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Introduction
The subject of this thesis, wild translation surfaces, is a very recent top-
ic in mathematics. However, the first results in the classical theory of
translation surfaces go back to the early 20th century. The objects were
not called translation surfaces then but had different names over the years.
This is due to the fact that translation surfaces arise in very different
contexts which makes them particularly interesting. There are relations
to dynamical systems, Teichmüller theory, algebraic geometry, topology,
geometric group theory, and many other fields.

The most visual way to define a classical translation surface is by
considering finitely many polygons in the plane. If every edge of the
polygons can be identified with a parallel edge of the same length so
that we obtain a connected, orientable surface then the resulting object
is a translation surface. It is locally flat at all points with the possible
exception of the former vertices of the polygons. These exceptional points
are called singularities and they are cone points of the resulting surface
with cone angle 2πk for some k ≥ 2.

Classical translation surfaces arise for example in the study of billiards
in a polygon with rational angles, i.e. in a polygon with angles that are
rational multiples of π. Fox and Kershner study billiard paths in such
polygons in [FK36] by “unfolding” the polygon. This means they reflect
the polygon across all edges, then reflect the images of the polygon across
all images of the edges, and so on. The original, perhaps complicated
billiard path in the polygon can then be considered as a straight line flow
in this space of copies. To obtain a translation surface, Fox and Kershner
choose a finite subset of these copies that constitute a fundamental domain
under the group of reflections. The edges of the reflected polygons are
identified via the product of the corresponding reflections which is in fact
a translation.

The condition on the rationality of the angles is important to guarantee
that the fundamental domain consists of finitely many polygons. In



Introduction

particular, it ensures that the singularities of the resulting translation
surface are cone points as discussed above.

The unfolding construction of Fox and Kershner is described again by
Katok and Zemlyakov in [ZK76] which leads to a number of articles, for
instance [KMS86] by Kerckhoff, Masur, and Smillie which provides an
ergodicity result on billiard paths. This is also where abelian differentials
come into the theory. One obtains a translation structure on a Riemann
surface by integrating over an abelian differential in neighborhoods of all
points except for the zeros of the differential.

The name “translation surface”, however, goes back to Thurston’s
lecture notes [Thu81, Chapter 3] where he defines (G,X)-manifolds and
G-manifolds without mentioning translation surfaces explicitly. In the
related language of F-structures, the translation surfaces occur again
in the work of Veech. His article [Vee89] associates a group, now called
Veech group, to a translation surface and relates the group to properties
of the dynamics on the Teichmüller space. In [Vee90], Veech introduces
the idea to use translation surfaces to estimate the volume of moduli
spaces which opens up the field to algebraic geometry. Since then, the
theory of classical translation surfaces has grown to a research field on its
own with numerous mathematicians, including several Fields medalists,
from algebraic geometry, dynamical systems, and geometric group theory
working on it.

Having spoken about the classical translation surfaces (which are called
finite translation surfaces from now on) so far, a more general concept
shines through along the way. In the literature, it is often called infinite
translation surface but as the more general object it should have the more
general name – translation surface – in the author’s view. The definition
of a general translation surface is that it is a connected surface with a
translation structure (see Definition 1.1).

If we do not insist, for example, on rational angles then the unfolding
of a polygon provides an infinite translation surface, studied by Valdez
in [Val09] and [Val12]. As we have indicated in the discussion before,
the singularities of the resulting translation surface do not need to be
cone points.

Another possibility to produce examples is to consider infinite coverings
of finite translation surfaces as was done by Hubert and Schmithüsen in
[HS10], by Hooper, Hubert, and Weiss in [HW12], [HHW13], and [HW13],
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and by Frączek and Ulcigrai in [FU14], for example. A special example of
this class of translation surfaces is the wind-tree model which goes back to a
model of Ehrenfest and Ehrenfest that describes the movement of gaseous
particles. Many different aspects of the wind-tree model are studied,
for instance, by Avila, Delecroix, Hubert, Lelièvre, and Troubetzkoy in
[DHL14], [HLT11], and [AHar].

In the two mentioned constructions, the singularities of the translation
surfaces are not cone points in the strict sense any more but they can
be considered as infinite angle analogs of cone points. For both kinds of
cone points it is true that there exists a punctured neighborhood of the
singularity which is a finite or infinite cyclic translation covering of the
once-punctured flat disk.

In [Cha04], Chamanara describes a first example of a family of transla-
tion surfaces so that each translation surface in that family has a singularity
which has no punctured neighborhood that is a translation covering of a
once-punctured disk. In particular, every neighborhood of a singularity
in that family has infinite genus and so the topology of the corresponding
translation surface is more complicated but also raises more interesting
questions. Singularities of this type are called wild and translation surfaces
with wild singularities are called wild translation surfaces.

Different examples of wild translation surfaces have then been studied,
for instance arising as a geometric limit of the Arnoux-Yoccoz surfaces
defined by Bowman in [Bow13] and arising from a generalization of
Thurston’s construction (see [Thu88]) by Hooper in [Hoo15]. However,
the systematic study of wild singularities started quite recently with the
work of Bowman and Valdez. In [BV13], they define linear approaches
and rotational components (see Section 1.2 for definitions) which makes it
possible to study a wild singularity in terms of geodesic rays emanating
from the singularity.

In the theory of finite translation surfaces, an easy-to-prove but fasci-
nating equation is true: the Gauß-Bonnet formula provides a correlation
between the topology of translation surfaces and the geometry of their sin-
gularities. In fact, the equation relates the genus and the cone angle of the
singularities, without using any other information (see Proposition 1.14).
A similar result on general translation surfaces would not only be nice in
itself but could help to classify translation surfaces. For finite translation
surfaces, there exists a well-established theory on moduli spaces and strata
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of translation surfaces which has recently made a big leap with the results
of Eskin, Mirzakhani, and Mohammadi in [EMM15] and of Eskin and
Mirzakhani in [EM13]. Such a theory is desirable for general translation
surfaces but there is still a lack of a good notion of moduli spaces and even
more of strata of translation surfaces. To remedy this lack it seems natural
to first study singularities (especially wild singularities) in more detail
and establish relations between the singularities as a geometric object of
a translation surface and the topology in terms of genus and ends.

The purpose of this thesis is to contribute to these new aspects of the
theory. We do this under three different points of view. As one aspect,
we study the local neighborhood of a singularity, in terms of topological
properties and their spaces of rotational components. As a second aspect
we consider the global topology of wild translation surfaces, in particular
the spaces of ends that can occur. The third aspect is to bring together
these two points of view and show under which conditions the existence
of a singularity with given properties can imply topological properties of
the translation surface.

The structure of this thesis is as follows. In Chapter 1, we recall the
basic definitions and concepts that are needed in the course of the thesis.
We start with a discussion of definitions of (finite) translation surfaces
and types of singularities. Then the spaces of linear approaches and
rotational components are defined. The classification of closed and of
general surfaces is recapped, together with the definition of the space of
ends that is needed for the classification. The chapter concludes with
basic properties of the Veech group of a translation surface and of the
geodesic flow on a translation surface.

The recalled concepts are enhanced in Chapter 2 by studying three
examples in detail, i.e. by determining their geometry in terms of Veech
groups, types of singularities, spaces of linear approaches, and spaces of
rotational components, and by determining their topology in terms of
genus and space of ends. Moreover, we give a general construction of
modifying translation surfaces so that they are provided with additional
singularities and desirable properties.

In Chapter 3, the theory of ends of a surface is specialized to a theory
of ends of translation surfaces. This includes the definition of singular
and regular ends and the end of a singularity. In Theorem 1, we prove
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that almost every combination of genus, ends, and singularities can be
realized by a translation surface.

Theorem 1 (No restrictions in terms of topology and number of
singularities)
Let (s, g, e) be a triple of natural numbers with s ≥ 1, g ≥ 0, and e ≥ 1.
Then there exists a translation surface with s (nonremovable) cone angle
or infinite angle singularities, genus g, and e ends.

Moreover, in Theorem 2, which was proven together with Camilo Ramírez
Maluendas, we show that all spaces of ends of surfaces also occur as spaces
of ends of translation surfaces.

Theorem 2 (Existence of a translation surface with given ends)
Let E, E′ be closed subsets of the Cantor set with E′ ⊆ E 6= ∅. Then there
exists a translation surface (X,A) that has only cone angle singularities,
i.e. the complex structure of X can be extended to X, and such that
Ends(X) is homeomorphic to E and Endsnonplanar(X) is homeomorphic
to E′.

We then establish relations between the ends and singularities, summarized
in Theorem 3.

Theorem 3 (Relations between ends and singularities)
Let (X,A) be a translation surface, e an end of (X,A) and σ a singularity
of (X,A).

(i) If e is a regular end then it is planar and of finite area.

(ii) If e is a singular end then it can be induced by every number of
singularities, including zero.

(iii) If σ is a cone angle singularity then end(σ) is planar and of finite
area.

(iv) If σ is an infinite angle singularity then end(σ) is of infinite area
and can be planar or nonplanar.

(v) If (X,A) has finitely many singularities and e is a singular, planar
end of finite area then e is induced by a singularity.
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(vi) If X is compact then the ends and the singularities are in one-to-
one-correspondence.

In Chapter 4, we study the neighborhoods of singularities, in particular
of wild singularities. This is done in terms of geometric and topological
properties and in terms of saddle connections. In particular, we define the
property xossiness for singularities which indicates if there exist saddle
connections of arbitrarily small length that have a nice neighborhood.
Two conditions are given under which xossiness is fulfilled.

We use the results on xossiness to show in Chapter 5 under which
conditions the existence of wild singularities has influence on the genus.
In particular, we give a characterization of infinite genus in terms of
saddle connections and exhibit in Theorem 4 that the existence of a
wild singularity which fulfills xossiness together with the existence of two
recurrent directions for the geodesic flow implies infinite genus.

Theorem 4 (Wild singularity implies infinite genus)
Let (X,A) be a translation surface so that for two directions θ1, θ2 ∈ S1

the geodesic flows Fθ1 and Fθ2 are recurrent. Furthermore, let σ be a wild
singularity of (X,A) that fulfills xossiness. Then X has infinite genus.

The results in this chapter, together with some statements in the previous
chapter have been published before in [Ran14].

The results in Chapter 6 are all about the spaces of rotational com-
ponents and about their connections to the spaces of linear approaches
and the translation structure on rotational components. Three relations
on the different topologies are established. We show in Theorem 5 that
the space of rotational components does not at all determine the space of
linear approaches.

Theorem 5 (L̃̃̃(σ) does not determine L(σ))
There are uncountably many translation structures Ar on a Loch Ness
monster of finite area with the following properties.

(i) Every translation surface (Xr,Ar) has exactly one singularity σr.

(ii) The spaces L̃(σr) of rotational components are all homeomorphic.

(iii) The spaces L(σr) of linear approaches are pairwise not homeomor-
phic.
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In the last theorem, Theorem 6, we show that every finite topological
space can be realized as the space of rotational components of some wild
singularity.
Theorem 6 (Every finite space occurs as L̃̃̃(σ))
Let Y be a non-empty topological space of finite cardinality. Then there
exists a translation surface (X,A) with a singularity σ so that L̃(σ) carries
the same topology as Y .
These results as well as some findings on examples from Chapter 2 were
obtained together with Lucien Clavier and Chenxi Wu and have been
published before in [CRW14].

At this point, I would like to express my gratitude to the various people and
institutions that supported my work. First of all, I want to heartily thank
my advisor Gabi Weitze-Schmithüsen for her constant encouragement and
the tremendous amount of time she took to discuss translation surfaces
and the life in academia. Also, I am much obliged to Frank Herrlich
and Ferrán Valdez for agreeing to become referees of this thesis. Frank
Herrlich I also want to thank for his famous “open door” and the frequent
casual discussions in the evening whereas I want to thank Ferrán Valdez
for encouraging me a lot by being interested in my progress and sharing
his thoughts on wild translation surfaces every time we met. I also want
to thank all previously mentioned, Stefan Kühnlein, Pat Hooper, Chenxi
Wu, Lucien Clavier, and all members of the Kaffeerunde who taught me
different fields of mathematics, in lectures, in discussions, by answering
my questions, or by working on a joint article. In particular, I want to
thank my office mates Myriam Finster, Florian Nisbach, Benni Peters,
and Sven Caspart for the lively interchange of concepts in mathematics
and culinary art.

I am also indebted to the Institute for Computational and Experimental
Research in Mathematics (ICERM) that funded a semester-long research
stay in Providence during the program “Low-dimensional Topology, Ge-
ometry, and Dynamics” and to the Karlsruhe House of Young Scientists
(KHYS) that supported me with two grants which made it possible to
visit Pat Hooper in New York and to invite Chenxi Wu and Lucien Clavier
to Karlsruhe. Finally, I want to thank Gabi Weitze-Schmithüsen, Ferrán
Valdez, Frank Herrlich and Myriam Finster for proofreading and giving
valuable advice on how to improve the exposition.
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1 Basics on translation surfaces
In this chapter, we recall the definitions of translation surfaces, of their
singularities and their space of ends, of Veech groups and of dynamics
on translation surfaces. The fundamental properties are stated, mostly
without proof because detailed proofs are covered in various sources.
Regarding the classical theory of translation surfaces, there are a lot of
elaborate surveys with different emphases, for instance [MT02], [Zor06],
and [FM13]. Most of the following has also been previously formulated
in [Ran12].

1.1 Translation surfaces
We start with the definition and some examples of our main object.

Definition 1.1 (Translation surface)
A translation surface (X,A) is a connected two-dimensional manifold X
together with a translation structure A on X, i.e. a maximal atlas on X
so that the transition functions are locally translations.

In particular, translation surfaces are Riemann surfaces, hence triangulable
and second-countable.

A trivial example of a translation surface is the Euclidean plane R2.
The charts of the translation atlas are given by the identity and by maps
on open sets in R2 that are locally translations. Going one step towards
non-triviality, we see that the quotients R2/Z (which is a cylinder) and
R2/Z2 (which is a torus) are also translation surfaces. We can show this
explicitly by specifying charts for the cylinder or the torus. To define a
chart, consider a simply connected subset of the cylinder or the torus and
choose a connected component of the preimage in R2 under the quotient
map π. Then the restriction of π−1 to the chosen set is a chart.

Let (X,A) be a translation surface and p : U → R2 a chart such that U
is simply connected. Then U is homeomorphic to a connected subset
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of R2 and we can pull back the Euclidean metric from R2 to U . We define
the metric on X as the path length metric induced by the local metrics
on the charts of this type.

Every metric space has a metric completion which is isometric to the
space of all Cauchy sequences modulo an equivalence relation. Here,
two Cauchy sequences are considered to be equivalent if and only if the
sequence of the distances between the corresponding elements converges
to 0. As we can see from this construction, the metric completion is
a complete metric space with respect to the extended metric. For the
Euclidean plane, the cylinder, and the torus, the metric completion is equal
to the original space. For a punctured metric space, the metric completion
has additional points which correspond to filling in the punctures. This
phenomenon in particular occurs for the class of translation surfaces which
is defined in the next definition.

Definition 1.2 (Finite translation surface)
A translation surface (X,A) is called finite if the metric completion X is
a compact surface and X \X is discrete.

As X is a surface and hence is open in X the set X \X is closed. Therefore
it is discrete if and only if it is finite. The additional points in the metric
completion will be the starting point for our studies.

Definition 1.3 (Singularity)
For a translation surface (X,A), every element of X\X is called singularity
of (X,A).

The Euclidean plane and the cylinder are not finite translation surfaces
whereas the torus is. However, all three of them do not have singularities.

Definition 1.2 is not among the three standard definitions for a finite
translation surface. A frequently used standard definition requires a
description of the singularities in terms of translation coverings.

Definition 1.4 (Translation covering)
A continuous map p : (X,A) → (Y,B) of translation surfaces is called
translation covering if it is a covering map such that the translation
structure A on X is the pullback of the translation structure B on Y .

In the case of a translation covering p : (X,A)→ (Y,B), the deck transfor-
mations of p act as translations on (X,A), i.e. for every deck transforma-
tion f and every x ∈ X there exist charts (U,ϕ), (V, ψ) ∈ A with x ∈ U

10
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and f(U) ⊆ V so that for every z ∈ ϕ(U) ⊆ R2 it is true that ψ ◦ f ◦ ϕ−1

is a translation.

Definition 1.5 (Finite translation surface)
Let X̂ be a closed, connected Riemann surface with a finite set Σ ⊆ X̂ of
marked points and a translation structure A on X := X̂ \Σ. Furthermore,
for every σ ∈ Σ, there shall exist an ε > 0 and a continuous map
p : B(σ, ε) \ {σ} → B(0, ε) \ {0} ⊆ R2 such that p is a finite cyclic
translation covering of the once-punctured disk. Then (X,A) is called a
finite translation surface.

We have to show that the two given definitions of finite translation surfaces
coincide.

Proposition 1.6 (Finite translation surfaces are finite translation
surfaces)
Every finite translation surface according to Definition 1.2 is a finite
translation surface according to Definition 1.5 and vice versa.

Proof. Let (X,A) be a finite translation surface according to Definition 1.2.
We define X̂ := X and Σ := X \ X. Then X̂ is a connected, closed
topological surface and Σ is finite. Moreover, X carries a translation
structure, hence a complex structure which can be extended to a complex
structure on X̂ by Picard’s great theorem. Furthermore, let σ ∈ Σ. Then
there exists an ε > 0 such that B(σ, ε) ⊆ X̂ is homeomorphic to a disk, in
particular to B(0, ε) ⊆ R2. Since B(σ, ε)\{σ} is locally flat, we can define
a map p : B(σ, ε)\{σ} → B(0, ε)\{0} by composing charts (concatenated
with transition functions where necessary). This is locally an isometry
and moreover, it is a cyclic translation covering. Hence, (X,A) is a finite
translation surface according to Definition 1.5.

Now, let (X,A) be a finite translation surface according to Definition 1.5.
The metric completion X is equal to the compact surface X̂ and X\X = Σ
is a discrete set. Hence, (X,A) is a finite translation surface according to
Definition 1.2.

There are two more equivalent definitions for finite translation surfaces
(cf. [Mas06, Definition 1, 4, and 5]). The first one defines finite translation
surfaces as Riemann surfaces with a nonzero abelian differential on it.
The translation structure is obtained by integrating over the differential

11



1 Basics on translation surfaces

in neighborhoods of all points except for the zeros. The zeros of the
differential yield the singularities of the translation surface.

The second one is given by a construction which can be extended to the
more general situation: Consider a set of finitely many disjoint polygons
in the Euclidean plane so that for every edge of a polygon there exists
a parallel edge of the same length. Now we identify the matching edges
of the polygons via translations. If the result is a connected, orientable
surface then it is a finite translation surface. We have a translation
chart on the neighborhood of every point except possibly for the vertices.
Therefore, we consider the resulting surface without the former vertices
as a translation surface. In that way, the former vertices are exactly the
additional points in the metric completion and so they are the singularities
of the translation surface.

The easiest example is that of a square where top and bottom are
identified via a translation and left edge and right edge are identified via
a translation which yields a torus with translation structure.

We consider three more examples that are obtained by gluing polygons
to get used to that construction. We will consult these examples for the
clarification of definitions throughout the following sections.

The first example is very classical and explicitly appears for the first
time in [Vee89, Section 4].

Example 1.7 (Veech’s double n-gons). Let n ≥ 3 and consider two regular
n-gons of side length 1 without vertices for which two edges are parallel.
The two edges have to be chosen so that there is one of the edges in each
n-gon and so that the polygons are on different sides of the edges. Then
for every edge there also exists a parallel edge in the other n-gon. These
parallel edges are now identified via the corresponding translations. In
Figure 1.1 we have n = 5 and by labeling two edges with the same letter
we indicate that they are identified.

As the resulting surface is orientable, connected and obtained by gluing
finitely many polygons, it is a finite translation surface. We can also check
by hand that the metric completion is a compact surface of genus n−1

2
if n is odd and a compact surface of genus n−2

2 if n is even. In the case
of n odd, the number of singularities is 1 whereas in the case of n even it
is 2, hence it is finite in both cases.

12
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a

b

cd

e

d

e

a

b

c

Figure 1.1: Veech’s double n-gon for n = 5: edges which are labeled by the same letter
are identified.

We can not only glue finite translation surfaces from finitely many polygons
but also obtain a translation surface when gluing infinitely many polygons
in the same way as described above. This is used in the next two examples.

The following gives an example of a translation surface which is not finite
but still not too complicated. It is studied in [HS10] as an exceptional
member of a family of translation surfaces and in [HHW13] because of its
interesting dynamics.

Example 1.8 (Infinite staircase). Consider infinitely many copies of a
square without vertices. The squares are arranged as shown in Figure 1.2
and again the gluings are indicated by letters.

The metric completion of this surface has infinite area and is not
compact, so the infinite staircase is not a finite translation surface.

The last example for now is described in detail in [Cha04] which is one of
the first articles dealing with a translation surface which is not a finite
translation surface and not a translation covering of a finite translation
surface. Sometimes the surface is called baker’s map surface as it can be
obtained from a dynamical system given by a chaotic map from the unit
square into itself which is called baker’s map.

Example 1.9 (Chamanara surface). We consider a square without vertices
and want to specify gluings to make the square into a translation surface.
For this, top and bottom have to be identified. Doing the identification in
the canonical way we obtain a torus as described before. However, we do
the identification in the following non-canonical way. We divide the top

13



1 Basics on translation surfaces

f f

g

g

d d

e

e

b b

c

c

a a

Figure 1.2: For the infinite staircase, opposite edges are identified.

edge into two halves and the bottom edge into two halves. Then we glue
the right half of the top to the left half of the bottom. The remaining
halves are divided again and the right part of the top is glued to the left
part of the bottom, and so on (see Figure 1.3).

We do the same with the left and the right edge, always identifying the
upper part of the right edge with the lower part of the left edge.

When we exclude not only the vertices of the square but also the points
on the edges where we divided the segments into halves, we obtain a
translation structure on the resulting surface. The vertices and the cutting
points lead to points in the metric completion and so they are forming
singularities. We will discuss the singularities of the Chamanara surface
in Example 1.15 and in Section 2.1 in more detail.

To complete this section, we introduce two more definitions that are useful
to describe translation surfaces.

Definition 1.10 (Saddle connection)
Let (X,A) be a translation surface. A saddle connection of (X,A) is a

14
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a b c d

abcd

a′

b′

c′
d′

a′

b′

c′

d′

Figure 1.3: For the Chamanara surface, we identify segments that are parallel and have
the same length.

geodesic in X which joins two (not necessarily different) singularities and
does not contain a singularity in its interior.

A saddle connection defines a vector in R2 by its length and direction.
More generally, for every geodesic we can define a holonomy vector, using
the developing map from the universal cover of the translation surface
to R2 (see [Rat94, § 8.4] for a definition of the developing map).

Definition 1.11 (Holonomy vector)
Let (X,A) be a translation surface and γ : [0, l] → X a geodesic with
γ((0, l)) ⊆ X. Using the charts of the translation atlas, we can develop
γ((0, l)) into R2 and obtain a geodesic in R2. The difference vector between
the start and the end point of the geodesic in R2 is called holonomy vector
of the geodesic γ.

It is shown in [Vor96, Proposition 3.1] that the set of holonomy vectors
of saddle connections of a finite translation surface is discrete in R2.

15



1 Basics on translation surfaces

1.2 Singularities of translation surfaces
We defined the singularities of a translation surface (X,A) in Definition 1.3
as the additional points in the metric completion X. These additional
points provide rich information on the geometry and topology of the
surface if there are not too many of them. Considering the open disk
B(0, 1) ⊆ R2 as a translation surface, we obtain that the set of singularities
is isometric to S1 = ∂B(0, 1) with the metric inherited from R2. Most
authors want to exclude this behaviour and we do the same by restricting
ourselves to translation surfaces with discrete sets of singularities.

Convention (Translation surfaces have discrete sets of singularities). From
now on, by a translation surface we always mean a translation surface
where the set of singularities is discrete in the metric completion.

In this section we distinguish different types of singularities and present
an approach how to describe singularities, following [BV13].

As we have seen in Proposition 1.6, the singularities of finite translation
surfaces have a nice description in terms of translation coverings of a once-
punctured disk. We distinguish singularities that have such a description
from singularities that have not.

Definition 1.12 (Cone angle, infinite angle, and wild singularity)
Let (X,A) be a translation surface and σ a singularity of (X,A).

(i) The singularity σ is called cone angle singularity of multiplicity
k ≥ 1 if there exist
• ε > 0,
• an open neighborhood B of σ in X, and
• a k-cyclic translation covering from B \ {σ} to the once-

punctured disk B(0, ε) \ {0} ⊆ R2.
If k = 1 then the singularity σ is also called removable singularity
or flat point.

(ii) The singularity σ is called infinite angle singularity or cone angle
singularity of multiplicity ∞ if there exist
• ε > 0,
• an open neighborhood B of σ in X, and
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1.2 Singularities of translation surfaces

• an infinite cyclic translation covering from B \ {σ} to the
once-punctured disk B(0, ε) \ {0} ⊆ R2.

(iii) The singularity σ is called wild if it is neither a cone angle nor an
infinite angle singularity.

Definition 1.13 (Wild and tame translation surface)
A translation surface is called wild if it has a wild singularity. If it
has no singularities or if all singularities are cone angle or infinite angle
singularities then the translation surface is called tame.

We have seen in Proposition 1.6 that every finite translation surface is
a tame translation surface. For instance, the unique singularity of the
double pentagon in Example 1.7 has a punctured neighborhood which is
a triple covering of the once-punctured disk (cf. Figure 1.4). Hence, it
is a cone angle singularity of multiplicity 3.

Also, the infinite staircase in Example 1.8 is a tame translation surface
since it has four singularities as indicated in Figure 1.5 of which all of
them are infinite angle singularities.

For a finite translation surface, the Gauß-Bonnet formula states that all
topological information is encoded in the number and multiplicities of the
singularities. The proof is very short and fits nicely in the discussion of
translation surfaces obtained by gluing polygons, so we include it here.

σ

Figure 1.4: A metric picture of the neighborhood of a cone angle singularity σ of
multiplicity 2.
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1 Basics on translation surfaces

Figure 1.5: In each copy of the infinite staircase, one of the four infinite angle singular-
ities is indicated.

Proposition 1.14 (Gauß-Bonnet formula)
Let (X,A) be a finite translation surface of genus g that has n cone angle
singularities of multiplicity ki, i = 1, . . . , n. Then it holds

g = 1 + 1
2

n∑
i=1

(ki − 1).

Proof. Consider a triangulation of X so that all singularities are vertices
of triangles. Let v be the number of vertices, e the number of edges and f
the number of faces. When we sum up the angles of all triangles in two
different ways, we obtain

f · π =
n∑
i=1

ki · 2π + (v − n) · 2π.
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1.2 Singularities of translation surfaces

Together with 2e = 3f , this leads to

2− 2g = χ
(
X
)

= v − e+ f = v − 1
2f = −

n∑
i=1

(ki − 1).

The Gauß-Bonnet formula shows in particular that the torus is the only
surface that can be equipped with a translation structure so that we
obtain a finite translation surface without singularities.

Informally, the multiplicity of a cone angle singularity can be described
by counting “how many times we surround the singularity” in a given
distance in the flat metric before the curve closes. We would like to have
a similar way of describing a wild singularity. An example shall point out
the problems we have to deal with.

Example 1.15 (Singularities of the Chamanara surface). Recall the Cha-
manara surface from Example 1.9 where the edges of a square are divided
into segments and these segments are glued in a crosswise way. By sur-
rounding the cutting points via the gluings we find that every second
cutting point is identified as sketched in Figure 1.6. However, the distance
of the two indicated points in the figure is not bounded away from 0 in
the metric completion, hence it is 0. This means that all cutting points

a b c d

abcd

a′

b′

c′
d′

a′

b′

c′

d′

a b c d

abcd

a′

b′

c′
d′

a′

b′

c′

d′

Figure 1.6: The arcs indicate which cutting points are identified by the gluings in the
Chamanara surface.
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1 Basics on translation surfaces

and the lower left and upper right corner are identified to one point in
the metric completion. The same argument holds true for the upper left
and lower right corner of the square and we receive that we have exactly
one singularity σ.

We observe in Figure 1.6 that for every ε > 0, the ε-neighborhood
of σ contains a saddle connection and is not simply connected. Hence
B(σ, ε) \ {σ} is not a translation covering of a once-punctured disk. In an
informal way, we can say that the singularity itself is an obstacle to the
existence of a translation covering. So, σ is neither a cone angle nor an
infinite angle singularity, which means it is a wild singularity.

We can see in the last example that, informally spoken, there are indeed
possibilities to go around the singularity, for example by following the
arcs in Figure 1.6. However, when doing this we will never see the whole
complexity of the singularity: we have two disjoint possibilities to go
around the singularity and still will not reach the upper left and lower
right corner.

So, to understand wild singularities better we have to describe them
more detailed. The first approach of that was done by Bowman and Valdez
in [BV13] by introducing linear approaches and rotational components.
We recall their definitions and some useful properties in the remainder of
this section.

The first definition deals with all possibilities of leaving a singularity in a
geodesic way. Recall that a geodesic curve is a continuous map γ : I → X
(I ⊆ R an interval) so that for each t ∈ I there exists a neighborhood
(t1, t2) ⊆ I of t so that γ|(t1,t2) is isometric. In particular, this means that
all geodesic curves are unit speed.

Definition 1.16 (Space of linear approaches)
Let (X,A) be a translation surface, x ∈ X, and ε > 0. We define

Lε(X) := {γ : (0, ε)→ X : γ is a geodesic curve}

and
Lε(x) :=

{
γ ∈ Lε(X) : lim

t→0
γ(t) = x

}
.

If x is a wild singularity then we can deduce from Definition 1.12 that
there exists no ε > 0 so that all geodesic curves starting in x can be
extended to have at least length ε. Therefore, we consider equivalence
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1.2 Singularities of translation surfaces

classes instead of curves: γ1 ∈ Lε(X) and γ2 ∈ Lε
′(X) are called equivalent

if γ1(t) = γ2(t) for every t ∈ (0,min{ε, ε′}). The space

L(X) :=
⊔
ε>0
Lε(X)/ ∼

is called space of linear approaches of X.
In the same way, we define

L(x) :=
⊔
ε>0
Lε(x)/ ∼ ⊆ L(X)

as the space of linear approaches of x and the equivalence class [γ] of
γ ∈ Lε(x) is called linear approach to the point x.

Every Lε(X) can be embedded in L(X) and also in Lε′(X) for every
ε′ > 0 with ε ≥ ε′. The family of all spaces Lε(X) together with these
embeddings is a direct system, i.e. the composition of two such embeddings
Lε(X) ↪→ Lε′(X) and Lε′(X) ↪→ Lε′′(X) is equal to the given embedding
Lε(X) ↪→ Lε′′(X). We have that L(X) is the colimit of the described
direct system.

For a regular point x ∈ X, the space L(x) of linear approaches of x is
in one-to-one correspondence to a space Lε(x) for some ε > 0. Therefore,
the space L(x) of linear approaches corresponds to the set of rays in all
directions in S1 = R/2πZ so it is in one-to-one correspondence to the
fibre of the unit tangent bundle at x. For now, we are considering the
spaces of linear approaches only as sets. To compare the spaces of linear
approaches of different points, we want to establish a topology on L(X).

Before describing the topology on L(X), we define rotational compo-
nents as classes of linear approaches with a one-dimensional translation
structure on it. This is done by mimicking the concept of “going around
a singularity” for cone angle and infinite angle singularities.

For ε > 0 and a generalized interval I, i.e. a nonempty connected subset
of R, we consider the infinite strip {z ∈ C : Re(z) < log ε, Im(z) ∈ I} ⊆ C.
Via the injective map

f : C→ (C \ {0})× R, z 7→ (ez, Im(z))

we can spiral the strip around the puncture at 0. We endow the image U
of the strip under f with the pullback of the Euclidean metric on C via
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base
point

ε · ea·i

ε · eb·i

Figure 1.7: Examples for iε(U) with I = [a, b]: in the first two examples we have
b− a < 2π whereas in the last example we have b− a > 2π.

the projection to the first component. Some examples of the projection
of U are sketched in Figure 1.7.

Such an image U together with an embedding in X defines an angular
sector as is made precise in the following definition.

Definition 1.17 (Angular sector)
Let (X,A) be a translation surface. An angular sector is a triple (I, ε, iε)
of a generalized interval I, ε > 0, and an isometric embedding iε of

U := f ({z ∈ C : Re(z) < log ε, Im(z) ∈ I})

into X.

For an angular sector (I, ε, iε) and y ∈ I, limx→−∞(iε ◦ f)(x + iy) is a
point in X and independent of y. This point is called base point of the
angular sector (I, ε, iε).

If (I, ε, iε) is an angular sector with base point x ∈ X then we can
define a map f(I,ε,iε) : I → L(x). For every y ∈ I, the image of the map

iε ◦ f : {z ∈ C : Re(z) < log ε, Im(z) = y} → X

is a geodesic segment of length ε and hence induces an element in Lε(x).
Let f(I,ε,iε)(y) be the corresponding linear approach in L(x).
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1.2 Singularities of translation surfaces

In the next definition, we use angular sectors to define an equivalence
relation on the space L(x) of linear approaches of a point x. In an informal
way, we can describe it as two linear approaches being “contained” in the
image of a given angular sector.

Definition 1.18 (Rotational component)
Let (X,A) be a translation surface, x ∈ X, and [γ1], [γ2] ∈ L(x). The
linear approaches [γ1] and [γ2] are called R-equivalent if there exists
an angular sector (I, ε, iε) with base point x and y1, y2 ∈ I such that
f(I,ε,iε)(y1) = [γ1] and f(I,ε,iε)(y2) = [γ2].

The R-equivalence class [γ] of [γ] ∈ L(x) is called rotational component
of x.

We say that a linear approach [γ] is contained in a rotational component c
if [γ] = c holds.

The set of all linear approaches assigned to a given angular sector
(I, ε, iε) can be described as

V (I, ε, iε) :=
{
f(I,ε,iε)(y) : y ∈ I

}
.

Then V (I, ε, iε) is a subset of the space L(x) of linear approaches. All linear
approaches in V (I, ε, iε) are contained in the same rotational component c
where c := f(I,ε,iε)(y) for an arbitrary y ∈ I. In other words, the map

ϕ(I,ε,iε) : V (I, ε, iε)→ R, f(I,ε,iε)(y) 7→ y

is inverse to f(I,ε,iε) and hence V (I, ε, iε) and I are in one-to-one corre-
spondence.

We want to define a topology on a rotational component [γ] of x by
considering all angular sectors (I, ε, iε) with base point x so that I is
an open interval and f(I,ε,iε)(y) is contained in [γ] for every y ∈ I. The
union of the images of all such f(I,ε,iε) covers the rotational component
except for possibly two linear approaches [γleft] and [γright]. In this case,
half-closed intervals I = (a, b] with f(I,ε,iε)(b) ∈ {[γleft], [γright]} have to
be allowed as open sets to obtain a cover of [γ].

We choose the collection of the corresponding sets V (I, ε, iε) as a
basis of the topology. In particular, any such ϕ(I,ε,iε) for I open is a
homeomorphism.
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1 Basics on translation surfaces

Definition 1.19 (Translation structure on rotational components)
Let (X,A) be a translation surface, x ∈ X, and [γ] a rotational component
of x that contains more than one linear approach. Then

{(V (I, ε, iε), ϕ(I,ε,iε)) : (I, ε, iε) an angular sector with base point x,

I open, f(I,ε,iε)(I) ⊆ [γ]}
∪ {(V (I, ε, iε), ϕ(I,ε,iε)) : (I, ε, iε) an angular sector with base point x,

I = (a, b], f(I,ε,iε)(I) ⊆ [γ],
f(I,ε,iε)(b) ∈ {[γleft], [γright]}}

forms an atlas of [γ].
Therefore, [γ] is a one-dimensional manifold, possibly with boundary.

As the transition functions are actually translations in R, [γ] even carries
a one-dimensional translation structure.

For instance, the only rotational component of a cone angle singularity of
multiplicity k is equipped with a one-dimensional translation structure so
that it is isometric to R/2πkZ.

Using the one-dimensional translation structure on [γ], we can pull
back the Euclidean metric from R to [γ] and for this we can measure the
length of a rotational component.

We now describe the topology with which we endow the space of linear
approaches and the space of rotational components.

Definition 1.20 (Topology on L(X) and L(x))
Let (X,A) be a translation surface and x ∈ X. For ε > 0 we can define
the uniform metric on Lε(X) using the translation metric dX on X:

dε(γ1, γ2) = sup
0<t<ε

dX (γ1(t), γ2(t)) .

The uniform metric defines a topology on Lε(X). As L(X) is the colimit of
the direct system of the spaces Lε(X), we can define the final topology on
L(X). This is the finest topology so that all embeddings Lε(X) ↪→ L(X)
are continuous.

The topology of L(x) is the induced topology as a subset of L(X).

The following characterization of the topology on L(X) from [BV13,
Proposition 2.3] is more handsome than Definition 1.20.
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1.2 Singularities of translation surfaces

Lemma 1.21 (Subbasis for the topology on L(X) [Bowman-Valdez]). Let
(X,A) be a translation surface. For every x ∈ X, r > 0, and t > 0, the
set

B̃(x, r)t := {[γ] : γ ∈ Lε(X) for some ε > t, d(γ(t), x) < r}

is an open set. In fact, the collection {B̃(x, r)t} forms a subbasis for the
topology on L(X) described in Definition 1.20.

The preceding lemma leads to a characterization of the topology on the
space L(x) of linear approaches of x ∈ X which will be often used in
proofs and computations.

Lemma 1.22 (Subbasis for the topology on L(x)). Let (X,A) be a transla-
tion surface. For every geodesic curve γ ∈ Lε(x), r > 0, and t < ε, the
set

B(γ, t, r) := B̃(γ(t), r)t ∩ L(x)

=
{

[γ′] : γ′ ∈ Lε
′
(x) for some ε′ > t, d(γ(t), γ′(t)) < r

}
is an open neighborhood of [γ] in L(x). In fact, the collection {B(γ, t, r)}
forms a subbasis for the topology on L(x) as a subspace of L(X).

Proof. The first statement is clear by the definition of the topology on
L(x) and by [γ] ∈ B(γ, t, r).

To prove the second statement, let x′ ∈ X, r′ > 0, and t′ > 0. For
every linear approach [γ] ∈ B̃(x′, r′)t′ ∩ L(x) we specify a neighborhood
from that collection which is contained in B̃(x′, r′)t′ ∩ L(x): Let γ be a
representative of [γ] and define t := t′ and r > 0 small enough so that
B(γ(t), r) ⊆ B(x′, r′). Then we have

B(γ, t, r) ⊆ B̃(x′, r′)t
′
∩ L(x)

and this shows that {B(γ, t, r)} is a subbasis for the topology on L(x).

For every ε > 0 there exists a map dirε : Lε(X) → S1 = R/2πZ that
associates to each geodesic curve in Lε(X) its direction. As all maps dirε
commute with the embeddings from the direct system and L(X) is the
colimit of the direct system, we can define a map dir : L(X)→ S1. Then
we have the following useful lemma (see [BV13, Corollary 2.2]).

25



1 Basics on translation surfaces

Lemma 1.23 (Directions of linear approaches vary continuously [Bowman–
Valdez]). Let (X,A) be a translation surface. Then dir : L(X)→ S1 is a
continuous map.

Now we can also define the space of rotational components as a quotient
space of L(X).

Definition 1.24 (Space of rotational components)
Let (X,A) be a translation surface and x ∈ X. Recall that two linear
approaches are called R-equivalent if they are contained in the same
rotational component.

We define the space of rotational components as L̃(X) := L(X)/R. It
shall be endowed with the quotient topology. Furthermore, we define
L̃(x) := L(x)/R, also endowed with the quotient topology so that L̃(x) is
a subspace of L̃(X).

Note that on each rotational component, we have a translation structure
as defined in Definition 1.19 and we have on it the topology as a subspace
of the space L(x) of linear approaches. These two topologies do not
coincide in general as we will see explicitly in Section 2.3.

In Chapter 2, the spaces of linear approaches and the spaces of rotational
components of some examples are studied in detail.

1.3 Ends of topological spaces
For connected, closed surfaces, i.e. connected, compact surfaces with
empty boundary, we have the well-known result that the homeomorphism
classes can be distinguished entirely by the genus and the information
whether the surface is orientable. This result was first shown in special
cases independently by Möbius in [Mö63] and by Jordan in [Jor66] and
generally by von Dyck in [Dyc88] but all three mentioned proofs were not
as rigorous as we would demand it today. A first rigorous proof was given
by Dehn and Heegaard in [DH07] under the condition that the surfaces
are triangulable. When combining this with Radó’s result in [Rad25]
that all surfaces are triangulable we have the following classification of
closed surfaces (see [GX13, Appendix D] for more details on the history
of the classification).
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Theorem 1.25 (Classification of closed surfaces [Dehn-Heegaard,
Radó])
Two connected, closed surfaces are homeomorphic if and only if they have
the same genus and are in the same orientability class.

The genus of a surface is often defined by Betti numbers or by the idea
of handles of a surface. Instead of that approach, we will employ a
definition in Section 5.1 that uses the number of nonseparating curves (cf.
[Zie08, Section 1.3]). For a connected surface X, a simple closed curve
γ : [0, l] → X is called nonseparating if X with the image of γ removed
is connected. In the same way, we say that a set of simple closed curves
{γ1, . . . , γn} is nonseparating if X with the images of γ1, . . . , γn removed
is connected.

Similarly, we say that a closed curve γ in X is nonseparating if X \ im(γ)
is connected and a set of closed curves {γ1, . . . , γn} in X is nonseparating
if X \ im(γ1) ∪ . . . ∪ im(γm) is connected.

Definition 1.26 (Genus)
Let X be a connected, orientable surface. The genus of X is g ∈ N if the
following equivalent conditions are true.

(i) The maximum cardinality of a nonseparating set of disjoint curves
in X is g.

(ii) The maximum cardinality of a nonseparating set of curves in X
is 2g.

Within the meaning of the previous definition, a connected, orientable
surface X is said to have infinite genus if for every n ∈ N = {0, 1, . . .}
there exists a nonseparating set of curves in X with cardinality n. This is
equivalent to X containing subsurfaces of arbitrarily large genus.

As we are also interested in noncompact surfaces, possibly with in-
finite genus, we would like to have a similar classification result as in
Theorem 1.25 for not necessarily compact surfaces. However, a cylin-
der of infinite length and the Euclidean plane are both orientable and
have genus 0 but they are not homeomorphic. The Euclidean plane is
homeomorphic to a once-punctured sphere whereas the cylinder is homeo-
morphic to a twice-punctured sphere. Informally, they are kept apart by
the information that there are two possibilities to leave the surface for
the cylinder and only one possibility for the plane.
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1 Basics on translation surfaces

A formalization of this concept of possibilities to leave the surface is
the space of ends which was for the first time described by Kerékjártó in
[Ker23, Abschnitt V, § 1]. The definition we give now goes back to an
equivalent description by Hopf in [Hop43, § 1].

Definition 1.27 (Space of ends)
Let X be a path-connected, locally compact space.

(i) A proper ray in X is a continuous map r : [0,∞)→ X so that the
preimage of every compact set in X is compact.

(ii) We say that two proper rays r1, r2 are equivalent if for every compact
set K ⊆ X there exists an n ∈ N so that r1([n,∞)) and r2([n,∞))
are contained in the same path-connected component of X \K.

(iii) For a proper ray r, we call its equivalence class end(r) the end
defined by r.

(iv) The set Ends(X) := {end(r) : r proper ray in X} is called space of
ends of X.

The space of ends is empty for a compact space: As every proper ray has
to leave any compact set, there can not exist proper rays into a compact
space, so a compact space does not have ends. In contrast, R has two
ends whereas Rn has only one end for n ≥ 2.

We obtain by these definitions that every puncture of a surface gives
rise to an end. Indeed, a proper ray defining this end could be a ray
spiraling around the puncture, coming closer and closer to the puncture
very slowly. We describe this construction more formally in Definition 3.2.
In particular, our translation surfaces with cone angle singularities have
ends. This kind of ends is sometimes excluded by other authors as the
cone angle singularities are considered to be special points, included in
the surface, in some definitions of translation surfaces.

The space of ends carries a topology that is defined by convergence:
Let r, r1, r2, . . . be proper rays in a path-connected, locally compact
space X. We say the sequence end(rn) converges to end(r) for n → ∞
if for every compact set K ⊆ X there exists an NK ∈ N and a sequence
(mn)n≥NK ⊆ N so that rn([mn,∞)) and r([mn,∞)) are contained in the
same path-connected component of X \K for every n ≥ NK .
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Figure 1.8: A vertex in the infinite complete binary tree can be described by a path
from the root to the vertex, given by l(eft)’s and r(ight)’s.

As usual we say that a subset S of Ends(X) is closed if for every
converging sequence of ends in S the limit is also contained in S. Note
that the limit of a converging sequence is unique by the definition of the
equivalence relation on the set of proper rays.

In the following more sophisticated example, we give an idea of what is
possible for spaces of ends of path-connected, locally compact spaces.

Example 1.28 (Space of ends of an infinite complete binary tree). Let T
be an infinite complete binary tree as in Figure 1.8. It has one vertex of
degree 2 (called the root) and all other vertices have degree 3.

For every proper ray in T , there exists a unique equivalent ray that is
geodesic and starts in the root. It can be described by an infinite sequence
of r’s and l’s. Each two geodesic rays starting in the root differ after finite
time, so they diverge and define different ends.

When replacing r and l by 0 and 2, we obtain the well-known description
of the Cantor (ternary) set as the set of numbers in [0, 1] ⊆ R whose
ternary expansions in base 3 do not contain the digit 1.
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1 Basics on translation surfaces

Figure 1.9: The two surfaces each have infinite genus and two ends but they are not
homeomorphic to each other.

The topology of the Cantor ternary set as a subset of R is the subspace
topology. In Ends(T ), for the end of a geodesic ray starting in the root, a
neighborhood subbasis of the topology is given by the ends of all geodesic
rays starting in the root for which the sequence of r’s and l’s agrees with
the sequence of the given ray in the first n elements for a fixed n ∈ N.
Hence, there exists a homeomorphism between the ends of T (which are
the ends defined by geodesic rays starting in the root) and the Cantor
ternary set.

As the example of the infinite complete binary tree indicates, the space
of ends of a path-connected, locally compact space does not have to be
finite. However, the space of ends has some remarkable properties as was
shown in [Fre31, Satz 4 and Satz 7].

Proposition 1.29 (Properties of the space of ends [Freudenthal])
The space of ends of a path-connected, locally compact space is totally
disconnected, separable, and compact. In particular, it is homeomorphic
to a closed subset of the Cantor set.

We defined the space of ends to distinguish between different homeomor-
phism classes of surfaces. However, the two surfaces in Figure 1.9 are
not homeomorphic to each other although they have the same genus and
the space of ends is in both cases the discrete two-point space. Though,
in a visual way we can distinguish two kinds of ends in the examples
in Figure 1.9: one kind with genus, one without. This leads us to the
following definition.
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Definition 1.30 (Planar and orientable ends)
Let X be a connected surface.

(i) An end e of X is called orientable if there exist a proper ray r
with end(r) = e, a compact set K ⊆ X, and an n ∈ N so that the
path-connected component of X \K, in which r([n,∞)) is contained,
is orientable.
Otherwise, the end e is called nonorientable.

(ii) An end e of X is called planar if there exist a proper ray r with
end(r) = e, a compact set K ⊆ X, and an n ∈ N so that the path-
connected component of X \K, in which r([n,∞)) is contained, is
planar, i.e. orientable and of genus 0.
Otherwise, the end e is called nonplanar.

(iii) The spaces Endsnonorientable(X) and Endsnonplanar(X) are defined
as the subspaces of Ends(X) that contain exactly the nonorientable
and nonplanar ends, respectively.

If an orientable surface has finite genus then all of its ends have to be
planar. If the surface has infinite genus then at least one of the ends is
nonplanar.

In Figure 1.9, the upper surface has one planar end and one nonplanar
but orientable end. The lower surface has two nonplanar but orientable
ends. It can be shown that a homeomorphism can not map a planar end to
a nonplanar end. Hence, the properties of ends from Definition 1.30 give
us the necessary distinction to express that the two surfaces in Figure 1.9
are not homeomorphic.

The general statement of classifying surfaces by their space of ends
was first proven by Kerékjártó in [Ker23, Abschnitt V, § 1]. A more
modern proof is given in [Ric63] by Richards who also introduces four ori-
entability classes in the case of noncompact surfaces: orientable, infinitely
nonorientable, odd nonorientable, and even nonorientable. As we consider
only orientable surfaces, we will not discuss the details of orientability
classes here.

Theorem 1.31 (Classification of surfaces [Kerékjártó])
Let X,Y be two connected surfaces of the same genus and the same
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orientability class. Then X and Y are homeomorphic if and only if the
nested triples of spaces

Ends(X) ⊇ Endsnonplanar(X) ⊇ Endsnonorientable(X)

and
Ends(Y ) ⊇ Endsnonplanar(Y ) ⊇ Endsnonorientable(Y )

are homeomorphic.

As translation surfaces are always orientable, we can describe their homeo-
morphism classes completely by the genus, the space of ends, and the
space of nonplanar ends. Some common examples of equivalence classes of
orientable surfaces were given names: the surfaces described in (iv) and (v)
of the following example by Phillips and Sullivan in [PS81, Section 1] and
the surfaces described in (iii) and (vi) by Ghys in [Ghy95, Théorème A].

Example 1.32 (Surfaces of genus 0 or ∞ with one, two, or infinitely many
ends).

(i) A surface of genus 0 with one end is homeomorphic to R2.

(ii) A surface of genus 0 with two ends is homeomorphic to a cylinder
of infinite length.

(iii) The surface of genus 0 with uncountably many ends shown in
Figure 1.10 is called Cantor tree. Be aware that this surface still has
a countable basis of topology in spite of the uncountably many ends.

(iv) A surface of infinite genus with one end (which is automatically
nonplanar) is called Loch Ness monster.

(v) A surface of infinite genus with two ends that are both nonplanar is
called Jacob’s ladder.

(vi) The surface of infinite genus with uncountably many ends that are
all nonplanar shown in Figure 1.10 is called blooming Cantor tree.

Most interesting examples of wild translation surfaces with one singu-
larity are Loch Ness monsters, for example the Chamanara surface (see
Section 2.1).
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1.3 Ends of topological spaces

Figure 1.10: Sketches of R2, Loch Ness monster, cylinder, Jacob’s ladder, Cantor tree,
and blooming Cantor tree (from top left to bottom right).
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1 Basics on translation surfaces

1.4 Veech groups of translation surfaces
The first study of Veech groups was done in [Vee89] by Veech after whom
the groups are named. He defined them using affine maps to measure
the symmetry of a finite translation surface. The Veech group of a finite
translation surface contains information about the dynamical properties
of the surface. A nice collection of fundamental results on Veech groups
can be found in [HS06].

A continuous map f : (X,A)→ (Y,B) of translation surfaces is called
affine if it is locally affine, i.e. for every x ∈ X there exist charts (U,ϕ) ∈ A
and (V, ψ) ∈ B with x ∈ U and f(U) ⊆ V so that for every z ∈ ϕ(U) ⊆ R2

it is true that(
ψ ◦ f ◦ ϕ−1) (z) = A · z + t for an A ∈ GL(2,R) and a t ∈ R2.

The matrix A is globally the same for an affine map f and it is called
the derivative of f . An affine map is called translation if its derivative is
the identity matrix.

Definition 1.33 (Affine group and Veech group)
Let (X,A) be a translation surface.

(i) The affine group Aff+(X,A) of (X,A) is defined as

Aff+(X,A) :=
{
f : X → X : f is an orientation-preserving
homeomorphism and affine with respect to A

}
.

(ii) The map der : Aff+(X,A)→ GL+(2,R) that assigns to each affine
map its derivative is called derivation map.

(iii) The image of der is called Veech group of (X,A) and denoted by
GL+(X,A).

For a translation surface with finite area, the elements of the affine group
are area-preserving, hence the Veech group is a subgroup of SL(2,R). For
a finite translation surface, it is even a discrete subgroup of SL(2,R) as
can be shown by using the discreteness of the set of holonomy vectors of
saddle connections (recall the remark after Definition 1.11 or see [Vee89,
Proposition 2.7] for the original proof).
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1.4 Veech groups of translation surfaces

For the Euclidean plane as a translation surface, the Veech group is
GL+(2,R). The nontrivial standard example of the calculation of a Veech
group is the one of a torus.

Example 1.34 (Veech group of a torus and a cylinder).

(i) Let (T,A) be a torus so that there exist a, b, c, d ∈ R with

B :=
(
a b
c d

)
∈ GL(2,R)

and T = C/ΛB for the lattice ΛB := (a+ ic)Z + (b+ id)Z.

Every element in Aff+(T,A) corresponds to an element of the affine
group of the Euclidean plane which preserves the lattice ΛB . There-
fore, a matrix A ∈ GL+(2,R) is the derivative of an element in
Aff+(T,A) if and only if we have that for all n,m ∈ Z there exist
n′,m′ ∈ Z with

A ·B ·
(
n
m

)
= B ·

(
n′

m′

)
.

This is equivalent to B−1AB ∈ GL(2,Z) and as A has positive
determinant, we even have B−1AB ∈ SL(2,Z). Hence, we obtain

GL+(T,A) = B · SL(2,Z) ·B−1.

(ii) Let (C,A) be a cylinder so that there exists v = v1 + iv2 ∈ C with
C = C/vZ. Again, an affine map f is contained in Aff+(C,A) if
and only if der(f) = A ∈ GL+(2,R) and f preserves vZ. Therefore,
for A ∈ GL+(C,A) there exists an n ∈ Z with

A ·
(
v1
v2

)
= n ·

(
v1
v2

)
.

As this is also true for A−1, it follows that n is an invertible integer,
hence 1 or −1.

In the special case of a vertical cylinder, we have v2 = 0. It follows
that the only condition on a Veech group element is that its first
column is ± ( 1

0 ). From this it follows for a vertical cylinder (C,A):
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1 Basics on translation surfaces

GL+(C,A) =
{(

1 t
0 s

)
: t ∈ R, s ∈ R+

}
∪
{(
−1 t
0 −s

)
: t ∈ R, s ∈ R+

}
.

The action of the affine group on a translation surface (X,A) preserves
singularities and the property of a segment to be geodesic. Hence, for
every f ∈ Aff+(X,A) we can define fε : Lε(X) ↪→ L(X) by sending a
geodesic curve γ : (0, ε)→ X to the linear approach [f ◦γ]. As all maps fε
commute with the embeddings from the direct system, we can define
a map f∗ : L(X) → L(X). Then we have the following statement (see
[BV13, Theorem 3.2]).

Proposition 1.35 (From Aff+(X,A) to Homeo(L(X)) [Bowman–
Valdez])
Let (X,A) be a translation surface and f ∈ Aff+(X,A) an affine homeo-
morphism. Then f∗ : L(X)→ L(X) is a homeomorphism.

Recall that SL(2,R) and PSL(2,R) := SL(2,R)/{±I} act transitively
on the upper half-plane H and more generally on the Riemann sphere
C ∪ {∞} by Möbius transformations, defined as

A • z := az + b

cz + d
for z ∈ C and A =

(
a b
c d

)
∈ SL(2,R).

The elements of SL(2,R) or PSL(2,R) except for (the negative of) the
identity matrix can be divided into the three classes of parabolic, elliptic,
and hyperbolic elements. The classification can be done by the traces of
the matrices, by their fixed points, or by conjugacy classes (see Table 1.1).

The parabolic elements in the Veech group are closely related to shears
along cylinders in the translation surface.

Definition 1.36 (Cylinder and cylinder decomposition)
Let (X,A) be a translation surface with at least one singularity.

(i) A cylinder in (X,A) of circumference k > 0 and height a > 0 is
an open subset of X which is isometric to a Euclidean cylinder
R/kZ× (0, a).
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1.4 Veech groups of translation surfaces

absolute value
of trace of the
element

fixed points of
the action on
C ∪∞

conjugacy
classes

elliptic less than 2 two fixed points
in C \ R,
conjugated to
each other

conjugated to a
rotation,
that means to(

cos θ sin θ
− sin θ cos θ

)
for a θ ∈ (0, 2π)

parabolic equal to 2 one fixed point
in R ∪ {∞}

conjugated to a
shear,
that means to(

1 ±1
0 1

)
or to(

−1 ±1
0 −1

)
hyperbolic greater than 2 two fixed points

in R ∪ {∞}
conjugated to a
squeeze mapping,
that means to(
λ 0
0 1

λ

)
for a

λ∈R with |λ| > 1

Table 1.1: Characterization of elliptic, parabolic, and hyperbolic elements in SL(2,R)
by different aspects.
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1 Basics on translation surfaces

(ii) The modulus m of a cylinder is the ratio of circumference and height,
i.e. m = k

a .

(iii) If a cylinder can be extended to a maximal cylinder then the maximal
cylinder is bounded by saddle connections. The direction of the
cylinder is the direction of the saddle connections.

(iv) A cylinder decomposition of (X,A) is a collection of maximal cylin-
ders in (X,A) so that the closures of the cylinders in X cover X
and so that each two cylinders are disjoint. The direction of the
cylinder decomposition is the direction of the cylinders.

Note that the union of the closures of the cylinders does not need to
be the same as the closure of the union of the cylinders. We will see in
Section 2.2 what this distinction implies for the existence of a cylinder
decomposition in a given direction.

To illustrate the concept of cylinder decompositions, we give a classical
example.

Example 1.37 (Cylinder decomposition of Veech’s double n-gons). Recall
the double n-gon from Example 1.7 for n = 5. This translation surface
has a horizontal cylinder decomposition as indicated in Figure 1.11.

The striped cylinder has height cos 3π
10 = sin π

5 and circumference
2 sin 3π

10 = 2 cos π5 , hence the modulus is 2 cot π5 . The dotted cylinder
has height cos π

10 = 2 · sin 3π
10 · sin

π
5 and circumference 2 + 2 sin π

10 =
4 · sin 3π

10 · cos π5 , hence the same modulus 2 cot π5 .
It is not a special feature of the double pentagon to have a cylinder

decomposition such that all cylinders have the same modulus. In fact,

Figure 1.11: Cylinder decomposition of Veech’s double n-gon for n = 5.
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1.5 Dynamics on translation surfaces

Veech calculated in [Vee89, Section 5] that such a cylinder decomposition
exists for all double n-gons. This makes it easy to detect elements of the
Veech group as we will see in Proposition 1.38.

Also the infinite staircase in Example 1.8 and the Chamanara surface
in Example 1.9 have cylinder decompositions. We justify the latter
statement in more detail in Section 2.1, in the context of the interaction
with parabolic elements in the Veech group.

Proposition 1.38 (Cylinder decompositions and parabolic ele-
ments [Veech])

(i) Let (X,A) be a translation surface and (zn) a cylinder decomposition
so that the cylinder zn has height hn and circumference cn. If the
inverse moduli hn

cn
are commensurable, i.e. if there exists an m ∈ R

so that each inverse modulus is an integer multiple of m, then the

Veech group contains a matrix conjugated to
(

1 1
m

0 1

)
.

(ii) Let (X,A) be a finite translation surface such that the Veech group
contains a parabolic element. Then there exists a cylinder decompo-
sition of (X,A) in the eigen direction of the parabolic element.

Proof. The statement is classical for finite translation surfaces and was
first used in [Vee89]. The proof of (i) given there literally works for the
general case. We refer to [HS06, Lemma 4] in conjunction with [MT02,
Theorem 1.8] for a more self-contained proof of (ii).

For finite translation surfaces, every cylinder composition can only contain
finitely many cylinders. So in this case, the number 1

m can be chosen to
be the least common multiple of the moduli.

1.5 Dynamics on translation surfaces
The main object in the theory of dynamics on translation surfaces is a
flow. We will define flows and some properties related to flows and state
a theorem of Poincaré which will be helpful in Section 5.2.

Definition 1.39 (Flow)
A flow on a space X is an action of R on X.
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1 Basics on translation surfaces

Most authors want flows to preserve the structure of X, for example
flows on topological spaces shall be continuous and flows on differentiable
manifolds shall be differentiable. We do not need to discuss this further
as we are only interested in a special example of a flow – in the geodesic
flow on a translation surface (X,A).

To be precise, the geodesic flow on (X,A) is not a flow according to
Definition 1.39. It is an action of R on the unit tangent bundle T 1(X)
of (X,A), equipped with the natural flat metric, which is not defined for
all pairs in T 1(X)×R: Let (x, v) ∈ T 1(X) = X × S1 and r ∈ R. If there
exists a geodesic starting in x and with holonomy vector of length r and
direction v then it is unique and we define x′ ∈ X to be the end point of
the geodesic. Furthermore, we define F ((x, v), r) = (x′, v) if x′ is defined.
The definition indicates that it can happen that limr→r0 F ((x, v), r) should
be a point in the tangent space at a singularity for a fixed r0. In this case,
the geodesic flow F is not defined for (x, v) and r ≥ r0. However, this is
the only obstacle for the flow to be not defined.

By a geodesic flow in a given direction θ ∈ S1, we mean the restriction
of F to all points in the unit tangent bundle with direction θ. It will be
denoted by Fθ : X × R→ X but again Fθ is not defined on all elements
in X × R so it is not a flow according to Definition 1.39.

The orbit of a point under a flow is called trajectory. The deficiency of
a geodesic flow Fθ to be a flow is that there exist trajectories that are not
defined for every r ∈ R if the translation surface has singularities.

Definition 1.40 (Periodic and recurrent flow)
Let (X,A) be a translation surface, θ ∈ S1, and Fθ the geodesic flow on
(X,A) in direction θ.

(i) The geodesic flow Fθ is called periodic if all trajectories that are
defined for all time, i.e. for every r ∈ R, are closed.

(ii) A point x ∈ X is called recurrent under Fθ if for every neighborhood
U of x and every r0 ∈ R there exists an r > r0 with Fθ(x, r) ∈ U .

(iii) The geodesic flow Fθ is called recurrent if almost every point with
respect to the Lebesgue measure on X is recurrent under Fθ.

The following statement was shown in [Poi90, Théorème I].
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Proposition 1.41 (Poincaré recurrence [Poincaré])
Let X be a finite measure space and F : X → X a measure-preserving
transformation. Then F is recurrent.

When we consider a translation surface of finite area and let X be the set
of all regular points in the translation surface for which the geodesic flow
is defined for all time, then Poincaré recurrence is applicable. Note that
for a feasible statement it is crucial that the flow is defined for all time
on almost all points. We will come back to this condition in Section 5.2.

It has to be said that the theory of dynamics on translation surfaces is
much richer than the extract which is presented here. For finite translation
surfaces, the geodesic flow on a given translation surface is closely related
to the Teichmüller flow on the moduli space of all finite translation surfaces
with the same genus. This relation gives the possibility to produce many
deep results like the Veech dichotomy in [Vee89] and the famous recent
results of Eskin, Mirzakhani, and Mohammadi in [EMM15] and of Eskin
and Mirzakhani in [EM13].

However, for translation surfaces in general, the discussion on a good
definition of moduli spaces has just started (see [Hoo13b] and [Hoo13a]
for a first approach), so there is no relation established as for the finite
translation surfaces. We nevertheless introduce the language of dynamics
here to clearly state some conditions on translation surfaces in Section 5.2.
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2 Examples that are
worth knowing

In this chapter, we give three examples with various remarkable properties
and a construction to produce many more examples. In particular, the
singularities and their spaces of linear approaches and the homeomorphism
class of the surface are determined for each example.

2.1 Chamanara surface
History In [Cha04], Chamanara describes in detail a family of translation
surfaces with a parameter α ∈ (0, 1). For α = 1

2 , the translation surface
from [Cha04] is exactly the one described in Example 1.9. In general, the
square has edges of length

∑∞
i=1 α

n for an α ∈ (0, 1) and the edges are
divided into segments where the nth segment has length αn.

We will consider the translation surface with parameter α = 1
2 as the

Chamanara surface in this section and throughout the thesis.

Veech group The Veech group is generated by the two parabolic elements(
−2 3
−3 4

)
,

(
−2 3

2
−6 4

)
and −Id (see [Cha04, Theorem 4]). In the proof, the existence of parabolic
elements in the Veech group is shown by the existence of cylinders with
commensurable inverse moduli (see Proposition 1.38). We need some
knowledge on these cylinders later so we describe them briefly here.

Figure 2.1 represents a cylinder decomposition of slope 4 on the Chama-
nara surface. There are infinitely many cylinders, all except one built
by two trapezoids. As the trapezoids are similar, the moduli of these
cylinders coincide. In fact, this modulus can be calculated to be 4
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a b c d

abcd

a′

b′

c′

d′

a′

b′

c′

d′

Figure 2.1: Chamanara surface with a cylinder decomposition of slope 4.

trigonometry. Similar calculations show that the modulus of the middle
cylinder is 4

51 , too. Then Proposition 1.38 implies that there exists a
parabolic element in the Veech group which maps every saddle connection
of slope 4 to itself and acts as a Dehn twist on every cylinder in the
cylinder decomposition.

For every slope 2n with n ∈ Z there exists a cylinder decomposition
like the previous one (see [Cha04, Proposition 11]). We have that every
maximal geodesic of slope 2n starting in a singularity is a saddle connection
and bounds a cylinder of the same slope. As in the previous case, we
have infinitely many cylinders built by two trapezoids and finitely many
cylinders built by parallelograms like the middle cylinder in the previous
case. Again, the moduli of the cylinders of the first type are all the same.
Let h be the height of the largest cylinder of the first type and c its
circumference (see Figure 2.2). Then we have for a cylinder of the second
type that its height is an integer multiple of h and its circumference is
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2.1 Chamanara surface

a b c d

abcd

a′

b′

c′
d′

a′

b′

c′

d′

2
3c

1
3c

h

Figure 2.2: Chamanara surface with saddle connections of slope 1
2 : h is the height and

c is the circumference of the largest cylinder that is built by two trapezoids.

an integer multiple of 2
3c. Therefore the inverse modulus of this cylinder

is a rational multiple of 3
2 ·

h
c . For example, for slope 2 and slope 1

2 , the
inverse modulus of the middle cylinder is three times the other moduli.
This yields the existence of a number m such that for every cylinder Ci
there exists an integer ki such that the inverse modulus of Ci is ki ·m. In
this case, there exists a parabolic element in the Veech group such that
the corresponding affine map twists the ith cylinder ki times.

Spaces of linear approaches and rotational components We showed
in Example 1.15 that the Chamanara surface has exactly one singularity σ.
The next task is to understand the space L(σ) of linear approaches and the
space L̃(σ) of rotational components. In [BV13, Example 1.10], Bowman
and Valdez show that there exist two rotational components of infinite
length and infinitely many rotational components of finite length. We
follow that discussion and add statements on the topology of the space
of linear approaches and the space of rotational components. The main
objective is to obtain a characterization for open sets in L̃(σ): a nontrivial
set in L̃(σ) is open if and only if it consists of a single rotational component
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2 Examples that are worth knowing

of infinite length or if it contains both rotational components of infinite
length. This was done with Lucien Clavier and Chenxi Wu and previously
published in [CRW14, Example 2.4].

Consider one of the points on the edges of the square where a segment
is halved and consider a direction going inwards from that cutting point.
Then there exists a linear approach in that direction with base point
the cutting point. Also, for the corners of the square, we find linear
approaches. These linear approaches give us four rotational components,
two of infinite length and isometric to R (see Figure 1.6 again) and two
isometric to (0, π2 ) (in the upper left and the lower right corner). The
obstacles that prevent the rotational components of finite length from
being extended further are the cutting points which are coming closer to
the corners. However, there are more linear approaches which are not
readily visible in the figure.

Consider a linear approach in one of the two rotational components
of length π

2 . For a cylinder decomposition as discussed above, each
representative of the linear approach crosses infinitely many cylinders.
Now we apply the affine map to the Chamanara surface which is a (possibly
multiple) Dehn twist on each cylinder of the chosen cylinder decomposition.
Then the representative of the linear approach is mapped to a geodesic
curve of finite length, starting in a singularity. Hence, the image is
again a representative of a linear approach. The corresponding rotational
component is the image of the original rotational component of length π

2
under the homeomorphism of L(σ) which is induced by the (multiple)
Dehn twist (cf. Proposition 1.35). Observe that a linear approach in such
a rotational component intersects the edges of the square infinitely often.

Lemma 2.1 (Directions occur at most once in rotational components
of finite length). Let (X,A) be the Chamanara surface, σ the unique
singularity, and [γ] ∈ L(σ) a linear approach contained in a rotational
component of finite length. Then every other linear approach in L(σ)
with the same direction is contained in a rotational component of infinite
length.

Proof. Note that all linear approaches with base point one of the cutting
points or with base point the lower left or upper right corner are contained
in rotational components of infinite length. Hence, we are only interested
in linear approaches with base point the lower right or the upper left corner.
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2.1 Chamanara surface

Let θ ∈ S1 = R/2πZ be the direction of [γ]. Because of the symmetry
and because of the cutting points close to the lower right and upper left
corner, we can restrict to θ ∈ (0, π). We first suppose θ ∈ (π2 , π). Then [γ]
is the unique linear approach with base point the lower right corner and
with direction θ. A linear approach with base point the upper left corner
and direction θ does not exist.

Now let θ ∈ (0, π2 ). Note that θ can not correspond to the slope of a
cylinder decomposition as [γ] would then define a saddle connection and
would have a cutting point as base point. Hence, let n ∈ Z be a number
for which the slope 2n is close to the direction θ and so that every (short
enough) representative γ of [γ] traverses the cylinders of the cylinder
decomposition of slope 2n one by one and γ runs along the core curve of
each cylinder of the cylinder decomposition the same number of times.
Let this number be m ∈ Z.

Let f : X → X be the affine map which twists the cylinders of the
cylinder decomposition of slope 2n as in the previous discussion and
let f∗ : L(σ)→ L(σ) be the induced homeomorphism on the linear ap-
proaches. Then fm maps γ to a geodesic curve which traverses each
cylinder straightly without running along the core curve (possibly after
applying this process more than one time).

This implies that fm(γ) has direction θ′ ∈ (π2 , π)∪( 3π
2 , 0). Hence, f∗([γ])

is the unique linear approach with base point the lower right corner or
upper left corner and with direction θ′. In particular, [γ] is the unique
linear approach with base point the lower right or upper left corner and
with direction θ.

Proposition 2.2 (Topology of L̃̃̃(σ))
Let (X,A) be the Chamanara surface and σ the unique singularity. A set
in L̃(σ) is open if and only if it is empty, if it consists of a single rotational
component of infinite length, or if it contains both rotational components
of infinite length.

Proof. By Lemma 2.1 together with Lemma 1.23 we can deduce that the
subspace of all linear approaches contained in a fixed rotational component
of finite length has a neighborhood which does not contain any linear
approach of another rotational component of finite length.

On the other hand, such a neighborhood contains linear approaches
from both of the rotational components of infinite length as we will show
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γ

γ(t)
r

Figure 2.3: Every neighborhood of the linear approach [γ] contains linear approaches
from both rotational components of infinite length.

now. Recall from Lemma 1.22 that for a linear approach [γ] ∈ L(σ) with
representative γ and t > 0, r > 0 the set

B(γ, t, r) = {[γ′] : γ′ ∈ Lε(σ) for some ε > t, d(γ(t), γ′(t)) < r} ⊆ L(σ)

is an open neighborhood of [γ] in L(σ). Then there exists a linear approach
in one of the rotational components of infinite length that is contained
in B(γ, t, r) as indicated in Figure 2.3. In particular, for such a linear
approach [γ], there exists a sequence of linear approaches in each rotational
component of infinite length converging to [γ].

In contrary, for every linear approach [γ] in a rotational component
of infinite length, there exists an open interval I and an angular sector
(I, ε, iε) such that the image of f(I,ε,iε) is an open neighborhood of [γ].
However, every linear approach in the image of f(I,ε,iε) is contained in
the rotational component of [γ] by the definition of rotational component.
Hence, this neighborhood does not contain any linear approach of another
rotational component.

In summary we have that the rotational components of infinite length are
open points in L̃(σ) whereas each neighborhood of a rotational component
of finite length contains both rotational components of infinite length.
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a b c d
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Figure 2.4: Taking out the images of all curves of this type does not separate the
Chamanara surface.

Topology of the surface Following Definition 1.26, we can show infinite
genus by specifying a nonseparating set of curves of infinite cardinality.
For the Chamanara surface we can do this as in Figure 2.4: the nth curve
connects the middle of the (2n− 1)th segment on the top to the middle of
the 2nth segment on the top (which is identified with the 2nth segment
on the bottom) and back to the middle of the (2n− 1)th segment on the
bottom (which is identified with the (2n− 1)th segment on the top). This
set is nonseparating since every point in the complement of the images of
the curves can be connected to the center of the square by a curve in the
complement, possibly by first crossing an edge of the square.

To specify the homeomorphism class of the Chamanara surface, we
also have to determine the space of ends of X. For this, let K ⊆ X be
a compact set and ε := d(K,σ). As K ⊆ X is compact, ε is positive
and hence K is contained in the compact set X \B(σ, ε). Furthermore,
let r1, r2 : [0,∞) → X be two proper rays. Because of the properness
there exists an n ∈ N such that r1([n,∞)) and r2([n,∞)) are contained in
B(σ, ε) \ {σ}. The set B(σ, ε) \ {σ} ⊆ X \K is path-connected as we can
deduce from the figure and will prove in general in Proposition 4.1. Hence,
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the rays r1 and r2 are equivalent and define the same end. In particular, X
has exactly one end and hence the end is nonplanar. In Proposition 3.10,
we will show more generally that the number of singularities and the
number of ends have to be the same if the metric completion is compact.

Altogether, the Chamanara surface is a Loch Ness monster which was
stated previously without proof.

2.2 Exponential surface
Definition Consider the generalized polygon as in Figure 2.5 with the
vertices {(n,±2−|n|) : n ∈ Z}. It consists of infinitely many trapezoids
where the nth trapezoid goes from (n,±2−|n|) to (n + 1,±2−|n+1|) for
n ∈ Z. For each edge there exists a parallel edge of the same length, these
pairs are glued to obtain the exponential surface (X,A). Note that this
gluing causes that pairs of trapezoids produce vertical cylinders.

Singularities We will now study the singularities of the exponential
surface. Following the gluings, we find that the vertices are identified to
at most two points (see Figure 2.6). As in the Chamanara surface, the
distance of these two points in X would be 0, so it is only one point. Hence,
the exponential surface has exactly one singularity σ. In particular, there
exist arbitrarily short saddle connections from σ to itself. This means
that there does not exist an ε > 0 so that B(σ, ε) \ {σ} is isometric to
a cyclic translation covering of a once-punctured disk, neither a finite
covering nor an infinite one. Therefore, σ is a wild singularity. The two

a
b

c d

e
f

f
e

d c

b
a

Figure 2.5: For the exponential surface, we identify parallel edges.
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2.2 Exponential surface

Figure 2.6: The arcs indicate which vertices of the generalized polygon are identified
by the gluings in the exponential surface.

ways to go around σ give us two rotational components of σ which are
both isometric to R. There are no more rotational components as we will
see implicitly from the next paragraph.

Spaces of linear approaches and rotational components For a linear
approach [γ] to σ, a neighborhood in L(σ) looks like this: let γ be a
representative of [γ] and n ∈ Z so that γ((0, 2−|n|−2)) is contained in the
trapezoid from (n,±2−|n|) to (n+ 1,±2−|n+1|). Suppose γ((0, 2−|n|−2))
is not contained in the boundary of a trapezoid (even if so, the argument
is similar). Then there exists an r ∈ (0, 2−|n|−3) so that B(γ(2−|n|−3), r)
is contained in the trapezoid which implies that B(γ, 2−|n|−3, r) is a
neighborhood of [γ] which only contains linear approaches that start in
the same corner of the trapezoid. In fact, the directions of the linear
approaches inB(γ, 2−|n|−3, r) only differ in a small angle from the direction
of [γ] which means they are close to [γ] in the translation structure on [γ].

We have the following characterization of the topology on L(σ).

Proposition 2.3 (Topology of L̃̃̃(σ))
Let (X,A) be the exponential surface and σ the unique singularity. For both
rotational components of σ, the subspace topology induced by the topology
on L(σ) equals the topology induced by the one-dimensional translation
structure on the rotational component defined in Definition 1.19.
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For other translation surfaces, the statement of Proposition 2.3 is in
general not true as we will point out in the discussion of the stack of
boxes in Section 2.3.

The topology on the two-point space L̃(σ) of rotational components is
the discrete topology.

Cylinder decomposition There exists a vertical cylinder decomposition
of the surface, with each cylinder consisting of two trapezoids. The nth
cylinder has height 1 and circumference 3 · 2−n for n ∈ N = {0, 1, . . .}.
Therefore, every inverse modulus is an integer multiple of 1

3 , i.e. the
cylinder decomposition has commensurable inverse moduli. We can deduce
from Proposition 1.38 that there exists a parabolic element ( 1 0

3 1 ) in the
Veech group. It acts by twisting the nth cylinder 2n times for n ∈ N.

When defining cylinder decompositions as in Definition 1.36, there does
not exist a horizontal cylinder decomposition on the exponential surface.
However, it could be reasonable to define a cylinder decomposition as a
collection of disjoint maximal cylinders so that the closure of the union of
the cylinders covers the translation surface. But even if we would use this
definition, for the horizontal cylinder decomposition of the exponential
surface, the inverse moduli were not commensurable: the nth cylinder
has height 2−n−1 and circumference 4n+ 2 for n ∈ N, hence the inverse
moduli are going to 0.

Veech group By using the vertical cylinder decomposition, we can show
that the Veech group of the exponential surface is generated by a parabolic
element and −Id which corresponds to the reflection through the origin.

Proposition 2.4 (Veech group of exponential surface)
For the exponential surface (X,A), it holds

GL+(X,A) =
〈(

1 0
3 1

)
,

(
−1 0
0 −1

)〉
.

Proof. Note that every saddle connection of length less than 1 is vertical.
This is because it cannot pass through a vertical cylinder (as it would
need to have length greater than the height of the cylinder which is 1).

Now let ϕ be an orientation-preserving affine map, v a vertical geodesic
of length 1, and λ the length of ϕ(v). Then there exists a vertical
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2.2 Exponential surface

saddle connection s which is shorter than 1
λ . Therefore, ϕ(s) is a saddle

connection shorter than 1 and hence vertical. However, as the lengths
of vertical saddle connections are bounded from above and every length
arises at most twice, λ is 1 and ϕ2 maps every vertical saddle connection
to itself.

An element in SL(2,R) with vertical eigen direction and eigenvalue 1 is
a parabolic element which twists every vertical cylinder at least one time.
In this case, the derivative of ϕ is a power of ( 1 0

3 1 ).
As the eigenvalue could also be −1, the derivative of ϕ is contained in〈(

1 0
3 1

)
,

(
−1 0
0 −1

)〉
.

Topology of the surface We have an explicit set of nonseparating curves
in the exponential surface, namely the core curves of the vertical cylinders,
i.e. closed vertical curves that are contained in one cylinder. These curves
form a nonseparating set of infinite cardinality. Hence, the exponential
surface has infinite genus.

For the determination of the space of ends we use the same strategy
as in the case of the Chamanara surface: Let K ⊆ X be a compact set.
Then there exist n ∈ N and ε > 0 so that the set U which is defined as
the union of the trapezoids from (−n,±2−n) to (n,±2−n) without B(σ, ε)
contains K. Every proper ray has to stay in the path-connected set X \U
(which contains B(σ, ε) \ {σ}) after finite time, hence the exponential
surface has exactly one end. Because of the infinite genus, the end is
necessarily nonplanar. This shows that the exponential surface is also a
Loch Ness monster.

Area and noncompactness The trapezoid from the vertex (n,±2−n) to
the vertex (n + 1,±2−n−1) for n ∈ N has height 1 and bases of length
2−n+1 and 2−n, hence the area of the nth trapezoid can be calculated
to be 1

2 (2−n+1 + 2−n) · 1 = 3 · 2−n−1. Therefore, the area of X is
2 · 3 ·

∑∞
n=0

1
2n+1 = 6. However, it is not a finite translation surface as the

metric completion is not compact. Indeed, we can choose an open strip
in each maximal vertical cylinder, along the core curves of the cylinders.
The collection of open strips can be extended to an open cover of X which
does not have a finite subcover.
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Modification with infinitely many discrete singularities We can modify
the exponential surface so that it has infinitely many discrete singularities
and the area is still finite: For every n ∈ Z, consider a segment from
(n+ 1

4 , 0) to (n+ 3
4 , 0) and a rectangle of width 1

2 and height 1
|n| . Glue the

top of the rectangle to the lower part of the segment, the bottom of the
rectangle to the upper part of the segment, and the left and the right edge
of the rectangle together. This construction yields a cone angle singularity
of multiplicity 3 for every n ∈ Z. The distance of each two of these
singularities is at least 1

2 and the distance of each cone angle singularity to
the wild singularity is at least 1

4 . Hence, the set of singularities is discrete.

2.3 Stack of boxes
History This family of examples was first described by Bowman in
[Bow12]. He uses the family to produce concrete examples which show
that different finiteness conditions on translation surfaces do not imply
each other. We will use a modification of these examples later in the proof
of Theorem 5.

Definition Choose two sequences H = {hn} and W = {wn} of posi-
tive real numbers so that H is bounded away from 0 and W is strictly
monotonic decreasing and converges to 0. Now consider for each n ∈ N a
rectangle Rn of height hn and width wn (called the nth box). We glue
the boxes by identifying the right side of Rn with the left side of Rn.
Furthermore, we identify the lower edge of Rn+1 with the left part of
the upper side of Rn. The lower side of R0 is divided into segments of
length wn − wn+1 and the right part of the upper side of Rn is glued to
the corresponding segment on the lower side of R0 (see Figure 2.7 for
a sketch).

Singularities As all vertices of the rectangles and all points Ai are
identified, the stack of boxes has exactly one singularity σ. This singularity
has one rotational component which is isometric to (0,∞). We can
specify the isometry by starting with a linear approach which has the
left lower corner A0 of R0 as a base point and stays in R0 for some
time. The linear approach forms an angle θ ∈ (0, π2 ) with the horizontal
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A0 A5 A4 A3 A2 A1

B1

B2

B3

B4

B5

C1

C2

C3

C4

C5

D1

D2

D3

D4

Figure 2.7: For the stack of boxes, we identify A0C1 with A1B1 and for each n ≥ 1
we identify CnCn+1 with DnBn+1 and AnAn+1 with BnDn.

direction and is sent to θ by the isometry. When rotating this linear
approach counterclockwise around A0, we obtain linear approaches with
base points A1, then B1, C1, D1, A2, B2, . . . When we start the rotation
clockwise we cannot rotate further than to an almost horizontal linear
approach which corresponds to 0 not being contained in the image of the
isometry. This discussion also shows that the singularity is wild.

Space of linear approaches As the only rotational component is iso-
metric to (0,∞), we can identify each linear approach with a number
y ∈ (0,∞). Let [γy] be the corresponding linear approach and γy a rep-
resentative. Then for each y0 ∈ (π,∞), there exist t > 0 and r > 0 such
that

B(γy0 , t, r) = {[γy] : y ∈ (y0 − ε, y0 + ε)}
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for an ε := ε(t, r) > 0. Hence the subspace {[γy] : y ∈ (π,∞)} ⊆ L(σ)
carries the same topology as (π,∞) with the Euclidean metric.

However, for a y0 ∈ (0, π] any neighborhood of [γy0 ] also contains linear
approaches that have base point An for n large enough. In fact, for t > 0
and r > 0 small enough, we have

B(γy0 , t, r) =
{

[γy] : y ∈ (y0−ε, y0+ε)∪
⋃
n≥N

(4πn+y0−ε+n , 4πn+y0+ε−n )
}

for an N ≥ 1 and some ε := ε(t, r), ε+n := ε+n (t, r), ε−n := ε−n (t, r) > 0 for
all n ≥ N . Hence, L(σ) does not carry the same topology as (0,∞) with
the Euclidean metric.

We know from [BV13, Corollaries 2.9 and 2.11] that L(X) is T2 (i.e.
a Hausdorff space) and second-countable hence L(σ) is T2 and second-
countable. However, it is not T3 as we show in the following lemma.

Lemma 2.5 (L(σ) is not T3 and not metrizable). For the only singularity σ
in the stack of boxes, L(σ) is not T3. In particular, L(σ) is not metrizable.

Proof. For every ε > 0 let ρε be the embedding Lε(σ) ↪→ L(σ) from the
direct system. Now fix ε′ > 0 and define the set

F = L(σ) \
( ⋃
ε>ε′

ρε (Lε(σ))
)
.

This is a closed set as
⋃
ε>ε′ ρε(Lε(σ)) is open in L(σ) (see [BV13, Corollary

2.5] for a proof).
For ε′ small enough, the horizontal linear approach [γπ] with base point

A1 is not contained in F . However, F contains [γ(4n+1)π] for n large
enough and hence an open neighborhood of F contains [γ(4n+1)π−εn ]
for n large enough and εn > 0 small enough. Furthermore, every open
neighborhood of [γπ] contains [γ(4n+1)π−εn ] for n large enough and εn > 0
small enough as we described before. All in all, every open neighborhood
of F has nonempty intersection with every open neighborhood of [γπ].
Hence, L(σ) is not T3.

As every metric space fulfills T3, this shows in particular that L(σ) is
not metrizable.
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2.4 Slit constructions

2.4 Slit constructions
If we are interested in translation surfaces with given properties then
the slit construction described in this section is very helpful. We choose
a translation surface with desirable properties, cut it along geodesic
segments and reglue the segments in a different way. By performing this
operation carefully, we are able to control some of the properties of the
resulting translation surface, for example the area does not change.

This was partly done with Lucien Clavier and Chenxi Wu and previously
published in [CRW14]. The method of slit constructions was also described
before as regluing of marks in [PSV11, Definitions 3.4 and 3.6].

General construction Let (X1,A1) and (X2,A2) be translation surfaces
that are not necessarily different. A slit m on (X1,A1) is a geodesic seg-
ment in X1 with an orientation. When we consider the metric completion
of X1 \m equipped with the path length metric, we obtain two copies m′
and m′′ of m, with end points identified. If m1 is a slit on (X1,A1) and
m2 is a slit on (X2,A2) with the same holonomy vector then we can
“glue the slits together”. For instance, we can identify m′1 with m′′2 or m′′1
with m′2 by a translation and we describe the first identification visually
as “gluing the upper part of m1 to the lower part of m2”. If we glue
both, m′1 with m′′2 and m′′1 with m′2, we say that we “glue m1 and m2 (to
each other)”.

Another possibility is to consider one slit m and divide m′ and m′′ into
several segments which we reglue in a different order as the original one.

In both cases, the end points of the slits or the end points of the
segments on the slit are no longer regular points, so we exclude them from
the resulting surface.

Geometric series decoration The geometric series decoration can be
performed on every translation surface. However, to keep notation simple,
we consider the Euclidean plane R2 with a slit from (0, 0) to (1, 0) (cf.
[BV13, Example 1.12]). We cut the upper and the lower part of the slit
into halves and glue the top left segment to the bottom right segment.
Again we cut the remaining parts into halves and glue the left half on the
top to the right half on the bottom, and so on. We then have for every
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I1 I2 I3 I4

J1J2J3J4

Figure 2.8: For the geometric series decoration on R2, segments In and Jn are glued
(to illustrate the slit in R2, it is stretched out a bit).

n ≥ 1 a segment In on the upper part of the slit and a segment Jn on the
lower part of the slit, both of length 2−n (see Figure 2.8).

The resulting surface has exactly one singularity σ. The singularity has
two rotational components and both are isometric to (0,∞). Now let [γ1]
be the vertical linear approach with base point the far right of the slit
and going upward. Its corresponding rotational component shall be [γ1]
and the other rotational component is called [γ2]. Then every vertical
linear approach with base point the right end point of I2n for n ≥ 1 and
going upward is contained in [γ2]. Thus there exists a sequence of vertical
linear approaches contained in [γ2] that converges to [γ1] in L(σ). We can
conclude that every open set in L̃(σ) containing [γ1] also contains [γ2], and
by symmetry we see that L̃(σ) carries the trivial topology

{
∅, {[γ1], [γ2]}

}
.

Geometric series decoration (modified) We can modify the previous
example by arranging the segments In and Jn in another order: we first
assign a segment I1 of length 2−1 to the left of the upper part of the slit
and then successively assign segments In of length 2−n for every n ≥ 2
on its right. For the lower part, we assign a segment J2 of length 2−2 at
the left, a segment J1 of length 2−1 on its right, then J4 of length 2−4, J3
of length 2−3, and so on. Then we glue the segments of the same length
(see Figure 2.9).

Again, we have one singularity σ and two rotational components. How-
ever, one rotational component has infinite length and is isometric to
(−∞,∞) and one has finite length and is isometric to (−π, π).

With a similar argument as in the original geometric series decoration,
we see that the rotational component [γinf ] of infinite length contains
linear approaches which converge to a linear approach contained in the
rotational component [γfin] of finite length. However, there is no sequence
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I1 I2 I3 I4

J2 J1 J4 J3

Figure 2.9: For the modified geometric series decoration, the segments on the upper
and the lower part of the slit are going in the same direction.

in [γfin] converging to a linear approach contained in [γinf ]. Therefore,
the topology of L̃(σ) is

{
∅, {[γinf ]}, {[γinf ], [γfin]}

}
.

Harmonic series decoration Consider a Euclidean plane R2 with an
infinite slit from (0, 0) in horizontal direction. Divide the upper part of
the slit into the following segments. For n ≥ 1, let In be the segment from
(
∑n−1
k=1

1
k , 0) to (

∑n
k=1

1
k , 0), i.e. the segment In has length 1

n . Furthermore,
divide the lower part of the slit into the following segments. If n is even,
let Jn be the segment from (

∑n−2
k=1

1
k , 0) to (

∑n−2
k=1

1
k + 1

n , 0). If n is odd,
let Jn be the segment from (

∑n−1
k=1

1
k + 1

n+1 , 0) to (
∑n+1
k=1

1
k , 0). This means

that the length of Jn is also 1
n but the order is different from the order of

the segments In (cf. the modified geometric series decoration). Then we
identify In with Jn for every n ≥ 1 (see Figure 2.10).

In this case, all the end points of the segments are identified via the
gluings. Hence, the resulting translation surface has one singularity σ. It
has exactly one rotational component which is isometric to R. However,
there does not exist an ε > 0 so that B(σ, ε) is a locally flat neighborhood
of σ. In the presentation as a Euclidean plane with a slit, one can observe
that infinitely many of the glued segments are contained in any B(σ, ε).
This means that for every ε > 0 there exists a saddle connection of length

I1 I2 I3 I4 I5 I6

J2 J1 J4 J3 J6 J5

Figure 2.10: For the harmonic series construction on R2, the segments Ii and Ji are
glued (to illustrate the slit in R2, it is stretched out a bit).
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less than ε starting and ending at σ. In particular, there does not exist a
punctured neighborhood of the singularity which is a translation covering
of B(0, ε) \ {0} ⊆ R2. Hence, the singularity is wild.

For each linear approach, there exists a neighborhood in the one-
dimensional translation structure on the rotational component which
is also a neighborhood of the linear approach in L(σ). Therefore, the
topology on L(σ) is the same as the Euclidean topology on R. Obviously,
the topology of L̃(σ) is already determined as it is the one-point space.

Note that the harmonic series decoration can not be performed on a
torus as the slit would be dense in the torus and the dense occurrence
of the singularity would make it impossible to define charts on the torus
without the singularity.

Star decoration (without cylinders) Consider a translation surface
(X,A) and a regular point x ∈ X. We cut open every slit starting
at x, of length 2−n, and in the direction mπ

2n such that n ≥ 1 and m ∈ N
is odd when n > 1 (see Figure 2.11). The directions mπ

2n are called dyadic
whereas all other directions are called nondyadic. We will describe two
ways to glue the branches of this star (the second will involve additional
cylinders) which result in translation surfaces with non-homeomorphic
spaces of rotational components.

The first kind of gluing is the following. For each branch, glue the right
side to the left side of the antipodal branch and vice versa. Then all tips
of the branches are identified with the center and there is exactly one sin-
gularity, which is wild. For every branch, we have a rotational component
which is isometric to [0, 2π]. Also, for every nondyadic direction, we have
a linear approach with base point the center of the star. It is contained
in a rotational component that consists only of this point.

The difficulty with this gluing is of the same kind as in the Chamanara
example: there might be additional linear approaches that are not easy
to see in the figure as they are intersecting infinitely many branches. It
is possible to find such a linear approach by starting with any regular
point, and considering geodesics passing through that point. We can then
inductively find nested open sets Un of directions for which the geodesics
intersect n smaller and smaller branches. By construction the intersection
of these nested open intervals is a singleton, consisting of a direction for
which the geodesic reaches the center of the star in finite time (i.e. defines
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Figure 2.11: Branches of the star in the star decoration.

a linear approach) while passing through infinitely many branches. In
Figure 2.12, a representative of such a linear approach is indicated.

Because of the additional linear approaches, the topology of L(σ) is
hard to describe, so we modify the gluings of the branches.

Star decoration (with cylinders) Consider a translation surface (X,A)
with slits as before. For every branch of the star, consider a rectangle of
the same height as the branch and of width 1 and rotate it so that the
former vertical sides are parallel to the branch. Then glue the former left
side of the rectangle to the right side of the branch, the former right side
of the rectangle to the left side of the branch, and identify the former top
and bottom of the rectangle.

Note that the resulting translation surface does not have a compact
metric completion, even if the original translation surface (X,A) has a
compact metric completion. If we are interested in a translation surface
with compact metric completion then we use rectangles as in Figure 2.13
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Figure 2.12: In the star decoration without additional cylinders, the geodesic curve
starts in the center of the star and intersects infinitely many branches.

62



2.4 Slit constructions

b a d c e g f i h

ihgfedcba

Figure 2.13: A rectangle consisting of 2n + 1 + 2n squares for n = 2: segments with the
same letters are glued, the vertical edges are glued to the corresponding
branch of the star.

instead of the standard rectangles. This type of rectangles consists of
2n + 1 + 2n squares of side length 2−n, with the tops and bottoms of
adjacent squares glued crosswise, except for the middle square where top
and bottom are identified. Then every open cover of the metric comple-
tion includes a neighborhood of the singularity σ and this neighborhood
contains B(σ, ε) for an ε > 0. Hence, every additional rectangle with
height less than ε is contained in the neighborhood of σ and only finitely
many additional rectangles of greater height remain to be covered by a
finite subcover.

As in the previous case, we have exactly one singularity σ as all tips of
the branches are identified with the center as well as the vertices of the
squares in each rectangle. By the gluing-in of the additional rectangles,
we excluded linear approaches that intersect infinitely many branches,
hence there are only four types of linear approaches with the following
types of representatives.

(nd) Geodesic segments γ starting from the center of the star with a
nondyadic direction, and such that γ(t) is not in the interior of a
rectangle for small t,

(ct) geodesic segments γ starting from the center of the star with a dyadic
direction, and such that γ(t) is not in the interior of a rectangle for
small t,

(tp) geodesic segments γ starting from the tip of a branch of the star,
and such that γ(t) is not in the interior of a rectangle for small t,
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(rt) geodesic segments γ starting at a vertex of a square and such that
γ(t) stays in the interior of the corresponding rectangle for small t.

Now there exist two types of rotational components (see Figure 2.14):

(N) singletons consisting of a linear approach of type (nd), and

(D) rotational components of finite length and isometric to the interval
[0, (2n+1 + 2) · 2π] via a map φ such that φ(0) and φ((2n+1 + 2) · 2π)
are of type (ct) and have the same (dyadic) direction, φ(x) is of type
(tp) for x ∈ [(2n+1 + 1) · π, (2n+1 + 3) · π] and of type (rt) otherwise.

We will now study the topology of L̃(σ). For this, let

P : L̃(σ)→ S1 = R/2πZ

be the map that sends a rotational component to the direction of its
element(s) of type (nd) or (ct). By definition, P is bijective. We will show
that P is a homeomorphism in two steps by comparing the canonical
topology of S1 and the pushforward topology of L̃(σ) on P (L̃(σ)). The
first lemma indicates that the topology of P (L̃(σ)) is finer than the
topology of S1 and the second lemma indicates that the topology of
P (L̃(σ)) is coarser than the topology of S1.

Lemma 2.6 (Topology of P (L̃(σ)) is finer than topology of S1). Let (X,A)
be a translation surface with a star decoration and σ the corresponding
singularity. Furthermore, let [γ] be a rotational component in L̃(σ) and
ε ∈ S1. Then there exists an open neighborhood U ⊆ L̃(σ) of [γ] such
that P (U) ⊆ (P ([γ])− ε, P ([γ]) + ε).

Proof. As a preliminary observation note that linear approaches of type
(ct) can not have representatives which are longer than the corresponding
branch, in particular the length has to be less than 1

2 . Furthermore, the
representative of a linear approach has to be longer than 1 to pass through
a rectangle since it has to pass through the 2n pairs of squares which each
takes at least time 2−n.

Now let [γ] be a rotational component and ε ∈ S1. We show in the
following that we can find an open neighbourhood U of [γ] such that
P (U) ⊆ (P ([γ]) − ε, P ([γ]) + ε). This is done by studying the possible
neighborhoods of each linear approach [γ] which is contained in the
rotational component [γ] in a case-by-case analysis.
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Figure 2.14: Two types of rotational components in the star decoration with additional
cylinders: the dashed segment indicates a linear approach contained in
a rotational component of type (N), the dotted segments indicate linear
approaches contained in a rotational component of type (D).
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(nd) Suppose that [γ] is a linear approach with a representative γ of type
(nd). Choose t = 1 and r > 0 small enough so that B(γ, t, r) does
not contain linear approaches of type (ct) and (rt).
Now let γ′ be a representative of a linear approach of type (nd)
which is contained in B(γ, t, r). Then by the law of cosines we have
that “the angle between γ′ and γ” is∣∣∣P ([γ])− P ([γ′])

∣∣∣ ≤ arccos
(
r2 − t2 − t2

−2 · t · t

)
= arccos

(
1− r2

2t2

)
.

This means that by shrinking r we can bound the distance of P ([γ])
and P ([γ′]) in S1 by any given value greater than 0, in particular
by the given ε.
We also want to bound this distance for rotational components of
type (D). By the choice of t and r, we only have to consider linear
approaches of type (tp). Choose two branches of the star whose
directions are contained in (P ([γ])−ε, P ([γ])) and (P ([γ]), P ([γ])+ε),
respectively. Furthermore, choose t′ > 0 small enough so that no
branch with direction not in (P ([γ])− ε, P ([γ]) + ε) intersects one
of the geodesic rays which start in γ(t′) and pass through the tip of
one of the chosen branches (see Figure 2.15). Moreover, let r′ > 0
be so small that B(γ(t′), r′) does not intersect any branch. Then
every linear approach [γ′] of type (tp) with P ([γ]) − P ([γ′]) ≥ ε
that is contained in B(γ, t′, r′) has a representative γ′ which passes
through at least one cylinder (namely one of the cylinders glued
in at the chosen branches) before entering B(γ(t′), r′). However, t′
can be chosen to be less than 1 so γ′((0, t′)) can not pass through a
cylinder which implies that no such γ′ exists.
In summary, this means that V := B(γ, t, r) ∩B(γ, t′, r′) is a neigh-
borhood of [γ] which contains only linear approaches of type (nd)
and (tp). Let U be the projection of V to L̃(σ). Then we have
shown in the discussion above (and with an anticipation of the cases
(tp) and (rt) below) that P ([γ′]) has distance at most ε from P ([γ])
for every [γ′] ∈ U .
This proves the statement for rotational components [γ] of type (N).

(ct) Suppose that [γ] is a linear approach with a representative γ of
type (ct). Let t ∈ (0, 1

2 ) and r > 0 small enough so that B(γ(t), r)
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γ

Figure 2.15: The constellation in the case (nd) for the choice of t′.

does not intersect any other branches. This implies, that no linear
approach of type (ct) except [γ] is contained in B(γ, t, r). Again, by
the law of cosines, the distance of the images of the corresponding
rotational components for all linear approaches in B(γ, t, r) of type
(nd) is bounded in terms of r. Furthermore, every linear approach of
type (rt) contained in B(γ, t, r) is contained in the same rotational
component as [γ]. Also, for linear approaches of type (tp), the same
argument as in the previous case works.

(tp) Suppose that [γ] is a linear approach with a representative γ of type
(tp), with base point the tip of a branch of length 2−n. Choose
t > 0 and r > 0 small enough so that 2t + r < 2−n and so that
B(γ(t), r) does not intersect any branches. Then B(γ, t, r) can not
contain linear approaches of type (nd) or (ct) by the first condition
and can not contain linear approaches of type (rt) by the first and
the second condition.
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2 Examples that are worth knowing

By choosing t′ < t
2 and r′ > 0 small enough, we see that the in-

tersection B(γ, t, r) ∩B(γ, t′, r′) only contains linear approaches of
type (tp) and so that all of these linear approaches are contained in
the same rotational component as [γ].

(rt) Suppose that [γ] is a linear approach of type (rt). By combining
arguments from the previous three cases we see that there exists
an open neighborhood of [γ] that only contains linear approaches
of type (rt) which are contained in the same rotational component
as [γ]: For t > 0 and r > 0 small enough so that B(γ(t), r) does
not intersect any edges of the rectangle, the neighborhood B(γ, t, r)
can not contain linear approaches of type (nd) or (ct). By choosing
t′ < t

2 and r′ > 0 small enough, we can again make sure that
B(γ, t, r) ∩ B(γ, t′, r′) does not contain linear approaches of type
(tp) and no linear approaches of type (rt) that are not contained in
the same rotational component as [γ].

In fact, the discussion of the cases (ct), (tp), and (rt) shows that for
a rotational component [γ] of type (D), every linear approach contained
in [γ] has a neighborhood N so that for each linear approach [γ′] ∈ N it
holds

∣∣P ([γ′])−P ([γ])
∣∣ < ε. Let V be the union of these neighborhoods and

U the projection of V to L̃(σ). Because of the discussion above, we know
that the preimage of U differs from V by some additional linear approaches
of type (tp) and (rt) that are contained in rotational components in U .
Therefore, the preimage of U is open in L(σ) and hence U is open in L̃(σ).
Furthermore, we have P (U) ⊆ (P ([γ]) − ε, P ([γ]) + ε) which was to be
shown.

We now exhibit a variant of a converse subset relation for the topology.

Lemma 2.7 (Topology of P (L̃(σ)) is coarser than topology of S1). Let
(X,A) be a translation surface with a star decoration and σ the corre-
sponding singularity. Furthermore, let [γ] be a rotational component in
L̃(σ) and U ⊆ L̃(σ) an open neighborhood of [γ]. Then there exists an
ε ∈ S1 such that (P ([γ])− ε, P ([γ]) + ε) ⊆ P (U).

Proof. Let V be the preimage of U in L(σ). Again, we prove the statement
by a case-by-case analysis.
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2.4 Slit constructions

(N) Let [γ] be a rotational component of type (N), i.e. there exists a linear
approach [γ] with a representative γ of type (nd). By Lemma 1.22
there exist t > 0 and r > 0 such that B(γ, t, r) is contained in V .
We can even choose t > 1 in this situation. By the same calculation
as in the proof of the previous lemma, for a linear approach [γ′]
of type (nd) with

∣∣P ([γ]) − P ([γ′])
∣∣ < arccos(1 − r2

2t2 ) we have
[γ′] ∈ B(γ, t, r). Furthermore, the argument by the law of cosines
again yields an ε ∈ (0, arccos(1 − r2

2t2 )) so that γ′(t) ∈ B(γ(t), r)
for every representative γ′ of type (tp) with direction equal to
the direction P ([γ′]) of the branch whose tip is its base point and
P ([γ′]) ∈ (P ([γ])− ε, P ([γ]) + ε). As there exists a linear approach
of type (nd) for each nondyadic direction and a linear approach of
type (tp) for each dyadic direction in (P ([γ]) − ε, P ([γ]) + ε), we
have(
P ([γ])− ε, P ([γ]) + ε

)
⊆ P

({
[γ′] : [γ′] ∈ B(γ, t, r)

})
⊆ P (U).

(D) Let [γ] be a rotational component of type (D) and let [γ1], [γ2] be
the linear approaches in [γ] with representatives γ1, γ2 of type (ct).
Again, there exist t > 0 and r > 0 such that B(γ1, t, r) ∪B(γ2, t, r)
is contained in V . Now we can conclude by the same arguments as
in the case (N) that there exists an ε > 0 as desired.

The two preceding lemmas lead us to the following proposition.

Proposition 2.8 (Topology of L̃̃̃(σ))
Let (X,A) be a translation surface with a star decoration and σ the
corresponding singularity. Then the space L̃(σ) of rotational components
is homeomorphic to S1.

Proof. The two preceding lemmas show that the preimages of the elements
of the canonical subbasis for S1 under P form a subbasis for L̃(σ).
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3 Ends of translation surfaces
At least for cone angle singularities, we know that the singularities can
topologically be seen as punctures in the metric completion. On the other
hand, punctures of surfaces are ends of surfaces as we noted in Section 1.3.
So it is natural to ask whether the set of singularities (equipped with
the subspace topology from the metric completion) and the space of
ends are related, for example whether the two spaces are in one-to-one
correspondence. We will study possible relations in this chapter.

3.1 Different types of ends
Recall from Definition 1.30 that a planar end of a surface X is an equiva-
lence class of proper rays so that there exists a compact set K such that
the corresponding path-connected component of X \K has genus 0. In
the case of a translation surface, we define two more types of ends in a
similar way.

Definition 3.1 (Regular and singular ends and ends of (in)finite
area)
Let (X,A) be a translation surface and X the metric completion of X.

(i) An end e of X is said to be a regular end of (X,A) if there exist
a proper ray r with end(r) = e, a compact set K ⊆ X, and an
n ∈ N so that the path-connected component C of X \K, in which
r([n,∞)) is contained, does not contain a singularity, i.e. C ⊆ X.
Otherwise, the end e is said to be a singular end of (X,A).

(ii) An end e of X is said to be an end of (X,A) of finite area if there
exist a proper ray r with end(r) = e, a compact set K ⊆ X, and an
n ∈ N so that the path-connected component of X \K, in which
r([n,∞)) is contained, has finite area.
Otherwise, the end e is said to be an end of (X,A) of infinite area.



3 Ends of translation surfaces

It is noticeable that there are two different types of singular ends: a
singular end could be an end so that the metric completion of the cor-
responding path-connected components of X \K for a compact set K
contains infinitely many singularities. Then again, it could be an end that
corresponds to the puncture that corresponds to a singularity. We will
formalize the description of the latter situation.

Let (X,A) be a translation surface and σ a singularity. This means
that there exists a Cauchy sequence in X which converges to σ in X.
Now let (xn)n∈N be such a Cauchy sequence. We can define a proper
ray r(xn) : [0,∞) → X in the following way. As X is path-connected,
for each n ∈ N there exists a curve rn : [0, 1] → X which connects xn
to xn+1. Define r(xn) : [0,∞) → X as r(xn)(t) = rbtc(t − btc). This is a
proper ray as every compact set in X keeps a distinct distance to the
singularity σ and hence the ray r(xn) leaves every compact set. This leads
to the following definition.

Definition 3.2 (End of a singularity)
Let (X,A) be a translation surface, σ a singularity, (xn)n∈N ⊆ X a Cauchy
sequence converging to σ, and r(xn) : [0,∞)→ X a proper ray as defined
before.

Then the end of σ is defined to be end(σ) := end(r(xn)).

We have to make certain that the end of a singularity is well-defined.
Indeed, let (yn)n∈N be another Cauchy sequence in X which converges
to σ. This means that for every ε > 0 there exists an N ∈ N so that
d(xn, yn) < ε for each n ≥ N . Let r(yn) be the corresponding proper ray
as defined above. Now suppose that K is a compact set in X and C is
the path-connected component of X \K belonging to end(r(xn)). Then
d := d(K,σ) > 0 and B(σ, d) ∩ X ⊆ C. Therefore, we have an n0 ∈ N
with r(yn)([n0,∞)) ⊆ C which leads to end(r(xn)) = end(r(yn)).

Definition 3.3 (End induced by a singularity)
Let (X,A) be a translation surface and e an end of X. We say that the
end e is induced by a singularity if there exists a singularity σ such that
end(σ) = e.

The number of singularities that induce a given singular end can be 0,
any finite number, or even infinite as we will see in the following example.
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3.1 Different types of ends

Example 3.4 (Number of singularities inducing an end).

(i) Consider a Euclidean plane with slits sn from (2n, 0) to (2n+ 1, 0)
and slits tn from (−2n−1, 0) to (−2n, 0) for n ≥ 1. When gluing sn
and tn for every n ≥ 1, we obtain a translation surface (X,A) with
infinitely many singularities (all of them cone angle singularities of
multiplicity 2), infinite genus and infinitely many ends. The end
which is defined by the ray r : [0,∞)→ X, x 7→ (0, x) is a singular
end. However, it is not induced by any of the singularities.

(ii) Recall the infinite staircase (X,A) from Example 1.8 and consider
a proper geodesic ray r : [0,∞) → X. Every compact set K ⊆ X
has to avoid a small neighborhood of the singularity and can only
intersect finitely many of the squares. The “upper” and the “lower”
part of the infinite staircase are path-connected via the avoided
neighborhood of the singularity, hence X \ K consists of one un-
bounded path-connected component and possibly some bounded
path-connected components. The ray r is contained in the un-
bounded path-connected component after finite time as it has to
leave every finite union of squares except of possibly a neighbor-
hood of the singularity. This means that the space of ends consists
exactly of end(r). In particular, the ends of all four infinite an-
gle singularities are equal to end(r), so end(r) is induced by four
singularities.

(iii) Let n ≥ 1 and consider a Euclidean plane with n geodesic rays
that do not intersect. Now we treat every geodesic ray as a slit,
cut it into segments, and glue the segments as for the harmonic
series decoration from Section 2.4. By this construction, we obtain
a translation surface (X,A) with n singularities which are all wild
singularities. For a compact subset of X, the complement consists
of one unbounded path-connected component and possibly some
bounded path-connected components. By the same argument as in
the previous example, (X,A) has exactly one end and this end is
induced by all n singularities.
The same construction also works when we replace the number n by
“infinite”. In this case, we have to make sure that the infinitely many
singularities do not accumulate, for example by choosing horizontal
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3 Ends of translation surfaces

rays with starting points equispaced on the vertical axis. Then we
obtain a translation surface with an end that is induced by infinitely
many singularities.

Note that all the translation surfaces in the last example have infinite
area but there exist also examples for this phenomenon that have finite
area: The exponential surface from Section 2.2 has one end which is
induced by the unique singularity. However, a small modification by
inserting a rectangle between the 0th and the −1th trapezoid yields a
translation surface with two wild singularities that are inducing the same
end. Furthermore, in Example 3.9 (ii) we will see a translation surface of
finite area with a singular end that is not induced by any singularity.

3.2 Spaces of ends that can occur
As we have seen in Proposition 1.14, for finite translation surfaces the
genus can be calculated from information on the singularities. We can
ask the naive question whether the number of singularities, the number
of ends, and the genus can be the only ingredients in a Gauß-Bonnet like
formula for general translation surfaces. As this is not even the case for
finite translation surfaces (recall that we need the multiplicities of the
singularities), the answer is obviously “no”. However, it is a bit surprising
how few restrictions exist for the number of singularities, the number of
ends, and the genus.

Theorem 1 (No restrictions in terms of topology and number of
singularities)
Let (s, g, e) be a triple of natural numbers with s ≥ 1, g ≥ 0, and e ≥ 1.
Then there exists a translation surface with s (nonremovable) cone angle
or infinite angle singularities, genus g, and e ends.

Proof. We explicitly construct a translation surface for each triple, distin-
guished into several cases. The construction in the generic case consists
of three steps of which the first step produces singularities, the second
step produces genus and the third step produces ends. The special cases
that are not covered by the generic case are treated by variations of this
construction.
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3.2 Spaces of ends that can occur

Figure 3.1: The first step of the construction produces one end and s singularities.

We start with the generic case of s ≥ 1, g ≥ 0, and e ≥ 3: In the first
step, consider a Euclidean plane and choose s points with norm 1. For
each point consider a direction in which we can make an infinite slit so
that no two slits intersect. Now for each of these points, cut open along
the corresponding slit and glue in an infinite cyclic translation covering of
a once-punctured Euclidean plane along a slit in the same direction (see
Figure 3.1).

As a second step, consider a regular (4g + 2)-gon that does not inter-
sect the slits but where one vertex is equal to one of the infinite angle
singularities. Remove the interior of the (4g + 2)-gon. If g = 0, this 2-gon
is simply a finite slit that extends one of the infinite slits. The edges of
the (4g+ 2)-gon come in pairs which are parallel. Glue each of these pairs
except one so that two edges remain unglued (see Figure 3.2).

In the third step, cut one of the last two unglued edges into e − 2
segments and at each segment glue in a half-cylinder, i.e. R/kZ× [0,∞)
for a suitable k. Also glue in a half-cylinder at the last unglued edge (see
Figure 3.3).

Then the resulting translation surface has s infinite angle singularities
from the first step. Recall that one singularity originates from identifying
all vertices of the regular (4n+ 2)-gon and of the half-cylinders. It has
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Figure 3.2: The second step of the construction produces genus g.
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Figure 3.3: The third step of the construction produces e− 1 ends.
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3.2 Spaces of ends that can occur

one end from the first step of the construction and e− 1 ends from the
half-cylinders that are glued in. Furthermore, the genus is g because of
the gluing of the 4g edges of the (4g + 2)-gon.

Now we move on to the special cases, distinguished mainly by the
number of ends.

If s ≥ 1, g ≥ 1, and e = 2 is given then we can use the same construction
as before but produce s− 1 infinite angle singularities and one cone angle
singularity in the first step. In the second step, instead of the (4g+2)-gon,
we consider a 4g-gon with a vertex at the cone angle singularity and with
all parallel edges glued so that we can omit the third step. Then we have
one end from the first step and one end induced by the puncture of the
cone angle singularity.

If s ≥ 1, g ≥ 1, and e = 1 is given then we can use the same construction
as for e = 2 with the 4g-gon again but with s infinite angle singularities
instead of s− 1 infinite angle singularities and one cone angle singularity
in the first step.

Now, there are still two cases missing: the case e = 2 and g = 0, and
the case e = 1 and g = 0.

If s ≥ 1, g = 0, and e = 2 then we produce s − 1 infinite angle
singularities and one cone angle singularity in the first step and omit the
second and the third step. Hence, we have one end from the original
Euclidean plane and one end induced by the cone angle singularity.

If s ≥ 1, g = 0, and e = 1 then we produce s infinite angle singularities
in the first step and again omit the second and the third step.

There are two types of cases that are not covered by Theorem 1: s = 0
and e = 0. We know that these cases can only be realized under additional
conditions.

If s = 0 then the universal cover of the surface is the Euclidean plane.
Hence, (X,A) is either a Euclidean plane (g = 0, e = 1), a cylinder (g = 0,
e = 2), or a torus (g = 1, e = 0).

If e = 0 then we have a compact surface without singularities (i.e.
s = 0), so the only possibility is a torus (g = 1).

Also if we consider infinitely many ends, there are still no restrictions in
what is realizable. To show this we give the following theorem which was
proven together with Camilo Ramírez Maluendas.
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3 Ends of translation surfaces

Theorem 2 (Existence of a translation surface with given ends)
Let E, E′ be closed subsets of the Cantor set with E′ ⊆ E 6= ∅. Then there
exists a translation surface (X,A) that has only cone angle singularities,
i.e. the complex structure of X can be extended to X, and such that
Ends(X) is homeomorphic to E and Endsnonplanar(X) is homeomorphic
to E′.

Proof. Recall from Example 1.28 that the space of ends of an infinite
complete binary tree T is a Cantor set. In the same way, a closed subset
E 6= ∅ of the Cantor set is homeomorphic to the space of ends of a
connected subtree TE of T . For the proof of the theorem, we will cover
the tree TE by a countable set of geodesic rays and associate to every
ray a Euclidean plane. The planes are glued together dependent on the
corresponding rays so that the space of ends of the resulting translation
surface is homeomorphic to the space of ends of TE .

We define the set of geodesic rays inductively: Let v0 be the vertex
in TE which is closest to the root in T and let γ0 : [0,∞) → TE be a
geodesic ray starting in v0. Now for every n ≥ 1, let an be one of the
edges that are closest to the root in T and whose interiors are contained
in TE \

⋃n−1
i=0 im(γi) (there are at most finitely many of these edges).

Let vn be the vertex of an which is closer to the root in T and let
γn : [0,∞)→ (TE \

⋃n−1
i=0 im(γi)) ∪ {vn} be a geodesic ray starting in vn

(see Figure 3.4 for an example). We obtain a set ΓE = {γn : n ∈ N} of
geodesic rays in TE so that ∪γ∈ΓE im(γ) = TE and so that a ray intersects
the union of the previous rays exactly in its start point. Because ΓE is
ordered, it is in particular countable.

Now we construct a translation surface (X,A) in the following way. For
each geodesic ray γ : [0,∞)→ TE in ΓE , consider a Euclidean plane Pγ
with infinitely many marked geodesic segments in horizontal direction: For
each n ∈ N consider the geodesic segment sn from (8n, 0) to (8n+ 2, 0),
the geodesic segment tn from (8n+ 3, 0) to (8n+ 4, 0), and the geodesic
segment t′n from (8n+ 6, 0) to (8n+ 7, 0). We will consider some of the
geodesic segments as slits and glue them in the following way. By the
construction of ΓE , for every ray γ ∈ ΓE \ {γ0}, there exists a γ′ ∈ ΓE
so that γ(0) = γ′(n) for some n ∈ N. Glue the slit s0 in Pγ and the slit
sn in Pγ′ . Note that there exist a γ′ ∈ ΓE and n ∈ N with γ0(n) = γ′(0)
if E has more than one element. Therefore, the union of the Euclidean
planes Pγ with the described gluings is connected.
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Figure 3.4: Every subtree of the infinite complete binary tree can be covered by the
images of countably many rays.

Now let e ∈ E. Then there exists a unique geodesic, hence proper ray
γe : [0,∞)→ TE with γ(0) the root of TE and end(γe) = e. In particular,
for every n ∈ N there exists a γin ∈ ΓE and mn ∈ N with γ([n, n+ 1]) =
γin([mn,mn + 1]). Define a proper ray re : [0,∞) → ∪γ∈ΓEPγ in the
following way: For each n ∈ N, let re([n, n+ 1]) be a proper curve from
(8mn + 1, 0) to (8(mn + 1) + 1, 0) in Pγin . If e ∈ E′ then additionally glue
tmn to t′mn in Pγin for each n ∈ N.

In the constructed translation surface (X,A), all singularities are cone
angle singularities of multiplicity 2. Hence, the complex structure of X
can be extended to X and X is a surface. It remains to show that Ends(X)
is homeomorphic to E and Endsnonplanar(X) is homeomorphic to E′.

As we have introduced before, every e ∈ E defines a proper ray
re : [0,∞) → X. If e′ is an element of E with e′ 6= e then after fi-
nite time, re and re′ will never be in the same copy of the Euclidean plane
again (as the rays γe and γe′ in TE split up after finite time). Note that
all planes Pγi , Pγj can be separated by compact sets as there is only one
slit in Pγi that is glued to a slit in Pγj or to a slit in a plane which is
connected to Pγj in X \ Pγi . Hence, end(re) 6= end(re′).
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3 Ends of translation surfaces

Now let r : [0,∞)→ X be a proper ray. If it is contained in one Pγ for
some γ ∈ ΓE after finite time then end(r) = end(rend(γ)) where end(γ) is
a point in E. Else, r has to leave every Euclidean plane in finite time and
never come back. The only possibility to do so is to use the glued slits sn.
Each of the glued slits sn encodes a vertex in TE , so r uniquely defines a
geodesic ray γ in TE . Then we have end(r) = end(rend(γ)).

In summary, the sets Ends(X) and E are in one-to-one correspondence.
Moreover, rays in TE are close if and only if the corresponding rays in X
are close: two proper rays in TE that pass through the same edges of TE
for some time induce two proper rays in X that pass through the same
copies of the Euclidean plane for some time. Therefore, Ends(X) and E
are homeomorphic. Furthermore, by gluing some of the slits tn and t′n as
described, we have that Endsnonplanar(X) is homeomorphic to E′.

The translation surface that arises by the construction in the proof of
Theorem 2 is a branched covering of the once-punctured torus as it can
be glued together from infinitely many squares. Translation surfaces of
this type are called origamis. Finite origamis have the nice property that
there exists an algorithm to determine their Veech groups (see [Sch04,
Chapter 3]). For the origamis in this construction, we can check by hand
that the Veech group is always

P =
{(

1 t
0 s

)
: t ∈ R, s ∈ R+

}
.

Przytycki, Schmithüsen, and Valdez have shown that the group P is one
of three possible groups that occur as an uncountable Veech group of
a tame translation surface (X,A) where X is a Loch Ness Monster (cf.
[PSV11, Theorem 1.1]). The search for a translation surface with Veech
group P and a given space of ends was the original starting point for the
work with Camilo Ramírez Maluendas.

3.3 Relations between ends and singularities
To understand the ends of a translation surface, we are especially interested
in singular ends and how they are related to the singularities of the
translation surface. Nevertheless we start by proving some properties of
regular ends.
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Proposition 3.5 (Regular ends are planar and of infinite area)
Let (X,A) be a translation surface. Then every regular end of (X,A) is
planar and of infinite area.

Proof. Let e be a regular end of (X,A) and K ⊆ X a compact set so
that the path-connected component C of X \K that defines e does not
contain a singularity in its closure. This means that C is a locally flat,
complete surface with boundary. If C had finite area then it would be
compact which means that it cannot define an end. Hence, e has infinite
area. Furthermore, C is homeomorphic to R2 with punctures where each
puncture corresponds to a boundary component of C or to an end which
is not a point in the metric completion. This means that C has genus 0
and hence, e is a planar end.

For singular ends, there are much more possibilities. First of all, some
singular ends are induced by a singularity, some are not (see Example 3.4).
Furthermore, a singular end can be planar or nonplanar and can be of
finite area or of infinite area. Even more, neither of these four properties
implies one of the others in this case. We give examples for all four
combinations by the next proposition and the subsequent example.

Proposition 3.6 (Ends induced by cone angle singularities)
Let (X,A) be a translation surface and σ a cone angle singularity. Then
the induced end end(σ) can not be induced by another singularity. More-
over, end(σ) is planar and of finite area.

Proof. Let ε > 0 small enough so that there exists a finite cyclic translation
covering B(σ, 3ε) \ {σ} → B(0, 3ε) \ {0} ⊆ R2. This shows that K :=
B(σ, 2ε) \B(σ, ε) is compact as a closed annulus in R2 is compact.

Suppose there exists a singularity σ′ with end(σ′) = end(σ). Then
there exist proper rays r, r′ : [0,∞) → X with end(r) = end(σ) and
end(r′) = end(σ′). Furthermore, there exists an n ∈ N so that r([n,∞))
and r′([n,∞)) are contained in the same path-connected component
of X \K. As r([n,∞)) is contained in B(σ, ε) \ {σ}, the same is true for
r′([n,∞)). Hence, the distance between σ and σ′ is less than ε and by
the choice of ε we have σ′ = σ.

As σ is a cone angle singularity, there exists a finite translation covering
B(σ, ε) \ {σ} → B(0, ε) \ {0}. Therefore, B(σ, ε) \ {σ} is planar and of
finite area and we can deduce that end(σ) is planar and of finite area.
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3 Ends of translation surfaces

The argument in the proof of Proposition 3.6 does not work for a wild
singularity σ as it is not true in general that B(σ, 2ε) \B(σ, ε) is compact.
For instance, we will see in Section 4.1 that for the singularity of the
exponential surface this set decomposes into infinitely many connected
components, hence it can not be compact.

If σ is an infinite angle singularity of a translation surface (X,A) then
end(σ) can also be induced by other singularities as we have seen in
Example 3.4 (ii). The set B(σ, 2ε) \B(σ, ε) in the proof of Proposition 3.6
can not be compact for an infinite angle singularity. In fact, end(σ) is
of infinite area because for every compact set K ⊆ X, there exists an
ε-neighborhood of σ which is disjoint to K and has infinite area. This
gives the first of the following examples.

Example 3.7 (Singular ends can be of different types).

(i) Let (X,A) be an infinite cyclic translation covering of a once-
punctured Euclidean plane. Then (X,A) has one infinite angle
singularity σ and one end which is induced by σ. We have that
end(σ) is planar and of infinite area.

(ii) For the exponential surface in Section 2.2, the unique end is induced
by the unique singularity. Furthermore, the end is nonplanar and
of finite area as every unbounded path-connected component of the
complement of a compact set has infinite genus and finite area.

(iii) We have seen in Example 3.4 (iii) for the case n = 1 that for the
harmonic series decoration on a Euclidean plane as in Section 2.4,
again the unique end is induced by the unique singularity. Further-
more, the end is nonplanar and of infinite area as every unbounded
path-connected component of the complement of a compact set has
infinite genus and infinite area.

(iv) We can modify the previous example by choosing the lengths of the
segments not to be shrinking but by choosing all segments to be of
the same length. Then the unique singularity is an infinite angle
singularity but it is still inducing the unique end and the end is
nonplanar and of infinite area.

In view of Proposition 3.6, we can ask whether a singular end which is
planar and of finite area has to be induced by a cone angle singularity.
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The following proposition and the subsequent example show that a weaker
statement is true and that both conditions on the end, planar and of finite
area, are needed for the conclusion.

Proposition 3.8 (Weakened version of converse statement of
Proposition 3.6)
Let (X,A) be a translation surface with finitely many singularities and e
a singular, planar end of (X,A) of finite area. Then there exists a singu-
larity σ such that end(σ) = e.

Proof. Let r : [0,∞) → X be a proper ray so that end(r) = e. Further-
more, let K ⊆ X be a compact set so that the path-connected component
C of X \K which contains r([n,∞)) for an n ∈ N is planar and has finite
area. Let C be the closure of C in X and ΣC the set of singularities that
are contained in C \K. As e is singular, this set is not empty.

For every σ ∈ ΣC choose εσ > 0 so that B(σ, 3εσ) \ {σ} ⊆ C. Because
C is planar and has finite area, B(σ, 2εσ) \ B(σ, εσ) is planar and has
finite area for every σ ∈ ΣC . As this set is also complete, it is compact.
Let

K ′ := K ∪
⋃

σ∈ΣC

(B(σ, 2εσ) \B(σ, εσ))

and C ′ the path-connected component of X \K ′ with r([n′,∞)) ⊆ C ′ for
an n′ ∈ N.

As r defines a singular end, C ′ is equal to B(σ, εσ) \ {σ} for a σ ∈ ΣC .
Hence, e = end(r) = end(σ).

We will now show in an example that both conditions on the end, planar
and of finite area, are needed for the conclusion in Proposition 3.8. The
example also indicates that the ends of singularities can converge to
another end. The limit is a singular end but it does not have to be
induced by a singularity.

Example 3.9 (Singular ends that are not induced by a singularity).

(i) For every pair (n,m) ∈ Z × Z \ {(n, 0) : n 6= 0}, consider a copy
Pn,m of a Euclidean plane. On the Euclidean plane P0,0 consider
slits sn,0 from (0, n) to (1, n) for each n ∈ Z. For each Pn,m
with (n,m) 6= (0, 0) consider a slit sn,m from (0, 0) to (1, 0) (see
Figure 3.5).
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Figure 3.5: When gluing all slits in the same way as indicated for one family, we obtain
a translation surface which has a planar, singular end that is not induced
by a singularity.

By gluing the lower part of sn,m to the upper part of sn,m+1, we
obtain a translation surface (X,A) with genus 0. This implies that
every end of (X,A) is a planar end. The translation surface has
two infinite angle singularities σn,left and σn,right for each family
of slits {sn,m : m ∈ Z} with n ∈ Z. These two singularities σn,left
and σn,right induce the same end for every n ∈ Z.
Moreover, there exists a regular end for each Pn,m except for P0,0:
consider for example the path-connected components of the comple-
ment of the compact set B(0, 3) \B(0, 2) in Pn,m.
For P0,0 the proper ray r : [0,∞) → P0,0, x 7→ (−1, x) defines a
singular end. However, for every N ≥ 1, we have the compact set
{(x, y) ∈ P0,0 : max{x, y} = N + 1

2} which separates end(r) from
the ends of σn,left and σn,right for n ∈ [−N,N ]. This means that
end(r) is not induced by a singularity.

(ii) Consider the union of the rectangles Rn from (n, 0) to (n+ 1, 2−|n|)
for every n ∈ Z. By gluing opposite edges of this figure we obtain a
translation surface (X,A) (see Figure 3.6).
The translation surface (X,A) has infinitely many cone angle singu-
larities of multiplicity 3 and no other singularities. As the area of
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3.3 Relations between ends and singularities

(0, 0)

r

Figure 3.6: When gluing opposite horizontal and vertical segments, we obtain a trans-
lation surface so that end(r) is a singular end of finite area which is not
induced by a singularity.

the nth rectangle is 2−|n|, the area of X is finite and hence every
end of (X,A) is of finite area.
For each cone angle singularity there exists an induced end. Now let
r : [0,∞)→ X be the proper ray which goes to the right in a way
so that r([n, n+ 1]) is the geodesic segment from (n+ 1

2 , 2
−n−1) to

(n+ 3
2 , 2
−n−2). Then r defines an end which is singular but is not

induced by a singularity.

The last example also shows that the space of singularities and the space of
ends do not have to be in one-to-one correspondence, even if the translation
surface has finite area. To complete this section, we exhibit that there
exists a one-to-one correspondence between the space of singularities and
the space of ends if the translation surface does not only have finite area
but the metric completion is compact.

Proposition 3.10 (Correspondence between ends and singulari-
ties for compact metric completion)
Let (X,A) be a translation surface so that the metric completion X is
compact. Then the space of ends is finite and in one-to-one-correspondence
to the set of singularities.

Proof. The number of singularities of (X,A) is finite as it is a discrete
closed subset of the compact space X. We show that no two singularities
induce the same end and that every end is induced by a singularity.

Let σ be a singularity and εσ > 0 so that the distance between σ and
every other singularity is greater than 3εσ. As K := B(σ, 2εσ) \B(σ, εσ)
is closed and X is compact, K is also compact. Moreover, K is contained
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3 Ends of translation surfaces

in X and B(σ, εσ) does not contain any other singularity than σ. As in
the proof of Proposition 3.6, this shows that no other singularity can
induce end(σ).

As X has finite area, every end has finite area so it is singular. We
can show in the same way as in the proof of Proposition 3.8 that every
end is induced by a singularity: The condition in Proposition 3.8 that
the end is planar is replaced by the condition that X is compact, so
B(σ, 2εσ) \ B(σ, εσ) is again compact for every singularity σ and εσ as
before.

Altogether we have a map X \X → Ends(X), σ 7→ end(σ) which is
bijective. As both spaces carry the discrete topology, the map is actually
a homeomorphism.

Note that it is crucial for the proof of the previous proposition that we
concluded the convention at the beginning of Section 1.2 that the set
of singularities is discrete. When we consider the excluded translation
surface that is defined by an open disk, we see that the combination of
one end and infinitely many singularities is possible, even if the metric
completion is compact.

We summarize the results of this section in the following theorem.

Theorem 3 (Relations between ends and singularities)
Let (X,A) be a translation surface, e an end of (X,A) and σ a singularity
of (X,A).

(i) If e is a regular end then it is planar and of finite area.

(ii) If e is a singular end then it can be induced by every number of
singularities, including zero.

(iii) If σ is a cone angle singularity then end(σ) is planar and of finite
area.

(iv) If σ is an infinite angle singularity then end(σ) is of infinite area
and can be planar or nonplanar.

(v) If (X,A) has finitely many singularities and e is a singular, planar
end of finite area then e is induced by a singularity.

(vi) If X is compact then the ends and the singularities are in one-to-
one-correspondence.
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4 Around wild singularities
Our aim is to understand the topology and geometry of a translation
surface. Locally, this is only interesting for singularities as every regular
point has a neighborhood which is flat. For a cone angle or infinite angle
singularity and for an ε > 0 that is small enough, we know exactly what
the ε-neighborhood of the singularity looks like by Definition 1.12.

For a wild singularity, everything seems possible for an ε-neighborhood
at the first glance. In the beginning of this chapter, we verify for some
basic properties whether they can or cannot occur for ε-neighborhoods of
wild singularities. Then we move on to saddle connections, in particular to
saddle connections that are short enough so that their images are contained
in an ε-neighborhood of the singularity. In Chapter 5 we will use the
results from this chapter to show that the existence of a wild singularity
even encodes information on the genus of the translation surface.

4.1 Topological and geometric properties
of a neighborhood of a singularity

We start by checking whether the idea is correct that an ε-neighborhood of
a singularity is a somehow deformed once-punctured disk. The discussion
consists of a positive result and several examples of what can go wrong for
wild singularities. The positive statement is that every ε-neighborhood
of a wild singularity is path-connected (previously published as [Ran14,
Proposition 12]).

Proposition 4.1 (Balls around singularities are path-connected)
Let (X,A) be a translation surface, σ a singularity, and ε > 0. Then
B(σ, ε) ∩X is path-connected.

Proof. For a fixed ε > 0, let x, y ∈ B(σ, ε)∩X and δ > 0 small enough so
that d(x, σ) < ε− 3δ and d(y, σ) < ε− 3δ. Furthermore, let (zn)n∈N ⊆ X
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γx

γy

σ

x
≥ 3δ

y

≥ 3δ

z1
z2

zN

Figure 4.1: The ε-neighborhood of a singularity σ and a Cauchy sequence (zn) con-
verging to σ.

be a Cauchy sequence converging to σ and N ∈ N with d(σ, zN ) < δ (see
Figure 4.1). Then we have

d(x, zN ) ≤ d(x, σ) + d(σ, zN ) < ε− 2δ

and d(y, zN ) < ε− 2δ.
As the metric of X is the path length metric, there exists a curve γx

in X which connects x to zN and has at most length ε− δ. This means
that for every point in the image of γx the distance to σ is at most
d(σ, zN ) + (ε− δ) < ε. Hence, γx is a curve in B(σ, ε) ∩X.

In the same way we can define a curve γy in B(σ, ε) ∩X from y to zN
and by concatenation of γx with the reversed curve of γy we obtain
a curve from x to y in B(σ, ε) ∩ X. This means that B(σ, ε) ∩ X is
path-connected.
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4.1 Topological and geometric properties of a neighborhood of a singularity

Figure 4.2: The boundary of the 1
3 -neighborhood for the wild singularity of the ex-

ponential surface: the dashed curve is one boundary component of the
neighborhood.

The path-connectedness is also fulfilled for B(σ, ε) ⊆ X. The proof is
literally the same as the metric of X is also the path length metric.

So, a crucial property of a disk is fulfilled. However, it can happen
for a wild singularity σ that the boundary of B(σ, ε) consists of more
than one component. Consider for example the exponential surface in
Section 2.2 and an ε ∈ [2−n, 2−n+1) for an n ≥ 2. Then for every trapezoid
(except for the first n+ 1 trapezoids in both directions) the bases of the
trapezoid are contained in the ε-neighborhood of σ. However, no trapezoid
is completely contained in B(σ, ε), so there are two pieces of boundary in
each trapezoid (see Figure 4.2). These pieces come in pairs so that they
form closed curves. Hence, we have infinitely many boundary components
of the ε-neighborhood of σ for every ε ∈ (0, 1

2 ).
This example also shows that the number of boundary components

of an ε-neighborhood is not directly related to the number of rotational
components: for the exponential surface, we have infinitely many boundary
components of an ε-neighborhood and two rotational components. The
other way around, for the Chamanara surface, we have one boundary
component of the ε-neighborhood for each ε ∈ (0, 1

2 ) and infinitely many
rotational components.

Moreover, we observe that B(σ, 2ε)\B(σ, ε) ⊆ X need not be an annulus
(see Figure 4.3). For the exponential surface and an ε ∈ (0, 1

2 ), the set is
not even connected, in fact it decomposes into infinitely many connected
components. And as there exists an infinite subset of the connected
components so that the distance of each two connected components is at
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4 Around wild singularities

Figure 4.3: The set B(σ, 2
5 )\B(σ, 1

5 ) for the wild singularity of the exponential surface.

least 1, the closed set B(σ, 2ε) \B(σ, ε) has finite area but is not compact.
As was indicated in the remark following Proposition 3.6, this means that
the set B(σ, 2ε) \B(σ, ε) can not be used to distinguish end(σ) from other
ends of the translation surface.
Let us now turn to the area of a neighborhood. For a cone angle singularity
σ of multiplicity k, the ε-neighborhood B(σ, ε) has area k · ε2 · π. The
same calculation also shows that the area of an ε-neighborhood of an
infinite angle singularity is infinite. For a wild singularity, the area of
an ε-neighborhood can be finite or infinite. Every translation surface
with finite area and a wild singularity can serve as an example for a
neighborhood that has finite area, for instance the Chamanara surface
and the exponential surface. For a Euclidean plane with a harmonic series
decoration as in Section 2.4, the ε-neighborhood of the wild singularity σ
has infinite area as the infinite strip

( d 1
ε e∑

k=1

1
k
,∞
)
×
[
− ε2 ,

ε

2

]
is contained in B(σ, ε).

For a cone angle or infinite angle singularity σ and an ε > 0 small
enough, the ε-neighborhood B(σ, ε) of σ in X is simply connected. This
statement is not true for a wild singularity σ as we can see in Figure 4.2.

In fact, we will show in Proposition 4.4 that for every wild singularity σ
and every ε > 0 there exists a saddle connection from σ to σ whose image
is contained in B(σ, ε). A saddle connection can never be null-homotopic
as it would bound a locally flat disk and contracting the saddle connection
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would yield a homotopic curve which has smaller length. The existence of
this homotopic curve is impossible as a saddle connection is a geodesic
and a geodesic is minimal in its homotopy class. Hence, the existence
of a saddle connection from σ to σ whose image is contained in B(σ, ε)
implies that B(σ, ε) cannot be simply connected.

4.2 Saddle connections in a dense set
of directions

As we have indicated in the last section, saddle connections contain infor-
mation on the topology of the neighborhood of a singularity. Therefore,
we continue our study of ε-neighborhoods of singularities by investigating
saddle connections.

It is proven by Masur in [Mas86, Theorem 2] that for finite translation
surfaces the directions of saddle connections are dense in S1. We show
that a similar result is true for translation surfaces with finite area. For
this, we construe saddle connections as linear approaches in the following
way. Recall that for a translation surface (X,A), every saddle connection
γ : [0, l] → X is geodesic and its image has an orientation by definition.
So the curve γ|(0,l) and its reversed curve define two linear approaches,
one to the singularity γ(0) and one to the singularity γ(l). We call the
first linear approach [γ+] and the second one [γ−].

We use this perception of saddle connections to formulate our state-
ment on directions of saddle connections as a corollary of the following
proposition.

Proposition 4.2 (Saddle connections are dense in L(σ))
Let (X,A) be a translation surface of finite area and σ a singularity.
Furthermore, let [γ] ∈ L(σ) be a linear approach which is contained in the
interior of the rotational component [γ]. Then every neighborhood of [γ]
in L(σ) contains a linear approach defined by a saddle connection. In
particular, the linear approach can be chosen to be contained in [γ].

Proof. Let γ be a representative of [γ], θ ∈ S1 = R/2πZ the direction
of [γ], and ((−y, y), ε, iε) an angular sector with f((−y,y),ε,iε)(0) = [γ].
Furthermore, let t > 0 and r > 0 be small enough so that B(γ(t), r) is
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ε

σ
γ(t)

r
s

Figure 4.4: Choice of a segment s in B(γ(t), r) which is perpendicular and symmetric
to im(γ).

contained in im(iε) ⊆ X. We show that there exists a linear approach in
B(γ, t, r) defined by a saddle connection.

Choose a geodesic segment s in B(γ(t), r) which is perpendicular and
symmetric to im(γ) (see Figure 4.4). Consider the images of s under the
geodesic flow Fθ for all times until it hits a singularity for some point
in s. This has to happen after finite time because X has finite area: If the
images of s under Fθ would not hit a singularity, it would be defined for
all time and then by Poincaré recurrence (see Proposition 1.41) it follows
that σ is hit by the flowed s.

The closure of the union of im(iε) and the rectangle swept out by the
geodesic segment s under the geodesic flow Fθ is a star domain with
respect to the base point of the angular sector. Therefore, there exists
a geodesic segment from σ to the hit singularity which is completely
contained in the union of im(iε) and the rectangle swept out by s (see
Figure 4.5). This geodesic segment is a saddle connection and the linear
approach which belongs to the saddle connection is contained in B(γ, t, r).
As the linear approach is also contained in the same rotational component
as [γ], we found a saddle connection as desired.

We can now show that for every given direction there exists a saddle
connection whose direction is close to the given one.
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4.2 Saddle connections in a dense set of directions

σ

s

σ′

Figure 4.5: The geodesic from σ to σ′ is a saddle connection for which one of the
corresponding linear approaches is contained in B(γ, t, r).

Corollary 4.3 (Set of directions of saddle connection is dense in S1).
Let (X,A) be a translation surface with finite area and at least one
singularity σ. Then the set of directions of saddle connections is dense in
S1 = R/2πZ.

Proof. The singularity σ has a rotational component c of length at least π.
To see this, choose ε > 0 so that B(σ, 2ε) ∩ (X \X) = {σ}. For a regular
point x ∈ B(σ, ε), we have d := d(x,X \ X) = d(x, σ) > 0 and that
B(x, d) ⊆ X is a locally flat disk with σ ∈ B(x, d) ⊆ X. Then the
geodesic segment γ : (0, d) → B(x, d) which connects σ to x defines a
linear approach [γ] ∈ L(σ) that is contained in a rotational component c
of length at least π.

Let θ ∈ S1, [γ] a linear approach contained in c with direction θ or −θ,
and γ a representative of [γ]. Then the direction of the saddle connection
that we obtain from the proof of Proposition 4.2 differs at most arcsin( rt )
from θ with t > 0, r > 0 as in the proof of Proposition 4.2. By making r
smaller, we can lessen the difference and hence obtain a saddle connection
with direction as close to θ as desired.

Note that this saddle connection also works for the opposite direction
as we can consider the reversed curve of the saddle connection.
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4 Around wild singularities

4.3 Short saddle connections and xossiness
For tame translation surfaces with finitely many singularities, the lengths
of the saddle connections are bounded from below. This is because for
every singularity σ there exists an εσ > 0 so that B(σ, εσ) \ {σ} is locally
flat. Therefore the lengths of the saddle connections are bounded from
below by min{εσ : σ singularity, B(σ, εσ) \ {σ} locally flat}.

For wild singularities, this argument does not work. In fact, for a wild
singularity, the opposite is true.

Proposition 4.4 (Existence of short saddle connections)
Let (X,A) be a translation surface and σ a wild singularity. Then for
every ε > 0, there exists a saddle connection connecting σ to itself of
length less than ε.

Proof. As the singularities are discrete by the convention in Section 1.2,
there exists an ε′ > 0 so that σ is the only singularity in B(σ, ε′) ⊆ X.
We distinguish between the following two cases.

Case 1: There exists a rotational component which is bounded in at
least one direction. This means, σ itself is an obstacle to extending the
rotational component in that direction. Hence, there exist curves from σ
to σ shorter than any given length, for instance shorter than ε. In X, there
exists a geodesic which is homotopic to such a curve (see [BH99, Part
II, Theorem 4.13]). This geodesic in X is a chain of saddle connections
connecting σ to itself and each of the saddle connections has length less
than ε.

Case 2: Every rotational component is unbounded. Assume there exists
a minimal length ε < ε′ of saddle connections from σ to σ. Then for
every linear approach [γ] to σ, there exists a representative γ ∈ Lε(σ) as
otherwise it would belong to a saddle connection of length less than ε.
Therefore, there exists a cyclic translation covering from B(σ, ε) \ {σ} to
the once-punctured disk B(0, ε) \ {0} ⊆ R2. This means that σ is not a
wild singularity.

Even if there exist arbitrarily short saddle connections, a closed geodesic
in X can not be intersected by arbitrarily short saddle connections as we
will see in the definition below. We can give a lower bound on the length
of intersecting saddle connections by the immersion radius of a closed
geodesic (previously defined in [Ran14, Definition 17]).
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4.3 Short saddle connections and xossiness

The immersion radius of a point or of a curve is defined similar to the
well-known injectivity radius. In contrast to the injectivity radius, we
allow that the image of the disk that we map into X overlaps itself.

Definition 4.5 (Immersion radius)
Let (X,A) be a translation surface.

(i) For a regular point x ∈ X, we define the immersion radius ir(x) by

ir(x) := d(x,X \X) ∈ (0,∞].

This is well-defined as X is a metric space and the set of singularities
X \X is discrete and hence closed in X. Note that the open ir(x)-
neighborhood of x does not contain a singularity but its closure
does (if (X,A) has at least one singularity).

(ii) For a curve γ : [0, l]→ X, we define the immersion radius ir(γ) by

ir(γ) := inf{ir(γ(t)) : t ∈ [0, l]}.

As the image of γ is compact, we can cover it by finitely many
disks B(γ(ti), ir(γ(ti))) around points γ(ti) on the curve. Then
the set ∂

(⋃
B(γ(ti), ir(γ(ti)))

)
is compact and does not intersect

im(γ), thus its distance to im(γ) is positive. As this distance is
a lower bound for the immersion radius of the curve, this means
that ir(γ) > 0 still holds and again the open ir(γ)-neighborhood
of im(γ) is locally flat. In particular, every saddle connection that
intersects γ has at least length 2 ir(γ) > ir(γ).

(iii) A saddle connection can be seen either as a curve in X or as a
geodesic defined on an open interval. Because of that we have
to slightly modify the notion of immersion radius, compared to
curves in X as before. As this modification only works for saddle
connections γ for which both corresponding linear approaches [γ+]
and [γ−] belong to a rotational component that is large enough, we
restrict on the following type of saddle connections:
Let σ+, σ− be two (not necessarily different) singularities of (X,A)
and γ : [0, l]→ X a saddle connection from σ+ to σ−. Let [γ+] and
[γ−] be linear approaches as in the remark preceding Proposition 4.2
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2ε+ε+

σ
γ+

Figure 4.6: Any saddle connection that intersects the well-immersed saddle connection γ
close to its start point has at least length ε+.

on page 91. We say that γ is a well-immersed saddle connection if
there exists an angular sector ((0, π), 2ε+, i2ε+) with base point σ+
so that [γ+] ∈ im(f((0,π),2ε+,i2ε+ )) and the same is true for [γ−] and
some angular sector ((0, π), 2ε−, i2ε−).
Now let γ : [0, l]→ X be a well-immersed saddle connection from σ+
to σ− and let γ+ be the representative of [γ+] in Lε+(σ+). Because
the length of [γ+] is at least π, the image of γ+ is contained in a
locally flat, open half-disk (see Figure 4.6). Suppose there exists a
saddle connection that intersects γ+. Then it has to start outside
of the image of i2ε+ and go through the half-annulus-like set(

i2ε+ ◦ f
)

({z ∈ C : log ε+ ≤ Re(z) < log 2ε+, Im(z) ∈ (0, π)})

to intersect the image of γ+. This means that the intersecting saddle
connection has at least length ε+.
A similar statement holds true for γ− and ε−. Then γc := γ|[ε+,l−ε−]
is a curve as in (ii) with a compact image and a well-defined immer-
sion radius εc := ir(γc) > 0.
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σ

γ

σ

Figure 4.7: An example of a trapezoidal neighborhood of a saddle connection γ.

In particular, min{ε+, εc, ε−} is a lower bound for the length of
saddle connections that intersect γ. We define the (generalized)
immersion radius ir(γ) by

ir(γ) := sup{min{ε+, εc, ε−} : ε+, ε− small enough so that angular
sectors as described above exist}.

In the case of a regular point x ∈ X, the term “immersion radius” is
reasonable as an open disk of radius ir(x) can be immersed and the
image under the immersion is a locally flat neighborhood of the point x.
Similarly, for a closed geodesic γ, an open cylinder of height 2 · ir(γ) and
circumference the length of γ can be immersed and the image is a locally
flat tubular neighborhood of the curve γ.

In the case of well-immersed saddle connections, we can immerse an
open trapezoid of height 2 · ir(γ) so that the median has the same length as
the saddle connection (see Figure 4.7). The image forms a neighborhood
of the interior of the saddle connection and around the singularities we
have the images of angular sectors of length π.

Note that for a rotational component of length strictly greater than π,
there always exists an angular sector ((0, π), ε, iε). This is true because
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the length of the longest representative of a linear approach varies lower
semi-continuously in a rotational component and hence has a minimum
on a compact set of linear approaches (see [BV13, Corollary 2.7 and
the subsequent remark]). Hence, if for a saddle connection γ the linear
approaches [γ+] and [γ−] are contained in rotational components of length
strictly greater than π then γ is well-immersed.
Lemma 4.6 (Immersion radius is Lipschitz continuous). For a translation
surface (X,A), the map ir : X → (0,∞], x 7→ ir(x) is Lipschitz continuous
with constant 1. In particular, the map is continuous.

Proof. For all x1, x2 ∈ X and σ ∈ X \X, we have

ir(x1) = d(x1, X \X) ≤ d(x1, σ) ≤ d(x1, x2) + d(x2, σ).

Therefore it follows

ir(x1) ≤ d(x1, x2) + inf
σ∈X\X

d(x2, σ) = d(x1, x2) + ir(x2)

and interchanging x1 and x2 yields | ir(x1)− ir(x2)| ≤ d(x1, x2). So the
map is Lipschitz continuous with Lipschitz constant 1.

The discussion on the immersion radius shows that for well-immersed
saddle connections, there exists a lower bound on the length of inter-
secting saddle connections. We are especially interested in translation
surfaces for which there exist enough saddle connections with such a lower
bound on the length of intersecting saddle connections. We say that the
corresponding singularities fulfill xossiness – short for existence of short
saddle connections intersected not by even shorter saddle connections.
Definition 4.7 (Xossiness)
Let (X,A) be a translation surface and σ a singularity. We say that
σ fulfills xossiness if for every ε > 0 there exists a saddle connection s
that connects σ to itself, that has length less than ε, and so that there
exists a δ := δ(s) > 0 such that no saddle connection of length less than δ
intersects s.
Here and in the following, by saying “two saddle connections do not inter-
sect” we mean that the images of the interiors of the saddle connections
do not intersect. If we consider two saddle connections that connect the
same singularity to itself then their images naturally have a common
point, namely the singularity.
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4.4 Conditions for singularities
to fulfill xossiness

As the lengths of saddle connections starting in a fixed cone angle or
infinite angle singularity are bounded away from 0, cone angle and infinite
angle singularities do not fulfill xossiness. For a wild singularity σ, we give
two conditions when σ fulfills xossiness. However, the author conjectures
that every wild singularity fulfills xossiness.

Proposition 4.8 (Xossiness and the geodesic flow)
Let (X,A) be a translation surface and σ a wild singularity. Suppose that
for a dense set of directions, for almost every point, the geodesic flow is
defined for all time. Then σ fulfills xossiness.

Proof. Fix ε′ > 0 so that σ is the only singularity in B(σ, ε′) ⊆ X and
choose ε > 0 with ε < ε′. By Proposition 4.4, there exists a saddle
connection s : [0, l]→ X of length l less than ε

2 .
If there exists no saddle connection of length less than ε

2 that intersects s
then s is a saddle connection as desired.

Now suppose there exists a saddle connection s′ : [0, l′]→ X of length l′
less than ε

2 that intersects s in s(t) with t ∈ (0, l). Choose a direction θ so
that for almost every point the geodesic flow Fθ is defined for all time and
so that θ is so close to the direction of s′ that Fθ(s′(0), [0, l′]) intersects s

s

σ

σ

s′

s(t2)
s(t3)

Figure 4.8: A saddle connection s from σ to σ that is intersected by a saddle connec-
tion s′ and two trajectories of the geodesic flow in a direction close to the
direction of s′.
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s

σ

σ

s(t1)

s(t4)

s′

σ

σ

s(t2)
s(t3)

σ

Figure 4.9: The segment s([t1, t4)] is flowed forward and backward by Fθ until it hits
a singularity for the first time.

s

σ

σ

s′

σ

σ

σ

g

Figure 4.10: The new saddle connection g can not be intersected by saddle connections
that are shorter than the distance of g to the left edge and to the right
edge of the parallelogram.
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in s(t2) with t2 ∈ (0, t) and Fθ(s′(l′), [0,−l′]) intersects s in s(t3) with
t3 ∈ (t, l) (see Figure 4.8). Furthermore, choose t1 ∈ (0, t2) and t4 ∈ (t3, l)
so that s(t1) and s(t4) are points for which the geodesic flow Fθ is defined
for all time, in particular backward and forward.

Let s([t1, t4]) flow backward and forward under Fθ until it hits a sin-
gularity. This singularity is in both cases σ because of the choice of
ε < ε′. By this, we obtain an open parallelogram in X that contains a
singularity on two opposite edges but no singularities in the vertices as
the vertices are images of t1 or t4 under Fθ (see Figure 4.9). The height
of the parallelogram is at most the length l′ of s′.

The geodesic g in the parallelogram between the two appearances of σ
on the boundary as in Figure 4.10 is a saddle connection of length at most
l+ l′ ≤ ε. The singularity σ has a distinct distance to the left edge and to
the right edge of the parallelogram and as the interior of the parallelogram
is locally flat, this distance is a lower bound for the immersion radius.
Therefore, there exists a δ > 0 so that no saddle connection of length less
than δ can intersect g. Hence, g is a saddle connection as desired.

The second criterion was previously published as [Ran14, Proposition 21’].

Proposition 4.9 (Xossiness and rotational components)
Let (X,A) be a translation surface and σ a wild singularity. Suppose that
for every rotational component of σ of length exactly π there exists an
angular sector ((0, π), ε, iε) so that the image of f((0,π),ε,iε) is contained in
this rotational component. Then σ fulfills xossiness.

Proof. Fix ε′ > 0 so that σ is the only singularity in B(σ, ε′) ⊆ X and
choose ε > 0 with ε < ε′. By Proposition 4.4, there exists a linear approach
[γ] for which the longest representative γ has length l < ε

2 .
For every t ∈ (0, l), the immersion radius of γ(t) is greater than 0 but

at most d(γ(t), σ) ≤ t. So we can define the immersion radius along γ as
the map

irγ : (0, l)→ (0, l), t 7→ ir(γ(t)).

For every time t ∈ (0, l), there exists a geodesic in X of length irγ(t)
connecting γ(t) to a singularity. Since t + irγ(t) < ε

2 + ε
2 < ε′, this

singularity is again σ.
To prove that σ fulfills xossiness, we show the existence of a time t0

so that irγ(t0) is realized by two different geodesics in X. Then we can
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r

r′

γ̃

Figure 4.11: The open and simply connected, developed set B̃ ⊆ R2.

join the two occurrences of the singularity σ at the end points of the
geodesics in B(γ(t0), irγ(t0)). The condition on the rotational components
of length π makes sure that we obtain a well-immersed saddle connection
s for which the immersion radius is defined as in Definition 4.5 (iii). This
means that there exists a lower bound on the length of saddle connections
that intersect s in its interior.

For every t ∈ (0, l), there exists a locally flat disk B(γ(t), irγ(t)). We
define the locally flat subset

B :=
⋃

t∈(0,l)

B(γ(t), irγ(t)) ⊆ X.

Then we consider a lift γ̃ of γ to the universal cover, together with the
union of the disks B(γ̃(t), irγ(t)) for every t ∈ (0, l). By developing this
simply connected set into the plane along γ̃, we obtain an open, connected
subset B̃ ⊆ R2 (see Figure 4.11). The developed curve in B̃ ⊆ R2 which
corresponds to the curve γ in B is still called γ̃. Every time we encounter σ
on the boundary of B ⊆ X, we consider a representative r of σ on the
boundary of B̃ ⊆ R2. Note that the singularity σ is always the same in
∂B ⊆ X while the representatives are not identified in ∂B̃ ⊆ R2.

Define the set R := {r ∈ ∂B̃ : r is a representative of σ} ⊆ R2. Every
sequence in R converging to a point x ∈ R2 corresponds to a sequence in X
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where all elements are σ, so the limit is σ and hence x is a representative
of σ. Therefore, R is a closed set in R2.

For every representative r ∈ R we define the set

Tr := {t ∈ (0, l) : d(γ̃(t), r) = irγ(t)}.

Then the set Tr is closed in (0, l) and connected:

• Let (tn)n∈N ⊆ Tr be a sequence converging to a time t ∈ (0, l). We
have

d(γ̃(tn), r) ≤ d(γ̃(t), r) + d(γ̃(t), γ̃(tn)) = d(γ̃(t), r) + |t− tn|

and

d(γ̃(tn), r) ≥ d(γ̃(t), r)− d(γ̃(t), γ̃(tn)) = d(γ̃(t), r)− |t− tn|.

As ir : X → (0,∞] is continuous (see Lemma 4.6), irγ is also contin-
uous and we deduce

irγ(t) = lim
n→∞

irγ(tn) = lim
n→∞

d(γ̃(tn), r) = d(γ̃(t), r).

So t is in Tr and therefore Tr is closed in (0, l).

• For the connectedness consider t1, t3 in Tr and t2 ∈ (0, l) such that
t1 < t2 < t3. Then the circle around γ̃(t2) through r is contained in
the closure of B(γ̃(t1), irγ(t1)) ∪B(γ̃(t3), irγ(t3)) (see Figure 4.12).
This implies that for every r′ ∈ R with d(γ̃(t2), r′) < d(γ̃(t2), r)
it also holds d(γ̃(t1), r′) < d(γ̃(t1), r) or d(γ̃(t3), r′) < d(γ̃(t3), r).
Because it holds t1, t3 ∈ Tr, this is impossible and therefore we have
d(γ̃(t2), r) ≤ d(γ̃(t2), r′) for every r′ ∈ R and hence t2 ∈ Tr.

We will now continue with a case-by-case analysis of ∂B̃ and how it
contains R:

Case 1: There is an open, connected subset of ∂B̃ which is disjoint
from R. Then there exists a closed connected subset b of ∂B̃ whose
interior is disjoint from R but whose end points (in a relative sense) are
contained in R. We call these end points r1 and r2.

For technical reasons, we now consider half-disks instead of disks
B(γ(t), irγ(t)) and slightly abuse notation. This means, we only con-
sider the connected components of B(γ̃(t), irγ(t)) \ im(γ̃) which are on
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σ

γ̃(t1)
γ̃(t2)

γ̃(t3)

r

Figure 4.12: The circle around γ̃(t2) through r is contained in the closure of the disks
around γ̃(t1) and γ̃(t3) through r.

the same side of γ as r1 and r2. Also, we only consider representatives
in R on the same side as r1 and r2, in Tr we consider times t where the
geodesic from γ̃(t) to r is the shortest on the correct side, irγ(t) is the
minimum of lengths of geodesics on the correct side, and so on.

In this sense we have that Tr1 ∪ Tr2 is connected: Choose t1 ∈ Tr1 ,
t2 ∈ Tr2 and assume t1 < t2 (if t1 > t2, change notation). Furthermore,
choose t′ ∈ (0, l) with t1 < t′ < t2 (see Figure 4.13). Then we have
for every r ∈ R \ {r1, r2} on the same side of γ̃ as r1 and r2 that the
inequality d(γ̃(t′), r) ≥ min{d(γ̃(t′), r1), d(γ̃(t′), r2)} holds, by similar
geometric arguments as in the proof of the connectedness of Tr. This
means t′ ∈ Tr1 ∪ Tr2 and Tr1 ∪ Tr2 is connected.

As Tr1 and Tr2 are closed and their union is connected, there exists
a point t0 ∈ Tr1 ∩ Tr2 . In particular, the geodesics from γ̃(t0) to r1 and
from γ̃(t0) to r2 in B̃ ⊆ R2 have the same length and the corresponding
two geodesics from γ(t0) to σ in B ⊆ X are contained in B(γ(t0), irγ(t0))
except of their end points. So we can join the end points of the two
geodesics in B ⊆ X and obtain a saddle connection from σ to σ of length
less than 2 · irγ(t0) ≤ 2 · t0 ≤ 2l < ε (see Figure 4.14).
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r1

r2
r

γ̃(t1)

γ̃(t2)
γ̃(t′)

Figure 4.13: If there exists no representative between r1 and r2 then t′ is contained in
Tr1 ∪ Tr2 .

r1

r2

γ̃(t1)

γ̃(t2)
γ̃(t0)

Figure 4.14: The dashed geodesic between r1 and r2 in B̃ corresponds to a saddle
connection in B.
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The saddle connection from this construction is a chord of the half-
disk B(γ(t0), irγ(t0)), so the two corresponding linear approaches are
contained in rotational components of length at least π. By the remark
after Definition 4.5 (for rotational components of length strictly greater
than π) and by assumption (for rotational components of length exactly π)
there exist angular sectors ((0, π), ε+, iε+) and ((0, π), ε−, iε−) so that the
linear approaches defined by the saddle connection are contained in one of
the images of f((0,π),ε+,iε+ ) and f((0,π),ε−,iε− ). This means that the saddle
connection is well-immersed and that there exists a lower bound on the
length of saddle connections that intersect the resulting saddle connection
in its interior.

Case 2: Every open, connected subset of ∂B̃ contains a representative r.
This means, R is dense in ∂B̃. As R is a closed set, this implies R = ∂B̃.
When considering the situation in X, we have {σ} = ∂B, hence no point
in B can be connected to a point in X \B. As X is connected, it follows
X = B. Consider two parallel geodesics in X, which are close to each
other and end in σ, and a Cauchy sequence on each of these geodesics.
Then the distance of the corresponding elements of the Cauchy sequences
is bounded away from 0. This means that the limits of the Cauchy
sequences are two different points but this is a contradiction as we only
have one singularity in ∂B = {σ}.

As Case 2 can never happen and in Case 1, for each ε > 0 we find a
saddle connection as desired, the statement is proven.

We have now seen in the proof how the peculiar condition on the existence
of an angular sector ((0, π), ε, iε) for every rotational component of length
exactly π is used. In particular, if such an angular sector does not exist
then it is possible in Case 1 that short chords of the disk B(γ(t0), irγ(t0))
intersect the obtained saddle connection in its interior (cf. Figure 4.14).
We can encounter this behaviour in the following example which is inspired
by the parabola surface of Hooper in [Hoo14] and the double parabola
surface of Bowman and Valdez in [BV13, Example 1.12].

Example 4.10 (Hourglass surface). Consider the two generalized polygons
with the vertices {( 1

n ,
1
n2 ) : n ∈ Z \ {0}} and {( 1

n ,−
1
n2 ) : n ∈ Z \ {0}} (see

Figure 4.15). For each edge there exists a parallel edge of the same length,
these pairs of edges are identified to obtain the hourglass surface. It has
one singularity with four rotational components: Two of the rotational
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Figure 4.15: For the hourglass surface, we identify parallel edges.

components are of infinite length, the other two are defined by the geodesic
curves γ1 : (0, 1)→ X, t 7→ (0, t) and γ2 : (0, 1)→ X, t 7→ (0,−t) and have
length π.

Note that for every δ > 0, there exists an ε > 0 and an angular sector
((δ, π − δ), ε, iε) with base point (0, 0) so that [γ1] ∈ im(f((δ,π−δ),ε,iε)).
However, there does not exist such an angular sector for δ = 0 due to
the short edges of the generalized polygon close to (0, 0). In particular,
for every saddle connection starting in (0, 0) there exist horizontal saddle
connections of arbitrarily small length that are intersecting the given
saddle connection.

Nevertheless, the hourglass surface fulfills xossiness: A saddle connection
defined by an edge of the generalized polygons can not be intersected by
a saddle connection that is shorter than the edge. Furthermore, there
exist arbitrarily short saddle connections of this kind.
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5 The influence of wild
singularities on the genus

As we mentioned earlier, most known examples of wild translation surfaces
with exactly one singularity are Loch Ness monsters, i.e. have infinite
genus and one end. The number of ends can easily be increased by gluing
in half-cylinders but it is hard to reduce the genus. This leads to the
conjecture that the existence of a wild singularity implies infinite genus.

In full generality, this conjecture is not true as we will see in Example 5.9
but we will provide necessary conditions for a wild singularity to imply
infinite genus. The conditions involve that the singularity fulfills xossiness
and the proofs are based on the conclusions from Section 4.3. The results
in this chapter have been previously published in [Ran14].

5.1 Saddle connections as a tool
for detecting infinite genus

Our purpose is to show that a translation surface with certain conditions
has infinite genus. Therefore, we give a feasible criterion for the infinity
of genus in this section.

Recall from Definition 1.26 that we defined the genus of a surface as
half of the maximum cardinality of a nonseparating set of curves in X.
In particular, a surface has infinite genus if there exists a nonseparating
set of infinitely many curves in X. In Proposition 5.1, we specialize this
definition to a criterion for the case of translation surfaces using saddle
connections. The criterion involves curves that connect one side of a given
curve to the other side. We call these curves left-to-right curves which is
made precise in Definition 5.2 and Definition 5.3. The main result of this
section is summarized in the following proposition which will serve as a
tool to determine infinite genus in Section 5.2.



5 The influence of wild singularities on the genus

Proposition 5.1 (Saddle connections and infinite genus)
Let (X,A) be a translation surface and σ a singularity. Suppose that
for every n ≥ 1 there exists a set of n saddle connections from σ to
itself so that the saddle connections intersect exactly in σ and the set has
left-to-right curves. Then X has infinite genus.

We will prove the proposition by several lemmas and start with a precise
definition of left-to-right curves.

Definition 5.2 (Left-to-right curves of curves in X)
Let X be a connected, orientable surface, n ≥ 1, and γ1, . . . , γn simple
closed curves in X that intersect pairwise in exactly one point x ∈ X.

(i) Let ε > 0 be small enough so that the ε-neighborhood N of γ1
is a tubular neighborhood. Then N is topologically an annulus.
So N \ im(γ1) consists of two connected components Nl and Nr.
Considering the underlying orientation of im(γ1) we call points in
Nl and Nr points on the left of γ1 and points on the right of γ1,
respectively.

(ii) A curve in X \ im(γ1) from a point on the left of γ1 to a point on
the right of γ1 is called left-to-right curve of γ1.

(iii) Choose a tubular neighborhood N of γn and let Nl and Nr be as
before. We have that Nl \ (im(γ1) ∪ . . . ∪ im(γn−1)) consists of one
or more connected components (see Figure 5.1). The boundary of
such a connected component consists of a subset of the boundary
of N and of subsets of the images of some γi. As the curves intersect
in exactly one point, there is only one connected component N∗l
whose boundary additionally contains im(γn).
We call a point in this connected component N∗l point on the left
of γn with respect to γ1, . . . , γn−1. Similarly, we can define points
on the right of γn with respect to γ1, . . . , γn−1. Then a curve in
X \ (im(γ1) ∪ . . . ∪ im(γn)) is called left-to-right curve of γn with
respect to γ1, . . . , γn−1 if it connects a point on the left of γn with
respect to γ1, . . . , γn−1 to a point on the right of γn with respect to
γ1, . . . , γn−1.

(iv) We say that the set of curves {γ1, . . . , γn} has left-to-right curves if
every curve has a left-to-right curve with respect to the other ones.
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γn

N

γn−1

...

γ2

γ1

Figure 5.1: The connected components N∗l and N∗r are the ones that are only partially
drawn in the sketch.

Now let (X,A) be a translation surface. For a curve in X, for instance
a saddle connection, we cannot find such a tubular neighborhood N as
in Definition 5.2 (i) but use a slightly different neighborhood instead. So
we can define left-to-right curves for a special type of curves in X in a
similar way while avoiding the singularity.

Definition 5.3 (Left-to-right curves of curves in X)
Let (X,A) be a translation surface, σ a singularity, n ≥ 1, and γ1, . . . , γn
simple closed curves in X ∪ {σ} whose images contain σ exactly as start
and end point and that are disjoint in their interiors.

(i) Let l be the length of γ1 and let ε > ε′ > 0 be sufficiently small.
Consider the set N ⊆ X ∪ {σ} which is the union of B(σ, ε) and
the open ε′-neighborhood Ñ of the segment γ1([ε, l − ε]). Again,
Ñ \ im(γ1) consists of two connected components Ñ l and Ñr. In
this situation, we call points in Ñ l points on the left of γ1 and points
in Ñr points on the right of γ1, with respect to the orientation of γ1.

(ii) A curve in X \ im(γ1) from a point on the left of γ1 to a point on
the right of γ1 is called left-to-right curve of γ1.
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(iii) Choose a neighborhood N of γn and let Ñ l and Ñr be as before.
Again, it is possible that Ñ l \ (im(γ1) ∪ . . . ∪ im(γn−1)) consists of
more than one connected component. In this case, we can avoid
the indicated behaviour by choosing ε′ > 0 small enough so that
none of the curves γ1, . . . , γn−1 intersects Ñ l and Ñr. We call a
point in these newly chosen Ñ l and Ñr point on the left of γn with
respect to γ1, . . . , γn−1 and point on the right of γn with respect to
γ1, . . . , γn−1, respectively.
Then a curve in X \ (im(γ1) ∪ . . . ∪ im(γn)) is called left-to-right
curve of γn with respect to γ1, . . . , γn−1 if it connects a point on the
left of γn with respect to γ1, . . . , γn−1 to a point on the right of γn
with respect to γ1, . . . , γn−1.

(iv) We say that the set of curves {γ1, . . . , γn} has left-to-right curves if
every curve has a left-to-right curve with respect to the other ones.

Note that the existence of left-to-right curves as in Definition 5.2 and
Definition 5.3 does not depend on the choice of ε or ε′ as long as these
values are small.

By means of left-to-right curves we can now formulate a criterion for a
set of curves to be nonseparating.

Lemma 5.4 (Criterion for simple closed curves to be nonseparating). Let X
be a connected, orientable surface, n ≥ 1, and γ1, . . . , γn simple closed
curves in X that intersect pairwise in exactly one point x ∈ X. Then the
set {γ1, . . . , γn} is nonseparating if and only if the set has left-to-right
curves.

Proof. We prove this statement by induction on the number n of curves.
For the base case we show that the curve γ1 is nonseparating if and only
if it has a left-to-right curve.

If γ1 is nonseparating then we can take any point on the left and any
point on the right of γ1 and as X \ im(γ1) is connected there exists a
curve connecting these two points without intersecting γ1.

Now assume we have such a left-to-right curve δ1 connecting a point
xl on the left of γ1 and a point xr on the right of γ1. Choose two points
x1, x2 ∈ X \ im(γ1). We have to show that there exists a curve β in
X \ im(γ1) that connects x1 and x2.
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γ1

N

x1

x2

β′

β′+

β′−

Figure 5.2: This configuration of γ1 and β′ is treated in Case 2.

Let N , Nl and Nr be as in Definition 5.2. As X is connected, there
exists a curve β′ in X that connects x1 to x2. If β′ is disjoint from N
then we can choose β := β′. If β′ is contained in N then x1 and x2 can
both be connected to xl or to xr by a curve that does not intersect γ1. In
particular, concatenating these curves with δ1 in the right order, x1 and
x2 can be connected by a curve that does not intersect γ1.

In all other cases, let β′+ be the subcurve of β′ from x1 to the first
intersection of β′ and ∂N and let β′− be the subcurve of β′ from the last
intersection of β′ and ∂N to x2 (see Figure 5.2 for a sketch).

Case 1: The end point of β′+ and the start point of β′− belong both
to ∂Nr or both to ∂Nl. Then we can choose a curve between these two
points in the connected set Nr or Nl and the concatenation of this curve
with β′+ and β′− gives us a curve β as desired.

Case 2: The end point of β′+ belongs to ∂Nl or to ∂Nr and the start
point of β′− belongs to the other. Without loss of generality, let β′+ end
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in ∂Nl and β′− start in ∂Nr. Again, as Nl and Nr are connected we find
curves connecting the end point of β′+ to xl in Nl and connecting xr to
the start point of β′− in Nr. Concatenating all these curves with the
left-to-right curve δ1 in the correct order yields a curve β as desired.

This concludes the proof of the base case. For the inductive step, let
n ≥ 2 and {γ1, . . . , γn} be a set of simple closed curves that intersect
pairwise exactly in x and so that the set {γ1, . . . , γn−1} is nonseparating
if and only if the set has left-to-right curves.

Let {γ1, . . . , γn} be a nonseparating set of curves. We show for every
i ∈ {1, . . . , n} that γi has a left-to-right curve by choosing a point on the
left and a point on the right of γi with respect to γ1, . . . , γi−1, γi+1, . . . , γn.
As X \{im(γ1)∪ . . .∪ im(γn)} is connected there exists a curve connecting
the two chosen points without intersecting one of the curves γ1, . . . , γn.

Now assume that the set {γ1, . . . , γn} has left-to-right curves. Then
{γ1, . . . , γn−1} has left-to-right curves and is hence nonseparating. Let δn
be the left-to-right curve of γn with respect to γ1, . . . , γn−1 connecting a
point xl on the left of γn to a point xr on the right of γn.

As in the base case, we have to show again that for a given choice of
two points x1, x2 ∈ X \ (im(γ1) ∪ . . . ∪ im(γn)) there exists a curve βn in
X \ (im(γ1) ∪ . . . ∪ im(γn)) that connects x1 and x2. As {γ1, . . . , γn−1}
is nonseparating, there exists a curve β′n in X \ (im(γ1) ∪ . . . ∪ im(γn−1))
that connects x1 and x2.

If β′n does not intersect γn then we can choose βn := β′n. If it
does, it also intersects one of the connected components N∗l or N∗r of
N \ (im(γ1) ∪ . . . ∪ im(γn)). This is because the boundaries of all other
connected components contain only one point of im(γn) which is the point
x = im(γ1) ∩ . . . ∩ im(γn). Now let β′+ be the subcurve of β′n from x1 to
the first intersection of β′n and ∂(N∗l ∪N∗r ) and let β′− be the subcurve of
β′n from the last intersection of β′n and ∂(N∗l ∪N∗r ) to x2. Now we proceed
as in the base case and construct a curve βn in X \ (im(γ1) ∪ . . . ∪ im(γn))
that connects x1 and x2.

This concludes the proof of the inductive step and hence the proof of
the lemma.

It follows by the same arguments that the criterion in Lemma 5.4 is also
true for saddle-connections or, more generally, simple closed curves in X
whose image contains singularities exactly as start and end point. While
the beginning of the proof of the base case is literally the same, we have to
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choose an ε > 0 small enough so that all intersection points of β′ and γ1
are contained in the ε′-neighborhood Ñ of the segment γ1([ε, l− ε]). Then
we can use Ñ instead of N and finish the proof of the base case in the
same way as before. The replacement of N by Ñ also makes the proof
of the inductive step work for this type of curves as the components of
Ñ \ im(γ1) can also play the role of the connected components N∗l and N∗r .

Altogether, we have the following version of Lemma 5.4.

Lemma 5.5 (Criterion for curves in X to be nonseparating). Let (X,A) be
a translation surface, σ a singularity, n ≥ 1, and γ1, . . . , γn simple closed
curves in X ∪ {σ} whose images contain σ exactly as start and end
point and that are disjoint in their interiors. Then the set {γ1, . . . , γn} is
nonseparating if and only if the set has left-to-right curves.

However, as “genus” is a concept for surfaces we have to consider curves
in X instead of curves in X to determine infinite genus. Because of this,
we show in the next lemma how to replace curves in X by curves in X
without disturbing the left-to-right curves.

Lemma 5.6 (Nonseparating curves in X give rise to nonseparating curves
in X). Let (X,A) be a translation surface, σ a singularity, n ≥ 1, and
{γ1, . . . , γn} a nonseparating set of simple closed curves in X ∪{σ} whose
images contain σ exactly as start and end point and that are disjoint
in their interiors. Then there also exists a set of simple closed curves
{γ′1, . . . , γ′n} in X that is nonseparating.

Proof. By assumption and Lemma 5.5, there exist left-to-right curves δi
of γi with respect to γ1, . . . , γi−1, γi+1, . . . , γn for every i ∈ {1, . . . , n}.
Choose ε > 0 small enough so that the ε-neighborhood B(σ, ε) of σ avoids
all δi and so that ∂B(σ, ε) intersects im(γi) at least two times for every
i ∈ {1, . . . , n}. For every i ∈ {1, . . . , n}, the first intersection point of
∂B(σ, ε) and im(γi) (with respect to the orientation of im(γi)) is called x+

i

and the last intersection point is called x−i .
We will now replace the curves γ1, . . . , γn by curves in X that have

similar properties. For this choose a point x ∈ B(σ, ε) \ {σ} that will
play the role of the current intersection point σ. Because of the path-
connectedness of B(σ, ε) ∩ X (see Proposition 4.1) we have a curve in
B(σ, ε)\{σ} from x to x+

1 and a curve from x−1 to x (see Figure 5.3). Now
let γ′1 be the closed curve that is the concatenation of the curve from x
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5 The influence of wild singularities on the genus

σ
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γ′2
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2

ε

Figure 5.3: The subcurves of the γi that are contained in B(σ, ε) are replaced by curves
in B(σ, ε) \ {σ}.

to x+
1 , the subcurve of γ1 from x+

1 to x−1 , and the curve from x−1 to x.
If γ′1 intersects itself then we smooth the crossing by joining other pairs
of subcurves at the crossing. So without loss of generality γ′1 is simple.
Also, as ε is chosen small enough, the curve δ1 is still a left-to-right curve
of γ′1 with respect to γ2, . . . , γn.

Now we do the same construction for the rest of the curves successively:
For the construction of γ′i we need a curve from x+

i to the prospective
intersection point x that does not leave B(σ, ε) and does not intersect the
curves γ′1, . . . , γ′i−1. We find such a curve by taking any curve from x+

i

to x in B(σ, ε) \ {σ} and instead of possibly crossing some γ′j we follow γ′j
in a sufficiently small tubular neighborhood without intersecting it until
we reach x. Then we define γ′i as the closed curve that consists of a curve
from x to x+

i as described, the subcurve of γi from x+
i to x−i , and similarly

a curve from x−i to x. Again, the curve δi is still a left-to-right curve of γ′i
with respect to γ′1, . . . , γ′i−1, γi+1, . . . , γn.
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5.1 Saddle connections as a tool for detecting infinite genus

So we have a set of simple closed curves γ′1, . . . , γ′n that are intersecting
exactly in x. Also, the set has left-to-right curves δ1, . . . , δn so it is
nonseparating by Lemma 5.4.

By the criterion in Lemma 5.4, we can show that a set of curves is
nonseparating but so far we do not have candidates of nonseparating
curves for which we could use the criterion. Therefore, we introduce a
generalization of the well-known fact that saddle connections of finite
translation surfaces are nonseparating.

Lemma 5.7 (Saddle connections are nonseparating). Let (X,A) be a
translation surface so that for two directions θ1, θ2 ∈ S1 the geodesic
flows Fθ1 and Fθ2 are recurrent. Furthermore, let γ be a saddle connection
starting and ending at the same singularity. Then γ is nonseparating.

Proof. Consider a geodesic segment s ⊆ im(γ) and the geodesic flow Fθ in
a direction θ ∈ S1 that is transversal to the direction of γ and so that the
flow is recurrent. So there exists a point x ∈ s that returns to s under the
flow Fθ after time t1. In particular, there exists a time t0 with 0 < t0 ≤ t1
such that Fθ(x, t0) ∈ im(γ) for the first time. Additionally, as γ is
geodesic and Fθ is a geodesic flow, the curve δ : [0, t0]→ X, t 7→ Fθ(x, t)
is approaching im(γ) from the other side than it is leaving. Then for every
ε > 0 the curve δε : [ε, t0 − ε]→ X, t 7→ Fθ(x, t) is a curve in X \ im(γ).
The curve δε or its reversed curve connects a point on the left side of γ to
a point on the right side of γ, so it is a left-to-right curve of γ. Hence, γ
is nonseparating.

There exist translation surfaces of infinite but also of finite area so that
the geodesic flow is not recurrent for all directions or for all but one
direction. We describe such a translation surface in Example 5.9 and note
that it has in fact separating saddle connections.

We now have all ingredients to prove Proposition 5.1 which was stated
at the beginning of the section.

Proof of Proposition 5.1. As saddle connections are curves that fulfill the
conditions of Lemma 5.6, we have a nonseparating set of n curves in X for
every n ≥ 1. By Definition 1.26, this means that the genus of X exceeds
every number n ∈ N so X has infinite genus.
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5 The influence of wild singularities on the genus

5.2 Conditions for wild singularities
to imply infinite genus

In this section, we show that the existence of a wild singularity implies
infinite genus under certain conditions by using Proposition 5.1. Further-
more, we discuss whether the conditions are necessary and present an
example of a translation surface that has a wild singularity and genus 0.
We start with the infinite genus result.

Theorem 4 (Wild singularity implies infinite genus)
Let (X,A) be a translation surface so that for two directions θ1, θ2 ∈ S1

the geodesic flows Fθ1 and Fθ2 are recurrent. Furthermore, let σ be a wild
singularity of (X,A) that fulfills xossiness. Then X has infinite genus.

Proof. According to the criterion in Proposition 5.1, to prove the statement
we have to show for every n ≥ 1 that there exist n saddle connections
from σ to itself that intersect exactly in σ and so that the set has left-to-
right curves for every n ≥ 1. We do this by induction on n.

For the base case of n = 1 we choose a saddle connection γ1 so that
there exists a lower bound ε1 > 0 on the length of intersecting saddle
connections. Such a saddle connection exists by the assumption that σ
fulfills xossiness and by Lemma 5.7 it is nonseparating.

For the inductive step assume that we have a nonseparating set of
saddle connections {γ1, . . . , γn−1} for which there exist lower bounds
ε1, . . . , εn−1 on the lengths of intersecting saddle connections. In particular,
for every i ∈ {1, . . . , n − 1} there exists a left-to-right curve δi, i.e. a
curve in X that connects the left side and the right side of γi without
intersecting any of the γj , j ∈ {1, . . . , n − 1}. Let ε be the minimum
of ε1, . . . , εn−1 and of the immersion radii of δ1, . . . , δn−1. As proven
in Proposition 4.4 there exists a saddle connection γn from σ to itself
with length less than ε. Therefore, γn does not intersect any of the
curves γ1, . . . , γn−1, δ1, . . . , δn−1. Additionally, as σ fulfills xossiness we
can choose γn so that there exists a lower bound εn > 0 on the length of
intersecting saddle connections.

As γn is nonseparating in X (see again Lemma 5.7) there exists a
left-to-right curve δ′n in X \ im(γn). If δ′n does not intersect γ1, . . . , γn−1
then we can define δn := δ′n and δn connects the left side of γn to the right
side of γn in X \ (im(γ1)∪ . . .∪ im(γn)). Furthermore, none of the curves
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5.2 Conditions for wild singularities to imply infinite genus

δ1, . . . , δn−1 intersects γn. Therefore we have thatX\(im(γ1)∪. . .∪im(γn))
is connected and the set of curves {γ1, . . . , γn} has left-to-right curves.

If δ′n intersects at least one of the curves γ1, . . . , γn−1 then we modify
it in the following way. For every intersection with a curve γi (without
loss of generality, from the left of γi) we choose a point xl on the left
and a point xr on the right of γi in im(δ′n). Then we can replace the
subcurve of δ′n that intersects γi by a curve in N∗l from xl to the start
point of δi concatenated with δi and concatenated with a curve in N∗r
from the end point of δi to xr. By the induction hypothesis and by the
choice of ε, every δi for i ∈ {1, . . . , n − 1} does not intersect any of the
curves γ1, . . . , γn. Therefore the new curve δn is a left-to-right curve of γn
with respect to γ1, . . . , γn−1.

We have thus shown that for every n ≥ 1, there exists a set of saddle
connections of cardinality n which has left-to-right curves. This implies
by Proposition 5.1 that X has infinite genus.

One of the key points of the proof of Theorem 4 is the assumption of
recurrence of the geodesic flow. By Poincaré recurrence (see Proposi-
tion 1.41) one can deduce recurrence of the geodesic flow from the two
weaker conditions that the flow is defined for a set of points of full measure
for all time and that the area is finite. We show that none of the two
conditions on its own works for the proof by considering the following
two examples.

Example 5.8 (Icicled surface). Consider a half-open rectangle of height 2
and width 1. The left side is glued to the right side, the bottom and the
top are excluded.

For every n ≥ 1, we consider a vertical segment starting at the bottom
and a vertical segment starting at the top, at i

2n of length 1
2n for every odd

i ∈ {1, . . . , 2n − 1} (see Figure 5.4). We call the vertical segments icicles.
Then we glue the segments as sketched in Figure 5.5. Note that no

icicle on the top is glued to an icicle on the bottom. Formally, we can
describe the gluings in the following way (starting with the icicles on
the top).

• For each side of the icicle at 1
2 , we cut the segment again: first we

cut it in half, then we cut the upper half into halves again, cut the
upper quarter into halves again, . . . So for every n > 1 we have a
segment of length 1

2n .
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5 The influence of wild singularities on the genus

Figure 5.4: Vertical segments in the icicled surface.
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Figure 5.5: Gluings for the icicled surface: segments with the same letters are glued.

• The left side of the lower half of the icicle at 1
2 is glued to the right

side of the icicle at 1
4 .

• For every n > 2 and every odd i ∈ {3, . . . , 2n−1 − 1}, the left side
of the icicle at i

2n is glued to the right side of the icicle at i−2
2n .

• For every n > 2, the left side of the icicle at 1
2n−1 is cut into two

segments of the same length. The lower part is glued to the right
side of the icicle at 2n−1−1

2n . The upper part is glued to the right
side of the segment at 1

2 which has the correct length.

• We do the similar gluing for the right part of the top and also for
the bottom.

The resulting translation surface (X,A) is called icicled surface and
has the following properties.

121



5 The influence of wild singularities on the genus

(i) There exist exactly two singularities: all the tips of the icicles on
the top are identified by the definition of the gluings. We call the
corresponding singularity σtop. Now consider a nondyadic point p in
the top boundary of the rectangle, i.e. a point where no icicle starts.
There exists a sequence of icicles such that the tips of the icicles
converge to p, seen as points in R2 without gluings. Therefore, the
distance from σtop to p is 0 and p = σtop in X. The same argument
works for the dyadic points on the boundary where an icicle starts.
Note that the points where we cut some icicles into more segments
are glued to points on the boundary, so these are also equal to σtop.
Also, the same reasoning holds for the tips of the icicles on the
bottom and the points in the bottom boundary. So we have only two
singularities σtop and σbottom. In particular, the set of singularities
is discrete.
It is worth noting that both of the singularities have one rotational
component of infinite length and uncountably many rotational com-
ponents of finite length.

(ii) For both singularities, every icicle defines a saddle connection or a
chain of saddle connections. This means that there exist arbitrarily
short saddle connections as it is true for wild translation surfaces
in general. However, for all of these saddle connections defined by
icicles, there also exist arbitrarily short saddle connections close to
the top or bottom, intersecting them. On the other hand, we can
define saddle connections from the tip of the icicle at 1

2n to the tip
of the icicle at 1

2n+1 for every n ≥ 1 (see Figure 5.6). The length of
the nth such saddle connection is

√
2

2n+1 and no saddle connection
of length smaller than

√
2

2n+1 can intersect it. This means that both
singularities fulfill xossiness.

(iii) For a regular point in X, the trajectory under a geodesic flow is
only defined until it hits the tip of an icicle or the top or bottom of
the rectangle. Hence, there exists no point in X so that the geodesic
flow in the vertical direction is defined for all time.
Let θ be a direction in (0, π). Suppose that the geodesic flow Fθ
is defined for all time for a set of full measure. Consider a closed
horizontal geodesic g in the middle of the surface and a tubular
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5.2 Conditions for wild singularities to imply infinite genus

Figure 5.6: The first and the third saddle connection of the set described in Exam-
ple 5.8 (ii) to show xossiness.

neighborhood N of g not intersecting any icicles. Then Fθ is defined
on a subset of N of full measure for all time. From Poincaré
recurrence (see Proposition 1.41) we can deduce that there exists a
point x ∈ N and a time tx > 0 so that Fθ(x, tx) ∈ N . This means
that Fθ(x, tx − ε) is contained in the lower part of the surface for
an ε > 0. But this is impossible as there is no possibility to reach
the lower part of the surface from the upper part of the surface.
Hence for all directions except for the horizontal one, there is no set
of points of full measure for which the geodesic flow is defined for
all time.

(iv) The horizontal flow is periodic but the length of the period is getting
the greater the nearer to the top or to the bottom the start point is.

(v) Because all but the horizontal geodesic flow are not recurrent, we
cannot use the arguments of Theorem 4 to show infinite genus. On
the other hand, we can check by a sharp look that every icicle is
defining at least one which has a left-to-right curve. Moreover, every
set of saddle connections defined by icicles has left-to-right curves
and the number of icicles is not bounded. Therefore, for every
n ≥ 1 there exists a set of n saddle connections that has left-to-right
curves. With this we can show directly by Proposition 5.1 instead
of Theorem 4 that X has infinite genus.
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5 The influence of wild singularities on the genus

We want to emphasize that in this example, the top and bottom boundary
is in some sense “trapping” the whole geodesic flow. This kind of dynamical
behaviour was so far only known for translation surfaces with a continuum
of singularities, for instance for the open disk (see the remark at the
beginning of Section 1.2). However, we explicitly excluded this kind of
examples by requiring that our translation surfaces shall have discrete
singularities. There was the expectation that discreteness of the set of
singularities should imply good dynamical properties. However, the icicled
surface in Example 5.8 shows that there exist translation surfaces with a
discrete set of singularities so that for at most one direction θ the geodesic
flow Fθ is defined for almost every point for all time. In particular, it
is not possible to apply Poincaré recurrence (see Proposition 1.41) to
conclude from the finiteness of the area that a geodesic flow is recurrent.

The recurrence of the flow is needed for the proof of Theorem 4 as it is
an assumption in Lemma 5.7 which is a crucial ingredient in the proof.
In fact, there are translation surfaces (with discrete singularities) that
have separating saddle connections. For example, the horizontal saddle
connection of the icicled surface that connects the tip of the longest icicle
to itself is separating. However, as was indicated in Example 5.8 (v)
there exist other saddle connections that are nonseparating. This is not
necessarily the case as we will see in the next example which was worked
out together with Pat Hooper.

Example 5.9 (Nested cylinders). Consider a Euclidean half-plane with
a distinguished midline. We cut vertical slits of infinite length in the
half-plane from the midline upward, starting from

1
2 +

n∑
i=2

1
2i− 1 + 1

2i for n ≥ 1.

Additionally, we cut vertical slits of infinite length from the midline
downward, starting from

n∑
i=1

1
2i + 1

2i+ 1 for n ≥ 1.

Now we glue the right side of a slit to the left side of the slit which is
next to the right and the left side of the slit to the right side of the slit
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Figure 5.7: The nested cylinders example has a wild singularity and genus 0.

which is next on the left (see Figure 5.7). By this construction, we obtain
half-cylinders with smaller and smaller circumferences that are glued in a
nested way.

The resulting translation surface has infinite area, genus 0 and exactly
one singularity. The singularity is wild as the distance between the start
points of the slits is going to 0, i.e. there exists no cyclic translation
covering from a punctured neighborhood of σ to a once-punctured disk
in R2. This singularity has exactly one rotational component which is
isometric to R.

For every direction θ, the geodesic flow Fθ is defined for almost every
point for all time. However, recurrence only occurs in the horizontal
direction. In this example, Poincaré recurrence (see Proposition 1.41) is
not applicable because the area is not finite.

In particular, all saddle connections are horizontal and all of them are
separating.
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5 The influence of wild singularities on the genus

The last example indicates that the statement in Theorem 4 is wrong if
we give up the condition on recurrence in two directions. However, the
example does not destroy the prospect of a weaker condition like finite
area that could replace the recurrence condition.

Besides, there are a lot of examples of translation surfaces fulfilling the
dynamical condition in Theorem 4, i.e. translation surfaces for which there
exist two directions so that the geodesic flow in these directions is recurrent.
A particular class of such examples are parabolic translation surfaces, i.e.
translation surfaces that have no Green’s function (cf. [Tre14, Remark 1]).
For parabolic translation surfaces it follows from [Str84, Theorems 13.1
and 24.4] that for all directions the geodesic flow is recurrent. This implies
furthermore, together with Proposition 4.8, that every wild singularity
of a parabolic translation surface fulfills xossiness. Therefore, it can be
stated that for every wild, parabolic translation surface (X,A) the genus
of X is infinite.
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6 Spaces of rotational
components

The investigation of the space of rotational components is a very recent
aspect of the theory of translation surfaces. To use the space of rotational
components in a prospective classification of translation surfaces it is
important to understand the object on its own. In this chapter, we provide
results on the relations between the space of rotational components, the
space of linear approaches, and the translation structures on individual
rotational components. In the last section, we give instances of topological
spaces that can occur as spaces of rotational components.

The results in this chapter were developed together with Lucien Clavier
and Chenxi Wu and were published in [CRW14].

6.1 Topological properties
of rotational components

In this section, we describe relations between three topologies which are
associated to a rotational component of a singularity σ that contains more
than one linear approach. These are

(i) the topology on the rotational component from the one-dimensional
translation structure on the rotational component, as defined in
Definition 1.19,

(ii) the topology of the subspace of L(σ) that contains all linear ap-
proaches that are contained in the rotational component, as defined
in Definition 1.20, and

(iii) the topology of L̃(σ) as a quotient space of L(σ) which contains the
rotational component as a point, as defined in Definition 1.24.



6 Spaces of rotational components

We start with a relation between the first and the second topology and
will resume with two relations between the first and the third topology.

Lemma 6.1 (Topology from translation structure refines subspace topology
from L(σ)). Let (X,A) be a translation surface, σ a singularity, and c a
rotational component of σ that contains more than one linear approach.
Furthermore, let T1 be the topology on c that is induced by the one-
dimensional translation structure and let T2 be the topology on c that is
the subspace topology from L(σ).

Then T1 is finer than T2.

Proof. Let I be the generalized interval that is isometric to c with the
one-dimensional translation structure, [γ] a linear approach contained
in c, and y ∈ I the point that corresponds to [γ].

Recall from Lemma 1.22 that

B(γ, t, r) := B̃(γ(t), r)t ∩ L(σ)

is the set of all linear approaches to σ with a representative γ′ for which
γ′(t) is contained in the disk around γ(t) of radius r. The collection of
sets B(γ, t, r) for all t > 0, r > 0 is a neighborhood subbasis of [γ] in L(σ).

We show that for each B(γ, t, r), there exists an open subset of I that
contains y and whose points correspond to linear approaches that are
contained in B(γ, t, r).

Let γ be a representative of [γ], t > 0 so that γ(t) is defined, and r > 0.
Furthermore, let U ′ ⊆ I be the collection of points in the interval(

y − arccos
(

1− r2

2t2

)
, y + arccos

(
1− r2

2t2

))
∩ I

that correspond to linear approaches which are also contained in ρt(Lt(σ))
where ρt : Lt(σ) ↪→ L(σ) is the embedding from the direct system. Then U ′
contains an open subinterval U of I and the linear approaches that corre-
spond to points in U form a subset of B(γ, t, r) (cf. the proof of Lemma 2.6
for the argument by the law of cosines).

We now describe relations between topological properties of a rotational
component as a point in L̃(σ) and the one-dimensional translation struc-
ture on this rotational component.
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γ

σ

Figure 6.1: The set iε((−∞, ε)× (−π, π)) as an open disk with a vertical slit and the
shaded region B(γ( ε4 ), ε4 ).

Proposition 6.2 (Rotational components isometric to RRR are open
points)
Let (X,A) be a translation surface, σ a singularity, and c a rotational
component of σ that contains more than one linear approach. If c with
the one-dimensional translation structure is isometric to R then {c} is
open in L̃(σ).

Proof. For a rotational component c ∈ L̃(σ), the set {c} is open in L̃(σ)
if the set of linear approaches contained in c is open in L(σ). To prove
the statement, we find an open neighborhood for every linear approach
contained in c that does not contain linear approaches from other rotational
components. The union of these neighborhoods is then an open set in L(σ).

Let c ∈ L̃(σ) be a rotational component whose one-dimensional transla-
tion structure is isometric to R. Then for every linear approach [γ] in c
with a representative γ, there exists an angular sector ([−2π, 2π], ε, iε)
such that f([−2π,2π],ε,iε)(0) = [γ]. By Lemma 1.22, B(γ, ε4 ,

ε
4 ) is an open

neighborhood of [γ] in L(σ). We will show that the linear approaches in
B(γ, ε4 ,

ε
4 ) are also contained in c.

The set iε((−∞, ε)× (−π, π)) in X is isometric to an open ε-disk in R2

with a slit removed (see Figure 6.1). Let s : (0, ε4 ] → X be a geodesic
curve with s( ε4 ) ∈ B(γ( ε4 ), ε4 ). Then the image of s either intersects the
slit or it is contained in iε((−∞, ε)× (−π, π)).
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σ

γ

σ σ

Figure 6.2: The sets iε((−∞, ε)× (−2π,−π)), iε((−∞, ε)× (−π, π)), and iε((−∞, ε)×
(π, 2π)) (from left to right).

Case 1: If the image of s intersects the slit, it can only do so at the dashed
segments iε((−∞, ε4 )× {−π}) or iε((−∞, ε4 )× {π}) in Figure 6.2. Now
consider the two sets iε((−∞, ε)× (−2π,−π)) and iε((−∞, ε)× (π, 2π)),
which are open half-disks with radius ε as in Figure 6.2. A geodesic
segment shorter than ε

4 starting on either of the dashed segments, heading
inwards, has its endpoint in the interior of this half-disk, hence s can not
start in a singularity. This means that s is not contained in L ε4 (σ) and
does not define a linear approach to σ.

Case 2: If the image of s is contained in iε((−∞, ε) × (−π, π)) then
it defines a linear approach to σ if it can not be extended to s(0) in X.
In this case, s starts in the center of the disk and hence defines a linear
approach in the same rotational component c as [γ].

Note that the converse statement is not true in general. For instance,
the stack of boxes in Section 2.3 has a singularity σ with exactly one
rotational component c. So the set {c} is clearly open in L̃(σ) = {c}. On
the other hand, the rotational component c in the stack of boxes has a
one-dimensional translation structure which is isometric to (0,∞) and not
to R. However, a slightly weaker version of the converse of Proposition 6.2
is true.
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6.1 Topological properties of rotational components

Proposition 6.3 (Rotational components as open points have
infinite length)
Let (X,A) be a translation surface, σ a wild singularity, and c a rotational
component of σ that contains more than one linear approach. If {c} is
open in L̃(σ) then it has a one-dimensional translation structure which is
isometric to a connected subset of R of infinite length.

Proof. Let c be a rotational component of finite length. We show that
there exists a sequence of linear approaches not contained in c that
converges to a linear approach contained in c. This implies that {c} is
not open in L̃(σ).

As c is of finite length, it is isometric to an interval with end points
a, b ∈ R (the interval can be open, closed, or none of that). Let [γ] be a
linear approach which corresponds to a point in the interval that differs
strictly less than π

2 from a.
Choose a representative γ of [γ], a regular point γ(t0) on it, and an

ε1 > 0 so that B(γ(t0), ε1) ⊆ X is isometric to a flat disk of radius ε1 (see
Figure 6.3). Let

t1 = inf{t > 0 : B(γ(t), ε1) is isometric to a flat disk of radius ε1}.

By definition, we have t1 ≤ t0 but we also have t1 ≥ ε1 > 0. Indeed,
the disk B(γ(ε1), ε1) can not be isometric to a flat disk since the point
corresponding to [γ] in the interval isometric to c would have distance at
least π

2 from a.
By definition of t1, the boundary of the disk B(γ(t1), ε1) contains a

singularity. As the set of singularities of (X,A) is discrete, for t0 and
ε1 small enough it is the singularity σ which must be contained in the
boundary of the disk B(γ(t1), ε1). This determines a geodesic curve γ1
in X starting on the boundary of B(γ(t1), ε1) with the same direction
as γ and defined at least on (0, t0 − t1) (see Figure 6.3). Therefore the
distance between γ and γ1 in Lt0−t1(σ) with the uniform metric is no
more than t1 + ε1.

Repeat this construction with t′1 ≤ t1 and ε2 > 0 small enough so that
γ1 is not contained in the (t′1+ε2)-neighborhood of γ in Lt0−t1(σ) anymore.
We receive a different linear approach [γ2] closer to [γ]. By repeating
this construction again and again, we iteratively obtain infinitely many
different linear approaches ([γn])n≥1 which all have the same direction.

131



6 Spaces of rotational components

σ

σ

γ(t1)

γ(t0 − t1)

γ(t0)

γ

γ1(t0 − ε1)

γ1

ε1

Figure 6.3: For the linear approach [γ], there exists a linear approach [γ1] so that the
representatives γ and γ1 are parallel with distance at most ε1.

Only finitely many of them can be contained in the rotational component c
as c is of finite length. Thus there is a number N ≥ 1 so that [γn] is not
contained in c for n > N , and ([γn])n>N converges to [γ] in c. Therefore
{c} is not open in L̃(σ).

The proofs of the two preceding lemmas suggest how to tackle the problem
of understanding the topology of a rotational component as subspace
of L(σ). The interesting linear approaches in terms of this topology are
the linear approaches that differ at most π from the boundary of the
rotational component with the translation structure. The remaining linear
approaches are contained in a subspace of the rotational component which
carries the same topology as coming from the translation structure.

We will use this insight in the constructions in the proofs of Theorem 5
and Theorem 6.
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6.2 Coarsening from L(σ) to L̃̃̃(σ)
When we pass from the space L(σ) of linear approaches to the quotient
space L̃(σ) of rotational components, we apparently lose information.
However, it is still natural to ask whether we can recover properties of L(σ)
by information on L̃(σ). In Theorem 5 we show that this is in general
not possible as there are uncountably many translation surfaces with
non-homeomorphic spaces of linear approaches but with homeomorphic
spaces of rotational components.

Theorem 5 (L̃̃̃(σ) does not determine L(σ))
There are uncountably many translation structures Ar on a Loch Ness
monster of finite area with the following properties.

(i) Every translation surface (Xr,Ar) has exactly one singularity σr.

(ii) The spaces L̃(σr) of rotational components are all homeomorphic.

(iii) The spaces L(σr) of linear approaches are pairwise not homeomor-
phic.

Proof. Let K = {0, 1}N and consider the equivalence relation on K defined
by r ∼ r′ if and only if some shifts of r and r′ are equal, i.e. if the tails of
r and r′ agree up to shift.

We will define a translation surface (Xr,Ar) for every r ∈ K but
not in the equivalence class of (0, 0, 0, . . .) by modifying the stack of
boxes in Section 2.3. The translation surface (Xr,Ar) will have exactly
one singularity σr and one rotational component. Then we will show
that if L(σr) and L(σr′) are homeomorphic then r and r′ are in the
same equivalence class. This will prove the statement since there are
uncountably many equivalence classes in K.

Let r = (rn) ∈ K but not in the equivalence class of (0, 0, 0, . . .). Recall
the stack of boxes from Section 2.3 and choose the two sequences H and W
by hn = 1 and wn = 2−n for every n ∈ N. We modify the stack of boxes by
gluing in additional rectangles, depending on r: Consider vertical geodesic
segments vn of length 2−2n starting at each An for n ≥ 2 (see Figure 6.4).
For each n ≥ 2 such that rn = 1, we cut open along vn and glue the
two sides of the slit vn to the two vertical sides of a rectangle of width 1,
then we identify the top and bottom sides of the rectangle. We call the
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6 Spaces of rotational components

resulting translation surface (Xr,Ar). As in Section 2.3, it is topologically
a Loch Ness monster and it has finite area. Furthermore, the translation
surface has still one singularity σr and one rotational component isometric
to (0,∞). Hence the spaces L̃(σr) are homeomorphic for all r.

We now elaborate tools to recover the equivalence class of r intrinsically
from the topology of L(σr) for an r ∈ K. Let c be the rotational component
of σr with the one-dimensional translation structure. Then there exists
an isometry (0,∞) → c. As c is the only rotational component of σr,
we also have a bijective map (0,∞)→ L(σr). Let Rr+ be the set (0,∞),
equipped with the pullback of the topology of L(σr). In the following, we
use the parameter x ∈ Rr+ to represent linear approaches in L(σr) and we
let x run through Rr+, i.e. the linear approach is rotating counterclockwise
around the singularity.

To record when the rotated linear approach is contained in an additional
cylinder, we will use four distinguished neighborhoods in L(σr) (see
Figure 6.4). Let

Ur = B(γ1, t1, ρ1), U ′r = B(γ2, t2, ρ2),
Vr = B(γ3, t3, ρ3), V ′r = B(γ4, t4, ρ4),

where for i ∈ {1, . . . , 4}, γi is a representative of a linear approach that
is represented by some xi with 0 < x1 < x2 <

π
2 < x3 < x4 < π and

ti > 0, ρi > 0 are small enough so that the B(γi(ti), ρi) are disjoint from
all slits vn, from the sides of the boxes, and from each other.

Now let n ≥ 2 be large enough and let yn be the number which
corresponds to the horizontal linear approach with base point An and
going to the right. For x ∈ Rr+ with x > yn but sufficiently close to yn, x
is in neither of Ur, U ′r, Vr, or V ′r. When x is increased and gets closer to
yn + x1 we eventually have x ∈ Ur. When x increases further, it leaves Ur
to enter U ′r. Now there are two cases to consider.

Case 1: If rn = 1, when increasing x further the linear approach will
eventually be contained in the cylinder attached to vn (with base point
the lower right edge of the glued-in rectangle), and after additional time π
will not be contained in the cylinder any more but have base point the tip
of the slit vn. After running for about another π

2 + x1, x will reenter Ur.
Then it will enter U ′r, Vr, V ′r, to finally enter the same cylinder at An
from the left side. After running for another π, x will exit the cylinder,
enter Vr and V ′r again. When x reaches yn + 5π, the linear approach
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γ3(t3)

r3
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Figure 6.4: Stack of boxes with the additional vertical slits vn (not drawn to scale in
vertical direction).
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6 Spaces of rotational components

will leave the 0th box and enter the nth box from the upper right corner
at Bn.

Case 2: If rn = 0, after going through Ur and U ′r, x will simply go
through Vr and V ′r and then has base point Bn when reaching yn + π.

By recording the successive passages in each of the four neighborhoods,
writing 1 when seeing (Ur,U ′r,Ur,U ′r,Vr,V ′r,Vr,V ′r) and 0 when seeing
(Ur,U ′r,Vr,V ′r), we record a sequence in K that eventually agrees with r
up to shift. Note that the exact values of 0 < x1 < x2 <

π
2 < x3 < x4 < π

(and also of the t1, . . . , t4 and ρ1, . . . , ρ4) do not matter for this argument.
We could even choose neighborhoods of [γ1], . . . , [γ4] that are not elements
of the subbasis defined in Lemma 1.22. In the latter case, we have to
be careful to record the neighborhoods only up to multiple leavings and
reentries in one neighborhood before we enter the next neighborhood.

To finish the proof, let r, r′ ∈ K but not in the equivalence class of
(0, 0, 0, . . .) and ϕ a homeomorphism from L(σr) to L(σr′). Then ϕ induces
a homeomorphism f : Rr+ → Rr′+ . We want to show that the tails of r
and r′ agree up to shift by looking at the recorded sequences. Hence we
have to examine the images of the sets Ur,U ′r,Vr,V ′r under ϕ which we
will do by examining the images of x1, x2, x3, x4 under f .

With the arguments of the proof of Proposition 6.2 it can be shown that
all elements of (π,∞) ⊆ Rr+ have a path-connected neighborhood. On the
other hand, a close look reveals that the elements in (0, π] ⊆ Rr+ do not
have a path-connected neighborhood (cf. the subbasis discussion in the
original version of the stack of boxes in Section 2.3). As a homeomorphism
must preserve the set of points that have path-connected neighborhoods,
we have f((0, π]) = (0, π].

Furthermore, the neighborhoods of π
2 in Rr+ and in Rr′+ can be distin-

guished from the neighborhoods of other points in (0, π]. This is because
the linear approach corresponding to π

2 has the same direction as the slits
and the length of the linear approaches defined by the slits tends to 0 so
the linear approaches corresponding to the slits can not be contained in a
small neighborhood of the linear approach corresponding to π

2 . Hence we
have f(π2 ) = π

2 .
We show next that the map f : Rr+ → Rr′+ is monotone. Let Ir be any

open interval in (0,∞) of length smaller than π and equip it with the
subspace topology from Rr+. Then this subspace topology is the same as
the Euclidean topology of Ir as for every given direction there exists at

136



6.3 Every finite space occurs as space of rotational components

most one linear approach in the corresponding subset of L(σr) (cf. again
the subbasis discussion in Section 2.3). We choose Ir small enough so
that f(Ir) ⊆ Rr′+ is contained in an open interval of length smaller than π.
Then the sets Ir and f(Ir) carry the Euclidean topology and the map
f|Ir : Ir → Rr′+ is homeomorphic to its image, so it is monotone. This
implies that f : Rr+ → Rr′+ is locally monotone and so it is monotone.

As a consequence of the monotony, we can choose x1, x2, x3, x4 with

0 < x1 < x2 < π
2 < x3 < x4 < π and

0 < f(x1) < f(x2) < π
2 < f(x3) < f(x4) < π.

When choosing the numbers ρ1, ρ2, ρ3, ρ4 sufficiently small, the neighbor-
hoods ϕ(Ur), ϕ(U ′r), ϕ(Vr), ϕ(V ′r) can serve to record the sequence in K
and will record the same sequence as Ur,U ′r,Vr,V ′r. This shows that the
tails of the recorded sequences in K for x in L(σr) and for f(x) in L(σr′)
agree up to shift. Hence the tails r and r′ agree up to shift and so they
are in the same equivalence class, as was to be shown.

For the translation surfaces constructed in the proof of Theorem 5, it
holds that if r and r′ are not in the same equivalence class then (Xr,Ar)
and (Xr′ ,Ar′) are not in the same GL+(2,R)-orbit, i.e. there exists no
affine map from (Xr,Ar) to (Xr′ ,Ar′). This is true because an affine map
from (Xr,Ar) to (Xr′ ,Ar′) would induce a homeomorphism from L(σr)
to L(σr′) (cf. Proposition 1.35).

Thus we have implicitly shown the following corollary.

Corollary 6.4 (Existence of uncountably many GL+(2,R)-orbits). There
exist uncountably many translation structures on a Loch Ness monster of
finite area which are not contained in the same GL+(2,R)-orbit.

6.3 Every finite space occurs as
space of rotational components

This section is devoted to the proof of Theorem 6 asserting that any finite
topological space can be realized as the space of rotational components of
a translation surface. In particular, this implies that L̃(σ) can be non-T0,
T0 but not T1, T1 but not T2, or T2.
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6 Spaces of rotational components

Figure 6.5: For the shrinking star decoration, we glue in rectangles at every slit.

So far, we have already seen in Chapter 2 that the space of rotational
components can carry different types of topologies. For instance, if the
cardinality of L̃(σ) is 2 then the topology can be the trivial topology
as for a translation surface with the geometric series decoration from
Section 2.4, it can be the discrete topology as for the exponential surface
from Section 2.2, or it can be the third possible topology as for a translation
surface with the modified geometric series decoration from Section 2.4.
However, the space of rotational components does not have to be finite.
For example, the singularity of the star decoration with cylinders in
Section 2.4 has a space of rotational components which is homeomorphic
to S1. When L̃(σ) is infinite, it also can be either a Hausdorff space (cf.
again the star decoration with cylinders in Section 2.4) or not (cf. the
Chamanara surface in Section 2.1).

The following modification of the star decoration with cylinders from
Section 2.4 will serve as a building block in the proof of Theorem 6.

Example 6.5 (Shrinking star decoration). Consider a Euclidean plane R2

with geodesic segments ln from (0, 0) to (2−n sin( π2n ), 2−n cos( π2n )) for
n ≥ 1 as in Figure 6.5. For every n ≥ 1, cut open along the segment ln
and glue in a (2 + 2−n)-by-2−n rectangle as for the star decoration in
Section 2.4: glue the two smaller edges of the rectangle to the slit ln and
glue the top and bottom edges of the squares in a crosswise way as in
Figure 6.6.

In this case, we have one wild singularity with one rotational component,
whose translation structure is isomorphic to [0,∞).
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b a d c e g f i h

ihgfedcba

Figure 6.6: A rectangle glued in at the slit l2: segments with the same letters are glued.

We will now use the shrinking star decoration to construct a translation
surface with a given space of rotational components.

Theorem 6 (Every finite space occurs as L̃̃̃(σ))
Let Y be a non-empty topological space of finite cardinality. Then there
exists a translation surface (X,A) with a singularity σ so that L̃(σ) carries
the same topology as Y .

Proof. Topologies on a finite set are in one-to-one correspondence with
preorders “≤” defined by x ≤ y if and only if x is in the closure of {y}.
So, let n ≥ 1 and Y = {y1, . . . , yn} be a topological space of cardinality n
and “≤” the corresponding preorder.

We will construct the translation surface (X,A) explicitly starting
with a Euclidean plane with n shrinking star decorations. Then we glue
in additional tori along slits to identify the singularities of all different
shrinking star decorations to the desired singularity σ. We obtain n
rotational components. In a last step, we introduce more gluings for the
rotational components that shall be comparable under the preorder to
obtain that L̃(σ) is homeomorphic to Y .

For the beginning, let us state the setting:

• Consider a Euclidean plane with n copies of the shrinking star
decoration as in Example 6.5, labeled with 1, 2, . . . , n. The ith
shrinking star decoration corresponds to yi ∈ Y .

• For now, the shrinking star decoration labeled i has one wild sin-
gularity σi with one rotational component ci which is isometric to
[0,∞). The linear approach that is corresponding to 0 is called [γi]
with representative γi.
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γi

D4

D5
D6
D7

Figure 6.7: Shrinking star decoration with additional disks Dk.

• For the ith copy of the shrinking star decoration and every k ≥ 1,
let Dk be the disk with center γi( 1

k ) and radius 2−k as shown in
Figure 6.7. This gives us an infinite sequence of disks where all
except the first six disks are disjoint. We will do all gluings only for
k ≥ 6 without explicitly mentioning this restriction every time.

• Recall that for the kth branch of each copy of the shrinking star
decoration, there is a rectangle as in Figure 6.6 glued to the two
sides of the branch. By the slit in the kth rectangle, we mean the
geodesic segment which corresponds to the glued top and bottom
of the middle square of the rectangle (labeled by e in Figure 6.6).
We will cut open and reglue along some of these slits later.

• Let Tk be a torus, glued from a square of side length 2−k for each
k ≥ 1.

• For i, j ∈ {1, . . . , n} define ai,jk = kn2 + in+ j for every k ≥ 1. This
gives n2 infinite sequences in N \ {0} so that no two sequences have
a common element.
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6.3 Every finite space occurs as space of rotational components

Now we glue the copies of the shrinking star decoration in such a way
that all singularities σi are identified to one singularity σ. For every
k ≥ 1 and every i ∈ {1, . . . , n}, glue the slit in the ai,ik th rectangle of the
ith shrinking star decoration to a suitable slit, i.e. a slit with the same
holonomy vector, on the kth torus. As the side length 2−k of the tori is
shrinking, the slits come the closer to each other the greater k is. This
makes sure that d(σi, σj) = 0 and hence σi = σj for all i, j ∈ {1, . . . , n}.
The resulting singularity is called σ. Furthermore, the additional glu-
ings extend the length of the rotational components but the topology
of L̃(σ) is the discrete topology for now (cf. the arguments in the proof of
Proposition 6.2).

We have to do more gluings to provide L̃(σ) with the topology of Y . If
i 6= j and yi ≤ yj , i.e. if every open set in Y containing yi contains yj , then
we glue the slit in the ai,jk th rectangle of the jth shrinking star decoration
to a suitable slit inside the interior of the right half of the ai,jk th disk on
the ith shrinking star decoration for every k ≥ 1. These gluings extend
the length of the rotational component cj but do not change the length
of the rotational component ci. More important, for every t > 0 and
r > 0 there exists a linear approach contained in B(γi, t, r) which starts
at the end point of the slit in the ai,jk th disk for some k ≥ 1. This linear
approach is contained in the rotational component cj and hence every
open neighborhood of [γi] has nonempty intersection with the set of linear
approaches contained in cj . This means that every open neighborhood
of ci in L̃(σ) contains cj .

This ends the construction and all in all, we have shown that L̃(σ) is
homeomorphic to Y as was to be proven.
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