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Abstract

The present work deals with the investigation of destabilizing suspensions.
The stability of such is determined by two basic processes: Clustering and
sedimentation. Elementary effects, which influence suspension stability,
are explained in an introductory part. Because numerical simulations of
destabilizing suspensions rely on the mathematical description of these
effects, modeling approaches are addressed as well. After a discussion of
currently used hindered settling functions, an overview of the most widely
used methods for suspension simulation is given. The methods are de-
scribed in such a way that similarities between different methods become
clear. A rough characterization of existing methods can be made by means
of the modeling approaches for different phases. This results in a classi-
fication of methods in Eulerian-, Lagrangian- and Eulerian–Lagrangian
methods.
Results presented in this work have been obtained using a Lagrangian
method, the so-called Stokesian Dynamics (SD) method. This method
allows for a simple inclusion of models for particle-particle interactions of
non-hydrodynamic nature. Moreover, hydrodynamic interactions of par-
ticles are accounted for without a direct solution of the basic equations
describing the fluid phase. This is an advantage but also a limitation
of the SD method. Especially the inclusion of external geometries, for
instance the geometries of settling tanks, centrifuges, or CSTRs (continu-
ously stirred tank reactors) pose extreme difficulties for the method. On
the other hand, hydrodynamic interparticle interactions in polydisperse
systems can be computed very efficiently. The results section of this work
is confined to investigations of problems on the particle level, such that
the described drawback plays no role.
Certain effects in suspensions can only be observed by means of numer-
ical experiments when the number of simulated particles is high enough.
Especially when it comes to polydisperse particle systems, reported direct
numerical simulations, i.e. simulations in which hydrodynamic interac-
tions are described by as few modeling as possible, are often limited to
systems of less than a thousand particles. This number does not suffice to
show e.g. for isolated settling hydrodynamic particle clusters, also known
as particle clouds, an experimentally and numerically verified behaviour.
Even though the SD Method is one of the most efficient methods for the



simulation of such problems, a sequential implementation requires simu-
lation times of several days up to weeks and is typically limited to not
more than one or two thousand particles. This limitation gave rise to the
parallelization of the open-source simulation framework RYUON as part
of this work. The aim of this parallelization is the numerical simulation of
destabilizing suspensions on CPU-based supercomputers in a reasonable
time span.
Results concerning this aim are presented in the first part of the results
section of this work. It is shown that a parallelization pushes the limits of
particle numbers which can be simulated within days from about a thou-
sand to a million. The exact number of particles in systems which can be
simulated within a given time span depends on the number of used CPUs.
Computational time is also for a parallelized SD method quadratically de-
pendent on the number of simulated particles. To reduce this complexity,
the SD method has been coupled with the so-called Barnes–Hut method
in the present work. The Barnes–Hut method has been developed for
the solution of stellar dynamics problems and is nowadays applied to sim-
ulations in all fields where long-ranged interparticle interactions play a
role. In the context of this method, particles can be stars, particles met
in the field of process engineering, plasma ions, etc. The hybrid method
resulting from the coupling of the SD and the Barnes–Hut method is
described in the second part of the results section of this work. Apart
from a detailed description of the method, results are presented, which
show that the resulting method can indeed exhibit a better scaling than
the parallel method, when it comes to increasing particle numbers. The
resulting SSD method spatially groups particles during computation of
hydrodynamic interactions according to a fixed criterion, which yields the
reduction in computational time. Because of the motion of particles it is
difficult to make a clear statement about the resulting complexity of the
method. Yet, it is demonstrated in this work that complexity lies some-
where between linear complexity and the complexity of the parallelized
SD method. Due to the dynamical grouping of particles, the timestep
width is reduced when only hydrodynamic interparticle interactions are
considered (and if an adaptive time-stepping scheme is applied). When
additionally interactions due to electrostatics and London–van–der–Waals
attraction are considered, no reduction is observable.
In the third part of the results section of this work, results concerning the
numerical investigation on the settling behaviour of polydisperse particle



clouds in viscous fluids are presented. The gained possibility to simulate
large particle systems allows for the demonstration that polydisperse parti-
cle clouds undergo the same characteristic motion as monodisperse clouds
of equal size. Because of the mentioned limitation of particle numbers in
earlier works, consensus up to this work was that polydisperse systems
would not be stable enough to show the typical behaviour. Apart from
this, numerical experiments conducted in the context of this work indicate
that the radius ratio of particles in an initially unmixed bidisperse cloud
has a strong influence on the effect of small particles being dragged along
by larger particles forming a hydrodynamic cluster. If both fractions are
initially mixed, a larger number of small particles is dragged along by
the fraction of large particles which determines the overall motion of the
cluster. Another result of the described investigations is an analytical
expression, which can be used to determine the maximum settling veloc-
ity of a polydisperse cloud. This expression yields a substantially better
prediction than thus far applied formulas, which do not consider polydis-
persity.
The description of these results concerning hydrodynamic clustering are
followed by an analysis of clustering due to heterocoagulation induced by
hydrodynamic and non-hydrodynamic interactions which can be described
by means of DLVO theory. On the example of orthokinetic heterocoag-
ulation of two aluminium-oxide particles in water, it is set out how the
standard procedure for the derivation of the so-called capture efficiency
can be accelerated. The accurate determination of the capture efficiency
is fundamental to a successful simulation of processes on a technical scale
by means of population balance equations, e.g. in a crystallizer or in a
settling tank. In this work, an expression for the capture efficiency of
orthokinetic heterocoagulation is derived. For more complex problems,
in which several effects (e.g. shear and settling) are superimposed, the
standard procedure requires an extremely large number of experiments.
Several thousand experiments have to be conducted before an expression
for the capture efficiency can be gained. A statistical analysis of simula-
tions of large systems circumvents several of the problems of the standard
two-particle procedure: The formation and growth of clusters comprised
of more than two particles can be examined. Moreover, the influence of
other particles and of the solid volume fraction on the processes of coagu-
lation and cluster growth are considered. In order to do so, a cluster detec-
tion algorithm has been implemented. The resulting post-processing tool



yields time-dependent information on the distribution of cluster settling
velocities, of maximum Feret-diameters, and of the number of primary
particles per cluster, as well as their radius of gyration and their fractal
dimension. The named selection of values presents only the implemented
ones. After a simulation time-resolved information on particle positions,
-velocities, as well as -sizes is available, such that miscellaneous data can
be obtained from this treatment.
In the course of this thesis, approaches for the simulation of non-spherical
particles and aggregates by means of the SD method, as well as a cou-
pling with a continuum mechanics approach for the solution of convection-
diffusion equations describing the evolution of solved substances have been
implemented in the overall simulation framework. The mentioned cou-
pling has, with simultaneous consideration of growth kinetics and the
effect of polymers, been applied to the numerical simulation of the dy-
namics in biofilms. Results were promising, yet not enough data has been
collected in order to publish the results and to present them here. Apart
from that, the settling behaviour of polydisperse particle systems in sus-
pensions has been examined experimentally as well as numerically. During
these investigations, an effect has been observed, which is not covered by
thus far proposed hindered settling functions. The resulting deviation is
attributed to the formation of hydrodynamic clusters at moderate solid
volume fractions. Because research in this observation is ongoing, results
have not been included in this work.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Untersuchung von sich
destabilisierenden Suspensionen. Bei solchen sind zwei grundlegende Vor-
gänge von besonderer Bedeutung: Clusterbildung und Sedimentation. We-
sentliche Effekte, welche diese Vorgänge und damit die Suspensionssta-
bilität beeinflussen, werden zu Beginn dieser Arbeit vorgestellt und erklärt.
Dabei wird auch auf Ansätze zur Modellierung eingegangen, denn erst
die mathematische Beschreibung zugrundeliegender Prozesse ermöglicht
deren Berücksichtigung in numerischen Simulationen, welche im Bereich
der Verfahrenstechnik immer mehr an Bedeutung gewinnen. Nach einer



Diskussion der gebräuchlichsten Formeln zur Vorhersage der mittleren
Sedimentationsgeschwindigkeit von Partikeln in Suspensionen werden da-
raufhin zur Zeit verwendete Methoden der numerischen Simulation von
Suspensionen vorgestellt und so beschrieben, dass Zusammenhänge zwi-
schen unterschiedlichen Methoden erkennbar sind. Eine grobe Charakteri-
sierung existierender Methoden ist anhand des Ansatzes zur Beschreibung
der unterschiedlichen Phasen möglich. Die resultierende Unterteilung
ergibt Euler-, Lagrange- und Euler–Lagrange-Methoden.
Für die in dieser Arbeit präsentierten Ergebnisse wird eine Lagrange-
Methode, die sogenannte Stokesian Dynamics (SD) Methode verwendet.
Diese Methode erlaubt die einfache Einbindung von Modellen für Partikel–
Partikel-Wechselwirkungen nicht-hydrodynamischer Natur. Darüber hin-
aus werden hydrodynamische Wechselwirkungen zwischen Partikeln be-
rücksichtigt, ohne die hydrodynamischen Grundgleichungen direkt zu lö-
sen. Dies stellt einen Vorteil, aber auch eine Einschränkung dar. Ins-
besondere das Einbeziehen externer Geometrien, wie zum Beispiel die für
gewöhnlich abgerundeten Behälterwände eines Sedimentationsbehälters,
einer Zentrifuge, oder eines Rührkessels stellt sich als extrem problema-
tisch dar. Dem gegenüber steht die äußerst effiziente Berechnung hydro-
dynamischer Partikel–Partikel-Wechselwirkungen polydisperser Systeme,
auf deren Untersuchung sich der Ergebnisteil dieser Arbeit beschränkt.
Gewisse Effekte in Suspensionen lassen sich in numerischen Untersuchung-
en erst beobachten, wenn die Anzahl an simulierten Partikeln hoch genug
ist. Gerade bei polydispersen Suspensionen beschränkten sich Unter-
suchungen mit Hilfe von direkten numerischen Simulationen, d.h. mit
möglichst genauer Beschreibung hydrodynamischer Wechselwirkungen so-
wie Auflösung von Strukturen, für gewöhnlich auf Partikelsysteme von
unter eintausend Partikeln. Diese Anzahl ist nicht ausreichend, um zum
Beispiel bei isolierten sedimentierenden hydrodynamischen Clustern, soge-
nannten Partikelwolken, ein experimentell und numerisch nachgewiesenes
typisches Verhalten zu beobachten. Obwohl die SD Methode eine der ef-
fizientesten Methoden für solche Probleme darstellt, benötigt eine sequen-
tielle Implementierung dieser Methode für eine Simulation Rechenzeiten
von mehreren Tagen bis hin zu Wochen und ist typischer Weise beschränkt
auf Partikelanzahlen von unter ein- bis zweitausend. Aufgrund dieser
Einschränkung wurde die Open-Source Simulationsplattform RYUON im
Rahmen dieser Arbeit parallelisiert, mit dem Ziel die Simulation von sich
destabilisierenden Suspensionen mit Hilfe von CPU-basierten Supercom-



putern in einer vertretbaren Zeit zu ermöglichen.
Im ersten Ergebnisteil der vorliegenden Arbeit wird gezeigt, dass eine
Parallelisierung die Grenzen der innerhalb von Tagen simulierbaren Par-
tikelzahlen stark nach oben verschiebt — von etwa tausend zu einer Mil-
lion Partikeln. Die genaue Anzahl der bei gleicher Rechenzeit simulier-
baren Partikel hängt dabei von der Anzahl der verwendeten CPUs ab.
Da die Rechenzeit allerdings auch bei einer parallelen Simulation noch
quadratisch von der Anzahl der Partikel abhängt, wurde die SD Methode
im Rahmen dieser Arbeit mit der Barnes–Hut Methode verknüpft. Let-
ztere wurde für Probleme in der Astrophysik entwickelt und findet überall
dort Anwendung, wo langreichweitige Interaktionen zwischen simulierten
Partikeln (Sterne, Partikel im verfahrenstechnischen Sinne, Plasma-Ionen,
etc.) auftreten. Im zweiten Ergebnisteil dieser Arbeit wird die resul-
tierende Hybridmethode präsentiert. Des Weiteren werden Ergebnisse
vorgestellt, welche belegen dass die resultierende SSD Methode ein bes-
seres Verhalten bei einer Erhöhung der Partikelanzahl aufweist, als die
parallelisierte SD Methode. Die SSD Methode gruppiert Partikel für die
Berechnung hydrodynamischer Interaktionen dynamisch nach einem fes-
ten Kriterium, wodurch die Rechenzeitreduktion erzielt wird. Aufgrund
des dynamischen Verhaltens der Partikel ist es schwer, eine Aussage über
die resultierende Komplexität zu treffen. Allerdings wird gezeigt, dass die
Komplexität der SSD Methode zwischen linearer Komplexität und der
der parallelisierten SD Methode liegt. Aufgrund der dynamischen Grup-
pierung von Partikeln sinkt der Zeitschritt bei reiner hydrodynamischer
Interaktion zwischen Partikeln, was allerdings bei zusätzlicher Berücksich-
tigung von elektrostatischen und van–der–Waals-Interaktionen zwischen
Partikeln (DLVO-Interaktionen) nicht mehr der Fall ist.
In einem dritten Ergebnisteil dieser Arbeit werden Ergebnisse vorgestellt,
welche durch numerische Untersuchungen des Sedimentationsverhaltens
polydisperser Partikelwolken in viskosen Flüssigkeiten erzielt wurden. Die
Möglichkeit der Simulation größerer Partikelsysteme erlaubt den Nach-
weis, dass polydisperse Wolken das gleiche charakteristische Verhalten
aufweisen wie monodisperse Wolken gleicher Größe. Aufgrund der be-
grenzten Möglichkeit zur Simulation größerer Partikelsysteme herrschte
bis zu dieser Arbeit die Meinung, dass polydisperse Systeme dafür zu
instabil seien. Des Weiteren wird in dieser Arbeit durch numerische Un-
tersuchungen nachgewiesen, dass das Radienverhältnis in anfangs nicht
durchmischten bidispersen Wolken einen großen Einfluss auf den Mitnah-



meeffekt von kleinen Partikeln hat. Mischt man beide Fraktionen, so wird
ein größerer Anteil an kleinen Partikeln durch die dominierende Fraktion
an großen Partikeln in der Partikelwolke eingeschlossen. Über diese Be-
trachtungen hinaus wird eine analytische Formel zur Vorhersage der maxi-
malen Sinkgeschwindigkeit einer polydispersen Wolke hergeleitet, welche
für polydisperse Systeme eine wesentlich bessere Vorhersage liefert, als
bisher verwendete Formeln, die Polydispersität nicht berücksichtigen.
Auf die beschriebenen Ergebnisse von Untersuchungen hinsichtlich des
Verhaltens hydrodynamischer Cluster folgt in einem vierten Ergebnis-
teil die Beschreibung von Resultaten der Analyse von Clusterbildung
durch Heterokoagulation aufgrund von hydrodynamischen und DLVO-
Partikel-Partikel-Wechselwirkungen. Am Beispiel der orthokinetischen
Heterokoagulation zweier Aluminiumoxidpartikel in Wasser wird darge-
legt, wie das Standardvorgehen zur Bestimmung der sogenannten Kolli-
sionseffizienz beschleunigt werden kann. Die korrekte Beschreibung der
Kollisionseffizienz ist essentiell für Simulationen in technischem Maßstab,
zum Beispiel für Simulationen von Vorgängen in Kristallisatoren oder Sedi-
mentationsbecken mittels Populationsbilanzgleichungen. Im Zuge dieser
Nachforschungen wird daher ein analytischer Ausdruck für die Kollisionsef-
fizienz für orthokinetische Heterokoagulation bestimmt. Dieses Vorgehen
erfordert jedoch bei komplexeren Problemen, bei denen unterschiedliche
Einflüsse überlagert sind (z.B. Scherung und Sedimentation), eine ex-
trem hohe Anzahl an Experimenten. Es müssen mehrere tausend Experi-
mente mit zwei Partikeln durchgeführt werden, um einen Ausdruck für
die Kollisionseffizienz bestimmen zu können. Eine statistische Auswer-
tung von Simulationen großer Partikelsysteme umgeht mehrere der Prob-
leme von zwei-Partikel Experimenten: Es kann die Bildung von Clustern,
welche mehr als zwei Partikel umfassen, sowie deren Wachstum unter-
sucht werden. Darüber hinaus wird der Einfluss anderer Partikel, sowie
der Einfluss des Feststoffvolumenanteils auf den Koagulationsvorgang und
das Clusterwachstum berücksichtigt. Hierfür wurde ein entsprechender
Clustererkennungsalgorithmus implementiert, welcher anhand von Simu-
lationsdaten zeitlich aufgelöste Informationen wie die Verteilung von Clus-
tersinkgeschwindigkeiten, maximalen Feretdurchmessern, der Anzahl der
Primärpartikel pro Cluster und deren Gyrationsradius sowie deren frak-
tale Dimension liefert. Bei den hier aufgelisteten Attributen handelt es
sich lediglich um die implementierten. Da nach einer Simulation zeitlich
aufgelöste Informationen über Partikelpositionen, -geschwindigkeiten, und



-größen bekannt sind, lassen sich auch diverse andere Daten ableiten.
Im Rahmen dieser Arbeit wurden auch Ansätze zur Simulation nicht-
sphärischer Partikel und Aggregate mit der SD Methode, sowie eine Kopp-
lung mit einem kontinuumsmechanischen Ansatz zum Transport von ge-
lösten Stoffen in der entwickelten Simulationsplattform implementiert.
Letzterer wurde dazu verwendet, unter Berücksichtigung von Wachstums-
kinetiken die Dynamik in Biofilmen zu untersuchen. Der resultierende
Ansatz ist sehr vielversprechend, allerdings wurden noch nicht genügend
Ergebnisse gesammelt, um diese im Rahmen dieser Arbeit zu präsentieren.
Darüber hinaus wurde das Sedimentationsverhalten von polydispersen
Suspensionen sowohl experimentell als auch numerisch untersucht, wobei
eine von bisher entwickelten Formeln zur Beschreibung der mittleren Se-
dimentationsgeschwindigkeit nicht berücksichtigte Überhöhung aufgrund
von hydrodynamischer Clusterbildung festgestellt wurde. Da sich auch
diese Nachforschungen noch in unveröffentlichem Zustand befinden, wird
darüber im Rahmen dieser Arbeit ebenfalls nicht berichtet.
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Chapter 1

Introduction, basics and overview

The present work deals with the investigation and numerical simulation
of the destabilization behaviour of heterogeneous particle systems in sus-
pensions. The focus is set on the deployment of a numerical framework
capable to simulate comparably large particle systems while taking all sig-
nificant effects into account. With the resulting framework, the settling
behaviour of particles in suspensions and the destabilisation due to coag-
ulation are investigated.
In this chapter we first give an overview of the field of heterogeneous
destabilizing suspensions, where we focus on destabilization and settling

— two major effects in solid-liquid separation. This is done in sections 1.1,
1.2, 1.3, and 1.4. Subsequently, in section 1.5, we give an introductory
overview of currently used simulation methods in the field of suspensions.
We conclude this chapter by giving an outline of the following chapters,
which describe done research and obtained results.

1.1 Heterogeneous suspensions

Heterogeneous systems of particles and the separation of such from a
continuous liquid phase can be found in almost every field in process en-
gineering. In paper recycling used paper is broken down, chopped up and
heated to become the so-called pulp. This pulp is a highly heterogeneous
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suspension containing glue, plastic and ink particles, as well as cellulose
fibres in varying proportions. In wastewater treatment one can find a
large size and density spectrum of particles. Ranging from trash, which is
filtered out by large grills, over sand and other particles of relatively high
density to different kinds bacteria, growing primarily in the aeration tank,
and colloids, which are particles of about 100nm to 10µm in size. Mineral
processing is another area where heterogeneous suspensions and the cor-
rect treatment of such can play an important role. After a size reduction,
particles are sized and, if in suspension, concentrated and separated from
the liquid. Usually the intermediate product is a metal in oxide or sulfide
form and is further processed involving another operation of solid-liquid
separation. In chemical production of polymers, suspension polymeriza-
tion is a widely used process employed to produce e.g. PMMA (polymethyl
methacrylate) or PVC (polyvinyl chloride) particles. Before solid-liquid
separation, PVC particles grow suspended in water from monomers to
particles of different sizes, mostly ranging from 50µm to 200µm.
These are just a few examples which illustrate the vast spectrum of hetero-
geneity in suspensions of industrial relevance. To sum up, particle systems
can be heterogeneous due to:

1. shape

2. size

3. material

4. state of matter

5. phase

6. other physical properties (density, elasticity, electric charge, etc.)

7. chemical properties (enthalpy of formation, chemical stability, etc.),

where these points can depend on one another.
Because of the broad spectrum of heterogeneity in particle suspensions in
process engineering in general and in solid-liquid separation in particular,
the points in the above list are treated each in different and to limited
extent in this work.
We confine ourselves to the consideration of a single continuous liquid
phase, which can act as solvent for several solute substances. Because
of the limitations of the method which we use to compute hydrodynamic



17

Figure 1.1: Illustration of the possible aggregate and agglomerate structures
in the developed simulation platform. Df denotes the corresponding fractal
dimension.

interactions among particles, all simulated primary particles are of spher-
ical shape. Examples of implemented shapes of particles, agglomerates
and aggregates built of spherical primary particles are shown in figure 1.1.
The fractal aggregates on the right hand side of figure 1.1 are constructed
by means of an imlementation of the tunable dimension method presented
in [Kätzel et al., 2008] for polydisperse primary particles. In this work
we follow the German industry norm DIN 53206 in which an aggregate
is defined as sintered cluster of primary particles which has a smaller
surface area than the sum of the surface areas of the primary particles
it consists of. According to this norm an agglomerate is a non-sintered
cluster of primary particles or aggregates, whose surface area does not
significantly deviate from the sum of the surface areas of the particles it
consists of. A floc is defined as agglomerate, which can be broken easily,
e.g. by low shear forces. One point considered important for this work is
that all used models consider a possible polydispersity of the investigated
particle system. This is due to the fact that real particle systems always
exhibit polydispersity, however narrow the size distribution may be. The
particle size is theoretically not limited in the framework presented in
the following, but due to the limitation of the simulation method yield-
ing hydrodynamic interactions among particles we confine ourselves to a
consideration of suspensions for which the particle Reynolds number as
well as other Reynolds numbers, such as an aggregate or cloud Reynolds
number, are so small that they can be considered vanishing. This means
that the Stokes equations and the mass conservation equation for an in-
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Figure 1.2: Overview of implemented models for interparticle interactions con-
sidering physical properties of particles.

compressible Newtonian fluid suffice to describe the motion of the fluid.
Due to nondimensionalization of the basic equations (cf. e.g. section 5),
the settling of millimeter-sized glass beads in a highly viscous oil can
be considered equally well as that of colloidal Al2O3 particles in water.
An extension to the used simulation code which allows for the numeri-
cal simulation of biological particles (bacteria with attached EPS), makes
simulations of growing, dividing and dissolving particles possible. Our
simulation-based investigations are therefore not limited to particle sys-
tems with a fixed size spectrum, as long as the underlying kinetics are
known. Likewise, the material of the simulated particles is not limited
to one material. A mixture of different particles such as biological and
non-biological particles can be investigated. Other physical properties of
particles are considered in different models for interparticle interactions,
as depicted in figure 1.2. Chemical properties are considered inasmuch
as they are part of the metabolism of simulated bacterial species. Other
reactions as well as chemical properties are not considered but possible.
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1.2 Reasons for destabilization

Heterogenoeus suspensions, especially such containing colloids or nanopar-
ticles, tend to destabilize. Destabilization is the process when otherwise
non-settling dispersed particles in a suspension form clusters which can
be large enough to settle due to external body forces such as gravity or
centrifugal forces. This can happen naturally due to the hydrodynamic
or physico-chemical conditions in the suspension, or it can be induced
by changing these conditions (cf. figure 1.3). Depending on the type of
formed clusters and the way the suspension was destabilized, the process
can be reversed. This is then called stabilization, as can also be seen in
figure 1.3. Usually additional work has to be done on the system in order
to stabilize it again, e.g. by ultrasonic dispersion. Mixing can promote
destabilization or re-stabilization, depending on the mixing speed, i.e. the
resulting shear rate [Russel et al., 1992]. In the following we describe the
main reasons for destabilization.

Figure 1.3: Reasons for destabilization and methods to stabilize a suspension.
Left: Stable suspension. Right: Destabilized/unstable suspension.

1.2.1 Hydrodynamic clustering

Destabilization can happen because of hydrodynamic clustering, which is
the formation of structures (clusters) of particles due to purely hydrody-
namic interactions. Caused by hydrodynamic clustering, particle fractions
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which would actually separate after a certain time stay together for a pro-
longed period of time and can form more stable clusters. This can be
beneficial or disadvantageous for the respective process. So are particle
clusters in bubbling fluidized beds desired in processes of fluidized bed
granulation, and not wanted in case of reaction processes such as fluid
catalytic cracking (FCC) or fluidized bed combustion. In solid-liquid sep-
aration, hydrodynamic clustering can be advantageous, namely when a
fluid shall be purified and particles which settle under the given condi-
tions drag smaller particles along in formed clusters. Applications here are
e.g. settling ponds or decanter centrifuges. In classification, e.g. in a solid
bowl centrifuge or in an (air) classifier, where particles are to be separated
by means of surface forces and body forces, this effect evidently worsens
the process result. Owing to the hydrodynamics as cause for clustering,
purely hydrodynamic clusters are usually of changing shape, size and du-
ration, differing from the conventional image of clusters. Furthermore,
hydrodynamic forces can facilitate clustering of relatively large particles,
i.e. particles of a size above 100 microns. Because of the long ranged na-
ture of hydrodynamic interactions, which decay in a non-turbulent flow
as 1/r, where r is the interparticle distance [Brady and Bossis, 1988], hy-
drodynamic clustering can promote longer lasting clustering due to other
driving forces. Examples of hydrodynamic clustering are shown in figure
1.4, where arrows indicate characteristic flow behaviour. Hydrodynamic
clustering is investigated for polydisperse clouds of particles in chapter 4
of this work.

Figure 1.4: Examples of hydrodynamic clustering in a heterogeneous suspen-
sion of settling particles. Arrows indicate the flow direction.
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1.2.2 Non-hydrodynamic forces as cause for clustering

A main cause for the destabilization of suspensions and the formation of
more stable clusters such as flocs, agglomerates or aggregates are direct
and indirect interparticle interactions of non-hydrodynamic nature. We
start this subsection by a more in-depth explanation of the so-called DLVO
interactions, followed by other major causes for destabilization.

DLVO interactions

A theory developed for colloidal particles called DLVO theory, named af-
ter Derjaguin, Landau, Verwey and Overbeek [Verwey et al., 1999], states
that interparticle potentials arising from London–van der Waals (LvdW)
attraction and electrostatic repulsion can be superimposed to give a com-
bined interaction potential, the so-called DLVO potential. This potential
is often combined with the Born potential [Feke et al., 1984], to consider
the extremely short ranged repulsion that developes as particles begin
to contact. With an inclusion of the Born potential, the appropriate
examination of reversible coagulation or adsorbtion phenomena and the
simulation of structuring and ordering within colloidal systems is possi-
ble [Feke et al., 1984]. This is due to the fact that with an inclusion of
Born repulsion three different kinds of interparticle potentials are possible:
Potentials that exhibit only a primary minimum, potentials that exhibit
only a secondary minimum and potentials that exhibit both, a primary
and a secondary minimum. In this context ’primary minimum’ means the
minimum located close to a surface-to-surface distance of r0 = 0 (touch-
ing particles). If a potential barrier resulting from electrostatic repulsion
exists, the primary minimum is situated between r0 = 0 and the po-
tential barrier. The secondary minimum is per definition the potential
minimum located at a point for which r0 is larger than the location of
the potential barrier (cf. figure 1.5). Without a consideration of Born
repulsion, interparticle attraction would become infinitely strong for in-
terparticle distances approaching zero, which is not physical [Russel et al.,
1992]. Apart from the works giving the expressions we use for the different
contributions to the DLVO potential [Feke et al., 1984, Hamaker, 1937,
Hogg et al., 1966, Bell et al., 1970], [Bhattacharjee et al., 1998] includes
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Figure 1.5: Three DLVO potentials arising from exemplarily values for the
model parameters with differing surface potential ψζ and ionic strength ι.

a good comparison of different models for electrostatic and LvdW inter-
actions with respect to their validity. As one can see in figure 1.5, DLVO
theory can give an explanation for the stabilizing or destabilizing effect
of added salts (ions). In figure 1.5 top left, the resulting or total DLVO
potential exhibits a deep primary minimum and no potential barrier. The
corresponding suspension is unstable, as particles attract each other until
the reach their potential minimum. Because this minimum is comparably
deep, the resulting agglomerates are generally stable. If particle rough-
ness allows for it, they can undergo a compaction due to the strong forces
attracting the primary particles in the agglomerate. Figure 1.5 top right
shows the potential for a suspension of the same ionic strength ι, but
with particles having a higher surface potential ψζ . Here one can see a
potential barrier, as the ions in the suspension are not sufficient to shield
the stronger electric field. If no other influences, such as strong Brownian
motion, shear, or other forces like magnetic forces affect the motion of the
particles, this potential barrier will not be overcome and the suspension
is stable. For the potentials depicted in the plot in figure 1.5 bottom, the
ionic strength has been increased from ι = 0.01mol/L to ι = 0.05mol/L,
compared to figure 1.5 top right. The result is a stronger decrease of the
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electrostatic potential yielding a lower potential barrier and an emerging
secondary minimum. Particles in such a suspension form weaker agglom-
erates or flocs. The stronger decrease in the electrostatic potential, which
in this case is also called Coulomb potential or double layer potential, is
a result of the thicker hull of ions around the charged particles. This
hull is usually called electrical double layer (EDL) or diffuse double layer.
The currently most widely accepted model for the electrical double layer
around a charged particle in an electrolyte, and for the corresponding po-
tential, is the BDM model by Bockris, Devanathan and Müller [Bockris
et al., 1963], which is illustrated in figure 1.6. Apart from proposing the
BDM model, Bockris et al. [1963] give a review on former models. Among
them that by Grahame [1947] who stresses that besides solvent molecules
some ionic or uncharged molecules can penetrate the Stern layer and ad-
sorb specifically to the surface of a particle. The adsorbtion is mostly
driven by London–van der Waals attraction. During penetration of the
Stern layer ions lose their solvation shell [Stojek, 2010] and can therefore
adsorb closer to the particle surface than ions which still have a shell of
solvent molecules [Grahame, 1947]. Bockris et al. [1963] extend the model
by Grahame [1947] for a contribution of field dependendly oriented solvent
dipoles and the contribution from adsorbed solvent dipoles to the double-
layer capacity. In the BDM model, the boundary of the Stern layer is also
called outer Helmholtz plane (OHP, cf. figure 1.6), the plane through the
centers of specifically adsorbed ions and field orented solvent molecules
is named inner Helmholtz plane (IHP). The layer beyond the IHP up to
the slipping plane is called diffuse layer due to the loose association of
the molecules in it with the charged particle. More information on the
electrical double layer can be found in literature on colloidal dispersions,
e.g. in [Russel et al., 1992], and in literature on electrochemical capacitors,
e.g. [Stojek, 2010].
Important for engineering applications is the zeta potential ψzeta at the lo-
cation of the slipping plane of the electrical double layer, κ−1. The Debye
length κ−1 can be computed for colloidal suspensions and depends, among
other paramters, on the square root of the inverse ionic strength ι [Russel
et al., 1992]. This dependency is considered in DLVO theory and can be
directly seen when comparing the plots of the elctrostatic pontential in
figure 1.5 top right and bottom.
As indicated in figure 1.6, the electric surface potential of a particle, ψζ ,
as well as its Stern potential ψStern usually do not equal the zeta potential
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Figure 1.6: Illustration of the electrostatic potential ψel of a negatively charged
particle in a suspension according to the BDM model. IHP and OHP denote
the locations of the inner and outer Helmholtz plane, ψStern and ψzeta the Stern
potential and the zeta potential, respectively. The Debye length κ−1 indicates
the location of the slipping plane. Ions and solvent molecules have been enlarged
compared to the particle for better visibility. Arrows on the solvent molecules
show their orientation.

ψzeta, which is also emphasized by Kirby [2010]. Nevertheless, the zeta
potential is often the most easily accessible or the only available way to
quantify the electric potental of charged particles in an electrolyte and it
is common practice to identify these potentials with one another [Hecht
et al., 2006]. For electrical double layers which are thin compared to the
particle radius a, i.e. κa ≫ 1, this assumption can be made. Therefore,
we usually set ψζ ≈ ψzeta in the following. Generally, the absolute value
of the zeta potential for colloidal suspensions is between 0 and 100mV. As
a rule of thumb, a zeta potential with high absolute value corresponds to
a stable suspension, whereas a value of ψzeta around zero, i.e. around the
point of zero charge or iso-electric point (IEP), means that the considered
suspension can destabilize easily due to negligible electrostatic repulsion.
There are other ways to stabilize a suspension (cf. figure 1.3), so ψzeta ≈ 0
does not necessarily mean a suspension is unstable, but a zeta potential
around the IEP is a good indicator.
A quantitative determination of the zeta potential can be done indirectly
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utilizing electrokinetic or electroacoustic phenomena. For this, an exter-
nal electric field is applied to the investigated suspension, and a constant
viscosity of the fluid, a low Reynolds number and a moderate electric
field strength are assumed. Ohms law can be interpreted and applied to
the drift velocity of an electron, and more generally to that of a particle
carrying a non-zero charge. Solving for the electrical mobility, one gets
an expression for the latter, which is given by the ratio of particle drift
velocity to the magnitude of the applied electric field. This ratio can
then be related to the relative permittivity of the suspending medium,
the vacuum permittivity and the zeta potential divided by the dynamic
viscosity of the fluid [Smoluchowski, 1924]. So, roughly speaking, the zeta
potential can be determined experimentally from the magnitude of the
applied electric field, the dielectric constant and the dynamic viscosity of
the fluid, provided that the drift velocity of a particle can be measured.
The described method is called electrophoresis and utilizes electrokinetic
phenomena (the drift of a particle in an applied electric field and the
appearing retardation force due to the EDL). When electroacoustic phe-
nomena are exploited, not the drift velocity but an emerging current or
generated ultrasound waves are measured. The resulting current is pro-
portional to the volume fraction of particles, the scaled mass density dif-
ference and the electric mobility. In general, the described Smoluchowski
relation or similar relations between the electrical mobility and the zeta
potential are used [O’Brien et al., 1995]. The Smoluchowski relation is
only valid for electrical double layers which are thin compared to the par-
ticle radius a, i.e. κa ≫ 1. Another correlation with the same set of
parameters developed by Hückel [1924] is valid for κa < 1. There is a
large number of correlation equations, taking different effects such as e.g.
surface conductivity of the particles into account [Henry, 1948]. Current
research shows that excess electrical charge on the surface of TiO2 par-
ticles can be responsible for surface conductivity, which can significantly
lower electrophoretic measurements and thus the apparent zeta potential
[Leroy et al., 2011]. A dimensionless number relating the surface conduc-
tivity to the bulk electrical conductivity is the so-called Dukhin number
Du. The Smoluchowski relation is only valid for low values of Du, i.e.
negligible surface conductivity. For further reading, the interested reader
may be advised to read the work by Dukhin and Goetz [2010] or Lyklema
[2005].
In general, surface conductivity is neglected by commercially available
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systems for zeta potential measurements. The two systems we made use
of in order to determine the zeta potentials taken for our numerical exper-
iments considering agglomeration are the Zetasizer Nano ZS [zet, 2015]
and the Acoustosizer II [aco, 2015]. Both systems measure the electric
mobility of the particles, but they rely on different phenomena. The Ze-
tasizer uses electrokinetic phenomena and measures the electric mobility
of the considered particles by dynamic light scattering (DLS), also called
photon correlation spectroscopy (PCS), where the electric mobility can be
related to the Doppler shift frequency of an incident laser beam [Russel
et al., 1992]. The Acoustosizer relies on electroacoustic phenomena, which
are the change in an applied electric field due to ultrasound waves and
vice versa. The respective effects are called colloid vibration current (CVI)
and electric sonic amplitude (ESA). While for CVI the particles in the con-
sidered suspension are moved by ultrasound and a change in the electric
field is measured, ESA is the generation of ultrasound due to an oscillating
electric field [Dukhin and Goetz, 2010]. The Acoustosizer utilizes ESA, as
is well explained in [O’Brien et al., 1995]. Because of the different mea-
suring principles and the assumptions made to relate the measured signal
to the electric mobility of the particles, both systems operate at different
regimes of solid volume fractions in the measured suspensions. Where the
Zetasizer provides reliable results only in the very dilute regime with solid
volume fractions φ ≪ 0.001, the Acoustosizer gives good results only for
more concentrated suspensions with φ ≥ 0.01. Both systems can work
with different correlations between electrical mobility and zeta potential,
but usually rely on the Smoluchowski relation described earlier. Besides
information on the particle size, measurements yield the value of the zeta
potential together with electric mobility, conductivity and pH of the sus-
pension. The Acoustosizer further gives a value for κa, from which the
ionic strength can be computed. There are theoretical approaches which
correlate the pH value and the zeta potential [Hecht et al., 2006], but a
practical test showed that the prediction of the zeta potential from the
pH value alone, at least by the tested correlation given in [Hecht et al.,
2006], yields poor results.
Comparisons of results obtained from measurements using electrokinetic
and electroacoustic phenomena should be handled with care. When the
ionic strength is not adjusted accordingly, the double layer thickness and
thus the zeta potential varies with solid volume fraction and with particle
size. This is actually hardly surprising if one recalls the BDM model illus-
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Figure 1.7: Left: Exemplarily comparison of results from measurements for
the zeta potential ψzeta over pH value of Al2O3 particles in water. The data for
the solid volume fraction φ = 0.01 was obtained using the Acoustosizer, whereas
the single data points are from measurements using the Zetasizer. Right: TEM
image of the considered Al2O3 particles.

trated in figure 1.6, but it is often neglected in practice. Figure 1.7, left,
shows exemplary results of measurements of Al2O3 particles in Milli-Q
water at a solid volume fraction of φ = 0.01 and at lower values of φ. The
temperature was 293K, suspension samples have been treated by ultra-
sonic dispersion before measurements. The pH value has been adjusted
by NaOH for an increase in pH and by HCl addition for a decrease in pH,
respectively. The original pH was 4.5 for φ = 2.5e−6 and around 6 for
the other solid volume fractions analyzed with the Zetasizer. In case of
φ = 0.01, the original pH value was about 7.6. The measured mean parti-
cle size was for the Zetasizer approximately 255nm, the Acoustosizer gave
a particle size range between 60nm and 400nm, which is in agreement with
sample measurements using transmission electron microscopy (TEM), cf.
figure 1.7, right. As one can see, the measured value of the zeta potential
depends, apart from the ionic strength and the pH value, on the solid vol-
ume fraction in the tested suspension. Line (a) shows the zeta potential
for an addition of NaOH, for line (b) HCl has been added to decrease the
pH value. The main objective of this work is the numerical simulation
of suspensions as the one exemplarily considered here. Therefore, even
though it is an interesting field, we will not go into further details on de-
pendencies of the measured zeta potential. Note that non-spherical and
inhomogeneous particles carry a non-uniform surface charge, which can
even differ in sign when comparing corners and even surfaces [Zhu, 2014].
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As we consider polydispersity, but mostly simulate spherical particles, we
assume a uniform surface charge for all particles. Inhomogeneities can be
modeled by an assignment of individual surface charges to the primary
particles of aggregates, agglomerates and flocs.
There are more forces influencing suspension stability. Depending on the
considered system, these can be dominant or negligible. For the sake of
completeness we describe them, but we do not go too deep into details.

Hydrophobicity

Apart from DLVO interactions, cluster formation can be caused by the
tendency of hydrophobic (non-polar) particles in water or another polar
fluid to minimize interfacial area. This effect can be modeled by a Lewis
acid-base (AB) model [Van Oss, 1989, 1993]. The DLVO model which
includes AB interactions is typically called extended DLVO model and
gives in some applications a better description of interparticle interactions
than the standard DLVO model [Hermansson, 1999].

Hydration forces

Forces resulting from the formation of a primary and a secondary hydra-
tion hull around charged particles are called structural or hydration forces
[Feke et al., 1984, Grasso et al., 2002]. Here, primary hydration means
the direct interaction of particle surface and water molecules, secondary
hydration refers to the interaction of molecules adsorbed to the particle
surface and those around solutes [Parsegian and Zemb, 2011]. Structural
or hydration forces can be attractive or repulsive and play a role when
surface-to-surface distances are of the order of a few nanometers. They can
be dominant for macromolecules and small nanoparticles, where they can
lead to spontaneous assembly and structuring [Todd et al., 2008]. These
forces can also be taken into account when explaining strong repulsive
forces before particle contact, which can be attributed to the disruption
of hydrogen bonding networks between particle surfaces. A precise defi-
nition of (primary) hydration forces is given in [Zhang, 2013], where they
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are described as strong short-range repulsive forces that act between po-
lar surfaces separated by a thin layer (< 3nm) of water, and which decay
quasi-exponentially with the surface spacing. In case of other polar sol-
vents, these forces are also called solvation forces. For further reading
we refer to the given references. Zhang [2013] provides an expression for
a model of hydration forces. We do not employ this model in our work
because hydration forces are in our framework partially covered by the
used model for lubrication forces [Bülow et al., 2016].

The effect of added polymers

Direct and indirect interparticle forces due to adsorbed and free polymers
can be described by models for steric and depletion or osmotic forces [Feke
et al., 1984, Lewis, 2000]. These come into play when a suspension con-
tains soluble or non-soluble polymers. The influence of polymers can lead
to stabilization or to destabilization. Both effects are superimposed and
stability diagrams are usually plotted over the polymer concentration. Let
us briefly clarify why both effects are superimposed.
Steric forces arising from adsorbed polymers are to a great extent repul-
sive. When two particles with adsorbed polymers approach each other
such that their polymer layers overlap, the polymers are usually bent and
exert a repulsive force on the approaching particles, which depends on the
polymer stiffness, their concentration in the layer and other parameters.
When the layers interpenetrate each other, mixing of the polymers can
occur and forces such as LvdW forces and such arising from ionic and hy-
drogen bonds can result in attractive interparticle interactions. Depletion
or osmotic forces result from the effect of solute or free polymers. The
repulsive part of this effect comes from an occuring negative gradient in
the polymer concentration between the bulk fluid and the volume of the
interparticle gap, which lets polymers diffuse into the gap. The more im-
portant attractive part results from a concentration gradient of polymers
as well. If the interparticle gap is so small that no polymer can enter
it, an increased osmotic pressure in the surrounding solution presses the
particles together [Russel et al., 1992]. From this description it is already
clear that depletion forces mainly depend on the concentration and the
size of non-adsorbed polymers.
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There are two ways to include polymers in a suspension simulation. Ei-
ther they are resolved as particles, or treated implicitly. Let us discuss
the latter method first: If polymers are not resolved as particles, concen-
tration transport equations have to be solved in order to account for non-
adsorbed polymers (cf. subsection 1.5.1). This makes the introduction of
an extra numerical background grid and the interpolation between parti-
cle positions and grid nodes necessary. To account for adsorbed polymers,
individual polymer layers of dynamic thickness and concentration have to
be included in the simulation. The temporal change in layer thickness and
-concentration also requires an interpolation between moving particles and
fixed background grid. This is additional numerical effort, as the model
for hydrodynamic interactions chosen for this work, as well as most mod-
els for non-hydrodynamic interactions do not depend on a fixed numeri-
cal grid and do not require the solution of partial differential equations,
such as time-dependent convection-diffusion equations for polymer trans-
port. Furthermore, it complicates preservation of load balance. Roughly
speaking, load balance means that during a simulation running on several
interacting processors, all processors have an approximately even amount
of work such that none of them is slower and others do not have to wait
at an inevitable synchronization point. For grid free methods, data can
be distributed among processors with distributed memory according to
the spatial distribution of the particles [Bülow et al., 2014]. When using
methods with a fixed background grid, data is usually assigned to grid
nodes. The background grid is partitioned and corresponding memory is
allocated in the memory of the respective processors. During a simulation
particles can cross the boundaries of the domains assigned to different pro-
cessors, which can result in a spatially anisotropic distribution of particles.
If one wants to preserve load balance, this leads to extra communication.
Either due to data transfer, because the data related to particles in a
new domain is transfered to another processor, or due to the interpola-
tion between particle locations and background grid, because particles in
a domain have their data in the memory of a processor responsible for
another domain. For now this should be enough information on imple-
mentation details, and we refer to [Bülow et al., 2014, 2016] for further
reading. Yet it should have become clear that an inclusion of the effect of
polymers without resolving them as particles is not for free. Nevertheless,
this method is computationally cheaper than a resolution of all polymeric
substances by means of simulated particles, as we show in the following.



31

When polymeric substances are resolved for suspension simulation, they
are usually modeled as chains of spheres connected by bonds. Depend-
ing on the type of polymer, these bonds are modeled differently. This
approach can be seen as coarse-grained molecular dynamics simulation
[Hsieh et al., 2006, Somasi et al., 2002] and is widely used in Brownian
dynamics (cf. subsections 1.5.1 and 1.5.2). The most applied bond models
are: The worm-like chain (WLC) model [Marko and Siggia, 1995, Shaqfeh
et al., 2004], the inverse Langevin chain (ILC) model [Kuhn and Grün,
1942, Arruda and Boyce, 1993], it’s extension — Cohen’s Pade approxi-
mation to the ILC [Cohen, 1991], the finitely extensible nonlinear elastic
(FENE) model [Warner Jr, 1972], the FENE-Fraenkel model [Hsieh et al.,
2006] and the discrete WLC model [Cifra and Bleha, 2007]. A simula-
tion of particle suspensions including resolved polymers is possible with
the developed framework, as all named models are implemented. Yet,
this would be computationally expensive. Simulation time increases more
than linearly with an increasing number of simulated particles (includ-
ing the polymer segements of size of the respective persistence- or Kuhn
length). For example one timestep of a hypothetical simulation of two
particles with 100 adsorbed polymer chains each, where the chains con-
sist of 10 discrete segments, would take about half an hour instead of the
7 milliseconds one timestep without a consideration of polymers would
take. For this example we have assumed an increase in simulation time
of O(N1.8), with the real increase being somewhere between linear and
quadratic with respect to the number of particles, N [Bülow et al., 2014,
2016]. Not included in this rough estimate is the reduction in timestep
width, resulting from the combination of effects on two different length
scales in one simulation, namely that of large colloids and that of macro-
molecules. A treatment of polymers in the earlier described fashion only
increases the simulation time by a few percent, as the solution of the con-
centration transport equations by means of a finite difference method and
a linear interpolation between grid nodes and particle positions is compu-
tationally cheap. Because of this, we have included a model for unresolved
polymeric substances in the simulation framework. The model for effects
on particles is given in [Lewis, 2000] and accounts for steric and depletion
interaction of particles due to adsorbed and free polymers. The resulting
method is described in [Bülow et al., 2016].



32

1.3 Coagulation

According to the IUPAC definition, agglomeration, flocculation and co-
agulation are synonymous [McNaught, 2005]. Therefore, when speaking
in general terms, we use the term coagulation for a process in which ag-
gregates, agglomerates or flocs are formed. Coagulation can be classified
by means of the driving force, which lets particles approach each other
close enough to form the respective structures. In the case of Brownian
motion being the dominant effect leading to coagulation, the process is
called perikinetic. If, which is probably in technical processes the more
frequently encountered case, hydrodynamic motion (e.g. convection or sed-
imentation) is the main cause for coagulation, the process is refered to as
orthokinetic coagulation [Somasundaran, 2006]. Apart from this, there
is a distinction between rapid and slow coagulation [Feke and Schowal-
ter, 1983], as well as between primary and secondary coagulation. The
latter classification is simply a more precise definition of the type of coag-
ulation by refering to the preferred minimum of the interaction potential
(cf. figure 1.5). Rapid and slow coagulation are loosely defined terms for
primary and secondary coagulation. The primary minimum of the pair
interaction potential of the particles is usually much deeper than the sec-
ondary minimum, resulting in stronger attractive forces and thus a faster
pace of coagulation. In this work we confine ourselves to an investigation
of orthokinetic slow coagulation, as this is usually the prevailing case in
solid-liquid separation.
In the early stages of destabilization particles form so-called doublets.
These are pairs of coagulated particles. The first systematic studies on
coagulation and doublet formation, which led to a mathematical descrip-
tion of the so-called capture frequency, have been carried out by Smolu-
chowski [1917]. The assumptions made in his work, such as spheres of
action outside of which particles do not interact, simplify the underly-
ing problem strongly (see [Zhu, 2014] for a review discussing assumptions
made by Smoluchowski and how they are commonly dealt with). Conse-
quently there is a large number of works investigating orthokinetic as well
as perikinetic coagulation of two particles under less assumptions [Curtis
and Hocking, 1970, Van de Ven and Mason, 1976, 1977, Adler, 1981, Wang,
1992, Vanni and Baldi, 2002, Kobayashi, 2008, Balakin et al., 2012].
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1.3.1 Orthokinetic coagulation

For the orthokinetic case, usually the interception of two particles in a
simple shear flow is investigated. From this, one can obtain the capture
efficiency αo, which is defined as ratio of actual capture frequency βij to
the capture frequency proposed by Smoluchowski βij,S. The inverse of αo

is called stability ratio. With an inclusion of the capture efficiency, the
adjusted expression for the orthokinetic capture frequency of particles of
size classes i and j reads as [Feke and Schowalter, 1983, Van de Ven and
Mason, 1977]

βij = αoβij,S = αo
4

3
γ̇(ai + aj)3, (1.1)

with the particle radii ai, aj and the shear rate γ̇. Figure 1.8 (a) illustrates
the typical setup for investigations in the orthokinetic coagulation of two
particles. Figure 1.8 (b) shows the numerically obtained trajectories of
two equal Al2O3 particles in water in the plane spanned by the flow direc-
tion and the direction of the velocity gradient of a simple shear flow with
dimensionless shear rate γ̇ = 1. In this case, the initial particle separation
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Figure 1.8: a) Illustration of the setup used for numerical investigations of
the orthokinetic coagulation behaviour of two particles. The initial positions
in the plane spanned by the flow direction and the direction of the velocity
gradient of the investigated simple shear flow are rotated around the axis of
the flow direction by an angle θ in order to cover all possible configurations. b)
Exemplary trajectories of two equal Al2O3 particles in water for a dimensionless
shear rate γ̇ = 1 and θ = 0, for which the dimensionless initial distance from
the x-axis is yinit [Bülow et al., 2016].
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perpendicular to the flow direction is equal to two times yinit. As one can
see, the trajectories are influenced by hydrodynamic and DLVO forces and
the capture efficiency differs from unity (otherwise only trajectories with
yinit ≤ 1 would lead to coagulation).
Under the assumption that the corresponding Reynolds number is van-
ishing, electrostatic forces are negligible and the considered suspension
is sufficiently dilute, Curtis and Hocking [1970] were among the first to
present results from numerical investigations along with values for the cap-
ture efficiency for two equal spheres. The capture efficiency has been de-
fined in [Curtis and Hocking, 1970] as normalized integral over all squared
initial particle separations perpendicular to the flow direction, at which
contact occurs. The sphere of action assumed in [Smoluchowski, 1917] is
commonly called collision sphere and the quarter cross-section highlighted
in figure 1.8 (a) consequently quarter collision cross-section. Because of
the effect of hydrodynamic interactions, the capture cross section σc com-
puted by Curtis and Hocking [1970] differs from the collision cross section
insofar as it is not circular and its area differs from that of a circle with
radius ai +aj . This is a direct consequence of the effect of hydrodynamics
and other interparticle interactions.
Van de Ven, Mason et al. published a series of works called The microrhe-

ology of colloidal dispersions, in which they also investigate the formation
of doublets (see e.g. [Van de Ven and Mason, 1976, 1977]). They state that
the definition of the capture efficiency αo in [Curtis and Hocking, 1970]
would be incorrect because Curtis and Hocking [1970] equated αo with the
ratio of capture cross-section to collision cross-section. Interestingly, 25
years later, in [Vanni and Baldi, 2002], the same definition of the capture
efficiency as in [Curtis and Hocking, 1970] is used. This might be a reason
for the observed overestimation of 30% when using their formula for αo,
compared to experimentally obtained values for αo. In order to give a
more precise expression for the capture efficiency, Van de Ven and Mason
[1977] start from the number of particles passing per second through one
quadrant of the capture cross-section between y and y+ dy, with y being
the direction of the flow velocity gradient. Adapted to polydisperse parti-
cle systems, for a simple shear flow with velocity in x-direction, ux = γ̇y,
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the particle flux through the whole capture cross-section is given by the
expression

Jo
ij =

(

4γ̇L3
0

∫ max(ŷc)

0

ŷẐ(ŷ)dŷ

)

NiNj . (1.2)

L0 is the characteristic length scale of the considered problem, Ni and
Nj are the number concentration of particles of the respective size classes,
max(yc) is the maximum extent of the capture cross-section in positive y-
direction, and Z the function describing the boundary of the capture cross-
section in z-direction. Variables denoted with ·̂ are made dimensionless
by L0. From equations (1.1) and (1.2) it follows that

αo = 3
L3

0

(ai + aj)3

∫ max(ŷc)

0

ŷẐ(ŷ)dŷ. (1.3)

For equally sized spherical particles with L0 = ai = aj , expression (1.3)
equals the expression given in [Van de Ven and Mason, 1977]. From our
numerical results we found that Z not only depends on y, but also on
the radius ratio λ, usually and in this work always defined as ratio of the
radius of the small particle to the radius of the large particle. Furthermore,
Z depends on the shear rate γ̇. This can also be seen in [Van de Ven and
Mason, 1977]. The apparent dependency solely on y results from the fact
that the capture cross-section is obtained from experiments, where it is
given as curve through pairs of coordinates (yc, zc).
Apart from the already introduced measures, Adler [1981] introduced a
so-called global capture efficiency, which can be defined by

αo,g =
(ai + aj)3

8L3
0

αo, (1.4)
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and equals for L0 = ai = aj the capture efficiency αo. From equations
(1.3) and (1.4) we get

αo,g =
3

8

∫ max(ŷc)

0

ŷẐ(ŷ)dŷ. (1.5)

Adler [1981] states that, contrary to αo, the global capture efficiency ac-
counts for the influence of the radius ratio λ fully (Z is indirectly depen-
dent on λ). In fact both capture efficiencies, αo as well as αo,g, have their
justification.
If one wants to correct the Smoluchowski capture frequency βij,S in equa-
tion (1.1), the capture efficiency αo given by expression (1.3) is more con-
venient. αo,g, obtained from equation (1.5), first needs to be converted
to the capture efficiency αo by means of equation (1.4) and can then be
plugged into equation for the capture frequency (1.1). After that, the
binary orthokinetic collision rate Jo

ij , used in population balance equation
(PBE) modeling can be computed through

Jo
ij = βijNiNj , (1.6)

for all of the size classes i, j among the Nf size fractions in the system.
On the other hand, the global capture efficiency αo,g is more handy when
determining the more probable type of coagulation — homo- or hetero-
coagulation. For this, recall equation (1.1) for the capture frequency βij .
Inserting the global capture efficiency by means of the discussed relations
yields

βij = αo,g
4

3
γ̇(2L0)3. (1.7)

In case of a monodisperse system, i.e. for L0 = ai = aj for all particle size
fractions in the system, this equals expression (1.1). The radius ratio λ
for which the ratio βij/βkl, with i, j, k, l ∈ [1, Nf ], is maximized, has the
highest likelihood to coagulate. From equation (1.7) one sees directly that
the λ with the highest αo,g yields the highest value for βij/βkl, as other
terms do not depend on λ. This makes the global capture efficiency αo,g
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a more transparent measure for an analysis of the coagulation probability
in polydisperse systems. αo,g includes all radius-dependent terms, while
αo needs to be scaled first. For an exemplarily comparison we refer to
chapter 5 or to [Bülow et al., 2016].

1.3.2 Perikinetic coagulation

In case of perikinetic coagulation, the general procedure in deriving a
mathematical model is similar and also based on the theory by Smolu-
chowski [1917]. The main difference is the fact that the capture efficiency
is determined differently, namely in most cases by solving the diffusion
equation for dispersed Brownian particles. With the resulting perikinetic
capture efficiency αp, one gets

Jp
ij = βp

ijNiNj = αp
2kBT

3µf
(ai + aj)

(

1

ai
+

1

aj

)

NiNj , (1.8)

with the Boltzmann constant kB, the temperature T and the dynamic
viscosity µf of the fluid. Possible expressions for αp are discussed in [Feke
and Schowalter, 1983, 1985]. An approach based on an investigation of
particle trajectories obtained from numerical experiments (Stokesian Dy-
namics simulations), as it is usually done for orthokinetic coagulation,
is presented in [Nazockdast and Morris, 2013] for solid volume fractions
φ ≥ 0.2 considering Brownian motion, but neglecting DLVO interactions.
Mohammadi et al. [2015] follow a similar path, using Brownian Dynamics
simulations. In our opinion, because of the stochastic nature of Brownian
motion, a continuum-mechanics-like approach or an approach considering
the motion of many particles at once is much more promising and less
tedious. Notable is that in [Mohammadi et al., 2015] the authors inves-
tigate perikinetic as well as orthokinetic coagulation and also investigate
the coagulation behaviour of Janus particles.
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1.3.3 Remarks on coagulation

Sometimes coagulation due to differential settling (also known as grav-
itational coagulation [Qiao et al., 1998]) is considered a third type of
coagulation and is investigated separately [Davis, 1984, Han and Lawler,
1991]. In technical applications all types of coagulation are superimposed
to varying parts and influence each other. Coagulation can lead to set-
tling of otherwise non-settling particles. Differential settling and resulting
hydrodynamic clustering then can promote further coagulation, which in
turn affects the distribution of settling rates [Farley and Morel, 1986].
Brownian motion can increase coagulation rates for Brownian particles
in a quiescent fluid, which can lead to the described process. During
settling on the other hand, Brownian motion can reduce the coagulation
rate [Qiao et al., 1998]. Low-shear mixing can promote coagulation, as
it increases the probability of particle interception. Rapid mixing (high
shear rates) also increases the probability of particle interception, but it
reduces the capture efficiency [Bülow et al., 2016]. [Feke and Schowal-
ter, 1983] and a few related works address a combination of shear- and
Brownian motion induced coagulation. Based on their results, Feke and
Schowalter [1983] state that Brownian motion can act to increase or de-
crease the coagulation rate. Such a statement is not satisfying from an
engineering point of view, yet it shows that a derivation of simple rules is
not straightforward when more than one influencing effect is investigated
simultaneously. From test simulations we found that the effect of Brow-
nian motion on shear-induced coagulation depends strongly on the solid
volume fraction of particles. This parameter is usually not considered by
classical two-particle approaches leading to a coagulation (capture) effi-
ciency. Yet, as we did not pursue these studies, we cannot give any more
quantifiable statement here.
The example of superimposed Brownian motion and shear shows that so
far used methods might not be optimal approaches for an investigation
in superimposed influences on coagulation. In chapter 5 and in [Bülow
et al., 2016] we present first results obtained with a statistical method,
with which the problem-dependent superposition of the different effects
can be accounted for in the determination of a collision rate. This can
yield e.g. a better applicability of PBE based methods to solid-liquid sep-
aration problems.
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1.4 Prediction of settling rates

The knowledge of settling rates of particles in suspensions is at least as
important as a reliable prediction of the destabilization behaviour. Set-
tling is the basic mechanism in unit operations such as separation or
fluidization, but it can also play a role in suspension transport, filtration
or mixing. Therefore, substantial effort has been made in finding ways to
describe settling rates of particles in suspensions by means of universally
applicable formulas. These are denoted as hindered settling functions,
as an increase in the solid volume fraction usually hinders particles from
settling. During derivation most works identify the mean settling veloc-
ity of the particles in a suspension with the ensemble average of particle
velocities. Therefore we denote both expressions by 〈U〉.

1.4.1 Infinite dilution

The first to be named and most applied formula is the velocity of a single
sphere settling at vanishing Reynolds number in an unbounded quiescent
Newtonian fluid. The so-called Stokes velocity results from an equilibrium
of an applied centrifugal force and the hydrodynamic drag force, which is
also known as Stokes law,

U0 =
2(ρp − ρf)a

2cgg

9µf
. (1.9)

Here, ρp and ρf are the mass density of the particle and the fluid, re-
spectively. a denotes the particle radius, µf the dynamic viscosity of the
fluid, and cgg the magnitude of the centrifugal force. For the latter we
have assumed that the magnitude of the centrifugal acceleration ω2r can
be expressed by the gravitational constant g scaled by the relative cen-
trifugal force cg. This approximation yields good estimates if a change in
the distance r between particle position and the center of rotation has a
negligible effect on the centrifugal force. The assumptions made during
derivation of equation (1.9) are strongly limiting, mostly due to neglecting
interactions with other particles and boundaries. Nevertheless, the Stokes
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velocity is widely used, not only to predict the settling of single spheres
but also for suspensions at low solid volume concentrations φ (e.g. [Farley
and Morel, 1986], [Cunha et al., 2008]).

1.4.2 High dilution

An extension to the Stokes velocity including the influence of the solid
volume fraction φ is the formula for the ensemble average 〈U〉 of particle
velocities,

〈U〉

U0
= 1 − 6.55φ+ O(φ2), (1.10)

derived by Batchelor [1972]. The assumptions are, besides a Newtonian
fluid, that the particle system is comprised of rigid spherical monodisperse
particles with random positions, that the mean volume flux across any sta-
tionary surface is zero, and that the container geometry does not affect the
settling behaviour. Furthermore, it is crucial that φ ≪ 1 not only because
then the error term in equation (1.10) is small, but because it would oth-
erwise not be O(φ2) [Russel et al., 1992]. Moreover, when neglecting the
error term and φ is larger than approximately 0.15, 〈U〉 /U0 becomes neg-
ative. A comparison with other results shows that equation (1.10) gives
good estimates for φ < 0.025. A detailed derivation can also be found
in [Russel et al., 1992]. In [Batchelor and Wen, 1982] the authors give
expressions for polydisperse suspensions based on a similar analysis using
pairwise additivity of hydrodynamic interactions between particles.

1.4.3 Medium dilution

Equation (1.10) has limited applicability, therefore Brady and Durlofsky
[1988] proposed the formula,

〈U〉

U0
− 〈u〉 = 1 + φ− 0.2φ2 − 1.2φ

5 − φ+ 0.5φ2

1 + 2φ
, (1.11)
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with the mean of the background fluid flow velocity, 〈u〉. This expression
is theoretically not limited in φ and gives good results for values of φ up
to approximately 0.2 [Brady and Durlofsky, 1988, Cunha et al., 2002].

1.4.4 Medium to high concentrations

Particle settling is closely related to fluidization. In case the investigated
process is fluidization, then not the mean settling velocity but the flu-
idization velocity of the particle bed is sought for. If no bubbling occurs,
or hydrodynamic clustering in case of settling, both velocities are related.
We show this on a simple example before we discuss the probably most
well-known formula for both the settling velocity and the fluidization ve-
locity.
Sangani and Acrivos [1982] give an expression for the hydrodynamic force
acting on stationary spheres in an ordered periodic array, which is an
extension to the result in [Hasimoto, 1959] for higher values of φ. The
expression is given by

6πµfaU

F h
=1 − 1.7601φ1/3 + φ− 1.5593φ2 + 3.9799φ8/3

− 3.0734φ10/3 + O(φ11/3), (1.12)

with the magnitude F h of the hydrodynamic force acting on a sphere of
radius a. Together with the choice of the characteristic length scale L0 = a
and an expansion of the left-hand side by the characteristic velocity U0,
rearrangement leads to an expression for the ratio U/U0. As the spheres
are not moving relative to another, the value U , which is in [Sangani
and Acrivos, 1982] the magnitude of the flow velocity, equals the mean
particle velocity 〈U〉. Note that the velocity obtained from this method is
a terminal velocity, as only at steady state F h can be expressed by other
acting forces, such as centrifugal forces or gravity.
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Richardson and Zaki [1997] made extensive use of dimensional analysis
and experiments to find their famous equation,

〈U〉

Ui
= (1 − φ)n, (1.13)

which yields not only the mean settling velocity in a suspension but also
the fluidization velocity. According to [Richardson and Zaki, 1997], the
exponent n depends only on the ratio a/atube, with the radius atube of the
tube in which the particles are suspended. In case the Reynolds number
is small, Re ≤ 0.2, n = 4.65 + 19.5a/atube.
It is notable that in [Richardson and Zaki, 1997] the authors give a relation
for 〈U〉 /Ui instead of 〈U〉 /U0. A distinction is made between U0, the
terminal particle velocity in an infinite fluid, and Ui, the particle velocity
at infinite dilution. While Richardson and Zaki [1997] state that for their
experiments on settling Ui = U0, the two velocites do not equal in their
experiments on fluidization. As the exponent n, the ratio Ui/U0 depends
on the ratio a/atube. This difference is attributed to the velocity gradient
resulting from fluid friction at the walls and a correction is given.
The particles in [Richardson and Zaki, 1997] were uniform and larger than
100µm, furthermore the velocity of the sludge line at the interface between
suspended particles and supernatant has been tracked. There are works
investigating non-uniformity (e.g. [Funamizu and Takakuwa, 1995]) and
the fluidization of nanoparticles (e.g. [Valverde and Castellanos, 2006]).
As can be expected, the latter tend to coagulate and form agglomerates,
which grow during fluidization but are broken down by higher flow rates.
In [Ham and Homsy, 1988] results from experiments are presented, in
which single particles in a settling suspension instead of the sludge line are
tracked. All named works observed mean settling velocites which can be
expressed by functions of the same type as equation (1.13). Based on their
experiments, Ham and Homsy [1988] give a relation of 〈U〉 /U0 = 1−4φ+
8φ2, which differs from equation (1.10) substantially, as the authors note.
What they might have overlooked is that equation (1.10) is only valid for
φ ≪ 1. The values of φ in [Ham and Homsy, 1988] ranged from 0.025
to 0.1, which supports our earlier statement, that equation (1.10) should
only be used when φ < 0.025. The experiments in [Richardson and Zaki,
1997] leading to equation (1.13) have been performed for 0.1 < φ < 0.45.
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Using a theoretical approach, equation (1.13) is derived in [Russel et al.,
1992] without limitation to φ.

1.4.5 Settling rates considering heterogeneity and

remarks

Davis and Gecol [1994] proposed a combination of equation (1.13) and the
theory in [Batchelor and Wen, 1982], which seems to give good results for
polydisperse suspensions. As the other presented formulas in section 1.4,
this proposed hindered settling function does not apply for suspensions
in which lateral segregation occurs so that vertical fingers and blobs form
[Davis and Gecol, 1994].
In [Cuthbertson et al., 2008] hindered settling of heterogeneous particle
systems, namely a mixture of cohesive particles (mud flocs) and non-
cohesive particles (sand grains), is investigated and expressions for hin-
dered settling functions considering the properties of flocs are discussed.
So far most research reports a monotonous dependency of the settling
velocity on φ. But there is evidence that there is a maximum at low to
medium concentrations, which which can be attributed to hydrodynamic
clustering [Bhatty, 1986, Kuusela et al., 2003]. We could name many more
works in this field, which shows that settling rates are still a relevant field
of research. Most current works come from the fields of research in flu-
idized beds and sediment transport in river basins or coastal areas. With
the growing possibilities of numerical simulations, and especially with the
tremendously increasing popularity of CFD-DEM simulations (cf. subsec-
tion 1.5.2), a rapid determination of the drag force on suspended particles,
which as we can see from equation (1.12) is closely related to the settling-
or fluidization velocity, is becoming important. Worth mentioning here
in particular is the work by Di Felice [1994], in which a so-called voidage
function and its application to the computation of the drag coefficient is
presented. This function resembles remarkably equation (1.13), whereby
the exponent depends only on the Reynolds number.
In chapter 4 we present results from our investigations in the settling
behaviour of polydisperse particle clouds. As already adressed by the ex-
amples [Davis and Gecol, 1994, Bhatty, 1986, Kuusela et al., 2003], inho-



44

mogeneities in the spatial distribution of particles in a suspension can lead
to hydrodynamic clustering. We show that particle clouds, sometimes also
called blobs, can reach much higher settling velocities than equation (1.9)
or hindered settling functions predict, and we provide an analytic equa-
tion for the computation of the settling velocity of polydisperse clouds.
The investigation of isolated particle clouds is a rather academic example.
Yet it shows that hydrodynamic clusters can be quite stable and that the
occurence of many clusters in a suspension can increase the mean set-
tling velocity substantially. Furthermore, it shows that size segregation is
strongly reduced when hydrodynamic clusters are formed, even when the
overall solid volume fraction in the suspension might be low.

1.5 The numerical simulation of suspensions

Even though computational power is still increasing and code paralleliza-
tion allows for the numerical simulation of increasingly large problems,
industrial scale problems met in chemical and process engineering are
difficult to simulate and often flow-sheet simulations, heavily relying on
background data, are used for proof of concept calculations, design deci-
sions and investigations in effects occuring during unit operations [Nikoo
and Mahinpey, 2008, Doherty et al., 2009] as well as for whole plant sim-
ulations [Weifeng et al., 2006]. The background data used for such sim-
ulations is either produced through experiments, yielding the parameters
of the used model equations [Wooley and Putsche, 1996], or it can be
generated by means of numerical simulations [Dosta et al., 2014]. For the
latter approach, one can use simplified models [Lackner et al., 2008, Dosta
et al., 2010] which are usually not universal but give the parameters of
interest directly. Because of the fact that in particulate flow problems
usually many time- and length scales are covered, another way to obtain
the necessary data has become popular recently. This method is called
multiscale simulation [Dosta et al., 2014, Deen et al., 2007, Chakrabarty
and Cagin, 2010, Van der Hoef et al., 2008, Ge et al., 2011, Lu et al., 2011,
Li et al., 2013, Dosta et al., 2013] and uses the fact that problems on dif-
ferent scales are tackled best by different methods. Furthermore, a very
detailed simulation of a specific problem has higher numerical costs (time,
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Figure 1.9: Classification of numerical methods for the simulation of particu-
late flows.

CPU power and memory requirements) than the usage of a more approx-
imate, stronger model-based or less-dimensional method. Such methods
often rely heavily on made assumptions and the validity of used models,
but they are more capable of simulating systems on a technical scale (cf.
figure 1.9).
As depicted exemplarily in figure 1.10, in multiscale simulations there can
be two, three or more levels of detail below the technical scale or flow-sheet
level. A method used at a certain level gets its initial and boundary con-
ditions passed down from the next higher level method and provides that
level with results. The higher level then uses the results of the lower level
in order to obtain data for unresolved processes. This procedure is then
repeated until the highest level in the multiscale simulation is reached.
The higher the level the more modeling is required, for which the lower
levels provide data or relations. In the former case the different levels are
linked directly and simulations usually run simultaneously, connected by
interfaces. Lower levels simply produce data for a current state of the
next higher levels. When the lower level simulations or experiments yield
relations over a range of parameters, the levels do not have to be coupled
as tightly. Lower level simulations can be carried out first, giving the
required relations which are then used during the simulation at higher
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Figure 1.10: Illustration of the idea of multiscale simulations.

levels. Generally but not necessarily always, at the lowest level there is
a direct numerical simulation. This means that physical phenomena and
effects are resolved as accurately as possible.
There is a large number of methods for the numerical simulation of par-
ticulate flow problems. Each of them has its pros and cons and is usually
better suited for the solution of a specific type of problem than for others.
A complete discussion of all methods would lead beyond the scope of this
work. Nevertheless, we outline the main methods and point out similar-
ities between different approaches. In order to give the reader a better
understanding of the field, we present the basic approaches for solid-fluid
simulations first.

1.5.1 Basic approaches

When the temporal behaviour of suspensions is simulated, the motion of
the fluid phase as well as that of the solid phase need to be described
appropriately. There are several approaches for the modeling of the two
phases. Each phase can either be considered as continuum, or as discrete
particulate phase. Furthermore, one can follow the evolution of probabil-
ity density functions describing the state of the particles a phase consists
of. The typical approach is to model the fluid phase as continuum and the
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solid phase as discrete particle phase. In theory, any combination of the
three approaches is possible. To give an overview, we introduce the basic
approaches before we proceed to a presentation of the most common used
methods in suspension simulation.

Continuum mechanics

Processes met in engineering, and in process engineering in particular,
can often be described by balance- or transport equations. These give a
mathematical description of the conservation of mass, momentum, energy
and other properties in a control volume placed in a phase modeled as
continuum. A typically met type is the so-called convection–diffusion
equation, which describes the evolution or transport of a quantity c in
time t,

∂

∂t
c = −∇ · (uc) + ∇ · (λ∇c) + f. (1.14)

Convective transport depends on the velocity u of the transporting medi-
um. Diffusion is dependent on the diffusion coefficient λ of the quantity c
in the surrounding medium. f accounts for sources or sinks, which can be
chemical reactions or another cause increasing or reducing c. An intuitive
example for c is the concentration of a solute in a solution. The variable c
can be substituted by any transported quantity defined at a point x and
time t, for example by the temperature T .
An example for equation (1.14) occuring in particulate flow problems is
the Fokker–Planck equation. In this case c is substituted by the proba-
bility density function p(x,U , t) giving the probability that at a point x

and at a time t a particle with velocity U is found. In the context of
Brownian particles, i.e. particles for which Brownian motion is dominant,
the Fokker–Planck equation is also called Smoluchowski equation [Dhont,
1996]. The list of parameters for p can be extended for other attributes,
such as particle volume, etc.
In the Boltzmann limit [Cercignani, 1988], the Boltzmann equation can
be derived from the Liouville equation, which is equivalent to the Fokker–
Planck equation without diffusion term [Dhont, 1996, Cercignani, 1988].
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Even though the asumptions made during derivation seem to be strongly
limiting (e.g. molecules are modeled as hard spheres with range of the in-
teraction potential tending to zero), fluids can be simulated by means of a
solution of the discretized (lattice) Boltzmann equation [Chen and Doolen,
1998]. The order of convergence of the corresponding lattice Boltzmann
method (LBM) is in general first order in time and second order in space
[Tölke and Krafczyk, 2008].
A solution of equation (1.14) for the case of transported quantities re-
quires knowledge of the velocity u of the transporting medium. In case
of particles suspended in a fluid, u equals the fluid velocity. Substitution
of c in equation (1.14) by the (vectorial) momentum of a fluid results in
the Navier–Stokes equations, substitution by the mass of the fluid yields
the continuity equation (both with respect to infinitesimally small con-
trol volumes). In the field of computational fluid dynamics (CFD) these
equations are solved numerically in order to describe a given flow problem.
This means that the Navier–Stokes equations,

∂

∂t
u + u · ∇u = −

1

ρf
∇p+

µf

ρf
∆u +

1

ρf
f , (1.15)

together with the continuity equation,

∇ · u = 0, (1.16)

are solved for the fluid velocity u and the pressure p. For the given forms of
equations (1.15) and (1.16) it is assumed that the fluid is an incompressible
Newtonian fluid with constant mass density ρf and dynamic viscosity µf .
The variable f accounts for external body forces such as gravity. If the
energy in the system is of interest, equation (1.14) is solved for the energy
or the temperature in the system (see e.g. [Oertel et al., 2009, Versteeg
and Malalasekera, 2007, Ferziger and Peric, 2012]). Partial differential
equations (PDEs) like equations (1.14), (1.15) and (1.16) can be solved
numerically by means of the finite element method (FEM) [Turek, 1999],
the finite volume method (FVM) [Versteeg and Malalasekera, 2007] or the
finite difference method (FDM) [Ferziger and Peric, 2012], to name the
most common methods. Numerically, the three methods FEM, FVM and
FDM are related and it can be shown that the resulting system of linear
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equations fundamental to the solution when using a certain FDM is also
obtained when using a corresponding FVM or FEM. Furthermore, FVM
can be seen as a low order FEM [Eymard et al., 2000]. Unstructured grids,
time-dependent grid refinement, etc. can be handled by all three methods
with varying efficiency. Basic comparisons of the methods can be found
in [Ferziger and Peric, 2012, Eymard et al., 2000]. Currently, but without
any particular reason, the FVM is by far the most popular method in
CFD in chemical and process engineering.

Discrete particle dynamics

The motion of a particle α in a system of N particles can be described
by Newton’s second law [Newton, 1729]. This results in Euler’s laws of
motion [Rao, 2005], which are the well-known translational and angular
momentum balance equations,

d

dt
(mp,αUα) =

∑

l

F l
α,

d

dt
(IαUα) =

∑

l

T l
α. (1.17)

The variable Uα denotes the velocity of a single particle α, mp,α its mass,
Iα its moment of inertia tensor and the sums of F α and T α the sums of
the acting forces and torques, respectively.
In molecular dynamics (MD), equations (1.17) are applied to simulate
the motion of atoms and molecules of a fluid or solid phase (see [Schlick,
2010] for a comprehensive introduction). A combination of several atoms
to molecules, where each molecule is usually assumed to be spherical, or
the combination of larger particles to groups of particles is called coarse-
graining. This technique reduces numerical costs and allows for simu-
lations of processes at larger timescales, as the number of particles for
which trajectories and interactions have to be computed, can be reduced
immensely [Chakrabarty and Cagin, 2010, Rudd and Broughton, 1998].
On the other hand coarse-graining introduces the need for extra model-
ing, which can be quite challenging.
An application of equations (1.17) to the simulation of solid particles
larger than molecules is the discrete element method (DEM) [Cundall
and Strack, 1979], which has very early been applied to the simulation of
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non-spherical particles [Cundall, 1988] and is currently the most popular
method in the field of simulation of particulate flows with a wide variety
of applications on industrial scale [Munjiza and Cleary, 2009]. The ini-
tial model considering only particle contact [Cundall and Strack, 1979]
has been extended by a large number of models for other effects, such
as adhesion [Moreno et al., 2003], solid bridges [Antonyuk et al., 2006],
and liquid bridges [Muguruma et al., 2000, Hsiau and Yang, 2003, Soulie
et al., 2006]. A current trend is clearly the development of fast DEM
methods for the simulation of non-spherical particles [Fraige et al., 2008,
Ferellec and McDowell, 2010], especially in combination with a coupled
solution of equations (1.15) and (1.16) [Zhu et al., 2008, Kruggel-Emden
and Oschmann, 2014].

Other methods

Methods arising from discrete particle dynamics generally do not require
a background grid. Methods based on continuum mechanics on the other
hand usually rely on a numerical grid which is spatially fixed or which
rotates with its reference frame. This is a result from the discretization
of equations (1.14), (1.15) and (1.16).
An exception from this is e.g. the smoothed particle hydrodynamics (SPH)
method, where the Navier–Stokes equations (1.15) and the continuity
equation (1.16) describe the motion of Lagrangian particles [Gingold and
Monaghan, 1977]. A review on the method is given in [Liu and Liu, 2010].
If one wants to get a brief description of the method together with an
application, we refer to [Dalrymple and Rogers, 2006]. The SPH method
is suited best for simulations of two-phase flows where the two phases
have such a large density difference that the lower-density phase can be
neglected, e.g. for the simulation of waves and sprays [Dalrymple and
Rogers, 2006, Hoefler et al., 2013].
The method of multi-particle collision dynamics (MPC), also known as
stochastic rotation dynamics (SRD) [Gompper et al., 2009] originates from
coarse-graining of molecular dynamics [Malevanets and Kapral, 2000],
where fluid motion is divided into a streaming step and a collision step,
during which the whole interaction of fluid particles takes place. In the
collision step, fluid particles are mapped to the cells of a numerical back-
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ground grid, in which they collide. In order to preserve Galilean invariance
(invariance of the simulation result on the positions of the grid nodes),
the grid used in SRD is shifted during a simulation [Ihle and Kroll, 2001].
Macroscopic variables such as the fluid velocity u or its density ρf are
obtained by weighted integrations of the transported variables [Ihle and
Kroll, 2003]. In [Malevanets and Kapral, 1999] the connection between the
equations solved by SRD and equations (1.15) and (1.16) is shown. The
derivation is similar to that showing the connection between the lattice
Boltzmann equations and equations (1.15) and (1.16) [Chen and Doolen,
1998].
When referring to CFD in the following, we do not refer to a specific
method, but to a direct or indirect numerical solution of equations (1.15),
(1.16) or their counterpart for a specific problem.

1.5.2 Simulation methods for suspensions

Methods for the simulation of suspensions are usually based on the solu-
tion of a combination of equations (1.15), (1.16) and (1.17). As depicted
in figure 1.9, they can be classified by means of the description of the two
phases — Eulerian-, Lagrangian- or Eulerian–Lagrangian. Therefore, we
now give the mainly used methods grouped by means of the description
of the phases.

The two-phase fluid model (TFM) – an Eulerian method

Assuming no effect of particles on the fluid and no particle-particle interac-
tions, the motion of inertialess particles in a suspension can be described
by a combination of equations (1.14), (1.15), (1.16), where equation (1.14)
describes the transport of the particle concentration [Ilina et al., 2008]. As
is easy to see, these assumptions are strongly limiting the range of appli-
cation.
The simulation of suspensions at scales close to industrial scale and at
high solid volume fractions, considering fluid-particle, particle-particle
and particle-fluid interactions, is still a very challenging task — the fluid-
solid as well as the solid-solid interaction has to be captured accurately
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while the number of particles is extremely high. Therefore, the two-phase
fluid model (TFM) [Anderson and Jackson, 1967, Drew, 1982, Enwald
et al., 1996] finds broad application both in the investigation of suspen-
sion dynamics in fluidization [Wang et al., 2009, 2010] and in settling and
sediment consolidation [Auzerais et al., 1988, Gustavsson and Oppelstrup,
2000].
In the TFM, the fluid and the solid phase are treated as continua, for which
mass, momentum and energy conservation have to hold [Wang et al., 2009,
Gustavsson and Oppelstrup, 2000]. Both phases interpenetrate each other,
where the solid volume fraction φ determines the amount of particles in a
computational grid cell. Momentum exchange of the two phases is consid-
ered by additional terms in the two Navier–Stokes equations [Shuai et al.,
2012]. Critical points are the correct modeling of the usually φ-dependent
viscosities, the pressure in the solid phase and, if considered, contributions
to the energy equation resulting from particle interactions.
When this model is applied, the assumptions for the used models need to
be kept in mind, as non-valid assumptions can lead to wrong predictions
[Ge et al., 2011, Wang et al., 2009].

Population balance equations – another Eulerian method

The population balance equations (PBE) formulated by Smoluchowski
[1917] gave rise to the PBE method, also known as population balance
modeling (PBM). As the TFM, the PBM can be applied to the numer-
ical simulation on industrial scale. If the kinetics (birth-, coagulation-,
breakup- and death-rate of particles) in a considered process unit can be
described by overall efficiencies (cf. section 1.3), and the dynamics can be
simplified [Camp and Stein, 1943], an overall PBE (mass conservation) suf-
fices to describe the change of a particle size fraction in time. The particle
size distribution can be approximated by discrete size intervals, for which
coupled PBEs are solved. In technical applications especially the shear
gradient of the flow varies spatially, such that this technique is often not
applicable [Kramer and Clark, 2000]. In this case local flow conditions can
be obtained by CFD, which results in the widely used CFD-PBE method
[Li et al., 2013, Cheng et al., 2012]. The number of coupled PBEs is very
high for a broad size distribution, limiting the applicability of CFD-PBE
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methods. Because of this, methods such as QMOM (quadrature method
of moments) [McGraw, 1997], and the DQMOM (direct QMOM), which
accounts for more than one moment [Fan et al., 2004], are currently the
most widely used CFD-PBE methods.

Lagrangian methods

While Eulerian methods are capable of simulating large systems and dense
suspensions, they rely heavily on accurate modeling. Lagrangian methods
usually treat the effect of the fluid implicitly, which results in the fact that
these models do not need a numerical background grid, and the variables
describing the fluid motion do not have to be computed in order to ob-
tain hydrodynamic interactions. Furthermore, Lagrangian methods are
capable of capturing interparticle interactions by means of more generally
valid models (e.g. such describing the non-hydrodynamic interactions pre-
sented in subsection 1.2.2). The resulting forces or torques can simply be
added to other acting forces and torques in the equations of motion (1.17).
As illustrated in figure 1.9, the disadvantage of this detailed description
of the particle motion is the fact that the numerical costs increase with
increasing system size, i.e. number of particles. In chapter 4 we show
that techniques exist, which can reduce the general costs of O(N2) to
O(N log(N)) or in special cases to O(N), where N is the number of sim-
ulated particles, but the dependency on the number of particles persists.
Another restriction for Lagrangian methods is the problem of an inclusion
of external geometries (non-flat container walls, mixing elements, etc.) in
a simulation. This is the downside of the fact that hydrodynamic inter-
actions can be obtained purely from the knowledge of particle positions
and geometries.
A typical example for a Lagrangian method is the already introduced
MD method, in which all atoms or molecules are resolved [Schlick, 2010].
Other methods solve the Langevin equation [Ichiki and Hayakawa, 1995],
which is formally equivalent to equation (1.17) and describes the motion
of particles in a suspension. Mathematically, the Langevin equation dif-
fers from the general expression (1.17), because of the stochastic nature
of the occurring Brownian force/torque term, which makes it a stochastic
differential equation instead of an ordinary differential equation. Hydro-
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dynamic interactions among particles are obtained from a mathematical
treatment of the integral expression for the fluid velocity of a Stokes flow
with present particles (cf. for example [Kim and Karrila, 2013]). The main
methods are the boundary element method (BEM) [Nishimura, 2002, Wro-
bel, 2002, Pozrikidis, 2007], the Stokesian Dynamics (SD) method [Brady
and Bossis, 1988, Durlofsky et al., 1987, Sierou and Brady, 2002] and the
Brownian Dynamics (BD) method [Ermak and McCammon, 1978, Heyes
and Melrose, 1993, Hütter, 2000]. The level of detail with respect to the
treatment of hydrodynamic interactions is decreasing with increasing im-
portance of Brownian motion from BEM over SD to BD.
Suspensions [Pozrikidis, 2007, Sekine, 2000] are only a minor field of ap-
plication for BEM, which is a general method to solve boundary integral
equations [Nishimura, 2002] occuring in heat transfer, accoustics, electro-
chemistry and fluid mechanics [Wrobel, 2002]. BD as well as SD have
been developed for the simulation of suspensions, where both have their
main field of application in the investigation of structure, diffusion and
rheology of suspensions [Hsieh et al., 2006, Foss and Brady, 2000, Noguchi
and Takasu, 2001]. We do not go into further details of the methods here,
because the mainly used method in this work is the SD method, which is
described roughly in all following chapters and more detailed in chapters
2 and 4, where we present our works [Bülow et al., 2014, 2016] which deal
with numerical improvements of the method.
A good review comparing particle-based approaches for the numerical
simulation of colloidal suspensions is given in [Bolintineanu et al., 2014].
The authors refer to the simulation platform LAMMPS [Plimpton, 1995],
which originates from MD simulation but now includes a large number of
simulation algorithms for the simulation of colloids [Bolintineanu et al.,
2014].

Eulerian–Lagrangian methods

Eulerian methods are capable of simulating large systems, while Lagrang-
ian methods are usually more accurate and can be extended for models of
additional effects easily. Therefore it seems natural to combine methods
from both classes in order to apply the ease of modeling to larger systems.
Eulerian–Lagrangian methods are currently extremely popular, which is



55

why we present the three mainly used methods. All these methods have
in common that the fluid motion in the whole simulation domain is de-
scribed by a continuum mechanics approach, i.e. the underlying equations,
e.g. equations (1.15) and (1.16), are solved on an Eulerian grid. Particle
motion is usually described by means of equations (1.17) for a moving
Lagrangian grid, which is defined by the particles. All methods have in
common that coupling between the different phases is done via an interpo-
lation between the two grids, as is exemplarily depicted in figure 1.11. The
methods differ in the way particles are represented and in the coupling of
the solved equations.

XL
i

XL
i

XL
i

Figure 1.11: General idea of Eulerian–Lagrangian methods: Computation of
fluid properties at the Eulerian grid nodes xE (a), interpolation to Lagrangian
grid with nodes XL (b), computation of Lagrangian variables (c), interpolation
of the effect of particles from Lagrangian grid nodes to Eulerian grid (d).

Immersed boundary/ficticious domain methods

In Immersed boundary (IB) methods as well as ficticious domain (FD)
methods the Eulerian background grid is so fine that the particle geom-
etry is more or less resolved (for spherical particles by typically between
10 and 30 grid cells per diameter). Rigid body motion is imposed either
at the particle boundaries (IB) or in the whole particle domain (FD) by
means of a ficticious body force or by modifying the fluid stress tensor.
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There are several schemes differing in the way this rigidity constraint is im-
posed on the fluid at the respective Eulerian grid nodes [Glowinski et al.,
2001, Peskin, 2002, Mittal and Iaccarino, 2005, Uhlmann, 2005, Sharma
and Patankar, 2005, Münster et al., 2012]. In most of them a direct forc-
ing fractional stepping scheme is applied. In this scheme, fluid variables
(usually velocities) are computed first. Subsequently, these are interpo-
lated to the Lagrangian grid nodes, where the ficticious force is computed
by means of the difference between interpolated fluid velocity and the
velocity of the Lagrangian grid nodes. The resulting body force is then
interpolated to the Eulerian grid, where it accounts for the extra momen-
tum resulting from the relative motion of the particles. Both methods, IB
and FD, are not restricted in the shape of the simulated particles [Sharma
and Patankar, 2005, Yang and Stern, 2012], can handle deformable bod-
ies [Deen et al., 2009, Shirgaonkar et al., 2009] and are currently used to
simulate suspensions of up to several thousand particles [Münster et al.,
2012, Uhlmann, 2008]. Originally, these methods have been developed for
fluid-structure interaction problems, for which they are still widely used
(see e.g. [Borazjani et al., 2008]).

CFD-DEM

The currently by far most popular method for simulations of fluid-particle
interactions is CFD-DEM, also known as discrete particle simulation(DPS)
[Tsuji et al., 1993]. In this method, a CFD method is used to solve the
fluid equations, while the motion of the particles is simulated by means
of DEM (cf. subsection 1.5.1). Contrary to IB and FD methods, particles
are assumed to be much smaller than the resolution of the Eulerian back-
ground grid. This results in the fact that the Lagrangian grid consists only
of the particles’ centers of mass instead of points describing their shape.
The drag force acting on a single particle is assumed to be linearly depen-
dent on the difference between particle velocity and the fluid velocity at
the particle’s center of mass. The standard relation is a combination of
the Ergun equation [Ergun, 1952] and the correlation proposed by Wen
and Yu [2014] (see e.g. [Deen et al., 2007, Xu et al., 2012]). As already
pointed out in subsection 1.4.5, the determination of drag relations for
hydrodynamically interacting particles is a current field of research, es-
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pecially for polydisperse systems, coagulated and non-spherical particles,
as well as wall-bounded systems. Exemplary works considering some of
these aspects are [Di Felice, 1994, Chhabra et al., 1999, Kim and Lee, 2014,
Tran-Cong et al., 2004, Loth, 2008, Hölzer and Sommerfeld, 2008]. Basic
equations of CFD-DEM and a general flow diagram can be found e.g. in
[Deen et al., 2007]. Typical numbers of simulated particles range between
a few thousand and some hundred thousand [Xu et al., 2012, Fernández
and Nirschl, 2013, Chu et al., 2009, Afkhami et al., 2015, Zhang et al.,
2008]. Large-scale simulations on CPUs allow for simulations of up to
some million particles [Yang et al., 2014], whereas a coupling of a parallel
CFD code running on CPUs with a DEM code running on GPUs can
yield particle numbers of 25 million [Jajcevic et al., 2013]. A review on
applications of CFD-DEM is part of the review [Zhu et al., 2008].

The multiphase particle-in-cell method

Even though large numbers of particles can be simulated with CFD-DEM,
realizable particle numbers in simulations for higher solid volume fractions
within a timespan of a few days are still comparably low. The multiphase
particle-in-cell method (MP-PIC) has been developed for rapid simula-
tions of large-scale multi-phase flows that can handle dilute and dense
particulate loading [Andrews and O’Rourke, 1996]. Through coarse grain-
ing, simulated particle numbers are much higher than for CFD-DEM while
contrary to the TFM, the MP-PIC method considers particle size distribu-
tions. The equations describing the fluid motion by means of an Eulerian
grid are the same as that in the TFM and CFD-DEM – conservation equa-
tions which take momentum coupling between the two phases by means
of a drag relation into account. The particle motion is described by a Li-
ouville equation (cf. subsection 1.5.1), where the transported probability
density function accounts not only for particle positions and velocities in
time, but also for their volume and density [Snider, 2001]. Similar to the
SPH method (cf. subsection 1.5.1), the particle variables are defined on a
Lagrangian grid which moves with the computational particles, i.e. with
the coarse grained particulate phase. Each computational particle repre-
sents a group of particles of identical size, velocity and position [Patankar
and Joseph, 2001]. Particle collisions are modeled by a particle stress ten-
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sor [Andrews and O’Rourke, 1996, Patankar and Joseph, 2001], which was
later expanded for a BGK-type collision operator [O’Rourke and Snider,
2010, 2014]. The MP-PIC method relies on a lot of modeling, but when
this is done correctly, industrial scale problems can be solved well (e.g.
[Snider et al., 2004, Chen et al., 2013]).

1.6 Preview of the following chapters

The goal of this work is the investigation of the destabilization behaviour
of suspensions with focus on the numerical simulation. This can theoreti-
cally be done by means of any of the simulation methods presented in sub-
section 1.5.2. Yet, results of Eulerian and Eulerian-Lagrangian methods
rely strongly on the modeling of the relation for the momentum coupling
between the two phases [Chen et al., 2013]. Accurate drag models are
still under development (cf. the part on CFD-DEM in subsection 1.5.2)
and so far used drag models usually do not explicitly account for desta-
bilization. Moreover, effects described in section 1.2 can be modeled well
at the particle level, which is the level of Lagrangian methods. At this
level models such as that from DLVO theory have been tested extensively,
such that their validity is largely known. Among the Lagrangian methods,
the Stokesian Dynamics (SD) method is one of the most flexible ones. Its
major limitation is the restriction to vanishing Reynolds numbers, but not
the particle size or the solid volume fraction. As might have become clear
in section 1.5, there is a fluid transition between different methods used
for the simulation of suspensions. An SD simulation which takes Brow-
nian motion into account, but does not include the standard lubrication
scheme [Durlofsky et al., 1987], may easily be called Brownian Dynamics
(BD) simulation with extensive modeling of hydrodynamic interactions.
On the other hand, a BD simulation for which the full mobility matrix is
used, can also be called SD simulation. Furthermore, the Langevin equa-
tion, which describes the motion of suspended particles in the SD and
BD methods, can also be obtained from the corresponding Fokker–Planck
equation [Brady and Bossis, 1988]. Therefore the SD method can be seen
as Lagrangian method for the solution of the Fokker–Planck equation for
spherical particles (in analogy to the SPH method, which is a Lagrangian
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method solving the Navier–Stokes equations).
Some values, such as the mean settling velocity or the agglomeration rate
of particles in a suspension, can only be predicted well enough if the num-
ber of simulated particles is large enough [Bülow et al., 2014]. Therefore
we have parallelized the open-source software RYUON [ryu, 2014], which
served as basis for our simulation framework. Even though the current
code does not resemble RYUON anymore, we still kept the name in hon-
our of Kengo Ichiki, who provided us with the latest version of his code
in 2012. Chapter 2 describes the utilized parallelization techniques and
shows the strong speedup a parallel SD software can achieve. In this chap-
ter we also present the models for DLVO interactions we use to investigate
destabilizing suspensions.
In chapter 4 we introduce an improvement of the parallelized SD method.
We show that a combination with the Barnes–Hut method [Barnes and
Hut, 1986] can yield additional speedup of a simulation in case of non-
homogeneous, clustered suspensions. Roughly speaking, this speedup re-
sults from combining particle groups for the computation of hydrodynamic
interactions. This grouping is dynamic and is only done if the distance
between two groups is large enough for the resulting error to be small. We
called this hybrid method scalable SD method, because the criterion for
the grouping can be chosen by the user, resulting in a scalable accuracy
and speed of the simulation. The method is designed for parallel code
execution and differs formally from the original SD method only in the
computation of altered entries of the mobility matrix, leaving the theory
behind the original method untouched [Bülow et al., 2016]. Also, the
required software development effort for an inclusion in an already paral-
lelized SD code is not high, which makes the method in this point more
attractive than other fast schemes [Sierou and Brady, 2001, Ichiki, 2002].
This theoretical part is followed by a second part, in which we present
results obtained with the developed simulation platform.
In chapter 4, we give insights into the settling behaviour of polydisperse
particle clouds, which can also be seen as hydrodynamic clusters. In the
considered case, hydrodynamic interactions are dominant, what leads to
an interesting behaviour of the settling clouds. Before our work, only
polydisperse clouds of up to a few hundred particles have been simulated.
With the parallel SD method we were able to investigate the behaviour
of clouds comprised of thousands of particles, which leads to new conclu-
sions on the impact of polydispersity [Bülow et al., 2015]. In this chapter,
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we also show that the Hadamard-Rybczynski equation [Michaelides, 2006]
can be used to predict the maximum settling velocity of a polydisperse
settling cloud. The resulting equation can be used to estimate the maxi-
mum settling velocity in a suspension, e.g. for other simulations [Faletra
et al., 2015].
Besides hydrodynamic clustering, destabilization due to coagulation is a
major cause for increased settling rates. Population balance equations cou-
pled to CFD are a valuable tool in describing destabilization behaviour in
suspensions on a large scale, i.e. on technical or industrial scale [Cheng
et al., 2012]. As stated earlier in this work (cf. subsections 1.3.3 and 1.5.2),
this method relies strongly on the kernels used to describe changes in the
particle size distribution. We used the developed simulation framework
to obtain an analytical expression for a polydisperse orthokinetic capture
efficiency. To our knowledge the relation presented in chapter 5 is the first
relation, which takes the particle radius ratio fully into account. Neverthe-
less, the procedure involved is tedious, time-consuming, and it does not
take other effects such as superimposed settling into account. Therefore
we developed a cluster detection postprocessing, which gets the output of
simulations of multi-particle systems as input and delivers all necessary
data on the formed clusters. This data includes the cluster settling speed,
the radius of gyration and the fractal dimension of all clusters over time.
Among the data is also the number of primary particles per cluster over
time. This data can be used to determine statistical cluster growth rates
when effects such as shear and settling are superimposed. Furthermore,
this way the influence of other particles is considered. In standard sim-
ulations yielding the capture efficiency, only two particles are considered.
This can give wrong approximations to the capture efficiency in case of
dense suspensions. For a further discussion we refer to chapter 5.
The next chapters include published results and such submitted for pub-
lication.



Chapter 2

A parallel implementation of the Stokesian

Dynamics method applied to the simulation of

colloidal suspensions

Abstract

We present a strategy for the numerical simulation of polydisperse col-
loidal suspensions on supercomputers using distributed memory. In order
to simulate large colloidal systems we have parallelized the Stokesian Dy-
namics method and combined it with DLVO theory. Through an efficient
parallelization using the message passing system MPI we are able to re-
duce the computational costs of the problem from O(N2) to O(Pn2

p,max),
where N is the number of particles in the system, P the number of used
processes and np,max = ⌈ N

P ⌉, respectively. This allows the simulation of
large colloidal systems, as the computational time now not only depends
on the number of particles, but also on the number of cores, through which
the CPU time can be reduced drastically.

This chapter follows our work of the same title published in the journal
Computers&Fluids.
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2.1 Introduction

The numerical simulation of colloidal suspensions, i.e. particles of diame-
ter between 10nm and 10µm suspended in a fluid, is a challenging task.
This is not only due to Brownian motion, which can play an important role
at such length scales [Phung et al., 1996]. The interplay of other acting
forces such as the London–van–der–Waals force and electrostatic repulsion
often creates interparticle potentials which make the numerical treatment
of such systems complex. Apart from these forces, hydrodynamic interac-
tions play a very important role and cannot be neglected. For example in
solid-liquid separation, agglomeration and subsequent settling of colloids
is used to separate a solid product from the continuous phase. This is
just one of the many examples in the fields of chemical, biological and
environmental engineering. Due to the fact that physical experiments
are often expensive or simply not possible, the numerical investigation of
the suspension behaviour is a good alternative. The Stokesian Dynamics
(SD) method originally developed by Brady and Bossis [Brady and Bossis,
1988] is an ideal method when it comes to the investigation of colloidal sys-
tems. The main advantage of this method is that an explicit computation
of the fluid velocity is not necessary. Hydrodynamic interactions among
particles are incorporated implicitly by a matrix-vector product, which
results from the integral representation of the fluid velocity of a particu-
late Stokes flow [Durlofsky et al., 1987]. The SD method has successfully
been applied to investigations on the effects of Brownian motion [Foss
and Brady, 2000, Phung et al., 1996, Banchio and Brady, 2003, Banchio
et al., 2006] and colloidal systems in general [Harshe et al., 2010, Harshe
and Lattuada, 2011, Jones, 2001, Seto et al., 2012, Wagner and Brady,
2009]. It can be used to investigate microscopic [Cunha et al., 2002] or
macroscopic properties of a suspension [Chang and Powell, 1994], giving
rise to a wide spectrum of applications. Due to its efficiency when dealing
with concentrated suspensions, the SD method has been applied success-
fully to numerical investigations in rheology, ordering and microstructure
of colloidal and non-colloidal suspensions [Nazockdast and Morris, 2013,
Sierou and Brady, 2002, Xu et al., 2013]. Studies in this field could give
a better prediction of the macroscopic suspension behaviour if more than
a few hundred particles are simulated. But even though the SD method
and extensions to it [Sierou and Brady, 2001, Ichiki, 2002, Durlofsky and
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Brady, 1989] are well established and the rapid evolution in computing
power weakens the limitations of numerical simulations, apart from the
work of Kopp and Höfling [Kopp and Höfling, 2012], the SD method does
not seem to have been parallelized yet. Kopp and Höfling describe the
parallelization of the simplest version of the SD method, the F-version,
for GPU systems. The popularity of GPU systems is increasing but their
major drawbacks persist. Their limited memory and SIMD architecture
restricts their scope of application to specific problems. MIMD systems
with distributed memory are far more common and have a wider range
of application. In this work we present our implementation of the SD
method applied to the simulation of colloidal suspensions for computer
clusters using distributed memory. Our implementation is based on the
message-passing system MPI mpi [2013], but the presented strategies can
be transferred to any message-passing system or language for distributed
memory machines. To clarify the terminology we give a short introduc-
tion to the SD method and we show how we model interparticle inter-
actions of non-hydrodynamic nature. Different parallelization strategies
have to be applied when it comes to the computation of hydrodynamic or
non-hydrodynamic interactions. We present these strategies and show on
examples how efficient a parallel SD method can be.

2.2 Methods

2.2.1 Stokesian Dynamics

We consider the motion of colloids in a fluid, thus the Stokes equations
usually suffice to describe the fluid motion. The translational motion of
a rigid colloidal particle α suspended in a fluid can be described by the
Langevin equation [Brady and Bossis, 1988, Ichiki and Hayakawa, 1995],

mα
d

dt
Uα = F h

α + F i
α + F b

α + F ext
α . (2.1)
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For the angular momentum we have

Iα
d

dt
ωα = T h

α + T i
α + T b

α. (2.2)

Here mα is the mass of a particle, Uα its translational velocity, F h
α the

hydrodynamic force acting on the particle, F i
α interparticle forces, F b

α

forces arising from Brownian motion and F ext
α external forces such as

gravity. Iα denotes the moment of inertia tensor of a particle, ωα its an-
gular velocity and T h

α the hydrodynamic torque acting on the particle. T i
α

and T b
α denote the torque arising from interparticle forces and Brownian

forces, respectively. Let the background flow, i.e. the fluid velocity in the
absence of any disturbing particles, at position x in the fluid domain

u∞(x) = U∞ + Ω∞ × x + E∞x,

where U∞ and Ω∞ are the translational and angular velocity of the undis-
turbed Stokes flow and E∞ the respective rate of strain. Then there is an
integral expression for the fluid velocity with present particles [Durlofsky
et al., 1987]. Through a truncated multipole expansion a linear relation
between particle velocities Uα, ωα, α = 1, . . . , N , on the one hand, and
hydrodynamic forces, hydrodynamic torques, stresslets Sh

α and possibly
considered higher moments on the other hand can be found [Durlofsky
et al., 1987]. Considering the first two moments in the expansion yields
the system of linear equations,



























U1 − U
∞

.

.

.

UN − U
∞

ω1 − Ω
∞

.

.

.

ωN − Ω
∞

−E
∞

.

.

.

−E
∞



























= −M
∞



























F
h
1

.

.

.

F
h
N

T
h
1

.

.

.

T
h
N

S
h
1

.

.

.

S
h
N



























. (2.3)



65

This formulation is valid for rigid particles, where the rate of strain of all
particles can be assumed to be zero, i.e. Eα = 0 for all α ∈ [1, N ]. The
so-called grand mobility matrix M

∞ ∈ R
11N×11N can be decomposed

into sub-matrices,

M
∞ =





MUF MUT MUS

MωF MωT MωS

MEF MET MES



 , (2.4)

where e.g. the subscript of MUF ∈ R
3N×3N indicates that this sub-matrix

links the hydrodynamic force on all N particles to their translational
velocity. The tensors E∞ and Sh

α are actually matrices in R
3×3. But

due to the symmetry of both tensors, together with the assumption that
they have trace zero, they can be represented as vectors of length 5, so
we have a dimension matching in equation (2.3). Sh

α does not have to be
traceless. Works dealing with particle pressure, which is defined through
the trace of Sh

α are e.g. [Jeffrey et al., 1993, Brady, 1993, Yurkovetsky
and Morris, 2008]. Nevertheless, as in the original SD method [Brady and
Bossis, 1988, Durlofsky et al., 1987] we found the assumption of a zero
trace to be sufficient for our purposes. Since in the classical SD method
particles are spheres, the entries of the mobility matrix depend only on
the current particle positions and on their radius. The hydrodynamic
effect of all particles on the velocity of a single particle thus only depends
on the particle configuration, fluid velocities do not have to be computed.
If equation (2.3) shall be solved for the velocities, it is called mobility

problem. If it shall be solved for the forces, torques and stresslets, it is
called resistance problem. A nondimensionalization of the equations leads
to the definition of the Stokes number, which in our case is given by

St =
2

9

ρp

ρf
Re. (2.5)

ρp and ρf are the particle mass density and the fluid mass density, respec-
tively. Re denotes the Reynolds number of the flow. If we can assume
Stokes flow with vanishing Reynolds number, we can assume the Stokes
number to vanish as well, provided that ρp and ρf are of the same or-
der. With this assumption the left hand sides of the dimensionless form
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of equations (2.1) and (2.2) become zero. Plugging the resulting equa-
tions into equation (2.3), we obtain a system of linear equations where
the hydrodynamic forces and torques do not have to be computed explic-
itly, which allows a very efficient simulation. In the derivation of (2.3)
higher moments in the expansion of the force density in the expression
for the fluid velocity field in Stokes flow are neglected [Brady and Bossis,
1988]. This leads to an error when particles are in close proximity, as it is
usually the case for dense particle suspensions. In this case, or when the
Stokes number (2.5) cannot be assumed to be zero, the system of linear
equations (2.3) has to be solved. This is because the common schemes
to include near-field lubrication effects are all based on the exact solution
of the resistance problem for two or three particles [Jeffrey and Onishi,
1984, Jeffrey, 1992, Cichocki et al., 1999]. Formally, in these schemes the
inverse of the mobility matrix is altered by the addition and subtraction of
two matrices, which gives a better approximation to the original problem.
This process involves more computational effort due to the construction
of the two lubrication matrices and the solution of the linear system (2.3)
which results in a substantially longer simulation time. Therefore, we
advise to only use this scheme if a validation shows that it is necessary.
We have parallelized both the simplified method for St ≈ 0 and the more
complex method for St > 0 and show in section 2.3 the possible speedup
one can achieve for both methods.

2.2.2 DLVO

When considering colloidal systems, interparticle forces of non-hydrody-
namic nature usually have to be taken into account. We have employed
the DLVO theory, named after Derjaguin, Landau, Verwey and Overbeek
[Verwey et al., 1999], to model interparticle forces arising from London–
van der Waals attraction and electrostatic repulsion. Further, we have
included the Born force in our model, to consider the extremely short
ranged repulsion covered by Born theory [Feke et al., 1984]. There are
several expressions for the London–van der Waals potential and also for
the potential resulting from the electrostatic repulsion caused by the for-
mation of a double layer of counterions around colloids. The drawback
of most expressions is that they are only valid for monodisperse particle
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systems. In the following we present the potentials we chose for the sim-
ulation of polydisperse particle systems when the mentioned interparticle
forces cannot be neglected.

London–van der Waals Attraction

London–van der Waals forces arise from the interactions of permanent
and/or induced dipoles between uncharged molecules in particles [Leite
et al., 2012]. To model the corresponding London–van der Waals potential
we apply the original expression by Hamaker [1937]. Hamaker derived an
expression for pair interactions between particles of different sizes, which
is given by

ΨLvdW(rαβ , aα, aβ) = −
Ah

6

(

2aαaβ

r2
αβ − (aα + aβ)2

+
2aαaβ

r2
αβ − (aα − aβ)2

+ ln

(

r2
αβ − (aα + aβ)2

r2
αβ − (aα − aβ)2

))

,

with the Hamaker constant Ah and the distance between the particles’
centers of mass, rαβ :=

∣

∣

∣

∣xβ − xα

∣

∣

∣

∣

2
. The particle radii are aα and aβ ,

respectively.

Electrostatic Repulsion

We have implemented two models for the electrostatic repulsion which
take the effect of polydispersity into account. Utilizing the Debye–Hückel
approximation for low surface potentials, as well as assuming that the
potential-determining ions in the double layer around two considered par-
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ticles are the same, the potential for spherical particles is given in [Hogg
et al., 1966] by

Ψel(r0, aα, aβ) =πǫrǫ0
aαaβ

aα + aβ
(ψ2

α + ψ2
β)

(

2ψαψβ

ψ2
α + ψ2

β

ln

(

1 + exp(−κr0)

1 − exp(−κr0)

)

+ ln
(

1 − exp(−2κr0)
)

)

,

where the shortest distance between the surfaces of the particles is given
by r0 := rαβ −(aα+aβ). The factors ǫr and ǫ0 are the relative permittivity
of the suspending medium and the vacuum permittivity, respectively. ψi,
i = α, β, are the total double layer potentials of the particles and κ is the
Debye–Hückel reciprocal length parameter.
Using another approach (LSA instead of DA, cf. [Bhattacharjee et al.,
1998]), Bell et al. [Bell et al., 1970] have derived a form of the electrostatic
potential, which gives a better approximation for values of κa > 10. It is
given by

Ψel(r0, aα, aβ) =
64πǫ0ǫraαaβ

r0 + aα + aβ

(

kBT

e

)2

tanh

(

e

4kBT
ψα

)

tanh

(

e

4kBT
ψβ

)

exp (−κr0) .

In this equation T is the absolute temperature of the suspension, kB the
Boltzmann constant and e the elementary charge.
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Born Repulsion

The so-called Born potential models the strong short-ranged repulsion
which two particles experience during overlap of the electron clouds of
the atoms of which they consist. It is given in [Feke et al., 1984] as

ΨBorn(r, λ) = 4Ah

(

σ

aα

)n−6
(n− 8)!

(n− 2)!

1

r
(

−r2 − (n− 5)(λ− 1)r − (n− 6)(λ2 − (n− 5)λ+ 1)

(r − 1 + λ)n−5

+
−r2 + (n− 5)(λ− 1)r − (n− 6)(λ2 − (n− 5)λ+ 1)

(r + 1 − λ)n−5

+
r2 + (n− 5)(λ+ 1)r + (n− 6)(λ2 + (n− 5)λ+ 1)

(r + 1 + λ)n−5

+
r2 − (n− 5)(λ+ 1)r + (n− 6)(λ2 + (n− 5)λ+ 1)

(r − 1 − λ)n−5

)

.

λ denotes the ratio of radii aβ and aα, the distance rαβ between the
centers of the two particles is made dimensionless by aα yielding r. σ is
the separation at which the potential becomes zero and which is, according
to Feke et al. [1984], typically O(5Å). A commonly used value for n is
12.

Resulting Force and Nondimensionalisation

The force acting on a particle α resulting from the different potentials can
be computed as

F i
α = −

N
∑

β=1

∂

∂rαβ
(ΨLvdW + Ψel + ΨBorn) nαβ , (2.6)

where nαβ is the normalized vector from the center of particle α to the
center of another particle β. To keep equation (2.6) simple, we dropped
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the arguments of the potentials.
To account for the polydispersity of a given particle system we have imple-
mented random number generators which give us uni- and bimodal normal
and lognormal particle radius distributions. In case of polydisperse sys-
tems we have a particle radius distribution with a variance greater than
zero. If we have a unimodal radius distribution, we use the expected
value µ as characteristic length scale L0, i.e. we define L0 := µ. In case
of a bimodal distribution we take the major mode as characteristic length
scale. For a nondimensionalization of velocities we use the corresponding
Stokes velocity as characteristic velocity U0. To make the total double
layer potentials ψi, i = α, β, dimensionless, we choose as characteristic
value ψc = kBT/e.

Cutoff

As one can see in figure 2.1, all DLVO potentials and also the resulting
forces decay rapidly but with differing slope. Furthermore, the potentials
between large particles decay slower than the potentials between compara-
bly small particles. To reduce computational costs we introduce different
cutoff lengths for different potentials. At the beginning of every simula-
tion we compute the DLVO forces between the two largest particles in the
system. We determine where every force is smaller than a given threshold
and use the resulting distance as maximum cutoff length dc,max for all
particles. Also shown in figure 2.1 is the extreme increase of the resulting
DLVO potential at very short interparticle distances, which is the result
of the incorporation of the Born potential. The extreme increase at these
distances creates very strong repulsive forces, which demand a very small
time step in a simulation. To deal with this numerical problem we have
introduced a minimum cutoff length dc,min, which is determined in a sim-
ilar way as the maximum cutoff length. Only this time we use the two
smallest particles in the system and a maximum absolute value for the
force. In reality, the repulsive force does not stop at a minimum length.
To account for this fact, we have incorporated a contact model into our
simulation.
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Figure 2.1: Dimensionless DLVO potentials with resulting total DLVO poten-
tial plotted over dimensionless interparticle distance r. Shown are the potentials
for two particles with dimensionless radius 1. The inset figure shows a zoomed
in view where the secondary minimum is visible.

2.2.3 Contact Model

The DLVO potentials have singularities at surface-to-surface distances
r0 = 0. Furthermore, the high gradients in the potentials (cf. figure 2.1)
require a very small time step once two particles are in close contact. For
the sake of allowing larger time steps in the simulation, Schäfer et al.
[Schäfer et al., 2010] have replaced the Born potential by the less steep
Hertz potential. To capture the case of particle distances shorter than the
introduced minimum cutoff length, we make use of the Hertz potential as
well. We do not replace the Born potential totally, but we combine it with
the Hertz potential to get

Ψcontact(rαβ , λ) = ΨBorn(dc,min, λ) + kH(aα + aβ − rαβ)2.5, (2.7)
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for all rαβ with rαβ < aα +aβ +dc,min. As an additional simulation param-
eter we get the Hertz constant kH. This constant is a material parameter
which depends on the Young’s modulus and Poisson’s ratio of the parti-
cle material [Rosas and Lindenberg, 2003]. Not only DLVO forces but
also classical lubrication force models exhibit a singularity at surface-to-
surface distances r0 = 0. This singularity arises from the assumptions of
classical lubrication theory. These are negligible interparticle forces and
smooth particle surfaces, separated by a thin, incompressible Newtonian
fluid layer which behaves as a continuum [Davis et al., 1986]. When these
assumptions hold, the thin fluid layer prevents the particles from actual
contact. Real particles are not perfectly smooth and especially for colloids
interparticle forces of non-hydrodynamic nature are non-negligible. Fur-
thermore, at extremely small interparticle distances the interstitial fluid
cannot be treated as continuum anymore. In [Zhang et al., 2005] a lubri-
cation force model is derived, which accounts for rough particle surfaces,
non-hydrodynamic forces and a non-continuum effect. In their numeri-
cal study on discontinuous shear thickening, Seto et al. [2013] also apply
a lubrication model which accounts for surface roughness. Furthermore,
they employ a model for frictional particle contact, which enables them
to show discontinuous shear thickening in concentrated suspensions via a
simplified SD method. These studies show that a contact model should
be included, in order to simulate real suspension behaviour.

2.2.4 Parallelization

On distributed parallel computer systems multiple processes, that means
instances of the same program, are running simultaneously. When using
MPI, they can be distinguished by their unique rank within the group
of processes. Due to the distributed memory, a process does not have
constant access to all data, but only to data stored in its private memory.
As most data fields have entries referring to particular particles, we store
these fields according to the particle it refers to. When we say in the
following that a particle is stored on a process, we mean all data related
to this particle is stored in the memory related to the process. For an
optimal load balance on P processes, NmodP processes get ⌈ N

P ⌉ particles

and the other processes receive the data of ⌊ N
P ⌋ particles. The brackets ⌈·⌉
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denote the smallest integer number greater than the value of a variable,
the brackets ⌊·⌋ denote the integral part of its value. Another aspect we
aimed at when designing the parallel code was to keep low redundancies,
i.e. having data only stored in the memory of the processes that need
it. Generally, reduced memory usage results in more communication, but
as we want to simulate a large number of particles with a large number
of processes, we accept these costs. When it comes to communication
between processes on a distributed memory machine, different strategies
have to be applied for the solution of equation (2.3) and for the computa-
tion of interparticle forces of non-hydrodynamic nature. We present the
two strategies we found to be most effective for these two different types
of problems. Subsequently we present the general algorithm we employ
for the simulation of colloidal suspensions.

Communication Strategies

On a distributed memory machine all processes use private memory. The
major difference to sequential or shared memory programming is the need
to exchange data between processes. This can be done either using point-
to-point communication between two processes, or as a collective opera-
tion, where all nodes communicate with each other. We deploy two exten-
sions to these communication types using point-to-point communication,
in order to perform collective operations on large data fields effectively.

Ring Communication

For some functions in our software, large distributed data fields need to be
evaluated on every single process. Using collective communication would
mean storing the whole data in the memory of every node. To avoid this
we use so-called ring communication. Imagine the nodes to be ordered in
a closed circle, each of them having a connection to its direct neighbours.
Instead of all processes sending their data simultaneously to all other
processes, the data packages are handed from one processes to the other
in the ring. After P steps all data has again reached its origin and the
communication process is finished. Between the communication steps the
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data can be processed at its current location. This type of communication
has proven to be most effective when every process needs the data stored
in the memory of every other process, as it is the case for the computation
of the matrix-vector product in equation (2.3).

Sparse Communication

There are other cases, when every process has only few communication
partners. To provide each process the possibility to communicate with
an arbitrary group of other processes, we implemented another commu-
nication method, we call sparse communication. Each process may list
the ranks of desired receivers and submit them to a coordinating routine,
where the partners for all requesting processes are determined. Due to
coinciding requests some processes might not obtain permission to send
and have to wait for the next communication step. Then the data is com-
municated according to the priorities of the coordinating routine. This is
repeated until the lists of all processes are executed. Analogous to the ring
communication, the data can be handled on the receiving processes be-
tween the individual communication steps. Sparse communication is more
effective than ring communication when the number of partners, i.e. the
number of processes one process has to communicate with, is significantly
lower than the total number of processes P . Thus it is ideal for the com-
putation of short to medium ranged interparticle forces, such as DLVO or
contact forces, provided that particles located in the same region of the
simulation domain are stored on the same process. To achieve this we
have implemented a merge-sort like parallel sorting algorithm which can
be called at a chosen frequency and which preserves load balance. After
the particle data has been sorted, the number of communication partners
for each process is reduced to a minimum. The criterion used to deter-
mine whether two processes communicate is depicted in figure 2.2. Every
process stores center and radius of the smallest sphere which contains all
particles stored in its memory. If the surface-to-surface distance r0,pi,j

of
two spheres which contain all particles stored on two different processes
i, j is shorter than the maximum cutoff length dc,max, the two processes
have to communicate.
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ap,i
ap,jr0,pi,j

Figure 2.2: Particle configuration with bounding spheres of radius ap,i for
particles on processes i, j ∈ [1, P ]. The surface-to-surface distance between the
spheres is denoted by r0,pi,j . Particles with data stored in the memory of other
processes are not shown.

General Algorithm

The general algorithm of our simulation is shown in figure 2.3. After ini-
tialization and parameter input the particle data is sorted such that data
of groups of particles in spatial proximity is in the memory of the same pro-
cess [Bülow et al., 2016]. After this step forces acting on the particles are
computed. These can be the described DLVO forces, centrifugal forces or
forces arising from Brownian motion (see e.g. [Banchio and Brady, 2003]).
Then the coupled system (2.1), (2.2) and (2.3) is solved. In case of St = 0
this is done by a multiplication of the mobility matrix and the summed
forces. The vector of stresslets Sh can be computed by a solution of
MESSh = E∞ −MEF F h −MET T h, which is a subproblem of equation
(2.3). In case the Stokes number cannot be assumed to vanish, the full
system of linear equations (2.3) has to be solved. For the computation
of the stresslets and the solution of (2.3) we use the open source library
PETSc [Balay et al., 2013] which provides routines for the parallel solution
of systems of linear equations. To allow for a large number of particles
to be simulated we use iterative solvers exclusively, since the mobility ma-
trix is dense and a complete storage of all matrix entries would result in
immense memory usage. After this step the translational velocities are
integrated in time to yield the new particle positions. For this we utilize
our parallel implementation of the adaptive (4,5)-Runge-Kutta-Fehlberg
method [Fehlberg, 1970]. In principle every process uses the embedded
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Figure 2.3: General algorithm of our parallel implementation of the SD
method.

scheme for its data locally, where the global minimum of the proposed
local time steps from the local solutions is taken as global time step for
all processes. As we show in section 2.3.1 this method gives good results
regarding speed and accuracy.

Complexity

For reasons of simplicity we now assume that the number of particles
stored on a process is the same for every process p ∈ [1, P ]. This means
NmodP = 0, which results in N/P particles per process. Then the com-
plexity of our sorting algorithm is O

(

N log(P ) log(N/P )/P +N
)

. Exter-
nal forces such as centrifugal forces are independent from the positions of
other particles and are computed at constant cost for each particle. The
gravitational force acting on each particle can be computed once at the
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beginning of a simulation and does not contribute to the computational
costs afterwards. For the interparticle forces acting on a particle we have
to check the distances to all other particles. This implies costs of O(N2/P )
for each process. Exploiting the short range nature of interparticle forces
and the fact that particles are spatially sorted, only the distance to other
particle domains has to be checked (cf. 2.2.4). Only if the domain is
inside the force’s scope we calculate the distance to the single particles
in a considered domain. Thus the complexity of this step is reduced to
O(P + k (N/P )

2
), with a constant 1 ≤ k ≤ P , depending on the particle

constellation. For the computation of Brownian forces as well as for the
solution of the mobility problem or the resistance problem, the mobility
matrix M

∞ has to be calculated. In case of St = 0 the matrix is applied
once to the combined force-torque-stresslet vector. When the Stokes num-
ber is non-negligible we use iterative methods to solve equation (2.3) for
this vector. In this case M

∞ has to be applied multiple times. Calculat-
ing a single entry of the solution vector to the matrix-vector product is
O(N). Hence for all entries computed by one process we have O(N2/P ).
This is the complexity determining the overall complexity of the program.
Increasing the number of used processes P means decreasing the number
of particles per process, which reduces the CPU time of the simulation
linearly by a factor of 1/P . Of course, this is a theoretical result which
has some limits as we show in section 2.3.

2.3 Results

2.3.1 Validation

We have validated our code on several examples. In the following we
present some results, which are not only of interest for the validation, but
also for the application of a parallel Stokesian Dynamics code. All sim-
ulations have been performed using the IC2 computer cluster [ic2, 2013].
Simulations run on another computer cluster at our university [hc3, 2014]
show the same results with a slightly longer overall CPU time due to
slower computing nodes.
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DLVO Forces

The correct computation of DLVO forces was validated by means of a
MATLAB code, which solves equation (2.1) neglecting all acting forces but
the interparticle forces F i

α, α = 1, . . . , N . Neglecting other forces such as
F b

α and F ext
α yields a stationary configuration of two particles depending

on their initial position and the form of the DLVO potential. Due to the
order of magnitude of DLVO forces acting on particles close to a potential
minimum, this configuration is the same as in the SD simulation, even
with hydrodynamic interactions. For all initial configurations, the SD
simulation agrees well with the test results from our MATLAB routine.

Error due to Truncation

As discussed in section 2.2.1, the use of equation (2.3) without any cor-
rection scheme leads to an error when two particles are in close proximity.
We have examined the effect of solving the mobility problem with St = 0
without the application of a near-field lubrication scheme on the example
of two equal spheres settling in a predefined configuration in an other-
wise quiescent fluid ([Goldman et al., 1966]; [Bülow et al., 2015]). When
we solve the resistance problem and apply a lubrication correction as in
[Durlofsky et al., 1987], our results agree perfectly with the results of
Goldman et al. [1966]. The particle settling velocity obtained from the
solution of the mobility problem without lubrication correction starts to
deviate by more than 1% at a distance of one particle diameter between
the particle surfaces, where this deviation increases with shrinking gap
size. The deviation is below 5% for all configurations, down to interparti-
cle gaps of 1% of a particle diameter [Bülow et al., 2015]. Important for
this work is the location of the secondary minimum of the DLVO potential
exemplarily shown in figure 2.1. The resulting DLVO potential exhibits a
secondary minimum at interparticle gaps of 1.3% of a particle diameter,
which yields a deviation in the computation of the settling velocity be-
low 5%. Without Brownian forces, this minimum is deep enough to keep
particles from reaching the primary minimum. We show in section 2.3.4
that the solution of the mobility problem for St = 0 without lubrication
scheme is computationally much more efficient than the solution of the
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problem when the system of linear equations has to be solved. For this
reason we advise to solve the system for St = 0 whenever possible. But
the resulting error should be kept in mind when the settling velocity of
single particles is of importance.

Stability of the Integration Scheme

To examine the stability of our parallel implementation of the adaptive
(4,5)-Runge-Kutta-Fehlberg method we have run simulations as in [Durlof-
sky et al., 1987]. Eight monodisperse particles placed at the corners of a
cube (cf. figure 2.4, left) undergo a periodic motion when they settle at
vanishing Stokes number. The top four particles settle faster than the four
particles at the bottom, pass them and all particles return to the corners
of the initial cube. Only this time the locations of top and bottom par-
ticles are switched. Now the formerly bottom particles settle faster and
return to their original positions at the four bottom corners of the cube.
This motion is periodic and theoretically repeats itself infinitely often.
Due to numerical errors symmetry is broken after a while, which leads to
a breakup of the whole configuration (cf. figure 2.4, right). Our results
when using the FT level of approximation, i.e. considering hydrodynamic
forces and torques in equation (2.3) but no stresslets, with additional lu-
brication scheme agree very well with the results in [Durlofsky et al., 1987].
If we solve the mobility problem for St = 0 without lubrication scheme,
we still get good agreement with the results in [Durlofsky et al., 1987].
Initially, the particles are placed at the corners of a cube with center of
mass at the origin. As in [Durlofsky et al., 1987] we investigated particle
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Figure 2.4: Left: Initial positions at the corners of a cube with dimension-
less edge length 4. Middle: Configuration after 16 dimensionless time units,
when particles first lie in a plane perpendicular to the settling direction. Right:
Broken configuration after 1000 dimensionless time units.
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configurations with dimensionless edge lengths rinit = 3, 4, 5. To prevent
a possible particle overlap, we use the Hertz model given by the potential
(2.7). We have run the simulations for St = 0 and for St = 0.0001, which
gives similar results, at the FT level of approximation. Furthermore, we
have run simulations with St = 0 at the FTS level of approximation. This
level corresponds to the solution of the full system (2.3), including hy-
drodynamic stresslets Sh

α. To investigate the effect of the parallelization
of the integration scheme we have run all simulations on a single process
and on eight processes, where each process treats one particle. To deter-
mine the stability we determine a symmetry breaking point tbreak. We
define this point as that point in time when the projection of the center
of mass xCoM of the particle system on the x-y-plane deviates from the
center of origin by more than 1% in the 2-norm. So symmetry is broken
when ||xCoM||2 > 0.01. We use this criterion additionally to counting
the number of periods nper the particle system undergoes (cf. [Durlof-
sky et al., 1987]), because it is more sensitive. Even when symmetry is
broken, the particle system continues the periodic movement for several
periods. We determined the number of periods by the number of times
the particles lie in the same plane (cf. figure 2.4, middle). The average
time tper for one period is determined by averaging all measured periods.
Table 2.1 shows our results for different levels of approximation, different
Stokes numbers St and the three different edge lengths rinit of the cube,
which were also investigated in [Durlofsky et al., 1987]. The simulations
using the FTS version of SD are slightly more stable than when the FT
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Figure 2.5: Maximum relative deviation of particle positions Xi,P , i = 1, ..., N ,
obtained from simulations when different numbers of processes P > 1 are used,
from particle positions Xi,1 when P = 1. Left: Deviation over time for the
solution of the mobility problem (St = 0) using the FT-approximation. Right:
Deviation over time for the solution of the resistance problem (St > 0) using
the FT-approximation.
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Level of approximation St P rinit nper tbreak tper

FT 0 1 3 20.5 581 31.9
FT 0 8 3 20 584 32.7
FT 0.0001 1 3 19 542 32.9
FT 0.0001 8 3 19.5 549 32.1

FTS 0 1 3 21 730 39.9
FTS 0 8 3 21.5 747 39.0

FT 0 1 4 14 798 61.9
FT 0 8 4 14.5 806 59.7
FT 0.0001 1 4 14 771 61.9
FT 0.0001 8 4 15 804 61.9

FTS 0 1 4 14.5 824 64.4
FTS 0 8 4 14 824 66.7

FT 0 1 5 14.5 1247 96
FT 0 8 5 14 1220 99.4
FT 0.0001 1 5 13.5 1195 95.4
FT 0.0001 8 5 14 1249 99.1

FTS 0 1 5 13 1208 103.5
FTS 0 8 5 13 1199 103.5

Table 2.1: Number of periods nper, symmetry break point tbreak and
average time for one period tper for the different considered setups.

approximation is used. Our parallel implementation of the adaptive (4,5)-
Runge-Kutta-Fehlberg method performs as good as the sequential version,
as one can see in table 2.1 when comparing the number of periods nper

and the symmetry break points tbreak for P = 1 and P = 8. In general
our integration scheme is quite stable, as our simulations are stable for at
least 542 dimensionless time units and the values we obtain for nper are
always higher than 10. Durlofsky et al. [1987] name this value as approxi-
mate maximum number of periods in their simulations. Figure 2.5 shows
the deviation of particle positions gained from simulations for which the
number of used processes P > 1, compared with simulations for which
P = 1. As one can see, the deviation is negligible until the breakup of the
symmetric particle configuration (cf. table 2.1 for breakup times). The
significant deviation after breakup is not surprising, as the breakup is trig-
gered by slowly increasing numerical errors and particle trajectories are
very sensitive to small deviations, such that the exact particle trajectories
differ strongly after the breakup event. This fact has been reported in
[Durlofsky et al., 1987]. Another problem where the sensitivity of particle
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trajectories plays a role can be found e.g. in [Sharma and Patankar, 2005].
In addition, we have run simulations with the same set of parameters,
but with a maximum allowed time step ∆tmax lower than any time step
proposed by the time integration scheme (∆tmax = 10−5 instead of the
originally used ∆tmax = 0.1). With this choice all simulation results agree
perfectly over a chosen simulation time of 100000 dimensionless time steps
and P ∈ {1, 2, 4, 8}.

2.3.2 Settling Cloud of Particles

Several works such as [Nitsche and Batchelor, 1997], [Metzger et al., 2007]
or [Abade and Cunha, 2007] deal with the settling of particle clouds in a
quiescent fluid. Depending on the level of approximation and the method
used for the simulation, sequential codes are usually limited to the simu-
lation of several hundred to a few thousand particles. A parallelized SD
method is capable of simulating the dynamics of several thousand parti-
cles within hours. Even the simulation of a million particles is possible
within days. To give an example of the evolution of a large particle system,
we have simulated the dynamics of a settling polydisperse particle cloud
comprised of 20000 particles over 4000 dimensionless time units within 7
days, using 256 processes. Different stages of the initially spherical par-
ticle cloud are shown in figure 2.6. The initial volume concentration of
particles inside the cloud is 1%, the radius distribution is a lognormal dis-
tribution with expected dimensionless radius 1 and a standard deviation
of 0.065 dimensionless length scales. The chosen level of approximation
is FT, we assume St ≈ 0. As shown in [Bülow et al., 2015], polydisperse
particle clouds behave like monodisperse particle clouds, if the number of
particles in the initial cloud is large enough. The initially spherical cloud
(figure 2.6 a)) constantly loses particles as it settles. It forms a torus (fig-
ure 2.6 b)), which eventually breaks up into smaller clouds (figure 2.6 c)).
This evolution continues until the number of particles per cloud is too
small to form a coherent cloud and the clouds dissipate. As one can see
in figures 2.6 d), e) and f), the breakup of polydisperse clouds does not
have to result in two sub-clouds, as it is the case for monodisperse particle
clouds settling at vanishing Reynolds number. The facts that also polydis-
perse particle clouds undergo this characteristic evolution, and that they
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a)

f)

Figure 2.6: Different stages of a polydisperse particle cloud comprised of 20000
particles settling under the influence of gravity. Subfigure b) shows additionally
to the side view a view from above, where the torus form of the cloud is visible.
The tail of leaked particles is not shown in subfigures b)-f). For better visibility
particles have been enlarged by a factor of 5 in subfigures d) and e) and by a
factor of 10 in f).

can break up into more than two sub-clouds per breakup event are only
visible if the number of particles is large enough. This is just one example
which shows that due to parallelization it is not only possible to simulate
large particle systems, but it is also necessary in order to see effects which
are not visible when small particle systems are simulated.

2.3.3 Settling Cloud of Particles with Non-Hydrodynamic

Interactions

As discussed in section 2.2.4, a parallelization can reduce the complex-
ity of the simulation algorithm immensely. This makes computationally
expensive simulations more feasible. Exemplarily, we have simulated the



84

dynamics of 1000 colloids which interact not only hydrodynamically, but
also through forces arising from the interparticle interactions described
in sections 2.2.2 and 2.2.3. The particles are initially placed randomly
in a spherical domain with an initial particle volume fraction of 1% and
the same radius distribution as in section 2.3.2. The parameters for the
interparticle forces were chosen such that the resulting potential was the
potential depicted in figure 2.1. The chosen level of approximation is again
FT. While a dimensionless time step is usually about 0.1 for purely hydro-
dynamic problems such as the simulation presented in section 2.3.2, simu-
lations including DLVO interactions typically require a dimensionless time
step of 1e-5. We have simulated 100 dimensionless time units correspond-
ing to 10 million time steps on 32 processes within 11 days. Snapshots
from the simulation are shown in figure 2.7. As one can see in figure 2.7
in the middle, where the particle cloud after 0.9 dimensionless time units
is depicted, and on the right hand side, where the configuration after 100
dimensionless time units is shown, particles form aggregates which grow
with time and become more compact. The aggregation of particles can be
examined further through appropriate postprocessing, for which we use a
cluster detection algorithm based on a R-tree data structure. With this
tool the evolution of cluster size and -structure can be examined in detail
and the effects of different conditions such as an increase in gravitational
acceleration or a change in the ionic strength, which directly influences
the Debye–Hückel reciprocal length κ, can be investigated.

Figure 2.7: Left: Initial configuration of 1000 particles. Middle: Configuration
after 0.9 dimensionless time units. Small fractal aggregates are visible. Right:
Configuration after 100 dimensionless time units. Aggregates have grown in size
and in their fractal dimension. The tail of leaked small aggregates and particles
is not shown.
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2.3.4 Efficiency of the Parallelization

The SD method itself already is an effective method for the simulation of
colloidal systems, as the fluid motion is implicitly treated and the fluid
velocity field does not have to be computed explicitly. In the following
we show that a code parallelization can increase the number of particles
which can be simulated by several orders of magnitude, while keeping
the CPU time low. To determine the efficiency of a parallelization, a
value called speedup is used. When no data of a sequential program is
available the incremental speedup is used to measure the efficiency of a
parallelization.

Speedup

The speedup S(P ) of a parallel algorithm running on P processes is de-
fined as

S(P ) :=
T (1)

T (P ),

where T (1) and T (P ) are the execution time for a single process and for P
processes, respectively. Figures 2.8 and 2.9 show the speedup we achieved
for the solution of different problems using different numbers of processes
P and different numbers of particles N . The dashed lines in the graphs
indicate linear speedup, where S(P ) = P . A speedup higher than this
is usually explained by cache effects. A speedup much lower than linear
speedup is not desirable, as a further increase in the number of processes
would not significantly decrease the CPU time. Due to increased com-
munication between processes, a higher number of processes can actually
increase CPU time, compared to a lower number of processes. We see
this effect in figure 2.8, where the speedup we achieve for the solution of
the mobility problem at the FT-level of approximation for a monodisperse
system of 10000 particles is around 44 when we use 64 processes, whereas
if we double the number of processes, the speedup decreases to a value
of 36. The speedup in case of a polydisperse particle system shows the
same behaviour as in the monodisperse case. As one can see in figure 2.8,
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Figure 2.8: Left: Speedup S(P ) for the solution of the mobility problem
(St = 0) using the FT-approximation for a monodisperse particle system. Right:
Speedup S(P ) for the solution of the resistance problem (St > 0) using the FT-
approximation for a polydisperse particle system.
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Figure 2.9: Left: Speedup S(P ) for the solution of the resistance problem
(St > 0) using the FT-approximation for a monodisperse particle system with
lubrication scheme as in [Durlofsky et al., 1987]. Right: Speedup S(P ) for the
solution of the mobility problem (St = 0) using the FT-approximation for a
polydisperse particle system with DLVO interactions.

right, the parallelized SD algorithm scales quite good, even when we solve
the work-intensive resistance problem. When we additionally include a
lubrication correction scheme as in [Durlofsky et al., 1987], we obtain a
similarly good speedup (cf. figure 2.9, left). For the solution of the lin-
ear system we use the standard conjugate gradient method provided by
PETSc. Figure 2.9 also shows the speedup which can be achieved when
solving the mobility problem for a polydisperse particle system considering
DLVO interactions with potentials as shown in figure 2.1. The achievable
speedup is comparable to that of the solution of the mobility problem
without DLVO interactions (cf. 2.8, left), but due to the steep DLVO po-
tential for short interparticle distances, the time step is much smaller and
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thus the overall CPU time for a simulation over the same time span is
much higher.

Incremental Speedup
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Figure 2.10: Left: Incremental speedup SI(P ) for the solution of the mobility
problem (St = 0) using the FT-approximation for a polydisperse particle system.
Right: Incremental speedup SI(P ) for the solution of the mobility problem
(St = 0) using the FTS-approximation for a polydisperse particle system.

By definition, the computation of the speedup S(P ) depends on the ex-
ecution time using one process. When a simulation cannot be run on a
single process anymore, e.g. because the number of simulated particles
becomes too large, the efficiency of the parallelization can be measured
by the incremental speedup,

SI(P ) :=
T (P/2)

T (P )
.

It is defined as the ratio of the execution times of two computations when
the number of processes is doubled. Figure 2.10 shows the incremental
speedup for selected applications. The upper dashed line in the graphs
represents optimal incremental speedup. This is reached when the exe-
cution time is halved by doubling the number of used processes. Data
points below the lower dashed line in figure 2.10 show that the program
becomes slower when doubling the number of processes. As one can see
in figure 2.10, the mobility problem can be solved very efficiently in par-
allel, even for a large number of particles (figure 2.10, left) or at a higher
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level of approximation (figure 2.10, right). As a rule of thumb, the more
particles shall be simulated, the more processes can be used with optimal
performance for this type of problem. Even the use of over one thousand
processes still yields a speedup for relatively large problems.

2.4 Conclusions

We have shown that a parallelized Stokesian Dynamics code running on
a distributed memory machine is a very effective tool for the simulation
of large particle systems. The achievable speedup can attain values of
over 100, making the parallel algorithm more than 100 times faster than
a sequential version. Depending on the problem to be solved, for large
particle systems even more than a thousand processes can be used to their
full capacity. This allows the simulation of the dynamics of one million
particles within days. For supercomputers with more available processes,
even larger numbers of particles should be doable. The resulting savings
in time give rise to the simulation of bigger particle systems where not
only hydrodynamic interactions play a role. We have incorporated at-
tractive London–van–der–Waals forces, repulsive electrostatic forces and
forces arising from particle contact for polydisperse particle systems into
our simulation. The SD method allows incorporating such interparticle
interactions in an elegant way as the additional forces can simply be added
to other external forces acting on the particles. For the communication be-
tween processes, different strategies have to be applied for hydrodynamic
interactions on the one hand and for non-hydrodynamic interactions on
the other hand. Theoretically, the proposed strategies can also be applied
to other simulation methods, as usually the computation of fluid velocities
involves the solution of a system of linear equations, which can be done
best with ring communication, whereas non-hydrodynamic interactions re-
quire sparse communication due to the limited number of communication
partners. The SD method applied to infinite systems can be parallelized
in essentially the same way when the standard Ewald summation is used
to compute hydrodynamic interactions among particles.



Chapter 3

A scalable parallel Stokesian Dynamics method for

the simulation of colloidal suspensions

Abstract

We have developed a new method for the efficient numerical simulation of
colloidal suspensions. This method is designed and especially well-suited
for parallel code execution, but it can also be applied to single-core pro-
grams. It combines the Stokesian Dynamics method with a variant of
the widely used Barnes–Hut algorithm in order to reduce computational
costs. This combination and the inherent parallelization of the method
make simulations of large numbers of particles within days possible. The
level of accuracy can be determined by the user and is limited by the
truncation of the used multipole expansion. Compared to the original
Stokesian Dynamics method the complexity can be reduced from O(N2)
to linear complexity for dilute suspensions of strongly clustered particles,
N being the number of particles. In case of non-clustered particles in a
dense suspension, the complexity depends on the particle configuration
and is between O(N) and O(Pn2

p,max), where P is the number of used
processes and np,max = ⌈N/P ⌉, respectively.

This chapter follows our work of the same title under consideration for
publication in the journal Computer Physics Communications.
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3.1 Introduction

Colloidal suspensions, which means particles of diameter between 10 nm
and 10 µm suspended in a fluid, can be found in a vast number of indus-
trial processes. Even though currently research in this field is blooming,
the behaviour of colloids is not fully understood yet. Physical experiments
are either time consuming, costly, or simply not possible at the moment.
This is where numerical simulations provide a valuable aid to experimen-
tal research. Since in numerical experiments influencing factors can be
turned on or off easily, e.g. the nature of interparticle interactions and
their impact on the overall behaviour of a suspension can be understood
better. Due to the long-range nature of hydrodynamic forces which de-
cay at a rate of 1/r, where r is the interparticle distance, this type of
problem can be seen as so-called N -body problem [Ichiki, 2002]. Such
problems are characterized by long-range interactions of the N involved
bodies. These interactions can be of any nature and appear on any length
scale. On the atomic level [Board et al., 1992], [Winkel et al., 2012] the
Coulomb force, which decays at rate 1/r2, acts between molecules. On a
larger length scale, e.g. between toner particles which have typically the
size of some microns, hydrodynamic forces and Coulomb forces cause a
non-negligible N -body interaction [Hoffmann, 2006]. Even the simulation
of the collision of galaxies is an N -body problem due to the long-range
gravitational force acting between stars, which can also be seen as par-
ticles [Dubinski, 1996]. Due to the fact that every particle in the sys-
tem interacts with every other particle, these problems inherently have
a complexity of O(N2) if no approximations are made. The two most
prominent methods to reduce complexity are the Barnes–Hut algorithm
[Barnes and Hut, 1986], [Barnes, 1990] and the fast multipole method
(FMM) by Greengard and Rohklin [Greengard and Rohklin, 1987], [Car-
rier et al., 1988]. The latter has typically a complexity O(log(1/ǫ)3N),
where ǫ is the desired accuracy of the approximation [Machu et al., 2001].
It can be parallelized and has been applied successfully to a wide range of
N -body problems [Ichiki, 2002], [Ogata et al., 2003], [Kurzak and Pettitt,
2005] as well as to mathematically similar problems [Darve, 2000]. The
Barnes–Hut algorithm is a tree-based method like the FMM. Although
its complexity of O(N log(N)) is asymptotically higher than that of the
FMM, the associated constants are smaller, particularly for simulations
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in three dimensions [Grama et al., 1998]. Because of its intuitivity and its
ease of implementation, besides the FMM, the Barnes–Hut algorithm has
become the most popular fast particle method [Koumoutsakos, 2005]. Uti-
lizing this method and code parallelization, extremely large problems can
be solved efficiently [Dubinski, 1996], [Winkel et al., 2012]. Apart from its
original purpose of reducing the numerical costs for the computation of
far-field interactions, it can also be used for collision detection in discrete
element simulations [Hoffmann, 2006]. A direct comparison of FMM and
Barnes–Hut can be found in [Singh et al., 1995]. Both methods make use
of clustering of particles. The FMM depends on the interparticle potential
to be expandable around the cluster centers, where the expansion is cut
off at a desired order of approximation. The Barnes–Hut algorithm does
not have this restriction but also makes use of particle clustering and a
tree data structure, where the level of approximation can be controlled by
the tree-depth and a chosen parameter.
Mesh free techniques like the Stokesian Dynamics (SD) method [Durlof-
sky et al., 1987], [Brady and Bossis, 1988] are an elegant way to solve
hydrodynamic N -body problems arising from the simulation of colloidal
suspensions. They do not rely on the explicit computation of the fluid ve-
locity at a fixed computational grid. Instead, the fluid is treated implicitly
and no solver for the fluid phase is necessary. This reduces computational
costs and fast particle methods such as FMM or Barnes–Hut can be used
to their full effect. SD has been coupled with several fast particle meth-
ods in order to reduce its generic complexity of O(N2) resulting from the
evaluation of a matrix-vector product. For example in the widely used
accelerated Stokesian Dynamics method by Sierou and Brady [2001], a
particle-mesh Ewald (PME) method has been applied to the original SD
method in order to achieve a O(N log(N))-scheme for periodic domains.
Saintillan et al. [2005] use a similar technique to simulate non-Brownian
rigid fibres by means of slender-body theory [Butler and Shaqfeh, 2004].
Ichiki [Ichiki, 2002] has successfully utilized the FMM to obtain a SD
method with complexity between O(N) and O(N3/2). This seems to be
a favourable method, but there is a big additional overhead, which makes
this scheme superior to the standard SD method only for large numbers
of particles. Furthermore it is nontrivial to code, not speaking of a pos-
sible parallelization. Due to its advantages and its inherent suitability
for parallel code execution on distributed memory machines, the Barnes–
Hut algorithm is our method of choice in order to accelerate the already
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computationally efficient SD method. We have employed the concept of
the Barnes–Hut algorithm to the original SD method, focussing on an
execution on supercomputers which become more and more the standard
tool for simulations of large particle systems. In this work we present a
modified version of Stokesian Dynamics which we call scalable Stokesian
Dynamics (SSD). We call it scalable because the level of approximation
can be chosen via input parameters and the method is designed for an
execution on parallel machines, where the size of the simulated particle
system can grow with an increasing number of computing cores, which at
the same time makes the method more efficient [Bülow et al., 2014]. First
we briefly introduce the original SD method in order to clarify the termi-
nology and the nature of the problem. After that we show how we have
merged the Barnes–Hut algorithm with SD to obtain the load balanced
SSD. We investigate the error resulting from the approximation and show
how we group particles and their data in order to achieve optimal load bal-
ance and low computational costs. There are other works which propose
methods to simulate particle suspensions, such as [Sangani and Mo, 1996],
[Hernández-Ortiz et al., 2006], [Lomholt and Maxey, 2003] or [Tornberg
and Greengard, 2008]. The authors of the latter rewrite Stokeslet and
Stresslet summation formulas in such a way that the harmonic FMM can
be used in ”black-box” fashion, which is an interesting point for users who
do not want to write their code from scratch. As Maxey and Patel [2001]
state in their work, multipole expansions have, in one form or another, be-
come a standard technique for the simulation of Stokes suspensions. The
main differences between existent approaches lie in the method used to
assign the multipole strengths either in terms of force densities on the
particle surface or the boundary conditions, as well as in the inclusion of
lubrication forces and the order of the multipole expansion. Even though
other methods have achieved a considerable reduction of the overall nu-
merical costs, they have not been designed for parallel code execution.
This is the main advantage of our method. It scales with the number of
cores which are used for the simulation. If a P -fold amount of cores is
used, roughly the P -fold amount of particles can be simulated and our
proposed method can be applied more effectively [Bülow et al., 2014].
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3.2 The method

We present the SSD method based on the original Stokesian Dynamics
method by Brady and Bossis [Brady and Bossis, 1988] without any near-
field correction. There are several schemes to include near-field lubrica-
tion effects [Jeffrey and Onishi, 1984, Jeffrey, 1992], [Cichocki et al., 1999],
[Nitsche and Batchelor, 1997], [Abade and Cunha, 2007] and [Cunha et al.,
2002]. An inclusion of the schemes described in the works of Jeffrey and
Onishi [1984] and that of Cichocki et al. [1999] in the described SSD
method is possible by modifying the lubrication matrix in a similar man-
ner as we alter the original mobility matrix to obtain a simplified mobility
matrix. Yet this is not necessary. The effects arising from lubrication
decrease rapidly with increasing interparticle distance. Due to this be-
haviour and the high numerical costs of the computation of the entries of
the lubrication matrix one usually uses a cutoff length after which the en-
tries are set to zero. This length is typically chosen to be smaller than 10
particle radii. For such distances the resulting mobility matrix proposed
in this work reduces in most cases to the standard SD mobility matrix
used in a parallel implementation of the original SD method [Bülow et al.,
2014], making a reformulation of the lubrication matrix futile. Neverthe-
less, the tree structure resulting from the proposed grouping of particles
(cf. section 3.3.2) can be used to minimize communication among pro-
cesses during the computation of the lubrication matrix, which reduces
numerical costs. Schemes which model lubrication as additional force can
be included in our method without additional effort, yet they often show
non-physical behaviour as most formulations model the repulsive part of
lubrication, but not the attractive part.
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3.2.1 Stokesian Dynamics

The motion of a spherical colloidal particle α suspended in a fluid can be
described by the Langevin equation and the corresponding equation for
the angular velocity,

mα
d

dt
Uα = F h

α + F b
α + F i

α + F ext
α ,

Iα
d

dt
ωα = T h

α + T b
α + T i

α + T ext
α , (3.1)

where mα is the mass of particle α, Iα its moment of inertia tensor, Uα

the translational velocity and ωα the angular velocity. F h
α is the hydro-

dynamic force, F b
α forces arising from Brownian motion, F i

α interparticle
forces, such as the London-van-der-Waals force, and F ext

α external forces
like gravity. T α denote the corresponding torques acting on the particle.
When considering rigid particles the assumption Eα = 0, where Eα is the
rate of strain of particle α, is reasonable. As in [Durlofsky et al., 1987],
the SD method is based on the integral representation for the velocity
field in Stokes flow with rigid particles,

uD(x) := u(x) − u∞ = −
1

8πµf

N
∑

α=1

∫

σα

G(x − ξ)fh(ξ) dσ(ξ). (3.2)

Here, µf is the fluid viscosity, N the number of particles, σα the surface of
particle α, fh the hydrodynamic force density and G Green’s function for
Stokes flow vanishing as ||x||2 → ∞, the so-called Oseen tensor, defined
by

G(x) :=
1

r

(

Id +
1

r2
x ⊗ x

)

, (3.3)

with r := ||x||2 and the identity matrix Id. We have defined the distur-
bance velocity uD as difference of fluid velocity u with particles and the
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fluid velocity u∞ without disturbance by any particles. This velocity is
generally given by

u∞(x) := U∞ + Ω∞ × x + E∞x,

where x is a point in the fluid domain, U∞ and Ω∞ are the translational
and angular velocity of the undisturbed flow, E∞ is the corresponding
rate of strain. After a multipole expansion and together with Faxen’s
laws a linear relation between the particle velocities Uα, ωα, α = 1, ..., N ,
and the hydrodynamic forces, hydrodynamic torques, stresslets Sα and
possibly considered higher moments can be found. Considering the first
two moments in the multipole expansion [Durlofsky et al., 1987] this rela-
tion is given by the mobility problem [Ichiki, 2002]
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∞
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1
...
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. (3.4)

The grand mobility matrix M
∞ ∈ R

11N×11N can be decomposed into
sub-matrices,

M
∞ =





MUF MUT MUS

MωF MωT MωS

MEF MET MES



 , (3.5)

where e.g. the subscript of MUF ∈ R
3N×3N indicates that this sub-matrix

links the hydrodynamic force on all N particles to their translational veloc-
ity. In fact E∞,Sh

α ∈ R
3×3, but due to their symmetry and as they both
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can be assumed to have zero trace, they can be written as vectors of length
5, so the vectors match the dimension of M

∞. The mobility matrix M
∞

is symmetric and positive definite, where the symmetry can be verified by
computing the entries of M

∞. Briggs et al. [Briggs et al., 1991] provide
a proof for the positive definiteness for all approximations to the mobility
matrix gained by multipole expansions. This is an important property of
the matrix and is a great advantage for the numerical treatment of the
problem. Durlofsky et al. [Durlofsky et al., 1987] calculated the entries of
the mobility matrix of a system of monodisperse spheres, i.e. spheres of
the same radius, using scalar mobility functions as introduced by Jeffrey
and Onishi [Jeffrey and Onishi, 1984]. The exact form of the entries of
the mobility matrix M

∞ for polydisperse systems is given in 3.5. Solving
(3.4) formally for the hydrodynamic forces, torques and stresslets and plug-
ging those into the Langevin equations (3.1) yields a system of nonlinear
second order differential equations for the particle positions. Nonlinear,
because the mobility matrix depends on the latter and its entries are
nonlinear functions. We solve this system by employing a parallel imple-
mentation of an adaptive (4,5)-Runge–Kutta–Fehlberg method [Fehlberg,
1970] which yields good results, as shown in [Bülow et al., 2014]. The
linear system (3.4) can be solved efficiently e.g. by a conjugate gradient
method, which does not require the storage of all matrix entries. This is
an advantage especially for large problems, where N ≫ 1000. In order to
explain our new method we restrict ourselves to the F-version of the SD
method [Durlofsky et al., 1987], where M

∞ = MUF . An extension to the
FT- and FTS-version or possibly higher versions of the SD method [Ichiki,
2002] can be done in an analogous way, which we explain at the end of
section 3.2.2. We have implemented the SSD method in the F-, FT- and
in the FTS-version. To keep this work somewhat short and focused on the
method itself we restrict ourselves to showing most results only for the
FT-version. As one can see in subsection 3.4.4, the FTS-version with and
without lubrication correction scheme shows similar performance. But it
is less economic when it comes to CPU time and memory.
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3.2.2 Scalable Stokesian Dynamics

To model and simulate gravitational N -body problems in stellar dynamics
a technique of hierarchical subdivision of space into cells was introduced
by Barnes and Hut [Barnes and Hut, 1986]. For each cell all bodies
within are combined and the cell is divided further into sub-cells. Then
the interactions between single bodies can be replaced by cell interactions,
if the resulting error is tolerable. Even though the long-range interactions
in astronomy and hydrodynamics are of different nature, they share the
same asymptotics. So we utilize this approach for the development of an
accelerated method for the solution of the mobility problem, where the
bodies are particles. From the derivation of the mobility problem (3.4)
it becomes clear that the hydrodynamic force acting on particle α arises
from the disturbance velocity caused by all other particles. If we think
of a particle β far away from a considered particle α, slightly altering
the position of particle β should only have little effect on the disturbance
velocity uD for points close to the center xα of particle α. As the mobility
matrix M

∞ emerges directly from the disturbance velocity, we transfer
the above heuristic to the matrix representation. Assume that there is a
point xβ such that xβj

−xαi
≈ xβ −xαi

for two given groups of particles,

A := {α1, . . . , αm} and B := {β1, . . . , βn}. When calculating M
∞ we

can therefore replace the distance vector xβj
− xαi

for such groups by
the respective averaged distance vector xβ − xαi

. We define the resulting
matrix

M
∞

=





MUF MUT MUS

MωF MωT MωS

MEF MET MES



 , (3.6)

and call it simplified mobility matrix. In each submatrix, the (A,B)-block

will have altered entries compared to the original matrix. To preserve the
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symmetry of the mobility matrix, the entries of the (B,A)-block have to

be altered accordingly. E.g. the first submatrix MUF has the form

MUF =

















































.

.

.
.
.
.

· · · aα1β1 · · · aα1βn
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. . .
.
.
.

.

.

.

· · · aαmβ1 · · · aαmβn
· · ·
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..
.
..

.

.

.
.
.
.

· · · aβ1α1 · · · aβ1αm
· · ·

.

.

.
.
.
.

. . .

· · · aβnα1 · · · aβnαm
· · ·

.

..
.
..

















































.

In the following we will show in detail how this submatrix is approxi-
mated block-wise and use it as prototype for the other submatrices of the
mobility matrix. The entries are called mobility functions, which depend
not only on the particle distance but also on the radii of the particles (cf.
equations (3.16)–(3.21)). In the original Barnes–Hut algorithm not only
the distances between different bodies are approximated, but also their
radii. In our method the radii aαi

, aβj
of the particles are not approxi-

mated. The exact radii can be kept without loss of efficiency by extracting
them from the original matrix. To achieve this, we split the matrix block
into three parts. The first part for the summands not depending on the
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radii and one part each containing the radii of the particles in A and B
respectively. Using Id3 for the unit matrix in R

3×3 we get

(MUF )AB =









3
4G

α1β · · · 3
4G

α1β

...
...

3
4G

αmβ · · · 3
4G

αmβ









+









a2
α1

6 ∆G
α1β · · ·

a2
α1

6 ∆G
α1β

...
...

a2
αm

6 ∆G
αmβ · · ·

a2
αm

6 ∆G
αmβ









+









a2
β1

6 ∆G
α1β · · ·

a2
βn

6 ∆G
α1β

...
...

a2
β1

6 ∆G
αmβ · · ·

a2
βn

6 ∆G
αmβ









=









3
4G

α1β · · · 3
4G

α1β

...
...

3
4G

αmβ · · · 3
4G

αmβ









+







a2
α1

Id3 0
. . .

0 a2
αm

Id3















1
6 ∆G

α1β · · · 1
6 ∆G

α1β

...
...

1
6 ∆G

αmβ · · · 1
6 ∆G

αmβ









+









1
6 ∆G

α1β · · · 1
6 ∆G

α1β

...
...

1
6 ∆G

αmβ · · · 1
6 ∆G

αmβ















a2
β1

Id3 0
. . .

0 a2
βn

Id3






,
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with the abbreviation G
αβ = G(xβ −xα). Having the radii extracted, all

columns in each of the three dense matrices are equal. Thus the Oseen

tensor terms can be extracted as well. We obtain

(MUF )AB =
3

4









G
α1β 0

. . .

0 G
αmβ









J3N

+
1

6









a2
α1

Id3 0

. . .

0 a2
αm

Id3

















∆G
α1β 0

. . .

0 ∆G
αmβ









J3N

+
1

6









∆G
α1β 0

. . .

0 ∆G
αmβ









J3N









a2
β1

Id3 0

. . .

0 a2
βm

Id3









,

(3.7)

where we use the matrix of ones J3N ∈ R
3N×3N ,

J3N :=







1 · · · 1
...

. . .
...

1 · · · 1






.
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For the block (MUF )BA we gain analogously

(MUF )BA =
3

4
J3N









G
βα1 0

. . .

0 G
βαm









+
1

6









a2
β1

Id3 0

. . .

0 a2
βm

Id3









J3N









∆G
βα1 0

. . .

0 ∆G
βαm









+
1

6
J3N









∆G
βα1 0

. . .

0 ∆G
βαm

















a2
α1

Id3 0

. . .

0 a2
αm

Id3









.

(3.8)

For the considered blocks the matrix is now split up in diagonal ma-
trices and matrices of ones. Hence the matrix-vector products UB

A =
(MUF )ABF B and UA

B = (MUF )BAF A can be computed with reduced
effort. We refer to the vectors

F A = (F α1
, . . . , F αm

)
T ∈ R

3m, F B = (F β1
, . . . , F βn

)
T ∈ R

3n

and

UB
A =

(

UB
α1
, . . . , UB

αm

)T

∈ R
3m, UA

B =
(

UA
β1
, . . . , UA

βn

)T

∈ R
3n

as forces and velocities. The superscripts to the velocities shall denote
that the result is the part of the velocity caused by the respective forces.
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The overall velocity is then calculated by summing up those parts for all
force blocks. Equation (3.7) yields the elements of UB

A,

UB
αi

=
(3

4
G(xβ − xαi

) +
1

6
a2

αi
∆G(xβ − xαi

)
)

S
F
B

+
1

6
∆G(xβ − xαi

)Sa2F
B .

(3.9)

The summed force vectors S
F
B , S

a2F
B ∈ R

3 are defined as

S
F
B :=

n
∑

j=1

F βj
, S

a2F
B :=

n
∑

j=1

a2
βj

F βj
.

They are the same for all αi and can be computed at linear cost. From
equation (3.8) we gain for the elements of UA

B

UA
βj

=
m
∑

i=1

(3

4
G(xαi

− xβ) +
1

6
a2

αi
∆G(xαi

− xβ)
)

F αi

+ a2
βj

m
∑

i=1

1

6
∆G(xαi

− xβ)F αi
.

(3.10)

Note, that the sums in (3.10) are independent of βj . So after a computa-
tion of the sums, each component of the velocity vector can be computed
with the effort of one multiplication and one addition.
If the initial approximation xβj

− xαi
≈ xβ − xαi

also applies vice
versa, i.e. there is a point xα such that xβj

− xαi
≈ xβj

− xα, we have
xβj

− xαi
≈ xβ − xα for all αi, βj , (i, j) ∈ {1, . . . ,m} × {1, . . . , n}. Then
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the Oseen tensor is constant for all pairs and the calculation costs are
reduced even further. We then have

UB
αi

=
3

4
G(xβ − xα)SF

B +
1

6
∆G(xβ − xα)Sa2F

B

+ a2
αi

1

6
∆G(xβ − xα)SF

B ,

UA
βj

=
3

4
G(xβ − xα)SF

A +
1

6
∆G(xβ − xα)Sa2F

A

+ a2
βj

1

6
∆G(xβ − xα)SF

A.

The only variable values left in those formulas are aαi
and aβj

respec-
tively. Thus the effort which determines the complexity of the compu-
tation is reduced to the computation of the weighted force sums. In
higher order versions of the SD method all non-diagonal entries sαβ of
the submatrices of M

∞ can be represented by a sum of the form sαβ =
L1(xβ −xα)+a2

αL2(xβ −xα)+a2
βL3(xβ −xα), where s stands for any of

the submatrices a, b, c, g,h or m (cf. equations (3.16)–(3.21)). The ma-
trices Lk, k = 1, 2, 3, are independent from particle radii. Therefore the
simplifications we made for the submatrix MUF and its entries a can be
transferred directly to the other mobility functions in the grand mobility
matrix M

∞.

3.2.3 Error analysis

To estimate the error of the above approximation we consider two particles
α and β with distance vector r = xβ −xα. If the center xβ of particle β is
shifted by ζ = [ζ1, ζ2, ζ3]T ∈ R

3, the disturbed particle distance vector is
r̃ = r + ζ. We define rαβ := ‖r‖2, e := r/rαβ as well as for the disturbed
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values r̃αβ := ‖r̃‖2 and ẽ := r̃/r̃αβ . Let ζmax :=
3

max
i=1

|ζi|, then we have

ẽ = e + η for the disturbed unit vector ẽ with

|ηk| = |ẽk − ek| =
∣

∣

∣

rk + ζk

r̃αβ
− ek

∣

∣

∣
=
∣

∣

∣

rαβ

r̃αβ
ek − ek +

ζk

r̃αβ

∣

∣

∣

=
∣

∣

∣ek
rαβ − r̃αβ

r̃αβ
+

ζk

r̃αβ

∣

∣

∣ ≤ |ek|
ζmax

r̃αβ
+
∣

∣

∣

ζk

r̃αβ

∣

∣

∣ ≤ 2
ζmax

r̃αβ

for the entries ηk and rk, k ∈ {1, 2, 3}, of η, r ∈ R
3. Thus the component-

wise error in the Oseen tensor can be estimated as follows:

|Gij(r) − Gij(r̃)| =
∣

∣

∣

δij

rαβ
+
rirj

r3
αβ

−
δij

r̃αβ
−
r̃ir̃j

r̃3
αβ

∣

∣

∣

=
∣

∣

∣

δij + eiej

rαβ
−
δij + ẽiẽj

r̃αβ

∣

∣

∣

≤
∣

∣

∣

r̃αβ(δij + eiej) − r̃αβ(δij + ẽiẽj)

r̃αβrαβ

∣

∣

∣

+
∣

∣

∣

ζmax(δij + ẽiẽj)

r̃αβrαβ

∣

∣

∣

=
∣

∣

∣

eiej − ẽiẽj

rαβ

∣

∣

∣+
∣

∣

∣

ζmax(δij + ẽiẽj)

r̃αβrαβ

∣

∣

∣

(∗)

≤4
ζmax

r̃αβrαβ
+ 4

ζ2
max

r̃2
αβrαβ

+ 2
ζmax

r̃αβrαβ

=
(

6 + 4
ζmax

r̃αβ

) ζmax

r̃αβrαβ
.
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For the estimate indicated by (∗) we utilize

|eiej − ẽiẽj | =
1

2

∣

∣

∣(ei + ẽi)(ej − ẽj) + (ei − ẽi)(ej + ẽj)
∣

∣

∣

=
1

2

∣

∣

∣(2ei + ηi)ηj + (2ej + ηj)ηi

∣

∣

∣

=
∣

∣

∣eiηj + ejηi + ηiη
∣

∣

∣

≤ 4
ζmax

r̃αβ
+ 4

ζ2
max

r̃2
αβ

.

Evaluating the rotlet R (cf. 3.5) for the altered particle positions leads to
a componentwise error of

|Rij(r) − Rij(r̃)| =
∣

∣

∣
ǫijk

rk

r3
αβ

− ǫijk
r̃k

r̃3
αβ

∣

∣

∣
=
∣

∣

∣

ek

r2
αβ

−
ẽk

r̃2
αβ

∣

∣

∣

≤
∣

∣

∣

r2
αβek − r2

αβ ẽk

r̃2
αβr

2
αβ

∣

∣

∣+
∣

∣

∣

2rαβζmaxẽk

r̃2
αβr

2
αβ

∣

∣

∣+
∣

∣

∣

ζ2
maxẽk

r̃2
αβr

2
αβ

∣

∣

∣

≤
2ζmax

r̃3
αβ

+
2ζmaxẽk

r̃2
αβrαβ

+
2ζ2

maxẽk

r̃2
αβr

2
αβ

In 3.5 we give all mobility functions for the FTS-version of the Stokesian
dynamics method applied to a polydisperse particle system. The mobility
functions are the entries of M

∞ and are compositions of the Oseen tensor,
the rotlet and their derivatives. Since we gain additional factors of 1/rαβ

in the derivatives (cf. 3.6) and we imply rαβ ≫ 1 we obtain the upper
bound

errαβ < C(‖xβ − xα‖2)
‖x̃β − xβ‖2

‖x̃β − xα‖2
, (3.11)

for the error in each disturbed mobility function for particles α and β,

where the factor C(ξ) = O
(1

ξ

)

depends on the undisturbed particle dis-

tance.
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3.2.4 Grouping particles

x�

Θ*

r

xβ2

xβ3

xβ1

xβ4

d

2

xβ
-

Figure 3.1: Grouping of particles proposed for the SSD method.

For the computation of the simplified mobility matrix M
∞

for a group of
particles B = {β1, . . . , βn}, the vector xβ has to be determined. Following
Barnes and Hut, we choose the center of mass of a group as substitutionary
center. As shown in figure 3.1 we define

xβ :=

∑n
j=1 a

3
βj

xβj
∑n

j=1 a
3
βj

and the group diameter

d := 2
n

max
j=1

‖xβ − xβj
‖2.

Considering the group’s effect on a particle α, we have to set up a criterion
to decide whether the averaged matrix block M

∞

αB or no approximation
to the mobility matrix is used. The error estimate (3.11) for the particle
βk furthest from the group’s center states

errαβk
< C(‖xβk

− xα‖2)
‖xβ − xβk

‖2

‖xβ − xα‖2
≤ C(r − d)

d

r
,
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where r is the distance between the group’s center and the center of parti-
cle α. Therewith the error errαB arising from considering the whole group
B instead of every single particle βj ∈ B, j = 1, . . . , n, is

errαB < CB(r)
d

r
,

with the factor CB depending on the constellation of the particles in
B. This backs up the approach of Barnes and Hut to use the simplified
method, if

tan(θ∗) =
d

r
< θ,

for a given θ. As this criterion leads to larger errors when the center of
mass is near the edge of the group Salmon and Warren [1994], we use a
modified criterion

d

r − δ
< θ, (3.12)

where δ := ‖xβ − x◦
B‖2 is the distance from the group’s center of mass to

the center x◦
B of the circumscribed sphere Dubinski [1996].

3.3 Implementation

3.3.1 Sorting algorithm

In order to achieve an optimal load balance we distribute the particle
data equally over the used processes pi, i = 1, . . . , P . Due to the dynamic
nature of the system, particles whose data is stored on the same process
do not necessarily have to remain close to each other during a whole sim-
ulation, even though initially the data might have been assigned to the
different processes according to the spatial distribution of the particles.
Proximity of data for particles which are in proximity in the simulated
domain is an advantage for the computation of interparticle forces, since
introduced cutoff distances can reduce communication costs. Sorted data
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is not only an advantage for the SSD method, it is crucial for its efficiency.
If a group of particles whose data is stored on the same process occupies a
smaller region in the simulation domain, the error resulting from grouping
is smaller and less data has to be sent between processes, as the simplified
method can be applied more often during a simulation. Widespread par-
ticle groups only rarely meet the grouping criterion (3.12), which would
make the method inefficient. Therefore we have implemented a parallel
sorting algorithm that sorts particle data in distributed memory accord-
ing to the spatial distribution of the particles. To achieve this we use
a parallel merge-sort algorithm Sedgewick and Wayne [2011] using recur-
sions. In every recursive step we require the processes to be arranged in
groups having m = 2n, n ∈ N, members p1, . . . , pm, with the prerequisite
that for processes in the subgroups p1 . . . pm/2 and pm/2+1 . . . pm, respec-
tively, the data is already sorted. This requirement is fulfilled by calling
the algorithm for each of the two subgroups. Then the data is merged
pairwise crossed. This means p1 ∪pm, p2 ∪pm−1, . . . , pm/2 ∪pm/2+1, where
the symbol ∪ stands for the merging process. After the merging routine
for all values x stored on process pi and all values y stored on pj , the
condition x < y holds for i < j, where ”<” can be any given ordering
relation. In our case it is a comparison of the particle coordinates along a
chosen sorting direction. Now every value in the subgroup assigned to pi

is smaller than all values assigned to pj . Due to the structure of the merge
function the data remains sorted locally on each process but is no longer
guaranteed to be sorted within the subgroup. Thus the merge sort algo-
rithm is called again for both subgroups. An example for one recursion
of the merge sort algorithm is illustrated in figure 3.2. If the algorithm
is applied to a number of processes unequal to a power of two, we use
phantom processes that store no data. The merge routine will return im-
mediately, when called for such a process. In the bottom level recursion
nothing has to be done, as we presume that the local data on a process
is always sorted. Therefore the initial step, before starting the recursion
with the big group of all processes, is to sort the data process-wise with
an arbitrary method, like the C standard quick-sort algorithm. Consider
now N elements equally distributed over P processes. As every process
stores N/P elements, the initial sorting is done in O

(

(N/P ) log(N/P )
)

op-
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merge

sort sort

sort sort

p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

p1 p2 p3 p4 p5 p6 p7 p8 p1 p2 p3 p4 p5 p6 p7 p8

Figure 3.2: Steps of the merge-sort algorithm for 8 processes pi: Data-points
are displayed as pixels, where the vertical position stands for their value and
the horizontal position denotes their location in memory.

erations. The merging requires O(N/P ) operations, thus for an arbitrary
recursion we have complexity

crec(Pg) = 2crec(
Pg

2
) + O(

N

P
),

depending on the group size Pg. In general, the recursive sequence (bk)k∈N

defined by
b1 = C, bk := 2bk−1 + C for k ≥ 2
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with a constant parameter C, has the explicit form

bk = C(2k − 1).

The complexity of the algorithm is defined by this recursion as

crec(2k) := bk,

where the constant C is O(N/P ). Therefore the complexity of the sorting
is

crec(Pg) = (Pg − 1)O(
N

P
).

Since the simulation space has 3 dimensions, we use the above sorting
algorithm to construct Cartesian cuboidal domains around the particles,
one for each process. In order to have an equal number of particles in each
domain, which yields better load balancing, we relinquish giving these
domains a fixed size. In every recursive step we split the fluid subdomain
of the considered group into two subdomains and repeat this until there
is a domain for every process. As cutting plane we choose the median of
the positions of the particles in the group sorted along the longest cuboid
edge. This means calling the sorting routine log2(P ) times with a group
size of 2k in the k-th call. Let np := N/P the number of particles per
process, the overall complexity for sorting csort is therewith

csort(N,P ) :=

log(P )
∑

k=1

(

O(np log(np)) + crec(2k)
)

= log(P )O(np log(np)) + (2log(P )+1 − 3)O(np) (3.13)

= O
(

np log(P ) log(np)
)

+ O(2Pnp) − O(3np).

An example for 384 particles in a plane, distributed over 16 processes is
shown in figure 3.3.
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Figure 3.3: Domain decomposition in 2D for 16 processes after application of
our parallel merge sort routine. Dots denote particle positions in space.

3.3.2 Tree structure

The SSD method uses the concept of trees, which is often used in computer
science. In this context ’node’ describes a data entry of the tree. This
expression could be easily confused with the node of a computer cluster.
Thus in the following we will use the term node exclusively for the nodes
of a tree. We will take the sorting algorithm presented in subsection 3.3.1
as starting point to construct these nodes. The original method by Barnes
and Hut Barnes and Hut [1986] is based on a hierarchical tree structure,
where the N leaf nodes represent one particle each and their parent node
contains the combined data of the two children. This is repeated up to
the root node, which contains the information of all particles. For the
parallel implementation, where the simulation is running on P processes,
we cut this tree at the P -th level and use only the P remaining sub trees,
one for each process. This way we waive the possibility to form nodes of
more particles than stored on one process, in favour of a better fit to the
parallel layout and reduced computational costs due to communication.
In the grouping process, as illustrated in figure 3.4, we initially use the
parallel merge sort routine described in subsection 3.3.1 to sort the parti-
cles according to their positions. Based on the sorted data, each process
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Figure 3.4: Illustration of the implemented grouping process.

builds a binary tree of a given depth. Note that this can be done com-
pletely in parallel without any latency due to communication. Adding a
new level to the tree is done in three steps for each current leaf node:

a) Construct a cuboid with edges parallel to the Cartesian coordinates,
circumscribing all particles on the node. Then determine the direc-
tion of the longest edge.

b) Sort the particles according to their scalar component in the deter-
mined direction.

c) Create two new sibling nodes, where the left node receives the first
half of the sorted particles and the right one stores the rest.

We determine the groups as we successively sort the particles. All nodes,
except the leaf nodes, pass the particle information to their children during
this procedure and do no longer contain any information. When now the
leaf nodes create a child for each of their particles we have a completely
empty tree structure in the intermediate levels. This is depicted in figure
3.5 where the white circles denote empty nodes. Storing the new single
particle leaves in a contiguous array, we have sorted indices α1, . . . , αnp

on
a process storing np particles and we can recognize the particle groups by
their index range. Once we know which particles belong to a group, we can
compute the matrix-vector product with the SSD method. Therefore we
now describe the procedure from the point of view of an arbitrary process.
When particles move, their indices αi and therewith the groups stay the
same, but the information relevant for the matrix calculation, the particle
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Figure 3.5: Tree structure after sorting and grouping. White circles denote
empty nodes. Each leaf contains the data of one particle.

position, changes. Thus every time the matrix-vector product has to be
computed we fill the empty nodes of a tree with the current information
on the related particle positions. This means we calculate for each node
the center and the radius of the smallest sphere surrounding all particle
centers of the node’s siblings αi, . . . , αj . Additionally, we compute the
center of mass and the sums of the forces and torques acting on those
particles. Initially, a process has only information on the groups in its
own tree. Thus before the aspect ratio condition (3.12) can be checked
for the particles on this process, the geometrical information of all groups
of the other processes must be collected. To reduce this communication
we perform the check vice versa. This means a process will not only
check if foreign groups match the criterion for its own particles, but it
will examine whether there are processes that can make use of its groups.
Therefore the data of the circumscribing spheres for the root node groups
on all processes is gathered and a worst case position x∗ is assumed as
reference for each of those foreign groups. Worst case means choosing a
point for which the aspect ratio assumes its maximum value, namely that
point on the surface of the circumscribing sphere that is closest to the
considered own group. Subsequently the groups in the tree are checked
starting from the root node. If a group matches the desired aspect ratio
the respective group is listed and the searched branch of the tree is closed,
else the child nodes are tested. This is repeated until each branch is closed.
Criterion (3.12) is met at the latest when a leaf node is reached, as they
contain only a single particle and thus d = 0. We have integrated the
described grouping process into the sorting routine, which can be skipped
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at a given frequency. This gives the possibility to reduce sorting costs in
case of a well-known geometry. Note that not only the aspect ratio θ∗

(cf. figure 3.1) is decreased when the groups take up less space, but also
the likelihood is higher that the distance between a considered particle
and a particle group stored on another process is larger than a cutoff
distance introduced for possible interparticle forces of non-hydrodynamic
nature. This leads to reduced costs for the calculation of these forces,
which reduces again overall computational costs.

3.4 Numerical Tests and Discussion

The major target we aimed at during the development of the SSD method
was a reduction of the CPU time while maintaining a good accuracy. In
our implementation there are three input parameters which determine the
level of approximation and the efficiency of the method. The efficiency is
mainly determined by the frequency at which the particle data is sorted
and assigned to corresponding processes (cf. section 3.3). Another pa-
rameter besides the sorting frequency is the maximum allowed ratio of a
group’s circumscribing sphere diameter to the distance between the center
of mass of the sphere and another particle. This ratio used in criterion
(3.12) determines whether a node in the constructed tree is taken for the
computation of the simplified mobility matrix or a child node is tested and
possibly taken. If no particle group meets the criterion, no approximation
to the mobility matrix is made for the considered particle and the original
SD method is recovered. The third parameter is the depth of the local
trees. In this context local means with respect to a single process. So a
local tree-depth of one means that either the simplified mobility matrix is
computed with the group of particles whose data is stored in the memory
of the same process, or no approximation is made and the SSD method
collapses into the SD method. We have conducted all simulations using
the IC2 supercomputer at our university [ic2, 2013]. In order to solve
arising systems of linear equations we make use of the open source library
PETSc [Balay et al., 2013]. The time-stepping scheme used to solve for
the particle positions is for all shown simulation results our parallel imple-
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mentation of the embedded (4,5)-Runge–Kutta–Fehlberg method [Bülow
et al., 2014].

3.4.1 CPU time

The CPU time strongly depends on the choice of the tree-depth. Therefore
we have investigated the effect of this parameter on the CPU time. As
reference we have run simulations with the standard SD method. The
chosen level of approximation is the FT-version of SD. We have simulated
two polydisperse particle clouds of N = 1000 particles each, settling in a
fluid under the influence of gravity. The particle radii are chosen according
to a unimodal lognormal radius distribution with prescribed expected
value of dimensionless radius 1.0 and standard deviation 0.065. Figure
3.6 shows the CPU time when using the SSD method with two different
maximum tree-depths and when using the standard SD method. For this
comparison we have chosen maximum local tree-depths of 1 and 5. We
chose these values to show that, in an optimal configuration, at level 1
the CPU time can be halved, and that at a higher level in general more
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Figure 3.6: CPU time per timestep, tCPU, over dimensionless simulated time
for two different tree-depths.
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savings in CPU time are possible. As described in [Nitsche and Batchelor,
1997] the clouds settle and lose particles in an emanating tail. After about
35 dimensionless time units, criterion (3.12) is not met anymore for all
particles stored in the memory of different processes, which results in an
increased CPU time. When a tree-depth of 1 is chosen, the SSD method
becomes our parallel implementation of the standard SD method [Bülow
et al., 2014] at this point, since the child nodes of the top level node
only consist of single particles. The fact that the CPU time is still lower
than when the standard SD method is used, arises from the more efficient
implementation of our method. For a tree-depth of 5, the CPU time
increases first when the highest level in the tree cannot be used anymore.
After that it slowly increases as lower and lower levels have to be used, up
to the point where the curve coincides with the curve displaying the CPU
time when only a tree depth of 1 is used. We have triggered the sudden
increase in CPU time by choosing the parameter for criterion (3.12) as
1. Since we have set the sorting frequency during the simulation to zero,
particle data initially assigned to one process remains in the memory of
this process. Using two processes in total, we have assigned the data of
one particle cloud to one process. The effect of this choice is displayed in
figure 3.7. During settling the particle clouds lose particles, which form a
tail behind the cloud. Once this tail is long enough, criterion (3.12) is not
met anymore for the whole group of particles on one process and the next
level in the tree is used, resulting in a higher CPU time. If the top-level
nodes can be used, the gain in speed is severe. In our example the CPU
time is halved compared to the standard SD method (cf. figure 3.6).

r

d/2

δ
Θ*

Figure 3.7: Particle configuration at dimensionless time unit 35, when criterion
(3.12) is reached for groups of particles with data in the memory of different
processes.
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3.4.2 Accuracy

For a validation of the SSD method we have run several test runs using a
particle configuration similar to the configuration shown in figure 3.1. We
have placed a spherical cloud of Nc ∈ {100, 500, 1000, 2000} particles with
a solid volume fraction of φ = 0.2 in the initial cloud domain at a given
distance r from a single particle α. Since we investigate the error arising
from the application of the SSD method, we only consider hydrodynamic
interactions among particles and no other interparticle interactions. The
driving force of the particle motion is gravity. We have run the simulations
once using the SSD method and once using the standard SD method, both
in the FT-version. The approximation of the particle distances when
using the SSD method induces a deviation in the settling velocity of the
single particle α at distance r from the particle cloud. The entries of the
mobility matrix arising from interactions among particles inside the cloud
are not approximated, since the only particle for which the approximation
criterion (3.12) is met, is particle α. The critical ratio is chosen as 1, the
maximum tree-depth as well. This is because for the given setup a critical
ratio of 1 ensures that the particles in the cloud form the group represented
by the top-level node in the sub-tree of the corresponding process and thus
a tree-depth of 1, which induces the largest error, suffices. Furthermore,
for this test we have given up load balance and assigned the data of
particles in the cloud to one process and the data of the single particle to
another. To ensure the desired grouping, the sorting frequency is set to
zero. For particle-to-cloud distances r in the range from 10 to 5000 the
relative deviation of the settling velocity USSD

z,α from the corresponding

value when using the standard SD method, USD
z,α, is depicted in figure

3.8. Lengths have been nondimensionalized by the expected value L0 of
the particle radius distribution, velocities by the absolute value of the
corresponding Stokes velocity U0. Figure 3.8 shows that the error of the
SSD method is bounded. When the ratio d/r used for criterion (3.12)
becomes too large, e.g. for Nc = 2000 and r = 20, the next lower node in
the constructed tree is taken. Since for the numerical experiments shown
in this section the tree depth is chosen as 1, this means that then the
leaves of the tree are taken for the computation, which is equal to using
the standard SD method. Due to the fact that we want to preserve the
symmetry of the mobility matrix, not only the entries of M

∞ which yield
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Figure 3.8: Relative deviation of the settling velocity USSD
z,α of a single particle

α from the corresponding value USD
z,α, when the standard SD method is used.

the velocity component USSD
z,α are altered, but also the entries which are

used to compute the velocities of other particles β. Instead of the exact
distance vector xβ − xα, the altered distance vector xβ − xα is used. The
effect can be seen in the relative deviation of the overall settling velocity
of all particles without particle α. We define this deviation as

errrel (〈Uz,β 6=α〉) :=
∑

β 6=α

|USSD
z,β − USD

z,β |

N |USD
z,β |

. (3.14)

Figure 3.9 shows the value of (3.14) for the investigated setup. The overall
deviation is low and decreasing with an increasing number of particles
inside the cloud. Furthermore, it is bounded for the same reason as the
single-particle deviation shown in figure 3.8 is.
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Figure 3.9: Relative deviation of the mean settling velocity of all particles
inside a cloud of particles, 〈USSD

z,β 6=α〉, from the corresponding value 〈USD
z,β 6=α〉,

when the standard SD method is used.

3.4.3 On the choice of parameters and the resulting

performance

The performance of the SSD method may be measured in mean CPU
time per timestep, 〈tCPU〉, relative deviation in the mean particle velocity
from the standard SD method in the 2-norm, errrel (〈U〉), and depends on
the number of used processes P . In [Bülow et al., 2014] we have shown
that a parallel implementation of the standard SD method itself, and
of simpler versions considering only mobility interactions on the F, FT
or FTS-level, allow for a simulation of a large number of particles in a
substantially shorter time with growing P . This advantage should not
be lost when the SSD method is applied. The performance of the SSD
method depends not only on P , but also on the angle θ used in criterion
(3.12) and the depth of the local trees, which we call dtree. The choice of
the latter two parameters, θ and dtree, is not very intuitive. In order to
give the reader a better understanding of the effect of different choices for
θ and dtree on CPU time and accuracy, especially in combination with the
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number of used processes P , we have run numerical tests with a varying
initial solid volume fraction φ in a cuboidal particle domain, in which
monodisperse particles are placed at the nodes of an equidistant cubic
grid. While for subsections 3.4.1 and 3.4.2 a particle configuration has
been chosen which is ideal for the SSD method, an equidistant cubic grid
is less than favourable for the SSD method. It this configuration, criterion
(3.12) is not met very often for particle groups on different processes and
the group diameters scale with inter-group distances. Thus this setup is
ideal to show that even for a ’bad configuration’ the SSD method performs
well with respect to CPU time and resulting deviation errrel (〈U〉). The
investigated parameters were all combinations of φ = {5e−5, 5e−3, 0.25},
θ = {1, 0.1, 0.01, 0.001}, dtree = {1, 2, 3, 4, 5, 6}, and P = {32, 64, 128}.
As references served the respective simulations with our standard parallel
SD code [Bülow et al., 2014]. The number of particles was kept fixed at
50653, in order to be in a range in which a change in P still yields a good
speedup [Bülow et al., 2014], and to simulate enough particles that the
effect of a change in θ and dtree is visible. The chosen level of accuracy
is again FT. If not stated otherwise we used a maximum dimensionless
timestep width of 0.001 for the time-stepping scheme. To ensure that
the SSD method would not lose efficiency due to suboptimal grouping of
particles we set the sorting frequency to 1, which means sorting in every
of the 10 timesteps per simulation.
In general, the results for all investigated volume fractions φ were similar.
For angles θ of 0.01 and 0.001 the proposed combination of SD and Barnes-
Hut yields a decrease in mean CPU time per timestep, 〈tCPU〉, of up to
about 10% for P = 32, with decreasing gain in speed for an increasing
number of processes. The resulting relative deviation in the mean particle
velocity from the standard SD method, errrel (〈U〉), was negligible for all
dtree at a value around machine accuracy for these θ. At an angle of θ = 0.1
we observed slight differences between the investigated φ. For most tree
depths dtree the mean CPU time was again between 0% and 10% lower
than for the original SD method, again with no observable deviation in the
mean velocity. For P = 64, dtree = 6 and for P = 128, dtree = {5, 6} the
relative deviation errrel (〈U〉) and, depending on φ, the mean CPU time
were higher. Table 3.1 shows a comparison of the respective values. As one
can see, the deviation errrel (〈U〉) is comparable for all investigated φ, and
increasing with P and dtree. Interesting is the extreme increase in CPU
time for increasing φ, P and dtree. It is a consequence of a reduction in
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P = 64, dtree = 6 P = 128, dtree = 5 P = 128, dtree = 6
φ 〈tCPU〉 errrel (〈U〉) 〈tCPU〉 errrel (〈U〉) 〈tCPU〉 errrel (〈U〉)

5e−5 −7.5% 7e−8 −10% 7e−7 −9% 3e−5
5e−3 −5% 1.6e−7 +2% 1e−6 +84% 3e−5
0.25 +38% 1.3e−7 +115% 9e−7 +464% 2.6e−5

Table 3.1: Increase in mean CPU time per timestep, 〈tCPU〉, (first value
in each column) and in deviation in the mean particle velocity from the
standard SD method, errrel (〈U〉), (second value in each column) for two
different numbers of processes P and local tree depths dtree. For all other
parameters, the SSD method performs at least as good as the standard
SD method.

timestep width during the simulation, resulting from the adaptive time-
stepping scheme we use. The corresponding maximum, minimum and
mean timestep widths can be seen in figure 3.10. While for P = 64 and
dtree = 6 we only have a small timestep reduction in one timestep, for
P = 128 we see that the mean timestep width is considerably decreasing
for increasing φ and dtree. For P = 128, dtree = 6 and φ = 0.25 the set
maximum timestep width of 0.001 is not reached anymore, thus resulting
in the 464% increase in mean CPU time 〈tCPU〉 for 10 timesteps of width
0.001. This reduction in timestep width is a result from the fact that new
grouping of particles between different timesteps produces a right-hand
side in equation (3.4) which is considered to be not smooth enough by the
time-stepping scheme, resulting in a timestep reduction. We see this effect
also in the peaks of the curve for dtree = 5 in figure 3.6, when the method
switches to lower levels. If we set the timestep width to a value of 1e−5
instead of 1e−3 the SSD method is always faster than the standard SD
method. For φ = 0.25 we get for all dtree a decrease in mean CPU time of
6.5% for P = 32, 5.8% for P = 64 and 9 − 11% for P = 128 instead of the
discussed increase in 〈tCPU〉. The deviation in the mean settling velocity,
errrel (〈U〉), remains as given in table 3.1 as it is a result of the grouping.
As depicted exemplarily for φ = 0.25 in figure 3.11 the mean CPU time for
θ = 1 is usually decreasing with increasing local tree depth dtree. Only for
P = 32 we see a slight increase up to dtree = 3, followed by a shorter mean
CPU time for higher tree depths such that for dtree = 6 we still obtain
a decrease in 〈tCPU〉 of 6%. For P = 64 we get a decrease between 18%
and 32%, for P = 128 of up to 7.5%. Furthermore, we see in figure 3.11
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Figure 3.10: Maximum, mean and minimum timestep widths ∆t over different
volume fractions φ for the parameter combinations (P, dtree) for which 〈tCPU〉
and errrel (〈U〉) are shown in table 3.1.

that errrel (〈U〉) stays below 3.55% for all P and dtree, as in subsection
3.4.2. Figure 3.11 also shows that we needed to decrease the maximum
timestep width even further to not get increased CPU time due to timestep
reduction. The increase (e.g. for P = 32 and dtree = 1) is not as severe
as shown in table 3.1, as the timestep width only goes down to 7.9e−6
in one timestep, but it is noticeable. In general, for a more concentrated
suspension (i.e. higher φ), more processes P and higher local tree depths
dtree an adaptive time-stepping scheme such as the applied embedded
Runge-Kutta (4,5) method requires smaller timesteps. If the timesteps
are chosen small enough, the proposed SSD method produces even for
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Figure 3.11: Mean CPU time 〈tCPU〉 plotted against relative deviation
errrel (〈U〉) for θ = 1, φ = 0.25 and P = 32, 64, 128. Left: For a maximum
timestep width of 1e−5. Right: For a maximum timestep width of 1e−7.
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unfavourable particle configurations better results when it comes to CPU
time. The resulting error is with less than 4% acceptable and depends
on the local tree depth and the angle θ. Because of the requirement of
a small timestep, at least for adaptive methods, we propose to use the
SSD method only for the simulation of colloidal suspensions. In that case
DLVO potentials [Bülow et al., 2014] usually require a small timestep of
the same order as in our numerical experiments. As colloidal particles
often tend to form clusters, particle configurations as in subsection 3.4.1
are more likely than the one investigated in this section. In that case
particle grouping is more effective, the SSD method is faster and the
resulting error is smaller.

3.4.4 Speedup for random configurations

In the previous subsections of section 3.4 we have shown the performance
of the SSD method on extreme examples: Strongly clustered suspensions
and totally ordered unclustered suspensions. In this subsection we exam-
ine the performance on examples of suspensions of randomly distributed
particles under the action of gravity. The initial positions of the particles
are normally distributed random variables with the restriction that all
particles are placed in a rectangular domain with side lenghts according
to the given initial solid volume fraction and number of particles. Sorting
is done in every time step to ensure optimal grouping of particles.
We have conducted speedup tests with initial volume fractions φ = 5e−5,
0.005, 0.25, as in subsection 3.4.3, a fixed timestep width and local tree
depth dtree = 6, as well as angle θ = 1. The choice of the latter two
parameters is due to the fact that a higher dtree and a larger θ result in
lower CPU time (cf. subsection 3.4.3). As shown earlier, the resulting
error is bounded. The radius distribution of the investigated particle sys-
tems was chosen as lognormal distribution with dimensionless expected
value µ = 1 and standard deviation 0.065. Figure 3.12 shows results of
the speedup tests for the solution of the mobility problem (St ≈ 0) us-
ing the FT-approximation for N = 32768, 65536, 131072. Most striking is
the superlinear speedup compared with the sequential algorithm without
Barnes–Hut coupling. This is not surprising, as the local tree depth of
6 allows for relatively small local groups of particles. Together with the
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Figure 3.12: Speedup S(P ) for the solution of the mobility problem (St ≈ 0)
using the FT-approximation for the investigated particle systems with random
initial configuration and initial volume concentration φ = 0.005 (left) and φ =
0.25 (right) over used number of processes P .

relatively large angle θ, criterion (3.12) is met often for these groups. The
higher P , the more local groups fulfill criterion (3.12). This effect is super-
imposed by the normal speedup of the parallel SD method, which we have
presented in [Bülow et al., 2014], yielding the strongly superlinear speedup.
A closer examination of the plots in figure 3.12 shows that the resulting
speedup only weakly depends on φ. In order to rule out effects arising
from the random initial placement of particles, we have conducted every
simulation three times, each with the same parameters but with different
resulting initial particle positions. Figure 3.12 shows the mean values for
each parameter set. The deviation in CPU time for the same parameters
(including P ) due to different initial positions is usually below 6% and has
a mean of 1.5%. To investigate the achievable speedup of the presented
method for another level and an inclusion of the standard lubrication
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Figure 3.13: Speedup S(P ) using the FTS-approximation for the investigated
particle systems with random initial configuration and initial volume concen-
tration φ = 0.005 over used number of processes P . Left: Without lubrication
correction scheme. Right: With lubrication correction scheme.
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scheme [Durlofsky et al., 1987], we have conducted speedup tests using
the FTS-approximation once without and another time with standard lu-
brication correction scheme. The resulting speedup is shown in figure 3.13.
The speedup is not as pronounced as for the FT-approximation (cf. figure
3.12). But as for the parallel implementation of the standard SD method
[Bülow et al., 2014], a higher number of processes can be used and still
give a noticeable speedup (cf. the plots for N = 65536 in figure 3.12 and
in figure 3.13, left). The standard lubrication scheme [Durlofsky et al.,
1987] with lookup table is especially for a polydisperse particle system
very memory intensive, therefore we computed the speedup with lubrica-
tion correction only for up to N = 32768. For this number of particles
the speedup is comparable with that of the FTS-approximation without
lubrication correction scheme.

3.5 Conclusions

In this work we have presented the scalable Stokesian Dynamics method
(SSD), a new method to compute the hydrodynamics in colloidal suspen-
sions. We have coupled the Barnes–Hut algorithm, which is ideal for
parallel code execution, with the Stokesian Dynamics method – an ex-
tremely efficient method to capture the dynamics of colloidal particulate
systems. The computationally most expensive step of the SD method ap-
plied to such systems is the computation of the mobility matrix and its
multiplication with the force vector. In the worst case, namely when no
approximations can be made since particles are densely packed and the
simulated system is too small for the application of the introduced sim-
plified method, the usually inherent costs of the N -body problem persist.
But this comes with no loss of accuracy since in that case the original
SD method is recovered by the SSD method. Yet, due to parallel code
execution the original costs of O(N2) are reduced to O(Pn2

p), where P
is the number of processes and np the number of particles per process
[Bülow et al., 2014]. In a computationally ideal case, where particles form
clusters of approximately even size in an otherwise diluted suspension, the
mobility matrix becomes constant for blocks of particle data stored in the
memory of different processes. Then the main computational effort for
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the computation of particle velocities reduces to a local computation of
radius weighted sums of the acting forces for each process. This yields
not only a complexity of O(N) for a large number of particles and used
processes but it also reduces communication between processes to a min-
imum, giving rise to a very efficient parallel code execution. In practical
applications where local clusters are formed but the overall suspension is
not dilute, the complexity of the SSD method lies somewhere between the
two extremes. Since a parallelized SD method scales very well with P ,
one can choose P high, which results in a low quadratic term n2

p. Fur-
thermore, taking a higher number of processes increases the chances of
application of the simplified method due to a smaller group size. E.g. in
an average case, for a solid volume fraction of 1% in the initial particle
domain, the dynamics of one million particles hydrodynamically interact-
ing over ten dimensionless time units under the action of gravity with a
simple Hertz force model for particle contacts can be simulated within
less than three days. The simulation has been executed on a computer
cluster using 2000 cores [ic2, 2013]. This example shows the efficiency of
our new parallel method, which can in principle be applied to other prob-
lems of similar mathematical structure as well. Unfortunately we were
not able to compare our method with the popular accelerated Stokesian
Dynamics method (ASD), yet. This has two reasons: First, we have not
yet extended our method to the simulation of infinite suspensions. The
second and more important reason is that we are currently not aware
of any parallel implementation of the ASD method. As we have shown,
the SSD method is designed to run on many cores and can yield a very
good speedup. It remains future work to compare the SSD method with
a possible parallelized ASD method. For results showing the speedup of
a parallelized standard SD method, we refer to our work [Bülow et al.,
2014].
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Appendix to chapter 3: Entries of the mobility

matrix for polydisperse systems

The mobility matrix given in (3.5) can be subdivided into

M
∞ =







































a11 · · · a1Np
b11 · · · b1Np

g11 · · · g1Np

..

.
..
.

..

.
..
.

..

.
..
.

aNp1 · · · aNpNp
bNp1 · · · bNpNp

gNp1 · · · gNpNp

b̃11 · · · b̃1Np
c11 · · · c1Np

h11 · · · h1Np

.

..
.
..

.

..
.
..

.

..
.
..

b̃Np1 · · · b̃NpNp
cNp1 · · · cNpNp

hNp1 · · · hNpNp

g̃11 · · · g̃1Np
h̃11 · · · h̃1Np

m11 · · · m1Np

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

g̃Np1 · · · g̃NpNp
h̃Np1 · · · h̃NpNp

mNp1 · · · mNpNp







































.

(3.15)

Due to the nature of M
∞ it is sufficient to describe the respective block

for two particles α and β. We define the distance vector between the



128

centers of these particles as r := xβ −xα. For the blocks in representation
(3.15) of the mobility matrix we get

aαβ =











1

aα
Id, α = β

3

4

(

G(r) +
1

6
a2

α∆G(r) +
1

6
a2

β∆G(r)
)

, α 6= β

(3.16)

bαβ =







0, α = β

3

4
R(r), α 6= β

(3.17)

cαβ =











3

4a3
α

Id, α = β

3

8
(∇ × R)(r), α 6= β

(3.18)

gαβ =







0, α = β

3

4

(

K(r) +
1

6
a2

α∆K(r) +
1

10
a2

β∆K(r)
)

, α 6= β
(3.19)

hαβ =







0, α = β

3

8
(∇ × K)(r), α 6= β

(3.20)

mαβ =































9

10a3
α

Id, α = β

3
8

[

∇K(r) + (∇K(r))T

+ 1
10a

2
α

(

∇(∆K(r)) + (∇(∆K(r)))T
)

+ 1
10a

2
β

(

∇(∆K(r)) + (∇(∆K(r)))T
)]

, α 6= β.

(3.21)

As M
∞ is symmetric, we gain the remaining entries b̃, g̃ and h̃ by trans-

posing the respective blocks b̃αβ = bT
βα etc. The tensors R and K are a re-

sult of the multipole expansion used to derive (3.4). The rotlet R ∈ R3×3

is given by

Rij(r) :=

3
∑

k=1

ǫijkrkr
−3
αβ , (3.22)
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where ǫ is the Levi-Civita symbol. The tensor K ∈ R3×3×3 is defined
by

Kijk(r) :=
1

2

(

∇kGij(r) + ∇jGik(r)
)

. (3.23)

The entries of M
∞ can be calculated explicitly at the considered level of

approximation. Evaluating the derivatives in (3.16)–(3.21), we gain the
scalar mobility functions. Using the notation in [Durlofsky et al., 1987]
we get for the elements of the submatrices of the mobility matrix (3.15):

(aαβ)ij = xa
αβeiej + ya

αβ(δij − eiej), (3.24)

(bαβ)ij = yb
αβǫijkek, (3.25)

(cαβ)ij = xc
αβeiej + yc

αβ(δij − eiej), (3.26)

(gαβ)ijk = xg
αβ(eiejek −

1

3
δjkei) + yg

αβ(δijek + δikej − 2eiejek),

(3.27)

(hαβ)ijk = yh
αβ(ǫijlekel + ǫiklejel), (3.28)

(mαβ)ijkl =
3

2
xm

αβ(eiej −
1

3
δij)(ekel −

1

3
δkl)

+
1

2
ym

αβ(eiδjlek + ejδilek + eiδjkel + ejδikel − 4eiejekel)

+
1

2
zm

αβ(δikδjl + δjkδil − δijδkl + eiejδkl + δijekel + eiejekel

− eiδjlek − ejδilek − eiδjkel − ejδikel), (3.29)
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where we defined the unit vector e := (xβ − xα)/rαβ with the scalar
particle distance rαβ := ‖xβ−xα‖2. The corresponding mobility functions
are

xa
αα =

1

aα
, xa

αβ =
3

2
r−1

αβ −
a2

α + a2
β

2
r−3

αβ , (3.30)

ya
αα =

1

aα
, ya

αβ =
3

4
r−1

αβ +
a2

α + a2
β

4
r−3

αβ , (3.31)

yb
αα = 0, yb

αβ =
3

4
r−2

αβ (3.32)

xc
αα =

3

4a3
α

, xc
αβ =

3

4
r−3

αβ , (3.33)

yc
αα =

3

4a3
α

, yc
αβ = −

3

8
r−3

αβ , (3.34)

xg
αα = 0, xa

αβ = −
9

4
r−2

αβ +
9

4
a2

αr
−4
αβ +

27

20
a2

βr
−4
αβ , (3.35)

yg
αα = 0, ya

αβ = −
3

4
a2

αr
−4
αβ −

9

20
a2

βr
−4
αβ , (3.36)

yh
αα = 0, yh

αβ = −
9

8
r−3

αβ (3.37)

xm
αα =

9

10a3
α

xm
αβ = −

9

2
r−3

αβ +
27

5
(a2

α + a2
β)r−5

αβ (3.38)

ym
αα =

9

10a3
α

ym
αβ =

9

4
r−3

αβ −
18

5
(a2

α + a2
β)r−5

αβ (3.39)

zm
αα =

9

10a3
α

zm
αβ = −

9

10
(a2

α + a2
β)r−5

αβ . (3.40)

3.6 Detailed derivatives

We will show in detail how the derivatives of G, R and K are obtained.
Note that for the vector r, with rαβ =

∣

∣

∣

∣r
∣

∣

∣

∣

2
and the components rk, k =

1, 2, 3,

∇kr
−p
αβ = ∇k(r2

1 + r2
2 + r2

3)− p

2 = −
p

2
(r2

1 + r2
2 + r2

3)− p

2 −12rk = −pr
−(p+2)
αβ rk
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holds. According to definition (3.3), the elements of the Oseen tensor are
defined as

Gij(r) =
1

rαβ

(

δij +
1

r2
αβ

rirj

)

.

We get the derivatives:

∇kGij(r) = −
1

r3
αβ

δijrk +
1

r3
αβ

δikrj +
1

r3
αβ

δjkri −
3

r5
αβ

rirjrk

=
1

r3
αβ

(−δijrk + δikrj + δjkri) −
3

r5
αβ

rirjrk,

∇k∇kGij(r) =
1

r3
αβ

(−δij + δijδjk + δjkδik)

−
3

r5
αβ

rk(−δijrk + δikrj + δjkri)

−
3

r5
αβ

(δikrjrk + δjkrirk + rirj) +
15

r7
αβ

rirjr
2
k,

∆Gij(r) =

3
∑

k=1

∇k∇kGij(r)

=
1

r3
αβ

(−3δij + δij + δij) −
3

r5
αβ

(−δijr
2
αβ + rirj + rjri)

−
3

r5
αβ

(rjri + rirj + 3rirj) +
15

r7
αβ

rirjr
2
αβ

=
2

r3
αβ

δij −
6

r5
αβ

rjri,
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∇k∆Gij(r) = −
6

r5
αβ

rkδij −
6

r5
αβ

(δikrj + δjkri) +
30

r7
αβ

rjrirk

= −
6

r5
αβ

(rkδij + δikrj + δjkri) +
30

r7
αβ

rjrirk,

∇k∇k∆Gij(r) = −
6

r5
αβ

(δij + δikδjk + δjkδik)

+
30

r7
αβ

rk(rkδij + δikrj + δjkri)

+
30

r7
αβ

(δjkrirk + δikrjrk + rjri) −
210

r9
αβ

rjrir
2
k,

∆(∆Gij)(r) =

3
∑

k=1

∇k∇k∆Gij(r) = 0,

∇l∇kGij(r) =
1

r3
αβ

(−δijδkl + δikδjl + δjkδil)

−
3

r5
αβ

rl(−δijrk + δikrj + δjkri)

−
3

r5
αβ

(δilrjrk + riδjlrk + rirjδkl) +
15

r7
αβ

rirjrkrl,

∇l∇k∆Gij(r) = −
6

r5
αβ

(δijδkl + δikδjl + δjkδil)

+
30

r7
αβ

rl(δijrk + δikrj + δjkri)

+
30

r7
αβ

(δjlrirk + rjδilrk + rjriδkl) −
210

r9
αβ

rirjrkrl,
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(∇ × G)ij(r) =

3
∑

l=1

3
∑

k=1

ǫikl∇kGlj

=

3
∑

l=1

3
∑

k=1

ǫikl

( 1

r3
αβ

(−δljrk + δlkrj + δjkrl) −
3

r5
αβ

rlrjrk

)

=
3
∑

l=1

3
∑

k=1

1

r3
αβ

(−ǫikjrk + ǫijlrl)

=

3
∑

l=1

3
∑

k=1

1

r3
αβ

(ǫijkrk + ǫijlrl) =

3
∑

k=1

2

r3
αβ

ǫijkrk,

(∇ × ∇G)ijk(r) =
3
∑

m=1

3
∑

l=1

ǫilm∇l∇mGjk

=

3
∑

m=1

3
∑

l=1

ǫilm

( 1

r3
αβ

(−δjkδml + δjmδkl + δkmδjl)

−
3

r5
αβ

rl(−δjkrm + δjmrk + δkmrj)

−
3

r5
αβ

(δjlrkrm + rjδklrm + rjrkδml)

+
15

r7
αβ

rjrkrmrl

)

=

3
∑

m=1

3
∑

l=1

( 1

r3
αβ

(ǫikj + ǫijk)

−
3

r5
αβ

(ǫiljrlrk + ǫilkrlrj − ǫijmrkrm − ǫikmrjrm)
)

=

3
∑

l=1

18

r5
αβ

(ǫijlrkrl + ǫiklrjrl),
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(∇ × ∆G)ij(r) =

3
∑

l=1

3
∑

k=1

ǫikl

( 6

r5
αβ

(−rkδlj − δlkrj − δjkrl) +
30

r7
αβ

rjrlrk

)

=

3
∑

l=1

3
∑

k=1

6

r5
αβ

(−ǫikj − ǫijl)

=
3
∑

l=1

3
∑

k=1

6

r5
αβ

(ǫijkrk − ǫijlrl) = 0.

The rotlet R is defined in (3.22) as

Rij(x) =
3
∑

k=1

ǫijkrkr
−3
αβ .

The derivatives required for the construction of the mobility matrix are

∇kRij(x) =
3
∑

l=1

∇k(
1

r3
αβ

ǫijlrl)

=

3
∑

l=1

ǫijl(
1

r3
αβ

δkl −
3

r5
αβ

rkrl)

=
1

r3
αβ

ǫijk −
3
∑

l=1

3

r5
αβ

ǫijlrkrl,
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and

(∇ × R)ij(x) =

3
∑

k=1

3
∑

l=1

ǫikl∇kRlj

=

3
∑

k=1

3
∑

l=1

ǫikl

( 1

r3
αβ

ǫljk −
3
∑

m=1

3

r5
αβ

ǫljmrkrm

)

=
2

r3
αβ

δij −
3
∑

k=1

3
∑

l=1

3
∑

m=1

3

r5
αβ

ǫiklǫjmlrkrm

=
2

r3
αβ

δij +
3

r5
αβ

(1 − δij)rirj −
3

r5
αβ

δij

3
∑

k=1

3
∑

l=1

(ǫikl)
2r2

k

=
2

r3
αβ

δij +
3

r5
αβ

rirj +
3

r5
αβ

δijr
2
i −

3

r5
αβ

δij(r2
αβ − r2

i )

= −
1

r3
αβ

δij +
3

r5
αβ

rirj .

Since

Kijk(r) =
1

2

(

∇kGij(r) + ∇jGik(r)
)

we gain all derivatives needed to calculate the mobility functions (3.16)–
(3.21) given in 3.5 as combination of the above expressions.





Chapter 4

On the settling behaviour of polydisperse particle

clouds in viscous fluids

Abstract

We investigate the behaviour of polydisperse particle clouds settling in
a viscous fluid by means of numerical simulations. The sedimentation
process is described on examples of bidisperse systems as well as fully
polydisperse particle systems, pointing out parallels and differences to
the monodisperse case. Based on our results we propose a simple formula
which gives the maximum velocity of a polydisperse particle cloud settling
in a viscous fluid. The proposed formula agrees with our numerical results
even in case of systems with high polydispersity.

This chapter follows our work of the same title published in the Euro-
pean Journal of Mechanics - B/Fluids.

4.1 Introduction

Sedimentation is part of many industrial processes in the fields of chem-
ical, biological and environmental engineering. Waste water treatment
and mineral processing are only two examples where the treatment of
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highly polydisperse suspensions plays a major role. As opposed to the as-
sumption of many models, particles are normally not spatially uniformly
distributed in such suspensions. Due to hydrodynamic interactions and
the polydisperse nature of the particulate system, clusters of different sizes
and lifetimes are formed. Such clusters, or particle clouds, can undergo
a remarkable motion. In the absence of turbulence, spherical clouds be-
have like drops of fluid settling in another fluid with lower mass density
[Machu et al., 2001]. During sedimentation such a cloud evolves into a
torus. The inhomogeneous distribution of particles in the torus causes
oscillations which eventually lead to a break-up into two or more smaller
clouds, which then undergo the same evolution. This process continues
until the resulting clouds are so small that they disintegrate. In recent
years such particle clouds have drawn a considerable amount of attention
and have been investigated both experimentally as well as numerically.
Different regimes of evolution for a sedimenting cluster of particles have
been identified [Subramanian and Koch, 2008]. These depend on the par-
ticle Reynolds number, the cloud Reynolds number, the particle volume
fraction inside the cluster and the size of the cluster. Research has mostly
been concentrated on two regimes. On the one hand a regime where the
cloud Reynolds number is small but cannot be assumed to vanish and
thus the particle evolution can be described by Oseen interactions. On
the other hand the Stokes regime, where the cloud Reynolds number is
small enough to be assumed to be zero. In this regime, some particles
can make an outward crossing of the settling cloud and leave it at its
rear end in a vertical tail. The rate of leakage, which describes the rate
of leaked particles per time, has been studied extensively [Nitsche and
Batchelor, 1997, Metzger et al., 2007]. In case of a higher but still small
cloud Reynolds number the leakage decreases to an insignificant number
of particles, while the evolution of the shape of the cloud remains the same
[Pignatel et al., 2011]. Apart from qualitative investigations and descrip-
tions of the shape evolution of particle clouds, most works deal with the
sedimentation velocity of particle clouds. Adachi et al. [1978] were among
the first who examined the cloud evolution experimentally and gave a the-
oretical prediction for the sedimentation velocity of a cloud comprised of
a large number of particles. With the increase in computational power,
numerical simulations of settling clouds of many particles have become
feasible. Nitsche and Batchelor [1997] proposed a simple formula for the
sedimentation velocity of a spherical particle cloud, which was in good
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agreement with results from their numerical simulations of monodisperse
particle clouds comprised of up to 320 particles. Bosse et al. [2005] have
simulated particle clouds of several thousand particles, yielding results
comparable to those of Nitsche and Bachelor and their proposed formula
in case of a low cloud Reynolds number. Bosse et al. [2005] also found
that for an increasing cloud Reynolds number, the number of emerging
secondary clouds rises. Apart from this the overall process stays the same
– a repeating cascade starting from an initially spherical cloud, which
flattens, evolves into a torus eventually breaking up into smaller clouds,
which then evolve in the same manner. A number of other works deal
with experiments, numerical simulations or theoretical considerations on
particle clouds in viscous fluids [Metzger et al., 2007, Alabrudzinski et al.,
2009, Ekiel-Jezewska et al., 2006]. They all discuss the topics of cloud
behaviour, initial cloud velocity and particle leakage. But they confine
themselves to investigations on monodisperse particle clouds. Abade and
Cunha [2007] have investigated the behaviour of slightly polydisperse par-
ticle clouds. They found that polydisperse clouds comprised of a small
number of particles are less stable than comparable monodisperse clouds.
Apart from clouds of spherical particles, some works consider clouds of
fibres [Park et al., 2010] and fibre-particle mixtures [Feist et al., 2011].
Nevertheless, we are not aware of any works explicitly investigating the
settling behaviour of polydisperse clouds comprised of more than 1000
particles, neither numerically nor experimentally. The present work deals
with the behaviour of such clouds at vanishing Reynolds number and
shall serve as a basis for further research in this area. Basis for our find-
ings is our parallel Stokesian Dynamics code, which is based on the open
source software RYUON [ryu, 2014]. Stokesian Dynamics is a numerical
method developed and especially well-suited for the simulation of particle
suspensions [Durlofsky et al., 1987, Brady and Bossis, 1988]. Our work
is structured as follows. First we give a short introduction to the sim-
ulation method and we derive a formula yielding the maximum velocity
of a polydisperse particle cloud settling at vanishing Reynolds number.
This formula agrees well with our numerical simulations, as we show in
the results section. Furthermore we present results of our investigations
on the motion of polydisperse clouds on examples of bidisperse and fully
polydisperse clouds.
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4.2 Methods

In this section we describe our simulation method and we derive a for-
mula which gives the settling velocity of a polydisperse spherical particle
cloud. We confine ourselves to a brief discussion of the exact form of the
numerical scheme we use, since the method and extensions to it are well
known. For readers not familiar with the Stokesian Dynamics method, we
refer to [Ichiki, 2002, Brady and Bossis, 1988, Sierou and Brady, 2001].

4.2.1 Numerical Scheme

We consider particles settling in a viscous fluid, thus the Stokes equa-
tions suffice to describe the fluid motion. When interparticle forces are
negligible, the equations of motion for suspended spherical non-Brownian
particles solely under the influence of gravity are

mp
d

dt
Uα = F h

α + Fg, (4.1)

and

Iα
d

dt
ωα = T h

α. (4.2)

Here mp is the mass of a particle, Uα its translational velocity, F h
α the

hydrodynamic force acting on the particle, and Fg gravity. Iα denotes

the moment of inertia tensor of a particle, ωα its angular velocity, and T h
α

the hydrodynamic torque acting on the particle. Based on the integral
expression for the fluid velocity field in Stokes flow [Durlofsky et al., 1987],
a linear relation between hydrodynamic force, hydrodynamic torque and
the translational and angular velocities of particles suspended in a fluid
can be found. This relation is given by

−M
∞

(

FH

TH

)

=

(

UP

ωP

)

, (4.3)
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where FH ,TH ,UP ,ωP ∈ R
3N are the same variables as in equations (4.1)

and (4.2), with the difference that the vectors in equation (4.3) contain
the components of all N particles. The mobility matrix M

∞ ∈ R
6N×6N

depends only on the particle configuration and the particle radii explicitly.
The fluid motion does not have to be computed, which is a major advan-
tage over grid-based methods as for instance a coupling of a finite volume
method and the discrete element method. A nondimensionalization of the
equations leads to the definition of the Stokes number, which in our case
is given by

St =
2

9

ρp

ρf
Re. (4.4)

ρp and ρf are the particle mass density and the fluid mass density, respec-
tively. Re denotes the Reynolds number of the flow. If we can assume
Stokes flow with vanishing Reynolds number, we can assume the Stokes
number to vanish as well, provided that ρp ≈ O (ρf ). With this assump-
tion the left hand sides of the dimensionless form of equations (4.1) and
(4.2) become zero, resulting in F h

α = −Fg and T h
α = 0. Substitution into

equation (4.3) now yields a linear relation between gravity on the one
hand, and particle velocities on the other. The resulting algorithm reads
as follows: (i) compute M

∞ from particle positions and their radii, (ii)
obtain the particle velocities from the substituted form of equation (4.3),
(iii) integrate UP , which contains all translational velocities, to yield the
new particle positions. The problem we solve – obtaining particle veloci-
ties from acting forces – is called mobility problem. For the construction
of the mobility matrix M

∞ in (4.3) higher moments in the expansion of
the force density in the expression for the fluid velocity field in Stokes flow
are neglected [Brady and Bossis, 1988]. We only keep the zeroth moment,
the force FH , and the antisymmetric part of the first moment, the torque
TH . This leads to an error when particles are in close proximity, as it
usually is the case in dense particle suspensions. Closely related to the
mobility problem is the so-called resistance problem. It has to be solved
when particle velocities are given and the forces are unknown. This is
usually the case when dense suspensions are considered and lubrication
effects cannot be neglected. There are several ways to include near-field lu-
brication effects for this type of problem [Jeffrey and Onishi, 1984, Jeffrey,
1992, Cichocki et al., 1999]. We chose to solve the mobility problem with-
out lubrication correction rather than solving the resistance problem with
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lubrication correction for the simple reason that the resulting algorithm
is much faster than a solution of the resistance problem and yet exact
enough to capture the dynamics of a particle cloud. It is also possible
to include near field effects by an introduction of a short-range repulsive
force, as in [Nitsche and Batchelor, 1997], [Abade and Cunha, 2007] and
[Cunha et al., 2002]. This method of including hydrodynamic near-field
interactions has the advantage that no inversion of the mobility matrix
is necessary while near-field effects are still taken into account. However,
our numerical tests of two particles interacting hydrodynamically as in
[Goldman et al., 1966] and [Pozrikidis, 2007] have shown that, at least
with the proposed choice of parameters, this treatment produces unrealis-
tic results. In the following we will call an algorithm solving the mobility
problem mobility scheme and a method for the solution of the resistance
problem resistance scheme, respectively.

4.2.2 Cloud Settling Velocity of a Polydisperse Cloud

Nitsche and Batchelor [1997] have proposed a formula for the settling
velocity Uc of a monodisperse spherical particle cloud at low Reynolds
number,

Uc ≈ USt

(

6

5
N
ap

ac
+ 1

)

, (4.5)

where USt denotes the Stokes velocity of a single particle with radius
ap and ac is the radius of the particle cloud formed by the N particles.
Equation (4.5) has been derived from the Hadamard-Rybczynski equation
(H-R equation). The H-R equation describes the terminal velocity of a
spherical drop in a quiescent fluid under the action of gravity [Michaelides,
2006]. It is insignificant for the derivation whether the matter forming
the spherical drop has a higher or lower mass density than the suspending
fluid. Thus, based on the observation that particle clouds behave like
settling drops of fluid [Machu et al., 2001], it seems natural to utilize
the Hadamard-Rybczynski equation in order to derive a formula which
gives the settling velocity of spherical particle clouds. In order to derive a
formula yielding the maximum settling velocity of a polydisperse spherical
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particle cloud, we start from the Hadamard-Rybczynski equation as well.
The cloud settling velocity Uc, as we derive it, is given by

Uc =
6

5

Nf
∑

i=1

Np,i
ap,i

ac
USt,i. (4.6)

USt,i is the Stokes velocity of a spherical particle with radius ap,i, Nf

is the number of particle size fractions in the system forming a cloud of
radius ac. Fraction i contains Np,i particles. A detailed derivation of
formula (4.6) is given in 4.4. The only assumption for this formula is
that the particle cloud is dilute. This can be described by φ ≪ 1, where
φ is the particle volume fraction in the spherical cloud. Because of this
requirement, equation (4.6) seems to be valid only for cases when φ is
very small. But as we will show in section 4.3, it gives a good approxima-
tion for a broad spectrum of particle volume fractions. As a comparison of
equations (4.5) and (4.6) shows, assuming a monodisperse particle system,
equation (4.5) contains an additional term equal to the settling velocity
USt of an isolated particle. Using a different approach, Ekiel-Jezewska
et al. [2006] have derived a formula for the settling velocity of monodis-
perse particle clouds as well. Their formula also contains the additional
term, which they attribute to a slip between particles and ambient fluid.
Apart from this term, equation (4.6) coincides with equation (4.5) in the
monodisperse case. We discuss this topic in section 4.3.4. If all fractions
of the particulate system are known, e.g. in numerical experiments, the
velocity resulting from equation (4.6) can be used as characteristic value
for nondimensionalization. This yields a more stable simulation, which
saves time and resources.
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4.3 Results and Discussion

4.3.1 Validation

We have validated our code on several examples, obtaining good agree-
ment. In this section we give some examples which are significant for this
work. For all numerical experiments we assume that the particle density
is the same for all particles. The driving force in all simulations is gravity,
which scales as the third power of the particle radius.

Error Made in One Time Step

To determine the accuracy of our simulation, we chose the example of two
equal spheres settling in a given configuration in a quiescent fluid ([Gold-
man et al., 1966]; figure 4.1). This choice arises from the fact that this
example covers different particle configurations relative to the settling di-
rection, as well as different interparticle distances. The particle settling
velocity obtained from the solution of the mobility problem without lu-
brication correction starts to deviate from the results of Goldman et al.
[1966] by more than 1% at a distance of one particle diameter between
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Figure 4.1: Particle configuration and relative deviation of our results using the
mobility scheme from the results of Goldman et al. [1966] against the reciprocal
dimensionless inter-particle spacing r.
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the particle surfaces, where the deviation increases with shrinking gap size.
Note that the deviation is smaller for larger angles ϕ, i.e. particles settling
side by side (figure 4.1). The deviation is below 5% for all configurations,
down to inter-particle gaps of 1% of a particle diameter.

Accuracy Over a Longer Time Span

In the previous example where we examined the error made in one time
step, particles do not move relative to each other. To investigate the devia-
tion of the solution of the mobility problem without lubrication correction
from the solution of the resistance problem with lubrication correction af-
ter a longer time span, we have run numerical experiments as described
in [Durlofsky et al., 1987]. Durlofsky et al. [1987] conducted numerical
simulations of the settling of four and of eight spheres initially located
at the corners of a square and a cube, respectively. Under the action of
gravity and at vanishing Stokes number both configurations undergo a
periodic motion. This motion has first been described by Hocking [1964]
for the four-particle configuration. The spheres initially located at the
top corners settle faster than the particles initially located at the bottom
corners. After the faster settling particles pass the slower particles all
particles return to the corners of the initial square or cube. Only this
time the locations of top and bottom particles are switched. Now the
particles initially located at the bottom corners settle faster and return
to their original positions. As in [Durlofsky et al., 1987] we determined
the vertical position when all particles form a horizontal line in case of
four particles, and when they lie in a plane perpendicular to the settling
direction in case of eight particles initially located at the corners of a cube.
The considered dimensionless edge lengths are rinit = 3, 4, 5, the used level
of approximation is the described FT-version. Our results using the re-
sistance scheme with lubrication correction as in [Durlofsky et al., 1987]
agree very well with their results. When we use the proposed mobility
scheme without lubrication correction, our results deviate. This can be
seen in figure 4.2. In case of eight settling particles (figure 4.2, right),
the deviation is larger for particles with shorter initial distance. This is
because lubrication effects play a bigger role for the configuration with
shorter initial distance. In the graph on the left-hand side of figure 4.2,
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Figure 4.2: Left: Particle positions of four settling equal particles initially
located at the corners of a square with initial edge length rinit = 3, 4, 5 when
all particles form a line perpendicular to the settling direction. Right: Particle
positions of eight settling equal particles initially located at the corners of a
cube with initial edge length rinit = 3, 4, 5 when all particles lie in a plane
perpendicular to the settling direction. Only four of the eight particles are
shown because of the reflectional symmetry in the (x, z)- and (y, z)-planes. All
lengths are given in dimensionless units.

where the vertical positions of four particles are displayed when they first
form a horizontal line, one can see that the deviation is very small for the
square with shortest edge length, whereas the square with longest edge
length, where lubrication effects should play a smaller role, is larger. This
results from the fact that the particles initially located at the corners of a
square with edge length 5 settle over a longer distance until they form a
line perpendicular to the settling direction. Thus the accumulated error is
larger, even though the error in one time step is smaller than for a square
with edge length 3. Solving the resistance problem with lubrication cor-
rection rather than the mobility problem without lubrication correction
might lead to more precise results, but the computational time needed to
achieve them is several orders of magnitude higher, especially for polydis-
perse systems. At the current state of the art, this restricts simulations
using a lubrication correction scheme based on the resistance problem to
the simulation of several hundreds to some thousands of particles within
days or months. If we are interested in macroscopic properties such as
the overall motion of a particle cloud, the solution of the mobility prob-
lem without lubrication correction suffices (see e.g. [Metzger et al., 2007]
where a point force model was used). Provided that the code is paral-
lelized, the method we chose allows for the simulation of the dynamics of
several thousand up to a million particles within days [Bülow et al., 2014].
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For such particle systems different effects can be observed compared to
simulations of relatively small particle systems (cf. section 4.3.3).

Settling of a Monodisperse Particle Cloud

A qualitative comparison of our results from a simulation of the settling
process of a monodisperse particle cloud of 3000 particles with the results
of Metzger et al. [2007] shows good agreement, which supports our choice
to solve the mobility problem rather than the time-consuming resistance
problem. The characteristic stages of the settling process are shown in
figure 4.3, where a) shows the initially spherical cloud, b) the formed
torus (including top view), c) the particle system after the torus broke
into smaller clouds, and finally d) even smaller clouds, formed after the
secondary clouds broke up. To nondimensionalize the simulated system
we use a characteristic length scale L0 and a characteristic velocity U0.
For the simulation of bidisperse systems we chose the particle radius of
the large size fraction as L0. For simulations of fully polydisperse systems
with a given radius distribution, L0 was chosen such that it was slightly
larger than the mean of the distribution. As U0 served the Stokes velocity
corresponding to the chosen L0. To perform integration in time we ap-
plied an embedded Runge-Kutta-Fehlberg method with adaptive step-size
control.

!" #"

$" %"

Figure 4.3: Characteristic stages during the sedimentation of a monodisperse
particle cloud with initial particle volume fraction of 5%. Particles in c) and
d) have been enlarged by a factor of 3 for better visibility. The vertical tail of
leaked particles is not shown.



148

4.3.2 Evolution of a Bidisperse Cloud

In order to investigate the nature of the cloud evolution for a bidisperse
particle system we have investigated two different kinds of initial condi-
tions – unmixed bidisperse clouds, where the fraction of large particles
is only distributed in the upper hemisphere of the cloud, and well-mixed
clouds, where no restriction to the location of the particles inside the cloud
has been imposed.

Unmixed Bidisperse Cloud

Figure 4.4 shows the characteristic first stages of a bidisperse particle
cloud consisting of 1000 large and 1000 small particles, where the parti-
cles are placed according to a uniform random distribution and a given
volume fraction φ inside the initially spherical cloud. The restriction in
this study is that large particles are only placed in the upper hemisphere
and small particles only in the lower hemisphere. We chose this initial
configuration because it promotes mixing of the two fractions during sed-
imentation more than other comparable configurations. As depicted in
figure 4.4 the fraction of large particles forms a cloud, dives through the

&' ('

)' +'

Figure 4.4: Initial particle configuration in an unmixed cloud and subsequent
stages. The radius ratio of small to large particles is λ = 0.5, the initial volume
fraction of particles inside the spherical cloud is φ = 0.05 and the total number
of particles is N = 2000.
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portion of small particles, and takes a number of small particles with it.
Figure 4.5 shows that the higher the radius ratio λ of small to large par-
ticles, the more small particles get carried along by the fraction of large
particles. For values of λ lower than 0.5 the difference between the result-
ing curves is not as distinct as it is for higher radius ratios. The smaller
a particle is, the less impact it has hydrodynamically on a larger parti-
cle. This effect is reflected by the entries of the mobility matrix M

∞

in equation (4.3). Furthermore, as gravity scales with the third power of
the particle radius, the driving force for the settling of particles is lower
for a smaller particle size. These two factors are the main reasons lead-
ing to the described behaviour. Even though smaller particles have less
hydrodynamical impact on large particles, the many small particles left
behind for e.g. a radius ratio of λ = 0.1 can trap large particles, which
then cannot settle with the cloud anymore. This effect can be seen in
figure 4.6, where the evolution of the number of large particles Np,large is
shown. With increasing radius ratio more small particles stay in the cloud
such that e.g. at λ = 0.9 no trapping occurs. Figures 4.5 and 4.6 show
the number of particles inside the cloud until the first break-up event. At
the point of break-up most small particles still trapped inside the particle
cloud are freed and start to settle slower.
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Figure 4.5: Number of small particles Np,small inside an initially unmixed
settling cloud of N = 2000 particles for an initial volume fraction φ = 0.075.



150

0 50 100 150 200 250 300
0

200

400

600

800

1000

t U
0
/L

0
 [−]

N
p,

la
rg

e [−
]

 

 

λ=0.9
λ=0.75
λ=0.5
λ=0.25
λ=0.1

Figure 4.6: Number of large particles Np,large inside an initially unmixed set-
tling cloud of N = 2000 particles for an initial volume fraction φ = 0.075.

Mixed Bidisperse Cloud

We have conducted numerical experiments on the probability of a break-
up of a bidisperse particle cloud. This process is shown for the monodis-
perse case in figure 4.3 and has been reported in the mentioned literature
([Nitsche and Batchelor, 1997, Metzger et al., 2007]). Differing from the
numerical experiments described in the last subsection, particles inside
the initial cloud are now well mixed. We simulated the settling process
of particle clouds of 1000 particles with a radius ratio of λ = 0.5 and a
volume fraction of φ = 0.05 in the initially spherical cloud, while increas-
ing the percentage ν of small particles in the initial cloud in steps of 5%
from 0% to 95%. In ten out of ten runs the described clouds form a torus
and then break up into smaller clouds for all values of ν. The time of
the break-up varies, depending on the exact initial particle configuration.
Moreover, the break-up of the particle cloud itself depends on the exact
initial positions of the particles. Figure 4.7 a) shows the initial config-
uration of a well-mixed particle cloud with radius ratio λ = 0.5 and an
initial volume fraction φ = 0.05. Figures 4.7 b)-d) show snapshots of the
break-up for three different initial particle configurations. The only differ-
ences between the clouds shown in figures 4.7 b)-d) are the exact initial
positions of the particles inside the spherical cloud domain, which are de-
termined by a Monte Carlo method. Differing from the monodisperse case,
a polydisperse particle cloud does not always break up into two smaller
approximately evenly sized clouds. Instead it can break up into one large
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and another small cloud, into two similar clouds, or even into three clouds.
The break-up into more than two clouds has thus far only been observed
for break-up events at higher Reynolds numbers [Bosse et al., 2005] and in
experiments as well as in numerical studies using a point-particle model
[My lyk et al., 2011]. In [My lyk et al., 2011] polydispersity was not ana-
lyzed explicitly. In reality, particle systems are never truly monodisperse.
Our numerical results show that the polydispersity seems to have an ef-
fect on the settling process. The fraction of large particles determines the
motion of the cloud up to ν ≈ 75%. At this value the dominating fraction
was indeterminable in our numerical experiments. For percentages higher
than 75%, the fraction of small particles seems to determine the cloud be-
haviour. By the expression ’determine the cloud behaviour’ we mean that
the respective fraction forms a cloud and drags the particles of the other
fraction with it. The evolution of the number of small particles inside
the settling cloud, Np,small, for the test runs for which the first break-up
event is shown in figure 4.7 b)-d) is displayed on the right hand side of the
figure. Compared with unmixed clouds (cf. figure 4.5) the loss of small
particles in the initial phase is not as pronounced. More small particles
remain in the cloud until the first break-up event.
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Figure 4.7: Left: Initial particle configuration for φ = 0.05 in a mixed cloud
(a) and snapshots of the break-up event for different initial configurations (b) –
(d). Right: Number of small particles Np,small inside the clouds shown in (b) –
(d) until the first break-up. Run 1 corresponds to b), run 2 to c) and run 3 to
d). The total number of particles is N = 1000.
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4.3.3 Evolution of a Fully Polydisperse Cloud

In order to further investigate the behavior of polydisperse particle clouds,
we have conducted numerical experiments on fully polydisperse systems
with a particle radius distribution according to a given log-normal distri-
bution. The considered clouds consisted of 1000, 2500 and 5000 particles,
respectively, with particle and fluid properties such that the resulting
Reynolds number and Stokes number were sufficiently small, i.e. the as-
sumptions Re ≈ 0 and St ≈ 0 hold. For a particle volume fraction of
φ = 0.01 in a spherical cloud of 5000 particles, the characteristic stages
of the cloud evolution are shown in figure 4.8. The depicted particle sys-
tem has a radius distribution with resulting dimensionless expected value
µ ≈ 0.72 and standard deviation σ ≈ 0.15 (corresponding to the lognor-
mal distribution LN (−0.35, 0.04)). Abade and Cunha [2007] state that
polydisperse particle clouds are less stable than comparable monodisperse
clouds. They disintegrate before a torus can be formed. The clouds in-
vestigated in their work consisted of 300 particles. According to Metzger
et al. [2007] this number of particles is also in the monodisperse case too
low for the cloud to undergo the characteristic evolution, whereas the
likelihood for clouds comprised of 1000 and more particles is about 100%.
Our results show that also polydisperse clouds undergo this evolution, if
they consist of enough particles.

78

c) d)

a)

Figure 4.8: Characteristic stages during the sedimentation of a polydisperse
particle cloud of N = 5000 particles. Particles in c) and d) have been enlarged
by a factor of 3 for better visibility.



153

4.3.4 Cloud Settling Velocity

For a validation of formula (4.6) we have computed the mean of the par-
ticle velocities in our numerical experiments at a stage where the particle
cloud still forms a sphere. At this time no particles have left the cloud
and the cloud attains its maximum settling velocity. The error bars along
the curves in figures 4.9, 4.10 and 4.12 result from the uniform random
placement of particles inside the initial cloud, which influences the cloud’s
settling velocity. However, this influence is small compared to the total
settling velocity of the cloud, as one can see by the width of the error
bars. Their width goes to zero as the number of small particles in the
cloud is increased, which indicates that the exact placement of particles
in the cloud loses importance with a growing number of small particles.
For every set of parameters we have carried out four simulations to obtain
the error bars.

Velocity of Polydisperse Clouds

To cover a wide spectrum of possible particle systems, we have run exten-
sive numerical tests on the already described well-mixed bi- and polydis-
perse particle systems. While we varied the percentage of small particles
in bidisperse particle systems with fixed volume fraction, we varied φ in
case of fully polydisperse particle systems. Tested values for φ are 0.01,
0.025, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15 and 0.2. The ra-
dius distribution was chosen for all simulations such that the resulting
dimensionless expected value was µ ≈ 0.72. Together with a standard de-
viation of σ ≈ 0.15 this yields a reasonably polydisperse radius spectrum
(the corresponding distribution is LN (−0.35, 0.04)). A comparison of the
cloud settling velocity of a bidisperse cloud, obtained from our numerical
simulations, and the corresponding value from equation (4.6) is depicted
in figure 4.9. The volume fraction of particles in the cloud was φ = 0.05
with a total number of N = 1000 particles. The error bars showing the
deviation due to different initial configurations in runs with the same set
of parameters show that there is a statistical component. Yet, the agree-
ment of prediction and numerical experiment is very good for all radius
ratios λ and all values of ν. A comparison of our numerical results and
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Figure 4.9: Comparison of values for the settling velocity of a bidisperse cloud
obtained from our numerical simulations, Uc,n, and the prediction Uc,a from
formula (4.6). Here φ = 0.05 and N = 1000. The settling velocities have been
nondimensionalized by the Stokes velocity U0 of a particle of the fraction of
large particles.

the proposed prediction (4.6) for the case of a fully polydisperse cloud
is depicted in figure 4.10. For these results we have varied the number
of particles per cloud, N , and the solid volume fraction φ in the clouds.
The deviation of the cloud settling velocity from the computed mean is
extremely low for all tested N and φ. Furthermore, figure 4.10 shows that
prediction and numerical results agree very well in case of low values of
φ, what corresponds to a dilute cloud. The deviation between the cor-
responding curves increases for higher volume fractions. This is due to
the assumption of a dilute cloud, which has been made in the derivation
of formula (4.6). Nevertheless, this formula still gives a good prediction,
even for solid volume fractions of 20%.
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Figure 4.10: Comparison of the particle cloud settling velocity for varying φ
and different N in a fully polydisperse cloud. Uc,n denotes values from the nu-
merical simulation, Uc,a the prediction from formula (4.6). U0 has been defined
in section 4.3.1.

Velocity of a Monodisperse Cloud

In addition to the comparisons of analytical prediction and numerical re-
sults presented in figures 4.9 and 4.10 we have run simulations of monodis-
perse clouds with a varying number of particles N and a varying initial
solid volume fraction φ in the clouds. The tested number of particles and
initial volume fractions are the same as in the fully polydisperse case (cf.
section 4.3.4, figure 4.10). As in the polydisperse case we obtain a good
agreement of the prediction from formula (4.6) and our numerical results,
as one can see in figure 4.11. Yet contrary to the polydisperse case, the
additional USt-term in equation (4.5) would increase the agreement of
the analytical prediction by formula (4.6) and the numerically computed
cloud settling velocity.

Using Formulas Proposed for Monodisperse Systems for Polydisperse

Systems

The use of e.g. the mean particle radius together with a formula proposed
for monodisperse clouds leads to an error, which can be significant when
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Figure 4.11: Comparison of the particle cloud settling velocity for varying φ
and different N in a monodisperse cloud. Uc,n denotes values from the numerical
simulation, Uc,a the prediction from formula (4.6). Particle velocities have been
nondimensionalized by the Stokes velocity U0 of a single particle.

polydisperse clouds are considered. Figure 4.12 shows our numerical re-
sults compared to values obtained from formula (4.6), once considering
the given polydisperse radius distribution and another time assuming a
monodisperse particle system. For the latter we use the mean particle ra-
dius of the polydisperse particle system described in section 4.3.4 together
with formula (4.6) which in this case differs from equation (4.5) only in
the additional term equal to the settling velocity of a single particle (cf.
section 4.2.2). When polydispersity is not considered, the equation gives
for a polydisperse system of 5000 particles a resulting cloud velocity with
a relative deviation from the numerical value of 10% and more for all
volume fractions φ, while equation (4.6) considering polydispersity agrees
very well with the value obtained from the simulation. Therefore, an equa-
tion derived for monodisperse particle systems, like equation (4.5), should
only be used for truly monodisperse particle clouds. If the particle size
fractions of the system are known or can be approximated, formula (4.6)
which considers polydispersity yields good estimates.
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Figure 4.12: Comparison of different estimates for the settling velocity of a
polydisperse cloud for N = 5000 and varying φ. Uc,num denotes our numeri-
cal results, Uc,ana,poly the use of formula (4.6) considering polydispersity, and
Uc,ana,mono the use of formula (4.6) assuming a monodisperse particle system.
U0 has been defined in section 4.3.1.

4.4 Conclusions

This work gives more insight into the sedimentation process of polydis-
perse particle clouds in viscous fluids. Until now research has been con-
centrated on the investigation and description of monodisperse particle
clouds, drops or blobs, as they are sometimes called. Due to the fact that
we have parallelized our algorithm, we are able to simulate particle sys-
tems of several thousand particles with any radius distribution in a short
time. This enables us to investigate large polydisperse particle clouds, for
which the evolution differs from that of relatively small particle clouds
comprised of several hundred up to one thousand particles. One result is
that, given that the considered particle cloud consists of a large number
of particles, a polydisperse particle cloud undergoes the same remarkable
motion as a sufficiently large monodisperse cloud does. An initially spher-
ical cloud evolves into a torus that starts to oscillate until it breaks up
into smaller clouds, which then undergo the same motion. For a smaller
number of particles, namely about 1000 particles and less, polydisperse
clouds are not as stable as their monodisperse counterpart. In an extreme
case of polydispersity, a bidisperse system, the evolution is dominated by
the fraction with the highest number of particles in the system. Due to
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a loss of particles during sedimentation, initially spherical particle clouds
attain their maximum settling velocity while they still have their initial
shape. Starting from the Hadamard-Rybczynski equation we have derived
a formula which yields the settling velocity of such a particle cloud. By
a comparison with numerical experiments we have shown that the pro-
posed formula gives a very good estimate for the settling velocity of a
polydisperse spherical particle cloud.

Appendix to chapter 4: Derivation of the Cloud

Settling Velocity

We start from the Hadamard-Rybczynski equation (H-R equation),

Uc =
2

3

(ρf − ρc) a2
cg

µf

λ+ 1

3λ+ 2
, (4.7)

with the radius of the spherical cloud, ac, the dynamic fluid viscosity µf

and λ = µc/µf , the ratio of dynamic viscosity of the cloud to dynamic
fluid viscosity. ρf and ρc are the mass density of the fluid and the mass
density of the cloud, respectively. g denotes the gravitational constant.
Utilizing (ρf − ρc) = φ(ρf − ρp), where φ is the volume fraction of the
particles with mass density ρp in the spherical cloud, the H-R equation is
equivalent to

Uc =
2

3

φ (ρf − ρp) a2
cg

µf

λ+ 1

3λ+ 2
. (4.8)

If φ and λ are known, this is the equation we are looking for. Usually λ is
not known a priori. Making the assumption φ ≪ 1 yields λ ≈ 1. Together
with

φ =

Nf
∑

i=1

Np,i

(

ap,i

ac

)3

, (4.9)
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this yields

Uc =
6

5

Nf
∑

i=1

Np,i
ap,i

ac
USt,i. (4.10)

Here,

USt,i =
2

9

(ρf − ρp)a2
p,ig

µf
(4.11)

is the Stokes velocity of a spherical particle with radius ap,i. Np,i is the
number of particles in one of the Nf particle size fractions of the particle
system.





Chapter 5

Numerical simulation of orthokinetic

heterocoagulation

and cluster growth in destabilizing suspensions

Abstract

In this work we investigate the coagulation behaviour of non-Brownian
colloidal particles by means of direct numerical simulation on the exam-
ple of Al2O3 particles. This yields the so-called capture efficiency, for
which we give an analytical expression, as well as other time-dependent
values such as the cluster growth rate. Instead of neglecting or strongly
approximating hydrodynamic interactions between particles, we include
hydrodynamic and non-hydrodynamic interactions in a Stokesian Dynam-
ics approach and through comprehensive modeling of interparticle forces.
The resulting parallelized simulation framework enables us to investigate
the dynamics of polydisperse particle systems comprised of several hun-
dred particles at the same high level of modeling we use for a close in-
vestigation of the coagulation behaviour of two unequal particles in shear
flow. An appropriate cluster detection yields all the information about
large destabilizing systems, which is needed for models used in flow-sheet
simulations. Due to nondimensionalization the results can be generalized
and applied to other systems tending to secondary coagulation.
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This chapter follows our work of the same title under consideration for
publication in the journal Particuology.

5.1 Introduction

Destabilization of suspensions in shear flow and during sedimentation are
important topics in all kinds of suspension-related engineering, such as
chemical engineering, process engineering, civil engineering, or wastewa-
ter treatment. Numerical simulations are a valuable tool for the investiga-
tion of fundamental mechanisms during destabilization, and for the design
of coagulation-related processes, i.e. aggregation, agglomeration, floccula-
tion. Due to progress in modeling, code parallelization and the usage of
supercomputers, increasingly complex systems can be simulated within an
acceptable timespan. Yet, the larger and the more complex the simulated
system is, the more modeling has to be done. Population balance equation
(PBE) based simulations are an appropriate technique for the simulation
of coagulation-related processes on industrial scale [Gerstlauer et al., 2006].
They are mainly applied to investigate and to predict aggregation and ag-
glomeration in stirred tank vessels [Hollander et al., 2001], but can also
be applied to complex solid-liquid separation processes, such as the set-
tling of activated sludge in a secondary clarifier [Torfs et al., 2012]. PBE
models heavily rely on coagulation- and breakup kernels, which give the
probability of coagulation and possible breakup of aggregates, agglom-
erates or flocs. If the used model does not describe the physics of the
considered system well enough, the prediction by such a simulation is
rather poor [Torfs et al., 2012]. Apart from giving a better understanding
of the underlying physics, direct numerical simulations can provide the
models for strongly model-based simulations, such as PBE, but also for
analytic models used in flow-sheet simulations. There is a large number
of recent works dealing with the simulation of agglomerate- and aggregate
breakup and deformation [Dosta et al., 2013, Harshe and Lattuada, 2011,
Seto et al., 2012, Conchuir et al., 2014, Higashitani et al., 2001, Zeidan
et al., 2007, Manounou and Rémond, 2014], as well as several works con-
sidering the modeling and simulation of coagulation [Feke and Schowalter,
1983, Smoluchowski, 1917, Curtis and Hocking, 1970, Van de Ven and Ma-
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son, 1976], but only a limited number of works considering coagulation
and settling at the same time [Qiao et al., 1998, Davis, 1984, Han and
Lawler, 1991]. Work in the field of modeling and prediction of the coagu-
lation probability can be classified by means of the level of approximation
[Khadilkar et al., 2014], as well as by the investigated type of coagulation.
There is a differentiation between perikinetic, orthokinetic and differential
settling coagulation. Perikinetic coagulation is mainly driven by Brownian
motion, orthokinetic coagulation by the flow. This means mostly shear
flow, but depending on the definition it can also include settling [Somasun-
daran, 2006]. Coagulation due to differential settling is coagulation owing
to the fact that in general a larger or denser particle settles faster than
a smaller or less dense particle. Technically speaking, this effect differs
from flow driven coagulation, as here the driving force is a volume force
and not hydrodynamic forces, which are surface forces. A distinction by
the Peclet number on the other hand yields only two groups — inertia
dominated coagulation and Brownian motion dominated coagulation. Of
course, there is a transition regime and on a technical scale coagulation
due to flow and that due to differential settling are almost always superim-
posed. Therefore we leave it up to the reader to make an own distinction,
as further discussion would go beyond the scope of this work. In this work
we concentrate on non-Brownian coagulation and call it orthokinetic co-
agulation.
A classical way to predict orthokinetic coagulation in suspensions is the
consideration of two particles in a simple shear flow, from which a deriva-
tion of the so-called orthokinetic collision rate is possible. This can be
done e.g. based on conditional pair distribution functions (usually done if
Brownian motion plays a role, see e.g. [Feke and Schowalter, 1983, Qiao
et al., 1998]) or by a direct investigation of the trajectories of two in-
tercepting particles. In his famous work, Smoluchowski [Smoluchowski,
1917] determined the collision rate of colloidal particles based on quite
simplifying assumptions. Among them are the assumption of negligible
hydrodynamic interactions and of attraction spheres around each parti-
cle, where two particles coagulate instantly when their spheres overlap.
Nevertheless, the resulting collision rates are remarkably good and are in
various forms widely in use. Usually the collision rates by Smoluchowski
are modified by a capture efficiency, which is defined as ratio of observed
collision rate to the collision rate proposed by Smoluchowski [Van de Ven
and Mason, 1977]. There is quite a large number of works using a two-
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particle approach in bispherical coordinates in order to obtain the capture
efficiency for two spheres in a simple shear flow [Van de Ven and Mason,
1977, Adler, 1981, Wang, 1992, Vanni and Baldi, 2002, Kobayashi, 2008,
Balakin et al., 2012, Sato et al., 2004, Lin et al., 2006]. The resulting
orthokinetic capture efficiency can be applied to compute the collision
rate used in PBE simulations. But the applicability of simulations using
bispherical coordinates is limited to a consideration of only two particles.
Using a meshfree simulation approach for hydrodynamic interactions be-
tween particles [Brady and Bossis, 1988, Durlofsky et al., 1987] and de-
tailed modeling of other occurring effects, such as lubrication [Davis et al.,
1986] and interparticle interactions covered by DLVO theory [Verwey et al.,
1999, Feke et al., 1984], allows us a close investigation of the coagulation
behaviour of two particles as well as studies on destabilization of parti-
cle systems with a large number of settling particles [Bülow et al., 2014,
2015]. In this work we show that both ways yield results for the coag-
ulation probability, the collision rate and the cluster growth rate, which
are essentials for large-scale simulations by means of PBE and simplified
methods such as flow-sheet simulations.
The structure of this work is as follows: First we give a quick overview
of the method we use to simulate the behaviour of suspensions and we
present the used models for particle-particle interactions. Here, we focus
on a new model for lubrication forces between particles at almost-contact.
The presented results from numerical investigations in the binary orthoki-
netic heterocoagulation of Al2O3 particles in shear flow lead to an analyt-
ical expression for the orthokinetic capture efficiency in convenient form.
Furthermore, we show how effort can be reduced when doing similar nu-
merical experiments. We conclude this work by giving results from a clus-
ter detection applied to the simulation data from numerical experiments
on destabilizing systems of suspended particles. This procedure yields,
besides comprehensive insight into the process, useful data such as cluster
growth rates and other information needed for flow-sheet simulations.
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5.2 Methods

5.2.1 Underlying equations for the particle motion

We consider the motion of N particles for which the effects of Brown-
ian motion is negligible, while the effect of interparticle forces as well as
hydrodynamics is considerable. If these particles settle in an otherwise
undisturbed fluid, or they are exposed to a simple shear flow with low
to moderate shear rate γ̇, the quasi-steady Stokes equations can describe
the fluid motion appropriately. The translational motion of a spherical
particle α suspended in a fluid can generally be described by the dimen-
sionless Langevin equation [Brady and Bossis, 1988, Ichiki and Hayakawa,
1995],

St

(

aα

L0

)3
d

dt
Uα = F h

α −

(

aα

L0

)3

ez + F i,St
α +

1

Pe
F i,Pe

α , (5.1)

with the Stokes number St defined as the mass density ratio scaled Reyn-
olds number Re,

St =
2

9

ρp

ρf
Re, (5.2)

and the vector ez pointing in positive z-direction (w.l.o.g. the applied cen-
trifugal force points in negative z-direction). The dimensionless angular
momentum balance is given by

St
2

5

(

aα

L0

)5
d

dt
ωα = T h

α + T i,St
α +

1

Pe
T i,Pe

α . (5.3)

In equations (5.1) and (5.3), Uα is the translational velocity of particle
α, F h

α the hydrodynamic force acting on the particle, F i,St
α interparticle

forces of the same scale as F h
α, and F i,Pe

α interparticle forces which need
to be scaled by the Peclet number Pe. ωα denotes the angular velocity of
particle α and T h

α the hydrodynamic torque acting on the particle. T i,St
α
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and T i,Pe
α are torques corresponding to the respective forces. Assuming a

constant particle mass density ρp, the mass mα of a spherical particle α is
mα = 4/3πρpa

3
α, with the particle radius aα. With the same assumption

the moment of inertia tensor Iα writes as Iα = 8/15πρpa
5
αId, with the

3 × 3 identity matrix Id. For nondimensionalization we used the charac-
teristic length L0, a characteristic force scale F0 = 6πµfL0U0, and the
characteristic velocity U0, the Stokes velocity of a particle of radius L0 in
the applied centrifugal field.
The dimensionless equations (5.1) and (5.3) contain two dimensionless
numbers, St and Pe. The Stokes number St of a monodisperse system
of spherical particles, i.e. aα = L0 for all α ∈ [1, N ], is given in equation
(5.2). In case of a polydisperse system, with L0 chosen as the mean value
of the radius distribution, one can define a Stokes number specific to a
particle α,

Stα =

(

aα

L0

)3

St =

(

aα

L0

)3
2

9

ρp

ρf
Re =

mαU
2
0

6πµfL2
0U0

.

The variables ρf and µf are the mass density and the dynamic viscosity
of the fluid, respectively. The Peclet number is defined by

Pe =
6πµfL

2
0U0

kBT
,

with the Boltzmann constant kB and the temperature T .
Let the background flow, i.e. the fluid velocity in the absence of particles,
at position x in the fluid domain be given by the Stokes flow

u∞(x) = U∞ + Ω∞ × x + E∞x, (5.4)

where U∞ and Ω∞ are the translational and angular velocity of the undis-
turbed Stokes flow and E∞ the respective rate of strain. The Stokesian
Dynamics (SD) method arises from a truncated multipole expansion of the
integral representation for the fluid velocity in Stokes flow with present
particles and background flow as given in equation (5.4). This multipole
expansion yields a linear relation between particle velocities and hydro-
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dynamic forces, torques and stresses. The linear relation between these
variables is given by the so-called mobility matrix, the corresponding sys-
tem of linear equations is called mobility problem [Bülow et al., 2014,
Durlofsky et al., 1987]. The mobility matrix reflects the hydrodynamic
interactions among all suspended particles and can be computed without
explicit knowledge of the fluid velocities. These are treated implicitly by
the multiplication of mobility matrix and the vector of forces, torques and
stresses — in short FTS-vector. Together with equations (5.1) and (5.3)
one obtains a method for the time-dependent simulation of the motion
of particles suspended in a fluid. For a more detailed description of the
method and the parallelization techniques we use, we refer to [Bülow et al.,
2014]. For the problems investigated in this work we can assume a van-
ishing Stokes number [Curtis and Hocking, 1970]. For more information
and a discussion on the consequences of the assumption St ≈ 0 we refer
again to [Bülow et al., 2014].

5.2.2 Interparticle forces

For the results presented in this work we employ several models to ac-
count for interparticle forces of non-hydrodynamic nature and a model
for the part of the hydrodynamic force, which is not considered by the
SD approach for St ≈ 0. Together these models cover the almost-contact
of particles, particle contact and interactions due to DLVO interactions.
The implemented model for interactions included in DLVO theory [Verwey
et al., 1999], which yields interparticle forces arising from London–van der
Waals (LvdW) attraction, electrostatic repulsion and Born repulsion, as
well as the applied Hertz-contact model can be found in [Bülow et al.,
2014]. In the following we describe the adapted lubrication model we use.
This model accounts for hydrodynamic effects between almost touching
particles, which are not included in the mobility matrix.

Lubrication Model

The approximations of hydrodynamic forces and torques arising from the
assumption of a vanishing Stokes number can yield a large error in par-
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ticle velocities when particles are almost touching (see e.g. [Ichiki, 2002]
for a method which includes higher moments in the previously mentioned
multipole expansion, as well as [Bülow et al., 2015] for a quantitative
evaluation of the resulting deviation). As illustrated in figure 5.1, the
lubrication effect results from the squeezing motion of approaching parti-
cles exerted on the fluid in the gap between the particle surfaces as well
as from the fact that separating particles need to overcome a negative
pressure gradient between the surrounding fluid and the widening gap be-
tween their surfaces.
Classical lubrication models [Jeffrey and Onishi, 1984, Jeffrey, 1992, Ci-
chocki et al., 1999] depend on the computation of an additional lubri-
cation correction matrix of the same dimension as the mobility matrix.
Furthermore they require the solution of the mobility problem, i.e. the
solution of a system of linear equations with a dense matrix of dimension
R

clevN×clevN , with clev ∈ {3, 6, 11} depending on the level of approxima-
tion [Bülow et al., 2014]. Because of high numerical costs, the coefficients
of the expansion yielding the entries of the additional lubrication correc-
tion matrix are often stored in a table prior to a simulation. Especially
for systems of high polydispersity this technique produces an immense
amount of data. The coefficients need to be computed for a large num-
ber of interparticle distances and all radius ratios. Moreover, storage
of the coefficients produces additional communication costs in case of a
parallelized implementation with dynamical sorting of particle data as in

r/L0

F 
lub

U2U1

r/L0

approaching

sep
ara
ting

Figure 5.1: Left: Illustration of two particles squeezing fluid out of the gap
between their surfaces as they approach each other. Right: Schematic progress
of the resulting lubrication force for a constant relative velocity of the two
particles.
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[Bülow et al., 2014]. Therefore the coefficients should be computed on the
fly, which would make a simulation with a classical lubrication scheme
computationally inefficient.
Apart from the computational drawbacks, classical lubrication schemes
assume the fluid in an interparticle gap to behave as an incompressible
continuum for all surface-to-surface distances. This assumption results in
an infinitely strong lubrication force (repulsive as well as attractive) for al-
most touching particle surfaces, what is sometimes called Stokes paradox
[Zhang et al., 2005] and can be avoided by appropriate modeling. Es-
pecially for micron sized particles and nanoparticles separated by a thin
interstitial gap, slip occurs due to non-continuum effects and as Hocking
[1973] states, the Stokes equations are not valid when the interparticle gap
approaches molecular dimensions. Zhang et al. [2005] discuss this topic
and propose a lubrication model which includes slip effects in a more rigor-
ous force-based scheme. In their model, lubrication effects are taken into
account by an inclusion of a mathematically justified extra force, just as in
[Davis et al., 1986]. Note that Davis et al. [1986] particularly mention the
assumptions which give rise to the paradox of non-touching particles and
which are tackled in [Zhang et al., 2005]. Besides the fact that the model
in [Zhang et al., 2005] reflects the physical behaviour of almost touching
particles in a more accurate way, a force-based lubrication scheme has
lower numerical costs than classical SD lubrication schemes, it does not
necessarily require the solution of a system of linear equations and has
generally lower communication costs, as sparse communication can be ap-
plied [Bülow et al., 2014]. For these reasons we chose to modify the model
given in [Zhang et al., 2005] such that it takes polydispersity of the con-
sidered particle system and a transition regime between continuum and
non-continuum (or no-slip and slip) regimes into account. Considering a
transition regime is not only physically justified, as the number of fluid
molecules normally does not abruptly decrease with decreasing interstitial
gap width, it also produces a smoother force which is numerically benefi-
cial.
We distinguish four regimes, which are valid at specific surface-to-surface
distances r0. These regimes are: A continuum regime where the fluid is
treated as incompressible Newtonian fluid (i), a regime where slip domi-
nates (ii), a transition regime where the lubrication force gradually transi-
tions from the continuum expression to the expression with occurring slip
(iii), and a regime where surface roughness and DLVO forces dominate
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(iv). Figure 5.2 visualizes the resulting effective lubrication force F lub, eff

with its contributions F lub, no-slip and F lub, slip in the three regimes i)–
iii). Also shown in figure 5.2 are the boundaries of the respective regimes.
The no-slip regime (i) is valid for surface-to-surface distances larger than
a specified distance dl,trans. The transition regime (iii) lies between the
lower bound dl,slip and the upper bound dl,trans. Further indicated in fig-
ure 5.2 is the lower boundary dc,min < dl,slip of the slip regime (ii) below
which regime (iv) starts, where surface roughness and DLVO forces are
dominant (cf. [Bülow et al., 2014]). In the following we give the expression
for the lubrication force in the different regimes.
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Figure 5.2: Dimensionless effective lubrication force F lub, eff
α with its contri-

butions F lub, no-slip
α and F lub, slip

α in the three regimes i)–iii) for dimensionless
values of dc,min = 10−6, dl,slip = 10−3, dl,trans = 0.3 and a constant dimension-
less relative velocity vαβ = 1.

i) Lubrication force in the no-slip regime, r0 ≥ dl,trans:

Following [Davis et al., 1986, Zhang et al., 2005] we get an expression
for the lubrication force acting on a particle α along the line through the
centers of particle α and another particle β in the no-slip regime. This
expression is given by

F lub, no-slip
α (r0, ared,vαβ) = klub

1 6πµfa
2
red

(

1

r0
−

1

r0 + 2ared

)

vαβ . (5.5)
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Here, the shortest distance r0 := rαβ − (aα + aβ) between the surfaces
of two interacting particles α and β with center-to-center distance rαβ =
∣

∣

∣

∣xα −xβ

∣

∣

∣

∣

2
has been used. vαβ is the relative velocity of the two particles.

The reduced radius ared is defined by

ared := aαaβ/ (aα + aβ) , (5.6)

where the radii aα and aβ are the radii of two interacting particles α and
β.
In order to improve the accuracy of their analytical expression for the
lubrication force in the no-slip regime, Zhang et al. [2005] have carried out
numerical computations where they solved the equation for the pressure
distribution in the interparticle gap. As a result they obtained a correction
factor klub

1 for the analytical expression, with which the deviation between
corrected analytical expression and numerical solution is below 1.5%. This
factor is given by

klub
1 (r0, ared) = 1.041 − 0.281 log

(

r0

2ared

)

− 0.0351 log2

(

r0

2ared

)

.

The resulting expression for the lubrication force acting on a particle α
due to interaction with another particle β in the no-slip regime is then
given by F lub, no-slip

α as defined in equation (5.5).

ii) Lubrication force in the slip regime, dc,min ≤ r0 < dl,slip:

As the model in [Zhang et al., 2005] we account for non-continuum effects
in such a way that for surface-to-surface distances dc,min ≤ r0 < dl,slip we
use the expression

F lub, slip
α (r0, ared,vαβ)

= klub
2

πµf

3dl,slip
a2

red

(

(r0 + 6dl,slip) ln(
r0 + 6dl,slip

r0
)

−(r0 + 2ared + 6dl,slip) ln(
r0 + 2ared + 6dl,slip

r0 + 2ared
)

)

vαβ , (5.7)
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with the correction factor

klub
2 (r0, ared) = 1.309 − 0.082 log

(

r0

2ared

)

− 0.009 log2

(

r0

2ared

)

.

Compared with [Zhang et al., 2005], the variable dl,slip does not stand for
the mean free path of the fluid but for a value defining the slip regime,
which can be seen as slip length. Equation (5.7) results from an inclu-
sion of slip effects, which can have a non-negligible influence even in non-
colloidal suspensions [Pieper et al., 2015].

iii) Lubrication force in the transition regime, dl,slip ≤ r0 < dl,trans:

In the interval where dl,slip ≤ r0 < dl,trans, we interpolate between

F lub, no-slip
α and F lub, slip by means of the error function erf and a function

λtrans, with

λtrans(r0) = 0.5

(

erf(12
r0 − dl,slip

dl,trans − dl,slip
− 6) + 1

)

, (5.8)

such that we get

F lub, trans
α = λtransF

lub, no-slip
α + (1 − λtrans)F

lub, slip
α , (5.9)

where we have dropped the arguments of the force functions for better
readability.
The resulting effective lubrication force F lub, eff is given by equations (5.5),
(5.7) and (5.9), each valid in their interval. The function λtrans has been de-
fined such that in the transition regime the argument of the error function
is a linear function of r0 between −6 and 6. As one can see in figure 5.2 this
results in a smooth interpolation with a deviation below machine accuracy
for λtrans at the boundaries of the transition regime. Without transition
regime, the large difference in the values of F lub, no-slip

α and F lub, slip
α re-

quires a strong reduction of the time-step width of the used time-stepping
scheme, if an adaptive scheme such as the (4,5)-Runge-Kutta-Fehlberg
method [Fehlberg, 1970] is used. For distances below dc,min, which cor-
responds to r0 in the regime (iv), we make use of the contact model
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described in [Bülow et al., 2014]. The resulting force for every particle α
is made dimensionless by the characteristic force scale F0 and then added
to the vector of interparticle forces F i,St

α in equation (5.1).
The presented model extends the model derived in [Zhang et al., 2005],
which is an extension of the model in [Davis et al., 1986]. That model can
be seen as low level approximation to classical SD lubrication correction
schemes as e.g. in [Jeffrey, 1992]. It takes into account the relative motion
and the particle configuration and thus is superior to other force-based
correction schemes, which only depend on particle positions (e.g. [Cunha
et al., 2002, Nitsche and Batchelor, 1997]). The additional dependence
on the relative velocity in equation (5.5) is not only mathematically justi-
fied [Davis et al., 1986], it reflects the attractive nature of the lubrication
force during separation of almost touching particles. Even though a corre-
sponding correction for the hydrodynamic torque and for higher moments
is missing, this model yields a good lubrication correction as we show in
section 5.3.

5.3 Results and discussion

In this section we present results dealing with basic coagulation behaviour
and with the destabilization of large heterogeneous particle systems. All
computations have been performed on the supercomputers HC3 [hc3,
2014] and IC2 [ic2, 2013] at our university. Used physical values are
made dimensionless by a corresponding characteristic value. In case of a
bimodal radius distribution the characteristic length L0 is the amplitude
of the right peak, for unimodal distributions we use the mean. The char-
acteristic velocity U0 is the corresponding Stokes velocity. Characteristic
values for DLVO forces can be found in the subsection on nondimensional-
ization in [Bülow et al., 2014]. Validation and simulation results consider-
ing the motion of particles suspended in a fluid are given in [Bülow et al.,
2014, 2015]. If not stated otherwise, we use the dimensionless parameters
dc,min = 1e-6, dl,slip = 1e-3 and dl,trans = 0.25 for the lubrication model
presented in subsection 5.2.2.
We present results yielding the orthokinetic capture efficiency αo for poly-
disperse particle systems. As we will show, αo depends strongly on the
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shear rate γ̇. The data is in dimensionless form to make the results more
universal. A multiplication of the respective value of the shear rate by
the problem-dependent inverse time scale U0/L0 yields the corresponding
dimensioned value. The same holds for the already addressed lengths and
velocities.

5.3.1 Lubrication effects and particle collision in a simple

shear flow

We have tested the proposed lubrication model on examples given in
[Pozrikidis, 2007], which have also been used in [Luo and Pozrikidis, 2007].
In the work by Pozrikidis [2007], the interception of two spherical parti-
cles in a simple shear flow is investigated by means of a boundary element
method. Because of the assumption of an incompressible Newtonian fluid,
which acts as continuum at all times, the considered particles never touch.
In the work by Luo and Pozrikidis [2007] the authors allow for slip effects
and find that there is a critical value of the slip coefficient (the scaled
inverse slip length) below which the two intercepting particles collide af-
ter a finite interception time. This critical value is stated to depend on
the relative initial particle positions in the considered numerical experi-
ment. For particles initially almost lying in the plane of zero velocity of
the simple shear flow, the authors of [Luo and Pozrikidis, 2007] expect
the two particles to get in contact even for relatively high values of the
slip coefficient. Since this coefficient is the inverse of the slip length, this
means that particles get in contact even for small slip lengths. Luo and
Pozrikidis [2007] further state that in reality attractive forces will cause
the particles to form a temporary or a permanent doublet, which rotates
around an axis perpendicular to the plane spanned by the vectors point-
ing in flow direction and in direction of the velocity gradient of the simple
shear flow. Due to the lack of a contact model, the computations in [Luo
and Pozrikidis, 2007] have been aborted before actual contact could occur.
As we consider a lubrication model which accounts for slip effects, particle
contact and attractive interparticle forces resulting from London–van der
Waals attraction, we are able to investigate the effects described in [Luo
and Pozrikidis, 2007]. In this specific subsection we take a close look at
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the effect of lubrication on particle collision with touching surfaces, not
coagulation. Therefore we neglect forces arising from DLVO theory for
now.
We simulated the behaviour of two intercepting particles in a simple shear
flow with flow direction along the x-axis and gradient in y-direction. If
not stated otherwise, the dimensionless shear rate is chosen as γ̇ = 1. The
initial coordinates of the particles have been chosen as in Pozrikidis [2007]
such that deviation from their initial paths due to particle interaction can
be considered negligible (cf. figure 5.3). The considered radius ratios of
the two spherical particles were λ = a2/a1 = 0.5 and λ = 1, where the
particle with radius a1 was placed above the plane of zero background flow
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Figure 5.3: Trajectories of two intercepting particles in a simple shear flow.
Top: Comparison of trajectories without lubrication scheme (solid lines) and
with the proposed lubrication force model (dashed lines). Bottom: Comparison
of the trajectories with lubrication force (solid lines) and with lubrication plus
Hertz contact model (dashed lines). Left: Trajectories of two particles of equal
radius. Right: Trajectories of two particles of unequal radius with radius ratio
λ = 0.5. The particle with radius 1 started above y = 0, the particle with
radius 0.5 below y = 0. Initial positions for λ = 1 are xinit = ±3, yinit =
±0.4, 0.6, 0.8, 1.0, 1.2, zinit = 0, for λ = 0.5 xinit = ±6 with the same yinit and
zinit. Dashed circles indicate the region of particle contact, arrows show the
direction of particle motion.
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velocity and the particle with radius a2 below this plane such that they
move towards each other. Note that our simulations are in 3D, but as the
flow is the described simple shear flow, the particle trajectories remain in
the x-y-plane if particles start in this plane and if no Brownian motion is
present.
In the two plots in figure 5.3, top, a comparison of the particle trajectories
without lubrication scheme (solid lines) and with the proposed lubrication
force model (dashed lines) is depicted. The lubrication model improves
the SD solution without lubrication correction such that the particles only
overlap for the innermost trajectories for both radius ratios, λ = 1 and
λ = 0.5. In this case overlap is expected, as the lubrication force model
proposed in subsection 5.2.2 does not totally prevent particle collision and
in the simulations yielding figures 5.3, top, no contact model has been ap-
plied. Note that the lubrication force without additional contact model
is an odd function and for all initial positions both considered particles
return to their initial trajectories after interception. As predicted by Luo
and Pozrikidis [2007], with the proposed lubrication model we observe par-
ticle contact for close enough particle trajectories and no contact if the
particles are on trajectories, which result in interception but which are far
enough apart such that hydrodynamic forces suffice to prevent actual con-
tact. The bottom row of plots in figure 5.3 shows the trajectories obtained
from simulations with additional contact model (dashed lines). No overlap
can be observed, yet due to the purely repulsive Hertz contact force, parti-
cles are pushed from their original paths onto paths further away from the
plane of zero background flow velocity. As the modeled lubrication force
has no memory but always acts based on the current relative positions
and velocities, the particles stay on their respective paths after contact.
This modeling effect is more pronounced for particles of equal radius (cf.
figure 5.3, bottom left) and almost does not affect the particles of unequal
radius with radius ratio λ = 0.5 (cf. figure 5.3, bottom right). For both
radius ratios, λ = 1 and λ = 0.5, we observe particle collision only for the
innermost paths (initial positions xinit = ±3, yinit = ±0.4, zinit = 0 for
λ = 1 and xinit = ±6, yinit = ±0.4, zinit = 0 for λ = 0.5). This shows that,
if fundamental processes such as collision or coagulation of two particles
are to be examined, hydrodynamic effects such as lubrication need to be
taken into account to yield reliable results. A fact which was also noted in
[Ernst et al., 2013], where the collision of two particles in a simple shear
flow at a higher Reynolds number has been investigated.
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5.3.2 Coagulation of two particles in a simple shear flow
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Figure 5.4: Dimensionless DLVO potentials with resulting total DLVO poten-
tial plotted over dimensionless interparticle distance r. Shown are the potentials
for two particles of dimensionless radius 1. The inset figure displays a zoomed
in view of the forces for r ∈ [2.02, 2.45].

If we additionally consider DLVO forces with potentials as in figure 5.4, we
observe the formation of permanent doublets. The depicted potential is
the DLVO potential of Al2O3 particles in water, with Hamaker constant
Ah = 4.76e-20J, relative permittivity ǫr = 81, temperature T = 298K,
an ionic strength of ι = 7mmol/l, and a separation σ = 7Å, at which
the Born potential can be assumed to vanish [Bülow et al., 2014]. The
absolute value of the total double layer potential |ψζ | = 37mV has been
measured for a concentration of 1mg/l at pH = 6 using a Malvern Instru-
ments Zetasizer Nano ZS. The Debye-Hückel reciprocal length κ, which
is a parameter of the used model for electrostatic repulsion, results from
κ =

√

2NAe2ι/(ǫrǫ0kBT ). Here, NA denotes the Avogadro constant, e
the elementary charge and ǫ0 the vacuum permittivity.
The investigated setup is depicted in figure 5.5. Initial positions are chosen
similar to that in subsection 5.3.1 with xinit = ±3, for equal particles and
xinit = ±6 for unequal particles. W.l.o.g., for investigations on unequal
particles we chose yinit ≥ 0 for the large particle, whereas for the small
particle the respective yinit has a negative sign. In order to investigate
the influence of the shear rate γ̇ and the radius ratio λ on the capture effi-
ciency αo, we have performed simulations with dimensionless shear rates
γ̇ = 1, 2, 4, 8, 16, 32, 64, 100 for the radius ratios λ = 0.1, 0.5, 1. Starting
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from initial positions as in subsection 5.3.1, with the vector rinit lying to-
tally in the x/y-plane, we redid the numerical experiments with differing
sinit until we found the critical capture distance sc, below which capture
occurred. Subsequently we repeated the procedure with increasing an-
gle θ = arccos(yinit/sinit), which is the angle between the y-axis and the
projection of rinit into the y/z-plane, to cover the quarter cross-section
highlighted in figure 5.5. Because of rotational symmetry this procedure
suffices to cover all configurations which are necessary for a computation
of the capture efficiency αo. In case of equally sized particles, we have
additionally tested the shear rates γ̇ = 7, 48.
Numerical integration during post-processing was performed using the
trapezoidal rule with sufficiently small step size. If not stated otherwise,
for curve fitting we have made use of the function ’fit’ implemented in
MATLAB [MATLAB, 2011].
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Figure 5.5: Investigated setup of two particles in a simple shear flow in x-
direction with gradient in y-direction. Numerical experiments have been con-
ducted with angles θ = 0, π/6, π/3, π/2.5, π/2.25 and with values of sinit =
√

y2
init + z2

init ∈ [0.4, 2.0].

General observations for θ = 0 and shear rate γ̇ = 1

Initial positions of particles are chosen as described in subsection 5.3.2,
with θ = 0, i.e. the initial z-coordinate of the particle positions is zinit = 0.
In this case the initial distance from the x-axis is sinit = yinit, where the
initial y-coordinate yinit is varied to study the particle behaviour due to
differing particle separations. Figure 5.6 shows typical trajectories of two
equally sized particles in the considered shear flow, when DLVO forces
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Figure 5.6: Trajectories of two intercepting particles of equal radius in the
considered simple shear flow with models for lubrication, particle contact and
DLVO forces. Arrows show the direction of particle motion and diamond mark-
ers their initial positions.

are taken into account. The particles follow the flow, but with decreasing
interparticle distance the strength of the DLVO forces increases. If their
initial separation is small enough, the particles leave their original path
and approach each other more and more in a straight line through their
centers until their center-to center separation is r = 2.051, which is the
location of the secondary minimum of the DLVO potential for particles
of equal size (cf. figure 5.4). This motion is superimposed by advection
by the fluid, which from then on lets the particles rotate around the
origin with constant surface-to-surface distance. As one can see in figure
5.6, the point of attachment to the closed-circle trajectory moves further
downstream with increasing initial distance to the x-axis, yinit.
For unequal particles with radius ratio λ = 0.5 and initial y-positions of
yinit = ±0.4, with the large particle starting at (−6, 0.4, 0)T and the small
particle starting at (6,−0.4, 0)T, the particle trajectories and snapshots of
the configuration at different times are depicted in figure 5.7. The stage
of approach is similar to the monodisperse case. If the initial distance
is small enough, the particles approach each other until their center-to-
center separation is r = 1.552, which corresponds to the location of the
secondary minimum of the considered DLVO potential for two particles
with radius ratio λ = 0.5. After the particles have reached the potential
minimum, the small particle orbits the large particle, while this particle
continues its path slightly influenced by the orbiting small particle. This
motion happens for all investigated initial positions with yinit between
yinit = ±0.4 and yinit = ±1.1191. The circling motion starts later and
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Figure 5.7: Trajectories of two intercepting particles of unequal radius with
radius ratio λ = 0.5 in the considered simple shear flow with models for lu-
brication, particle contact and DLVO forces. The particle initial positions are
indicated by diamond markers (xinit = ±6, yinit = ±0.4, zinit = 0). Snapshots
visualize the relative positions of the particles on their trajectories.

the circle duration increases with increasing initial distance from the x-
axis. For an initial separation slightly larger than this (yinit = ±1.1192),
a strong influence of DLVO forces can be observed, but the forces are
too weak to cause doublet formation (cf. figure 5.8). A further increase in
initial distance in y-direction decreases the influence of DLVO forces, such
that for yinit = 1.4 only 3.4% relative deviation from the original path is
observed. Figure 5.8 shows selected trajectories of the small particle in
the region of interception. Shown are trajectories for cases where the two
particles pass each other before a possible coagulation. Differing from the
case of equal particles, attractive interactions can alter the trajectory of
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Figure 5.8: Close-up view of a part of the trajectories of a particle of dimen-
sionless radius a2 = 0.5 during interception with a particle of dimensionless
radius a1 = 1 in the considered simple shear flow with models for lubrication,
particle contact and DLVO forces.



181

the smaller particle such that it is lifted from its trajectory below the x-
axis to a trajectory above the x-axis, but without subsequent coagulation
(cf. the trajectory for yinit = −1.1192). In that case, the small particle
follows the large particle with increasing interparticle distance. If the
initial distance is increased slightly (yinit = −1.1193), the trajectory of
the small particle is altered strongly, but the particle persists moving
downstream.

Influence of the angle θ and the shear rate γ̇ on trajectories

We now describe observations concerning the influence of θ and the shear
rate γ̇ on the particle trajectories. For this we utilize results from simu-
lations with dimensionless shear rates γ̇ = 1, 2, 4, 8, 16, 32, 64, 100 for the
radius ratios λ = 0.1, 0.5, 1. Initial positions are as illustrated in figure
5.5, the procedure is described in subsection 5.3.2.
Especially for a low λ and a high γ̇ we observed that the effect of lubri-
cation plays an important role. Figure 5.9, left, shows the trajectories for
λ = 0.1, γ̇ = 32 and initial y-positions with yinit = ±0.5315, and θ = 0.
As one can see, at the first encounter lubrication pushes the small parti-
cle off its original path. During interception it is attracted by the large
particle, but the LvdW force is not strong enough to lead to direct coag-
ulation. Crossing the plane of zero background flow velocity, the small
particle follows the large particle for a while, closing the relatively large
gap between their surfaces. This can be seen in figure 5.9, right, which
shows a plot of the dimensionless surface-to-surface distance r0 over the
x-coordinate of the large particle, x1. The inset figure shows a close-up
view of r0 for the time after coagulation. As stated in [Van de Ven and
Mason, 1977] for equal particles, the surface separation r0 oscillates with
mean at the energy minimum during the orbiting motion.
The trajectories differ from the described cases when the motion does not
lie completely in the plane spanned by the direction of the background
flow and the direction of the shear gradient (in our case the x/y-plane).
Figure 5.10 shows exemplary trajectories for the radius ratios λ = 0.1, 1,
the shear rates γ̇ = 8, 100, different angles θ and initial separations sinit to
the x-axis, at which subsequent capture occurs. In case of a small radius
ratio, the large particle moves due to the background flow without strong
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Figure 5.9: Left: Trajectories of two intercepting particles of radius ratio
λ = 0.1 in the considered simple shear flow with models for lubrication, particle
contact and DLVO forces. The starting position of the particle with radius
a2 = 0.1 is indicated by a diamond marker, the point of collision by a star
marker. After collision the trajectories are periodic, as shown in figure 5.7.
Right: Surface-to-surface distance r0 over x-position x1 of the large particle.

influence by the small particle. After interception, the small particle or-
bits the large particle in a trajectory parallel to the plane spanned by the
direction of the background flow and the direction of the shear gradient.
For equal particles, the orbiting motion after interception differs strongly.
The particles do not only spin around the z-axis, as they do for θ = 0.
With increasing θ and growing γ̇, the orbiting motion includes more and
more a spin around the x- and y-axis, such that the trajectories cover the
exclusion sphere more and more. As can be seen in figure 5.10 f), the
exclusion sphere is completely covered for θ = π/2 and respective values
of γ̇ and sinit. For λ = 0.5 we observed a behaviour similar to that when
λ = 0.1, but with stronger influence of the small particle on the trajectory
of the large particle (cf. figure 5.7). This results in an orbiting motion
of the small particle around the large particle, which includes contribu-
tions of spins around the x- and y-axis, although not as pronounced as
for λ = 1.
For the radius ratio λ = 0.1 and an angle θ = π/2, we observed a kind
of spiraling motion of the small particle towards the large particle (cf.
figure 5.10 c)). This motion is best described by a superposition of the
modes 1 and 2 given in [Feke and Schowalter, 1983]. The small parti-
cle swings back and forth in a plane parallel to the x/y-plane while it
decreases the distance to the large particle. During approach, the cur-
vature of the orbit increases until the small particle reaches the mutual
secondary energy minimum. The higher the value of λ, the more the small
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Figure 5.10: Trajectories of two particles in a simple shear flow for different
radius ratios λ, shear rates γ̇ and initial separations sinit to the x-axis, at which
subsequent capture occurs. Top row: λ = 0.1, γ̇ = 8. Bottom row: λ = 1,
γ̇ = 100. (a): sinit = 0.66, θ = π/3, (b): sinit = 0.7, θ = π/2.25, (c): sinit = 1.0,
θ = π/2, (d): sinit = 0.83, θ = π/3, (e): sinit = 0.88, θ = π/2.5, (f): sinit = 1.0,
θ = π/2.

particle influences the large particle. For equal particles, the motion is
symmetric. It might be surprising that for θ = π/2 the two particles ap-
proach each other even though they are too far apart for the LvdW force
to move them. Furthermore, both particles have a zero y-component of
their initial center coordinates, which would for point particles result in
a zero drag force. But as stated in [Curtis and Hocking, 1970], the shear
induces a rotation of the particles, which lets them move into the direc-
tion of the shear gradient. A single particle would just rotate without
translation, but due to hydrodynamic interactions both particles experi-
ence a translational motion which lets them approach each other. This
motion is initially very slow, so it is arguable whether the resulting cap-
ture efficiency reflects real conditions. In reality, the flow field usually
changes too quickly for the particles to coagulate at such constellations.
Other works define a maximum separation after interception, usually 10
dimensionless length scales (particle diameters), after which they declare
a collision or capture as failed. E.g. in [Adler, 1981] or in [Vanni and
Baldi, 2002] the authors state that they aborted simulations when parti-



184

cles are more than 10 particle radii apart after interception. Van de Ven
and Mason [1977] say that theoretically particles can separate to infinity
and return, but the error made by neglecting trajectories which exhibit
a return after 10 dimensionless length units would be negligible for the
computation of the capture cross-section. We address this topic in the
following while we derive an expression for the orthokinetic capture effi-
ciency for secondary (slow) coagulation of polydisperse particle systems
on the example of Al2O3 particles in water. In similar works it is usually
emphasized that the capture cross-section is not circular, as assumed by
Smoluchowski [1917], therefore we include the assumption of a spherical
collision/capture cross-section in our investigations. The outcome might
be surprising and should be good news for everyone who is seeking for a
good approximation to the real capture efficiency. Apart from the already
given reasons we specifically concentrate on orthokinetic secondary coag-
ulation. Investigation of a broader field, including perikinetic coagulation,
would lead beyond the scope of this work. In case the reader might be
interested in work which deals with the transition or interplay of orthoki-
netic and perikinetic coagulation, we refer to [Feke and Schowalter, 1983]
and related work.

5.3.3 The capture efficiency of two unequal particles in a

simple shear flow

Figure 5.11 shows obtained capture cross-sections for the investigated ra-
dius ratios λ = 0.1, 0.5, 1 and shear rates γ̇ = 1, 2, 4, 8, 16, 32, 64, 100. The
top row shows the data points with a smoothing spline fit using smooth-
ing parameters between 0.99 and 1, i.e. the fits are close to cubic spline

fits. Values for the mean coefficient of determination R
2

for the investi-
gated λ are given in the captions to figure 5.11. The depicted capture
cross-sections σc differ from circular collision cross-sections especially for
increasing values of θ, i.e. for yinit → 0. Furthermore, they correspond
well to those presented in [Adler, 1981].
The more the particles lie initially in the y = 0 plane, which corresponds
to θ = π/2 in figure 5.5, the stronger is the deviation of the numerically
obtained data yielding the capture cross-section from an assumption of
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Figure 5.11: Capture cross-sections σc for the radius ratios λ = 0.1, 0.5, 1
(from left to right) and all investigated shear rates γ̇. Top: Smoothing spline fit

with R
2
(λ) = 0.991, 0.987, 0.99. Bottom: Circle fit only considering data points

with θ = 0, π/6, π/3.

a circular cross-section shown in the bottom row of plots in figure 5.11.
To obtain the depicted circular capture cross-sections we fitted the nu-
merical data using only values with θ = 0, π/6, π/3. The circle fit can
be performed using the standard Levenberg-Marquardt scheme of which
numerous open-source implementations can be found (e.g. [cir, 2015]).
Apart from the already described observations, figure 5.11 shows that
there is a dependency of the area of the capture cross section, usually also
denoted by σc, on the radius ratio λ and a strong dependency on the shear
rate γ̇. The higher the shear rate, the smaller is the capture cross-section
and thus the probability for two particles to coagulate under the given
flow conditions.
The effect of γ̇ can be seen well in figure 5.12, where the critical initial
separation for capture, sc, is plotted for the investigated λ over the shear
rate. The value of sc is decreasing with decreasing radius ratio and angle
θ. For the smallest values of λ as well as for particles moving in the plane
spanned by the direction of flow and the direction of the velocity gradient,
the probability to coagulate is the lowest. This is a direct consequence
of the facts that for decreasing θ the hydrodynamic force exerted by the
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which capture occurs, for all investigated angles θ as well as radius ratios λ

over dimensionless shear rate γ̇. The curves are hyperbolic fits with R
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background flow is increasing while for a decreasing λ the attractive LvdW
force is decreasing (cf. [Hamaker, 1937] for the used form of the LvdW
potential). Figure 5.12 further shows that the influence of the shear rate
on sc is decreasing hyperbolically, according to (c1γ̇ + c2)/(γ̇ + c3), with
c1, c2, c3 ∈ R depending on λ and θ. For dimensionless shear rates larger
than about γ̇ ≈ 60, the influence of an increase in the shear rate is small
compared to the strong decrease for small γ̇. All values of sc have been
determined using the method described earlier in this work. In order to
keep the resulting errors in the capture cross-section σc and in the cap-
ture efficiency αo small, numerical simulations have been stopped when
the precision of sc after a series of simulations was 1% or better. Former
works [Van de Ven and Mason, 1976, Adler, 1981] state that they observed
a later increase in sc with increasing γ̇. At high shear rates the hydrody-
namic drag would be too strong to allow for coagulation in the secondary
minimum, which causes the initial decrease in coagulation efficiency. After
reaching a certain value, the potential barrier could be overcome which al-
lows particles to coagulate in the primary minimum. Although this sounds
plausible, we did not find any proof for such a behaviour of the system
at hand. An investigation of the interparticle distances over time showed
that even for the highest considered values of γ̇ and λ we either found
the particles to coagulate in the secondary minimum or to not reach it
at all. For separations larger than the critical value of sc, hydrodynamic
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forces (background flow as well as lubrication) suffice to keep particles
from reaching an energy minimum and thus prevent coagulation. For
smaller values of sc, the LvdW force is too strong to be overcome. Note
that sc is the critical initial separation of the particle centers from the
x-axis, for which capture occurs. Subtraction of the particle radius leads
in case of equal particles and higher values of γ̇ to negative values. This
shows the strong effect of the hydrodynamic forces, which can prevent
coagulation even if straight trajectories would lead to collision.
The area of the capture cross-section σc can be computed from

σc = 4

∫ max(yc)

0

Z(y) dy, (5.10)

where max(yc) is the maximum extent of the quarter of the capture cross-
section with positive y- and z-values, and Z is the function describing the
boundary of the capture cross-section in z-direction (cf. figure 5.11). Anal-
ogous to [Van de Ven and Mason, 1977] we further define the orthokinetic
capture efficiency for polydisperse systems as

αo = 3
L3

0

(a1 + a2)3

∫ max(ŷc)

0

ŷẐ(ŷ) dŷ,

where variables denoted with ·̂ have been made dimensionless by L0. a1

as well as a2 are the radii of the two considered particle size fractions. In
our numerical experiments considering two particles in a shear flow we
have L0 = a1, a1 > a2, thus the orthokinetic capture efficiency can be
written as

αo =
3

(1 + λ)3

∫ max(ŷc)

0

ŷẐ(ŷ) dŷ. (5.11)

For λ = 1 this is in accordance with the derivation for equal particles in
[Van de Ven and Mason, 1977].
The dependency of the capture cross-section on the shear rate is shown in
figure 5.13 for the two different approximations to Z, which are depicted
in figure 5.11. As one can see, for all radius ratios and shear rates, the
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integration in equation (5.10) yields an almost matching area of the cap-
ture cross-section, no matter which assumption has been made for the
shape of the capture cross-section. Furthermore, the behaviour of σc with
a change in γ̇ can be approximated well by a hyperbola for both shape-
approximations. The former observation gives rise to two statements:
First, the assumption of a spherical capture cross-section is reasonable.
As already Van de Ven and Mason [1977] stated, despite the highly sim-
plifying assumptions made by Smoluchowski [1917], the counteraction of
hydrodynamic resistance and LvdW attraction yield a remarkably good
prediction by Smoluchowski’s theory. Second, when assuming a circu-
lar cross-section, one does not need to perform a bunch of experiments
in order to obtain the arguable right shape of the capture cross-section.
This renders time-consuming experiments for initial configurations with θ
close to π/2 redundant. For these trajectories it is questionable whether
the two particles touch under real conditions. Thus far all works have
introduced an artificial maximum separation after interception of 10 di-
mensionless length units (particle radii), for which they considered an
encounter as not leading to capture. During numerical experiments lead-
ing to the presented data we observed for λ = 0.1, γ̇ = 8, sinit = 1.0
and θ = π/2 a slow spiraling motion of the small particle out of a plane
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parallel to the plane of zero velocity of the background flow towards the
almost stationary large particle. The initial major axis of the elliptical
orbit increases with increasing sinit and was about 12 dimensionless length
units for sinit = 2.0. In this case, the interparticle distance was temporar-
ily larger than 10 dimensionless length units, yet the configuration led to
capture. For a moderate value of γ̇ = 8, a radius ratio λ = 0.1, sc = 0.75
and θ = π/2.25, we observed an interesting behaviour of the small particle.
At the first encounter hydrodynamic interactions prevent coagulation of
the two particles. After interception, the small particle crossed the plane
of zero background flow velocity and followed the large particle over a
distance larger than 20 dimensionless length units, keeping a distance of
about 5 dimensionless length units over a big part of the chase until it
finally reached the common potential minimum and started to orbit the
large particle (similar behaviour can be seen in figure 5.9 for a shorter ini-
tial distance sinit, a higher shear rate and θ = 0). This motion is realistic,
as explained in [Curtis and Hocking, 1970], but does it lead to capture in a
technical system? We included it for the smoothing spline approximation
to σc, but an inclusion is arguable. The good agreement of the values
of σc for the two shape-approximations over a wide range of shear rates
for all investigated λ suggests that this argument and a definition of a
likewise questionable maximum separation are no longer required.
Figure 5.14 a) shows the behaviour of the capture efficiency αo for the two
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Figure 5.14: Values of the capture efficiency αo (a) and the global capture
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discussed shape approximations. As one can see, the weighted integra-
tion in equation (5.11) giving αo reduces the resulting deviation between
αo from the smoothing spline approximation and that from the circle ap-
proximation to the capture cross-section such that the corresponding data
points as well as their fits (solid line for the smoothing spline approxima-
tion and dashed line for the circle approximation) are almost identical. So
far we fitted data versus shear rate by means of a hyperbolic fit, which
gives good agreement also for αo. Yet, figure 5.14, in which the capture
efficiency αo is shown in a log-log plot, suggests a power-law dependency
on γ̇. This behaviour has already been observed earlier. Van de Ven and
Mason [1977] propose for the case of negligible electrostatic repulsion, i.e.
primary or fast coagulation, that αo ≈ f(λLondon)γ̇−0.18, with f being
a function of the London wavelength λLondon, which is typically about
100nm [Zeichner and Schowalter, 1977]. Zeichner and Schowalter [1977]
obtain αo ∝ γ̇−0.33, provided the flow is sufficiently strong. Vanni and
Baldi [2002] fit their data by αo = 0.625γ̇−0.186a−0.7

1 , with the dimensions
of γ̇ in 1/s and a1 in µm. Unfortunately, their definition of the capture
efficiency is questionable (see the statement in [Van de Ven and Mason,
1977] on the definition in [Curtis and Hocking, 1970]), so this expression
should be handled with care. Adler [1981] gave an analytical expression
for the global orthokinetic capture effciency αo,g of particles subjected
to an electric field, and assumed the global capture efficiency in case of
DLVO interactions to behave like αo,g = kHn

A, with k, n ∈ R and the di-
mensionless Hamaker constant HA = Ah/(144πµfa

3
1γ̇). Here, Ah denotes

the dimensioned Hamaker constant. The relation between αo,g and αo is
given by

αo,g =
(ai + aj)3

8L3
0

αo. (5.12)

For L0 = ai = aj , the global capture efficiency αo,g equals the capture
efficiency αo.
Care has to be taken when analyzing which type of coagulation is more
probable for a certain γ̇ — homo- or heterocoagulation. For studies on
the coagulation probability, the capture efficiency alone can only be used
in case of monodisperse systems. In case of polydisperse particle systems,
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one needs to compute the capture frequency βij , which can be extracted
from the definition of the collision rate,

Jo
ij = βijNiNj = αo

4

3
γ̇(ai + aj)3NiNj , (5.13)

for the number concentrations Ni and Nj of the size fractions i, j among
the Nf size fractions in the system. The ratio of capture frequencies,
βij/βkl, with the indices i, j, k, l ∈ [1, Nf ], then determines which λ yields
the highest coagulation probability. As one can see in figure 5.14 (a), the
values of αo are often close for different radius ratios, while the capture
efficiency αo for λ = 1 is usually the lowest, but this does not reflect
the coagulation probability. In order to give a qualitative statement on
the coagulation probability for different λ, one needs to first scale the
corresponding αo by the other terms βij is dependent of. The same result
can be obtained from a direct comparison of αo,g for different λ, what is
depicted in figure 5.14 (b). This makes the global collision efficiency αo,g

a better indicator for the coagulation probability in polydisperse systems.
Figure 5.15 shows the behaviour of αo,g over λ for varying γ̇. The plots
suggest a linear dependency of αo,g on λ, but for low values of the shear
rate, αo,g is not linear in λ and a power-law relation between αo,g and λ
yields a better approximation. The so far made observations concerning
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192

αo,g lead to the assumption

αo,g(λ, γ̇) = c1λ
k1 γ̇k2 , c1, k1, k2 ∈ R.

Using the Nelder–Mead simplex direct search [Lagarias et al., 1998], a
minimization of the sum of squares of the residual with respect to the
measured values yields the relation

αo,g(λ, γ̇;L0, U0) = 0.33λ0.69

(

L0

U0
γ̇

)−0.36

(5.14)

for the global capture efficiency, where the shear rate γ̇ is in dimensioned
form and has been made dimensionless by the characteristic time scale
L0/U0. Together with equation (5.12) and λ = aj/ai, aj ≤ ai, we get the
orthokinetic capture efficiency,

αo(ai, aj , γ̇;L0, U0) =
8L3

0

(ai + aj)3
0.33

(

aj

ai

)0.69(
L0

U0
γ̇

)−0.36

, (5.15)

which can be used as correction factor in equation (5.13) for the orthoki-
netic collision rate Jo

ij for heterocoagulation.

5.3.4 Coagulation and cluster growth in destabilizing

particle systems

Our parallelized code, together with a cluster detection algorithm based
on the R*-tree method [Beckmann et al., 1990], allows for an investiga-
tion of the destabilization behaviour of large particle systems within days
[Bülow et al., 2014]. Therefore, to go beyond the consideration of two
particles, we now consider the overall coagulation rate in a destabilizing
system under the action of centrifugal forces, and we examine the ap-
plicability of a collision rate obtained from experiments considering only
doublet formation.
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In our simulations, the initial particle domain is determined by the poly-
disperse radius distribution, the number of simulated particles, and the
solid volume fraction. The radius distribution was chosen as lognormal
distribution with expected dimensionless radius 1 and a standard devi-
ation of 0.065 dimensionless length scales. To rule out effects from the
initial random placement of particles according to a uniform distribution,
as well as from the chosen random radius distribution, we performed ev-
ery experiment three times with fixed solid volume fraction φ and number
of particles N . The deviation in the considered values due to the ran-
dom placement and radius distribution was within a tolerance of 3% in
all experiments. For the considered numbers of simulated particles and
presented values, the effect of a change in N was negligible as well. For
this, we performed every simulation using N = 500, 1000, 2000 and com-
pared the temporal evolution of different characteristic values such as the
relative number of clusters Nc/N over time. At the beginning of each
simulation the initial number of clusters equals the number of primary
particles, N .
Usually, it is assumed that doublet formation is the dominant case within
the first few seconds of destabilization. Figure 5.16 shows the number of
clusters over initial number of particles, Nc/N , for different initial solid
volume fractions φ within this time. The dimensionless time over which
Nc/N is plotted strongly depends on the particle size. For primary Al2O3

particles of radius a ≈ 1µm in water, one can assume a characteristic time
L0/U0 of roughly 0.15s. This is the lower limit for the particle radius, if
not already below the limit, for which the assumption of non-Brownian
particles is justified. As one can see in figure 5.16, the interesting time
range are indeed the first seconds of destabilization.
There are three main observations, which can be made in figure 5.16. First,
the ratio Nc/N does not seem to depend on the simulated number of pri-
mary particles, N . The deviation between the curves for the same φ and
differing N in the highlighted section is small for all investigated φ. The
second observation is the expected fact that in more concentrated suspen-
sions the overall coagulation rate is higher than in more dilute suspensions.
This can be seen when comparing the slope of the curves corresponding to
respective values of φ. Third, after a strong initial decrease, the relative
number of clusters Nc/N approaches a limiting value, which is depen-
dent on φ. Bearing in mind that large clusters usually settle faster than
small clusters, the reason for this becomes evident: Classification due to
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different settling speeds of clusters of different sizes and shapes limits co-
agulation with time.
If we take a look at the relative number of doublets Nc,2/N , triplets
Nc,3/N and quadruplets Nc,4/N over time t for φ = 0.01 and φ = 0.025
(cf. figure 5.17 (a) and (b), respectively), we can see that doublet forma-
tion is indeed the dominant coagulation mechanism in the early stages of
destabilization. Figure 5.17 shows that, while doublets are formed first
and are the dominant type of coagulation in the beginning, larger clusters
are formed close after, especially with increasing solid volume fraction φ.
One can also see that for φ = 0.01 doublets are the main fraction of clus-
ters over a longer timespan. The relative number of doublets decreases
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more rapidly for the higher solid volume fraction φ = 0.025, where the
initial formation rate of triplets and that of quadruplets is higher than for
φ = 0.01. For φ = 0.05 we observed similar tendencies, with the formation
rate of triplets and quadruplets being even closer to that of doublets, but
the formation rate of doublets still being the highest in the early stages
of destabilization.
The investigation of the temporal behaviour of the relative number of clus-
ters of different numbers of primary particles leads to the conclusion that
an investigation of doublet formation, may it be caused by the fluid flow
as in the present work, or solely due to settling as e.g. in [Davis, 1984,
Han and Lawler, 1991], yields an acceptable way to determine collision
rates for early stages of destabilization. The prediction is better for di-
lute suspensions, as for these coagulation leading to larger clusters has a
later onset. A consideration of two isolated particles and a derivation of
a collision rate is a strongly simplifying assumption, best met by dilute
suspensions. The more concentrated a suspension is, the more likely it is
that at early stages clusters of more than two particles are formed. More
importantly, the stronger is the influence of surrounding particles.

5.4 Conclusions

For the present work we investigated the orthokinetic coagulation dynam-
ics of mono- and polydisperse particle systems. We presented a model for
lubrication interactions including slip and showed that this model yields
good results while keeping computational costs low. By means of direct
numerical simulations of the behaviour of two particles with varying ra-
dius ratios we have derived an expression for the capture efficiency for
orthokinetic secondary heterocoagulation (including the case of homoco-
agulation). We have shown that, while the capture efficiency is a good
way to correct the collision rate obtained from Smoluchowski’s theory, the
global capture efficiency is a better indicator for the analysis of the more
probable type of coagulation — homo- or heterocoagulation. Furthermore,
due to the involved weighted integration during derivation of the capture
efficiency, the assumption of a spherical capture cross-section leads to very
similar results compared with the resolution of the capture cross-section
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by means of a large number of experiments. We have only shown this for
the model system of Al2O3 particles in water and the considered shear
rates. Yet due to nondimensionalization, the results are more general and
hold at least for other systems tending to secondary coagulation. Further-
more, the part of the capture cross section which deviates the most from
a spherical assumption is also for primary coagulation weighted the least
during derivation of the capture efficiency. This supports the hypothesis
that an assumption of a circular capture cross-section is reasonable for
a broader range of systems. However, it is left to future experiments to
further strengthen its validity. Nevertheless, one should always keep the
practical case in mind. How much time is two particles given in a stirred
tank or in a settler to coagulate under the exact same conditions as in
the experiment? If particles lie in the plane of zero fluid velocity of an
idealized simple shear flow and the conditions do not change, they coag-
ulate with high probability. But this process takes a long time and it
is questionable whether the two particles have this time before the flow
conditions change.
In a second part of this work we discussed results from numerical exper-
iments concerning the destabilization behaviour of polydisperse particle
systems under the action of centrifugal forces. We showed that the solid
volume fraction plays a role, both in the derivation of a global cluster
growth rate as well as for the validity of coagulation rates based on ex-
periments with two isolated particles. Investigations based on numerical
experiments including more than two particles can yield a more accurate
prediction of the coagulation rate in suspensions. If coagulation rates
for the initial stages of destabilization are sought for, the total number of
simulated particles does not necessarily need to be very high. In our exper-
iments, simulations of the behaviour of 500 primary particles were enough
to yield acceptable results. For the sake of brevity, we only showed some
of the data one can obtain from a cluster detection applied to the data
from numerical experiments. The implemented cluster detection gives the
growth rates for all cluster size fractions over time. If a prediction of the
overall cluster growth rate is not sufficient, this would yield excellent data
for flow-sheet simulations, as well as for kernel-based methods such as
numerical simulations involving the solution of population balance equa-
tions.
Simulations as the ones presented here can also give perikinetic coagula-
tion rates, or such describing superimposed perikinetic and orthokinetic



197

coagulation. One can either determine the growth rates as shown, or de-
rive a size-dependent self-diffusion coefficient with which the coagulation
rate can be determined.





Chapter 6

Summary and outlook

After giving an overview of destabilizing heterogeneous suspensions, we
presented the different approaches and methods currently used for the
numerical simulation of the behaviour of particles in fluids. Among these
we chose the Stokesian Dynamics method for our research. We use this
method because of its elegance when it comes to the computation of hy-
drodynamic interactions and because of its flexibility and extensibility
with respect to additional models for interparticle interactions of non-
hydrodynamic nature. Except for a simplified implementation for GPUs
[Kopp and Höfling, 2012], there has not been any parallel implementation
of the SD method. So far this limited the number of simulated particles
to a few hundred, which restricted the applicability of the method with re-
spect to the investigation of destabilizing suspensions [Bülow et al., 2015].
Therefore, our first step was to parallelize our base code and extend it
for the feature of a consideration of DLVO interactions among particles
[Bülow et al., 2014]. Because of the nature of the method, a parallelized
SD method scales very well with the number of used CPUs, such that
even one million hydrodynamically interacting particles can be simulated
within an acceptable timespan.
To achieve a further reduction in numerical costs, we coupled the resulting
parallel SD method with the Barnes–Hut method in order to obtain an
even faster method [Bülow et al., 2016]. The Barnes–Hut method relies on
particle grouping and is especially well-suited for parallel code execution.
This is because on a distributed memory machine, what most supercom-
puters presently are, particle data is distributed among the memory of
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the used CPUs. In an extreme case, particles can be spatially grouped
according to their distribution in the memory. This means that direct
hydrodynamic interactions are considered only between the particles with
data in the memory of the same CPU, and simplified hydrodynamic inter-
actions are computed between groups with data in the memory of different
CPUs. This does not only reduce computational but also communication
costs. The combination of the two methods, which we called scalable SD
method, yields very good results when the number of simulated parti-
cles is high, particles are clustered and the overall suspension is not very
dense. In general, the better particles can be combined to groups which
have large particle voids between them, the faster is the simulation. For a
dense or very homogeneous suspension, the method falls back to the par-
allel implementation, with a small overhead due to the construction of the
tree-structure coming from the Barnes–Hut part of the method. A draw-
back of the new method is the timestep reduction, which comes along with
the dynamical grouping of particles [Bülow et al., 2016]. This reduction
seems to be limited, with no effect for simulations of suspensions where
coagulation due to DLVO interactions plays a role. In that case, the high
gradients in the interparticle potential require such a small timestep that
the grouping does not impose another reduction in timestep width. The
method and the timestep problem are well described in chapter 4 and the
corresponding work [Bülow et al., 2016]. Apart from the more detailed
description in chapter 4 we did not go into further details on the theory be-
hind the SD method, as it has been explicated sufficiently in other works
such as [Brady and Bossis, 1988, Durlofsky et al., 1987, Ichiki, 2002] and
[Kim and Karrila, 2013].
After the improvement of the used method with respect to simulations
of large particle systems we investigated the settling behaviour of poly-
disperse particle clouds. The parallel framework enabled us to show that
large polydisperse particle clouds settling at vanishing Reynolds number
exhibit the same characteristic behaviour as their monodisperse counter-
part [Bülow et al., 2015]. This has unintentionally already been shown by
experiments, where slightly polydisperse particle systems were compared
with simulations of monodisperse particle systems [Metzger et al., 2007,
My lyk et al., 2011]. In [My lyk et al., 2011] the simulated particle clouds
consisted of considerably less particles than were in the respective clouds
in the experiments. By a comparison of settling velocities, we showed
that both the assumption of a monodisperse system and the assumption
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of independence of the number of particles in the cloud lead to strong
deviations [Bülow et al., 2015]. During our research we noticed that the
deviation not only influences the settling velocity but also the evolution of
the particle clouds. The more particles are in a cloud, the more stable it
is, and the later it breaks up into possible daughter clouds. In our opinion
this is the main factor leading to the 30% deviation between experiments
and simulations, which has been reported in [My lyk et al., 2011] for the
destabilization length. Before our work, numerical experiments in this
field have been carried out involving either monodisperse systems of up
to a few thousand particles or polydisperse systems of only a few hundred
particles. Clouds comprised of only a few hundred particles are per se
not as stable as larger clouds [Metzger et al., 2007], which led in earlier
works to the conclusion that polydisperse clouds would not undergo the
same motion as monodisperse clouds and that the solid volume fraction
would be the main influencing factor [Abade and Cunha, 2007]. In fact,
the number of particles is the main influencing factor and if the particle
clouds are large enough, polydisperse clouds undergo the same motion
as monodisperse clouds [Bülow et al., 2015]. We also showed that in
mixed bidisperse clouds the evolution is dominated by the fraction with
the highest number of particles. Initially spherical clouds lose particles
in an emanating tail and, depending on the intial number of particles,
during settling they break up in a cascade into several daughter clouds.
Recent research reports a preferential loss of small particles during set-
tling [Faletra et al., 2015], which we did not observe as pronounced. This
can most likely be attributed to the fact that the particle clouds investi-
gated in [Faletra et al., 2015] consisted of only 300 particles, which are
normally not enough to form a stable cloud [Bülow et al., 2015, Metzger
et al., 2007]. During our investigations of particle clouds we also derived a
formula, which can predict the settling velocity of a polydisperse particle
cloud at vanishing Reynolds number. This formula can be useful when es-
timating the maximum settling velocity in a suspension (provided the size
of formed hydrodynamic clusters is known), or when conducting numer-
ical experiments on particle clouds. In that case, the predicted velocity
can be utilized as characteristic velocity scale.
Hydrodynamic clustering is a result of particle motion and hydrodynamic
interactions, which alone usually does not determine suspension stability.
For example Brownian particles suspended in a quiescent fluid do not set-
tle due to hydrodynamic clustering, but due to destabilization induced by
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perikinetic coagulation. The formed agglomerates can settle and cause hy-
drodynamic clustering, which facilitates stronger agglomeration and so on.
In process units there is usually a flow with a shear gradient. Therefore,
we have investigated the orthokinetic coagulation behaviour of two parti-
cles in a shear flow. This is a standard procedure for the derivation of the
capture efficiency in suspensions (cf. section 1.3 or chapter 5). We found
that the procedure of deriving the capture efficiency from two-particle ex-
periments can be sped up, compared to the standard approach in which
the capture cross-section is approximated by a vast number of numerical
experiments. The effect of particle configurations with particles initially
lying almost or totally in the plane of zero background flow velocity on the
capture efficiency is small. This is a direct result of the mathematical defi-
nition of the capture efficiency, but also makes sense from a physical point
of view: Particles lying in the plane of zero fluid velocity are not directly
convected by the fluid, they first need to move out of this plane [Curtis
and Hocking, 1970]. This leaves in the initial phase of approach only the
London–van–der–Waals force as driving force for coagulation. This force
is only strong for small interparticle distances. For larger distances, the
particles will approach each other only very slowly. In a crystallizer or
another process unit in which coagulation plays a role, the flow conditions
usually change too quickly for the two particles to have the time to ap-
proach each other slowly while circling each other for a while until they
coagulate (cf. chapter 5). This is equivalent to the earlier statement that
such configurations do not influence the capture efficiency much.
Even though the classical two-particle approach can be sped up, the deter-
mination of the capture efficiency by these means can take a long time if
several parameters have to be tested. Furthermore, the effect of the solid
volume fraction and the influence of other particles are not considered by
two-particle approaches. Moreover, for a superposition of different effects,
such as shear, settling, Brownian motion, etc., the number of parame-
ter combinations and arising experiments is exorbitantly high. Therefore
we implemented a cluster detection algorithm, which gets the output of
simulations of multi-particle systems as input and yields all necessary
data of the formed clusters. Included are e.g. the cluster settling velocity,
the radius of gyration and the fractal dimension of all clusters over time.
Among the data is also the number of primary particles per cluster over
time. This information can be used to determine statistical cluster growth
rates when effects such as shear and settling are superimposed. Further-



203

more, this way the influence of other particles and that of the solid volume
fraction are considered. Also, contrary to two-particle experiments, the
evolution and interaction of triplets, quadruplets and larger clusters can
be investigated. Solely considering two particles can give wrong approxi-
mations to the capture efficiency in case of dense suspensions. Based on
our observations, doublet formation can be assumed to be the dominant
type of coagulation for dilute suspensions and in the initial stages of co-
agulation. For a further discussion we refer to chapter 5.
A special type of destabilizing suspensions are biological suspensions. We
have extended our simulation framework such that it includes solute trans-
port and the change of particle size and number over time. The latter is
based on kinetics, which are in wastewater treatment often described by
the extended Monod equation [Klapper and Dockery, 2010, Xavier et al.,
2005a,b]. As extra cellular polymeric substances (EPS) play a major role
in biofilms, we included the model for the effect of unresolved polymers
discussed in subsection 1.2.2. These extensions make the used method
an Eulerian–Lagrangian method (cf. subsection 1.5.2), which introduces
additional challenges for a parallel simulation. In this work we did not
present any results obtained with this method, as it is not published yet.
Nevertheless, preliminary results are promising, which is the reason why
we mention it here. For further reading we refer to the planned publica-
tion [Bülow et al., 2016].

The presented framework can easily be extended to account for effects,
which have not been considered in this work. For example Janus parti-
cles can be simulated by an inclusion of an interparticle distance- and
orientation-dependent potential (e.g. that presented in [Vanakaras, 2006]
for half hydrophobic and half hydrophilic core-shell Janus particles). The
tracking of particle orientations is included in the part of the developed
simulation framework involved in the simulation of elastic-plastic behav-
iour of aggregates. The corresponding method is similar to the method
presented in [Seto et al., 2012], which we have implemented as well. From
our experience, the method in [Seto et al., 2012] is not suitable for the
simulation of purely elastic aggregates. Every tested choice of modeling
parameters resulted in a strong deformation of the considered aggregates

— even for single settling fibres, i.e simple aggregates experiencing only
weak forces. After a short period of elasticity, the investigated agregates
collapsed. The model proposed in [Kabanemi and Hétu, 2012] leads to
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very good results concerning the motion of flexible fibres in a shear flow
and settling in a quiescent fluid, but has not yet been implemented for
other types of aggregates. Compared to the model in [Seto et al., 2012],
the model in [Kabanemi and Hétu, 2012] considers two neighbours of a pri-
mary particle in an aggregate during force and torque computation. The
more neighbouring particles are considered for the computation of forces
and torques in an aggregate, the more communication is required during a
simulation running on a distributed memory machine. Therefore we sug-
gest to use a three-particle method like that in [Kabanemi and Hétu, 2012]
for the simulation of non-spherical particles and aggregates modeled by
the multi-sphere approach [Ferellec and McDowell, 2010, Kruggel-Emden
and Oschmann, 2014].
The Lewis acid-base (AB) model for hydrophobic and hydrophilic interac-
tions among particles [Van Oss, 1989, 1993] seems to become a standard
technique for a consideration of effects arising from these interactions
in aqueous suspensions, especially in biological suspensions [Hermansson,
1999]. The latter are a promising field for future research. Fermentation-
related production is a growing field and the presented framework can
be used to simulate the growth behaviour of biofilms as well as their be-
haviour under stress — hydrodynamic as well as mechanical.
We did not present any results concerning non-spherical particles in this
work. Figure 1.1 in chapter 1 shows implemented shapes of particles, ag-
glomerates and aggregates. In case of agglomerates or flocs, the depicted
shapes can be chosen for the initial placement of particles, whereas during
a subsequent simulation DLVO interactions and particle contact models
are used to compute interparticle interactions of non-hydrodynamic na-
ture. In case of aggregated particles or non-spherical particles, the pri-
mary particles are connected by bonds which can be described by several
implemented models for forces in normal direction [Hsieh et al., 2006,
Shaqfeh et al., 2004], as well as by the discussed implemented methods
for flexible aggregates [Seto et al., 2012, Kabanemi and Hétu, 2012]. The
framework allows for a specification of the fractal dimension Df of fractal
aggregates, which can be obtained prior to a simulation from measure-
ments or literature (see e.g. [Goertz et al., 2012]). Totally rigid aggregates
can be implemented, e.g. following [Binder, 2012]. We did not implement
this approach because it is not as efficient for parallel code execution and
several works show that agregates can undergo restructuring [Seto et al.,
2012, Conchuir et al., 2014, Higashitani et al., 2001, Selomulya et al., 2001],
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which cannot be captured well by the approach of totally rigid aggregates.
In section 1.4 we discussed formulas, which have been proposed to yield
the mean settling rate in suspensions. Apart from the presented inves-
tigations in the behaviour of hydrodynamic clusters, we have conducted
experiments and numerical simulations concerning the settling behaviour
of polydisperse suspensions and their mean settling velocity, which we did
not report on in this work. In the experiments we have tracked the motion
of micron-sized glass beads (SiLibeads by Sigmund Lindner GmbH, Ger-
many) settling at vanishing Reynolds number in a rectangular container
(acrylic glass) filled with paraffin oil (Ph.Eur., DAB, low viscosity by Carl
Roth, Germany). Experiments were made with varying solid volume frac-
tions and with particle systems exhibiting different size distributions. Par-
ticle size fractions ranged from 100µm to 1000µm. To track differing set-
tling behaviour of distinct size fractions, each size fraction was coloured
differently. A side effect of the colour coating is that the used glass beads
are hydrophobic. This way we could assume that besides hydrodynamic
interactions no other destabilizing effects described in section 1.2 had to
be considered. After dispersion, the settling process of the suspension was
filmed. The resulting videos were processed by means of the open-source
software OpenCV [Bradski and Kaehler, 2008], which was used to track
particle motion. From this we could extract the mean settling velocity, as
well as the velocities of defined fractions of the fastest settling particles in
the filmed suspensions. Additionally, we performed numerical simulations
of the described suspensions and of other suspensions for which we have
data of the settling rates. In both, the experiments as well as the numer-
ical simulations, we observed good agreement with the formula proposed
by Richardson and Zaki [1997]. Moreover, for certain solid volume frac-
tions (usually between 1% and 10 − 15%) we observed an increase in the
mean settling velocity, which is not predicted by the standard hindered
settling functions (cf. section 1.4). This effect has been reported for non-
spherical particles [Kuusela et al., 2003, Herzhaft and Guazzelli, 1999] as
well as for sub-micron sized particles [Bickert and Stahl, 1997, 1996] and is
attributed to the formation of (hydrodynamic) clusters. Further research
on this observation is intended, as now we have the experimental as well
as the numerical framework to conduct corresponding investigations.
The combination of the SD method with a solution of convection-diffusion
equations for solved substances together with the possibility to simulate
birth, growth, fission and death of particles allows not only for the simu-
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lation of biological suspensions, but also for simulations of precipitation
processes such as crystallisation. This requires numerical schemes for the
kinetics of particle formation and the treatment of Brownian motion. For
the latter, two schemes have been parallelized and included into the pre-
sented framework [Banchio and Brady, 2003, Ball and Melrose, 1997].
Recently we implemented the schemes given in [Cunha et al., 2002, Swan
and Brady, 2007] for use in the parallel framework presented in this work.
This allows for numerical studies on hydrodynamic wall effects with re-
spect to the settling rate, sediment buildup, or investigations in bacterial
attachment to and growth at flat container walls.
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F. Bülow, H. Nirschl, W. Dörfler, Preprint submitted to Particuology
(2016).

J. A. Lewis, Journal of the American Ceramic Society 83 (2000) 2341–
2359.
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