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Abstract

Computers are ubiquitous. They are critical for a multitude of operations in business,
government, and society. Simultaneously they become ever more complex. Consequently,
while they gain in importance, it is increasingly difficult to guarantee their security.
Because security is a non-functional property, it can neither be tested for, nor can a
system be made secure in an ad-hoc fashion. Security can only be included as an inherent
property of a system by design.

We investigate the contribution of cryptographic proofs of security to a systematic
security engineering process.

To this end we study how to model and prove security for concrete applications in
three practical domains: computer networks, data outsourcing, and electronic voting.

In the first domain, computer networks, we investigate the security of a network
component irrespective of the surrounding network. As a concrete application, we study
how to combine several candidate firewalls to yield one provably-secure firewall, even if
one candidate is compromised. Our modeling of a firewall network allows us to define
security independent of a firewall’s functionality. We show that a concatenation of
firewalls is not secure, while a majority decision is. Second, we develop a framework for
the privacy of outsourced data. Specifically, we consider privacy in the presence of queries.
We identify three privacy objectives—data privacy, query privacy, and result privacy.
They apply to a wide array of outsourcing applications. Our analysis yields generic
relations among these objectives. We introduce a searchable encryption scheme that fits
in the framework. The third domain is electronic voting. We focus on re-voting as a
strategy to achieve coercion resistance. Insights from a cryptographic model of coercion
resistance yield requirements for possible realisations. We provide a proof-of-concept
scheme that achieves coercion resistance through revoting.

We conclude that cryptographic proofs of security can benefit a security engineering
process in formulating requirements, influencing design, and identifying constraints for
the implementation.
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Zusammenfassung

Computer sind heute allgegenwärtig. Für viele Aufgaben in Wirtschaft, Politik und
Gesellschaft sind sie unerlässlich. Gleichzeitig werden sie immer komplexer: In einem
modernen Kraftfahrzeug arbeiten Programme im Umfang von einhundert Millionen
Zeilen Quelltext [167]. Dabei steuert nicht ein einziger Computer alle Fahrzeugfunktio-
nen. Im Fahrzeug arbeitet ein komplexes System aus Computern. Während Systeme
der Informationstechnologie (IT) an Bedeutung und Komplexität zunehmen, wird es
zunehmend schwieriger, ihre Sicherheit zu gewährleisten. Da IT-Sicherheit aber eine
nicht-funktionale Eigenschaft ist, ist es schwer zu testen, ob ein System sicher ist: Darf es
nach dem erfolgreichen Durchlaufen aller Testfälle als sicher gelten; decken die Testfälle
alle möglichen Sicherheitslücken ab? Sicherheit kann nur als inhärente Systemeigenschaft
bereits beim Entwurf eines Systems verankert werden. Ein systematisches Vorgehen, das
ein sicheres IT-System zum Ziel hat, ist Security Engineering.

Der Nachweis von Sicherheit ist der Grundsatz der modernen Kryptographie. Katz
und Lindell nennen drei Prinzipien [131]: die Formulierung exakter Definitionen, der
Verlass auf präzise Annahmen und streng geführte Sicherheitsbeweise. Sicherheit ist
eine wohldefinierte Eigenschaft eines Systems. Ein stringenter Beweis weist sie auf der
Grundlage von Annahmen nach. Dazu müssen diese präzise formuliert sein und können
somit objektiv untersucht werden. Die exakte Definition von Sicherheit wiederum erlaubt
die begründete Auswahl von Sicherheitsmaßnahmen. Ein Beweis deckt den Zusammenhang
zwischen Annahmen, einem Systementwurf und einer Sicherheitsgarantie auf.

In dieser Dissertation wird der Frage nachgegangen, welchen Beitrag die Methode der
beweisbaren Sicherheit zu einem systematischen Entwurfsprozess für sichere IT-Systeme
leisten kann. Gegenstand ist dabei das Wasserfallmodell: Die Entwicklung sicherer Systeme
in diesem Modell verläuft linear in den Stufen Anforderungen, Entwurf, Implementierung,
Überprüfung und Veröffentlichung.

Die Modellierung von Sicherheit und ihr Nachweis wird an konkreten Anwendungen
in drei praktischen Feldern untersucht: Computernetzwerke, das Auslagern von Daten
und elektronische Wahlen. Die Arbeit besteht aus sechs Kapiteln. Kapitel 1 motiviert
das Vorhaben und macht einen Vorschlag für einen Entwicklungsprozess, der durch die
kryptographische Methode unterstützt wird. Formale Grundlagen, Konventionen und
Voraussetzungen werden in Kapitel 2 behandelt.

Kapitel 3 widmet sich dem ersten Anwendungsfeld, Computernetzwerken. Hier wird die
Sicherheit einer Netzwerkkomponente unabhängig vom umgebenden Netzwerk unter-
sucht. Dabei werden mehrere Firewalls so kombiniert, dass insgesamt eine beweisbar
sichere Firewall entsteht – sogar dann, wenn eine der Firewalls bösartig ist [3]. Durch die
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Verwendung des Universal Composability (UC)-Rahmenwerks [41] kann die Sicherheit
einer Kombination von Firewalls unabhängig von der Funktionalität einer Firewall defi-
niert werden. Dabei dient ein vertrauenswürdiger Hardwarebaustein, der Netzwerkpakete
vergleicht, als Sicherheitsannahme. Es wird gezeigt, dass eine Serienschaltung zweier
Firewalls keine sichere Lösung liefert, ein Konsensentscheid jedoch schon. Er birgt aber
die Gefahr, dass der Angreifer durch die Unterdrückung von Paketen die Verfügbarkeit
des Netzwerks angreift. Ein 2-aus-3 -Mehrheitsentscheid hat diese Schwäche scheinbar
nicht. Da das reine UC-Modell aber Zeit nicht abbildet, ist der Nachweis einer solchen
Verfügbarkeitseigenschaft nicht ohne Weiteres möglich.

Die Verfügbarkeit der Architektur, die einen 2-aus-3 -Mehrheitsentscheid realisiert, kann
nachgewiesen werden [4], indem eine Erweiterung von Katz et al. [132] einbezogen wird.
Um die kryptographische Modellierung von Netzwerken zu vereinfachen, werden weiter
zwei Formalismen und ein Fünf-Schritt-Vorgehen bei der Definition von Netzwerkproto-
kollen vorgeschlagen.

In Kapitel 4 wird ein Rahmenwerk für die Geheimhaltung ausgelagerter Daten entwickelt.
Insbesondere wird dabei die Datensicherheit betrachtet, wenn die ausgelagerten Daten
abgefragt werden. Dazu wird eine ausgelagerte Datenbankanwendung in zwei Phasen
modelliert. In der Vorbereitungsphase wird die auszulagernde Datenbank vorbereitet
und an einen Server übertragen. In der Anfragephase stellt ein Client Anfragen an den
Server [1]. Drei Schutzziele werden identifiziert: die Geheimhaltung der Daten selbst,
die Geheimhaltung der Anfragen und die Geheimhaltung der Anfrageergebnisse. Die
Definitionen dieser Ziele sind dabei von der konkreten Anwendung unabhängig und decken
ausgelagerte relationale Datenbanken ebenso ab wie durchsuchbare Verschlüsselungen.
Eine Analyse liefert grundlegende Zusammenhänge zwischen diesen Schutzzielen: Die
Geheimhaltung der Daten ist unabhängig von der Geheimhaltung der Anfragen; beide
zusammen sind jedoch äquivalent zur Geheimhaltung der Anfrageergebnisse. Derart
gefundene Zusammenhänge sind unabhängig von einer konkreten Realisierung gültig
und geben bereits in der Entwurfsphase Hinweise darauf, welche Schutzziele unabhängig,
widersprüchlich oder redundant sind. Weiter wird eine durchsuchbare Verschlüsselung
vorgestellt, deren Sicherheit im Rahmenwerk abgebildet werden kann [5]. Sie basiert
auf gerichteten, azyklischen Wort-Graphen (Directed Acyclic Word Graphs, DAWGs).
Ein DAWG ist ein endlicher Automat, der alle Teil-Zeichenketten einer Zeichenkette
akzeptiert.

Kapitel 5 thematisiert elektronische Wahlen. Bei Wahlen, die im Internet stattfinden,
verfügt der Wähler über keine Wahlkabine, in der er Schutz vor Erpressungsversuchen
findet. (Smartphones mit Kamerafunktion relativieren selbst den Schutz einer Wahlkabi-
ne [26, 195].) Es bedarf daher besonderer Maßnahmen, den Wähler vor Erpressung zu
schützen. Eine solche Maßnahme ist sogenanntes Revoting. Hier kann der Wähler seine
Stimme jederzeit durch die Abgabe einer neuen überschreiben. Damit Revoting aber
als Maßnahme dienen kann, einem Erpressungsversuch zu entgehen, muss der Wähler
sein erneutes Abstimmen plausibel abstreiten können. Trotzdem muss sichergestellt sein,
dass nur seine zuletzt abgegebene Stimme gezählt wird. Ein kryptographisches Modell
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für Nichterpressbarkeit durch Revoting wird, basierend auf einem Modell für eine an-
dere Maßnahme [122], entwickelt [2]. Weiterhin wird ein Verfahren vorgestellt, das die
grundsätzliche Machbarkeit von Revoting als Strategie belegt.

Aus der Arbeit mit dem kryptographischen Modell wird eine Anforderung an die Autori-
sierung des Wählers abgeleitet, die unabhängig vom konkreten Verfahren ist: Sie muss
unveräußerlich sein. Das heißt, es muss dem Wähler unmöglich sein sie abzugeben oder
eine Kopie zu erstellen.

Kapitel 6 schließt die Arbeit ab und diskutiert offene Fragen.

Aus den vorangegangenen Untersuchungen ergibt sich, dass kryptographische Sicher-
heitsbeweise einen Security-Engineering-Prozess auf dreierlei Arten unterstützen können:
Sie helfen Anforderungen zu formulieren, systematisieren den Entwurf und zeigen Be-
dingungen an eine Implementierung auf. Kryptographische Sicherheitsdefinitionen sind
exakt formulierte Anforderungen an ein System und seine Komponenten. Beweise liefern
Konstrukte für seinen Entwurf und geben Einschränkungen an die Implementierung.

Zwei Implementierungen des Paketvergleichers für Firewalls und die Implementierung der
durchsuchbaren Verschlüsselung belegen die grundsätzliche Umsetzbarkeit der kryptogra-
phischen Protokolle. Die Integration der kryptographischen Methode in einen gesamten
System-Engineering-Prozess wird jedoch nicht demonstriert. Ein solches Vorhaben bleibt
ein wichtiger offener Schritt. Die Arbeit beschränkt sich weiterhin nur auf einen Prozess
nach dem Wasserfallmodell. Die Frage, ob und wie sich die kryptographische Methode in
einen agilen Entwicklungsprozess einbringen lässt, bleibt offen.
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1 Introduction

The alternative [to rigorous
proofs of security] is to design
systems in an ad hoc manner,
and to simply hope for the best.
As we have seen, this approach
often ends in disaster, or at least,
an embarrassing mess.

(Victor Shoup, Why Chosen
Ciphertext Security

Matters [184])
It is hard to imagine a life without computers. They are involved even in the most
mundane activities. A computer was used to sell the author’s breakfast. This text was
typed on a keyboard that was designed on a computer, manufactured using computer-
aided machinery and was delivered by a truck that was navigated with the help of a
computer. There is a substantial chance that the author’s life itself will at some point
depend on a computer.

But not only are computers ubiquitous, they also have increased in complexity over
time: Apollo 11’s Guidance Computer (AGC) took roughly 145 000 lines of code to
implement, a modern car runs a hundred million [119, 167].

It seems inappropriate to speak of a “computer” operating a car—inside the computer
are more computers with distinct purposes and clearly-defined interfaces. It is more
adequate to speak of a complex system.

As Information Technology (IT) is increasingly involved in ensuring and improving our
wealth, well-being, and comfort, it is also a target for those wishing us harm. Systems
need not only be robust against mischance, but also against malice [14]. Security is not
a functional property of a system. For this reason one can hardly test for security: Is
a system secure when it has passed all test cases; do the test cases cover all possible
vulnerabilities? On the contrary, security is an inherent property of a system. In the
same way complex buildings cannot be built in an ad-hoc fashion, but need planning
by architects and engineers, reliable IT systems are designed in a systematic process.
The facet of designing systems that is concerned with the system’s security is security
engineering.

A secure system is not trivially obtained by combining secure subsystems. As an
example, take the Chip-and-PIN system that is used for electronic transactions at points
of sale. It makes use of a cryptographic chip embedded in a bank card, issued by the
bank to the customer. The protocol offers two alternative methods for authorisation:
either the customer enters a Personal Identification Number (PIN) or the transaction
is authorised by the customer’s signature. Both procedures are acceptable methods.
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1 Introduction

Because of the way both are integrated, the combined system has a weakness. In 2010,
Murdoch et al. [164] presented a man-in-the-middle attack that confirms any PIN as
valid to the point-of-sale terminal, while the card never verifies the PIN and is led to
believe the transaction is authorised by signature. The attack renders both authorisation
methods useless. A year later, this weakness was exploited by fraudsters in Belgium,
using credit cards stolen in France [82]. (This is also a prime example of a contrived
attack that is actually implemented later.)

In this work, we address the question of how the cryptographic method of provable
security can improve a security engineering process.

1.1 Security Engineering

A security engineering process is a methodical effort to develop a secure system. There
are several approaches to such a methodology.

Requirements Design Implementation Verification Release

Figure 1.1: The baseline software development process that forms the basis of Microsoft’s
Security Development Lifecycle [151]. We highlighted the phases that can
gain from a proactive proof of security.

Many standards and recommendations propose a development process closely related
to the waterfall model in software engineering. Development in such a procedure model
is organised in consecutive phases. The Information Technology Security Evaluation
Criteria (ITSEC) [115] require four phases—Requirements, Architectural Design, De-
tailed Design, and Implementation—while the newer Common Criteria for Information
Technology Security Evaluation (CC) [60] further elaborate the process model. In its
“Maßnahmenkatalog M 2.378 System-Entwicklung”, the Bundesamt für Sicherheit in der
Informationstechnik (BSI) also requires that ITSEC’s four development phases are gone
through. The Security Development Lifecycle (SDL) [151] developed by Microsoft also
follows a waterfall model consisting of the phases Requirements, Design, Implementation,
Verification, and Release (see Figure 1.1). (The full SDL also has the phases Release
To Manufacturing and Response, but these are outside the scope of this work. While a
system’s operation and maintenance are important aspects of its lifecycle, we focus on
system development.)

Anderson [14] discusses the waterfall model too, but also introduces a spiral model and
“evolutionary development”, arguing that a top-down approach isn’t always feasible in
practice, thus giving need to an iterative design process. He makes a particular case for
the evolutionary approach, where one starts with a small working system and continuously
improves upon it.

So-called agile methodologies have been a fashion in software engineering in recent
years. The Agile Manifesto [23, 104] gives four values of central importance:

1. individuals and interactions over processes and tools,

2



1.2 Provable Security

2. working software over comprehensive documentation,

3. customer collaboration over contract negotiation,

4. responding to change over following a plan.

We do not dispute the positive impact of agile methodologies on software engineering.
We argue that the above-mentioned values induce inherent dynamics to a system engi-
neering process that do not accommodate well to cryptographic rigour. For example, it
is not immediately clear how “working software” translates to security properties. One
can test easily if a piece of software “works”, but not if it’s secure. Indeed, security is
assessed through comprehensive documentation.

We illustrate our point further for the Scrum method [179]. Development in Scrum
is organised in consecutive “sprints”. During each sprint, the team selects a set of
requirements from a list and implements the code to satisfy them. Because sprint
cycles are short, the process adapts well to changing requirements. Cryptographic proof,
however, does not. If the model is changed, theorems must painfully be re-proven.

As the waterfall model features a linear progression of phases, it is thus particularly
suited for our purposes. We continue this exposition with the waterfall model and leave
the application of our insights to agile methods for future work. Yet we concede that in
practice, one might be forced to “step back” at some point and resume the process from
an earlier phase.

In summary, a systematic security engineering processes involves five stages:

1. Requirements Phase: Security goals are formulated and security challenges are
anticipated.

2. Design Phase: The system’s architecture is designed, threats to the design are
determined and the system’s attack surface is estimated.

3. Implementation Phase: The system is implemented, tested and integrated.

4. Verification: Code is reviewed, the implementation is tested.

5. Release: The system is released.

While this methodology is a systematic approach to a secure system design, it suffers
from an inherent weakness. Threat modeling and attack surface estimation are processes
that only cover threats that the system’s designer can conceive of. They are thus limited
to the designer’s experience and imagination. This limitation leaves part of the security
engineering practice an artistic endeavour rather than a scientific process. There is a lack
of a systematic method to uncover unforeseen security challenges.

1.2 Provable Security

Modern cryptography has one central paradigm: The rigorous proof of security. Katz and
Lindell formulate three basic principles of modern cryptography [131]: the formulation

3



1 Introduction

of exact definitions, the reliance on precise assumptions, and rigorous proofs of security.
In more detail, the central paradigm of modern cryptography is to prove the security of
one’s constructions, beginning at a precise assumption and reaching an exactly-defined
claim of security by a rigorous argument. By precisely naming assumptions one opens up
the prerequisites of a secure construction to objective analysis. Further, only by having
defined what security exactly is, one can adequately select security measures—in the
same way a pillar serves a concrete structural purpose in a highway bridge, components in
IT systems must serve a clearly-defined purpose. A proof, then, unveils the relationship
between assumptions, the construction, and security definitions.

In this thesis we address the question how the application of these principles can benefit
a systematic security engineering process.

What is Security? Contrary to popular intuition, security is not the absence of vul-
nerabilities. Such an assertion were only meaningful if one gave a precise definition of
what constitutes a vulnerability. On the contrary, (provable) security is the guarantee
that no adversary can violate a precisely-defined property of a system, regardless of his
strategy—that is, a security property is a predicate of a system design.

Such a security property is expressed in a model. A model is an abstraction of a system
and its surroundings. It determines how each aspect of reality is to be expressed formally,
and what the assumed capabilities of honest participants and the adversary are. Such an
assumption might for example be “factoring natural numbers is hard” or “the adversary
can eavesdrop on all communications, but not alter them” (i.e. is passive). Assumptions
make the system designer’s beliefs about reality explicit, thus opening them to scientific
debate. Picking up an example from before, the designers of the Chip-and-PIN system
implicitly assumed no adversary can control the communication between the card and
the terminal. By violating this assumption, Murdoch et al. came up with an attack on
the system. A cryptographic proof of security for the Chip-and-PIN system would have
made this implicit assumption explicit, thus exposing it to scrutiny.

A cryptographic proof establishes a relationship between one or more assumptions and
a security property. As for a definition of what is a proof, we quote Errett Bishop [137]:
“A proof is any completely convincing argument.” A proof of security, then, is a completely
convincing argument that a security property holds under given assumptions.

Because a model is an abstraction, it only represents certain aspects of reality. This
is an obvious advantage, as abstraction reduces complexity. As cryptographic models
also abstract from concrete realisations, one can derive generic relations, possibilities and
even impossibility results independently of an implementation. As a downside, if the
model is too generic or not adequate, results obtained in the cryptographic abstraction
do not apply to the concrete system.

1.3 Contributions of This Work

In this thesis we investigate how to model and prove security for complex systems in
three practical domains.
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1.3 Contributions of This Work

1.3.1 Computer Networks

In Chapter 3 we investigate how to cryptographically model computer networks. This field
of investigation is an example of how one can improve the security of a network component
without compromising the network at large. We focus on a concrete application: network
firewalls. Concretely, we address the research question of how to combine several candidate
firewalls to yield a secure firewall, even if one candidate is compromised. We show that a
concatenation of candidates does not yield a secure solution, while a quorum decision
does. We assume a trusted hardware device that compares packets. We exploit a property
of the Universal Composability framework that enables us to model the security of a
firewall network without specifying a firewall functionality—our definition is valid for
any firewall functionality. Our proof of security for a quorum of three firewalls requires
us to assume a consensus of non-compromised firewalls. In a second step we extend the
model to also cover availability, making use of a result of Katz et al. [132]. We propose a
“wrapper” functionality Fwrap and a 5-phase paradigm to ease the handling of formalisms.
We also discuss two implementations of the trusted hardware device.

We learned an important lesson while trying to prove Theorem 2 in Chapter 3.5. Our
original theorem asserted the opposite of the theorem’s statement. By failing to prove
the theorem and analysing our failure, we found an attack on the network that now
is part of the correct theorem’s proof. This experience shows that blind trust in one’s
security intuition is foolish. By forcing the cryptographer to formulate a straightforward
argument the chance is increased that he becomes aware of his errors of reasoning.

1.3.2 Data Outsourcing

In Chapter 4 we develop a framework for the privacy of outsourced data. A particular
focus of our efforts is to cover practical protocols as well as theoretical constructions,
thus making their security comparable. The area of investigation in this chapter is an
application of provable security for a single application. In addition to static security,
we identify three different privacy goals when the data is queried—data privacy, query
privacy, and result privacy. We prove fundamental relations among these concepts.
Concretely, data privacy and query privacy are independent concepts, while result privacy
is equivalent to both data privacy and query privacy (at the same time). The security of
our own construction SEDAWG, a searchable encryption, fits in our privacy framework.
We also discuss an implementation of our scheme.

Our results in this chapter are an example of a strength of cryptographic proofs of
security. We showed in an abstract model that data privacy and query privacy are
independent concepts. Thus, a protocol that hides the contents of interactive queries does
not necessarily hide the contents of the underlying database—regardless of the concrete
realisation.

1.3.3 Electronic Voting

In Chapter 5 we research modeling and proving coercion resistance in electronic voting—a
complex system. Concretely, we investigate recasting one’s vote—revoting—as a strategy
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to evade coercion. The idea is that a voter cannot be coerced if she can always supersede
her vote by a more recent one. To this end, the vote-tallying procedure must ensure
that a voter can always plausibly deny having re-cast her vote. We adapt the model for
coercion resistance of Juels, Catalano, and Jacobsson [122] to account for revoting. What
is more, we give a construction that achieves deniable revoting and prove its coercion
resistance.

We derived two requirements for deniable revoting. First, voter authentication must
have the property of being inalienable. Otherwise no revoting scheme can offer coercion
resistance. This requirement was derived from a model, independently of a concrete
realisation, but places a direct constraint on a system design and its implementation.
Second, any attempt at coercion must be given up before polls close, so that the voter
actually has the chance to revote. This prerequisite is obvious, but explicitly reflected in
the model. (We again caution the reader not to trust obviousness.)

1.3.4 Proofs of Security in Security Engineering

We propose amending security engineering processes in the Requirements, Design, and
Implementation phase by cryptographic methods.

1. Requirements: To later be able to prove the security of one’s design, one must give
a precise definition of security. The definition serves as a basis for discussion of the
entire engineering team: Does the security definition reflect our intuition of what
the system is supposed to achieve?

The choice of methodology in this phase will directly influence how proofs of
security are to be carried out. Does one model security using the Universal
Composability (UC) [41] framework (Chapter 3), a game-based model (Chapter 4),
or is a combination of a game-based model and the real-vs-ideal-world paradigm
(Chapter 5) the best choice?

2. Design: During the design phase, the cryptographer defines the adversarial model
and comes up with a proof of security for the system’s architecture. Constraints
for the implementation arise.

3. Implementation: The implementation constraints that have been found in the design
phase must be considered carefully by the programmers while they implement the
system.

By precisely defining security before conceiving of a means to achieve it one achieves
conceptual clarity. To give a concrete example, instead of requiring data to be encrypted
(a concrete method), one should first define the confidentiality of data as a requirement.
Then, one can select the correct means to ensure that confidentiality—depending on
the definition this could be an encryption, an anonymisation technique or some other
method. A proof of security then establishes that the means suits the requirement. The
security engineering process already stipulates this approach, but the cryptographic
method necessitates it.
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1.4 Structure of This Work

The assurance of a cryptographic proof of security might lead one to believe that
security testing is now unnecessary—security has already been proven. The contrary is
the case. Security testing is an important means to validate the security model. The
power of cryptographic proofs of security lies less in an absolute guarantee of security
than in a formal analysis on how to obtain a secure construction, and under which
conditions such a thing is impossible. A proof can never establish whether its premises
are sound in practice.

In the same way the waterfall model is not followed slavishly in practice, a proof of
security is not a one-shot process. While devising a proof, the cryptographer might need
to adapt the model or to further elaborate the conclusion. We believe that, as it is carried
out by humans, the proving process fits organically in a practical system engineering
process.

Making sure that the system’s implementation adheres to its specification is outside
the scope of this work.

A Word of Caution Modeling and proving security is far from trivial. Cryptographic
definitions are often complex and frameworks are intricate. We must point out that
supplementing an engineering process with cryptographic proofs of security requires the
participation of a trained cryptographer—or, at the very least, training the security
engineer in cryptographic methodology.

We also gained valuable insights from our implementation efforts. As we explain in
Chapter 3.9.2 a näıve optimisation of the trusted packet comparator’s implementation
would have caused the realisation to deviate from the model. More specifically, it would
have given an adversary the ability to compute packet collisions, whereas this is impossible
in the model—we simply do not model collisions. Such a deviation is easy to miss for a
cryptographic layman. (We speak of a collision when two network packets are treated as
identical although they aren’t.)

The insight from this finding is that the cryptographer’s work is not finished when
he has modeled and proven security. He must also be present during the design and
implementation of the system and carefully verify the implementation’s adherence to the
cryptographic model. We believe this is a point of concern worth stressing.

1.4 Structure of This Work

We define notation and preliminaries in Chapter 2. We also give an introduction to the
cryptographic proof methods used in this thesis, as well as to the primitives we use.

In Chapter 3 we analyse how to model the security of computer networks. The concrete
application we study is a secure combination of firewalls. After discussing related work,
we first give a model for firewalls. Then, we analyse the serial concatenation of firewalls,
as well as their parallel composition. To model availability, we extend our model and
propose a 5-phase paradigm to model networks in the UC framework. We prove an
availability guarantee for a quorum of three firewalls.
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We develop a framework for the privacy of outsourced data in Chapter 4. Here, we
model security with security games. We again first discuss related work. Then, we propose
security notions for outsourced data. In extension to privacy in the absence of queries we
also define privacy in the presence of queries—data privacy, query privacy, and result
privacy. We prove fundamental relations between these notions and give generalisations.
We show how to apply our notions to private information retrieval, database outsourcing,
and searchable encryption. Our own construction for a searchable encryption also fits in
the framework. We define Exact Pattern Matching for Symmetric Searchable Encryption
and then present our construction. We also discuss its implementation.

The third application we study is electronic voting in Chapter 5. We extend a pre-
existing definition of coercion resistance to cover the revoting strategy. The definition
is game-based, but also makes use of the real-vs-ideal paradigm. We explain why
revoting must be deniable to be of any use as a strategy to evade coercion. Then, after
discussing related work, we show how to achieve deniable revoting. We define correctness,
verifiability, and coercion resistance for a voting scheme with revoting. We present our
own construction and prove that it is coercion-resistant.

Chapter 6 concludes the work.
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2 Preliminaries

In this chapter, we introduce notation, conventions, and fundamental concepts we use
throughout the thesis. We further give a brief introduction to the relevant cryptographic
proof methodologies. Lastly, we discuss cryptographic building blocks we make use of in
our constructions.

Comparison, Assignment, and Random Choice We use the equal sign = for compar-
isons as well as assignments. If not clear from the context, we use the definition symbol
:= to explicitly indicate an assignment. To draw an item uniformly at random from a
set, we use the symbol ←. Similarly, ← is also used when the output of a randomised
algorithm is assigned to a variable. The bit-wise exclusive-or is denoted by ⊕.

SI Prefixes k, M, G stand for 103, 106, 109, while Ki, Mi, and Gi stand for 210, 220,
and 230, respectively.

Lists, Languages, and Strings A list is an ordered sequence of values. L[i] is the
(i+ 1)th element of list L. |L| denotes the number of its elements. The append symbol
⇐ appends an element to a list.

An alphabet is a finite and non-empty set. A string S ∈ Σ∗ is a finite sequence of
symbols over an alphabet Σ. Its length is |S|. The empty string ε has a length of 0. S[i]
is the (i+ 1)th character of S for i ∈ N0 with i < |S|. The concatenation operator ·
concatenates two strings. The slicing operation S[i..j] returns the substring S[i] · . . . ·S[j]
for 0 ≤ i ≤ j < n. If i = j, S[i..j] = S[i]. The set of all substrings of S is denoted by
substringsS = {S[i..j] | 0 ≤ i ≤ j < n} ∪ {ε}. Any substring S[0..i], i ∈ {0, . . . , |S| − 1}
of a string is called a prefix, S[i..|S| − 1] a suffix of S.

A language is a set of strings.
If x is not a set, string, or list, |x| denotes the length of its binary representation.

Probabilities, Distributions, and Ensembles A random variable is a function from a
sample space to a set (often R or {0, 1}∗). A distribution assigns a probability to an
outcome of a random experiment. The (discrete) uniform distribution Un assigns the
equal probability 1

n to all possible events. We denote the probability that the random
variable X takes on the value x by Pr [X = x]. Similarly, to denote the probability that
some randomised procedure A outputs x, we write Pr [x← A] or Pr [A → x].

Definition (Probability Ensemble [90]). Let I be a countable index set. An ensemble
indexed by I is a sequence of random variables indexed by I. Namely, any X = {Xi}i∈I ,
where Xi is a random variable, is an ensemble indexed by I.
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Polynomials For the purposes of this thesis, a polynomial P [X] of degree n is a finite
sum of multiples of powers ≤ n of a variable X: P [X] =

∑n
i=0 aix

i.

Graphs and Automatons A directed graph G = (V,E) is a pair of a set of vertices
V and a relation E on them, called edges: E ⊆ V 2, whereas E ⊆ {{u, v} | u, v ∈ V }
in an undirected graph. Adjacency lists are a representation of directed graphs that is
particularly suited for the storage in computer memory: a list of its outgoing edges is
stored alongside each vertex.

A Deterministic Finite Automaton is a 5-tuple (Q,Σ, δ, q0, F ), where Q is a finite set
of states, Σ is an alphabet, δ : Q× E → Q is a unique transition function, q0 ∈ Q is the
start state, and F ⊆ Q is the set of accept states [186].

Groups A group is a pair (G, ∗), where G is a set and the group operation ∗ : G×G→ G

is a map with the following properties:

• ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c),

• ∃e ∈ G∀a ∈ G : a ∗ e = e ∗ a = a, and

• ∀a ∈ G∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e.

The group operation is often written as the multiplication · (also using the “power”
notation an). When the group operation is clear from the context, we identify the group
by its underlying set G.

A finite group is a group where its order Ord(G) := |G| is finite. A group is cyclic if
there is a g ∈ G such that G = {gn | n ∈ N}. We write 〈g〉 = G and call g a generator of
G. (Angle brackets 〈〉 also denote the output of an interactive protocol, see Section 2.4.4.)

In this work, we implicitly assume that the group operation is always efficiently
computable. Also, we require the existence of an efficient group generator algorithm, i.e.
an efficient procedure that outputs description of a group and all relevant parameters.

Asymptotic Notation To express the asymptotic behaviour of terms, we use the “Big-O”
(or Landau) notation. We reproduce Goos’s [97] definition and its implication:

O(f(n)) := {g(n) | ∃c > 0, n0 ∈ N s.t. 0 ≤ g(n) ≤ c · f(n) and n ≥ n0},
o(f(n)) := {g(n) | ∀c > 0 ∃n0 ∈ N s.t. 0 ≤ g(n) < c · f(n) and n ≥ n0},
Ω(f(n)) := {g(n) | ∃c > 0, n0 ∈ N s.t. 0 ≤ c · f(n) ≤ g(n) and n ≥ n0},
ω((f(n)) := {g(n) | ∀c > 0 ∃n0 ∈ N s.t. 0 ≤ c · f(n) ≤ g(n) and n ≥ n0},
Θ(f(n)) := {g(n) | g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))}.

Instead of f(n) ∈ O(g(n)) the notation f(n) = O(g(n)) is common, though technically it
is not correct.
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2.1 Negligibility

2.1 Negligibility

The concept of negligibility is important in cryptography when one imposes computational
limits on the adversary. Consider for example an encryption scheme. If one requires it
impossible for any adversary to extract the plaintext from its encryption, there is no
secure encryption scheme (with the exception of schemes with perfect privacy [131, 182]):
An adversary can always guess a decryption key and try it. It is possible he guessed the
key correctly and thus obtains the plaintext. For practical applications, guessing keys is
not a reasonable strategy to attack an encryption scheme with sufficiently many keys.
We need a formalism to handle negligible probabilities.

We call a function f negligible if for every polynomial p there exists an N such that for
all integers k > N it holds that f(k) < 1

p(k) . An equivalent definition is that a function µ

is negligible if ∀c ∈ N∃N ∈ N such that ∀k ≥ N : µ(k) ≤ k−c.
The sum of two negligible functions is negligible and the product of any positive

polynomial and a negligible function is negligible [131]. Intuitively, if an adversary’s
success probability is negligible in a value called the security parameter, we call a scheme
secure.

2.2 Computational Complexity

Formally, a Turing Machine (TM) is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q is
the finite set of states, Σ is the input alphabet, Γ is the tape alphabet, δ is the transition
function, q0 ∈ Q is the start state, qaccept ∈ Q is the accept state, and qreject is the reject
state [186]. We say a machine accepts if it reaches the accept state, and that it rejects if
it reaches the reject state. We call a language L decidable if there is a Turing Machine
that accepts all w ∈ L and that rejects all w′ 6∈ L. For a thorough introduction, we refer
to Sipser [186].

To give a capability in a “black-box” manner to a TM, one can use an oracle. An
oracle is a black-box entity with an interface that can be called just like a library function
in a programming language. We call a TM that has access to one or more oracles an
Oracle TM. In shorthand notation, to provide an oracle O to a machine A, we sometimes
write AO. Similarly, to provide a function f with the first parameter “open” and the
second one fixed to a variable K, we write Af(·,K).

In our constructions, we generally limit ourselves to deterministic TMs, i.e. machines
with a unique transition function. The time complexity (or running time) of a deterministic
TM is the maximum number of steps that the TM uses on a given input (or a given class
of inputs of a given length). The running time of a nondeterministic TM is the maximum
number of steps that it uses on any branch of its computation [186]. We use the terms
Turing Machine, machine, algorithm, program, and procedure interchangeably. A protocol
is a finite set of interacting TMs.

If not stated otherwise, the computation model throughout this work is the Probabilistic
Polynomial Time (PPT) model—machines have access to a (private and uniformly
distributed) source of randomness and their running time is bound by a fixed polynomial
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in the size of their input. We call thus restricted machines efficient. The class of PPT
machines is closed under composition, i.e. a PPT machine running a PPT subroutine is
still PPT.

In security definitions, the value relative to which running time is measured is often
called the security parameter. All cryptographic procedures must run efficient relative
to the security parameter while breaking the security of a scheme should require super-
polynomial effort in the security parameter. A popular example to illustrate this concept
is encryption: Generating a key of length k, encrypting using such a key, and decryp-
tion should all be efficiently computable. On the other hand, breaking the encryption
should be infeasible using p(k) computation steps, for any polynomial p. Conversely, the
probability that any efficient adversary breaks the encryption should be negligible. To
explicitly give an algorithm a running time of k steps, we use the standard notation 1k

to indicate an extra input of a sequence of 1s of length k.

Definition (P [186]). P is the class of languages that are decidable in polynomial time
on a deterministic single-tape TM.

Definition (NP [186]). NP is the class of languages that are decidable in polynomial
time on a nondeterministic single-tape TM.

2.3 Cryptographic Proofs of Security

In this section we review concepts and techniques for cryptographic proofs of security
that are relevant for this thesis. We point out that there are more, but covering those is
outside the scope of this work. We refer to literature for a comprehensive overview [90,
91, 131]. For the purposes of this thesis, we restrict our security considerations to
computational security. The following exposition reflects this. We point out that there
are also the concepts of statistical and perfect security. They are more strict, and harder
to achieve. In a nutshell, they restrict the adversarial model less. For practical purposes,
computational security with an efficiency restriction on the adversary is widely considered
adequate. (An area of research where this restriction is not considered adequate is
“Post-Quantum Cryptography”.)

2.3.1 Game-Based Security

The idea behind game-based security definitions is to play a “game” with the adversary.
(These games are often called security experiments.) If the adversary is successful, i.e.
wins the game, the result of the game is 1, otherwise it is 0. One defines the advantage of
an adversary as his success probability minus the probability of “trivially” winning the
game. The security property holds, finally, if no adversary has a non-negligible advantage.

More technically, Dodis et al. [70] define a security game as an interaction between a
prover and a challenger:

A game is defined by two PPT Oracle-TMs, a prover A and a challenger C,
which have a common communication tape over which they can exchange
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messages. The challenger finally output a decision bit. We say that A wins
the game if this bit is 1 and denote this event by 〈A,C〉 → 1.

This notion captures the essential requirement that the “game” itself be PPT. This is
important so that the thus defined security notion lends itself to a reduction argument
(see below).

As an example, the Existential Unforgeability under Chosen-Message Attacks (EUF-
CMA) security notion is defined as a game in which the adversary tries to come up with
a valid signature of a message of his choosing (Section 2.4.2).

Indistinguishability

In modern cryptography, one often makes use of the concept of indistinguishability. This
concept is very handy when security is about keeping information private. The idea is
that the adversary may not even extract one single bit of the secret in question, regardless
of what the secret is. If he were to extract one bit from any secret, he could use that bit
to distinguish two secrets of his choosing.

Definition (Polynomial-Time Indistinguishability [90]). Two ensembles, X := {Xn}n∈N
and Y := {Yn}n∈N are indistinguishable in polynomial time if for every probabilistic
polynomial-time algorithm D, every positive polynomial p(·), and all sufficiently large
n’s,

Pr [D(Xn, 1
n) = 1]− Pr [D(Yn, 1

n) = 1] <
1

p(n)

We often say computational indistinguishability instead of indistinguishability in polyno-
mial time.

For example, in the Private Information Retrieval (PIR) scenario (see also Section 4.5.1),
a server stores a database d ∈ {0, 1}n. The client wants to retrieve one bit d[i], i ∈
{0, . . . , n − 1} from the database without the server learning any information about i.
The formal PIR privacy requirement is that for any database d and any database indices
i, j the output of any distinguisher is independent of whether d[i] or d[j] was retrieved.

In game-based notions, the concept is expressed differently. There, the adversary
chooses two candidate secrets. The game then secretly flips a coin b ← {0, 1} and
performs the procedure in question (e.g. an encryption) on secret b. The challenge of the
adversary is to correctly guess b based on his observations. A typical example for this
concept is the Indistinguishability under Chosen-Plaintext Attack (IND-CPA) notion for
encryptions (Section 2.4.1). There, the adversary submits two plaintexts m0,m1 of his
choosing and receives an encryption of mb. His challenge is to correctly guess b.

Indistinguishability is a transitive relation, i.e. if A is indistinguishable from B and B
is indistinguishable from C, then A is also indistinguishable from C.

Reductions

Proofs of perfect (i.e. unconditional) security are only possible for encryptions that use a
key as long as the message itself (or longer), the One-Time-Pad [131, 182]. For all other
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constructions, proofs of security are relative to assumptions that are believed to hold.
One example is the Decisional Diffie-Hellman (DDH) assumption, which is that, given
random elements ga, gb, gc of a cyclic group G = 〈g〉, it is hard to tell whether gc = gab.

To prove the security of a construction relative to an assumption, one usually uses a
reduction argument. One devises an efficient adversary against the assumption, using
an adversary against the security of the construction in question. (One may only use
the adversary in a black-box manner, without relying on any knowledge about its inner
workings, lest the reduction work only for certain adversaries, not all.) To this end, the
reduction must perfectly emulate the security game the adversary expects to run in. The
typical challenge when contriving a reduction is to smartly embed the challenge from the
assumption’s security game into the emulated security game. This way, one can then
extract the correct guess bit b from the adversary. See Figure 2.1 for an illustration.

The security of the scheme is proven by contraposition then: If there is a successful
adversary against the security of the construction, there is also one against the assumption,
which is a contradiction. Hence, there is no successful adversary against the security of
the construction if the assumption holds.

Assumption Reduction

Adversary
b← {0, 1} Challenge cb

Challenge c′b

Guess b′

Guess b′′

Figure 2.1: A reduction argument. An efficient adversary against the assumption is
devised, making black-box use of an adversary against the security of the
construction in question. The challenge for the reduction is embedded into the
challenge for the adversary, thus making it possible to leverage the adversary’s
advantage.

Game-Hopping and Transformations One often-used proof technique is the game
transformation or game-hopping technique. The basic idea is not to prove security in one
single step, but in several steps. In each step, the security game is modified. For each step
one shows that, for the adversary, the modified game is indistinguishable from the former
game. By the transitivity of indistinguishability, the first game is indistinguishable from
the last in the series of transformations. The last game in a series of transformations
then has a special property, for example the adversaries input is independent of the
challenge bit. The adversary then has no advantage over a blind guess. A particular
application of this technique is to show security relative to several assumptions: in each
step, a different assumption is used to modify the game. To be successful in the resulting
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security game, the adversary must invalidate at least one of the assumptions used in the
transformations.

2.3.2 Real-vs-Ideal Paradigm

In some applications, security cannot be defined in an absolute sense, as even an optimal
realisation is bound to have an inherent weakness. In the case of elections (Chapter 5)
for example, the mere release of the election result leaks information about the voters’
choices. This “information leak” is unavoidable. To factor out the advantage an adversary
has from inspecting the election result, one can use the real-vs-ideal paradigm when
defining security: in addition to the “real” game, one defines the “ideal” game where the
adversary only learns the election result. His total advantage is then measured as the
difference between his advantage in the former versus his advantage in the latter game.

Also, one models Multi-Party Computation (Section 2.4.5) as a group of parties jointly
computing an ideal functionality. The paradigm also finds an application in the Universal
Composability (UC) [41] framework.

2.3.3 Universally Composable Security

In this chapter we give a brief review of the Universal Composability (UC) [41] framework.
It is a tool for proving the security of multi-party protocols by comparing their execution
with an idealised version of the protocol. Because of its composition theorem, Universal
Composability (UC) [41]-secure protocols can be designed in a modular fashion. The
framework allows us to model a system of firewalls as a protocol execution and underspecify
the concrete functionality of the participating firewalls and only state what an ideal
execution would look like.

This subsection has already been partially published as a part of a conference paper [3].

In the UC framework, participants in a protocol are modeled as Interactive Turing
Machines (ITMs). Since there are different definitions of ITMs in literature, we briefly
summarise the definition given by Canetti [41, 42].

Definition (Interactive Turing Machine). An Interactive Turing Machine (ITM) is a
multi-tape TM with the following tapes. A tape is externally writeable (EW), if every
other machine can write (append) to it.

• an identity tape (EW)

• a security parameter tape (EW)

• an input tape (EW)

• a communication tape (EW)

• an output tape

• a working tape
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• a subprocess tape

We call an ITM probabilistic, if it, in addition, has a random tape, which contains a
random bitstring of a specific distribution.

A protocol π in the UC framework is executed in the context of two additional ITMs:
the adversary A and the environment Z. The adversary represents the party that attacks
the protocol, the environment represents the perception of the execution from an outside
point of view.

There are some general restrictions concerning the communication among the partici-
pating parties: the adversary and the environment are allowed to communicate freely.
In addition, the adversary is allowed to write to the communication tapes of every
participant and the environment can write to the input tapes and receive outputs of the
parties of the protocol. This captures the notion that the environment represents the
external input to the protocol but will not interfere with the protocol itself.

In Chapter 3 we realise protocol execution in the F-hybrid model of computation:
Parties do not communicate directly, but use a functionality F as a proxy, which is
modeled as another ITM. F also communicates with the adversary. The exact behaviour
of F is specified in advance and must reflect the exact nature of the communication link.
For example, F might be set up such that A can intercept and send arbitrary network
messages. We will setup F so that it reflects our network architecture: The adversary
cannot intercept all communication or inject messages into the network at will. It is only
possible to send messages on established links as specified in the architecture diagram.
However, the adversary can send a special message to other parties: the corruption
message. If a party receives a corruption message, it stops executing its own program and
instead gives complete control of its functions to the adversary. This includes disclosing
its internal state.

A protocol is executed in turns. If an ITM is activated, it can perform computation
and write to a tape of any other ITM based on the aforementioned restrictions. Then its
turn ends. If an ITM receives input on one of its tapes, it is the next to be activated.
The first ITM to be activated is the environment Z.

The output of the protocol is the output of Z and we assume, without loss of generality,
that it consists of one bit. The distribution of all outputs of Z is a probability ensemble
based on the two parameters z (the input) and k (the security parameter).

Definition (Ensemble of a protocol execution). We denote the random variable which
describes the execution of a protocol π with adversary A, environment Z, input z, security
parameter k as EXECπ,A,Z(k, z). The probability ensemble {EXECπ,A,Z(k, z)}k∈N,z∈{0,1}∗
is denoted as EXECπ,A,Z .

The security of a protocol execution in the UC framework is based on a comparison
with an execution of an idealised version of the protocol: the ideal protocol. The ideal
protocol contains the ideal functionality Fideal which completely realises the properties
of the analysed protocol. In the ideal protocol, all parties only act as dummies which
directly give their input to the ideal functionality and receive back their output without
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performing any computation themselves. The ideal functionality may communicate with
the adversary in order to model the allowed influence A has. Since the only instance
which performs computations is Fideal, which is ideal by definition, the whole protocol
execution is ideal and thus secure.

In Chapter 3 we model the ideal functionality as the same firewall network, but without
the compromised firewall. For example, when we combine two firewalls, of which one may
be compromised, the ideal model we compare our protocol to is just one uncompromised
firewall.

Definition (Ideal protocol). Let Fideal be an ideal functionality. Then, the ideal protocol
which realises Fideal is denoted as IDEALF .

Informally, a protocol π is UC secure if, for every adversary A and every environment
Z, Z can not distinguish if it is interacting with π or with the ideal protocol implementing
π. To capture that notion formally, we define indistinguishability.

Definition (Indistinguishablity of probability ensembles). Two binary ensembles X and
Y are indistinguishable (X ≈ Y ), if ∀c, d ∈ N ∃k0 ∈ N , so that for all k > k0 and all
a ∈ ∪κ≤kd{0, 1}κ holds:

|Pr(X(k, a) = 1)− Pr(Y (k, a) = 1)| < k−c

Based on that notion, we now formalise the indistinguishability of two protocols in the
UC framework. In place of the adversary we put a “simulated adversary” S, called the
simulator. The simulator’s job is to simulate the presence of A to the environment, so
that it may not distinguish the real protocol execution from the idealised version. The
security notion requires that there is a successful simulator for every adversary.

Definition (UC emulates). Let π and φ be two protocols. Then π UC emulates the
protocol φ, if ∀A ∃S, so that ∀Z holds:

EXECπ,A,Z ≈ EXECφ,S,Z

We can now formally state when a protocol realises a functionality.

Definition (UC realises). A protocol π (securely) UC realises an ideal functionality
Fideal, if π UC emulates the corresponding ideal protocol IDEALF .

If a protocol π realises a given ideal functionality, then we say π is UC secure.
The UC framework is a powerful instrument for analysing the security of protocols

because it provides a composition theorem. Informally speaking, the composition theorem
states that if π securely realises an ideal functionality Fideal, one can use π instead of
Fideal in other protocols without compromising security.

In the following definition, π/F is shorthand for replacing all instances of F with
instances of π.

Theorem (Composition Theorem, realising functionalities [42]). Let F , G be ideal
functionalities such that F is PPT. Let ρ be a subroutine respecting protocol that UC-
realises G, and let π be a subroutine respecting protocol that securely realises F . Then the
composed protocol ρπ/F securely realises G.
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Synchronous UC

The UC framework is asynchronous—one machine runs at a time. This way, one execution
of a protocol is unique. On the other hand, the passing of time cannot easily be modeled
in the framework. In Section 3.7 we study an extension proposed by Katz et al. [132]
that allows the expression of synchrony without modifying the framework.

2.4 Cryptographic Primitives

We make use of several cryptographic building blocks in the constructions in this work.
In this section we define them and their security, where appropriate.

2.4.1 Encryption

Encryption is a method to ensure the confidentiality of data. A method for encrypting
data is sound only when the original data can easily be recovered by an authorised
user. More formally, an encryption scheme is a tuple (Gen,Enc,Dec), where Gen is a
key generation algorithm, Enc an encryption procedure, and Dec a decryption algorithm.
The exact definition of an encryption scheme depends on the kind of encryption to be
defined.

Private-Key Encryption

In a private-key encryption scheme, the same key is used for encryption and decryption.
We paraphrase Katz and Lindell’s definition [131, Definition 3.7] here.

Definition (Private-Key Encryption Scheme). A private-key encryption scheme is a
tuple of PPT algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1k and
outputs a key K,

2. the encryption algorithm Enc takes as input a plaintext message m ∈ {0, 1}∗ and a
key K, and outputs a ciphertext c, and

3. the decryption algorithm Dec takes as input a ciphertext c and a key K, and outputs
a message m.

It is required that for every k, every key K output by Gen(1k), and every m ∈ {0, 1}∗, it
holds that Dec(Enc(m,K),K) = m.

Security Game (The (private-key) CPA indistinguishability experiment PrivKcpa
A,Π(k) [131]).

1. A key K is generated by running Gen(1k).

2. The adversary A is given input 1k and oracle access to Enc(·,K), and outputs a
pair of messages m0,m1 of the same length.
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3. A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Enc(mb,K) is
computed and given to A.

4. The adversary A continues to have oracle access to Enc(·,K), and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition (IND-CPA security for private-key encryption [131]). A private-key en-
cryption scheme Π = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-
plaintext attack if for all PPT adversaries A there exists a negligible function negl such
that

Pr
[
PrivKcpa

A,Π(k) = 1
]
≤ 1

2
+ negl(k),

where the probability is taken over the random coins used by A, as well as the random
coins used in the experiment.

Block-Ciphers and Operation Modes One important class of private-key encryption
schemes are block-ciphers. A block-cipher encrypts a block of a fixed length. Together
with an operation mode, it realises a private-key encryption. One popular example is the
Advanced Encryption Standard (AES) [80].

The idea behind block-ciphers is to implement a keyed permutation on a fixed-size
block of bits, e.g. 128. (We call a mapping f : A → A a permutation on A if it is a
bijection.)

Definition (Strong pseudorandom permutation [131]). Let F : {0, 1}∗×{0, 1}∗ → {0, 1}∗
be an efficient, keyed permutation. We say that F is a strong pseudorandom permutation
if for all PPT distinguishers D, there exists a negligible function negl such that:∣∣∣Pr

[
DFK(·),F−1

K (·)(1k) = 1
]
− Pr

[
Df(·),f−1(·)(1k) = 1

]∣∣∣ ≤ negl(n),

where k ← {0, }n is chosen uniformly at random and f is chosen uniformly at random
from the set of permutations on n-bit strings.

We require that F and F−1 are efficiently computable.

While a block-cipher only encrypts blocks of a fixed length, together with an operation
mode documents of arbitrary length can be encrypted. The simplest construction is the
Electronic Code Book (ECB) mode. Here, the document is split in n-bit blocks and each
block is encrypted differently. That is, a message m is split into blocks m1 ·m2 · . . .ml = m
and the ciphertext is computed as c = c1 · c2 . . . cl with ci = F (mi). The ECB mode is
not IND-CPA secure.

The Cipher Block Chaining (CBC) mode works by including the encryption of the
previous block in the encryption. Concretely, ci = F (mi ⊕ ci−1). (For c1 a random
initialisation vector IV is chosen.) If F is a pseudorandom permutation then the Cipher
Block Chaining mode realises a CPA-secure encryption [131].
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Public-Key Encryption

In a public-key encryption scheme, a public key is used to encrypt, while a private (or
secret) key is required to decrypt. As we did in the case of private-key encryption, we
also paraphrase Katz and Lindell’s definition [131, Definition 10.1] here.

Definition (Public-Key Encryption Scheme). A public-key encryption scheme is a tuple
of PPT algorithms (Gen,Enc,Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1k and
outputs a pair of keys (pk , sk); a public key and a secret key.

2. The encryption algorithm Enc takes as input a plaintext message m (from some
underlying plaintext space) and a public key pk , and outputs a ciphertext c, and

3. the decryption algorithm Dec takes as input a ciphertext c and a private key sk ,
and outputs a message m or a symbol ⊥, indicating failure.

It is required that for every k, every key pair (pk , sk) output by Gen(1k), and every
appropriate m, the probability that Dec(Enc(m, pk), sk) 6= m is negligible.

Security Game. The (public-key) CPA indistinguishability experiment PubKcpa
A,Π(k) [131].

1. Gen(1k) is run to obtain keys (pk , sk).

2. Adversary A is given pk as well as oracle access to Enc(·, pk). The adversary
outputs a pair of messages m0,m1 of the same length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Enc(mb, pk) is
computed and given to A.

4. A continues to have access to Enc(·, pk), and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition (IND-CPA for public-key encryption [131]). A public-key encryption scheme
Π = (Gen,Enc,Dec) has indistinguishable encryptions under a chosen-plaintext attack if
for all PPT adversaries A there exists a negligible function negl such that:

Pr
[
PubKcpa

A,Π(k) = 1
]
≤ 1

2
+ negl(k).
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The Elgamal Encryption Scheme

Definition (The Decisional Diffie-Hellman problem [131]). Fix a group generator algo-
rithm G. We say that the Decisional Diffie-Hellman (DDH) problem is hard relative to G
if for all PPT algorithms A there exists a negligible function negl such that

|Pr [A(G, q, g, gx, gy, gz) = 1]− Pr [A(G, q, g, gx, gy, gxy) = 1]| ≤ negl(k),

where in each case the probabilities are taken over the experiment in which G(1k) outputs
(G, q, g), and then random x, y, z ∈ Zq are chosen.

Definition (The Elgamal encryption scheme [76, 131]). Let G be a PPT algorithm that,
on input 1k, outputs a description of a cyclic group G, its order q, and a generator g.
Define a public-key encryption scheme as follows:

• Gen: on input 1k run G(1k) to obtain (G, q, g). Then choose a random x← Zq and
compute h := gx. The public key is (G, q, g, h) and the private key is (G, q, g, x).

• Enc: on input a public key pk = (G, q, g, h) and a message m ∈ G, choose a random
y ← Zq and output the ciphertext

(gy, hy ·m).

• Dec: on input a private key sk = (G, q, g, x) and a ciphertext (c1, c2), output

m := c2 · c−x1 .

Theorem (Elgamal is IND-CPA secure [131]). If the DDH problem is hard relative
to G, then the Elgamal encryption scheme has indistinguishable encryptions under a
Chosen-Plaintext Attack.

Homomorphic Encryption We say an encryption is homomorphic with respect to ·, if
for any two messages m1,m2 and any encryption key pk it holds that

Enc(m1, pk) · Enc(m2, pk) = Enc(m1 ·m2, pk).

If we make use of this property we write the encryption operation as Enchom to make
this obvious.

The encryption from the Elgamal scheme (Definition 2.4.1) has this property if one
defines · as the piecewise multiplication. Observe that

Enchom(m1, (G, q, g, h)) · Enchom(m2, (G, q, g, h)) = (gy1 , hy1 ·m1) · (gy2 , hy2 ·m2)

= (gy1 · gy2 , hy1 ·m1 · hy2 ·m2)

= (gy1+y2 , hy1+y2 ·m1 ·m2)

= Enchom(m1 ·m2, (G, q, g, h)).
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2.4.2 Digital Signatures

A digital signature is the digital equivalent of a handwritten signature, but also serves
to protect the integrity of data—whereas a contract on paper can inconspicuously be
modified after it has been signed, a digital signature is valid only if the signed data is
not modified afterwards.

Definition (Signature Scheme [131]). A signature scheme is a tuple of three PPT
algorithms (Gen,Sign,Verify) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter 1k and
outputs a pair of keys (pk , sk).

2. The signing algorithm Sign takes as input a message m ∈ {0, 1}∗ and a private key
sk . It outputs a signature σ ← Sign(m, sk).

3. The deterministic verification algorithm Verify takes as input a message m, a
signature σ, and a public key pk . It outputs a bit b := Verify(m,σ, pk), with b = 1
meaning valid, and b = 0 meaning invalid.

It is required that for every k, every (pk , sk) output by Gen(1k), and every m ∈ {0, 1}∗,
it holds that Verify(m,Sign(m, sk), pk) = 1. If Verify(m,σ, pk) = 1 we say σ is a valid
signature on message m with respect to public key pk .

Existential Unforgeability under Chosen-Message Attacks

Security Game. The signature experiment Sig-forgeA,Π(k) [131].

1. Gen(1k) is run to obtain keys (pk , sk).

2. Adversary A is given pk and oracle access to Sign(·, sk). The adversary outputs
(m,σ). Let Q denote the set of messages whose signatures were requested by A
during its execution.

3. The output of the experiment is defined to be 1 if and only if Verify(m,σ, pk) and
m 6∈ Q.

Definition (Existential Unforgeability under Chosen-Message Attacks (EUF-CMA) [131]).
A signature scheme Π = (Gen, Sign,Verify) is existentially unforgeable under an adaptive
chosen-message attack if for all PPT adversaries A, there exists a negligible function
negl such that

Pr
[
Sig-forgeA,Π(k) = 1

]
6= negl(k).
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2.4.3 Cryptographic Hashes

The idea behind cryptographic hashing is to compute for a string x a value that is strictly
shorter than x. The security intuition is then that no efficient adversary shall be able
to find an x′ such that the hash values match. Although constructions that are used
in practice, such as the SHA-1 hash [79], are not formally proven secure, the security
notions cited below give a good intuition as to what a cryptographic hash algorithm is
supposed to achieve.

Definition (Hash function [131]). A hash function is a pair of PPT algorithms (Gen, H)
fulfilling the following:

• Gen is a probabilistic algorithm which takes as input a security parameter 1k and
outputs a key s. We assume that 1n is is implicit in s.

• There exists a polynomial l such that H takes as input a key s and a string
x ∈ {0, 1}∗ and outputs a string Hs(x) ∈ {0, 1}l(k) (where k is the value of the
security parameter implicit in s.)

If Hs is defined only for inputs x ∈ {0, 1}l′(k) and l′(n) > l(n), then we say that (Gen, H)
is a fixed-length hash function for inputs of length l′(n).

Security Game. The collision-finding experiment Hash-collA,Π(k) [131].

1. A key s is generated by running Gen(1k).

2. The adversary A is given s and outputs x, x′. (If Π is a fixed-length hash function
for inputs of length l′(k) then we require x, x′ ∈ {0, 1}l′(k).)

3. The output of the experiment is defined to be 1 is and only if x 6= x′ and Hs(x) =
Hs(x′). In such a case we say that A has found a collision.

Definition (Collision resistance [131]). A hash function Π = (Gen, H) is collision
resistant if for all PPT adversaries A there exists a negligible function negl such that

Pr [Hash-collA,Π(k) = 1] ≤ negl(k).

2.4.4 Zero-Knowledge

When one wants to prove the possession of a capability or the knowledge of a secret, one
can demonstrate or reveal it. But if, on the other hand, one wants to give a credible proof
without revealing any information besides one’s capability or knowledge, one can employ
Zero-Knowledge (ZK) proofs. Zero-Knowledge proofs make use of the simulator concept
(see also the UC framework, Section 2.3.3): If any knowledge gained by the verifier can
also be gained without interacting with the prover at all, the proof is Zero-Knowledge.

Definition (Interactive Proof System [90]). A pair of interactive machines (P, V ) is
called an interactive proof system for a language L if machine V is PPT and the following
two conditions hold:
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• Completeness: For every x ∈ L,Pr [〈P, V 〉(x) = 1] ≥ 2
3

• Soundness: For every x 6∈ L and every interactive machine B, Pr [〈B, V 〉(x) = 1] ≤ 1
3

Definition (Computational Zero-Knowledge [90]). Let (P, V ) be an interactive proof
system for some language L. We say that (P, V ) is computational zero-knowledge if
for every PPT interactive machine V ∗ there exists a PPT algorithm M∗ such that the
following ensembles are computationally indistinguishable:

• {〈P, V ∗〉(x)}x∈L (i.e., the output of the interactive machine V ∗ after it interacts
with the interactive machine P on common input x)

• {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

Machine M∗ is called a simulator for the interaction of V ∗ with P .

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. Then R(x) := {s | (x, s) ∈ R} and
LR := {x | ∃s s.t. (x, s) ∈ R}. If (x, s) ∈ R, then we call s a solution for x. We say
that R is polynomially bounded if there exists a polynomial p such that |s| ≤ p(|x|) for
all (x, s) ∈ R. We say that R is an NP-relation if R is polynomially bounded and, in
addition there exists a polynomial-time algorithm for deciding membership in R.

Definition (System for Proofs of Knowledge [90]). Let R be a binary relation and
κ : N → [0, 1]. We say that an interactive function V is a knowledge verifier for the
relation R with knowledge error κ if the following two conditions hold:

• Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R
all possible interactions of V with P on common input x and auxiliary input y are
accepting.

• Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle
machine K such that for every interactive function P , every x ∈ LR, and every
y, r ∈ {0, 1}∗, machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V accepts, on
input x, when interacting with the prover specified by Px,y,r. If p(x, y, r) > κ(|x|),
then, on input x and with access to oracle Px,y,r, machine K outputs a solution
s ∈ R(x) within an expected number of steps bounded by

q(|x|)
p(x, y, r)− κ(|x|)

The oracle machine K is called a universal knowledge extractor.

When κ(·) is identically zero, we simply say that V is a knowledge verifier for the relation
R. An interactive pair (P, V ) such that V is a knowledge verifier for a relation R and P
is a machine satisfying the non-triviality condition (with respect to V and R) is called a
system for proofs of knowledge for the relation R.
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Definition (Non-Interactive Proof System [90]). A pair of probabilistic machines is
called a non-interactive proof system for a language L if V is polynomial time and the
following two conditions hold:

• Completeness: For every x ∈ L,

Pr [V (x,R, P (x,R)) = 1] ≥ 2

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

• Soundness: For every x 6∈ L and every algorithm B,

Pr [V (x,R,B(x,R)) = 1] ≤ 1

3

where R is a random variable uniformly distributed in {0, 1}poly(|x|).

The uniformly chosen string R is called the common reference string.

Definition (Non-Interactive Zero-Knowledge [90]). A non-interactive proof system (P, V )
for a language L is zero-knowledge if there exists a polynomial p and a PPT algorithm M
such that the ensembles {x, Up(|x|), P (x, Up(|x|)))}x∈L and {M(x)}x∈L are computationally
indistinguishable, where Um is random variable uniformly distributed over {0, 1}m.

Theorem ([90]). Assuming the existence of one-way permutations, each language in
NP has a zero-knowledge non-interactive proof system. Furthermore, assuming the
existence of families of trapdoor permutations, each language in NP has a zero-knowledge
non-interactive proof system in which the prover can be implemented by a PPT machine
that gets an NP-witness as auxiliary input.

2.4.5 Multi-Party Computation

In some cryptographic applications one faces the problem that no single party can be
trusted to compute a certain function. The solution is to compute the function as a
Multi-Party Computation (MPC). In our construction in Chapter 5 for example, we trust
no single server to hold the decryption key for ballots. Instead, a multitude of servers
jointly hold it—each server has a share of the key.

The security of an MPC is modeled after the real-vs-ideal paradigm. A multi-party
protocol emulates a single party that computes the function in question. The UC
framework (Section 2.3.3) draws inspiration from this idea.

We cite a well-known general possibility result here. Prior to that, we sketch Shamir’s
secret sharing scheme [181]. It is a so-called (k, n) threshold scheme, where a secret
number D is divided into n pieces so that k or more pieces suffice to reconstruct D. The
scheme works as follows: Pick a random polynomial q(x) = D + a1x + · · ·+ ak−1x

k−1

of degree k − 1. Then, evaluate Di = q(i) for i ∈ {1, . . . , n}. These are the shares. By
interpolation, using at least k shares, one can again unequivocally find q and compute
D = q(0). Using such a secret sharing scheme, one can split input to several parties who
then jointly compute the desired function.
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Theorem ([91]). Assuming the existence of enhanced trapdoor permutations, general
secure multi-party computation is possible in the following three models:

1. Passive adversary, for any number of dishonest parties.

2. Active adversary that may control only a strict minority of the parties.

3. Active adversary, controlling any number of bad parties, provided that suspension
of execution is not considered a violation of security.

In all these cases, the adversary is computationally bounded and non-adaptive. On the
other hand, the adversary may tap the communication lines between honest parties (i.e.,
we do not assume the existence of private channels). The results for active adversaries
assume a broadcast channel.
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If control of international trade
were to become an important
instrument of government policy,
then any international
communications network involved
with industrial or commercial
computer-private systems will
need the best protection that can
be provided.

(Willis H. Ware, Security and
Privacy in Computer Systems,

1967)

Information Technology (IT) systems are at the heart of most automated systems today.
Not only cars and airplanes rely on networked computer systems, but also factories, water
supply plants, and nuclear facilities. At the same time, IT systems have never faced more
serious threats—national and foreign secret services, criminal organisations, and even
corporate hacker groups threaten the integrity and availability of services society relies
on.

The aim of research in provable security is to construct IT systems that are invulnerable
to attack. Because one faces an intelligent adversary when constructing IT systems it is
not sufficient to test for known vulnerabilities before shipping a security solution. One
needs a method for defending against previously-unknown attacks. To achieve this goal,
formal security models are used. However, since proofs in these models are naturally
very technical, they only exist for individual system components like secure channels [85]
or simple protocols such as fair coin tosses [28]. However, since modern IT networks
are very complex, they are usually not proven secure in a formal security model but
only empirically tested for known security weaknesses. This constitutes a significant gap
between systems which are proven to be secure and those which are actually in use.

This gap can be somewhat narrowed by security notions that offer composability : When
the cryptographic framework ensures that the composition of secure components yields
a secure system, security analysis can be broken down into analysing components with
manageable complexity. Specifically, when one analyses computer network components,
the secure composability property allows to focus on one sub-network without specifying
the rest of the network. (One essentially proves the security of the component for any
surrounding network.)

The protection of computer networks against attackers from the Internet is crucial
for companies to protect their intellectual property. Network firewalls are used to shield
networks against threats from the Internet. The task of a firewall is to inspect the network
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packets that pass through it and then to decide whether to let them pass. Firewalls use
a set of predefined rules to facilitate this decision. These rules may specify static filters,
but may also be functions of the history of network traffic.

The protection from attacks from outside the network is a well understood problem
and has become the business model of many companies. Firewalls are considered a
secure black box which protects the network from attacks. However, since many firewall
appliances are purchased from third-party vendors, people have no control and insight into
their actual functionality. Companies and individuals alike rely on the trustworthiness
of firewall appliances. Most firewalls are made of general-purpose hardware with just
the same capabilities as any modern computer. In addition, firewalls are often equipped
with update mechanisms which make their functionality completely replaceable. It seems
näıve to see a firewall as a secure black box. Indeed, as the documents that were leaked
by Edward Snowden in 2013 reveal, the National Security Agency has the capability to
install backdoors in a number of commercial firewalls: JETPLOW, HALLUXWATER,
FEEDTROUGH, GOURMETTROUGH, and SOUFFLETROUGH [118].

Under the assumption that firewalls are not actively malicious, i.e. do not attack the
network on their own, one might still surmise that their rules are incomplete and do not
filter all possible attacks. To alleviate this problem, one might concatenate firewalls from
several suppliers just like sieves are layered in water filters. The serial concatenation
of firewalls does not yield a secure solution if one considers the possibility of actively
malicious firewalls: If one is unsure as to which firewall is compromised one also does not
know which firewall the network needs protection from.

To realise a secure concatenation of firewalls, we suggest a trusted device that compares
the input to a firewall network to its output. Such a trusted hardware would be much
simpler than a complete firewall. We envision such a device to be realised as a microchip.
Surprisingly, this approach still is insecure. A parallel composition of firewalls using a
trusted comparator yields a secure firewall network, however.

In this chapter, we present a novel methodology to analyse architectures of multiple
firewalls based on the Universal Composability (UC) [41] framework. The UC framework
allows us to define security in a natural way while also providing us with a composition
theorem. We rigorously analyse different approaches. Our analysis reveals subtle attacks
on presumably secure architectures. We give ideal functionalities for these architectures
which make these weaknesses explicit.

The basic UC framework does not feature a notion of time and thus cannot model
availability. In the course of our efforts we extend our considerations to providing
availability guarantees as well. We provide a “recipe” for modeling and analysing network
components like firewalls. It is our belief that this work demonstrates the actual suitability
of formal security models to analyse the security of computer networks.

This chapter is based on a Diploma thesis [9] and two conference papers [3, 4].

3.1 Related Work

To our knowledge, we are first to explicitly model computer networks in the UC framework.
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Network Firewalls The purpose, aim and function of network firewalls is widely under-
stood and agreed upon [25, 116, 178]. The informational Request for Comments 2979 [84]
defines characteristics of firewalls. Since there is no globally agreed-on standard for what
constitutes good and bad network packets however, there is also no complete specification
of the function of a firewall.

The security of firewalls or systems of firewalls has mainly been studied under two
aspects. One concern is verifying the correctness and soundness of rule sets. Gouda
et al. [98] develop a formal model for verification of distributed rule sets based on
trees. They are able to check whether the firewall system accepts or denies a specific
class of packets. Ingols et al. [117] check for conflicting or otherwise problematic rules
with the aid of Binary Decision Diagrams. Maldonado-Lopez et al. [155] develop a
framework for modeling firewall policies to detect and prevent conflicts in firewall policies
for software-defined networks.

Another concern is firewall testing. Vigna [196] proposes a firewall testing methodology
based on a formal network model instead of checklist testing. He proposes modeling
computer networks as hypergraphs. Our modeling of firewall networks is inspired by
his work. Kamara et al. [124] provide an analysis of various security holes found in
firewall solutions. They present vulnerability matrices which categorise firewall operation,
security hole effect, and causes of security holes. One security hole they consider in their
analysis is of particular interest: The Hypertext Transfer Protocol (HTTP) proxy of
a commercial firewall appliance suffers from a buffer overflow weakness that makes it
possible for an attacker to execute arbitrary code on the host running the software [180].

We are not aware of any works that consider the firewall as being malicious.

Formal Analysis of Computer Networks While network security is considered a prac-
tical field, formal methods have also been applied to computer networks. Research
generally concentrates on modeling attacks and vulnerabilities [117] and on generating
verification policies [112, 147]. While such approaches help in configuring specific network
components and in mitigating threats, they do not have the advantages of cryptographic
security models.

Universal Composability The UC framework [41, 42] was proposed by Canetti in
2001. It follows the “real-world-ideal-world” paradigm and is inherently asynchronous.
Alternative approaches to the problem of composable security include the reactive
simulatability framework [19, 173], the GNUC framework [110]—which aims at being a
drop-in replacement for UC—or the Abstract Cryptography paradigm [157, 158]. Among
these, the UC framework has received the most attention.

Various variants of UC have been proposed [43, 46, 47, 194].

Universally Composable Practical Protocols The UC framework is the quasi state-of-
the-art framework for proving the security of cryptographic building block protocols like
Commitments [45] or Oblivious Transfer [172]. Because it has a composition theorem,
it is argued that more complex protocols can then be composed of these components.
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However, the UC framework has also been used to prove the security of more complex
schemes, such as Transport Layer Security [85], OAuth [51], and disk encryption [65]. A
particularly well-known example of a UC-secure multi-party computation in a practical
application is the Danish sugar beet auction [31]. Our contribution falls in line with this
work. We investigate composing large computer networks.

Synchronous Universal Composition The UC framework is asynchronous—exactly one
machine is running at any given moment. This convention greatly simplifies analysis
but at the same time makes modeling the progression of time difficult. More concretely,
one cannot simultaneously prove input completeness (the inputs of all honest parties
are considered) and guaranteed termination (the protocol does not “hang”). There have
been various approaches to modeling synchrony in the UC framework [108, 123, 168].
They, however, either lack in expressiveness or modify the foundations of the framework.
The recently proposed approach by Katz, Maurer, Tackmann, and Zikas [132] generalises
previous results. It hinges on two ideal hybrid functionalities FBD and Fclock that do
not change the framework. Backes et al. [18] propose TUC, an extension to the GNUC
framework.

Secure Hardware In their seminal work, Goldreich and Ostrovsky [92] explore the
challenge of software protection. They base their main result on Oblivious Random
Access Machines (ORAMs). A Random Access Machine (RAM) is oblivious if the
sequence of its memory accesses is independent of its input.

Hofheinz, Müller-Quade, and Unruh [109] use trusted signature cards as “catalysts”
for Zero-Knowledge and bit commitments.

Katz [130] uses tamper-proof hardware to realise universally composable multi-party
computation. He assumes tamper-proof tokens that can be programmed with an arbitrary
program. Such a programmed token is then handed to another party in the protocol,
which may then interact with the token. This idea has gained much interest [67, 71–74,
99, 163].

Goldwasser et al. [93] introduce the computational paradigm of one-time programs, i.e.
programs that can only be run once, on one input. Of course, such programs cannot exist
purely in software, as software can be copied indefinitely. Goldwasser et al. introduce
“one-time-memory devices” to create a compiler for one-time programs.

A more recent idea is to use Physically Uncloneable Functions (PUFs) as a setup
assumption. A PUF is a physical source of randomness that is assumed hard to clone,
i.e. its output is unique and hard to predict [16, 67, 154, 170].

Robust Combiners The idea of mistrusting the implementation of a secure functionality
has been studied in the scope of robust combiners. A (k, n)-robust combiner combines
n candidate implementations of the secure functionality P in a way that the overall
security still holds if at least k implementations are secure [106]. More formally: A
(k, n)-robust combiner for a cryptographic primitive P is a mechanism that takes n
candidate schemes for P and combines them so that if at least k candidate schemes

30



3.2 A Model for Firewalls

indeed implement P , the combiner also implements P . For example, the concatenation of
encryptions Encc(x) = Enc1(Enc2(x)) is a robust combiner for Indistinguishability under
Chosen-Plaintext Attack (IND-CPA) secure encryption [106]. Further work includes
robust combiners for Oblivious Transfer [103, 160], for Private Information Retrieval [159],
and for collision-resistant hash functions [34].

The notion of a robust combiner is not suited well for our purposes. The very definition
of robust combiners requires a specific and fixed functionality P. However, in the case
of firewalls, it is unclear what this functionality precisely is. Informally speaking, the
functionality of a network firewall is “filtering all malicious packets”. It is not possible to
formalise this functionality in a protocol or a program, since, in general, it is not possible
to decide whether an arbitrary packet is malicious.

Byzantine Fault Tolerance Our constructions are reminiscent of problems in byzantine
fault tolerance. However, we use a very different communication structure. In the
original Byzantine Generals Problem [148], every party can communicate with every
other party. This leads to specific bounds concerning the number of trusted parties
needed to achieve fault tolerance. Even when signing messages is possible, in order to
allow for m corrupted parties, one still needs at least (2m+ 1) trusted parties and (m+ 1)
rounds of communication. In our case, we do not allow the parties to communicate freely,
but only according to the specific structure of the network—we do not allow firewalls to
exchange messages with each other. Thus, the results which byzantine fault tolerance
research provides are not applicable to our scenario. What is more, our research focus is
on the application of cryptographic frameworks to practical networks, for which byzantine
fault tolerance is only a special case.

3.2 A Model for Firewalls

We assume a packet-switched Local-Area Network (LAN) in which there are only uncom-
promised hosts. They are connected through a single uplink to the Internet, in which are
potentially compromised hosts. To facilitate an easier discussion, we call machines in the
LAN being “inside” and machines on the Internet being “outside”. The “inside” is only
connected to the “outside” through a firewall (network), whose job is to protect machines
“inside” from machines “outside”. For ease of exposition, we model communication in
networks in one direction only.

We assume that each firewall can have any number of network interfaces for input
and output. The output of a firewall then depends on the packet p ∈ P it gets as input
(where P is the set of all possible packets), its internal state s ∈ S and the network
interface i ∈ I the packet arrived on.

After processing this information, the firewall then outputs a packet p′ on a specific
network interface i′ and updates its internal state (e.g. outputs a new internal state s′).
The functionality of a firewall is defined formally in Definition 1.

Definition 1 (The functionality of an ideal firewall Fj).

Ffwj
: P × I × S → (P ∪ ⊥)× (I ∪ ⊥)× S
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Ffwj
(p, i, s) =

{
(p′, i′, s′) if output is generated,

(⊥,⊥, s′) else.

The exact purpose and function of a network firewall is ambiguous. Because we do not
wish to impose any artificial restrictions on the functionality of a firewall in our model,
we do not give a specific realisation of its function. We only describe the domain the
firewall operates on.

We stress that our definition of a firewall functionality is universal. Because it is
stateful—it receives its previous state as input, may use it for its computation and
outputs an updated state—a firewall may base its output on an arbitrarily long history
of incoming and outgoing packets. It may, for example, reconstruct a Transmission
Control Protocol (TCP) session. Further, we do not restrict how its output depends on
its input. A firewall might for example receive a packet, store it, transform it, and output
it much later. Because the functionality processes whole packets including their payload,
our definition covers the whole network protocol stack (e.g. Ethernet, IP, TCP, HTTP,
HTML).

We assume an outside adversary is able to communicate with compromised firewalls
inside the network through covert channels. (Through a Global System for Mobile
Communications link, for example.)

3.3 Composing Firewalls

In this section, we discuss different architectural solutions to the problem of maliciously
acting firewalls and analyse their security in the UC framework. To simplify the exposition,
we only discuss unidirectional networks. The easiest approach for extending the model
to bidirectional communication would be using a independent instance of Fideal for each
direction and deducing the security of the composed system by using the composition
theorem. However, this approach would require the protocols for each direction to be
independent of each other and not have a joint state. Actual firewall solutions base their
decisions on all observed packets (not only those in one direction), however. Thus, the
security of the bidirectional extensions of the architectures we discuss has to be proven
manually.

We only discuss the security of a single atomic building block for complex firewall
architectures. The Composition Theorem of the UC framework provides us with a strong
guarantee for networks composed of several building blocks.

Adaptive vs. Non-Adaptive Corruption The classic UC framework provides the ad-
versary with the ability to corrupt parties adaptively using corruption messages. We
will, however, be using a non-adaptive corruption model, where the adversary has to
decide which party it wants to corrupt prior to the protocol execution. This simplifies the
analysis and the proof of security significantly. In general, these two models of corruption
are not equivalent [44]. As the constructions we discuss are symmetric, the two models
of corruption are equivalent in our case. We will also restrict the adversary to corrupt
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one party only. The adversary will gain full control over this party and will be able to
send and receive messages in its name.

3.3.1 Trusted Hardware

The UC framework gives strong security guarantees. It is difficult to obtain secure
protocols in the plain UC model, however. This problem can be alleviated by using a set-
up assumption like a Common Reference String [45], a Public-Key Infrastructure [22], or
trusted hardware [109, 130]. Secure hardware is often modelled as tokens that offer some
black box functionality. They cannot be made to deviate from the specified functionality
and parties may not learn the value of internally stored values if they are not allowed to
do so.

We envision similar network devices for our task. They have two very simple func-
tionalities depending on the direction of the packet flow. In one direction their job is
to compare packets that come in from different sources and decide whether to let them
pass. In the other direction their job is to split incoming packets and distribute them to
several firewalls. Because these “packet comparators” offer only limited functionality,
they could be manufactured easily, maybe even by the network owner himself. Also,
it would be very hard to hide any “backdoors” or “undocumented functionality” in
the device. Thirdly, because of its simple functionality, the device need not be able to
download updates or even be freely programmable. We envision such a device to be
realised as an Application-Specific Integrated Circuit. In our security analysis, we assume
that the specialised hardware we use cannot be compromised, i.e. is trusted hardware.

We formalise the functionality for comparison in Figure 3.2 and the functionality for
splitting in Figure 3.1. This explicit distinction is solely for the purpose of simplifying
the model in the case of uni-directional communication. In our model, we model the
trusted hardware as having unlimited storage capacity. In practice, memory size is of
course limited. Hence, received packets cannot be stored indefinitely. It is a challenge to
determine an optimal strategy for purging old packets (see also Section 3.9.2).

Practically realising the required functionality at wire speed is not trivial. It is not
impractical, however: The trusted device need only compare packets as fast as the
slowest of the firewalls can analyse them. Any network firewall realises a function that is
comparable to that of our trusted device.

A firewall might change several Internet Protocol (IP) header fields during inspection of
a packet. Take for example the Time To Live (TTL) field, which usually is decremented
by 1 on each network device it passes. Hence, two packets that differ on the value of the
TTL field need not necessarily be considered unequal by the trusted packet comparator.
On the other hand, two packets may only be considered equal when their relevant fields
match. Examples for relevant fields are the source address and the target address. We
express this notion of “packet equivalence” with a relation ≡ that we assume to be
defined appropriately.

Further, a firewall may change the order of the packets it delivers. Some packets might
need to be inspected more closely (Deep Packet Inspection), while others would just be
waved through—take for example packages from a Voice over IP connection. Therefore,
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An idealised description of trusted hardware split

Upon receiving packet p on the interface connected to the outside:

• Output p to every interface connected to a firewall.

Figure 3.1: The splitting functionality the trusted hardware must perform. We assume
that there is a fixed interface for connecting with the outside network and a
number of other interfaces to which the firewalls are connected.

it is not sufficient for the trusted hardware to compare packets one-by-one in the order
they arrive. For the same reason, probabilistic packet comparison is not a feasible option
to improve the performance of the trusted comparator.

3.4 Serial Concatenation of Two Firewalls

In the Introduction, we briefly discussed that the serial concatenation of firewalls (in the
näıve way) is not secure even when using secure hardware. We formalise this claim in
this section.

Figure 3.3 shows a graphical representation of the network architecture of the serial
concatenation. fw1, fw2, split and hw will be the parties in the corresponding UC
protocol.

Packets from outside the network always arrive at split first. Parties cannot communi-
cate directly. Instead, we provide them with an ideal functionality for communication.
This functionality ensures that parties can only communicate in a way that is fixed by
the structure of the network. This is justified, since in an “real” network, components
can also only communicate along the network cables. This can easily be realised in UC
since ideal functionalities can write to the subprocess tape of all parties. Parties then
can ignore all input on their communication tapes. We omit the session IDs from all
descriptions of functionalities and protocols. Different instances behave independently.
We use the notion of “public delayed output”, introduced by Canetti [41]. This means
that a message is given to the adversary prior to delivery. The adversary then decides
when (or whether) it is delivered.

The main idea for the ideal functionality is that any firewall architecture, regardless
of the amount of different firewalls or their specific rule set, should behave as if the
corrupted firewall was not there (see Figure 3.4). This is well-defined in the UC framework,
since we can remove that firewall from the architecture in the ideal model. We give
the adversary the ability to block the delivery for each packet individually to explicitly
exclude availability from the model.

The idea is that if fw2 is corrupted, it could output a malicious packet just at the
same time this packet arrives at split (sent by the environment). This would force hw to
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An idealised description of trusted hardware hw

Keep a local cache realised as an unordered list.
Upon receiving packet p on interface i:

• If there is another input interface j 6= i, and a corresponding entry (j, q) with
p ≡ q in the cache:

– Remove (j, q) from the cache,

– output p.

• Otherwise, store (i, p) in the cache.

Figure 3.2: The function the trusted hardware must perform. Because network packets
may arrive at different times or in a different order, they must be cached
in order to be available for comparison. In our model the list has infinite
capacity, but in practice there must be a strategy to purge old packets. The
relation ≡ for packets must consider all packet fields that are relevant.

output the packet, even though it was blocked by fw1.

Definition 2 (The protocol of the serial firewall architecture πserial).

1. split: Upon receiving (input, p): Call Fserial(send, outfw, outhw, p).

2. fwk: Upon receiving (in, p): Compute Ffwk
(p, in, s) = (p′, i′, s′). If p′ 6= ⊥ and

i′ 6= ⊥, call Fserial(send, i′, p′). Save the new internal state s′.

3. hw: Check whether there are two entries (p, in) and (q, incmp) in the locale storage
(with p ≡ q). If so, write p to the output tape and delete the entries.

We now show that the serial concatenation of firewalls is not secure, even with a trusted
comparator. To prove the statement, it suffices to show that there exists an attack which
can not be simulated. We describe such an attack. The general idea is that if fw2 is
corrupted, it could output a malicious packet just at the same time this packet arrives at
split (sent by the environment). This would force hw to output the packet, even though
it was blocked by fw1.

Theorem 1. πserial does not UC realise Fideal in the Fserial-hybrid model.

Proof. Let fw2 be corrupted and fw1 be honest. Let p be a packet that is blocked by fw1.
The environment inputs p to split. This will cause (p, incmp) to be send to hw from split.
In its next activation the adversary uses fw2 to call Fserial(send, out, p) and advises the
ideal functionality to deliver (p, in) to hw. hw will now have two identical packets on
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hwsplit

in

outhw

outfw

in out in out

in out

incmpinput output

fw1 fw2

Figure 3.3: The serial concatenation of firewalls using secure hardware to compare packets.
hw compares whether “what goes in, comes out”. split forwards the packet
to two components. The connecting arrows represent network cables in a
“real” network.

The ideal functionality of two firewalls Fideal

• Upon receiving (input, p):

– Ask the adversary if p should be delivered. If yes, let fwk be the non-
corrupted party; compute Ffwk

(p, in, s) = (p′, i′, s′). Write p′ to the output
tape of hw, if p′ 6= ⊥ and i′ 6= ⊥. Else, do nothing. Save the new internal
state s′.

Figure 3.4: The ideal functionality of two firewalls.

different interfaces (one from split and one from fw2) in its storage and output p, even
though p has been blocked by fw1.

There is no simulator which can simulate this attack, since fw1 will block the packet
in the ideal model and the output of fw2 will not be considered.

3.5 Parallel Composition of Two Firewalls

The serial composition of two firewalls is not secure with regard to our envisioned ideal
functionality. Better results can be achieved using parallel composition. The idea is that
the trusted hardware only accepts a packet if both firewalls accept it. Figure 3.6 shows
this composition. We will now discuss the security of this architecture.

The protocol of the parallel architecture is defined in Definition 3.

Definition 3 (The protocol of the parallel architecture πparallel).

1. split: Upon receiving (input, p): Call Fparallel(send, out1, out2, p).

2. fwk: Upon receiving (in, p): Compute
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The ideal network function Fserial

Initialise an empty stack for both hw and fw1.

• Upon receiving (send, outfw, outhw, p) from split:

– Push p on the stack for hw and fw1.

– Give the adversary p and let him choose one of the stacks. Pop the most
recent packet from that stack. If the adversary chose hw’s stack, send
(p, incmp) to hw, otherwise send (p, in) to fw1.

• Upon receiving (send, out, p) from fw1: Provide a public delayed output of
(p, in) to fw2.

• Upon receiving (send, out, p) from fw2: Provide a public delayed output of
(p, in) to hw.

Figure 3.5: The ideal network function representing the serial concatenation of firewalls
with special hardware.

Ffwk
(p, in, s) = (p′, i′, s′). If p′ 6= ⊥ and i′ 6= ⊥, call Fparallel(send, p′, i′). Save the

new internal state s′.

3. hw: Upon receiving (ini, p), check if there is an entry (inj , q) with i 6= j and p ≡ q
in the internal storage. If so, write p to the output tape and remove both entries.
Else, do nothing.

The functionality describing the network structure is depicted in Figure 3.7.

We will compare the protocol from Definition 3 with an ideal functionality. The ideal
functionality is the same as in the serial case, since the natural approach of defining ideal
functionalities only uses the uncorrupted firewall, which again leads to the functionality
in Figure 3.4. However, as in the serial case, the parallel architecture does not realise
this functionality.

Theorem 2. πparallel does not UC realise Fideal in the Fparallel-hybrid model.

We prove this by describing an attack which can not be simulated.

Proof. Let, w.l.o.g., fw1 be honest and fw2 be corrupted. Also, let p1 and p2 be packets
that are accepted by fw1. The environment sends packets p1 and p2 to the architecture
which the adversary delivers to fw1. Both packets are accepted by fw1 and forwarded
to hw. Then, the adversary sends packets p2 and p1 from fw2. Since both packets have
been accepted and were sent to hw previously (but in reverse order), hw will send out
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Figure 3.6: The parallel composition of two firewalls with trusted hardware. hw only
accepts packets that are output by both firewalls.

p2 and p1—in this order. Thus, the adversary was able to reverse the order of packets.
Since the adversary is not allowed to influence the order of packets in the ideal model,
there exists no simulator which can simulate this attack.

This attack does not seem troublesome in practice, however. The Internet Protocol
explicitly does not give any guarantees about the ordering of packets, since the correct
order is encoded in the package payload. The payload, however, can not be altered by
the adversary. Thus, we modify our ideal functionality and explicitly grant the attacker
the ability to reorder the outgoing packet stream.

This new ideal functionality is described in Figure 3.8. The attacker now has the
ability to change the order of packets which have been accepted by the uncorrupted
firewall. We will now prove that the parallel architecture realises this ideal functionality.

Theorem 3. πparallel UC realises Fideal2 in the Fparallel-hybrid model.

Proof. To prove the statement, we will give the description of a simulator and show
that this simulator can simulate every adversary, so that no environment can distinguish
between the real and ideal model. Let w.l.o.g. fw1 be corrupted and fw2 be honest. Let
S be a simulator with the following functionality:

• Upon activation, or when given a packet p, simulate the real model and observe
its output. If the output of the real model is a packet p′, compute the position
of p′ in the internal memory structure of the ideal functionality and advise the
functionality to deliver the packet at that index. (The case that p′ is not found in
the internal memory structure of the ideal functionality need not be covered, as is
proven below.)

Note that the simulator receives exactly the same input as the adversary in the real
model—it can perfectly simulate the communication between the adversary and the
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The ideal network function Fparallel

Initialise an empty stack for both fw1 and fw2.

• Upon receiving (send, out1, out2, p) from split: Push p on the stack for both
fw1 and fw2.

• Upon receiving (deliver, fwk) from the adversary: Pop the most recent packet p
from fwk’s stack. Provide public delayed output of (p, in) to fwk.

• Upon receiving (send, out, p) from fwk: Provide a public delayed output of
(p, ink) to hw.

Figure 3.7: The ideal network function representing the parallel concatenation of firewalls
with trusted hardware.

The ideal functionality of two firewalls with packet reordering Fideal2

• Upon receiving (input, p): Let w.l.o.g. fw1 be the non-corrupted party; compute
Ffw1(p, in, s) = (p′, i′, s′). If p′ 6= ⊥ and i′ 6= ⊥, save p′ in an indexed memory
structure m at the next free index. Save new internal state s′. Give p to the
adversary.

• Upon receiving (deliver, j) from the adversary: If m[j] contains a valid packet,
write (out,m[j]) to the output tape of hw and clear m[j]; else do nothing.

Figure 3.8: The ideal functionality of two firewalls with packet reordering.

environment. Thus, the environment can only distinguish the models based on their
output streams. We argue that the output of the real and ideal model are identical.
Assume towards a contradiction that they are not.

Let {fw2(S)} denote the set of all packets fw2 outputs when given the input stream S.
There are two possibilities which would cause a difference in output streams:

• The adversary in the real model suppresses a packet which is not suppressed in the
ideal model. This is impossible however, since the simulator only advises the ideal
functionality to deliver a packet if it observes it being output in its simulation of
the real model.

• The real model outputs a packet which is not output in the ideal world.
Assume that this were the case and let p be that packet. The following conditions
have to hold: p has to be in {fw2(S)} and p has to be output by A (using fw1).
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This is true because the trusted hardware will ensure that a packet is only output
when both firewalls accept it. For a packet not to be output in the ideal model,
one of the following conditions have to hold:

– p is not in {fw2(S)}. This way, p will not be in the internal memory structure
of the ideal functionality. Thus, the simulator can not advise the delivery of
that packet. This is a contradiction, since we assumed that p was output in
the real model, which in turn implies that p ∈ {fw2(S)}.

– p ∈ {fw2(S)} and the simulator did not advise the functionality to deliver p.
This is also a contradiction, since we assumed that p was output in the real
model. This would cause the simulator to advise the output of p by definition.

We now have shown that the assumption that the environment can observe a difference
in packet output stream in the real and the ideal world leads to a contradiction in all
cases. This, together with the ability of the simulator to fully simulate the adversary,
proves the indistinguishability of the models.

3.6 Parallel Composition of Three or More Firewalls

The parallel approach to compose firewalls described above does indeed improve security.
The natural extension of the two-firewall architecture is a quorum of three firewalls. This
seems more reliable in practice than the combination of only two firewalls.

In the following section, we assume that uncorrupted firewalls in this architecture will
have the same behaviour. However, we allow them to disagree on the order of packets.

There is a non-trivial attack on this architecture. When both uncorrupted firewalls
both output the same packet p, the adversary can use clever timing to output p from
the corrupted firewall directly after the first uncorrupted firewall. The trusted hardware
would then observe two packets p on different interfaces and output p. However, a third
packet p would arrive from the second uncorrupted firewall. Then, the adversary could
output p again. This would cause hw to output p again and thus duplicate the packet.

Interestingly, the natural extension of Fideal2 to the case of three firewalls already covers
this attack. The functionality is depicted in Figure 3.9.

The other protocols and functionalities (πparallel3 and Fparallel3) are easily extended
to the case of three firewalls by adding the third firewall as an additional party. In
Section 3.7.1 we give a generalised definition Fnet that allows for an easy formulation of
ideal network functionalities.

It can easily be seen that the attack described above can also be performed in Fideal3 .
When fw1 and fw2 both output the same packet, both will be saved in m. The adversary
can now output both packets by giving the right indices.

Theorem 4. πparallel3 UC realises Fideal3 in the Fparallel3-hybrid model.

The proof is similar to the proof of Theorem 3.

Proof. We give the description of a simulator and show that this simulator can simulate
every adversary, so that no environment can distinguish between the real and ideal model.
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The ideal functionality of three firewalls Fideal3

• Upon receiving (input, p): Let w.l.o.g. fw1 and fw2 be the non-corrupted parties;
compute Ffw1(p, in, s) = (p′, i′, s′) and Ffw2(p, in, s) = (p′′, i′′, s′′). If p′ 6= ⊥ and
i′ 6= ⊥, save p′ in an indexed memory structure m at the next free index. If
p′′ 6= ⊥ and i′′ 6= ⊥, also save p′′ in m at the next free index. Save the new
internal states. Give p to the adversary.

• Upon receiving (deliver, j) from the adversary: If m[j] contains a valid packet,
write (out,m[j]) to the output tape of hw and clear m[j]; else do nothing.

Figure 3.9: The ideal functionality of three firewalls.

Let w.l.o.g. fw1 be corrupted, and fw2 and fw3 be honest. Let S be a simulator with the
following functionality:

• Upon activation, or when given a packet p, simulate the real model and observe
its output. If the output of the real model is a packet p′, compute the position
of p′ in the internal memory structure of the ideal functionality and advise the
functionality to deliver the packet at that index.

Note that the simulator receives exactly the same input as the adversary in the real
model—it can perfectly simulate the communication between the adversary and the
environment. Thus, the environment can only distinguish the models based on their
output streams. We argue that the output of the real and ideal model are identical.
Assume towards a contradiction that they are not.

Let {fwi(S)} denote the set of all packets fwi outputs when given the input stream S.
(Remember that fw1 is controlled by the adversary.) There are two possibilities which
would cause a difference in output streams:

• The adversary in the real model suppresses a packet which is not suppressed in the
ideal model. This is impossible however, since the simulator only advises the ideal
functionality to deliver a packet if it observes it being output in its simulation of
the real model.

• The real model outputs a packet which is not output in the ideal world.
Either p ∈ {fw2(S)} or p ∈ {fw3(S) (or both) and p is output by A (using fw1).
This is true because the trusted hardware will ensure that a packet is only output
when two firewalls accept it. For a packet not to be output in the ideal model, one
of the following conditions have to hold:

– p is not in {fw2(S)}∪{fw3(S)}. This way, p will not be in the internal memory
structure of the ideal functionality. Thus, the simulator can not advise the
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delivery of that packet. This is a contradiction, since we assumed that p was
output in the real model, which in turn implies that p ∈ {fw2(S)}∪{fw3(S)}.

– p ∈ {fw2(S)} ∪ {fw3(S)} (and p 6∈ {fw2(S) ∩ {fw3(S)}) and the simulator
did not advise the functionality to deliver p. This is also a contradiction,
since we assumed that p was output in the real model. This would cause the
simulator to advise the output of p by definition.

We now have shown that the assumption that the environment can observe a difference
in packet output stream in the real and the ideal world leads to a contradiction in all
cases. This, together with the ability of the simulator to fully simulate the adversary,
proves the indistinguishability of the models.

In practice, however, it is not acceptable to give an attacker the ability to duplicate
packets. Even though higher protocols (such as TCP) must be able to deal with duplicated
packets [114], a twofold increase in transmitted data can be problematic. Instead we
will slightly alter the functionality of our trusted hardware to prevent the attack. The
functionality is depicted in Figure 3.10. The general idea is that at the moment the
hardware outputs a packet, exactly two firewalls must have output this packet before.
Then, the hardware can mark this packet as missing from the third firewall. If it arrives
eventually, this mark will be removed and no further action will be taken.

An idealised description of trusted hardware without packet duplication
hw3

Keep a local cache for each incoming interface realised as an unordered list. Upon
receiving packet p on interface i:

• Check if the cache of interface i contains an entry −q with p ≡ q. If so, delete
−q and halt.

• Check if there exists an interface j 6= i with an entry q with p ≡ q in the cache
of that interface:

– Remove q from the cache,

– output p,

– add an entry −p to the cache of all other interfaces k with k 6= i and
k 6= j.

• Otherwise, store p in the cache of interface i.

Figure 3.10: The updated functionality of the trusted hardware to prevent packet dupli-
cation. The hardware now marks a packet as ”missing“ if a firewall has not
yet delivered it, but two others have.
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The corresponding ideal functionality is depicted in Figure 3.11. The general idea is
that the ideal functionality now continuously checks whether the amount of identical
packets being given to hw matches the amount of identical packets which either one of the
uncorrupted firewalls send. This way, the adversary will not be able to duplicate packets
in the ideal model. As previously however, we will allow the reordering of packets.

The ideal functionality of three firewalls without packet duplication
Fideal4

Initialise three index based memory structures m1, m2 and m3.

• Upon receiving (input, p): Let w.l.o.g. fw1 and fw2 be the non-corrupted parties;
compute Ffw1(p, in, s) = (p′, i′, s′) and Ffw2(p, in, s) = (p′′, i′′, s′′). Save the new
internal states. Save p′ in m1 and p′′ in m2. Give p to the adversary.

• Upon receiving (deliver, j, k) (k ∈ {1, 2}): If mk[j] contains a valid packet p′′′:

– Check how many times that packet (or an equivalent packet) is in m3. Let
that number be n.

– Check, if either m1 or m2 (or both) contain that packet at least n + 1
times.

– If so, write (out, p′′′) to the output tape of hw and to m3.

Figure 3.11: The ideal functionality of three firewalls without packet duplication. For
every packet, at least one of the firewalls must have send this packet at least
as often, as it got passed to hw.

We now show that our firewall architecture with this updated trusted hardware realises
an ideal functionality (given in Figure 3.11), which does not allow the adversary to
duplicate packages.

Theorem 5. πparallel4 UC realises Fideal4 in the Fparallel3-hybrid model.

Proof. The proof is similar to the proof of Theorem 3. We argue that the simulator
behaves identically to the adversary and that the output of the ideal network is identical
to the output of the real network. Let S be a simulator with the following functionality:

• Upon activation, or when given a packet p, simulate the real model and observe
its output. If the output of the real model is a packet p′, compute (for the ideal
functionality) the index of the memory structure in which p′ is saved as well as its
position within the memory. Advise the functionality to deliver the packet on that
index. (The case that p′ is not found in the internal memory structure of the ideal
functionality need not be covered, as is proven below.)

The argument that S will never mistakenly suppress a packet in the ideal model is
identical to Case 1 in the proof of Theorem 3. We need to argue Case 2: It is impossible
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that S is unable to schedule a packet it observes in the output of its internal simulation
of the real network. Let p be such a packet that, after the input stream S is processed,
is written to the output tape of hw in the real model but not to the internal memory
structure of Fideal4 .

Let mA, m1 and m2 be the lists the trusted hardware uses in the protocol for storing
the packets output by the firewalls and marking the “negative” packets. Let mhw be the
list of all packets it has ever output. Let m′1, m′2, m′out be the lists the ideal functionality
uses for keeping track of the packets. Let ||m||p denote the number of packets p the list
m contains. We then define |m|p := ||m||p − ||m||−p.

First, observe that S only schedules packets it observes in its simulation of the real model.
Hence, by the description of hw: |m1|p = |m′1|p − |mhw|p and |m2|p = |m′2|p − |mhw|p.
Via the argument from Case 1 (∀p : |m′out|p ≤ |mhw|p) we have:

|m1|p ≤ |m′1|p − |m′out|p (3.1)

|m2|p ≤ |m′2|p − |m′out|p (3.2)

For p to be output in the real model, one of the following conditions has to hold:

|mA|p > 0 and |m1|p > 0 (3.3)

|mA|p > 0 and |m2|p > 0 (3.4)

|m1|p > 0 and |m2|p > 0 (3.5)

This is true because the trusted hardware will only forward packets which are in at least
two of the packet lists. The functionality of hw can be restated in the following way: For
every packet p which is output, insert a packet −p into the lists of the three firewalls. If
there are two packets p and −p in the same list, both cancel each other out.

For p not to be written to the internal memory structure of Fideal4 in the ideal model,
the following condition has to hold:

|m′out|p ≥ |m′1|p and |m′out|p ≥ |m′2|p (3.6)

⇔ |m′1|p − |m′out|p ≤ 0 and |m′2|p − |m′out|p ≤ 0 (3.7)

This again describes the difference between the amount of packages p each individual
firewall has output and the amount of packages p which got output in total after processing
S.

Concluding the argument, conditions (3.1) to (3.5) give us |m′1|p − |m′out|p > 0 and
|m′2|p − |m′out|p > 0, which contradict condition (3.7).

3.7 Synchronous Universally Composable Computer Networks

The three-firewall approach intuitively has a better availability than the two-firewall
approach. This intuition is supported by the observation that, in a two-firewall configu-
ration, the adversary can mute network traffic by ceasing all communication, whereas in
the three-firewall configuration he cannot. As the bare UC model is asynchronous and
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thus does not model time we cannot substantiate the intuition by a formal analysis in the
UC framework. What is more, our work thus far does not lend itself for analysing the
security of different network components. For example, the network topology is “hard
coded” in the protocol specification.

In this section we propose a methodology consisting of two generalised functionalities
Fwrap and Fnet for modeling network functions and a 5-step paradigm to model protocols.
By abstracting various technical details of the framework, our methodology allows protocol
designers to give a natural description of the network and its functionality and thus
greatly simplifies its analysis. By incorporating a result of Katz et al. [132] our model
also covers availability.

In this section we introduce our methodology for modeling computer networks with the
UC framework. Using our methodology, we restate a well known result from Lamport et
al. [148] and complete our previous results by modeling availability. The results presented
in this section have been published in a conference paper [4].

Universally Composable Synchronous Computation

The UC framework is inherently asynchronous. Exactly one machine can run at any
given moment. This simplification guarantees that the result of an execution is non-
ambiguous. We perceive reality to be concurrent, however. Specifically, time passes
and can be measured independently of the actions of any network component. To
model a synchronised network with bounded latency we make use of the results of
Katz, Maurer, Tackmann, and Zikas [132]. Specifically, we use their Fclock functionality
(Figure 3.12) as a synchronisation primitive. Fclock allows the parties to wait for each
other at synchronisation points. A party can signal when its round is complete. When
all parties have completed their round, the round counter is reset.

Further, we use Katz et al.’s bounded-delay channels to model our network function
Fnet (Figure 3.13). Each channel has an incoming queue. The idea is that the adversary
may increase the channel delay up to a predefined limit. When a party polls the incoming
queue for a channel, the counter is decreased. When it reaches zero, the party receives
the next element from the channel queue.
Fclock together with bounded-delay channels are sufficient to prove guaranteed termi-

nation for multi-party protocols [132], i.e. the protocol does not “hang” indefinitely. We
express the availability of networks using this property.

3.7.1 The Basic Tools for Modeling a Computer Network

Ideally, modeling and analysing a network would require four steps: 1) Specify what the
wanted functionality of the network is, 2) draw a graph of the network layout, 3) specify
the protocol the machines in the network adhere to, and 4) prove that the protocol does
achieve what the wanted functionality does.

We designed tools that capture various technical details of the UC framework and
allow to use it in a way that is close to the intuitive approach. Specifically,

1. By defining Fwrap, we simplify the specification of an ideal network functionality.
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The clock function Fclock

Initialise for each party pi a bit di := 0.

• Upon receiving message (RoundOK) from party pi set di = 1. If for all honest
parties di = 1, then reset all di to 0. In any case, send (switch, pi) to A.

• Upon receiving message (RequestRound) from pi, send di to pi.

Figure 3.12: The ideal Fclock functionality by Katz et al [132]. Parties can signal that
they are done for the current round. When all honest parties have signalled
RoundOK the round counter is reset. Further, parties can request the status
of the round counter, learning whether the round has changed.

2. We provide an ideal network functionality FGnet that routes messages according to a
given network topology induced by a network graph G.

3. We propose a 5-phase paradigm which allows for an easy and structured modeling
of the behaviour of machines in the network.

The Ideal Network Functionality

We model the network as a directed graph G = (V,E), while V is the set of machines in
the network and E ⊆ V 2 is a relation on V . (We model the network as a directed graph to
account for unidirectional links [127, 191].) To model bidirectional links, one requires that
(v, v′) ∈ E iff (v′, v) ∈ E. There is a delivery queue for each edge in the graph. Nodes
can send messages for each outgoing edge and can poll incoming messages from each
incoming edge. To send a packet, a party src can call the network functionality FGnet with
a (finite) set of packets with corresponding recipients {(dest1,msg1), (dest2,msg2), . . . }.
Each packet in the set will then be appended to the queue associated with the edge
between nodes src and desti, if it exists. Further, modeling Katz et al.’s bounded delay
channels [132], we associate two counters with each edge in the graph—one for the total
delay and one for the accumulated delay of the channel. The adversary can increase
the delay of a channel up to a fixed maximum amount. When a machine polls a queue
the delay counter is decreased. When the delay has reached 0, a message is taken from
the queue and handed to the machine. This allows for explicit modeling of different
network latencies across different communication channels and allows the adversary to
take advantage of that. This functionality makes it easy to define the communication
channels for a network since one provides a graph of the network and the corresponding
channel topology for the UC framework is generated automatically. We point out that we
implicitly use Katz et al.’s “multisend” functionality where parties send multiple packets
in one atomic call to the network. Because we do not consider adaptive corruption, the
adversary cannot preempt parties during a send operation.
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The ideal parameterised network function FG,δnet

Interpret G = (V,E) with E ⊆ V 2 as a directed graph. For each edge e ∈ E, initialise a
queue Qe and two variables de and d′e which represent the current and the accumulated delay
for the queue.

• Upon receiving a message (send,M) with M = {(dest1,msg1), (dest2,msg2), . . . } from
party src, for each tuple (dest,msg) ∈M do:

– Check if src, dest ∈ V and (src, dest) ∈ E. If so, continue. Else, ignore this tuple
and start processing the next message.

– Append msg to queue Q(src,dest). Hand msg to the adversary.

• Upon receiving message (delay, e, T ) from A: Let (de, d
′
e) be the delay variables for the

queue of edge e. If d′e + T ≤ δ, set de = de + T and d′e = d′e + T and return (delay-set)
to the adversary. Else halt.

• Upon receiving message (fetch, Q) from party P and if Q ⊆ V :

– Initialise a set of responses r := ∅ and for every party P ′ ∈ Q ⊆ V with
(P ′, P ) ∈ E:

∗ Let (d(P ′,P ), d
′
(P ′,P )) be the delay variables for edge (P ′, P ).

∗ Set d(P ′,P ) = d(P ′,P ) − 1. If d(P ′,P ) = 0, remove the first message msg from
Q(P ′,P ), set d′(P ′,P ) = 0, and set r = r ∪ (msg, (P ′, P )).

– If r 6= ∅, send r to P . Else halt.

Figure 3.13: The generalised ideal network function. It is parameterised with a graph
that features protocol participants as nodes and expresses links as edges.
We model the network as a directed graph to accommodate for specialised
connection types as for example optical fibres or data diodes [127]. We also
implemented Katz et al.’s bounded delay-channel [132] to model links with
a delay.

The 5-Phase Paradigm

We propose a 5-phase paradigm for modeling network protocols. We require each honest
party to follow this paradigm. An honest party will need exactly five explicit activations
by the environment machine to finish its round. During its first activation (“input
phase”), the party will accept input by the environment. Upon the second activation
(“fetch phase”), it will issue a fetch request to the network to get its input which it will
process and possibly send to other parties in one single call during the third activation
(“send phase”). The fourth activation (“output phase”) is the only activation in which
a party will produce output to the environment. The fifth activation is used to signal
“RoundOK” to Fclock: all work is done for this round. See Figure 3.14 for a summary.

Upon further activations the party will wait for the next round to begin. We stress
that an honest party will poll the network exactly once per round while a compromised
party might poll the network more often. We assume that every party will initialise and
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The 5-phase paradigm for modeling protocols

1. “Input”: Accept input by the environment Z.

2. “Fetch”: Request input from the network Fnet.

3. “Send”: Send output to the network Fnet.

4. “Output”: Produce output to the environment Z.

5. “RoundOK”: Signal “RoundOK” to Fclock.

Figure 3.14: We suggest a 5-phase paradigm to model computer networks in the UC
framework.

update a round counter and further maintain state for the number of activations per
round and whether (RoundOK) has already been signaled. This requires sending Fclock a
(RequestRound) request on activation and accordingly updating state information, but
imposes no limitations for the party.

The Wrapper Functionality

To simplify the definition of ideal functionalities, we introduce an ideal “wrapper” func-
tionality Fwrap (see Figure 3.15). It “wraps around” the ideal functionality and moderates
its communication with the dummy parties in the ideal world. Its main task is to count
activations of dummy parties. Since honest parties adhere to the 5-phase paradigm, it
will only notify the ideal functionality if the environment gives input to a party (during
the first activation), if a party could create output in the real model (during its fourth
activation), and when a round is complete. It also ensures that the adversary is activated
at least as often as in the real model.

Specifying Ideal Functionalities

The tools introduced above allow for a natural description of ideal functionalities. Fwrap

will send a notification for important events (e.g. inputs, outputs and round changes) and
the ideal functionality reacts to them appropriately. Specifically, the ideal functionality
will not be required to count activations itself or activate the adversary sufficiently often.
Since the network functionality provides a bound for the maximum delay a channel can
have, it is also easily possible to model availability. The ideal functionality only has
to maintain a counter corresponding to the delay δ of the channel for each packet and
reduce this counter by one every time a round is complete. When the counter reaches
zero, the packet can be output immediately when output is requested by Fwrap. Since all
honest parties will poll for new packets once per round the adversary can delay a packet
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The wrapping function for ideal functionalities Fwrap

Maintain an activation counter cp for each of the honest dummy parties. Relay
all communication from Fideal directly to the environment. Upon activation by the
environment, i.e. upon receiving input m through a dummy party p:

• If cp < 5 increase the activation counter of the party.

• If cp = 1 send message (input,m, p) to Fideal.

• If cp = 2 or cp = 3, send message (activated, p) to the adversary.

• If cp = 4 send message (output, p) to Fideal.

• If ∀p′ : cp′ = 5 reset all activation counters and send (RoundComplete) to Fideal.

Figure 3.15: The ideal “wrapper” functionality Fwrap. Its purpose is to capture redundant
formalisms by counting activations of protocol parties and notifying the
ideal functionality of important events.

delivery for a maximum of δ rounds per channel.

Note that we only specify the behaviour for input by honest parties. We implicitly
assume that messages from the adversary to corrupted parties or vice versa are delivered
immediately.

3.7.2 Example: Byzantine Generals

As an example, we will use the presented methodology to model a popular example from
the literature: the Byzantine Generals problem. We will then restate a popular result
concerning this problem by giving a proof in our framework.

The Byzantine Generals Problem

The Byzantine Generals problem was first introduced by Lamport, Shostak, and Pease [148].
The motivation is as follows: suppose that a commanding general wants to give orders
(for the sake of simplicity he will only use “attack” or “retreat”) to his lieutenants but
he does not know which of them are trustworthy. Also, the lieutenants do not know
whether the general himself is trustworthy. Now suppose that each of the participants can
communicate with each other participant via “oral” messages. The Byzantine Generals
problem is to find an algorithm that, given a number of parties n (one of them is the
general), ensures that:

1. All loyal lieutenants obey the same order, and
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Z

D1 D2 D3

Fwrap

Fideal

S

Figure 3.16: The ideal “wrapper” functionality Fwrap acts as a relay between the dummy
parties and the ideal functionality. It counts activations of parties and
notifies the ideal functionality of important events like round changes, thus
simplifying the formulation of ideal functionalities.

2. If the general is loyal, then every loyal lieutenant obeys the order he sends.

Note that a disloyal (corrupted) lieutenant can arbitrarily lie about messages he received
and try to deceive other lieutenants. He can also refuse to send any messages. However, it
is assumed that loyal parties will notice when messages are missing. Lamport et al. [148]
show that there can not be a generic solution to the problem for three parties, but there
is a solution for four parties. We will now model the Byzantine Generals problem with
four parties according to our methodology and give a formal security proof for a specific
solution to the problem.

Modeling the Byzantine Generals Problem

The network in this example is fully connected. Every party can transmit messages to
every other party. There is a maximum latency of 2δ until a packet is output by one of
the parties: a possible delay of δ from the general to the lieutenants and another possible
delay of δ for a packet from one lieutenant to reach the others.

The Byzantine Generals problem statement implies that a party notices if it will not
receive any message from another party anymore so that it will not wait indefinitely. In
reality this is usually realised by timeouts—we will use the same mechanism here.

Protocol πbyz implements a solution to the generals problem. The ideal network
functionality allows for a maximum delay of δ for each message and messages have to be
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G

L1 L2 L3

Figure 3.17: The network graph byz = (V,E) for the Byzantine Generals problem with
V = {G,L1, L2, L3} and E = V 2. It is fully connected—each party can
communicate with every other party.

sent from the general first and from the lieutenants afterwards. Thus a party will assume
a timeout after 2δ rounds.

Definition 4 (A solution to the Byzantine Generals problem with four parties πbyz).

• Party G: Maintain a local round counter r.

1. “Input”: Upon first activation this round and input m by Z, save m and
ignore further inputs.

3. “Send”: Upon third activation, call Fbyz
net (send, (L1,m), (L2,m), (L3,m)) if m

was saved.

5. “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

• Party Ln: Maintain a local round counter r.

2. “Fetch”: Upon second activation,

– call Fbyz
net (fetch, {G,Lk,Lj}) for k 6= j 6= n. If the call was successful, save

the messages for the corresponding parties.

3. “Send”: Upon third activation,

– if there is a message m by party G which has not been broadcast yet,
broadcast it: call Fbyz

net (send, (Lk,m), (Lj ,m)) with k, j 6= n.

4. “Output”: Upon fourth activation,

– if r < 2δ and there are two identical messages m from two different parties
(other than G), output m. If there are three different messages from the
different parties, output the message from party 1;

– if r = 2δ output retreat.

5. “RoundOK”: Upon fifth activation, send (RoundOK) to Fclock.

Figure 3.18 shows the corresponding ideal functionality. This functionality fulfills the
requirements for a solution to the Generals problem given earlier.

We will now show that this protocol realises the ideal functionality.
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The ideal functionality of the Byzantine Generals problem with four
parties Fδbyz-ideal.

Upon initialisation store a delay value d := (2δ) and initialise three variables mL1 :=
⊥,mL2 := ⊥,mL3 := ⊥.

• Upon receiving message (input,m,G) from Fwrap and if G is honest: store
mLp := m for p ∈ {1, 2, 3} and send (input,m,G) to the adversary.

• Upon receiving message (set,m1,m2,m3) from the adversary and if G is cor-
rupted: if mL1 = ⊥,mL2 = ⊥,mL3 = ⊥, and there are two identical messages
mi,mj with i 6= j, set mL1 ,mL2 ,mL3 := mi, else set mL1 ,mL2 ,mL3 := mj

where j is the smallest index for which mj 6= ⊥.

• Upon receiving message (output, p1, p2, p3) from the adversary: mark messages
mp1 ,mp2 ,mp3 as ready for output.

• Upon receiving message (output, p) from Fwrap:

– If d = 0: output retreat to p.

– if d 6= 0 and if mp is marked as ready for output, output mp to p.

• Upon receiving message (RoundComplete) from Fwrap, decrease d by 1 and send
(RoundComplete) to the adversary.

Figure 3.18: The ideal functionality of the three generals problem. If the general is honest,
all honest parties will obey his order. If he is corrupted, all parties will obey
the same order. As in the real protocol the adversary can not delay the
output for more than 2δ rounds.

Theorem 6. πbyz realises Fbyz-ideal in the Fbyz,δ
net -hybrid model.

Proof. We prove the theorem by giving a step-wise transformation from the real model to
the ideal model. We argue that the individual transformation steps are indistinguishable
for the environment, and thus, by the transitivity of indistinguishability, the real model
is indistinguishable from the ideal model. Start with the real protocol.

Regroup all parties into a new machine S. The adversary simulator S will simulate
the real network in all transformation steps. Introduce dummy parties DG, DL1 , DL2 ,
DL3 for all protocol parties and relay messages from and to Z appropriately. Introduce a
new machine Fbyz-ideal. Route all communication from the dummies to S and vice versa
through Fbyz-ideal. The regrouping of parties is indistinguishable for the environment. In
the upcoming transformation steps, we will gradually expand Fbyz-ideal’s functionality:

1. Initialise variables mL1 , mL2 , and mL3 . When receiving a message m from dummy
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party G, set mL1 := m, mL2 := m and mL3 := m. Also initialise and save a
round counter d := 2δ. This modification is indistinguishable, since it only stores
information and does not alter the communication.

2. If G is corrupted, accept a message (set,m1,m2,m3) from S. Check if there are
i 6= j such that mi = mj . If so, set mL1 ,mL2 ,mL3 to mi. Else set mL1 = m1,mL2 =
m2,mL3 = m3. This modification again only stores information.

3. When S attempts to pass output m from an uncorrupted party p in the simulation
back to the dummy party, only allow it to pass through Fbyz-ideal if either

a) m has been stored as mp in Fbyz-ideal, or

b) the message is retreat.

We have to argue the indistinguishability of this modification. A real protocol party
will only output a message other than retreat when it has received two identical
messages. This will only happen if

a) G is honest—then, m will have been provided by Z through dummy party G
and thus saved for every party in the ideal functionality, or

b) G is corrupted and sent two identical messages. In this case, S will have used
the set-message to provide these messages and they will also have been saved
for every party.

4. Introduce Fwrap as a wrapper around Fbyz-ideal. For each notification that a round
is complete from Fwrap decrease the delay value d and notify S that the round is
complete. Fwrap will not notify S about activations in phase 4 (“output”), but
Fbyz-ideal instead. The simulator is thus not able to accurately simulate the exact
order of outputs. However, the simulator is still able to determine the set of
messages to output for each party in each round: he still is notified about the input
to the protocol, when a party sends a message, and when a round is complete. We
alter the strategy of S to make the modification indistinguishable: in each round,
observe which parties will output a message and notify the ideal functionality that
these parties are ready for output. Now, when Z activates a party and expects
output, the ideal functionality will output possible messages for that specific party.
This allows for all messages other than retreat to be output correctly. So, if d = 0
after the fourth activation of a party, Fbyz-ideal just outputs retreat, mimicking the
behaviour in the real model. Fbyz-ideal and S now behave as specified in the ideal
model, perfectly emulating the real model.

This concludes the proof.

3.8 Firewalls Revisited

In this section, we improve upon our previous results. We already showed that a quorum
of three firewalls realises a secure firewall under the condition that at most one firewall is
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corrupted. Our previous analysis lacks an availability guarantee though. We prove this
guarantee for the construction in the now-improved model. First, we briefly restate the
construction.

hw1

fw1

fw2

fw3

hw2

Figure 3.19: The three-firewall network. The graph directly serves as the network
model for FGnet: G = (V,E) with V = {hw1, hw2, fw1, fw2, fw3} and E′ =
{(hw1, fw1), (hw1, fw2), (hw1, fw3), (hw2, fw1), (hw2, fw2), (hw2, fw3)}, E =
E′ ∪ {(v, u) | (u, v) ∈ E′}.

Definition 5 (The functionality of an ideal firewall Ffwj
).

Ffwj
: P × V × S → (P ∪ ⊥)× (V ∪ ⊥)× S

Ffwj
(p, v, s) =

{
(p′, v′, s′) if output is generated,

(⊥,⊥, s′) else.

Definition 5 provides a modified definition of the firewall function from Section 3.6,
adapted to work with our graph based network model (Figure 3.13), using the network
graph presented in Figure 3.19. The function accepts a packet p, a node from the network
graph v and a state s and outputs another packet, another node (the receiver of that
packet) and a new state.

Protocol πfw (Definition 6) realises the three firewall solution as expressed using our
tools. Figure 3.20 shows the corresponding ideal functionality.

Definition 6 (Protocol πfw).

• party hwk:

1. “Input”: Upon the first activation by message (input,m) from Z, save m.

2. “Fetch”: Upon the second activation by message (output) from Z,

54



3.8 Firewalls Revisited

– call Ffw-net(fetch, {fw1, fw2, fw3}), save the message m corresponding to
fwi as (m, i);

– if there are two entries (m, i) and (−m, i) on the tape, delete both.

3. “Send”: Upon the third activation by message (output) from Z, call
Ffw-net(send, (fw1,m), (fw2,m), (fw3,m)) if m was saved previously. Delete m.

4. “Output”: Upon the fourth activation by message (output) from Z, if there
are two saved entries (m, i) and (m′, i′) with m ≡ m′ and i 6= i′: delete both
messages and output m. If i, i′ 6= 1, save (−m, 1), else if i, i′ 6= 2, save (−m, 2),
else if i, i′ 6= 3, save (−m, 3).

5. “RoundOK”: Upon the fifth activation by message (output) from Z, send
(RoundOK) to Fclock.

• party fwk:

2. “Fetch”: Upon the second activation by message (output) from Z,

– call Ffw-net(fetch,hw1,hw2) and save the message m corresponding to hwi

as (m, i);

– for all saved messages (m, i): compute Ffwk
(m, i, s) = (m′, i′, s′) and

replace that (m, i) with (m′, i′).

4. “Output”: Upon the fourth activation by message (output) from Z, if there
are two messages (m, i) and (m′, i′), call Ffw-net(send, (hwi,m), (hwi′ ,m

′)).

5. “RoundOK”: Upon the fifth activation, send (RoundOK) to Fclock.

Theorem 7. πparallel realises Ffw-ideal in the F fw,δ
net -hybrid model.

Proof. We prove the lemma via a series of transformations, starting from the real model.
In each step we will modify the ideal functionality and argue that the modification
is indistinguishable. We will w.l.o.g. assume that fw3 is corrupted. Encapsulate the
network in a new machine S, introduce dummies for all fwi and hwi, and construct a
new machine Ffw-ideal which connects the dummy machines with their counterparts in
the (now simulated) real network. Modify Ffw-ideal step-wise:

1. Introduce variables to keep state for the firewalls. When receiving (input,m) through
hwk, evaluate the firewall functionalities Ffw1 and Ffw2 , update the respective
firewall states and save the output packets p1 and p2 in a list Qk as (in, 1, p1, 2δ)
and (in, 2, p2, 2δ). This modification stores additional information but does not
alter the communication and is thus indistinguishable.

2. When being advised to output a message p for a party hwk by the simulator, only
do so if there is an entry (in, i, p, d) in Qk and delete that entry. Every message
scheduled by the simulator in this manner was output by one of the firewalls in
its simulation. Consequently, this message is also stored in Qk. The real protocol
party fwk will internally delete all messages it outputs. Thus, this modification is
indistinguishable.
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The ideal functionality of the firewall architecture Fδfw-ideal

Maintain a list of scheduled packets for each direction: Q1,Q2. Let w.l.o.g. fw3 be
the corrupted party. In each case, if there are multiple entries to choose from, pick
the first.

• Upon receiving (input,m,hwk) from Fwrap: Compute the firewall functions and
update the internal states. Let the outputs of Ffw1 and Ffw2 be p′ and p′′.
Store (in, 1, p′, 2δ) and (in, 2, p′′, 2δ) in Qk if there is no entry (missing, 1, p′, 0)
or (missing, 2, p′′, 0) respectively. Send (input,m,hwk) to the adversary.

• Upon receiving (output,hwk) from Fwrap:

– If there are two entries (in, 1, p′, 0) and (in, 2, p′, 0) in Qk, erase the corre-
sponding entries from the queue and output p′ to hwk.

– Else: if there is an entry (deliver, i, p, d) in Qk remove it. Check if there is
another entry (in, i′, p, d′) in Qk with i 6= i′. If so, remove that entry too,
if not, add an entry (missing, |i− 3|, p, 0) to Qk.

• Upon receiving (RoundComplete) from Fwrap: Replace each entry (in, i, p, d) (or
deliver, i, p, d) with d > 0 in Q with (in, i, p, d− 1) (or (deliver, i, p, d) and send
(RoundComplete) to the adversary.

• Upon receiving (output, p,hwk) from the adversary: if there is an entry (in, i, p, d)
in Qk, replace it by (deliver, i, p, d).

Figure 3.20: The parallel firewall network expressed using the newly-introduced tools.
Parties hw are responsible for distributing incoming and merging outgoing
packets. They will output a packet to the environment not more than once
per round.

3. When a packet p is output based on any entry (. . . , i, p, d) in Qk, check if there is
another entry (. . . , j, p, d) with i 6= j. If so, delete that entry as well. If not, add an
entry (missing, |i− 3|, p, d) to Qk. Further, when receiving (input,m) through hwk

and evaluating the firewall functionalities, before saving the resulting packets p1

and p2, check if there is an entry (missing, 1, p1, 2δ) or (missing, 2, p2, 2δ) in Qk. If
there is, remove that entry and do not save the resulting packet. This modification
is indistinguishable as Ffw-ideal now implements the exact behaviour of hw1 and
hw2.

4. Add Fwrap as a wrapper around Ffw-ideal. When receiving (RoundComplete) from
Fwrap, decrease the delay value d of each entry in Q1 and Q2 by 1. Send (RoundComplete)
to the simulator. When being advised to output a packet p for party hwk by the
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simulator, instead of outputting the packet immediately, replace the corresponding
entry in Qk by (deliver, i, p, d). When being asked to provide output for party hwj

by Fwrap, check if there is an entry in Qj with d = 0. If so, output that packet. If
not, check if there is an entry marked for delivery. If so, output the corresponding
packet. Always perform the output according to the mechanism described in Step 3.

The simulator’s simulation of the real network is not perfect after transformation step 4.
Concretely, S is not notified of the fourth activation (“output”) of honest protocol parties.
However, as we argued in the proof of Theorem 6, the output decision is made during prior
activations. Hence, by S announcing output early to Ffw-ideal, S and Ffw-ideal perfectly
emulate the real protocol. (Fwrap delivers output after the fourth activation only.)

3.9 Implementing the Setup Assumption

Setup assumptions help construct protocols in the UC framework. For many assumptions
it is not immediately clear why they are reasonable though. In our constructions, we
assumed a trusted packet comparator that realises a quorum decision for network packets.
To demonstrate the practicality of this assumption, we first implemented a proof-of-
concept demonstrator. A particularly efficient realisation has later been developed in the
context of a Bachelor thesis [7].

3.9.1 Proof-of-Concept Demonstrator

To demonstrate the feasibility of a trusted packet comparator Jochen Rill implemented a
proof-of-concept realisation of the trusted hardware device specified in Figure 3.2. The
implementation uses the Linux netfilter “queue” Application Programming Interface
NFQUEUE1 to pass IP packets from the kernel to a Perl script (Figure 3.21). The Perl
script then implements the actual comparator logic in a total of 89 lines, including empty
lines and comments. This setup was deployed on a Ubuntu 13.10 operating system. It
can handle a throughput of about 10 Mbit s−1.

The prototype was presented at the CeBIT, the world’s largest computer expo in
Hanover, Germany, in March 2014. It was presented alongside a computer animation that
explains the concept on the joint booth of the Karlsruhe Institute of Technology (KIT)
and the FZI Forschungszentrum Informatik (see Figure 3.22). The concept animation
was also presented on the booth of the TU9, the alliance of leading Institutes in Germany,
on the Hannover Messe 2015.

3.9.2 Efficient Realisation in Intel DPDK

In a cooperation with the Institute of Telematics at the KIT we investigated an efficient
implementation of the packet comparator in the course of a Bachelor thesis [7].

1http://netfilter.org/projects/libnetfilter_queue/
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sub cb ( )
{

i f ( ( time ()− $ l a s t t i m e )>$t imeout ){
# Timeout reached , d e l e t e a l l packets
%map = ( ) ;
$ l a s t t i m e = time ( ) ;

}
my ($dummy, $payload ) = @ ;
i f ( $payload ) {

my $ i p o b j = NetPacket : : IP−>decode ( $payload−>get data ( ) ) ;

# IP f i e l d s s r c i p , d e s t i p , and data are
# cons ide red f o r comparison .
my $hash = 0 ;
$hash = sha1 hex ( $ i p ob j−>{s r c i p } . $ i p ob j−>{d e s t i p } . $ i p ob j−>{data } ) ;

i f ( de f in ed $map{$hash }){
# Packet with hash $hash a r r i v e d
# p r e v i o u s l y on i n t e r f a c e $map{$hash } [ 0 ]
i f ( ! ( $map{$hash} eq $payload−>ge t indev ( ) ) ) {

# Same packet a r r i v e d on a d i f f e r e n t i n t e r f a c e ,
# al low i t and d i s ca rd the o r i g i n a l packet
$payload−>s e t v e r d i c t ( $nfqueue : : NF ACCEPT) ;
d e l e t e $map{$hash } ;

}
} e l s e {

# New packet a r r i v e d on i n t e r f a c e $payload−>ge t indev ( )
# with hash $hash
$payload−>s e t v e r d i c t ( $nfqueue : : NF DROP) ;
@{$map{$hash}} = $payload−>ge t indev ( ) ;

}
}

}

Figure 3.21: Source code of the packet comparator for a proof-of-concept realisation,
authored by Jochen Rill, annotated for better readability. The original
source file has a total of 89 lines.

Intel’s Data Plane Development Kit (DPDK)2 was used to implement the packet
comparator from Figure 3.2. Later, the updated functionality from Figure 3.10 was
implemented. The DPDK is a framework aimed at an efficient processing of network
packets by minimising overhead.

The design goal was to implement a packet comparator that performs at a wire speed
of 10 Gbit s−1. The assigned machine for performance evaluation runs an Intel® Core™
i7 Central Processing Unit at a clock speed of 3.4 GHz. As real network firewalls have
different latencies when evaluating network traffic, early estimations suggested that a
maximum of 2400 IP packets needed to be cached for the quorum decision to have
merit—when the packet cache runs full, packets have to be cleared in order to make
room for new incoming packets. The amount of memory reserved for temporarily caching

2http://dpdk.org/
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Figure 3.22: The proof-of-concept packet comparator, as it was presented on the joint
booth of the KIT and the FZI Forschungszentrum Informatik on the CeBIT
2014. Image © Markus Breig/KIT.

network packets was 2 GiB.

The architecture was designed as follows: Three ring buffers store incoming packets.
They are then stored, compared, and a quorum decision is made. Packets that pass the
decision process are output to an output ring buffer. IP packets are stored in a hash
table. The values stored are: a hash value of the payload (see below), a pointer to the
packet in memory, the network interfaces the packet arrived on, their number, and a
timestamp.

A bit-by-bit comparison of packets can have a large impact on the performance of
the comparator. As a remedy, a hash value is computed which then facilitates a quicker
comparison. However, an evaluation of the performance of various hash operations
revealed that cryptographic hash functions impose much overhead: While a bit-by-bit
comparison and a CRC32 [136] checksum have a performance “cost” of less than 0.7
cycles per Byte, the SHA-1 [79] hash needs more than 6 cycles per Byte. The Skein
hash [81] weighs in at more than 1.5 cycles per Byte. However, the CRC32 checksum
is not a cryptographic hash operation and thus lends itself to a collision attack by an
adversary (see Section 2.4.3). While it is not immediately clear how such a vulnerability
influences security, it is a clear deviation from the model. In our model, we assume an
equivalency relation ≡ for packets. The model is not designed to allow for collisions.
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Consequently, using the CRC32 checksum for packet comparisons invalidates the security
guarantees provided by a proof in the model. We point out that this is an instance where
an implementation decision can subtly invalidate a formal security analysis.

Consequently, the packet comparison was implemented as follows. In a first step,
the CRC32 checksums of the packets are compared. Then, if the checksums match, a
bit-wise comparison is performed. This way, the performance of the comparison was
optimised without sacrificing security. Indeed, as performance evaluations showed, the
packet comparison has the largest influence on performance.

Concluding, the implementation can only cope with roughly 90% of traffic at a wire
speed of 10 Gbit s−1. It is well suited for wire speeds of 1 Gbit s−1, however.
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The million dollar payroll check or
the threatening letter for an
already settled bill can be laughed
off for a while as the growing
pains of adolescence. It will be
less funny if the computer is
allowed to become an intrusion
on our privacy or a pollutant of
our lives.

(Giles E. Hemmings, Foreword of
James Martin’s Security,
Accuracy, and Privacy in

Computer Systems, 1973)

The Information Technology (IT) industry has seen numerous trends in the last two
decades, yet a majority of them seem to revolve around a common paradigm shift: Data
is stored less and less locally, but is outsourced to a data processing centre and accessed
over the Internet. To retrieve parts of the outsourced data, clients submit queries to
the servers which then execute them and return the result. Applications that fit into
this paradigm are not restricted to relational databases, but to any information that can
be structured meaningfully—be it searchable documents, relational databases, or image
archives. Data outsourcing promises significant advantages, particularly for organisations
that do not specialise in data management. But entrusting private data to a service
provider also introduces a security risk. While an IT service provider can be trusted
to provide the contractually agreed-on services faithfully, one can easily imagine that a
curious employee might try to learn confidential information from the outsourced data.
Cryptographic methods promise to secure confidentiality in such a scenario.

Many cryptographic schemes have a custom security notion. While a tailored security
notion helps accurately express a scheme’s security properties, it makes comparing security
properties difficult. This work introduces a framework that allows for modelling the
privacy guarantees of data outsourcing schemes on a common level of abstraction.

We identify three conceptually different privacy goals: keeping the outsourced data
itself private, keeping the queries to the data private, and keeping the result of the query
private. Our results are applicable to constructions from seemingly disparate fields of
cryptographic research, e.g. private information retrieval, searchable encryption, and
secure database outsourcing.

We show that data privacy and query privacy are independent concepts, while result
privacy is consequential to them. What is more, we found that many existing privacy
notions, e.g. for searchable encryption, mix these concepts.
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In general, strong privacy can be bought with communication and computation com-
plexity or a cost-inefficient distribution among many servers. Such schemes find no
use in practice, however. On the other hand, existing formal security notions are often
not applicable to schemes used in practice. Thus, we want to design security notions
applicable to both practical (i.e. O(log(n)) complexity, single server, single client) and
highly elaborate (i.e. PIR, ORAM) outsourcing schemes.

Therefore our framework allows to independently specify bounds for the level of privacy
for queries, the outsourced data, and the query result. We showcase the applicability of
our formal notions by expressing existing notions in our framework.

This chapter is based on a Diploma thesis [6], a term paper (“Studienarbeit”) [8], and
two conference papers [1, 5]. Section 4.6 is based on an unpublished extended version of
a conference paper [5].

4.1 Related Work

We distinguish between data privacy, query privacy, and result privacy, the latter implying
the former two. Therefore, we divide the related work concerning security notions for
data outsourcing schemes into three categories: notions which only consider the privacy
of the outsourced data, notions which only consider the privacy of the queries, and those
which intertwine both.

Security Notions for Data Privacy Many data outsourcing schemes only consider the
privacy of the outsourced data in both static and adaptive settings. There are game-based
notions [13, 78, 89, 113], simulation-based notions [48, 49, 125], and notions that use the
Universal Composability framework [41, 138, 139, 190]. A well-known example for an
adaptive security notion is IND-CKA established by Goh [89]. The intuition is that an
adversary should not be able to distinguish two sets of data of his choosing based on the
generated index even if he can issue and observe queries. However, in Goh’s notion, the
queries the adversary can choose are strongly restricted: he is not allowed to query for
words that are exclusive two one of the two sets he chooses as challenge.

An example for a notion which only considers static security is Huber et al.’s IND-
ICP [113]. Here, the idea is that an adversary should not be able to distinguish the
encryptions of two databases. However, the databases the adversary is challenged on are
restricted to being independent permutations of one another.

Security Notions for Query Privacy Hiding queries on outsourced data on a single
server has been studied in the context of Single-Server Private Information Retrieval
(PIR) [57, 69, 86]. The PIR notion requires that an adversary who observes access
patterns cannot distinguish any two queries. PIR does not guarantee that the data itself
is kept private [57]. There are PIR schemes in literature with a sublinear communication
complexity [38, 87, 140]. However, all PIR schemes inherently have a computational
complexity for the server which is linear in the size of the data [185]. Kantarcıoǧlu and
Clifton also propose a security notion that addresses hiding queries to an outsourced
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database [128]. They show that a scheme that meets their security definition must scan
the entire database non-negligibly often to execute queries. Asonov and Freytag get
around this limitation by using a secure coprocessor [17].

The privacy of queries on data has also been investigated in the context of Oblivious
Random Access Machines (ORAMs) first introduced by Goldreich and Ostrovsky [92]
and further explored and improved upon by others [66, 174, 183]. Similar to PIR,
an “oblivious” Random Access Machine (RAM) is one that cannot distinguish access
patterns—the data itself is not required to be private. As is the case with PIR, all
ORAM constructions can not be considered efficient in our sense. They either have
polylogarithmic computation cost while requiring the client to store a constant amount
of data [183] or have logarithmic computation cost, but require the client to store at
least a sublinear amount of data dependent on the size of the RAM [96]. Therefore, the
security notion for ORAM is not suitable for our cause.

Security Notions for Data Privacy as well as Query Privacy There are security notions
in the literature which consider both data privacy as well as query privacy. Chase et
al. [52–54] introduce the simulation-based notion of “chosen query attacks” which models
both the privacy of queries and that of the data. However, in their notion, the concepts
of privacy for data and privacy for queries are intertwined. In our original publication of
the work presented in Section 4.6 [5] we try to separate both properties: we introduce the
notion of “data privacy” and complement it with “pattern privacy”, which is similar to
PIR. Blass et al. [27] propose a scheme for word search that works uses the MapReduce
framework. They distinguish Storage Privacy and Query Privacy. The simulation-based
security definition put forward by Chase and Shen [52–54] also considers the privacy of
both data and queries.

Modeling Information Leakage A reoccurring pattern in security notions for practical
schemes is the use of a leakage function which describes the information the scheme
leaks to the adversary during execution. A certain amount of leakage seems necessary in
order for schemes to be efficient. Cash et al. investigate the construction of efficient and
practical schemes that also have a formal security analysis [48, 49]. Their analyses follow
a simulation-based approach. The constructions leak information about the plaintext
and the query which they explicitly model by a leakage function L. This is similar to
Chase et al. [52–54], whose notion allows to describe the information that leaks through
the encryption itself (L1) and the information about the ciphertext and the queries
combined that is leaked by evaluating queries (L2). Stefanov et al. [190] employ the
same technique in the Universal Composability Framework. In game-based notions such
leakage is modelled by restricting the challenges the adversary can choose. Thus, in our
framework we define “leakage relations” that model information leakage.

Searchable Encryption In the literature, there are two general approaches to searchable
encrypted data: Symmetric Searchable Encryption (SSE) [52, 63, 89, 95, 125, 126, 138]
and Public Key Encryption with Keyword Search (PEKS) [10, 20, 35, 50, 111, 171]. In
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almost all cases these approaches are keyword-based. Keyword-based schemes generally
allow arbitrary keywords to be stored in an index and not only keywords contained
in the actual document. Furthermore, they allow indices to be created for arbitrary
documents, not just strings. On the other hand, keyword-based schemes don’t support
substring search, exact pattern matching or return the number of occurrences of a
substring. Also, keywords must be defined when constructing the index, whereas our
approach only requires the pattern at search time. Xiaodong Song et al. [188] present a
keywordless approach based on stream ciphers and supports pattern matching. However,
the time required for performing a search scales linearly with the size of the document.
Oleshchuck’s construction [169] uses stream ciphers to achieve privacy-preserving pattern
matching. He presents an “insecure solution”, as well as “secure pattern matching”. He
provides no formal analysis. In their recent work, Chase and Shen [54] give a construction
for a “queryable encryption” that uses suffix trees to achieve a pattern-matching search
on encrypted data. They also achieve security against a malicious adversary. Their
security definition is simulation-based and accounts for leakage.

There is a rich body of literature on exact pattern matching algorithms, going back to
the late seventies. The general method for improving performance is precomputation.
Approaches can be separated by where the precomputation occurs: There are algorithms
that perform precomputation on the search pattern [21, 36, 129, 135] as well as algorithms
that perform precomputation on the string [29, 30, 62, 156, 193]. Our scheme can
be assigned to the latter. The aforementioned algorithms have been engineered for
performance and efficiency alone and were not conceived in an adversarial scenario,
however. Our scenario involves an honest-but-curious adversary and we therefore seek to
hide as much information as possible from him.

Privacy Notions Data privacy has also been studied in the context of privacy notions
for anonymised databases. A well-known example is the k-anonymity notion and related
variants [150, 153, 192]. The idea behind k-anonymity is that any tuple in the anonymised
database can be attributed to at least k individuals in the original database. These
notions only define a property of an anonymised database but do not consider the process
of querying the database. Newer approaches such as Differential Privacy [75] do model
the anonymisation process, but not the the querying process—the adversary has access
to the entire anonymised release. Privacy notions are thus static notions in our sense. In
our scenario the adversary has access to the entire (encrypted) database, too, but tries
to gain knowledge from a client querying a subset of the data.

4.2 A Model for Outsourced Data

Our basic object of interest is a data set—be it a database, an e-mail archive or a
collection of images. One can execute queries on this data. The result of the execution
of a query on a data set can be any function of the data.

We focus on queries that only return a function of the data they are executed on. We
note, however, that updating data is also an area worthy of investigation.
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In an outsourcing scenario, a client transfers the data to a server for storage. Before
the data is transferred, the client encrypts it using a private key. Instead of executing
queries locally, the client transforms them into an interactive protocol that it runs with
the server. The client’s input into the protocol is its private key, the server’s input is the
encrypted data. See Figure 4.1 for an illustration of our outsourcing model.

Preprocessor Server

d,K Enc(d,K)

(a)

Client Server

q,K

q(d)

Enc(d,K)πq

...

(b)

Figure 4.1: We model the interaction of the client with the server in two phases. In
the initialisation phase (a) a preprocessing agent receives a data set d and
an encryption key K, prepares the encrypted data Enc(d,K) and uploads
it to the server. In the query phase (b) the client issues queries q using
encryption key K by running protocol πq with the server. The server’s input
is the encryption Enc(d,K). After the interaction the client outputs the query
result q(d).

We assume the server may be under adversarial influence. We restrict the adversary
to honest-but-curious behaviour however—he may not deviate from the protocol as to
interfere with its correct execution, but he may try to learn private information from the
interaction.

4.2.1 Conventions

We say a protocol is efficient if its number of communication rounds does not exceed
a fixed polynomial (in the security parameter). We denote the set of all efficient two-
party protocols with Π. Our definitions can be extended to allow for the interaction of
multiple servers with multiple clients. For the sake of clarity, we focus on the single-
server-single-client case and leave a further generalisation of the definitions for future
work.

We define our algorithms and protocols to operate on a domain. In this work, a domain
is the set of all possible values in the given context—for example, in a database context,
a domain would be the set of all databases. Our algorithms and protocols operate on
three domains: a domain of the data to be encrypted (i.e. plaintexts) ∆, a domain of
ciphertexts Γ, and a domain of results P .
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4.2.2 Efficiency

We are particularly interested in capturing the security properties of efficient schemes
within our framework. In practice, the size of outsourced data sets can easily measure
terabytes. Since data is uploaded to the server only once while queries get executed
repeatedly, it is not practical to use encryption schemes which process the whole data set
on each query—or even a fraction of it. Therefore, we consider schemes efficient which
have strictly logarithmic communication and computation complexities per query—for
the client as well as for the server. This is in contrast to many schemes in the literature
which are considered efficient even though they have a polynomial overhead.

4.2.3 Privacy

There are three privacy objectives: Keeping the data private, keeping the queries private,
and keeping the results private.

Keeping the Data Private Bob runs an e-mail service. Alice uses the service and is
concerned Bob might snoop through her private e-mail. Data Privacy guarantees that
Bob does not learn anything about the content of Alice’s e-mail.

Keeping the Queries Private In this scenario, Bob runs a patent search service. Clients
can submit construction plans and Bob’s service looks for any patents the construction is
infringing. Alice is worried that Bob might learn her ideas and register them as patents
himself. If the query protocol has query privacy, Bob cannot learn the content of Alice’s
requests.

Keeping the Results Private Bob also owns a database of DNA markers that are a
sign of genetic diseases. He offers his customers the possibility to check blood samples
against the database. Alice runs a clinic and is interested in Bob’s services. She has no
interest in disclosing to Bob whether her patients suffer from any genetic diseases. If the
method of accessing Bob’s database has result privacy, the results to Alice’s requests are
hidden from Bob. As we will show, result privacy implies database privacy as well as
query privacy and vice versa.

4.3 Security Notions for Data Outsourcing Schemes

In this section we define precise terminology for securely outsourcing data and establish
fundamental relations.

We now define the elementary concepts used in the rest of the chapter.

Definition 7. A data set d ∈ ∆ is an element of a domain ∆. By |d| we denote the
length of its (unique) binary representation.

For example, in the scenario of an outsourced e-mail archive, ∆ is the set of all
mailboxes and a concrete data set (mailbox) d ∈ ∆ is a set of e-mail messages. To
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outsource data, one requires an algorithm that makes the data ready to be uploaded to
a server. We call this process “encrypting” the data, as we will require later that no
adversary can learn the original data from the outsourced data.

Definition 8. An outsourcing scheme for data sets is a tuple (Gen,Enc) such that for
c ∈ N,

Gen : 1k → {0, 1}c

Enc : ∆× {0, 1}c → Γ

We call an outsourcing scheme for a data set retrievable if there is a function Dec :
Γ× {0, 1}c → ∆ such that ∀K ∈ {0, 1}c, d ∈ ∆ : Dec(Enc(d,K),K) = d.

We do not require that encrypted data sets be decryptable. The main purpose of
outsourcing data in this work is to remotely execute queries on it.

Definition 9. A query q is a PPT algorithm that, on input of a data set d ∈ ∆ returns
a result set q(d) ∈ P and an updated data set dq ∈ ∆.

We point out that, to simplify notation, we do not model parameters for queries
explicitly. Our model supports parameterised queries nevertheless, as for each pair of a
query q with parameters p, there is an equivalent query q(p) that has the parameters
“hard coded”. Without loss of generality we assume that queries are functions of the data,
i.e. ∀q∃d1, d2 ∈ ∆ : q(d1) 6= q(d2), and the query result is the same if evaluated twice.

Our idea of the “correctness” of a protocol is relative to a given query q.

Definition 10. A two-party protocol πq ∈ Π between a Server S and Client C executes
a query q for a outsourced data set Enc(d,K) if

• The Client, on input of a key K, outputs the result set q(d) = πCq (K,Enc(d,K)).

• The Server, on input the outsourced data set Enc(d,K), outputs an updated
outsourced data set Enc(dq,K) = πSq (Enc(d,K)).

Note that although “update” queries are outside the scope of this work, Definition 10
also models protocols that update the outsourced data set.

Definition 11. A queryable outsourcing scheme for data sets is a tuple (Gen,Enc,Q)
such that

• (Gen,Enc) is an outsourcing scheme for data sets, and

• Q ⊆ Π is a non-empty set of efficient two-party protocols that execute a query for
outsourced data sets.

We stress that the client has no direct access to the data when interacting with the
server in order to execute a query.

So that we can argue about privacy in the presence of queries to outsourced data, we
require a notion of what a protocol party “sees” during the execution of a protocol.
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Definition 12. A view of a protocol party is the totality of its inputs, received messages,
sent messages and outputs. To denote the view of protocol party P ∈ {C,S} in protocol
π with inputs c and K, we write

viewπ
P(c,K).

In particular, the encrypted data is part of the server’s view.

4.3.1 Static Security

The static notion of privacy for outsourced data captures the intuition that no adversary
may deduce any information about the data from its ciphertext alone. We model it
closely after the Indistinguishability under Chosen-Plaintext Attack (IND-CPA) notion.

Security Game 1 (IND-CDAA(Gen,Enc)(k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b← {0, 1}.

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. A is given Enc(mb,K).

5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 13 (Static Security). An outsourcing scheme (Gen,Enc) has indistinguishable
encryptions under chosen-data attacks IND-CDA or static security, if for all Probabilistic
Polynomial Time (PPT) adversaries A there exists a negligible function negl such that

Pr
[
IND-CDAA(Gen,Enc)(k) = 1

]
≤ 1

2
+ negl(k).

4.3.2 Privacy in the Presence of Queries

When outsourced data sets are queried three conceptually different privacy goals can
be distinguished: keeping the data private, keeping the queries private, and keeping
the results private. We model these privacy goals as security games. The adversary is
supplied an oracle for views on the interaction between client and server and tries to
discern the challenge bit b.

In all three security experiments, in addition to a challenge oracle, the adversary is
supplied with an “open” view oracle. The oracle provides views for arbitrary queries
executed on an encryption of arbitrary data sets using the challenge key. It implies that
the scheme must have a probabilistic property in the sense that two identical queries
on two different encryptions of the same plaintext will not access the same parts of
the ciphertext. This can either be done by randomising the structure of the encrypted
ciphertext (as we do in our construction in Section 4.6) or by randomising the protocol
which executes the query.
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Security Game 2 (D-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access to it.

The oracle takes a query q and a data set d as input and returns view
πq
S (Enc(d,K)).

3. A outputs two data sets d0 and d1 of equal length to the experiment.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπ·
S (Enc(db,K)). That is, the

oracle takes any query q such that πq ∈ Q as input, internally runs the protocol πq
on Enc(db,K), and outputs view

πq
S (Enc(db,K)) to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Security Game 3 (Q-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access to it.

The oracle takes a query q and a data set d as input and returns view
πq
S (Enc(d,K)).

3. A outputs two queries q0 and q1 to the experiment. q0 and q1 must yield protocols
πq0 and πq1 with the same number of protocol messages.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for view
πqb
S (Enc(·,K)). That is,

the oracle takes any data set d ∈ ∆ as input, internally runs the protocol πqb on
Enc(d,K), and outputs view

πqb
S (Enc(d,K)) to the adversary.

6. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 14 (Data Privacy). An outsourcing scheme (Gen,Enc,Q) has Data Privacy,
if for all PPT adversaries A there exists a negligible function negl such that

Pr
[
D-INDA,Rd

(Gen,Enc,Q)(k) = 1
]
≤ 1

2
+ negl(k).

The privacy notion of Query Privacy captures the goal of hiding the queries themselves
from the server. The notion is equivalent to Private Information Retrieval (see Section 4.5.1
for a discussion and proof).
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Definition 15 (Query Privacy). An outsourcing scheme (Gen,Enc,Q) has Query Privacy,
if for all PPT adversaries A there exists a negligible function negl such that

Pr
[
Q-IND

A,Rq

(Gen,Enc,Q)(k) = 1
]
≤ 1

2
+ negl(k).

The third privacy goal, Result Privacy, captures the idea that the adversary must not
learn the result of any query executed on any data. To formulate this idea formally, we
allow the adversary to output two data-set-query pairs (d0, q0) and (d1, q1), as a result is
always determined by a query and a data set on which it is evaluated. We then challenge
the adversary on the view of query qb executed on data set db.

Security Game 4 (R-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access to it.

The oracle takes a query q and a data set d as input and returns view
πq
S (Enc(d,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. (|d0| =
|d1| and q0 and q1 must yield protocols πq0 and πq1 with the same number of
protocol messages.)

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πqb on Enc(db,K) and outputs
view

πqb
S (Enc(db,K)) to the adversary.

6. A receives oracle access to viewπ·
S (Enc(db,K)) and view

πqb
S (Enc(·,K)).

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 16 (Result Privacy). An outsourcing scheme (Gen,Enc,Q) has Result Privacy,
if for all PPT adversaries A there exists a negligible function negl such that

Pr
[
R-IND

A,Rd,Rq

(Gen,Enc,Q)(k) = 1
]
≤ 1

2
+ negl(k).

4.3.3 Fundamental Relations Among the Basic Security Notions

We establish fundamental relations among the three concepts of Data Privacy, Query
Privacy, and Result Privacy.

Theorem 8 (D-IND 6=⇒ Q-IND). If a data outsourcing scheme that has Data Privacy
exists, there is a data outsourcing scheme that has Data Privacy but no Query Privacy.
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Proof. Let (Gen,Enc,Q) be a data outsourcing scheme that has Data Privacy. We modify
it in a way that we violate Query Privacy, but keep Data Privacy intact. To this end, we
amend the protocols that execute queries to have the client transmit the executed query
in the clear after the actual protocol is complete. We have to show that the modification
violates Query Privacy, but does not violate Data Privacy.

With the modification, the adversary in experiment Q-IND can easily extract the
executed query from any view and thus determine the challenge bit with certainty. Thus
the modification violates Query Privacy. To see that this modification does not violate
Data Privacy, first note that the modified scheme retains its Data Privacy up until the
point of the modification. We argue that the transmission of the query in the clear does
not break Data Privacy. Consider experiment D-IND. Because the experiment draws the
key K after the scheme is fixed, the scheme is independent of the actual key used to
encrypt the data set d. Further, because the query is supplied by the adversary in the
experiment and the adversary has learned neither db nor K up to this point, the query is
also independent of db and K. This concludes the argument.

Theorem 9 (Q-IND 6=⇒ D-IND). If there is a retrievable data outsourcing scheme that
has Static Security, there is a data outsourcing scheme that has Query Privacy and Static
Security, but no Data Privacy.

Proof. Let (Gen,Enc,Q) be a retrievable data outsourcing scheme that has Static Security.
We construct a modified scheme (Gen,Enc,Q′) that suits our purposes. By adopting Gen
and Enc, we retain static security. We design Q′ such that it has Query Privacy, but
trivially loses Data Privacy. Q′ is constructed iteratively, starting with an empty set. For
each protocol πq ∈ Q that realises a query q, we define a protocol π′q to Q′ as follows:

(Recall that the client’s input is the encryption key K and a query q; the server’s input
is an encrypted data set Enc(d,K).)

1. Client: Transfer K to the Server.

2. Server: Decrypt Enc(d,K) and send d = Dec(Enc(d,K),K) back to the Client.

3. Client: Execute query q locally on d and output q(d).

Protocol π′ transmits the data set d in the open, violating Data Privacy. Because the
client executes q locally and never transmits any information that depends on q, π′ does
have Query Privacy.

The following theorems show that Result Privacy is equivalent to both Data Privacy
and Query Privacy (at the same time).

Theorem 10 (R-IND =⇒ D-IND). There is no data outsourcing scheme that has Result
Privacy but no Data Privacy.

Proof. Assume a data outsourcing scheme (Gen,Enc,Q) for which there is an efficient
adversary A against experiment D-IND. We give an efficient reduction for A that breaks
the Result Privacy (experiment R-IND) of the scheme, contradicting the assumption.
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The reduction is straightforward. It has to provide a challenge oracle viewπ·
S (Enc(db,K)).

Such an oracle is provided by experiment R-IND and only has to be “passed through”.

R-IND A

AD
1k

K ← Gen(1k) 1k

viewπ·
S (Enc(·,K))

viewπ·
S (Enc(·,K))

d0, d1

q0, q1 ← Q
(d0, q0), (d1, q1)

b← {0, 1}
viewπ·

S (Enc(db,K))

view
πqb

S (Enc(·,K))
viewπ·

S (Enc(db,K))

b′

b′

Figure 4.2: Sketch for the proof of Theorem 10.

Theorem 11 (R-IND =⇒ Q-IND). There is no data outsourcing scheme that has Result
Privacy but no Query Privacy.

The proof of Theorem 11 is analogous to the proof of Theorem 10.

Proof. Assume a data outsourcing scheme (Gen,Enc,Q) for which there is an efficient
adversary A against experiment Q-IND. We give an efficient reduction for A that breaks
the Result Privacy (experiment R-IND) of the scheme, contradicting the assumption.

Provide a challenge oracle view
πqb
S (Enc(·,K)). Such an oracle is provided by experiment—

pass it through.

Theorem 12 (D-IND ∧ Q-IND =⇒ R-IND). Data Privacy and Query Privacy together
imply Result Privacy, i.e. there is no data outsourcing scheme that has Data Privacy and
Query Privacy but no Result Privacy.

We prove the statement using a game-hopping technique. Assume any adversary
against R-IND. We replace both view oracles for db and qb, respectively, with an oracle
for fixed challenges d0 and q0. We argue the indistinguishability of these steps with Data
Privacy and Query Privacy. Finally, in the now-transformed experiment, the adversary
has no advantage since his input is independent of b. Concluding, given a scheme with
Data Privacy and Query Privacy, no adversary against Result Privacy has a non-negligible
advantage.
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R-IND A

AQ
1k

K ← Gen(1k) 1k

viewπ·
S (Enc(·,K))

viewπ·
S (Enc(·,K))

q0, q1

q0, q1 ← Q
(d0, q0), (d1, q1)

b← {0, 1}
viewπ·

S (Enc(db,K))

view
πqb

S (Enc(·,K))
view

πqb

S (Enc(·,K))

b′

b′

Figure 4.3: Sketch of the proof for Theorem 11.

Proof. We define two game transformations, R-IND′ and R-IND′′, starting from the
Result Privacy experiment R-IND. In the unmodified experiment R-IND, the adversary is
supplied with two view oracles viewπ·

S (Enc(db,K)) and view
πqb
S (Enc(·,K)). In R-IND′ we

replace the viewπ·
S (Enc(db,K)) oracle by an oracle for viewπ·

S (Enc(d0,K)). Further, the
challenge is generated not for db, but for d0.

Security Game 5 (R-IND′A(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access to it.

The oracle takes a query q and a data set d as input and returns view
πq
S (Enc(d,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. (|d0| =
|d1| and q0 and q1 must yield protocols πq0 and πq1 with the same number of
protocol messages.)

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πqb on Enc(d0,K) and outputs
view

πqb
S (Enc(d0,K)) to the adversary.

6. A receives oracle access to viewπ·
S (Enc(d0,K)) and view

πqb
S (Enc(·,K)).

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
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In R-IND′′ we further replace view
πqb
S (Enc(·,K)) by view

πq0
S (Enc(·,K)). The challenge

is now independent of the challenge bit b.

Security Game 6 (R-IND′′A(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access to it.

The oracle takes a query q and a data set d as input and returns view
πq
S (Enc(d,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. (|d0| =
|d1| and q0 and q1 must yield protocols πq0 and πq1 with the same number of
protocol messages.)

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πq0 on Enc(d0,K) and outputs
view

πq0
S (Enc(d0,K)) to the adversary.

6. A receives oracle access to viewπ·
S (Enc(d0,K)) and view

πq0
S (Enc(·,K)).

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

In R-IND′′ the adversary receives no input that is dependent on the challenge bit b. He
thus has no advantage over guessing b. We have to argue that R-IND′′ is indistinguishable
from R-IND for the adversary. To this end, we prove the indistinguishability of R-IND from
R-IND′ in Lemma 1 and the indistinguishability of R-IND′ from R-IND′′ in Lemma 2.

Lemma 1. An adversary who can distinguish between running in experiment R-IND and
experiment R-IND′ yields a successful adversary against database privacy.

We model the distinction as an experiment D-Oracle-IND in which the adversary must
decide whether he is running in R-IND or in R-IND′. It is modeled closely after R-IND. In
experiment R-IND′ the challenge database db is replaced with the fixed database d0. Thus,
in D-Oracle-IND the adversary is challenged on deciding whether he has access to an oracle
viewπ·

S (Enc(db,K)) or whether he is accessing the fixed oracle viewπ·
S (Enc(d0,K)). (The

query view oracle view
πqb
S (Enc(·,K)) is provided with no change.) We give a reduction R

which transforms this adversary into an adversary on database privacy. To clearly separate
the different challenge bits, we name the challenge bit in the distinction experiment c.

Security Game 7 (D-Oracle-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment (under
the restriction that |d0| = |d1| and that πq0 and πq1 exchange the same number of
messages).
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4. The experiment draws two random bits b← {0, 1} and c← {0, 1}.

5. Challenge: If c = 0, output view
πqb
S (Enc(db,K)) to the adversary. Else, output

view
πqb
S (Enc(d0,K)).

6. If c = 0, A receives oracle access to viewπ·
S (Enc(db,K)), else to viewπ·

S (Enc(d0,K)).

In any case, A receives access to view
πqb
S (Enc(·,K)).

7. A outputs a guess c′ for c.

Proof. Assume an adversaryA with a non-negligible advantage in experiment D-Oracle-IND.
We construct a reduction that has a non-negligible advantage in experiment D-IND. The
experiment D-IND provides us with two oracles viewπ·

S (Enc(·,K)) and viewπ·
S (Enc(db,K)).

We use these oracles to simulate the two oracles and the challenge in D-Oracle-IND:

• To generate the challenge, fix qb := q1 and output view
πq1
S (Enc(db,K)) using the

viewπ·
S (Enc(db,K)) oracle provided by D-IND.

• viewπ·
S (Enc(db,K)). This oracle is provided by D-IND and is relayed.

• view
πqb
S (Enc(·,K)). Fix qb := q1 and simulate the oracle using the viewπ·

S (Enc(·,K))
oracle provided by D-IND.

We can distinguish two cases. If b = 1 in D-IND, the challenge to A as well as the
simulated oracles are consistent and the correct challenge bit in the reduction is c = 0.
On the other hand, if b = 0, the views are inconsistent and c = 1. Thus, we invert A’s
guess as the reduction’s own guess b′ = 1− c′ to inherit A’s success probability.

Lemma 2. An adversary who can distinguish between R-IND′ and R-IND′′ is also a
successful adversary on Query Privacy.

The proof of Lemma 2 is similar to that of Lemma 1.
We model the distinction as an experiment Q-Oracle-IND in which the adversary must

decide whether he is running in R-IND′ or in R-IND′′. In experiment R-IND′′ the challenge
query qb is replaced with the fixed query q0. Thus, in Q-Oracle-IND the adversary is
challenged on deciding whether he has access to an oracle view

πqb
S (Enc(·,K)) or whether

he is accessing the fixed oracle view
πq0
S (Enc(·,K)). (The oracle viewπ·

S (Enc(d0,K)) is
provided with no change.) We give a reduction R′ which transforms this adversary into
an adversary on query privacy. To clearly separate the different challenge bits, we name
the challenge bit in the distinction experiment c.

Security Game 8 (Q-Oracle-INDA(Gen,Enc,Q)(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)).

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment (under
the restriction that |d0| = |d1| and that πq0 and πq1 exchange the same number of
messages).
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D-IND R AD-Oracle-IND
1k

K ← Gen(1k) 1k

viewπ·
S (Enc(·,K))

viewπ·
S (Enc(·,K))

(d0, q0), (d1, q1)

(d0, d1)

b← {0, 1}
viewπ·

S (Enc(db,K))

viewπ·
S (Enc(db,K))

c′

b′ := c′b′

Figure 4.4: Sketch of the proof of Lemma 1. An efficient adversary who can decide
whether he is running in experiment R-IND yields an efficient adversary
against D-IND.

4. The experiment draws two random bits b← {0, 1} and c← {0, 1}.

5. Challenge: If c = 0, output view
πqb
S (Enc(d0,K)) to the adversary. Else, output

view
πq0
S (Enc(d0,K)).

6. If c = 0, A receives oracle access to view
πqb
S (Enc(·,K)), else to view

πq0
S (Enc(·,K)).

In any case, A receives access to viewπ·
S (Enc(d0,K)).

7. A outputs a guess c′ for c.

Proof. Assume an adversaryA with a non-negligible advantage in experiment Q-Oracle-IND.
We construct a reduction that has a non-negligible advantage in experiment Q-IND. We
need to simulate the challenge and two oracles:

• To generate the challenge, fix d0 and output view
πqb
S (Enc(d0,K)) using the

view
πqb
S (Enc(·,K)) oracle provided by Q-IND.

• view
πqb
S (Enc(·,K)). This oracle is provided by Q-IND.

• viewπ·
S (Enc(d0,K)). This oracle is easily simulated by using the viewπ·

S (Enc(·,K))
oracle provided by Q-IND, fixing d0.

We can distinguish two cases. If b = 0 in Q-IND, the challenge to A as well as the
simulated oracles are consistent and A has no advantage over guessing c. (The simulation
is still perfect, however.) On the other hand, if b = 1, the views are inconsistent and
c = 0. Thus, we invert A’s guess as the reduction’s own guess b′ = 1 − c′ to inherit
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A’s success probability in the second case. Overall, the reduction inherits half of A’s
advantage.

Corollary 1 (R-IND ⇐⇒ D-IND ∧ Q-IND). Result Privacy is equivalent to both Data
Privacy and Query Privacy (at the same time).

4.4 Generalised Security Notions for Data Outsourcing
Schemes

In this section, we generalise the security notions introduced in Section 4.3 to make them
applicable to practical schemes. Protocols that—for the sake of efficiency—base decisions
on the content of the queried data are bound to leak information about it [48, 49, 53]
or are only secure for a limited number of queries (see for example our construction
SEDAWG in Section 4.6). (We discuss information leakage in Section 4.1.)

Therefore, we first introduce bounds for the number of oracle calls. A special case is a
bound of 1 that renders the notions non-adaptive.

Second, we define “leakage relations” Rd and Rq. Challenges the adversary can choose
are subject to equivalence under these relations. This way, one can explicitly rule out
specific distinction advantages. To model the leakage of the length of a data set for
example, one would define Rd ⊂ ∆2 as the set of all data set pairs with equal length.

Third, we explicitly model the issuing of queries independently of handing out the
results. This allows us to capture security notions where the adversary can alter the
state of the database, but can not see the immediate result (e.g. he can only observe the
result of the last issued query).

Goh [89] introduces restricting parameters into his security notion as well. They allow
for a bound on the running time, the advantage, and the number of oracle calls. Our
work in this section can be seen as a generalisation of this concept.

In Section 4.5 we showcase case studies that are direct applications of our generalised
notions. We only give the security definitions here and defer discussion to the following
section.

Security Game 9 (IND-CDAA,Rd

(Gen,Enc)(k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b← {0, 1}.

2. The adversary A is given input 1k and oracle access to Enc(·,K).

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0 and d1 is
restricted to data set pairs that are equivalent with regard to equivalence relation
Rd ⊆ ∆2, i.e. (d0, d1) ∈ Rd.

4. A is given Enc(mb,K).

5. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.
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Definition 17 (Static Security). An outsourcing scheme (Gen,Enc) has indistinguishable
encryptions under chosen-data-attacks (IND-CDA) or static security with respect to Rd,
if for all PPT adversaries A there exists a negligible function negl such that

Pr
[
IND-CDAA,Rd

(Gen,Enc)(k) = 1
]
≤ 1

2
+ negl(k).

Security Game 10 (D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access

to it. A is only allowed to query the oracle for a total number of n1 times.

3. A outputs two data sets d0 and d1 to the experiment. The choice of d0 and d1

is restricted to pairs of data sets that are equivalent with regard to equivalence
relation Rd ⊆ ∆2, i.e. (d0, d1) ∈ Rd.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for viewπ·
S (Enc(db,K)), and continues

to have access to it. A may call the challenge oracle for a total number of n2 times.

6. Run oracle: A is given access to an oracle runπ·S (Enc(db,K)). The run oracle
executes queries just as the view oracle does, but has no output. A is allowed to
call the run oracle for a total number of n3 times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Security Game 11 (Q-IND
A,Rq ,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access

to it. A is only allowed to query the oracle for a total number of n1 times.

3. A outputs two queries q0 and q1 to the experiment. The choice of q0 and q1 is
restricted to query pairs that are equivalent with regard to equivalence relation
Rq ⊆ Π2, i.e. (q0, q1) ∈ Rq.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge oracle: A is given access to an oracle for view
πqb
S (Enc(·,K)). A may call

the challenge oracle for a total number of n2 times.

6. Run oracle: A is given access to an oracle runπbS (Enc(·,K)), and continues to have
access to it. The run oracle executes queries just as the view oracle does, but has
no output. A is allowed to call the run oracle for a total number of n3 times.
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7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 18 (n1, n2, n3-Data Privacy). An outsourcing scheme (Gen,Enc,Q) has
n1, n2, n3-Data Privacy with respect to Rd, if for all PPT adversaries A there exists a
negligible function negl such that

Pr
[
D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k) = 1
]
≤ 1

2
+ negl(k).

Definition 19 (n1, n2, n3-Query Privacy). An outsourcing scheme (Gen,Enc,Q) has
n1, n2, n3-Query Privacy with respect to Rq, if for all PPT adversaries A there exists a
negligible function negl such that

Pr
[
Q-IND

A,Rq ,n1,n2,n3

(Gen,Enc,Q) (k) = 1
]
≤ 1

2
+ negl(k).

Result Privacy is generalised in the same way.

Security Game 12 (R-IND
A,Rd,Rq ,n1,n2,n3

(Gen,Enc,Q) (k)).

1. The experiment chooses a key K ← Gen(1k).

2. A receives access to an oracle for viewπ·
S (Enc(·,K)), and continues to have access

to it. A is only allowed to query viewπ·
S (Enc(·,K)) for a total number of n1 times.

3. A outputs two data-set-query pairs (d0, q0) and (d1, q1) to the experiment. The
choice of d0, d1, q0, and q1 is restricted to (d0, d1) ∈ Rd and (q0, q1) ∈ Rq.

4. The experiment draws a random bit b← {0, 1}.

5. Challenge: The experiment runs the protocol πqb on Enc(db,K) and outputs
view

πqb
S (Enc(db,K)) to the adversary.

6. A receives oracle access to viewπ·
S (Enc(mb,K)) and view

πqb
S (Enc(·,K)). He is only

allowed to call the oracles a total number of n2, respectively n3, times.

7. A outputs a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Definition 20 (n1, n2, n3-Result Privacy). An outsourcing scheme (Gen,Enc,Q) has
n1, n2, n3-Result Privacy with respect to Rd and Rq, if for all PPT adversaries A there
exists a negligible function negl such that

Pr
[
R-IND

A,Rd,Rq ,n1,n2,n3

(Gen,Enc,Q) (k) = 1
]
≤ 1

2
+ negl(k).
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4.5 Case Studies

In this section we review security notions from the literature and examine how they fit
into our framework. To that end, we translate these notions to our formalisms.

Some of the notions we discuss here intertwine the concepts of Data Privacy and Query
Privacy and cannot be instantiated directly. We show implications between these and
our security notions. We stress that we see a strong need to separate the concepts of
Data Privacy and Query Privacy in order to have a clear understanding of the security
properties of the underlying scheme.

4.5.1 Private Information Retrieval

We give a definition of the original (single-server) Computational Private Information
Retrieval (cPIR) [140] notion using our conventions.

Definition 21 (Private Information Retrieval). A queryable outsourcing scheme
(Gen,Enc,Dec, {π}) exhibits Computational Single-Server Private Information Retrieval
(PIR) when two conditions hold for any n ∈ N, security parameter k ∈ N, and any data
set d over Σ = {0, 1}n:

1. Correctness: ∀i ∈ {0, . . . , n− 1} : πCi (d) = d[i].

2. Privacy: ∀c ∈ N, i, j ∈ {0, . . . , n− 1}, ∀A∃N ∈ N such that ∀k > N∣∣Pr
[
A(viewπi

S (Enc(d,K))) = 1
]
− Pr

[
A(view

πj
S (Enc(d,K))) = 1

]∣∣ < 1

max(k, n)c
,

where K ← Gen(1k).

Theorem 13. Private Information Retrieval is equivalent to Query Privacy.

In our proof we implicitly assume a queryable database outsourcing scheme that has,
for each bit in the database, a query that retrieves it, i.e. we exclude schemes that store
unretrievable information in the database. This is not a restriction, as one can easily
construct a “non-redundant” scheme from a one that stores unretrievable information.

Proof. For this proof, let the domain of all data sets be ∆ = {0, 1}∗. Fix a security
parameter k ∈ N. Without loss of generality assume any queryable outsourcing scheme
(Gen,Enc,Q) with a protocol πi that outputs the i + 1th bit of the database for all
i ∈ {0, . . . , n− 1}, where n is the length of the data set d ∈ ∆. We prove the theorem in
two steps.

PIR =⇒ Q-IND. Assume any efficient adversary A who is successful in Q-IND with
a non-negligible advantage. We show that there are i, j ∈ {0, . . . , n− 1}, and an efficient
algorithm A′ such that they violate the Privacy condition of Definition 21.

Construct A′ as follows: Simulate experiment Q-IND to obtain πi, πj from A. i and
j are the required indices. Now relay the input viewπb

S (Enc(d,K)) (for b ∈ {i, j}) to A.
Output A’s guess b′.
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Q-IND =⇒ PIR. Assume any i, j ∈ {0, . . . , n−1} and any efficient algorithm A′ such
that A′ violates the Privacy condition of Definition 21 at indices i and j. We construct
an efficient adversary A that has a non-negligible advantage in Q-IND: Output πi and
πj as the challenge queries. Output b′ = A(viewπb

S (Enc(d,K))) (for b ∈ {i, j}). (For any
adversary with a success probability < 1

2 there is an adversary with a success probability
> 1

2 , easily obtained by flipping its guess.)

4.5.2 Indistinguishability under Independent Column Permutations

Huber et al. [113] present a provably-secure database outsourcing scheme which is as
efficient as the underlying database. In their notion the encryptions of two databases must
be indistinguishable if they can be transformed into each other by permuting attribute
values within columns. Since our generalised notions allow for defining a restriction on
the plaintexts, this database-specific security notion also fits into our framework.

Definition 22 (Independent Column Permutation [113]). Let Φ be the set of database
functions p : ∆→ ∆ such that each p ∈ Φ permutes the entries within each column of a
database. We call p an independent column permutation.

Security Game 13 (IND-ICPAGen,Enc,Φ(k)).

1. The experiment chooses a key K ← Gen(1k).

2. A outputs one plaintext m and an independent column permutation p ∈ Φ to the
experiment.

3. The experiment chooses m0 := m and m1 := p(m) draws b← {0, 1} uniformly at
random.

4. A is given Enc(mb,K).

5. A submits a guess b′ for b.

Theorem 14. IND-ICP is equivalent to static security.

Proof. IND-ICP is a direct instantiation of IND-CDAA,RICP

(Gen,Enc)(k), where RICP ⊂ ∆2 is the
set of all pairs of databases that are independent column permutations of each other:
We set ∆ = DB and RICP = ∆/Φ(∆). Then, each adversary that has a non-negligible

advantage in IND-ICPAGen,Enc,Φ(k) can efficiently be reduced to an adversary that has

non negligible advantage in IND-CDAA,RICP

(Gen,Enc)(k) and vice versa. The reduction from

IND-ICP to IND-CDAA,RICP

(Gen,Enc)(k) sets m0 := m and m1 := p(m), while the reduction from

IND-CDAA,RICP

(Gen,Enc)(k) to IND-ICP determines p with p(m0) = m1.
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4 Data Outsourcing

4.5.3 Semantic Security Against Adaptive Chosen Keyword Attacks

Goh [89] presents a security notion for index-based searchable encryption schemes. We
give a translation into our formalisms. Trapdoors are translated to a view oracle.

Security Game 14 (IND-CKAA(Gen,Enc,Q)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary A is given input 1k and access to an oracle viewπ·
S (Enc(·,K)).

3. A outputs two plaintexts m0 and m1 of the same length to the experiment. The
adversary must not have queried the oracle for words that are only in one of the
two plaintexts.

4. A is given Enc(mb,K) and access to an oracle viewπ·
S (Enc(mb,K)).

5. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

IND-CKA is a weaker form of Data Privacy. Were the adversary not restricted in
choosing queries (Line 3. in Security Game 14), the notions were equivalent. As in the
case of Curtmola et al.’s notion (Section 4.5.4), we prove the relation of Goh’s notion
to our model without considering this restriction. We point out that one could easily
further generalise our security notions to include this restriction by additionally forcing
queries to adhere to a relation to the data set. However, we decided against this, as the
applications of such restrictions seem limited.

Theorem 15. IND-CKA implies static security.

Proof. Suppose an adversary who has a non-negligible advantage in IND-CDA (Static
Security, Section 4.3.1.) This adversary can distinguish two encrypted databases even
without access to queries. We give a reduction from the IND-CKA experiment:

• Use the view
π·,·
S (Enc(,K)) oracle to provide the Enc(·,K) oracle. (The encrypted

database is part of the server’s input.)

• Forward the challenge data sets from the adversary to the experiment.

• Hand over the challenge Enc(mb,K) from the experiment to the adversary, never
query the view oracle.

• Submit the adversary’s guess as the reduction’s own guess.

Theorem 16. Database privacy implies IND-CKA.
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Proof. Assume an adversary A who who has a non-negligible advantage in experiment
IND-CKA. We give an efficient reduction that breaks database privacy. The reduction
forwards the two challenge data sets from A to experiment D-IND. All queries A executes
using via the view oracle (before and after submitting the two challenge databases) can
easily be simulated by using the oracles from the D-IND experiment (this is because
the set of valid queries in D-IND is a superset of the valid queries in IND-CKA). The
reduction forwards the adversary’s guess b′ to the experiment.

4.5.4 Adaptive Security for Symmetric Searchable Encryption

Curtmola et al.’s notion adaptive indistinguishability security for SSE [64] is also a
security notion for symmetric searchable encryption based on indices.

Security Game 15 (Ind∗SSE,A,(Gen,Enc,Q)(k) [64]).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary A is given input 1k and outputs two plaintexts m0 and m1 of the
same length to the experiment.

3. A is given Enc(mb,K).

4. A can output polynomially many pairs of queries (q0, q1) and is given view
πqb
S (Enc(db,K)).

5. A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b and 0 else.

Note that in Curtmola et al.’s notion, Query Privacy and Data Privacy are intertwined.
Thus, it can not be directly instantiated from our framework. We instead show how his
notion relates to our notions. Ind∗SSE also requires the adversary to only choose plaintexts
and corresponding search queries which have the same views for both databases. This is
a very strict restriction which we do not take into consideration here. We instead focus
on the more general notion.

Theorem 17 (Q-IND ∧ D-IND =⇒ Ind∗SSE). If a queryable outsourcing scheme has
Query Privacy, Data Privacy implies Ind∗SSE.

We prove the statement using a game-hopping technique. The argument is very similar
to the proof of Theorem 12. We only sketch the technique.

Proof. Modify Ind∗SSE so that the challenge oracle always returns view
πq1
S (Enc(d,K)),

independently of b. An adversary who can distinguish between the two games also breaks
query privacy.

Database privacy implies the modified Ind∗SSE experiment. The reduction is straight-
forward. If the adversary against Ind∗SSE requests a view view

πqb
S (Enc(db,K)) for in-

put (q0, q1), the reduction forwards q1 to the oracle of Database Privacy and returns
view

πq1
S (Enc(db,K)).
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Modified Ind∗SSE,A(k) A
1k

(d0, d1)

Enc(db,K)

(q0, q1)

b← {0, 1}

view
πq1

S (Enc(db,K))

b′

Figure 4.5: Sketch for the proof of Theorem 17.

Theorem 18 (Ind∗SSE =⇒ D-IND). Ind∗SSE implies database privacy.

Proof. We give a reduction from database privacy to Ind∗SSE. It is straightforward. When
the adversary against database privacy requests view

πq
S (Enc(db,K)), the reduction fixes

q0 := q1 := q and returns view
πqb
S (Enc(db,K)).

4.6 Searchable Encryption using Directed Acyclic Word Graphs

As another use case for the privacy framework we developed in this chapter, in this
section we feature the security analysis of a searchable encryption scheme. Particularly,
we propose a new class of searchable encryption schemes and give a concrete construction.
Let us first motivate an application for the use case.

Consider an outsourced genome database. A biological research institution wishes to
use a cloud storage service to store its genome database. Researchers desire to search
the uploaded genomes for certain DNA sequences without having to download the whole
genome first. Constructions that rely on search indices are not suited for such a purpose—
one would need to store each genome sub-sequence in the index. (For a genome of length
n, the index were to store O(n+n− 1 + . . .+ 1) = O(n2) keywords.) A pattern-matching
procedure is more efficient in such a scenario. To guarantee the privacy of the outsourced
genomes, they should be kept secret from the cloud provider, e.g. through encryption.

We address the problem of secure exact pattern matching. A user encrypts a long
string he later wishes to query for the occurrence of certain patterns. The patterns
are assumed to be significantly shorter than the string. This encrypted string is then
uploaded to a server. To perform a search, the user interacts with the server in a certain
way. The server should never learn neither the string itself, nor the patterns searched for.

We introduce a primitive for a symmetric searchable encryption for exact pattern
matching. To our knowledge, this is the first such primitive. Further, we offer a
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4.6 Searchable Encryption using Directed Acyclic Word Graphs

construction that realises this primitive. The construction’s query phase is particularly
efficient, as our implementation shows.

In Section 4.6.1, we define a new primitive Exact Pattern Matching for Symmetric
Searchable Encryption (XPM-SSE). In Sections 4.6.2 and 4.6.3, we present our con-
struction SEDAWG and discuss its properties. We describe our implementation in
Section 4.6.4. Lastly, we analyse the security of XPM-SSE schemes in general and
SEDAWG in particular in Section 4.6.5.

This section is based on a Diploma thesis [6], a term paper (“Studienarbeit”) [8], and
an unpublished extended version of a conference paper [5].

4.6.1 Exact Pattern Matching for Symmetric Searchable Encryption

We define a searchable encryption scheme which allows to perform a fulltext search within
encrypted data. To this end, we define exact pattern matching first.

For the remainder of the subsection, if not mentioned otherwise, S will be an arbitrary
string of length n over the alphabet Σ, that is S ∈ Σ∗.

Definition 23 (Exact Pattern Matching (XPM)). A PPT algorithm A is a technique
for Exact Pattern Matching (XPM) over the alphabet Σ if it returns upon input S ∈ Σ∗

and m ∈ Σ∗ the exact number of occurrences of m in S.

Based on the exact pattern matching algorithm, we define Exact Pattern Matching for
Symmetric Searchable Encryption.

Definition 24 (Exact Pattern Matching for Symmetric Searchable Encryption (XP-
M-SSE)). Let S ∈ Σn be an arbitrary but finite string over the alphabet Σ. A tuple
((Gen,Enc,Dec), π = (S,C)) is a Symmetric Searchable Encryption scheme for Exact
Pattern Matching (XPM-SSE scheme), if

• Gen : 1k → {0, 1}k is a PPT algorithm which, given a security parameter k,
generates a key K ← Gen(1k) of length k.

• Enc : Σ∗ × {0, 1}k → {0, 1}∗ is a PPT algorithm which generates a ciphertext
C ← Enc(S,K).

• Dec : {0, 1}∗ × {0, 1}k → Σ∗ is a polynomially-bounded algorithm which outputs
the plaintext S = Dec(Enc(S,K),K) given the cipher text Enc(S,K) and the key
K used for encryption.

• π = (S,C) is a protocol for a pair of machines (server and client) which perform an
algorithm for Exact Pattern Matching. The server S is provided with an encryption
of the string Enc(S,K), the client C is supplied with the search pattern w and
the encryption key K, and outputs the exact number of occurrences of w in S.
With viewπw

S (Enc(S,K)) we denote the totality of the server S’s inputs, received
messages, sent messages and outputs.
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• The client’s output after a successful protocol run is correct and complete with
overwhelming probability, i.e. the output does not lack any correct results and only
contains correct results.

• It has Document Privacy (Definition 30).

In the context of the chapter, the domain of a XPM-SSE scheme is the set of all strings
over a given alphabet ∆ = Σ∗, while the ciphertext space is the set of all binary strings
Γ = {0, 1}∗.

The above-mentioned notion of Document Privacy captures the goal of hiding the
string itself (the “document”) from the adversary. Note that a static security definition
(Definition 13, Section 4.3.1) does not suffice in such an outsourcing scenario we consider
in this section. Suppose a construction that is statically secure, but which performs the
following protocol when querying the string: To execute a query, the client uploads the
decryption key to the server and lets the server decrypt the ciphertext and return the
result. Such a protocol should not be considered secure. Hence, any meaningful notion
must also account for the protocol messages that are exchanged in the evaluation of a
query. We discuss the Data Privacy of XPM-SSE schemes in Section 4.6.5.

4.6.2 SEDAWG: A XPM-SSE Construction

Our searchable encryption scheme is based on the idea to store the encrypted data on the
server and to perform the search on the client. The encryption algorithm uses Directed
Acyclic Word Graphs (DAWGs) to prepare the encrypted data for searching. The actual
search is done by graph traversal: Starting from the root node, one follows the edges of
the DAWG whose labels match the search pattern. When an edge leads into a data block
that is not present on the client, it is downloaded. See Figure 4.6 for an illustration.

Directed Acyclic Word Graphs A DAWG is a data structure derived from a string. It
is similar to the Suffix Tree data structure and reduces the time complexity for several
string operations, such as pattern matching, by making use of pre-computation. DAWGs
were first introduced by Blumer et al. [29]. Our definition follows theirs.

Definition 25 (Endpoint Set). Let x be a substring of a string S. Then

ES(x) := {j | ∃ i : x = S[i..j]}

is called the Endpoint Set for x with respect to S, i.e. the endpoints of all occurrences of
x in S.

The substrings that specify the same Endpoint Set are important for the data structure.
They induce an equivalence class.

Definition 26 (Equivalence Relation ≡ES , Equivalence Class [x]ES ). Two substrings x
and y of a string S are equivalent with respect to ≡ES , if they specify the same Endpoint
Set:

x ≡ES y ⇔ ES(x) = ES(y)
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NS#0 NS#2 NS#0 NS#3 NS#2 NS#1

v1

“ε”

v2

“a”

v3

“an”

v4

“ana”

v5

“anan”

v6

“anana”

v7

“ananas”

a n a n a s

n

s
s

s

Figure 4.6: The DAWG for the input string S=ananas. It consists of seven nodes (v1

to v7) which are mapped to four node sets (NS#0 to NS#3). Each node
is identified by its representative below. The transition edges are drawn as
directed arrows which are labeled with their respective edge labels. Every
outgoing path from v1 is a subword of S.

The equivalence class of x with respect to ≡ES is denoted as [x]ES . The representative of
an equivalence class is defined as the longest substring of that class and is denoted as ←−x .

Definition 27 (DAWG(S)). The Directed Acyclic Word Graph of a prefix-free string S,
DAWG(S ) , is the directed graph (V,E) with

V = {[x]ES | x ∈ substringsS},
E = {([x]ES , [xa]ES ) | a ∈ Σ, x, xa ∈ substringsS ,

←−x 6=←−xa},

where substringsS is the set of all substrings of S.
To give an intuition, the DAWG of a string has its suffixes as its nodes and joins

them by symbols ∈ Σ. It can be interpreted as the Deterministic Finite Automaton that
accepts all substrings of a string.

The equivalence class of the empty string [ε]ES serves a special purpose. The corre-
sponding node will be called the root node in the rest of the section. It does not have
any incoming edges.

With every edge we associate a label.

Definition 28 (Edge Label edgeLabel(e)). Let ([x]ES , [xa]ES ) = e be an edge of the
DAWG(S ) data structure. Then edgeLabel(e) = a is called the edge label of e.

The edge labels are defined in such a way that every path in the graph DAWG(S ) corresponds
to a subword of S. The path that corresponds to S itself plays an important role in the
decryption algorithm of our scheme. We will refer to the edges of this path as natural
edges.
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Definition 29 (Natural Edge). Let ([x]ES , [xa]ES ) = e be an edge of the DAWG(S ) data
structure. If there exists a string w in [xa]ES such that w is a prefix of S, e is called a
natural edge for this graph.

Data Representation

The representation of the DAWG plays a crucial part in our scheme as it strongly influences
the access pattern on data elements when executing a query and thus the security and
performance properties of our encryption scheme. In our XPM-SSE construction, we store
the graph in adjacency lists. For a node v ∈ V of (V,E) = DAWG(S ) the adjacency list
contains one entry for each node w linked to v by an outgoing edge, i.e. it contains one
entry for every edge (v, w) ∈ E. The adjacency list entry associated with edge (v, w) is
referred to as v[w]. Every adjacency list entry contains the following fields:

• edgeLabel

• isNaturalEdge

• targetNodePosition

• targetNodeSetId

Further, we store with every node v a property v.numOccurrs. (This property is only
required if one desires to retrieve the number of occurrences of a given pattern.)

The size of adjacency lists in memory depends on the implementation. In our imple-
mentation (Section 4.6.4) it is

size(v) = constsize + |edges(v)| · entrysize

where constsize is the size of the node’s representation and entrysize is the size of one
adjacency list entry.

Detailed Description of the Algorithms

In this section we describe the Searchable Encryption Scheme (Enc,Dec,Gen, π) by
detailing each algorithm. In our algorithms we make black-box use of an IND-CPA secure
secret-key encryption scheme which we will refer to as (E,D,G) (Section 2.4.1).

Encryption Algorithm Enc The four key steps of the encryption algorithm EncK(S)
are:

1. Construct DAWG(S ) from the input string S. The DAWG is constructed from the
input string S:

(V,E) = DAWG(S )

In our implementation we use the Blumer et al.’s construction algorithm [29].
During the graph generation, the edge labels and natural edge flags are set for each
adjacency list entry v[w]:

v[w].edgeLabel = edgeLabel(v, w)
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and

v[w].isNaturalEdge =

{
true if (v, w) is a natural edge
false otherwise

We set
v.numOccurrs := |ES(x)|

if node v ∈ [x]ES . This is the number of different occurrences of x in S because
every element in ES(x) is one endpoint of such an occurrence.

2. Divide the nodes of the graph into disjoint node sets. The set of nodes V is split
into pairwise-disjoint sets which we call node sets. The set of all node sets is denoted
as N . Every node v ∈ V is assigned to exactly one node set. Each node set is
uniquely identified by an ID from 0, . . . , |N | called the node set ID which we write
as id(ns) for any node set ns ∈ N .

For every node set ns we specify a property size(ns) which is calculated from the
size of the nodes in the node set:

size(ns) =
∑
v∈ns

size(v)

We require that the nodes are assigned to the node sets in such a way that there is
no node set with size greater than a certain threshold s?. To ensure that every node
can be assigned, s? has a lower bound which is the maximum size of an adjacency
list:

s? > constsize + |Σ| · entrysize

The number of node sets |N | is calculated as 2((2|S| − 1) · constsize + (3|S| − 4) ·
entrysize)/s?. This number ensures that every node can be assigned to a node set
while fulfilling the size constraint mentioned above, because 2|S| − 1 is an upper
bound for the nodes, and 3|S| − 4 is an upper bound for the edges of DAWG(S ) as
Blumer et al. show [29].

For every node, we specify a property position(v). It is used for referencing the
node. It depends on the nodes previously added to the node set and is calculated
during the assignment of a node to a node set.

When assigning the nodes to node sets, the root node is assigned to the node set
with ID 0 in a first step. Then for each node v of the remaining nodes, the following
steps are performed:

a) The target node set ns is drawn uniformly at random from a set of possible
target node sets {ns ∈ N | s? ≥ size(ns ∪ v)}

b) Set position(v) := size(ns)

c) Set nodeset(v) := id(ns) and ns = ns ∪ v

3. Augment the adjacency list entries with references to the node set containing the
target node. In this step, the values of the adjacency list fields targetNodeSetId

and targetNodePosition are updated. For every edge (v, w) ∈ E we set
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• v[w].targetNodePosition := position(w), and

• v[w].targetNodeSetId := nodeset(w).

4. Create files from the node sets, pad and encrypt each file independently under the
same key K and output the encrypted data. In this step, nodes that are assigned
to the same node set are encrypted together into one file. For encryption, the
probabilistic encryption algorithm E is used.The following steps are performed for
every node set ns ∈ N :

a) Write the data representation of each node v ∈ ns to the file filens in order of
their position position(v).

b) Pad filens to the size of s?.

c) Encrypt E(filens ,K).

Lastly, all encrypted files are returned, paired with the node set ID of the encrypted
node set. That is, the set

{(E(filens), id(ns),K)}ns∈N

is output.

The pseudocode for this algorithm is shown in Algorithm 1.
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Input: String S ∈ Σ∗, Key K
Output: A set B of files encrypted under K
Data: Set of vertices V , set of edges E, set of node sets N , s?

1 (V,E) := DAWG(S) // Step 1

2 position(◦) := 0
3 nodeset(◦) := 0
4 getNodeSetById(0) := {◦} // Add root node to node set 0

5 foreach v ∈ V do // Step 2

6 ns ← {ns ∈ N | s? ≥ size(ns ∪ v)}
7 position(v) := size(ns)
8 nodeset(v) := id(ns)
9 ns := ns ∪ v

10 end

11 foreach ns ∈ N do // Step 3

12 foreach v ∈ ns do
13 foreach (v, w) ∈ edges(v) do
14 v[w].targetNodePosition := position(w)
15 v[w].targetNodeSetId := nodeset(w)

16 end

17 end

18 end

19 foreach ns ∈ N do // Step 4

20 b := ε
21 foreach v ∈ ns do
22 foreach (v, w) ∈ edges(v) do
23 b⇐ v[w].isNaturalEdge ·
24 v[w].edgeLabel ·
25 v[w].targetNodePosition ·
26 v[w].targetNodeSetId

27 end
28 b⇐ #

29 end
30 b := pad (b, s?)
31 b := EK(b)
32 B := B ∪ {b}
33 end

34 return B

Algorithm 1: Algorithm Enc(S,K).
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Decryption Algorithm Dec

The decryption algorithm reconstructs the input string S from the ciphertext Enc(S,K).
We assume that all encrypted files from Enc(S,K) are available to the client. On a high
level, the algorithm Dec consists of two steps:

1. Reconstruct the set of nodes by decrypting all files of Enc(S,K). For every file
file ∈ Enc(S,K), compute d ← D(file,K) to retrieve the adjacency lists of the
underlying graph.

2. Beginning with the adjacency list of the root node (stored at position 0 in file 0),
follow the natural edge v.naturalEdge of the current node v until you reach the sink
which has no outgoing edge. During the traversal, concatenate edgeLabel(e) of
every followed edge e in the order of traversal.

The pseudocode for this algorithm is given in Algorithm 2.

Input: Set of encrypted files B, Key K
Output: Plaintext S
Data: Set of Nodes V , Set of Edges E, Set of Node Sets N

1 foreach b ∈ B do // Step 1

2 N := N ∪ DK(b)
3 end
4 nsid := 0
5 npos := 0

6 while v := DK( getFileFromServer(nsid))[npos] do // For node ...

7 foreach AdjacencyListEntry e ∈ v do // ...find the matching edge

8 if e.isNaturalEdge then
9 nsid := e.targetNodeSetId

10 npos := e.targetNodePosition
11 S.append(e.edgeLabel)
12 break

13 end

14 end

15 end

16 return S

Algorithm 2: Algorithm Dec(B,K).

Key Generation Algorithm Gen

As the key of our scheme is only applied to E and D, we can use the key generation
algorithm of the underlying encryption scheme G to generate the key, that is

Gen = G.
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Pattern Matching Protocol π

The protocol π of the XPM-SSE scheme ((Enc,Dec,Gen), π) describes how the client C
performs a search operation on the encrypted data Enc(S,K) which is stored on the
server S. Let v0 be the root node. To execute a search for w in S on the encrypted data,
one follows the path v0, . . . , v|m| with edgeLabel(v0, v1) · . . . · edgeLabel(v|w|−1, v|w|) = w.
If it exists, return v|w|.numOccurrs of the node at the end of the path and 0 if such a
path does not exist. In the latter case, continue to retrieve random nodes.

Pseudocode for π is provided in Algorithm 3. See Figure 4.7 for a depiction of the
interaction between client and server.

Input: Graph DAWG(S), String w, Key K
Output: The number of occurrences of w in S
Data: Node v, Boolean matched

1 Node v := getNode(0, 0,K)

2 Integer maxnodes := bs?/(constsize + |Σ| · entrysize)c
3 Integer filenum := 2((2|S| − 1) · constsize + (3|S| − 4) · entrysize)/s?

4 Array[filenum] distribution := [0, . . . , 0]

5 for i ∈ {0, . . . , |w| − 1} do // Scan pattern from left to right

6 foreach AdjacencyListEntry e ∈ v do // For all outgoing edges of v
7 matched := false // reset variable

8 if w[i] = e.edgeLabel then // and find the matching edge

9 v := getNode(edge.targetNodeSetId, edge.targetNodePosition, K)

10 distribution[edge.targetNodeSetId]++
11 matched := true
12 break

13 end

14 end
15 if not matched then // w is not a substring of S
16 for j ∈ {i, . . . , |w| − 1} do // fix the story

17 repeat fid← {0, . . . , filenum} until distribution[fid] < maxnodes
18 getFile(fid) // load file distribution[fid]++

19 end
20 return 0 // No occurrences of w in S

21 end

22 end

23 return v.numOccurrs // w occurs in S

Algorithm 3: Exact Pattern Matching Algorithm πw.

4.6.3 Properties

In this subsection, we discuss our scheme’s correctness and performance.
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Client Server

Key K
String w

ns := DK(N [0])
v := ns[0]

for i ∈ {0, . . . , |w| − 1} do
foreach e ∈ v do
if w[i] = e.edgeLabel then

ns := DK(N [e.targetNodeSetId])
v := ns[e.targetNodePosition]

end

end

end

return v.numOccurrs

Enc(DAWG (S)) = N

Get 0

N [0]

Get e.targetNodeSetId

N [e.targetNodeSetId]

Figure 4.7: General communication pattern for searching S for pattern w. The case of
w 6∈ substringsS is not covered in this example.

Correctness and Completeness

We now show the correctness and completeness of π.

Theorem 19 (Completeness and Correctness of π). Let the server S be provided with
the ciphertext Enc(S,K) and let the client C be supplied with the search pattern w and
the encryption key K. Then C outputs the exact number of occurrences |{i | w =
S[i..(i+ |w| − 1)]}| of w in S after the execution of πw.

Proof. As the algorithm πw always outputs one value, it is trivially complete. To show
the correctness of our algorithm, we use a property of the DAWG that follows directly
from its definition:

w ∈ substringsS ⇔ [w]ES ∈ DAWG(S )

We split the proof into two cases of output:
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• Case 1 (πw = 0): In iteration i the algorithm encountered a node vi such that
there is no outgoing edge e with edgeLabel(e) = w[i+ 1]. Thus, there is no edge
(w[i]ES , w[i+1]ES ) in E. From the definition of the edges it follows that w[i+1]ES 6∈ V .
With the above property of the DAWG, we have that w is not a subword of S and
proved that the output is correct.

• Case 2 (πw 6= 0): The algorithm found a path p = v0, . . . , v|w| with edgeLabel(v0, v1)·
. . . · edgeLabel(v|w|−1, v|w|) = w. From the definition of the DAWG it follows that

w ∈ [w]ES = v|w| and with the above property, w is therefore a subword of S.
The output k = v|w|.numOccurrs = πw is the number of occurrences of w in S by
definition, thus the output is correct in this case.

As any output of the algorithm falls into one of these two cases, we showed the
correctness of the algorithm.

Performance and Space Complexity

For the performance analysis in this subsection, we assume a memory access requires one
time step. Further, we assume that all integers that depend polynomially on the input
length fit into one memory cell. This assumption facilitates the analysis, since pointers,
characters and array indices can be modeled with constant memory.

Theorem 20 (Ciphertext Size). The space complexity of the ciphertext size Enc(S,K)
is ∈ Θ(|S|).

Proof. To see how the ciphertext size |Enc(S,K)| is related to the plaintext size |S|, we
look at how the data is processed by the encryption algorithm Enc. In the first step,
DAWG(S ) is generated from S. As Blumer et al. show [29], this generates a graph
DAWG(S ) for which the number of nodes is bounded by 2|S| − 1 and the number of
edges by 3|S| − 4.

Steps 2 and 3 update fields in the adjacency list entries and do not add to the
ciphertext size. In step 4, every node set is then encrypted to a file which is then
padded to size s? > constsize + |Σ| · entrysize. The number of node sets is |N | =
2((2|S| − 1) · constsize + (3|S| − 4) · entrysize)/s?, such that the total size of all files is
2((2|S| − 1) · constsize · s? + (3|S| − 4) · entrysize) = Θ(|S|).

Absolute values of these figures for our implementation can be found in Section 4.6.4.

Theorem 21 (Execution Time of Enc). The time complexity, i.e. the execution time of
Enc(S,K), is in O(|S|).

Proof. The first step, generating DAWG(S), is bounded by O(|S|) [29]. The second step
iterates through all nodes V whose number is bounded by 2|S| − 1. In each iteration,
the set of all possible target node sets has to be calculated. This can be done in
O(|N |) ∈ O(|S|). Step 3 updates values for all edges E, whose number is bounded by
3|S| − 4. Also, Step 4 iterates through all edges and writes the adjacency lists into files.
Lastly, the set of all files is returned. Its size is |N |, as there is one file for each node set.
In total, the time complexity of the algorithm is bounded by O(|S|).
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Theorem 22 (Communication Complexity of π). The number of messages exchanged
between server S and client C while executing πw is 2|w| = Θ(|w|).

Proof. In Algorithm 3, only the methods getNode and getFile in lines 1, 9 and 18
require communication with the server. Line 1 is only executed once. The other two lines
are included in a for loop which is executed at most |w| times. Furthermore, line 9 is also
nested within a foreach loop, but is at most executed once in this loop because the loop
is escaped after the execution of this line. Line 18 is executed only if matched = false
and in this case line 11 has not been executed. So the predecessing line 9 has also not
been executed. Thus, when reaching line 18 in iteration i, line 9 has been executed i
times, which means that i files have been downloaded. Then, line 18 downloads |w| − i
more files before the execution is stopped in line 19. Thus, the algorithm in Algorithm 3
always loads |w| files, sending one request per file and receiving one reply.

We always download |w| node sets, whether w ∈ S or not. The aim of this action is to
conceal the result from an eavesdropper. If one optimises for performance, it is possible
to transfer less files in many cases. If w 6∈ S, this fact becomes clear before |w| files have
been transmitted. One can then abort the procedure. Also, the implementation of a local
cache for downloaded files may improve performance significantly. In our experiments,
file access times dominated local computation time by far.

4.6.4 Implementation and Benchmarks

We have implemented the proposed scheme in Java and conducted experiments on
different storage backends1. In addition to the local harddisk, we used Amazon’s Simple
Storage Service (Amazon S3)2 and the web hosting service of hosting provider 1&13. S3 is
a cloud storage solution that is accessed via Representational State Transfer (REST) [83].
1&1’s webspace offers a WebDAV [146] interface and the ability to upload compressed
archives and remotely unpack them.

We used the complete genome of the E. Coli bacterium from the Canterbury Corpus [24]
in our experiments. Our implementation can handle arbitrary American Standard Code for
Information Interchange encoded strings. In this specific case, it would have been possible
to specifically tailor the implementation to a smaller alphabet, namely Σ = {a, t, g, c},
and hence reduce memory requirements. However, doing so would have hampered the
generality of our results.

For our measurements we used a dual-core laptop computer clocked at 1.3 GHz with
4 GB of Random Access Memory (RAM), the test data was precomputed on a desktop
computer with an Intel® Core™ 2 Duo Central Processing Unit clocked at 2.66 GHz and
8 GB of RAM. For Internet access we used a consumer-grade DSL connection.

In this section we provide and discuss results for encryption times, memory require-
ments, search and download times and size of the encrypted data in comparison to the

1At the time of this writing, the source code of our implementation is available online at https:

//github.com/jochenrill/sse/.
2http://aws.amazon.com/s3/
3http://www.1und1.info/

96

https://github.com/jochenrill/sse/
https://github.com/jochenrill/sse/
http://aws.amazon.com/s3/
http://www.1und1.info/
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original text. All measurements have been taken using Java’s internal memory and time
measurement methods. In our implementation we use the Advanced Encryption Standard
encryption scheme with a key length of 128 bits in the Cipher Block Chaining mode.
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Figure 4.8: Red circles and left y-axis: The memory needed to store the DAWG, depending
on input file size. The size grows linearly. Overhead is a factor of roughly 1300.
Green triangles and right y-axis: The size of all encrypted data, depending
on input file size. Overhead is a factor of roughly 100.

Figure 4.8 shows the memory needed to store the DAWG for a given text size with red
circles (left y-axis). The measurement has been taken after processing the entire text
and invoking the garbage collector to remove unnecessary objects from the heap. The
size grows linearly with the input size.

Figure 4.8 also shows the size of the encrypted data, which consists of the sum of the
sizes of the created files, depending on the input size (green triangles, right y-axis). The
size of the encrypted data grows linearly with the size of the input text. However, there is
an overhead factor of approximately 100. This is due to the fact that the representation
of every edge in a node set uses 4 Bytes for each the node set reference and the starting
position in a node set and 1 Byte for the edge label. In addition to that, every node
stores its number of occurrences, which also is represented as a 4-byte value. As discussed
in Section 4.6.2, the data has to be padded to its maximum size. To achieve that, it is
assumed that the DAWG is maximal for a given text.

The execution time of a Java program depends on the size of available heap space. It
was set to 3 GB in all our benchmarks. Since all files can be generated directly from the
graph, the total execution time of the encryption very much depends on the device used
to store these files and its write latency and speed. Table 4.1 shows the execution time
for generating the graph in comparison to the time it takes to store the files, depending
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Input [KiB] n/o files Graph [s] Harddisk [s] Amazon [s] 1&1 [s]

5 25 0.201 1.853 16.682 8.113
25 111 0.54 7.634 62.773 39.641
45 197 0.941 10.581 117.432 48.295
65 283 1.227 14.07 168.433 70.328
85 369 1.295 19.267 208.856 89.172

105 455 1.673 21.728 247.127 108.876
125 541 1.927 23.538 306.083 129.077
145 627 2.408 27.423 325.488 149.521
165 713 2.15 31.408 388.904 170.332

Table 4.1: The time needed to upload the files in comparison to creating the graph in
memory, depending on the input file size. The block size is 28 KiB. The
overall execution time is dominated by the time it takes to output the files.
Generating the data structure takes very little time in comparison.

on input file size. The measurements concerning Amazon have been taken using the
jets3t library4 for the Amazon S3 Cloud Service. The measurements for the 1&1 web
space include packing all files into an archive, uploading it using the sardine library5

for WebDAV access and remotely unpacking it again. The table shows that the overall
execution time is dominated by the time it takes to output the files, whereas generating
the data structure takes very little time in comparison. Given the possibility to pack all
files into an archive and unpack it on the backend, the performance is drastically better
than uploading each file individually, since a full run of the authentication protocol for
the backend is needed for each file.

Table 4.2 shows the time it takes to search for a word of a specific length using different
storage backends. The search is performed using a randomly selected set of words and
substrings from the Canterbury Corpus sample. As discussed in Section 4.6.2, the length
of the pattern w equals the number of files which are transferred. Again, the overall
execution time is dominated by the time it takes to access a file on the storage device,
which can be seen when comparing the results to the time it takes to search a word when
using the local harddisk as the backend. To compare our scheme, we also implemented
the trivial approach of uploading the encrypted text and downloading it again to perform
a search on it using the Boyer-Moore algorithm [37], provided by the stringsearch library6

for each backend. The performance of our scheme can compete with that of the trivial
solution for short queries. With long query strings, server response times hamper the
performance of our scheme. The possibility to establish persistent connections with the
backend would drastically improve the performance of our scheme.

4http://www.jets3t.org/
5http://code.google.com/p/sardine/
6http://johannburkard.de/software/stringsearch/
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|w| Amazon [s] Amazon trivial [s] 1&1 [s] 1&1 trivial [s] Harddisk [s]

2 4.29 5.46 2.02 4.50 0.32
3 4.70 5.40 2.13 4.50 0.39
4 5.27 5.38 2.29 4.49 0.44
8 6.61 5.36 2.72 4.43 0.47

16 9.47 5.37 3.62 4.44 0.64
32 16.68 5.46 5.47 4.28 0.77
64 29.28 9.12 9.14 4.38 1.20

Table 4.2: The average search time using different backends in comparison to a trivial
search. Values show the average of 10 samples. The overall execution time is
dominated by the time it takes to access a file on the storage device.

4.6.5 Security

We now analyse the security of our construction.

Data Privacy

In Section 4.6.2, we proposed a XPM-SSE scheme. We now analyse its security properties,
namely that of Data Privacy. We define PrivKcppa, a flavor of D-IND (Definition 14).
It allows for the adversary to submit multiple search queries, but to receive only one
transcript of the client-server communication of his choice.

Also, we grant the adversary access to any transcripts for plaintexts he supplies.

We define the security game PrivKcppa as a direct instantiation of D-INDA,Rd,n1,n2,n3

(Gen,Enc,Q) (k)

with parameters Rd = {d0, d1}, |d0| = |d1|, n1 = poly(k), n2 = 1, and n3 = poly(k)
(where poly is any fixed polynomial).

Security Game 16 (PrivKcppa
A,Enc(k)).

1. The experiment chooses a key K ← Gen(1k) and a random bit b ← {0, 1}.

2. The adversary receives oracle access to viewπ·
S (Enc(·,K)), and continues to have

access to it.

3. A outputs two plaintexts m0 and m1 of the same length to the experiment.

4. A outputs a number of queries x0, . . . , xq and an integer i ∈ {0, . . . , q} to the
experiment.

5. The queries x0, . . . , xq are evaluated in that order.

6. A is given the view on the challenge ciphertext to query i: view
πxi
S (Enc(mb,K)).

7. A submits a guess b′ for b.
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The result of the experiment is 1 if b′ = b and 0 else.

Definition 30 (Document Privacy). A scheme ((Gen,Enc,Dec), (S,C)) has Document
Privacy if for all PPT adversaries A there exists a negligible function negl such that

Pr
[
PrivKcppa

A,Enc(k) = 1
]
≤ 1

2
+ negl(k).

We now present our result that our construction SEDAWG from Section 4.6.2 has
Document Privacy.

Theorem 23 (SEDAWG has Document Privacy). Our construction SEDAWG has
Document Privacy if (E,D,G) is a IND-CPA secure scheme.

Proof. Suppose (E,D,G) is a IND-CPA secure encryption scheme and A is a PPT
adversary who can win game PrivKcppa

A,Enc(k) (Security Game 16) with non-negligible

probability. In PrivKcppa
A,Enc(k), A receives one encryption Enc(mb,K) and one server’s

view to a protocol run view
πxi
S (Enc(mb,K)). He then outputs a guess b′ for b.

The server’s view of a protocol run consists of the IDs of the requested files and the files
themselves. Consider a modification of the game, PrivK′cppaA,Enc(k): Instead of Enc(mb,K)

and view
πxi
S (Enc(mb,K)), the adversary is sent the encryption of a zero string with the

same length as m0 and m1: Enc(0|m0|,K). Also, view
πxi
S (Enc(mb,K)) is altered in such a

way that the transmitted files are taken from Enc(0|m0|,K) instead of Enc(mb,K) (“so the
story fits”). Call A’s output from the modified game b′′. Because (E,D,G) is IND-CPA
secure, A cannot distinguish Enc(mb,K) from Enc(0|m0|,K). Hence, b′′ is statistically
close to b′.

In a second modification PrivK′′cppaA,Enc(k), we replace the IDs from the server’s view
with random IDs (chosen uniformly at random from the set of available file IDs, without
replacement), except for the first request—the file ID that is first requested is always
0. Call A’s output from this modified game b′′′. Because the original file IDs have been
chosen in the same manner as the IDs in our modified game (see the description of Enc
in Section 4.6.2, Step 2, and the pseudocode in Algorithm 1) and the adversary is only
supplied with one view, her output b′′′ is again statistically close to b′′.

Following our argument, if the adversary’s output in PrivKcppa
A,Enc(k) is correlated to b,

its output in PrivK′′cppaA,Enc(k) is also correlated to b. But in PrivK′′cppaA,Enc(k), A receives no
input that correlates with b. This is a contradiction.

Query Privacy

In Section 4.6.2 we presented SEDAWG, a XPM-SSE scheme that has Document Privacy,
i.e. keeps the outsourced string private from the server, even in the presence of a (single)
query. It seems natural to ask whether the construction also has some form of Query
Privacy (Definition 15) and hides the search pattern. In this subsection we investigate
that question.
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Theorem 13 (Section 4.5.1) states that Query Privacy is equivalent to (single-server)
PIR. Private Information Retrieval schemes, on the other hand, have a lower bound
for the server’s computational complexity which is linear in the document size [185].
Assuming the search pattern is substantially shorter than the document itself, SEDAWG
imposes a far lower computation complexity on the server: it is linear in the length of
the search pattern. It follows that SEDAWG cannot have Query Privacy. Indeed, one
can easily construct a PIR scheme given an XPM-SSE scheme that has Query Privacy.

Theorem 24. Any efficient XPM-SSE scheme that has Query Privacy yields an efficient
PIR scheme.

Proof. To prove the theorem, we give a construction using a XPM-SSE scheme and show
that it achieves PIR. We show how to construct a string from a binary database with
n entries. We then explain how to perform a database query and how to interpret the
result.

i 0 1 2 3 4 5
D[i] 1 0 1 0 1 0

⇒ !000$ !010$ !100$

Figure 4.9: Example database with the corresponding string to be used for a database
retrieval with a XPM-SSE scheme.

The alphabet for the XPM-SSE construction is Σ = {0, 1, !, $}. Construct S as follows:
Start with an empty string S. Iterate i through {0, . . . , n− 1}, and, if D[i] = 1, append
the binary encoding of !i$ (with leading zeroes to hide the size of i), to S. Output S.
(See Figure 4.9 for an example.) To retrieve bit i from S (stored on the server), run the
search protocol for the binary encoding of !i$. If the search is a success, the retrieved bit
is 1 and 0 otherwise.

The query results of the XPM-SSE scheme are, per definition, complete and correct.
By construction, the binary encoding of i is ∈ S iff D[i] = 1. It follows that the above
construction delivers correct results.

Assume a successful adversary A against the PIR construction above. We show that a
successful adversary AQ against Q-IND exists.

As per Definition 21, there are n,N ∈ N, d ∈ {0, 1}n, i, j ∈ {0, . . . , n− 1} such that for
all k > N∣∣Pr

[
A(viewπi

S (Enc(d,K))) = 1
]
− Pr

[
A(view

πj
S (Enc(d,K))) = 1

]∣∣ ≥ 1

max(k, n)c
.

We discuss the case that

Pr
[
A(view

πj
S (Enc(d,K))) = 1

]
− Pr

[
A(viewπi

S (Enc(d,K))) = 1
]
≥ 1

max(k, n)c
.

The other case is symmetric. (For each adversary AQ there is an “inverted” adversary
AQ that outputs the exact opposite.)
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AQ outputs πi and πj as the challenge, requests viewπb
S (Enc(d,K)) from the challenge

oracle and returns A’s output A(viewπb
S (Enc(d,K))) as his guess b′. Observe that A is

run on view
πj
S (Enc(d,K)) if b = 1, and on viewπi

S (Enc(d,K)) else (?).
Let Pr [b′ ← A] denote the probability that A outputs guess b′ in Q-IND. Now consider

Pr
[
Q-INDAQ(k) = 1

]
= Pr [b = 0 ∧ 0← AQ] + Pr [b = 1 ∧ 1← AQ]

=
1

2
Pr [0← AQ | b = 0] +

1

2
Pr [1← AQ | b = 1]

=
1

2
(1− Pr [1← AQ | b = 0]) +

1

2
Pr [1← AQ | b = 1]

=
1

2
+

1

2
(Pr [1← AQ | b = 1]− Pr [1← AQ | b = 0])

(?)
=

1

2
+

1

2

∣∣Pr
[
A(view

πj
S (Enc(d,K))) = 1

]
− Pr

[
A(viewπi

S (Enc(d,K))) = 1
]∣∣

≥ 1

2
+

1

2 ·max(k, n)c
.

Thus,
∣∣Pr
[
Q-INDAQ(k) = 1

]
− 1

2

∣∣ is not negligible in k.
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It may be the warriors who get
the glory. But it’s the engineers
who build societies.

(B’Elanna Torres, Star Trek:
Voyager, Flesh and Blood)

Free elections are the backbone of a democracy. In traditional elections, voters fill out
their ballot in a voting booth to ensure the privacy of the vote. Because traditional
presence elections are tedious, there is a significant interest in carrying out elections over
the Internet. It seems impossible to give the same privacy guarantee that a voting booth
does in an online setting. Further, advances in consumer electronics even call the privacy
of the voting booth into question. To sell their vote, voters can easily record their choice
with their smartphone [26, 195].

To mitigate these problems, several solutions have been developed to make elections
resistant against such attacks. Fake credentials [121, 122] and revoting [195, 197] are
two of these. While fake credentials successfully disable the adversary from obtaining a
voter’s credential by coercion, they are contradictory to a meaningful response whether
the ballot has been cast successfully. Revoting, on the other hand, allows for a meaningful
response.

The idea behind revoting is that, if a voter is allowed to supersede her vote arbitrarily
many times, she effectively cannot be coerced. We stress, however, that this proposed
revoting must be perfectly deniable—no party, including all servers, must be able to tell
whether a coerced voter has evaded coercion by revoting.

As a side-effect, deniable revoting is applicable to elections which allow the voter to
change her mind after casting a legit vote. An example for this is delegated voting [100,
161], in which the voter can delegate her vote to a so-called proxy, who then votes in her
stead. She can later overwrite this delegation with a new delegation or by casting a vote
by herself.

We investigate deniable revoting as a strategy for evading coercion. We build upon the
well-known work of Juels, Catalano, and Jakobsson [121, 122]. Specifically, we adapt their
definitions of correctness and coercion resistance to include revoting and its deniability.
While their construction enables voters to re-cast their vote, their security model does
not account for revoting as a strategy to evade coercion. Indeed, their construction allows
the adversary to observe whether a ballot is superseded. We present a tallying protocol
which allows voters to deniably re-cast their votes, thus making revoting a viable strategy
to evade coercion. The macrostructure of our protocol is the same as that of Juels et al.,
hence it is compatible with fake voter credentials. To facilitate a simpler exposition, we
do not investigate the possibility of offering both evasion strategies simultaneously.
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We present a method for counting votes which ensures the deniability of revotes, and
prove the correctness of our protocol as well as the deniability of revoting. This work
seeks to serve as a proof of concept and does not claim to provide an efficient solution.

Existing protocols that allow revoting either do not achieve both deniability and public
verifiability at the same time, or require the voter to remember some information about
previous votes [145]. To the best of our knowledge, we are the first to propose a publicly
verifiable method for enabling deniable revoting without requiring the voter to save state
between votes.

There is one caveat to the revoting approach. If a coercer observes the voter’s behaviour
until after the polls close, the voter cannot re-cast her vote and thus revoting does not
work as a strategy for evading coercion. This caveat applies to the strategy in general
and thus cannot be remedied by any protocol. For this reason, our adversarial model
does not allow the adversary to observe the voter’s behaviour indefinitely—he must give
up his control before the polls close. On the other hand, a coerced voter does not employ
any evasion strategy during adversarial observation—she submits to the adversary’s
instructions completely.

After discussing related work in Section 5.1, we sketch our construction in Section 5.2
and discuss authentication in 5.3. We introduce the adversarial model and underlying
assumptions in Section 5.4. In Section 5.5, we adapt the security notions of Juels et
al. [122] to model deniable revoting. We present our voting scheme and prove its security
in Section 5.6.

This chapter has been published in a journal article [2].

Juels, Catalano, and Jakobsson’s Approach Let us briefly recap the approach of Juels,
Catalano, and Jakobsson. To cast a vote, voters post their ballot on a public bulletin
board, together with proofs of knowledge of their credential and the validity of their
choice. After the voting phase, the tallying authority computes the tally in five steps:

1. Check proofs: The tallying authority checks all proofs associated with the ballots
and discards ballots with invalid proofs.

2. Remove duplicate ballots: At most one ballot per credential is kept. To identify
duplicate ballots, Plaintext Equivalence Tests (PETs) are employed on the encrypted
voter credentials. For a pair of ballots with identical voter credentials, a pre-
determined policy decides which ballot is kept.

3. Shuffle: The remaining ballots are shuffled.

4. Check credentials: The tallying authority discards ballots with invalid voter cre-
dentials.

5. Tally: All remaining valid ballots are decrypted and counted.

This solution uses fake credentials as a strategy to evade coercion. Revoting is supported
in the sense that double votes are handled. However, voters cannot plausibly deny having
revoted—this is not the aim of the construction. Imagine an adversary forcing a voter to
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cast a certain ballot in his presence. Since the ballots are only shuffled (Step (3)) after
duplicates have been removed (Step (2)), the adversary can easily monitor if his observed
ballot is deleted. This way, the adversary can deduce that the coerced voter has later
cast a ballot with the same credential. This does not impose a problem in Juels et al.’s
approach—the observed ballot was cast with a fake credential, and does not need to be
superseded to evade coercion. To employ revoting as a strategy for evading coercion
however, the sorting process must ensure its deniability. A first step is to shuffle the list
of ballots before removing duplicates. This conceals the chronological order of ballots,
however. For two ballots cast with the same credential, it cannot be determined anymore
which one was cast more recently. We devised a method of an “encrypted labeling” which
allows voters to privately re-cast their ballot, while preserving enough information about
the chronological order of ballots.

5.1 Related Work

One can think of coercion resistance as an extension of ballot privacy. The basic idea is
that if no adversary can learn the voter’s choice, he cannot blackmail her into picking a
particular choice. Further, when the voter receives no documentation of her vote—i.e.
when the scheme is receipt-free—she cannot even willingly collaborate with the adversary
by selling proof of her choice. The notion of coercion resistance even further takes
into account that the adversary might try to influence the casting of the vote, which
is a reasonable assumption for Internet voting schemes. Delaune et al. [68] show that
coercion resistance implies receipt freeness, which in turn implies vote privacy. More
recent work by Küsters et al. [143] reveals that the relationship between privacy and
coercion resistance is more subtle.

Coercion Resistance Various definitions of coercion resistance and verifiability of e-
voting schemes exist in the literature [40, 68, 141, 144, 162, 194]. Several of them are
also applicable to our voting scheme. However, because our work aims to extend the
work of Juels et al. [122], we stay close to their model for better comparability.

By introducing the caveat coercitor [101], Grewal et al. relaxed the requirement of
coercion resistance to coercion evidence: a voter can be coerced, but the coercion is
detectable. Their work addresses the problem of silent coercion, where the voter loses
her credential to the adversary without noticing. With their approach, changing one’s
mind and overwriting a legit ballot is not possible (it would be recognised as a coercion
attempt). Our work, in contrast, does not investigate the problem of silent coercion.

A number of voting schemes have been proposed that provably offer coercion resistance.
For example, Bohli et al.’s Bingo Voting [33, 105] is coercion-resistant, except for forced
abstentions, as Küsters et al. [144] show. They also prove the coercion resistance of
Scantegrity II [55, 142], with the same exception. Kempka [133] proposes a fuzzy tally
representation that maintains coercion resistance even when one accounts for forced
abstentions. We note that fuzzy tally representations are compatible with a wide array
of constructions, including that of Juels et al. and our own. Delaune et al. [68] show that
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the scheme due to Lee et al. [149] is coercion-resistant. Juels et al.’s construction [122] is
also coercion-resistant. (On a side note, it is not immediately apparent how the different
notions of coercion resistance relate.)

Revoting The importance, advantages and challenges of revoting were discussed by
Volkamer and Grimm [197], as well as by Post [195], though no solution for deniable
revoting was given. Several Internet voting schemes allow for revoting, not necessarily
only as a defense against coercion. Neither of the voting schemes known to us uses a
revoting strategy which is both deniable and publicly verifiable, while not requiring the
voter to save state between votes. For example, in Kuty lowski and Zagórski’s scheme [145],
in order to revoke her vote, the voter must reproduce the random challenge from the
casting protocol. They further do not provide a formal proof of coercion resistance for
their scheme. In a similar vein, Spycher et al. [189] propose a hybrid voting system
where the voter can overrule her online vote in person. To this end, she must produce a
re-encryption of the ballot formerly posted.

The election of the president of the Université Catholique de Louvain in 2008 was
conducted using an adapted version of Helios [12]. Because of the election’s low risk of
coercion attempts, revoting was supported mostly for convenience. Newer ballots of a
voter substituted her older ballots on the bulletin board, so revoting was not deniable.
The voting scheme designed for the 2011 local government elections of Norway [88]
supports non-deniable revoting. Verification is done by auditors, who can see the number
of votes of the same voter. The Riigikogu Election Act requires the possibility to revote
for the Estonian election [175], but to the best of our knowledge, no deniable solution is
offered [152].

As described in more detail above, the work of Juels et al. [121] supports revoting
in principle, but since their work concentrates on fake voting credentials as a strategy
to evade coercion, no deniable revoting strategy is proposed. Fake voting credentials
are an important alternative approach for achieving coercion resistance. After the work
of Juels et al. [121] and its implementation Civitas [165], two password-based voting
schemes, Selections [58, 59] and Cobra [77], were published. They use panic passwords as
fake credentials, which can easily be created by a human. Selections is proven secure
in an adapted version of the model introduced by Juels et al. [122]. Verifiable revoting
is possible in both Selections and Cobra, but the number of votes cast with the same
credential, or the fact that a certain ballot has been superseded, is not hidden. Efficiency
improvements of Juels et al.’s voting scheme [122] were proposed by Araújo et al. [15],
using another form of fake credential, and by Smith [187], who introduced a faster
removal procedure of duplicate ballots. Revoting is supported, but not deniable. The
fake credential approach avoids the problem of coercions occuring shortly before the end
of the voting phase. However, the voter receives no reliable confirmation whether her
vote was cast properly. Particularly, systems that rely on human memory suffer from a
high probability of error. Panic passwords for example pose the risk that the voter uses
a fake credential without noticing.
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5.2 Achieving Deniable Revoting

In this section we sketch the challenges of deniable revoting, and how to overcome them,
in more detail. For revoting to be suitable as a strategy for evading coercion, the voter
must be able to deniably do so. Intuitively, we say a voter can deniably re-cast her vote
if no adversary can, by his observations, tell whether she did. At the same time, we still
require the tally to be computed correctly. In particular, at any time during the voting
period, for each participating voter who has already cast a vote, there is exactly one
valid ballot (i.e. one ballot which counts as long as it is not superseded), so a re-cast
ballot must invalidate this one ballot with matching voter credentials, and become the
new valid ballot corresponding to this credential. These requirements impose several
privacy challenges on the tallying process.

More concretely, the deniability requirement of the revoting process implies that the
adversary must not be able to figure out how often a certain voter has re-cast her ballot.
Further, he must not even infer which of the voters did revote at all. Also, if he can
tell whether any particular ballot is part of the final tally, revoting is not deniable.
Nevertheless, to maintain the universal verifiability of the tally, the correctness of each
tallying step must be transparent. To give an intuition for the subtle challenges of
authenticating re-castable ballots, we describe two exemplary attacks.

For the first example recap the attack described in the former section. There, the
adversary is forcing the voter to cast a ballot in his presence. He can then observe the
ballot appearing on the bulletin board right after. If this particular ballot is deleted or
marked as invalid in the tallying process, he can deduce that his coercion attempt was
not successful. As mentioned above, we employ encrypted labelling and re-encryption
mixes after the casting phase to solve this problem.

While Step (2) in Juels et al.’s construction (see Section 5) does hide the identity
of voters with duplicate ballots, it leaks information about the number of removed
duplicates per credential. Consider the following attack, which is similar to the “1009
attack” described by Warren Smith [187]: The adversary forces the voter to vote, in
his presence, a number of times no other voter is likely to vote, e.g. exactly 1009 times.
During the tallying phase he then verifies that the tallying authority indeed identifies
1009 duplicate ballots for some credential. This becomes fatal in the absence of fake
credentials1: the adversary can be sure that the coerced voter did not revote after casting
her vote in the adversary’s presence. Consequently, a tally which supports deniable
revoting must even hide the number of revotes any voter has cast. We achieve this
by anonymously checking ballots two-by-two for matching voter credentials, to avoid
grouping ballots with the same credential.

As we detailed above, the ballots on the bulletin board must be shuffled before
discarding superseded ballots. Because the chronological order of ballots is not retained
in the shuffling process, we “memorise” the information whether a ballot was superseded
with an encrypted label: Before shuffling, for each ballot we calculate an encrypted value

1As Smith describes, this attack is fatal for fake credentials, too: if the adversary can infer that a heap
with 1009 ballots is discarded because of an invalid credential, the adversary knows the credential
presented to him was a fake one.
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oi which is computed in a verifiable way by comparing voter credentials pki/pkj between
the current ballot bi and each more recent ballot bj . The ballots themselves are not
shuffled until oi is computed for all ballots. Only then we shuffle the encrypted choice
together with the oi tag.

12 = 81 · 53 · 87 · 48 mod N
↓ ↓ ↓ ↓

1 = 1 · 1 · 1 · 1 mod N

(a) Ballot is not superseded. No factor equals
1.

25 = 81 · 53 · 1 · 48 mod N
↓ ↓ ↓ ↓

139 = 1 · 1 · 139 · 1 mod N

(b) Ballot is superseded once. One factor
equals 1.

Figure 5.1: One cannot tell from a product if one of the factors was = 1. To exploit
the homomorphic property of the encryption, we swap the encryption of an
arbitrary number with an encryption of a 1 and vice versa. Now one can tell
from the product whether one of the factors was 6= 1.

We briefly sketch our construction. To make the duplicate test private, we mark each
ballot with the encrypted information oi whether there is another ballot that supersedes
it. We compute oi by comparing each ballot with each subsequent ballot. To do so in a
publicly verifiable and private manner, we run an Encrypted Plaintext Equivalence Test
(EPET) on the credentials. An EPET receives two ciphertexts as input, and outputs an
encryption of a 1 if the contained plaintexts are equal, and the encryption of an arbitrary
number otherwise. We compare ballot i with each subsequent ballot by comparing its
voter credential Enc(pki) to the credentials Enc(pki+1), Enc(pki+2), etc. using an EPET.

A ballot is superseded if and only if its voter credential is equal to that of at least
one newer ballot. We seek to exploit the homomorphic property of the encryption to
aggregate the comparison results without revealing the result of any single comparison. A
single EPET result is the encryption of a 1 iff the voter credentials of the ballots match.
Thus, our goal is to determine for a number of EPET results whether at least one of them
encrypts a 1. We cannot exploit the homomorphic property of the encryption directly,
since a factor of 1 does not change the product (see Figure 5.1). As a remedy, we “convert”
the values: We swap an encryption of a 1 with an encryption of an arbitrary number
and vice versa. Now the product oi tells us whether at least one factor is not equal to
1—if so, oi 6= Enchom(1) and the ballot is superseded, otherwise oi = Enchom(1) and the
ballot is counted. We stress that the content of oi is hidden by the encryption. Before
checking oi to potentially remove a ballot, the ballot’s connection to its appearance on
the bulletin board at the time of casting is broken by shuffling and re-encryption.

Our protocol results in a list of ballots containing the newest, valid, encrypted choice of
each voter, and security is proven up to this point. From there, ballots can be tallied in an
arbitrary way, using standard techniques like decryption mixes or homomorphic tallying,
depending on the form of the choice. Security in combination with our protocol is then
given by the security of the tallying procedure. As a consequence, our protocol supports
arbitrary election formats, including Single Transferable Vote (STV) [107] or write-in
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candidates. However, our security definitions do not take into account information which
is leaked by the tally result itself, which is possibly published in the form of decrypted
votes. Information leaks like names of write-in candidates or a preference order can
impede a voter’s privacy. This problem is shared by any voting scheme which publishes
the tally result or decrypted ballots, and needs to be accounted for separately by the
tallying procedure.

5.3 Authentication for Coercion-Resistant Voting Schemes

All voting schemes use some method to authenticate voters. Even in elections where
everybody is eligible to vote, authentication is necessary to make sure that of each voter
only one vote is counted. Voter authentication can—in principle—follow any of three
paradigms: authentication using something you know, something you have, or something
you are. There are two properties of the authentication mechanism which are of grave
importance for any voting scheme, regardless of the paradigm used: First, the adversary
must not be able to impersonate the voter (e.g. by learning her secret key). Second, the
adversary must not be able to prevent the voter from authenticating (e.g. by stealing her
authentication token). We call an authentication inalienable when both properties hold.
They are necessary conditions for the incoercibility of the voter. After a ballot is cast
however, authentication and thus its inalienability lose their relevance. In an election
which offers revoting, ballots are only ultimately cast when the polls close. Hence, any
voting scheme that offers revoting requires the inalienability of the authentication until
the polls have closed.

Revoting Versus Fake Credentials Fake credentials and revoting are complementing
strategies. While handing out fake credentials protects the confidentiality of the voter’s
true credentials, re-casting ballots “undoes” an adversary’s coercion attempts. If the
adversary cannot learn whether the voter has re-cast her ballot, revoting is a valid
strategy for evading coercion.

A voting scheme can only support fake credentials if it does not provide any feedback
on whether the voter authenticated successfully. Consequently, the voter does not learn
whether her ballot was cast correctly. As Juels et al.’s construction uses fake credentials
as a countermeasure against coercion, it has this property. Since our construction is an
extension of theirs, their strategy for producing fake keys also works for our scheme. On
the other hand, to give feedback about the success of authentication, one can publish the
list of all registered voters and their public keys before the voting period—eliminating
fake credentials as a strategy for evading coercion.

The fake credential strategy is an effective means to make the authentication inalienable,
thus helping to achieve coercion resistance. For the strategy to work however, the
adversary must not take total control over the voter’s actions, even if only temporarily.
On the other hand, the revoting strategy requires an inalienable authentication, but
achieves a form of coercion resistance that is robust even against temporary-but-perfect
corruption.
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5.4 Adversarial Model and Assumptions

Our protocol is divided into five phases: A setup phase, a registration phase, a publication
phase, the voting phase, and finally a tallying phase. We describe the phases in detail
in Section 5.6.3. The tallying authority gets a key pair (PK T , SK T ) during the setup
phase. The secret key SK T is shared among the servers which make up the tallying
authority. In the registration phase a registrar R creates a public key secret key pair
(pk i, sk i) for each voter.

Let bi denote a ballot which is published on a bulletin board BB, where i ∈ {1, . . . , n}
and let tsi denote the point in time when bi has been published. The ballot represents
the voter’s choice βi ∈ C = {c1, . . . , cnC}. We describe the ballot in detail in Section 5.6.3.
Overall nV voters participate in the election. Let nA denote the number of voters which
are completely controlled by the adversary A. Considering the adversary tries to coerce
exactly one voter, there are nU = nV −nA− 1 voters which add noise to the tally X. The
noise (choices of these voters) is defined by the distribution DnU ,nC which we describe in
Section 5.5.

In the experiments Expcorr
ES,A, Expver

ES,A, Exprevoting-c-resist
ES,A,H , Exprevoting-c-resist-ideal

ES,A,H we use
security parameters k1 for the registration, k2 for the voting function, and k3 for the
tallying process.

5.4.1 Adversarial Model

The adversary may corrupt a minority of the servers forming the tallying authority. He
may also corrupt a number of voters and act in their place. Then, the adversary selects
one (uncorrupted) voter he tries to coerce. In contrast to the model of Juels et al., we
allow the coercion to be perfect—the coerced voter does exactly as told by the adversary.
The adversary does not learn the voter’s secret key, however. (See Section 5.4.2 for details
on this assumption.)

Further, we require all adversarial control of the coerced voter, including direct
observation, to end before the polls close. More concretely, we enable the coerced
voter to re-cast her vote in secret. Intuitively, if the adversary cannot infer whether the
coerced voter has re-cast her vote after his coercion attempt, we say the scheme offers
deniable revoting. Clearly, revoting offers no protection against adversaries who observe
or control the voter until after polls have closed.

5.4.2 Assumptions

We rely on various assumptions for our construction.

• Voter List. We assume an accepted voter list, i.e. there is a general agreement on
who is allowed to vote.

• Bulletin Board. As is common for electronic voting schemes, we assume a publicly
accessible append-only bulletin board. Anyone can read and append to the bulletin
board, but no party can remove data from it.
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• Authentic Timestamps. To ensure the correct order of votes, we rely on correct
timestamps. Without loss of generality, we further assume that timestamps are
unique.

• Anonymous Channel for Voters. To cast a vote, voters post their ballot to the
bulletin board during the casting phase. For the votes to remain anonymous, we
assume an anonymous channel the voters have access to.

• Inalienable Secret Credentials. In our construction, with each voter we associate
a secret that she uses to authenticate her vote. The secret is used as a signature
key for ensuring the integrity of the ballot. Also, the corresponding public key
is contained on the ballot in encrypted form. In a practical realisation of our
scheme, one would have to take special precautions to guarantee that the adversary
can neither learn the secret credential nor deny the voter access to it. Realising
this assumption is outside the scope of this work. However, we point out that the
assumption can be argued for: The election secret could be stored on a tamper-proof
device that also serves a different function (e.g. a federal identity card), such that
the voter cannot reasonably be without it. Voters would have reservations against
handing out such a device (see also Section 5.3).

5.5 Security Notions

To model voter behaviour when one is allowed to re-cast one’s vote, we define DnU ,nC to
be a distribution over all vectors over all (bounded) series of all candidates, including
abstentions and invalid votes. Let φ denote the null ballot (abstention) and λ an
invalid ballot. Then DnU ,nC is a distribution over vectors ((β1)j , (β2)j , . . . , (βnU )j), βi ∈
(C ∪ {φ, λ}). For technical reasons, the length of the vote series is bound by a constant,
lest the length of the voter’s choices exceeds the runtime of all machines involved. In
practice, one can imagine this bound to be the number of nanoseconds between the start
of the voting period and its end, for example.

Further, we define the number of uncertain votes, i.e. votes cast by voters not under
adversarial control or coercion, as nU := nV − nA − 1. For any experiment ExpxA,
where x ∈ {corr, ver, revoting-c-resist, revoting-c-resist-ideal}, we define the adversary’s
success probability as SuccxA(k1, k2, k3, nV , nC) := Pr [ExpxA(k1, k2, k3, nV , nC) = 1]. All
algorithms are implicitly assumed to be Probabilistic Polynomial Time (PPT).

Let, for the remainder of the chapter, register, vote, tally be shorthand for voter
registration, the voting procedure, and the tallying procedure, respectively.

5.5.1 Correctness

Our notion of correctness follows that of Juels et al. We model voters not as posting one
ballot, but a series of ballots. The adversary may corrupt a number of voters and vote in
their place. We call a tally correct when, regardless of the behaviour of corrupted parties,
the last ballot, and only the last ballot, of each voter is counted. See Security Game 17
for Experiment Expcorr

ES,A.
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Intuitively, Security Game 17 works as follows:

1. The voters are registered.

2. A corrupts voters.

3. A chooses votes for uncontrolled voters.

4. The honest voters cast their ballots.

5. BB is tallied honestly, leading to the grand total X and a proof P .

6. The adversary posts additional ballots on BB.

7. A second grand total X′ (and corresponding proof P ) is computed.

The adversary wins if X 6= X′.

Security Game 17 (Expcorr
ES,A(k1, k2, k3, nV , nC)).

1. {(sk i, pk i) := register(SKR, i, k1)}nV
i=1

2. V := A({pk i}
nV
i1
, “choose controlled voter set”)

3. {βi,j}i 6∈V := A(“choose votes from uncontrolled voters”)
4. BB ⇐ {vote(sk i,PK T ,BB, nC , βi,0, k2)}i 6∈V
5. (X, P ) := tally(SK T ,BB, nC , {pk i}

nV
i1
, k3)

6. BB ⇐ A(“cast ballots”,BB)
7. (X′, P ′) := tally(SK T ,BB, nC , {pk i}

nV
i1
, k3)

The result of the experiment is 1 if verify(PK T ,BB, nC ,X′, P ′) = 1 and ({βi,0 6⊂
〈X′〉 or |〈X′〉| − |〈X〉| > |V |). It is 0 else.

A voting protocol is correct if SucccorrES,A(k1, k2, k3, nV , nC) is negligible in k1, k2, k3 for
any adversary A.

5.5.2 Verifiability

We adopt Juels et al.’s notion of verifiability. See Security Game 18 for Experi-
ment Expver

ES,A. A voting protocol is verifiable if SuccverES,A(k1, k2, k3, nV , nC) is negligible
in k1, k2, k3 for any adversary A. The intuition behind Security Game 18 is:

1. The voters are registered.

2. The adversary A concocts the full election. X is a manipulated grand total, P a
corresponding proof.

3. The votes on BB are tallied. X′ is the grand total of an honest tally and P ′ the
corresponding valid proof.

The adversary wins the game if his faked grand total X differs from the honest grand
total X′ and proof P is valid.
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Security Game 18 (Expver
ES,A(k1, k2, k3, nV , nC)).

1. {(sk i, pk i) := register(SKR, i, k1)}nV
i=1

2. (BB,X, P ) := A(SK T , {(sk i, pk i)}
nV
i=1, “forge election”)

3. (X′, P ′) := tally(SK T ,BB, nC , {pk i}
nV
i1
, k3)

The result of the experiment is 1 if X 6= X′ and verify(PKT ,BB, nC ,X, P ) = 1. It
is 0 else.

5.5.3 Deniability of Revoting

Similarly to how Juels, Catalano, and Jakobsson model coercion resistance, we model
the deniability of revoting as two experiments following the “real-world-ideal-world”
paradigm: Even in a “flawless” voting scheme some information leaks—the total number
of cast ballots, the tally, and possibly even who participated in the vote. When measuring
the advantage of the adversary, we seek to factor out “unavoidable” leaks of information.
To this end we define an ideal experiment (Exprevoting-c-resist-ideal

ES,A,H ) that captures all such

leaks. The real experiment (Exprevoting-c-resist
ES,A,H ) captures the concrete voting protocol. We

then examine the difference of the probability of success of an adversary in the ideal
world versus an adversary in the real protocol.

In the “real world” experiment, an election is carried out as specified by the protocol.
The adversary can corrupt and thus completely control a set of voters. We model this by
handing the secret keys of corrupted voters to the adversary. Uncorrupted voters cast
their ballots according to the distribution DnU ,nC . Further, the adversary may select
one (uncorrupted) voter as his coercive target. As in the original definition by Juels et
al., an extension to a simultaneous coercion of more than one voter is straightforward.
The voter does not carry out an evasion strategy in our experiment, i.e. the adversary
receives the coerced voter’s secret key and may cast votes in the voter’s stead. (Note that
we actually assume the adversary cannot learn the coerced voter’s secret key in reality
(see Section 5.4.2)). We model time-limited, perfect coercion by giving the adversary
access to the secret key, and not accepting further output later.) Then, a bit b is flipped.
If b = 0, the coerced voter evades coercion by revoting. If b = 1, the voter submits to
the coercion, i.e. does nothing. After all votes are cast, a tally and corresponding proofs
are computed and handed to the adversary. The adversary then guesses b. See Security
Game 19 for Experiment Exprevoting-c-resist

ES,A,H .
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Security Game 19 (Exprevoting-c-resist
ES,A,H (k1, k2, k3, nV , nA, nC)).

1. V := A(voter names, “control voters”)
2. {(sk i, pk i) := register(SKR, i, k1)}nV

i=1

3. (j, β) := A({sk i}i∈V , “set target voter and vote”)
4. if |V | 6= nA or j 6∈ {1, 2, . . . , nv} − V or β 6∈ {1, 2, . . . , nC} ∪ ∅ then

output 0;
5. BB ⇐ vote({sk i}i 6∈V , PKT , nC , DnU ,nC , k2)
6. BB ⇐ A(sk j , BB, “cast ballots”)
7. b← {0, 1};
8. if b = 0 then

BB ⇐ vote({sk j}, PKT , nC , DnU ,nC , k2)
9. (X, P ) := tally(SKT , BB, nC , {pk i}

nV
i1
, k3)

10. b′ := A(X, P, BB, “guess b”)
The result of the experiment is 1 if b′ = b and 0 else.

There is a possibility for the adversary to guess b by the tally alone, depending on
the distribution of votes DnU ,nD and his knowledge thereof. For example, consider an
election in a county where all of the voters vote for the “red” party and no one votes for
the “blue” party. The adversary could try to coerce a single voter to vote for the “blue”
party. If the tally then shows one vote for the “blue” party, his coercion was successful.
Otherwise, the target voter obviously re-cast her vote to “red”. The possibility of the
adversary to detect success of his coercion attempt by the tally is inherent to the principle
of publishing the tally one-to-one, and not a property of revoting or any concrete strategy.
In fact, this way, a coercer could also infer if a voter has given him a fake credential.
In a real-world election we expect the adversary’s advantage using such a strategy to
be negligible. To characterize the adversarial advantage using “unavoidable” strategies,
we define an “ideal” experiment. We then measure the difference of the adversary’s
advantage in the real and ideal models to express the adversarial advantage against the
concrete scheme.

In the ideal experiment, we make use of a function ideal-tally, which represents an
ideal tallying process. Its working depends on the challenge bit b. If b = 0 (voter evades
coercion) it counts the coercive target voter’s vote. Otherwise (voter submits to coercion)
it counts the adversary’s choice for the coercive target voter’s vote. Further, the ideal
adversary is not supplied with the contents of the bulletin board, but only its length l,
as well as the election result X. If the coercive target voter evades coercion, the reported
length of the bulletin board is increased by the length of one ballot. (Note that the overall
number of revotes can always be inferred if the number of cast ballots and the number of
counted ballots is visible.) See Security Game 20 for Experiment Exprevoting-c-resist-ideal

ES,A,H .
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Security Game 20 (Exprevoting-c-resist-ideal
ES,A′,H (k1, k2, k3, nV , nA, nC)).

1. V := A′(voter names, “control voters”)
2. {(sk i, pk i) := register(SKR, i, k1)}nV

i=1

3. (j, β) := A′(“set target voter and vote”)
4. if |V | 6= nA or j 6∈ {1, 2, . . . , nv} − V or β 6∈ {1, 2, . . . , nC} ∪ ∅ then

output 0
5. b← {0, 1}
6. BB ⇐ vote({sk i}i 6∈V , PKT , nC , DnU ,nC , k2)
7. BB ⇐ A′(sk j , |BB|, “cast ballots”)
8. l ⇐ |BB|
9. if b = 0 then

l ⇐ |l|+ 1
10. (X, P ) := ideal-tally(SKT , BB, nC , {pk i}

nV
i1
, k3, b)

11. b′ := A′(X, l, “guess b”)
The result of the experiment is 1 if b′ = b and 0 else.

We define the advantage of the adversary A as

Advrevoting
A (k1, k2, k3, nV , nA, nC) := Succrevoting-c-resist

ES,A,H (k1, k2, k3, nV , nA, nC)

−Succrevoting-c-resist-ideal
ES,A,H (k1, k2, k3, nV , nA, nC).

A voting scheme features deniable revoting if Advrevoting
A is negligible in k1, k2, k3 for any

adversary.

5.6 A Coercion-Resistant Voting Protocol with Deniable
Revoting

In this section, we first introduce several building blocks used in our protocol. We then
describe our construction and prove its security according to the definitions introduced
in the previous section.

5.6.1 Black-Box Ideal Functionalities

We use several primitives as blackboxes and assume the existence of an efficient realisation.
Though we suggest efficient instantiations where possible, we focus on our general approach
for achieving deniable revoting. We see this work as a proof of concept.

Verifiable Secret Shuffle

A verifiable shuffle computes a function Shuffle(C) 7→ (C ′, P ), which receives a list
C := [c1, . . . , cn] of randomisable ciphertexts as input. Its output consists of a list
C ′ := [c′π(1), . . . , c

′
π(n)], where π is a random permutation and c′π(i) is a re-encryption of

ci for i = 1, . . . , n, and a proof P of correctness of the shuffle.
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We assume our shuffles are secret and verifiable: secrecy implies it is infeasible to link
an input ciphertext ci to its corresponding output ciphertext c′π(i) better than by guessing,

and verifiability requires a proof P that C is indeed a permutation (with re-encryption)
of C ′.

We further assume our shuffles are distributable among several servers, and speak of a
mix-net if a shuffle is distributed (see also Section 2.4.5). Various verifiable secret shuffles
and mix-nets have been proposed [11, 94, 102, 134, 166, 176].

EUF-CMA Secure Digital Signatures

In our voting scheme, voters use unforgeable signatures to prove their eligibility (see
Existential Unforgeability under Chosen-Message Attacks (EUF-CMA), Section 2.4.2).
We require our signatures to allow for an efficient zero-knowledge proof of signature
knowledge.

Non-Interactive Zero-Knowledge Proofs (of Knowledge)

We make use of Non-Interactive Zero-Knowledge (NIZK) proofs and Non-Interactive
Zero-Knowledge Proofs of Knowledge (NIZKPoKs) in our construction (Section 2.4.4).
NIZK proofs and NIZKPoK exist for arbitrary NP statements. Correct decryption can
be proven by using the Chaum-Pedersen protocol [56] as a proof of logarithm equivalence.
Logarithm knowledge can be proven with Schnorr’s protocol [177]. A proof of signature
knowledge was introduced by Camenisch et al. [39].

5.6.2 Building Blocks

Modified Elgamal Encryption (m-Elgamal)

M-Elgamal is a modification of the Elgamal encryption scheme (Section 2.4.1), used by
Juels et al. [122]. Given a multiplicative cyclic group G of prime order p in which the
decisional Diffie-Hellman problem is hard, and generators g1, g2 ∈ G, for key generation
choose random x1, x2 ∈ Zp, and output secret key (x1, x2) and public key y := gx11 gx22 .
To encrypt a message m with public key y, choose r ∈ Zp at random, and output the
ciphertext c = Enchom(m, y) := (gr1, g

r
2, y

rm). To decrypt a ciphertext c = (A,B,C) with
secret key (x1, x2), compute m = Dechom(c, (x1, x2)) := A−x1B−x2C. To simplify nota-
tion, we write Enchom(m) or Dechom(c) if the keys are clear from the context. Decryption
can be distributed using Cramer et al.’s construction [61]. Ciphertexts created with
m-Elgamal are multiplicatively homomorphic and randomisable by multiplying with an
encryption of 1:

Enchom(m1) · Enchom(m2) = (gr1, g
r
2, y

rm1) · (gs1, gs2, ysm2)

= (gr+s1 , gr+s2 , yr+sm1 ·m2)

= Enchom(m1 ·m2).
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A proof of encryption of a certain plaintext can be achieved by publishing the encryption
randomness followed by randomisation. Correct decryption can be proven with the
Chaum-Pedersen-protocol [56].

Plaintext Equality Test

Plaintext Equivalence Tests were introduced by Juels et al. [120, 122]. They decide
whether two ciphertexts contain the same plaintext. We denote this by a function
Pet(c1, c2, t) 7→ (b,Π) which receives as input two ciphertexts c1 and c2 and a decryption
trapdoor t. Its output is a bit b with b = 1 if c1 and c2 contain the same plaintext, and b = 0
otherwise, as well as a proof Π of correctness. In our protocol, we perform computations
on encrypted Plaintext Equivalence Test (PET) results. We define Encrypted Plaintext
Equivalence Tests (EPETs) denoted by a function Epet(c1, c2) 7→ (c,Πc) which outputs
an encryption of 1 if c1 and c2 contain the same plaintext, and an encryption of a random
number, if the plaintexts are different, as well as a proof Πc of correctness. EPETs can
be computed without a trapdoor. We require PETs to be distributable.

(Encrypted) Plaintext Equality Test for Homomorphic Encryption Juels et al. [120]
introduce a plaintext equality test for Elgamal encryption. We generalise their result
to a PET for multiplicatively homomorphic encryption which can also be used as an
EPET. Instantiating it with Elgamal or m-Elgamal allows for a distributed execution of
the PET.

Let Enchom denote a multiplicatively homomorphic encryption function, i.e. Enchom(m1)·
Enchom(m2) = Enchom(m1 ·m2), and Dechom its decryption function. We perform a PET
on two ciphertexts c1 = Enchom(m1) and c2 = Enchom(m2) for plaintexts m1 and m2 as
follows:

Algorithm Epet(c1, c2): On input of two ciphertexts c1 and c2, choose r at random and
compute cdiff := (c1/c2)

r with a NIZKPoK Πc of an r such that cdiff = (c1/c2)
r, for example

by using the Chaum-Pedersen-protocol [56]. Exploiting the homomorphic property of the
encryption, we have cdiff = (c1/c2)

r = Enchom((m1/m2)
r) = 1r = 1 if m1 = m2 (or r ≡ 0

mod Ord(G), see below). By outputting cdiff and the proof Πc, this scheme can be used
as an EPET.

Algorithm Pet(c1, c2, t): To make a PET out of the EPET, first compute (cdiff ,Πc) :=
Epet(c1, c2), then decrypt cdiff using decryption key t, with a proof Πd of correct decryp-
tion. Output 1 if Dechom(cdiff ) = 1, and 0 otherwise, as well as the proof Π := (Πc,Πd).
If m1 6= m2, cdiff is a random number because of the mask r, and can be revealed in
order to prove correctness of the result. Also, if it is not clear from the form of cdiff that
r 6= 0 mod Ord(G), r can be opened if Dechom(cdiff ) = 1.

5.6.3 Our Construction

We divide elections into five phases: setup, registration, setup publication, voting, and
tallying.
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1. Setup. The tellers create a joint public encryption key PK T and a shared secret de-
cryption key skT for threshold-decrypting the homomorphic encryption m-Elgamal
introduced in Section 5.6.2. Let Enchom denote its encryption function.

2. Registration. Each voter Vj obtains their credential for voting, i.e. a key pair
(pkj , skj) for an EUF-CMA secure signature scheme (Section 2.4.2). We assume
an efficient NIZKPoK for this signature scheme. The public verification key
obtained here also acts as identification of the voter. For each voter, an entry
(ID ,Enchom(pk j)) is stored in a List L0, where ID encodes the voter’s name. The
encryption Enchom(pk j) is computed using the teller’s public key PK T .

3. Setup publication. A candidate slate C = (c1, . . . , cl) is published on the public
bulletin board. It contains the electable candidates c1, . . . , cl. The list L0 is
published and serves as a list of eligible voters and their encrypted public verification
keys. The public key PK T of the tellers is published as well.

4. Voting. Voters create ballots and submit them to the bulletin board. A ballot bi is
a three-tuple as explained below. Encrypted parts are encryptions under the public
key of the tellers:

bi = (Enchomβi,Enchompk i, tsi), NIZKPoK

Here, Enchom(βi) is an encryption of the choice βi ∈ C. We assume this for
the simplicity of our description. To support arbitrary choices like STVs, we
can alternatively let the choice be a function of the candidate slate and the
voter’s intention. Furthermore, Enchom(pk i) is an encryption of the voter’s public
key pki, and tsi is a timestamp created right before the ballot is cast. The
timestamp is not encrypted. In addition to the ballot itself, the voter submits
a Non-Interactive Zero-Knowledge Proof of Knowledge NIZKPoK to prove that
the ballot has been cast with her consent. The NIZKPoK proves knowledge of a
signature of (Enchomβi,Enchompk i, tsi) w.r.t. the public key encrypted in the ballot.
(Directly attaching the signature itself would reveal how many votes a single voter
has cast.) Stated more formally, the voter proves knowledge of a signature σi with

Verify(σi, (Enchom(βi),Enchom(pk i), tsi), pk ′i) = 1 ∧ pk ′i = pk i.

5. Tallying. Before the ballots can be tallied, all superseded ballots have to be sorted
out. This procedure is described in detail in the next section. After all ballots with
invalid proofs of signature knowledge, all superseded ballots, and all ballots with
invalid credentials have been omitted, the remaining ballots can be tallied with
standard techniques, for example by a decryption mix.

5.6.4 Sorting Out Superseded Ballots

In this section, we describe how to mark all superseded ballots. A ballot is superseded
when a more recent ballot of the same voter—that is, a ballot with a newer timestamp
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and matching voter credential—is posted to the bulletin board. Our method protects
the privacy of the voter and is also publicly verifiable.

In four steps, the tallying authority computes a shuffled list of all valid ballots without
their timestamps. They will be re-encrypted and in a random order. The resulting list
will only contain the last votes cast by eligible voters. Without loss of generality we
assume all submitted choices are valid.

1. Encrypted Tests Whether Two Ballots Are From The Same Voter The
procedure starts off with a list of all “well-formed” ballots on the bulletin board,
i.e. all ballots with a valid NIZKPoK as described above. After it has been checked,
the NIZKPoK is omitted in further steps. The list is sorted according to the
timestamp in ascending order. For each ballot bi, the tallying authority tests if the
encrypted public key pki of bi matches the public key pkj of any newer ballot bj :
for each ballot bj (i < j < n), the tallying authority performs distributed EPETs
to obtain (di,j ,Πi,j) := Epet(Enchom(pki),Enchom(pkj)). The encrypted differences
di,j and the proofs Πi,j of correctness of the result of the EPET are published.
(di,j = Enchom(1) iff pki = pkj .)

2. Marking Ballots As Superseded The tallying authority performs a verifiable
conversion on all computed differences. If di,j is an encryption of 1, replace it
by an encryption of a random number. Else, replace it with an encryption of 1.
Differences are detached from their corresponding ballots before conversion, and
later sorted back. The details of this step are described in Section 5.6.4. For each
ballot, the tallying authority aggregates all converted d′i,j by multiplying them,
exploiting the homomorphic property of the encryption: oi :=

∏
j d
′
i,j

3. Omit Superseded Ballots The tallying authority jointly compares oi with Enchom
(1) for each ballot bi. It omits all ballots bi with Epet(oi,Enchom(1)) 6= 1 from future
computations. (Those are the ballots that have been superseded by a more recent
one of the same voter.) The last ballot is never superseded.

4. Omit Ballots With Invalid Credentials Before tallying, the tallying authority
checks the voter credentials by verifying that each Enchom(pki) has a corresponding
entry in the published list of the encrypted public keys of eligible voters. Similarly
to the technique of Juels et al. [122], the tallying authority shuffles the encrypted
public keys of the list L0, and performs a PET with the encrypted public key of
each ballot.

We now describe the four steps in detail.

Encrypted Tests Whether Two Ballots Are From The Same Voter

In the first step of the process, for each pair of ballots (bi, bj) with j > i, the tallying
authority performs EPETs (see Section 5.6.2) to the encrypted public keys of the voter.
While, technically, this step can be performed during the tally phase, we propose to
directly perform it during the casting phase:
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When a ballot bi = ((Enchom(βi),Enchom(pk i), tsi) is cast, the tallying authority checks
the corresponding NIZKPoK and discards the ballot if the proof is invalid, i.e. the ballot
is marked as invalid and not considered in further computations, but remains on the
bulletin board for public verification. Otherwise, the tallying authority jointly runs
an EPET on the encrypted public key of bi and those of all already cast ballots bj ,
to obtain values (di,j ,Πi,j) = Epet(Enchom(pk i),Enchom(pk j)). All encrypted differences
di,j are stored alongside bj as indicated in Figure 5.2, defining a list L with entries
L[i] = (bi, (di,i+1, . . . , di,n)).

After the casting phase, if n well-formed ballots have been cast, bi has n− i associated
differences.

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

pkA/pkB
pkA/pkC

pkA/pkA
pkA/pkD

pkB/pkC
pkB/pkA

pkB/pkD

pkC/pkA
pkC/pkD

pkA/pkD

Ciphertext

Plaintext

Figure 5.2: Encrypted Plaintext Equality Tests (EPETs) are performed for each pair of
ballots (bi, bj) with j > i by the tallying authority: If pki = pkj the result is
an encrypted 1, otherwise it is an encrypted random value. We denote an
encrypted value by a box with a dark background and an unencrypted value
by a box with a lighter background. In this example, the third fraction in the
first row (pkA/pkA)r divides identical credentials, hence ballot 4 supersedes
ballot 1.

Marking Ballots as Superseded

Before computing the supersede mark oi for each ballot, the differences di,j computed
during the voting phase are converted as indicated by the mapping

Enchom(x) 7→

{
Enchom(r) if x = 1

Enchom(1) if x 6= 1

The value r can be any fixed value other than 1 (2, for example) or a number drawn at
random.

To compute the mapping, the tallying authority creates a shuffled and randomised list
of all encrypted differences. To this end, each entry di,j is associated an encrypted tag
Enchom(tsi) (see Figure 5.3).

The list of all tuples (Enchom(tsi), di,j) is then re-randomised and reordered, using a
verifiable secret shuffle. After shuffling, the differences are converted (see Figure 5.4). To
convert di,j to d′i,j we perform a multi-party computation that involves a “coordinator”
and the voting authority. In this step, the authority’s task is to decrypt each di,j it
receives from the coordinator and return either an encryption of a 1 or of another (random
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c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

81 53 1 48

46 418 28

49 9

13

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

07:08 81 07:08 53 07:08 1 07:08 48

09:13 46 09:13 418 09:13 28

12:25 49 12:25 9

13:37 13

Figure 5.3: The fractions from the previous step are complemented by the encrypted
timestamp from the ballot, forming tuples (Enchom(tsi), di,j). For the sake of
clarity, we evaluated the fractions from Figure 5.2 to exemplary values. The
superseded first ballot thus has a “1” associated with it.

or fixed) number, according to the map above. The task of the coordinator is to send
fake differences or real ones to the authority. He has to make sure that the authority
does not learn which conversion is real. Therefore, each element is randomised before and
after each conversion by the coordinator. The randomised version of the output of each
“real” conversion is fed to the authority to be converted a second time and get a fake
difference. The second conversion is necessary to hide how many of the di,j contain a 1.
All (real and fake) differences are sent to the authority in random order. The coordinator
and the authority must not collude.

07:08 81

07:08 53

07:08 1

07:08 48

09:13 46

07:08 1

07:08 53

09:13 46

07:08 81

07:08 48

07:08 139

07:08 1

09:13 1

07:08 1

07:08 1

09:13 1

07:08 1

07:08 1

07:08 139

07:08 1
...

...
...

...
...

...
...

...

Mix
1 7→ r
r 7→ 1

Mix
&

Decrypt

Figure 5.4: Converting di,j to d′i,j : if Dechom(di,j) = 1 replace di,j by Enchom (r) (r 6= 1)
and by Enchom (1) else. The special “superseded” value 1 has been converted
to an arbitrary number, while all other values are mapped to 1.

Irrespective of how the entries di,j are converted to d′i,j , their correctness can easily be
proven: either Pet(di,j · d′i,j , di,j) = 1 or Pet(di,j · d′i,j , d′i,j) = 1, never both. To prove the
correctness of the inversion without revealing the values, we use a verifiable shuffle on
(di,j , d

′
i,j) to obtain (a, b). We then check whether Pet(a · b, a) = 1 or Pet(a · b, b) = 1

(exclusively). See Figure 5.5 for a compact description of the procedure. The procedure
starts with the list of all ballots and a corresponding list of differences next to each ballot
and attaches an encrypted mark to each ballot. The encrypted mark tells whether the
ballot has been superseded. We make use of subroutines like a secret verifiable shuffle
(see Section 5.6.1). Since each of those subroutines is verifiable, it produces a proof
of correctness beside the actual result. Each proof contributes to the over-all proof of
correctness. In abuse of notation and for better readability, we do not explicitly mention
them.

After a second shuffling step, the tags are decrypted, and the encrypted, converted
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Input A list L with (ballot,differences)-entries L[i] = (bi, (di,i+1, . . . , di,n)).
Output A converted list L′ of ballots and differences, and a list P of proofs of correctness.
Algorithm (Each operation which can not be recomputed by everyone outputs a proof of correctness.

For the sake of readability, we do not explicitly state the output of the proofs, but implicitly
assume them to be appended to the list P .)

1. Initialize list L′ with L[i] := (bi, []) (the second entry will be filled later).
Initialize a look up table TS with an entry (i, tsi) for each ballot bi =
(Enchomβi,Enchompk i, tsi)

2. For each ballot bi prepare a tag Enchom(tsi).

3. ∀1 ≤ i ≤ n, min(i+ 1, n) ≤ j ≤ n: Save (Enchom(tsi), di,j , [], []) to a list D. The empty
entries will be filled later

4. Shuffle D: D′ := Shuffle(D).

5. For each di,j in D’

convert di,j to d′i,j :=

{
Enchom(r) if di,j = Enchom(1)

Enchom(1) else
where r 6= 1

and store d′i,j in D’ next to di,j : (Enchom(tsi), di,j , d
′
i,j , []).

6. create the proof Π of correct conversion and store it in D’: (Enchom(tsi), di,j , d
′
i,j ,Π).

The correctness of the conversion can be verified based on D’.

7. Shuffle D′: D′′ := Shuffle(D′)

8. For each (Enchom(tsi), d
′
i,j) ∈ D′′:

• Decrypt tag Enchom (tsi) to tsi with proof of correct decryption

• look up entry (i, tsi) in TS

• append d′i,j to the second entry of L′[i].

9. For each ballot bi: multiply each element d′i,j in the second entry of L’[i] and replace
them by the result

10. Output (L′, P ).

Figure 5.5: Conversion Convert(L), marking each ballot whether it has been superseded.

differences are sorted back to their ballot of origin (see step one in Figure 5.6). All steps
can be verified by the public. The tallying authority then computes the homomorphic
product over all the associated marks of each ballot (see step two in Figure 5.6): for each
i compute

oi :=
n∏

j=min(i+1,n)

d′i,j .

Observe that if
∏
d′i,j contains only encryptions of 1, it is itself an encryption of a 1,

whereas if it has a factor 6= 1, it is itself an encryption of a number 6= 1 with overwhelming
probability (see Figure 5.1).

Omit Superseded Ballots

Before any further processing, particularly before checking if oi = Enc(1), all ballots are
weeded and shuffled. Only the encrypted choice of the voter, his encrypted public key,
and the mark oi are kept. Therefore, the tallying authority forms a list LW with entries
LW [i] := (b′i, oi), where b′i := (Enchomβi,Enchompk i) if bi = (Enchomβi,Enchompk i, tsi).
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09:13 1

07:08 1

07:08 1

07:08 139

07:08 1

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

1 1 139 1

1 1 1

1 1

1

c1 pkA 07:08

c2 pkB 09:13

c3 pkC 12:25

c4 pkA 13:37

c5 pkD 17:42

139

1

11

1

...
...

Figure 5.6: The encrypted, converted differences are sorted back to their ballot of origin.
Afterwards oi is computed as the homomorphic product over all the associated
marks of ballot bi. Note that we arranged the d′i,j values in the same order
as their preimages. In a practical realisation of our scheme this would only
coincidentally be the case. Ballots now have an encrypted “tag” that tells
whether they are superseded by a more recent ballot.

The tallying authority computes and publishes (L′W ,Π) := Shuffle(LW ) and then jointly
compares oi with Enchom(1) in L′W using a PET, and publishes all proofs. Only ballots
bi with oi = Enchom(1) and the last ballot are kept, the others are marked as discarded.

Omit Ballots With Invalid Credentials

Finally, the validity of the public keys is checked. Note that, at this point, only one
ballot per credential remains. Equally to the method of Juels et al., the tallying authority
shuffles the encrypted public keys of L0 and performs a joint PET with the encrypted
public key of each ballot. Ballots with valid public keys are retained. The encrypted
choices of the retained ballots can then be mixed and opened for tallying.

5.6.5 Proving the Security of our Scheme

In this section, we prove the correctness, verifiability, and coercion resistance of our
protocol. We will show coercion resistance by proving that revoting in our protocol is
deniable.

Correctness

Theorem 25. The scheme proposed in Section 5.6 is correct (Section 5.5.1).

Proof. Recall that a voting scheme is correct if the success probability of any adversary
in Experiment Expcorr

ES,A(k1, k2, k3, nV , nC) (Figure 17) is negligible in max(k1, k2, k3). We
show that our construction is correct by an induction over the number of ballots n on the
bulletin board in Step 8 of experiment Expcorr

ES,A. The number n = nV + nA is comprised
of nV , the number of ballots posted by honest voters on the bulletin board (BB) in Step 4,
and nA, the number of ballots posted on BB by the adversary in Step 6. Per assumption,
the bulletin board is append-only.

Fix n = 1 as the base case, i.e. either nA = 0 or nV = 0. If nA = 0, then X′ = X and
P ′ = P , and the experiment outputs 0. On the other hand, if nV = 0, then we have
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to show that the adversary can only cast a vote for a corrupted voter. (The adversary
cannot overwrite an uncorrupted voter’s vote, because there are none.) Ballots containing
an invalid voter public key, i.e. a public key pk /∈ L0 are discarded in the tallying phase
(see Section 5.6.4, Step 5). The probability that the adversary generates a public key pair
(sk, pk) such that sk generates a valid signature for the ballot and pk ∈ L0 is negligible in
the security parameter of the signature scheme. Thus, the experiment outputs 0 except
for a negligible probability. (We stress that “malformed” ballots without a correct proof
of knowledge of a signature on the ballot are discarded before the tallying phase of our
protocol.)

Now assume there are n = nV + nA ballots on the bulletin board in Step 8 of Expcorr
ES,A

and the probability that the experiments outputs 1 is negligible in the security parameters
for any adversary. To transfer to the n + 1-case, we distinguish two cases to post an
additional ballot on BB.

• The additional ballot is cast in Step 4, i.e. by an uncontrolled voter. We have to
show that it supersedes the most recent ballot by the same voter. This is achieved
by a pairwise comparison of the public keys on the ballots (see Section 5.6.4).

• The additional ballot is cast in Step 6, i.e. by a controlled voter. We have to show
that it does not supersede a ballot by a different voter and itself is not already
superseded. By the same argument as above, only ballots that contain identical
public keys are superseded during the tallying phase. (For the adversary to post a
ballot containing the public key of an uncontrolled voter, he would have to forge
the signature of the ballot and thus break the EUF-CMA security of the signature
scheme.) Because the newest ballot has the newest timestamp per assumption, it is
not superseded in this step.

This concludes the argument.

Verifiability

We argue the verifiability of our voting scheme informally. A process composed of several
subroutines is verifiable if each step is verifiable by itself. Our process is composed of a
small set of verifiable black-box functionalities and other verifiable building blocks.

Each of these subroutines produces proofs of correctness along with its result. If either
of these proofs is invalid, Expver

ES,A outputs 0. All these proofs are published next to the
result of the subroutine on the bulletin board. The whole bulletin board with the input
{bi}ni=1, the final output X, all subroutine proofs, and all interim results is the global
proof P of correctness of the tally. We point out that each interim result is published
except for the secret keys and some randomness which is necessary to protect the privacy
of the voter. The input of each subroutine is also marked down on the bulletin board.
Sometimes the output from one routine has to be reshaped to match the input format
from another one. This reshaping is always deterministic.

Several operations like the reshaping or the computation of the product over all marks
di,j of each ballot bi can be recomputed by anyone. Therefore no explicit proof is necessary
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for these steps. All operations which are not recomputable by the public are accompanied
by proofs of correctness.

In conclusion, our tallying process is verifiable because intermediate values are public,
and all subroutines are publicly verifiable.

Deniability of Re-Cast Votes

Theorem 26. The scheme proposed in Section 5.6 offers deniable revoting (Section 5.5.3).

To prove the deniability of revoting, we give a reduction of the privacy of our scheme to
the Decisional Diffie-Hellman (DDH) problem (Section 2.4.1). More concretely, given any
(successful) adversary A against Exprevoting-c-resist

ES,A,H , we construct a reduction S which is,

with non-negligible probability, able to decide for a given quadruple (g, ga, gb, gc) whether
c = ab in the cyclic group G = 〈g〉.

As in the definition, we consider only one coerced voter. An extension to the case
of multiple coerced voters is straightforward—we just have accordingly many parallel
instances of the DDH problem. Our proof is similar to that of Juels et al. [121]. We give
a reduction from any adversary that uses the published ballots to break the incoercibility
of the scheme to an adversary against the DDH assumption. To this end, we simulate
the execution of experiment Exprevoting-c-resist

ES,A,H .

Juels et al. call their reduction a “simulator”, because it simulates the execution of
the security game to the adversary. This choice of terms is not wrong per-se, however
it lends itself to confusion. We use the word “reduction” here to avoid confusion with
the simulator concept in the Universal Composability (UC) [41] framework we use in
Chapter 3. The proof methodology we use here is more akin to the security-game-
reduction methodology used in Chapter 4 (Section 2.3.1). In our original publication [2]
we use the term “simulator” as well.

Proof. The DDH experiment Expddh
G secretly draws a bit d, if d = 1 sets gc = gab, and

to a random element gc ∈ G otherwise. Given a DDH challenge (g, ga, gb, gc), S deducts
two public keys. In the setup publication phase, S sends the first one to the adversary,
while it uses the second one during the rest of the protocol. S deducts the following two
m-Elgamal public keys:

(g1 := g, g2 := ga, yg := gx11 gx22 = gx1gax2) and

(h1 := gb, h2 := gc, yh := hx11 h
x2
2 = gbx1gcx2).

Recall that, to encrypt m using the Modified Elgamal Encryption (Section 5.6.2)
using public key (g1, g2, y), one chooses a random r and outputs (gr1, g

r
2, y

rm). When
c = ab (d = 1 in the surrounding experiment), for any m there are r, r′ such that
(gr
′

1 , g
r′
2 , y

r′
g m) = (hr1, h

r
2, y

r
hm). (r′ = br, concretely.) Therefore, ciphertexts created using

the above public keys have the same distribution.
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When, on the other hand, c 6= ab (d = 0), m is perfectly hidden in the encryption. A
message m, encrypted with the second public key and decrypted with the first (given to
A), yields:

(hr1 = gbr = gbr1 , h
r
2 = gcr = g

(c/a)r
2 ,

yrhm = grbx1grcx2m = grbx1gabrx2g(c−ab)rx2m = ybrg g
(c−ab)rx2m)

In Exprevoting-c-resist
ES,A,H the choices of the voters as well as their public keys are perfectly

hidden in the m-Elgamal Encryption when d = 0. In this case the adversary’s capabilities
are reduced to those in experiment Exprevoting-c-resist-ideal

ES,A,H . To justify this assertion, we
must show how the adversary’s input can be faked in the d = 0 case with only the
information from Exprevoting-c-resist-ideal

ES,A,H available. It is then obvious that the adversary
cannot gain any additional advantage from the simulated tallying process.

In the ideal experiment Exprevoting-c-resist-ideal
ES,A,H the adversary learns the total number of

cast ballots and the number of valid ballots. The individual m-Elgamal encryptions the
reduction outputs to the adversary hide the plaintext perfectly when d = 0. In this case,
they are not distinguishable from any random group element and thus can be faked by
random output. We must also be able to fake the quantity and structure of the data the
adversary learns during the simulation. These can be determined from the difference of
cast and valid ballots, and vice versa.

We state the simulation of Exprevoting-c-resist
ES,A,H and argue that its perfect. The reduction

S receives a W ∈ DnU ,nC and a challenge (g, ga, gb, gc) with c = ab if the random bit
d = 1 or c 6= ab if d = 0.

Setup The reduction S chooses the secret key SK T := (x1, x2), uniformly and at random.
S also calculates the public key PK T := (gx1 , gx2 , h = (gx11 gx22 )) mod p and sets
C = {ci}nC

i=1.

Registration S simulates the registrarR: S generates the voter credentials: {(pk i, sk i)}nV
i=1

Setup publication S publishes the public key of the tally PK T , the set of candidates C,
and L0 = {“voter’s name i”, Enchom(pk i)}

nV
i=1.

Adversarial corruption The adversary A selects nA voters to corrupt. Let V denote the
group of corrupted voters. He also selects a voter j for coercion. He determines the
choices β for the corrupted and the coerced voters. The simulation is terminated if
the selection is invalid.

Coin flip The bit b is chosen uniformly at random: b← {0, 1}

Honest voter simulation For each honest voter, the reduction creates the ballots with
the proofs:

A0 := {(Enchomβi,Enchompk i, tsi), NIZKPoK}
= {bi := ((hri1 , h

ri
2 , h

rix1
1 hrix22 cj), (h

ki
1 , h

ki
2 , h

kix1
1 hkix22 pki), ts),NIZKPoK}ni=1
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Thereby all ri and ki are chosen at random in Zq. The choices are determined in
W. For creating the proofs the reduction S uses the voter’s secret keys.

Adversarial ballot posting The adversary calculates the ballots for each voter v ∈ V
and the voter j in the same way. We call the set of these ballots B0. A posts B0.

Tallying simulation S simulates a honest tallying authority, whereby it uses the secret
key SK T from the setup step. Since the correctness of every step from each
authority can be verified, any modification from an adversary can be ignored.

Proof checking The proof of each ballot in A0 and B0 is checked. Let E1 be all
ballots with valid proofs.

Creating di,j The reduction S creates the di,j by performing the necessary EPETs.
S also creates the proofs honestly.

Converting di,j S performs the protocol honestly and provides the proofs. During
this process, it uses the secret key SK T to decrypt the EPETs.

Creating oi S accumulates the di,j as scheduled.

Creating final ballot list For each ballot in E1 create a cut list as described in the
protocol. S creates a shuffle and the according proofs. Denote the result as E2.
S creates list of tuples, using the secret key: E3 := {(Enchom(βi),Enchom(pk i))}
: Pet(oi,Enchom(1)) = 1

Checking Voter Credentials S shuffles the second components of L0 into a new
list L1: Let L′0 be the list of all encrypted public keys in L0. L1 := Shuffle(L′0).
For each ballot in E3, S performs PETs with the second part of each entry.
S uses the secret key for decryption. Let E4 denote the list of all encrypted
choices from the ballots with a according item in L1.

Choice decryption The decryption of the valid choices (E4) is done by S with the secret
key.

Adversarial guess The adversary outputs a guess bit b′. S itself returns d′ := (b′
?
= b) as

his guess bit, i.e. whether the adversary correctly guessed b.

Since the reduction executes the protocol as specified, for d = 1 the simulation is
indistinguishable to A from a real protocol. Let V denote the view of the adversary.
Thus, we have

Pr [S = 1 | d = 1] = Pr
[
Exprevoting-c-resist

ES,A,H (V) = 1
]

= Succrevoting-c-resist
ES,A,H (V).

On the other hand, as we argued above, the adversary in the simulation does not have
any advantage to the adversary in Exprevoting-c-resist-ideal

ES,A,H (V) if d = 0. Thus,

Pr [S = 1 | d = 0] = Pr
[
Exprevoting-c-resist-ideal

ES,A,H (V) = 1
]

= Succrevoting-c-resist-ideal
ES,A,H (V).
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Concluding the argument, we have

Advddh
S = Pr [S = 1 | d = 1]− Pr [S = 1 | d = 0]

= Succrevoting-c-resist
ES,A,H (V)− Succrevoting-c-resist-ideal

ES,A,H (V)

= Advrevoting
A .
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6 Conclusion

We investigated the question of how cryptographic proofs of security can improve a
systematic security engineering process. To this end, we modeled and analysed security
for concrete applications in three practical domains: computer networks, data outsourcing,
and electronic voting. We conclude that cryptographic proofs of security can benefit
a security engineering process in formulating requirements, influencing design, and
identifying constraints for the implementation. Cryptography’s tenet of provable security
adds scientific rigour to areas of security engineering that otherwise were to rely on
experience, intuition, and imagination.

6.1 Directions for Further Research

In Chapter 3 we studied combinations of candidate firewalls to yield one provably-secure
firewall, even if one candidate is compromised. Firewall combination strategies other
than those we discussed need further exploration. In extension to a generalised k-out-of-n
quorum approach, one might consider complex firewall networks in the fashion of multiple
parallel and serial stages. Also, how to deduce security guarantees for bidirectional
communication (via a “Bidirection Theorem” similar to the Composition Theorem in
the Universal Composability (UC) [41] framework) from a unidirectional modeling is
an important open problem. The question whether the trust assumption on the packet
comparator is necessary or can be remedied by a cryptographic protocol is also promising.
Future work should also improve our methodology to ease the handling of adaptive
corruptions.

Another important direction for future research is to simplify the representation of
protocols and guarantees further. Enclosing technicalities in the framework instead of
the protocol description facilitates a simpler exposition of core ideas while still yielding a
formally sound security analysis. An intuitive access to formal security notions increases
their acceptance in practice and thus helps improve the security of systems in use.

During the implementation of the trusted packet comparator a practical concern arose:
Our proof of security is based on the assumption that uncorrupted firewalls agree on
decisions. While it is a strength of the proof that the assumption is explicit, it can be
contested whether such an assumption is practical. Further research into this question
promises to provide insight into its practical soundness.

Our work in Chapter 4 provides directions for several interesting new research topics.
In particular, the relations between concrete instantiations of our generalised security
notions (e.g., if a weaker instantiation of Data Privacy is still strictly separable from
a weaker instantiation of Query Privacy) remain an open question, as well as giving a
complete hierarchy of instantiations of one security notion (e.g., if Data Privacy with
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two queries is weaker than Data privacy with three queries). In particular, a precise
characterisation of schemes which fit into each hierarchy class are of interest.

Further, our security notions are game-based. Investigating simulation-based techniques
for our purposes might lead to further insights. Since game-based and simulation-based
formulations of the same security notion are not necessarily equivalent (as it is in the case
with Selective Opening Security [32]), analysing the relations between our framework
and a simulation-based variant could further deepen the understanding security notions
for outsourcing schemes.

As to our searchable encryption scheme SEDAWG, further research can be directed at
extending the scheme to allow modifications or extensions of the encrypted text without
the need for a complete re-encryption.

In Chapter 5, we investigated revoting as a strategy to evade coercion. Compared to
other mechanisms like, for example, fake credentials, revoting is a very simple and efficient
strategy for evading coercion. It is worth pointing out, however, that the underlying
assumptions are debatable. While resistance to adversarial coercion is very strong during
the coercion attempt, we must make certain assumptions to prove the deniability of any
revoting mechanism. Not only does the coercer have to give up his coercion attempt at
some point, but he may also not learn or destroy the voter’s secret credentials. These
assumptions are not unrealistic per-se, but should be investigated more closely in future
work.

6.2 Open Questions

In this work, we developed valuable insights as how to amend a security engineering process
by cryptographic modeling and analysis. The practical effort to actually demonstrate
such an endeavour is left open. The implementations we discussed are a first step in this
direction. They however also serve a different purpose. Only by concretely implementing
provably-secure schemes one demonstrates that the underlying model applies to actual
systems and is thus fit to provide practical insights. Along the same line, a security
model’s relevancy to practice cannot be proven directly. It can be disproven by breaking a
provably-secure implementation, however. Thus, by failing to break one’s implementation,
one demonstrates the validity of one’s model. We hope efforts in this direction will be
made in the future.

Another area worth investigating is integrating the cryptographic method into an agile
process. In Chapter 1 we argued that the waterfall model accommodates cryptographic
proofs of security particularly well. On the other hand, agile methods adapt better to
changing or unclear requirements. An agile process that benefits from the cryptographic
method might bring the best of both worlds, or be impossible to implement.
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[144] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “A Game-Based Definition
of Coercion-Resistance and its Applications”. In: Journal of Computer Security
(special issue of selected CSF 2010 papers) 20.6/2012 (2012), pp. 709–764.
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