
Predicting and witnessing data races using CSP

Luis M. Carril and Walter F. Tichy

Institute for Program Structures and Data Organization (IPD)
Karlsruhe Institute of Technology (KIT)

Am Fasanengarten 5, 76131 Karlsruhe, Germany
{luis.carril,walter.tichy}@kit.edu

Abstract. Detecting and debugging data races is a complex task due to the large number of interleav-
ings possible in a parallel program. Most tools can �nd the data races reliably in an observed execution,
but they miss errors in alternative reorderings of events. In this paper we describe an automated ap-
proach to generate, from a single program trace, a model in CSP with alternative interleavings. We
check for data races patterns and obtain a witness that allows the reproduction of errors. Reproduction
reduces the developer e�ort to correct the error.

Keywords: data race, concurrent programs, debug, CSP

1 Introduction

Finding and debugging synchronization errors such as data races is a daunting task. As multicore processors
become common, tools that help developers cope with data races are desperately needed. A data race happens
when two threads access the same variable concurrently and at least one performs a write operation.

Usually, dynamic approaches to race detection are based on happens-before or lockset algorithms. Happens-
before detectors [2](based on the Lamports relationship [8]) only cover a speci�c observed interleaving. They
are conservative and need to run multiple times to cover unexplored interleavings. Some works [14] relax the
happens-before relationship under certain conditions to cover more cases. The lockset algorithm [12] checks
for consistent locking of shared objects, but produces a high number of false positives. Hybrid approaches
alse exists [10, 7], combining advantages of both.

The interleaving presented in listing 1.1 are di�cult to detect. Only if the exact timing in listing 1.2 occurs,
a happens-before detector reports the race. Additionally, typical approaches only provide the location of the
error, but no context about thread state or how they reached that particular point.

Our approach infers alternative interleavings from an observed program trace and �nds data race patterns
in these reorderings. Once a pattern matches in one reordering, these reordering is a story on how the program
reaches the erroneous state. We infer the interleavings by constructing a model that combines the independent
actions of the threads and the semantic behavior of the synchronization operations (e.g.: a mutex can only
be held by one thread at a time). This model is described with the process algebra CSP (Communicating
Sequential Processes [5]) and the pattern search is done with CSP re�nement relationships. This approach
not only allows the prediction races, but also provides the steps which lead to that race.

Similar work is found in the maximal causal model [6] and witness generation [11]. These works can also
predict races and provide counterexamples from a single observation using a read-write consistency model
implemented with SMT.

Listing 1.1. Original captured trace

Thread 1 Thread 2
1 : y++
2 : l ock (m)
3 : x++
4 : unlock (m)
5 : l o ck (m)
6 : x++
7 : unlock (m)
8 : y++

Listing 1.2. Reordering with data race

Thread 1 Thread 2
1 : l o ck (m)
2 : x++
3 : unlock (m)
4 : y++
5 : y++
6 : l ock (m)
7 : x++
8 : unlock (m)

2 Detecting races with CSP

CSP is a formal language to describe a system composed by processes (in uppercase), each process is a
sequence of atomic events (in lowercase). Then processes communicate with each other and the environment
(which can be another process) sharing events synchronously.

Our approach consists of de�ning a CSP process PROGRAM , that represents all alternative interleavings
of a captured trace. Using a CSP re�nement relationship we check if the PROGRAM process matches a
data race pattern (de�ned as a CSP process). When the relationship does not hold, a data race is revealed
along with a counterexample, that allows to reproduce the scenario with the data race.

2.1 Modeling events

A captured trace consists of a sequence of the following events: read, write, start, end, fork, join, lock
and unlock. The events start and end have a single parameter: the thread identi�er. The other events have
two parameters: a related thread identi�er and a relevant object for the operation: a child thread, a mutex
or a variable. We map each captured event directly to a CSP event; e.g. a lock by thread t1 on lock l1 is
represented lock.t1.l1. A symbol ? represents any valid value for a parameter; then lock?t.l1 is a lock event
on l1 by any thread.

2.2 Modeling the program

To construct the process PROGRAM which represents all possible reorderings of the trace, we model the
behavior of the di�erent threads and the semantics of the synchronizing operations independently with CSP
processes.

Each thread is modeled using the events that it had performed in the captured trace. We only keep one
access to a variable per thread between two synchronizing operations. The corresponding events in CSP are
concatenated using the pre�x operator →, which creates a total order for the thread trace as it has been
observed; e.g. for the thread 1 in the listing 1.1:

THREAD1 = write.t1.y → lock.t1.m→ write.t1.x→ unlock.t1.m→ STOP

The process STOP denotes a process which performs no actions (is a reserved CSP process). All these thread
processes are combined with the CSP interleaving operator |||. The resulting process contains all reorderings
of events of the thread processes, but obeying the total order corresponding to each thread:

T INTER =|||i∈Threads Ti

This operation is agnostic of the semantic meaning of the events, so the process also contains a lot of traces
that would not be possible in the original program, for example the order ..., lock.t1.m, lock.t2.m, We avoid

2

these illegal interleavings modeling the semantic restrictions of synchronizing operations: forking, joining and
mutex accesses.

The restrictions are modeled in the process SY NC. We compose the previous T INTER process with
the SY NC process using the generalized parallel operator:

PROGRAM = T INTER ‖
sync set

SY NC

sync set = {|start, end, fork, join, lock, unlock|}

Where {|x|} denotes all events derived from x. The parallel operator ensures that if a process wants to execute
an event in the set, the other process must be ready to execute it too, otherwise it will be blocked until
the second process is also ready. The T INTER and SY NC processes synchronize in all events with the
exception of read and write events. This combination ensures that all traces of process PROGRAM are
traces that follow the order restrictions of T INTER (total order per thread) and the order restrictions
of SY NC (order of the synchronization operations). The process PROGRAM re�ects all the interleavings
possible by our original program in the path covered by the initial observation.

The SY NC process describes the following synchronizations: thread creation, thread joining, mutex
locking and unlocking. We de�ne and interleave a process for each speci�c synchronization class.

SY NC = FORKS ||| JOINS |||MUTEXES

FORKS =|||i∈Threads FORK(i)

JOINS =|||i∈Threads JOIN(i)

MUTEXES =|||i∈Mutexes MUTEX(i)

Each of these processes represent a subgroup of restrictions on the order of the synchronization operations.
The creation of each thread is de�ned by a process

FORK(i) = fork?t.i→ start.i→ STOP

The start event cannot happen if any other thread has not realized a fork on the created thread. This
process �nally stops without doing anything else.

The join of each thread is de�ned by a process

JOIN(i) = end.i→ join?t.i→ STOP

Similar to the previous process, this is a one-shot process where any join on i cannot be complete until the
corresponding process executes its end event.

A mutex process is described as a recursive process:

MUTEX(i) = lock?t.i→ unlock.t.i→MUTEX(i)

For a speci�c mutex i this process is the only one capable of executing lock and unlock events on it, after one
thread process executes the lock.t.i operation, the other thread processes are blocked until the corresponding
unlock event occurs. Afterwards the process returns to the initial point where it accepts the lock event for
any thread.

2.3 Detecting races in CSP

With a CSP process representing the observed trace and the alternative reorderings along the same path, we
check the model for data races. A race is the concurrent execution of two events from di�erent threads on
the same variable, where at least one is a write. Then a trace containing a data race has one of the following
subtraces:

read.t1.v, write.t2.v write.t1.v, read.t2.v write.t1.v, write.t2.v

read.t2.v, write.t1.v write.t2.v, read.t1.v write.t2.v, write.t1.v

3

The two con�icting events can be observed consecutively and without any synchronization between them.
We build a process PATTERN which executes an event race when it performs one of these subtraces
for a speci�c t1,t2 and v. The race event works as an indicator that a race has been found. The process
PATTERN is de�ned as:

PATTERN(t1, t2, v) =PATT ERR(t1, t2, v) 4 (2 x : sync set ∪ rw set@x→ PATTERN(t1, t2, v))

rw set ={read.t1.v, write.t1.v, read.t2.v, write.t2.v}
PATT ERR(t1, t2, v) =read.t1.v → write.t2.v → race→ STOP

2 read.t2.v → write.t1.v → race→ STOP

2 write.t1.v → read.t2.v → race→ STOP

2 write.t1.v → write.t2.v → race→ STOP

2 write.t2.v → read.t1.v → race→ STOP

2 write.t2.v → write.t1.v → race→ STOP

The PATT ERR process is the combination of the six cases described, it can perform any of them. Only
when one of the cases (one option of PATT ERR) is completed, the race event is �red. The process can
be restarted in any state (with the 4 interrupt operator), to permit any other event combination being the
pre�x of the racy subtraces.

We verify a property in CSP describing it in terms of a re�nement relationship S vT I. A re�nement
relationship holds if the behavior of the implementation process I is a subset of the behavior of the spec-
i�cation process S. Behavior means the set of all possible traces. We compose the PATTERN process
in parallel with the PROGRAM process, so the process PATTERN participates in the execution of all
events of PROGRAM . But PATTERN is always available to perform any event, so it will not interfere
with PROGRAM process orderings. Using the hiding operator \ all events become non-observable, with
the exception of the race event, the one that reveals a matching pattern. We check if the resulting process
re�nes the process STOP .

STOP vT (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, v)) \ Σ − {race}

Σ denotes all the events in the model. If the process composed of PROGRAM and PATTERN reaches
the event race then the re�nement does not hold and there is a data race between t1 and t2 for variable v.
But if there is no path to reach the race event, then the composition behaves exactly like STOP and the
re�nement holds.

The corresponding model and assertions for the trace in listing 1.1 is:

THREAD1 = write.t1.y → lock.t1.m→ write.t1.x→ unlock.t1.m→ SKIP

THREAD2 = lock.t2.m→ write.t2.x→ unlock.t2.m→ write.t2.y → SKIP

PROGRAM = (THREAD1 ||| THREAD2) ‖
sync set

MUTEX(m)

STOP vT (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, x)) \ Σ − {race} (1)

STOP vT (PROGRAM ‖
rw set∪sync set

PATTERN(t1, t2, y)) \ Σ − {race} (2)

The re�nement on x (1) holds but the re�nement on y (2) not.
When the re�nement is violated, at least one sequence of events in the composition leading to the race

event exists. We focus only on the trace performed by the PROGRAM process, as the process representing
the original program. The counterexample takes the form of a sequence of only the synchronization events.
For the violated re�nement (2) on x in the example, a counterexample is:

lock.t2.m, unlock.t2.m

4

If we replay the program only allowing the synchronizations operations in the counterexample and in the
speci�ed order, we reach a state where all actions performed by the threads are happening concurrently,
exposing the data race. For example the case shown in listing 1.2.

3 Preliminary evaluation

We implemented an automatic tool that generates the corresponding model for a given trace. Our target
programs are binaries of multithreaded C programs using the pthread library [1]. We developed a Valgrind [9]
plug-in to capture the trace, through a combination of binary instrumentation and library hooks. The trace
is post-processed to simplify it and detect shared variables. For each shared variable, a CSP model is built
ignoring the events of other variables so it contains the minimum number of events necessary. A re�nement
check is build for each combination of two threads and shared variable. The model and assertions are coded
in CSPM (machine readable CSP) and fed to the Failures-Divergences Re�nement 3 model checker[4]. The
evaluation has been done on a dual core machine with 1.4GHz processor and 1GB RAM.

Table 1. Preliminary evaluation

Scenarios LOC Real races Trace size Checks Races HG-Races

20 952 14 20289 28 14 11

Table 1 shows the preliminary evaluation, as the aggregate values of a set of small scenarios. The scenarios
are a collection from multiple sources[13, 15, 14]. Scenarios from papers have been coded explicitly. Some
scenarios are specially complicated for a happens-before detector to reason about, as the cases in [14]. The
�rst column is the number of scenarios, the second column the aggregated lines of code. The third column
is the total number of real races in all the scenarios (one per location). The fourth column is the total size
(number of events) of the post-processed traces after a single execution. The �fth column is the number of
checks (re�nements) made. The sixth column shows how many races have been con�rmed by the re�nements
and generated a counterexample. Finally the seventh column shows how many races Helgrind �nds in average
of 10 executions.

The results show that from a single execution our approach can �nd more races than Helgrind in multiple
executions. A non-predictive race detector relies on reaching a speci�c timing to be able to see some races.
But our solution is time-agnostic �nding the races along the same path in the program.

Also race detectors usually provide only the localization of the race, but no information on when and how
the program has reached that position. Mixing the race detector with interactive debugging can make the
erroneous state di�cult to reach, because the probe e�ect [3]. Our tool provides a step by step counterexample
of the synchronization steps that can be use to reproduce the observed data race.

A pure happens-before tool cannot provide false positives. Although not shown in these examples, our
approach can provide false positives; if a reordering of the synchronization operations leads to a di�erent path
in the program that has not been observed, the race could not exist and the counterexample is infeasible. To
tackle this cases, we plan to prune this cases with automatic enforcement and checking of the counterexample.
Also improving the model with control �ow information as in [6] and implementing more synchronization
primitives.

The scalability of the approach is limited by two factors: length of the trace and number of shared
variables. A longer trace produces a more complex model, and the model checker needs more time. But
our model increases in complexity only with the number of synchronization operations in the trace, which is
expected to be a small fraction of the whole program trace. Further improvement can be done by partitioning
the trace in windows and checking only one partition at a time. This increases the number of false negatives,
as interactions between windows are lost. The number of checks also increases with the number of variables,
but we can reduce this cost with a previous �ltering step using a cheaper algorithm, that does not produce
false negatives but reduces the number of candidates, e.g.: a relaxed happens-before without mutex edges.

5

4 Conclusion

This paper describes a work-in-progress approach to predict data races and generate a trace witness. We
capture a single trace of a multithreaded application and model it in CSP. This model not only includes the
observed interleaving but also the alternative reorderings of other possible executions. Using the capabilities
of the process algebra we �nd data race patterns and generate the corresponding counterexamples. These
counterexamples re�ect how the program reached the erroneous states, and greatly facilitate the debugging
process.

Acknowledgments

The authors would like to thank Siemens Corporate Technology for their �nancial support. We also appreciate
the support of the Initiative for Excellence at the Karlsruhe Institute of Technology.

References

1. Barney, B.L.L.N.L.: POSIX Threads Programming, https://computing.llnl.gov/tutorials/pthreads/
2. Flanagan, C., Freund, S.N.S.: FastTrack: e�cient and precise dynamic race detection. In: PLDI '09 Pro-

ceedings of the 2009 ACM SIGPLAN conference on Programming language design and implementation. pp.
121�133. PLDI '09, ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1542476.1542490 http://
dl.acm.org/citation.cfm?id=1542490

3. Gait, J.: A probe e�ect in concurrent programs. Software: Practice and Experience 16(3), 225�233 (1986)
4. Gibson-robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 - A Modern Re�nement Checker for

CSP. Tools and Algorithms for the Construction and Analysis of Systems 8413, 187�201 (2014)
5. Hoare, C.: Communicating Sequential Processes. Communications of the ACM 21(8), 666�677 (1978),

http://www.cs.ucf.edu/courses/cop4020/sum2009/ CSP-hoare.pdf
6. Huang, J., Meredith, P., Rosu, G.: Maximal sound predictive race detection with control �ow abstraction. In: PLDI

'14 Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation.
pp. 337�348 (2014), http://dl.acm.org/citation.cfm?id=2594315

7. Jannesari, A., Tichy, W.F.: On-the-�y race detection in multi-threaded programs. In: Proceedings of the 6th
Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging (PADTAD '08). pp. 6:1�-
6:10. PADTAD '08, ACM, New York, NY, USA (2008), http://doi.acm.org/10.1145/1390841.1390847 http://
www.cs.umd.edu/ pugh/ISSTA08/padtad2008/papers/ a8-jannesari.pdf

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. Communications of the ACM
21(7), 558�565 (1978), http://dl.acm.org/citation.cfm?id=359563

9. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instrumentation. ACM Sigplan
Notices pp. 89�100 (2007), http://dl.acm.org/citation.cfm?id=1250746

10. Pozniansky, E., Schuster, A.: MultiRace: e�cient on the �y data race detection in multithreaded
C++ programs. Concurrency and Computation: Practice and Experience 19(3), 327�340 (2007),
http://onlinelibrary.wiley.com/doi/10.1002/cpe.1064/ abstract

11. Said, M., Wang, C., Yang, Z., Sakallah, K.: Generating data race witnesses by an SMT-based analysis. In:
NFM'11 Proceedings of the Third international conference on NASA Formal methods. pp. 313�327 (2011),
http://link.springer.com/chapter/10.1007/ 978-3-642-20398-5 23

12. Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Anderson, T.: Eraser: a dynamic data race detec-
tor for multithreaded programs. ACM Transactions on Computer Systems 15(4), 391�411 (Nov 1997),
http://doi.acm.org/10.1145/265924.265927 http:// portal.acm.org/citation.cfm?doid=265924.265927

13. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice. In: WBIA
'09 Proceedings of the Workshop on Binary Instrumentation and Applications. pp. 62�71 (2009),
http://dl.acm.org/citation.cfm?id=1791203

14. Smaragdakis, Y., Evans, J., Sadowski, C., Yi, J., Flanagan, C.: Sound predictive race detection in polynomial time.
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages -
POPL '12 p. 387 (2012), http://dl.acm.org/citation.cfm?doid=2103656.2103702

15. Valgrind: Helgrind: a data-race detector (2007), http://valgrind.org/docs/manual/hg- manual.html

6

