte Vari-
ablen, deren berechnete vollständigkeitserhaltende Grundtermmenge endlich ist, zu
eliminieren und so die Komplexität der RFOL Formeln zu reduzieren.

Die RFOL Axiomatisierung zusammen mit den SB+ und SufGT Techniken erlauben
eine Vielzahl von (beweisbaren) Alloy Spezifikationen mit Hilfe von SMT Beweisern
automatisch zu beweisen. Für besonders komplexe Spezifikationen ist die integer-
basierte RFOL Axiomatisierung für rekursive Theorien wie der transitiven Hülle
nicht ausreichend. Für solche Spezifikationen setzt AlloyPE einen speziell für die
Transitivehülle-Theorie entwickelten Kalkül (TCPInv) ein. Der TCPInv Kalkül basiert
auf sogenannten essentiellen Pfad-Invarianten. Sollte auch der TCPInv Kalkül die Alloy
Spezifikation nicht beweisen können, startet die deduktive Alloy Beweisengine na-
mens Kelloy. Im Gegensatz zu AlloyPE ist Kelloy hauptsächlich interaktiv und basiert
auf dem interaktiven Theorem-Beweiser KeY [12].

Im Gegensatz zu AlloyPF, beschäftigt sich JKelloy mit einem erweiterten Szenario,
indem das erwartete Softwareverhalten zwar in Alloy spezifiziert ist, aber die Software
selbst in Java beschrieben ist, sprich in Code-Form gegeben. Um überhaupt die
relationale Spezifikation von Java Programmen unterstützen zu können, generiert
JKelloy für ein gegebenes Java Programm einen Alloy Kontext. Der Alloy Kontext
stellt für die Java Klassen und Felder zustandsabhängige, relationale Repräsentanten
zur Verfügung und ermöglicht so das Schreiben einer relationalen Spezifikation für
das gegebene Java Programm. Ist eine relationale Spezifikation des Java Programms
gegeben, so generiert JKelloy eine entsprechende Beweisverpflichtung in relational
JavaDL – die relationale Erweiterung der dynamischen Java Logic (JavaDL) des KeY
Systems. Die Relation zwischen den relationalen Zuständen der Spezifikation und der
Zustände des Java Programms wird durch automatisch generierte Kopplungs-Axiome
festgelegt. Um den Beweisprozess in JKelloy auf dem hohen Abstraktionslevel der
relationalen Spezifikation durchführen zu können und besser zu automatisieren,
bietet JKelloy zwei Kalküle an.

Der erste Kalkül heißt Heap-Resolution und hat die Aufgabe relationale Ausdrücke
über komplexe Heaps zu relationalen Ausdrücken über atomare Heaps zu reduzieren.
Das Resultat dieser Reduktion ist eine relationale Interpretation des Java Programms,
was den JavaDL Kalkül überflüssig macht, so dass Beweise allein mit dem relationalen
Kalkül erfolgen können.

Der zweite Kalkül heißt Override-Simplifikation und strebt die weitere Vereinfachung
und Automatisierung des Beweisprozesses in JKelloy an. Der Kalkül versucht die Re-

iv

duktion der relationalen Operatoren auf ihren elementaren mengentheoretischen Def-
initionen zu reduzieren, insbesondere solche die auf Override-Ausdrücke angewendet
werden. Override-Ausdrücke werden durch den relationalen Alloy update Opera-
tor “⊕” (genannt override) gebildet und resultieren typischerweise aus dem Heap-
Resolution Kalkül.

Die Arbeit fördert und unterstützt relationale Logiken für die Spezifikation von Soft-
waresystemen, insbesondere solche mit komplexen Manipulationen von verlinkten
Datenstrukturen. Dafür entwickelte die vorliegende Arbeit geeignete und praktische
Techniken für die auf relationalen Spezifikationen basierte Verifikation. Im Einzelnen
sind die wesentlichen Beiträge der Arbeit die Folgenden:

• Eine relationale Logik (RFOL), die es erlaubt Alloy Beweisverpflichtungen
struktur- und erfüllbarkeitserhaltend auszudrücken. Die RFOL Logik basiert auf
die Prädikatenlogik erster Stufe modulo einer Gleichheits- und Integertheorie
sowie einem flachen Typsystem.

• Eine vollständigkeitserhaltende Grundtermmengen Technik (SufGT), die für
jede universalquantifizierte Variable eine vollständigkeitserhaltende Grundter-
mmenge iterativ berechnen kann. Existenzquantifizierte Variablen werden
skolemisiert. Diese Grundtermmengen werden in der ersten Stelle zur Re-
duktion von quantifizierten Variablen benutzt. Zusätzlich werden diese Men-
gen, genauer ihre Kardinalitäten benutzt, um (1) die Skalierbarkeit der be-
grenzten Verifikation zu erhöhen und (2) die Korrektheit von einfachen Alloy
Beweisverpflichtungen via begrenzter Verifikation zu beweisen.

• Eine erweiterte Semantik-Blasting Technik (SB+) eliminiert die von RFOL Ax-
iomen induzierte Kardinalitätseinschränkungen. Da die SB+ Technik die Erfüll-
barkeitsäquivalenz im Allgemeinen nicht erhält, wird ein logisches Fragment,
für welches SB+ erfüllbarkeitsäquivalent ist, zusammen mit einem kostenef-
fektiven Testsystem für die Prüfung von RFOL Formeln auf Enthaltensein in
diesem Fragment definiert.

• Eine auf Pfad-Invarianten basierte Beweis-Technik für die Transitive-Hülle-
Theorie (TCPInv), die in der Lage ist besonders komplexe Alloy Beweisverpflich-
tung automatisch zu beweisen. Dies betrifft Beweisverpflichtungen, die anson-
sten Transitive-Hülle-bezogene Induktionsbeweise benötigen.

• Ein Beweisassistent für die Verifikation von Java Programmen bezogen auf
relationale Spezifikationen (JKelloy). JKelloy generiert für ein gegebenes Java
Programm automatisch einen Alloy Kontext, der die relationale Sicht auf Java
Klassen und Felder darstellt und dadurch die relationale Spezifikation von
Java Programmen ermöglicht. JKelloy generiert auch für ein gegebenes Java
Programm mit relationaler Spezifikation die eigentliche Beweisverpflichtung
in relational JavaDL sowie die Kopplungs-Axiome, die die Relation zwischen
den relationalen Zuständen der Spezifikation und den Zuständen des Java
Programms festgelegt.

v

• Der Heap-Resolutions-Kalkül, der relationale Ausdrücke über komplexe Heaps
zu relationalen Ausdrücken über atomare Heaps reduziert. Dadurch ermöglicht
der Kalkül die Verifikation von Java Programmen bezüglich relationaler Spezi-
fikationen auf dem abstrakten Relationslevel durchzuführen.

• Der Override-Simplification-Kalkül, der die Reduktion von relationalen Op-
eratoren auf ihre elementare, mengentheoretische Definition zu reduzieren
versucht.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Alloy and Abstractions . 2
1.3 Multi-Layer Framework for Proving Relational Specifications 3
1.4 Verification of Java Programs via Relational Reasoning 4
1.5 Contributions . 5
1.6 Outline . 7

2 Foundations: Alloy, SMT, KeY 9
2.1 Alloy . 9

2.1.1 Alloy Problem . 9
2.1.2 Expressions . 11
2.1.3 Multiplicity Constraints . 11
2.1.4 Formulas . 12
2.1.5 Analysis . 12

2.2 SMT . 13
2.2.1 SML-LIB Language . 13
2.2.2 Analysis . 14

2.3 KeY . 14
2.3.1 Syntax . 14

3 AlloyPF —an Example 17
3.1 Example . 17
3.2 The AlloyPF Proof Process . 20

4 A First-Order Relational Logic 23
4.1 Sorts . 23
4.2 Terms . 23
4.3 Semantics . 25
4.4 Formulas . 27
4.5 Non Trivial FOL Extensions via Satisfiability Modulo Theories 27
4.6 Relational Extension . 28

4.6.1 Relational Operators . 29

Contents vii

4.6.2 Transitive Closure . 30
4.6.3 Integers and Cardinality . 31

5 Verifying Alloy Problems 35
5.1 Translating Alloy to RFOL . 35

5.1.1 Alloy Proof Obligation . 35
5.1.2 Signatures and Fields . 36
5.1.3 Expressions . 36
5.1.4 Formulas . 38

5.2 Rewrite of non Principle Alloy Constructors 39
5.2.1 Core Alloy . 39
5.2.2 Ordering . 39

5.3 Correctness and Completeness . 41
5.3.1 Alloy Semantics . 41
5.3.2 RFOL Structures Features . 41
5.3.3 Correctness . 48
5.3.4 Completeness . 52

5.4 Evaluation . 53

6 Semantics Blasting 57
6.1 Semantics Blasting Rules . 58
6.2 The SB+ Complete Fragment . 60
6.3 Practical Tools for the SB+ Fragment . 66
6.4 Evaluation . 67
6.5 Related Work . 69
6.6 Conclusion . 70

7 Variable Elimination via Sufficient Ground Term Sets 73
7.1 Example . 74
7.2 Sufficient Ground Term Sets . 76
7.3 Practical Optimizations . 83

7.3.1 Simulating NNF . 83
7.3.2 Limiting Instantiations . 84

7.4 Evaluation . 85
7.5 Related Work . 88
7.6 Conclusion . 89

8 Transitive Closure Axiomatization via Invariant Injections 91
8.1 Example . 94
8.2 Weak TC Axiomatization and its Fragment 96
8.3 R-Invariants for Axiomatizing Unsafe R-Paths 97
8.4 Algorithm for Detecting p-invariants . 100
8.5 Evaluation . 104
8.6 Related Work . 106

viii Contents

8.7 Conclusion . 106

9 JKelloy 109
9.1 Overall Framework . 111
9.2 Alloy as Specification Language for Java Programs 112
9.3 Relational Java Dynamic Logic . 114
9.4 Coupling Axioms . 117
9.5 Calculus . 118

9.5.1 Relational Heap Resolution Calculus 119
9.5.2 Override Simplification Calculus 121

9.6 Evaluation . 125
9.7 Related Work . 127
9.8 Conclusion . 128

10 Conclusion 131
10.1 Summary . 131
10.2 Future Work . 133

Appendix 135

A An Arity Independent first-order Relational Framework 137

B A Transitive Closure based Rewrite of Alloy’s Ordering Module 141

Bibliography 145

ix

List of Figures

1.1 Our main tools AlloyPF and JKelloy. The main thesis contributions are
shown in gray. 3

2.1 Abstract syntax for the core Alloy logic 10
2.2 An abstract view on the Alloy analysis process of checking an assertion 13
3.1 A corresponding class diagram of the Alloy file system specification . 18
3.2 An Alloy specification of a generic file system 19
4.1 Basic relational extension . 29
4.3 Extension of RFOL with the transitive closure operator, modulo integer

theory . 31
4.4 Extension of RFOL with integer theory 31
4.5 Extension of RFOL with the cardinality operator 32
4.2 Relational constructor (except of transitive closure) and their axiomati-

zation using our basic relational extension 33
5.1 Translation rules for Alloy declarations. SortFun denotes the sorting

functions α : 𝒳 ∪ℱ → Sort(Ω)* × Sort(Ω). 37
5.2 Translation rules for Alloy expressions. 38
5.3 Translation rules for Alloy formulas. 38
5.4 Semantics of the Alloy kernel, taken from [27, 72, 47], where e ∈ exp,

ie ∈ intExp, r ∈ relSym and n ∈ number. However, for the operators
override and sum, their semantics were extracted from corresponding
paragraphs of the Alloy book [47]. 42

5.5 Construction of an RFOL structure from an Alloy instance. 48
5.6 Construction of an Alloy instance from an RFOL structure. 52
6.1 Rules of the SB procedure . 59
7.1 Example of safe elimination of quantified variables. (a) original SMT

formula, (b) CNF transformation, (c) instantiated formula, (d) a struc-
ture for the instantiated formula, and (e) a structure for the original
formula. 75

7.2 The syntactic rules for generating the set constraints system (𝒮A). C
denotes a clause of A, gts denote ground terms, f , and op denote
uninterpreted and interpreted function symbols, t[x1:n] denotes a term
with variables x1:n. 78

x List of Figures

7.3 CVC4 experimental results on the benchmarks of SMT-COMP/AUFLIA-
p . 86

7.4 Z3 Experimental results on the benchmarks of SMT-COMP/AUFLIA-p 87
8.1 An abstract architecture of SMT solvers with quantifier support 92
8.2 Example. (a) Original formula and a weak transitive closure theory, (b)

an unsafe R-path in F and its invariant, (c) augmented formula. 94
8.3 Abstraction rules . 103
9.1 Overall Framework. Contributions highlighted in a boldface font. . . . 111
9.2 (a) Sample code (b) Alloy context along with pre- and post-conditions 113
9.3 Definitions of heap constructors . 115
9.4 Abstract structure of JavaDL type hierarchies 115
9.5 Abstract structure of relational JavaDL type hierarchies 116
9.6 The verification process for the method List.prepend as running example118
9.7 Heap Resolution Calculus. The term rewrite relation “ ” represents

an equivalence transformation. In R1 and R2 the field f is defined in
class C. 120

9.8 A sampling of our override driven calculus rules 122
9.9 A selection of auxiliary rules for the override simplification 124
9.10 Target fragment of the override driven calculus 125
9.11 Specification and implementation of the graph remove example 126
A.1 A logical framework for a general relation sort based relational exten-

sion of first-order logic . 138
A.2 The arity independent relational operators of GRFOL 138
A.3 The arity independent axiomatization of GRFOL relational operators . 139

xi

List of Tables

2.1 Desugaring of non standard Alloy quantifiers 12

5.1 Desugaring non principle Alloy constructors 39
5.2 Evaluation results . 55

6.1 Evaluation results . 68

8.1 Evaluation results . 105

xiii

List of Definitions

1 Definition (JavaDL Signature) . 14
2 Definition (JavaDL Terms) . 15
3 Definition (JavaDL Updates) . 15
4 Definition (JavaDL Formulas) . 16

5 Definition (Term signature) . 23
6 Definition (Terms) . 24
7 Definition (αΣ-extention to terms) . 24
8 Definition (Σ-structure) . 25
9 Definition (Term value (semantics)) . 26
10 Definition (Satisfiability and validity of formulas) 27
11 Definition (Formula structure) . 27
12 Definition (Theory) . 27
13 Definition (Satisfiability modulo theories) 28

14 Definition (ℳ-Homomorphism) . 43

15 Definition (SB theories) . 58
16 Definition (Structure enlargin w.r.t. AxCon) 61
17 Definition (ℳ embedding inℳL) . 62

18 Definition (Sufficient ground term sets) 76
19 Definition (Occurrence increase of quantified variables) 84

20 Definition (Essential unsafe R-paths) . 97
21 Definition (R-invariant) . 97
22 Definition (p-invariant) . 97
23 Definition (TC induction schema) . 98
24 Definition (Backward TC induction schema) 98
25 Definition (n confident R-path isolation) 100

xv

List of Theorems

1 Theorem (Sort compatibility) . 26

2 Theorem (ℳ-Isomorphism) . 43
3 Theorem (Correctness) . 51
4 Theorem (Completeness) . 53

5 Theorem (SB procedure) . 59
6 Theorem (The SB+ completeness fragment) 65

7 Theorem (Main theorem) . 79

8 Theorem (WTC completeness fragment) 96
9 Theorem (Main theorem) . 98

1

Chapter 1

Introduction

1.1 Motivation
Software systems are playing an increasingly important role in our daily life, which
increases the need for guaranteed claims about their behavior. This applies not only to
safety critical domains such as medical and traffic systems, but also to other domains
considering the impact of software failures on the economy.

In order to check software behavior, two major components are required: (1) an
intuitive formal language, with formal semantics, for the formulation of the expected
behavior as well as for the description of the software system itself, and (2) a framework
and a methodology for gaining confidence about software correctness, which can
vary from random checks to a complete proof of correctness.

This dissertation exploits the formal methods paradigm in which the software sys-
tem together with the required behavior are transformed to a logical formula —proof
obligation— in a formal language, such that the formula is valid if and only if the
software satisfies the required behavior. Contrary to the testing paradigm in which
the software system is tested against a finite number of tests, the formal method
approach can provide (mathematical) proofs of correctness and is thus the method of
choice for safety critical systems. Over the last few years, this approach has gained
more and more acceptance in industry. This is reflected, for example, by the last
standard of the European Committee for Standardization for railway control and
protection systems [1].1 The amount of investments in this area, $1.5B in 2000 [15,
page 5], confirms this trend.

Beside the actual reasoning, formal software verification is also deeply affected
by the nature and expression power of the specification language and its underling
logic in two folds: (1) the more the required behavior, which is naturally on a higher
abstraction level, can be expressed directly, the more specification errors can be
avoided, (2) the more implementation details can be encapsulated, the more the core
of the software system can be captured and verified. Although formal verification
on the detailed level of implementation is amongst the most difficult disciplines of

1Formal methods are explicitly identified as relevant More precisely, they are “highly recommended” for
the safety integration levels 3 and 4.

2 Chapter 1 Introduction

formal verification, a comprehensive formal verification framework should also allow
to perform verification at this level of detail, since this reflects, in fact, how software
is executed.

This thesis aims at providing a reasoning framework for the functional verification
of software systems against relational specifications written in a first-order relational
logic such as Alloy [47]. The system description can be given either at the abstract
relational level, e.g. using Alloy, or at the detailed implementation level, e.g. using Java. A
distinguishing goal of this reasoning framework is to reduce the human cost. This
feature will especially ease the use of formal methods in real-life applications.

We provide two complementary approaches. The first one is implemented in
AlloyPF —a framework based on a mixture of techniques to provide both proofs and
counterexamples for software systems described and specified in Alloy. The second
approach is implemented in JKelloy —a proof assistant for verifying Java programs
with respect to Alloy specifications.

1.2 Alloy and Abstractions

For complex manipulations of linked data structures, as used in most object-oriented
software, the natural abstraction is relational. Alloy [47] is a declarative, typed, first-
order relational logic2 with built-in operators for transitive closure, set cardinality, and
integer arithmetic. The declarative aspect of the language is not strict but reflects how
Alloy is indeed used: it promotes abstractions. In addition to be the core of software
development (see [47, page 1]), abstractions are especially useful for encapsulating
implementation details that can cumber the application of formal methods to large-
sized software.

Alloy offers a suitable set of means to easily and directly describe software systems
together with their required behaviors in a declarative and implementation abstract
stile. Alloy descriptions of software systems are called models. Alloy descriptions
of required behaviors are called assertions. In the verification context, we refer to an
Alloy model together with an Alloy assertion as Alloy specification.

The fully automatic Alloy Analyzer —an important reason for the success and pop-
ularity of Alloy— checks Alloy specifications by looking for a counterexample. This
check, however, is performed with respect to a bounded scope in which only a small
number of values is considered for each type. Therefore, although the Alloy Analyzer
can find counterexamples efficiently, it cannot, in general, prove the validity of the
proof obligation.

2We denote by logic, deviating from the Alloy book, a (formal) language equipped with semantics.

1.3 Multi-Layer Framework for Proving Relational Specifications 3

1.3 Multi-Layer Framework for Proving Relational
Specifications

In order to prove Alloy specifications cost-effectively, we have developed AlloyPF—a
layered framework for proving Alloy specifications with increasing costs (Figure 1.1,
bottom part). Since trying to prove an invalid proof obligation is particularly costly, our
framework starts in the bounded-verification mode first, trying to find a counterexample
in a finite scope. This allows the user to increase the scope arbitrarily in order to
gain more confidence about the correctness of the Alloy specification before switching
to the full-verification mode. The bounded-verification is performed using the Alloy
Analyzer. In this context, our framework integrates our sufficient ground term sets
(SufGT) technique. This technique allows to detect all types of an Alloy specification
admitting sufficient maximal bounds, i.e., if no counterexample exists within such a
bound, then none will exist beyond that bound. If all types of an Alloy specification
admit sufficient maximal bounds, then the bounded verification —up to that bound—
will either show a counterexample or provide a proof of correctness.

JKelloy

JKelloy
KeY

AlloyPF

ce: counterexample

AlloyPE
SMT solver

ce / proof

Kelloy
KeY

proof

Alloy Analyzer
SAT solver

ce

Alloy + Scope

Java + Alloy

proof

SufGT

bounded-verification mode full-verification mode

Figure 1.1: Our main tools AlloyPF and JKelloy. The main thesis contributions are
shown in gray.

After gaining initial confidences in the correctness of the proof obligation through
bounded verification, the full-verification starts with our satisfiability modulo theory
(SMT) based verification technique, which we implement in the Alloy proof engine
(AlloyPE) tool. AlloyPE translates the negation of the underling proof obligation of
the Alloy specification to an SMT equisatisfiable formula. First-order operators such
as union, intersection, join, etc., are axiomatized via pure first-order axioms. Non
first-order operators, namely transitive closure, set cardinality, and ordering, are
axiomatized with the help of the SMT integer theory. The resulting equisatisfiable

4 Chapter 1 Introduction

SMT formula is then simplified using multiple techniques, two of which are presented
here.

The first simplification technique is called extended semantics blasting (SB+) by which
non-recursive operator axioms are applied on-demand, and canceled afterwards.
This simplification step is crucial for the efficiency of our SMT based verification
of Alloy specifications. It eliminates too restrictive cardinality constraints induced
by our complete axiomatization. The axioms elimination step, even after exhaustive
applications, can, in theory, introduce incompleteness issues. Therefore, we describe
the SB+ completeness fragment and provide a cost effective testing system for the
inclusion of a formula in this fragment.

The second simplification technique is the already mentioned SufGT technique,
which performs a ground term occurrence analysis to determine a set of sufficient
ground terms for each universally quantified variable. The computed ground term
sets are used to eliminate quantified variables, and thus reducing the complexity of
general SMT formulas including ours.

Our experimental observations (see Chapter 6 and [30]) show that the SMT transla-
tion plus SB+ and SufGT simplifications can prove almost all provable Alloy bench-
marks which do not need induction reasoning. Since most needed inductions in Alloy
specifications are concerned with the transitive closure, we developed a path-invariants
based transitive closure reasoning technique (TCPInv). Informally, the TCPInv tech-
nique introduces a pure first-order weak axiomatization of the transitive closure, called
WTC, together with an efficient test for inclusion in the WTC completeness fragment.
Transitive closure expressions beyond the WTC-fragment, are then handled via detec-
tion and injection of relational path-invariants, these are formulas that hold for all
nodes along a path in the graph of the transitive closure operand relation. Using this
path-invariants, the original proof obligation is extended, equisatisfiably, until the
SMT solver can show its validity.

If the SMT-based verification does not succeed, our interactive theorem proving
(ITP) based verification starts. At this stage, the proof obligation is proven using
Kelloy [75, 74], our relational extension of the KeY system [12]. For this purpose,
the proof obligation is translated to KeY’s typed first-order logic3. For the sake of
completeness, but also to lower the burden of interactive proving, we define for
each Alloy operator a counterpart in KeY’s typed first-order logic. This requires the
introduction of a complete relational first-order theory including relation and tuple
types as well as semantics axioms and inference rules.

1.4 Verification of Java Programs via Relational
Reasoning

In order to provide a deductive reasoning for Java programs with respect to Alloy
specifications, we developed JKelloy (Figure 1.1, top part). Given a Java program,

3It includes an integer theory.

1.5 Contributions 5

JKelloy provides an Alloy context —state depending relational counterparts for Java
classes and fields— which allows to write relational specifications of the Java program
following the design-by-contract paradigm [58]. Given a Java program and its rela-
tional specification, JKelloy produces a KeY proof obligation in our relational JavaDL
—a logic that uses our relational logic embedding in KeY for the relational specifica-
tion, and KeY’s Java dynamic logic (JavaDL) for the program code. The relationship
between both logics is established by the so called coupling axioms. In order to both
lift the (interactive) proofs to the higher abstraction level of relations and to better
automate them, two additional calculi are introduced.

The first calculus —called heap resolution— reduces relational expressions over
composed states to relational expressions over primitive states —usually the initial
state— and thus makes the proof obligation pure relational; JKelloy is equipped with
a rule application strategy that automatically achieves this task.

The second calculus —called override simplification— aims at further simplifying and
automating the reasoning process in JKelloy. It tries to reduce the need for expanding
the definitions of relational operators during the reasoning, especially of those that
are applied to override expressions. Override expressions —built by the relational
override operators— typically result from applying the relational heap resolution
calculus and encode relationally the effect of the individual Java program statements
to the individual field relations. The calculus consists of a set of proved lemma-rules
which exploit the shape of pure relational proof obligations that result from applying
the heap resolution calculus to proof obligation of Java programs against relational
specifications.

1.5 Contributions
This thesis aims at promoting the use of relational logics, at the example of Alloy,
for the specification of software systems, especially those with complex linked data
manipulations, as is the case for most object-oriented software. It thus provides
a reasoning framework together with a set of reasoning techniques for relational-
specification based verification tasks. In particular, the main contributions of the
thesis are the following:

• A relational first-order logic (RFOL), which allows a structure preserving and
equisatisfiable formulation of pure relational proof obligations. The logic is
based on typed first-order logic with equality and flat type system as it is
supported by most SMT solvers. First-order relational operators are axiomatized
in RFOL by pure first-order axioms; non first-oder relational operators like
transitive closure and set cardinality are axiomatized based on the SMT integer
theory. Further details on RFOL can be found in Chapter 4 and [30].

• A sufficient ground term sets (SufGT) technique, which computes iteratively a set
of sufficient ground terms of each universally quantified variable —existentially
quantified variables are skolemized. We use this technique preliminary to reduce

6 Chapter 1 Introduction

the number of quantified variables of RFOL formulas and thus the complexity
of our proof obligations. In addition, we use this technique to also (1) increase
the scalability of Alloy’s bounded verification —using the Alloy Analyzer— by
computing maximal scopes for Alloy signatures. Signatures admitting such
maximal scopes have only variables whose computed sufficient ground term
sets are finite, and (2) prove the correctness of Alloy specifications via bounded
verification if all quantified variables of the specification have finite sufficient
ground term sets. Further details on the SufGT technique can be found in
Chapter 7 and [34].

• An extended semantics blasting technique (SB+), which eliminates cardinality
constraints on the relational sorts induced by the RFOL axioms. Since in general,
SB+ does not preserve satisfiability, we have described the logical fragment in
which our technique is complete. In addition to the theoretical description of
the fragment, we developed practical tests that provide a cost effective testing
system for the inclusion of an RFOL formula in the SB+ fragment. Further details
on the SufGT technique can be found in Chapter 6.

• A path-invariant based transitive closure reasoning technique (TCPInv), which
can show the refutation of RFOL formulas4 involving transitive closure for which
standard SMT solving cannot show refutation. Such formulas can not be refuted
via standard SMT solving (without induction) because there exists no finite
instantiation of their axioms such that their ground formulas become refutable.
The TCPInv technique bases on a pure first-order weak axiomatization of tran-
sitive closure and a procedure for the detection of path-invariants —formulas
that hold for all nodes along relational paths. The fact that the base transitive
closure axiomatization is integer free, reduces in general the complexity of RFOL
formulas and thus improves their SMT solving. Further details on the SufGT
technique can be found in Chapter 8 and [31].

• JKelloy, a tool for the deductive verification of Java programs against Alloy
specifications, has been presented. It is our framework for the relational speci-
fication of Java programs and the corresponding deductive reasoning on the
abstract level of relations —using a relational view of the heap. JKelloy automat-
ically generates a so called Alloy context which encodes the relational view of
the types and fields of the Java program in the pre- and post-state, and allows
for writing relational specifications of Java programs following the design-by-
contract paradigm. Given a relational specification of a Java program, JKelloy
automatically generate the actual proof obligation using our relational JavaDL.
Further details on JKelloy can be found in Chapter 9 and [32, 33].

• A set of automatically generated coupling axioms that define the link between
the heap dependent relations in the Alloy specification and the Java program
states.

4Showing the refutation of a formula F is equivalent to proving the validity of its negation ¬F.

1.6 Outline 7

• A heap resolution calculus, that normalizes relational JavaDL proof obligations
over composed heaps to relational expression over constant heaps. The calculus
is equipped with a rule application strategy that, after performing symbolic
execution, automatically achieves the relational heap resolution task.

• An override simplification calculus, that eases the verification process in JKelloy,
by reducing the need for expanding the definitions of relational operators,
especially of those that are applied to override expressions.

1.6 Outline
The thesis is divided into nine chapters.

Chapter 2, the foundation chapter, provides general introductions to the Alloy
specification language and its analysis, the satisfiability modulo theories problem and
its analysis, and the KeY system and its Java dynamic logic. Further needed details
are introduced in the chapters where they are used.

Chapter 3 gives an example-driven overview of the automatic proof process of Al-
loyPF. The details of the individual techniques used in the proof process are described
in the next four chapters.

In Chapter 4, the syntax and semantics of our first-order relational logic RFOL are
defined.

Chapter 5 defines the underling proof obligations of Alloy specifications and
presents their translation to RFOL proof obligations. It shows proofs of correctness
and completeness of the Alloy to RFOL translation and reports on the experimental
results of proving Alloy specifications using the translation, without any further
simplification.

Chapter 6 introduces our extended semantics blasting simplification technique SB+.
It presents the SB+ procedure rules and defines its completeness fragment together
with a cost effective testing system for the inclusion of RFOL formulas in the fragment.
The chapter also reports on the experimental results of proving Alloy specifications
using the Alloy to RFOL translation together with the SB+ simplification technique
and compares them with the experimental results of Chapter 5 and of the bounded
analysis of the Alloy Analyzer.

Chapter 7 introduces our sufficient ground term sets technique SufGT. It presents
the SufGT procedure rules and an algorithm that uses the computed sufficient ground
terms for an efficient elimination of quantified variables. The chapter also provides a
proof of correctness and completeness of the technique with respect to the elimination
of quantified variables and reports on the experimental results on applying the SufGT
technique to simplify general SMT benchmarks.

Chapter 8 introduces our path-invariants based transitive closure reasoning tech-
nique TCPInv. It proves the existence of effective path-invariants for each essential
path in a refutable RFOL formula and presents procedures for the detection of the
essential paths and their path-invariants. The chapter also reports on the experimen-

8 Chapter 1 Introduction

tal results of applying the TCPInv reasoning technique to prove Alloy specifications,
including those which could not be proved in Chapter 6.

Chapter 9 introduces our tool for the deductive verification of Java programs against
Alloy specifications JKelloy. It also reports on using JKelloy to prove three Java
programs with relational specifications.

The thesis ends with a conclusion and discussion of future work in Chapter 10.

9

Chapter 2

Foundations: Alloy, SMT, KeY

This chapter provides a general introduction of the frameworks and tools used in this
dissertation. More detailed information are introduced in the chapters where they
are used.

2.1 Alloy
Alloy [47] is a modeling language based on a same named first-order relational logic
with built-in operators for transitive closure, set cardinality, integer arithmetic, and
comprehension. In this dissertation, we investigate the automatic verification of Alloy
problems as well as the verification of Java program with Alloy annotations. For
both tasks we address a subset of Alloy version 4.x1. This subset, called core Alloy,
represents all commonly used Alloy constructors. Almost other constructors not
present in core Alloy can be desugared to core Alloy.

2.1.1 Alloy Problem
As shown in Figure 2.1, an Alloy problem consists of a collection of type declarations,
relation declarations, relational first order formulas marked as fact, and possibly an
other formula marked as assertion to check or as predicate to run.

The type declarations introduce the global types (called signatures) which represent
sets of atoms. The signature declaration

sig A{. . .}

declares a top-level type named A whereas

sigB (in | extend) A{. . .}

declares a subtype of A named B. The keyword extend additionally constraints B to
be an interface of A —i.e, a type T is the union of all its interfaces.

1We started the investigation with version 4.1 and ended up with version 4.2

10 Chapter 2 Foundations: Alloy, SMT, KeY

problem ::= typeDcl* relDcl* f act* (assertion | predicate)
typeDcl ::= sig identifier [(in | extends) type]
relDcl ::= rel : type [[mult]→ [mult] type]*

mult ::= lone | some | one | set
f act ::= f ormula
assertion ::= f ormula
predicate ::= f ormula

exp ::= type | var | rel | none | iden | exp + exp
| exp & exp | exp− exp | exp.exp | exp→ exp
| exp <: exp | ~exp | ^exp | Int intExp

intExp ::= number | #exp | int var
| intExp intOp intExp | (sum [var : exp]+|intExp)

f ormula ::= exp in exp | exp = exp
| intExp intComp intExp
| not f ormula | f ormula and f ormula
| f ormula or f ormula
| all var : exp| f ormula
| some var : exp| f ormula

intOp ::= + | -
intComp ::= < | > | =
type ::= identifier | Int
rel ::= identifier
var ::= identifier

Figure 2.1: Abstract syntax for the core Alloy logic

The relation declarations introduce global relations (called fields of signatures)
which represent sets of n-ary tuples depending of the relation arity. That is,

sig A{r : B m→ n C}

declares a ternary relation named r⊆ A× B×C with the restriction that for each a∈ A
the binary relation a.r maps each tuple in B to n tuples of C, and each tuple in C to n
tuples of B. Note that the expression B and C can be arbitrary relational expressions,
and that the multiplicity keyword m and n are restricted to {lone, some,one, set} (see
Figure 2.1).

The fact formulas are usually used to express (further) global —assertion (respec-
tively predicate) independent— constraints on the declared types and relations. The
assertion (respectively predicate) formula express a property about the so far defined

2.1 Alloy 11

system. The goal of the analysis is to check whether the property holds in the system,
within a given scope.

2.1.2 Expressions
Alloy expressions represent the basic buildings blocks of Alloy formula; they always
evaluate to relations2. Basic Alloy expressions are constant relations, this includes
all declared signatures and relations as well as the built-in constants: none for the
unary empty set, univ for atom set, and iden ⊆ univ× univ for the identity relation.
Complex expressions are built, recursively, from basic expressions using Alloy’s
relational operators. This are: r + s, r++ s, r & s, r - s for union, override, intersection,
and difference of same arity relations r and s, respectively; r.s, r→s for Cartesian
product, and relational join of arbitrary relations r and s, respectively; ∼r, ˆr for
transposition, and transitive closure of a binary relation r, respectively; s <: r for
domain restriction of an arbitrary relation r to a set (unary relation) s. The semantics
of this operators, except of domain restriction, is shown in Figure 5.4. A domain
restriction application of the form s<: r where r is an n-ary relation can be, however,
desugared to (s→univ→...→univ︸ ︷︷ ︸

n−1

) & r.

Integer expressions denote primitive integers. The built-in type Int represents the
set of all atoms carrying primitive integers. The expression Int ie denotes the atom
carrying the integer denoted by the integer expression ie, whereas int v denotes
the integer value of the atom represented by the variable v. Integer expressions are
obtained from constant numbers (. . . , -1, 0, 1, . . .), and set cardinality expressions
#exp where exp is an arbitrary relational expression, and combined using arithmetic
operators (+ , -). The arithmetic operators are distinguished from relational operators
using the type information3.

2.1.3 Multiplicity Constraints
Alloy supports the following multiplicity keywords:

• set: any number

• one: exactly one

• lone: at most one

• some: at lest one

Depending on where multiplicity keywords are placed they induce different con-
straints. If applied outside declarations, like in lone r, it constraints the relation r to
have at most one tuple —with other words |r| ≤ 1. If applied within declarations, like

2Since version 4.2, integer expressions can also be seen as relational expressions (cf. [48, page 82])
3Since version 4.2, the distinction between relational and arithmetic operators is made syntactically.

12 Chapter 2 Foundations: Alloy, SMT, KeY

in x: lone r, it constrains the variable x to be a subset of r that contains at most one tu-
ple. If applied within relation declarations, like r: A→B some→one C, it constrains
for each a: A the expression a.r to associate each tuple in B with exactly one tuple in
C and each tuple in C with at least one tuple in B. The default multiplicity keyword
for unary relations is one and for multiple-arity relations is set.

2.1.4 Formulas
Basic Alloy formulas are formed from Alloy expressions using the subset operator in,
the equality operator = and the integer comparison operators less than <, greater than
>, and the integer equality =. Basic formulas can be combined using (usual) logical
connectivities including conjunction (and or &&), disjunction (or or ||), implication
(implies or⇒), and negation (not or !). Complex Alloy formulas are build using
quantifiers. Quantified Alloy formulas take the form Q x: exp | F where Q is one of
the Alloy quantifier: all, some, no, one, lone, x a variable (usually) occurring in F and
bounded by the Alloy expression exp. The semantics of the standard all and some
quantifiers are shown in Figure 5.4. All other quantifiers can be desugared using
standard quantifiers as shown in Table 2.1.

no x: exp | F ≡ all x: exp | !F
one x: exp | F ≡ some x: exp | F and (all y: exp | y != x⇒ !F)
lone x: exp | F ≡ some x: exp | F and (all y: exp | y != x⇒ !F) or

all x: exp | !F

Table 2.1: Desugaring of non standard Alloy quantifiers

2.1.5 Analysis
The Alloy Analyzer —the original analysis tool for Alloy— provides two major analy-
sis. The first (called predicate-running) analysis is applied to Alloy problems with
a predicate and results in showing, if exists, satisfying structures (called instances)
that satisfies the predicate together and the Alloy model —the Alloy problem without
its predicate (respectively assertion). The second analysis form (called assertion-
checking) is applied to Alloy problems with an assertion and results in showing,
if exists, a structure (called counterexample (CE)) that falsifies the implication of the
assertion from the Alloy model.

However, the Alloy Analyzer, reduces both analysis forms to the same analysis
problem, namely, finding a satisfying structure (an assignment of the problem relations
to values) that makes a given Alloy formula (also called constraint) true. Having such
a tool, one can serve (1) the predicate-running analysis by analysing the conjunction
of all formula induced by the Alloy model and the predicate formula, and (2) the
assertion-checking analysis by analysing the conjunction of all formula induced by
the Alloy model and the negation of assertion formula.

2.2 SMT 13

Alloy prob

Scope

sat
CE

unsat
?Prop.

formula

Translator
(kodkod) SAT Solver

Alloy Analyzer

Figure 2.2: An abstract view on the Alloy analysis process of checking an assertion

To overcome the undecidability of the Alloy logic, the Alloy Analyzer performs its
analysis with respect to a finite scope —a user-provided bound on the size of Alloy
problem types. Using this scope the Alloy Analyzer translate Alloy problem —via
kodkod— to an, within the scope, equisatisfiable propositional formula and uses a
SAT solver solve it. Consequently, Alloy Analyzer can never prove the correctness of
an Alloy assertion. Figure 2.2, shows the internal Alloy analysis process of checking
an assertion.

2.2 SMT
Satisfiability modulo theories (SMT) refers to an extension of the well known problem
of determining the satisfiability of propositional formulas. However, in the SMT
case the formulas are formulated in typed first-order logic with equality and their
satisfiability is considered with respect to (aka. modulo) a set of logical background
theories, which usually restrict the interpretation of symbols used in the formula.

The support of background theories, especially of non finitely axiomatizable the-
ories like the integer theory, makes SMT solvers —solvers of the SMT problem—
superior to the well known automatic theorem provers (ATP) [62], which only sup-
port pure first-order logic formulas. In addition, their built-in capability of providing
both proofs and counterexamples makes them especially attractive for the verification
of software systems.

2.2.1 SML-LIB Language
Since its inception in 2003, the SMT-LIB initiative [2] has provided, among others, a
common input and output languages for SMT solvers —supported by most solvers.
We call the SMT-LIB language, shortly, SMT language, and a set of SMT declarations
and formulas an SMT benchmark.

The SMT language is based on a many sorted first-order logic with equality and flat
type system —no explicit subtyping. Their expressions are a sublanguage of Com-
mon Lisp’s S-expressions. In addition to built-in sorts like Bool, Int, and Real,
the language allows for the declaration of new uninterpreted sorts and functions.

14 Chapter 2 Foundations: Alloy, SMT, KeY

The expression (declare-sort S 0) declares a new simple uninterpreted toplevel
sort named S. The expression (declare-fun f (S1 S2) S3) declare the new unin-
terpreted total function f : S1 × S2→ S3. The expression (assert F) adds the SMT
formula F to the SMT benchmark and guaranties that each found structure of the
benchmark satisfies F. Basic SMT formulas are function applications and can be
combined using the usual logical connectivities and, or, not, =>. Universal and
existentially quantified formulas are denoted by (forall ((x S1) (y S2)) F) and
(exists ((x S1) (y S2)) F) respectively4.

2.2.2 Analysis
Given an SMT benchmark composed of all sorts and functions declarations, and a set
of SMT formulas, the SMT language command (check-sat) initiates the satisfiability
check of the SMT benchmark. If the SMT benchmark is satisfiable, the SMT language
command (get-model) can be used to provide a concrete satisfying structure of it.
In order to ease the evaluation of a specific term t in a satisfiable SMT benchmark, the
command (get-value t) is provided.

2.3 KeY
The KeY System [12] is a tool that integrates design, implementation, formal specifica-
tion, and formal verification of Java software. In order to formulate and reason about
the semantics of Java programs, it uses the Java dynamic logic (JavaDL) framework [11],
an extension of first-order logic with dynamic logic operators [44]. We refers to the last
version of JavaDL which support explicit heaps [77]. The reasoning in KeY, which is
actually also a deductive theorem prover, is based on a sequent calculus for JavaDL
which we do not further discuss in this introduction. Regarding specifications, KeY
supports both the Java Modeling Language (JML) [53] and the Object Constraint Language
(OCL) [60].

2.3.1 Syntax
JavaDL is a multimodal typed first-order logic. Besides standard typed first-order
logic terms, JavaDL provides a Java program Prg, a set of program variables PV
and three modal operators: box [π], diamond ⟨π⟩ and update {U}, where π is a
program fragment in the context of Prg (shortly denoted π ∈ Prg) and U an update
term. Definition 1 shows the JavaDL signature Σ, Definition 2 the JavaDL set of terms
TrmΣ, Definition 3 the set of JavaDL updates UpdΣ, and Definition 4 the set of JavaDL
formulas FrmΣ —all derived form [77].

4Only some of the SMT solvers do support quantified formulas. These are for instance CVC4, Yices and
Z3

2.3 KeY 15

Definition 1 (JavaDL Signature). A JavaDL signature Σ is a tuple (𝒯 ,⪯,𝒱 ,𝒫𝒱 ,ℱ ,ℱu,𝒫 ,α,
Prg) consisting of:

• a set 𝒯 of types

• a partial order ⪯ on 𝒯

• a set 𝒱 of variables

• a set 𝒫𝒱 of program variables

• a set ℱ of function symbols

• a set ℱu ⊆ ℱ of unique function symbols

• a set 𝒫 of predicate symbols

• a (static) typing function α : 𝒱 ∪ 𝒫𝒱 ∪ ℱ ∪ 𝒫 → 𝒯 * (where 𝒯 * denotes an
arbitrary long Cartesian product of 𝒯 s) such that v is an instance of T (denoted
by v @− T) for any v ∈ 𝒱 ∪ 𝒫𝒱 with α(v) = T, f : T1 × · · · × Tn−1→ Tn for any
f ∈ ℱ with α(f) = (T1, . . . , Tn), and P⊆ T1× · · · × Tn for any P ∈ 𝒫 with α(P) =
(T1, . . . , Tn)

• a Java program Prg —a set of Java classes and interfaces

Definition 2 (JavaDL Terms). Given a JavaDL signature Σ and a type A ∈ 𝒯 different
than boolean, the set TrmA

Σ of JavaDL terms of type A is defined inductively as follow:

• v is in TrmA
Σ if v ∈ 𝒱 ∪ 𝒫𝒱 with α(v) = A

• f is in TrmA
Σ if f ∈ ℱ with α(f) = A

• f (t1, . . . , tn) is in TrmA
Σ if f ∈ ℱ with α(f) = (T1, . . . , Tn, A) and ti ∈ TrmT′i

Σ with
T′i ⪯ Ti for all 1≤ i ≤ n

• i f (ϕ) then(t1) else(t2) is in TrmA
Σ if ϕ ∈ FrmΣ, and t1, t2 ∈ TrmA

Σ

• {U}t is in TrmA
Σ if U ∈UpdΣ and t ∈ TrmA

Σ

The set TrmΣ of all JavaDL terms is defined as TrmΣ =
⋃

A∈T TrmA
Σ .

Definition 3 (JavaDL Updates). Given a JavaDL signature Σ, the set of JavaDL update
terms UpdΣ is defined recursively as follow:

• v := t is in UpdΣ if v ∈ PV and t ∈ TrmA
Σ with α(v) = A

• u1||u2 is in UpdΣ if u1,u2 ∈UpdΣ

• {u1}u2 is in UpdΣ if u1,u2 ∈UpdΣ

16 Chapter 2 Foundations: Alloy, SMT, KeY

The update terms of the form v := t are called elementary and, intuitively, assigns
the value of the term t to the program variable v like a side effect Java assignment.
Complex updates are build using parallel update terms u1||u2 and sequential update
terms {u1}u2.

Definition 4 (JavaDL Formulas). Given a JavaDL signature Σ, the set FrmΣ of JavaDL
formulas is defined inductively as follow:

• true, false are in FrmΣ

• P(t1, . . . , tn) is in FrmΣ if P ∈ 𝒫 with α(P) = (T1, . . . , Tn) and ti ∈ TrmT′i
Σ with

T′i ⪯ Ti for all 1≤ i ≤ n

• ¬ϕ, ϕ ∧ ϕ′, ϕ ∨ ϕ′, ϕ→ ϕ′, ϕ↔ ϕ′ are in FrmΣ if ϕ, ϕ′ ∈ FrmΣ

• ∀Ax; ϕ, ∃Ax; ϕ are in FrmΣ if A ∈ 𝒯 , x ∈ 𝒱 and ϕ ∈ FrmΣ

• {U}ϕ is in FrmΣ if u ∈UpdΣ and ϕ ∈ FrmΣ

• [π]ϕ, ⟨π⟩ϕ are in FrmΣ if π ∈ Prg and ϕ ∈ FrmΣ

17

Chapter 3

AlloyPF —an Example

This chapter gives an overview of the automatic proof process in AlloyPF. The details
of the individual techniques used in the proof process are described in the next four
chapters. In this chapter, however, we will briefly explain, based on an example, how
the actual proof process works.

3.1 Example
Figure 3.2 shows an Alloy specification of a generic file system. The specification con-
sists of a type hierarchy, relations between the types, implicit constraints introduced
by keywords, and explicit constraints introduced by fact formulas. As one can see,
the syntax of Alloy is very similar to that of object-oriented programming languages:
types are introduced by the class-like signatures, relations by fields of signatures.

The type hierarchy of our Alloy specification consists of the two toplevel types
Object for file system objects (Line 1) and DirEntry for directory entries (Line 12).
The first toplevel type Object is labeled with the keyword abstract which constraints
each element of this type to belong to one of its extending subtypes File for files (Line
3) and Dir for directories (Line 5). Types are extended in Alloy using the keyword
extends. The second toplevel type DirEntry is neither abstract nor extended. The last
type in this type hierarchy is Root (Line 10). It extends the type Dir and is represented
as singleton using the keyword one. Singleton sets can be and are often used in Alloy
specifications as aliases of their unique element.

Based on the introduced types and the Alloy multiplicity constraints set, lone, and
one, the specification introduces: (1) the binary relations entries ⊆ Dir× DirEntry
which maps each directory to a set of directory entries (Line 6), (2) the binary relation
parent⊆Dir×Dir which maps each directory to at most one parent directory (Line 7),
and (3) the binary relation contents ⊆ DirEntry×Object which maps each directory
entry to exactly one1 file system object (Line 13). Figure 3.1 shows the corresponding
class diagram of the Alloy file system specification.

1The default multiplicity constraint for binary relations is one.

18 Chapter 3 AlloyPF —an Example

DirFile

Root

DirEntryObject

parent

contents

entries

Figure 3.1: A corresponding class diagram of the Alloy file system specification

In addition to the above discussed implicit constraints, the specification introduces
five explicit general constraints as fact formulas. Facts in Alloy specifications are
comparable to class invariants in object-oriented programming languages. The first
fact formula (Line 17) constraints each file element to be a content of at least one
directory. The second fact formula (Line 18) constraints the set of parent directories of
a directory d to be equal to the set of all directories which have a directory entry that
has d as content. The third fact formula (Line 19) constraints the singleton set Root
to be reachable from each directory, except itself, following the parent relation. The
fourth fact formula (Line 20) constraints Root to not have a parent directory —“no e”
is equivalent to “e = ∅”. The last fact formula (Line 21) constraints each directory
entry to belong to exactly one directory.

The part of an Alloy specification that specifies the actual system only, like in
Figure 3.2, is called model. Given a Alloy model, the user can specify properties of that
model using the assert keyword. The Alloy Analyzer allows to check the bounded-
correctness of an Alloy specification2, constituted from an Alloy model and an Alloy
assertion, by checking the validity of its assertion within scopes. An assertion is valid
within a given scope iff it is satisfied in each logical structure of its corresponding
model within the given scope.

In order to demonstrate the proof process of AlloyPE, we use two assertions of the
file system model that deduce two Alloy specifications belonging to two different
classes of complexity.

2When speaking of the bounded-correctness of an Alloy specification, we always assume the existence of
an assertion.

3.1 Example 19

1 abstract sig Object {}
2

3 sig File extends Object {}
4

5 sig Dir extends Object {
6 entries: set DirEntry,
7 parent: lone Dir
8 }
9

10 one sig Root extends Dir {}
11

12 sig DirEntry {
13 contents: Object
14 }
15

16 fact {
17 all f: File | some d: Dir | f in d.entries.contents
18 all d: Dir | d.parent = d.∼contents.∼entries
19 all d: Dir | d != Root⇒ Root in d.ˆparent
20 no Root.parent
21 all de: DirEntry | one de.∼entries
22 }

Figure 3.2: An Alloy specification of a generic file system

The first assertion below asserts that if each directory has exactly one parent di-
rectory and is the content of exactly one directory entry, then there are no directory
aliases.

1 assert noDirAliases {
2 (all d: Dir - Root | one d.parent and one contents.d)
3 ⇒
4 (all o: Dir | lone o.∼contents)
5 }

The second assertion below asserts that beside the root directory(s) each directory
is a content of at least one directory entry.

1 assert someDir {
2 all o: Object - Root | some contents.o
3 }

20 Chapter 3 AlloyPF —an Example

3.2 The AlloyPF Proof Process

AlloyPF starts its proof process by translating the Alloy specification (model and
assertion) to an equisatisfiable RFOL formula F (details of the RFOL logic and the
Alloy to RFOL translation can be found in Chapter 4 and Chapter 5, respectively).
Using our SufGT technique (see Chapter 7 for details), AlloyPF first checks if there
exists a general sufficient maximal bound for F and thus for the Alloy specification. If
so, AlloyPF uses the Alloy Analyzer to prove the correctness of the Alloy specification
via bounded verification within the computed scope. For both specifications of our
assertions noDirAliases and someDir, no general sufficient maximal bound could be
computed, moreover, no individual type admits a sufficient maximal bound. In such
a case and in order to gain confidence in the validity of the assertion, AlloyPF applies
bounded verification using the Alloy Analyzer for increasingly larger scopes until a
time-out (or out-of-memory) is reached. Time-out has been set to 600 seconds. For
both specifications of our assertions, the Alloy Analyzer can show their bounded-
correctness up to the scope of 56.

Having this confidence in the validity of the assertions, the main automatic proof
process of AlloyPF starts —using an engine named AlloyPE. This process is based
on the satisfiability modulo theories (SMT) analysis of the RFOL translation of the
Alloy specification. Because of the complete axiomatization of relational operators in
RFOL, the resulting RFOL formulas of the Alloy to RFOL translation are, in general,
too difficult for the analysis with SMT solvers. In order to overcome this limitation,
AlloyPE uses our SB+ simplification technique (see Chapter 6 for details). Since SB+

does not preserve satisfiability, in general, AlloyPE checks a priori whether the RFOL
formulas belong to the completeness fragment of SB+ or not. Both our assertions do
belong.

We will denote the SB+-simplified RFOL translations of the Alloy specifications of
the assertions noDirAliases and someDir, respectively, F1 and F2. In a first try, AlloyPE
checks the satisfiability of their negations ¬F1 and ¬F2 using the Z3 SMT solver.
Because of the equisatisfiability of the RFOL translation and the SB+ simplification,
AlloyPE can directly conclude the validity of the corresponding assertion if the SMT
solver reports “unsat”, and its invalidity if the SMT solver reports “sat”3.

Using this process, AlloyPE proves the validity of the first assertion noDirAliases
in 0.19 seconds but times out (after 600 seconds) trying to prove the validity of the
second assertion someDir. These results might seem odd at the first glance, since the
first assertion looks (syntactically) more complicated than the second one. The reason
of this behavior, however, goes back to a general limitation of SMT solvers in handling
quantified formulas. That is, an SMT solver can only refute a formula containing
quantifiers if it can construct, using quantifier instantiations, a ground subformula of
the original formula that is by itself refutable. This applies for ¬F1 but not for ¬F2.
With respect to RFOL formulas resulting from the Alloy to RFOL translation, this is

3We treat “unkown” reports of the SMT solver as time-out.

3.2 The AlloyPF Proof Process 21

due to a large extent to the use of the so called recursive theories. These are in Alloy:
transitive closure, set cardinality, ordering and integer.

For such formulas, for which the first proof attempt times out, AlloyPE applies in a
second attempt our TCPInv calculus (see Chapter 8 for details). The TCPInv calculus
can automatically refute RFOL formulas which can not be refuted by standard SMT
solving, and uses as only recursive theory the transitive closure theory. It first detects
all essential relational paths, i.e., positive literals containing transitive closure, whose
refutation is essential for the refutation of the overall formula. For each essential
relational path, TCPInv detects and injects to the original formula so called path-
invariants until the essential relational path can be refuted from the SMT solver via
standard SMT solving. The overall formula gets refuted, when all essential relational
paths are refuted.

Applying this technique to our second assertion someDir, AlloyPE proves its validity
in 16.31 seconds. Out of 6 relational paths, only one was essential. In order to
refute this unique essential relational path, AlloyPE needs to detect and inject 4
path-invariants. AlloyPE checks in total 14 path-invariant candidates.

23

Chapter 4

A First-Order Relational Logic

In order to prove the correctness of Alloy proof obligations, we translate them to a first-
order relational logic (RFOL). We designed RFOL with two objectives: (1) it should
express the core Alloy language almost directly1, in order to ease the correctness
argumentation, and (2) it should fit in a target logic of satisfiability modulo theories
(SMT) solvers, in order to exploit their reasoning power. We first start by fixing the
following basic mutually disjoint sets:

• An infinite set 𝒮 of sort symbols s.

• An infinite set 𝒳 of variables x.

• An infinite set ℱ of function symbols f .

4.1 Sorts
In RFOL—a many-sorted language— each term is associated with a unique sort,
and each sort is denoted by a sort symbol. The sorts in RFOL are neither composed
nor parametrized. Also, the sort hierarchy is flat, i.e., all sorts are mutually disjoint.
Consequently, a sort signature Ω of RFOL is as simple as a subset S of 𝒮 .

4.2 Terms
Having a sort system Ω, we can proceed with the definition of the terms of RFOL’s
terms. RFOL considers, in fact, only well-sorted terms, i.e., each term is associated with
a unique sort. We will, contrary to the SMT standard [9], allow only for well-sorted
terms, and thus avoid the need of additional well-sortedness rules and restrictions (cf.
[9, page 47]).

Definition 5 (Term signature). A (term) signature Σ is a tuple (ΩΣ,𝒬Σ,ℱΣ,αΣ) con-
sisting of

1by providing for each core Alloy operator an RFOL counterpart

24 Chapter 4 A First-Order Relational Logic

• a sort signature ΩΣ containing the sort Bool,

• a set 𝒬Σ = {∃,∀} of variable binders,

• a set ℱΣ ⊆ ℱ of function symbols containing the equality symbol = as well as
the logical connectivities (true, false,¬,∧,∨,→), and

• a sorting function αΣ : 𝒳 ∪ℱ → Sort(Ω)* × Sort(Ω).

The sorting function α determines for variables their sorts and for functions the sorts
of their arguments (if they have) as well as their return sort. Function symbols that do
not take any argument are called constants and their set is denoted by Const. We use
notation f : T1× · · ·× Tn−1→ Tn to denote a function f ∈ℱ with α(f) = (T1, . . . , Tn). If
Tn = Bool, the function f is also called a predicate and the notation f ⊆ T1× · · · × Tn−1
can be used alternatively.

We further assume that for each sort T ∈ Sort(Ω), there exists infinitely many
variables of sort T denoted by 𝒳 T . Variable sets are mutually disjoint and their union
is 𝒳 .

Definition 6 (Terms). Let Σ = (ΩΣ, QΣ, FΣ,αΣ) be a (term) signature and T ∈ Sort(Ω)
a sort. Then TermT

Σ, the set of all terms of sort T, is defined inductively as follows:

• if x ∈ 𝒳 T , then x is in TermT
Σ

• if f ∈ ℱΣ with α(f) = T, then f is in TermT
Σ

• if f ∈ ℱΣ with α(f)|α(f)| = T and ti ∈ Termα(f)i
Σ for 1 ≤ i ≤ |α(f)| − 1, then

f (t1, . . . , t|α(f)|−1) is in TermT
Σ

• if Q ∈ 𝒬Σ, ϕ ∈ TermBool
Σ and x ∈ 𝒳 T′ for some sort T′, then Qx : T′. ϕ is in

TermBool
Σ

In RFOL only closed terms are considered. This restriction, however, does not
imply any loss of generality, as far as satisfiability is concerned. A term ϕ with free
variables x1, . . . , xn of respective sorts T1, . . . , Tn can be equisatisfiably rewritten as
∃x1 : T1, . . . , xn : Tn. ϕ.

In the following we may drop the index Σ form the signature structure if it is clear
from the context. We also write, henceforth, ti:j as shorthand for the (term) list ti, . . . , tj,
and Ti as shorthand for the i-th Cartesian product of the set T with itself.

Definition 7 (αΣ-extention to terms). Given a signature Σ, we extend the sorting
function αΣ to the set of terms TermΣ inductively as follows:

• αΣ(x) = T for all x ∈ 𝒳 T

• αΣ(f (t1, . . . , tn)) = α(f)|α(f)| for all f ∈ ℱΣ

4.3 Semantics 25

• αΣ(Qx : T. ϕ) = αΣ(ϕ) for all Q ∈ 𝒬Σ

As usual, we call terms without variables ground terms and denote their set by
Gr ⊆ Term. The set Gr(t) denotes all the ground terms occurring as subterms in a
term t. We write t[x1:n] to denote that the variables x1:n occur in the term t. For a term
t ∈ Term, a variable x and a ground term gt, the expression t[gt/x] substitutes gt for
all the occurrences of x in t. We apply substitutions (aka. instantiations) also to finite
sets S of ground terms as t[S/x] := {t[gt/x] | gt ∈ S}. The Herbrand universeℋ(t) of
a formula t is the set of all ground terms built from t. That is, all constants occurring
in t, are inℋ(t), and for each function f occurring in t and gt1, . . . , gt|α(f)|−1 ∈ ℋ(t),
f (gt1, . . . , gt|α(f)|−1) ∈ ℋ(t).

4.3 Semantics
The semantics of RFOL is essentially the same as that of conventional many-sorted
logics. Contrary to unsorted logics, the universe of the considered structures is
partitioned with respect to sorts of the underlying sort signature.

Definition 8 (Σ-structure). Let Σ be a signature as in Definition 5. Then, a Σ-structure
ℳ (also called Σ-model or just model) is a tuple (M̄, M) where

• M̄ is a class of universes defined as {M̄T | T ∈ Sort(Ω)} where M̄T denotes the
universe of all semantical values of sort T, and

• M is an interpretation that maps every function symbol f : T1× · · · × T|α(f)|−1→
T|α(f)| inℱΣ with |α(f)|> 1 to an interpretation M(f) : M̄T1 × · · · × M̄|α(f)|−1→
M̄|α(f)|. If |α(f)| = 1, then M(f) ∈ M̄α(f)1 .

We also require that an RFOL structure satisfies the following:

• M(=) = {(v,v) | v ∈ M̄}

• M̄Bool = {tt, ff}

• M(true) = tt, M(f alse) = ff

• M(¬) = {ff}

• M(∧) = {(tt, tt)}

• M(∨) = {(v1,v2) | v1 = tt or v2 = tt}

• M(→) = {(v1,v2) | v1 = ff or v2 = tt}

26 Chapter 4 A First-Order Relational Logic

In order to be able to define the values of terms, we still need to fix the interpretation
of their variables. To do so, variable assignments are used. A variable assignment is a
function β : 𝒳 → M̄ which assigns to each variable a semantical value. We restrict
variable assignment to be sort compatible, i.e., the semantical value of a variable x of
sort T must be in M̄T . The semantic values of variables are not fixed in the structure as
variables may be universally bound. We denote by β[x1 ↦→ v1, . . . , xn ↦→ vn] (or βv1

x1 . . .vn
xn)

the variable assignment that maps each variable xi to vi and is otherwise identical to
β.

Definition 9 (Term value (semantics)). Given a Σ-structureℳ = (M̄, M), and a vari-
able assignment β : 𝒳 → M̄, we assign to each terms t ∈ TermT

Σ a value valℳ,β(t) in
M̄T . The evaluation function valℳ,β : TermΣ→ M̄ is defined inductively as follows:

1. valℳ,β(x) = β(x)

2. valℳ,β(f (t1:n)) = M(f)(valℳ,β(t1), . . . ,valℳ,β(tn))

3. valℳ,β(∀x : T. ϕ) = tt iff valℳ,β[x ↦→v](ϕ) = tt for all v ∈ M̄T

4. valℳ,β(∃x : T. ϕ) = tt iff valℳ,β[x ↦→v](ϕ) = tt for some v ∈ M̄T

For ground terms gt we may simply use M(gt) to denote valℳ,β(gt) —since is
variable free and thus idependent from β. Also, for shotness, we may use for a set S
of ground terms M(S) to denote the set {M(gt) | gt ∈ S} of values.

Before using the evaluation valℳ,β to introduce the satisfiability of formulas, we
first show that it is sort compatible.

Theorem 1 (Sort compatibility). Given a Σ-structureℳ and a variable assignment β :
𝒳 → M̄, the evaluation function valℳ,β is sort compatible, i.e., for all t∈ TermΣ, valℳ,β(t)∈
M̄α(t).

Proof. We prove the claim by induction over the term construction.
If t is a variable, the claim follows directly from the (required) sort compatibility of

variable assignments.
If t := f (t1:n), it follows from Definition 9 that

valℳ,β(f (t1:n)) = M(f)(valℳ,β(t1), . . . ,valℳ,β(tn)).

Because of the induction hypothesis, all ti fulfill the claim, i.e., valℳ,β(ti) ∈ M̄α(ti).
Thus M(f)(valℳ,β(t1), . . . ,valℳ,β(tn)) is well-defined and is element of M̄α(f)|α(f)| .
Finally, the claim follows for this case from Definition 7 which says α(f (t1:n)) =
α(f)|α(f)|.

If t := Qx : T. ϕ with Q∈𝒬Σ, it follows from Definition 9 that valℳ,β(t) = valℳ,β(ϕ).
Form Definition 6 we additionally know that α(ϕ) = Bool. The claim holds by induc-
tion hypothesis which says that valℳ,β(ϕ) ∈ M̄Bool .

4.4 Formulas 27

4.4 Formulas
Unlike traditional many-sorted logics, RFOL has no distinct syntactical category for
formulas. Formulas are in the RFOL framework terms of the distinct sort Bool —
TermBool

Σ . However, we will, as usual, call boolean sorted terms formulas and use the
following usual convention and notation for them.

Definition 10 (Satisfiability and validity of formulas). For formulas ϕ, ϕ′ ∈ TermBool
Σ

we usually write

• ℳ, β |= ϕ instead of valℳ,β(ϕ) = tt and read ϕ is satisfied by (ℳ, β),

• ℳ |= ϕ if (ℳ, β) |= ϕ for every variable assignment β,

• |= ϕ if (ℳ, β) |= ϕ for every Σ-structureℳ and read ϕ is logically valid, and

• ϕ′ |= ϕ if every model that satisfies ϕ′ satisfies ϕ as well, and read ϕ′ entails ϕ .

Definition 11 (Formula structure). A literal is an atomic formula or a negated atomic
formula. A clause is a disjunction of literals. A formula is in clause normal form (CNF)
if it is a conjunction (C1 ∧ · · · ∧ Cn) of clauses where all Ci are quantifier-free and all
variables are implicitly universally quantified.

We assume, unless stated otherwise, that all considered formulas are in CNF and all
variables are unique. When required, we refer to clauses and CNFs as sets of literals
and clauses, respectively.

4.5 Non Trivial FOL Extensions via Satisfiability
Modulo Theories

Up to this point, RFOL is still a pure first-order logic. However, it is well-known that
the transitive closure, for example, is not axiomatizable in pure first-order logic [50].
Moreover, adding transitive closure even to very tame logics makes them undecid-
able [46]. In order to bridge this gap but yet conserve the first-order nature of our RFOL
framework, we use the concept of satisfiability modulo theories (SMT), especially
with the integer theory.

Definition 12 (Theory). Given a signature Σ, a theory 𝒯 is a set of deductively closed
formulas. The theory of the deductive closure of a set of fomulas 𝒜 is denoted by
Cl(𝒜). A class ω of Σ-structures induces a theory Th(w), namely the theory of all
formulas ϕ whereℳ |= ϕ andℳ∈ ω —the resulting set is deductively closed by
definition.

The fact that we allow in Definition 12 the definition of theories by structure classes,
enables to support of non-finite theories —theories which has no finite (or recursive)

28 Chapter 4 A First-Order Relational Logic

set of first-order axioms. Indeed, first the support of non-finite theories makes the
satisfiability modulo theories framework essential —finite theories can be encoded in
the proof obligation.

Definition 13 (Satisfiability modulo theories). Given a Σ-theory 𝒯 , a formula ϕ is
satisfiable modulo 𝒯 iff it is satisfied by one of the structures of 𝒯 . A formula ϕ′

entails ϕ modulo, written ϕ′ |=𝒯 ϕ, iff every structure of 𝒯 that satisfies ϕ′ satisfies ϕ
as well.

As a first example, we consider a version of McCarthy’s theory of arrays [57] with
indexes and values of given sorts A and B, respectively, and extensionality (ArrayA→B).
Therefore, we assume in Ω the sort ArrayA→B and in ℱΣ the function symbols sel :
ArrayA→B× A→ B and sto : ArrayA→B× A× B→ ArrayA→B. In this case, the theory
ArrayA→B can be completely defined by the following finite set of axioms:

∀ar : ArrayA→B, i : A,v : B. sel(sto(ar, i,v), i) = v (4.1)
∀ar : ArrayA→B, i, j : A,v : B. i ̸= j→ sel(sto(ar, i,v), j) = sel(ar, j) (4.2)
∀ar1, ar2 : ArrayA→B. (∀i : A. sel(ar1, i) = sel(ar2, i))→ ar1 = ar2 (4.3)

However, it is well known that for other theories like the theory of integers (Int)
with usual arithmetic functions (−,+,*,<,≤,> .≥), there is no finite and complete
set of (first-order) axioms — even the first-order version of the Peano axioms is, because
of the induction schema, not finite (cf. [10, page 1133]). Here the satisfiability modulo
theories framework comes into play: instead of giving a set of complete axioms for
Int we consider the standard structure for integers Z.

4.6 Relational Extension
The central objects of a relational theory are relations. In theory, even in a flat sort
system, it is possible to define all relational operators based on a general relation sort
(see our suggestion for such an extension in Appendix A). However, because of the
complexity of this approach and since we are more interested in the analysibility of
the translated proof obligations, we decided to go for a less general, but more efficient,
approach. For each 1 ≤ i ≤ N, where N is the maximal needed relational arity, we
introduce an RFOL sort Reli. The urelements (usually called atoms in the Alloy
context) are represented by the RFOL sort Atom. The membership relation between
atom tuples and relations is set by the predicates ∈i ⊆ Atomi × Reli, of corresponding
arity. Figure 4.1 summarize this basic relational extension. We call it basic, since it is
essential and enough for the definition of all (other) relational operators.

The main characteristic of this approach, in comparison to the one in Appendix A,
is that the partitioning of the relations in arity classes is made explicit, thus avoiding
all additional axioms needed to deduce it. A drawback of this approach is, however,
that we will have to declare and axiomatize all further relational operators separately

4.6 Relational Extension 29

Ω←Ω ∪ {Reli | 1≤ i ≤ N} ∪ {Atom}
ℱΣ←ℱΣ ∪ {∈i ⊆ Atomi × Reli | 1≤ i ≤ N}

Figure 4.1: Basic relational extension

for each arity class —sometimes for each combination. In practice, however, we will
omit the arity specification of the operators, whenever it is clear from context.

4.6.1 Relational Operators

Since Alloy is our target language, we will restrict the enriching of RFOL with re-
lational operators to the core Alloy relational operators2. We first start with the two
relational comparison operators equality and subset.

ℱΣ←ℱΣ ∪ {=i ⊆ Reli × Reli | 1≤ i ≤ N} ∪ {⊆i ⊆ Reli × Reli | 1≤ i ≤ N}
Ax← Ax ∪ {∀R,S : Reli. R =i S↔ (∀a1:i : Atom. a1:i ∈i R↔ a1:i ∈i S) | 1≤ i ≤ N}
Ax← Ax ∪ {∀R,S : Reli. R ⊆i S↔ (∀a1:i : Atom. a1:i ∈i R→ a1:i ∈i S) | 1≤ i ≤ N}

As pointed out in the last section, we introduce for each relational arity an separated
operator. Ax represents the set of RFOL axioms defining the semantics of our relational
operators. Ax is assumed to be included in any RFOL proof obligation. A nice side
effect of this setting, is the implicit modeling of the corresponding global operators3

as partial functions —which, indeed, they are. Thus we avoid the use of, otherwise
need, techniques for handling undefinedness (see [43]).

The next category of relational operators we like to enhance RFOL with, are called
(by the author) relational first-order constructors. We call them constructs, since they
construct new relations based on other relations and tuples. Their definitions and
axioms are presented in Figure 4.2.

As Figure 4.2 shows that the semantics of all relational first-order constructors could
be expressed by our basic relational extension —hence the term “first-order”. In order
to simplify the argumentation about this relational first-order constructors at ones, we
introduce the following generalization of their axioms. For each n-ary relational first-
order constructor op : (

⋃
1≤i≤N Reli)n ∪ Atom→ ⋃

1≤i≤N Reli with ar(op(r1:n)) = m,
we write its axiom as follow.

2Widely used operators, which can not be (reasonably) desugard by others
3This are operators which are declared over the set of all relations, despite their arity. For example the

global union operator ∪ : {R ∈ Reli | i ∈ N} × {R ∈ Reli | i ∈ N} → {R ∈ Reli | i ∈ N}; it is undefined for
relations with different arity.

30 Chapter 4 A First-Order Relational Logic

Axop := ∀r1:n : (
⋃

1≤i≤N
Reli)n ∪Atom, a1:m : Atom. a1:m ∈m op(r1:n)↔ LAxop (4.4)

The right-hand side of an axiom, LAxop, has two kind of free variables —unbounded
variables. The constructor arguments r1:n and the atoms of a result tuple a1:m.

The axiomatization of the transitive closure, which is basically a relational construc-
tor, and the set cardinality operator requires, however, the integer theory. Namely,
based on the satisfiability modulo theories framework introduced in Section 4.5. The
translation of this —non first-order— operators is discussed in the next subsections.

4.6.2 Transitive Closure

The transitive closure operator + : Rel2→ Rel2, defined for a binary relation R, con-
structs the smallest transitive relation that contains R. This very, intuitively, simple
concept turned out to be an extremely important and on the same time difficult con-
cept in mathematical reasoning. Avron states in his investigation of transitive closure
logics [7] that the extension of first-order logic with transitive closure is the right
intermediate level between first-order and second-order logic for the formalization
and mechanization of mathematics.

Unfortunately, the transitive closure is not axiomatizable in first-order logic: Lev-
Ami et al. proved in [56], using the undecidability of the halting problem, that there
is no recursively enumerable set of complete first-order axioms for transitive closure;
Keller proved that any complete first-oder axiomatization of the transitive closure is
not compact which contradicts the compactness property of first-order logic.

In Chapter 8 we present an approach that exploits the first-order refutable fragment
transitive closure logics. In this section, however, we are concerned with a complete
axiomatization. Therefore, we use the following definition, where R(i) = R � . . . � R︸ ︷︷ ︸

i+1

.

R+ =
⋃
i≥0

R(i)

In this definition, the transitive closure is calculated by repeatedly joining its base
relation with itself until a fix point is reached. Using this definition, we extend RFOL
with a transitive closure operator as shown in Figure 4.3. As shown, among others,
in 5.3, our transitive closure extension is correct and complete —with respect to the
Alloy semantics— modulo integer theory.

4.6 Relational Extension 31

ℱΣ←ℱΣ ∪ {+: Rel2→ Rel2,() : Rel2 × Int→ Rel2}
Ax← Ax ∪ {∀R : Rel2, a,b : Atom. (a,b) ∈2 R+↔ (∃i : Int. i ≥ 0∧ (a,b) ∈2 R(i))}
Ax← Ax ∪ {∀R : Rel2. R(0) = R}
Ax← Ax ∪ {∀R : Rel2, i : Int, a,b : Atom. i > 0→ R(i) = R(i−1) ∪2 R(i−1) �2,2 R}

Figure 4.3: Extension of RFOL with the transitive closure operator, modulo integer
theory

4.6.3 Integers and Cardinality
Although, in the Alloy context, pure integer expressions are significantly less used
than cardinality expressions, one can not consider a one without the other. Fortunately,
our satisfiability modulo theories framework allows for an efficient and, at the same
time, simple extension of RFOL with integer theory.

Ω←Ω ∪ {Int}
ℱΣ←ℱΣ ∪ {+ : Int× Int→ Int,− : Int× Int→ Int,* : Int× Int→ Int}
ℱΣ←ℱΣ ∪ {< ⊆ Int× Int,> ⊆ Int× Int}

Figure 4.4: Extension of RFOL with integer theory

Figure 4.4 shows the extension. Note that the newly added sort and functions are not
axiomatized, and thus, with respect to standard satisfaction, uninterpreted symbols.
Their intended meaning is first given by the satisfiability modulo theories framework,
namely modulo the theory Z, which interprets Int as the Z and +,−,*,<,> as their
same-named arithmetic operators.

Having the integer theory to our disposal, the axiomatization of the cardinality
operator becomes possible and simple. However, since cardinality is only defined for
finite sets and our sets are, so far, potentially infinite, a decision about the finiteness
intention of sets has to be made.

In the context of the Alloy Analyzer, every relation is finite, even with a priori known
maximal cardinality, thus cardinality is always defined for any relational expression.
With respect to the Alloy language, however, there is no such restrictions. Since Alloy
is in the first line concerned with the specification and analysis of concrete software
systems, but also because of theoretical difficulty concerning infinite sets4, we assume

4The power set of infinite sets is not axiomatizable in first-order logic.

32 Chapter 4 A First-Order Relational Logic

that all relations are finite. In the context of this assumption and modulo the integer
theory, the RFOL extension with the cardinality operator is shown in Figure 4.5.

ℱΣ←ℱΣ ∪ {||i : Reli→ Int | 1≤ i ≤ N}
ℱΣ←ℱΣ ∪ {ordi : Reli ×Atomi→ Int | 1≤ i ≤ N} ∪ {ordInv1 : Rel1 × Int→ Atom}
Ax← Ax ∪ {∀R : Reli, a1:i : Atom. (a1:i) ∈i R→ 1≤ ordi(R, a1:i) ≤ |R|i}
Ax← Ax ∪ {∀R : Reli,n : Int. 1≤ n ≤ |R|i→ ∃a1:i : Atom. (a1:i) ∈i R ∧ ordi(R, a1:i) = n}
Ax← Ax ∪ {∀R : Reli, a1:i,b1:i : Atom.

a1:i ∈i r ∧ b1:i ∈i r ∧ ordi(R, a1:i) = ordi(R,b1:i)→ (a1 = b1 ∧ · · · ∧ ai = bi)}
Ax← Ax ∪ {∀R : Rel1, a : Atom. a ∈1 r→ ordInv(R,ord(R, a)) = a}

Figure 4.5: Extension of RFOL with the cardinality operator

4.6 Relational Extension 33

ℱΣ
∪←

empty set {∅i :→ Reli | 1≤ i ≤ N} ∪
singleton {{}i : Atomi→ Reli | 1≤ i ≤ N} ∪
unions {∪i : Reli × Reli→ Reli | 1≤ i ≤ N} ∪
intersections {∩i : Reli × Reli→ Reli | 1≤ i ≤ N} ∪
differences {∖i : Reli × Reli→ Reli | 1≤ i ≤ N} ∪
overrides {⊕i : Reli × Reli→ Reli | 1≤ i ≤ N} ∪
products {×i,j : Reli × Relj→ Reli+j | 1≤ i + j ≤ N} ∪
joins {�i,j : Reli × Relj→ Reli+j−2 | 1≤ i + j− 2≤ N} ∪
transpose {−1: Rel2→ Rel2}

Ax ∪←{∀a1:i : Atom. (a1:i) /∈ ∅i | 1≤ i ≤ N} ∪
{∀a1:i,b1:i : Atom. (b1:i) ∈i {(a1:i)}i↔ b1 = a1 ∧ · · · ∧ bi = ai | 1≤ i ≤ N} ∪
{∀R,S : Reli, a1:i : Atom. (a1:i) ∈i R ∪i S↔ (a1:i) ∈i R ∨ (a1:i) ∈i S | 1≤ i ≤ N} ∪
{∀R,S : Reli, a1:i : Atom. (a1:i) ∈i R ∩i S↔ (a1:i) ∈i R ∧ (a1:i) ∈i S | 1≤ i ≤ N} ∪
{∀R,S : Reli, a1:i : Atom. (a1:i) ∈i R ∖i S↔ (a1:i) ∈i R ∧ (a1:i) /∈i S | 1≤ i ≤ N} ∪
{∀R,S : Reli, a1:i : Atom.

(a1:i) ∈i R⊕i S↔
(a1:i) ∈i S ∨ ((a1:i) ∈i R ∧ (∀b2:i : Atom. (a1,b2:i) /∈i S)) | 1≤ i ≤ N} ∪

{∀R : Reli,S : Relj, a1:i+j : Atom.

(a1:i+j) ∈i+j R×i,j S↔
(a1:i) ∈i R ∧ (ai+1:j) ∈j S | 1≤ i + j ≤ N} ∪

{∀R : Reli,S : Relj, a1:i+j−2 : Atom.

(a1:i+j−2) ∈i+j−2 R �i,j S↔
∃b : Atom.(a1:i−1,b) ∈i R ∧ (b, ai:i+j−2) ∈j S | 1≤ i + j− 2≤ N} ∪

{∀R : Rel2, a,b : Atom. (a,b) ∈2 R−1↔ (b, a) ∈2 R}

Figure 4.2: Relational constructor (except of transitive closure) and their axiomatiza-
tion using our basic relational extension

35

Chapter 5

Verifying Alloy Problems

This chapter presents our full automatic approach for verifying Alloy problems. The
verification bases on checking the satisfiability of equisatisfiable RFOL formulas to
the negated proof obligation behind the Alloy problem modulo integer theory. The
satisfiability check can be performed by any SMT solver supporting quantifiers and
integer theory —we use the Z3 solver [20]. Section 5.1 formalize the Alloy translation
to RFOL—basic translation. Section 5.3 discuses correctness and completeness of the
translation.

5.1 Translating Alloy to RFOL

5.1.1 Alloy Proof Obligation

Abstractly seen, an Alloy problem consists of (1) an Alloy model1 M describing the
structures of the problem —i.e., signatures and fields declarations including their
implicit constraints, (2) a set ℱ of facts, and (3) an assertion A describing some
properties about the problem. An Alloy problem is correct if any Alloy instance (for
short instance) that is conform with the model M and satisfies the facts in ℱ , satisfies
the assertion A too. An Alloy instance is the equivalent of a semantic structure in
RFOL. It maps each Alloy relation symbol (including signatures) and each (bounded)
variable2 to a relation value —a set of tuples of atom values.

In the Alloy Analyzer context, Alloy instances have to additionally fulfill scope
deduced constraints. These are (1) constraints on the cardinality of signature interpreta-
tions and (2) interpretation of Alloy integers as bit-vectors of corresponding bit-width
to the scope. For the purpose of verification, however, we modified these constraints
such that (1) signatures interpretations can have any, but finite, cardinality and (2)
Alloy integers are interpreted as mathematical integers (Z,+,−,*,<,>).

In order to formulate the formal proof obligation behind an Alloy problem, we
further divide the Alloy model M to a set M𝒮 of sorting constraints on the problem

1not to be confused with RFOL’s semantical structures, also, usually, denoted byℳ
2In Alloy even variables represents relations, namely singleton sub relations of their bounding expression.

36 Chapter 5 Verifying Alloy Problems

symbols, and a set M𝒞 of Alloy formulas expressing all remaining3 model constraints.
Let 𝒮 be the set of all Alloy instances conform to M𝒮 of an Alloy problem. Then, the
proof obligation behind that Alloy problem can be formulated as follow.

|=Th(𝒮),Z
∧

M𝒞 ∧
∧
ℱ → A (5.1)

Consequently, an Alloy problem is correct if and only if any Alloy instance that is
conform with M𝒮 and interprets the signatures as finite sets of values, the integers as
Z, satisfies

∧
M𝒞 ∧

∧ℱ → A.
Having this formulation, we inductively define in the next sections a translation

function T that takes an Alloy problem, in the form of a triple (M,ℱ , A), and returns
an RFOL problem (αM𝒮 ,CM𝒞 ,Cℱ ,CA), where αM𝒮 represents a conform RFOL sorting
function to the sorting constraints of M𝒮 , CM𝒞 represents the RFOL translation of all
model constraints M𝒮 , Cℱ represents the RFOL translation of the facts ℱ , and CA
represents the RFOL translation of the assertion A. The goal of the translation is that

|=Cl(Ax),Z CM𝒞 ∧ Cℱ → CA (5.2)

holds if and only if the corresponding Alloy problem is correct. The notation
(Cl(Ax),Z) stands for the theory combination of both theories Cl(Ax) and Z —i.e.,
Th({ℳ |ℳ is a Z-structure∧ℳ |= Ax}). For notation simplicity reasons and since
each RFOL structure is implicitly a Z-structure satisfying Ax, we skip indexing the
deduction relation with Cl(Ax) or Z, when not need.

5.1.2 Signatures and Fields
The model M of an Alloy problem is defined by its signature and field declarations.
In addition to introducing sort and relation symbols, these declarations encode re-
strictions on M’s conform instances.

In our translation rules presented in Figure 5.1, the auxiliary function 𝒟 isolates
and translates the basic relational constants of each Alloy model declaration. For a
declaration of a relation r of arity n, it introduces, regardless from further constraints
expressed by the declaration, an RFOL constant of sort Reln with the unique name
Na[r]4. All further declaration constraints are captured and translated by the auxiliary
function 𝒞.

5.1.3 Expressions
Expressions constitute the basic syntactical elements of Alloy formulas —equivalent
to TermΣ ∖ TermBool

Σ in RFOL. They are translated using the auxiliary function ℰ given
3Beside sorting of the problem symbols, all Alloy model constraints are expressible with Alloy formulas.
4We assume that all RFOL function symbols Na[r] are already in ℱΣ.

5.1 Translating Alloy to RFOL 37

T : model ×𝒫(f rml)× f rml→ SortFun× TermBool
Σ × TermBool

Σ × TermBool
Σ

𝒟 : decl→ SortFun
𝒞 : decl∪ f rml→ TermBool

Σ
Na : symbol→ symbolRFOL

T[<M,ℱ , A>] = <αΣ
⊕

d∈Decl(M)𝒟[d],
∧

d∈Decl(M) 𝒞[d],
∧

F∈ℱ 𝒞[F],𝒞[A]>
𝒟[sig S] = α(Na[S]) = (Rel1)
𝒟[sig S (in|extends) S′] = α(Na[S]) = (Rel1)
𝒟[r:S1→ . . .→ Sn] = α(Na[r]) = (Reln)
𝒞[sig S] =

∧
S′ Na[S] ∩1 Na[S′] = ∅ for any top-level signature S′ ̸= S

𝒞[sig S in S′] = Na[S] ⊆1 Na[S′]
𝒞[sig S extends S′] = 𝒞[sig S in S′] ∧∧

S Na[S] ∩1 Na[B] = ∅ for any extension B of S’ where B ̸= S
𝒞[r:S1→ . . .→ Sn] = Na[r] ⊆n Na[S1]×1,n−1 (. . . (Na[Sn−1]×1,1 Na[Sn]))

Figure 5.1: Translation rules for Alloy declarations. SortFun denotes the sorting func-
tions α : 𝒳 ∪ℱ → Sort(Ω)* × Sort(Ω).

in Figure 5.2. In Alloy, there is a distinction between relational expressions and integer
expressions. The design of our RFOL makes, especially, the translation of the relational
expressions straightforward. Figure 5.2 (top part) gives their translation rules.

However, for integer expressions we deviate from the Alloy’s behavior in two
aspects: (1) we model the Alloy set of integer values int as the infinite set of mathe-
matical integers, (2) we make all implicit casts from the Alloy built-in signature Int to
integer values explicit and forbid the opposite cast. This design decision goes on the
same line, albeit not identical, with the Alloy language update made since version 4.2.
Since this update, Alloy supports only the type Int —no direct support of integer
values, and all integer operators got new distinct symbols. Figure 5.2 (bottom part)
shows the translation rules for integer expressions.

The application of Alloy’s sum operator to a unary integer expression ie over a
variable binding in the unary expression e is translated using the function sum :
Rel1 × Rel1 × Int × Int→ Int. The axiomatization of this function is based on an
approach of Leino et al. published in [55]. In this approach, they introduced an
efficient first-order axiomatization for comprehensions of the form Q{L ≤ i ≤ H, T}
where Q is a function (e.g. sum, min), L and H are the lower and upper bounds on the
integer i, and T is an integer term based on i. Alloy’s sum expressions are computed
over general variable bindings —e can be an arbitrary unary expression. Thus, no
integer bounds are explicitly available. However, using our cardinality axioms, we can
formulate Alloy’s sum operator as sum{1≤ i ≤ |e|1, ℰ [ie][ordInv1(ℰ [e], i)/x]} which
makes Leino’s axioms and patterns directly applicable.

38 Chapter 5 Verifying Alloy Problems

ℰ : exp ∪ intExp→ TermΣ e : exp, ie : intExp,n : number
ℰ [none] = ∅1
ℰ [e1(+| − | & | ++)e2] = ℰ [e1](∪i| ∖i | ∩i |⊕i)ℰ [e2] if arity(e1) = arity(e2) = i
ℰ [e1.e2] = ℰ [e1] �i,j ℰ [e2] if arity(e1) = i and arity(e2) = j
ℰ [e1->e2] = ℰ [e1]×i,j ℰ [e2] if arity(e1) = i and arity(e2) = j
ℰ [~e] = ℰ [e]−1

ℰ [^e] = ℰ [e]+
ℰ [r] = Na[r] if r is a relational symbol
ℰ [v] = Na[v] if v is a variable

ℰ [ie1 +int ie2] = ℰ [ie1] + ℰ [ie2]
ℰ [ie1 −int ie2] = ℰ [ie1]− ℰ [ie2]
ℰ [ie1 *int ie2] = ℰ [ie1] * ℰ [ie2]
ℰ [#e] = |ℰ [e]|i if arity(e) = i
ℰ [sum x : e | ie] = sum(e, ie,1, |e|1)
ℰ [n] = n

Figure 5.2: Translation rules for Alloy expressions.

5.1.4 Formulas
Elementary Alloy formulas are formed by applying multiplicity quantifiers to rela-
tional expressions or by comparing expressions. Quantified formulas are formed
using universal and existential quantifiers. More complex formulas are formed by
combining formulas with logical connectivities. Figure 5.3 gives the rules for translat-
ing Alloy formulas to RFOL using the auxiliary function 𝒞.

𝒞 : f ormula→ TermBool
Σ e : exp, ie : intExp, arity(e) = i

𝒞[lone e] = 𝒞[all a,b : e | a = b]
𝒞[e1 in e2] = ℰ [e1] ⊆i ℰ [e2]
𝒞[e1 = e2] = ℰ [e1] =i ℰ [e2]
𝒞[ie1 (< | > | =) ie2] = ℰ [ie1](<|>|=)ℰ [ie2]
𝒞[all a : e | G] = ∀a1:i : Atom. (a1:i) ∈i ℰ [e]→ 𝒞[G][{(a1:i)}i/Na[a]]
𝒞[some a : e | G] = ∃a1:i : Atom. (a1:i) ∈i ℰ [e] ∧ 𝒞[G][{(a1:i)}i/Na[a]]
𝒞[not G] = ¬𝒞[G]
𝒞[G1 and G2] = 𝒞[G1] ∧ 𝒞[G2]
𝒞[G1 or G2] = 𝒞[G1] ∨ 𝒞[G2]
𝒞[G1 implies G2] = 𝒞[G1]→ 𝒞[G2]

Figure 5.3: Translation rules for Alloy formulas.

For an Alloy expression e of arity i, multiplicity formulas of the form (mult e)
are desugard using standard Alloy quantified formulas where mult stands for the

5.2 Rewrite of non Principle Alloy Constructors 39

Non principle Alloy expressions Equivalent reduction
s <: e (s→univ→...→univ) & e
some e some x: e | true
one e some e and lone e
no x: exp | F all x: exp | !F
one x: exp | F some x: exp | F and (all y: exp | y != x⇒ !F)
lone x: exp | F some x: exp | F and (all y: exp | y != x⇒ !F) or

all x: exp | !F

Table 5.1: Desugaring non principle Alloy constructors

multiplicities one, some, and lone. Alloy formulas comparing expression —either
relational or integer— (e1 comp e2) are translated directly using corresponding
comparators in RFOL where comp stands for in, =, <, and >. Quantified Alloy
formulas of the form (Q a: e| G) are translated to quantified RFOL formulas that
bound fresh RFOL variables a1:i to the sort Atom and substitute the set {(a1:i)}i for
a in translation of G. The variable binding inaccuracy is corrected by guarding the
consideration of the quantification body G —either using implication for universal
quantifiers or a conjunction for existential quantifiers— to only valid bindings —i.e.,
(a1:i) ∈i ℰ [e]. Finally, negation, conjunction, disjunction and implication in Alloy are
mapped to those in RFOL.

5.2 Rewrite of non Principle Alloy Constructors

5.2.1 Core Alloy
Although core Alloy (cf. Section 2.1) focuses on principle Alloy constructors, it
contains some non principle constructors —constructors that can be resolved/ex-
pressed/rewritten using others (aka. desugaring). Our translation rewrites Alloy
expressions and formulas containing such constructors to equivalent ones using
principle Alloy constructors before the actual translation. For the override operator,
however, which can also be desugared using domain restriction, difference and union,
we choose a direct translation and axiomatization in RFOL since its rewrite results in
too complex expressions that can affect the efficiency of the analysis. Table 5.1 lists
and resume all our rewrite rules for non principle constructors in core Alloy.

5.2.2 Ordering
Alloy provides a bunch of libraries (called modules) that offer complex and often
required functionalities, like for graphs, sequences, ordered structures, etc. Most

40 Chapter 5 Verifying Alloy Problems

of these functionalities serve merely the simplification of the modeling process and
the conciseness of Alloy expressions, and are desugared during the analysis by the
Alloy Analyzer. The ordering module, however, is hardwired into the Alloy Analyzer
in order to take advantage of its symmetry breaking capability, which is especially
efficient for linked data structures like ordering.

Because of its widely use in Alloy modeling, especially for complex algorithms
—it is, in fact, the standard way of modeling trace executions, we were interested
in supporting the proof of Alloy assertions involving ordering by our automated
reasoning. However, we observed in [75], like for transitive closure, that the standard
integer based axiomatization of ordering is not suitable for automation since it requires
in most cases integer induction. On the other hand, we could solve a similar problem
for transitive closure using our path-invariant injection approach (see Chapter 8) to a
large extent. In this section, we show how we express functionalities of the ordering
module using the transitive closure theory. This allows for a more effective exploitation
of all advances we made in the automatic transitive closure reasoning.

Ordering a signature S, in Alloy with the declaration open util/ordering[S], defines
a total order on S. The order is represented by the (implicit) relations5: next: S→S to
denote of an element e the successor (by e.next) and predecessor (by next.e), first: S to
denote the smallest element of the ordering and last: S to denote the largest element
of the ordering. Since Alloy interprets signatures as finite sets (w.r.t. to the provided
scope), the largest element of the ordering exists and has no successor. We desugar
the ordering declaration of S by introducing the explicit relations nextS⊆ S× S and
firstS⊆ S, and constraining them as follow:

one firstS (5.3)
all s: S | lone s.nextS (5.4)
all s: S | s !in s.ˆnextS (5.5)
all s: S | (s = firstS) or (s in firstS.ˆnextS) (5.6)

Thereby, and with respect to a transitive closure theory, we constrain the signature S
to be a strict total order under nextS+ —an irreflexive total order. The smallest element
of this ordering is represented by the unary singleton relation firstS (constrained
by Equation 5.3). Since we interpret signatures as (possibly) infinite sets, there is
no largest element of the ordering. Given an element s ∈ S, its successor element
is represented by the unary singleton relational expression s.nextS (constrained by
Equation 5.4) and its predecessor by the unary lone relational expression nextS.s
(constrained by Equations 5.4, 5.5 and 5.6). One can easily prove using Equations 5.5
and 5.6 that S is a strict total order under nextS+.

Waiving the reflexivity, allows us to simplify our desugaring of the ordering mod-
ule, by constraining nextS to be an acyclic functional relation, while preserving the
actually needed properties of the ordering. Contrary to the Alloy documentation, the

5Based on this relations, Alloy’s ordering module offers further functions and predicates to shorten
expressions.

5.3 Correctness and Completeness 41

Alloy analyzer (version 4.2) also implements a strict total order. The complete Alloy
description of our desugaring of the ordering module is listed in Appendix B.

5.3 Correctness and Completeness
In this section, we turn our attention to the correctness and completeness of our
translation of Alloy proof obligation to RFOL, formulated in the previous section. In
order to do so, we require formal semantics of Alloy formulas. Semantics of RFOL is
formulated in Chapter 4.

5.3.1 Alloy Semantics
One could formulate the Alloy semantics using the same framework as we did for
RFOL. However, in order to avoid confusion, we use the framework used in the Alloy
book [47, Appendix C]6. Accordingly, an Alloy formula is evaluated with respect to
an Alloy instance ℐ consisting of a set of atom values U and a binding I. The binding
I : relSym ∪ var→ ⋃

1≤i≤N𝒫(Ui) assigns to each relational symbol (can be seen as
free variables), and to each variable (always bounded via quantifiers) a relation value
—a set of tuple of values— of corresponding arity. Figure 5.4 shows the semantics of
Alloy formulas.

The meaning of an Alloy formula is given recursively by the auxiliary functions M
and E. The function E extends the interpretation of relational symbols and variables
to (complex) relational expressions. The function M evaluate formulas with respect
to a given instance. A formula is true with respect to a given instance if and only if its
expression values given by E satisfies it. Note that due to its bounded analysis, the
Alloy Analyzer finitizes all signatures and types including int. Hence, it can check
problems only with respect to fixed bitwidth integers. In the context of verification,
however, integers are usually assumed to be infinite. Accordingly, we fixed the
interpretation of the Alloy int type and its constants and operators to mirror the
mathematical integers —(Z,+,−,*,<,>).

5.3.2 RFOL Structures Features
In this section we show some features of RFOL structures which are essential for the
correctness and completeness discussion of our Alloy translation to RFOL.

The first features state that, because of the axioms Ax, the interpretation of each
Reli with the relation ∈i is isomorph to the power set of the interpretation of Atomi

with the relation ∈. In general, power set is not axiomatizable in first-order logic,
however, for finite sets it is. Indeed, we show in the next theorem that the following
axioms of Ax are sufficient.

6beside that we represent relational values as sets of tuple of atoms, instead of abstract relations as in
Zermelo–Fraenkel set theory

42 Chapter 5 Verifying Alloy Problems

M : f ormula× (relSym ∪ var→
⋃

1≤i≤N
𝒫(Ui))→ {tt, ff}

E : exp× (relSym ∪ var→
⋃

1≤i≤N
𝒫(Ui))→

⋃
1≤i≤N

𝒫(Ui)

M[not f]I = ¬M[f]I
M[f and g]I = M[f]I ∧M[g]I
M[f or g]I = M[f]I ∨M[g]I
M[f⇒ g]I = M[f]I→ M[g]I
M[all x: e | f]I = ∧{M[f](I ⊕ x ↦→ v) | v ⊆ E[e]I ∧ |v| = 1}
M[some x: e | f]I = ∨{M[f](I ⊕ x ↦→ v) | v ⊆ E[e]I ∧ |v| = 1}
M[e1in e2]I = E[e1]I ⊆ E[e2]I
M[e1= e2]I = E[e1]I = E[e2]I
M[ie1(< | >) ie2]I = E[ie1]I(< | >)E[ie2]I

E[none]I = ∅
E[e1 + e2]I = E[e1]I ∪ E[e2]I
E[e1 & e2]I = E[e1]I ∩ E[e2]I
E[e1 - e2]I = E[e1]I ∖ E[e2]I
E[e1++ e2]I = {(a1:n) | (a1:n) ∈ E[e2]I ∨ ((a1:n) ∈ E[e1]I ∧ (∀b2:n. (a1,b2:n) /∈ E[e2]I))}
E[e1.e2]I = {(a1:n−1,b2:m) | ∃x. (a1:n−1, x) ∈ E[e1]I ∧ (x,b2:m) ∈ E[e2]I}
E[e1→e2]I = {(a1:n,b1:m) | (a1:n) ∈ E[e1]I ∧ (b1:m) ∈ E[e2]I}
E[∼e]I = {(a,b) | (b, a) ∈ E[e]I}
E[ˆe]I = {(a,b) | ∃x1, . . . , xn. (a, x1), (x1, x2), . . . , (xn,b) ∈ E[e]I}
E[n]I = n
E[x]I = I(x)
E[r]I = I(r)
E[Atom]I = U
E[ie1(+ | - | *) ie2]I = E[ie1]I(+| − |*)E[ie2]I
E[#e]I = |E[e]I|
E[sum x: e | ie]I = Σv∈E[e]I E[ie](I ⊕ x ↦→ v)

E[int]I = Z

Figure 5.4: Semantics of the Alloy kernel, taken from [27, 72, 47], where e ∈ exp,
ie ∈ intExp, r ∈ relSym and n ∈ number. However, for the operators override and sum,
their semantics were extracted from corresponding paragraphs of the Alloy book [47].

5.3 Correctness and Completeness 43

{∀a1:i : Atom. (a1:i) /∈ ∅i | 1≤ i ≤ N} (5.7)
{∀a1:i,b1:i : Atom. (b1:i) ∈i {(a1:i)}i↔ b1 = a1 ∧ · · · ∧ bi = ai | 1≤ i ≤ N} (5.8)
{∀R,S : Reli, a1:i : Atom. (a1:i) ∈i R ∪i S↔ (a1:i) ∈i R ∨ (a1:i) ∈i S | 1≤ i ≤ N} (5.9)
{∀R,S : Reli. R =i S↔ (∀a1:i : Atom. a1:i ∈i R↔ a1:i ∈i S) | 1≤ i ≤ N} (5.10)

Definition 14 (ℳ-Homomorphism). Each RFOL structureℳ deduces a canonical
homomorphism ≃M :

⋃
1≤i≤N M̄Reli ∪ M̄Atom→ ⋃

1≤i≤N𝒫((M̄Atom)i) ∪ M̄Atom, with

≃M(r̄) =

{
r̄ if r̄ ∈ M̄Atom

{(ā1:i) ∈ (M̄Atom)i | M(∈i)(ā1:i, r̄)} if r̄ ∈ M̄Reli

When more convenient, we use r̄ ≃M s to denote ≃M(r̄) = s.

Theorem 2 (ℳ-Isomorphism). For any RFOL structureℳ (compatible with αΣ and Ax)
and 1≤ i ≤ N, the universe of the sort Reli with the relation M(∈i) is isomorph to the power
set of the i-th self Cartesian product of the universe of Atom with the relation ∈, namely with
≃M. That is,

1. ≃M is surjective

2. ≃M is injective

3. M(∈i)(ā1:i, r̄) ⇐⇒ (ā1:i) ∈ ≃M(r̄)

Proof. To prove (1), we construct for each s̄ ⊆ (M̄Atom)i a term r of sort Reli such that
≃M(valℳ,β(r))) = s̄ for some variable assignment β. We do so by induction on the
cardinality of s̄.

For s̄ = ∅i, we choose r = ∅i and β arbitrary. Then,

(ā1:i) ∈ ≃M(valℳ,β(r))

⇐⇒ M(∈i)(ā1:i, M(∅i))

⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i ∅i , for some variables a1:i

5.7⇐⇒ℳ, β
ā1:i
a1:i |= false

⇐⇒ ff
⇐⇒ (ā1:n) ∈ s̄

44 Chapter 5 Verifying Alloy Problems

For s̄ = {(b̄1:i)}, we choose r = {(b1:i)}i and β such that β(bj) = b̄j for 1≤ j≤ i. Then,

(ā1:i) ∈ ≃M(valℳ,β(r))

⇐⇒ M(∈i)(ā1:i,valℳ,β({(b1:i)}i))

⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i {(b1:i)}i , for variables a1:i

5.8⇐⇒ℳ, β
ā1:i
a1:i |= a1 = b1 ∧ · · · ∧ ai = bi

val⇐⇒ ā1 = β(b1) ∧ · · · ∧ āi = β(bi)

β⇐⇒ ā1 = b̄1 ∧ · · · ∧ āi = b̄i

⇐⇒ (ā1:i) ∈ {(b̄1:i)}

Let now the cardinality of s̄ be |s̄| = n + 1 with 0 < n. Then, it exists b̄1:i ∈ s̄ such
that s̄ = s̄′ ∪ {b̄1:i} and |s̄′|= n. By induction hypothesis, it exists an r′ of sort Reli and
a variable assignment β′ such that (1) holds for s̄′. For s̄, we choose r = r′ ∪i {(b1:i)}i

and β = β′ b̄1:i
b1:i

. Then,

(ā1:i) ∈ ≃M(valℳ,β(r))

⇐⇒ M(∈i)(ā1:i,valℳ,β(r′ ∪i {(b1:i)}i))

⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i r′ ∪i {(b1:i)}i , for variables a1:i

5.9⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i r′ ∨ (a1:i) ∈i {(b1:i)}i

val⇐⇒ (ℳ, β
ā1:i
a1:i |= (a1:i) ∈i r′) ∨ (ℳ, β

ā1:i
a1:i |= (a1:i) ∈i {(b1:i)}i)

val⇐⇒ ((ā1:i) ∈ ≃M(valℳ,β(r′))) ∨ ((ā1:i) ∈ ≃M(valℳ,β({(b1:i)}i)))

IH⇐⇒ ((ā1:i) ∈ s̄′) ∨ ((ā1:i) ∈ {(b̄1:i)})
⇐⇒ (ā1:i) ∈ s̄′ ∪ {(b̄1:i)}i

In order to prove (2), it suffices to show |M̄Reli | ≤ |𝒫((M̄Atom)i)|. Axiom 5.10
states that each element R of Reli is uniquely identifiable by the interpretation of
∈i. Consequently, there are at most as many distinct elements of Reli as distinct
interpretations of ∈i. Since there are 2i*|M̄Atom | distinct interpretation of ∈i, (2) holds.

(3) is true by definition of ≃M.

The second RFOL structures feature extends the first to all relational RFOL operators.
That is, the interpretation of Reli with any relational operator (e.g., ∪i) is isomorph to
the power set of the interpretation of Atomi with its set theoretical counterpart (here
∪). Lemma 1 handles the case of first-order relational constructors. Transitive closure
and cardinality are handled, respectively, in lemma 3 and lemma 4.

5.3 Correctness and Completeness 45

Lemma 1. Let t = op(t1:n) be a complex i-ary RFOL term with a top-level first-order relational
constructor op ∈ {∅i,{}i,−1 , �i,j,×i,j,⊕i,j,∖i,∪i,∩i}. Then,

valℳ,β(op(t1:n)) ≃M ōp(≃M(valℳ,β(t1)), . . . ,≃M(valℳ,β(tn)))

, where ōp denotes the set theoretical counterpart operator of op in prefix notation.

Proof. We conduct the proof only for some selected operators, for the rest the proof
goes analog. Let consider some atom values (ā1:i).

For t = ∅i, we show

(ā1:i) ∈ ≃M(valℳ,β(∅i))

⇐⇒ M(∈i)(ā1:i,valℳ,β(∅i)

val⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i ∅i

5.7⇐⇒ℳ, β
ā1:i
a1:i |= false

⇐⇒ ff
⇐⇒ (ā1:i) ∈ ∅

For t = {b1:i}i, we show

(ā1:i) ∈ ≃M(valℳ,β({b1:i}i))

⇐⇒ M(∈i)(ā1:i,valℳ,β({b1:i}i)

val⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i {b1:i}i

5.8⇐⇒ℳ, β
ā1:i
a1:i |= a1 = bi ∧ · · · ∧ ai = bi

⇐⇒ ā1 = β(b1) ∧ · · · ∧ ā = β(bi)

⇐⇒ (ā1:i) ∈ {valℳ,β(b1), . . . ,valℳ,β(bi)}

For t = t1 ∪i t2, we show

(ā1:i) ∈ ≃M(valℳ,β(t1 ∪i t2))

⇐⇒ M(∈i)(ā1:i,valℳ,β(t1 ∪i t2)

val⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i t1 ∪i t2

5.9⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i t1 ∨ (a1:i) ∈i t2

⇐⇒ (ℳ, β
ā1:i
a1:i |= (a1:i) ∈i t1) ∨ (ℳ, β

ā1:i
a1:i |= (a1:i) ∈i t2)

val⇐⇒ M(∈i)(ā1:i,valℳ,β(t1)) ∨M(∈i)(ā1:i,valℳ,β(t2))

IH⇐⇒ (ā1:i) ∈ ≃M(valℳ,β(t1)) ∨ (ā1:i) ∈ ≃M(valℳ,β(t2))

⇐⇒ (ā1:i) ∈ ≃M(valℳ,β(t1)) ∪≃M(valℳ,β(t2))

46 Chapter 5 Verifying Alloy Problems

For t = t1 �n,m t2, we assume w.l.o.g. that i = n + m− 2 and show

(ā1:i) ∈ ≃M(valℳ,β(t1 �n,m t2))

⇐⇒ M(∈i)(ā1:i,valℳ,β(t1 �n,m t2)

val⇐⇒ℳ, β
ā1:i
a1:i |= (a1:i) ∈i t1 �n,m t2

Ax⇐⇒ℳ, β
ā1:i
a1:i |= ∃b : Atom. (a1:n−1,b) ∈n t1 ∧ (b, an:i) ∈m t2

⇐⇒ℳ, β
ā1:i
a1:i

b̄
b |= (a1:n−1,b) ∈n t1 ∧ (b, an:i) ∈m t2 , for some b̄

⇐⇒ (ℳ, β
ā1:i
a1:i

b̄
b |= (a1:n−1,b) ∈n t1) ∧ (ℳ, β

ā1:i
a1:i

b̄
b |= (b, an:i) ∈m t2) , for some b̄

val⇐⇒ M(∈n)(ā1:n−1, b̄,valℳ,β(t1)) ∧M(∈m)(b̄, ān:i,valℳ,β(t2)) , for some b̄
IH⇐⇒ (ā1:n−1, b̄) ∈ ≃M(valℳ,β(t1)) ∧ (b̄, ān:i) ∈ ≃M(valℳ,β(t2)) , for some b̄

⇐⇒ ∃b̄. (ā1:n−1, b̄) ∈ ≃M(valℳ,β(t1)) ∧ (b̄, ān:i) ∈ ≃M(valℳ,β(t2))

⇐⇒ (ā1:n−1, b̄) ∈ ≃M(valℳ,β(t1)) �≃M(valℳ,β(t2))

The next lemma inlines the semantics of the iterative self join operator () —hidden
in its recursive axioms (Figure 4.3). It is used in the proof of lemma 3.

Lemma 2. For each binary relational term r, positive number n and atom tuple (a,b),

(a,b) ∈2 r(n) ⇐⇒ ∃x1:n : Atom. (a, x1) ∈2 r ∧ · · · ∧ (xn,b) ∈2 r.

Proof. Proof by induction on n. The base case of n = 0 is trivial. Let assume the claim
is true for all 0≤ i ≤ n. The claim is then proven by:

(a,b) ∈2 r(n+1)

Ax()⇐⇒ (a,b) ∈2 r(n) �2,2 r
Ax�⇐⇒ ∃xn+1 : Atom. (a, xn+1) ∈2 r(n) ∧ (xn+1,b) ∈2 r
IH⇐⇒ ∃xn+1 : Atom. (∃x1:n : Atom. (a, x1) ∈2 r ∧ · · · ∧ (xn, xn+1) ∈2 r) ∧ (xn+1,b) ∈2 r
⇐⇒ ∃x1:n+1 : Atom. (a, x1) ∈2 r ∧ · · · ∧ (xn+1,b) ∈2 r

Lemma 3. Letℳ be an RFOL structure and r ∈ Rel2 be a binary relational term. Then,

valℳ,β(r+) ≃M (≃M(valℳ,β(r)))+

, where the set theoretical transitive closure is on the right-hand side.

5.3 Correctness and Completeness 47

Proof. Let consider the atom values ā1:2. Then, we show that (ā1:2) ∈≃M(valℳ,β(r+))
iff (ā1:2) ∈ (≃M(valℳ,β(r)))+.

(ā1:2) ∈ ≃M(valℳ,β(r+))

⇐⇒ M(∈i)(ā1:2,valℳ,β(r+)
val⇐⇒ℳ, βā1:2

a1:2 |= (a1:2) ∈2 r+

Ax⇐⇒ℳ, βā1:2
a1:2 |= ∃n : Int. 0≤ n ∧ (a1:2) ∈2 r(n)

lem. 2⇐⇒ℳ, βā1:2
a1:2 |= ∃n : Int. 0≤ n ∧ (∃b1:n : Atom. (a1,b1) ∈2 r ∧ · · · ∧ (bn, a2) ∈2 r)

⇐⇒ℳ, βā1:2
a1:2 |= ∃b1:n : Atom. (a1,b1) ∈2 r ∧ · · · ∧ (bn, a2) ∈2 r

⇐⇒ M(∈2)(ā1, b̄1,valℳ,β(r)) ∧ · · · ∧M(∈2)(b̄n, ā2),valℳ,β(r)), for some b̄1:n

⇐⇒ (ā1, b̄1) ∈ ≃M(valℳ,β(r)) ∧ · · · ∧ (b̄n, ā2) ∈ ≃M(valℳ,β(r)), for some b̄1:n

⇐⇒ ∃b̄1:n. (ā1, b̄1) ∈ ≃M(valℳ,β(r)) ∧ · · · ∧ (b̄n, ā2) ∈ ≃M(valℳ,β(r))
Fig. 5.4⇐⇒ (ā1:2) ∈ (≃M(valℳ,β(r)))+

Lemma 4. For each n-ary relational term r, RFOL structureℳ, and variable assignment β,

valℳ,β(|r|n) = |≃M(valℳ,β(r))|.

Proof. Remember that an ROFL structure is implicitly a Z structure satisfying Ax.
Let us assume w.l.o.g. that |≃M(valℳ,β(r))| = k. From the cardinality definition for
finite sets, we can further assume w.l.o.g. that ≃M(valℳ,β(r)) = {(ā11:n), . . . , (āk1:n)} ⊆
M̄Atom

We first proof by contradiction thatℳ, β |= |r|n ≤ k. Let us assumeℳ, β |= k < |r|n.
From Ax (second axiom in Figure 4.5) we get that there exists at least k + 1 atom
tuples (a11:n), . . . , (ak+11:n) with (ai1:n) ∈n r and ordn(r, ai1:n) = i for all 1 ≤ i ≤ k + 1.
Also from the cardinality axioms (this times, third axiom) we get that all k + 1 atom
tuples (ai1.n) must be distinct. Altogether we can infer that it must be at least k + 1
distinct atom tuples belonging to r. Consequently, ≃M(valℳ,β(r)) must have also at
lest k + 1 distinct atom value tuples which is a contradiction to our assumption.

48 Chapter 5 Verifying Alloy Problems

Next, we proof, also by contradiction, thatℳ, β |= k ≤ |r|n and thus the claim. To
do so, we first show that r can be written as the union of some k unary singleton sets.

ℳ, β |= ∃a11:n , . . . , ak1:n : Atom. r = {(a11:n)}n ∪n · · · ∪n {(ak1:n)}n

⇐⇒ℳ, β
v̄11:n ...v̄k1:n
a11:n ...ak1:n

|= r = {(a11:n)}n ∪n · · · ∪n {(ak1:n)}n, for some v̄11:n , . . . , v̄k1:n

⇐⇒ valℳ,β(r) = val
β

v̄11:n
...v̄k1:n

a11:n
...ak1:n

({(a11:n)}n ∪n · · · ∪n {(ak1:n)}n), for some v̄11:n , . . . , v̄k1:n

lem. 1⇐⇒ valℳ,β(r) =
⋃

1≤i≤k

val
β

v̄11:n
...v̄k1:n

a11:n
...ak1:n

({(āi1:n)}n), for some v̄11:n , . . . , v̄k1:n

lem. 1⇐⇒ valℳ,β(r) =
⋃

1≤i≤k

{(v̄i1:n)}, for some v̄11:n , . . . , v̄k1:n

⋃
⇐⇒ valℳ,β(r) = {(v̄11:n), . . . , (v̄k1:n)}, for some v̄11:n , . . . , v̄k1:n

Choosing ā11:n , āk1:n for v̄11:n , v̄k1:n , concludes this proof.
Let us now assume thatℳ, β |= |r|n < k. By applying the first axiom of Figure 4.5 to

each ai1:n we get that ordn(r, ai1:n)≤ |r|n for all 1≤ i ≤ k. Since ordn(r, .) is injective for
all elements of r, we can conclude that k ≤ |r|n which contradict the assumption.

5.3.3 Correctness
To show the correctness of our translation, we first provide in Figure 5.5 a construction
schema of an RFOL structureℳℐ from a given Alloy instance ℐ . Note that sinceℳℐ
is an RFOL structure, it is a structure for all its axioms Ax too. Also note thatℳℐ is
not necessary unique.

M̄Atom
ℐ = U (5.11)

M̄Reli
ℐ = 𝒫(Ui) for all 1≤ i ≤ N (5.12)

M̄Int
ℐ = Z (5.13)

Mℐ (Na[r]) = I(r) for r ∈ relSym (5.14)

Mℐ (∈i) = {(ā1:i, t̄) ∈Ui ×𝒫(Ui) | (ā1:i) ∈ t̄} for all 1≤ i ≤ N (5.15)

Figure 5.5: Construction of an RFOL structure from an Alloy instance.

Before we formulate and prove our main correctness theorem, we prove some
general properties of theℳℐ construction.

Lemma 5. The canonical isomorphism deduced byℳℐ (Definition 14) is the identity. That
is, ≃ℳℐ (r̄) = r̄ for all term values r̄.

5.3 Correctness and Completeness 49

Proof. Let ā1:i be some atom values in ℳ̄ℐ
Atom and r̄ a relational term value in ℳ̄ℐ

Reli .
Then,

(ā1:i) ∈ ≃ℳℐ (r̄)
≃ℳℐ⇐⇒ℳℐ (∈i)(ā1:i, r̄)
5.15⇐⇒ ā1:i ∈ r̄

Lemma 6. Let ℐ be an Alloy instance of an Alloy problem P = (M,ℱ , A) and T[P] =
(αMC ,CMC ,CF,CA) its RFOL translation. Then,ℳℐ is a well-defined Σ-structure, where
αΣ = αMC .

Proof. Since αM𝒞 only modifies the sorting of translated Alloy symbols, it is sufficient
to show that for all Alloy symbols r, Mℐ (Na[r]) : M̄ℐ

T1 × · · · × M̄ℐ
Tn−1 → M̄ℐ

Tn if
αM𝒞 (Na[r]) = (T1,Tn). This is guaranteed by the translation rules of the auxiliary
translation function 𝒟 in Figure 5.1.

The next lemma states that the evaluation of an Alloy expression in the context of
an Alloy instance ℐ agrees with the evaluation of its translation with respect to the
RFOL structureℳℐ .

Lemma 7. Let e be an Alloy expression, ℐ an Alloy instance, and β : 𝒳 → M̄ℐ an RFOL
variable assignment which agrees with I on translated Alloy variables (i.e., β(Na[x]) = I(x)).
Then,

E[e]I = valℳℐ ,β(ℰ(e)).

Proof. We prove the lemma by induction on the construction of Alloy expression
(Figure 5.4). However, we demonstrate the proof only for the interesting cases.

If e = x is a variable or a relational symbol, then we have on the one hand E[x]I =
I(x). On other hand we have that valℳℐ ,β(ℰ [x]) = β(Na[x]). The claim follows, here,
from the conditions on β.

If e = r is a relational symbol, then we have on the one hand E[r]I = I(r). On the
other hand we have that valℳℐ ,β(ℰ [r]) = MI(Na[r]). The claim follows, here, from
the construction ofℳℐ (rule 5.14 of Figure 5.5).

Let now e be is a complex Alloy expression. Depending e’s top-level operator opA,
we distinguish between three essential cases: (1) opA’s RFOL counterpart opR is a
first-order relational constructor (cf. Figure 4.2), (2) opA is the transitive closure, and
(3) opA is the cardinality.

For the first case, let be e = opA(e1:n), where opA ∈ {non, + , ++ , - , & ,.,→ ,∼,ˆ}. Let
furthermore ōp denotes the set theoretical counterpart of opA. Then,

50 Chapter 5 Verifying Alloy Problems

valℳℐ ,β(ℰ [opA(e1:n)])

= valℳℐ ,β(opR(ℰ [e1], . . . ,ℰ [en]))

Lem 1
= ōp(valℳℐ ,β(ℰ [e1]), . . . ,valℳℐ ,β(ℰ [en]))

IH
= ōp(E[e1]I, . . . , E[en]I)

Fig 5.4
= E[opA(e1:n)]I

For the second case, let be e = ˆe1, where e1 a binary relational expression. Then,

valℳℐ ,β(ℰ [ˆe1])

= valℳℐ ,β(ℰ [e1]
+)

lem 3
= (valℳℐ ,β(ℰ [e1]))

+

IH
= (E[e1]I)+

Fig 5.4
= E[ˆe1]I

For the third case, let be e = #e1, where ar(e1) = n. In this case he claim follows
directly from lemma 4 together with the induction hypothesis, as follow:

valℳℐ ,β(ℰ [#e1])

= valℳℐ ,β(|ℰ [e1]|n)
lem 4
= |valℳℐ ,β(ℰ [e1])|
IH
= |E[e1]I|

The next, and last lemma in these series, extends the results of lemma 7 to formulas.

Lemma 8. Let ϕ be an Alloy formula, ℐ an Alloy instance, and β : 𝒳 → M̄ℐ an RFOL
variable assignment which agree with I on translated Alloy variables (i.e., β(Na[x]) = I(x)).
Then,

M[ϕ]I iffℳℐ , β |= 𝒞[ϕ].

Proof. Proof by induction on the construction of Alloy formulas (see. Figure 5.4). Let
ℐ be an Alloy instance of ϕ. Cases where logical connectives are top-level, are trivial.

5.3 Correctness and Completeness 51

Case of ϕ = e1in e2: Assuming ar(e1) = ar(e2) = n

ℳℐ , β |= 𝒞[e1ine2]

⇐⇒ℳℐ , β |= ℰ [e1] ⊆n ℰ [e2]

Ax⇐⇒ℳℐ , β |= ∀a1:n : Atom. (a1:n) ∈n ℰ [e1]→ (a1:n) ∈n ℰ [e2]

val⇐⇒ℳℐ , β
ā1:n
a1:n |= (a1:n) ∈n ℰ [e1]→ (a1:n) ∈n ℰ [e2], for all ā1:n

val⇐⇒ (ℳℐ , β
ā1:n
a1:n |= (a1:n) ∈n ℰ [e1])→ (ℳℐ , β

ā1:n
a1:n |= (a1:n) ∈n ℰ [e2]), for all ā1:n

val⇐⇒ ((ā1:n) ∈ valℳℐ ,β(ℰ [e1]))→ ((ā1:n) ∈ valℳℐ ,β(ℰ [e2])), for all ā1:n

lem. 7⇐⇒ ((ā1:n) ∈ E[e1]I)→ ((ā1:n) ∈ E[e2]I)), for all ā1:n

⇐⇒ E[e1]I ⊆ E[e2]

Fig 5.4⇐⇒ M[e1in e2]

Case of ϕ = e1= e2: This case can be reduced to the first case, since the Alloy
equality is translated to RFOL (relational equality) equality which is nothing else than
bi-inclusion.

Case of ϕ = all x: e | f: Assuming ar(e) = n

ℳℐ , β |= 𝒞[all x: e | f]
⇐⇒ℳℐ , β |= ∀x1:n : Atom. (x1:n) ∈n ℰ [e]→ 𝒞[f][{(x1:n)}n/Na[x]]

val⇐⇒ℳℐ , β
x̄1:n
x1:n |= (x1:n) ∈n ℰ [e]→ 𝒞[f][{(x1:n)}n/Na[x]], for all x̄1:n

val⇐⇒ (x̄1:n) ∈ valℳℐ ,β(ℰ [e])→ℳℐ , β
x̄1:n
x1:n |= 𝒞[f][{(x1:n)}n/Na[x]], for all x̄1:n

lem. 7⇐⇒ (x̄1:n) ∈ E[e]I→ℳℐ , β
x̄1:n
x1:n |= 𝒞[f][{(x1:n)}n/Na[x]], for all x̄1:n

IH⇐⇒ (x̄1:n) ∈ E[e]I→ M[f](I ⊕ x ↦→ {(x̄1:n)}), for all x̄1:n

⇐⇒ ((x̄1:n) ∈ E[e]I ∧ |{(x̄1:n)}| = 1)→ M[f](I ⊕ x ↦→ {(x̄1:n)}), for all x̄1:n

⇐⇒
∧
{M[f](I ⊕ a ↦→ {(x̄1:n)}) | (x̄1:n) ∈ E[e]I ∧ |{(ā1:n)}| = 1}

Fig 5.4⇐⇒ M[all x: e | f]I

Case of ϕ = some x: e | f: Goes similarly to the universal quantifier case.

Now, we formulate and prove our correctness theorem.

Theorem 3 (Correctness). Let P= (M,ℱ , A) be an Alloy problem and T[P] = (αMS ,CM,CF,CA)
its RFOL translation. Then, P is correct if |=Cl(Ax),Z CM ∧ Cℱ → CA.

Proof. Proof by contradiction. We prove that for each counterexample of P —an Alloy
instance of ¬(∧M𝒞 ∧

∧ℱ → A) that is conform to M𝒮 , a counterexample for T[P]

52 Chapter 5 Verifying Alloy Problems

—an RFOL structure of¬(Cℳ ∧ Cℱ → CA)— can be constructed. Since 𝒞[M𝒞] = Cℳ,
𝒞[ℱ] = Cℱ , 𝒞[A] = CA, and all logical connectives has in both logics their intended
semantics, it is sufficient to show that for each Alloy formula ϕ,

M[ϕ]I iffℳℐ , β |= 𝒞[ϕ]

, whereℳℐ is defined as in Figure 5.5 and β(Na[x]) = I(x) for all Alloy variables.
And this is exactly the proved claim in lemma 8.

5.3.4 Completeness
In this section we discus the completeness of our translation. It does not concern
the completeness of the RFOL calculus. However, for a complete RFOL calculus,
the translation completeness will guarantee that the calculus proves the validity
of the translation of any correct Alloy problem. With other words, the translation
completeness together with the correctness ensure that the proof obligation of any
Alloy problem is equisatisfiable to its RFOL translation.

Basically, we use a similar construction to Figure 5.5 to construct an Alloy instance
from a given RFOL structure. Figure 5.6 shows the construction.

Uℳ = M̄Atom (5.16)
Iℳ(Int) = Z (5.17)
Iℳ(r) = ≃M(M(Na[r])) for r ∈ relSym (5.18)

Iℳ(∈) = {((ā1:i), r̄) ∈ (M̄Atom)i × M̄Reli | (ā1:i, r̄) ∈ M(∈i)} for 0≤ i ≤ N (5.19)

Figure 5.6: Construction of an Alloy instance from an RFOL structure.

Since, like in theℳℐ -construction (rule 5.14), ℐℳ agrees withℳ on the interpreta-
tion of relational symbols modulo the isomorphism≃M (rule 5.18), lemma 7 holds for
the ℐℳ-construction correspondingly7. Note that, unlike for theℳℐ -construction,
≃M is for the ℐℳ-construction not necessary the identity.

Corollary 1. Let e be an Alloy expression,ℳ an RFOL structure, and β : 𝒳 → M̄ an RFOL
variable assignment. Then,

≃M(valℳ,β(ℰ(e))) = E[e]Iℳ

, where Iℳ agrees with β on the translated Alloy variables (i.e., I(x) = β(Na[x])).

Having corollary 1, the corresponding claim of lemma 8 for the Alloy instance
construction of Figure 5.6, follows directly.

7Rule 5.14 is the onlyℳℐ -construction related argumentation used for proving Lemma 7

5.4 Evaluation 53

Corollary 2. Let ϕ be an Alloy formula,ℳ an RFOL structure, and β : 𝒳 → M̄ an RFOL
variable assignment. Then,

M[ϕ]Iℳ iffℳ, β |= 𝒞[ϕ]
, where Iℳ agrees with β on the translated Alloy variables (i.e., I(x) = β(Na[x])).

Theorem 4 (Completeness). Let P= (M,ℱ , A) be an Alloy problem and T[P] = (αMS ,CM,CF,CA)
its RFOL translation. If T[P] has a counterexample, then P has a counterexample too.

Proof. For a given counterexampleℳ of T[P] —an RFOL structure of ¬(Cℳ ∧ Cℱ →
CA), we show that ℐℳ is a counterexample of P —an Alloy instance of ¬(∧M𝒞 ∧∧ℱ → A) that is conform to M𝒮 . Since 𝒞[M𝒞] = Cℳ, 𝒞[ℱ] = Cℱ , 𝒞[A] = CA, and
all logical connectives and arithmetic operations has in both logics their intended
semantics, it is sufficient to show that

(1) ℐℳ is a well-defined Alloy instance for P, and

(2) for each Alloy formula ϕ, M[ϕ]Iℳ iffℳ, β |= 𝒞[ϕ]

, where β(Na[x]) = Iℳ(x) for all Alloy variables.
The sorting function αMS together with the formula Cℳ guarantee that any RFOL

structure of T[P] is conform to all model constraints of P on the translated Alloy
symbols. Consequently, construction rule 5.18 guarantees the same for ℐℳ. Together
with Theorem 2, ℐℳ is a well-defined Alloy instance for P.

(2) follows directly from corollary 2.

5.4 Evaluation
The main feature of the Alloy to RFOL translation presented here is that it guarantees
equisatisfiability of the produced RFOL proof obligation with respect to its Alloy
counterpart. Consequently, the result of analysing the RFOL proof obligation of an
Alloy problem with an SMT solver, whether showing validity —denoted “proved”—
or providing a counterexample —denoted “CE”, is faithful. However, as we will show
in this section, this is done at the higher expense of efficiency, especially for incorrect
Alloy problems.

Table 5.2 shows the results of analyzing our RFOL translation of a set of Alloy
problems with the Z3 SMT solver. The time (in second) is measured on an Intel
Core2Quad, 2.8GHz, 8GB memory. Time out (TO) is 600 seconds. We have analyzed
20 assertions in 8 Alloy system8 specifications: the address book of an email client
where aliases and groups are allowed, the query interface and aggregation mechanism
of Microsoft COM, the operations of a memory accessed by abstract addresses, a
system for managing media files, the mark and sweep garbage collection algorithm,
the own-grandpa puzzle, a hand shaking protocol among spouses, and the queens

8an Alloy problem without the assertion to prove —i.e., model plus facts

54 Chapter 5 Verifying Alloy Problems

arrangement puzzle for an n × n chessboard. Beside the n-Queens problem, all
considered problems are included in the Alloy 4 distribution, and represent various
combinations of hierarchical types, nested relational joins, transitive closure, nested
quantifiers, set cardinality, and arithmetic operations.

Whereas, three of the Alloy problems expected to be valid (top part of the table) were
proven correct —i.e., the RFOL translation of their negated Alloy proof obligations
are unsatisfiable, none of the problems expected to be invalid (bottom part of the
table) could be proven invalid —i.e., the RFOL translation of their negated Alloy
proof obligations have satisfiable structures. To further investigate these results, we
additionally analysed all 8 Alloy systems with the empty assertion and noticed that
even with the empty assertion all RFOL proof obligations times out. This confirms the
hypothesis that the limited success of the basic RFOL translation is due to its general
completeness feature.

The completeness feature of our translation, as proven in Theorem 4, restricts the
valid structuresℳ to those where the cardinality of the universe of each sort Reli is the
power set of (M̄Atom)i, where M̄Atom is the universe of the sort Atom. This radically
hampers the main task of the SMT solver —finding satisfiable structures— in two
respects: (1) it makes a huge number of the structures constructed and checked by the
solver —since not known a priory— invalid only because of the required cardinality
restriction and (2) the universes of structures fulfilling the cardinality restriction are
in general so huge such that checking their validity with respect to the Ax axioms and
the input formula is practically impossible. The fact that this approach could prove
three of the Alloy problems correct, is, however, due to the potential ability of SMT
solvers of deducing general contradictions while constructing and checking structures.

In the next two chapters, we will present two approaches for reducing this structure
restriction, while preserving the completeness feature of the translation. In Chapter 6,
we present our Semantics Blasting technique which is tailored to the exact structure
restriction problem presented in this section, albeit in a general setting. In Chapter 7
we present our Sufficient Ground Term Sets technique which handles the more general
task of quantified variables elimination in non arithmetic theories.

5.4 Evaluation 55

RFOL + Z3
Problem Assertion Time (sec) Result

address book delUndoesAdd 0.02 proved
addIdempotent 0.02 proved

abstract memory writeRead TO –
writeIdempotent TO –

COM theorem1 TO –
theorem2 TO –
theorem3 TO –
theorem4a TO –
theorem4b TO –

mark sweep soundness1 TO –
soundness2 TO –

completeness TO –
media assets hidePreservesInv 0.01 proved

pasteAffectsHidden TO –
n-Queen solCondition TO –

abstract memory empty TO –
address book empty TO –

addLocal TO –
COM empty TO –

handshake empty TO –
puzzle TO –

mark sweep empty TO –
media assets empty TO –

cutPaste TO –
n-Queen empty TO –

15Queens TO –
own grandpa empty TO –

ownGrandpa TO –

Table 5.2: Evaluation results

57

Chapter 6

Semantics Blasting

Some theories make strong constraints on the cardinality on sort universes of their
(valid) structures. The complete axiomatization of such theories —by providing com-
plete axiomatization of their symbols, encodes this universe cardinality constraints
automatically in the axiomatization. However, for most such theories, there exists an
importantly large fragment of formulas for which the waiving of the universe cardi-
nality constraints does not affect the completeness —i.e., if there exists a structure
that satisfies a formula f but the universe cardinality constraints, then there exists
another structure that satisfies f together with the universe cardinality constraints.

A prominent example of such theories is the Array theory modeling the heap of
Java programs [77]. This theory consists of the sorts Heap for heaps, Field for fields,
Obj for objects, and Val for the super sort of all possible fields values; two operators
sto : Heap×Obj× Field×Val→ Heap, for constructing the resulting heap of a store
statement and sel : Heap×Obj× Field→ Val for reading the field value of an object
at a given heap with usual semantics. In this theory example the cardinality of the
universe of the sort Heap is required to be |V̄al||Ōbj|*| ¯Field| which becomes for reason-
ably large —even for the smallest— universes of Obj, Field, and Val impractically
large.

This theory characteristic becomes important when it comes to checking the sat-
isfiability of formulas modulo such theories using an SMT solver. Abstractly seen,
the structure search of SMT solvers can be divided into three major steps: (1) the
construction of sort universes of preferably minimal cardinalities with respect to the
constants of the input formula f and theory axioms Ax, (2) the search of an interpre-
tation that satisfies f together with the theory axioms Ax, and (3) the enlarging of
some sort universes, if no satisfying interpretation can be found in the previous step.
Consequently, the universes cardinality constrains hamper the structure search of
the SMT solver in two respects: (1) a huge number of structures become invalid only
because of the universes cardinality constraints —they are although considered, since
not known a priory— and (2) the structures satisfying the cardinality constraints have
such huge universes, that checking their satisfaction of f together with the theory
axioms Ax is practically impossible.

58 Chapter 6 Semantics Blasting

To solve this problem we developed a preprocessing1 which in a first step applies a
selected set of theory axioms on-demand to all theory corresponding symbols of the
input formula f and in a second step reduces the theory axioms Ax by the selected
and applied axioms. We call the first step semantics blastings (SB) and the second
freeness. This way of modeling the semantics of theory symbols on-demand was
implicitly used in several approaches such as [47, 30, 45], but without discussing its
generality and the condition under which it is complete. This is important since in
general the extensionality property is required and the freeness step is indeed a source
of incompleteness.

In the following we describe the SB transformation as a prioritized rule set and
describe a complete fragment for the SB transformation together with the freeness
step.

6.1 Semantics Blasting Rules
We first define theories admitting semantics blasting and provide a general rule based
procedure to perform semantics blasting for them.

Let T be a sort, E and V two further sorts different from T and X = (E×V) ∪ (T×
E×V)∪ (T× T) a union of sorts. Let further Con be the set of all T-constructors coni :
X→ T and ε : T × E→ V the T-observer function2. The sort T is called depending
on the constructors axiomatization Inductive or Co-Inductive [68].

Definition 15 (SB theories). A theory Cl(Ax) admits semantics blasting of Con if

• for each constructor coni ∈ Con there exists a single semantics axiom Ai ∈ Ax of
the form ∀x : X, e : E. ε(coni(x), e) = Φi where coni do not occurs in Φi, neither
directly or indirectly —the set of all constructor axioms is denoted by AxCon,

• T is extensional with respect to its observer ε modulo Cl(Ax) —i.e, Ax |= ∀t1, t2 :
T. (∀e : E. ε(t1, e) = ε(t2, e))→ t1 = t2, and

• for each structureℳ of AxCon and f : M̄E→ M̄V , there exists Ā ∈ M̄T such that
f = λē.M(ε)(Ā, ē)3.

Although the last condition of the definition is not mandatory to apply our semantics
blasting procedure, it first causes the problem of strong cardinality constraints on
universes observed in 5.4 and motivated in the introduction of this chapter.

Given a theory admitting SB we provide a procedure that constructs from formula
F a T-constructors-free formula FSB, such that, F and FSB are equisatisfiable modulo
Cl(Ax). Figure 6.1 shows a system of prioritized transformation rules of our SB
procedure.

1Before SMT solving
2Since it is the usual case, we restrict w.l.o.g. the number of T-observers to one.
3Henceforth, we use lambda abstractions to introduce unnamed functions.

6.1 Semantics Blasting Rules 59

DefConsi:
ε(coni(x′), e′) Φi[x′/x, e′/e]

PullOuti:
F f reshT = coni(x)→ F[f reshT/coni(x)]

, where coni(x) occurs in F and f reshT is fresh skolem function4

Extens:
t1 = t2 ∀e : E. ε(t1, e) = ε(t2, e)

Figure 6.1: Rules of the SB procedure

The first rule DefConsi is nothing else than the application of the axioms Ai of
the T-constructor coni —by replacing its left-had side with the right-hand side. The
second rule PullOuti, handles the case in which a T-constructor coni occurs in F not as
argument of the T-observer ε. In this case, the rule replace the occurrence of coni with
a fresh T function f reshT and adds its definition —equality to coni— as an assumption
of F. The last rule Extens reduces the equality between T terms —especially the one
introduced from the second rule— to the equality of all their observations with ε. Our
SB-procedure consists of applying this rules exhaustively and in the presented order,
i.e., each rule is only applied if the previous rule is not applicable. One can easy see
that applying this rules exhaustively in the presented order guaranties termination
and the result is T-constructor free.

Theorem 5 (SB procedure). Given a theory Cl(Ax) admitting SB and formula F, the result
formula FSB of applying the SB-procedure to F is T-constructor free and equisatifiable to F
modulo Cl(Ax).

Proof. Since we already know that the SB-procedure always terminates and its result
FSB is T-constructor free, it suffices to prove that all rules of the SB-procedure are
equisatisfable transformation modulo Cl(Ax). This is true for the first rule since
Ai ∈ Ax for all coni ∈ Con and for the second rule since T is extensional with respect
to ε modulo Cl(Ax). The second rule is an equisatisiable transformation even modulo
the empty theory (first-order logic with equality).

In the following we present some concrete theories which admit semantics blasting:

60 Chapter 6 Semantics Blasting

1. The extensional array theory for Java heaps:

T := Heap, E := (Obj× Field),V := Val
ε := sel : Heap× (Obj× Field)→ Val

Con := {sto : (Heap×Obj× Field×Val)→ Heap}
Ax := {∀h : Heap,o,o′ : Obj, f , f ′ : Field,v : Val.

(o′ = o ∧ f ′ = f)→ sel(sto(h,o, f ,v),o′, f ′) = v∧
(o′ ̸= o ∨ f ′ ̸= f)→ sel(sto(h,o, f ,v),o′, f ′) = sel(h,o′, f ′),

∀h, h′ : Heap. (∀o : Obj, f : Field. sel(h,o, f) = sel(h′,o, f))→ h = h′}

2. Any sub theory of our RFOL (see Chapter 4) for fixed relational arity i:

T := Reli, E := Atomi,V := Bool

ε := ∈: Reli × Atomi→ Bool

Con := {sini : Atomi→ Reli,∪i : Reli × Reli→ Reli, · · · }
Ax := RFOL axioms for relational arity i (see Figure 4.2)

6.2 The SB+ Complete Fragment

So far our SB procedure only performs equisatisfiable transformations, and thus does
not affect completeness. But, in order to reduce the discussed universes cardinality
constraints —possibly encoded in Ax— a non completeness preserving transformation
is further needed. Namely, the reduction of the background theory Cl(Ax) by all
T-constructors axioms AxCon. We call this step freeness and denote the extension of
the SB procedure with this step SB+.

Hereafter, F denotes the Skolem normal form of the negation of the original input
formula Forg and FSB the results of applying SB to F. We further assume without loss
of generality that F := H ∧ G with G is T-quantifier-free.

One can already see that SB+ is correct in the sense that if FSB is unsatisfiable
modulo Cl(Ax ∖ AxCon) then F is unsatisfiable too modulo Cl(Ax) —i.e., Forg is valid.
However, if FSB is satisfiable modulo Cl(Ax ∖ ACon), we cannot transfer this result
to F, because of the non guaranteed completeness of SB+. Therefore, it is curial to
determine the complete fragment of SB+ in order to use it in the general context.

Before starting with the description of the complete fragment of SB+, we give an
example of a formula which is not in the SB+ fragment of the set theory —i.e., RFOL
with N = 1. Let us consider the formula

F := ∀s : Rel1.∃x : Atom. ε(∪1(A, B), x) ∧ ¬ε(s, x)

6.2 The SB+ Complete Fragment 61

where A and B are constant sets. One can easy see that F is unsatisfiable —even
modulo the empty theory, since instantiating s with ∪1(A, B) is equivalent to f alse.
However, applying our SB+ procedure to F results in

FSB := ∀s : Rel1.∃x : Atom. (ε(A, x) ∨ ε(B, x)) ∧ ¬ε(s, x)

which is satisfiable modulo Cl(Ax ∖ A∪i). For example the structureℳ with

M̄Rel1 := {Ā, B̄}, M̄Atom := {ā, b̄}

M(ε)(Ā,v) :=

{
tt if v = ā
ff else

M(ε)(B̄,v) :=

{
tt if v = b̄
ff else

is a satisfying structure for FSB modulo Cl(Ax ∖ A∪i).
In the following, we define some auxiliary definitions and lemmas needed for the

description and proof of the complete fragment of SB+.

Definition 16 (Structure enlargin w.r.t. AxCon). Suppose F has a structureℳ, we
construct the structureℳL as follow:

M̄S
L :=

{
{ f | f : M̄E→ M̄V} if S = T
M̄S otherwise

ML(f)(v) :=

λē.M(ε)(M(f), ē) if α(f) = T
g(ē) if f = ε ∧ v = (g, ē)
λē.valML ,βv

x
ē
e
(Φi) if f = coni

M(f)(v) otherwise

Definition 16 provides a tool for an isomorphic enlargementℳL of a given structure
ℳ with respect to the T-universe. It targets: (1) the satisfaction of all constructor
axioms in Axcon and consequently the last condition of SB theories (see Definition 15);
(2) the preservation of the satisfaction of T-quantifier free formulas with respect to
ℳ. These two properties of theℳL structure are essential for the proof of the SB+

fragment.

Lemma 9. For each structureℳ,ℳL is a structure for (
∧

Ai∈AxCon
Ai).

62 Chapter 6 Semantics Blasting

Proof. It is sufficient to prove thatℳL |= Ai for an arbitrary Ai ∈ AxCon. Let β : Var→
M̄L be an arbitrary variable assignment, then we need to prove that valML ,β(ε(coni(x), e)) =
valML ,β(Φi).

valML ,β(ε(coni(x), e))
val⇐⇒ ML(ε)(ML(coni)(β(x)), β(e)))
ℳL⇐⇒ ML(ε)(λe.valML ,β(Φi), β(e)))
ℳL⇐⇒ [λe.valML ,β(Φi)](β(e))

λ⇐⇒ valML ,β(Φi)

In order to discuss the preservation of the satisfaction of formulas withℳ inℳL,
we first need to stablish an embedding ofℳ inℳL.

Definition 17 (ℳ embedding inℳL). For each structureℳ, theℳL construction
deduces a canonical embedding emb : M̄→ M̄L fromℳ toℳL with:

emb(v) :=

{
λē.M(ε)(v, ē) if v ∈ M̄T

v else

Lemma 10. For each structureℳ satisfying Ax ∖ AxCon, the embedding emb ofℳ inℳL
is injective.

Proof. The claim follows directly from the extensionality of the sort T with respect to
its ε inℳ. Since T is extensional with respect to ε modulo Cl(Ax) (see. Definition
15) and AxCon only contains T-constructor axioms, T is extensional with respect to ε
modulo Cl(Ax ∖ AxCon) and thus inℳ.

Lemma 11. For each structureℳ of Ax, the embedding emb ofℳ inℳL is even a bijection.

Proof. Because of lemma 10, it suffices to prove the surjectivity of emb. The surjectivity
of emb, however, follows directly from the last condition on SB theories (see. Definition
15), sinceℳ satisfies Ax.

Lemma 12. For each T-quantifier and T-constructor free term s, valℳL ,β(s) = emb(valM,β(s)).

Proof. By induction on the complexity of s.

6.2 The SB+ Complete Fragment 63

Case s = f , where α(f) = T:

valℳL ,β(f)
val
= ML(f)
ML= λē.ML(ε)(M(f), ē)
emb
= emb(M(f))
val
= emb(valℳ,β(f))

Case s = ε(f , e), where α(f) = T:

valℳL ,β(ε(f , e))
val
= ML(ε)(valℳL ,β(f),valℳL ,β(e))
ML= valℳL ,β(f)(valℳL ,β(e))

α(f)=T
= ℳL(f)(valℳL ,β(e))
ML= [λē.M(ε)(M(f), ē)](valℳL ,β(e))
λ
= M(ε)(M(f),valℳL ,β(e))
val
= valℳ,β(ε(f , e))

emb
= emb(valℳ,β(ε(f , e)))

Otherwise w.l.o.g. s = f (t1:n) with f /∈ {ε, coni}, n > 0, and ti /∈ TermT
Σ for 1≤ i≤ n:

valℳL ,β(f (t1:n))

val
= ML(f)(valℳL ,β(t1), . . . ,valℳL ,β(tn))

IH
= ML(f)(emb(valℳ,β(t1)), . . . , emb(valℳ,β(tn)))

emb
= ML(f)(valℳ,β(t1), . . . ,valℳ,β(tn))

ML= M(f)(valℳ,β(t1), . . . ,valℳ,β(tn))

val
= valℳ,β(f (t1:n))

emb
= emb(valℳ,β(f (t1:n)))

Lemma 13. If a structureℳ satisfies Ax, then valℳL ,β(s) = emb(valM,β′(s)) for β′ =
λx.emb−1(β(x)) and s an arbitrary term.

64 Chapter 6 Semantics Blasting

Proof. By induction on the complexity of s. Because of lemma 12, it suffices to consider
the following cases:

Case s = x, a variable of type T:

valℳL ,β(x)
val
= β(x)

inj. emb
= emb(emb−1(β(x)))
β′
= emb(β′(x))
val
= emb(valℳ,β′(x))

Case s = coni(t1:n):

valℳL ,β(coni(t1:n))

val
= ℳL(coni)(valℳL ,β(t1), . . . ,valℳL ,β(tn))

ML= λē.valℳL ,βē
e
(Φi[t1/x1, . . . , tn/xn])

IH
= λē.emb(valℳ,β′ ēe(Φi[t1/x1, . . . , tn/xn]))

emb
= λē.valℳ,β′ ēe(Φi[t1/x1, . . . , tn/xn])

M|=Ai= λē.valℳ,β′ ēe(ε(coni(t1:n), e))
val
= λē.M(ε)(valℳ,β′(coni(t1:n)), ē)

emb
= emb(valℳ,β′(coni(t1:n)))

Corollary 3 (Theory equalization). In order to show that a formula F modulo a theory
Cl(S1) is equisatifiable to an other formula F′ modulo the theory Cl(S1 ∖ S2), it is sufficient
to show that (

∧
Φ∈S2

Φ) ∧ F modulo Cl(S1 ∖ S2) is equisatifiable to F′ modulo Cl(S1 ∖ S2).

6.2 The SB+ Complete Fragment 65

Proof. This corollary is a simple result of the deduction theorem (ded-theo) applied
to the satisfiability of F modulo Cl(S1).

∃ℳ ∈ Cl(S1).ℳ |= F
⇐⇒ ¬(S1 |= ¬F)
⇐⇒ ¬((S1 ∖ S2) ∪ S2 |= ¬F)

ded-theo⇐⇒ ¬(S1 ∖ S2 |= (
∧

Φ∈S2

Φ)→¬F)

⇐⇒ ∃ℳ∈ Cl(S1 ∖ S2).ℳ |= ¬((
∧

Φ∈S2

Φ)→¬F)

⇐⇒ ∃ℳ∈ Cl(S1 ∖ S2).ℳ |= (
∧

Φ∈S2

Φ) ∧ F

Theorem 6 (The SB+ completeness fragment). Let Cl(Ax) be a first-order theory admit-
ting SB, and F := H ∧ G a first-order formula with G is T-quantifier-free. Then, F modulo
Cl(Ax) is equisatisfiable to FSB := SB(H) ∧ SB(G) modulo Cl(Ax ∖ AxCon) iff

• FSB is unsatisfiable modulo Cl(Ax ∖ AxCon) or

• ℳL |= SB(H) for some structureℳ of FSB.

Proof. Using lemma 3 it is sufficient to proof (1) if SB(H) ∧ SB(G) is unsatisfiable
so F′ := (

∧
Axi∈Axs Axi) ∧ H ∧ G is unsatisfiable too and (2) if SB(H) ∧ SB(G) has a

model modulo Cl(Ax ∖ AxCon) so F′ has a model modulo Cl(Ax ∖ AxCon) too. The
first case is trivial since F′ → SB(H) ∧ SB(G). For the second case, we assume a
structureℳ in Cl(Ax ∖ AxCon) of SB(H) ∧ SB(G) and prove thatℳL is a structure
for F′.

Because of lemma 9,ℳL is a satisfying structure for Ax. It remains to prove thatℳL
is also a satisfying structure for SB(G) and SB(H). Since SB(G) is T-quantifier and T-
constructor free, we get from lemma 12 that valℳL ,β(SB(G)) = emb(valM,β(SB(G))).
Sinceℳ satisfies (Ax ∖ AxCon), we get from lemma 10 that emb is injective and thus
ℳL must also be a model of SB(G). For SB(H), even though, it is T-constructors-free,
we cannot use lemma 12 since it can contain T-quantifiers. Also lemma 13 cannot
be used, sinceℳ is not required to satisfy Ax. However, the claim holds from the
conditions of the theorem, which require for this case thatℳL |= SB(H).

So far we have proved that our fragment conditions are sufficient (from right to
left). In order to show that the conditions are essential, we consider two cases: (1) F′

and FSB are both unsatisfiable modulo Cl(Ax ∖ AxCon) and (2) F′ and FSB are both
satisfiable modulo Cl(Ax ∖ AxCon). The first case is trivial since explicitly covered by
the first fragment condition. For the second case, we assume thatℳ is a satisfying
structure of F′ and FSB and show that the second fragment conditionℳL |= SB(H)

66 Chapter 6 Semantics Blasting

must hold. ℳ is especially a satisfying structure of Ax and SB(H). Because of
lemma 13, we have that valℳL ,β(SB(H)) = emb(valM,β′(SB(H))) for arbitrary β and
for β′ = λx.emb−1(β(x)). Since emb is injective —for this case even bijective— andℳ
satisfies SB(H),ℳL satisfies SB(H) too.

Theorem 6 provides an entire description of the SB+ fragment which guarantees
the equisatisfiability of our SB+ transformation with respect to the input formula.
However, the conditions of the fragment are based rather on model checking than on
SMT solving.

6.3 Practical Tools for the SB+ Fragment
In the following, we present some practical tools for detecting formulas of the SB+

fragment described in Theorem 6.

Proposition 1. Let Cl(Ax) be a first-order theory admitting SB. If FSB is unsatisfiable
modulo Cl(Ax ∖ AxCon), then F is in the SB+ fragment of Cl(Ax).

Proof. This condition satisfies the SB+ fragment conditions as in Theorem 6 and is
thus trivially a sufficient condition for the fragment.

Proposition 2. Let Cl(Ax) be a first-order theory admitting SB. Each T-quantifier-free
formula F is in the SB+ fragment of Cl(Ax).

Proof. The proposition follows directly from Theorem 6, since for T-quantifier free
formulas, H and consequently SB(H) are equivalent to true.

Proposition 2 represents a simple and sufficient condition of the SB+ fragment.
The condition is purely syntactic. Although it captures only a small sub fragment
of the SB+ fragment, it has been shown that Proposition 2 describes one of the most
frequently used fragment in practice (cf. Section 6.4).

Proposition 3. Let Cl(Axs) be a first-order theory admitting SB, and F := H ∧ G a first-
order formula with G is T-quantifier-free. Then, F is in the SB+ fragment if

(
∧

Ai∈Ax
Ai) ∧ SB(H) is satisfiable modulo Cl(Ax ∖ AxCon).

Proof. We assume a satisfying structureℳ of (
∧

Ai∈Ax Ai) ∧ SB(H). Consequently,
ℳ is a satisfying structure for (

∧
Ai∈Ax Ai) and for SB(H). Becauseℳ is a struc-

ture for (
∧

Ai∈Ax Ai), we conclude by means of lemma 13 that valℳL ,β(SB(H)) =
emb(valM,β′(SB(H))) where emb is bijective and β arbitrary. Sinceℳ is a structure
for SB(H),ℳL is also a structure for SB(H) which satisfies the SB+ fragment condi-
tions as in Theorem 6.

6.4 Evaluation 67

Proposition 3 provides especially a suitable interpretation of the second condition
of Theorem 6 for SMT solving.

All three propositions together propose a cost effective testing system for inclusion
in the SB+ fragment. Namely: (1) if FSB is unsatisfiable modulo Cl(Ax ∖ AxCon), then
the result can be directly trusted and transfered to the original proof obligation, (2) if
FSB is satisfiable modulo Cl(Ax ∖ AxCon), then we first need to show the inclusion of F
in the SB+ fragment by successively using the checks of proposition 2 and proposition 3
respectively, (3) if F passes one of these tests, then the result can be trusted and
transfered to the original proof obligation, otherwise not.

6.4 Evaluation
We have evaluated our SB+ technique on RFOL proof obligations resulting from the
RFOL translation of Alloy problems described in Chapter 5. Thereby, all RFOL first-
order relational theories of fixed arity —i.e., all Reli with corresponding operators
and axioms— were subjects to semantics blasting. Therefore, we applied the SB+

transformation to the RFOL proof obligations of all 28 Alloy problems considered
and described in Section 5.4 —including the one with empty assertions— and solved
the transformation outcomes using the Z3 solver.

Table 6.1 shows the results and also (1) compares them to solving the RFOL proof
obligations without applying the SB+ transformation (cf. Table 5.2) and (2) reports on
the performance of the Alloy Analyzer. The time (in seconds) is measured on an Intel
Core2Quad, 2.8GHz, 8GB memory. The Alloy analysis time is the total time spent on
generating CNF and solving it using the SAT4J solver. The Z3 analysis time is what it
reports using the -st option. The assertions at the top part of the table are expected to
be valid5 and the ones at the bottom part are expected to have counterexamples. The
scope column denotes for the valid assertions the maximum scope for which the Alloy
Analyzer can check the assertion before reaching the time-out6 of 600 seconds and
for the invalid assertions it gives the smallest scope required by the Alloy Analyzer
to find a counterexample. The result column gives the outcome of the Z3 analysis:
proved if it returns “unsat” when looking for a counterexample, implying that the
assertion is successfully proven, sound CE if it returns a sound counterexample, and
false CE if the counterexample is spurious.

Out of the 15 valid assertions, 12 were proven correct using the SB+ technique in
less than 1 second, whereby only 3 of them could be proven correct without using
the SB+ technique. The same observation holds for the invalid assertions. In this case
the SB+ technique could help finding sound counterexamples for all assertions except

5Their Alloy models contain developer’s comments that no counterexamples are expected.
6We set the memory and stack usage for the Alloy Analyzer to the maximum and do not distinguish

between out of memories and actual out of times.

68 Chapter 6 Semantics Blasting

Alloy Analyzer RFOL RFOL + SB+

Problem Assertion Scope Time Time Result Time Result
abstract memory writeRead 44 179.44 0.02 proved 0.00 proved

writeIdempotent 29 98.67 0.02 proved 0.03 proved
address book delUndoesAdd 31 80.91 TO – 0.00 proved

addIdempotent 31 112.66 TO – 0.01 proved
COM theorem1 17 538.11 TO – 0.00 proved

theorem2 17 552.44 TO – 0.00 proved
theorem3 17 513.11 TO – 0.00 proved
theorem4a 17 534.78 TO – 0.00 proved
theorem4b 17 507.40 TO – 0.00 proved

mark sweep soundness1 16 112.75 TO – TO –
soundness2 9 341.36 TO – TO –

completeness 8 164.22 TO – TO –
media assets hidePreservesInv 58 13.02 0.01 proved 0.00 proved

pasteAffectsHidden 47 511.79 TO – 0.00 proved
nQueen solCondition 73 173.51 TO – 0.05 proved

abstract memory empty 1 0.00 TO – 0.01 sound CE
address book empty 1 0.01 TO – 0.01 sound CE

addLocal 3 0.05 TO – 0.10 sound CE
COM empty 1 0.03 TO – 0.01 sound CE

handshake empty 1 0.01 TO – 0.25 sound CE
puzzle 10 2.47 TO – TO –

mark sweep empty 1 0.01 TO – 0.01 sound CE
media assets empty 1 0.02 TO – 0.01 sound CE

cutPaste 3 0.19 TO – 0.06 sound CE
nQueen empty 1 0.07 TO – 0.01 sound CE

15Queens 15 4.95 TO – 13.53 sound CE
own grandpa empty 1 0.01 TO – 0.01 sound CE

ownGrandpa 4 0.01 TO – 0.12 sound CE

Table 6.1: Evaluation results

for the puzzle assertion of the handshake system, whereby without using SB+ non
of them could be found. It should be noted that the use of the SB+ technique can
lead to spurious counterexamples if the considered proof obligation is not in the SB+

fragment (see Section 6.2 and 6.3). However, all considered benchmarks fit in the
SB+ fragment and to our surprise even in the easy to test sub fragment defined in
proposition 2. This property of the benchmarks together with proposition 2, allows
us to guarantee the soundness of all found counterexamples without the need of
checking them.

Overall, the results clearly shows that, first, the use of the SB+ technique makes the
analysis of the RFOL proof obligations —resulting from RFOL translation of Alloy
problems— practical and efficient. However, the 3 non-proved assertions of the mark
sweep system, reveal an other restriction of RFOL proof obligations which is more
general than SMT solving efficiency. It concerns, namely, the general limitation of
SMT solvers in reasoning about recursive theories, in our case these are the transitive

6.5 Related Work 69

closure theory and the cardinality theory. In Chapter 8, we discuss and present an
approach capable to solve the case of the transitive closure theory.

Although the development of the SB+ technique was mainly motivated and con-
ducted by the RFOL relational theories, the technique is general enough to be applied
to any theory admitting SB (see Definition 15). In order to confirm this claim, we
report on the results of applying the SB+ technique to the array theory of Java Heap
in the context of bounded SMT proof obligations of proof branches of the KeY Sys-
tem [12, 77] — a tool that integrate design, implementation, formal specification, and
formal verification of Java software. This SB+ application was done by Mihai Herda
in the context of his master thesis [45] in our group. He applied the SB+ technique to
38 bounded SMT proof obligations of 29 provable proof branches and 9 open proof
branches —expected to be invalid— of 11 different Java methods. He set the bound
—the maximal number of elements for sorts including integers— to 8 and the time-out
of the Z3 SMT solver to 180 seconds.

Also, for this theory and setting, the efficiency and need of the SB+ technique was
clearly demonstrated. Using SB+, out of the 29 valid benchmarks, the SMT solver
could proof the bounded validity7 of 27 benchmarks, whereas without using the SB+

technique, the SMT solver times out on all benchmarks. For the invalid benchmarks,
the use of the SB+ technique could help finding sound counterexamples for all 9
benchmarks. Also here, it has been observed that all benchmarks belong to the
SB+ sub fragment described in proposition 2 and thus the soundness of all found
counterexamples was automatically guaranteed. However, without using the SB+

technique, the SMT solver proved the bounded validity of all 9 invalid benchmarks. At
the first sight, this would appear wrong, but it is not, it is a consequence of the already
discussed implicit cardinality constraints on valid structures universes induced by
the theory axioms. This means that without applying SB+, one has to choose for the
sort Heap a bound of 864 —assuming that the bound of the other sorts is 8, which can,
in practice, never be handled by an SMT solver, regardless of time-out.

6.5 Related Work
Several approaches have addressed the verification of Alloy problems in general. Due
to the undecidability of the Alloy language, most general approaches are based on
interactive theorem proving.

Prioni [5] translates Alloy formulas into proof obligations of the first-order logic
of the Athena [6] theorem prover. The relational reasoning calculus is build using
polymorphic sets for relations, polymorphic functions for relational operations and
first-order axioms to stat the semantics.

Dynamite [37] uses proper fork algebras [36] —algebras of binary relations over a
structured set— as an alternative semantics for relational binary fragment of Alloy.
Higher arity Alloy relations are reduced injectively to binary relations by means of

7Denotes the validity of a formula within a given bound –i.e., no counterexample exists within the given
bound.

70 Chapter 6 Semantics Blasting

an injective function, leading intermediate expressions that are hard to understand.
Dynamite uses the higher-order interactive theorem prover PVS [63] to perform
reasoning in the proposed semantics.

Kelloy [75], developed in our group, is the last one in this series of interactive
theorem provers for Alloy. Kelloy translates Alloy to first-order logic of the KeY
system with built-in support of integer theory. Unlike Prioni and Dynamite, Kelloy
targets the support of the complete Alloy language including important libraries as
the ordering library. Kelloy also verifies Alloy assertions in both finite and infinite
domains.

Compared to interactive theorem provers that provide refutationally complete cal-
culi but are not fully automatic, SMT solvers are fully automatic, but may fail to refute
refutable quantified formulas. Recent SMT solvers, however, have shown significant
advances in handling quantifiers. Solvers like haRVey and Z3, integrated the quanti-
fier handling of saturation based theorem provers in the DPLL framework [19, 21],
which makes them refutationally complete for finitely axiomatizable theories. The
most recent and promising approaches in this area is [39], which combines a refuta-
tional instantiation procedure with model checking based prioritization heuristics.
However, as our experiments showed, the straightforward extension of the SMT solver
with a relational theory, evaluates in practically non analyzable proof obligations.
This makes techniques like our SB+ indispensable for proving Alloy problems with
structure-finding based solvers like the SMT solvers.

Other approaches, like Abadi et al. [3] and Lev-Ami et al. [56], focus on the
reasoning on the fragment of pure first order-logic extended with transitive closure.
These are discussed in more details in Chapter 8.

Suter, et al. [70] presented a decision procedure for the quantifier-free Boolean
Algebra with Presburger Arithmetic (QFBAPA) capable of handling sets and their
cardinalities. They reduce QFBAPA to integer linear arithmetic (QFPA) which is
solved by the decision procedures of Z3. Set cardinality is computed using the integers
that represent the cardinality of Venn regions —the regions built by the maximal
overlapping degree of a finite collection of sets. Since Alloy cardinality can be applied
to arbitrary expressions (possibly containing variables) with arbitrary arities, this
technique is not readily applicable to our translation.

6.6 Conclusion

In this chapter, we presented our SB+ technique. This technique together with our
translation of Alloy proof obligations to RFOL proof obligations (see Chapter 4 and
Chapter 5) constitutes the base of AlloyPE —our tool for the automatic verification
of Alloy problems. An extension of the tool including its prove power is discussed
and presented in Chapter 8. It should be noted that the AlloyPE results presented
in this chapter first became possible after the introduction of our SB+ technique.
Among others, the SB+ technique provides for a given RFOL formula when and how

6.6 Conclusion 71

to remove (after their applications) the axioms of all first-order relational operators
while preserving the satisfiability of the formula.

To our knowledge, AlloyPE is the first tool capable of verifying Alloy assertion full
automatically, a capability totally missing from the Alloy Analyzer. Although AlloyPE
avoids type finitization altogether, it is also capable of finding counterexamples in
case the Alloy assertion is not valid. However, we suggest our analysis to be used to
complement Alloy Analyzer: when Alloy Analyzer fails to find a counterexample,
our tool can be used to try to prove the assertion correct.

Due to Alloy’s undecidability and our arbitrary use of quantifiers, resulting SMT
formulas can be undecidable. However, among different ways of axiomatizing an
Alloy construct, we have carefully chosen the one that performs best in practice.
The current results show that Z3 can correctly handle most of our valid and invalid
assertions, witnessing the effectiveness of the approach. Improving the cases that
AlloyPE failed to handle is done in Chapter 8.

Although we focused on Alloy, our technique demonstrate a general approach that
can be applied in various contexts. In particular, we described how to axiomatize
transitive closure using the theory of linear integer arithmetic, and cardinality of
(possibly cyclic) relations using bijective integer functions.

Our current translation deviates from Alloy semantics in handling arithmetic using
infinite integers. While we believe that this is more suitable for most system descrip-
tions, we will also provide in the future an alternative fixed bitwidth arithmetic using
bit-vectors.

73

Chapter 7

Variable Elimination via
Sufficient Ground Term Sets
Computation

Trying to solve the problem of cardinality constraints on structure universes induced
by SB theories (see chapter 6), we encountered the more general problem of quantified
variables elimination. That is, given a universally quantified variable x in a formula
A, find an equisatisfiable formula A′ to A such that A′ has less quantified variables
including x. It should be noted that this problem is different from the related and
well known problem of quantifier elimination (QE) in the following respects: (1) it
focuses on the empty theory, but allows some forms of combination with arithmetic
theories, (2) it focuses on the elimination of individual variables, (3) it bases on finite
instantiation with ground terms, and (4) it targets small instantiation sets that let A′

be more efficient in terms of Satisfiability Modulo Theories (SMT) solving.
Point (4) in the above paragraph, reveals implicitly that in some cases the SMT

solvers are more efficient in handling formulas with more quantified variables when
the instantiation sets are too large. This is due to the significant progress made by
modern SMT solvers in handling general first-order formulas. SMT solvers such as
CVC4 [8], haRVey [21], Yices [26], and Z3 [20] do not only operate on quantifier-free
fragments but successfully address general FOL formulas —including quantified
formulas. Most of these solvers solve quantified formulas using heuristic quantifier
instantiation based on the E-matching instantiation algorithm —originally introduced
by Simplify [22]. Although E-matching, because of its heuristic nature, is not complete,
not even refutationally, it is best suited for integration into the DPLL(T) framework.
Some techniques (e.g. [67, 39]) have extended E-matching in order to make it complete
for some fragments of first-order logic.

In spite of all the advances, the presence of quantifiers still poses a challenge to
the solvers. In this chapter, we propose a simplification of quantified SMT formulas
that can be applied as a pre-process before the SMT solving. Given a skolemized
SMT formula A, our simplification returns an equisatisfiable SMT formula A′ with

74 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

potentially fewer universally quantified variables. Our simplification approach is
syntactic in the sense that it extracts a set of set-valued constraints from the structure
of A whose solution is a set of sufficient ground terms for every variable. Those variables
whose sets of sufficient ground terms are finite can be eliminated by instantiating them
with the computed ground terms. If the resulting formula A′ is unsatisfiable, A is
guaranteed to be unsatisfiable too. However, if A′ has a structure, it is not necessarily
a structure of A. We describe how any structure of A′ can be modified into a structure
for A without any significant overhead. This requires a special treatment of the
interpreted functions. Our simplification procedure can also be applied if the logic of
the input formula is not decidable; it can still reduce the number of quantifiers, thus
simplifying the proof obligation.

Although our elimination process reduces the number of quantifiers, it may increase
the number of occurrences of the remaining quantified variables (if any). The following
example illustrates a case where eliminating one variable can result in increasing the
occurrences of the other variables.

Example 1. Let ∀x. (ψ(x)∨∀y,z. ϕ(x,y,z)) be the input formula A and Sy = {gt1, . . . ,gtn}
be a set of sufficient ground terms for the variable y. Suppose that the sets of sufficient ground
terms of x and z are infinite. In this case, instantiating and eliminating y will result in the
formula A′

∀x. (ψ(x) ∨ ∀z. (ϕ(x,gt1,z) ∧ . . . ∧ ϕ(x,gtn,z)))

which has less quantified variables but a higher number of occurrences of the variables x and z.

Depending on the complexity of the involved terms, this phenomenon may intro-
duce additional overhead for the solver. Therefore, in order to apply our simplification
as a general preprocessing step, it is important to balance the number of eliminated
variables and the number of newly introduced variable occurrences. We define a
metric that aims for estimating the cost of variable elimination, and allows the user to
provide a threshold for the estimated cost.

7.1 Example
Figure 7.1(a) shows an SMT formula (as a set of implicitly conjoined subformulas) in
which c1 and c2 represent constants, f is a unary function, and p is a binary predicate.
Figure 7.1(b) shows the same formula after conversion to conjunctive normal form
(CNF) (denoted by ACNF) where the constants c3 and c4 denote the skolems for the
formulas (3) and (4), respectively. Instead of solving the original formula (denoted
by A), we produce an instantiated formula Ainst in which the x and y variables are
instantiated with certain ground terms. Ainst is given in Figure 7.1(c) where the
numbers correspond to the lines in the CNF (and original) formula. Formula Ainst

has fewer quantifiers than A (in fact, it has zero quantifiers), and thus is easier to
solve. Yet, it can be shown that Ainst and A are equisatisfiable (see Section 7.2).

7.1 Example 75

(1) c1 ̸= c2
(2) ∀x. f (x) = f (c1)
(3) ∃z. ∀y | ¬p(y,z)∨ f (y) = c2
(4) ∃z. f (z) = c1

(1) c1 ̸= c2
(2) ∀x. f (x) = f (c1)
(3) ∀y. ¬p(y, c3) ∨ f (y) = c2
(4) f (c4) = c1

(1) c1 ̸= c2
(2) f (c1) = f (c1)
(2) f (c4) = f (c1)
(3)¬p(c1, c3)∨ f (c1) = c2
(3)¬p(c4, c3)∨ f (c4) = c2
(4) f (c4) = c1

(a) (b) (c)

M̄ = {1,2,3,4}, M(c1) = 1, M(c2) = 2, M(c3) = 3, M(c4) = 4

M(f)(v) =

1 if v = 1
1 if v = 4
any value else

M(p)(v,3) =

ff if v = 1
ff if v = 4
any value else

(d)

M̄π = M̄, Mπ(c1) = M(c1), Mπ(c2) = M(c2), Mπ(c3) = M(c3), Mπ(c4) = M(c4)

Mπ(f)(v) =

{
M(f)(v) if v ∈ {1,4}
M(f)(M(c1)) else

= 1 for all v

Mπ(p)(v, c3) =

{
M(p)(v, M(c3)) if v ∈ {1,4}
M(p)(M(c1), M(c3)) else

= ff for all v

(e)

Figure 7.1: Example of safe elimination of quantified variables. (a) original SMT
formula, (b) CNF transformation, (c) instantiated formula, (d) a structure for the
instantiated formula, and (e) a structure for the original formula.

We use vGT(x) to represent the set of ground terms that is used to instantiate a
variable x. The variable x (in Formula 2 of ACNF) refers to the first argument of f ,
and thus we instantiate it with all the ground terms that occur in that position of f ,
namely {c1, c4}. We call this the set of ground terms of f for argument position 1, and
denote it by fGT(f ,1). The variable y (in Formula 3 of ACNF), on the other hand, refers
to both the first argument of p and the first argument of f . Therefore, we require
that vGT(y) = fGT(p,1) ∪ fGT(f ,1). In order to guarantee equisatisfiability of Ainst

and A, if two functions are applied to the same variable, their ground terms set for
the application position should be equal (see Section 7.2). Therefore, in this example,
fGT(p,1) = fGT(f ,1) = {c1, c4} although p is not directly applied to any constants.

The instantiated formula Ainst is an implication of the original formula. Hence, if
Ainst is unsatisfiable, A is also unsatisfiable. However, not every structure of Ainst

satisfies A. But the instantiation was chosen in such a way that each structure of Ainst

can be modified to satisfy A. Figure 7.1(d) gives a sample structureℳ for Ainst which

76 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

does not satisfy A. Since in Ainst, f is only applied to c1 and c4, and p only to (c1, c3)
and (c4, c3),ℳ may assign arbitrary values to f and p applied to other arguments.
Although these values do not affect satisfiability of Ainst, they affect satisfiability of
A. Therefore, we modifyℳ to a structureℳπ by defining acceptable values for
the function applications that do not occur in Ainst. Figure 7.1(e) gives the modified
structureℳπ that our algorithm constructs. It is easy to show that this structure
satisfies A.

The basic idea of modifying a structure is to fix the values of the function applica-
tions that do not occur in Ainst to some arbitrary value of a function application that
does occur in Ainst. This works well for this example as f and g are uninterpreted
symbols and thus their interpretations are not restricted beyond the input formula.
Were they interpreted symbols, this would be different. As an example, assume that
p is the interpreted operator “≤”. In this case, the original formula A≤ becomes
unsatisfiable1, but its instantiation Ainst

≤ stays satisfiable2. To guarantee the equisat-
isfiability in the presence of interpreted symbols, we require the ground term sets
to contain some terms that make their enclosing literals false —henceforth, we call
literals containing variables as argument of interpreted functions interpreted other-
wise uninterpreted3. This makes the solver explore the cases where clauses become
satisfiable regardless of the interpreted literals. In this example, the interpreted literal
¬(y≤ c3) becomes false if y is instantiated with the ground term c3 − 1. Instantiating
A≤ with the ground terms {c1, c4, c3 − 1} reveals the unsatisfiability.

In the following, we formalize the ideas used in the example above. We first define
sufficient ground term sets for quantified variables. Then, give a syntactic rule system
that derives a set constraints system capable of finding out if the sufficient ground
term set of a given variable is finite and compute it otherwise.

7.2 Sufficient Ground Term Sets
Definition 18 (Sufficient ground term sets). Given a variable x in a clause C of an
SMT formula A (in CNF), a set of ground terms S ⊆ ℋ(A) is sufficient for x w.r.t. a
theory 𝒯 if A and A[S/x]4 are equisatisfiable modulo 𝒯 .

A variable x in a formula A can have more than one sufficient set of ground terms.
ℋ(A), for example, is always a sufficient set of ground terms as a result of the Gödel-
Herbrand-Skolem theorem which states that a formula A in Skolem Normal Form
(SNF) is satisfiable iff its Herbrand expansion {A[gt1/x1] . . . [gtn/xn] | gt1:n ∈ ℋ(A)}
is satisfiable where x1:n are the variables of A [69]. But,ℋ(A) is usually infinite, and
our goal is to determine whether a finite set of sufficient ground terms exists, and to

1(2) and (4) imply f (c1) = c1. y ≤ z holds for some pair of integers, thus (3) implies f (y) = c2 for some y.
But f (y) = f (c1) by (2) and so f (c1) = c2 = c1. This contradicts, however, (1).

2A structure is M′(c1) = 1, M′(c2) = 2, M′(c3) = 0, M′(c4) = 4, M′(f) ≡ 1
3A more convenient notation would be essentially interpreted literals. However, for the sake of simplicity

we use the shorter notation.
4In practice, one will use A[C[S/x]/C] instate where C is the enclosing clause of x.

7.2 Sufficient Ground Term Sets 77

compute it if one exists. This is done, in our approach, by generating and solving a
system of set constraints 𝒮A over sets of ground terms.

Figure 7.2 presents our (syntactic) rules to generate the set constraints system 𝒮A
for a formula A in CNF. The notation t ∈̇C denotes that a term t occurs as a subterm
of a clause C of A. We use 𝒮A to denote the set constraints system that results from
applying these rules exhaustively to all the clauses of A. The constraints range over the
sets vGT(x)⊆ Gr for all variables x in A. These sets denote the relevant instantiations
for the respective variables. Auxiliary sets fGT(f , i) ⊆ Gr are introduced to denote
the set of relevant ground terms for an uninterpreted function f ∈ ℱ at an argument
position i ∈ N. We assume that the theory of integers is part of the considered 𝒯 , and
that integers are included in the universe of every 𝒯 -structureℳ, i.e. Z⊆ M̄. The
integer operators <,≤,+,−,≥,> are fixed with their obvious meaning.

Rule R1 establishes a relationship between sets of ground terms for variables and
function arguments. Rule R2 ensures that the ground terms that occur as arguments
of a function f are added to the corresponding ground term set of f . Rule R3 states
that if a term t[x1:n] with variables x1:n occurs as the i-th argument of f , then all the
instantiations of t with the respective sets vGT(xi) must be in fGT(f , i). Rules R0, R4
and R14 state that our approach does not currently handle the case where a variable x
occurs as atom of a literal or as an argument of an unsupported interpreted function
(supported operators are {=,<,≤,>,≥}, where “=” refers to integer equality), thus
sets vGT(x) to infinity. Moreover, we do not handle the case where a supported
interpreted operator has more than one variable argument (rule R5). The remaining
rules infer additional constraints for vGT(x) where x occurs as an argument of a
supported interpreted function. They constrain vGT(x) to contain at least one ground
term that falsifies the corresponding (interpreted) literal.

It should be noted that, in fact, we use infinity as a label to denote that our (current)
approach cannot compute a finite sufficient ground term set for a variable. This
happens in three main cases: (1) if the ground term set of a variable is explicitly set to
infinity (using rules R0, R4, R5 and R14), (2) if we can conclude that the ground term
set of a variable subsumes an infinite ground term set (using rules R1 and R3) and (3)
if we can conclude that the ground term set of a variable subsumes itself. A ground
term set S subsumes a ground term set R, denoted by R ⊆̇S, if for every ground term
gt1 ∈ R there exists a ground term gt2 ∈ S such that gt1 is a subterm of gt2.

Before formulating and proving our main theorem, we first motivate the intuition
behind our rules in the example of R1, R2 and R3. Therfore consider the formula A

A′∧
ϕ1[f (gt1)] ∧ (∀x. ϕ2[f (x)])∧ (7.1)
(∀y. ϕ3[f (g(y))] ∧ h(y))) ∧ h(gt2) (7.2)

where ϕ1, ϕ2 and ϕ3 are three formulas containing (among others) the terms f (gt),
f (x) and f (g(y)), respectively, and f , g, and h are function symbols. Let further
assume that A is refutable.

78 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

R0:
x ∈ C || ¬x ∈ C

vGT(x) = ∞
R1:

f (· · · ,
i-th︷︸︸︷
x , · · ·) ∈̇C

vGT(x) = fGT(f , i)
R2:

f (· · · ,
i-th︷︸︸︷
gt , · · ·) ∈̇C

gt ∈ fGT(f , i)

R3:
f (· · · ,

i-th︷ ︸︸ ︷
t[x1:n], · · ·) ∈̇C

t[vGT(x1)/x1, · · · ,vGT(xn)/xn] ⊆ fGT(f , i)

R4:
op(· · · , x, · · ·) ∈ C, op ̸∈ {=, ̸=,<,≤,>,≥}

vGT(x) = ∞
R5:

op(. . . , x, . . . ,y, . . .) ∈ C
vGT(x) = ∞, vGT(y) = ∞

R6:
(x ≤ gt) ∈ C

gt + 1 ∈ vGT(x)
R7:

(x ≥ gt) ∈ C
gt− 1 ∈ vGT(x)

R8:
¬op(x, gt) ∈ C,where op ∈ {≤,≥}

gt ∈ vGT(x)

R9:
¬(x < gt) ∈ C

gt− 1 ∈ vGT(x)
R10:

¬(x > gt) ∈ C
gt + 1 ∈ vGT(x)

R11:
op(x, gt) ∈ C,where op ∈ {<,>}

gt ∈ vGT(x)

R12:
¬(x = gt) ∈ C
gt ∈ vGT(x)

R13:
(x = gt) ∈ C, x ∈ Z

{gt− 1, gt + 1} ⊆ vGT(x)
R14:

(x = gt) ∈ C, x /∈ Z
vGT(x) = ∞

Figure 7.2: The syntactic rules for generating the set constraints system (𝒮A). C
denotes a clause of A, gts denote ground terms, f , and op denote uninterpreted and
interpreted function symbols, t[x1:n] denotes a term with variables x1:n.

Considering the sub formula 6.1, A restricts, abstractly seen, the interpretation of f
on the value of gt1 with ϕ1 and on all values with ϕ2. Now having this view on A, one
can easily see that if the variable x is eliminated without considering its instantiation
with gt1, one could miss a possible inconsistency of A —namely between ϕ1 and ϕ2—
and thus possibly report a spurious counterexample. This case is exactly prevented
by the exhaustive application of the rules R1 and R2.

Considering the sub formula 6.2, A further restricts the interpretation of f for all
values of the image of g with ϕ3. In this case and in order to prevent missing a possible
inconsistency between ϕ2 and ϕ3 one should guarantee that x gets instantiated (at
least) with all ground terms of the form g(gt) where gt ∈ vGT(y) (in our example
g(gt2)). This is guaranteed by the exhaustive application of R1, R2 and R3. This
argumentation also holds even if g is the identity and this is exactly the reason for the
(at first sight not intuitive) left to right inclusion of the equality of rule R1.

Let vGT𝒮A denote a collection of finite sets of ground terms which satisfies the
constraints of 𝒮A. We show that, if finite, vGT(x)𝒮A is a sufficient ground term set for
x in A. The variable x can hence be eliminated by instantiating it with all the ground

7.2 Sufficient Ground Term Sets 79

terms in vGT(x)𝒮A . The resulting formula A[vGT(x)𝒮A /x] is equisatisfiable to A and
does not contain x anymore.

Theorem 7 (Main theorem). Let x be a variable in A with vGT(x)𝒮A ̸= ∞, then A and
A[vGT(x)𝒮A /x] are equisatisfiable.

Proof. If A[vGT(x)𝒮A /x] is unsatisfiable, so is A since the former is an implication of
the latter. If A[vGT(x)𝒮A /x] is satisfiable with a structureℳ, then we construct a
modified structureℳπx (as defined below) and show in lemma 16 thatℳπx satisfies
A.

Given a structure ℳ for the formula A[vGT(x)𝒮A /x], we construct a modified
structureℳπx as follows: M̄πx := M̄. For any constant c ∈ Const, Mπx (c) := M(c).
For any interpreted operator op, Mπx (op) := M(op). For any uninterpreted function
f , Mπx (f)(v1:n) := M(f)(πx(f ,1)(v1), · · · ,πx(f ,n)(vn)), where the value projection
with respect to the ith argument of f πx(f , i) is defined as in Equation 7.3.

Intuitively, if the ground term set of x does not subsume the ground term set of
the ith argument of f , or if vi is a value that M assigns to a ground term for the ith

argument of f , then Mπx (f)(..,vi, ..) := M(f)(..,vi, ..). Otherwise, πx(f , i) maps vi to
a value that M assigns to some ground term for the ith argument of f . Integers must
be mapped to the closest such value (see the proof of Lemma 15).

πx(f , i)(v) =

v if fGT(f , i)𝒮A *̇vGT(x)𝒮A

v else if v ∈ M(fGT(f , i)𝒮A)

v′ ∈ M(fGT(f , i)𝒮A) else if v ̸∈ Z
v′∈M(fGT(f , i)𝒮A),s.t. |v− v′| is minimal otherwise

(7.3)

πx(v) =

v if v ∈ M(vGT(x)𝒮A)

v′ ∈ M(vGT(x)𝒮A) else if v /∈ Z
v′ ∈ M(vGT(x)𝒮A),s.t. |v− v′| is minimal otherwise

(7.4)

We also define the value projection with respect to a variable x πx as in Equation
7.4. If vGT(x)𝒮A = fGT(f , i)𝒮A , for instance because x occurs as the ith argument of f ,
then πx = πx(f , i).

Before showing the proof of lemma 16 used in our main theorem, we introduce
and prove some auxiliary corollaries and lemmas.

Corollary 4. If vGT(x)𝒮A ̸= ∞, then πx(v) ∈ M(vGT(x)𝒮A), for all v ∈ M̄.

Proof. The claim follows directly from the definition of πx

Corollary 5. For all ground terms t and variables x occurring in A, valℳπx ,β(t) = valM,β(t)
for any variable assignment β.

80 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

Proof. We perform the proof by induction over the structure of t.
If t ∈ Const, the claim follows directly from the definition of Mπx .
If, without loss of generality, t := f (s), where f ∈ ℱ and s ∈ Gr(A), we get by the

induction hypothesis,

valℳπx ,β(f (s))
val
= Mπx (f)(valℳπx ,β(s))
IH
= Mπx (f)(valℳ,β(s))
val
= Mπx (f)(M(s))

Now, we have to distinguish between interpreted and uninterpreted functions. If f is
interpreted, the claim follows directly from the definition of Mπx . If f is uninterpreted,
we first get Mπx (f)(M(s)) = M(f)(πx(f ,1)(M(s))). Furthermore, we know, because
of rule R2 and since f (s) occurs in A, that s ∈ fGT(f ,1)𝒮A and consequently M(s) ∈
M(fGT(f ,1)𝒮A). Now, we can conclude the proof using the definition of πx(f ,1) for
values in M(fGT(f ,1)𝒮A).

The following lemmas show that if a structureℳ together with the variable as-
signment β′ = λy. if vGT(y)𝒮A ⊆̇vGT(x)𝒮A then πy(β(y)) else β(y) for some variable
assignment β satisfies a literal l in a CNF formula A, then the modified structureℳπx

together with β satisfies l. These lemmas are insofar important as they describe how
our structure modification Mπx can be reduced to a modification of variable assign-
ments. Lemma 14 gives a stronger variant (with value equality rather than implication)
for uninterpreted literals, and Lemma 15 formulates the claim for interpreted literals.

Lemma 14. Let x be a variable with vGT(x)𝒮A ̸= ∞,ℳ a structure, β a variable assign-
ment, and β′ = λy. if vGT(y)𝒮A ⊆̇vGT(x)𝒮A then πy(β(y)) else β(y). Then valℳ,β′(l) =
valMπx ,β(l) for all uninterpreted literals l in A.

Proof. To prove the claim, we show the statement valℳ,β′(l) = valMπx ,β(l) for all
uninterpreted terms l ∈ TermΣ occurring as literals of the CNF of A using structural
induction.

If l is a ground term in A, then the claim follows directly from corollary 5.
If l = y is a variable, then because of rule R0 vGT(y)𝒮A = *̇vGT(x)𝒮A . Consequently,

valℳ,β′(l) = β′(y) = β(y) = valMπx ,β(l).
Let l = f (t1:n) be a function application in A with f an uninterpreted function. The

evaluations of l are

valℳπx ,β(f (t1:n)) = Mπx (f)(valℳπx ,β(t1), . . . ,valℳπx ,β(tn))

= M(f)(πx(f ,1)(valℳπx ,β(t1)), . . . ,πx(f ,n)(valℳπx ,β(tn)))

valℳ,β′(f (t1:n) = M(f)(valℳ,β′(t1), . . . ,valℳ,β′(tn))

7.2 Sufficient Ground Term Sets 81

It suffices to show that πx(f , i)(valℳπx ,β(ti)) = valM,β′(ti) for 1 ≤ i ≤ n. We do this
by a case distinction over the structure of the terms ti.

If ti = y is a variable with vGT(y)𝒮A *̇vGT(x)𝒮A , then β′(y) = β(y). Because of
rule R1 we additionally get fGT(f , i)𝒮A *̇vGT(x)𝒮A , which implies that πx(f , i) is the
identity.

If ti = y is a variable with vGT(y)𝒮A ⊆̇vGT(x)𝒮A , then β′(y) = πy(β(y)). Because of
rule R1 we get fGT(f , i)𝒮A = vGT(y)𝒮A ⊆̇vGT(x)𝒮A , which implies that πx(f , i) = πy.

If ti is a function application, we assume ti = s[x1:m] for some term s. By induction
hypothesis,

πx(f , i)(valℳπx ,β(s[x1:m]))
IH
= πx(f , i)(valℳ,β′(s[x1:m])).

It suffices now to show that

πx(f , i)(valℳ,β′(s[x1:m])) = valM,β′(s[x1:m]).

With respect to fGT(f , i)𝒮A , there is two possible cases to consider.

1. fGT(f , i)𝒮A *̇vGT(x)𝒮A : in this case, πx(f , i) is the identity and the claim follows
directly.

2. fGT(f , i)𝒮A ⊆̇vGT(x)𝒮A : in this case, vGT(xi)𝒮A ⊆̇ fGT(f , i)𝒮A ⊆̇vGT(x)𝒮A , for
all 1 ≤ i ≤ m (because of rule R3). This implies that β′(xi) = πxi (β(xi)) for
all 1 ≤ i ≤ m. Using this fact together with corollary 4, there exists for each
xi a ground term gti, with πxi (β(xi)) = M(gti) and gti ∈ vGT(xi)𝒮A . There-
fore, we can write, w.l.o.g., πx(f , i)(valℳ,β′(s[x1:m])) = πx(f , i)(M(s[gt1:m])).
Because of rule R3 we know that s[gt1:m] ∈ fGT(f , i)𝒮A , and so M(s[gt1:m]) ∈
M(fGT(f , i)𝒮A). Finally, the claim follows from the definition of πx(f , i) for
values in M(fGT(f , i)𝒮A) and the assumption that fGT(f , i)𝒮A ⊆̇vGT(x)𝒮A .

Let l := f (t1:n) be a function application with f an uninterpreted function. Since l
is uninterpreted, all tis are non-variables and we can use the induction hypotheses on
them. Having this together with the definition of Mπx for interpreted functions, we
can now conclude the proof for this last case as follow:

valℳπx ,β(f (t1:n))

val
= Mπx (f)(valℳπx ,β(t1), . . . ,valℳπx ,β(tn))

Mπx
= M(f)(valℳπx ,β(t1), . . . ,valℳπx ,β(tn))

IH
= M(f)(valℳ,β′(t1), . . . ,valℳ,β′(tn))

val
= valℳ,β′(f (t1:n))

82 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

Lemma 15. Let x be a variable with vGT(x)𝒮A ̸= ∞,ℳ a structure, β a variable assignment,
and β′ = λy. if vGT(y)𝒮A ⊆̇vGT(x)𝒮A then πy(β(y)) else β(y). Then (M, β′) |= l implies
(Mπx , β) |= l for all interpreted literals l in A.

Proof. We prove the claim by induction on the structure of uninterpreted literals l. The
structure of uninterpreted literals, however, has only one case more than the structure
of uninterpreted literals, namely the case of l = op(y1:n) where op is an interpreted
function symbol and y1:n are variables. Having already proved Lemma 14, we can
focus, w.l.o.g., on this case.

Fist, we considre the case in which vGT(yi)𝒮A *̇vGT(x)𝒮A for all 1≤ i ≤ n. In this
case, β′(yi) = β for all 1 ≤ i ≤ n. Having this, the claim follows directly using the
defintion of Mπx for interpreted function symbols,

valℳπx ,β(op(y1:n))

val
= Mπx (op)(β(y1), . . . , β(yn))

Mπx
= M(op)(β(y1), . . . , β(yn))

β′
= M(op)(β′(y1), . . . , β′(yn))

val
= valℳ,β′(op(y1:n)).

For the remaining case, we can assume vGT(yi)𝒮A ⊆̇vGT(x)𝒮A for some 1≤ i ≤ n
and consequently β′(yi) = πyi (β(yi)). In addition to that, we can because of rules R4,
R5 and R14 further restrict, without loss of generality, the form of l to l := op(yi, gt)
where op ∈ {=, ̸=,<,≤,>,≥} and αΣ(yi) = Z. Let us now assume that (ℳ, β′) |= l
and (ℳπx , β) ̸|= l and show by case distinction on op ∈ {=, ̸=,<,≤,>,≥} that this
assumption is wrong and consequently the claim holds.

1. For op ∈ {<,>}, we get from rule R11, gt ∈ vGT(yi)𝒮A and from the assump-
tion the inequality system (πyi (β(yi)) < gt) ∧ (β(yi) ≥ gt), which implies that
|β(yi)− πyi (β(yi))| is not minimal, since |β(yi)− gt| is strictly smaller.

2. For op ∈ {≤,≥}, the proofs go similar to the previous case using rule R6 for the
“≤”-case and rule R7 for the “≥”-case.

3. For op := ”=”, we get from rule R13, {gt − 1, gt + 1} ⊆ vGT(yi)𝒮A and from
the assumption, the inequality system (πyi (β(yi)) = gt) ∧ (β(yi) ̸= gt), which
is equivalent to (πyi (β(yi)) = gt) ∧ ((β(yi) ≤ gt − 1) ∨ (gt + 1 ≤ β(yi))) and
implies that |β(yi)−πyi (β(yi))| is not minimal, since in the case (β(yi)≤ gt− 1),
|β(yi)− (gt− 1)| is strictly smaller and in the case (gt + 1 ≤ β(yi)), |β(yi)−
(gt + 1)| is strictly smaller.

4. For op := ” ̸=”, the proof goes similar to the previous case using rule R12.

7.3 Practical Optimizations 83

Lemma 16. Let x be a variable in A with vGT(x)𝒮A ̸=∞ andℳ a structure of A[vGT(x)𝒮A /x],
thenℳπx is a structure of A.

Proof. Let A′ denote A[vGT(x)𝒮A /x]. Since ℳ is a (satisfiable) structure of A′,
(ℳ, β) |= A′ for every variable assignment β : 𝒳 → M̄. Let β0 be an arbitrary variable
assignment. By corollary 4, we know that it exists some ground term gt ∈ vGT(x)𝒮A
such that πx(β0(x)) = M(gt). The resulting formula of instantiating x with gt A[gt/x]
is included in A′ and thus (ℳ, β) |= A[gt/x] for any β.

Let us now consider the variable assignment modification of β0

β′0 = λy. if vGT(y)𝒮A ⊆̇vGT(x)𝒮A then πy(β0(y)) else β0(y).

For β′0 holds: (1) β′0 maps x to πx(β0(x)) = M(gt) and (2) (M, β′0) |= A[gt/x]. From
(1) and (2), we get (ℳ, β′0) |= A.

Assuming that A is in CNF, there must be for every clause C in A at least one literal
lC in C with (ℳ, β′0) |= lC. Using lemma 15 for interpreted literals and lemma 14 for
uninterpreted literals, we know that also (ℳπx , β0) |= lC. Hence, Mπx is a structure
for lC, C and finally for A. Since β′ was chosen arbitrary, the proof is done.

7.3 Practical Optimizations
In the previous section we have introduced and proved a general approach that
can reduce the number of universally quantified variables of a given SMT formula.
However, in practice, our approach may introduce a notifiable overhead that can
prevent from attaining the expected increase in SMT solver time. The sources of this
overhead are: (1) the cost of converting the SMT formula to CNF and (2) the increase
of occurrences of some quantified variables, during the elimination of others. In the
following subsections, we present our approaches to reduce the practical effect of this
problems.

7.3.1 Simulating NNF
We have formulated and proved our quantified variables elimination approach totally
based on the CNF representation of SMT formulas. This includes in addition to the
proofs (1) the computation of sufficient ground terms vGT and (2) the elimination the
eliminable variables via instantiation.

Both tasks, however, do not require necessarily the formula to be in CNF. For the
first task of constructing and computing the constraint system of Figure 7.2, only the
CNF polarity of the literals of the input formula is needed (see rules R6 to R13). For
the second task of instantiating a variable x with a set S of ground terms in a formula
A —not necessarily in CNF, one only needs to adjust the instantiation definition to

A[S/x] := A[
∧

gt∈S
Bx[gt/x]/Bx],

84 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

where Bx is the smallest subformula containing x.
Therefore, instead of actually converting the original formula to CNF, we (1) simulate

the NNF (negation normal form) conversion (without actually changing the formula)
to compute polarity, and (2) skolemize all existential quantifiers. This computation
does not introduce any considerable overhead. It should be noted that conversion to
CNF using distribution (as opposed to Tseitin encoding [73, 64]) has the additional
advantage that it minimizes the scope of each variable. This can significantly im-
prove our simplification approach. Distribution, however, is very costly in practice.
Computing minimal variable scopes without performing distribution is left for future
work.

7.3.2 Limiting Instantiations
Our variable elimination approach eliminates those variables that have finite sets of
sufficient ground terms by instantiating them with the computed ground terms. In
practice, such instantiation may increase the occurrences of non-eliminable variables
(see Example 1 of the previous section). Our experiments with Z3 and CVC4 show
that this increase in the number of variable occurrences can considerably increase the
solving time, specially for nested quantifiers.

In order to estimate the elimination cost C(S) of a set of eliminable variables S, we
use definition 19, where occurr returns the occurrence positions of a variable in a
term. The definition estimates the elimination cost based on the maximal number of
newly introduced variable occurrences.

Definition 19 (Occurrence increase of quantified variables). Let A be a formula and
S := {x1, . . . , xn} ⊆ {x ∈̇A | vGT(x)𝒮A ̸= ∞} a set of eliminable variables. The occur-
rence increase of quantified variables caused by eliminating all xis in A is defined
as:

C(S) := max
y ∈̇A

(|occurr(y, A[vGT(x1)/x1, . . . ,vGT(xn)/xn])|
|occurr(y, A)|

)
Using Algorithm 1, we estimate and limit the cost of variable elimination based

on the number of variable occurrences that it introduces. The algorithm tries to
maximize the number of eliminated variables S while keeping the cost CS low. Given
a formula A and a threshold cost Cmax, this algorithm returns a set of variables S
whose elimination cost do not exceed Cmax. Line 2 initializes the set of expensive
—w.r.t. Cmax— variables ExpVar to the set of all variables whose sets of sufficient
ground terms are infinite, and thus will never be eliminated by our approach. Lines 5-
10 evaluate the cost of eliminating all variables y in S. The set S of candidate variables
for elimination contains eliminable that are not yet marked expensive. Eliminating
all variables y of S with their sufficient ground terms, in the worst case, replicates
each expensive variable x in ExpVar ∏y∈bindVars(x)∖ExpVar |vGT(y)𝒮A | times, where
bindVars(x) denotes the elimination candidate variables that scopes x. A variable y
scopes a variable x if x occurs in the quantified formula that binds y. If the estimated

7.4 Evaluation 85

Algorithm 1: Heuristic detection of expensive variables with respect to a threshold
Data: A : TermΣ,Cmax : N
Result: S : Set<Var>

1 begin
2 ExpVar← {x ∈ vars(A) | vGT(x)𝒮A = ∞}
3 S← vars(A) ∖ ExpVar
4 repeat
5 for x ∈ ExpVar do
6 costS← ∏

y∈bindVars(x)∖ExpVar
|vGT(y)𝒮A |

7 if costS > Cmax then
8 select m ∈ bindVars(x) ∖ ExpVar s.t. |vGT(m)𝒮A | is maximum
9 ExpVar← ExpVar∪ {m}

10 S← vars(A) ∖ ExpVar

11 until ExpVar is unchanged;
12 return S

cost of eliminating all elimination candidate variables CS exceeds the given threshold,
then a variable m with the maximum number of instantiations (vGT(m)𝒮A) will be
marked as expensive —by adding it to ExpVar and consequently moving it from S.
The process then starts over 5.

7.4 Evaluation
We have implemented our approach in a prototype tool and performed experiments
on the SMT competition (SMT-COMP) benchmarks of 2012 in the AUFLIA-p division,
using CVC4 (version 1.0) and Z3 (version 4.1) solvers. We ran both solvers on all
benchmarks on an AMD DualCore Opteron Quad, 2.6GHz with 32GB memory.

For each benchmark, we compare the original runtime of each solver (with no
simplification) against (1) a complete variable elimination and (2) a limited variable
elimination where Cmax = 100. Figures 7.3a and 7.3b give the comparison results for
CVC4, and Figures 7.4a and 7.4b give the results for Z3. The x-axis of each plot shows
the benchmarks, sorted according to the original runtime of the solvers, and the y-axis
gives the runtime in seconds. Time-outs and “unknown” outputs are represented
identically. The time-out limit is 600 seconds.

For CVC4, the complete variable elimination improves the solving time of 37 cases
(18%) —average speedup6 49x— out of which 16 were originally unsolvable, and

5Our actual implementation optimizes this algorithm by exploiting the structure of the abstract syntax
tree.

6Speedup = old solving time / new solving time, where 0 second is changed to 0.5 second.

86 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:comp

(a) CVC4, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0

cvc4
sufGT:100

(b) CVC4, original vs. simplified (Cmax = 100)

Figure 7.3: CVC4 experimental results on the benchmarks of SMT-COMP/AUFLIA-p

7.4 Evaluation 87

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:comp

(a) Z3, original vs. simplified (complete)

Benchmarks

R
un

tim
e

in
 s

ec
.

1 201

0
50

10
0

20
0

40
0

60
0 Z3

sufGT:100

(b) Z3, original vs. simplified (Cmax = 100)

Figure 7.4: Z3 Experimental results on the benchmarks of SMT-COMP/AUFLIA-p

88 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

worsens 55 cases (27%) —average speedup 0.45. The limited variable elimination, on
the other hand, improves 39 cases (19%) —average speedup 57x— out of which 15
were originally unsolvable, and worsens 32 cases (15%) —average speedup 0.48. Z3 is
known to be highly efficient in the AUFILA divisions (winner since 2008); its original
runtime on many benchmarks is zero. The complete variable elimination, however,
worsens 70 of these benchmarks (34%) —average speedup 0.38— and improves 11
cases (5%) —average speedup 10x— out of which one was originally unsolvable. The
limited variable elimination, on the other hand, worsens only 8 cases (4%) —average
speedup 0.35— and improves 14 cases (7%) —average speedup 9.4x— out of which
one was originally unsolvable.

The main reason for slow down is the introduction of too many variable occurrences
when not all variables are eliminable. Thus, as shown by these plots, for both solvers,
the limited variable elimination produces stronger results. However, even when all
variables are eliminated, it is still possible that the solving time worsens as the number
of instantiations that we produce can be higher than the number of instantiations that
the solver would generate while solving the quantified formula. Although feasible in
theory, this case was never observed in our experiments.

Although variable elimination with a limited cost can result in significant improve-
ments of solving time, the experiments show that in some cases such as the two new
time-outs of Figure 7.4b, a finer-grained limitation decision is needed. Investigating
such cases is left as future work.

The individual experiments results of the plots as well as the results of further
experiments are available online [29].

7.5 Related Work
Quantifier elimination in its traditional sense (aka. QE) refers to the property that a Σ-
theory 𝒯 admits QE if for each formula φ ∈ TermΣ, there exists —algorithmically— a
quantifier-free formula φ′ ∈ TermΣ so that for all 𝒯 -structuresℳ,ℳ|= φ⇔ φ′. Most
applications of QE either provide decision procedures for fragments of FOL, or only
prove their decidability. An example of the later use, is the original decidability proof
of the Presburger arithmetic theory which is totally based on the QE technique (see
[35, page 197]). An example for the former use, is the Fourier-Motzkin QE procedure
for linear rational arithmetic (see [65]).

Given a formula φ, the main idea, of almost all QE procedures, is to exploit the
arithmetic properties of the theory 𝒯 in order to partition the theory sort —e.g., R
for the theory of reals— into a finite number of intervals with periodic behavior and
use the intervals boundary as sufficient ground terms. Having this view on QE, one
can see our technique as a theory independent QE procedure that also woks if not all
variables are eliminable.

Another approach to eliminate quantifiers was proposed in [41] where partial FOL
structures are represented as programs. A program generation technique tries to
heuristically generate a program Pi for a quantified formula φi in F := φ1 ∧ . . . ∧ φn

7.6 Conclusion 89

such that the proof obligation [Pi](φ1, . . . ,φn⇒ φi) can be discharged using a theorem
prover. If such a program is found, F is modified to φ′1 ∧ . . . ∧ φ′n (without φi) where
φ′j ≡ [Pi]φj. The program generation and verification loop can be repeated until all
quantified formulas are eliminated. Such an approach is very different from ours and
is sound only for satisfiable formulas.

Our work was motivated by [18] and [39] in which quantifiers are eliminated via
instantiation. In [18], a decision procedure is proposed for the Array Property fragment
of FOL which supports a combination of Presburger arithmetic for index terms, and
equality with uninterpreted functions and sorts (EUF) for array terms. Similar to
ours, this work instantiates universally quantified variables with a finite set of ground
terms to generate an equisatisfiable formula. They prove the existence of such sets
for their target fragment. Our approach, however, targets general FOL formulas and
leaves a variable uninstantiated if its set of ground terms is infinite. We believe that
we can successfully handle the Array Property fragment. Experiments are left for
future work.

In [39], the Model-based Quantifier Instantiation (MBQI) is proposed for Z3. Similar
to ours, this work constructs a system of set constraints ∆F to compute sets of ground
terms for instantiating quantified variables. Unlike us, however, they do not calculate
a solution upfront, but instead, propose a fair enumeration of the (least) solution of ∆F
with certain properties. Assuming such enumeration, one can incrementally construct
and check the quantifier-free formulas as needed7. If ∆F is stratified, F is in a decidable
fragment, and termination of the procedure is guaranteed. Otherwise the procedure
can fall back on the quantifier engine of Z3 and provide helpful instantiation ground
terms. Consequently, this technique can only act as an internal engine of an SMT
solver and cannot provide a stand-alone formula simplification as ours does.

Variable expansion has also been proposed for quantified boolean formulas (QBF).
In [14], a reduction of QBF to propositional conjunctive normal form (CNF) is pre-
sented where universally quantified variables are eliminated via expansion. Similar
to our approach, they introduce cost functions, but with the goal of keeping the size
of the generated CNF small.

7.6 Conclusion
In this chapter, we described a general simplification approach for quantified SMT
formulas. Based on an analysis of the ground term occurrences at function applica-
tions, we compute sufficient ground term sets for each universally quantified variable
in the input formula. We proved that instantiating (thus eliminating) any variable
whose computed set is finite, results in an equisatisfiable formula. Elimination of
each variable is independent of the others. Thus we improve the performance of our
technique by restricting the set of eliminable variables: we defined a prioritization

7In practice, they guide the quantifier instantiation using model checking which, in turn, uses an SMT
solver.

90 Chapter 7 Variable Elimination via Sufficient Ground Term Sets

algorithm that estimates the overhead of variable elimination, and tries to maximize
the number of eliminable variables while keeping the estimated elimination cost
below a threshold. We evaluated our approach using two configurations and two
solvers on a large subset of the SMT-COMP benchmarks. Our results show that (1)
SMT benchmarks contain many variables that can be eliminated by our technique, (2)
our complete variable instantiation may introduce significant overhead and thus slow
down the solvers, (3) instantiation along with prioritization shows improvement of
the solving time and score.

We believe that our technique can provide an easy framework for extending arbitrary
SMT solvers with quantifier support. If we ignore termination and performance
related rules when generating the set constraint system, we will have an incremental
and fair procedure for building ground term sets. Using a finite model checker, like in
[39], can then provide a framework for extending SMT solvers with quantifier support.
Investigating this idea is left for future work.

91

Chapter 8

Transitive Closure
Axiomatization via Invariant
Injections

Among all non first-order operators of Alloy (respectively RFOL), the transitive closure
(TC) is the most important operator. This is because (1) it is the most frequently used
operator in existing Alloy problems, and (2) all challenging Alloy problems, whether
according to our SMT solving (see Chapter 6) or to interactive theorem proving (see
[75]), involve transitive closure. Both observations are, actually, not surprising; Avron
states in his investigation of transitive closure logics [7] that the extension of first-order
logic with transitive closure is the right intermediate level between (pure) first-order
and second-order logic for the formalization and mechanization of mathematics;
Immerman et al. show that adding transitive closure even to very tame logics makes
them undecidable [46].

In Chapter 6 we demonstrated the capability of our axiomatization of RFOL opera-
tors, including the integer based axiomatization of transitive closure, together with the
SB+ technique in proving an important number of valid Alloy assertions —including
those that involve transitive closure. However, and although the axiomatization is
TC-complete —any structure of the axiomatization is a TC-structure, the analysis of
the non proved assertions reveals a fundamental restriction of our axiomatization of
the non first-order RFOL operators. This restriction goes back to the general limita-
tion of SMT solvers in handling quantified formulas, especially, those axiomatizing
recursive definitions, as in the case of transitive closure and set cardinality.

In order to explain this limitation of SMT solvers, we consider an abstract, but for
most SMT solvers correct, representation of the internal engine of SMT solvers with
quantifier support. Figure 8.1 shows the principle building blocks of this represen-
tation. Each formula F —a set of implicitly conjuncted formulas (usually clauses)—
is divided into a set G of quantifier free formulas and a possibly non empty set H of
quantified formulas —also called axioms. The ground solver, constituted of the core
solver and the theory solvers, tries to find a satisfiable structure of the set G modulo the

92 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

H

Core
Solver

SAT
Solver

Ground Solver

Quantifier
Solver

G

F

UF Solver

IA Solver

Tn Solver

Figure 8.1: An abstract architecture of SMT solvers with quantifier support

theories 𝒯1:n using a SAT solver. If the ground solver can deduce the unsatisfiability
of G modulo 𝒯1:n then it reports the refutation of F —and consequently the validity
of its negation, otherwise it checks if the found (candidate) structureℳ also satisfies
the axioms in H using the quantifier solver. If the quantifier solver can establish the
validity of the structure candidateℳ for H, then a satisfiable structure is found for F
—and consequently a counterexample for its negation, otherwise the quantifier solver
determines for each axiom Ax in H the ground instantiations —i.e., instantiations that
instantiate all free variables– that contradict the candidate structureℳ and adds
them to the set G. The process then starts over.

Let us consider the two RFOL formulas F = G ∧ H and F′ = G′ ∧ H where

G = (a,b) ∈ R ∧ (b, c) ∈ R ∧ (a, c) /∈ R+

and
G′ = P(a) ∧ ¬P(b) ∧ (a,b) ∈ R+,

a and b are constants and H the following set of axioms (Ax1, . . . , Ax4):

∀x,y. (x,y) ∈ R+ ⇐⇒ ∃i. 0≤ i ∧ (x,y) ∈ R(i) (8.1)
∀x,y, i. (x,y) ∈ R0 ⇐⇒ (x,y) ∈ R (8.2)

∀x,y, i. 0 < i→
(
(x,y) ∈ R(i) ⇐⇒ ∃z : Atom, (x,z) ∈ R(i−1) ∧ (z,y) ∈ R

)
(8.3)

∀x,y. P(x) ∧ (x,y) ∈ R→ P(y) (8.4)

Both formulas F and F′ are refutable (modulo integer theory), however, current
SMT solvers can only show the refutation of F but not of F′. In the case of F, and

93

with respect to the above introduced abstraction of the SMT solver engine, the SMT
solver will first find a satisfying structureℳ for G, which for example interprets R+

to be the empty set. This structure is obviously not a structure for the axioms Ax1
to Ax3 (Equations 8.1-8.3), namely for x = a, x = b, i = 1 for Ax1 and Ax3, and for
x = a, x = b for Ax2. However, after adding this contradicting ground instantiations of
the three axioms, i.e., Ax1[a/x,b/y,1/i], Ax2[a/x,b/y], Ax3[a/x,b/y,1/i], to G, the
SMT solver can show the refutation of the new G and consequently of F. For F′, the
situation is different since there is no finite number of instantiations of the axioms in
H such that G become refutable. The reason, therefore, is that the solver can always
construct a satisfying structure for G by choosing a path c1

R→ . . . R→ cn in the graph
of R to satisfy the literal (a,b) ∈ R+ (with respect to Ax1-Ax3) such that at least the
instantiation Ax4[ci/x, ci+1/y] of Ax4 is in not (yet) in G for some 1≤ i < n.

In order to show the refutation of formulas like F′, for which there exists no finite
number of axioms instantiations that can be added to G′ to show its refutation, the
principle of induction has been successfully used for a long time in mathematics
as well as in induction based first-oder theorem provers like ACL2 [49] and is, in
fact, the method of choice for this kind of problems. For our example F′, it would
suffice to proof by induction the axiom Ax5 = ∀y. (a,y) ∈ R+→ P(y) which states
that the formula P is an invariant for any R-path that starts with a —i.e., it holds for
all reachable atoms from a in the R-graph. Adding this new intermediate axiom to H,
will allow the SMT solver to close the proof by only one axiom instantiation, namely
Ax5[b/y]. We call literals of the form (a,b) ∈ R+ R-paths since they state the existence
of a path in the graph interpretation of R that starts with a and ends with b.

In this chapter, we present our approach of using the induction principle to increase
the proof capability of our tool for formulas in the transitive closure fragment —i.e., first-
order logic with all first-order relational operators and transitive closure. Therefore,
we investigate the following questions:

1. when can the integer based axiomatization of the transitive closure refute for-
mulas without requiring the integer induction principle?

2. for the logic fragment of question 1, can one use an integer-free axiomatization?
and

3. to refute a formula outside the fragment of question 1, what kind of integer-free
axiomatization can be used?

Let F be a refutable first-order relational formula in which the semantics of all
symbols except for transitive closure are precisely encoded, and the transitive closure
of a relation R is encoded by an uninterpreted binary relation tcR. To answer questions
(1) and (2), we use a pure first-order, weak axiomatization (WTC) which constrains
tcR to a transitive relation containing R but not the smallest one. We prove that WTC
is complete for any negative transitive closure occurrence in the clause normal form
(CNF) of F. Therefore, if the solver (falsely) reports F as satisfiable modulo WTC, it is
only because of positive transitive closure occurrences. To extend the WTC fragment

94 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

F :
(1) h1 �mark = ∅
(2) h0 � re f ⊆ h1 � re f
(3) ∀n.¬((root,n) ∈ tcH�re f (h1)) ∨ n ∈ h2 �mark
(4) h1 � re f ⊆ h2 � re f
(5) ∀n.¬(n /∈ h2 �mark) ∨ n � (h3 � re f) = ∅
(6) ∀n.¬(n ∈ h2 �mark) ∨ n � (h3 � re f) = n � (h2 � re f)
(7) (root, live) ∈ tcH�re f (h0)
(8) live � (h0 � re f) ̸⊆ live � (h3 � re f)

WTC :
(9) ∀h.h � re f ⊆ tcH�re f (h)

(10) ∀h.Transitive(tcH�re f (h))

(a)

Essential R-path p:
(root, live) ∈ tcH�re f (h0)

Path invariant for p:
n ∈ h2 �mark

(b)

F′ :
F ∧WTC ∧
∀x. (root, x)∈ tcH�re f (h0)→ x ∈ h2 �mark

(c)

Figure 8.2: Example. (a) Original formula and a weak transitive closure theory, (b) an
unsafe R-path in F and its invariant, (c) augmented formula.

and to answer question (3), we introduce a technique which automatically detects
relevant invariants about the R-paths in F and adds them as additional assumptions
to F. If any of such invariants cause contradiction, F has been refuted and the process
stops. Otherwise, more invariants will be detected and added to F.

8.1 Example

Figure 8.2(a) gives an RFOL formula F in CNF form —lines correspond to clauses.
Symbols h0 to h3 are constants of type H that represents the system state; root and live
are two constants of type Obj that represents objects; the binary relation mark ⊆ H ×
Obj represents the marked objects in each state; the ternary relation re f ⊆ H ×Obj×
Obj represents references between objects in each state; and tcH�re f : H→Obj×Obj
is a function that maps each state h to a binary relation tcH�re f (h) ⊆Obj×Obj which
aims at representing the transitive closure of the relation h � re f 1. The last two lines
(WTC) give a weak semantics for tcH�re f (h). They constrain it to be transitive and to
include the base relation, but not necessarily the smallest such relation. F gives the
negated proof obligation of a safety property of an extremely simplified version of
mark-and-sweep algorithm. The state transition (h0–h1) resets all the marks (Lines 1-2),
(h1–h2) marks objects reachable from root (Lines 3-4), and (h2–h3) sweeps references
of non-marked objects (Lines 5-6). The safety property is negated, thus it checks if
in the final state, there is a live object that was originally reachable from root in the
beginning state (Line 7), but some of its references have been swept (Line 8).

1As already mentioned, we omit the arity specification of the relational operators, but also the singleton
operator for atoms, i.e., h � re f is an abbreviation of {h} �1,3 re f .

8.1 Example 95

In our work [75], for example, we solved such formulas by adding general axioms
about transitive closure. Here, for example, F can be refuted using the subset preserva-
tion axiom of transitive closure, namely R ⊆ S→ R+ ⊆ S+ for binary relations R and
S. The only state transition in F that allows for sweeping object references is (h2–h3)
—Line 5. Since (5) is guarded by the condition that the objects are not marked at h2,
to refute the formula, it is sufficient to show that all live objects are marked at h2.
Applying the subset preservation axiom above to Line 2, and using Line 7, we get
(root, live) ∈ tcH�re f (h2) which allows for closing the proof by any SMT solver. In [75]
we collected more than 100 such transitive closure axioms, proved and added them
as further deduction rules. Although the approach was useful for interactive and
semi-interactive solving, the results of [13] suggest that this approach does not scale
for automatic provers such as SMT solvers. [13] proposes to add these lemmas only
on-demand based on some heuristics. In this approach, we go one step further and
detect and add only the actually needed properties on-the-fly (as opposed to always
include some general properties).

Our new approach refutes F by first solving F ∧WTC using an SMT solver. In this
example, the safety property holds, and thus F must be unsatisfiable. The solver,
however, (falsely) reports F as satisfiable. This is because WTC only fixes the semantics
of transitive closure for negative R-paths in F —negated literals in the CNF of F of
the form (a,b) ∈ tcR— (thus called safe R-paths); positive R-paths remain as sources
of incompleteness (thus called unsafe R-paths). However, the refutation of an unsafe
R-path is not always mandatory for the refutation of F, this depends on F. Therefore,
we are more interested in those unsafe R-paths whose refutation is mandatory for
refuting F (we call them essential R-paths).

Our formula F in Figure 8.2(a) contains only one unsafe R-path p, namely (root, live)∈
tcR (Line 7); p is essential since it is a unit clause in F2. We refute p by searching for
some property ϕ[x], called p-invariants, that

1. holds for all objects reachable from the beginning of p, namely root, by one
R-step —we call this property the p-step test— and

2. if it holds for a node x, it holds for all nodes reachable from x by one R-step
—we call this property the R-invariant test.

Given a p-invariant ϕ[x], the induction principle allows us to add the assumption
∀x2.(root, x2)∈ tcR→ ϕ[x2/x] as an additional clause to F without affecting its validity.
If one of the p-invariants is known to not hold for live (the end node of p), then p is
refuted and we are done. Figure 8.2(b) shows the p-invariant which is sufficient to
refute our essential R-path p. It is a subclause of clause (3) which passes both p-step
and R-invariant tests. Details on the search procedure for p-invariants are presented
in Section 8.4. After adding the p-invariant assumption to F (Figure 8.2(c)), the SMT
solver reports it as unsatisfiable, and thus the example has been verified, namely fully
automatically and using any SMT solver with standard quantifier support.

2In general the test for essential R-paths is not trivial.

96 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

8.2 Weak TC Axiomatization and its Fragment

In this section, we discuss a general3, weak, first-order, integer-free axiomatization
for transitive closure (denoted by WTC) and describe a fragment for which it is
complete. The WTC axioms are given by the Equations in 8.5. They constrain the
symbol tcR to be a transitive relation that contains R (denoted by tr(R)). Therefore,
their deductive closure Cl(WTC) describes the theory of structures that interpret tcR
as tc(R) (denoted by 𝒯 tr(R)

tcR
). Generally, we use 𝒯 g

f to denote the theory which agrees
with 𝒯 except for the interpretations M of f , where it is interpreted the same way as
M(g). We also use R|u to denote the restriction of a relational term R on a tuple u of
same arity, i.e., R|u = R ∩ {u}.

∀x1, x2. (x1, x2) ∈ R→ (x1, x2) ∈ tcR

∀x1, x2, x3. (x1, x2) ∈ tcR ∧ (x2, x3) ∈ tcR→ (x1, x3) ∈ tcR (8.5)

Although the WTC axiomatization is very weak, there exists a non-trivial fragment
for which this axiomatization is complete.

Theorem 8 (WTC completeness fragment). Let F be a first-order relational formula, R and
tcR two binary relations, and u a tuple such that the R-path u ∈ tcR occurs only as negative
literal in CNF(F). Then, F is unsatisfiable modulo 𝒯 R+

tcR |u iff it is unsatisfiable modulo 𝒯 tr(R)
tcR |u.

Proof. Let u denote a tuple (a,b) and the R-path (a,b)∈ tcR be denoted by p. Assuming
that p occurs only as negative literal in CNF(F), we need to prove that (1) if F is
unsatisfiable modulo 𝒯 tr(R)

tcR |u, then it is unsatisfiable modulo 𝒯 R+

tcR |u too, and (2) if F has
a 𝒯 tr(R)

tcR |u-structure, it has a 𝒯 R+

tcR |u-structure too. Case (1) is trivial since R+ ⊆ tr(R). For
case (2) we assume thatℳ is a 𝒯 tr(R)

tcR |u-structure of F. For all clauses in CNF(F) in
which a literal other than ¬p is satisfied,ℳ is especially a 𝒯 R+

tcR |u-structure because
𝒯 tr(R)

tcR |u and 𝒯 R+

tcR |u coincide in symbols other than tcR|u. For all other clauses C, we
can assume that C := ¬p ∨ Crest and ℳ |= ¬(a,b) ∈ tcR. Since 𝒯 tr(R)

tcR
= Cl(WTC),

ℳ is especially a structure for the second WTC axiom instantiated with a and b;
ℳ |= ∀x2. (a, x2) /∈ tcR ∨ (x2,b) /∈ tcR. By induction, using the first axiom, there is no
R-path from a to b inℳ. Thereforeℳ is a 𝒯 R+

tcR |u-model for ¬p and thus for C.

In other words, theorem 8 states that if all R-paths in CNF(F) are negative literals,
then WTC is a correct and complete R+-axiomatization of tcR in F. It describes,
therefore, a WTC complete fragment. The fragment conditions are syntactic and
allow categorizing R-paths into safe —with only negative literals in the CNF(F)—
and unsafe —otherwise. Hereafter, we denote the set of all unsafe R-paths by UP.

3Independent of the considered formula

8.3 R-Invariants for Axiomatizing Unsafe R-Paths 97

8.3 R-Invariants for Axiomatizing Unsafe R-Paths
This section introduces R-invariants as a means for providing a transitive closure
axiomatization that is context-complete, i.e., complete with respect to the context in
which the transitive closure is used. This axiomatization handles unsafe R-paths,
those for which the WTC axiomatization is not complete, and thus provides a proof
possibility for formulas beyond the WTC-fragment described in Section 8.2. However,
not all unsafe R-paths are indeed essential for the refutation of a given formula.
Therefore, we base our approach on those unsafe R-paths which are essential.

Definition 20 (Essential unsafe R-paths). Let R be a binary relation and F be a
refutable first-order relational formula modulo 𝒯 R+

tcR
. Then, an unsafe R-path (a,b) ∈

tcR in UP is essential —for refuting F— if there exists a structureℳ where

∀(b, c) ∈ tcQ : UP ∖ {(a,b) ∈ tcR}. M(tcQ|(b,c)) = M(Q+|(b,c)),

M(tcR|(a,b)) = M(tr(R)|(a,b))and

ℳ |= F.

The set of all essential (unsafe) R-paths is denoted by EP.

Definition 20 describes unsafe R-paths that require further axiomatization in order
to refute F. The definition condition, however, requires a complete axiomatization of
unsafe relational paths, which is in fact our ultimate goal. Therefore, we will later
give a practical heuristic to check for essential R-paths.

Definition 21 (R-invariant). Let F be a first-order formula and R a binary relation.
Then, a formula ϕ[x], containing a variable x, is a forward (resp. backward) R-invariant
with respect to x, F and a theory 𝒯 if

F |=𝒯 ∀x1, x2. ϕ[x1/x] ∧ (x1, x2)
d ∈ R→ ϕ[x2/x]

for d = 1 (resp. d = −1) , where (x1, x2)
−1 = (x2, x1).

Definition 22 (p-invariant). Let F be a first-order formula, R a binary relation and
p an R-path of the form (a,b) ∈ tcR. Then, a forward (resp. backward) R-invariant
formula ϕ[x], containing a variable x, is forward (resp. backward) p-invariant with
respect to x, F and a theory 𝒯 if a (resp. b) is ground and

F |=𝒯 ∀x2. (c, x2)
−d ∈ R→ ϕ[x2/x]

for c = a and d = 1 (resp. c = b and d = −1).

When using Definition 21 and 22, we may skip mentioning x, F and 𝒯 when clear
from the context. Unless explicitly stated, the forward definitions are meant.

98 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

Definition 23 (TC induction schema). The first-order relational version of the induc-
tion axiom, denoted by IND, is a schema of axioms which states that for any closed
first-order formula ϕ[z1,z2], containing variables z1 and z2, the following hold:(

∀x1:2. (x1, x2) ∈ R→ ϕ[x1/z1, x2/z2] ∧ (8.6)
∀x1:3. ϕ[x1/z1, x2/z2] ∧ (x1, x2) ∈ tcR ∧ (x2, x3) ∈ R→ ϕ[x1/z1, x3/z2]

)
(8.7)

→
∀x1:2. (x1, x2) ∈ R+→ ϕ[x1/z1, x2/z2]

Definition 24 (Backward TC induction schema). The first-order relational backward
version of the induction axiom, is a schema of axioms which states that for any closed
first-order formula ϕ[z1,z2], containing variables z1 and z2, the following hold:(

∀x1:2. (x1, x2) ∈ R→ ϕ[x1/z1, x2/z2] ∧ (8.8)
∀x1:3. ϕ[x1/z1, x2/z2] ∧ (x1, x2) ∈ tcR ∧ (x3, x1) ∈ R→ ϕ[x3/z1, x2/z2]

)
(8.9)

→
∀x1:2. (x1, x2) ∈ R+→ ϕ[x1/z1, x2/z2] (8.10)

For any refutable formula F modulo 𝒯 R+

tcR |(a,b) that contains an essential R-path p of
the form (a,b) ∈ tcR, we would like to claim the existence of a p-invariant formula ϕ,
such that (∀x.(a, x) ∈ tcR→ ϕ) ∧ F is refutable modulo 𝒯 tr(R)

tcR |(a,b). We found it difficult
to prove this claim using a 𝒯 R+

tcR
theory, especially since any refutation proof of F has

to be considered in a second-order proof system. Instead, we consider the 𝒯 ind
tcR

theory,
which consists of the extension of 𝒯 tr(R)

tcR
with our induction schema for transitive

closure (Definitions 23 and 24). This is indeed a restriction, since 𝒯 ind
tcR

only covers
a recursively-enumerable set of properties —similar argument as in [50]. This is
comparable to the gap between the first- and second-order Peano axiomatization of
arithmetic (cf. [10, page 1133]). In practice, however, it imposes no restriction to the
proof power and this is the common practice in literature (cf. [75, 5]).

Theorem 9 (Main theorem). Let R be a binary relation, F a first-order relational formula and
p an unsafe R-path of the form (a,b) ∈ tcR in a clause C of F. If F is refutable modulo 𝒯 ind

tcR |(a,b)

but satisfiable modulo 𝒯 tr(R)
tcR |(a,b), then there exists a forward (resp. backward) p-invariant ϕ[x]

w.r.t. x, F ∖ C and 𝒯 tr(R)
tcR |(a,b), such that

(∀x2. (a, x2) ∈ tcR→ ϕ[x2/x]) ∧ F(
resp. (∀x2. (x2,b) ∈ tcR→ ϕ[x2/x]) ∧ F

)
is refutable modulo 𝒯 tr(R)

tcR |(a,b).

Proof. For simplicity and without loss of generality we restrict our self to the forward
case, i.e., all applied TC inductions are forward. Without loss of generality, we can
assume that 𝒯 tr(R)

tcR |(a,b) differs from 𝒯 ind
tcR |(a,b) only in the interpretation of tcR|(a,b), and p

8.3 R-Invariants for Axiomatizing Unsafe R-Paths 99

only occurs in C. Therefore, F ∖C must be satisfiable modulo 𝒯 ind
tcR |(a,b). This means that

since F is refutable modulo 𝒯 ind
tcR |a,b but satisfiable modulo 𝒯 tr(R)

tcR |(a,b), for each 𝒯 ind
tcR |(a,b)-

structureℳ of F ∖ C,ℳ |= (a,b) /∈ tcR, which in turn means

F ∖ C |=𝒯 ind
tcR |(a,b)

(a,b) /∈ tcR.

Let us further consider a proof object pr (for example, in sequent style) for F ∖
C |=𝒯 ind

tcR |(a,b)
(a,b) /∈ tcR, then the set IP := {ϕ1[x1, x2], . . . ϕn[x1, x2]} of all formu-

las of all essential IND applications in pr is not empty. Let Γ := {φi[x1, x2] :=
∀x1, x2. (x1, x2) ∈ tcR → ϕi[x1, x2] | ϕi ∈ IP}. Since IP contains all formulas of all
essential IND applications in pr, we can conclude that

Γ, F ∖ C |=𝒯 tr(R)
tcR |(a,b)

(a,b) /∈ tcR.

Note, that a proof pr′ of the last sequent does not contain any essential IND applica-
tion. Therefore, we can assume, without los of generality, the existence of a formula
ϕk[x1, x2] ∈ IP where F ∖ C |=𝒯 tr(R)

tcR |(a,b)
¬ϕk[a/x1,b/x2]. Now we construct ϕ as follow

ϕ :=
∧

ϕi∈IP
ϕi[a/x1]

and prove that ϕ fulfills all the conditions of the theorem.
All ϕi ∈ IP have to fulfill the first and second IND conditions (Equations 8.6 and

8.7). By instantiating x1 with a in the IND conditions, we get directly that all ϕis are
p-invariants w.r.t. x2, F and 𝒯 R+

tcR |(a,b), which also holds especially for the ϕi[a/x1]s.
Now it is easy to see that ϕ is a p-invariant since it is a conjunction of p-invariants.

In order to proof that ϕ fulfill the last condition of the theorem, we assume that(
∀x2. (a, x2) ∈ tcR→ (

∧
ϕi∈IP

ϕi[a/x1])
)
∧ F

has a satisfying 𝒯 tr(R)
tcR |(a,b)-structureℳ. Consequently, and especially,

(a,b) ∈ tcR→ (
∧

ϕi∈IP
ϕi[a/x1,b/x2])

is also true inℳ. Since (a,b)∈ tcR is essential in F, ϕk[a/x1,b/x2] is, especially, true in
ℳ. But this is a contradiction to our earlier result F ∖C |=𝒯 tr(R)

tcR |(a,b)
¬ϕk[a/x1,b/x2].

Theorem 9 offers a basis for a framework capable of proving the validity of transitive
closure formulas beyond the WTC fragment. Especially, for each essential R-path
p, the theorem guaranties the existence of a p-invariant which is deducible from F
modulo 𝒯 ind

tcR
and can together with F refute p. In the next section we show how

the conditions of the theorem on ϕ can be turned into practical rules and heuristic
algorithms to direct the search for p-invariants.

100 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

8.4 Algorithm for Detecting p-invariants
In order to provide an automatic procedure capable of proving transitive closure
formula beyond the WTC fragment, we developed an algorithm which tries to bring
the theoretical results of the previous sections into action. Before discussing the actual
algorithm, some definitions and lemmas are needed.

We first discuss two concepts introduced and used in the last section: (1) essential R-
paths, and (2) R-path isolation, i.e., the consideration of F modulo the theory (𝒯 R+

tcR
)tr(R)

tcR |(a,b)

which except of a specific R-path (a,b) ∈ tcR interprets all other R-paths as edges
in R+ (cf. proof of Theorem 9). The latter concept —R-path isolation— subsumes
the former one and is of particular importance for the automation process. It allows
for detecting essential R-paths and for handling the WTC incompleteness for each
R-path individually regardless of other relational paths. However, the second concept
requires 𝒯 R+

tcR
which is our actual goal. In order to overcome this, we introduce in

Definition 25 the idea of n-confident R-paths isolation.

Definition 25 (n confident R-path isolation). Let R be a binary relation, F a first-order
relational formula, p an unsafe R-path in F and n a positive natural number. Then,
the n confident isolation of p in F is

F|np := F
[
{(c,d) ∈

⋃
i≤n

Q(i) / (c,d) ∈ tcQ | ((c,d) ∈ tcQ) ∈UP ∖ {p}}
]
.

Here, the isolation F|np of a given R-path p in F, is a formula obtained by replacing
each Q-path (c,d) ∈ tcQ —of an arbitrary length— different than p in F with a corre-
sponding Q-path of length less equal n, where n is the isolation confidence and Q(i)

denotes joining Q with itself i-times. Note that for the definition of F|np, we extend
the notation for variable substitution to describe a set of term replacement.

Having F|np in disposition, we can check its satisfiability using an SMT solver and
conclude:

1. if F|np is satisfiable, then p is certainly and regardless of n —even for n := 1—
essential in F, and otherwise

2. p is not essential in F with the confidence n —the greater the n, the less essential
the p.

Algorithm 2 shows the main procedure of our approach. Given a refutable formula
F modulo 𝒯 R+

tcR
, it will first detect all essential R-paths by checking the satisfiability of

the n confident isolation F|np of all unsafe R-paths p (line 3). The isolation confidence
n, is only increased if F|np is unsatisfiable for all essential R-paths in EP but F is not
(lines 20-21).

For each essential R-path p of the form (ps, pe) ∈ tcR, we search for forward p-
invariants with respect to its start boundary ps and backward p-invariants with respect
to its end boundary pe. If the currently handled path boundary, pg, is ground, which

8.4 Algorithm for Detecting p-invariants 101

Algorithm 2: Main Procedure
Data: F : Term
Result: Term

1 Fini← CNF(¬F); F← Fini; n← 1
2 repeat
3 EP← {p ∈UP(Fini) | sat(Fini|np)}
4 for p := ((ps, pe) ∈ tcR) ∈ EP do
5 for ⟨pg,d⟩ ∈ {⟨ps,1⟩, ⟨pe,−1⟩} do
6 if pg ∈ Gr then
7 F← pathInv(p, p, pg, F, Fini, R,d,n)
8 if unsat(F) then
9 return F

10 else
11 x1:n← Var(pg)

12 for p′ := (p′s, p′e) ∈ {p[a1:n/x1:n] | ai ∈ sufGT1(xi)} do
13 if sat(F[p′/p]|np′) then
14 p′g← d ? p′s : p′e
15 F← pathInv(p, p′, p′g, F, Fini, R,d,n)
16 if unsat(F) then
17 return F

18 if (∀p′. unsat(F[p′/p]|np′)) ∧ sat(F|np) then
19 Further/General techniques are needed

20 if ∀p : EP. unsat(F|np) then
21 n← n + 1

22 until F and n are unchanged;
23 return F

Algorithm 3: pathInv

Data: p, p′, pg, F, Fini : Term, R ⊆ T × T,d,n : Int
Result: Term

1 for ϕ[x1:n] ∈ (Fini ∖ Cp) with pg @− type(xi) do
2 for xi ∈ {x1:n} do
3 F← concPathInv(ϕ, p, p′, pg, F, Fini, xi, R,d,n)
4 if unsat(F[p′/p]|np′) then
5 return F

6 return F

102 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

Algorithm 4: concPathInv

Data: ϕ, p, p′, pg, F, Fini : Term, x : Var, R ⊆ T × T,
d,n : Int
Result: Term

1 for ϕi[x] ⊆ ϕ do
2 F← checkPathInv(ϕi, x, pg, F, R,d)
3 if unsat(F[p′/p]|np′) then
4 return F

5 for ϕ′i[x] ∈ abst(ϕi, Fini, x, R,n) do
6 F← checkPathInv(ϕ′i, x, pg, F, R,d)
7 if unsat(F[p′/p]|np′) then
8 return F

9 return F

Algorithm 5: abst
Data: ϕ, F : Term, x : Var, R ⊆ T × T,n : Int
Result: Set < Term >

1 S← {ϕ}; A← ∅
2 for ϕi ∈ S do
3 for abst ∈ {applicable abstraction rules to ϕi} do
4 A← A ∪ abst(ϕi, x, R,n); S← S ∪ abst(ϕi, x, R,n)

5 S← S ∖ {ϕi}
6 return A

Algorithm 6: checkPathInv
Data: ϕ, t, pg, F : Term, R ⊆ T × T,d : Int
Result: Term

1 begin
2 POini← ∀x2. (pg, x2)

d ∈ R→ ϕ[x2/t]
3 POind← ϕ[x2/t] ∧ (pg, x2)

d ∈ tcR ∧ (x2, x3)
d ∈ R

4 POind← ∀x2, x3. POind→ ϕ[x3/t]
5 if unsat(F ∧ ¬POini) ∧ unsat(F ∧ ¬POind) then
6 F← (∀x2. (pg, x2)

d ∈ tcR→ ϕ[x2/t]) ∧ F
7 return F

8.4 Algorithm for Detecting p-invariants 103

corresponds exactly to the considered case in Theorem 9, the search is performed for
the original R-path p by Algorithm 3. Otherwise, instances of p are used (line 12-13).
The p instances are generated by instantiating the variables of pg with their essential
ground terms of complexity 1 —constants— using a slightly modified version of our
sufficient ground term sets framework presented in Chapter 7 and published in [34]4.
The R-path instantiation approach is motivated by the guess that probably only a
small finite set of p instances are refutable. When considering an R-path instance p′ of
an R-path p, one has to perform the n-confident path isolation of p′ in F[p′/p] instate
of F, since p′ originally does not exists in F.

In Algorithm. 3, each clause ϕ of CNF(F) —after excluding p’s clauses— that
contains a non empty set of variables x1:n of a type compatible to pg is considered
for the p-invariant search, namely with respect to each xi in {xi:n} (line 1-2). Since
all variables in ϕ are universally quantified, ϕ is obviously a p-invariant with respect
to any variable xi, however, we are interested in more concrete forms of ϕ. This is
described in Algorithm 4, where, each sub clause ϕi of ϕ that contains xi is considered a
candidate. The actual check for p-invariance is performed in Algorithm 6. Depending
on weather pg is a start or end boundary, the forward or backward definition of
p-invariants is used respectively. If the p-invariant check fails for a candidate ϕi,
syntactically-driven abstractions are generated and tried (Algorithm 5).

Our abstraction rules are shown in Figure 8.3. The first rule abstracts a ϕi by
instantiating their variables —xi excluded— with their essential ground terms of
complexity equal to the current calculation round r. The second rule relaxes positive
literals —conclusions— in ϕi by their syntactic consequences in F. The third rule is
only used if a p-invariant candidate passes the p-step test (cf. POini in Algorithm 6)
but fails in the R-invariant test. It then relaxes unary assumptions on a single path
boundary such that they hold for all reachable nodes from that boundary including
itself —reachability direction is stated by d. Let’s assume a clause C in F of the form
(a, x2) ∈ R ∧ φ(a)→ ϕrest[x2] and an R-path p of the form (a, x2) ∈ tcR. Then, the
p-invariant candidate ϕ equal to φ(a)→ ϕrest[x2] will pass the p-step check using
C only. If ϕ does not pass the R-invariant test, then our third abstraction rule can
abstract it such that it passes both tests using C only.

Abst1: Variable instantiations with essential ground terms of complexity r, using [34]

Abst2: ϕ := (l ∨ ϕrest), (¬l ∨ Crest) ∈ CNF(F) =⇒ ϕ ϕ[Crest / l]

Abst3: ϕ := (¬φ(t) ∨ ϕrest), t := pg =⇒ ϕ ϕ[(∀x. x = t ∨ (t, x)d ∈ tcR→ φ(x)) / φ(t)]

Figure 8.3: Abstraction rules

4The essential ground terms are calculated in rounds with increasing term complexity, regardless of
whether the set is finite or not.

104 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

If, in the case of a non-ground pg, all R-path instances p′ can be refuted but not
the original path p, we directly switch to a more general technique (Algorithm 2 line
18-19). Basically, the technique is a natural extension of the framework presented in
Section 8.3 to explicitly consider R-paths with non-ground boundaries. This technique
was employed in only one of our benchmarks.

8.5 Evaluation

We have implemented a prototype version of the procedure described in Section 8.4. In
the current implementation, we fixed both the isolation confidence (Algorithm 2 line
20-21) and the ground term complexity (fig. 8.3 Abst1) parameters to 1. To evaluate
our technique, we checked 20 Alloy assertions that were expected to be correct. These
benchmarks were taken from the Alloy Analyzer 4.2 distribution and involve transitive
closure of varying complexities. In order to provide a fair evaluation of the technique,
we have restricted the considered benchmarks to those that require the semantics of
transitive closure for their correctness proof.

Since most Alloy benchmarks that involve transitive closure also involve trace
specifications (based on the Alloy ordering library), we developed a reduction of
Alloy trace specifications to transitive closure specifications. That is, we represent
any ordered signature S which forms the base of a trace specification, as the set
first∪ first � next+ where first denotes the starting atom of the trace and next⊆ S× S is
a fresh acyclic relation denoting the ordering. If a trace invariant is known, we divide
the original benchmark to (1) an invariant proof and (2) an invariant use benchmark.
Such reduction is used for two of our Alloy benchmarks: addrbooktrace and hotelroom.

Table 8.1 shows the experimental results5 performed using Z3 4.3.1 on an Intel
Xeon, 2.7 GHz, 64GB memory. For each checked benchmark, we collect the number of
R-paths, unsafe R-paths, essential R-paths, checked p-invariant candidates, proved
and injected p-invariants and the total analysis time (in seconds). Time-out is set to
12 hours for the entire analysis and to 1 minute for each call to the SMT solver. Out of
20 benchmarks assumed to be valid, 18 were proven correct by our tool. It should be
noted that these benchmarks are absolutely not trivial. For example, our previous (fix)
axiomatization based on integer theory and semantics blasting could not prove any
of the benchmarks with essential R-paths at all (cf. Chapter 6), and although Kelloy
could prove all benchmarks, it required substantial human interactions, even for the
com benchmarks, which do not contains essential R-paths at all (cf. [75]).

A surprising observation is that quite a large number, 13 out of 20, of Alloy problems
that involve transitive closure, do not contain any essential R-paths, which lets them
be effectively in the WTC fragment, although not syntactically. This fully answers our
question of why in our earlier investigation (in Chapter 6), some transitive closure
benchmarks could be proven but not others. It shows that only a very small part of

5Benchmarks, results and tool are available at http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/

http://i12www.ira.uka.de/~elghazi/tcAx_via_p-inv/

8.5 Evaluation 105

that integer based transitive closure axiomatization, namely the WTC axioms, was
actually responsible for the success.

All 13 benchmarks with no essential R-paths could be proven fully automatically in
less than 2 seconds using WTC and without the need of any p-invariant injection. For
these examples, according to Theorem 8, if the SMT solver had reported a satisfying
structure, it would have been a valid one. Out of the remaining 7 benchmarks con-
taining essential R-paths, our tool could prove 5. The number of injected p-invariants
varies between 1, for soundness1, and 159, for completeness. The number of injected
p-invariants is not guaranteed to reflect the number of needed p-invariants since it
depends very much on the ordering of essential R-paths and CNF clauses. However, it
does reflect that for all of our proven benchmarks except the last two. The benchmarks
hotelroom-locking and javatypes-soundness could not be proven by our tool. For both
benchmarks, the main difficulty lies in the complexity of our generated SMT formulas
which makes them too difficult to solve by Z3. For hotelroom-locking, the proof obliga-
tions for the essential R-path checks could be handled, but none of the p-invariant
checks, whereas for javatypes-soundness every single call of the solver times-out. This
shows the dependency of the current version of our approach on analysable SMT
representations.

Benchmarks Result All/Dif/Ess Paths Che. p-inv Inj. p-inv Time
addrbook-addIdempotent proved 5 / 2 / 0 0 0 0,08
addrbook-delUndoesAdd proved 5 / 2 / 0 0 0 0,10
addrbooktrace-addIdempotent proved 23 / 17 / 0 0 0 0,25
addrbooktrace-delUndoesAdd proved 20 / 14 / 0 0 0 0,21
addrbooktrace-lookupYields-use proved 22 / 13 / 0 0 0 0,24
grandpa-noSelfFather proved 6 / 3 / 0 0 0 0.09
grandpa-noSelfGrandpa proved 6 / 3 / 0 0 0 0.09
com-theorem1 proved 5 / 2 / 0 0 0 0,18
com-theorem2 proved 5 / 2 / 0 0 0 1.73
com-theorem3 proved 5 / 2 / 0 0 0 0.24
com-theorem4a proved 5 / 2 / 0 0 0 0.25
com-theorem4b proved 5 / 2 / 0 0 0 0.13
filesystem-noDirAliases proved 7 / 4 / 0 0 0 0.12
filesystem-someDir proved 5 / 3 / 1 2 1 0.15
marksweepgc-soundness1 proved 15 / 9 / 1 38 1 9,29
marksweepgc-soundness2 proved 16 / 10 / 2 75 2 5,92
marksweepgc-completeness proved 16 / 8 / 2 1021 159 66,58
addrbooktrace-lookupYields-proof proved 18 / 11 / 2 271 41 79,67
hotelroom-locking timeout 6 / 3 / 1 – – –
javatypes-soundess timeout 116 / 19 / – – – –

Table 8.1: Evaluation results

106 Chapter 8 Transitive Closure Axiomatization via Invariant Injections

8.6 Related Work
Several approaches have addressed the verification of Alloy problems in general. Due
to the undecidability of the Alloy language, most of these approaches are based on
interactive solving. Prioni [5] and Kelloy [75] rely on reasoning in first-order logic and
integer arithmetic, Dynamite [37] chose a reasoning in fork algebras —a higher-order
logic. In all these general approaches the verification of transitive closure formulas is
in general interactive. In addition to definition rules, an induction schema is involved
either directly or indirectly —for proving general lemmas.

Closer to our approach, are the works of Nelson [61] and Ami [56]. Nelson proposes
a set of first-order axioms for axiomatizing the reachability between two objects
following a functional relation f . To handle the presence of cycles he uses a ternary
predicate a f−→c b stating that b is reachable from a via arbitrary f applications, but never
going through c. Later works, as in [54, 52, 28], revisited and extended Nelson’s ideas.
The main problem with such fixed first-order axiomatizations of transitive closure is
that it is unlikely that they are complete. Ami proves in [56] that Nelson’s axioms
are not complete even in the functional setting. More directly, we can provide a very
simple refutable formula modulo transitive closure which is satisfiable in Nelson’s
axioms, i.e., a f−→b b ∧ ∀x. f (x) ̸= b. In our approach, however, the f -path from a to b
can be easily refuted since the empty clause — f alse— is a backward invariant for this
path. Ami’s work, also motivated by Nelson’s work, proposes, instead, three axiom
schemas, which follow from a transitive closure induction schema. This is similar to
our approach in that the axiom set is not fixed, but generated on-demand. However,
their approach differs significantly from ours in that: (1) only unary predicates and
their boolean combinations are considered as instantiation formulas for the axiom
schemas, (2) the search for instantiation formulas is not essential R-path directed
—not even R-path directed, (3) no R-path isolation criteria is involved —for example,
to detect already refuted R-paths, and finally (4) no abstractions are used, even not
variable instantiations.

Other tools such as ACL2 [49] and IsaPlanner [24] are well established in the au-
tomation of general induction schemas, for years. We think that our procedure and
implementation can definitively profit from their ideas, especial their lemma discov-
ering routine, called lemma calculation, and lemma abstraction ideas.

8.7 Conclusion
In this chapter, we have presented an approach capable of proving Alloy specifications
that involve transitive closure full automatically. For all transitive closure occurrences
the WTC axiomatization is introduced. In case the Alloy specification includes neither
unsafe R-paths —syntactical check— nor essential R-path —semantical check— we
have proved that WTC is a complete axiomatization of transitive closure and thus
the solver result —either sat or unsat— can be trusted. Otherwise, each essential

8.7 Conclusion 107

R-path can be handled on its own thanks to our bounded R-path isolation concept. The
incompleteness of WTC is adjusted for an essential R-path p by a directed detection
and injection of so called p-invariants.

Although in theory our p-invariant detection procedure is guaranteed to terminate,
this has little significance in practical terms, as we could observe for some benchmarks.
From both, the conceptual as well as the engineering point of view, there is plenty
room for improvement. This includes (1) the reduction of redundancy with respect to
p-invariant candidates, and instantiation of paths and formulas, (2) the introduction of
heuristics for the prioritization of paths, clauses, instantiations and abstractions, and
(3) the further, also conceptual, investigation of essential R-paths with non-ground
boundaries. At least for (1) and (2) we think that we can profit from well established
tools in the area of induction automation like ACL2 [49], and IsaPlanner [24], even
though their focus is different.

109

Chapter 9

JKelloy – A Deductive
Relational Engine for Verifying
Java Programs

So far, we have presented in the previous chapters our approach (respectively ap-
proaches) for the automatic verification of Alloy problems. Here, an Alloy problem
describes a safety property of a software system, where both the safety property as
well as the software system are specified using Alloy [47]—a declarative first-order
relational logic with built-in operators for transitive closure, set cardinality, integer
arithmetic, and set comprehension. Thereby, only an abstract version of the software
system is considered.

The consideration of software abstractions allows especially for capturing the core of
the software system (data structures, algorithms, etc.) while encapsulating implemen-
tation details that may cumber the verification process. For this task, we believe, and
think have demonstrated, that Alloy is a suitable logic, language and tool, particularly
for software systems with complex manipulation of linked data structures.

However, whereas an abstract specification of the safety property is sufficient —even
perfect, a software system has ultimately to be considered in its detailed implementa-
tion level since this is how it is in fact used. The standard way of verifying complex
software implementations, let say in Java, is to use (1) a Java related language for
the specification of the safety property such as the Java modeling language (JML),
and (2) a deductive verification tool that can establish the semantics of the safety
property and the Java program and reason over them such as the KeY system [12, 77].
Thereby, the safety property, which in general and naturally is abstract, has to be
written against the program implementation. This let safety property specifications
tend to be unnecessary complex and erroneous, especially for complex manipulation
of linked data structures.

However, the efficiency of specifying and verifying properties about linked data
structures depends to a large extent on both the level of abstraction of that data
structure and the conciseness of expressing properties over its reachable elements.

110 Chapter 9 JKelloy

A suitable formalism for expressing such properties that can also be utilized in the
context of deductive reasoning is relational logic with a transitive closure operator.
In this logic, the links of the data structures can be modeled as binary relations, and
thus reachability can be expressed using transitive closure. Furthermore, relational
specifications allow the user to easily abstract away from the exact order and connec-
tion of elements in a data structure by viewing it as a set. This reduction of precision,
when applicable, pays off in simplification of proofs as well as in better readability of
the specifications and the intermediate verification conditions, which is important for
user interaction.

In this chapter we describe JKelloy, our extension of the deductive Java verification
tool KeY [12, 77], to support specifications written in the relational specification
language Alloy [47]. To the best of our knowledge, this work is the first attempt in this
direction; other related approaches either restrict the analysis to bounded domains
(e.g. [76, 78, 38, 4]) or focus only on the Alloy models of systems without considering
their implementations (e.g. [37, 75, 5]).

In our previous work [75, 74], done in the context of the master thesis of Ulrich
Geilmann [40], we extended the Java Dynamic Logic (JavaDL), the input logic of KeY, to
a relational Java dynamic logic (relational JavaDL) capable of reasoning over general
Alloy expressions. The extension, called Kelloy, is almost similar to our RFOL logic
(cf. Chapter 4) but is rule based in order to fit within KeY’s deductive reasoning.
This, however, is not sufficient for handling Alloy as a specification language for Java
programs since it has no explicit model of program state change.

JKelloy assumes a relational view of the Java heap: classes are modeled as Alloy
signatures and fields as binary relations. To evaluate Alloy expressions in different
program states, e.g., pre- and post-state of a method, we translate Alloy relations
into functions which take the heap (representing the program state) as an argument.
We define the relationship between Alloy relations and Java program states using
pre-defined coupling axioms. This eliminates the need for the user to provide coupling
invariants manually. Changes to program states are aggregated as heap expressions.
We introduce an automatic transformation of those heap expressions to relational
expressions using a set of heap resolution rules that normalizes all intermediate heap
expressions. The transformation allows us to reason about verification conditions in
the relational logic. To simplify the reasoning process, we further introduce a set of
override simplification rules that exploit the specific shape of the resulting conditions. To
increase the degree of automation, we have developed two proof strategies that control
the application of our rules. We have proved the correctness of all rules using KeY.

Given a Java program, JKelloy can also generate an Alloy context that maps the
class hierarchy of the program to a semantically equivalent Alloy type hierarchy. This
allows the user to check the consistency of the specifications using the automatic,
lightweight Alloy Analyzer before starting the full, possibly interactive, verification
process. Building on top of KeY enables the user to take advantage of the supported
SMT solvers to prove simple subgoals. It also lets the user provide additional lemmas.
Complex lemmas, e.g., those that contain transitive closure over update expressions,

9.1 Overall Framework 111

Figure 9.1: Overall Framework. Contributions highlighted in a boldface font.

can be proved by using induction in side-proofs, and then be reused to automatically
prove non-trivial verification conditions without requiring induction.

9.1 Overall Framework
Our verification tool JKelloy extends KeY [12], a deductive verification engine that sup-
ports both automatic and interactive verification of Java programs. Figure 9.1 presents
the general structure of JKelloy as well as the user’s workflow. The input of the tool is
a Java program together with its specification written in Alloy [47]. JKelloy follows the
design-by-contract [58] paradigm in which every method is specified individually with
pre- and post-conditions and a modifies-clause. Verification is performed method by
method, in a modular way. For simpler programs and properties, the verification may
run through automatically. In other cases, some user interaction may be required, in
which the user guides the steps taken by the prover.

JKelloy extends KeY with a translation front-end that converts Alloy specifications
of Java methods to relational JavaDL, the relationally extended input logic of KeY. JKel-
loy augments KeY with heap-dependent relations for modeling Java classes and fields.
Furthermore, JKelloy introduces a set of calculus rules that facilitates verification of
relational specifications. Some of these rules are program-dependent, and are gener-
ated for each program during the translation by instantiating pre-defined templates.
The verification process for a method contract typically proceeds as follows:

1. The Alloy pre- and post-conditions are translated to relational JavaDL. The
relations in the conditions become relational symbols depending on a heap-
state. Their evaluation in a heap state is defined by coupling axioms.

2. The code of the Java method is symbolically executed, computing the post-heap-
state in relation to the pre-heap.

112 Chapter 9 JKelloy

3. Heap resolution rules are applied to normalize the resulting heap-dependent
expressions so that all heap arguments become constant.

4. The resulting proof obligation is relational and can be discharged using the
relational calculus. Override simplification rules simplify this process by providing
additional lemmas in relational logic, exploiting the shape of the resulting
conditions.

9.2 Alloy as Specification Language for Java Programs
Alloy [47] is a first-order relational logic with built-in operators for transitive closure,
set cardinality, integer arithmetic, and set comprehension, which make it particularly
suitable for concisely specifying properties of linked data structures. Properties of
object-oriented programs can be specified in Alloy using the relational view of the
heap [76]. That is, every class is viewed as a set of objects, and every field as a relation
from the class in which the field is declared to its type. Our representation of this
relational view differs from other approaches [76, 78] in that it provides an explicit
encoding of the Java types in the pre- and post-state.

Given a Java program, JKelloy automatically generates an Alloy context which en-
codes the type hierarchy of that program, and declares all the relations accessible
to the user for writing the specifications. The user can then add the specifications
to this context in order to check their consistency using the Alloy Analyzer before
starting the verification process using JKelloy. Although the Alloy Analyzer checks
Alloy models only for bounded domains, it helps users detect flaws automatically:
under-specifications and errors can be detected using the visualizer tool in the Alloy
Analyzer, whereas over-specification can be detected using the unsat-core generator
tool.

Figure 9.2(a) provides a sample Java program. It implements a singly linked list
that stores Data objects, where Data is declared as an interface with two sample
implementations. The method prepend adds a Data object to the beginning of the list.

Figure 9.2(b) presents the corresponding Alloy context. A signature declaration sig
A{} declares A as a top-level type (set of uninterpreted atoms); sig B in A{} declares
B as a subtype (subset) of A. The extends keyword has the same effect as the keyword
in with the additional constraint that extensions of a type are mutually disjoint. An
attribute f of type B declared in signature A represents a relation f ⊆ A × B. The
multiplicity keyword one, when followed by a set, constrains that set to be a singleton,
and when used as a type qualifier of a relation, constrains that relation to be a total
function.

The generated Alloy context always contains a singleton Null (Fig. 9.2(b) Line 1)
which represents the Java null element. Every Java class C is represented by two
signatures, C and C’, that give the set of atoms corresponding to the allocated objects of
type C in the pre- and post-state, respectively. The top-level Java class Object is always
included. The Alloy signature Object is constrained to be a subset of Object’ (Line 3).

9.2 Alloy as Specification Language for Java Programs 113

1 class List {
2 Entry head;
3
4 /*@ requires true;
5 @ ensures self . head’ . *next’ . data’
6 @ = self . head . *next . data + d;
7 @*/
8 void prepend(Data d) {
9 Entry oldHead = head;

10 head = new Entry();
11 head . next = oldHead;
12 head . data = d;
13 }
14 }
15
16 class Entry {
17 Data data;
18 Entry next;
19 }
20
21 interface Data { . . }
22 class ID implements Data { . . }
23 class Name implements Data { . . }

1 one sig Null {}
2 sig Object’ {}
3 sig Object in Object’ {}
4 sig List’ extends Object’ {
5 head’: one (Entry’ + Null)
6 }
7 sig List in Object {
8 head: one (Entry + Null)
9 }

10 sig Entry’ extends Object’ {
11 data’: one (Data’ + Null),
12 next’: one (Entry’ + Null)
13 }
14 sig Entry in Object {
15 data: one (Data + Null),
16 next’: one (Entry + Null)
17 }
18 sig ID’ extends Object’ {..}
19 sig ID in Object {..}
20 sig Name’ extends Object’ {..}
21 sig Name in Object {..}
22 sig Data’ in Object’ {..}
23 sig Data in Object {..}
24 fact {
25 List = List’ & Object
26 Entry = Entry’ & Object
27 ID = ID’ & Object
28 Name = Name’ & Object
29 Data’ = Name’ + ID’
30 Data = Name + ID
31 }
32 pred pre[self: one List, d: one (Data + Null)] {}
33 pred post[self: one List, d: one (Data + Null)] {
34 self.head’. * next’.data’ = self.head. * next.data + d
35 }

(a) (b)

Figure 9.2: (a) Sample code (b) Alloy context along with pre- and post-conditions

This allows new objects to be created, but created objects cannot be deallocated. That
is, garbage collection is not considered. If a Java class B extends a class A (immediate
parent), the signature B’ will be an extension of A’, and B a subset of A1. Furthermore,
any pre-state signature C is constrained to be the intersection of its corresponding
post-state signature C’ and the signature Object (e.g. Lines 25–28). This ensures both
C⊆ C’ and C⊆ Object. Signatures for interfaces denote the union of the signatures
for the classes that implement them (Lines 29-30).

A Java field f of type T declared in a class C is represented by two functional
relations f: C → (T ∪ Null) for the pre-state, and f’: C’ → (T’ ∪ Null) for
the post-state (e.g. Lines 5, 8). Since C ⊆ C’, the domain of f’ includes C as well.

1Semantically, the pre-state signature B must be an extension of the pre-state signature A rather than a
subset. However, pre-state signature hierarchy goes up to the Object signature which is the subset
of Object’, and Alloy does not allow subset signatures (in this case, Object) to have extensions.
Nonetheless, it is easy to show that our other constraints imply subclasses of a class to be disjoint in the
pre-state.

114 Chapter 9 JKelloy

Pre-conditions of a method can access the receiver object (self) and that method’s
arguments. Post-conditions can additionally access the method’s return value (ret) if
any exists. These are given as parameters of the predicates pre and post, respectively
(Lines 32-33). The user can copy the pre- and post-conditions of the analyzed method
as bodies of these predicates, and check their consistency by providing Alloy assertions
or by simply running the visualizer to see their satisfiable instances.

Specifications must be legal Alloy formulas. Basic formulas are constructed using
subset (in) and equality (=) operators over Alloy expressions, and are combined using
the usual logical connectives as well as universal (all) and existential (some) quan-
tifiers. Alloy expressions evaluate to relations. Sets are unary relations and scalars
are singleton unary relations. The operators +, -, and & denote union, difference, and
intersection, respectively. For relations r and s, relational join (forward composition),
Cartesian product, and transpose are denoted by r.s, r -> s, and ~r, respectively.
The relational override r++s contains all tuples in s, and any tuples of r whose first
element is not the first element of a tuple in s. The transitive closure ^r denotes the
smallest transitive relation that contains r, and *r denotes the reflexive transitive
closure of r. The expressions s<:r and r:>s give domain and range restriction of r to
s, respectively.

We assume that pre- and post-conditions are annotations marked as requires and
ensures clauses, respectively. Assume that the specifications of prepend read as
follows:

1 /*@ requires true;
2 @ ensures self . head’ . *next’ . data’ = self . head . *next . data + d;
3 @*/

In this case, the method has no pre-conditions, and the post-condition ensures
that the set of Data objects stored in the receiver list in the post-state (given by the
expression self.head’.*next’.data’) augments that of the pre-state (given by the
expression self.head.*next.data) with the prepended data (namely d). This exam-
ple shows that Alloy specifications for linked data structures tend to be concise. It
also shows that the specifications can be arbitrarily partial.

9.3 Relational Java Dynamic Logic
JavaDL, the verification logic of KeY, extends typed first-order logic with dynamic
logic [44] operators over Java program fragments. Besides propositional connectives
and first-order quantifiers, it introduces modal operators. The formula {p := t}ϕ in
which p is a constant symbol, t is a term whose type is compatible with that of p,
and ϕ is a JavaDL formula, is true iff ϕ is true after the assignment of t to p —more
precisely, {p := t}ϕ is true in a state s iff ϕ is true in the state s′ which coincides with
s for all symbols but p, for which s′(p) = s(t). The modal operator {p := t} is called
an update. The formula [π]ϕ in which π is a sequence of Java statements and ϕ is a

9.3 Relational Java Dynamic Logic 115

store(h, p, g,v)[o. f] = (if o = p ∧ f = g ∧ g ̸= ⟨created⟩ then v else h[o. f])

create(h, p)[o. f] = (if o = p ∧ f = ⟨created⟩ then true else h[o. f])

anon(h1, l, h2)[o. f] = (if (o, f)∈l ∧ f ̸=⟨created⟩ ∨ o∈free(h1) then h2[o. f] else h1[o. f])

Figure 9.3: Definitions of heap constructors

Any

Object

.

Int Boolean LocSet

Field Heap

Null

Figure 9.4: Abstract structure of JavaDL type hierarchies

formula, is true in a state s iff ϕ is true in the post-state (if any exists) of the program
π. The formula ⟨π⟩ϕ additionally requires π to terminate.2

JavaDL is based on an explicit heap model [77]: a dedicated program variable heap
of type Heap stores the current heap state. The heap stores are modeled based on a
modified versions of McCarthy’s theory of arrays [57]. A read access o.f in Java is
encoded as the heap term select(heap,o,f), abbreviated as heap[o. f]. Heap modifica-
tions are modeled using heap constructors, as defined in Fig. 9.3. The store function is
used to encode changes to a field other than ⟨created⟩. The boolean field ⟨created⟩
is implicitly added to the class Object to distinguish between created and uncreated
objects. A Java assignment of a variable v to a field f of a non-null object o can be
interpreted as an update:

[o.f = v;]ϕ ↔ {heap := store(heap, o, f , v)}ϕ (9.1)

The create function is used to set the ⟨created⟩ field of an object to true. The anonymiz-
ing function anon modifies a set of locations rather than a single location. It is used
to summarize the effects on the heap made by code in loops or method invocations.
The heap denoted by the term anon(h1, l, h2) coincides with h2 (the anonymous heap)
in all fresh locations and those in the location set l, and coincides with h1 (the base
heap) on the remaining ones.

2[π]ϕ and ⟨π⟩ϕ correspond to wlp(π, ϕ) and wp(π, ϕ) in the wp-calculus [23].

116 Chapter 9 JKelloy

Any

Atom

Object

.

Int Boolean LocSet

Field Heap Rel1:n

Null

Figure 9.5: Abstract structure of relational JavaDL type hierarchies

JavaDL’s type system is shown in Figure 9.5. It includes the hierarchy of Java
reference types, with the root type Object which denotes an infinite set of objects
(including the null object), whether or not created. The expression

free(h) = {o : Object | ¬h[o.⟨created⟩] ∧ o ̸= null}

gives the set of all uncreated objects different than null in the heap h. The types
Boolean and Integer have their usual meanings, the type Field consists of all Java fields
declared in the verified program, and LocSet consists of sets of locations, which are
binary relations between Object and Field. As shown in Figure 9.5, all types except of
Field and Heap are subtypes of the type Any. For a type T, the type predicate x @− T
evaluates to true iff x is of type T.

KeY performs symbolic execution [51] of the given Java code. The effects of this
execution on the program state are recorded as JavaDL updates. The equivalence (9.1),
for instance, is used to encode the effect of the Java assignment o.f=v. Similar equiva-
lences are used for all other Java statements. Branching statements (conditional or
looping) cause the proof obligation to split into cases; corresponding path conditions
are assumed in each case. Consequently, symbolic execution resolves the original
proof obligation

pre→ [p]post

of a program p, that given the precondition pre it ensures the postcondition post, into
a conjunction of formulas of the form

pre∧ pathi→ {𝒰i}post

, in which pathi stands for the accumulated path condition of an execution path in p,
and 𝒰i for the accumulated state updates in that path.

In order to support deductive reasoning for Alloy problems in KeY, relational
JavaDL, a relational extension of JavaDL, was developed (cf. [75, 74, 40]). Like our
relational first-order logic RFOL, this extension included new (toplevel) JavaDL types,

9.4 Coupling Axioms 117

namely Atom for elements of relations, and a Reli type for all i-ary relations for each
1 ≤ i ≤ N, where N is the maximal needed relational arity. New function symbols
for Alloy operators were introduced and defined, however, using deductive rules,
instead of axioms like in RFOL. For our proposes of using Alloy as specification logic
for Java programs, we additionally make the type Atom as supertype of the Object and
subtype of Any. This allows Java objects to be directly elements of relations without
the need of mapping bijections, and thus simplifies intermediate expressions. The
type system of relational JavaDL is shown in Figure 9.5 —differences to JavaDL type
system are circled. We use the same symbols as in RFOL to denote the symbols in
relational JavaDL that correspond to the Alloy operators, i.e., we use ∪, ∖, ⊕, ×, C, �,
*, + (ascending precedence order) for the Alloy operators + , - ,++ ,→, <: , ., * , ˆ ,
respectively. Also here, we skip the arity notations when it is clear for context.

9.4 Coupling Axioms
Although the embedding of Alloy into relational JavaDL is just perfect for deductive
reasoning over Alloy problems in KeY, it is not sufficient for verifying Java programs
against Alloy specifications as it lacks a model of program state. To encode a relational
view of the heap, we translate relations for Java classes and fields as heap-dependent
function symbols and fix their semantics with so called coupling axioms. A Java class
C is translated to a function symbol Crel : Heap→ Rel1 such that the expression Crel(h)
gives the set of all created objects of type C in the heap h, as given by the first coupling
axiom:

Crel(h) := {o | h[o.⟨created⟩] ∧ o @− C ∧ o ̸= null}. (9.2)

It should be noted that first the embedding of Atom a supertype of Object and subtype
of Any (cf. Figure 9.5), allows Java objects to be directly elements of relations as in
Axiom 9.2. A Java field f of type R declared in a class C is translated to a function
symbol frel : Heap→ Rel2 where frel(h) gives the set of all pairs (o1,o2) such that, in
heap h, the created object o1 points to the object o2 via f, as given by the second
coupling axiom:

frel(h) := {(o1,o2) | o1 ∈ Crel(h) ∧ (o2 = null∨ o2 ∈ Rrel(h)) ∧ o2 = h[o1.f]}. (9.3)

Following the design-by-contract paradigm, Alloy specifications (for Java programs)
can access only the pre- and post-state. Thus we provide two sets of relations (un-
primed for pre- and primed for post-state) instead of introducing an explicit notion of
state. Heap arguments are introduced when Alloy specifications are translated into
relational JavaDL: references to C and f are translated to Crel(preheap) and frel(preheap),
respectively, referring to the heap in the pre-state; references to C’ and f’ are trans-
lated to Crel(postheap) and frel(postheap), referring to the heap in the post-state. Null

118 Chapter 9 JKelloy

requires true
ensures self.head’.*next’.data’ = self.head.*next.data + d

pre := true

post :=
{self} � headrel(postheap) � (nextrel(postheap))* � datarel(postheap)

= {self} � headrel(preheap) � (nextrel(preheap))* � datarel(preheap) ∪ {d}

pre → {preheap := heap}[self.prepend(d);]{postheap := heap}post

pre ∧ path1 → {U1}post . . . pre ∧ pathn → {Un}post

Embedding into relational JavaDL

Building the proof obligation

symbolic execution

(a)

(b)

(c)

(d)

Figure 9.6: The verification process for the method List.prepend as running example

signature (see the example in Figure 9.2) is translated as Nullrel(h) := {null} for every
heap h.

Figure 9.6 shows how JKelloy processes the example of Figure 9.2. Figure 9.6(a)
gives the original Alloy specification, Fig. 9.6(b) gives its translation into our rela-
tional JavaDL, and Fig. 9.6(c) the relational JavaDL proof obligation for the method
List.prepend. In addition to the program modality [self.prepend(d);], two up-
dates {preheap := heap} and {postheap := heap} are used to store the respective current
heap. Symbolic execution then resolves the code of the method. Several formulas as
shown in Fig. 9.6(d) are produced for the various execution paths of the code. The
example is continued in Section 9.5.

The above coupling axioms are defined such that they preserve the meaning of the
Alloy relations used in the specifications. For instance, relation head’ in the example
of Fig. 9.2 is a total binary relation containing the references from all created List
objects to Entry objects (or null) after the method call. Axiom (9.3) ensures that
headrel(postheap) contains precisely those elements.

9.5 Calculus
The coupling axioms (9.2) and (9.3) fix the semantics of the relation function symbols.
Together with relational JavaDL’s relational calculus, they suffice to conduct proofs
for Java programs against Alloy specification. In practice, however, verification using
these low-level axioms alone is inefficient since it requires to always expand the

9.5 Calculus 119

definitions of the relations. In order to both lift proofs to the higher abstraction level
of relations (i.e. without expanding their definitions) and to automate them, we
introduce two sets of rules described in the following subsections.

9.5.1 Relational Heap Resolution Calculus

Figure 9.7 lists the rules for the relational resolving of heap constructor occurrences
as argument of field relations (R1–R3) and class relations (R4–R6). All rules reduce
relational expressions over composed heaps to expressions over their heap argument
—constant heaps. They are applied to the verification conditions after symbolic ex-
ecution and eliminate all heap constructors from arguments of relational function
symbols. Rules R1, R2 and R5, for instance, make case distinctions between the cases
when the relation needs to be updated and when it remains untouched. R3 is special
since it updates a set of elements and not only one element in the relation. The heap
resolution rules are program specific rules. They are thus automatically generated, by
the translation front-end, for each class and field of the considered program. All rules
(schemas) were proved correct with respect to the coupling axioms (see Section 9.4)
using KeY.

We explain the idea of heap resolution using the example in Figure 9.6. The up-
date U in the formulas of Figure 9.6(d) encodes the successive heap modifications
performed by the program, during an execution path. After some simplifications, the
heap modification of the method body is encoded as

postheap :=

h5
↓

store (

h4
↓

store (

h3
↓

store (

h2
↓

create (

h1
↓

preheap , e),
self ,head, e),

e,next,preheap[self .head]),
e,data,d)

where h1, . . . , h5 are abbreviations for the intermediate heap expressions and e is a
reference to the freshly created Entry object. In Figure 9.6(b), some of the field relations
take postheap as argument (like headrel(postheap)) in which, under the influence of U,
postheap is replaced by the nested term h5. Heap modifications in h5 affect the value
of headrel(h5) only if they are related to the field head. Rule R1, which is responsible
for the resolution of this term, translates the store expression into an if-then-else
term resulting either in an overridden relation (frel(h)⊕ {o1}×{o2}) or in the original
relation frel(h). The relations headrel(h5), headrel(h4) and headrel(h3), for instance, are
equivalent as the modified Java fields data and next are different from head. But
the store expression of h3 modifies the field head; hence, the relation headrel must be
updated for the arguments of store and we obtain:

120 Chapter 9 JKelloy

R1: frel(store(h,o1, g,o2)) if g = f ∧ h[o1.created] ∧ o1 @− C ∧ o1 ̸= null
then frel(h)⊕ {o1}×{o2}
else frel(h)

assuming wellformed(store(h,o1, g,o2))

R2: frel(create(h,o)) if o ̸= null∧ o @− C
then frel(h)⊕ {o}×{h[o.f]}
else frel(h)

R3: frel(anon(h1, l, h2)) frel(h1)⊕ (((l � {f}) ∪ free(h1))C frel(h2))

R4: Crel(store(h,o1, g,o2)) Crel(h)

R5: Crel(create(h,o)) if o ̸= null∧ o @− C
then Crel(h) ∪ {o}
else Crel(h)

R6: Crel(anon(h1, ls, h2)) Crel(h1) ∪ Crel(h2)

Figure 9.7: Heap Resolution Calculus. The term rewrite relation “ ” represents an
equivalence transformation. In R1 and R2 the field f is defined in class C.

headrel(h5) = headrel(store(h4, e,data,d))
R1= headrel(h4) = headrel(store(h3, e,next,preheap[self .head]))
R1= headrel(h3) = headrel(store(h2,self ,head, e))
R1= headrel(h2)⊕ {self}×{e} . (9.4)

Relation headrel(h2) is finally simplified to headrel(h1) by rule R2 since the creation of the
Entry element e does not affect the relation headrel for the field head declared in class
List. Equation (9.4) shows the main idea of the heap resolution calculus: the heap
state changes are transformed into relational operations. In particular, an assignment
o1.f=o2 in Java resolves into a relational override of the form frel(heap)⊕ {o1}×{o2}.

Rule R1 has been used three time in the above example. Twice (for h5 and h4) the
condition g = f was false and the else branch had been taken. For h3, the 4 parts of
the condition were all true and the then-branch has been taken. For the soundness
of R1 with respect to the coupling axioms, it is required that the heap argument is

9.5 Calculus 121

wellformed, i.e., all locations point to a created object of their declared type. If this
formula is not present in the verification condition, it is automatically introduced as
a lemma by the strategy. When creating a new object o of class C in heap h and the
field f is defined in C, rule R2 extends the relation frel(h) with a tuple for defining the
value of o � frel(h). Since the object o did not exist before, no such tuple was present in
frel. Rule R3 handles the anon constructor, where the memory locations l are assigned
new values from h2. Hence, the rule overrides the relation frel(h1) with tuples from
frel(h2), but restricts this override to the relevant tuples. These are the locations in
l that belong to field f (i.e., l � {f}3) and the not yet created objects (free(h1)). The
selection is done using the domain restriction operator C. Rule R4 is relatively simple
since the constructor store cannot modify the ⟨created⟩ field, the set of created objects
cannot be enlarged. Rule R5 extends the relation Crel when a new object of class C is
created. Rule R6 considers the possibility that anon introduces new objects, of any
class, from h2. The set of created objects in the anon heap contains all created objects
of the first heap argument (objects can never be deallocated) and all objects created in
the second (which have been introduced in the anonymization).

Applying these rules exhaustively leads to a normal form where all heap arguments
are constants. JKelloy extends KeY with a proving strategy that always achieves this
task automatically. The final result of applying the heap resolution rules to the post-
condition of the running example (Fig. 9.6(b)) is the following relational verification
condition:

{self} � (headrel(h1)⊕ {self}×{e})
� (nextrel(h1)⊕ {e}×{self} � headrel(h1))

* � (datarel(h1)⊕ {e}×{d})
= {self} � headrel(h1) � nextrel(h1)

* � datarel(h1) ∪ {d} (9.5)

After all heap terms have been resolved, further reasoning can proceed on the rela-
tional level.

9.5.2 Override Simplification Calculus
The normalized proof obligations that result from applying heap resolution rules
can be proved on the relational level using the relational calculus of our relational
JavaDL. However, this relational calculus only provides definition axioms for relational
operators and a set of lemmas for general relational expressions. To make proofs easier
and to increase the automation level, we introduce a set of lemma rules which exploit
the shape of the relational expressions that result from verifying Java programs. These
lemmas do not increase the power of the calculus but ease the verification by reducing
the need for expanding the definitions of relational operators. That is particularly
costly for the transitive closure as it leads to quantified integer formulas that generally
require user interaction in form of manual induction. Out of more than 220 new
lemmas we have introduced, we present in this section the subset that is most relevant

3To unify the presentation we apply relational operators also to type LocSet.

122 Chapter 9 JKelloy

R7: {a} � (R⊕ {a} × {b}) {b}

R8: S1 � (R⊕ S2 × S3) if S2 = ∅
then S1 � R
else S1 � (S2 × S3) ∪ (S1 ∖ S2) � R

R9: S1 � (R⊕ {a} × S2)
+ if S2 = ∅ ∨ a /∈ S1

then S1 � R
else S2 ∪ ((S1 ∖ {a}) � R+) ∪ (S2 � R+)

assuming R � {a} = ∅

R10: {a} � (R⊕ {b} × {c})+ if b ∈ {c}�R+ ∨ b = c
then ({a} � R+ ∪ {c} ∪ {c} � R+) ∖ {b} � R+

else ({a} � R+ ∖ {b} � R+) ∪ {c} ∪ {c} � R+

assuming b ∈ a � R+, parFun(R) and acyc(R)

R11: {a} � (R⊕ {b} × {c})+ if b ̸= a
then {a} � R+

elseif a ∈ {c} � R+ ∨ c = a then ({c} ∪ {c} � R+) ∖ {a} � R+

else {c} ∪ {c} � R+

assuming b ̸∈ a � R+ and parFun(R)

R12: S1 � frel(h) � (R1 ⊕ S2 C R2) S1 � frel(h) � R1 assuming S2 ⊆ free(h)

R13: S1 � frel(h) � (grel(h)⊕ S2 C R)+ S1 � frel(h) � grel(h)
+ assuming S2 ⊆ free(h)

R14: (frel(h)⊕ S2 C R)+ frel(h)+ ⊕ S2 C R assuming S2 ⊆ free(h)

Figure 9.8: A sampling of our override driven calculus rules

to the examples of Figure 9.2 and Section 9.6; not all of them are used in the presented
examples. All lemmas have been proved correct using KeY.

Equation (9.5) is typical for our approach: its right-hand side (RHS) refers to the
base relations of the pre-state, whereas its left-hand side (LHS) refers to the post-state
and thus includes override-updates on the field relations. To prove such formulas, we
bring the LHS closer to the shape of the RHS by resolving or pulling out the override
operations that occur below other operators such as join and transitive closure.

Figure 9.8 lists a number of lemmas dealing with this override resolution to give an
idea of the process. The most simple case is R7 which says that retrieving the image
of an atom a from a relation which has been overridden at the very same a results
precisely in the updated atom b. In other, more composed cases, the resolution is
not as simple. Rules R9, R10 and R11, e.g., allow us to resolve the override beneath a
transitive-closure operation under certain conditions at the cost of larger replacement

9.5 Calculus 123

expressions without override. Rules R12–R14 resolve override operations which only
modify objects not yet created in the base heap (S2 ⊆ free(h)).

In our example, the subexpression {self} � (headrel(h1)⊕ {self}×{e}) in (9.5) can be
simplified to {e} using R7 as the left argument {self} of the join equals the domain
of the overriding relation {self}×{e}. After this simplification, the LHS contains the
subexpression

{e} � (nextrel(h1)⊕ {e}×{self} � headrel(h1))
* . (9.6)

To resolve the override operation in this expression, we first transform reflexive
transitive closure to transitive closure using the equality S.R* = S ∪ S.R+, and then
apply rule R9. The assumption of R9 holds because e is not yet created in h1, and the
if-condition evaluates to false. Altogether the subterm 9.6 of the relational verification
condition of our running example (Equation 9.5) result in:

{e} � (nextrel(h1)⊕ {e}×{self} � headrel(h1))
*

R* de f
 {e} ∪ {e} � (nextrel(h1)⊕ {e}×{self} � headrel(h1))

+

R9 {e} ∪ {self} � headrel(h1) ∪ (({e} ∖ {e}) � nextrel(h1)
+) ∪

({self} � headrel(h1) � nextrel(h1)
+)

∅ de f
 {e} ∪ {self} � headrel(h1) ∪ {self} � headrel(h1) � nextrel(h1)

+

R* de f
 {e} ∪ {self} � headrel(h1) � nextrel(h1)

* (9.7)

The underlined subexpression above appears also on the RHS of (9.5). We have thus
reached our goal of resolving the override and bringing the LHS closer to the RHS, to a
larger extent. Based on this result, the proof can be easely concluded using R7 together
with other general relational rules of our calculus as the distributive properties of join
over union.

The rules of Figure 9.8 work as follows. Rule R8 is a generalization of R7 (explained
above) where an arbitrary relation is joined with an overridden expression. Pulling
override out of a transitive closure operation is particularly important due to the
complexity of verifying transitive closure. We introduce a number of rules for various
forms of such expressions. Rule R9, for instance, is applicable when the singleton in
the domain of the overriding relation (a) is not in the range of the overridden relation
(R)4. Rule R10, which is one of the most general cases that our calculus can handle, is
applicable under three assumptions: (1) the first element of the overriding pair (b)
must be reachable from the joining singleton (a) via R, (2) the overridden relation
(R) must be a partial function, (3) R must be be acyclic. Rule R11 complements R10.
It handles the case where the first element of the overriding pair (b) is not reachable

4Such information is inferred from the path condition of the proof obligation.

124 Chapter 9 JKelloy

R15: ⊢ parFun(frel(h))
R16: ⊢ parFun(R)→ parFun(R⊕ {a} × {b})
R17: ⊢ parFun(R1) ∧ parFun(R2)→ parFun(R1 ⊕ R2)

R18: ⊢ acyc(R) ∧ R � {a} = ∅ ∧ a ̸= b→ acyc(R⊕ {a} × {b})
R19: ⊢ acyc(R) ∧ {b} � R = ∅ ∧ a ̸= b→ acyc(R⊕ {a} × {b})
R20: ⊢ acyc(R) ∧ a /∈ {b} � R+ ∧ a ̸= b→ acyc(R⊕ {a} × {b})

R21: S2 ∈ S1 � R+ false assuming S1 � R = ∅
R22: {a} ∈ R � {b} true assuming {a} � R = {}b
R23: {a} ∈ R � {b} false assuming parFun(R) and {a} � R ̸= {}b

Figure 9.9: A selection of auxiliary rules for the override simplification

from the joining singleton (a) via R. In this case, our rule is more general than the
previous case since it does not require acyclicity of the overridden relation. Rules
R12–R14 resolve override operations which only modify the uncreated objects in the
base heap (S2 ⊆ free(h)). Such cases arise when occurrences of the anon constructor
are resolved by applying rule R3.

The rules in Figure 9.8 focus on resolving override operations, yet further rules
are required to reason about expressions that occur in the rules’ assumptions, if-
conditions, and results. Figure 9.9 shows such rules divided into three categories.
The first involves partial functionality of relations: every relation corresponding to a
field is a partial function by construction (R15); R16 and R17 allow the propagation of
this property over the override operator. Similarly, the second propagates the acyclicity
of relations over the override operator, the rules R18–R20 show some examples. The
last category lists some rules for handling reachability between objects effectively.

The general shape of the Alloy expressions which our override-driven calculus
can effectively simplify (i.e., their override operators can be pulled out to the top) is
described in the grammar of Figure 9.10. The fragment has three main restrictions:

1. override expressions are built by successively applying one or more override
operations to field relations in which every overriding relation contains at most
one element,

2. (reflexive) transitive closure operator can be applied to override expressions
only if the left subexpression of the outermost override is acyclic,

3. override expressions may be joined from left only with a set that has at most
one element.

The heap resolution rules resolve assignments to heap locations into override
expressions for which the first restriction holds. These expressions have exactly the
same form as overE1 in Figure 9.10. Anonymised heaps (using anon) do not belong to

9.6 Evaluation 125

this fragment. The second and third restrictions are important in order to develop
efficient resolution rules for override. Acyclicity is a property that is often assumed
in linked data structures. Using the calculus rules, e.g. R18–R20, the acyclity of
override expressions can be deduced from the acyclity of their base field relations.
Specifications adhere to the third restrictions if they denote sets of objects reachable
from a particular starting point (like the post-condition in Figure 9.6(a) for instance).
However, this last restriction does not hold for general relations which may also
appear in specifications. The weakening of the last restriction is left for future work.

expr ::= self | var | none | univ | iden | Crel(h) | frel(h) | overFreeE(~ | +++ |*)
| overFreeE binOp overFreeE | overE binOp overFreeE | overFreeE binOp overE

overFreeE ::= any override free expression
overE ::= loneS ��� overE1 | loneS ��� overE2 | loneS ��� (overE∪∪∪ overE)
overE1 ::= frel(h)⊕⊕⊕ loneS××× loneS | overE1⊕⊕⊕ loneS××× loneS
overE2 ::= (overE1⊕⊕⊕ loneS××× loneS)(+++ |*) where acyc(overE1)
loneS ::= none | {self} | {var} | loneS � frel(h)
binOp ::=∪∪∪ | ∩∩∩ | ∖∖∖ | ××× |CCC |BBB | ���

Figure 9.10: Target fragment of the override driven calculus

9.6 Evaluation
Proofs in KeY are conducted by applying calculus rules either manually or auto-
matically, using KeY’s proof search strategy. We extend the existing strategy by
incorporating two new strategies that assign priorities to heap resolution rules and
override simplification rules5 , and apply them consecutively. In this section we report
on the use of our tool to verify Java programs against Alloy specifications.

The List.prepend example6 verifies fully automatically within 5.4 seconds7 using
1546 rule applications although its post-condition involves transitive closure.

We have also verified a slightly different example (List.append) where the Data
argument is added to the end of the list. The proof contains a total of 2850 rule
applications out of which 28 are interactive. These include 6 applications of proof-
branching rules, and 6 rule applications to establish the assumptions for rule R10.
Automatic rule applications take 20.3 seconds. The append method is more complex
than prepend as it contains a loop that traverses the list to the end, thus requires
handling loop invariants. The proof requires the more complex transitive closure rule
R10 since the code updates already-created objects.

For a more rigorous evaluation of the JKelloy capability of verifying programs which
manipulate rich heap data structures we have verified the example of Figure 9.11.

5Rules with looping potential (e.g., R15-R20) and branching rules are excluded from the strategy.
6All examples and proofs can be found at http://i12www.ira.uka.de/~elghazi/jkelloy/
7On an Intel Core2Quad, 2.8GHz with 8GB memory

 http://i12www.ira.uka.de/~elghazi/jkelloy/

126 Chapter 9 JKelloy

1 public class Graph {
2 NodeList nodes;
3 /*@ requires acyc(next);
4 @ requires not n = null;
5 @ ensures self . nodes’ . first’ . *next’ = self . nodes . first . *next - n;
6 @ ensures Object <: left’ = left++ ((left . n & self . nodes . first . *next)→null);
7 @ ensures Object <: right’ = right++ ((right . n & self . nodes . first . *next)→null);
8 @*/
9 void remove(Node n) {

10 if (nodes != null) {
11 Node curr = nodes . first;
12 /*@ loop_invariant
13 @ curr in self . nodes . first . *next and
14 @ Object<:left’ =
15 @ left++ ((left . n & (self . nodes . first . *next - curr . *next))→null) and
16 @ Object<:right’ =
17 @ right++ ((right . n & (self . nodes . first . *next - curr . *next))→null)
18 @ assignable
19 @ (self . nodes . first . *next→left) + (self . nodes . first . *next→right);
20 @*/
21 while (curr != null) {
22 if (curr . left == n) { curr . left = null; }
23 if (curr . right == n) { curr . right = null; }
24 curr = curr . next;
25 }
26 nodes . remove(n);
27 } } }
28 class NodeList { Node first; void remove(Node n) { . . . } }
29 class Node { Node next, left, right; }

Figure 9.11: Specification and implementation of the graph remove example

This example also illustrates that structurally complex specifications can be concisely
expressed by exploiting combinations of relational operators in Alloy. The Graph class
implements a binary graph8 where each node stores its two (possibly null) successors
(left and right, Line 29). The graph keeps a linked list of its nodes (Line 2) using the
next field (Line 29). The method Graph.remove removes a node n from the receiver
graph by removing all of its incoming edges (Lines 21–25), and then removing n (and
thus its outgoing edges) from the node list (Line 26).

The method requires the node list to be acyclic (Line 3) and the argument node n to
be non-null (Line 4). It ensures that n is removed from the graph’s node list (Line 5),
and that the left and right fields of all nodes in this list that used to point to n,
point to null at the end of the method (Lines 6 and 7). This example also illustrates
that structurally complex specifications can be concisely expressed by exploiting

8A directed graph with an outgoing degree of at most two for every node

9.7 Related Work 127

combinations of relational operators in Alloy. In particular, sets of nodes with a
particular property can be easily expressed using Alloy operators. For example, using
the join operator from the right side of a field relation, the expression left.n concisely
gives the set of all nodes whose left field points to n. The domain restriction to Object
restricts the relation in the post-state to those objects already existing in the pre-state.
The relational override operator denotes exactly what locations are modified and how,
thus also implicitly specifies which locations do not change.

The example requires additional intermediate specifications which are not part
of the contract. This includes a loop specification for the method loop (Lines 12–20)
describing the state after the execution up to the current loop iteration. Primed
relations in the loop invariant refer to the state of the heap after the current loop
iteration, whereas unprimed relations refer to the pre-state of the method. The
assignable clause specifies the set of heap locations which may be modified by the
loop. Graph.remove calls NodeList.remove which removes n from the linked list;
the call is abstracted by the callee’s contract which is omitted here for the sake of
simplicity.

Though the specification in the example is concise, it extensively combines rela-
tional operators including, in particular, transitive closure. In the code, the nested
method call and the loop result in complex composed heap expressions after symbolic
execution. Brought together, these two technical points make this example difficult
to verify. The proof required 6973 rule applications distributed over 157 subgoals,
where 1201 of the rule applications were interactive. Amongst them, 116 were heap
resolution rules, 309 apply override simplification rules and 224 general relational
rules. Our rules for handling transitive closure proved to be very effective; they were
applied 43 times, and allowed us to conduct the proof without any explicit induction.
Relational operations were never expanded to their definitions. Thus the proof was
completely conducted in the abstraction level of relations. The rules introduced with
JKelloy made up 37% of all rule applications; the rest were default KeY rules. The
whole proof, including specification adjustments, was conducted by an Alloy and KeY
expert in one week; the total time spent by the automatic rule applications was 6.3
minutes. Other comparable examples in KeY (using the JML specification language)
require 50k to 100k proof steps (see, for instance, [42]).

9.7 Related Work
In this section we describe works that used the Alloy language as a specification
language to specify programs. We also describe approaches that bear resemblance to
ours in the specification and verification of heap data structures.

Several approaches (e.g. [76, 25, 71]) support Alloy as a specification language
for Java programs. To check the specifications, however, they bound the analysis
domain by unrolling loops and limiting the number of elements of each type. Thus
although they find non-spurious counterexamples automatically, they cannot, in
general, provide correctness proofs. The JForge specification language [78] is another

128 Chapter 9 JKelloy

lightweight language for specifying object-oriented programs. It is a behavioral
interface specification language like JML, but uses a relational view of the heap, that
allows some Alloy operators. So far it has been used only for bounded program
checking.

Galeotti [38] introduced a bounded, automatic technique for the SAT-based analysis
of JML-annotated Java sequential programs dealing with linked data structures. The
annotations are translated to SAT using Alloy as an intermediate language. It incor-
porates (i) DynAlloy [4], an extension of Alloy to better describe dynamic properties
of systems using actions, in the style of dynamic logic; (ii) DynJML, an intermedi-
ate object-oriented specification language; and (iii) TACO, a prototype tool which
implements the entire tool-chain.

A few approaches [75, 59, 5] support full verification of Alloy models. Since they do
not model program states, they cannot be readily applied for verifying code with Alloy
specifications. Dynamite [59], for example, extends PVS to prove Alloy assertions and
incorporates Alloy Analyzer for checking hypotheses.

Other approaches (e.g. [79, 42, 66]) also verify properties of linked data structure
implementations. In contrast to ours, in [79], for example, specifications are written
in classical higher-order logic (including set comprehension, λ-expressions, transitive
closure, set cardinality) and are verified using Jahob [16] which integrates several
provers. A decision procedure based on inference rules for a quantifier-free specifica-
tion language with transitive closure is presented in [66]. In [42] the focus is to write
specifications in JML so that they can be used for both deductive program verification
and runtime checking.

Similar to our approach, [52, 56] handle reachability of linked data structures using
a first-order axiomatization of transitive closure. Their general idea, however, is to use
a specialized induction schema for transitive closure, to provide useful lemmas for
common situations. [52] focuses on establishing a relatively complete axiomatization
of reachability, whereas [56] focuses on introducing as complete schema lemmas as
possible and adding their instantiations to the original formula. The main difficulty
of schema rules is to find the right instantiation (analogous to induction hypothesis).

9.8 Conclusion

In this chapter, we have presented an approach for verifying Java programs annotated
with Alloy specifications. Alloy operators (for instance, relational join, transitive
closure, set comprehension, and set cardinality) let users specify properties of linked
data structures concisely. Our tool, JKelloy —built on top of KeY— translates Alloy
specifications into relational Java Dynamic Logic and proves them using KeY. It
introduces coupling axioms to bridge between specifications and Java states, and two
sets of calculus rules and strategies that facilitate interactive and automatic reasoning
in relational logic. Verification is done on the level of abstraction of the relational
specifications. JKelloy lets relational lemmas be proved ones beforehand, and reused

9.8 Conclusion 129

to gain more automation. Our calculus rules are proved lemmas that exploit the shape
of the relational expressions that occur in proof obligations of Java programs.

Although further experiments are needed to better perform the proof strategies and
to better evaluate the approach, our examples, especially the Graph example, shows
that our approach can already handle arbitrary shapes of linked data structures.
Furthermore, they illustrate (1) how the liberal combinations of transitive closure
and relational operators in Alloy can be exploited for concise specifications and (2)
the benefit of our calculi in producing shorter proofs —especially in terms of user
interactions. The sizes of proofs are an order of magnitude smaller compared to other
similar proofs using standard KeY.

KeY supports the Java Modeling Language (JML), a behavioral specification lan-
guage for Java. A combination of the specification concepts of JML and Alloy has
the potential to bring together the best of both paradigms. Furthermore, the sym-
bolic execution engine of KeY along with our calculus rules can produce relational
summaries of Java methods which can be checked for bugs using the Alloy Analyzer
before starting a proof attempt. Investigating these ideas is left for future work.

131

Chapter 10

Conclusion

10.1 Summary
The primary goal of this thesis has been to enable the automatic verification of software
systems against relational specifications written in Alloy —a first-order relational
language— and to make the verification process more effective. Thereby, the software
system description should be supported at the abstract relational level, using Alloy,
as well as at the detailed implementation level, using Java. We have addressed in this
context two major challenges: (1) the automatic verification of pure relational proof
obligations and (2) the verification of proof obligations in which the specification is
relational but the software system is described in Java.

In order to address the first challenge, a relational first-order logical framework
RFOL has been presented which allows a structure preserving and equisatisfiable
formulation of pure Alloy proof obligations. RFOL consists of an extension of first-
order logic with relational sorts and operators. The axiomatization of non first-oder
relational operators such as transitive closure and set cardinality is based on the
integer theory. The reasoning in RFOL is based on satisfiability modulo theories
(SMT) solving. The SMT reasoning in RFOL, however, can be resource-intensive
and does not always succeed. The main reasons for the SMT solving limitations in
RFOL are: (1) the excessive and arbitrary use of quantifiers in Alloy problems as
well as in the RFOL axiomatization, (2) the high cardinality constraints on relational
sorts deduced by the RFOL axioms (|Reli| = 2Atom×...×Atom), and (3) the absence of
an efficient and effective reasoning for the non first-order relational operators. We
addressed these problems respectively by the following further contributions:

• We developed a sufficient ground term sets (SufGT) technique which computes
iteratively a set of sufficient ground terms of each universally quantified vari-
able —existentially quantified variables are skolemized. We use this technique
preliminary to eliminate —via instantiation— all variables whose computed
sufficient ground term sets are finite and thus reduce the complexity of RFOL
formulas. In addition to that, we also use this technique to (1) increase the
scalability of Alloy’s bounded verification —using the Alloy Analyzer— by com-
puting maximal scopes for Alloy signatures; signatures admitting such maximal

132 Chapter 10 Conclusion

scopes have only variables whose computed sufficient ground term sets are
finite, and (2) prove the correctness of Alloy assertions via bounded verification
if all quantified variables of the problem have finite sufficient ground term sets
with respect to our technique.

• We developed an extended semantics blasting technique (SB+) that eliminates
cardinality constraints on the relational sorts induced by the RFOL axioms. Since
SB+ does not preserve satisfiability, in general, we have described the logical
fragment in which our technique is complete. In addition to the theoretical
description of the fragment, we developed practical tests that provide a cost
effective testing system for the inclusion of an RFOL formula in the SB+ fragment.
It should be noted, in this context, that all considered Alloy benchmarks in the
thesis fit in the SB+ fragment, even in the most easy to test subfragment.

• We developed a path-invariant based transitive closure reasoning technique
(TCPInv) that can show the refutation of RFOL formulas1 involving transitive
closure for which standard SMT solving cannot show refutation. Such formulas
can not be refuted via standard SMT solving (without induction) because there
exists no finite instantiation of their axioms such that their ground subformulas
become refutable. The TCPInv technique bases on a pure first-order weak ax-
iomatization of transitive closure and a procedure for the detection of invariant
formulas of essential relational paths —transitive closure literals in CNF whose
refutation is essential. The fact that the base transitive closure axiomatization
is integer free, reduces in general the complexity of RFOL formulas and thus
improves their SMT solving.

For the second main challenge of the thesis, JKelloy, a tool for the deductive veri-
fication of Java programs against Alloy specifications, has been presented. In order
to support and promote the specification of Java programs at the abstract level of
relations —using a relational view of the heap [76], JKelloy automatically generates a so
called Alloy context which encodes the relational view of the types and fields of the Java
program in the pre- and post-state, following the design-by-contract paradigm [58].

Given a Java program with an Alloy specification written with respect to the Alloy
context, JKelloy translates the Alloy specification into our relational Java dynamic
logic — a relational extension of KeY’s Java dynamic logic [11]. The resulting proof
obligation combines two (independent) logics, namely the pure relational logic and
the pure JavaDL logic. In order to enable and facilitates the interactive and automatic
reasoning for such proof obligations, we developed and implemented in JKelloy the
following contributions:

• A set of coupling axioms that automatically define the link between the heap
dependant relations in the Alloy specification and the Java program states.

1Showing the refutation of a formula F is equivalent to proving the validity of its negation ¬F.

10.2 Future Work 133

• A heap resolution calculus that normalizes relational JavaDL proof obligations
over composed heaps to relational expression over their heaps —i.e., only con-
stant heaps remain. The calculus rules are applied to the verification conditions
after symbolic execution and eliminate all heap constructors from arguments
of relational function symbols. We equipped JKelloy with a rule application
strategy that always achieves this task automatically.

• An override simplification calculus that eases the verification process in JKelloy,
by reducing the need for expanding the definitions of relational operators, espe-
cially of those over override expressions. Override expressions typically result
from applying the relational heap resolution calculus and encode relationally
the effect of the individual Java program statements to the individual field rela-
tions. Expanding definitions of relational operators is particularly costly for non
first-order operators like transitive closure since it leads to quantified integer
formulas that generally require user interaction in form of manual induction.

10.2 Future Work
Our focus on core Alloy, regarding the language support, and on the automatic
reasoning in the first-order logic augmented with transitive closure theory (TCFOL),
regarding the reasoning support, restricts the set of considered Alloy benchmarks for
our automatic verification approach for Alloy assertions. The achieved results so far
are, however, promising and suggest the extension of the approach to support more
language constructs and more non first-order theories such as Alloy’s set cardinality.
The main challenge in this respect, however, is the problem of theory combination
– a well known problem in SMT solving [22, 17]. Rewrite based extensions are also
worthy of investigation, even for set cardinality, as we have demonstrated for Alloy’s
ordering module —using a reduction to TCFOL logic.

Beside extending the support of the Alloy language, the individual techniques
developed in the thesis give rise to several interesting theoretical and practical research
questions.

Our sufficient ground term sets technique (SufGT) used to improve SMT solving for
RFOL formulas on the one hand and to increase the efficiency of bounded verification
in the Alloy Analyzer on the other hand, lacks of completeness and efficiency investi-
gation. That is, if SufGT computes that the sufficient ground term set S for a variable
x is infinite then there is no guarantee that x does not have yet a finite sufficient
ground term set; if it computes that S is finite, although we proved that in this case
x is equisatisfiably eliminable via instantiation with S, there is no guarantee that S
is the minimal such set. Especially, the results of our extended semantics blasting
technique (SB+) which could eliminate variables of formulas that the SufGT technique
could not, prove partially2 the incompleteness of SufGT and show the potential of
investigating the completeness of the SufGT technique.

2There is a small difference in the way of eliminating variables between both techniques.

134 Chapter 10 Conclusion

Regarding our path-invariant based transitive closure reasoning technique (TCPInv)
which can show the refutation of TCFOL formulas for which the standard SMT
solving cannot show refutation, there exists several improvement possibilities which
we already have discussed in the corresponding chapter. Here, we want to mention
and emphasis two special research questions in this respect. The TCPinv technique
is based on the claim that for any essential path p in a refutable formula modulo
transitive closure theory there exists a p-invariant that helps refuting p with standard
SMT solving. Since the transitive closure theory 𝒯 R+

tcR
is only axiomatizable in second-

order logic and in order to avoid consideration of second-order proof systems, we
have proved the claim only for a bit weaker transitive closure theory 𝒯 ind

tcR
. The 𝒯 ind

tcR

theory consists of the axiomatization of the transitive closure relation tcR of relation
R to be the transitive relation containing R and a transitive closure induction schema.
Since 𝒯 ind

tcR
is weaker than 𝒯 R+

tcR
two interesting research questions arise: (1) can our

proof be extended to refutable formula modulo 𝒯 R+

tcR
but not modulo 𝒯 ind

tcR
and (2) can

one construct a formula that is refutable modulo 𝒯 R+

tcR
but not modulo 𝒯 ind

tcR
. Especially,

the second question is of a high theoretical importance. Such a formula would play
a similar role for the transitive closure theory as the well known Paris-Harrigton
theorem [10, page 1133] for the integer theory, namely it exhibits with a concrete
example the gap between the first- and second-order Peano axiomatization of integer
theory.

Regarding the verification of Java programs against relational specifications using
JKelloy, and beside the need of more experiments to further confirm the so far reached
results, two research directions have in this respect high potential:

• The combination of specification concepts of the Java modeling language (JML)
with our relational logic based specification approach. This combination has the
potential to bring together the best of both paradigms and to make our approach
tempting to more users, by supporting well known and established specification
concepts.

• The use of the symbolic execution engine of KeY along with our relational heap
resolution calculus to produce relational summaries of Java methods. Having
such summaries, corresponding Java methods can be checked for bugs using the
Alloy Analyzer before starting a proof attempt in JKelloy. For simpler loop-free
Java methods, all needed tools are already in place. In this case, it suffices to
(1) compute the post-heap as a function of the pre-heap using KeY’s symbolic
execution engine —straightforward for loop-free code, (2) use (1) along with the
relational heap resolution calculus to compute field relations at the post-heap
as a function of the field relations at the pre-heap and (3) apply the result of (2)
to the corresponding Alloy assertions.

Appendix

137

Appendix A

An Arity Independent
first-order Relational
Framework

In this chapter we introduce a general logical framework for the arity-independent
relational extension of first-order logic. Its target is to enable the use of (1) general
sorts for relations and tuples and (2) general functions for the relational operators.
This framework (respectively extension), called GRFOL, is a generalization of RFOL
(introduced in Section 4.6).

Therefore, we assume in Ω two arity independent sorts, Rel for all relations and
Tuple for all tuples. Figure A.1 shows the basic functions provided by the GRFOL
framework together with their axioms. For functions that do not use the functional
notation, we use dots as place holder for their arguments.

The boolean valued function ∈ (aka. predicate) fixes the membership relation
between tuples and relations and is initially uninterpreted. The function ar denotes
the arity of tuples and relations. The third function written as ei:j where e is a relation
(respectively tuple), i and j two natural number with 1≤ i≤ j≤ ar(e) returns a relation
(respectively tuple) of arity j− i + 1 representing the projection of e on its columns
(respectively elements) i to j. The fourth function written as {t} where t is a tuple
returns the singleton relation containing t. The last symbol written as t ‖ t′ where t
and t′ are tuples returns the result tuple of concatenating t and t′.

In order to demonstrate the differences in axiomatizing Alloy relational operators
in the GRFOL framework in comparison to RFOL, we list in Figure A.2 the arity
independent relational operators of RGFOL and in Figure A.3 their axiomatization.

138 Appendix A An Arity Independent first-order Relational Framework

ℱΣ
∪← {. ∈ .⊆ Tuple× Rel,

ar : Rel∪ Tuple→ N,

..:. : Rel∪ Tuple×N×N→ Rel∪ Tuple,

. ‖ . : Tuple× Tuple→ Tuple}

Ax ∪← {∀R : Rel, t : Tuple. t ∈ R→ ar(t) = ar(R), (A.1)
∀R : Rel, t : Tuple, i, j : N. Ri:j ∈ Rel∧ ti:j ∈ Tuple, (A.2)
∀x : Rel∪ Tuple, i, j : N. ¬(1≤ i ≤ j ≤ ar(x))→ ar(xi:j) = 0, (A.3)
∀x : Rel∪ Tuple, i, j : N. 1≤ i ≤ j ≤ ar(x)→ ar(xi:j) = j− i + 1, (A.4)
∀R : Rel, t : Tuple. t ∈ R→ (∀i, j : N. 1≤ i ≤ j ≤ ar(t)→ ti:j ∈ Ri:j), (A.5)
∀t, t′ : Tuple. ar(t ‖ t′) = ar(t) + ar(t′), (A.6)
∀t, t′ : Tuple. (t ‖ t′)1:ar(t) = t ∧ (t ‖ t′)ar(t)+1:ar(t′) = t′, (A.7)

∀t, t′ : Tuple. t = t′→ (ar(t) = ar(t′) ∧ ∀i : N. 1≤ i ≤ ar(t)→ ti:i = t′ i:i),}
(A.8)

Figure A.1: A logical framework for a general relation sort based relational extension
of first-order logic

ℱΣ
∪← {

empty set ∅ :→ Rel,

singleton {} : Atomi→ Rel,
union ∪ : Rel× Rel→ Rel,
intersection ∩ : Rel× Rel→ Rel,
difference ∖ : Rel× Rel→ Rel,
override ⊕ : Rel× Rel→ Rel,
product × : Rel× Rel→ Rel,
join � : Rel× Rel→ Rel,

transpose −1 : Rel→ Rel}

Figure A.2: The arity independent relational operators of GRFOL

139

∀t : Tuple. (A.9)
t /∈ ∅

∀t, t′ : Tuple. (A.10)
t′ ∈ {t} ↔
t′ = t

∀R,S : Rel, t : Tuple. (A.11)
t ∈ R ∪ S↔
t ∈ R ∨ t ∈ S

∀R,S : Rel, t : Tuple. (A.12)
t ∈ R ∩ S↔
t ∈ R ∧ t ∈ S

∀R,S : Rel, t : Tuple. (A.13)
t ∈ R ∖ S↔
t ∈ R ∧ t /∈ S

∀R,S : Rel, t : Tuple. (A.14)
t ∈ R⊕ S↔
t ∈ S ∨ (t ∈ R ∧ (∀t′ : Tuple. ar(t′) = ar(S)− 1→ t1:1 ‖ t′ /∈ S))

∀R,S : Rel, t : Tuple. (A.15)
t ∈ R× S↔
t1:ar(R) ∈ R ∧ tar(R)+1:ar(R)+ar(S) ∈ S

∀R,S : Rel, t : Tuple. (A.16)
t ∈ R � S↔
∃u : Tuple. t1:ar(R)−1 ‖ u ∈ R ∧ u ‖ tar(R):ar(R)+ar(S)−2 ∈ S

∀R : Rel, t : Tuple. (A.17)

t ∈ R−1↔
ar(t) = ar(R) = 2∧ t2:2 ‖ t1:1 ∈ R

Figure A.3: The arity independent axiomatization of GRFOL relational operators

141

Appendix B

A Transitive Closure based
Rewrite of Alloy’s Ordering
Module

This appendix lists the Alloy file of our transitive closure based reduction of the Alloy
ordering functionality applied to a signature S. The file contains also the original
correction assertions of the original Alloy ordering module. The here shown reduction
is made finite to allow for its analysis with the Alloy analyzer (AA).

//
// A transitive closure based axiomatization of a signature to a strict total order.
// Given the Alloy declaration ”open util/ordering[elem]”, our desugaring consists of:
//

//
// (1) Adding the fresh relation nextS: elem x elem
//
sig elem {
// Only for the finite case and the analysis with AA, otherwise use one instead of lone
nextS: lone elem
}

//
// (2) Adding the unary singleton relation firstS
//
one sig firstS in elem {}

//
// (3) Adding, only for the finite case and the analysis with AA, a singleton relation lastS
//
one sig lastS in elem {}

142 Appendix B A Transitive Closure based Rewrite of Alloy’s Ordering Module

//
// (4) Axiomatizing nextS, firstS and lastS as follow
//
fact {
all x: elem | x !in x.ˆnextS
all x: elem | x = firstS or x in firstS.ˆnextS
//Only for the finite case and the analysis with AA
no lastS.nextS
}

//
// Some helper functions as provided by the original Alloy orderingmodule
//
fun yfirst: one elem {

firstS
}
fun ylast: one elem {

lastS
}
fun yprev : elem→elem {
∼(nextS)
}
fun ynext : elem→elem {

nextS
}
fun yprevs [s: elem]: set elem {

s.ˆ(∼(nextS))
}
fun ynexts [s: elem]: set elem {

s.ˆ(nextS)
}

//
// Assertions of the original Alloy orderingmodule
//
assert correct {
(all b:elem | (lone b.ynext) and (lone b.yprev) and (b !in b.ˆynext))
((no yfirst.yprev) and (no ylast.ynext))
(all b:elem | (b!= yfirst and b!= ylast)⇒ (one b.yprev and one b.ynext))
(!one elem
⇒
(one yfirst and one ylast and yfirst!= ylast and one yfirst.ynext and one ylast.yprev))

(one elem⇒ (yfirst= elem and ylast= elem and no yprev and no ynext))

143

(yprev= ∼ynext)
(elem = yfirst. * ynext)
(all disj a,b:elem | a in b.ˆynext or a in b.ˆyprev)
(no disj a,b:elem | a in b.ˆynext and a in b.ˆyprev)
(all disj a,b,c:elem | (b in a.ˆynext and c in b.ˆynext)⇒ (c in a.ˆynext))
(all disj a,b,c:elem | (b in a.ˆyprev and c in b.ˆyprev)⇒ (c in a.ˆyprev))
}
check correct for 5

145

Bibliography

[1] Railway applications - communication, signalling and processing systems - soft-
ware for railway control and protection systems. Standard EN 50128:2011, Euro-
pean Committee for Standardization, Brussels, Belgium, 2011.

[2] SMT-LIB The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.
edu/, 2015-07-09.

[3] Aharon Abadi, Alexander Rabinovich, and Mooly Sagiv. Decidable fragments of
many-sorted logic. In Proceedings of the 14th International Conference on Logic for
Programming, Artificial Intelligence and Reasoning (LPAR), pages 17–31. Springer-
Verlag, October 2007.

[4] Nazareno Aguirre, Marcelo F. Frias, Pablo Ponzio, Brian J. Cardiff, Juan P. Galeotti,
and Germán Regis. Towards abstraction for DynAlloy specifications. In Proceed-
ings of the 10th International Conference on Formal Engineering Methods (ICFEM),
pages 207–225. Springer-Verlag, October 2008.

[5] Konstantine Arkoudas, Sarfraz Khurshid, Darko Marinov, and Martin Rinard.
Integrating model checking and theorem proving for relational reasoning. In
Proceedings of the 7th International Seminar on Relational Methods in Computer Science
and 2nd International Workshop on Applications of Kleene Algebra (RelMICS), pages
21–33. Springer-Verlag, May 2003.

[6] Konstantinos Arkoudas. Denotational Proof Languages. PhD thesis, Massachusetts
Institute of Technology, 2000.

[7] Arnon Avron. Transitive Closure and the Mechanization of Mathematics. In
Fairouz D. Kamareddine, editor, Thirty Five Years of Automating Mathematics,
number 28 in Applied Logic Series, pages 149–171. Springer-Verlag, 2003.

[8] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Proceedings
of the 23rd International Conference on Computer Aided Verification (CAV), pages
171–177. Springer-Verlag, July 2011.

http://smtlib.cs.uiowa.edu/
http://smtlib.cs.uiowa.edu/

146 Bibliography

[9] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University of Iowa,
2010. Available at: www.smt-lib.org.

[10] Jon Barwise and H. Jerome Keisler. Handbook of mathematical logic. Studies in
logic and the foundations of mathematics ; 90. North-Holland, January 1989.

[11] Bernhard Beckert. A dynamic logic for the formal verification of Java card
programs. In Revised Papers from the First International Workshop on Java on Smart
Cards: Programming and Security, JavaCard ’00, pages 6–24. Springer-Verlag, 2001.

[12] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification of
Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-Verlag, 2007.

[13] Jonathan Best. Proving Alloy models by introducing an explicit relational theory
in SMT. Studienarbeit, Karlsruhe Institute of Technology, December 2012.

[14] Armin Biere. Resolve and expand. In Proceedings of the 7th international conference
on Theory and Applications of Satisfiability Testing (SAT), pages 59–70. Springer-
Verlag, May 2004.

[15] Robin E. Bloomfield, Dan Craigen, Frank Koob, Markus Ullmann, and Stefan
Wittmann. Formal methods diffusion: Past lessons and future prospects. In
Floor Koornneef and Meine van der Meulen, editors, Computer Safety, Reliability
and Security, number 1943 in Lecture Notes in Computer Science, pages 211–226.
Springer-Verlag, January 2000.

[16] Charles Bouillaguet, Viktor Kuncak, Thomas Wies, Karen Zee, and Martin Rinard.
Using first-order theorem provers in the Jahob data structure verification system.
In Proceedings of the 8th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 74–88. Springer-Verlag, January 2007.

[17] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junttila, Silvio
Ranise, Peter van Rossum, and Roberto Sebastiani. Efficient satisfiability modulo
theories via delayed theory combination. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV), pages 335–349. Springer-Verlag,
July 2005.

[18] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable about
arrays? In Proceedings of the 7th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI), pages 427–442. Springer-Verlag,
January 2006.

[19] Leonardo De Moura and Nikolaj Bjørner. Efficient E-matching for smt solvers.
In Proceedings of the 21st International Conference on Automated Deduction (CADE),
pages 183–198. Springer-Verlag, 2007.

Bibliography 147

[20] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Proceed-
ings of the 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 337–340. Springer-Verlag, March/April
2008.

[21] David Déharbe and Silvio Ranise. Satisfiability solving for software verification.
International Journal on Software Tools for Technology Transfer, 11(3):255–260, June
2009.

[22] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem prover for
program checking. Journal of the ACM, 52(3):365–473, May 2005.

[23] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, August 1975.

[24] Lucas Dixon and Jacques Fleuriot. IsaPlanner: A prototype proof planner in
isabelle. In Franz Baader, editor, Proceedings of the 19st International Conference
on Automated Deduction (CADE), number 2741 in Lecture Notes in Computer
Science, pages 279–283. Springer-Verlag, January 2003.

[25] Julian Dolby, Mandana Vaziri, and Frank Tip. Finding bugs efficiently with
a SAT solver. In Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC-FSE, pages 195–204. ACM, September 2007.

[26] Bruno Dutertre and Leonardo de Moura. The yices SMT solver. Technical report,
SRI International, 2006.

[27] Jonathan Edwards, Daniel Jackson, and Emina Torlak. A Type System for Object
Models. In Proceedings of the 12th International Symposium on Foundations of Software
Engineering, SIGSOFT/FSE, pages 189–199. ACM, November 2004.

[28] Jan Van Eijck. Defining (reflexive) transitive closure on finite models. http:
//homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf, 2008. Un-
published manuscript.

[29] Aboubakr Achraf El Ghazi. Experiment results of the sufficient ground terms
simplification (SufGT). http://i12www.ira.uka.de/~elghazi/sufGT_smt13_
expData, 2013.

[30] Aboubakr Achraf El Ghazi and Mana Taghdiri. Relational reasoning via SMT
solving. In Proceedings of the 17th International Symposium on Formal Methods (FM),
pages 133–148, Limerick, June 2011. Springer-Verlag.

[31] Aboubakr Achraf El Ghazi, Mana Taghdiri, and Mihai Herda. First-order tran-
sitive closure axiomatization via iterative invariant injections. In Proceedings of
the 7th NASA Formal Methods Symposium (NFM), pages 143–157, Pasadena, April
2015. Springer-Verlag.

http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf
http://homepages.cwi.nl/~jve/papers/08/pdfs/FinTransClosRev.pdf
http://i12www.ira.uka.de/~elghazi/sufGT_smt13_expData
http://i12www.ira.uka.de/~elghazi/sufGT_smt13_expData

148 Bibliography

[32] Aboubakr Achraf El Ghazi, Mattias Ulbrich, Christoph Gladisch, Shmuel
Tyszberowicz, and Mana Taghdiri. JKelloy: A proof assistant for relational
specifications of Java programs. In Proceedings of the 6th NASA Formal Methods
Symposium (NFM), 2014, pages 173–187, Houston, April-May 2014. Springer-
Verlag.

[33] Aboubakr Achraf El Ghazi, Mattias Ulbrich, Christoph Gladisch, Shmuel
Tyszberowicz, and Mana Taghdiri. On verifying relational specifications of
Java programs with JKelloy. Karlsruhe Reports in Informatics 2014-3, Karlsruhe
Institute of Technology, 2014.

[34] Aboubakr Achraf El Ghazi, Mattias Ulbrich, Mana Taghdiri, and Mihai Herda.
Reducing the complexity of quantified formulas via variable elimination. In
Proceedings of the 11th International Workshop on Satisfiability Modulo Theories (SMT),
pages 87–99, Helsinki, July 2013.

[35] Herbert Enderton and Herbert B. Enderton. A Mathematical Introduction to Logic,
Second Edition. Academic Press, 2 edition, January 2001.

[36] Marcelo F. Frias, Armando M. Haeberer, and Paulo A. S. Veloso. A Finite Axiom-
atization for Fork Algebras. Logic Journal of IGPL, 5(3):1–10, May 1997.

[37] Marcelo F. Frias, Carlos Lopez Pombo, and Mariano Moscato. Alloy Ana-
lyzer+PVS in the analysis and verification of Alloy specifications. In Proceedings
of the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 587–601. Springer-Verlag, March/April 2007.

[38] Juan Pablo Galeotti. Software Verification using Alloy. PhD thesis, Universidad de
Buenos Aires, 2010.

[39] Yeting Ge and Leonardo de Moura. Complete instantiation for quantified for-
mulas in satisfiabiliby modulo theories. In Proceedings of the 21st International
Conference on Computer Aided Verification (CAV), pages 306–320. Springer-Verlag,
June/July 2009.

[40] Ulrich Geilmann. Verifying Alloy models using KeY. Diplomarbeit, Karlsruhe
Institute of Technology, August 2011.

[41] Christoph Gladisch. Satisfiability solving and model generation for quantified
first-order logic formulas. In Proceedings of the 2nd International Conference on
Formal Verification of Object-Oriented Software (FoVeOOS), pages 76–91. Springer-
Verlag, October 2011.

[42] Christoph Gladisch and Shmuel Tyszberowicz. Specifying a linked data structure
in JML for formal verification and runtime checking. In Proceedings of the 16th
Brazilian Symposium on Formal Methods (SBMF), volume 8195 of LNCS, pages
99–114. Springer-Verlag, September/October 2013.

Bibliography 149

[43] David Gries and Fred B. Schneider. Avoiding the undefined by underspecification.
In Jan van Leeuwen, editor, Computer Science Today, number 1000 in Lecture Notes
in Computer Science, pages 366–373. 1995.

[44] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press, Cam-
bridge, MA, USA, 2000.

[45] Mihai Herda. Generating bounded counterexamples for KeY proof obligations.
Master thesis, Karlsruhe Institute of Technology, January 2014.

[46] Neil Immerman, Alex Rabinovich, Tom Reps, Mooly Sagiv, and Greta Yorsh. The
boundary between decidability and undecidability for transitive-closure logics.
In Computer Science Logic, volume 3210 of Lecture Notes in Computer Science, pages
160–174. January 2004.

[47] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, April 2006.

[48] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. The MIT
Press, January 2012.

[49] Matt Kaufmann, J. Strother Moore, and Panagiotis Manolios. Computer-Aided
Reasoning: An Approach. Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[50] Uwe Keller. Some remarks on the definability of transitive closure in first-order
logic and datalog. http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.127.8266&rep=rep1&type=pdf, 2004. Unpublished manuscript.

[51] James C. King. Symbolic execution and program testing. Communications of the
ACM, 19(7):385–394, 1976.

[52] Shuvendu K Lahiri and Shaz Qadeer. Verifying properties of well-founded
linked lists. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL, pages 115–126. ACM, 2006.

[53] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A
behavioral interface specification language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, May 2006.

[54] K. Rustan M. Leino. Recursive object types in a logic of object-oriented programs.
In Proceedings of the 7th European Symposium on Programming Languages and Systems,
number 1381 in Lecture Notes in Computer Science, pages 170–184. Springer-
Verlag, March/April 1998.

[55] K. Rustan M. Leino and Rosemary Monahan. Reasoning about comprehensions
with first-order SMT solvers. In Proceedings of the 24th ACM symposium on Applied
Computing, pages 615–622. ACM, March 2009.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.8266&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.127.8266&rep=rep1&type=pdf

150 Bibliography

[56] Tal Lev-Ami, Neil Immerman, Thomas W. Reps, Mooly Sagiv, Srivastava Sri-
vastava, and Greta Yorsh. Simulating reachability using first-order logic with
applications to verification of linked data structures. In Proceedings of the 20st In-
ternational Conference on Automated Deduction (CADE), Lecture Notes in Computer
Science, pages 99–115. Springer-Verlag, January 2005.

[57] John McCarthy. Towards a Mathematical Science of Computation. In Proceedings
of the IFIP Congress, pages 21–28. North-Holland, August/September 1962.

[58] Bertrand Meyer. Applying “design by contract”. IEEE Computer, 25(10):40–51,
1992.

[59] Mariano Moscato, Carlos Lopez Pombo, and Marcelo F. Frias. Dynamite 2.0:
New features based on UnSAT-core extraction to improve verification of software
requirements. In Proceedings of the 7th International Colloquium on Theoretical
Aspects of Computing (ICTAC), pages 275–289. Springer-Verlag, September 2010.

[60] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants
for layered object structures. Sci. Comput. Program., 62(3):253–286, October 2006.

[61] Greg Nelson. Verifying reachability invariants of linked structures. In Proceed-
ings of the 10th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, POPL, pages 38–47. ACM, 1983.

[62] Monty Newborn. Automated Theorem Proving: Theory and Practice. Springer-Verlag,
2001 edition, December 2000.

[63] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Proceedings of the 11th International Conference on Automated Deduction
(CADE), pages 748–752. Springer-Verlag, June 1992.

[64] David A. Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304, September 1986.

[65] William Pugh. The Omega test: a fast and practical integer programming algo-
rithm for dependence analysis. In Supercomputing, pages 4–13, 1991.

[66] Zvonimir Rakamaric, Jesse Bingham, and Alan J. Hu. An inference-rule-based
decision procedure for verification of heap-manipulating programs with mutable
data and cyclic data structures. In Proceedings of the 8th International Conference on
Verification, Model Checking, and Abstract Interpretation, VMCAI, pages 106–121.
Springer-Verlag, January 2007.

[67] Philipp Rümmer. E-matching with free variables. In Proceedings of the 18th Inter-
national Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), pages 359–374. Springer-Verlag, March 2012.

Bibliography 151

[68] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge Uni-
versity Press, New York, NY, USA, 2011.

[69] Uwe Schöning. Logic for Computer Scientists. Birkhäuser, January 2008.

[70] Philippe Suter, Robin Steiger, and Viktor Kuncak. Sets with cardinality constraints
in satisfiability modulo theories. In Proceedings of the 12th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI), pages 403–418.
Springer-Verlag, January 2011.

[71] Mana Taghdiri. Automating Modular Program Verification by Refining Specifications.
PhD thesis, Massachusetts Institute of Technology, 2008.

[72] Emina Torlak and Daniel Jackson. Kodkod: A Relational Model Finder. In Proceed-
ings of the 13th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 632–647. Springer-Verlag, March/April
2007.

[73] G. S. Tseitin. On the complexity of derivation in propositional calculus. In
Automation of Reasoning, pages 466–483. Springer-Verlag, 1983.

[74] Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana Taghdiri.
On proving Alloy specifications using KeY. Karlsruhe Reports in Informatics
2011-37, Karlsruhe Institute of Technology, 2011.

[75] Mattias Ulbrich, Ulrich Geilmann, Aboubakr Achraf El Ghazi, and Mana Taghdiri.
A proof assistant for Alloy specifications. In Proceedings of the 18th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 422–436, Tallinn, March 2012. Springer-Verlag.

[76] Mandana Vaziri-Farahani. Finding bugs in software with a constraint solver. PhD
thesis, Massachusetts Institute of Technology, 2004.

[77] Benjamin Weiß. Deductive Verification of Object-Oriented Software: Dynamic Frames,
Dynamic Logic and Predicate Abstraction. PhD thesis, Karlsruhe Institute of Tech-
nology, 2011.

[78] Kuat T. Yessenov. A Lightweight Specification Language for Bounded Program
Verification. Master thesis, Massachusetts Institute of Technology, 2009.

[79] Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of
linked data structures. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, pages 349–361. ACM,
June 2008.

	Introduction
	Motivation
	Alloy and Abstractions
	Multi-Layer Framework for Proving Relational Specifications
	Verification of Java Programs via Relational Reasoning
	Contributions
	Outline

	Foundations: Alloy, SMT, KeY
	Alloy
	Alloy Problem
	Expressions
	Multiplicity Constraints
	Formulas
	Analysis

	SMT
	SML-LIB Language
	Analysis

	KeY
	Syntax

	AlloyPF —an Example
	Example
	The AlloyPF Proof Process

	A First-Order Relational Logic
	Sorts
	Terms
	Semantics
	Formulas
	Non Trivial FOL Extensions via Satisfiability Modulo Theories
	Relational Extension
	Relational Operators
	Transitive Closure
	Integers and Cardinality

	Verifying Alloy Problems
	Translating Alloy to RFOL
	Alloy Proof Obligation
	Signatures and Fields
	Expressions
	Formulas

	Rewrite of non Principle Alloy Constructors
	Core Alloy
	Ordering

	Correctness and Completeness
	Alloy Semantics
	RFOL Structures Features
	Correctness
	Completeness

	Evaluation

	Semantics Blasting
	Semantics Blasting Rules
	The SB+ Complete Fragment
	Practical Tools for the SB+ Fragment
	Evaluation
	Related Work
	Conclusion

	Variable Elimination via Sufficient Ground Term Sets
	Example
	Sufficient Ground Term Sets
	Practical Optimizations
	Simulating NNF
	Limiting Instantiations

	Evaluation
	Related Work
	Conclusion

	Transitive Closure Axiomatization via Invariant Injections
	Example
	Weak TC Axiomatization and its Fragment
	R-Invariants for Axiomatizing Unsafe R-Paths
	Algorithm for Detecting p-invariants
	Evaluation
	Related Work
	Conclusion

	JKelloy
	Overall Framework
	Alloy as Specification Language for Java Programs
	Relational Java Dynamic Logic
	Coupling Axioms
	Calculus
	Relational Heap Resolution Calculus
	Override Simplification Calculus

	Evaluation
	Related Work
	Conclusion

	Conclusion
	Summary
	Future Work

	Appendix
	An Arity Independent first-order Relational Framework
	A Transitive Closure based Rewrite of Alloy's Ordering Module
	Bibliography

