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Abstract

General-purpose Monte Carlo event generators, like Herwig++, are essential tools for the
comparisons between theory and experiment at particle colliders like the Large Hadron Collider
at CERN. The combination of parton shower approximations with multiple leading order (LO)
matrix element corrections and the inclusion of single next-to-leading order (NLO) corrections
was extensively investigated in the past. Recent developments aim to include higher order
corrections in the showering process to gain higher precision. In this work an algorithm was
developed to consistently merge multiple NLO corrections, without reducing the accuracy of
the shower approximation or the NLO calculation. Corrections above and below a technical
required merging scale are included. The algorithm was implemented in the event generator
Herwig++. The effects of the NLO corrections are studied and direct comparisons to data
measured at the LEP and LHC experiments are discussed. Improvements above and below
the merging scale are observed. The consistent inclusion of expected higher order effects are
tested.

Zusammenfassung

Universell einsetzbare Generatoren zur Ereignissimulation, wie das Programm Herwig++,
sind essentielle Bestandteile in der Verbindung zwischen experimentellen Beobachtungen und
der theoretischen Vorhersage von Teilchenbeschleunigern wie dem LHC am CERN. Die Kom-
bination von Partonschauer-Simulationen mit Korrekturen, die durch Matrixelemente führen-
der Ordnung erhalten werden, und die Hinzunahme von nächst-führender Ordnung (engl.
NLO) zum Produktionsprozess wurden in der Vergangenheit häufig untersucht. Um höhere
Präzision der Vorhersage zu erhalten, werden neuerdings immer mehr Schleifen und mehrere
NLO-Korrekturen mit der Partonschauer-Simulation verbunden. In dieser Arbeit wurde ein
Algorithmus entwickelt, um konsistent mehrere NLO-Korrekturen miteinander zu verbinden.
Dabei wird weder die Präzision der Partonschauer-Simulation noch die der Korrektur beein-
trächtigt. Die NLO-Korrekturen werden ober- und unterhalb einer technisch notwendigen
Übergangsskala eingefügt. Der Algorithmus wurde in das Programm Herwig++ integriert.
Effekte, die durch die Korrekturen entstehen, werden in dieser Arbeit untersucht. Der direkte
Vergleich mit Daten, die an Experimenten der Beschleuniger LEP und LHC gemessen wurden,
wird diskutiert. Verbesserungen werden ober- und unterhalb der Übergangsskala beobachtet.
Des Weiteren wird die konsistente Hinzunahme von bekannten Termen getestet, die durch
höhere Ordnungen erzeugt werden.
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CHAPTER 1

Introduction

In July 2012 the experiments ATLAS [1] and CMS [2] simultaneously announced a resonance
in the mass spectra measured at the Large Hadron Collider (LHC). The combination of the
decay channels of a neutral particle showed a significant excess at an invariant mass of 126.0±
0.4(stat.)± 0.4(syst) GeV at ATLAS and 125.3± 0.4(stat.)± 0.5(syst.) GeV at CMS. While
at this time the physicists at CERN, where the LHC is located, were cautious by calling the
new particle a Higgs-like particle, nowadays, after measuring the properties it is common to
call it ”the Higgs boson”, or at least ”one of the Higgs bosons”. The properties are described
by the Standard Model (SM) of particle physics which describes three of the four fundamental
forces of nature. The discovery of the Higgs boson confirmed the mechanism that gives mass
to the SM particles. For a long time particle physicists explored the fundamental principles
which the SM is based on.

On the experimental side, large electron-positron-colliders (e.g. LEP), proton-proton-colliders
(LHC) or proton-antiproton colliders (Tevaton), were build to accelerate and scatter charged
particles. In these collisions new particles can be created from the energy provided by the
initial state particles. Hereby fundamental laws of nature are respected. On the theory
side these laws are formulated and need to make predictions. The formulation of the SM
and the resultant predictions have been tested extensively and an overall good agreement is
found between theory and experiment. At the LHC higher and higher energies are produced
in order to test the SM and find deviations and confirmations. The collision of these high
energetic particles produces very rarely configurations, which can be interpreted as Higgs
bosons candidates. And even if such an event is measured, many other particles are created at
the same time. These particles are created similar to Bremsstrahlung, when electric charges
are accelerated. The constituents of the proton, called partons (gluons and quarks), radiate
coloured particles, which then again radiate gluons or create quark-antiquark-pairs (qq̄-pairs).
Coloured particles are strongly bound and cannot be observed as isolated particles. Instead
they form hadrons, like mesons and baryons. Bundles of these hadrons are then called jets.
These jets are measured in the detectors.



2 1. Introduction

Event generators like Herwig++ [3], Pythia [4] or Sherpa [5] describe the events at a collider.
The event generators factorize the different parts of the simulation. The hard process is de-
scribed by perturbation theory. The radiations of additional particles from initial and final
states are described by parton shower algorithms which are derived from basic properties of the
perturbation theory in the approximation of soft and collinear emissions. The hadronization
of partons into hadrons is modelled with assumptions derived from the properties of quantum
chromo dynamics (QCD) and parameters measured at experiments. Additional secondary
emissions are modelled with distributions gained form perturbative and non-perturbative ef-
fects. Event generators build the link between experiments and the theory of hard process
calculations. Improving this link is a key to get to more precision and reliable results.

The factorization of the different steps in the event simulation is described by scales. Starting
from a hard scale the parton shower evolves a state with more and more resolvable softer
emissions to a scale where the hadronization model is needed. Next-to-leading order (NLO)
calculations in QCD include, along with the virtual correction to a process also processes with
an additional unresolved parton emission. The naive factorization between parton shower
and hard process calculation leads to double counting of the approximations from the parton
shower emissions and the real emission described in NLO calculations. By matching parton
showers to NLO calculations in the MC@NLO approach [6–10] the problem is solved. Variants
of the matching algorithms like the POWHEG [9, 11–14] approach have been developed over
the last 15 years and are widely used in experimental collaborations to compare to the data
measured at experiments. Another approach to improve the approximations made in parton
showers is to merge multiple leading-order (LO) matrix elements, by replacing and reweighting
simulated events like in [15–22]. In more recent years the combination of these methods of
matching and merging of single [23] and multiple NLO corrections have been developed [24–
30]. Efforts have bee made to extend to next-to-next-to-leading order (NNLO) matching [31–
36] to reach higher and higher precision on the theory side of elementary particle physics.

In this work the merging of multiple NLO corrections is developed from basic concepts. In
Ch. 2 fundamental basics of the SM, perturbative calculations and corrections are introduced.
Renormalization and scale dependence is explained and an overview of the Catani-Seymour
(CS) subtraction formalism is given. An introduction to parton showers is given in Ch. 3.
Comments on the difference between DGLAP Equation and CS dipole showers are provided
and the matching of fixed order calculations to parton shower in the conventional way is
explained and discussed.

The approximations made by the LO merging descriptions are reviewed and parts are replaced
in order to restore inclusive observables at the same order as the corrections included in the
following. The inclusion of multiple NLO corrections is described in Ch. 5 and the single
expressions and their properties are explained in detail. The implementation and validation of
these expressions described in Ch. 6, leads to numerical results which are shown and discussed
in Ch. 7. Further improvements are included without changing the accuracy of the fixed order
calculation nor the shower approximation. Comparisons to measured LEP and LHC data
are provided. The inclusion of higher order corrections to multi jet final states provides a
theoretical improvement compared to LO and NLO matched parton shower description of the
fundamental processes in nature.



CHAPTER 2

Theoretical Basics

The SM successfully describes the fundamental particles and three of the four fundamental
forces discovered in nature. In Sec. 2.1 an introduction to the SM is given. Followed by a brief
discussion of the cross section , as one of the key observables measured at colliders in Sec. 2.2.
In Sec. 2.3 concepts and problems of perturbation theory are explained. Here the appearance
of divergences, which are treated on the one hand with the concepts of regularization and
renormalization and on the other hand with the inclusion of all contributions at the same
order in perturbation theory, are discussed. Renormalized NLO calculations are significantly
simplified by the construction of the Catani-Seymour dipole formalism, see Sec. 2.5. The
chapter is closed in Sec. 2.6 with an example of matching resummed expressions to fixed order
expressions, which will be the starting point of many discussions in this work.

2.1. The Standard Model

As a relativistic quantum field theory (QFT) the particles and forces are described in the SM as
representations of the Poincare group. Extrinsic degrees of freedom like spin and mass, but also
intrinsic like colour and charge, give by their quantization the particle character of the objects
they describe. The SM sorts the particles into representations of a SU(3)C ×SU(2)L×U(1)Y
gauge group. The intrinsic properties of the particles like colour and charge are the ones which
makes the SM so applicable. In the following a brief introduction of this gauge group is given.
Starting with the particle classification we present the electroweak sector – SU(2)L × U(1)Y
– and then move to the strong interactions described by SU(3)C .

The particles are divided into fermions and bosons. In the SM fermions carry the spin 1/2 and
bosons are characterized as Spin 0 or 1 particles. The fermions further separate into quarks
and leptons, where quarks are affected by all three group interactions and leptons are colour
singlets and therefore not affected by the strong interaction. The Spin 1 bosons of the SM are
responsible for the forces between the fermions. The special and only, recently discovered [1, 2]
spin 0 particle is called the Higgs boson [37]. The interactions of the particles with the Higgs
field are responsible for the generation of the masses. The mass is an invariant under Poincare



4 2. Theoretical Basics

1. Gen. 2. Gen. 3. Gen. T T 3 Y Q

E
le

ct
ro

w
ea

k
S
ec

to
r

quarks

(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

1
2 +1

2 +1
6 +2

3

S
tr

o
n
g

S
ec

.

1
2 −1

2 +1
6 −1

3

uR cR tR 0 0 +2
3 +2

3

dR sR bR 0 0 −1
3 −1

3

leptons

(
νe

e−

)
L

(
νµ

µ−

)
L

(
ντ

τ−

)
L

1
2 +1

2 −1
2 0

1
2 −1

2 −1
2 −1

e−R µ−R τ−R 0 0 −1 −1

Table 2.1.: Fermions (quarks and leptons) of the SM with their electroweak quantum num-
bers: weak isospin T with eigenvalues T3, hypercharge Y , and electric charge Q = T 3 + Y .
The quarks are further triplets in colour space. The quantum numbers of antiparticles are the
negative values of the particles.

transformations and must be included in a theory to describe the particles observed in nature.
How to include the mass within the Higgs mechanism and briefly explain properties of the SM
fermions, which are listed in Tab. (2.1), are part of the next sections.

Electroweak Sector

The electroweak sector of the SM is described by the Glashow-Weinberg-Salam theory that
uses the SU(2)L × U(1)Y group to describe interactions. Left-handed fermion spinors ΨL

are collected into isospin doublets (T = 1/2) and transform under SU(2)L rotations. Right-
handed fermion spinors ΨR are isospin singlets (T = 0) and are unaffected by these rotations.
The field ΨL/R with weak isospin T and hypercharge Y transforms as [38]∗

ΨL/R → Ψ′L/R =
[
e−iTkωk(x)−iY 1α(x)

]
ΨL/R = T ΨL/R , (2.1)

where Tk are the generators of the SU(2)L group. For singlets Tk = 0 and for doublets
Tk = 1

2τk, with the usual Pauli-matrices τk satisfying[τa
2
,
τb
2

]
= iεabc

τc
2

and the Levi− Civita symbol denoted by εabc . (2.2)

Repeated indices are summed if not stated otherwise. U(1)Y rotations change the phase of
the field but are diagonal with respect to the SU(2)L subspace, which is denoted by 1. Here 1
is with respect to the dimensionality of the field, so two for doublets and one for singlets. The
unitary† transformation T is described by ωk(x) and α(x) which are the ’angles’ of rotations
in the SU(2)L × U(1)Y group space. For the doublet ΨL, the components are rotated by T .
If the transformation described by T is global (independent of local variations: ωk(x) = ωk
and α(x) = α) the Lagrangian [39]

L = Ψ̄L(i/∂)ΨL + Ψ̄R(i/∂)ΨR = Ψ̄(i/∂)Ψ (2.3)

∗Note that the hypercharge here is half of the convention used in [38].
†Unitary operators fulfil T †T = 1.
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with /∂ = γµ∂
µ, is invariant under SU(2)L × U(1)Y group and Lorentz transformations. The

combination Ψ of the left and right handed spinors ΨL/R is manifest in the chiral representation
of the Dirac matrices γµ, where the Lorentz transformation is block diagonal for the left and
right handed components [39]. For these Lorentz transformations, it is necessary to define
Ψ̄ = Ψ†γ0. The transformation T acts on Ψ̄L/R as

Ψ̄L/R → Ψ̄′L/R = Ψ̄L/RT † = Ψ̄L/RT −1 . (2.4)

Hence, the massless Lagrangian L is independent under global SU(2)L × U(1)Y group trans-
formations. Eq. (2.3) leads to the equation of motions for massless spinor-fields Ψ, namely
the Dirac equation. The derivative between the fields breaks this independence for local rota-
tions represented by ωk(x) and α(x). In order to get a theory in which group transformations
can be local but the Lagrangian remain invariant under these (gauge-)transformations‡, the
derivative of the field ∂µΨL/R is replaced by DµΨL/R. One requires that the (gauge-)covariant
derivative Dµ of ΨL/R transforms as the field ΨL/R [38]

DµΨL/R → (DµΨL/R)′ = Dµ′Ψ′L/R = T DµΨL/R . (2.5)

To achieve this property, the derivative must be modified by so-called gauge fields as

Dµ = ∂µ1− igTkWµ
k (x)− ig′Y 1Bµ(x) . (2.6)

Wµ
k (x) and Bµ(x) compensate for the additional terms originating from the derivative acting

on the transformation. The constants g and g′ are introduced as coupling constants since,
with the inclusion of Dµ into the Lagrangian, new terms with two fermions and one gauge-
field appear that are needed to describe the interaction of the fermions to the gauge-fields.
Eq. (2.5) implies the gauge fields transform as [38]

τkW
µ
k (x)→ τkW

µ
k (x)′ = T (τkW

µ
k (x))T −1 − i

gT
[∂µT ] T −1, (2.7)

and respectively for Bµ with {g, Tk} → {g′, Y 1}. For the Abelian group U(1)Y , the only
addition is proportional to [∂µT ]T −1 ∼ ∂µα(x). Such transformations acting on electrody-
namic potentials, which respect U(1)em symmetry, leave physical quantities like the electric
and magnetic fields unchanged and are known as gauge transformations. With Eq. (2.6), the
gauge fields transform under Lorentz transformations like ∂µ, as vector fields (Spin 1), and
describe gauge-bosons.

For infinitesimal transformations ωk(x)� 1, one finds that the gauge fields Wµ
k (x) transform

as [38]

Wµ
k (x)′ = Wµ

k (x) + εkijωi(x)Wµ
j (x)− 1

g
∂µωk(x) . (2.8)

This implies that the gauge fields of the non-Abelian SU(2)L group transform as a triplet (the
adjoint) representation, meaning that the gauge fields carry an isospin charge.

‡The reason for naming the transformation gauge-transformations will be clear shortly.



6 2. Theoretical Basics

For Wµ
k , the Lorentz and SU(2)L × U(1)Y group invariant kinetic terms

− 1

4
Wk,µνW

µν
k , with Wµν

k = ∂µW ν
k − ∂νWµ

k − gεkbcW
µ
b W

ν
c , (2.9)

are added to the Lagrangian. The Lagrangian now takes the form

LEW = Ψ̄(i /D)Ψ− 1

4
Wk,µνW

µν
k −

1

4
BµνB

µν . (2.10)

The last term is the kinetic for Bµ only containing bilinear terms of Bµ, since T 1T −1 = 1.

In order to describe nature, mass terms for the Bosons of the form

1

2
m2
V VµV

µ, V ∈ {Wk, B} (2.11)

should be possible in the theory. But simply adding those terms to the Lagrangian explicitly
breaks the gauge invariance.

A way to keep the local invariance and consistently introduce masses in the formalism, is
known as the Brout-Englert-Higgs mechanism. The discovery of a SM-like Higgs boson in
2012 at the LHC [1, 2] was recognised by the Physics Nobel Prize in 2013. The idea is to add
a field which transforms under the gauge symmetries of the SU(2)L × U(1)Y group and has
a non-vanishing vacuum expectation value. The solution is a complex, isospin doublet scalar
field, with hypercharge Y = 1/2:

Φ =

(
φ+

φ0

)
. (2.12)

Note that only the upper component receives a phase under the gauge transformation

Φ = e−i(
1
2
τ3+ 1

2
1)β(x)

(
φ+

φ0

)
=

(
e−iβ(x) 0

0 1

)(
φ+

φ0

)
. (2.13)

The lower component is invariant. The combination ofWµ
3 andBµ, which compensated for this

gauge transformation in the Lagrangian, is identified as the photon field of quantum electro
dynamics (QED). The subscript at the components of Φ denote their charge Q = T3 + Y
with respect to the U(1)em. For the other particles of the SM, the charges are related by
Q = T3 + Y , see Tab. 2.1.

In a next step, the doublet field Φ is re-parametrized with a general SU(2) gauge transforma-
tion as

Φ = e−iτkϕk(x) 1√
2

(
0

v + h(x)

)
. (2.14)

Here, the real-valued lower component is the vacuum expectation value v and the field h(x).
The field h(x) is now the excitation along the axis of the vacuum and the other degrees
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of freedom enter as rotations in the SU(2) space. This parametrization is motivated by
introducing the potential for the field Φ as

LHiggs,Pot = µ2Φ†Φ− λ
(

Φ†Φ
)2

, (2.15)

with positive, real-valued parameters µ2 and λ. This potential is invariant under SU(2)L ×
U(1)Y group transformations and has one minimum at

√
2φ0 = v = µ√

λ
. This minimum is not

unique, since the rotation with the SU(2) group only changes the field but not the potential.
The vacuum can be fixed at each point in space-time to be exactly in the lower, uncharged
component of Φ with the freedom of the SU(2)L × U(1)Y gauge group. This choice does
not change the original symmetry of the theory, but still breaks the symmetry by choosing
the direction of the vacuum. This is called spontaneous symmetry breaking and the field
h(x) describes an uncharged, scalar (spin 0) particle called the Higgs boson. The ’vanishing’
degrees of freedom of the SU(2) rotation of the field Φ enter as longitudinal polarizations of
the now massive gauge bosons.

To see the mass terms of the gauge fields, the kinetic term for the field Φ needs to be con-
structed. The kinetic term

LHiggs,Kin = (DµΦ)† (DµΦ) (2.16)

is invariant under the SU(2)L × U(1)Y group transformations as well as Lorentz transforma-
tions. With h(x) = 0, the additional terms in the Lagrangian are therefore [39]

LHiggs,Kin [h(x) = 0] =
1

2

(
0 v

)(
g

1

2
Wk,µτk + g′

1

2
Bµ

)(
g

1

2
Wk,µτk + g′

1

2
Bµ

)(
0
v

)
(2.17)

Parametrization the linear combinations of W a
µ and Bµ as

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
, (2.18)

and Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ
)

(2.19)

(2.20)

the new fields W±µ and Zµ receive mass terms proportional to the expectation value v of the
Higgs field

MW =
gv

2
and MZ =

√
g2 + g′2

v

2
. (2.21)

The photon field which compensates for the rotations that are not changing the lower com-
ponent of Φ, see Eq. (2.13), remains massless and is given by the linear combination

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ
)
. (2.22)

The massive bosons are named W± and Z boson and couple to the Higgs boson directly.
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As a consequence of the reparametrization one can derive the Higgs mass Mh ∼ v and the
self interaction hhh ∼ vλ. The discovery of the Higgs/a Higgs-like boson in 2012 is one of
the great achievements of particle physics. Still a measurement of the self-interaction and
the exact determination of the quantum numbers will help to understand the mechanism of
spontaneous symmetry breaking and mass generation.

In addition to the massive gauge boson, the fermions and quarks are observed as massive
particles. To include mass terms for the electron to the Lagrangian like the expression

−me(ēLeR + ēReL) (2.23)

with the left and right handed components components of the electron field would explicitly
break SU(2)L × U(1)Y invariance. The field Φ can be used to introduce mass terms for the
fermions while keeping the invariance. This is given by

LY ukawa = −λeĒLΦeR + h.c. = − λe√
2

(
ν̄e ēL

)( 0
v + h(x)

)
eR +H.c. , (2.24)

with the coupling strength λe. The H.c. is the Hermitian conjugate of the first expression.
The mass of the electron is then given by me = λev/

√
2. Similar expressions are added for

the muon and tau flavours.

The general addition to the Lagrangian, for quarks masses in the SM, is [38]

LY ukawa = −λijd Q̄iLΦdjR − λiju Q̄iLΦ̃ujR +H.c. , (2.25)

where the λ’s are general, complex mixing matrices between the quark generations QiL, diR
and ui that is used to parametrize the difference between mass and interaction eigenstates.
The isospin doublet Φ̃ = iτ2Φ∗ is included with hypercharge -1/2 to respect SU(2)L × U(1)Y
invariance.

Strong Sector

Interactions between the particles of the SM are given by their gauge group definition, the
quantum numbers and the coupling constants. Since the coupling constant defines the strength
of the interaction and the relatively large coupling constant gs of the SU(3)C , compared to
the couplings of the electroweak sector, the sector described by SU(3)C is called the strong
sector. The gauge group of strong interactions is SU(3)C , where the C denotes the quantum
number called colour. The theory describing the strong sector and its colour charges is called
Quantum Chromo Dynamics (QCD). Fermions influenced by the the strong interaction are
called quarks and the gauge bosons gluons.

While the unbroken U(1)em of the SM which leads to interactions of charged fields with
photons is an Abelian group, the non-Abelian nature of the SU(3) leads to self interactions
of the gluons. The kinematic part of the gauge field is similar to the one for the W as of the
electroweak interaction in Eq. (2.9) given by

− 1

4
GaµνG

a,µν , with Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν , and ifabctc = [ta, tb]. (2.26)
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While the fundamental doublet representation of the SU(2) is transformed with the generators
Tk = 1

2τk, the 8 generators ta for fundamental triplets of the SU(3) are produced with the
Gell-Mann-matrices λa = 2ta.

A similar treatment of local gauge invariance as in the electroweak part of the SM and some
modifications (as described below) lead to the Lagrangian of QCD [40]

LQCD,free =Ψ̄(i/∂ −m)1Ψ− 1

4

(
∂µG

a
ν − ∂νGaµ

)2 − 1

2ξ
(∂µG

a,µ)2 + ∂µη̄
a∂µηa (2.27)

LQCD,int. =− gsΨ̄ta /GaΨ + gsf
abcGb,µGc,ν∂µG

a
ν −

g2
s

4

(
fabcGb,µGc,ν

)2
+ gsf

abc∂µη̄cGbµη
a

(2.28)

The quark multiplets Ψ here are 3 dimensional and the index a of Ga is summed over the 8
linear independent, traceless and hermitian matrices in three dimensions. Since the SU(3)C
does not distinguish between left- and right-handed fields the mass term does not break the
SU(3)C symmetry.

In the quantization within the path integral formalism the functional integral is not well
defined since the integration is performed over all possible gauge transformations. To cure
this divergent behaviour Faddeev and Popov introduced – also in the electroweak part – a
gauge fixing term 1

2ξ (∂µG
a,µ)2 to the path integral formalism in a way that the divergent

part is separated and removed from correlator functions, see [39]. Within the Faddeev-Popov
formalism it is found that non-Abelian gauge theories like QCD need an extra term in the
Lagrangian. The term is needed for the transformation properties of the gauge field itself and
the self interaction of the gauge field. The extra parts in the Lagrangian containing η (called
ghosts) are included to correct for the unphysical timelike and longitudinal degrees of freedom
of the gauge bosons [39].

2.2. Cross Section

After the introduction of particles, basics of SM and field theory an introduction to one of
the central observables in high energy physics is given. Close to the notation of [41] the cross
section for the process h1h2 → X is defined as

σ(p, p̄)X =
∑
a,b

∫ 1

0
dx1 f

h1
a (x1, µ

2
F )

∫ 1

0
dx2 f

h2
b (x2, µ

2
F ) σab(x1p, x2p̄, µ

2
F )X , (2.29)

The cross section is proportional to the rate of observing the final state X in collisions of
incoming particles h1 and h2 with momenta p and p̄. Here, the incoming particles can be
composed particles like protons. In the parton picture the constituents (called partons) of the
composed particles interact. To get the cross section/rate one needs to sum and integrate all
possibilities to arrive at the final state X. The sum in (2.73) therefore contains all constituents.
These constituents are extracted with a momentum fraction x1/2 from the initial particles. The

parton density functions fhia/b(x1/2, µ
2
F )§ (PDFs) parametrize the probability for the extraction

§In the following the superscript hi are suppressed.
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Figure 2.1.: Example feynman diagrams for qq̄ → qq̄ +X at tree level, 1 loop, real emission
and 2 loop level.

of a parton of type (flavour) a/b from the composed particle hi at the scale µF . Since the
total momentum must be conserved, the momentum sum rule

∑
a

∫ 1

0
dx x fa(x, µ

2
F ) = 1 . (2.30)

must be fulfilled¶. The factorization scale µF is introduced in the renormalization of collinear
divergences, see Sec. 2.3.3. In Eq. 2.29, σab is the partonic cross section of the partons a/b
to produce the final state X and arbitrary other particles, see in Sec. 3.4. The method to
calculate the partonic cross section will be briefly discussed in the following section, for more
details standard textbooks on QFT should be considered [39, 40, 42].

2.3. Perturbation Theory

The nature of a field theory dictates that the probability to observe a final state 〈f | from an
initial state |i〉 all possible field configurations leading from i → f are possible and need to
be taken into account. The overlap between the in and out states is related to the unitary
operator called the S-matrix [39]. The interesting part of this matrix is the T -matrix, where
the interactions are isolated as S = 1 + iT . R. Feynman developed a formalism to calculate
the matrix elements of the T -Matrix and physical quantities in a diagrammatic way. Starting
form a path integral – the mathematical way of summing the configurations – with an action
depending on the Lagrangian, Feynman rules are extracted. The derivation of these can be
found in standard textbooks on QFT like [39].

For example in QCD the Feynman rules for a propagating gluon and the vertex of a gluon
with a quark line are

a, µ b, ν
p [

−gµν + (1− ξ) pµpν
p2+i0

]
i

p2+i0

a, µ

j, σ

i, ρ −igs(ta)ijγµρσ

where the Latin indices are the colour indices of the attached fields ans the Greek indices are
the Lorentz indices of the spinors or polarization vectors components. The i0 is added to
the propagators to ensure causality. Rules for other vertices and propagators as well as the
integration of internal loop momenta are not written out. With these rules it is possible to
derive matrix elements M of the T -matrix. The vertices, as the qq̄g-vertex, are proportional
to the coupling constants gs or g2

s for the four gluon vertex.

¶This holds at LO and later in the MS scheme.
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Since the previously mentioned sum over all field configurations has infinitely many terms the
calculation of physical observables is usually treated in a perturbative approximation. The
matrix elements of the T -matrix are then expressed as an expansion in the coupling constant
gs. Here, a precise final state configuration is required and one speaks of a physical process as

h1h2 → NlLeptons +NbBosons +NjPartons , (2.31)

which can be produced with the minimal number of vertices. This process is then called the
leading order (LO) process. Physical observables like the cross section are proportional to the
squared matrix elements. For the most processes the Feynman diagrams at LO are of a tree
like structure (see lhs. of Fig. 2.1), therefore LO and tree level is often used synonymously.
The LO of Higgs production via gluon fusion on the other hand is an example where the LO
already contains a loop of massive particles.‖

The first correction to the LO process contains also diagrams that have two orders higher
in the coupling constant gs. The particle excitation needs to be produced and destroyed at
a vertex. Squaring the matrix elements leads to interference between the LO diagrams and
the loop diagrams which are then proportional to g2

s . In Sec. 2.3.3 it is explained that also
processes with more external particles need to be taken into account. Including all processes
with the same number of couplings is then called the next-to-leading order (NLO) correction.

2.3.1. Divergences and Regularization

At NLO one obtains that the summation/integration over all configurations leads to problems.
In the following a brief introduction should be given. Additional field excitations are included
within the Feynman diagrams at NLO (see second diagram in Fig. 2.1). These so called
virtual particles can form loops with the other particles in the diagram. Not only external
particles underlie the energy-momentum conservation, also at each vertex in the diagrams∑
pin =

∑
pout is fulfilled. The closed loop opens the possibility to have any momentum

running within the loop. All possible configurations must be summed/integrated. However,
the integration of the loop momentum, e.g. k is not restricted and leads to mathematically
divergent expressions.

Loop integrals with n legs attached to the loop are of the form

(−ig)2

∫
d4k

(2π)4

kµ1 ... kµm

D0 ... Dn−1
with Di =

k +

i∑
j=1

pj

2

−m2
i + i0 . (2.32)

Where usually m < n and Di describes the i’th propagator in the loop diagram with mass mi.
pj are the momenta of the external legs entering the loop diagram. The factor (−ig)2 arises
since two additional vertices are needed to close the loop. Different types of divergences can
appear in the calculation.

‖Since the Higgs doublet is colourless there is no direct coupling to gluons.
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UV-Divergences

Large loop momenta |k| → ∞, corresponding to short wavelength, can lead to a divergent
behavior for n < 4 propagators in the loop diagram, which is then called ultra violet (UV)
divergent. To handle the mathematical expressions in the first step, these divergences must
be parametrized. A nowadays popular method to regularize the divergences is to change the
dimension of space-time in the integration from 4→ d = 4− 2ε.

The integration measure in (2.32) changes to

(−igB)2 d4k

(2π)4
→ (−iZggRµεR)2 d4−2εk

(2π)4−2ε
. (2.33)

Changing the dimensionality, but keeping the mass dimension of the action [S] = 0 fixed∗∗,
leads to a mass dimension of the coupling constant [gBs ] = ε [43]. The mass dimension is
absorbed into an arbitrary mass parameter µεR

†† in order to have a dimensionless coupling
gRs . This is done since the expansion of the perturbative series should be performed in a
dimensionless parameter.

Reducing the integration measure regularizes the UV divergences and leads to single poles in
1/ε at NLO. In calculations these poles usually appear in combination with Sε = (4π)ε/Γ(1−ε)
as

Sε
ε

=
1

ε
+ log(4π)− γE +O(ε) (2.34)

with the Euler-Gamma-function and the Euler constant γE . The factor Zg, and the indices
B and R in Eq. (2.33) will be explained in Sec. 2.3.2.

IR and Collinar Divergences

While the UV divergences arise from short wavelength, other types of divergences are present
in the loop calculation if the propagators attached to external legs are massless. These so
called mass singularities [44] appear, if either

• the exchanged, massless particle between two onshell, external legs has vanishing loop
momentum (soft or infrared(IR) singularity), or

• the loop momentum of two massless propagators, which are attached with an on shell,
massless external leg, becomes collinear to the momentum of the external leg. These
regions lead to so called collinear (C) singularities.

The region where both conditions are fulfilled, so soft and collinear, is already included in the
soft limit.

As the UV also the soft and collinear divergences can be regularized by changing the dimen-
sion of space-time. Soft poles appear as 1/ε2 and 1/ε, while the collinear poles produce 1/ε
contributions.

∗∗since it appears in the exponent of the path integral formulation [43].
††Here one can introduce a so called ’t Hooft mass µ, which is different from the later interpreted renormalization

scale. This introduces additional logarithms of the ratio µ/µR to the counter terms. For this brief discussion
it is not needed and it is set µ = µR.
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2.3.2. Renormalization and Asymptotic Freedom

After regularizing the divergent integrals within the dimensional regularization the expressions
are well defined in d = 4−2ε dimensions. In the limit ε→ 0 the expressions are still divergent.
In order to predict finite physical quantities the parameters of the theory must be reinterpreted.

UV renormalization

The divergences originating from short wave lengths, leading to UV poles 1/ε are absorbed into
the parameters and fields of the Lagrangian. Multiplicative renormalization as it is described
in many textbooks on QFT, e.g. [40, 45], treats this divergences by rewriting the parameters
and fields of the Lagrangian as

ΨB = Z
1/2
Ψ ΨR , GBµ = Z

1/2
G GRµ , gBs =

Z1

ZΨZ
1/2
G

µεRg
R
s = Zgµ

ε
Rg

R
s , mB

q = Zmm
R
q .

‡‡

(2.35)

The classical fields and couplings in the Lagrangian are interpreted as bare parameters and
operators (upper index B). Mathematical divergences are factorized into the prefactors of the
renormalized, now physical quantities labelled with the upper index R. The renormalization
constants Zi are written as Zi = 1+δi. Rewriting the Lagrangian induces ’new’§§ contributions
to two point functions (propagators) and interaction vertices. The scale µR is introduced in
Eq. (2.33).

The renormalized Lagrangian is written in the form

L = LRQCD,free + LRQCD,int.(µεR) + LRQCD,c.t.(δi, µεR) , (2.36)

where the bare quantities have been replaced by the renormalized ones. LRQCD,free containing

only the renormalized fields, LRQCD,int.(µεR) depends on the introduced scale to fix the mass

dimension of the coupling and the counter term Lagrangian LRQCD,c.t.(δi, µεR) contains the δis,
included to absorb the UV singularities.

After rewriting the Lagrangian the δis must be determined. Therefore renormalization con-
ditions need to be formulated in order to fix the finite terms of the constants δi. In QCD
the constants are determined by calculating the divergent self energy diagrams to determine
the field renormalization and mass insertions constants. Furthermore, one vertex correction
is used to determine the divergent structure, which must be absorbed into the redefinition of
the coupling constant.

The divergence structure is proportional to Eq. (2.34). In the minimal subtraction scheme
(MS-scheme) the counter term expressions are fixed by subtracting exactly the pole structure
of the UV divergent virtual expressions. As given in Eq. (2.34) the poles in the calculations are
in practice dressed with functions originating from d-dimensional angular integration which
depends on the dimensional regulator ε. In the modified minimal subtraction MS-scheme the
counter terms absorb also the O(ε0) expansion of these terms. This is done, because it is

‡‡Additional factors are needed for ghosts and gaugefixing parameter. The term renormalization may be more
intuitive by writing ΨR = 1√

ZΨ

ΨB .

§§At this point it is just a redefinition of the parameters.
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expected that the higher order calculation will produce expressions that are proportional to
the LO expressions. So absorbing known/expected finite expressions into the LO expression
reduces the NLO corrections [45].

The expression for Zi and deeper discussion on the interpretation of renormalization, can be
found e.g. in [40]. In the MS-scheme Zg is given by [40]

gBs = gRs µ
ε
R

[
1− (gRs )2

8π2︸ ︷︷ ︸
αs
2π

Sε
2ε

(
11

6
CA −

2

3
TRNF

)
︸ ︷︷ ︸

β0

+O(α2
s)

]
. (2.37)

Here αs = g2
s/4π is introduced in analogy to the fine structure constant in QED. NF is the

number of massless quark flavours. Note that the expansion is, like the perturbative expansion,
in the dimensionless renormalized coupling gRS .

Colour Factors

CA is the Casimir constant which arises in the summation over the adjoint representation of
the SU(N) gauge group. TR comes from the normalization of the colour matrices and β0 is the
first term of the so called β-function of QCD, which will be part of the next section. CA and
TR are also called colour factors which arise in many QCD calculations due to the summation
of the colour structure of the amplitudes. CA usually also appears in matrix elements with
g → gg splittings¶¶, TR comes with g → qq̄ splittings and the colour factor, not present in
the β0 coefficient, CF describes q → qg splittings. In QCD these factors are CA = N = 3 ,
TR = 1/2 and CF = (N2 − 1)/2N = 4/3.

Running Coupling and Asymptotic Freedom

Eq. (2.37) depends on the scale µR introduced to get a dimensionless expansion parameter gRS .
The theory itself must not depend on the arbitrary scale µR – the bare fields and couplings
are independent – but the truncation of the perturbative series at a fixed order of the coupling
constant requires to introduce a scale to separate the UV degrees of freedom, which should not
affect the low energy behaviour of the theory. The prediction of observables then also depends
on the scale µR used to fix the values of the parameters of the truncated series. More precisely,
they depend on the renormalization prescription [40]. So the values of the parameters are fixed
in comparison to measurements for a given scale µR used in the calculation.

In a next step, after fixing the parameters of the renormalized theory at scale µR, observables,
other than the ones used to fix the parameters, can be predicted for the scale µR by calculating
the fixed order up to the renormalized order in αs. The calculation of the other observables
now again contains loop integrations, which have to be performed in d dimensions. If the
loop integral I4 in Eq. (2.32) has mass dimension [I4] = A, other than zero, the change to d
dimensions and the introduction of the scale as in Eq. (2.33) changes the mass dimension of
the integral – without the scale µR – to [Id/µ

2ε
R ] = A− 2ε. The solution must be proportional

to X · s−2ε with [X] = A and [s] = −ε. After integration of the loop momentum the only
scales remaining, to form s, are combinations of the external momenta pi or the masses of
particles that appear in the loops. This leads when contracted to the UV poles to logarithms
of the form log(µR/s). If the ratio is large, also the correction due to the NLO correction can
become large. These changes from higher order corrections to the Born prediction would be

¶¶g → gg is gluon→ gluon gluon, g → qq̄ is gluon→ quark antiquark, q → qg is (anti-)quark→ (anti-)quark gluon.
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small if the parameters would have been fixed/renormalized near to the scale s in the first
place. The LO prediction can be improved with the following discussion.

Since the left hand side of Eq. (2.37) is independent of the scale µR it is found that in
dimensional regularization the renormalized coupling ’constant’ must be a scale dependent
function. The derivative of Eq. (2.37) with respect to the scale gives [40]

0 =
d

d logµR
gBs (µR, g

R
s (µR), ε) =

∂gBs
∂ logµR

+
∂gBs
∂gRs

d

d logµR
gRs (µ) . (2.38)

Using the more convenient expression for αs(µR) the differential Equation

dαs(µR)/4π

d logµR
= 2β(αs(µR)/4π) (2.39)

is found for the renormalized and now scale dependent αs(µR) at ε = 0 [40]. This Equation is
the renormalization group Equation (RGE) for αs. The β-function depends on the structure
of the gauge group and is at the one loop level for QCD given by

β(αs(µR)/4π) = −
(αs

4π

)2
2β0 +O(α3

s) . (2.40)

Solving the RGE with the one loop β-function leads to

αs(Q) =
αs(Q0)

1 + αs(Q0)
2π β0 log Q2

Q2
0

. (2.41)

with the integration constant αs(Q0), so that αs(Q)|Q=Q0 = αs(Q0). This is the leading
behaviour of the running coupling αs(Q).

With the RGE we can translate the renormalized – fixed at some scale µR – αS to an other
scale µ′R. This is used to improve predictions when a ’typical’ scale of the physical process
is known. The physical observable is calculated with the running coupling evolved from the
measured value. At the same time the scale in the integrals is set to the typical scale. In [40]
this is described as a change of the renormalization scheme. For MS-renormalized coupling
constant the change of the renormalization scale can be expressed at NLO by multiplying
(µ2
R/µ

′2
R)ε to the pole structure of the counter term, see [46] after expansion.

In QCD with NF < 16 the coupling decreases for growing scales and vanishes for Q→∞, so
that QCD is an asymptotically free theory. On the other hand the coupling is increasing with
for decreasing scales and even diverges if the denominator vanishes. This defines the scale

ΛQCD = µR exp

( −4π

β0αs(µR)

)
−→ αs(µR) =

1

(b0 log(µ2
R/Λ

2
QCD)

, (2.42)

with b0 = β0/2π. The perturbative series breaks down if the expansion parameter is diverging.
The large coupling between strongly interacting partons makes the confinement of partonic
states into colourless hardrons plausible [45].

In this work the approximate, explicit form of the two loop running coupling is utilized as it
is implemented in Matchbox and given by [45]
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αs(Q) =
1

(b0 log(Q2/Λ2
QCD)

(
1− b1

b20

log(log(Q2/Λ2
QCD))

log(Q2/Λ2
QCD)

(2.43)

+
b21

b40 log2(Q2/Λ2
QCD)

[
(log(log(Q2/Λ2

QCD))− 1

2
)2 − 5

4

])
.

with b1 = (153− 19NF )/24π2∗∗∗.

2.3.3. Additional Unresolved Emissions and DGLAP Evolution

After renormalization is applied to the parameters and fields of the theory, the UV divergences
are removed (with the same counter terms) from the calculation of any process up to the
given order in perturbation theory. Still, the description of massless particles leads to IR
and C divergences. This is solved by a redefinition of the process itself. The KLN theorem
[44, 49] states that the total cross section and observables not resolving additional emissions,
are finite for the sum of virtual emissions and real unresolved emissions. So only the sum
of the process itself, containing IR and C divergences, and the real emission process with an
additional unresolved emission gives physical results.

Thus measurement and calculation of an observable depend on the definition of a resolution
parameter for which the additional emission is defined as unresolved. Defining a process as
the process with the minimal number of particles to be expected and arbitrary hard additional
real emissions is then called inclusive.

Inclusive observables cannot resolve additional soft or collinear emissions. In the calculation
beyond leading order additional collinear divergences arise due to composite external states.
Composite initial states, e.g. the protons at the LHC, but also identified final state momenta of
partons with transition probabilities to produce composite final state hadrons resolve collinear
emissions. The weight coming from the e.g. PDFs for initial states is different if the emission
is real or virtual, since the initial state changes its momentum fraction for real emission. This
leads to remaining divergences in the sum of real emission process and virtual contributions.
It is handled by renormalization of the PDFs. As in the case of UV renormalization the
classical probability functions to extract a parton from a composite hadron is redefined (in
MS-scheme) as [41]

fBa (x) = fRa (x, µF )− αs
2π
Sε
∑
b

∫ 1

0

dz

z

[
−1

ε

(
µ2

µ2
F

)ε
P rab(z)f

R
b (x/z, µF )

]
+O(α2

s) . (2.44)

Here P rab(z) are the regularized Altarelli-Parisi (AP) splitting functions [50]

P rqg(z) = CF
1 + (1− z)2

z
, P rgq(z) = TR

[
z2 + (1− z)2

]
, P rqq(z) = CF

(
1 + z2

1− z

)
+

,

P rgg(z) = 2CA

[(
1

1− z

)
+

+
1− z
z
− 1 + z(1− z)

]
+ δ(1− z)

(
11

6
CA −

2

3
NfTR

)
.

∗∗∗The expression defined in [45] differs from [47, 48] in O(α3
s).
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The (. . . )+ is the +-distribution defined as

∫ 1

0
dz[f(z)]+g(z) =

∫ 1

0
dz
[ ′real′︷ ︸︸ ︷
f(z)g(z)−

′virtual′︷ ︸︸ ︷
f(z)g(1)

]
. (2.45)

where the first part matches the singularity in the real contribution and the second is needed
to subtract the remaining divergence in the virtual contribution. The possibility of having
a different factorization scale than the scale of the loop integrals is already included via the
factor

(
µ2/µ2

F

)ε
.

AP splitting functions describe the emissions in the collinear limit. Only gluon emission leads
to collinear divergent behaviour at z = 1, so that only the flavour diagonal Pqq and gg receive
the +-distribution. The expressions describing the splittings without regularization will also
be needed and are given by

Pqg(z) = CF
1 + (1− z)2

z
, Pgq(z) = TR

[
z2 + (1− z)2

]
, Pqq(z) = CF

1 + z2

1− z , (2.46)

Pgg(z) = 2CA

[
z

1− z +
1− z
z

+ z(1− z)
]
. (2.47)

The appearance of the term proportional to δ(1 − z) in P rgg(z) is due to conditions required
by PDFs which is the overall momentum conservation of the composite particle and charge
conservation.

As in the UV renormalization of the coupling constant, the PDF becomes scale dependent by
this and, similar to the RGE for αs, the PDFs must fulfil a differential equation. This is now,
due to the integration over the momentum fraction z and the possibility to change flavour, a
coupled set of integro-differential equations.

∂fRa (x, µF )

∂ logµ2
F

=
αs
2π

∑
b

∫ 1

0

dz

z
P rab(z)f

R
b (x/z, µF ) +O(α2

s) . (2.48)

This coupled set of DGLAP Equations describe the factorization scale µF evolution of the
PDFs used to fix a renormalization point. The renormalization of the PDFs requires, simi-
larly to the αs-renormalization, a new measurement of NLO PDFs in order to predict new
observables, other than the observable used to measure the PDFs.

2.4. NLO Cross Sections

After including all processes up to the same order in αs (real emission) and construction of
counter terms for the UV and PDF renormalization, the cross section can be calculated as a
finite and physical quantity. The NLO cross section is written as in Eq. (2.29) with

σab(x1p, x2p̄) = σLOab (x1p, x2p̄) + σV RCab (x1p, x2p̄;µ
2
F ) +O(α2

s) . (2.49)

Here the differential LO cross section is integrated over the full m-particle phase space φm for
all final state combinations {m} contributing to the process as



18 2. Theoretical Basics

σLOa,b (x1p, x2p̄) =

∫
m
dσBab(x1p, x2p̄) , (2.50)

= Nin
1

ns(a)nc(a)ns(b)nc(b)

∑
{m}

∫
dφm(p1, ..., pm;x1p+ x2p̄+Q)

1

S{m}

· |Mm,a,b(p1, ..., pm;x1p, x2p̄)|2 F (m)
J (p1, ..., pm;x1p, x2p̄) . (2.51)

Nin contains all non QCD related symmetry factors and the flux factor. The nc and ns
are factors to average the initial state colours and helicities and the symmetry factor S{m}
is needed to account for identical, indistinguishable final state particles. Expressions for the
squared matrix element are obtained by applying the Feynman rules, as described in textbooks,

e.g. [39]. F
(m)
J (p1, ..., pm;x1p, x2p̄) serves as a measurement function††† that can be used to

define cuts on the final state to receive fiducial cross sections and to define the process properly.
It can define also differential cross sections via δ-functions on integration variables of the φ{m}
phase space.

All O(αs) corrections are then collected into

σV RCab (x1p, x2p̄;µ
2
F ) =

∫
m
dσVab(x1p, x2ηp̄) +

∫
m+1

dσRab(x1p, x2p̄) +

∫
m
dσCab(x1p, x2p̄;µ

2
F ) .

(2.52)

The first term contains all renormalized, virtual contributions with the same factors and
measurement function as the Born contributions. The real emission contains one additional
final state and needs to be integrated over the φ{m+1} phase space. The symmetry and
averaging factors are also modified to match the processes with the additional emission. For
the measurement function the condition must be fulfilled that collinear and/or soft emissions
are not resolved, so

F
(m+1)
J (p1, ..., pm+1;x1p, x2p̄)→ F

(m)
J (p1, ..., pm;x1p, x2p̄) .

‡‡‡ (2.53)

The last term in Eq. (2.52) contains the collinear counter term for initial state emissions
(and/or identified final state partons, see [41]). In [41] it is given for one initial state as

dσCa (xp;µF ) =
αs
2π
Sε
∑
b

∫ 1

0
dz

[
1

ε

(
µ2

µ2
F

)ε
Pab(z)

]
dσBb (xzp) (2.54)

which can be produced by a variable transformation from Eq. (2.44) in order to have the same

PDF weights. The measurement function is now F
(m)
J (p1, ..., pm;xzp) and is also affected by

the +-distribution of P rab(z).

†††In [41] it is called a jet defining function.
‡‡‡See [41] for deeper discussion. Especially the beginning of Ch. 7 in [41].
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2.5. Catani-Seymour Formalism

Although the sum of all O(αs) contributions to the cross section is finite, the full calcula-
tion of NLO corrections need to be performed in d dimensions. The measurement function
and the phase space integration of the real emission must be translated. Together with the
fact that the PDFs are measured functions, which must be evolved to new scales, the predic-
tion of (differential) NLO corrections could not be performed with Monte Carlo integration
techniques.

The method, which was generalized to arbitrary NLO calculations in QCD for massless [41, 51]
and then extended to massive coloured partons – including SUSY partners – in [52] solves this
issue. Here, as in other approaches like FKS- [53] or antenna-subtraction [54, 55], the idea
is to use the factorising properties of IR and C divergences. A fully differential auxiliary
cross sections is constructed that can be subtracted from the real emission and added in an
integrated form to the virtual contribution.

The method proposed in [41] is based on colour dipoles. So each splitting of an emitter i
emitting an emission j is described by the sum over contributions of all colour correlated
spectators k of the emitter. A spectator is introduced to preserve momentum conservation

pµi + pµj + pµk = p̃µij + p̃µk . (2.55)

p̃µij and p̃µk are the momenta of the Born emitter ĩj and the spectator k after clustering the three
momenta. The tilde kinematics, on the right hand side of Eq. 2.55, for all dipole configurations
are given in [41] and Tab. (C.1).

The idea is to find expressions which exactly mimic the IR and/or C behaviour of the real
emission contribution in 4 dimensions but can be expressed as Born amplitudes and dipole
functions depending on the emitter-emission-spectator configuration. An important point of
the procedure is, that the measurement function of the subtracted contribution only depends
on the tilde kinematics of Eq. (2.55).

In a second step the phase space describing the real emission is factorized in d-dimensions into a
one particle reduced phase space and a one particle phase space expressed in the variables used
to mimic the real emission. The Integration of the one particle phase space is then performed
once and can be used for arbitrary processes. It is not needed to integrate the real emission
process in d-dimensions since the difference of the real emission and the Dipole expressions is
constructed to be finite. Due to the KLN theorem also the ε-poles of the integrated dipoles
must cancel.

To construct those terms in the limit where pipj → 0 the matrix element should therefore be
described by

m+1< 1, ....,m+ 1||1, ....,m+ 1 >m+1=
∑
k 6=i,j

Dij,k(p1, ..., pm+1) + not singular (2.56)

Here the left hand side is the squared Amplitude for m+1 coloured final states, without initial
state partons. The dipole terms Dij,k(p1, ..., pm+1) can then be written as
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Dij,k (p1, ..., pm+1) = − 1

2pi · pj
(2.57)

·m< 1, .., ĩj, .., k̃, ..,m+ 1| T k · T ij

T 2
ij

V ij,k |1, .., ĩj, .., k̃, ..,m+ 1 >m .

where the T s are the colour charges of the indexed particle as defined in [41], V ij,k are matrices

in the helicity space of the Born emitter ĩj. Born emitter denotes the parton which is produced
by clustering of partons i and j. The bra/ket is the m particle amplitude of the underlying
Born process where partons i and j were clustered. This amplitude has open colour and
helicity/spinor indices of the Born emitter ĩj and Born spectator k̃.

As an example dipole, the splitting of a gluon into a gluon pair within the Catani Seymour
formalism should be briefly discussed. The helicity dependent dipole part in d dimensions is

〈µ|V gigj ,k(z; y)|ν〉 = 16πµ2εαs CA

[
−gµν

(
1

1− z(1− y)

+
1

1− (1− z)(1− y)
− 2

)
+ (1− ε) 1

pipj
(zpµi − (1− z)pµj ) (zpνi − (1− z)pνj )

]
. (2.58)

where µ, ν are the Lorentz indices of the Born emitter gluon polarisation vector. z and y are
given by

z =
pipk

pjpk + pipk
=

pip̃k
p̃ij p̃k

, y =
pipj

pipj + pjpk + pkpi
, (2.59)

respectively.

The dipoles are used to mimic the singular behaviour of an arbitrary real emission matrix
element. In order to preserve the cross section and not to change infrared safe observables it
is required that the dipoles subtracting the real emission are added in an integrated form. For
this the average over the helicity states is taken. The spin-averaged dipole-kernel from above
is given by

< V gg,k(z; y) >

8παsµ2ε
= 2CA

[
1

1− z(1− y)
+

1

1− (1− z)(1− y)
− 2 + z(1− z)

]
. (2.60)

The difference between the averaged dipole function and the corresponding AP splitting func-
tion is given by the absence of (1− y) expressions in the denominators. In the collinear limit
where the AP splitting function is calculated y vanishes. In order to subtract the exact diver-
gent behaviour of the real emission contribution these factors are needed without neglecting
phase space effects. As a result the addition of all possible dipole configurations coherently
subtract the divergences.

The AP splitting functions instead subtract too much in the z → 0 region, which would
introduce another singularity. If a parton shower, which will be subject of the next chapter,
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is based on AP splitting functions/kernels this non-coherent property is solved by requiring
angular ordering [56].

(z, y)-parametrization of the factorized one particle phase space and performing angular in-
tegration, leads to a point where the terms of Eq. (2.60) or other dipole terms need to be
integrated like

Vij(ε) =

∫ 1

0
dz̃ (z̃i(1− z̃))−ε

∫ 1

0

dy

y
(1− y)1−2ε y−ε

< V ij,k(z̃; y) >

8παsµ2ε
. (2.61)

While the origin of the 1/y is basically the 1/pipj prefactor in Eq. (2.57), the factor (1 − y)
can be traced back to the change of phase space measure originating of the local recoil [57].

The integration of Eq. (2.61) leads to

Vqg(ε) = CF

[
1

ε2
+

3

2ε
+ 5− π2

2
+O(ε)

]
, (2.62)

Vqq̄(ε) = TR

[
− 2

3ε
− 16

9
+O(ε)

]
, (2.63)

Vgg(ε) = 2CA

[
1

ε2
+

11

6ε
+

50

9
− π2

2
+O(ε)

]
. (2.64)

for the various splittings. Note that we can add an arbitrary function of the form

f(y, z) = y · g(z, y), (2.65)

with g(z, y) being a polynomial in z and y to Eq. (2.60), which would not change the pole
structure, but only the finite parts.

The integrated dipoles only depend on the colour and flavour structure of the underlying Born
process and can now be accumulated into so-called insertion operators. The first insertion
operator I is given by

I({p}; ε) = −αs
2π

1

Γ(1− ε)
∑
i

1

T 2
i

Vi(ε)
∑
k 6=i

T i · T k

(
4πµ2

|2pi · pk|

)ε
. (2.66)

This form is kept for processes with coloured initial states and contains the full divergent
structure to cancel the IR and C divergences of the virtual contributions. The indices i and
k sum all (also initial states) external Born partons. And

Vi(ε) = T 2
i

(
1

ε2
− π2

3

)
+ γi

1

ε
+ γi +Ki +O(ε) , (2.67)

is obtained after counting the symmetry factors of the various real emission and Born combi-
nations. T 2

i is CF for particle i being a quark or antiquark and CA for gluons.
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The universal factors

γq = γq̄ =
3

2
CF , γg =

11

6
CA −

2

3
TRNf = β0 , (2.68)

and

Kq = Kq̄ =

(
7

2
− π2

6

)
CF , Kg =

(
67

18
− π2

6

)
CA −

10

9
TRNf , (2.69)

appear in various calculations and especially Kg will be discussed in Sec. 7.1.1.

For processes with partons in the initial state the dipoles are again constructed to capture all
divergences of the real emission. Due to the mismatch which leads to PDF renormalization
only the sum of integrated dipoles and collinear counter terms provides the pole structure of the
virtual contribution. The poles are fully included in the insertion operator I. The additional
finite insertion operators P and K are introduced to collect the remaining expressions§§§. P
depends on the factorization scale and is proportional to the regularized AP-kernels. P mainly
compensates the factorization scale running of the Born process to O(α2

s). The Operator K
collects the remaining parts.

A strong test for the correct implementation of the dipole subtraction is to demand cuts on
the variables of the dipole phase space. The calculation was performed in [58]. One requires
that e.g. for the final-final dipoles in Eq. (2.57) y ∈ [0, 1] is smaller than a fixed α. As a
consequence logarithms of this cutoff parameter α appear in the I and K operators. For
example, if only final-final dipoles are needed the only difference is to add

− T 2
i log2 α+ γi(α− 1− logα), (2.70)

to the squared brackets in Eqs. (2.62)-(2.64). Note that for α = 1 no restriction is made on
the phase space of the Dipoles and the expression in Eq. 2.70 vanishes. As a validation for the
Matchbox framework, the cutoff parameter α was implemented and can be used in the next
version of Herwig++.

Symmetry Factors

In [41] the combinations and relations between symmetry factors of real and Born processes
are evaluated. Also with respect to parton showers, see Sec. 3.2, an important result of the
discussion is, that there is a difference between final state and initial state gluon splitting.
While the final state gluon splitting produces two indistinguishable gluons, in initial state
splitting one of the gluons is determined by remaining an initial state. In the summation
of the integrated dipole configurations this produces a factor of 1/2 for final state dipole
contributions, see Eq. (7.19) in [41] for final states and e.g. Eq. (8.18) for initial states in [41].

P and K Operator

With the formulas given in [41] the integral of the P and K operator can be written as

σ(p)PK =
∑
a

∫ 1

0
dη
∑
b

∫ 1

0
dx

∫
dΦ(m)(xηp) fa(η, µ

2
F ) F

(m)
J (p1, ..., pm;xηp)

· m,b< 1, ....,m;xηp|
(
Ka,b(x) + P a,b(xηp, x;µ2

F )
)
|1, ....,m;xηp >m,b . (2.71)

§§§For identified final states an additional operator H is defined, which is not discussed here.
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where it is convenient to perform the variable transformation¶¶¶

η′ = x · η , z = x → dxdη =
1

z
dη′dz (2.72)

to get

σ(p)PK =
∑
a

∫ 1

0
dη′
∑
b

∫ 1

η′

dz

z

∫
dΦ(m)(η′p) fa(

η′

z
, µ2

F ) F
(m)
J (p1, ..., pm; η′p)

· m,b< 1, ....,m; η′p|
(
Ka,b(z) + P a,b(η′p, z;µ2

F )
)
|1, ....,m; η′p >m,b . (2.73)

This transformation has the advantage that the matrix element, as well as the measurement
function is independent of z, so that it can be integrated together with the Born and virtual
parts of the calculation without recalculation of the matrix elements. The z-integral can then
be treated as a Monte Carlo integral with one additional dimension.

2.6. Matching Fixed Order to Resummed Results

After applying the renormalization prescription physical observables become finite. However
these predicted quantities are now related to other observables measured at the renormaliza-
tion scale µR. The relation manifests itself for example in a scale dependent coupling constant.
As described above the O(αs) dependence can be related via the RGE to result in an all order
expression for αs. The leading logarithmic dependence is resummed as

αs(Q) = αs(µR)

∞∑
n=0

(−1)n
[
αs(µR)

2π
β0 ln(

Q2

µ2
R

)

]n
=

αs(µR)

1 + αs(µR)
2π β0 ln(Q

2

µ2R
)
. (2.74)

In order to explain the physical importance and to introduce the first matched expression we
think of two observables A and B. Both should be αs dependent and have a perturbative
expansion as

A = A0(µR) +A1(µR) +O(αN+2
s ) = αs(µR)NA0 + αs(µR)N+1A1(µR) +O(αN+2

s ) , (2.75)

where A0(µR) is the LO approximation and A1(µR) the O(αs) contribution to the NLO
correction. While the scale dependence of the LO approximation A0(µR) is purely17 in the
argument of αs(µR), the NLO is evaluated for a given renormalization scale µR.

The LO calculation of the observable A0(µR) is scale dependent due to the truncation of
the perturbative series. The scale µR can be chosen freely with the RGE of the running
coupling. The problem can have many scales {qi}, but we should use a ’reasonable’ scale µR

18

¶¶¶This variable transformation is the inverse of the transformation which is used to receive the P and K operator
from the collinear counter term produced with the Eq. (2.44).

17We concentrate on the RGE evolution of αs and ignore other scale dependent parameters or the renormalized
PDFs.

18As an example one can think of dijet production at a hadron collider. The transverse momentum of the hardest
jets, but also the scalar sum of all transverse jet momenta HT seems reasonable.
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in order to induce no large logarithms in the higher order corrections, see Sec. 2.3.2. Now the
measurement of the observable A by comparison to A0(µR) fixes the value of αs(µR) at this
scale µR.

Since αs is fixed, we can now predict observable B with a LO calculation at a scale µR or q with
the value of αs(µR) or αs(q), evolved with the RGE. Both predictions are then accurate at LO
since the dependence on the scale is one order higher in the perturbative expansion. By using
the αs(q) calculated via the expression above we try to catch the leading logarithmic behaviour
by guessing the scale q, again to keep the logarithms of the NLO corrections moderate. We
can therefore speak of a resummed prediction for observable Bres = B(q) when using the value
αs(q).

Expanding the LO expression for B(q) up to O(αn+1
s ) leads to

B0(q) = αs(q)
NB({qi}) = B(µR) + αs∂

1
αsBres + α2

s∂
2
αsBres +O(αN+3

s )

= αs(µR)NB({qi}) (2.76)

− Nαs(µR)N
[
αs(µR)

2π
β0 ln(

q2

µ2
R

)

]
B({qi}) +O(αN+2

s ).

Here the first line defines the ’operators’ αns ∂
n
αs , which should be seen as expansion operators.

They extract the n-th term in a Taylor expansion in αs. The O(αs) part of the inclusive,
renormalized NLO correction to the observable B takes the following form

B1(q) = αN+1
s B1({qi}, q) +O(αN+2

s )

= αN+1
s B1({qi}, µR) (2.77)

+ NαNs

[
αs
2π
β0 ln(

q2

µ2
R

)

]
B0({qi}) +O(αN+2

s )

= B1(µR) (2.78)

− αs∂
1
αsBres +O(αN+2

s ).

The scale choice of αs is already O(αN+2
s ). By adding the αs correction to the LO we can see

two properties.

On the one hand the scale q drops out at order O(αN+1
s ). This is known as scale compensation

of higher order corrections. In B1(q) the scale q is related to the scales of the process which
comes out of process dependent NLO calculations. The scale variation decreases by including
higher orders. It can still happen that for real physical processes the scale variation increases
if the NLO contributions are large, e.g. by newly opened channels.

On the other hand one can get to another interpretation. The first line in Eq. (2.76) is the
’resummed’ result B0(q). The third line of Eq. (2.76) is then the subtracted O(αs) expansion
of B(q). This gives us the first matched expression. To achieve the NLO corrected observable
we need to subtract the O(αs) expansion from the resummed expression and then add the
NLO corrections at the starting scale

BNLO = Bmatched = B0,res(q)− αs∂1
αsB0,res + B1(µR) = B0(q) + B1(q) +O(α2

s) . (2.79)
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This brief and constructed glance to resummation and matching, already gives the idea of
matching

dσmatched = dσresummed − dσres, expanded + dσfixed order correction. (2.80)

It is not conventional to introduce matching in this context, especially since this work is about
parton showers where matching is usually used in the context of resumming soft/collinear
logarithms, but we see the same properties.

The next chapter will introduce the theoretical framework of this work by starting with the
idea of parton showers and the summation of logarithms expected in all orders for exclusive ob-
servables. The chapter again ends with the description of matching LO and NLO calculations
in the presence of a parton shower.





CHAPTER 3

Theoretical Framework

In this chapter a deeper introduction into the framework of this work is given. Calculations
of fixed order cross sections are limited by the definition of inclusive observables and the
perturbative expansion itself. In order to compare theory with experimental results it is often
necessary to also predict fully differential observables and estimate the effects of higher orders
to exclusive expressions. After pointing out some of the problems of fixed order calculations
and giving examples for exclusive observables, an introduction to parton showers is given.
Followed by the discussion of parton showers based on the ideas and subtraction properties
of the Catani Seymour formalism, see Sec. 2.5, some remarks on initial state parton showers
are provided. The chapter is closed by the discussion on matching fixed order calculation at
NLO to parton shower algorithms.

3.1. Fixed Order Problems

In the perturbative expansion, it is important to define a process in an IR safe way. Since
fixed multiplicity processes suffer from IR divergences, it is necessary to define IR safe observ-
ables and to calculate all contributions up to the same order in the perturbative expansion.
Additional processes with extra emissions need to be considered in the calculations, since IR
safe observables cannot resolve soft and/or collinear emissions. For the calculation of the
fixed order it is also important to define the observables properly. This leads to the concept
of inclusive and exclusive observables: Inclusive observables, like total cross sections or decay
rates do not resolve additional emissions. Exclusive observables are defined by a resolution
parameter that is used to resolve additional QCD activity∗. If one, for example, wants to
know from fixed order calculations the two jet rate in e+e− → jets with jets/partons that can
have additional emissions with the resolution parameter yij = 2pipj/Q

2 < ymax, one needs to
calculate the NnLO with cuts on the additional emission phase spaces. This was performed
to NNLO [59]. The exclusive N3LO to this process has been performed in [60].

∗In general also additional QED and W/Z emissions, but this work concentrates on QCD emissions.
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Prominent examples of exclusive observables are:

• jet rates with resolution parameters defined with jet algorithms as defined by[61–64]
(also at hadron colliders),

• transverse momenta of electroweak bosons at hadron colliders, produced by recoiling
against QCD radiation (momentum conservation),

• and the angle between weak bosons and/or jets.

The fixed order calculations of these quantities will produce logarithms of the resolution
parameter. The leading structure of these logarithms is already given in Eq. (2.70), where the
cut on the dipoles phase space, and therefore the non cancellation of the leading behavior of
the real emission, lead to logarithms in the cutting parameter. These logarithms can become
large and need to be controlled/resummed in order to describe exclusive observables. The
result of [59] show that to second order in αs these logarithms build the first elements in an
exponential series for the quark form factor, which was suggested in [65].

The cuts on the dipole phase space are not process dependent and appear at each multiplicity.
The same holds for factorization of an arbitrary process in the soft/collinear limit. The
process with an additional soft and/or collinear emission can be factorized into a sum of
universal spitting functions and the process with one leg less. The consequences of this process
independence lead to the development of parton showers.

3.2. Parton Shower

Parton showers make use of the approximation of the real emission process in the quasi-
collinear limit to a Born process B0: ab → X + f . In terms of the Born contribution times
splitting functions

dσRab→X+{f→f ′e} ≈
αs
2π

dq2

q2
dz
dφ

2π
Pff ′(z)dσ

LO
ab→X+f (3.1)

if the partons f ′ and e are getting collinear in the final state, and

dσR{a′→a}b→X+f{+e}(fa′(x/z)) ≈
fa′(x/z)

fa(x)

dq2

q2

dz

z

dφ

2π
Pa′a(z)dσ

LO
ab→X+f (fa(x)) . (3.2)

if the parton e is emitted collinear to the incoming parton a′ in the initial state. The variable
q captures the collinear behaviour of the propagator structure of the propagator the emission
is produced from in the collinear limit. The real emission contains a changed PDF weight,
compared to the Born PDF weight, due to the changed incoming momentum fraction x/z.

Here the spin averaged AP splitting functions of Eq. (2.46) and

Pgg(z) =
2

1 + δfinal
CA

[
z

1− z +
1− z
z
− z(1− z)

]
(3.3)

are used to approximate the matrix elements with an additional emission. δfinal is 0 for initial
state gluon splitting and 1 for final state gluon splitting and compensates for the fact that the
gluons in the final state splitting are indistinguishable, see Sec. 2.5.
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dσLOa (pf , ...; z · x · pin)
z · x · pin

(1− z) · x · pin + ...

fa(z·x)
fa(z·x) = 1

x · pin

fa′(x)

pf

(1− z) · pf + ...

z · pf + ...

...

dσLOa (pf , ...;x · pin)
x · pin

1−z
z x · pin + ...

fa(x)

x
z · pin

1
z
fa′ (x/z)
fa(x)

pf

(1− z) · pf + ...

z · pf + ...

...

Figure 3.1.: The emissions in the upper picture show the time-like evolution of incoming
(and outgoing) partons, which enter – after possible emissions – the hard process. Final
state parton shower algorithms are constructed with probabilistic emissions. The momentum
fraction of the incoming parton entering the hard process is not ’known’ before the shower
reaches the hard scale/virtuality. For initial state emissions the lower, backward evolution
is favourable since the sampling of the hard process depends on the incoming momenta [66].
The difference is formally higher order but also depends on the measurement of the PDFs.

If coloured initial state particles exist one needs to take into account the change of the PDF
weight when a parton is evolved from the Born state to the real emission with raised initial
state momentum fraction [66]. The change is illustrated in Fig. 3.1 †.

In Eq. (3.2), the factor 1/z appears for the same reason as in Eq. (2.72). The Born contribution
dσLOab→X+f is calculated with momentum fraction x of the initial state hadron and is therefore
multiplied by the PDF weight fa(x) of the flavour a. The change of flavours can lead to large
PDF ratios, e.g., {a, a′} = {q, g} in the low x region but also {a, a′} = {g, qV } in the large x
region (qV is a valence quark flavour of the hadron). In this sense the real emission, and later
the shower, resolves the structure of the initial state hadrons.

The ordering in some variable qi is then important if we want to describe the leading behavior
also beyond the n + 1 process. In this case, we get the large contributions only if the sub-
sequent emissions are ordered in the variable q, which can be related to an angle, virtuality,
transverse momentum, or any ordering variable that behaves like the propagator structure in
the soft/collinear limit. If the shower is based on AP splitting kernels, which were derived
to describe the branching probability in the PDFs, one has to take care that the singularity
of the splitting functions at z → 0 is not double counted. This enhancement of wide angle
emissions is described by coherent emissions off multiple legs, where interference effects result

† In principal it would also be possible to start with a time-like evolution starting from small scales and evolve
to larger scales. With every emission produced by the showering process. The initial state momentum fraction
would change so that the weight evaluated for resonant Born processes would be very inefficient and time
consuming.
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in an destructive interference for wide angle emissions. The coherent treatment of emissions
off different legs can be described as an angular ordering [56]. Only emissions with decreasing
angles compared to the previous emissions are allowed by the shower.

The KLN theorem states that the IR divergences cancel between the virtual contributions
and the real emission contributions for unresolveable kinematics. The virtual correction can
be approximated by subtracting the real emission contributions, added as real emissions con-
tributions above the resolution parameter, below the resolution parameter. Neglecting the
change of inclusive observables due to NLO corrections, the parton shower describes exclu-
sive observables in the leading logarithmic approximation. Including more than one emission
leads to a change of the weight of the real emission since double emissions must again be
subtracted from the single emission contributions. They need to subtract from the ’no emis-
sion’/Born contribution. Different ordering variables can lead to different results. But for
multiple emissions ordered in q2, the phase space integration leads to nested integrals of the
form

∫ q20

µ2
dq2

1f(q2
1)

∫ q21

µ2
dq2

2f(q2
2) . . .

∫ q2n−1

µ2
dq2
nf(q2

n) =
1

n!

(∫ q20

µ2
dq2f(q2)

)n
(3.4)

which leads to an exponentiation of the leading behavior of a single emission as a weight
for the ”no emission” contribution. Ordering the emissions is a necessary condition for the
exponentiation. The µ in Eq. (3.4) is from now on called the shower cutoff, which prevents
the integrals from diverging as q2 → 0.

The physical picture of this shower cutoff is given by the factorization of collinear emissions
into PDF/fragmentation at the factorization scale µF in the hard, perturbative process. The
shower can be seen as a mechanism to evolve the states, factorized at scale q0 to lower scales.
This will be discussed for PDFs in Sec (3.4). Perturbation theory breaks down due to the
growing coupling constant evaluated at lower and lower q. Non-perturbative effects and the
confinement of partons into hadronic states must be handled by a model of hadronization [3,
67]. However, observables insensitive to either IR/C emissions or particle multiplicities, i.e.
inclusive observables, are less affected by the choice of µ. The shower cutoff can be seen as
a parameter of the hadronization model and must be tuned together with the parameters of
the model.

In the evolution picture, each leg of the Born process is evolved from an hard scale q0 to the
shower cutoff µ with the exponential factors, called Sudakov form factors. The expectation
value of an exclusive observable O({pi}) that can resolve emissions, is described by

〈O({pi})〉 =

∫
d{p′i}ρ({p′i})δ

(
O({pi})−O({p′i})

)
, (3.5)

where {p′i} is the set of all possible parton multiplicities that are integrated over their usual
phase spaces including momentum conservation. The density ρ({p′i}) is now approximated
with the formula
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ρ({p′i}) =
∑
sub

∫
φ0

dσsubB0
(φ0, q0)PSq0→µ [X0(φ0, q0)] , (3.6)

in which we define the parton shower ’operator’ PSq0→µ [.] ‡ as an operator that acts on
the {{pi}(φ0), {f}, {i}}-configuration X0(φ0, q0) characterized by the momenta and flavour
structure of the Born phase space point.

The summation in front of the integral contains the subprocesses of the Born process with the
same number of partons. This operator is able to produce new partons in an iterative manner
and acts on the Born configuration X0(φ0, q0) like

PSq0→µ [X0(φ0, q0)] =
∏
f,i

∆f (q0 → µ) Πi (q0 → µ)X0(φ0, µ) (3.7)

+

∫ q20

µ2

dq2
1

q2
1

∫ z+

z−

dz
αs(q1)

2π

∑
f,f ′

∏
f,i

∆f (q0 → q1) Πi (q0 → q1)


· Pff ′(z)PSq1→µ [X1(φ1, q1)]

+

∫ q20

µ2

dq2
1

q2
1

∫ z+

z−

dz

z

αs(q1)

2π

∑
i,i′

∏
f,i

∆f (q0 → q1) Πi (q0 → q1)


· fi′(xi/z, q1)

fi(xi, q1)
Pi′i(z)PSq1→µ [X1(φ1, q1)] .

The first line keeps the Born configuration with no emissions and is weighted by a Sudakov
factor for each final state external leg, exponentiating the integral of the second and third line

∆f (q0 → µ) = exp

−∑
f ′

∫ q20

µ2

dq2
1

q2
1

∫ z+

z−

dz
αs(q1)

2π
Pff ′(z)

 . (3.8)

The factor

Πi(q0 → µ;xi) = exp

(
−
∑
i′

∫ q20

µ2

dq2
1

q2
1

∫ z+

xi

dz

z

αs(q1)

2π

fi′(xi/z, q1)

fi(xi, q1)
Pi′i(z)

)
. (3.9)

is the Sudakov factor for initial states containing the PDF ratio and the functions of the
fourth and fifth line. The squared brackets in the second and fourth line have their origin in
the ordering and incorporate the fact that no harder emission took place before the splitting
at scale q1. The boundaries on the z-integration are needed to regulate the soft singularity at
z = 1, but can also be used to implement angular ordering [56].

‡ No vector space was defined properly, so the word ’operator’ should be treated more in a pictorial way, not a
strictly mathematical. In the following we drop the quotation marks.
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In principle and to break it down to the basics, the parton shower makes iterative use of the
identity

1 = e−
∫ b
a dxf(x) +

∫ b

a
dxf(x)e−

∫ b
x f(x′)dx′ (3.10)

with f(x) being the sum in Eqs. (3.1) and (3.2).

After the parton shower splits the external legs to arrive at state X1(φ1, t1), this is now
again able to evolve from q1 to lower scales of the ordering parameter, again described by
the parton shower. A new ’1’ is inserted into Eq. (3.10). Note that PSq0→µ[X0(φ0, q0)] 6=
PSq0→µ[X1(φ1, q0)] since the second operator acts on a state with an additional parton in the
final state and a potentially changed initial state.

Even if the leading logarithms can be resummed by this description, next-to-leading logarithms
play an important role in the description of nature and exclusive observables. Eq. (2.70) shows
the structure of logarithms if we make a cut in the real emission phase space as

αs
2π

(
T 2
i log2 α+ γi logα

)
,

with the γi as defined in Eq. (2.68). The leading logarithm (LL) – αs log2 – from this expression
is proportional to the Casimir of the splitting, and the next-to-leading logarithm (NLL) – αs log
– is proportional to γi, which are closely related to quark number conservation and momentum
conservation in the z integration [50].

In Addition to the two logarithms coming from the integration of the splitting functions, we
can construct two more logarithms that come from the scale choice of the argument of αs and
the PDFs. Since αs is a resummed expression in schemes like MS, if the argument of αs is
chosen to be the ordering variable, one gets O(α2

sL
3) from the expansion of αs(q1). This is

the same level of logarithm as the interference of the T 2
i and the γi term in the expansion of

the exponential, so too at NLL. The same holds for the PDF ratio from DGLAP evolution.
In this construction, the approximate ’real’ emission contributions are subtracted and in the
parton shower then exponentiated to build the LL-approximations.

NLO corrections in scale dependent schemes, will shift the scale dependence one order higher
in perturbation theory. The NLO calculation itself relates the scale used to calculate the Born
contribution and which is then used as a renormalization scale of the virtual contributions
to scales which are relevant for the process, see discussion in Sec (2.3.2). As described in [3]
higher orders can be resummed by choosing the argument of αs close to the scale of the
splitting. If the scale used to calculate the LO contribution is not related to the scales of the
process, large corrections from the NLO corrections are expected.

Various parton shower approximations differ mostly in the choice of the splitting functions
and in the choice of the ordering variable. Based on subtraction formalisms like CS dipole
subtraction or antenna subtraction, new terms were introduced more with the intention of
simplifying NLO calculations. New dipole-like parton shower terms were introduced. The
advantage of having kernels that intrinsically damp large angle emissions, respect momentum
conservation, and are at the same time used for NLO-matching will be explained in the next
section.
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3.3. Parton Shower with CS-Dipoles

The interference effects that lead to angular ordering [56, 68] are present in all kinds of real
emission amplitudes with gluons involved. A general NLO subtraction formalism for real
emission contributions like the CS dipole formalism needs to respect these effects in order to
subtract the soft gluon emissions properly. In [41] it was proven that the construction of the
dipoles approaches the real emission amplitudes in all IR regions. Momentum conservation
and the phase space measure of single dipoles are crucial to achieve the subtractive properties.
Double counting of the region z → 0 in AP showers is not present since the dipole subtractions
damp this region in a way that the sum of multiple dipoles leads to the correct behavior. The
interference effects, which led to the coherence effects, are covered by the dipoles. No angular
ordering is needed.

For the construction of, e.g. Eq. (2.57), the spin-colour-correlated matrix elements for Born
processes involving gluons, or at least the colour-correlated-matrix elements of the Born am-
plitudes, are needed to perform the subtraction. This is not handy for large multiplicity
amplitudes. One falls back to the large NC treatment of the amplitudes in the shower algo-
rithm. Spin averaged splitting functions are also provided in [41]. So in order to construct
the parton shower, one needs to invert the tilde kinematics, e.g. Eq. (2.55), and define an
ordering variable. Since angular ordering is not required with the dipole functions the choice
of ordering parameter is the pT of the individual dipole, see discussion in [69]. Also in the
argument of αs the pT of the individual splitting is used [57, 69].

In [69] and [57], inversion and modified-inverted tilde kinematics were constructed. The ques-
tion of phase space boundaries in order to exponentiate logarithms present in analytic cal-
culations was addressed in [57]. In the dipole shower of Herwig++ based on [57], additional
terms were added in order to render the kernels positive. In the subtraction formalism [41]
the positiveness of the kernels is not needed but additional powercorrections can be added in
order to interpret the splittings as probabilities . In the Sherpa shower [5] based on [69], these
are set to zero. Both treatments are beyond NLL accuracy.

In showers that do not respect momentum conservation for each emission, the momenta are
reshuffled when the showering process is finished in order to preserve the overall momentum
conservation. The choice of variables that are fixed in the reconstruction are ambiguous. The
tilde kinematics of [41] shuffle the momenta of the involved dipole only, with the exception
of initial-initial (II) dipoles. If no II-dipole is present in the process,like in DIS§ or LEP-
like beam configurations, the momenta of non-coloured objects will not be changed by the
showering process.

Radiation of II-dipoles will perform a boost on the full electroweak system, in order to keep the
initial states on the beam axis like in CS subtraction. Drell-Yan-like processes with pure initial
state qq̄ pairs that radiate a final state gluon, have no large NC connection between the initial
states after the emission. Additional gluon emissions will not change the electroweak system.
This is important for low pT observables. In [69], the scale of the initial state splittings was
chosen to be pT /2, which leads to an enhancement of the initial state radiation and therefore
a shift of the Sudakov peak¶.

§Deep inelastic scattering (DIS) describes the collision of electrons and hadrons.
¶The enhancement of emissions for small splitting scales is compensated by the no emission probability (Sudakov
form factor). This leads to maxima in various distributions like the transverse momentum of the electroweak
systems. This behaviour is called the Sudakov peak.
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Using the CS dipole shower for the purpose to match with higher order corrections has the
advantage that the shower and the subtraction are closely related, see Ch. 3.5. For the
merging of multiple LO and NLO calculations the fact that the tilde kinematics preserve
momentum conservation is valuable since the clustering of states with additional emissions
can be performed with the same kinematic constraints the shower also produces. This will
help in the construction of the merging algorithm.

3.4. Initial State Parton Showers and DGLAP Equation

The evolution Equation for the initial state shower can also be obtained by solving the DGLAP
Equations as [42]

fi(x, q0)

∆i(q0 → µ)
= fi(x, µ) +

∫ q20

µ2

dq2

q2

αs
2π

1

∆i(q → µ)

∑
j

∫ 1

x

dz

z
Pij(z)fj(x/z, q) ,

where ∆i are time-like Sudakov form factors and P (z) are the un-regularized AP splitting
functions. The Equation above is modified to

1 =
fi(x, µ)∆i(q0 → µ)

fi(x, q0)∆i(µ→ µ)︸ ︷︷ ︸
Πi(q0→µ)

+

∫ q20

µ2

dq2

q2

αs
2π

∑
j

∫ 1

x

dz

z
Pij(z)

fj(x/z, q)

fi(x, q)

fi(x, q)∆i(q0 → µ)

fi(x, q0)∆i(q → µ)︸ ︷︷ ︸
Πi(q0→q)

. (3.11)

Using an exponential ansatz like in Eq. (3.10) and ignoring phase space constrains which
regulate the soft singularity at z = 1, this leads to the solution of Eq. (3.9), which corresponds
to the idea that a parton shower evolves PDFs.

CS based showers respect momentum conservation and the splitting kernels are not the AP
kernels. Additionally final state emissions can induce changes of initial state momentum
fraction, which is the the case for FI dipoles. So too for final state splittings do PDF ratios
appear, which then are evaluated at the scale of the final state splitting [69].

Thus a shower based on CS dipoles does not reproduce the exact DGLAP Equations used to
perform the running of the PDFs. In the merging of matrix elements, where we will expand
the expressions coming from the shower and from PDF ratios, we will take care that we do
not mix shower expansion and DGLAP running.

Another comment is about the interplay between final and initial state Sudakov form factors.
Therefore we inspect an example event and review which weights the shower adds to the event.
We take a look at the event of Fig. 3.2 and the corresponding shower weights. Notice that
for 1→2 showers no PDF ratio is applied for the scale q3 since q3 is the scale of the final state
splitting. Additionally the combination of backward Sudakov and PDF ratio can be written
as, e.g.

Π(q0 → q2)
fq(x/z, q2)

fq(x, q2)
≈ ∆(q0 → q2)

fq(x/z, q2)

fq(x, q0)
. (3.12)

This replacement is illustrated in the lower diagram of Fig. 3.2.
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An exclusive event with three additional emissions:
Ordered scales of emissions q0 > q1 > q2 > q3:

q3

dσLOab (...;xa · pa, xb · pb)
q2 q1

...

Shower weights for exclusive 3 emissions (in backward evolution):

∆(q3 → µ)∆(q3 → µ)

∆(q1 → q3)Pf (z3)
αs(q3)

dσLOab (...;xa · pa, xb · pb)
αs(q2)

∆(q2 → µ)

αs(q1)

Πa(q0 → q2;xa)

Pca(z2)fc(xa/z2,q2)
z2fa(xa,q2)

Πc(q2 → µ;xa/z2)

Πb(q0 → q1;xb)

Pdb(z1)fd(xb/z1,q1)
z1fa′ (xb,q1)

Πd(q1 → µ;xb/z1)

...

Written as time-like shower:

∆(q3 → µ)∆(q3 → µ)

∆(q1 → q3)Pf (z3)
αs(q3)

dσLOab (...;xa · pa, xb · pb)

1
z2
Pca(z2) 1

z1
Pdb(z1)

αs(q2) αs(q1)

∆a(q0→q2)
fa(xa,q0)

∆b(q0→q1)
fa′ (xb,q0)

∆(q2 → µ)

fc(xa/z2, µ)∆c(q2 → µ) fd(xb/z1, µ)∆d(q1 → µ)

...

Figure 3.2.: As an example for the weights produced by the shower algorithm, the exclusive
emission of three additional partons is illustrated. The shower emissions are produced at the
scales qi. Intermediate Sudakov form factors Πi and ∆i describe the no emission probability
between two scales. The splitting is described by the AP splitting functions, which depend
on the flavour configuration and the momentum fraction zi. The scales qi are ordered and for
initial state emissions the incoming momentum fractions change. The PDF weights, how the
parton was extracted from the hadron leads to ratios for each splitting, evaluated at the scale
of the splitting. Time-like (or forward evolution) does not contain the PDF ratios, but the
parton is extracted at the cutoff scale µ.
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Neglecting phase space boundaries, the initial line can be seen as reweighted with a time-like
Sudakov form factor. This only holds, if the parton shower does reproduce a DGLAP running,
which is used to evolve the PDFs, at the order of accuracy that is demanded. The effect of
the mismatch can be neglected for LO merging but needs to be taken into account for NLO
merging. Also, the fact that we do not expect a PDF ratio for the third splitting scale q3

needs to be taken into account, see discussion after Eq. (4.9).

3.5. Matching Fixed Order NLO Corrections to a Parton Shower

In this section the matching of a fixed order calculation to a parton shower is described. We
start with the problem of double counting of real emission contributions and approximated real
emissions by the shower and see how methods like MC@NLO [6] and POWHEG [11] overcome
these problems. Parton showers are based on the assumption that IR and C divergences
factorize from the amplitudes, and that it is possible to exponentiate the leading – and next
to leading – logarithmic dependencies. The parton shower expanded up to O(αs) therefore
describes the leading behavior of the cross sections with one additional jet above the IR
cutoff. By unitarity of the parton shower and with the KLN theorem, the Sudakov form
factor expanded up to O(αs) contains the leading behavior of the sum of virtual amplitudes
and real emissions integrated to the resolution parameter. If one naively would add NLO
corrections to the parton shower the leading behavior of the real emission as well as the αs
expansion of the Sudakov would be double counted. In order to cure this issue one can use
the matching Eq. (2.80)

dσmatched = dσresummed − dσres, expanded + dσfixed order correction .

The resummed expression is given by the parton shower acting on the Born states and the fixed
order corrections is the NLO cross section without the Born contribution. Using Eq. (2.80),
the NLO cross section matched to parton shower can be written in a fully differential way and
for an arbitrary shower as [70]

dσmatched = PS[dσBu0] (3.13)

+ dσV IPKu0 +
∑
i

(PidσBθPS −DidσB) θ(qi − µ)ũ0,i (3.14)

+

(
dσR −

∑
i

PidσBθ(qi − µ)−
∑
i

DidσBθ(µ− qi)
u1||0

u1

)
θPSu1 (3.15)

+ dσR
∏
j

θ(qj − µ)/θPSu1. (3.16)

In Eq. (3.13), the parton shower acts on a phase space configuration u0 with the weight dσB
in a differential Monte Carlo interpretation. The phase space configuration uk is a general
objects that contains all information of the current state of the process. The information
on scales and momenta as well as flavour structure and phase space cuts are used to define
observables and to regularize the IR/C singularities of the Born process. So uk contains
the measurement (jet defining) functions of Sec. 2.5. The index k describes the number of
additional particles with respect to the Born process. When the parton shower acts on these
configuration, they can be transformed to describe more additional particles. The tilde on ũ0,i

denotes that the dipole i receives its configuration with no additional emission from clustering
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to the tilde kinematic, see Sec. 2.5. The ambiguity of u1||0, whether the contribution contains

an emission or not is addressed below. dσV IPK in Eq. (3.14) contains the virtual correction,
the integrated dipoles and the collinear remainders in the sense of Eq. (2.73). The second
term in Eq. (3.14) is the difference between the dipoles – or other constructions to perform
subtraction of the real emission‖ – and the expressions the shower is build on. We will call
this the shower approximation. Note that the θPS is used to restrict the shower phase space
to the region accessible for the first shower emission. The θ-function is used to keep all shower
contributions above the shower cutoff µ. It should be also reminded that if the shower is based
on the AP-kernels, angular ordering must be imposed to get the correct singular limit (see
Sec. 2.5). It is important that the θPS exactly reflects this behaviour. While Eqs. (3.13) and
(3.14) have Born-like kinematic, the phase space configurations/measurement functions u1 of
Eq. (3.15) contain one additional parton. Here, the real emission is subtracted by the shower
approximation [70] if the phase space point is reachable by the shower and above the shower
cutoff. If the scale of the splitting is below the shower cutoff, the exact dipole is subtracted.
Outside the shower phase space /θPS , the real emission is added without subtraction Eq. (3.16).

If the emission of a parton is below the parton shower cutoff, which is labelled as unresolved
by the shower, there is no counter part coming from the shower. The fixed order calculation
contains the dipole contributions, which is subtracted from the real emission. There is an
ambiguity in the event interpretation of this part. This ’bridge cross section’ can contribute
to the Born-like kinematics u0 or the real emission phase space configuration u1, so u1||0.
Since the subtraction formalism needs to be IR safe this contribution can only be a power
correction. The ambiguity is labelled as the ratio of phase space configurations u1||0/u1 in
Eq. (3.15). The ratio, describing the ambiguity must also be applied to the real emission
contribution if the real emission phase space point shows configurations below the shower
cutoff, which is suppressed in favour of readability∗∗.

The MC@NLO and POWHEG approach are different from Eqs. (3.13)-(3.16). The difference is
basically that the shower acts on dσmatched a second time. Since PS[PS[.]] = PS[.]†† this does
not change Eq. (3.13) but will change the other contributions. The change is formally O(α2

sL
2)

if the shower claims to be NLL and O(α2
sL

3) if the shower reproduces the LL approximation,
hence the procedure will not change the accuracy of the shower process. Due to the unitarity
of the showering process, inclusive observables will not be changed, so that the accuracy of
the fixed order correction is not modified.

It is known that the ratio between NLO and LO

K =
σNLO
σLO

(3.17)

called the K-factor‡‡ can be large The size of the K-factor can have different reasons, which
are not necessarily scheme independent. In [71] or [72] it is stated that the bulk of the

‖We will call the subtraction formalism dipoles in the following, but formally we are not restricted to this as
long as the IR limit is properly reached.

∗∗In principal one can add arbitrary contributions to the dipoles and the corresponding counterparts in the
integrated forms of the I, P and K operator that do not destroy the subtraction properties. In order to have
a cancellation between dipoles and their corresponding counterparts, the choice should be u0.

††After the shower operator was applied to some configuration, the scales are evolved to the shower cutoff. So
multiple operations will not change the contributions.

‡‡ We will use K-factor synonymously for inclusive and differential definitions of observables.
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large cross section of Drell-Yan processes and especially Higgs-Boson production is due to
the π2 terms originating from analytic continuation of logarithms with negative argument
log(−s2

ij/Q
2) = log(s2

ij/Q
2) − iπ in combination with newly opening channels in the real

emission. The shape distortion due to newly opening channels like ug initiated Z production
is partly captured by the shower, even if the value of the cross section is not changed, the
shape of the Sudakov peak depends on the PDF ratios in backward evolution. On the other
hand, π2 contributions will not be covered by showering and it is not clear that those terms
are exponentiated since other power corrections can become important at higher order in the
perturbative expansion, which then reduce or enlarge the cross section. Such large corrections
are either part of the hard function of an analytic resummation or exponentiate. In both cases
it is clear that they should not be stored at the Born kinematic but also be contributing to the
emission phase space. Showering the virtual and real contributions will give a shower shape
in the IR region but will still correct the ’hard’ region, where only real emission contribute
without shower subtraction. Both MC@NLO and POWHEG shower the ’π2’-terms, but lead
to different results.

The difference between MC@NLO and POWHEG§§ can be summarized in the choice of which
parts of Eqs. (3.13)-(3.16) should be set to zero, or at least be suppressed. For MC@NLO,
the shower is chosen close to the subtraction formalism. In this respect the second term in
Eq. (3.14) vanishes if one neglects the phase space restrictions and large NC colour structure
of the shower. For POWHEG, the parton shower is modified for the hardest emission¶¶, so∑

i PidσB is chosen to be dσR. This will remove the first term in Eq. (3.15). If the phase space
of the shower is not restricted and one uses the u0 option in Eq. (3.16), then all contributions
are projected to Born-like kinematics. The advantage of choosing the real emission as the
shower approximation is that the events are mainly positive, where the name POsitiv-Weight
Hardest Emission Generator (POWHEG) originates. The disadvantage is that the ratio of
real emission and Born contribution needs to be exponentiated. Interference effects and, e.g.
final state weak boson emissions, are part of the POWHEG-Sudakov factor.

The difference between POWHEG and MC@NLO in regions of phase space that are not acces-
sible by the LO process and which are filled by either the shower or, in the case of fixed order
calculations, by the real emission contributions, can become large, although they are formally
of the same logarithmic accuracy. The LO accurate description of the observables testing these
regions in NLO calculations is modified by the NLO corrections of the underlying process as
well, especially Regions that are not accessible by the shower due to different restrictions on
the shower phase space between POWHEG and MC@NLO. Since the POWHEG Sudakov
for the first emission must reproduce the real emission contribution, the phase space of the
emissions cannot be restricted for hard emissions. Here the LO and extra NLO contributions
are then distributed over the full real emission phase space. In the case of MC@NLO, the
pieces of the matched cross section, which are generated with LO like kinematics, receive the
showering of the underlying Born process, which is restricted.

§§Here the expressions MC@NLO and POWHEG refer to the nowadays commonly used terms of combining
parton showers with NLO calculations. In the meantime also other POWHEG-like and MC@NLO-like have
been constructed that take into account phase space boundaries for POWHEG, e.g [70]. Originally MC@NLO
is the general matching and POWHEG is a form of MC@NLO.

¶¶It is not always given that the hardest emission is the first. Especially for angular ordered showers like Herwig.
Here it is necessary to inject softer but wide angled emissions with the help of an truncated showering algorithm,
see e.g. [73, 74].
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Figure 3.3.: Plot taken from [75]. The comparison between MC@NLO and POWHEG shows
for Higgs production large differences in the tail of the distributions. While the MC@NLO
approach restricts the emissions from Born-like configuration to the shower phase space, the
POWHEG (without damping factor, see [75]) allows emissions from the Born-like configura-
tion into the full real emission phase space. The ’NLO’ distribution describing the transverse
momentum of the Higgs pHT contains pure real emission contributions. The MC@NLO distri-
bution shows the same behaviour as the real emission/LO H+j above the hard scale of the
shower MH (for Born-like configurations).

This behaviour can be seen in Fig. 3.3. In [75], the comparison is made between MC@NLO
and POWHEG. The large K-factor of Higgs production via gluon fusion leads to large differ-
ences between MC@NLO and POWHEG. This difference between the two matching schemes
happens for well-separated emissions and scales between partonic states. These regions can
also be described by LO and NLO calculations, which then predict the observables with same
or higher accuracy. This motivates the combination of multiple NLO corrections. How this
can be achieved in a consistent way is part of the following chapters.





CHAPTER 4

Merging Matrix Elements and Parton Showers

This chapter is dedicated to the theoretical framework of merging multiple LO matrix elements
with parton shower simulations. In Sec. 4.1 we introduce a shorter notation to keep the
following formulas readable. In Sec. 4.2 we describe and review the formalism of merging
fixed order matrix elements to a resummed parton shower calculation. Overlapping parton
shower phase spaces and the consequences are shown. Changes to inclusive observables at
O(αs) are investigated in Sec. 4.6. The effort of controlling these differences leads to an
unitarization prescription. A clustering algorithm based on the CS-dipoles is given in Sec. 4.5.
Discussions on unordered histories, the smoothness and accuracy of merging are studied in
Sec. 4.6 and Sec. 4.7.

4.1. Change of Notation

In the previous chapters the notation was introduced in a way that is common in high energy
particle physics. In the following chapters the formulas will be extended. Therefore this
section is used to introduce a shorter but still precise notation. We start with the inclusive
cross section of Eq. (2.29)

σ(p, p̄)X =
∑
a,b

∫ 1

0
dη fa(η, µ

2
F )

∫ 1

0
dη̄ f̄b(η̄, µ

2
F ) σab(ηp, η̄p̄, µ

2
F )X ,

which we rewrite in the perturbative expansion as

σ(p, p̄)X = B0(µF,R)u0 +
∑
i=0

Vi(µF,R)ui +
∑
i=1

Bi(µF,R)ui +
∑
i=0

Ci(µF,R)ui +
∑
i=0

O(αi+2
s ) .

Bi(µF,R) in this notation corresponds to the Born-like phase space weights, including real
emission contributions as Born-like structures. Vi(µF,R) contains renormalized one loop cor-
rections and Ci(µF,R) carries the weight of the collinear counter terms needed for composite
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initial states. The expressions in O(αi+2
s ) contains higher than one loop corrections. All

weights including the PDF and αs weights are included in Bi, Vi and Ci. The integral and
sum over the full phase space and flavour combinations are carried out implicitly. Bi and
Vi contain at least the final state X and i additional parton emissions. ui is introduced in
Sec. 3.5 as the phase space configuration containing the information on the current state of the
process. This configuration can change by applying the shower algorithm. The information is
used to define observables containing jets, as is is done in [41] with the jet defining functions.
For IR/C safe observables the results obtained by the information of ui+1 and ui are equal,
when the additional emission becomes soft/collinear.

The u0 and ui can, as in Sec. 3.5, be used to introduce cuts in the phase space. In this case
the cross section measured is not the inclusive cross section. The combination

σ(p, p̄)X+i = Bi(µF,R)ui + Vi(µF,R)ui +Bi+1(µF,R)ui+1 + Ci(µF,R)ui , (4.1)

defines the NLO cross section to the process with i additional emissions from the process X.
Without cuts defined, the expression is divergent. For i additional separated partons Eq. 4.1
is finite and written as

σNLOi =
[
Bi + V̄i(µR, µF ) + IPKi

]
ui +

∑
j

Dj ũ
j
i +Bi+1ui+1 .

Here, V̄i contains the UV renormalized virtual amplitude for i additional separated partons.
IPKi contain the insertion operators from the CS formalism for the process with i additional
emissions. Bi+1 is the real emission and Di are the CS dipoles.

Now the notation for the parton shower is reduced to the essentials. The formula for the
iterative parton shower Eq. (3.7)

PSQ0→µ [X0(φ0, Q0)] =
∏
f,i

∆f (Q0 → µ) Πi (Q0 → µ)X0(φ0, µ)

+

∫ Q2
0

µ2

dq2
1

q2
1

∫ z+

z−

dz
αs(q1)

2π

∑
f,f ′

∏
f,i

∆f (Q0 → q1) Πi (Q0 → q1)


· Pff ′(z)PSq1→µ [X1(φ1, q1)]

+

∫ Q2
0

µ2

dq2
1

q2
1

∫ z+

z−

dz

z

αs(q1)

2π

∑
i,i′

∏
f,i

∆f (t0 → q1) Πi (Q0 → q1)


· fi′(xi/z, q1)

fi(xi, q1)
Pi←i′(z)PSq1→µ [X1(φ1, q1)] .

is reduced to
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PS0 [u0] = u0∆Q0
µ + αs(q1)

f1(q1)

f0(q1)
∆Q0
q1 P1(z)PS1 [u1] . (4.2)

In this short notation ∆a
b contains the full Sudakov form factor for initial and final state

radiation from a hard scale a (upper index) to a softer scale b (lower index). The phase space
integration is taken implicit as a property of P (z), which now also contains 1/2π. f0(q1) is the
PDF weight of the flavour and momentum fraction x before the splitting evaluated at the scale
of the splitting. f1(q1) is the new PDF after the backward splitting. For final state emissions
of 1 → 2 showers this ratio is one since no flavour change and x variation is induced. For
dipole-like showers with momentum conservation at each emission the initial state spectator
parton can change its momentum fraction. The ratio is still one if the emission is produced
by pure final-final-dipoles, so if the emission is not changing the x-values of any of the initial
states, the PDF ratio is one.

Iterating Eq. (4.2) multiple times, describing multiple emissions, we can write infinite emissions
as

PS0 [u0] = ∆Q0
µ u0 (4.3)

+ αs(q1)
f1(q1)

f0(q1)
∆Q0
q1 P1(z)∆q1

µ u1 (4.4)

+ αs(q2)
f2(q2)

f1(q2)
P2(z)∆q1

q2αs(q1)
f1(q1)

f0(q1)
P1(z)∆Q0

q1 PS2 [u2] (4.5)

=
∞∑
i=0

 i∏
j=1

αs(qj)
fj(qj)

fj−1(qj)
∆
qj−1
qj Pj(z)

∆qi
µ ui. (4.6)

where the first line describes no resolvable emission from the u0 configuration. This is sup-
pressed by the Sudakov form factors (∆Q0

µ ). The second line contains one exclusive emission

at scale q1. No emissions are produced with a harder scales (∆Q0
q1 ) or between the scale q1

and the shower cutoff µ (∆q1
µ ). The emission can change the flavour of the initial state, which

introduces the PDF ratio and the scale of the αs weight is the one used in the showering pro-
cess∗. The procedure of no-emission/emission/no-emission. . . continues and can be summed
as in Eq. (4.6).

4.2. LO Matrix Element Merging

In the following LO Matrix element merging is described with the notation of the last section.
We can write the weights of the process with an additional emission in the IR/C limit as

∑
B1(q0) ≈

∑
B0(q0)αs(q0)

f1(q0)

f0(q0)
P1(z).† (4.7)

∗The ordering variable and the argument of αs are in general different, we write αs(q1) for simplicity.
†Note that B0 contains f0(q0) which is removed by the PDF ratio.
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In this expression we write once the
∑

, which takes into account that B1 is defined as the
fully differential weight of a phase space point calculated for a given flavour and momentum
configuration. The sum which is implicitly performed in P1(z) has more than this explicit
configuration. Also to approximate B1 one needs more than just one B0. The sum on both
sides needs to be taken. In the following this sum is taken implicit.

Multiple ordered emissions can be approximated as

BN (q0) ≈ B0(q0)
N∏
j=1

αs(q0)
fj(q0)

fj−1(q0)
Pj(z). (4.8)

Only the first PDF of B0 in the denominator and the last PDF weight survives since all fi<N
are divided in the next factor. Dividing the αs and PDF factors of Eq. (4.8) and multiplying
those of Eq. (4.6) in order to produce a exclusive uN state leads to

∆qN
µ

fN (qlsN )

fN (q0)

N−1∏
j=0

αs(qi+1)

αs(q0)

fj(qj)

fj(qj+1)
∆
qj
qj+1BN (q0) ≈ B0(q0)∆qN

µ

N∏
j=1

αs(qj)
fj(qj)

fj−1(qj)
∆
qj−1
qj Pi(z).

(4.9)

Here an index shift is used to get

f0(q0)

fN (q0)

N∏
j=1

fj(qj)

fj−1(qj)
=
fN (qN )

fN (q0)

N∏
j=1

fj−1(qj−1)

fj−1(qj)
=
fN (qlsN )

fN (q0)

N−1∏
j=0

fj(qj)

fj(qj+1)
. (4.10)

If the emission is not associated with the initial state, the PDF ratio is one, since qj = qj+1

in the PDF ratios of the shower. Only if the splitting is changing the initial state momentum
fraction the PDF ratio has to be taken into account. qlsN in the PDF ratio on the lhs is the
scale of the last splitting associated with a change of the initial state momentum. This is
indicated by the ls.

On the right hand side of Eq. (4.9) we constructed the expression for the N ’th component of
the parton shower after the showering process. No further emissions will take place above the
infrared cutoff µ. The left hand side is therefore the expression of an exclusive N -additional-
emission state. By inserting this expression we arrive at a LO merging formula

PS0

[
σmergedu0

]
=

∞∑
i=0

 fi(q
ls
i )

fi(q0)

i−1∏
j=0

αs(qj+1)

αs(q0)

fj(qj)

fj(qj+1)
∆
qj
qj+1Bi(q0)

∆qi
µ ui. (4.11)

This expression was formulated with different notations and techniques in several approaches.
The first for e+e−-collision defined merging is named CKKW standing for the names of the
inventors Catani, Krauss, Kuhn and Webber [15]. The ’events’ produced by fixed order
calculations for several multiplicities need to be interpreted with a shower history, meaning
the path the shower would have most probably produced the event. This can be done by a jet
algorithm that subsequently clusters the partonic states. Scales, corresponding to the ordering
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variable of the shower, are assigned to the clusterings (backward splittings). For these scales
the weights of Eq. (4.11) have to be calculated. In [15] the Sudakov factors were calculated
in an analytical form that can become larger than one. Since it should be still interpreted as
an probability they set the factor to one if the NLL-expression of the Sudakov form factor is
larger than one.

The reweighting of the shower history is performed with a different approach in [16], named
CKKW-L‡. In this approach the Sudakov suppression is found from trial showers. One con-
structs the processes which are seen by the cluster algorithm, then applies the appropriate
scales and if the shower acting on this states, produces emissions above the next scale the
event is discarded. In this manner one produces the no emission probability the shower would
have produced, up to ambiguities in the clustering choice. The problem with Sudakov factors
larger than one does not apply for this. It is possible that the weights of the events in singular
regions of the phase space are either zero or very large for weighted events or many of the
produced events are discarded for unweighted events.

In Fig. 4.1 the Sudakov suppression expected from the CS dipole shower is plotted against
the NLL Sudakov expression used in [15]. While for small scales the dipole shower is close to
the NLL expression the dipole shower does not exceed one due to the positive definite kernels
in the physical phase space. The dipole shower expression was implemented in Mathematica
to validate the implementation of the merging algorithm.

In the version of the CKKW algorithm for initial state hadrons [76] only time-like Sudakov
factors are used, it is found that PDF ratios are not needed. This can easily be understood in
the combination of Eq. (4.11) and Eq. (3.12). The backward evolution Sudakov form factors
in Eq. (4.11) (∆j

j+1 contains Π(qj → qj+1)) can be rewritten with Eq. (3.12) into a time-like
Sudakov factor and a PDF ratio. The PDF ratio is the inverse of the ratios of Eq. (4.11). In
this case the PDF need to be evaluated at the merging scale.

Since we are not using AP kernels for the merging, we keep in mind that the PDF ratio is
needed. On the other hand, we want to keep the notation compact and define

∆0
i :=

fi(q
ls
i )

fi(q0)

i−1∏
j=0

αs(qj+1)

αs(q0)

fj(qj)

fj(qj+1)
∆
qj
qj+1 and ∆i

µ := ∆qi
µ , (4.12)

so that we can write merging like

PS0

[
σmergedu0

]
=
∞∑
i=0

∆0
i∆

i
µBi(q0)ui . (4.13)

While the Sudakov factor§ ∆0
i contains all weights, which describes the shower history to get

to the state Bi(q0), the second Sudakov form factor ∆i
µ makes the state exclusive to the scale

µ. In the following the lower indices µ or ρ define the second Sudakov form factor.

‡ Lönnblad
§∆0

i includes αs and PDF ratios, so the name Sudakov factor is understood in a generalized way.
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Figure 4.1.: Mathematica implementation of a Sudakov form factor for a qq̄ pair with
Q0=91.2 GeV. Comparing the CS dipole expression (blue) with the NLL (purple) expression.
The NNL,I (brown) corresponds to the ’improved’ NLL Sudakov factor given in appendix A
of [77]. While the NLL expression and the Dipole shower expression are close in the region
of small q, the NLL Sudakov factor is larger than one in the hard region. The exponent of
the dipole Sudakov factor is negative definite and has the property that the Sudakov factor is
smoothly approaching unity at the upper phase space boundary.

Practical Implementation

The sum up to infinite number of emissions is in practice not possible, since the evaluation of
matrix elements with many (infinite) legs and phase space integration of those is not possible.
One therefore stops at a given finite number N of final state emissions and starts the shower
evolution of these states

PS0

[
σmergedu0

]
=

N−1∑
i=0

∆0
i∆

i
µBi(q0)ui + PSN

[
∆0
NBN (q0)uN

]
. (4.14)

The last term has no Sudakov factor ∆N
µ . This factor represents the probability to get no

emissions from the BN state. BN in the last term is an inclusive state. By acting with the
parton shower one reproduces the same Sudakov suppression and additional emissions.

Another problem arises for low values of µ. Even though the Sudakov form factors regularize
the individual parts of the sum the matrix elements get divergent as well. This can lead to
numerical instabilities due to the evaluation/estimation of the Sudakov factors. To achieve
numerical stability and efficiency a scale is introduced which separates the matrix-element-
from the shower-region (ME/PS-region). This scale is called the merging scale ρ. The def-
inition of such a scale is in principal not trivial since usually there is a mismatch between
choosing such a scale from final state kinematics and the evolution variable of the shower.

All clustering scales, of the clustering algorithm¶, for the first clustering need to be above
the merging scale. This introduces a product of θ functions in Eq. (4.14) on all possible

¶like the jet algorithm in CKKW.
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Figure 4.2.: Illustration of the region which is not filled by emissions from emitter a if the
vetoed showering is simply vetoing emissions above the scale ρ. While the region can be
separated into above and below scale ρ for a single emitter, the division into matrix element
region ME and vetoed shower region PSV produces dead regions †a of individual emitters a
by simple vetoing. See Eq. 4.18 for further explanation.

clusterings. Underlying clusterings to construct a history of shower emissions can turn out
to be below the merging scale, if the momenta are reshuffled while clustering. In this case it
is not a ordered clustering with respect to the shower. Shower histories are constructed by
ordered shower emissions only.

For the splitting between ME- and PS-region one needs to construct an algorithm that can
produce

PSµ[φ0] = PSVµ[PSρ[φ0]]. (4.15)

Here, PSµ and PSρ are of the same kind, but with different cutoffs, and PSVµ is a construction
that fills the rest of the phase space

ΦPSVµ = ΦPSµ\ΦPSρ . (4.16)

with emissions according to the probability of the parton shower.

If the evolution variable of the shower and the variable which is used to calculate the cut
between the two regions are the same, the PSVµ can be achieved by starting the shower from
the last splitting scale before PSρ ended and veto all emissions with scales above the merging
scale ρ. This vetoing then leads to the name ’vetoed shower’.

If the merging scale differs from the shower evolution variable one finds gaps between the two
regions, which needs to be filled. The procedure is called a truncated shower [19].

Partly Open Vetoed Showers

In our implementation we see that by merging matrix elements to a CS-dipole shower we
need to be careful in the description of the vetoed shower. The vetoed shower described above
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assumes that there is a scale to evolve and that emissions can be assigned in a unique way by a
jet algorithm to a leg. Emissions from the parton shower can be assigned to one emitter. This
is true for angular ordered showers without overlapping phase spaces. CS-like dipole showers
and CS dipole subtraction however works in a way that IR/C-enhancement is approximated
and divergences are subtracted by the sum of the dipole contributions. Therefore the phase
space of dipoles overlap. The assignment of clusterings/splittings is not unique.

As a consequence it can happen that hard wide angled emissions from an emitter can be –
also by the effects of recoils – collinear to the spectator of the dipole. So we need to be more
detailed in describing the vetoing algorithm.

In order to see the details we split up the Sudakov from factor for a qq̄ pair by rewriting it as

∆q0
µ = exp

∫ q0

µ

∑
i=a,b

dPi(qi, zi)

 (4.17)

= exp

∫ q0

µ

∑
i=a,b

dPi(qi, z)
(
θaρθ

b
ρ + θaρ/θ

b
ρ + /θ

a
ρθ
b
ρ + /θ

a
ρ/θ
b
ρ

) (4.18)

= exp

∫ q0

µ

∑
i=a,b

dPi(qi, z)θ
a
ρθ
b
ρ + dPb(qi, z)/θ

a
ρθ
b
ρ + dPa(qi, z)θ

a
ρ/θ
b
ρ

 (4.19)

× exp

∫ q0

µ

dPb(qi, z)θaρ/θbρ + dPa(qi, z)/θ
a
ρθ
b
ρ +

∑
i=a,b

dPi(qi, z)/θ
a/θ
b
ρ

 (4.20)

= exp

∫ q0

µ

∑
i=a,b

dPi(qi, z)θ
i
ρ

× exp

∫ q0

µ

∑
i=a,b

dPi(qi, z)/θ
i

 (4.21)

= ∆q0
ρ ×∆V,q0

µ (4.22)

In Fig. 4.2 the regions of Eq. (4.18) are illustrated. The θiρ’s describe regions of the phase

space where the scale to emit a parton i is above the scale ρ. /θ
i
ρ stands for the region in PS

where the emission is below the scale ρ for the splitting i. We have two possibilities to emit
a gluon from an colour dipole with overlapping phase spaces. The breakdown of the phase
space in Eq. (4.18) can be seen as all/one/no emission are/is above the scale ρ.

If we write the sum explicitly, we can sort the terms such that the emission itself is above the
scale ρ, even if the scale with respect to the other emitter is below the scale ρ. In the following

we used that θaρθ
b
ρ + θa/θ

b
ρ = θaρ to separate the phase space into regions where the assigned

spitting is above the scale ρ. With this we can split the Sudakov expression ∆q0
µ into a region

where the assigned spitting is always above and one where it is always below.

A naive vetoed shower starts with trial emissions that are vetoed if they produce a larger
scale than the merging scale. This is exactly the second exponential of Eq. (4.21). We see
that in principle and on the first look the vetoed shower Sudakov factor ∆V factorizes from
the previous shower Sudakov factor with the cutoff ρ. But, in Eq. (4.19) we can identify the
ME-region θaθb. It is defined by the condition, that all splitting scales are above the merging
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scale. So only the first part of the line represents the ME-region, while the other two belong
to the PS-region. These parts of the Sudakov exponent/phase space are not filled by the ME
since they have scales lower than the merging scale. The emission described by the kernel Pa
is not performed in a vanilla veto shower, since the scale corresponding to Pa is above ρ. This
region is now defined as dead region of emitter a. Even if we use the same scale the shower
uses for ordering, the dead region is not filled by a, by the fact of overlapping phase spaces
of individual splittings. The region of phase space is still filled by the vetoed showering of
emissions from kernel Pb, which are enhanced in this region.

If we would have only one emitter, the region can be separated between above and below the
scale ρ. For overlapping dipoles phase spaces the region where both scales are above the scale
is the green area on the right graph in Fig. 4.2. Emissions below the scale ρ are not described
by matrix element, but the emission of leg a is also not possible by naively vetoing, because
it is above the scale ρ.

We can fill the dead region by proposing a partly open vetoed shower, meaning that an
emission is accepted if any of the scales calculated for possible splittings – other than the
actual splitting – is lower than the merging scale. This fills the dead region with emissions
from lower multiplicities.

The parts of the sum in the merging description in Eq. (4.14) that can fill the dead zone
is always the lower multiplicities. The lower multiplicity however is weighted with ∆i

ρ in
Eq. (4.22) which already contains the suppression coming from the dead regions. So we need
to modify the algorithm in order to not get a double counting of this areas in the suppression.

One way to achieve this would be to calculate the Sudakov factor in the merging formula
Eq. (4.14) with a trial shower like the CKKW-L description then calculate all scales for
possible reclusterings and only suppress the contribution if all scales are above the merging
scale. In other words, calculate the Sudakov suppression for exactly the ME-region. With
such a procedure one can then fill the dead region and the region below the merging scale
with a vetoed shower that accepts emissions in these regions.

4.3. Changes of Inclusive Observables and Restoring Unitarity

In the following a description is given that was introduced to modify the merging in a way
that inclusive observables are not modified by the merging procedure. This description will
naturally change the way how to calculate the ∆i

ρ and will solve the described problem auto-
matically.

The ideas presented in this section are mainly founded on the observations made in the
LoopSim approach [78], which used unitarity to mimic higher order effects in regions of phase
space with expected large corrections. The transfer to parton showers was seen in [22, 30].
The ideas and some extensions are presented in the following.

The approximation made in Eq. (4.8) can also have intermediate steps

BN (q0) ≈ BN−1αs(q0)
fN (q0)

fN−1(q0)
PN (z) ≈ ... ≈ B0(q0)

N∏
j=1

αs(q0)
fj(q0)

fj−1(q0)
Pj(z), (4.23)
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where the approximation of BN gets worse from left to right. In the merging description
we replaced order by order in the sum.‖ With Eq. (4.23) the difference between the shower
approximation of multiplicity i and the inclusion of matrix elements in the merging prescription
is

∆0
iBi(q0) + ∆0

i−1∆i−1
ρ Bi−1(q0) ≈ ∆0

iBi−1αs(q0)
fi(q0)

fi−1(q0)
Pi(z) + ∆0

i−1∆i−1
ρ Bi−1(q0). (4.24)

The change of the scale dependent αs and PDF ratio is included in the definition of ∆0
i .

The second summand on both sides is the same and was written out to make the following
arguments comprehensible. On the right hand side we have the shower emission in the first
contribution and the no emission contribution in the second term. The left hand side receives
the matrix element corrected expression to this. The difference is of O(αs).

For LO merging this is not a problem, since the correction is not in the accuracy the fixed order
calculation is producing. If we want to include NLO corrections to the merging in the second
step we need to take care that the LO merging does not change the inclusive expressions at
the same order of the NLO corrections.

To fix the difference of Eq. (4.24) but to keep the matrix element corrections to the shower
approximations, we can modify the second terms on the left side of Eq. (4.24). The ∆i−1

ρ can
be written in an schematic∗∗ way as

∆0
i−1∆i−1

ρ Bi−1(q0) = ∆0
i−1

(
1−

∫ qi−1

ρ
αs(q)

fi(q)

fi−1(q)
Pi(z)∆

i−1
q

)
Bi−1(q0) (4.25)

We replace the no emission probability from the scale qi−1 to ρ by one minus the emissions
probability††, which is the basic formula for parton showers in Eq. (3.10). This integration
in Eq. (4.25) is written explicitly and differs from the implicit phase space integration of the
exclusive states. The difference is that the integral has to be performed in a way that the
’emission’ described by P (z) is not resolvable, so no additional parton is produced. Pi is not
changing ui−1 as for shower emissions.

It was identified [22, 30, 78] that the same parts which where used to replace the shower
emissions with matrix elements, can be used to restore the unitarity of the cross section.
Eq. (4.24) can be modified as

PSi−1

[
∆0
i−1Bi−1ui−1

]
≈ ∆0

i−1

[
PSṼµ[Bi−1(q0)ui−1] − PSVµ[ui−1

∫ qi−1

ρ
∆i−1
i Bi(q0)]

+ PSµ
[
∆i−1
i Bi(q0)ui

] ]
. (4.26)

‖In principal one could only replace individual multiplicities, and use the parton shower for other multiplicities.
In such a procedure one would veto parton shower events which exactly produce the multiplicity of the replaced
sample.

∗∗Schematic since we do not write out the variables of the phase space integration.
††The implicit sum over all possible emissions may not be forgotten. It is present in the exponent of the Sudakov

factor ∆i−1
ρ and implicite in the splitting functions.
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PSṼ
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Figure 4.3.: The unitarized merging replaces the matrix element region of the exponentiated
phase space of the Sudakov factor. The dead region of Fig. 4.2 can now be filled with the
unsuppressed lower multiplicity, see Eq. (4.26).

Notice that the seeming difference in the scales of αs and the PDFs is absorbed in the difference
between ∆i−1

i and ∆i−1
q , see Eq. (4.12). The index of ui/i−1 illustrates the numbers of

emissions. While the term in the first line are phase space configurations with i − 1 extra
emissions, the term in the second line on the right hand side is the part with one additional
resolvable emission above ρ. The phase space integration is here again implicit.

The two expressions in Eq. (4.26) containing Bi differ only in the phase space configuration
u, if the phase space is identical, which is discussed in Sec. 4.6. Inclusive observables, defined
by not resolving additional emissions, are not modified by the inclusion of matrix elements,
to the merging.

In Eq. (4.25) the replacement of the no emission probability is exact. The replacement in
Eq. (4.26) requires that all scales are above the merging scale, so the integration is performed
strictly in the matrix element region of the merging. By that we replace the no emissions
probability from the last scale to the merging scale with the requirement that the integration
in the Sudakov form factor is in the matrix element region. Compared to Eq. (4.18) we
replaced the expression

exp

∫ q0

µ

∑
i=a,b

dPi(qi, z)θ
a
ρθ
b
ρ

 . (4.27)

The regions where any of the scales associated with a clustering is below the merging scale
can now be filled with the first term on the right hand side of Eq. (4.26).

Therefore we define two types of vetoed parton showers PSṼµ and PSVµ in the first line
of Eq. (4.26). While PSṼµ allows emissions in the dead regions, PSVµ only emits below
the merging scale. Because we subtract with the integral exactly the contributions coming
from the ME region, but not the dead regions, the emissions from PSṼµ will produce the
correct amount of emissions in the dead region. In Fig. 4.3 the regions filled by the various
contributions are illustrated.



52 4. Merging Matrix Elements and Parton Showers

By construction we see that after phase space integration the terms containing Bi in Eq. (4.26)
cancel for inclusive observables ui = ui−1. Since we did not restrict ourself on explicit i this
holds for every multiplicity. Inclusive observables therefore are unchanged at O(αs). Exclusive
observables on the other hand receive matrix element corrections.

The explicit integral on the extra emissions in Eq. (4.26) is written in a schematic way. A
way to perform it would be in a POWHEG motivated way. One would produce in a practical
implementation phase space configurations ui−1 and then produce extra emissions from this
to calculate the weight of the ’real emission’. In our implementation we produce phase space
configurations for the ui kinematic and cluster these as

∑
j

∫ qi−1

ρ

wj∑
k wk

ũji−1∆i−1
i Bi(q0) . (4.28)

The normalized wi/
∑

k wk, see Sec. 4.5 for details, is the probability to cluster the phase
space configuration ui to get the ’history’ of the parton shower, meaning the sequence of
clusterings/splittings the algorithm/shower would assign/produce to get from ui/u0 to u0/ui.

4.4. Review 1

To review the changes to the parton shower introduces by the LO merging and as described
in the previous section by unitarization of inclusive observables we illustrate in Fig. 4.4 the
formulas given in the text. Although the arguments given in the description are not completely
depicted, the basic ideas can be fetched.

The upper blocks illustrate the pure shower effects acting on an LO contribution. Starting
from an Born configuration additional emissions are produced in the shower approximation
(orange blocks in the next line). The probability to remain in the starting configuration is
expressed by the Sudakov form factor multiplied to the line. The sum of the blocks in the line
and the first block in the next line is given by the value of the first block of the line by the
unitarity of the parton shower. The inclusive cross section is not changed.

In standard LO merging algorithms (middle blocks) the splitting above the merging scales
is replaced by the matrix element and weighted with the Sudakov suppression in order to
produce ’exclusive’ states above the merging scale. ∆i

i+1 contains the scale changes to the αs
and PDF rations the shower would have produced. Each state is further suppressed – either
with analytic expressions or trail showering – to get exclusive states from the last splitting to
the merging scale. The cross section is changed by the difference of the parton shower and
the matrix elements.

The last Sudakov form factor ∆i
ρ is replaced by subtraction of the same matrix element

corrections used in the merging. This corrects for the changes induces for inclusive observables
at the O(αs). In order to include NLO corrections the merged LO sample must be controlled
to receive no changes at the same O(αs) as the corrections will produce. The unitarity of the
parton shower is restored.

4.5. Dipole Shower Clustering

The implementation of merging is driven by the Dipole shower described in [57]. For clus-
tering back the emissions the tilde kinematics outlined in [51] are used. All possible flavour
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Parton Shower:
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Figure 4.4.: Reviewing the steps of from the pure parton shower over standard LO merging
to the unitarization prescription described in the text. The description of the blocks is given
in Sec. 4.4. Note that this illustration should only serve as a summary and to guide the eye
through the formulas.

combinations are already included in the clustering to tilde kinematics and no clusterings like
uc → g are described by the CS dipoles. The clustering contain all inverse splittings the
shower would also produce if the shower was able to work in the NC = 3 mode with colour
correlations. When there are different possibilities to cluster from φn to φ̃in−1 the clustering
should be based on the probability the shower would have produced the emission. To keep
the clustering as close to the shower algorithm as possible we are using the pT definition of
the shower as the ordering variable. Also only large NC colour connected emitter-spectator
pairs‡‡ are considered in the clustering algorithm, as the shower radiates from large NC colour
dipoles only.

The cluster algorithm in steps:

1. Produce a phase space point for n external momenta φn.

2. Check if all tilde-Kinematics φ̃in−1 have a piT larger than the merging scale ρ. This
defines the ME region.

‡‡To check if a Pair is colour connected we calculate the colour correlator in the large NC limit and check if the
result is not vanishing.
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3. Collect all underlying φ̃in−1, with the requirements:

• If n = 1: φ1 needs to be in the shower phase space of φ̃i0 for a shower starting scale
Qh
§§.The shower phase space has the requirement that the piT is lower than the

last scale (Qh or previous pT ) and the z-boundaries for the emission are respected.
The z-boundaries are given in Tab. (C.1).

• If n > 1: There is a
˜̃
φjn−2(φ̃in−1) with p̃jT (Qh for n = 2 ) for which φn is in the

shower phase space of φ̃in−1 with starting scale p̃jT .

• The large NC colour correlator for the emitter spectator pair of φ̃in−1 does not
vanish.

4. Select one of the φ̃in−1 collected in step 3. with the normalized probability wi. In this
implementation we chose the weight wi to be,

wi = |Pi(φin, φ̃in−1)/Bn−1(φ̃in−1)| (4.29)

with Pi being CS dipole in the shower approximation [70], which is close to the shower
splitting weights.

5. Repeat step 3 and 4 for φ̃in−1 until there are no further next ordered steps.

In [70] it is shown that, if the initial colour lines are chosen proportional to the weights of the
squared colour-flow amplitudes, see e.g. [79], the expression expected from the parton shower
is proportional to [70, 80]

|MPS|2 =
∑
α,β

− 1

T2
ij

〈M|Tk ·Tij |M〉
|M|2

∣∣∣∣∣
N→∞

Pij,k|M|2 , (4.30)

with the spin averaged splitting kernels Pij,k. |M|2 is the squared Born matrix elements and
the ratios are evaluated in the large NC colour-flow limit. The shower approximation Pi is
therefore the spin averaged CS dipole, evaluated in the large NC limit and reweighted with
the ratio of the full colour and large NC Born matrix element squared.

After applying the cluster algorithm, we arrived at a given φ̂n−m. If n = m we found a full
history of possible shower emissions. In this case we assign the shower starting scale Qh(φ̂0)
to the process. In the case that n > m we got a not fully ordered shower history and therefore
assume that the shower would not fill these parts of the phase space. In this case we need to
define a new starting scale for the process Qkh(φ̂k>0). In this implementation we use

Qkh(φ̂k>0) = max(Qh(φ̂k),min(2pipj)) , (4.31)

where Qh(φ̂k) is the scale generated by the same instructions as are applied to the φ0 and
min(2pipj) is the minimum of invariant masses of all coloured particles. This choice is moti-
vated by the fact that the process is treated as a new process the shower would not produce
and if the emissions are very hard the scales should take this into account. In Drell-Yan like
processes the first hardest emission with pT > MX will therefore be evaluated with a scale
larger than MX which would be a natural choice for the process with an additional emission.

§§Qh is a scale related to φ̃i0, it is calculated as the shower stating scale of a not merged sample.
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φ2φ̃ from FI/IF φ̃ from II

Boost

Figure 4.5.: Schematic example event in the middle. Clustering with FI or IF dipoles leads
to unchanged momentum of the electroweak system while II dipoles can lead to a boost of
the full system. This boost can then lead to ’longer’ histories, if the first emission is in the
shower phase space due to the boost, depicted by the blue line. This will lead to artifacts of
the cluster algorithm so that we conclude that the clusteralgorithm must not depend on the
length of the history.

Note that in the clustering algorithm the phase space points
˜̃
φjn−2 is only used to provide the

scale p̃jT or Qh. We do not require that φ̃in−1 is in the shower phase space of
˜̃
φjn−2. Requiring

that and choosing only longest histories, would lead to artifacts of the clustering algorithm.
An example is given in Fig. 4.5 where an enhanced collinear emission of the first emitted
parton can lead to ’longer’ histories due to the boost of II dipoles. The probability that the
shower would have produced the emission from a II dipole is suppressed, but if the clustering
depends on the length of the history the clustering with the II dipole would be preferred. The
given cluster algorithm is independent of the length of the history.

4.6. Unordered Histories

In Eq. (4.26) a way to preserve unitarity is introduced. The integral in Eq. (4.26) was defined
as the integral which is performed in the Sudakov form factor. Also the boundaries on the
phase space are defined in that way. In processes where the parton shower is used for backward
DGLAP-evolution, like in LHC processes, there is more energy in the process by emitting a
parton, even though the scale is decreasing. The phase space of the process with an additional
parton is larger than the assumed parton shower phase space which is restricted by the scale
of the hard process, in order to exponentiate the logarithms of the hard scales.

If the parton shower is seen as a solution to the DGLAP equations, see Eq. (3.11), no harder
emissions can be produced than the factorization scale used in the PDF weights of the hard
process. If the scales of the subsequent clusterings cannot be ordered they are seen to be finite
contributions which are not covered by the inclusive measured PDFs.

We therefore add them to the cross section. This type of cluster sequence is then called a
unordered history, since it is not ordered in the sense of the parton shower emissions. In
the case of multiple emissions it can happen – as already pointed out in Ch. 4.5 – that the
clustering does not trace back to the original process. In that case we define the lowest
multiplicity with an ordered history to be the new hard process or new seed process. If we
find at least one clustering which is ordered this will not change the cross section.

The contributions from first emissions of Z boson production that are above the hard scale,
e.g. the mass of the Z boson, are parts which will be included in the real emission of the NLO
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calculation. Since we add the finite, unordered contributions, for which no clustering can be
found in the LO merging we must be careful to not add them to the merging with higher order
matrix elements. This will be achieved by the requirement that if all clustering scales of the
real emission are above the merging scale and the clustering of Ch. 4.5 finds no clustering the
real emission contribution is set to zero.

An other example for unordered histories is the real emission contribution qq̄ → Hg to gg → H
in an effective Model with ggH couplings and strictly massless quarks. The final state gluon
cannot be clustered to the incoming partons since no Born process is present. These finite
contributions are added without unitarization since they are corrections not covered by the
parton shower.

4.7. Remarks on Merging Smoothness and Accuracy

As discussed in Sec. 4.3 we correct the difference of the cross section produced by Bn by
subtraction of the Bn−1 contributions. The effects at the merging scale need to be analysed.
Below the merging scale is the region of phase space where the vetoed shower produces emis-
sions from the seed process and the clustered process with one additional emission. Above
the merging scale the phase space region is filled by the process with one additional emission.
The contributions at the merging scale can be schematically written as

∂σ/∂q|ρ−ε =

(
B0 −

∫ Q0

ρ
B1∆0

1

)
P (ρ) and ∂σ/∂q|ρ+ε =

(
B1∆0

1

)
|q1=ρ , (4.32)

where the integration of all variables not describing the evolution scale is performed. The
expressions for the corresponding parton shower contributions is, since the parton shower is
not affected by the merging scale

∂σPS/∂q|ρ±ε =
(
B0∆0

1

)
P (ρ). (4.33)

The difference between pure parton shower and merged expressions from above the merging
scale is given by the difference between the explicit martix element and the corresponding
parton shower expansion, B1 −B0 · P .

Below the merging scale the difference is given by the difference of the Sudakov expressions,

∆ρ−ε =

∫ Q0

ρ
(B1 − P ·B0)∆0

1. (4.34)

This strongly depends on the ability of the shower to mimic the matrix element corrections
inside the shower phase space. The logarithmic accuracy of this relation is one order higher
than the accuracy of the shower. So (N)NLL if the shower is (N)LL accurate. Since the
additional emission of the (vetoed) shower is necessary the order is increased again for the
difference at the merging scale.

Non logarithmic contributions like interference effects of s-channel with u- or t- channel di-
agrams in V+j production, or the contribution of final state electro-weak radiation in pure
electro weak production are not covered by the shower. These can lead to O(αs) differences
at the merging scale.
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4.8. Notation of Merged Cross Sections

Using the LO merging of multiple LO contributions with a parton shower, we define the
merged samples for the Process A as

A(0, 1, 2, ..., N) = AV (0) +AV (1) + ...+AV (N − 1) +A(N) (4.35)

if matrix elements where merged up to N additional emissions. The upper index V at the
individual multiplicities is labeling the fact that these contributions are vetoed above the
merging scale. The last multiplicity A(N) is not vetoed.

Note that e.g. the multiplicity with no additional emission, contains the process itself and the
clustered process with one additional emission

AV (0) = AṼ (0)−AVC (1). (4.36)

Here the process AṼ (0), with no additional emission, is showered with possible emissions in
the dead region.





CHAPTER 5

Merging Matrix Elements and Parton Showers with NLO Corrections

For NLO merging it is important to distinguish which parts of the NLO calculation are already
taken into account by the tree level merging. As in matching of fixed order NLO calculations
to a patron shower, the problem of double counting must be solved, see Sec. 3.5. In Sec. 5.1,
we show the concepts behind the method and start with a basic NLO matching prescrip-
tion. Since these are corrections to the first LO we use the notation of the previous section
to define the NLO corrections to this process as A(0∗, 1, ..., N). In Sec. 5.2 we describe the
merging prescription in the presence of an additional NLO correction, accordingly defined as
A(0∗, 1∗, 2, ..., N). Here, we describe the corrections and expansions needed to reach NLO ac-
curacy above the merging scale. In Sec. 5.3 we review the merging to achieve A(0∗, 1∗, 2, ..., N)
and show which properties are required to expand the procedure for higher multiplicities with
the abbreviation A(0∗, 1∗, ...,M∗,M+1, ..., N). The last part of this chapter is used to include
scale variation parameters to the merging algorithm, see Sec. 5.4.

5.1. Merging with NLO Corrections to the First LO

For the purpose of matching the merged expressions with corrections to the seed ∗ process,
we write the parts of a tree level merging of two LO matrix elements explicitly as

A(0, 1) = PSṼ0[u0B0(q0)] (5.1)

− PSV0

[∑
i

ũi0

∫ q0

ρ

wi∑
j wj

B1(q0)∆0
1

]
(5.2)

+ PS1

[∑
i

u1B1(q0)
wi∑
j wj

∆0,i
1 θPS

]
(5.3)

+ PS1

[
u1B1(q1)/θPS

]
(5.4)

∗We are dealing with multiple Born processes, so the seed process is the Born process of the lowest multiplicity.
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The first line is the vetoed parton shower, allowed to emit into the dead region. Eq. (5.2) is
produced by the unitarization prescription. Corresponding to the unitarized part, the third
line are the parts from the LO merging above the merging scale. The last term contains phase
space regions which are not available by the shower emissions, namely the unordered histories
of Sec. 4.6. As a short notation this is labelled with /θPS .

To match this ’resummed’ parton shower formula with the NLO calculation we make use of
the matching formula (2.80)

dσmatched = dσresummed − dσres, expanded + dσfixed order correction .

To perform the matching this requires an αs-expansion, also below the merging scale and in
the dead region. We expand Eq. (5.1) to get

PSṼ0[u0B0(q0)] = u0B0(q0)∆V,0
µ ∆D,0

ρ (5.5)

+ u1B0(q0)
∑
i

PiθPSθ(qi < ρ)∆V,0
qi ∆D,0

ρ ∆qi
µ (5.6)

+ u1B0(q0)
∑
i

PiθPSθ(qi > ρ)

1−
∏
j

θ(qj > ρ)

∆D,0
qi ∆qi

µ +O(α2
s) (5.7)

= u0B0(q0)

1−
∑
i

∫ q0

µ
PiθPS

1−
∏
j

θ(qj > ρ)


+ u1B0(q0)

∑
i

PiθPSθ(qi > µ)

1−
∏
j

θ(qj > ρ)

+O(α2
s). (5.8)

Eq. (5.6) is the expansion of the emissions below the merging scale produced by the vetoed
shower, Eq. (5.7) belongs to the dead region emissions. Both satisfy the bracket in Eq. (5.7) so
that these can be collimated. It is worth to make clear that if any scale is below the merging
scale the sum over all Shower approximations has to be taken. It should also be mentioned
that the large-NC colour structure the shower produces has to be taken into account. Both
vetoed showers are not changing the cross section, so that ∆V,0

µ and ∆D,0
ρ are the no emission

probabilities for emitting outside the matrix element region. Their explicite form is given by
the exponentiation of Eq. (5.6) and Eq. (5.7). Their O(αs) expansion is therefore the same as
for the explicit emissions into the shower regions.

The expansion of Eqs. (5.2) and (5.3) leads to

(5.2) + (5.3) = −
∑
i

ũi0

∫ q0

ρ

wi∑
j wj

B1(q0) + u1B1(q0)θPS . (5.9)

Note, that the weights wi/j disappear in the second addend, since here only the Sudakov
weight depends on the shower history, but still are present in the first term. In the first term
the phase space configurations ũi0 depends on the clustering path of the LO merging.

We recall the NLO correction as

dσNLO0 =
[
B0 + V̄0(µR, µF ) + IPK0

]
u0 +

∑
i

Diũ
i
0 +B1u1
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with V̄0 being the UV-renormalized virtual correction and IPK0 being the sum of integrated
dipoles and collinear remainder from PDF renormalization. B1 is the real emission contri-
bution and is integrated over the φ1 phase space. The dipoles Di however must be added
in a fixed order calculation into the tilde-kinematics ũi0 to cancel against their integrated
counterparts.

If we precisely add the NLO O(αs) contributions and subtract the expanded ones we get the
matched/merged A(0∗, 1) compared to the merged A(0, 1) as

A(0∗, 1) = A(0, 1) + u0

(
V̄0 + IPK0

)
(5.10)

+
∑
i

ũi0

∫
ρ

(
wi∑
j wj

B1(q0)θPS −Di

)∏
j

θ(kjT > ρ) (5.11)

+
∑
i

ũi0

∫
µ̃

(PiB0θPS −Di)

1−
∏
j

θ(kjT > ρ)

 (5.12)

+ u1

(
B1(q0)−

∑
i

PiB0θPSθ(qi > µ̃)−
∑
i

Diθ(qi < µ̃)

)1−
∏
j

θ(kjT > ρ)


(5.13)

θPS assures that we are not double counting contributions occurred as finite contributions of
the LO-merging process as well as it keeps the shower approximation in the region where the
shower can produce emissions. θPS enters Eq. (5.11) in an integral where all dipoles have
scales above the merging scale. So if we perform the same clustering as we did in the LO
clustering and find that the real contribution cannot arise from a parton shower emission we
counted this already and need to set θPS = 0 in order to prevent double counting. Since all
individual scales are above the merging scale we know that the contributions in Eq. (5.11) are
finite. The sum over the individual tilde-kinematics is weighted with the clustering weights.
If we sum all contributions into the same ũi it would destroy either the αs expansion of the
resummed expression or the fact that dipoles and Insertion operators cancel. We point out
that at this point the Real emission contribution is always clustered to dipoles which are colour
correlated in the large NC limit, if the Shower also works in the large NC approximation.

Eq. (5.13) contains contributions which are below the merging scale. Since there is no matrix
element correction from the merging, this must be added in the real emission kinematic. A
subtraction of the shower approximation like in MC@NLO takes place. This happens only
below the merging scale compared to the MC@NLO approach where the shower approximation
subtracts in the full shower phase space.

We introduced the variable µ̃ which should be close to the shower cutoff µ. However one can
also set µ̃ larger than µ to gain numerical stability. The stability suffers from the fact that the
shower approximations are calculated in the large-NC limit and with spin averaged splitting
functions which are also used in the shower.

Note that the parts of Eq. (5.13) below µ̃ can also be stored in the Born kinematics below the
cutoff as,

u0θ(µ̃ > q1)

(
B1(q0)−

∑
i

Di

)
. (5.14)



62 5. Merging Matrix Elements and Parton Showers with NLO Corrections

This is the same part as Eq. (3.16) and was already discussed in Sec. 3.5. There it was
discussed that one is able to choose without destroying the accuracy of the shower nor the
inclusive NLO calculation in which kinematic configuration the expressions should be included.
In the following we choose the Born-like kinematics†.

The formulas given in Eqs. (5.10)-(5.13) are based on the expansion after the showering/resum-
mation process. As a consequence no showering should be performed after the replacement.
But again as in the matching description described in Sec. 3.5 one can argue that the contri-
butions should be showered after performing the matching. So to be clear what is done in the
merging algorithm for A(0, 1) and A(0∗, 1), we renew the definition of A(0∗, 1) to be

A(0∗, 1) := PS[A(0∗, 1)] . (5.15)

As discussed in Sec. 3.5 the reapplication of the shower operator does not change already
showered contributions. It only effects the subtracted expanded and NLO contributions.

To see the effect of writing the NLO correction in this way, we should take a look at the
properties if we vary the merging scale ρ.

Restoring standard NLO matching for ρ→ q0

If ρ = q0 there is no merging scale and no vetoed shower, so we end up with

A(0∗, 1) = PS0

[
u0(B0(q0) + V̄0 + IPK0)

]
(5.16)

+ PS0

[∑
i

ũi0

∫
µ̃

(PiB0θPS −Di)

]
(5.17)

+ PS1

[
u1

(
B1(q0)−

∑
i

PiB0θPSθ(qi > µ̃)−
∑
i

Diθ(qi < µ̃)

)]
(5.18)

+ PS1

[
u1B1(q1)/θPS

]
. (5.19)

This is exactly the expression for the matched cross section in Eqs. (3.13)-(3.16) with additional
showering of the O(αs) parts. The merging with an enhanced merging scale is therefore as
accurate as the MC@NLO or POWHEG approach, which is an important feature.

At the merging scale ρ

At the merging scale we have for tree level merging the difference

δρ = B1∆0
ρ −

∑
i

Pi ·B0∆̃0
ρ (5.20)

where ∆̃0
ρ is for unitarized merging part of the right hand side of Eq. (4.26) and for standard

tree level merging part of the left hand side. The two Sudakov form factors differ in non

† Since after the calculation on parton level the particle momenta are reshuffled to their constituent mass in
order to enter the cluster hadronization, which can lead to event rejections for very collinear or soft emissions
we decided to store these contributions in the Born-like kinematics in favour of the inclusive cross section. Also
the fact that in principal arbitrary non singular power corrections can be added to the subtraction dipoles,
which need to cancel against their integrated counterparts favours the choice of Born-like kinematics.
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singular parts and are identical for standard tree level merging. The difference between B1

and
∑

i PiB0 appears in the way how the NLO corrections are inserted to the tree level merging
in Eq. (5.13) without the Sudakov form factor and thus compensates for the difference in the
tree level merging up to order αs. δρ is of order NNLL if the shower is NLL and thus an
improvement on the αs is as good as it can be, since no logarithmic improvement at the
merging scale due to NLO insertions should be expected, if the shower catches the logarithmic
structure of the process.

In the middle left plot of Fig. 7.7 we can see that the NLO corrections improve the behaviour
by a smoother continuation below and above the merging scale. We further see that the
MC@NLO result is similar to the results of the matched/merged NLO inclusion described
above.

We state again that the NLO calculation must be independent of the dipoles and the cor-
responding integrated counter part, so we need to ensure that the dipoles are clustered in a
sensible way. An algorithm, which aims to do this is given in Appendix A.

5.1.1. Review 2

The formulas can, as it is done in Sec. 4.4, be illustrated to review the steps so far. The
upper blocks in Fig. 5.1 illustrate the LO merged sample with emissions below and above the
merging scale. The shower emissions are produced in the full shower phase space with the
exclusion of the matrix element region. The θPS in the purple block illustrates, that the LO
sample is unitarized if the additional emission is in the shower phase space of the underlying
configuration. The θPS is implicitly defined in Pi.

The LO merged sample is expanded up to O(αs). Emissions of the unitarized expressions are
O(α2

s). Expansion of the shower emission and the Sudakov expression for emissions outside
the matrix element region produces subtraction terms for this region labelled with /θME . The
expanded LO merging expressions in the matrix element region produces the real emission of
the fixed order calculation itself. The unitarized expression has a reduced multiplicity due to
the clustering to the underlying Born configuration.

O(αs) expressions of the fixed order NLO correction are illustrated by the blocks in the middle
of Fig. 5.1. Dipole expressions are included with Born-like kinematics (tilde kinematics), which
is effectively a clustering/integration. Notice, that they need to cancel against their analytic,
integrated counterparts in the IPK-operators.

Adding the O(αs) expressions of the fixed order NLO correction and subtracting the O(αs)
expansion of the shower, produces a picture close to the matching description of MC@NLO.
Each contribution has a counterpart, collected into the same block. Contributions that are
added as finite corrections to the LO merging are not double counted, since the ’real emissions’
is clustered solely inside the shower phase space. These blocks must now be added to the LO
merged sample.

As a comparison we can also illustrate the matching for fixed order NLO corrections and
parton shower, see Eqs. (3.13)-(3.16), with this building blocks. Here the shower expansion
needs to be subtracted in the full shower phase space and since no merging scale is applied all
building blocks receive a showering in the full parton shower phase space.

We introduced the merging of LO matrix elements with up to one additional NLO correction.
By preserving the LO cross section it is possible to match NLO corrections without destroy-
ing the accuracy of the aimed precision. In the next section we show how to include NLO



64 5. Merging Matrix Elements and Parton Showers with NLO Corrections

LO merging (with emissions outside ME region):

B0 −
∫

∆0
1B1θPSθME ·∆V

µ

P1∆0,V
1 B0/θME P1∆0,V

1 (−
∫

∆0
1B1θME)θ<

∆0
1B1θME

O(αs) expansion:

O(α0
s) −

∫
B1θPSθME −

∫
P1/θMEB0θPS

P1B0/θME O(α2
s)

B1θME

O(αs) of NLO contributions:

V̄0 + IPK0 −
∫
D1

B1

Adding O(αs) NLO contributions and subtracting O(αs) expansion:

V̄0 + IPK0

∫
(B1θPS −D1)θME

∫
(P1B0 −D1)/θME

(B1 − P1B0)/θME

As a comparison NLO matching, see Eqs. (3.13)-(3.16):

B0 V̄0 + IPK0

∫
(P1 −D1)B0

(B1 − P1B0)

Figure 5.1.: Reviewing the steps to get from unitarized LO merging to the inclusion of the
NLO correction to the seed process. The description of the blocks is given in Sec. 5.1.1. As
in Fig. 4.4: Note that this illustration should only serve as a summary and to guide the eye
through the formulas.



5.2. NLO Merging with Two NLO Corrections 65

corrections by following the procedure of expanding the shower expressions and including the
fixed order corrections.

5.2. NLO Merging with Two NLO Corrections

For the purpose of merging multiple NLO calculations, we start again with explicit merging
of two NLO corrections. Therefore we write the LO merged expression for the LO merged
cross section with up to two additional emissions described by matrix elements as

A(0, 1, 2) = PSṼ0[u0B0(q0)] (5.21)

− PSV0

[∫ q0

ρ

∑
i

wi∑
j wj

ũi0B1(q0)∆0,i
1 θ1

PS

]
(5.22)

+ PSṼ1

[
u1B1(q0)

∑
i

wi∑
j wj

∆0,i
1 θ1

PS

]
(5.23)

− PSV1

∫ q1

ρ

∑
i,k

wik∑
j,l wjl

ũk1B2(q0)θ1
PSθ

2
PS∆0,ik

2

 (5.24)

+ PSṼ1

[
u1B1(q1)/θ

1
PS

]
(5.25)

− PSV1

[∫ q1

ρ

∑
k

wk∑
l wl

ũk1/θ
1
PSθ

2
PSB2(q0)∆1,k

2

]
(5.26)

+ PS2

u2

∑
i,k

wik∑
j,l wjl

∆0,ik
2 B2(q1)θ1

PSθ
2
PS

 (5.27)

+ PS2

[
u2

∑
k

wk∑
l wl

∆1,k
2 B2(q1)/θ

1
PSθ

2
PS

]
(5.28)

+ PS2

[
u2B2(q1)/θ

1
PS/θ

2
PS

]
. (5.29)

The first three lines and the fifth line are already present in Eq. (5.1). The expressions
of Eq. (5.24) and Eq. (5.27) correspond to the phase space configurations for which a full
ordered shower history can be found. Eq. (5.24) is the clustered contribution originating from
the unitarization prescription. The weights have two indices for the first and for the second
clustering. We can also label each history with just one index, but we will see below, that in
many cases we can sum over all subsequent clusterings, leaving just a dependence on the first
clustering weight. The expression in Eq. (5.26) and (5.28) describe regions of phase space,
for which a first clustering above the merging scale can be found, but no second within the
shower phase space of the seed process. Eq. (5.29) contains all the phase space configurations
for which all scales are above the merging scale, but no first clustering can be found within
the phase space of the underlying process, no unitarization expression is subtracted since this
is added as an finite addition to the LO merging.

To match with fixed order calculations we need to expand this expression in αs as for the case
of the first NLO correction.
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Eqs. (5.21) and (5.22) are used to include the first NLO correction in order to correct for B0.
Additional emissions from these contributions can be of the same O(αs) as the second NLO
correction but are always below the merging scale or in the dead region in the first place. If
we aim to merge NNLO this contributions will need an αs expansion up to α2

s. For the second
NLO correction we require that we find a first emission which is above the merging scale.

The next term that needs to be expanded to O(α2
s) with respect to B0 is Eq.

(5.23) = u1B1(q0)
∑
i

wi∑
j wj

θ1
PS

(
1 + αs∂

1
αs∆

0,i
1 + αs∂

1
αs∆

q1,D,i
ρ ∆q1,V,i

µ

)
(5.30)

+
∑
k

uk2Pk(q0, q
k
2 )

(
1−

∏
l

θ(klT > ρ)

)
B1(q0)

∑
i

wi∑
j wj

θ1,i
PS +O(α2

s). (5.31)

The ∂1
αs must be read as an operator projecting out the O(αs) part in an Taylor expansion,

which was introduced in Eq. (2.76). The appearance of the product of θ-functions is analog
to Eq. (5.8).

We use the expression Eq. (4.12) to get

αs∂
1
αs∆

0,i
1 = αs

[
∂1
αs

f i1(q1)

f i1(q0)
+ ∂1

αs

f i0(q0)

f i0(q1)
+ ∂1

αs

αs(q
i
1)

αs(qi0)
+ ∂1

αs

∑
k

∆k,i,q0
q1

]
(5.32)

Note that u1 is independent but the expansion depends on the weights wi. We expand the
’path’ the LO merging has gone. In the algorithm this can be respected by clustering the u1

contributions in the same way as the LO cluster algorithm and then expand the terms along
this clustering history. This implies that if the clustering found a splitting in a II dipole, which
only changes the PDF of the emitter, the PDF expansion is only performed for this. But also
if the spectator parton changes the momentum fraction, the expansion is needed.

A similar result was found in [29] where they point out that the αs expansion from the PDF-
ratio can be, using the DGLAP-equation

∂

∂ log(q2)
fi(x, q) =

∑
j

∫ 1

x

dz

z

αs
2π
P̂ij(z)fj(x/z, q)−

αs
2π
fi(x, q)

∑
j

∫ 1

0
dzP̂ji(z) ,

written as

fi(x, q1)

fi(x, q0)
= 1 +

αs
2π

log

(
q2

1

q2
0

)∑
j

∫ 1

x

dz

z
P̂ij(z)

fj(x/z, q0)

fi(x, q0)
−
∑
j

∫ 1

0
dzP̂ji(z)

+O(α2
s).

(5.33)

In [29] both initial state PDFs are expanded for each step, what is not done in this work. We
will go into detail on this choice in the discussion of Eq. (5.44) at the end of this section.

The expansion of the αs-ratio is

αs(q1)

αs(q0)
= 1− αs

2π
β0 log

(
q2

1

q2
0

)
+O(α2

s), with β0 =
11

6
Nc −

2

3
TRNf . (5.34)
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The expansion of ∆k,q0
q1 for a DGLAP-like shower is for

final states ∆k,q0
q1 = 1− αs

2π

∑
i

∫ q20

q21

dq2

q2

∫ z+

z−

dzP̂ik(z) +O(α2
s) (5.35)

and for

initial states ∆k,q0
q1 = 1− αs

2π

∑
i

∫ q20

q21

dq2

q2

∫ z+

x

dz

z
P̂ki(z)

fi(x/z, µF )

fk(x, µF )
+O(α2

s) (5.36)

Comparing Eq. (5.36) and Eq. (5.33) one can see the correspondence between the DGLAP
Equation and the backward evolving initial state shower up to phase space effects given by
z+ and the difference of splitting kernels used in the shower compared to the AP kernels. In
our implementation we keep these expansions clearly separated, since phase space effects and
changed kernels both contribute at O(αs), although they are not logarithmically enhanced.

Finally the last part in (5.30) is a pure no emission probability which is the counter part to
the emissions in (5.31). The αs expansion is

∂1
αs∆

q1,D,i
ρ ∆q1,V,i

µ = −
∫ ρ

µ

∑
k

Pk(q0, q
k
2 )θPS

(
1−

∏
l

θ(klT > ρ)

)
+O(α2

s). (5.37)

The sum over weights and phase space constraints in Eq. (5.31) translates into the restriction
that qk2 must be reachable from any underlying clustering. This is why the sum over the
weights and θiPS is replaced by the i-independent θPS . Also in Eq. (5.31) the i dependence
drops and is replaced by θPS .

To finalize the expansion of the A(0, 1, 2) cross section, we need to expand the contribution
proportional to B2 as

(5.24) + (5.26) = −
∫ q1

ρ

∑
i,k

wik∑
j,l wjl

ũk1B2(q0)θ1
PSθ

2
PS (5.38)

−
∫ q1

ρ

∑
k

wk∑
l wl

ũk1B2(q0)/θ
1
PSθ

2
PS +O(α2

s)

= −
∫ q1

ρ

∑
k

w̃k∑
l w̃l

ũk1B2(q0)θ2
PS +O(α2

s) , (5.39)

and

(5.27) + (5.28) = u2B2(q1)/θ
1
PSθ

2
PS + u2B2(q1)θ1

PSθ
2
PS +O(α2

s) (5.40)

= u2B2(q1)θ2
PS +O(α2

s) .

We used that there is no dependence on the first emission, respectively the second clustering i
in Eq. (5.38). We therefore define w̃k =

∑
iwik. In Eq. (5.40) we use the obvious /θ

1
PS+θ1

PS = 1.

So with this we have all the expressions for expansions of the merged cross section with three
combined LO contributions. These are not all contributions of the order of the second NLO
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correction above the merging scale. While merging the first NLO correction we argued that
the O(αs) expressions which where added should be showered with the phase space available
for the Born-like contributions. So acting with the shower on this contributions will lead to
emissions above the merging scale, which are ofO(α2

sL
2), so formally from the fixed order point

of view O(α2
s) with respect to the seed Born-like process. These parts must be subtracted.

From the practical point of view it is convenient to veto emissions from the first NLO correc-
tions if they are above the merging scale. We are not subtracting the exact O(αs) expansion
but the full contribution from these emissions above the merging scale, which is of the same
order as the expansion. All effects due to this vetoing are of higher order. For the algorithm,
this implies that if a NLO correction to an higher multiplicity is present, we act on the first
NLO corrections with a vetoed shower instead of the full shower.

In addition we preserve the inclusive NLO cross section, by subtracting the second NLO
correction contributions in an integrated form from the B0 contributions. Which is along the
line of the LO merging description, but shifted in O(αs). The idea is driven by the LoopSim
approach [78] were multiple NLO corrections where combined by adding and subtracting the
higher multiplicity NLO corrections.

The inclusive NLO cross section to the B1 part can be expressed as

dσNLO =
[
B1 + V̄1(µR, µF ) + IPK1

]
u1(kjT > ρ,∀j) +

∑
i

Diũ
i
1(kj,iT > ρ,∀j) +B2Θu2 (5.41)

where the arguments of the Born-like measurement functions are cuts on the clustering to
the ũj0 kinematics. This has to be done for the dipoles for each configuration separately to
ensure that the integrated dipoles in IPK1 cancel correctly against the clustered dipoles. The
multiplicity of the dipoles is given by the phase space configuration ũk, for general k it is the
multiplicity of the u0 configuration with k additional partons, here k = 1. Note that this
dipole corresponds to the real emission with two additional partons with respect to the u0

configuration.

For the real emission we require that either all possible clusterings are above the merging
scale or at least one dipole fulfils the property that all underlying clusterings j are above the
merging scale. The mathematical formulation is

Θ = θ

(∑
k

∏
i

θ(ki,kT,1 > ρ)θ(kkT,2 < ρ) +
∏
k

θ(kkT,2 > ρ) > 0

)
. (5.42)

This choice is based on the idea that single unresolved emissions are allowed for the real
emission, but double unresolved emissions are not allowed. The merging scale in this respect
acts as the resolution parameter. If we require that at least one of the underlying clusterings
fulfils the property of having all underlying kinematics above the merging scale, than it is
possible to cluster this contribution, so that a unitarization of the second NLO correction will
preserve the cross section up to unordered histories.
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For the merged A(0∗, 1∗, 2) this leads to‡

A(0∗, 1∗, 2) = A(0, 1, 2) +A(0∗, 1)−A(0, 1) (5.43)

+ u1

(
−B1(q0)

∑
i

wi∑
j wj

∂1
αs∆

0,i
1 θ1

PS + V̄1 + IPK1

)∏
i

θ(kiT,2 > ρ)(5.44)

+
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ũk1

∫ ŝ

ρ

(
w̃k∑
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θ(q2 < q1)ΘB2(q0)−Dk

)∏
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θ(ki,kT,1 > ρ) (5.45)

·
(∏

l

θ(klT,2 > ρ)

)

+
∑
k

ũk1

∫ ŝ

µ
(PkB1θ(q2 < q1)−Dk)

∏
i

θ(ki,kT,1 > ρ) (5.46)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(∏
l

θ(klT,2 > µ)

)

+ u2

(
B2(q0)Θ−

∑
k

PkB1θ(q2 < q1)
∏
i

θ(ki,kT,1 > ρ)

)
(5.47)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(∏
l

θ(klT,2 > µ)

)

+

∫ ŝ

0
ũ1

(
B2(q0)Θ−

∑
k

Dk

∏
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θ(ki,kT,1 > ρ)

)
(5.48)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(
1−

∏
l

θ(klT,2 > µ)

)
+ clustered unitarization . (5.49)

This merged expression contains the NLO correction of the subleading process and adds NLO
corrections of the first emission. Compared to the Eqs. (5.31) and (5.37) the requirement,
that all first clusterings should be above the shower cutoff was included to Eqs. (5.46) and
(5.47). This cuts on the phase space of the corrections below the merging scale for splittings,
not described by the corresponding splitting function/dipole.

The understanding of the given A(0∗, 1∗, 2) requires more explanation:

• Eq.

(5.44) = u1

(
−B1(q0)

∑
i

wi∑
j wj

∂1
αs∆

0,i
1 θ1

PS + V̄1 + IPK1

)∏
i

θ(kiT,2 > ρ) ,

contains the virtual corrections, the integrated Dipole contributions, collinear remainders
from PDF renormalization as well as the O(αs)-expansion of the shower (resummation)
related parts.

‡We will discuss in the following that additional weights should be applied. See discussion below.
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All these parts can be calculated together for individual phase space configuration u1.
The Virtual contribution is calculated with the scale of the seed Born process§, which is
not intuitive, since the scale could also be the scale of the first splitting.

The expansion of the αs-ratio Eq. (5.34) produces exactly this property. The renormal-
ization scale compensating terms of the NLO calculation, have the same form as this
expansion, see Eq. (2.77). Here only one, and later multiple scale compensating parts
for each emission are produced. This multiple scale improved NLO cross section is close
to the idea in [77]. The example given in Sec. 2.6 has this form, see Eq. (2.79).

The expansion of the first PDF ratio in Eq. (5.32) contains the same parts as the P -
operator in the CS subtraction formalism, where the factorization scale is related to
process dependent scales. So in close analogy to the αs-running this part of the PDF
expansion relates the scale of the splitting to the scale used for the shower.

Both running expansions show the property that the large logarithms expected in the
NLO correction calculated with the scale of the seed process is compensated by the
logarithms of the shower expansion, and therefore related to the shower scales. We now
expect logarithms of the shower splitting scales and the process dependent scales. These
should be moderate if the shower is produces the logarithms which are expected. Finite
K-factors will not be covered.

We are left with the second and the last expression of Eq. (5.32). One is the expansion
of the initial PDF ratio and the other contains the expansions of the initial and final
Sudakov form factors.

The final state Sudakov expressions are all time-like. We see that the PDF expansion
of the initial PDF of the Born process f0 together with the Sudakov factor expansion of
this leg produces also – up to phase space effects and power corrections – the expression
of an expanded time like correction. This can be understood since the evolution from
the splitting, described by the ME to the subleading process is independent of PDF
running. The initial state that was not assigned with a splitting by the clustering
algorithm, should be corrected with the space like Sudakov expression, containing PDF
ratios, since we evolve the PDF at this leg together with the shower scale. So only one
expansion of the PDF ratio is present.

• Eq.

(5.45) =
∑
k

ũk1

∫ ŝ

ρ

(
w̃k∑
l w̃l

θ(q2 < q1)ΘB2(q0)−Dk

)∏
i

θ(ki,kT,1 > ρ)

·
(∏

l

θ(klT,2 > ρ)

)
,

reveals dipoles and real emission for phase space configurations, where all scales of
the first clusterings are above the merging scale. The dipoles originate from the NLO
subtraction and are therefore clustered to the tilde kinematics. The matrix element
corrections due to the real emission matrix elements are already present in the LO
merging. They are clustered according to the weight of the LO merging and therefore
compensate for the unitarization contributions of the LO merging.

§If a full history is found, this is the scale one would assign to the B0 process. In the case of unordered history
it should be the scale of the new defined seed process given by the LO merging.
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The weight ratio effectively is described by the first backward clustering. Here it can
happen that all weights vanish, which is the case if no ordered clustering can be found.
In this case, which is made explicit by θ(q2 < q1) the LO merging already added this as
a finite contribution, see Sec. 4.6. This restriction cannot be made for the Dipole parts
since the integrated counterparts contain no cuts on ordering.

• Eq.

(5.46) =
∑
k

ũk1

∫ ŝ

µ
(PkB1θ(q2 < q1)−Dk)

∏
i

θ(ki,kT,1 > ρ)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(∏
l

θ(klT,2 > µ)

)
(5.50)

includes the Dipole contributions for which at least one Dipole has a resolution scale
lower than the merging scale. The counterpart to this is, as in the case of A(0∗, 1), the
integrated Shower contributions from the Sudakov expansions of either the dead zone
or the vetoed shower below the merging scale. The ’integration’ of this part starts at
the infrared cutoff of the shower. The shower expansion requires that the phase space
point corresponding to the real emission, is inside the shower phase space of the tilded
ũk1 kinematics.

• Eq.

(5.47) = u2

(
B2(q0)Θ−

∑
k

PkB1θ(q2 < q1)
∏
i

θ(ki,kT,1 > ρ)

)
(5.51)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(∏
l

θ(klT,2 > µ)

)

collects real emission with the subtracted shower approximation below the merging scale
but above the IR cutoff of the shower produced by the expansion of the vetoed shower.
All cluster scales below for secondary clusterings i need to be above the merging scale.
This requirement also applies to the real emission contributions via the Θ cut, if the
corresponding first clustering is below the merging scale.

• Eq.

(5.48) =

∫ ŝ

0
ũ1

(
B2(q0)Θ−

∑
k

Dk

∏
i

θ(ki,kT,1 > ρ)

)
(5.52)

·
(

1−
∏
l

θ(klT,2 > ρ)

)(
1−

∏
l

θ(klT,2 > µ)

)

represents the ’bridge’ cross section as it is needed for NLO matching to parton showers.
The shower is not emitting below the IR cutoff, so if one of the dipoles reveals a scale
lower than the IR cutoff the dipole contributions need to be subtracted from the real
emission, as in fixed order calculations. For the event interpretation one of the dipole
kinematics ũ1 needs to be chosen. This choice and clustering corresponds to the integral∫ µ

0 . The choice contains an ambiguity, which will be addressed below.
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• Eq. (5.49) contains the clustered contributions of all the corrections for the A(0∗, 1∗, 2)
compared to A(0∗, 1, 2). This is done to preserve the NLO cross section of the seed
process as in the LO merging. Since we know that all underlying kinematics to all
A(0∗, 1∗, 2) contributions are above the merging scale by construction, we can always
cluster the underlying kinematics if they are inside the reachable shower phase space of
any n− 2 kinematic configuration.

Cancellation of the subtraction related contributions

The modifications required the inclusion of cuts on the phase space to separate the individual
parts. The subtraction terms, included to regularize the NLO calculation, need to cancel
between the dipole contributions and the integrated insertion operators. Collecting only the
dipole contributions of Eqs. (5.45)-(5.48), this gives

∑
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∫ ŝ

ρ
(−Dk)

∏
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)(∏
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−
∑
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·
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)
which collapse to

∑
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0
(−Dk)

∏
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θ(ki,kT,1 > ρ) (5.53)

if the individual kinematics ũk1 are picked randomly/flat. So that each dipole is integrated
over the full single emission phase space with the requirement that secondary clusterings are
above the merging scale. The insertion operators integrate the full phase space analytically
and require that all primary clusterings show scales above the merging scale, see Eq. (5.44).
The secondary clusterings of the dipoles correspond directly to the primary clusterings of the
insertions, when no ordering of the second clustering with respect to the first clusterings is
required. So the subtraction related contributions cancel with this choice.

Cancellation of the shower approximation for inclusive observables

The shower related subtraction related contributions in Eqs. (5.46) and (5.47) can be summa-
rized as (∑

k

ũk1

∫ ŝ

µ
PkB1 − u2

∑
k

PkB1

)
(θ(q2 < q1)) (5.54)

·
∏
i

θ(ki,kT,1 > ρ)

(
1−

∏
l

θ(klT,2 > ρ)

)(∏
l

θ(klT,2 > µ)

)
so that they cancel for inclusive observables, not resolving additional emissions. The structure
is the same as it is used to construct the MC@NLO procedure. The difference to MC@NLO
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are the cuts on subsequent clusterings. These are the contributions which are used to remove
the double counting of shower emissions and real emission contributions. In the merging they
only apply for the phase space below the merging scale.

Further Improvements

With the O(αs) expansions of the shower configurations and the addition of the NLO correc-
tions to the first emission we control terms of this order above the merging scale from the fixed
order point of view. From the resummation point of view we can now think of modifications
which are beyond O(αs) but include the shower effects to the matched/merged expressions.
The first part of this considerations was to perform a showering of the NLO contributions in
the case of A(0∗, 1) like in MC@NLO. This leads to similar shapes between LO+PS and NLO
matched simulations for small scales. As discussed, these (showered) contributions need to be
subtracted above the merging scale since they are of the same order as the NLO contributions
to the first emission. By vetoing these emissions we effectively subtract the O(αs) and terms
of higher order above the merging scale. Vetoing – not subtraction – means that we add the
NLO correction to the first emission below the merging scale of the first emission.

Another way how to subtract O(αs) (and terms of higher order) from the showered NLO con-
tributions of A(0∗, 1) would be to reweight the NLO contributions with Sudakov suppression
from the hard scale to the merging scale, and then shower the contribution below the merging
scale. By this construction we would not be able to preserve the NLO cross section for inclu-
sive observables. By vetoing the NLO contributions of A(0∗, 1) and by clustered-subtraction
of the additional NLO contributions of A(0∗, 1∗, 2) we preserve the A(0∗, 1) inclusive cross
section. If the K-factor for the inclusive A(0∗, 1) and the corrections of A(0∗, 1∗, 2) above
the merging scale are both larger (lower) than one we get a suppression (enhancement) in
the same direction as we would assume from the Sudakov suppression. If the K-factor are
different this can lead to discontinuities.

Since we truncate the perturbative series, we get scale cancellations between different orders
of the series. The renormalization scale choice of B1(µR) above the merging scale should be
cancelled by the contributions of A(0∗, 1∗, 2). The scale choice of B1 is due to the shower
reweighting shifted for one of the αs(µR). This shift was corrected in the A(0∗, 1∗, 2) sample
due to the expansion of the αs ratio. In order to get an improved scale compensation between
B1 and the corrections we reweight the history of the corrections in A(0∗, 1∗, 2) with the same
factors as B1. So for B1 like parts, Eq. (5.44), we calculate the same reweights as for B1. For
the real emission above the merging scale that are calculated together with the subtraction
dipoles, Eq. (5.45), the weight is calculated for the underlying Born process of the dipole. For
the real emission below the merging scale, Eqs. (5.47) and (5.48) we pick one of the underlying
kinematics that fulfils the condition that all scales below the last scale are above the merging
scale, randomly and reweight the history producing this configuration. The piece, where
dipoles and shower approximation meet, Eq. (5.46), is reweighted with the history weight of
the dipoles. Note the important features of this choices:

• Since we cluster all contributions, this will not change the cross section.

• Dipoles – above the shower cutoff – are always reweighted with the history weight of
their underlying Born process. So the same reweighting is applied for the integrated
dipoles in IKP.

• The history weight is by definition of the type 1+O(αs), so reweighting the NLO parts
will not destroy the NLO accuracy.
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• The suppression coming form the Sudakov factor of the history will stabilize the contri-
bution if we go to smaller merging scales.

This history reweighting of the NLO contribution is also done in the MINLO approach[77],
where the Sudakov suppression is calculated analytically. The suppression leads in this case
to Sudakov peaks in fixed order calculations. Also the UNLOPS and NL3 [29] approach
performs this reweighting. In the MEPS@NLO [25, 26] formalism the Sudakov reweighting is
also applied for the ’last’ real emission scale. This leads to numerically more stable results,
since it is an effective cutoff applied to the real emission. Since this is formally also of higher
order, the ’NLO accuracy’ is not violated. In this work we keep closer to the previous ideas
of reweighting the real emission not differently from the virtual corrections.

The algorithms how to generate the corrections are given in Appendix B.

5.2.1. Review 3

As for the introduction of the unitarized LO merging and the inclusion of the NLO correction
to the seed process we give a pictorial review of the changes made so far. Note that the
building blocks in Fig. 5.2 contain, especially in this review much less information as the
previous text in the last section.

The NLO correction to the first additional emission above the merging scale follows the same
idea as the inclusion of the O(αs) corrections to the seed process. We start by expanding the
unitarized LO merged expressions for the sample with two additional emissions.

Therefore the LO merging is explicitly written with emissions outside the matrix element
region, which is labelled with θME . These are the upper blocks in Fig. 5.2. Since we describe
two emissions with matrix elements, we have matrix element regions for the first and for the
second emission. The θME without index are always related to the higher index of Bi or Pi.
θiME or /θ

i
ME with index require that the i’th emission is inside or outside the matrix element

region. The symbolic integrals over in the purple blocks are the clustered contributions from
the unitarization description of Sec. 4.3. For readability we define the θPS of Sec. 5.1.1, in the
blocks of this review to be part of the symbolic integrals.

With the condition that the first emission is in the matrix element region, the expansion up
to O(α2

s) of these expressions leads to the second block structure. The first line contains no
emission from the parton shower and the second only emissions outside the matrix element
region. The last three rows are similar to the expansion that leads to the inclusion of the NLO
correction of the seed process. Two differences appear:

• Conditions on the cluster sequence are required. A phase space point with /θ
2
MEθ

1
ME

requires that there is a cluster sequence with the first clustering is outside the matrix
element region but then all direct next clustering scales are above the merging scale.

• The O(αs) expansion of the shower weight ∆0
1 needs to be calculated. ∆0

1 is defined in
Eq. (4.12) and contains beside the Sudakov form factors for the shower history also αs
and PDF ratios. After the expansion ,as described in the (5.2), it is subtracted with
the virtual contributions. This produces a multi-scale improved NLO calculation close
to the one described in [77].

NLO corrections to the process with an additional emission need to be defined with cuts
for the real emission contribution and on the first emission of for the Born-like kinematic
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LO merging (with expansion outside ME region):

B0 −
∫
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1B1θME ·∆0,V
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P1∆0,V
1 B0/θME P1∆0,V

1 (−
∫

∆0
1B1θME)θ<
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∫
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2B2θME ·∆1,V
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P2∆1,V
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∫
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O(α2
s) expansion with first emission in ME region (O(αs) expansion counted from B1):
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/θME θ<

(∂1
αs∆

0
1)B1θME −

∫
B2θME −

∫
P2B1/θ

2
MEθ

1
ME

P2B1/θ
2
MEθ

1
ME

O(α3
s)

B2θME

O(α2
s) of second NLO contributions (O(αs) expansion counted from B1):

(V̄1 + IPK1)θME −
∫
D2θME

B2Θ

Adding O(αs) NLO contributions and subtracting O(αs) expansion:(
V̄1 + IPK1 − (∂1

αs∆
0
1)B1

)
θME

∫
(B2 −D2)θ2

MEθ
1
ME

∫
(P2B1 −D2)/θ

2
MEθ

1
ME

(B2Θ− P2B1)/θ
2
MEθ

1
ME

Figure 5.2.: Reviewing the steps to get from unitarized LO merging to the inclusion of the
NLO correction to the process with one additional emission. The description of the blocks is
given in Sec. 5.2.1. As in Fig. 4.4 and Fig. 5.1: Note that this illustration should only serve
as a summary and to guide the eye through the formulas.



76 5. Merging Matrix Elements and Parton Showers with NLO Corrections

configurations. For the contributions with Born-like kinematics we require that all clustering
scales are above the merging scale, which defined the matrix element region. The Θ, in the
blocks describing the O(α2

s) of the NLO contributions, requires that either all clustering scales
are above the merging scale, or for all first clusterings that if the clustering scale is below the
merging scale all secondary clusterings are above the merging scale.

5.3. Extending the NLO Merging to Multiple NLO Corrections

We now give the properties that are needed to extend the NLO merging to multiple NLO
corrections. In the merging of two NLO cross sections we required that the scales of all
underlying clusterings of the Born-like (virtual, IPK and subtraction dipole contributions)
are above the merging scale. This assures, that these phase space configurations are also
present in the LO merging. Also the cut Θ in Eq. (5.42) is constructed in a way, that either
all direct clusterings are above the merging scales or all scales of the underlying clusterings are
above the merging scale if the first clustering is below. This assures that each underlying Born
configuration that was obtained by clustering a real emission configuration is available by the
LO merging. In any case we get parton states which have one additional separated parton
by the merging scale. If we require the same cuts and procedure for n’th NLO corrections we
will always get phase space configurations that have n−1 additional partons separated by the
merging scale. For example, in the last section we included the second NLO correction and
required cuts on the first emission.

For the n− 1 additional separated partons we calculated in the LO merging history weights,
which now, in the aim of producing NLO corrections, need to be expanded and subtracted.
Additional we get from the merging of n additional separated partons at LO the subtraction
parts for the real emissions above the merging scale. In this respect it is necessary that the
clustering of the Bn+1 only depends on the last clustering step, which is the case if we see
that the w̃k in Eq. (5.45) sums all underlying cluster sequences.

We need to take care that the NLO corrections of the processes with lower multiplicities inter-
fere not with the higher multiplicities. This can be achieved by either expanding or vetoing.
As already seen for A(0∗, 1∗, 2) the vetoing will then keep the contributions proportional to
the Born process below the merging scale, which can be compensated by the contributions of
the higher multiplicity by unitarization, if the K-factors are both larger/smaller than one.

The same algorithm can be applied to A(0∗, 1∗, ...,M∗, ..., N) as it is applied to A(0∗, 1∗, 2)
with the difference that the algorithm must expand the previous history steps of the shower
emissions. So for each clustering step the Sudakov suppression, αs-ratios and PDF-ratios
must be calculated as in the case of LO merging and in addition the NLO corrections must
be subtracted with the appropriate shower approximations and the expansion of the his-
tory weights. Since the scales are given by the LO clustering algorithm, the difference of
A(0∗, 1∗, ...,M∗, ..., N) and A(0∗, 1∗, ..., (M − 1)∗, ..., N) is given by

A(0∗, 1∗, ...,M∗, ..., N) = A(0∗, 1∗, ..., (M − 1)∗, ..., N)

+ uM

(
−BM (q0)

∑
i

wi∑
j wj

∂1
αs∆

0,i
M θ

M
PS + V̄M + IPKM

)∏
i

θ(kiT,2 > ρ)
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+
∑
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ũkM

∫ ŝ

ρ
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θ(qM+1 < qM )ΘBM+1(q0)−Dk

)∏
i

θ(ki,kT,M > ρ) (5.55)

·
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)

+
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µ
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∏
i

θ(ki,kT,M > ρ) (5.56)

·
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(5.57)

·
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·
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1−
∏
l

θ(klT,M+1 > ρ)

)(
1−

∏
l

θ(klT,M+1 > µ)

)
+ clustered unitarization . (5.59)

Here the subtraction and shower approximations are always corresponding to the individual
multiplicity. The w̃ in the real emission above the merging scales are the probabilities that is
given by the LO clustering algorithm and the ∂1

αs∆
0,i
M is the expansion of the full history up

to αs. The Θ for the M ’th real emission only takes into account the first and/or secondary
clusterings. Also the other cuts take into account not more than two clusterings, so that
the algorithm for two NLO corrections is portable to M , with the same construction. The
weight construction for the shower history related expansion is described for general M in
Appendix B. We spare to review the expansion from two to M additional NLO corrections.
The building blocks in the simplified notation correspond to the blocks in Sec. 5.2.1 with the
replacement of 1→M additional emissions.

5.4. Scale Choice and Variation

After constructing the algorithm to merge multiple NLO cross sections, we define the scales and
their variation used in the different parts of the calculation. We use the scales already included
in the Matchbox [70] framework and include them into the merging. In a LO calculation with
parton shower evolution we can choose various scales. The renormalization¶ scale µR for αs
and the factorization scale µF for the PDFs defining the scales of the hard process. The
shower starting scale QH defines the scale of the hardest possible emission. Other than that,

¶If other parameters than αs were renormalized with scale depended schemes like the MS-scheme also one scale
for each parameter could be used, after evolving the parameters with the appropriate RGEs.
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we can change the scales used in the shower. The scales here are the arguments of the scale
dependent αs used in the shower splittings and the scale used in the PDF ratios [81].

We collect the scale dependent expressions used and insert scale variation parameters as:

• All matrix elements are calculated with

(µR, µF )→ Bi(ξRµR, ξFµF ), Vi(ξRµR, ξFµF ), IPKi(ξRµR, ξFµF )

where µR and µF are calculated form the variables of the seed process if a full ordered
shower history could be found. If not they are calculated according to Eq. (4.31), where
we defined a ’new’ starting scale‖ for not fully ordered histories.

• The Sudakov form factor are calculated with, and radiation is created according to

Eq. (3.8)→ ∆f (ξHQH → µ) = exp

∑
f ′

∫ ξHQH

µ

dq

q

∫ z+

z−

dz
αs(ξAq)

2π
Pff ′(z)

 , (5.60)

and

Eq. (3.9)→ Πi(ξHQH → µ;xi) (5.61)

= exp

(∑
i′

∫ ξHQH

µ

dq

q

∫ z+

xi

dz

z

αs(ξAq)

2π

fi′(xi/z, ξfq)

fi(xi, ξfq1)
Pi′i(z)

)
, (5.62)

if it is the first emission. For further emissions we define the scales as fixed by the scale
q where the emission is produced. Note that z+ and z− in general also depend on the
boundaries of q, so are ξH dependent. In the dipole shower of Herwig++ they depend
on the upper scale, as can be read of Tab. (C.1).

• Accordingly we get

Eq. (4.12)→ ∆0
i = (5.63)

fi(ξfq
ls
i )

fi(ξFµF )

i−1∏
j=0

αs(ξAqj+1)

αs(ξRµR)

[
δj0

f0(ξFµF )

f0(ξfq1)
∆ξHQH
q1 + (1− δj0)

fj(ξfqj)

fj(ξfqj+1)
∆
qj
qj+1

]
(5.64)

for the shower weights. The Kronecker delta δj0 distinguish between first and multiple
emissions. This shower weights are then expanded as shown in Sec. 5.2. For this we then
use αs(µR) and the PDFs at scale µF . The scales in the logarithms and the boundaries
for the expanded Sudakov suppression receive the ξi factors.

We included the five parameters ξR, ξF , ξH , ξA and ξf into the merged expression. In Ch. 7
the results are shown with variations of the first three parameters. Interfaces exits to vary all
parameters independently.

Conclusion

In this and the previous chapter, we followed the idea of matching resummed calculations to
fixed order calculations. The unitarized, resummed expressions for LO merging have been
expanded and subtracted from the O(αs) expressions of the NLO corrections. This leads to

‖Other choices for this ’new’ scale are possible but not yet implemented.
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direct subtraction below the merging scale, as compared to the matching of fixed order NLO
calculations to parton showers in the full shower phase space.

We implemented the expressions for general additional LO N and NLO corrections M in the
Matchbox framework of Herwig++ [3] with the dipole shower [57]. Some detail of this imple-
mentation and the efforts of interfacing external program packages to generate an automated
matching and merging are given in the next chapter.





CHAPTER 6

Implementation and Validation

In the following we describe the practical implementation of the needed weights to perform
the previously described (N)LO merging of matrix elements to parton showers. Since the
algorithms were detailed in the previous chapter, we concentrate more on the individual parts,
their implementation and validation. Starting with one of the key ingredients of merging
algorithms being the Sudakov form factor reweighting of ordered shower histories this chapter
continues with a description on the calculation of the expanded shower expressions. The
chapter ends with a short overview on the matrix element interfaces developed to produce
automated NLO matching and merging in Herwig++/Matchbox.

6.1. Sudakov Form Factor Reweighting

One of the important features of merging matrix elements to parton showers are the weights to
produce ’exclusive’ states. The matrix elements that correct the shower emissions need to be
reweighted with the expressions given in Eq. (4.12). While in the classic CKKW approach this
was produced by analytic Sudakov expressions, the CKKW-L produced the suppression with
trial showers as described in Sec. 4.2. The first does not respect the actual shower structure
and is only applicable if the shower correctly reproduces the expected Sudakov suppression,
the latter can be applied to any shower algorithm and respects the phase space boundaries
of the shower. Since the trial showering produces the suppression by discarding events it can
produce strongly fluctuating weighted events. One can avoid this fluctuation by multiple trials
and weighting the event with the fraction of the trials that did not emit above the next history
scale. Both will produce correct no emission probabilities the shower would have produced.

The idea that was followed in the implementation was to implement two types of suppression
factors, which then can also serve as a cross check. On the one hand the CKKW-L approach by
constructing underlying fake events that are then showered and on the other hand to calculate
the suppression with an explicit Monte Carlo integral of the exponent of the Sudakov factors
respecting the phase space boundaries and scales used in the shower. The explicit integration
can be performed faster to give more stable results and can be used, in a modified way, to
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Figure 6.1.: Comparison of the implementation of a Sudakov form factor for a qq̄ pair
with Q0=91.2 GeV. The blue, black and green points correspond to CKKW-L type Sudakov
suppression, where the number of no emissions above the scale pT is counted. The fraction
then produces the density of no emissions. While five trials lead to visible stripes, the grid
of 100 trial events is much more centered around the average value and the spread of 1000
trials is close to the spread gotten from sampling the exponent with a Monte Carlo error off
5%. The average, produced by the bezier function of gnuplot, agrees for both methods and
various numbers of trials.

calculate the shower expansions needed for the NLO merging. The shower expansion of the
Sudakov factors, see Eq. (5.30), are the same integrals with fixed scales in the αs and PDF
arguments. The advantage of calculating the Sudakov suppression together with the matrix
elements is from a technical point of view superior to the reweighting or discarding large event
files. The integrator can adapt with algorithms similar to the Vegas algorithm [82] or Monaco
algorithm∗ to the combined matrix element and Sudakov suppression weight. Strongly singular
regions which would produce large parts of the cross section are suppressed naturally by the
shower/Sudakov suppression and if the integrator adapts the behaviour, it produces less phase
space points in this regions.

The Sudakov exponents are simple 3-dimensional integrals with simple (except of numerical
PDF ratios), but scale and initial state momentum fraction x dependent functions. In addi-
tion the phase space boundaries need to be taken into account. Since these functions/phase
space boundaries were already implemented with proper substitutions to sample the Sudakov
exponent efficiently in the Herwig++-dipole shower a single routine can perform the integra-
tion after setting up the used dipole kernels that the shower would have used from the shower
history to produce the next emission.

∗A modified Vegas algorithm implemented in VBFNLO [83].
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Figure 6.2.: Sudakov suppression as a function of pT . Left: The comparison of the sampling
implementation (red dots), against the Mathematica implementation (black dots) for a qq̄-pair
building a FF-dipole with Q0 = MZ . Right: The suppression for qq̄-pair building a II-dipole
with Q0 = MZ and different x1/2 values so that x1x2S = M2

Z . The backward Sudakov factor
depends on x1/2. All other factors vary in the splitting functions used but not in the sampling
algorithm.

The CKKW-L approach can be implemented by producing the fake events and running the
shower algorithm with aborting after the first emission. If the emission is above the next scale
of the shower history the phase space point is discarded.

To have a third comparison the Sudakov suppression expected by the dipole shower was im-
plemented in Mathematica for FF- and II-dipoles. The implementation of II-dipoles required
the calculation of PDF ratios which was interfaced with the NNPDF Mathematica interface
[84].

In Fig. 6.1 a comparison is shown for the difference between the CKKW-L like implementation
and the sampling of the Sudakov exponent. The CKKW-L Sudakov suppression is shown for
5, 100 and 1000 trial emissions, while for the 5 and 100 trial emissions the ratios are still
visible the 1000 trial emissions are overlapping with the sampled exponent. The average of
the suppression achieved by the procedures is identical.

The comparison against the Mathematica implementation for a FF and an II dipole with
PDF ratios is shown in Fig. 6.2. Since the PDF ratio depends on the value of the incoming
momentum fraction, the Sudakov suppression is broader than the one coming from the FF
dipole.

6.2. αs-Expansion of Shower Related Weights

For the NLO merging it was explained in Sec. 5.2 that the weights produced by the shower in
the LO merging need to be subtracted from the merged sample to O(αs) in order to get NLO
accuracy above the merging scale. In the previous section the results for CKKW-L like and
sampled Sudakov are shown to give similar results. In order to produce the weights needed
for the expansion of the shower expressions, the sampling routines can be reused without
exponentiation. In the calculation, the arguments of the scale dependent components are kept
fixed.
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Figure 6.3.: Expansions of the shower related contributions. Left: The expected results as
implemented in Mathematica. Right: The results from the sampling of the Sudakov exponent
with a fixed scale. The PDF ratios produce a wide x1/2 dependent band and are not included
in this comparison. The dark blue line in the left plot is the O(αs) expansion of the NLL
Sudakov expression, the purple the one expected from the dipole shower. The yellow line is
the logarithm from the αs-running. Green and light blue line are the sum of αs and Sudakov
expansion for ∆NLL and ∆DIP .

The expansion of the αs ratio is given in Eq. (5.34). Due to the sign of the β-function,
subtracting the αs expansion of the ratio leads to a negative contribution. The Sudakov
expansion leads to positive weights in the sum of Eq. (5.32).

Eq. (5.33), giving the expansion of the PDF ratio is closely related to the P operator of the CS
subtraction formalism. With the substitution given in Eq. (2.73), the same expressions can be
used here. In the implementation of the integrated regularized AP-splitting function, one can
either throw one random number handled by the integrator or use multiple points to average
the integral. While αs and the Sudakov expansion have definite sign the PDF ratio expansion
depends on the xin value and the flavour of the incoming parton. Here the +-distribution in
combination with the PDF can lead to positive and negative contributions.

To double check the implementation the expressions were implemented in Mathematica, with
the results for the Sudakov and αs expansion shown in Fig. 6.3. Here also the expansion of the
NLL Sudakov expression used in the MINLO [77] approach is shown. Since the NLL Sudakov
for large values of pT can become larger than one, see Fig. 4.1, the expansion needs to produce
negative weights.

For small values of the scales the Sudakov expansion dominates since the αs expansion is
a subleading logarithm and the integrated splitting functions lead to squared logarithmic
dependence.

6.3. Phase Space Boundaries and Definitions

Merging matrix elements to parton showers in a way, like it is described in Ch. 4 requires
the ’reconstruction’ of the assumed showering history. Phase space boundaries and transverse
momentum pT definitions are the same in clustering of the momenta of the matrix elements
and shower emissions. The dipole shower of Herwig++[57] has two run modes. The collinear
mode uses inverted kinematics of the tilded kinematics given in [41]. Here the incoming
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momenta of II/IF dipoles are fixed to be collinear to the beam and shower emissions will only
change the momentum fraction of incoming partons. In the non collinear mode, described in
[57], shower emissions produce also initial states with transverse momenta. In the latter mode
the clustering of the higher multiplicity phase space points with the usual tilded kinematics
will not reconstruct the emissions coming from the showering. Since some of the definitions
have changed from the first introduction of the dipole shower [57], the restrictions on phase
space boundaries and the definitions of variables are listed in Appendix C.

6.4. Smearing

In the merging algorithm the scale where to split the phase space into matrix element and
shower domain plays an important role. Discontinuities at this scale are expected and shall
be beyond the accuracy of the shower. Small discontinuities can be smeared if we choose the
merging scale for each phase space point as

ρ = ρC(1− κ+ 2κr) , (6.1)

where ρC is the central merging scale and r ∈ [0, 1] is a flat random number. If the corrections
due to the merging are large kinks at the merging scale are still possible and can be seen as
an error estimate of the method. The results in Ch. 7 have been generated with κ=0.1.

6.5. External Matrix Element Provider

For NLO matching and merging the interplay of parton shower and NLO corrections is impor-
tant. In the last decade huge efforts have been made to automatize the computation of NLO
cross sections. Many programs where developed to create libraries, which can compute UV
renormalized virtual corrections, e.g. [10, 85–87]. The automatized generation of LO matrix
elements which are needed to produce the real emission and subtraction was developed much
earlier, e.g. [88, 89].

In order to match NLO with parton shower, it is of great interest to have full control over
phase space generation/population, matrix element calculation, subtraction and parton shower
evolution. The Matchbox[70] module of Herwig++ is aiming to provide a fully automated
matching to the parton showers (angular ordered and dipole). Since the Herwig++ event
generator had neither a fully automated LO matrix element generator, which fits into the
framework of Matchbox, nor the generation of NLO corrections automatically, the interfacing
to external providers of these parts was needed.

LO Matrix elements – on amplitude level

In collaboration with the MadGraph [10] team an interface was implemented which is able to
build a library, fitting into the framework of Matchbox. MadGraph internally uses the same
colour basis as the ColorFull package[90] that provides a native interface to the routines used
by Matchbox. The fully automatized generation, linking and mapping of internal orderings
between Matchbox and MadGraph is provided. With these ingredients tree level amplitudes
and colour correlated matrix elements can be calculated. In order to provide spin colour
correlations, needed for CS subtraction of processes with external gluons, the internally used
plus polarization vector for gluons εµ+ are constructed with the HELAS routine [91] vxxxxx(...)
used in MadGraph.
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Figure 6.4.: Pictorial representation of the large-NC colour dipoles. The qq̄-pair is not con-
nected after emitting a gluon. While CS subtraction contains dipoles with colour correlations
between the qq̄-pair, the shower does not emit from the quark with the anti-quark being
the spectator. The initial colour dipoles are picked by the weight of the squared large-NC

colour-flow amplitudes, as shown in [70].

As outlined in [70] the spin-colour correlations of the form

〈Mµ|CijC
µν |Mν〉 = 〈Mµ|Cij |Mν〉

(
Cηµν +

qµqν

Q2

)
can be calculated efficiently by

〈Mµ|CijC
µν |Mν〉 =

1

Q2

[
〈M|Cij |M〉

(
−CQ2 + |ε+ · q|2

)
+ 2Re

(
(ε+ · q)2

{
〈M−|Cij |M+〉 outgoing g

〈M+|Cij |M−〉 incoming g

)]
, (6.2)

where Cij = Ti ·Tj/T
2
i is the colour correlator and 〈M| are the amplitudes with open colour

indices and µ, ν and ± are the helicities of the gluon.

The showers in Herwig++ are using the large NC colour information to choose the initial
colour flows according to the weight of the squared large NC colour amplitude, see Fig. 6.4.
This information can be produced with the MadGraph interface and the large NC mode of the
ColorFull package.

NLO Matrix elements – squared amplitude level

For an automated matching/merging of NLO corrections to the partons showers of Herwig++,
the NLO providers GoSam[86], NJet[92], OpenLoops[87] and VBFNLO[93]† are available, using
the standard interface BLHA2 [94], which is an extension to the BLHA [95]. In BLHA2 the
external programs are expected to provide, beside the renormalized virtual corrections, also
treelevel and (spin-)colour correlated amplitudes. In addition to the LO interface to MadGraph

the automated interface to the one loop corrections provided by the MadGraph/aMC@NLO [10]
was developed. With this extension to the Matchbox framework processes provided by the
external programs can be consistently matched to the parton showers. In addition to calculate
the matrix elements also parameter choices used in the event generation are handled fully by
the event generator and communicated to the external program. The various interfaces have
been tested and validated extensively among each other and to external packages like MCFM[96].

†The author was manly involved in the interfacing of GoSam, MadGraph and OpenLoops



CHAPTER 7

Phenomenological Results and Improvements

In this chapter, the results of LO and NLO merging will be discussed. First, in Sec. 7.1, the
clean environment, in terms of pure final state QCD radiation, at e+e− colliders like LEP is
used to validate the merging scheme at parton level without the effects of hadronization. With
the results seen for NLO merging we discuss the value and choice of αs in Sec. 7.1.1. Sec. 7.2 is
dedicated to the comparison of LEP data to these results with hadronization effects. The next
step, in Sec. 7.3, is then the environment of LHC physics as a hadron collider. Comparisons
of the merging algorithm to the W± and Z boson at LHC and the effects of merging on
Higgs production are discussed. The last comparison is then using dijet production with LHC
conditions. All plots in this chapter have been produced with Rivet [97].

7.1. Parton Production in e+ e− Annihilation

The following discussion provides also a validation of the implementation, since we compare to
constructed pseudo observables which are not measurable at colliders. The clean environment
(from the QCD point of view) at an e+e− collider is perfectly suited to validate the clustering
algorithm for ordered histories. Since the phase space is given by the initial center of mass
energy ŝ = s, mostly full ordered histories can be found.

LO-merging:

The first pseudo-observable is constructed to precisely show the behaviour at the merging
scale. For this reason, we select from all patron level events these with exactly three partons
in the final events. We start with a qq̄ pair so the first emission must be a gluon. For this
gluon with momentum pj we calculate the transverse momenta piT that would correspond to
the emission of either the quark or the anti-quark with momentum pi. The other parton serves
as a spectator, see Sec. 2.5, with momentum pk as

piT =
√
yz(1− z)s with z =

pipk
pipk + pjpk

and y =
pipj

pipj + pkpj + pipk
(7.1)
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Figure 7.1.: Constructed pseudo observable pmin

T , defined as the minimum dipole-transverse
momentum in exclusive qq̄g-events. Left: Differential cross section of the merged samples
with zero, one and two additional emissions for the process e+e− → qq̄. Right: Sample with
one additional emission split up into the vetoed part, where no additional emissions above the
merging scale takes place and the parts above the merging scale. The center of mass energy
is
√
s = 91.2 GeV merging scale is ρ = 4 GeV with a smearing of 10%.

The events are then binned for pmin
T = min(pqT , p

q̄
T ) to get the differential cross section with

respect to pmin
T .

The results were obtained with a center of mass energy of s = 91.2 GeV, with an αMS
s (MZ) =

0.118 and without electron PDFs∗ simulating energy loss due to initial state photon radiation.
In Fig. 7.1 the result for the fraction of three parton events is shown for one and two additional
partons in the merging. Higher multiplicities would not change this ’pseudo’ observable since
we require exactly three partons. The smooth transitions at the merging scale ρ = 4 GeV with
a shower cutoff at µ = 1 GeV indicates that the veto algorithm, αs reweighting, Sudakov sup-
pression and the shower history choice is implemented properly for pure final state emissions.
Also the merged sample for two additional emissions, which are handled by the correct matrix
elements qq̄(0, 1, 2)†, shows a smooth behaviour at the transition from the matrix element
region to the parton shower domain. This shows that also the emissions from the merged
sample qq̄(−, 1,−) with three partons, before the vetoed shower is applied, produced enough
emissions to disappear in the distribution in the left picture of Fig. 7.1. So also the starting
scales and vetoed shower work as they should.

In Fig. 7.2 the differential cross section is plotted with respect to the y34 parameter, which
separates a three jet configuration from a four jet configuration when a Durham jet algo-
rithm [61, 62] is applied. In the hard tail – larger y34 values – the algorithm resolves four jet
events which are separated clearly and should therefore be described by the matrix element.
The distribution rises for smaller values of y34, resolving the enhanced softer and/or more
collinear emissions. Below y34 ≈ 2 · 10−4 the probability drops to find the transition from

∗Also the comparison against data in Sec. 7.2 will be without the effects of electron PDF, since the data is often
corrected for the effects of these, see e.g. Sec. 2 in [98] or Sec. 4.1.2. in [99].

†For notation see Sec. 4.8.
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Figure 7.2.: Differential cross section as a function of y34, which separates three jet events
from four jet events in a Durham jet algorithm. The cross section is split up into the different
contributions leading to the combined qq̄(0, 1, 2) merged sample. The blue contributions in
the left picture are compensated by the red, clustered subtraction terms. The red lines are
multiplied by a factor minus one. In the right picture the blue contributions are the sum of
the red and blue lines in the left plot, e.g. qq̄(0,−,−) = qq̄V (0) + qq̄VC (1).
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Figure 7.3.: Left: Differential jet rates as a function of the various Durham ya,a+1 parameter,
where a particular event changes the multiplicity from an a-jet to an a+1-jet configuration
within the Durham jet algorithm. The differential cross sections have been normalized to their
individual integrated cross section and the ratio is with respect to y45 of qq̄(0). Right: The
cross section as a function of inclusive N -parton states.

three to four jet events. The different distributions are plotted leading to qq̄(0, 1, 2). Here, we
split the distribution according to Eqs. (4.35) and (4.36). On the left hand side of Fig. 7.2,
the dashed lines correspond to configurations entering the vetoed shower with no additional
emission. These are (before the vetoed showering) the pure e+e− → qq̄ events (blue dashed),
which are compensated by the clustered events with one additional emission (red dashed)
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that are multiplied with minus one. The sample with one gluon emission above the merging
scale and then vetoed further emissions populates the intermediate region of this observable.
The one additional jet qq̄V (1) (blue dotted) contribution is compensated by the clustered
qq̄C(2) contributions, originating from clustered four parton configurations. The hard tail is
filled with emissions described by the reweighted matrix element with two additional emis-
sions (blue solid). Summing the compensating distributions of the left panel of Fig. 7.2, leads
to the distributions in the right panel. The ratio plot shows the smooth transition between
the different samples. Since the dipole pT , which is used in the showering as the evolution
parameter, does not directly correspond to the Durham resolution parameter no hard cuts in
the samples are expected in the distribution of y34.

The unitarization of the merged cross sections is shown in the right panel of Fig. 7.3 where the
pseudo-observable of the cross section with inclusive N -partons is shown, which is defined as
the sum of the exclusive parton cross sections up to N -partons. The merging does not change
the inclusive cross section but can lead to variations in small multiplicities.

Even though the inclusive cross section does not change, the shapes of exclusive observables
can change. This can be seen from the left picture of Fig. 7.3, where the transitions for two
to three, up to six to seven jets are plotted normalized to their individual integral. The ratio
shows the distributions, which get corrections from the merged contribution with up to three
additional partons so e+e− → 5 partons, with respect to dσ/dy45 of the pure shower q(0). No
large discontinuities in the differential distributions are observed.

NLO-merging

The addition of NLO merged samples to the LO merging produces stronger shape distortions
than the LO merging, since the shower approximates only the logarithmic contributions of
the corrections. Finite contributions or higher order logarithms can lead to discontinuities at
the merging scale. Due to the unitarization of the NLO cross section this will also affect the
contributions below the merging scale.

In Fig. 7.4 the NLO corrections to the seed and the process with one additional emission is
plotted for merging scales ρ = 4 GeV and ρ = 6 GeV. Unitarization of the NLO corrections
leads to a reduction in the y23 distribution at low scales due to the large K-factor of the NLO
correction to the e+e− → 3 jet cross section. For smaller merging scales this has a larger
effect, since the reduction is smeared over less phase space. The description of the hard tail
is unaffected by the merging scale. The variation of the merging scale can be seen as an error
estimate of the method.

7.1.1. Discussion of the αs Value and Improving the Behaviour

The merged samples were produced using a two loop running αMS
s in the MS-scheme, see

Eq. (2.43), with an input value αMS
s (MZ) = 0.118. This is close to the world average 0.1185 ±

0.006 [100] and used as central value of many PDF fitting collaborations. It was done because

the NLO calculations are also calculated in the MS-scheme. By changing the αMS
s (MZ) value to

0.128 as input, one can see that the hard tail of the NLO merged contributions can be mimicked
by pure shower emissions, see Fig. 7.4. It is not surprising that tunes for event generators
using LO emissions led to larger αs(MZ) input values. Tuning to LEP data with Herwig++ [3]
led to αs(MZ) = 0.127 and Pythia’s Monash [101] tunes use even higher αs(MZ) = 0.1365.

The reason is well known and used in the Herwig++ default shower for predictions [3]. In [102],
it is shown that in the z → 1 region of the splitting functions NLO effects can be absorbed
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Figure 7.4.: As Fig. 7.2, the differential cross section with respect to the y23 (left) and y34

(right) resolution with a Durham jet algorithm. The ratio is normalized to the LO merged
result with up to two additional matrix element emissions qq̄(0, 1, 2). The blue, green and
red-solid lines are produced with merging scale ρ = 4 GeV, while the red-dashed sample was
produced using ρ = 6 GeV. The LO merged and the NLO merged contributions result in
using an αs(MZ) = 0.118. The comparison can be made to the pure shower result qq̄(0) for
an increased αs(MZ) = 0.128 (black line). The NLO merged samples increase the cross section
in the hard tail compared to the LO merged contributions. The pure shower with increased
αs leads to similar behaviour for these observables in the hard tail, but differs for small y23 or
y34.

for coherent showers into a redefinition of αMC
s and using the two loop definition of αMS

s . In
the z → 1 limit, also the regularized AP splitting functions, are dominated as [42]

Pgg(z)→
2CA

(1− z)+
(1 +

αMS
s

2π
Kg) and Pqq →

2CA
(1− z)+

(1 +
αMS
s

2π
Kg) . (7.2)

Kg is a constant term in the diagonal part of O(αMS
s ) correction to the splitting function [3]

of Pgg and Pqq. Redefining αMS
s to αMC

s is called the Monte-Carlo scheme [3]. The relation

between αMC
s and αMS

s is then given by [102]

αMC
s = αMS

s

(
1 +

αMS
s

2π
Kg

)
with Kg = CA

(
67

18
− 1

6
π2

)
− 5

9
NF

Nf=5︷ ︸︸ ︷
≈ 3.454 . (7.3)

An αMS
s of 0.118 translates into an αMC

s of 0.126 with this description, so close to the tuning
values. It is emphasized in [102] that the change of αs and therefore the measurement of

ΛMS
QCD is restricted to phase space regions where z → 1.

In the MINLO approach [77] analytic Sudakov form factors are used to weight events in order
to merge NLO cross sections. The improved NLL Sudakov form factor, given in Appendix A.
of [77] and plotted in Fig. 4.1, exactly contains the expression given in Eq. (7.3) as a prefactor
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of the leading logarithmic contribution. This naturally leads to a stronger suppression as can
be seen in Fig. 4.1.

Also in the expansion of the UNLOPS method to UN2LOPS [35] the effects of Kg have been
included to the matching with NNLO matrix element corrections.

This motivates to change the αMS
s expression in the shower to be evaluated with the expression

given in Eq. (7.3) with scale dependent αMS
s (pT ). This absorbs NLO effects of the z → 1 phase

space region. For the merging algorithm it is crucial to understand this change as an O(αs)

effect. Changing the input value of the αMS
s which is used to calculate cross sections, would

change the cross section itself, but changing the expression in the splitting kernels of the
shower has advantages.

The advantages become clear already when we rethink the matching of NLO corrections to
parton showers. Here the expression of the shower is expanded up to O(αs). Since the
modification with Kg in Eq. (7.3) is in this sense an O(α2

s) contribution, the subtraction for

the real emission contribution is calculated with αMS
s , see Eq. (3.15). Also the corresponding

counterpart in Eq. (3.14) is then calculated with αMS
s . The inclusive cross section is exactly

the MS cross section, but the shape of the Sudakov peak corresponds to the improved that
resumms the Kg contribution like in analytic resummation and absorbs the diagonal parts of

the O(αMS
s ) correction to the splitting function into the AP splitting functions.

If we want to implement the change of the MS-scheme to the MC-scheme into the merging
of multiple NLO cross sections we can use the same technique of expanding the shower ex-
pressions. The expansion of the shower expressions with respect to αMS

s does not change the
expansion of the PDF in Eq. (5.33) nor the expansion of the Sudakov expansion in Eqs. (5.35)

and (5.36), but both are calculated with the fixed αMS
s instead of αMC

s . Calculating the
Sudakov expansions and the PDF-ratio expansion with αMC

s would induce formally higher
orders. The leading expansion of the shower expressions can be seen as an approximation to
the virtual corrections. Calculating the NLO corrections with αMS

s and the expansions of the
shower related expression with αMC

s would lead to a mismatch. The αs ratios in the leading
order merging are reweighted to be the same αMC

s as it is used in the shower. To be explicit,
in the merging Eq. (4.12) is replaced by

∆0
i =

fi(q
ls
i )

fi(q0)

i−1∏
j=0

αMC
s (qj+1)

αMS
s (q0)

fj(qj)

fj(qj+1)
∆
qj
qj+1 (7.4)

and with this the expansion of Eq. (5.34) becomes

αMC
s (qj)

αMS
s (q0)

= 1− αMS
s

2π
β0 log

(
q2
i

q2
0

)
+
αMS
s

2π
Kg +O(αMS

s

2
) , (7.5)

from the leading MS-running and the expansion of Eq. (7.3). The αMS
s expansions are again

subtracted from the NLO corrections, which compensates for the enhanced αMC
s in the LO

description. The same modifications are presented in the modified UN2LOPS prescription [35].
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All matrix elements are calculated with the αMS
s expression and the cross section is still (MS-)

NLO correct above the merging scale.

In fact only the flavour diagonal Pqq and Pgg behave in the soft z → 1 region like Eq. (7.3).
Nevertheless these splittings produce the double logarithms due to soft and collinear gluon
emissions. In the merging the order αs expansion of the shower is subtracted to be NLO
accurate above the merging scale.

So for N additional emissions, we subtract

αMS
s

2π
N ·Kg ·BN (7.6)

from the NLO contributions. In CS subtraction [41] the same factor is defined in the I
operator coming from the phase space restrictions of the dipole splitting [3]. So for pure gluon
emissions from the seed process the subtraction cancels against the corresponding term in
the I Operator. For processes with more qq̄-pairs this does not hold. Since these processes
are suppressed due to colour factors and ’only’ single logarithms in the g → qq̄ splitting, the
change made in Eq. (7.3) for parton showers covers the leading behaviour of this part of the
I operator.

The question is, if this can be applied also to hadron collisions. A priori this is not obvious,
since the αMS

s value used to fit the PDFs to data now differs from the one used in the shower
process. This appears inconsistent when we think of the initial state shower as a DGLAP
evolution of the PDF, see Sec. 3.4. The scale evolution performed by the PDF evaluation
programs can correct the evolution with higher order splitting functions, which also behave
like Eq. (7.2), without changing the accuracy of the PDF measurement. The one loop splitting
functions, where the factor Kg appears, effectively enlarge the αs value for large z values. With
this argument it is consistent to choose a larger αMC

s value in the showering process, also for
initial state emissions. In LO calculations it is still an O(αs) effect and since it is not changing
the cross section the NLO accuracy is also not affected.

In the UN2LOPS the Kg factor is included into as a prefactor of the scale choice of αs(q)→
αs(bq) with b = exp(−Kg/β0) ≈ 0.4. Reviewing the choices for initial state radiation and
final state radiation in [69] this explains the good agreement of LEP data with an αs value of
0.125 and of Tevatron data with an αs value of 0.118 together with the scale choice of initial
state radiations of pT /2, see Sec. 3.3.

We consistently include the enhanced αMC
s into the NLO merging process, which resumms

leading effects of soft gluon emissions. Thereby the inclusive NLO cross section, as well as
the merged NLO accuracy above the merging scale are preserved by subtracting the expanded
expressions. The effects are compared to data in the next section.

7.2. Comparison to LEP Data

In the following the comparison to LEP data is shown and discussed. In Fig. 7.5 the differential
2- and 3-jet rate as it was measured by the OPAL collaboration [99] is plotted against results
governed by the merging algorithm. The red lines are the results obtained by pure showering.
The improvement from changing the αs value used in the showering process from the αMS

s to
the Kg-improved αMC

s are clearly visible and expected. The tails of the distributions, where
well separated jets have been measured require the enhanced αs value.
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Figure 7.5.: Comparison to OPAL data [99]. Left: The shower process and merging is

performed with αMS
s (MZ) = 0.118. The pure shower emissions produce to less hard emissions.

The NLO merged sample compensates for this. Right: The factor Kg of Eq. (7.3) was included
in the shower process and consistently treated in the merging of qq̄(0) and qq̄(0∗, 1∗, 2) (teal

line). Changing only the input value of αMS
s to αMC

s (blue line), without subtracting the
additional expressions, produces to hard QCD emissions for the NLO merging.

The NLO merged sample qq̄(0∗, 1∗, 2) – green line – where the seed process and the first
emission process was corrected with NLO contributions, improve the description of the well
separated jets. The corrections obtained in the MS-scheme are large if the showering process
is not improved with the αMC

s corrections. Due to unitarization of the NLO corrections, the
region below the merging scale is decreased in order to preserve the inclusive cross section.

As a result of the consistent treatment of the Kg factor by changing from the αMS
s to αMC

s

in the splitting Kernels as discussed in the previous section, the correction due to the NLO
merging are reduced. This is because leading Kg corrections are already absorbed into the
LO expressions. As a result the corrections in the tail are moderate and as a consequence the
unitarization changes below the merging scale are also decent. A naive change of the input
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Figure 2: Distributions of the four-jet angular correlations. OPAL data corrected to the
parton level are denoted by points. The statistical uncertainty in the bins is smaller
than the size of the circles. The small sections below each plot indicate the correction
factors Ctot

i for experimental and hadronization effects with their statistical error (shaded
area). The horizontal lines with arrows indicate the selected fit region. For the normalised
angular correlations, the distributions at leading and next-to-leading order are almost the
same [14, 19], therefore, only the NLO results are shown.
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6.3 Hadronisierungskorrektur

Abbildung 6.1:Hadronisierungskorrekturen für die Vierjetverteilungen. Die Korrekturen wur-
den mit dem Apacic++-Generator ermittelt. Als Clusteralgorithmus wurde Durham bei einem
festen ycut = 0.008 gewählt.

Das Modell in Apacic++ beruht als einziges auf einer Berechnung der Matrixelemen-
te. Apacic++ beschreibt die Verteilungen auch auf Partonniveau und wird daher als
Referenzmodell verwendet.
Die Hadronisierungskorrektur wird binweise vorgenommen. An jedes Bin i der Vor-

hersageverteilungen wird der Korrekturfaktor

Ci =
XHadroni
XPartoni

(6.8)

multipliziert. Dabei sind XPartoni und XHadroni die mit der Monte-Carlo-Simulation be-
rechneten Werte der Winkelverteilungen im i-ten Bin, und zwar vor bzw. nach der Si-
mulation der Hadronisierung. Die verwendeten Hadronisierungskorrekturen sind in
Abbildung 6.1 gezeigt. Es ist deutlich zu sehen, daß sich in Apacic++ die Vierjetwin-
kel in der Hadronisierung praktisch nicht ändern – die Hadronisierungskorrekturen
sind, bis auf cos(α34) bei großenWerten, flach. Die gute Beschreibung des Hadronnive-
aus (wie in Abschnitt 5.6 gezeigt) ist ein Ergebnis des Matrixelementansatzes; sie wird

45

Figure 7.6.: Top: Comparison to data taken by the OPAL [103] and DELPHI [104] collab-
orations at LEP. The simulation was produced at parton level with NLO merging of up two
additional emissions and a merging scale of ρ = 4 GeV. The observable is the cosine of the
angle between the two softest jets in four jet events with a resolution of the Durham jet al-
gorithm of yDur = 0.008. The ratio plot is with respect to the qq̄(0∗, 1∗, 2) result. The OPAL
data is corrected to parton level with the distribution on the lower left. The DELPHI data
is corrected to hadron level for detector effects. The lower right distribution is the correction
factor in [104] that was applied to the simulation but not to the data. The lower middle panel
is the ratio of parton level over hadron level for qq̄(0, 1, 2). All simulations are done with Kg

inclusion as described in Sec. 7.1.1.

αMS
s would produce too much QCD radiation as can be seen by comparing with the blue line

of Fig. 7.5.

In Fig. D.2 more simulation results are shown as ratio plots, where an overall improvement of
the NLO merged sample in the comparison to [103] is seen.

The data comparison in Fig. 7.6 was produced without hadronization since the data measured
by the OPAL collaboration [103] has been corrected for experimental and hadronization effects.
In the publication the differential total correction factors Ctot, which was applied to the angular
distributions of four jet configurations are given. The correction plot for the angle of the two
softest jets with a resolution of ycut = 0.008 is copied from the publication and added as
the lower left panel in Fig. 7.6. The statistical error from the data measured at LEP is
negligible [103] and set to zero in the validated Rivet [105] analysis.
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Another (in Rivet labelled as unvalidated) analysis is provided in the Rivet framework from
the data collected from the DELPHI collaboration. It contains the results of the diploma
thesis of H. Hoeth [104]. The jet resolution in this analysis is also given by ycut = 0.008.
Other than a small additional cut on the energy of the jets after applying the Durham jet
algorithm of 3 GeV no difference in the source of the Rivet analyses was found. In [104] the
correction factor for hadronization effects was applied to the parton shower results, other than
on the data itself. The correction they use to include hadronization effects are given in the
lower left plot of Fig. 7.6. The DELPHI data is not corrected to parton level, but to hadron
level for experimental effects.

The ratio between hadron- and parton-level simulation for the sample qq̄(0, 1, 2) with the
dipole shower merging and the cluster hadronization model of Herwig++, see [3] and the
references therein, is plotted in the lower middle panel of Fig. 7.6.

While the OPAL correction factor (including experimental effects) starts to rapidly decrease
at cosα34 ∼ 0.3, the corrections from the cluster model are roughly half the size of the Ctot

from OPAL and start decreasing moderately at cosα34 ∼ 0.4. The (inverse to the other two)
corrections in [104], that are not applied to the data distribution, are mildly increased from
cosα34 = −1 to ∼ 0.4, and then increase stronger up to cosα34 = 1.

We compare the data on parton level with NLO corrections up to the second additional
emission qq̄(0∗, 1∗, 2∗, 3). So including NLO corrections to the e+e− → 4 partons. Here we
used the OpenLoops [87] library for the virtual matrix elements and the MadGraph [10] tree-
level matrix elements interfaced with the ColorFull package [90], as described in Sec. 6.5. For
all simulation distributions in Fig. 7.6 the αMC

s was used according to Sec. 7.1.1. The merging
scale is ρ = 4 GeV and the ratio is with respect to the qq̄(0∗, 1∗, 2) distribution.

The blue sample qq̄(0), containing pure parton shower emissions form the LO seed contribution
with two partons, fails to describe the region of jets with large angles. Especially the back-
to-back configurations for the softest jets at cosα34 = −1 are poorly described. The parton
shower underestimates these regions.

Inclusion of matrix elements, suited to describe the large angle emissions more properly, and
inclusion of the higher order loop contributions shows a better description of the back-to-back
configurations. Already the qq̄(0∗, 1∗, 2) containing tree level corrections to the four parton
state agrees well in the cosα34 ≈ −1 region. The qq̄(0∗, 1∗, 2∗, 3) shows in general the same
behaviour as qq̄(0∗, 1∗, 2). The bin at cosα34 = −0.9 shows a statistical fluctuation.

The agreement to both data sets is, up to the region with large hadronization effects, within
10 % . However the OPAL distribution shows a significant shape difference in the region of
cosα34 ≈ 0.3 ± 0.1 to the simulated contribution, where the correction factor shows a peak.
Even thought the statistical error on the data is negligible the difference between the merged
samples and the DELPHI data on parton level is not too alarming.

To conclude:

Parton showers are, with a good tuning and inclusion of known higher order effects, in good
agreement with large parts of the LEP data. The inclusion of LO and NLO merging provides
a better description in the region of well separated emissions. Without the unitarization
description of the NLO merging and understanding the change to the MC-scheme as an O(αs)
effect, the subtraction of the Kg expressions is unmotivated and leads to bad description of
the data. We want to emphasize that the Kg expressions are finite corrections to the NLO
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corrections of the process with an additional emission, which is of O(α2
sL

2) and therefore a
NNLL effect.

7.3. LHC Results

In this section, results of the merging of LO and NLO matrix elements are discussed and
compared to LHC data. First as the standard candles of the LHC, Z- and W-boson production
is discussed and compared to data. The discovered Higgs boson challenges Monte Carlo and
resummation due to the large perturbative corrections. The results for Higgs production with
NLO merging are presented.

7.3.1. Z Boson Production at LHC

Changing the regime from pure QCD final state emissions at e+e− collisions to the more chal-
lenging environment of hadron collisions requires the interplay of more and more components.
Especially the interplay with the measured PDFs, but also the fact that the phase space of
additional emissions is not restricted by the initial interaction leads to a more complicated
description.

The results shown in this section have been produced with a collider energy of 7 TeV and a
NLO NNPDF [106] set‡ with an αMS

s (MZ) = 0.118. The PDF set is restricted to be positive
definite. The invariant Lepton-Pair mass was restricted by 66 GeV < me+e− < 116 GeV. The
renormalization and factorization scale µR/F is the invariant lepton pair mass, which have been
varied by a factor two, in order to estimate scale uncertainties. The shower starting scale is the
central scale me+e− , also for the simulation with varied µR/F . The matrix elements interfaces
to MadGraph [10] and OpenLoops [87] have been used for tree level and one loop corrections

respectively. We show results with αMS
s = 0.118 in all expressions and how the distributions

change if we use αMC
s instead of αMS

s . All scale variations have been produced for the αMS
s =

0.118 choice. The scale variation of the changed MC-scheme are expected to be of the same
order of magnitude.

7.3.1.1. Transverse Momentum of the Z boson at LO

The distributions in Fig. 7.7 all show the transverse momentum of the lepton pair, which we
call, due to the restriction on the invariant mass, the Z boson in this section. Except for
the data comparison, the ratio plots of the differential cross sections are all normalized to
the LO contribution with a strongly enhanced shower starting scale QH = 5me+e− . The
upper left panel shows, beside the LO with pure parton shower emissions with and without
enhanced shower starting scale, the distribution of the sample Z(0, 1) with one additional
emission merged. In addition the LO distribution for Z+jet production is plotted. The scale
choice of the LO distribution is the transverse momentum of the Z boson, which is close to
the scales used in the showering process.

The fact that the parton shower tends to undershoot the real matrix elements is known [69,
109]. Since the parton shower does not include final state emissions it is not expected that
the parton shower can reproduce the matrix element correctly. The merged sample follows
the contribution of the fixed order above the merging scale. The changes to the inclusive
cross sections due to the mismatch are subtracted in this approach below the merging scale,

‡The LHAPDF [107] name of the set is NNPDF30 nlo as 0118 mc.
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Figure 7.7.: The observable in this figure is the transverse momentum of the Z boson in
proton proton collisions at a collider energy of 7 TeV. The ratios are with respect to the LO
shower with enhanced starting scale. Lower right panel shows the comparison to ATLAS
data [108]. The individual panels are explained in Sec. 7.3.1.1 and Sec. 7.3.1.2.
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which results in a reduction in this region. Above the hard scale the shower with enhanced
starting scale and the merged samples approach for this observable which is the same effect
seen in [109]. The restriction of the phase space leads to a drop of the shower emissions
without enhanced starting scale.

The upper right panel in Fig. 7.7 shows the the Z(0, 1, 2) contribution in blue. The individual
merging samples Z(0,−,−), Z(−, 1,−) and Z(−,−,−2) are separated as dotted, dashed-
dotted and dashed lines respectively, without label. The Z(0, 1, 2) sample shows the same
behaviour as the Z(0, 1) for this observable. Including the LO merging to the second emission
in Z(0, 1, 2), additional contributions arise that can lead to small or vanishing transverse
momenta of the Z boson, so that the sample Z(−,−, 2) contributes also to the small pZT region.
These contributions, where the two additional partons are balancing their transverse momenta
are necessary to describe LHC data. The same effect happens in W boson production, where
these contribution are discussed, see Sec. 7.3.2.2.

Additional to the splitted Z(0, 1, 2) distribution, also the merged sample with an enhanced
merging scale to 40 GeV is plotted. Here the enhancement effect due to the matrix element
corrections above the merging scale enter the distribution for higher values of the transverse
momentum of the Z boson.

Changing from αMS
s to αMC

s , labelled with Kg leads to a shift of the Sudakov peak to higher
values. With this also the shape change at the merging scale ρ = 20 GeV is decreased.

7.3.1.2. Transverse momentum of the Z boson at NLO

The distribution with included NLO corrections to the seed process Z(0∗, 1) are shown in the
middle right panel in Fig. 7.7. The inclusion is described in Sec. 5.1. Corrections below the
merging scale, due to subtracted real emission contributions with parton shower approxima-
tions, lead to a reduction of the large rise at the merging scale. The transition is smoother
compared to the LO sample with enhanced starting scale. The Z(0∗, 1) is very close to the
MC@NLO result produced with the Matchbox. Below the hard scale of the shower, the NLO
corrections lead to an enhancement of the distribution and to a scale reduction for the Z(0∗, 1)
sample. Above the hard scale of the shower the merged sample and MC@NLO differ because
of the different scale choice. MC@NLO continues to choose the hard scale of the Born process,
here me+e− . The merged sample chooses the scale according to Eq. (4.31), which is larger
than the scale used in MC@NLO.

The scale variation above the hard scale QH = me+e− , is not reduced due to the NLO cor-
rections to the seed process. Above the hard scale of the shower the same contributions
describe the LO merged Z(0, 1) and the matched/merged Z(0∗, 1) since they were added as
finite contributions to the LO merging, see Sec. 4.6.

NLO corrections above the merging scale are included in the Z(0∗, 1∗, 2) sample in the middle
right panel of Fig. 7.7. They show a good agreement compared to the fixed order NLO
calculation as it was seen in the case of LO merging compared to the fixed order LO calculation.

It is not obvious why the distribution of Z(0∗, 1) and Z(0∗, 1∗, 2) in the lower left panel of
Fig. 7.7, are so close below the merging scale. The clustered (to the seed process kinematics)
contributions of Z(0∗, 1) and the contributions calculated with seed process kinematics are
allowed to emit in the full shower phase space of the seed process. The same contributions also
appear in the Z(0∗, 1∗, 2) sample and are vetoed above the merging scale. On the other hand
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the NLO corrections to the one jet contributions are also clustered to the zero jet configurations
by the unitarization description, see Sec. 5.2. This reduces the NLO contributions below the
merging scale, since the K-factor above the merging scale is larger than one.

In addition to the distribution for an enhanced merging scale of ρ = 40 GeV, also the dis-
tribution with replaced αs is shown. As in the LO merging the enhancement of the merging
scale leads to an delay of the corrections obtained by the matrix element corrections to higher
values of the transverse momentum. The replacement of αMS

s to αMC
s leads to a smoother

continuation below and above the merging scale, as it is in the LO merged samples. Like
the LEP results and as it is constructed, the consistent inclusion of αMC

s mildly changes the
Z(0∗, 1∗, 2) where the NLO correction to the first emission is included.

In the lower right panel of Fig. 7.7 the distributions are now compared to the data taken by
the ATLAS [108] collaboration at the LHC. The description of the hard tail of the differential
cross section is strongly improved by the inclusion of the NLO contributions. The region of
small transverse momentum of the Z boson is improved by treatment of αMC

s . Note that we
did not retune the parameters of the intrinsic kT , see [3], and use the same PDF set in all
parts of the calculation. The description is improved compared the inclusion of the first NLO
correction in Z(0∗, 1), which corresponds to a MC@NLO description, see middle left plot in
Fig. 7.7.

7.3.2. W Boson Production at LHC

The production of W± bosons is the largest cross section including heavy bosons measured
at the LHC. The production process is very similar to the Z boson production. Beside the
hadronic decay (∼ 66%), W± decay into lepton-neutrino pairs (∼ 11% per generation) [47].
The merging is compared to measurements of the W± boson decaying into a µ±νµ pairs. Since
we are more interested in the QCD radiation part of the process the CKM matrix [110, 111] is
set to 1 in the generation of the event samples. Same parameters and matrix element providers
as in the Z boson production were used. The distributions of the transverse momentum show
a similar picture as for the Z boson, and is not discussed here.

7.3.2.1. k⊥ Splitting Scales and the Effects of Multiple Parton Interactions

The k⊥ splitting scales measured by the ATLAS collaboration [112] are shown in Fig. 7.8. The
observables are similar to the jet rates shown for LEP results, see Sec. 7.2 with the expansion
of the kT -jet finding algorithm to hadron colliders [63, 114]. Also distance to the beam must
be taken into account in the jet clustering process. See Sec. 1.1. of [112] for a detailed outline
of the clustering algorithm. In Fig. 7.8 we observe that the merged sample W (0∗, 1∗, 2) is able
to describe the hard region of the first splitting scale

√
d0 within the experimental uncertainty.

In the tail drops to fast compared to data.

Changing the αs to αMC
s also above the hard scale of the shower and using LO PDFs for the

showering process as it is done in [112] may help to describe tail of the second emission
√
d2,

but is part of further investigations. The peak at 40-50 GeV in the
√
d2 distribution is also

visible in [112] compared to the theoretical predictions.

While the hard tail of the contributions is described by the merged samples, the intermediate
region (scales between 5 GeV and 30 GeV) needs secondary hard scatterings, described by
the multiple parton interaction model (MPI)[3]. The MPI model produces extra emissions
from secondary vertices that contribute to the soft activity in the event simulation. After
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Figure 7.8.: Effects of multiple interactions and the hadronization model in the interplay
with the merged samples compared to ATLAS data [112] in sensitive to hadronic activity kT
splittings in W± production. Beside the multiple interaction (MPI) also the hadronization
model is needed to describe these observables. In the ratio of different splitting scales the
hadronization effects are suppressed.
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Figure 7.9.: Jet multiplicities and the angle between the two hardest jets, measured by
ATLAS [113]. The pure shower and MC@NLO like merging W (0∗, 1) fails to describe data.
The contributions from back-to-back scattering jets are important to induce initial dijet like
configurations. Theses open the phase space for more jets and higher multiplicities. W (0, 1, 2)
and W (0∗, 1∗, 2) perform equally well besides the normalization, which is improved due to the
NLO corrections.
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applying the MPI model there are fewer events with very soft hadronic activity, which is then
compensated by the modelling of hadronization. Only the interplay of the hard perturbative
parts, additional secondary soft emissions and modelling formation of measurable hadronic
final states is able to describe the full range of scales form 1 GeV to several 100 GeV.

Ratios of different k⊥ splitting scales shown on the right hand side of Fig. 7.8 suppress
hadronization effects but still need the MPI modelling. Although the MPI model is tuned
for the default Herwig++ shower, the ratios show differences within two σ.

7.3.2.2. Jet Multiplicities and Back-to-Back Configurations

In Fig. 7.9 the cross sections for inclusive jet multiplicities are plotted against ATLAS data [113].
Pure shower emissions W (0) are not capable to describe the higher jet multiplicities. Also the
LO inclusive cross section in the first bin needs the NLO correction included in W (0∗, 1) to
get close to the measured cross section. In the W (0∗, 1) distribution the inclusive cross section
is corrected to NLO and the first jet is described by LO corrections. These are able, due to
unordered histories, to fill the phase space above the shower starting scale. Still the included
correction to the first emission fails to describe higher multiplicities.

When the first emission is performed by the showering process in a Drell-Yan process (this
also holds for multiple boson production), momentum conservation requires that the electro
weak system compensates for the transverse momentum of the emission. A balancing second
emission is not strongly ordered and unlikely. These back-to-back configurations have large
angles between the two jets. The right plot in Fig. 7.9 illustrates this region of the recoiling
dijet system. The LO+PS and NLO+PS samples W (0) and W (0∗, 1) are strongly suppressed
for larger angles. The samples including LO matrix element corrections for the second emission
fill this region. Additional MPI activity also contributes to this back-to-back configurations
but tends to overshoot the region for small angles.

Another approach how to produce these events is a combination of electroweak and QCD
showering [115]. Here the dijet events radiate W-bosons leading to the same picture. In [78]
giant K-factors are reported and described with the LoopSim method. Back-to-back configu-
rations obviously lead to a large correction in specific regions of phase space and observables
like the sum of transverse momenta HT =

∑
pjT get enhanced by the to recoiling hard jets.

Cutting on the angle between visible dijet systems strongly suppresses the underlying QCD
induced, soft electro weak radiation.

The inclusion of the matrix elements with additional two partons is now capable to describe
also high multiplicities. The inclusion of NLO corrections to the first emission W (0∗, 1∗, 2) cor-
rects the one jet inclusive cross section to NLO accuracy above the merging scale. Compared
to the W (0, 1, 2) sample the K-factor of the subsequent NLO corrections helps to describe
data at lower multiplicities. In the four and five jet inclusive cross section the NLO corrected
and LO merged samples are again close. The back-to-back configurations are not corrected
with NLO matrix elements, so are describes formally with LO accuracy.

The additional emissions generated by the MPI model tend to produce too many jets compared
to data. The parameters of the MPI model are tuned with LO predictions and the inclusion
of higher orders already includes parts that the MPI tune tries to accommodate for missing
contributions in the hard process.
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7.3.3. Higgs Boson Production at LHC

With the Higgs boson the last missing piece of the SM was discovered at LHC [1, 2]. From the
theoretical point of view, production of a Higgs boson is interesting since large NLO [116, 117]
and NNLO [118] corrections are seen for inclusive cross sections.

The dominant production channel is via gluon fusion. Since the massless gluon does not
directly couple to the colourless Higgs boson, already the LO contains loop diagrams. In the
limit of a large top mass, the gg → h process can be described by a Higgs Effective Field
Theory model (HEFT) with an additional ggh-vertex, e.g. [119]. The additional operator in
the Lagrangian takes the form§

Lh = −1

4
ghG

a
µνG

a,µνh with gh =
αs

3πv
, (7.7)

where the field strength Gaµν contains linear and quadratic expressions of the gluon fields,
leading to Feynman rules for the ggh-coupling. The OpenLoops libraries were used for the one
loop corrections and MadGraph for tree-level amplitudes in the HEFT model.

7.3.3.1. The Transverse Momentum of the Higgs Boson and the Kink

In Fig. 7.10 the results are shown for the transverse momentum of the Higgs boson at 8
TeV LHC energies. For this distribution the shower starting scale, as well as renormalization
and factorization scale are varied simultaneously by factors of two around the central value
MH = 125 GeV. The merging scale is set to ρ = 20 GeV for the scale variations.

While the LO+PS sample H(0) drops rapidly above the shower starting scale, the merged
sample H(0, 1) shows a smooth continuation to transverse momenta above the shower starting
scale. The cross section with decreased scale is enhanced and simultaneously the shower phase
space is smaller. This leads to an intersection of the scale variation band in the H(0) case. For
the merged sample the emissions above the hard shower scale are seen as unordered emissions
and added as finite contributions. The scale choice for these contributions is also reduced
by the scaling factors as it is now the ’new’ hard scale, see Sec. 5.4. This leads to a smooth
continuation of the scale uncertainty band.

NLO corrections to the cross section include the large K-factor of the Higgs production cross
section. In the merged sample H(0∗, 1) the NLO corrections enter as an addition below the
hard scale of the shower. Since the real emission above the hard scale of the shower was already
added to the LO merging as a finite, unordered contribution, the tail of H(0∗, 1) above the
shower starting scale coincide with the LO merged H(0, 1). The finite NLO contributions
which are proportional to the Born process receive the same shower phase space as the H(0)
contributions. This leads to a similar drop of the corrections as for H(0) in the left plot in
Fig. 7.10. This behaviour is expected as it is also seen in Fig. 3.3 for the MC@NLO result.
The logarithmic x-axis amplifies the impression of a ’kink’ at the hard scale.

In [72] the origin of the large NLO corrections where identified as the π2 contributions originat-
ing from analytic continuations of log2(−1) terms. Whether these contributions exponentiate
in the form proposed in [72] or not, at the one loop level the corrections are large and propor-
tional to the Born contributions. This leads to the ’kink’ at the shower starting scale.

§In the HEFT model of MadGraph gh is multiplied by
(

1+ 7
30
τ+ 2

21
τ2 + 26

525
τ3

)
, and τ = m2

h/(4m
2
t ) to include

top mass effects. Since the results presented here are calculated with the OpenLoops libraries for the virtual
amplitudes, the top mass is set in both programs to 106 GeV in order to avoid ambiguities.
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Figure 7.10.: Differential cross section as a function of the transverse momentum of a Higgs
boson produced in gluon-fusion. Left: Comparison between pure shower emissions and LO
merged contribution with the merging of one additional parton. The error band is showing
the variation of simultaneously varying the renormalization, factorization and hard scale of
the shower by factors of two. Right: In addition to the LO merged H(0, 1(, 2)), with one
and two emissions corrected by the matrix elements, the merged cross section with an NLO
corrections to the gg → H process in the effective field theory with infinite top mass is shown.
Restrictions on the shower phase space in matching and merging lead to kinks at the hard
scale.

In Fig. 7.11 the MC@NLO-like¶ (red line) and the NLO merged contribution with NLO
corrections to the first emission H(0∗, 1∗, 2) (teal line) are added to the distributions shown
in Fig. 7.10. The MC@NLO-like contribution approach the LO merged sample before the
H(0∗, 1). This behavior is dictated by the profile scales [70] introduced in Matchbox to ensure
a smooth continuation between shower region and hard tail. The rise of the MC@NLO-like
distribution compared to the LO merged sample is due to the scale choice above the hard
scale, see discussion for the transverse momentum of the Z boson in Sec. 7.3.1.2. Here, the
MC@NLO-like matching continues to use the hard scale of the process, namely the Higgs
mass. The merged sample is using the scale given in Eq. (4.31), which is in this region larger
than the Higgs mass.

The H(0∗, 1∗, 2) contribution does not show the ’kink’ at the shower starting scale, it further
continues with roughly the same differential K-factor ∼ 2 with respect to the LO merged
contribution. Above the merging scale at 20 GeV the H(0∗, 1∗, 2) receives its NLO corrections
solely from the corrections to the first emission. The NLO corrections to the seed process are
vetoed by the shower to emit only below the merging scale. The rather smooth continuation
compared to the MC@NLO-like contribution at the merging scale ρ = pHT = 20 GeV‖ is
therefore not expected from the merging procedure. The large correction to the Born process
has the possibility for the H(0∗, 1) sample to emit into the full shower phase space∗∗. The

¶The MC@NLO-like distribution is produced by Matchbox, which provides two kinds of matching schemes. The
shown is close to the MC@NLO approach.

‖The transverse momentum of the Higgs and the merging scale coincide for the first emission.
∗∗This only holds for the NLO related contributions which are clustered to Born-like kinematics, see Sec. 5.1.
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Figure 7.11.: Higgs ph⊥ as in Fig. 7.10. On the left hand side the distributions for a merged
cross section with NLO corrections to the first emission H(0∗, 1∗, 2) and the MC@NLO(-like)
matching are added to the distributions of Fig. 7.10. While the MC@NLO follows the merged
sample with NLO corrections to the seed process, the distribution continues for the H(0∗, 1∗, 2)
sample without dropping at the transition of the shower phase space to the high pT region.
The merging scale is ρ =20 GeV. The orange line shows the distribution with an enhanced
merging scale ρ = 40 GeV.

unitarization contribution of the second NLO correction in H(0∗, 1∗, 2) are also clustered to
the kinematic configurations of the seed Born phase space. These suppress the corrections to
the seed process. The orange distribution in Fig. 7.11 with an enhanced merging scale shows
the same behaviour.

At the shower starting scale†† the H(0∗, 1∗, 2) sample change from ordered to unordered con-
figurations like the LO merged sample H(0, 1) or H(0, 1, 2). Since the scale change at the hard
scale is smooth in Eq. (4.31), also the distribution has no discontinuities at the shower start-
ing scale. Different scale choices would lead to O(α2

s) effects counted from the first emission
pp→ Hj, since the O(αs) is compensated by the NLO correction to the pp→ Hj process.

7.3.4. Jet Production at LHC

In Fig. D.1 the results are shown for the transverse momenta of the second and third hardest
jets, in 7 TeV proton proton collisions. While we see a similar behaviour in the hard tail of
the third jet as reported for the CKKW-L and ULOPS results [22], we also see an unphysical
negative differential cross section for large transverse momenta p⊥(jet2) ≈ 400 GeV of the

††Technically also below the hard scale, if the emission is not within the shower phase space given by the z-bounds
of [57].
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second jet. If the shower starting scale is changed to the absolute sum of all transverse
momenta of the jets HT , the distribution remains positive.

Negative configurations in the unitarized LO merging appear in the clustered configurations
of the higher multiplicity. These configurations φ are clustered, in this approach, to the
underlying Born configuration φ̃i with the weights according to the ratio of the CS dipole
Pi in the parton shower approximation divided by their Born contribution Bi, see Sec. 4.5.
The weight is set to zero if the additional emission configuration φ is not reachable from the
shower emission of the dipole i in the restricted phase space of φ̃i. The starting scale of this
emission is evaluated for the underlying Born configuration φ̃i. This prefers the underlying
Born configurations with large transverse momenta, if the shower starting scale is the trans-
verse momentum of the hardest jet and other underlying configurations cannot be reached by
their individual phase spaces. The clustering algorithm also prefers Born configuration with
larger transverse momenta for the starting scale HT , but the phase space is still larger for the
underlying Born configurations.

In this approach the aim is to provide a process independent merging, without using infor-
mation on the hard process, other than the scale choice for the shower starting scale. In
processes where the scale of the seed process is given by an electroweak system, the cluster-
ing algorithm and the reweighting provides reasonable results, also compared to data. In the
physical picture, where the parton shower is used to evolve the scales to lower values by resolv-
ing/producing additional collinear and soft emissions, the hard scale used in the PDF should
coincide with the hardest possible emission of the shower. The restrictions derived from this
on the shower phase space used in the dipole shower of Herwig++ [57] are respected in the
clustering algorithm. With the usage of the HT definition, the distributions remain positive,
but the finding that the differential cross section with respect to the transverse momentum of
the second jet is negative for large values open questions, which will be part of future work.



CHAPTER 8

Summary and Outlook

In this thesis a formalism was constructed to consistently include multiple NLO corrections
to parton shower simulations. Based on the basic ideas of matching fixed order corrections to
resummed expressions, it contributes to the efforts of increasing the accuracy of parton shower
simulations. Thereby neither the parton shower algorithm nor the NLO correction lose their
precision.

Ch. 4 reviewed the methods used to merge multiple LO calculations and showed how to con-
struct an algorithm that is able to preserve the inclusive LO cross section without introducing
uncontrolled O(αs) corrections. In addition it was shown that dividing the phase space of
overlapping shower emissions, can lead to regions for which the shower produces less emis-
sions as it would, without including the matrix elements. These regions of phase space are
not described by matrix elements. It was discussed that the unitarized expressions, which
are produced in order to preserve the LO cross section, can be used to fill the regions with
emissions from the unsuppressed lower multiplicity. Controlled addition of contributions not
described by the shower phase space leads to αs-corrections that are able to describe high
energetic emissions.

In the first part of Ch. 5 the inclusion of NLO corrections to the production process without
additional emissions were described as a complement of the MC@NLO approach. The expan-
sion in the coupling constant led to expressions that are needed to include NLO corrections
without double counting of similar contributions. Below the merging scale the approach is
similar to the MC@NLO expressions. The merging scale dependence is reduced by subtracting
shower expansions from the real emission corrections. The next part of Ch. 5 was used to
include an additional NLO correction above the merging scale of the first additional parton
emissions. The expansion of the shower history led to expressions that act as a counterpart
to large logarithms expected in the NLO correction. In the third part of Ch. 5 the algorithm
was extended to an arbitrary number of NLO corrections. Here the basic ideas of subtracting
the expanded expressions remain the same. The shower history is extended together with the
NLO corrections and needs to be expanded, as for the inclusion of the second NLO corrections.
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In the last part the parameters to vary the scales of showering and hard process were included
to the NLO merging expressions.

We showed with three independent methods that the Sudakov reweighting as a keystone
of merging algorithms works and reported on the implementation of interfaces to external
amplitude providers. Within this work three automatized interfaces to external amplitude
providers (GoSam, MadGraph and OpenLoops) have been implemented into the Matchbox
framework. The interface to MadGraph together with the ColorFull package provides the
possibility to calculate tree level amplitudes in the large-NC limit, which is necessary for
consistent NLO matching.

In Ch. 7 numerical results are shown and known improvements are included consistently. The
NLO corrections to the first additional emission from a qq̄ pair, calculated in the MS-scheme
shows a large K-factor. The unitarization procedure for the NLO corrections that preserves
the NLO cross section showed a kink at the merging scale, originating from finite corrections.
It was explained, by referring on knowledge from the early 90s, that this is expected. It was
shown, that changing to the MC-scheme by changing the value of αs spoils the description
of data. Understanding the change consistently as an O(αs) correction, restores the good
description of LEP data. Including NLO corrections to up to four jet final states shows
discrepancies to data corrected to parton level but agrees well with uncorrected data.

We discussed the changes produced by including multiple NLO corrections to Drell-Yan pro-
cesses and saw that data are well described. The inclusion of the MC-scheme related ex-
pressions also improved the behaviour for Z boson production at the LHC. The MC@NLO
approach and the merging with one NLO correction agreed well. For W± boson production
we showed the interplay of different stages of the event simulation and it is seen that the NLO
merged result improves the description of data with respect to pure parton shower, LO merged
and NLO matched results. As expected the kink seen in MC@NLO in Higgs production via
gluon fusion disappears with the inclusion of the second NLO . The smooth transition seen
at the merging scale was less expected, since the large virtual corrections from the first NLO
corrections are vetoed above the merging scale. The unitarization of the second NLO correc-
tions suppresses the first corrections. For the multi dipole processes of pure dijet production
we see non-physical differential cross sections, which will be discussed in future work.

In future work a retuning of non-perturbative parameters used in event simulations will be
taken into account. Uncertainty studies by variations of the included parameters will provide
reasonable uncertainty estimations. The effects of merging multiple NLO corrections in the
approach provided in this thesis will lead to improved simulations of signal and background
processes at present and future colliders. In order to test the limitations of the SM and to
improve the searches for new physics beyond the SM, higher precision is required to understand
nature.



APPENDIX A

Clustering the real emissions kinematics

In Eq. (5.11), (5.12) and (5.13) we add contributions which have different structure in the
measurement functions ui but can be produced with Monte Carlo techniques. The algorithm
has the following structure:

1. Produce a phase space point for the real emission kinematic.

2. Decide with adjustable but fixed weights w′D/(w
′
D+w′R) and w′R/(w

′
D+w′R) if the integral

of Eq. (5.12) (with dipole contributions above µ̃) or the other two (with real emission
contributions) should be performed. Multiply the event weight with (w′D+w′R)/w′C ,
where C is the chosen one.

3. If the dipole contributions should be used:

a) Check if all scales are above the cutoff µ̃. If at least one of the scales is below the
merging scale ρ. If not discard the point ∗.

b) Choose one of the dipoles flat. Multiply the event weight with the number of
dipoles.

c) Check if the tilde kinematics of the chosen dipole respects the cuts on the process.
If not discard the point.

d) Check if the real emission phase space point is inside the reachable phase space for
the shower from the chosen tilde kinematic. If the phase space point is reachable,
multiply the event weight with (Pi−Di), if not, calculate only the dipole expression.
Pi is the shower approximation of the dipole [70], see Sec. 4.5.

4. If the real emission contributions should be used:

a) If all scales are above the merging scale, we are calculating expression (5.11).

∗It is then part with the real emission contributions.
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i. Perform the clustering used in LO merging. If no clustering is possible within
the subleading shower phase spaces, the point was already added to the LO
merging without unitarization. Do not calculate the real emission weight.

ii. Choose one dipole flat multiply the dipole weight with the number of dipoles,
stored in the tilde kinematic of the dipole. The shower starting scale is calcu-
lated for the tilde kinematics.

iii. If the real emission phase space point is reachable, the wi are not all zero.
We already chose the underlying phase space point according to the density
wi/

∑
wj in step i. If the flat chosen dipole of step ii is the same as the

LO clustered underlying Born process multiply the real emission contribution
with the number of dipoles, else do not calculate the real emission. This will
produce the density in a Monte Carlo fashioned way. Return the real emission
contribution with the multiplied dipole from the previous step.

b) If at least one of the scales is below the merging scale, we are calculating Eq. (5.13)

i. Calculate the real emission contribution.

ii. Subtract the shower approximation of each dipole if the scale is above the cutoff
µ̃.

iii. Subtract the dipoles for which the scale is below the cutoff µ̃.

iv. Store the real emission in the real emission kinematics if non of the sclaes
is below the cutoff, else store the contribution flat in one of the underlying
kinematics.

v. Choose the starting scale of the shower according to the lowest scale if not
clustered, else it is defined by the underlying kinematic.
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Algorithm to produce NLO corrections

Algorithm for Eq. (5.44):

u1

(
−B1(q0)

∑
i

wi∑
j wj

∂1
αs∆

0,i
1 θ1

PS + V̄1 + IPK1

)∏
i

θ(kiT,2 > ρ) + clustered

1. Produce the kinematics for a phase space point u1.

2. Check if all scales associated with the dipoles are above the merging scale. If not discard
the event.

3. Perform a clustering and calculate the history weight as for the LO merging.

4. Decide with probability 1/2 if event is clustered or not. Multiply event weight with 2.
Later store the event in the u1 configuration if the event is labelled not clustered or in
the underlying kinematic determined in step 3. If no underlying process was found for
the later, discard event.

5. Calculate the virtual and IPK contributions with the scale of the seed process given by
the step before. This must not be the n = 0 configuration in the case of unordered
histories.

6. For the given history calculate the expansions of the history weights, with the algorithm
outlined below.

Algorithm for the αs-expansion of the history weight ∂1
αs∆

0,i
M :

1. For each history step add
αs(q

2
0)

2π
β0 log

(
q2
k

q2
0

)
. (B.1)

where q0 is the scale of the seed process, where the history started and q2
k is the k’th his-

tory step of the chosen history i from the LO clustering description, with k ∈ {1, . . . ,M}.
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2. If the splitting is associated with a PDF ratio for one of the initial states, calculate the
expression proportional to αs of Eq. (5.33) for this PDF ratio. This can be done by
reusing the same expression needed for the P operator in the CS subtraction formalism,
without the colour correlations and divided by the PDF of the underlying process. The
integration is done by Monte Carlo techniques in the Matchbox framework. For the
merging we decided to produce multiple z values for the numerical integration in order
to get a averaged, more stable result.

3. Integrate for each history step and each dipole configuration which was used to determine
the Sudakov suppression of the LO merging the exponent of the Sudakov suppression
with fixed scales qi in αs and PDF with the phase space boundaries determined for the
scale qi. This produces the correct αs expansion of the final and initial state Sudakov
form factors. Since we implemented the Sudakov factors for the LO merging in a way
that we integrate the exponential, we can reuse the routines which were used there by
keeping the scales fixed without exponentiation. With this procedure we achieve the
correct αs expansion including phase space boundaries. The multiplication in the LO
merging suppression translates into a sum in the αs expansion.

Algorithm for Eqs. (5.45) - (5.48):

In order to produce the correct weights for the real emission weights, containing the shower
approximations, the algorithm for the first real emission outlined in (A) can be reused. The
changes which do not effect the first NLO real emission:

1. The cut Θ on the real emission given in Eq. (5.42) needs to be respected.

2. Once a underlying Born process is determined, perform a history reweighting as for the
LO merging for the chosen underlying Born process.

3. Assure that for all subtraction dipoles and shower approximations that are calculated
the scales of their underlying processes are above the merging scale. The shower approx-
imations must be reachable from any of their underlying processes by shower emissions.



APPENDIX C

Phase Space Boundaries and Variable Definitions

In this appendix the basic variable definitions and phase space boundaries are given, which
have been used in the version of the Herwig++ dipole shower [80]. They changed from [57] to
the current Version of Herwig++.

The notation is hereby:

• FF, FI, IF, II: e.g. IF = initial state emitter , final state spectator

• pi, pj , pk: Real (emitter,emission,spectator) momentum

• qĩj , qk̃: Born (emitter,spectator) momentum

• xem, xspe: Born (emitter,spectator) momentum fraction

• pT,hard: Hard scale of the Born phase space point. For next emissions it is the last
splitting scale of the dipole chain. The dipole chain contains all colour connected dipoles.

• pmaxT : Restriction on the maximum transverse momentum.
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z(1−z) pi = zqĩj + y(1− z)qk̃ + kT

z = pipk
pipk+pjpk

qk̃ = pk
1−y p2

T = yz(1− z)s pj = (1− z)qĩj + zyqk̃ − kT
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qĩj = pi + pj − (1− x)pk x = 1

1+ r
z(1−z)
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Table C.1.: Variables and kinematics for CS subtraction [41] and showering as they are implemented in the current version of Herwig++,
they slightly differ [80] from [57]. The notation is given in Sec. C.
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Figure D.1.: Pure dijet QCD events for proton proton collision with collider energy of 7 TeV.
A minimal transverse momentum cut on the hardest jet pT = 80 GeV is required for the
generation before showering. The merging scales are ρ = 20 GeV and ρ = 40 GeV. The
shower starting scale is the transverse momentum of the hardest jet. Left: The differential
cross section for the transverse momentum of the third hardest jet is plotted for LO with
parton shower emissions J(0) and LO merging with one additional emission J(0, 1). The
distribution is splitted into the dashed J(0,−), containing the multiplicity with pure dijet
configuration and the clustered contribution with three partons in the final state. Right: The
differential cross section for the transverse momentum of the second hardest jet p⊥(jet2). The
distribution with a shower starting QH = HT is added and discussed in the text.
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Figure D.2.: An overall good agreement between OPAL data [120] and simulation can be
found. The ratio plots in the colour code of the upper left show the moments of several
observables as described in [120] and the references therein. We chose to give the ratios
as difference in terms of standard deviations to provide a better comparison to the original
publication. The upper right plot is one of the observables, which is further improved by
including the NLO merging, we use a different colour coding to distinguish the plot as it is a
different experimental analysis in this comparison. The DELPHI analysis is described in [98].
It is one of the observables less well predicted, also in the original publication. The third NLO
correction has no huge impact on the description of the data.
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[29] L. Lönnblad and S. Prestel, “Merging Multi-leg NLO Matrix Elements with Parton
Showers,” JHEP 03 (2013) 166, 1211.7278.

[30] S. Plätzer, “Controlling inclusive cross sections in parton shower + matrix element
merging,” JHEP 08 (2013) 114, 1211.5467.

[31] K. Hamilton, P. Nason, E. Re, and G. Zanderighi, “NNLOPS simulation of Higgs
boson production,” JHEP 10 (2013) 222, 1309.0017.

[32] A. Karlberg, E. Re, and G. Zanderighi, “NNLOPS accurate Drell-Yan production,”
JHEP 09 (2014) 134, 1407.2940.

[33] K. Hamilton, P. Nason, and G. Zanderighi, “Finite quark-mass effects in the NNLOPS
POWHEG+MiNLO Higgs generator,” JHEP 05 (2015) 140, 1501.04637.
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M. Schönherr, and G. Watt, “LHAPDF6: parton density access in the LHC precision
era,” Eur. Phys. J. C75 (2015), no. 3 132, 1412.7420.

[108] ATLAS Collaboration, G. Aad et. al., “Measurement of the Z/γ∗ boson transverse
momentum distribution in pp collisions at

√
s = 7 TeV with the ATLAS detector,”

JHEP 09 (2014) 145, 1406.3660.

[109] G. Miu and T. Sjostrand, “W production in an improved parton shower approach,”
Phys. Lett. B449 (1999) 313–320, hep-ph/9812455.

[110] N. Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10 (1963)
531–533.

[111] M. Kobayashi and T. Maskawa, “CP Violation in the Renormalizable Theory of Weak
Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.

[112] ATLAS Collaboration, G. Aad et. al., “Measurement of kT splitting scales in W→lv
events at

√
s = 7 TeV with the ATLAS detector,” Eur. Phys. J. C73 (2013), no. 5

2432, hep-ex/1302.1415.

[113] ATLAS Collaboration, G. Aad et. al., “Study of jets produced in association with a
W boson in pp collisions at

√
s = 7 TeV with the ATLAS detector,” Phys. Rev. D85

(2012) 092002, hep-ex/1201.1276.

http://xxx.lanl.gov/abs/hep-ex/0001055
http://xxx.lanl.gov/abs/hep-ph/1404.5630
http://xxx.lanl.gov/abs/hep-ex/0101044
http://xxx.lanl.gov/abs/1003.0694
http://xxx.lanl.gov/abs/hep-ph/1410.8849
http://xxx.lanl.gov/abs/1412.7420
http://xxx.lanl.gov/abs/1406.3660
http://xxx.lanl.gov/abs/hep-ph/9812455
http://xxx.lanl.gov/abs/hep-ex/1302.1415
http://xxx.lanl.gov/abs/hep-ex/1201.1276


124 Bibliography

[114] S. Catani, Y. L. Dokshitzer, M. H. Seymour, and B. R. Webber, “Longitudinally
invariant Kt clustering algorithms for hadron hadron collisions,” Nucl. Phys. B406
(1993) 187–224.
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