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INVERSE PROBLEMS FOR ABSTRACT EVOLUTION EQUATIONS
WITH APPLICATIONS IN ELECTRODYNAMICS AND ELASTICITY.

ANDREAS KIRSCH AND ANDREAS RIEDER

Abstract. It is common knowledge – mainly based on experience – that parameter
identification problems in partial differential equations are ill-posed. Yet, a mathemati-
cal sound argumentation is missing, except for some special cases. We present a general
theory for inverse problems related to abstract evolution equations which explains not
only their local ill-posedness but also provides the Fréchet derivative of the corresponding
parameter-to-solution map which is needed, e.g., in Newton-like solvers. Our abstract
results are applied to inverse problems related to the following first order hyperbolic sys-
tems: Maxwell’s equation (electromagnetic scattering in conducting media) and elastic
wave equation (seismic imaging).

1. Introduction

In this paper we consider parameter identification problems related to first order hyper-
bolic systems such as the electromagnetic or the elastic wave systems. Especially, we show
that these inverse problems are locally ill-posed anywhere no matter how many measure-
ments are available. Further, we characterize the Fréchet derivative of the parameter-to-
solution map which is an essential ingredient of iterative regularization schemes.
Our approach is based on abstract evolution equations in Hilbert spaces,

Bu′(t) + Au(t) = f(t) , u(0) = u0 ,

with a maximal monotone operator A and a positive definite operator B. Existence,
uniqueness, and regularity of the solution follow from the famous Hille-Yosida theorem.
As we think that most of our intended readers are not familiar with operator semigroup
theory we collect basic facts with some proofs in the next section.
The operator B is the ”parameter” to be identified from (partial) knowledge of u. Thus,
F : B 7→ u is the parameter-to-solution map for which we validate Fréchet differentiability
(Section 3) and local ill-posedness (Section 4). Finally, we apply our abstract theory to
inverse electromagnetic scattering in time domain to identify spatial dependent electric
permittivities and magnetic permeabilities (Section 5). A second application concerns
seismic imaging where the governing equation is the elastic wave equation in hyperbolic
system formulation (Section 6). Here, the mass density and the two Lamé parameters
are sought.
Fréchet differentiability of parameter-to-solution maps of abstract first order hyperbolic
systems has been studied before by Blazek et al. [1] using the technique of weak solutions.
Indeed, our research was triggered by reading their article and with the present paper we
complement and extend their work. Please consult [1] also for an overview on prior and
related work in this direction.
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We gratefully acknowledge the financial support by Deutsche Forschungsgemeinschaft (DFG) through
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In their recent work [15] Lechleiter and Schlasche identify Lamé parameters of the second
order elastic wave equation from boundary measurements. They set up an inexact Newton
iteration to this end validating the Fréchet differentiability of the parameter-to-solution
map in the spirit of [12]. Boehm and Ulbrich [2] attack the same problem with a semi-
smooth Newton iteration also providing an expression for the Fréchet derivative. By
eliminating the stress tensor from the first order elastic wave equation, the representation
of the Fréchet derivatives in [2] and [15] can be obtained within our setting, however,
under weaker assumptions, see Section 7.

2. Evolution Equations

In the first part we recall the basic facts from the abstract theory of evolution equations.
Although this is very well known to the experts (see, e.g., [5, 16]) we recall the rather
elementary approach as in [4] for the convenience of the reader.

Definition 2.1. Let X be a Hilbert space and A : X ⊃ D(A)→ X a linear operator with
domain of definition D(A) ⊂ X. The operator A is called monotone if

(Ax, x)X ≥ 0 for all x ∈ D(A) .

A is called maximal monotone if it is monotone and I+A is surjective as an operator
from D(A) onto X. Here, I denotes the identity operator in X.

We note that the maximal monotonicity of the operator A implies already denseness of
the domain of definition D(A) in X and closedness of the operator (see [4]).

These assumptions on A are already sufficient for the well-posedness of the abstract
evolution equation.

Theorem 2.2. (Hille–Yosida) Let A : X ⊃ D(A) → X be a linear maximal monotone
operator and u0 ∈ D(A). Then there exists a unique u ∈ C1

(
[0,∞), X

)
∩C
(
[0,∞),D(A)

)
with

(1) u′(t) = −Au(t) , t ≥ 0 , u(0) = u0 .

Here, D(A) is equipped with the graph norm; that is, ‖v‖D(A) =
[
‖v‖2X + ‖Av‖2X

]1/2
for

v ∈ D(A). Furthermore, the stability result holds in the form

(2) ‖u(t)‖X ≤ ‖u0‖X for all t ≥ 0 .

For a proof we refer to [4], Theorem 7.4. This theorem guarantees that the operator
S(t) which maps u0 ∈ D(A) to u(t) is bounded in X and thus has a bounded extension
into all of X with ‖S(t)‖L(X) ≤ 1. The following lemma is also part of the Theorem by
Hille-Yosida. (For this part see, e.g., [18], where A and λ are changed into −A and into
1/λ, respectively.)

Lemma 2.3. Let S(t) : X → X be defined as above. Then A coincides with the operator
B, defined by

Bv = lim
h→0+

1

h
[S(h)v − v] , v ∈ D(B) :=

{
v ∈ X : lim

h→0+
[S(h)v − v]/h exists in X

}
(which is called the infinitesimal generator of the semigroup S(t)). In particular, the
domains D(A) and D(B) coincide.

The inhomogeneous evolution equation is solved by the variation-of-constant formula:
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Theorem 2.4. Let A : X ⊃ D(A)→ X be a linear maximal monotone operator.

(a) Let u0 ∈ X, and f ∈ L1
(
(0,∞), X

)
. The function u ∈ C

(
[0,∞), X

)
, defined by

(3) u(t) = S(t)u0 +

∫ t

0

S(t− s) f(s) ds , t ≥ 0 ,

is called the mild solution of

(4) u′(t) = −Au(t) + f(t) , t ≥ 0 , u(0) = u0 .

It satisfies the estimate

(5a) ‖u(t)‖X ≤ ‖u0‖X + ‖f‖L1((0,t),X) for all t ≥ 0 .

(b) Let u be given by (3) and u0 ∈ D(A) and f ∈ W 1,1
(
(0,∞), X

)
. Then u ∈ C1

(
[0,∞), X

)
∩

C
(
[0,∞),D(A)

)
. Furthermore, u is the unique classical solution of (4), and the following

stability estimates hold:

‖u′(t)‖X ≤ ‖Au0 − f(0)‖X + ‖f ′‖L1((0,t),X) ,(5b)

‖Au(t)‖X ≤ ‖u′(t)‖X + ‖f(t)‖X(5c)

for t ≥ 0. We note that f ∈ W 1,1
(
(0,∞), X

)
is continuous and ‖f(t)‖X ≤ 2‖f‖W 1,1(0,∞),X)

for all t ≥ 0. We can combine these estimates in the form

(6) ‖u‖C1([0,∞),X) + ‖u‖C([0,∞),D(A)) ≤ c
[
‖u0‖D(A) + ‖f‖W 1,1((0,∞),X)

]
where c depends only on A.

Proof: (a) u is well defined and continuous by the continuity of the semigroup S(t) :
X → X and the assumption on f . The estimate (5a) follows directly from the fact that
‖S(t)‖L(X) ≤ 1 for all t.

(b) First we show that the integral v(t) :=
∫ t
0
S(t−s) f(s) ds is in D(A). For this we write

v(t) as v(t) =
∫ t
0
S(s) f(t−s) ds and observe that v is differentiable a.e. by the assumption

on f and v′(t) = S(t)f(0) +
∫ t
0
S(s) f ′(t − s) ds = S(t)f(0) +

∫ t
0
S(t − s) f ′(s) ds. Since

the right hand side is continuous we conclude that v is differentiable for every t ≥ 0.
Therefore, for h 6= 0 the term

1

h

(
v(t+ h)− v(t)

)
=

1

h

∫ t+h

t

S(t+ h− s) f(s) ds

+
1

h

∫ t

0

[
S(t+ h− s)− S(t− s)

]
f(s) ds

=
1

h

∫ t+h

t

S(t+ h− s) f(s) ds +
1

h

[
S(h)− I

]
v(t)

converges to v′(t) as h tends to zero. Since the first term on the right hand side converges
to S(0)f(t) = f(t) also the second term converges which, by the previous lemma, yields
v(t) ∈ D(A) for all t ≥ 0 and v′(t) = f(t) − Av(t). Therefore, if u(t) denotes the right
hand side of (3), then u′(t) = −AS(t)u0 + f(t)− Av(t) = f(t)− Au(t). This shows that
the right hand side of (3) solves (4).
To show the estimate (5b) we note that

(7) u′(t) = S(t)
[
−Au0 + f(0)

]
+

∫ t

0

S(t− s) f ′(s) ds .

This proves the estimate (5b). Estimate (5c) follows obviously. �
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Remark 2.5. If f ∈ C1
(
[0,∞), X

)
then, in general, f /∈ W 1,1

(
(0,∞), X

)
, and this

theorem is not directly applicable. However, the right hand sides of (5a) – (5c) depend
only on f on the interval (0, t). Therefore, if we multiply f by a smooth function φ of
compact support with φ(t) = 1 on [0, T ] then one can replace f by fφ. On the bounded
interval [0, T ] the estimates (5a) – (5c) hold without modification. Using ‖f‖L1((0,t),X) ≤
t‖f‖C([0,t],X) (and analogously for the derivative) yields an extra factor T in the estimates
for t ∈ [0, T ] when using the maximum norm.

Corollary 2.6. Let u0 ∈ X and f ∈ L1
(
(0,∞), X

)
. The mild solution u ∈ C

(
[0,∞), X

)
of (3) is the weak solution; that is,

(8)
d

dt

(
u(t), ψ

)
X

= −
(
u(t), A∗ψ

)
X

+
(
f(t), ψ

)
X

for a.a. t ≥ 0 and ψ ∈ D(A∗)

where A∗ : X ⊃ D(A∗)→ X denotes the adjoint of A.

Proof: Let ψ ∈ D(A∗) and ϕ ∈ C∞0 [0,∞). For u0 ∈ D(A) and f ∈ W 1,1
(
[0,∞), X

)
we

multiply (4) by ϕ(t)ψ, integrate from 0 to ∞, use partial integration and the definition
of the adjoint. This yields

−
∫ ∞
0

(
u(t), ψ

)
X
ϕ′(t) dt = −

∫ ∞
0

(
u(t), A∗ψ)

)
X
ϕ(t) dt +

∫ ∞
0

(
f(t), ψ

)
X
ϕ(t) dt

By the denseness of D(A) in X and W 1,1
(
[0,∞), X

)
in L1

(
(0,∞), X

)
and the stability

estimate (5a) we conclude that this formula holds also if u is only the mild solution. Now
(8) follows from a standard argument (see, e.g., [9], Theorem 2.181.). �

We will need the following regularity result (see [4], Theorem 7.5 for the case f = 0).

Theorem 2.7. Let A : X ⊃ D(A)→ X be a linear maximal monotone operator and, for
some k ∈ N≥1, let f ∈ W k,1

(
(0,∞), X

)
and

(9) u0,` := (−A)`u0 +
`−1∑
j=0

(−A)jf (`−1−j)(0) ∈ D(A) for ` = 0, . . . , k − 1 .

(In the case ` = 0 the sum is set to zero.) Let u ∈ C1
(
[0,∞), X

)
∩ C

(
[0,∞),D(A)

)
be

the unique solution of (4).
Then u ∈ Ck

(
[0,∞), X

)
∩Ck−1([0,∞),D(A)

)
. Furthermore, the stability estimates hold

in the forms

(10) ‖u(`)(t)‖X ≤ ‖u0,`‖X + ‖f (`)‖L1((0,t),X) , t ≥ 0 , ` = 0, . . . , k,

where u0,k := −Au0,k−1 + f (k−1)(0) ∈ X. Note that f (k−1) is continuous.

Proof: First we note that the u0,`’s satisfy the recursion formula: u0,0 = u0 and u0,` =
−Au0,`−1 + f (`−1)(0), ` = 1, . . . , k. Next we show

(11) u(`)(t) = S(t)u0,` +

∫ t

0

S(t− s) f (`)(s) ds , t ≥ 0 , ` = 0, . . . , k ,

by induction with respect to k. The case k = 0 reduces to (3). Now we assume that
these formulas are true for ` = 0, . . . , k (under the assumption (9)) and we assume that

1This argument is sometimes called the fundamental lemma of calculus of variations, see [10],
Lemma 1.2.1
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f ∈ W k+1,1
(
(0,∞), X

)
and (9) holds for k + 1. Then u0,k ∈ D(A) and (11) holds for

` = k; that is,

u(k)(t) = S(t)u0,k +

∫ t

0

S(s) f (k)(t− s) ds , t ≥ 0 .

The additional differentiability of f yields that u(k) is differentiable and thus, as in (7),

u(k+1)(t) = −AS(t)u0,k + S(t)f (k)(0) +

∫ t

0

S(s) f (k+1)(t− s) ds

= S(t)
[
−Au0,k + f (k)(0)

]
+

∫ t

0

S(t− s) f (k+1)(s) ds

which is formula (11) for ` = k + 1.
From this representation (11) the stability estimates follow immediately. �

3. Differentiability With Respect to Parameters

In this section we consider a class of evolution equations, depending on a parameter, and
will show continuity and differentiability properties of the parameter-to-solution map.
The parameters are modeled by the set of self adjoint and uniformly bounded and coercive
operators in X. We define the set

B = B(γ−, γ+)

=
{
B ∈ L(X) : B self adjoint , γ−‖x‖2X ≤ (Bx, x)X ≤ γ+‖x‖2X for all x ∈ X

}
where 0 < γ− < γ+ and L(X) denotes the space of linear and bounded operators from X
into X. Let again A : X ⊃ D(A)→ X be a maximal monotone operator. The following
result which we have found in [19] assures that also A + B is surjective for every B ∈ B
as operators from D(A) onto X. We include a direct proof for the convenience of the
reader.

Lemma 3.1. Let A : X ⊃ D(A) → X be a linear maximal monotone operator and
B ∈ B. Then A+B is surjective.

Proof: In the first part we prove that the adjoint A∗ is monotone as well. We note
that this is not true in general; that is, without the assumption that A is maximal,
as the example A = −∆ with X = L2(D) and D(A) = H2

0 (D) = {u ∈ H2(D) :
u = ∂νu = 0 on ∂D} shows. First we note (see [4], Proposition 7.1) that the maximal
monotonicity implies that (A + rI)−1 exists and is bounded from X into itself with
range D(A) for all r ∈ (0, 1]. We define Ã =

[
(A + rI)−1

]∗
: X → X as its adjoint;

that is, (Ãz, y)X =
(
z, (A + rI)−1y

)
X

for all z, y ∈ X; that is,
(
Ãz, (A + rI)x

)
X

=

(z, x)X for all z ∈ X and x ∈ D(A). From this we conclude that Ãz ∈ D(A∗) and
(A∗+rI)Ãz = z for all z ∈ X. Furthermore, from

(
(A∗+rI)y, z

)
X

=
(
y, (A+rI)z

)
X

and
the surjectivity of A+rI we observe that A∗+rI is injective for all r ∈ (0, 1]. We observe
that (A∗+ rI)

[
Ã(A∗+ rI)y−y

]
= (A∗+ rI)y− (A∗+ rI)y = 0 and thus Ã(A∗+ rI)y = y

for all y ∈ D(A∗); that is, we have shown that Ã =
[
(A+ rI)−1

]∗
= (A∗ + rI)−1.

Now we use that
(
(A + rI)x, x

)
X
≥ 0 for all x ∈ D(A) and r ≥ 0 and thus

(
y, (A +

rI)−1y
)
X
≥ 0 for all y ∈ X; that is,

(
(A∗ + rI)−1y, y

)
X
≥ 0 for all y ∈ X; that is,(

z, (A∗ + rI)z
)
X
≥ 0 for all z ∈ D(A∗) and all r ∈ (0, 1]. For r → 0 we arrive at

(z, A∗z)X ≥ 0 for all z ∈ D(A∗); that is, the monotonicity of A∗.
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Let now B ∈ B. Then A∗ + B is one-to-one by the monotonicity of A∗. Therefore, the
range of A + B is dense. Indeed, from (z, Ax + Bx)X = 0 for all x ∈ D(A) we conclude
that (z, Ax)X = −(z,Bx)X = −(Bz, x) for all x ∈ D(A). Therefore, z ∈ D(A∗) and
A∗z = −Bz and thus z = 0 which shows the denseness of the range. Furthermore, the
range of A+B is also closed. This follows from the estimate γ−‖x‖2X ≤

(
(A+B)x, x

)
X
≤

‖(A + B)x‖X‖x‖X for all x ∈ D(A); that is, γ−‖x‖X ≤
∥∥(A + B)x

∥∥
X

for all x ∈ D(A).
Indeed, let (A+B)xj → z for some sequence xj ∈ D(A). The estimate implies that {xj}
is a Cauchy sequence and thus convergent xj → x for some x ∈ X. Therefore, Bxj → Bx
and thus Axj → z − Bx. The closedness of A yields x ∈ D(A) and Ax = z − Bx. This
shows that z is in the range of A+B and finishes the proof. �

We note the following equivalent interpretation of this result. If we define, for B ∈ B,
the weighted inner product (·, ·)B in X by

(x, y)B = (Bx, y)X , x, y ∈ X ,

then the operator B−1A is maximal monotone with respect to this weighted inner product.
The corresponding norm ‖ · ‖B is equivalent to the ordinary norm because obviously

γ−‖x‖2X ≤ ‖x‖2B ≤ γ+‖x‖2X , x ∈ X .

Therefore, for any B ∈ B, u0 ∈ D(A) = D(B−1A), and f ∈ W 1,1
(
(0,∞), X

)
there exists

a unique solution u ∈ C1
(
[0,∞), X

)
∩ C

(
[0,∞),D(A)

)
with

(12) Bu′(t) = −Au(t) + f(t) , t ≥ 0 , u(0) = u0 .

In the estimates of Theorems 2.4 and 2.7 one has to replace f by B−1f and ‖ · ‖X by
‖ · ‖B – or compensate the use of ‖ · ‖X by introducing the constants

√
γ− or

√
γ+.

First we show that under certain regularity assumptions the mapping F : B 7→ u is
(locally) Lipschitz continuous on B.

Lemma 3.2. Let A : X ⊃ D(A) → X be maximal monotone, u0 ∈ D(A), B̂ ∈ B and

B ∈ L(X) such that B̂ + B ∈ B. Furthermore, let f ∈ W 2,1
(
(0,∞), X

)
and v̂0 :=

B̂−1
(
Au0 − f(0)

)
∈ D(A). Let û, ũ ∈ C1

(
[0,∞), X

)
∩ C

(
[0,∞),D(A)

)
be the solutions

of

B̂û′(t) + Aû(t) = f(t) and (B̂ +B)ũ′(t) + Aũ(t) = f(t) , t ≥ 0 ,

and û(0) = ũ(0) = u0, respectively. Then there exists c, depending only on A, γ+, γ−, v̂0,
and f , such that for all T > 0:

‖û(t)− ũ(t)‖X + ‖û′(t)− ũ′(t)‖X ≤ c(1 + T ) ‖B‖L(X) for 0 ≤ t ≤ T .

Proof: The difference û− ũ satisfies

(B̂ +B)
(
û′(t)− ũ′(t)

)
(t) + A(t)

(
û(t)− ũ(t)

)
= Bû′(t) , t ≥ 0 ,
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and û(0)− ũ(0) = 0. We note that û ∈ C2
(
[0,∞), X

)
∩C1

(
[0,∞),D(A)

)
by the assump-

tions on f and u0 and Theorem 2.7 for k = 2 and thus

‖û′(t)‖X ≤ 1
√
γ−
‖û′(t)‖B̂ ≤

√
γ+√
γ−

[
‖v̂0‖X + ‖B̂−1f ′‖L1((0,t),X)

]
≤
√
γ+√
γ−

[
‖v̂0‖X +

1

γ−
‖f ′‖L1((0,t),X)

]
≤ c1 and analogously

‖û′′(t)‖X ≤
√
γ+√
γ−

[
‖B̂−1

(
f ′(0) + Av̂0

)
‖X + ‖B̂−1f ′′‖L1((0,t),X)

]
≤
√
γ+√
γ−

[
1

γ−
‖f ′(0) + Av̂0‖X +

1

γ−
‖f ′′‖L1((0,t),X)

]
≤ c2

for t ≥ 0 where c1, c2 depend only on A, γ+, γ−, v̂0, and f . Therefore, Theorem 2.4
is applicable to û − ũ (see Remark 2.5) and yields the stability estimates (note that
û(0)− ũ(0) = 0)

‖û(t)− ũ(t)‖X ≤
√
γ+√
γ−

[
‖(B̂ +B)−1Bû′‖L1((0,t),X)

]
≤ c1

√
γ+√
γ−

T

γ−
‖B‖L(X) ,

‖û′(t)− ũ′(t)‖X ≤
√
γ+√
γ−

[
‖(B̂ +B)−1Bû′(0)‖X + ‖(B̂ +B)−1Bû′′‖L1((0,t),X)

]
≤
√
γ+√
γ−

1

γ−
‖B‖L(X) (c1 + Tc2)

for 0 ≤ t ≤ T . �

Remark 3.3. In general, the Lipschitz constant c(1+T ) depends obviously on T but also

on B̂ through v̂0; that is, the Lipschitz continuity holds only locally with respect to time
and B. However, under the stronger assumption Au0 = f(0) the constant c is universal

for all B̂, B̂ + B ∈ B because in this case v̂0 = 0. For fixed T > 0 the assumption on f
is obviously too strong. It is sufficient to assume that f ∈ W 2,1

(
(0, T ), X

)
. Indeed, one

can extend f to f ∈ W 2,1
(
(0,∞), X

)
, and the solutions corresponding to these extensions

coincide on [0, T ] by (3), compare also with Remark 2.5.

Theorem 3.4. Let T > 0, f ∈ W 1,1
(
(0, T ), X

)
, and u0 ∈ D(A). Then the mapping

B 7→ u is continuous from B into C1
(
[0, T ], X

)
.

Proof: Let B,Bn ∈ B with Bn → B in L(X). Define the sequence of linear operators
Pn : D(A) × W 1,1

(
(0, T ), X

)
→ C1

(
[0, T ], X

)
by Pn(u0, f) = un − u where un, u ∈

C1
(
[0, T ], X

)
∩C
(
[0, T ],D(A)

)
solve (12) for Bn and B, respectively, and u0 and f . By the

previous lemma (and Remark 3.3) we have that Pn(u0, f)→ 0 in C1
(
[0, T ], X

)
as n→∞

for (u0, f) ∈ D :=
{

(u0, f) ∈ D(A) ×W 2,1
(
(0, T ), X

)
: B−1

(
Au0 − f(0)

)
∈ D(A)

}
. The

space D is dense in D(A)×W 1,1
(
(0, T ), X

)
. Indeed, let (u0, f) ∈ D(A)×W 1,1

(
(0, T ), X

)
.

Choose sequences uj0 ∈ D
(
(B−1A)2

)
, zj ∈ D(A), and f̃ j ∈ W 2,1

(
(0, T ), X

)
with uj0 → u0

in D(A) (possible because D
(
(B−1A)2

)
is dense in D(B−1A) = D(A)), zj → B−1f(0) in

X and f̃ j → f in W 1,1
(
(0, T ), X

)
. Furthermore, choose φ ∈ C∞[0,∞) with φ(0) = 1 and

φ(t) = 0 for t ≥ t0 for some t0 ∈ (0, T ). Define f j ∈ W 2,1
(
(0, T ), X

)
by f j(t) = f̃ j(t) +

φ(t)
[
Bzj − f̃ j(0)

]
, t ≥ 0. Then B−1f j(0) = zj ∈ D(A) and f j → f in W 1,1

(
(0, T ), X

)
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as j → ∞. Furthermore, B−1Auj0 ∈ D(B−1A) = D(A) and thus (uj0, f
j) ∈ D which

shows denseness of D in D(A) × W 1,1
(
(0, T ), X

)
. Furthermore, for (u0, f) ∈ D(A) ×

W 1,1
(
(0, T ), X

)
we have by Theorem 2.4 that∥∥Pn(u0, f)

∥∥
C1([0,T ],X)

≤
∥∥un∥∥C1([0,T ],X)

+
∥∥u∥∥

C1([0,T ],X)
≤ c

[
‖u0‖D(A) + ‖f‖W 1,1((0,T ),X)

]
where c depends only on A, γ−, and γ+. Therefore, ‖Pn‖ is uniformly bounded, and a
density argument implies that Pn(u0, f) → 0 in C1

(
[0, T ], X

)
for all (u0, f) ∈ D(A) ×

W 1,1
(
(0, T ), X

)
. �

Next we show differentiability of this mapping F : B 7→ u from B into C
(
[0, T ), X

)
.

Theorem 3.5. Let T > 0, f ∈ W 1,1
(
(0, T ), X

)
, and u0 ∈ D(A). Then F : B →

C
(
[0, T ), X

)
is Fréchet differentiable at B̂ ∈ int(B) and F ′(B̂)B = u where u ∈ C

(
[0, T ], X

)
is the mild solution of

(13) B̂u′(t) + Au(t) = −Bû′(t) , t ∈ [0, T ] , u(0) = 0 .

Here, û ∈ C1
(
[0, T ], X

)
∩ C

(
[0, T ],D(A)

)
is the (classical) solution of B̂û′(t) + Aû(t) =

f(t), t ∈ [0, T ], û(0) = u0.

Proof: First we note that the source term in (13) is in C
(
[0, T ], X

)
which implies the

existence of a mild solution u ∈ C
(
[0, T ], X

)
of (13) (we refer again to Remark 3.3).

Let B ∈ L(X) such that B̂ + B ∈ B and let ũ ∈ C1
(
[0, T ], X

)
∩ C

(
[0, T ],D(A)

)
be

the solution of (B̂ + B)ũ′(t) + Aũ(t) = f(t), t ∈ [0, T ], and ũ(0) = u0. Writing this as

ũ′(t) + B̂−1Aũ(t) = B̂−1
[
f(t)−Bũ′(t)

]
we have

ũ(t) = Ŝ(t)u0 +

∫ t

0

Ŝ(t− s) B̂−1
[
f(s)−Bũ′(s)

]
ds ,

û(t) = Ŝ(t)u0 +

∫ t

0

Ŝ(t− s)B̂−1f(s) ds ,

u(t) = −
∫ t

0

Ŝ(t− s) B̂−1Bû′(s) ds ,

for t ∈ [0, T ] where Ŝ(s) denotes the semigroup corresponding to B̂−1A. Therefore,

ũ(t)− û(t)− u(t) =

∫ t

0

Ŝ(t− s) B̂−1B
(
û′(s)− ũ′(s)

)
ds , t ∈ [0, T ] ,

and thus

‖ũ(t)− û(t)− u(t)‖X ≤ 1
√
γ−

∫ t

0

‖Ŝ(t− s)‖B̂︸ ︷︷ ︸
≤ 1

‖B̂−1B
(
û′(s)− ũ′(s)

)
‖B̂ ds

≤
√
γ+√
γ−

t ‖B‖L(X) max
0≤s≤t

‖û′(s)− ũ′(s)‖X

≤ T

√
γ+√
γ−
‖B‖L(X) ‖û′ − ũ′‖C([0,T ],X) for t ∈ [0, T ] .

Therefore,
1

‖B‖L(X)

‖ũ− û− u‖C([0,T ],X) ≤ T

√
γ+√
γ−
‖û′ − ũ′‖C([0,T ],X)
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which ends the proof because ‖û′− ũ′‖C([0,T ],X) → 0 as ‖B‖L(X) → 0 by Theorem 3.4. �

Remarks 3.6. (a) Again, the mild solution is also a weak solution in the sense of (8);
that is,

d

dt

(
B̂u(t), ψ

)
X

+
(
u(t), A∗ψ

)
X

= − d

dt

(
Bû(t), ψ

)
X

for a.a. t ∈ [0, T ] and ψ ∈ D(A∗) .

(b) Under the stronger assumptions f ∈ W 2,1
(
(0, T ), X

)
and B̂−1[Au0 − f(0)] ∈ D(A)

the mild solution u is a classical solution u ∈ C1
(
[0, T ], X

)
∩C

(
[0, T ],D(A)

)
because the

source term in (13) is in C1
(
[0, T ], X

)
by Theorem 2.7 for k = 2.

(c) If we consider the mapping F : B 7→ u from B into the canonical space C1
(
[0, T ], X

)
∩

C
(
[0, T ],D(A)

)
rather that into C

(
[0, T ], X

)
we would need even stronger regularity as-

sumptions. Indeed, if we use the notations of the previous proof we note that v = ũ− û−u
satisfies also

(B̂ +B)v′(t) + Av(t) = −Bu′(t) , t ∈ [0, T ] .

Therefore, in order to estimate ‖v‖C1([0,T ],X) and ‖v‖C([0,T ],D(A)) the source term Bu′ has

to be in W 1,1
(
(0, T ), X

)
which requires û ∈ C3

(
[0, T ], X

)
. By Theorem 2.7 for k = 3 this

requires the additional assumptions f ∈ W 3,1
(
(0, T ), X

)
, v̂0 := B̂−1[Au0 − f(0)] ∈ D(A),

and B̂−1[Av̂0 − f ′(0)] ∈ D(A).

(d) We have shown differentiability of F as a mapping from B into C
(
[0, T ], X

)
. This

implies that the mapping is also differentiable as a mapping into the more appropriate
(w.r.t. the applications) space L2

(
(0, T ), X

)
.

(e) We note that in applications (see Sections 5 and 6 below) the operator B is just a
multiplication operator with some L∞−function. Therefore, the assumptions v̂0 ∈ D(A)

and B̂−1
(
Av̂0 − f ′(0)

)
∈ D(A) include smoothness assumptions on B̂.

4. Local Ill-posedness

We recall from [7] that a (nonlinear) equation F (x) = y is locally ill-posed at x+ ∈ D(F )
satisfying F (x+) = y if in any neighborhood of x+ there exists a sequence {xk}k∈N ⊂ D(F )
such that

lim
k→∞
‖F (xk)− F (x+)‖Y = 0 , however ‖xk − x+‖X 6→ 0 for k →∞.

For fixed f ∈ W 1,1
(
(0, T ), X

)
we consider the mapping F : B ⊃ D(F ) → L2

(
(0, T ), X

)
from the previous section; that is, F (B) = u and u ∈ C1

(
[0, T ], X

)
∩ C

(
[0, T ],D(A)

)
satisfies (12); that is,

(14) Bu′(t) = −Au(t) + f(t) , t ∈ [0, T ] , u(0) = u0 .

We note that ill-posedness of an equation depends on the space of parameters B. In
particular, the ill-posedness may disappear if the set is shrinked too much. Therefore, it
is important to prove ill-posedness of the equation F (B) = u on a suitable subsets D(F )
of B.

Theorem 4.1. Let u0 ∈ D(A) and f ∈ W 1,1
(
(0, T ), X

)
. Then the equation F (B) = u is

locally ill-posed at any B+ ∈ D(F ) satisfying F (B+) = u if for any r ∈ (0, 1] there exists
r̂ ∈ (0, r) and a sequence of bounded, symmetric and monotone operators Ek : X → X
with B++Ek ∈ D(F ) and r̂ ≤ ‖Ek‖ ≤ r for all k ∈ N and limk→∞Ekv = 0 for all v ∈ X.
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Proof: Let B+ ∈ D(F ) and 0 < r ≤ 1 be arbitrary and Ek : X → X a sequence with
the above property. Then γ−‖v‖2X ≤ ‖v‖2B+Ek

≤ (γ+ + r)‖v‖2X where we have used the

notation ‖v‖2B+Ek
=
(
(B + Ek)v, v

)
X

.

Let u = J(B+) and uk = J(B+ + Ek); that is, uk, u ∈ C1
(
[0,∞), X

)
∩ C

(
[0,∞),D(A)

)
solve

(B+ + Ek)u
′
k(t) = −Auk(t) + f(t) ,

B+u′(t) = −Au(t) + f(t) ,

and u(0) = uk(0) = u0. From the stability estimates and the above mentioned fact that
‖·‖X and ‖·‖B+Ek

are equivalent norms we get the existence of c > 0 with ‖uk‖C([0,T ],X) ≤ c
for all k ∈ N. Therefore, vk = u− uk solves vk(0) = 0 and

(B+ + Ek)v
′
k(t) = −Avk(t) + Eku

′(t) .

Multiplication with vk(t) and the monotonicity of A yields

1

2

d

dt
‖vk(t)‖2B++Ek

=
1

2

d

dt

(
(B+ + Ek)vk(t), vk(t)

)
X
≤
(
Eku

′(t), vk(t)
)
X
,

and thus

1

2
‖vk(t)‖2B++Ek

=
1

2

∫ t

0

d

ds
‖vk(s)‖2B++Ek

ds ≤
∫ t

0

(
Eku

′(s), vk(s)
)
X

ds

≤ ‖vk‖C([0,T ],X)

∫ t

0

‖Eku′(s)‖X ds

≤
[
c+ ‖u‖C([0,T ],X)

] ∫ t

0

‖Eku′(s)‖X ds .

The integrand converges pointwise to zero for every s ∈ [0, t] and is uniformly bounded
by ‖u′‖C([0,T ],X). Therefore, the integral converges to zero; that is, we have pointwise

convergence uk(t) → u(t) for every t. This implies also convergence in L2
(
(0, T ), X

)
because uk and u are uniformly bounded. Therefore we have shown that F (B+ +Ek)→
F (B+) in L2

(
(0, T ), X

)
and r̂ ≤ ‖(B+ + Ek)−B+‖L(X) ≤ r for all k. �

Remark: In our previous paper [13] (Proposition 2.1) we presented a criterion for local
ill-posedness which requires compactness and weak-*-weak continuity of the underlying
operator F . The above theorem does not need these strong assumptions if F is the
parameter-to-solution map of the first order system (14).

5. Application to the Maxwell System

We want to apply the abstract results of the previous sections to the following Maxwell
system:

µ(x)
∂H

∂t
(t, x) + curl E(t, x) = Jm(t, x) ,(15a)

ε(x)
∂E

∂t
(t, x) − curl H(t, x) = −Je(t, x) − σ(x) E(t, x) ,(15b)

for (t, x) ∈ (0,∞)×D with boundary conditions

(15c) ν(x)× E(t, x) = 0 for (t, x) ∈ (0,∞)× ∂D ,
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and initial conditions

(15d) E(0, x) = e0(x) and H(0, x) = h0(x) for x ∈ D .

Here, D ⊂ R3 is some Lipschitz domain which is either bounded or the complement
of a bounded domain. We note that (in the case σ = 0) the conservation equations
∂
∂t

div
(
µ(x)H(t, x)

)
− div Jm(t, x) = 0 and ∂

∂t
div
(
ε(x)E(t, x)

)
+ div Je(t, x) = 0 follow

directly from (15a) and (15b), respectively. If div Je = 0 then div
(
ε(x)E(t, x)

)
= 0

follows provided one assumes div(εe0) = 0 for the initial field. Analogously, the same
arguments hold for the magnetic field. The additional boundary condition ν ·H = 0 on
∂D (in the physically relevant case Jm = 0) follows from

∂

∂t
(µν ·H) = −ν · curl E = −Div(ν × E) on ∂D

and the boundary condition (15c). Here, Div denotes the surface divergence (see, e.g.,
[11]).

We make the following assumptions on the data:

Assumption 5.1.

• ε, µ ∈ L∞(D) such that cε ≤ ε(x) ≤ c−1ε and cµ ≤ µ(x) ≤ c−1µ on D for some

cε, cµ > 0 (then also cε ≤ ε(x)−1 ≤ c−1ε and cµ ≤ µ(x)−1 ≤ c−1µ on D),
• σ ∈ L∞(D) and σ(x) ≥ 0 on D,
• Je,Jm ∈ W 1,1

(
(0,∞), L2(D,R3)

)
,

• e0 ∈ H0(curl, D) and h0 ∈ H(curl, D).

To treat this system by the abstract theory we set X = L2(D,R3)× L2(D,R3), D(A) =
H0(curl, D)×H(curl, D), and

(16) A =

(
σI − curl
curl 0

)
, B

(
E
H

)
=

(
εE
µH

)
=

(
εI 0
0 µI

)(
E
H

)
.

As already done in Assumption 5.1 we identify functions v : R≥0 × D → R3 of two
variables with Hilbert-space valued functions v : R≥0 → L2(D,R3) of one variable and
set u = (E,H)> and u0 = (e0,h0)> and f = (−Je,Jm)>. Then the system (15a)–(15d)
can be written as Bu′(t) = −Au(t) + f(t), t > 0, and u(0) = u0.

Lemma 5.2. The operator A is maximal monotone in the sense of Definition 2.1.

Proof: For (E,H)> ∈ D(A) we have(
A

(
E
H

)
,

(
E
H

))
X

=

∫
D

[
(σE− curl H) · E + curl E ·H

]
dx =

∫
D

σ |E|2dx ≥ 0

by Green’s theorem. Note that no boundary term appears because E ∈ H0(curl, D).
It remains to show surjectivity of A + I. For any Je,Jm ∈ L2(D,R3) we have to find
E ∈ H0(curl, D) and H ∈ H(curl, D) with

(17) σE− curl H + E = Je and curl E + H = Jm .

For any ψ ∈ H0(curl, D) we multiply the first equation by ψ and the second by curlψ,
add the equations and integrate over D. Noting that

∫
D

[ψ · curl H −H · curlψ] dx = 0
we arrive at∫

D

[curl E · curlψ + (σ + 1) E ·ψ] dx =

∫
D

[
Jm · curlψ + Je ·ψ

]
dx .
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The theorem of Lax-Milgram inH0(curl, D) implies existence of a solution E ∈ H0(curl, D).
Finally we define H = Jm− curl E. Then the second equation of (17) is satisfied and the
variational equation takes the form∫

D

[
(σ + 1) E ·ψ −H · curlψ

]
dx =

∫
D

Je ·ψ dx

which is the weak form of the first equation of (17). �

Application of Theorems 2.4 and 2.7 for k = 2 and 3 yields:

Theorem 5.3.
(a) Under Assumption 5.1 there exists a unique solution E ∈ C

(
[0,∞), H0(curl, D)

)
∩

C1
(
[0,∞), L2(D,R3)

)
and H ∈ C

(
[0,∞), H(curl, D)

)
∩ C1

(
[0,∞), L2(D,R3)

)
of (15a)–

(15d).

(b) Let Je,Jm ∈ W 2,1
(
(0,∞), L2(D,R3)

)
and ê0 := 1

ε

[
curl h0−σe0−Je(0)

]
∈ H0(curl, D)

and ĥ0 := 1
µ

[
Jm(0)− curl e0

]
∈ H(curl, D).

Then E ∈ C1
(
[0,∞), H0(curl, D)

)
∩C2

(
[0,∞), L2(D,R3)

)
and H ∈ C1

(
[0,∞), H(curl, D)

)
∩

C2
(
[0,∞), L2(D,R3)

)
.

(c) Let in addition to the assumptions of part (b) Je,Jm ∈ W 3,1
(
(0,∞), L2(D,R3)

)
and

1
ε

[
curl ĥ0 − σê0 − J′e(0)

]
∈ H0(curl, D) and 1

µ

[
J′m(0)− curl ê0

]
∈ H(curl, D).

Then E ∈ C2
(
[0,∞), H0(curl, D)

)
∩C3

(
[0,∞), L2(D,R3)

)
and H ∈ C2

(
[0,∞), H(curl, D)

)
∩

C3
(
[0,∞), L2(D,R3)

)
.

Proof: For parts (b) and (c) we have to translate the assumptions of Theorem 3.5
into the special case of the Maxwell system. Here, f ∈ W `,1

(
(0,∞), X

)
corresponds to

Je,Jm ∈ W `,1
(
(0,∞), L2(D,R3)

)
. The assumption B̂−1(Au0 − f(0)) ∈ D(A) translates

into 1
ε

[
σe0 − curl h0 + Je(0)

]
∈ H0(curl, D) and 1

µ

[
curl e0 − Jm(0)

]
∈ H(curl, D). The

assumption B̂−1(Av̂0−f ′(0)) ∈ D(A) translates into 1
ε

[
curl ĥ0−σê0−J′e(0)

]
∈ H0(curl, D)

and 1
µ

[
J′m(0) − curl ê0

]
∈ H(curl, D). These are exactly the assumptions made for this

theorem. �

We note again that it is sufficient to make the assumptions on Je and Jm on the finite
interval (0, T ) only if one is interested in the finite time case.

For fixed T > 0 and σ ≥ 0 we will now consider the mapping properties of the parameter-
to-solution operator F̃ : P → C

(
[0, T ], L2(D,R3)

)
× C

(
[0, T ], L2(D,R3)

)
defined by

F̃ (ε, µ) = (E,H)> where P = {(ε, µ)> ∈ L∞(D) × L∞(D) : c−1ε ≤ ε(x) ≤ cε , c
−1
µ ≤

µ(x) ≤ cµ on D} for some cε, cµ > 1 denotes the set of parameters and (E,H)> is the
solution of (15a)–(15d). We note that this operator is slightly different from the operator
F of the previous section which maps any symmetric and coercive operator B from
L2(D,R3)×L2(D,R3) into itself to the solution. Since we consider special multiplication
operators B we introduce the linear and bounded operator V : P → L

(
L2(D,R3) ×

L2(D,R3)
)
, defined by V (ε, µ)(u,v) = (εu, µv)> for (u,v)> ∈ L2(D,R3) × L2(D,R3)

and (ε, µ)> ∈ P . Then F̃ = F ◦ V and thus F̃ ′(ε, µ) = F ′(V (ε, µ)) ◦ V because V is
obviously linear as an operator from L∞(D) × L∞(D) into L

(
L2(D,R3) × L2(D,R3)

)
.

Application of Theorem 3.5 yields directly the following result.
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Theorem 5.4. Let the Assumptions 5.1 hold and denote by (Ê, Ĥ) the solution of the
system (15a)–(15d) corresponding to (ε̂, µ̂) ∈ intP, σ̂, e0, h0, Je, and Jm. Then the
mapping F̃ : (ε, µ)> 7→ (E,H)> from P into C

(
[0, T ], L2(D,R3)

)
× C

(
[0, T ], L2(D,R3)

)
is Fréchet–differentiable at (ε̂, µ̂) and F̃ ′(ε̂, µ̂)(ε, µ) = (E,H) where (E,H) is the mild
solution of the system

µ̂H
′
(t) + curl E(t) = −µ Ĥ′(t) , t ∈ [0, T ] ,(18a)

ε̂E
′
(t) − curl H(t) + σ̂E(t) = −ε Ê′(t) , t ∈ [0, T ] ,(18b)

E(0) = H(0) = 0 .(18c)

Remarks 5.5. (a) The mild solution of (18a) – (18c) is also the weak solution; that is,

d

dt

(
µ̂H(t), ψ

)
L2(D)

+
(
E(t), curlψ

)
L2(D)

= − d

dt

(
µ Ĥ(t), ψ

)
L2(D)

for all ψ ∈ H(curl, D)
)

and almost all t ∈ [0, T ] and

d

dt

(
ε̂E(t), φ

)
L2(D)

−
(
H(t), curlφ

)
L2(D)

+
(
σ̂E(t), φ

)
L2(D)

= − d

dt

(
ε Ê(t), φ

)
L2(D)

for all φ ∈ H0(curl, D)
)

and almost all t ∈ [0, T ].

(b) Under the additional regularity assumptions of part (b) of Theorem 5.3 the mild
solution (E,H) is a classical solution.

(c) Under the additional regularity assumptions of part (c) of Theorem 5.3 the map-
ping F̃ is also Fréchet differentiable as a mapping from P into

[
C1
(
[0, T ], L2(D,R3)

)
∩

C
(
[0, T ], H0(curl, D)

)]
×
[
C1
(
[0, T ], L2(D,R3)

)
∩ C

(
[0, T ], H(curl, D)

)]
.

(d) The differentiability with respect to σ can not be treated analogously by the abstract
theory. Instead, one has to consider abstract evolution equations of the form u′(t) =
−Au(t) + Bu(t) + f(t), t ≥ 0, and u(0) = u0 with B ∈ L(X). Therefore, u satisfies

the fixed point equation u(t) = S(t)u0 +
∫ t
0
S(t − s)Bu(s)ds +

∫ t
0
S(t − s)f(s)ds, t ≥ 0.

Properties of the mapping B 7→ u as, e.g. differentiability, can then be treated quite
analogously.

Finally, we show that the inverse problem, to determine the coefficients ε and µ from E
and H is locally ill-posed by applying Theorem 4.1.

Theorem 5.6. Let the Assumptions 5.1 hold and let F̃ : P → L2
(
(0, T ) × D,R3

)
×

L2
(
(0, T ) ×D,R3

)
by the parameter-to-solution map of the previous theorem. Then the

equation F̃ (ε, µ) = (E,H) is locally ill-posed at any (ε+, µ+)> ∈ intP.

Proof: Fix a point x̂ ∈ D and define balls Kn = {y ∈ R3 : |y − x̂| ≤ δ/n} where
δ > 0 is small enough such that Kn ⊂ D for all n ∈ N. Let χn be the character-
istic function of Kn; that is, χn(x) = 1 if |x − x̂| ≤ δ/n and 0 else. Let r > 0
be so small such that (ε+ + rχn, µ

+ + rχm)> ∈ P for all n,m ∈ N. Then we write
F̃ (ε+ + rχn, µ

+ + rχm) = F
(
V (ε+, µ+) + En,m

)
with the operator V defined above as

V (ε, µ)(u,v) = (εu, µv) for (u,v) ∈ L2(D,R3)×L2(D,R3) and ε, µ ∈ L∞(D) and En,m ∈
L
(
L2(D) × L2(D)

)
defined by En,m(u,v) = rV (χn, χm)(u,v) = r(χnu, χmv). Then

‖En,m‖L(L2(D)×L2(D)) = r (that is, r̂ = r in Theorem 4.1) and ‖En,m(u,v)‖L2(D)×L2(D) → 0
as n,m → ∞. Indeed, ‖χnu‖L2(D) ≤ ‖u‖L2(D) is obvious and ‖χ2

n‖L2(D) = ‖χn‖L2(D)

which yields ‖En,m‖L(L2(D)×L2(D)) = r. Furthermore, ‖χnu‖2L2(D) =
∫
Kn
|u|2dx → 0 as n
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tends to infinity. Therefore, the operators En,m satisfy the assumptions of Theorem 4.1.
This ends the proof. �

6. Application to the Elastic Wave Equation

We apply the abstract results to the elastic wave equation in the reference domain D ⊂ R3

which we assume to be Lipschitz and either be bounded or the exterior of a bounded
domain.
Let σ : [0,∞)×D → R3×3

sym be the stress tensor and v : [0,∞)×D → R3 be the velocity
field. Then,

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε(v(t, x)) in [0,∞)×D ,(19a)

%(x)∂tv(t, x) = divσ(t, x) + f(t, x) in [0,∞)×D ,(19b)

where % : D → R is the mass density, f : [0,∞)×D → R3 is a volume force and

C(m, `)ε = 2m ε+ ` trace(ε)I , ε ∈ R3×3
sym , m, ` ∈ R ,

is Hooke’s law with Lamé parameters m = µ(x) and ` = λ(x). Finally, ε(v) :=
1
2

[
(∇xv)>+∇xv

]
is the (linearized) strain. Initial and boundary conditions will be spec-

ified below. We consider C as a mapping from D(C) =
{

(m, `)> ∈ R2 : c−1 ≤ 2m+ 3` ≤
c, c−1 ≤ m ≤ c

}
into Aut(R3×3

sym). Here, c > 1 is some constant, and Aut(R3×3
sym) is the

space of automorphisms in R3×3
sym; that is, isomorphisms from R3×3

sym onto itself. Indeed, the

inverse
[
C(m, `)ε

]−1
of C(m, `)ε is given by

C̃(m, `)ε :=
[
C(m, `)ε

]−1
=

1

2m
ε− `

2m
(
3`+ 2m

) trace(ε)I

= C

(
1

4m
,− `

2m(3`+ 2m)

)
ε(20)

for ε ∈ R3×3
sym, provided (m, `)> ∈ D(C). Then (19a) is equivalent to

C̃
(
µ(x), λ(x)

)
∂tσ(t, x) = ε(v(t, x)) in [0,∞)×D .

We make the assumption that (µ, λ, %)> ∈ P where

(21) P :=
{

(µ, λ, %)> ∈ L∞(D)3 : c−1 ≤ %, µ ≤ c, c−1 ≤ 2µ+ 3λ ≤ c a.e. in D
}
.

Introducing the standard inner product

σ : ψ :=
3∑
i=1

3∑
j=1

σi,jψi,j for matrices σ,ψ ∈ R3×3

we have

C(µ, λ)ε : ε = 2µ
∑
i 6=j

ε2ij + c
3∑
i=1

ε2ii + (2µ− c)
3∑
i=1

ε2ii + λ

(
3∑
i=1

εii

)2

≥ 2µ
∑
i 6=j

ε2ij + c
3∑
i=1

ε2ii +
1

3
(2µ− c + 3λ)︸ ︷︷ ︸

≥ 0

(
3∑
i=1

εii

)2

≥ c
3∑

i,j=1

ε2ij = c |ε|2F(22)
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because
(∑3

i=1 εii
)2 ≤ 3

∑3
i=1 ε

2
ii. Here | · |F denotes the Frobenius norm for matrices;

that is, |ε|F =
√
ε : ε =

√∑3
j,j=1 ε

2
ij. Furthermore,

C(µ, λ)ε : ε = 2µ
3∑

i,j=1

ε2ij + λ

(
3∑
i=1

εii

)2

≤ (2µ+ 3λ) |ε|2F ≤ c|ε|2F .

Therefore,

(23) c−1|ε|2F ≤ C(µ, λ)ε : ε ≤ c|ε|2F and thus c−1|σ|2F ≤ C(µ, λ)−1σ : σ ≤ c|σ|2F
for all ε,σ ∈ R3×3

sym and (µ, λ)> ∈ D(C). Also, this implies

c−1|ε|F ≤ |C(µ, λ)ε|F ≤ c|ε|F and c−1|σ|F ≤ |C̃(µ, λ)σ|F ≤ c|σ|F
for all ε,σ ∈ R3×3

sym and (µ, λ)> ∈ D(C).

Next we want to formulate (19a) and (19b) as an abstract evolution equation. Let
X = L2(D,R3×3

sym)× L2(D,R3) with inner product(
(σ,v)>, (ψ,w)>

)
X

:=

∫
D

(
σ : ψ + v ·w

)
dx , (σ,v)>, (ψ,w)> ∈ X .

For fixed (µ, λ, %)> ∈ P we define B ∈ L(X) by

(24) B

(
σ
v

)
:=

(
C̃
(
µ, λ

)
0

0 % I

)(
σ
v

)
(pointwise for almost all x ∈ D) which is self adjoint and uniformly positive definite by
(22). With

(25) A := −
(

0 ε
div 0

)
the system (19a) and (19b) with initial conditions reads as

(26) B ∂t

(
σ
v

)
= −A

(
σ
v

)
+

(
0
f

)
,

(
σ(0, ·)
v(0, ·)

)
=

(
σ0

v0

)
.

To define the domain of definition D(A) of A we split ∂D = ∂DD ∪̇ ∂DN into disjoint
parts where ∂DD has positive 2-dimensional volume. Let n be the outer normal vector
on ∂DN . Then

(27) D(A) =
{

(σ,v)> ∈ H
(
div, D,R3×3

sym

)
×H1

D(D,R3) : σn = 0 on ∂DN

}
where H1

D(D,R3) = {v ∈ H1(D,R3) : v = 0 on ∂DD} and H
(
div, D,R3×3

sym

)
=
{
σ ∈

L2
(
D,R3×3

sym

)
: divσ∗,j ∈ L2(D), j = 1, 2, 3

}
. We note that the traces σ∗,j · n exist in

H−1/2(Div, ∂D) because σ∗,j ∈ H
(
div, D) (see, e.g., [17]).

Lemma 6.1. The operator A is maximal monotone in the sense of Definition 2.1.

Proof: The operator A is skew-symmetric, see, e.g., [20], and, as such, is monotone:(
A(σ,v)>, (σ,v)>

)
X

= 0. Indeed, using the identities

div(σv) = divσ · v + σ : ∇v and ε(v) : σ = ∇v : σ ,
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as well as the divergence theorem we find for (σ,v)>, (ψ,w)> ∈ D(A) that(
A(σ,v), (ψ,w)>

)
X

= −
∫
D

(
ε(v) : ψ + div(σ) ·w

)
dx

= −
∫
D

(
ε(v) : ψ + div(σw)− σ : ∇w

)
dx

= −
∫
D

(
ε(v) : ψ − ε(w) : σ

)
dx+

∫
∂D

(σw) · n ds︸ ︷︷ ︸
= 0

=

∫
D

(
ε(w) : σ − ε(v) : ψ

)
dx+

∫
∂D

(ψv) · n ds︸ ︷︷ ︸
= 0

=

∫
D

(
ε(w) : σ + div(ψv)−ψ : ∇v

)
dx

=

∫
D

(
ε(w) : σ + div(ψ) · v

)
dx =

(
(σ,v)>,−A(ψ,w)>

)
X
.

Next we show that I + A is surjective. To this end let (ψ,g)> ∈ X. We have to solve
the equations

(28) σ − ε(v) = ψ and v − divσ = g

for (σ,v)> ∈ D(A). We multiply the second equation by some test function w ∈
H1
D(D,R3), integrate over D and use the divergence theorem. This yields∫

D

g ·w dx =

∫
D

(
v ·w − divσ ·w

)
dx

=

∫
D

(
v ·w + σ : ∇w

)
dx +

∫
∂D

(σw) · n ds︸ ︷︷ ︸
= 0

.

Now we use the first equation and arrive at∫
D

g ·w dx =

∫
D

[
v ·w +

(
ε(v) +ψ

)
: ∇w

]
dx ;

that is,∫
D

[
v ·w + ε(v) : ε(w)

]
dx =

∫
D

[
g ·w −ψ : ∇w

]
dx for all w ∈ H1

D(D,R3) .

This variational equation is known as the pure displacement ansatz in elasticity which
has a unique solution v ∈ H1

D(D,R3) see, e.g., [3]. Finally, set σ := ψ + ε(v). Thus
σ = σ> and, as above,∫

D

g ·w dx =

∫
D

(
v ·w + σ : ∇w

)
dx +

∫
∂DN

(σw) · n ds

for all w ∈ H1
D(D,R3). This is the variational form of σn = 0 on ∂DN and divσ =

v−g ∈ L2(D,R3) which yields that σ ∈ H
(
div, D,R3×3

sym

)
. Altogether we have constructed

(σ,v)> ∈ D(A) satisfying (28). �
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Therefore, the operators B and A defined in (24) and (25), respectively, fulfill the re-
quirements of our abstract theory of the previous sections, and the following theorem
holds.

Theorem 6.2. (a) Let (µ, λ, %)> ∈ P, f ∈ W 1,1
(
(0,∞), L2(D,R3)

)
, and (σ0,v0)

> ∈
D(A) where P and D(A) have been defined in (21) and (27), respectively. Then there
exists a unique solution (σ,v)> ∈ C

(
[0,∞),D(A)

)
∩ C1

(
[0,∞), X

)
of (19a), (19b) with

σ(0) = σ0 and v(0) = v0. Here, again, X = L2(D,R3×3
sym)× L2(D,R3).

(b) Let in addition f ∈ W 2,1
(
(0,∞), L2(D,R3)

)
, v̂0 := %−1

[
divσ0 + f(0)

]
∈ H1

D(D,R3),
σ̂0 := C(µ, λ)ε(v0) ∈ H(div, D,R3×3

sym), and C(µ, λ)ε(v0)n = 0 on ∂DN .

Then (σ,v)> ∈ C1
(
[0,∞),D(A)

)
∩ C2

(
[0,∞), X

)
.

(c) Let in addition to the assumptions of part (b) f ∈ W 3,1
(
(0,∞), L2(D,R3)

)
, %−1

[
div σ̂0+

f ′(0)
]
∈ H1

D(D,R3), C(µ, λ)ε(v̂0) ∈ H(div, D,R3×3
sym) and C(µ, λ)ε(v̂0)n = 0 on ∂DN .

Then (σ,v)> ∈ C2
(
[0,∞),D(A)

)
∩ C3

(
[0,∞), X

)
.

Proof: We have again to check the conditions of Theorem 2.7 for k = 2 and k = 3. We
have: f ∈ W `,1((0,∞), X) translates into f ∈ W `,1

(
(0,∞), L2(D,R3)

)
, B−1(Au0−f(0)) ∈

D(A) reads as C(µ, λ)ε(v0) ∈ H(div, D,R3×3
sym), %−1

[
divσ0 + f(0)

]
∈ H1

D(D,R3), and

C(µ, λ)ε(v0)n = 0 on ∂DN . Furthermore, B̂−1(Aû0 − f ′(0)) ∈ D(A) translates into
C(µ, λ)ε(v̂0) ∈ H(div, D,R3×3

sym), %−1
[
div σ̂0+f ′(0)

]
∈ H1

D(D,R3), and C(µ, λ)ε(v̂0)n = 0
on ∂DN . �

We note again that it is sufficient to make the assumptions on f on the finite interval
(0, T ) only if one is interested in the finite time case.

In particular, the mapping F̃ : (µ, λ, %)> 7→ (σ,v)> is well defined from the set P of
parameters into C

(
[0, T ], X

)
for any fixed T > 0.

We will now express this operator F̃ in terms of the operator F : B 7→ u of the abstract
theory. To this end we introduce, analogously to the previous section, V : L∞(D)3 ⊃
P → L(X) as the mapping (µ, λ, %)> 7→

(
C̃(µ,λ) 0

0 %I

)
where we interpret the application

of C̃(µ, λ) pointwise a.e. Then F̃ = F ◦V on P . To compute the derivative of F̃ we have
to use the chain rule.

Lemma 6.3. Let C̃ : D(C) → Aut(R3×3
sym) be the mapping defined in (20). Its Fréchet

derivative at (µ, λ)> ∈ intD(C) is given by

C̃ ′(µ, λ)(m, `) = −C̃(µ, λ) ◦ C(m, `) ◦ C̃(µ, λ) , (m, `)> ∈ R2 .

Proof: First, we note that C is a linear operator and C̃(µ, λ) ◦ C(µ, λ) = C(µ, λ) ◦
C̃(µ, λ) = I. Then we have for sufficiently small m, `

C̃(µ+m,λ+ `)− C̃(µ, λ) + C̃(µ, λ) ◦ C(m, `) ◦ C̃(µ, λ)

= C̃(µ+m,λ+ `) ◦
[
C(µ, λ)− C(µ+m,λ+ `)

]
◦ C̃(µ, λ)

+ C̃(µ, λ) ◦ C(m, `) ◦ C̃(µ, λ)

=
[
C̃(µ, λ)− C̃(µ+m,λ+ `)

]
◦ C(m, `) ◦ C̃(µ, λ)

and thus
‖C̃(µ+m,λ+ `)− C̃(µ, λ) + C̃(µ, λ) ◦ C(m, `) ◦ C̃(µ, λ)‖Aut
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≤ c‖C̃(µ, λ)‖Aut‖C̃(µ, λ)− C̃(µ+m,λ+ `)‖Aut

(
|m|+ |`|

)
= o

(
|m|+ |`|

)
as |m|+ |`| → 0. This proves the assertion. �

Theorem 6.4. Let T > 0, (µ, λ, %)> ∈ P, f ∈ W 1,1
(
[0, T ], L2(D,R3)

)
, and (σ0,v0)

> ∈
D(A). Then the mapping F̃ : L∞(D)3 ⊃ P → C

(
[0, T ], X

)
, (µ, λ, %)> 7→ (σ,v)>, where

(σ,v) solves (19a), (19b) w.r.t. the parameters (µ, λ, %) and initial values (σ0,v0), is

Fréchet differentiable at (µ̂, λ̂, %̂)>. In fact, we have that F̃ ′(µ̂, λ̂, %̂)(µ, λ, %) = (σ,v)>

where (σ,v)> ∈ C
(
[0, T ], X

)
is the mild solution of

∂tσ(t, x) = C
(
µ̂(x), λ̂(x)

)
ε(v(t, x)) + C

(
µ(x), λ(x)

)
ε(v̂(t, x)) ,(29a)

%̂(x)∂tv(t, x) = divσ(t, x) − ρ(x)∂tv̂(t, x)(29b)

in [0, T ] × D and σ(0) = 0, v(0) = 0. Here, σ̂ and v̂ correspond to the parameters

(µ̂, λ̂, %̂)>.

Proof: We have that F̃ (µ, λ, %) = F
(
V (µ, λ, %)

)
where F : L(X) ⊃ B → C

(
[0, T ], X

)
,

B 7→ (σ,v)> and (σ,v) solves (26) w.r.t. B. Thus, F̃ ′(µ, λ, %) = F ′
(
V (µ, λ, %)

)
V ′(µ, λ, %).

We determine the derivative of F with Theorem 3.5.

F̃ ′(µ̂, λ̂, %̂)(µ, λ, %) = F ′
(
V (µ̂, λ̂, %̂)

)(
C̃ ′(µ̂, λ̂)(µ, λ) , %

)
= (σ,v)>

where σ(0) = 0, v(0) = 0, and(
C̃(µ̂, λ̂) 0

0 %̂I

)
∂t

(
σ
v

)
=

(
0 ε

div 0

)(
σ
v

)
−
(
C̃ ′(µ̂, λ̂)(µ, λ)∂tσ̂

%v̂

)
that is, using Lemma 6.3,

∂tσ(t, x) = C
(
µ̂(x), λ̂(x)

)
ε(v(t, x)) + C

(
µ(x), λ(x)

)
C̃
(
µ̂(x), λ̂(x)

)
∂tσ̂(t, x)

= C
(
µ̂(x), λ̂(x)

)
ε(v(t, x)) + C

(
µ(x), λ(x)

)
ε(v̂(t, x))

%̂(x)∂tv(t, x) = divσ(t, x) − %(x)∂tv̂(t, x)

which proves the theorem. �

Remarks 6.5. (a) As before, the mild solution is also the weak solution for the elastic
equation; that is (compare with the proof of Lemma 6.1)

d

dt

(
C̃(µ̂, λ̂)σ(t),ψ

)
L2 = −

(
v(t), divψ

)
L2 +

(
C̃(µ̂, λ̂)C(µ, λ)ε(v̂(t)),ψ

)
L2

for almost all t ∈ [0, T ] and all ψ ∈ H(div, D,R3×3
sym) with ψn = 0 on ∂DN and

d

dt

(
ρ̂v(t),φ

)
L2 = −

(
σ(t), ε(φ(t))

)
L2 −

d

dt

(
ρ v̂(t),φ

)
L2

for almost all t ∈ [0, T ] and all φ ∈ H1
D(D,R3).

(b) We note that the regularity assumptions in Theorem 6.4 are much weaker than in,
e.g., [15] or [2], see Section 7. This is due to the fact that we show differentiability of F̃
only as a mapping from P into C

(
[0, T ], X

)
and use the concept of mild solutions. Under

the additional regularity assumptions of part (b) of Theorem 6.2 the mild solution is also
a classical solution. Under the assumptions of part (c) of this theorem the mapping F̃ is
differentiable from P into C1

(
[0, T ], X

)
∩ C

(
[0, T ],D(A)

)
.

Finally, we prove the local ill-posedness of F̃ (µ, λ, %) = (σ,v)>.
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Theorem 6.6. The equation F̃ (µ, λ, %) = (σ,v)> is locally ill-posed at any interior point
(µ, λ, %)> of P.

Proof: Let r ∈ (0, 1] and χn ∈ L∞(D) as in the proof of Theorem 5.6. Choose r1, r2, r3 ∈
[0, r] with r1 + r2 + r3 > 0 and c−4[2r1 + 3r2]

2 + r23 ≤ r2 and such that (µn, λn, %n)> ∈ P
for all n where µn = µ + r1χn, λn = λ + r2χn, and %n = % + r3χn. We show that the
operators En = V (µn, λn, %n)−V (µ, λ, %) ∈ L(X) satisfy the assumptions of Theorem 4.1
for some r̂ ∈ (0, r). Here again, V : L∞(D)3 ⊃ P → L(X) is defined as the mapping

(µ, λ, %)> 7→
(
C̃(µ,λ) 0

0 %I

)
. This mapping V is matrix-valued, and we consider first the

component C̃. For σ ∈ R3×3
sym and fixed x ∈ D (where we write µ instead of µ(x), etc.)

we compute as in Lemma 6.3

C̃(µn, λn)σ − C̃(µ, λ)σ

= C̃(µn, λn)
[
C(µ, λ)− C(µn, λn)

]
C̃(µ, λ)σ

= 2(µ− µn)C̃(µn, λn)C̃(µ, λ)σ +
λ− λn

(3λ+ 2µ)(3λn + 2µn)
trace(σ) I

because trace
(
C̃(µ, λ)σ)

)
= 1

3λ+2µ
trace(σ) and C̃(µn, λn)I = 1

3λn+2µn
I.

Using |trace(σ) I|F ≤ 3|σ|F we conclude that∣∣C̃(µn, λn)σ − C̃(µ, λ)σ
∣∣
F
≤
[
2|µ− µn|+ 3|λ− λn|

]
c2|σ|F = c2[2r1 + 3r2]χn |σ|F .

Let now σ ∈ L2
(
D,R3×3

sym

)
. Then we conclude from the last estimate that∥∥C̃(µn, λn)σ − C̃(µ, λ)σ

∥∥2
L2(D,R3×3

sym)
≤ c4[2r1 + 3r2]

2

∫
D

χn(x) |σ(x)|2Fdx

which converges to zero as n tends to infinity as in the proof of Theorem 5.6. Furthermore,
in the same way one shows that ‖%nv − %v‖2L2(D,R3) = r23

∫
D
χn(x) |v(x)|2dx → 0 as n

tends to infinity and thus
∥∥∥[V (µn, λn, %n)−V (µ, λ, %)

](σ
v

)∥∥∥
X
→ 0 as n tends to infinity.

Furthermore, we note that∥∥V (µn, λn, %n)− V (µ, λ, %)
∥∥2
L(X)

≤ c4[2r1 + 3r2]
2 + r23 ≤ r2 .

On the other hand we set σn = χnI and have, omitting again the argument x,∣∣C̃(µn, λn)σn − C̃(µ, λ)σn
∣∣
F
|σn|F ≥

∣∣[C̃(µn, λn)σn − C̃(µ, λ)σn
]
: σn

∣∣
= 2r1χn

(
C̃(µ, λ)σn

)
:
(
C̃(µn, λn)σn

)
+

r2χn
(3λ+ 2µ)(3λn + 2µn)

(
trace(σn)

)2
=

6r1 + 9r2
(3λ+ 2µ)(3λn + 2µn)

χn(x) =
2r1 + 3r2

(3λ+ 2µ)(3λn + 2µn)
|σn|2F

by using again C̃(µ, λ)I = 1
3λ+2µ

I and |σn(x)|2F = 3χn(x). Therefore,∥∥C̃(µn, λn)− C̃(µ, λ)
∥∥
L(L2(D,R3×3

sym))
≥ [2r1 + 3r2] c−2

for all n. Using this in the definition of the mapping V yields∥∥V (µn, λn, %n)− V (µ, λ, %)
∥∥2
L(X)

≥ c−4 [2r1 + 3r2]
2 + r23 =: r̂2

for all n. Therefore, the operators En = V (µn, λn, %n)−V (µ, λ, %) satisfy the assumptions
of Theorem 4.1. �
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7. Final Remarks

In [2, 15] the following second order initial-boundary value problem has been considered
as the model in seismology.

(30) ρ(x) ∂ttv(t, x) = div
[
C
(
µ(x), λ(x)

)
ε
(
v(t, x)

)]
+ g(t, x) for (t, x) ∈ [0, T ]×D ,

v(0, ·) = v0 in D, ∂tv(0, ·) = v1 in D, v = 0 on [0, T ] × ∂DD, C(µ, λ)ε(v)n = 0 on
[0, T ] × ∂DN . It is easy to see that if v satisfies (30) with the initial and boundary
conditions then (v,σ) solves

∂tσ(t, x) = C
(
µ(x), λ(x)

)
ε
(
v(t, x)

)
,(31a)

ρ(x) ∂tv(t, x) = divσ(t, x) +

∫ t

0

g(s, x) ds + ρ(x)v1(x)(31b)

for (t, x) ∈ [0, T ] × D with v(0, ·) = v0 in D, σ(0, ·) = 0 in D, v = 0 on [0, T ] × ∂DD,
σn = 0 on [0, T ]× ∂DN . Here, σ is given by

(31c) σ(t, x) = C
(
µ(x), λ(x)

) ∫ t

0

ε
(
v(s, x)

)
ds , (t, x) ∈ [0, T ]×D .

On the other hand, if (v,σ) solves (31a), (31b) with the initial and boundary conditions
then v solves (30).

We translate the requirements for the Fréchet derivatives of (31a), (31b) for the case
considered in this paper; that is, for the parameter-to-solution operator F̃ from P into
L2
(
(0, T );L2(D)

)
. Comparing (31b) to (19b) we observe that f(t, x) =

∫ t
0

g(s, x) ds +
ρ(x)v1(x). Therefore, in order to satisfy the assumptions of Theorem 6.4 we have to as-

sume that g ∈ L1
(
(0, T );L2(D,R3)

)
, v0 ∈ H1

D(D,R3), v1 ∈ L2(D,R3), and C(µ̂, λ̂)ε(v0) ∈
H
(
div, D,R3×3

sym

)
with C(µ̂, λ̂)ε(v0)n = 0. These conditions are substantially weaker than

the assumptions made in, e.g., [2, 15]. We recall, however, that we consider the parameter-
to-solution map (µ, λ, ρ) 7→ v from P into C

(
[0, T ], L2(D,R3)

)
rather than into the

smaller space C1
(
[0, T ], L2(D,R3)

)
∩ C

(
[0, T ], H1

D(D,R3)
)

with the stronger topology.
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