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Abstract. A merged time series of stratospheric water vapour

built from the Halogen Occultation Instrument (HALOE)

and the Michelson Interferometer for Passive Atmospheric

Sounding (MIPAS) data between 60◦ S and 60◦ N and 15 to

30 km and covering the years 1992 to 2012 was analysed by

multivariate linear regression, including an 11-year solar cy-

cle proxy. Lower stratospheric water vapour was found to

reveal a phase-shifted anti-correlation with the solar cycle,

with lowest water vapour after solar maximum. The phase

shift is composed of an inherent constant time lag of about

2 years and a second component following the stratospheric

age of air. The amplitudes of the water vapour response are

largest close to the tropical tropopause (up to 0.35 ppmv) and

decrease with altitude and latitude. Including the solar cy-

cle proxy in the regression results in linear trends of water

vapour being negative over the full altitude/latitude range,

while without the solar proxy, positive water vapour trends in

the lower stratosphere were found. We conclude from these

results that a solar signal seems to be generated at the tropi-

cal tropopause which is most likely imprinted on the strato-

spheric water vapour abundances and transported to higher

altitudes and latitudes via the Brewer–Dobson circulation.

Hence it is concluded that the tropical tropopause temper-

ature at the final dehydration point of air may also be gov-

erned to some degree by the solar cycle. The negative wa-

ter vapour trends obtained when considering the solar cycle

impact on water vapour abundances can possibly solve the

“water vapour conundrum” of increasing stratospheric wa-

ter vapour abundances despite constant or even decreasing

tropopause temperatures.

1 Introduction

Water vapour is one of the Earth’s most important green-

house gases, having the strongest long-wave radiative forcing

effect on the atmosphere (Kiehl and Trenberth, 1997). An in-

crease of water vapour in the lower stratosphere leads to a

warmer troposphere, further affecting global surface temper-

atures (Manabe and Strickler, 1964; Solomon et al., 2010).

Water vapour concentrations, particularly near the tropical

tropopause, strongly influence surface climate (Riese et al.,

2012), and increasing stratospheric concentrations intensify

ozone loss in this atmospheric region (Stenke and Grewe,

2005). For these reasons it is of major importance to un-

derstand its trends and fluctuations on a global scale. It is

generally accepted that the tropical tropopause temperature

is the main driver of the amount of water vapour transported

from the troposphere into the stratosphere (Fueglistaler et al.,

2009). However, admittedly, the analysis of stratospheric and

upper tropospheric water vapour trends is challenging, given

the fact that only few decades of global data are available.

Particular issues of the ongoing discussion are the appar-

ent inconsistencies between the time series measured above

Boulder with frost point hygrometers (Hurst et al., 2011) and

global satellite data (Hegglin et al., 2014); the sudden de-

crease in lower stratospheric water vapour mixing ratios ob-

served in 2000/2001 (Rosenlof and Reid, 2008; Randel et al.,

2006) and in 2011/2012 (Urban et al., 2014) as well as miss-

ing processes that constrain stratospheric water vapour (be-

sides tropical tropopause layer – TTL – temperature condi-

tions and transport) (Rosenlof et al., 2001; Fueglistaler et al.,

2013); a potential steep increase around 1990 that puts into

question if a decoupling of stratospheric water vapour and

tropical tropopause temperature trends on short timescales

is possible (Fueglistaler, 2012); the role of deep and over-

shooting convection for the moistening of the stratosphere
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(Corti et al., 2008; Schiller et al., 2009); and finally the role

of the western tropical Pacific cold trap for the transport of

water vapour into the stratosphere (Holton and Gettelmann,

2001; Fueglistaler et al., 2005).

In this work, stratospheric H2O records from the Halogen

Occultation Instrument (HALOE) (Russell III et al., 1993)

and the Michelson Interferometer for Passive Atmospheric

Sounding (MIPAS, Fischer et al., 2008) have been used to

analyse the lower stratospheric H2O time series since 1992.

The main characteristics of these two instruments are sum-

marized in Sect. 2. These data sets have been harmonized in

order to produce a homogeneous H2O record (Sect. 3). This

merged long-term record has then been analysed by means of

multi-linear regression analysis (Sect. 4) in order to identify

the processes controlling the variability of stratospheric wa-

ter vapour. In Sect. 5 the results are critically discussed and

put into context of results from other research groups. Sec-

tion 6 aims at estimating the implications of our results for

future research.

2 The empirical basis

While a large number of altitude-resolved H2O records in-

ferred from limb emission or occultation measurements (e.g.

Hegglin et al., 2013), as well as merged data sets (e.g. Froide-

vaux et al., 2015) exist, for this study, stratospheric H2O

records from HALOE (Russell III et al., 1993) and MIPAS

(Fischer et al., 2008) have been used. The reason is that

both these instruments provided H2O measurements at near-

global coverage and that their mission periods were nicely

complementary, with a sufficiently long overlap period for

data harmonization. Inclusion of further instruments would

have implied an additional risk of artefacts due to unknown

differences in data characteristics.

2.1 HALOE

The Halogen Occultation Instrument (HALOE) (Russell III

et al., 1993) is a solar occultation infrared radiometer for the

measurement of composition and temperature of the mid-

dle atmosphere. It recorded atmospherically attenuated so-

lar radiance in four channels between 996 and 4081 cm−1.

HALOE was a payload of the Upper Atmosphere Research

Satellite (UARS) and was operational from 11 October 1991

to 21 November 2005. With about 15 UARS orbits per day

and one sunrise and one sunset measurement per orbit, up to

about 10 800 vertical profiles of each target quantity could

be measured per year. One of the target species measured by

HALOE is H2O, for which an altitude resolution of 2 to 3 km

is reported (Russell III, 1995; Hegglin et al., 2013). In this

work we use HALOE data version 19, which was discussed

in Kley et al. (2000) and Hegglin et al. (2013), where a small

dry bias is reported for the altitude range relevant to this pa-

per. Problems with HALOE water vapour retrievals of an ear-

lier data version due to aerosol have been reported by Hervig

et al. (1995) but problematic cases discussed there were no

longer present in the data set we used and thus seem to have

been removed (Steele and Turco, 1997). During its 14-year

lifetime, HALOE H2O measurements were frequently vali-

dated (Harries et al., 1996; Dessler and Kim, 1999). No sig-

nificant instrumental drifts were found by Nedoluha et al.

(2003) when they compared HALOE time series with those

from various independent measurements.

2.2 MIPAS

The Michelson Interferometer for Passive Atmospheric

Sounding (MIPAS, Fischer et al., 2008) is a limb emis-

sion mid-infrared Fourier transform spectrometer designed

for limb-sounding of the composition and temperature of

the middle atmosphere. Its spectral coverage is 685 to

2410 cm−1. MIPAS was a core instrument of the Envisat

research satellite which was launched into a polar sun-

synchronous orbit on 1 March 2002. The MIPAS data record

covers the time from July 2002 to April 2012, with a data gap

in 2004. In the first part of the mission (2002–2004) MIPAS

recorded high-resolution (HR) spectra (apodized resolution

0.05 cm−1). In March 2004 operation was interrupted due to

problems with the interferometer slide until in January 2005

operation was resumed, however at reduced spectral resolu-

tion (RR, 0.121 cm−1 after apodization). In turn, the shorter

optical path difference associated with the reduced spectral

resolution measurements allowed for a denser tangent alti-

tude grid and along with this a better vertical resolution,

which is 4.0 km in the middle stratosphere as opposed to

4.5 km for the high spectral resolution measurements. With

14.4 orbits per day and 74 (96) limb scans per orbit in HR

(RR) mode, MIPAS recorded 1065 (1382) profiles per day.

The MIPAS H2O data used here were produced with a

dedicated research processor developed and operated by the

Institute of Meteorology and Climate Research (IMK) team

in Karlsruhe, Germany, in cooperation with the Instituto de

Astrofísica de Andalucía-CSIC in Granada, Spain (von Clar-

mann et al., 2003). The MIPAS H2O retrieval and validation

is reported in Milz et al. (2005, 2009), von Clarmann et al.

(2009) and Stiller et al. (2012a). In this paper we have used

data versions V5h_H2O_20 for the HR measurements and

V5r_H2O_220/221 for the RR measurements. Versions 220

and 221 are scientifically equivalent but carry different ver-

sion numbers to maintain traceability of data processing de-

tails.

The MIPAS instrument stability has been assessed

(Michael Kiefer, personal communication, 2015). A pos-

sible drift due to detector-aging and resulting changes of

its non-linear response was estimated at approximately

−0.05 ppmv decade−1. This is in agreement with, e.g.

Nedoluha et al. (2013) who did not find any larger relative

drifts between the Water Vapor Millimeter-wave Spectrome-

ter and various satellite-borne instruments including MIPAS.
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Figure 1. H2O averaging kernels for December, January, February

(DJF, black line), March, April, May (MAM, blue line), July, July,

August (JJA, green line) and September, October, November (red

line) at 19 km nominal altitude, 0–10◦ S. It should be noted that the

kernels refer to log(vmr), not vmr.

3 The harmonized H2O record

The combined HALOE–MIPAS H2O record covers more

than 2 decades. Both the HALOE and the MIPAS data sets

have been filtered according to provider-defined criteria: trip

angle and lockdown angle issues for HALOE; and low aver-

aging kernel diagonal values and visibility flag for MIPAS.

Further, in order to avoid artefacts, homogenization of the

data is important. The following issues have been tackled:

(1) artefacts due to Pinatubo aerosol; (2) different altitude

resolution and (3) biases and stability.

3.1 Pinatubo

The eruption of Mount Pinatubo on 15 June 1991 brought

enormous amounts of aerosol into the stratosphere. This

aerosol layer affected the radiative transfer of solar radiation

through the atmosphere and led to artefacts in the HALOE

analysis (Steele and Turco, 1997). Thus, HALOE data from

the first 5 months have been discarded and data since March

1992 have been used.

3.2 Altitude resolution

For harmonization with respect to altitude resolution we use

the method suggested by Connor et al. (1994) and described
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Figure 2. H2O time series of the original (green) and de-biased

(red) MIPAS data, HALOE (yellow) and HALOE after application

of the MIPAS averaging kernels (black). The altitude/latitude bin at

20◦ S–20◦ N, 17–18 km is shown as an example.

in detail for application to MIPAS profiles by Stiller et al.

(2012a). The better resolved HALOE profile is degraded with

a representative MIPAS averaging kernel (see Rodgers, 2000,

for a detailed discussion of the concept of averaging kernels)

to provide a HALOE H2O profile as MIPAS with its inferior

altitude resolution would have seen it. Representative MIPAS

averaging kernels were constructed for each latitude band of

10 degrees coverage and for each season (Fig. 1). Details of

the construction of representative averaging kernels are re-

ported in Schieferdecker (2015). Along with this degrada-

tion, HALOE data were resampled on the MIPAS altitude

grid which has a 1 km grid width in the altitude range rele-

vant to this study.

Figure 2 shows the combined time series both with the

original HALOE data (yellow curve) and with the degraded

HALOE data (black curve). It is obvious that the amplitude

of the annual cycle in HALOE data is much larger than in

the MIPAS data (green and red curve). The reason is roughly

this: in the case of MIPAS, the unknown variable in the re-

trieval is not the mixing ratio of H2O but its logarithm. Thus

the Jacobian of the radiative transfer model depends directly

on the mixing ratio (vmr) of water vapour, even if radiative

transfer is linear with respect to vmr. For larger H2O abun-

dances the Jacobian is larger and thus the weight of the con-

straint term in the retrieval is smaller and the altitude resolu-

tion is better. From this follows that MIPAS resolves the hy-

gropause better in the wet season than in the dry season. This

leads to the asymmetric distortion of the annual cycle, seen

when comparing the black and the yellow curve in Fig. 2. Ap-

plication of the season-dependent MIPAS averaging kernels

to HALOE data as described above leads to a HALOE time

series which is almost perfectly comparable to that of MI-

PAS. This pronounced effect proves that the direct analysis

of MIPAS H2O time series without consideration of averag-

ing kernels is prone to false conclusions.
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3.3 De-biasing

The MIPAS–HALOE overlap period from July 2002 to Au-

gust 2005 allows for de-biasing of MIPAS with respect to

HALOE. This de-biasing was performed independently for

the MIPAS HR and RR data, because these two data sets rely

on different processing schemes and thus could theoretically

have different characteristics. By the independent de-biasing

of each of the two MIPAS data sets with respect to HALOE,

biases between both the MIPAS data sets are also removed

implicitly. These, however, were found to be small anyway.

Three different approaches to determine the bias were

tested, one relying on coincident measurements, the other re-

lying on latitudinal mean values, and the third minimizing the

root mean square difference of the MIPAS and HALOE time

series during the overlap period. The third method proved

to be most robust and was finally selected. The other two

candidate approaches suffered from sparse statistics or sam-

pling artefacts, respectively. De-biasing was performed sep-

arately for each 10◦ latitude bin between 80◦ N and 80◦ S

and for each altitude of the MIPAS vertical grid. An example

is shown in Fig. 2 (red curve). The merged time series used

for our further analysis is represented by black and red lines.

Within the overlap period a weighted average of the homog-

enized HALOE and MIPAS data has been used.

4 Regression analysis

In order to better understand the temporal variation of H2O

in the lower stratosphere, a multilinear regression analysis

of the time series was performed for each altitude/latitude

bin. The regression model proposed by von Clarmann et al.

(2010) and extended by Stiller et al. (2012b) was used for

this purpose. It optionally considers the use of the full data

error covariance matrix and represents the local volume mix-

ing ratio of water vapour as a function of time using a con-

stant term, a linear trend, amplitudes of various harmonic os-

cillations and user defined proxies as fit variables. Piecewise

linear trends as derived by the cumulative sum method fol-

lowing Reinsel (2002) or Jones et al. (2009) were tried but

finally not considered because they merely help to describe

but not to explain the temporal variation. For each harmonic,

both the coefficients of the sine and the cosine term are fitted,

which together control both the phase and the amplitude of

the harmonic. The correlated part of the error is attributed to

variations that are not described in the regression model. The

correlation coefficients of this model error term are obtained

from the residuals of a first iteration where only the standard

errors of the monthly mean mixing ratios were considered as

data errors. The amplitude of this additional error term was

adjusted iteratively to comply with χ2 statistics (von Clar-

mann et al., 2010).

Figure 3. The merged time series (top panel, black curve) with the

standard errors of the data (black) and the best fitting standard re-

gression model (top panel, red curve) and the linear term of the

regression (green line). In the lower panel the residual time series

between the measured data and the fitted regression model is shown.

The latitude bin of 0–10◦ S is shown for an altitude of 17 km as an

example. The residual (rms= 0.35 ppmv) appears to have a system-

atic harmonic component with a period of about 11 years.

4.1 The standard regression

Besides the constant and linear term, the annual cycle and

its first three overtones (wavenumbers two, three, and four

waves per year) were considered. Wavenumber two repre-

sents the semi-annual oscillations, and wavenumbers two to

four help to better model the annual cycle when it is not per-

fectly harmonic. The following proxies were considered:

The quasi-biennial oscillation (QBO) was parametrized

using Singapore winds at 30 and 50 hPa, as obtained

from the Institut für Meteorologie of the Freie Universität

Berlin, (http://www.geo.fu-berlin.de/met/ag/strat/produkte/

qbo). Between the winds at these pressure levels, there is a

phase shift of approximately π
2

. Thus, fitting coefficients of

both of these gives access to the approximate phase and am-

plitude of the QBO signal (cf., e.g. Kyrölä et al., 2004).

For the El Niño–Southern Oscillation (ENSO) signal, the

Multivariate ENSO Index (MEI) (http://www.esrl.noaa.gov/

psd/enso/mei/index.html) was used as a proxy. Since this

data set refers to a tropical surface pressure level, a time

lag was considered to make the proxy representative for the

stratospheric latitudes and altitudes considered here. To es-

timate the time lag, temporally averaged stratospheric mean

age of air data from Stiller et al. (2012b) were used.

In the fitted time series there are pronounced systematic

residuals. Some of them are related to an apparent disconti-

nuity in the water vapour abundance in 2001, the well-known

millennium water vapour drop (Randel et al., 2006; Urban

et al., 2014) but the fits are unsatisfactory in the entire period

before 2007. The residual time series appears to be domi-
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Figure 4. The root mean square improvement of the fit residual with

respect to the standard approach, gained by the inclusion of the so-

lar cycle approximated by harmonic parametrization as described

under Approach 1 in Sect. 4.2. White bins are positive values, i.e.

deterioration of the fit.

nated by a systematic harmonic feature of a period length of

about 11 years. Figure 3 shows the fit of the time series at

17 km altitude in the latitude bin 0–10◦ S as an example.

4.2 Consideration of the solar cycle

The fit residuals obtained by the regression analysis de-

scribed in the previous section resemble a harmonic with a

period of about 11 years. Besides, strong H2O decreases are

visible in 1994 and 2001. The period of 11 years suggests

also considering the solar cycle in the regression model. Two

approaches have been tried:

Approach 1: the solar cycle was modelled by a harmonic

of 127 months with an overtone of 63 months (cf. Cunnold

et al., 2004). Fitting of the related sine and cosine coeffi-

cients gave access to the amplitude and phase of the solar sig-

nal. Consideration of the solar term improves the fits within

60◦ S–60◦ N in 92 % of the altitude/latitude bins (Fig. 4). The

improvement is most pronounced at altitudes around 25 km

and reaches 20–30 % in some altitude/latitude bins. The time

series at 0–10◦S , 17 km altitude is shown as an example how

the new regression model fits the time series (Fig. 5). While

both the H2O minimum in 1994 and the so-called millen-

nium drop in 2001 are still visible in the residual data and still

calls for explanation, the majority of the systematic residuals

have disappeared and the general shape of the time series is

nicely reproduced by the regression model. This result sug-

gests that the solar cycle might indeed partially control lower

stratospheric water vapour.

Approach 2: alternatively to the treatment with harmonics,

the solar cycle has been fitted using the radio flux index at a

wavelength of 10.7 cm (F10.7) as a proxy. This index, which

is available via the Solar and Heliospheric Observatory

(SOHO, http://sohowww.nascom.nasa.gov/sdb/ydb/indices_

Figure 5. Top panel: Fitted regression model with solar cycle ap-

proximated by harmonic parametrization as described under Ap-

proach 1 in Sect. 4.2. The blue curve is the fitted contribution of

these harmonics and the green line is the linear component. The

middle panel (blue curve) shows the original solar cycle F10.7

parametrization in arbitrary units. In the lower panel the residual

time series between the measured data and the fitted regression

model is shown. The rms for this fit is 0.30 ppmv. For further details,

see Fig. 3.

flux_raw/Penticton_Observed/monthly/MONTHPLT.OBS)

is proportional to solar activity. Since it is not a priori

clear which solar-terrestrial processes might control the

H2O content of the stratosphere and where exactly they

happen, and how long the processed air travels through the

stratosphere before it is observed, the phase shift obtained

from Approach 1 (approximation of the solar cycle effect

by harmonic functions) has also been applied to the F10.7

proxy. Delayed anti-correlation (lowest water vapour for

solar maximum, shifted by several months, depending on

altitude and latitude) provided the best results. The improve-

ments over the regression without the solar term are shown in

Fig. 6. While the improvements are less pronounced in some

of the bins than for Approach 1, this approach seems to be

more adequate for the inner tropical lowermost stratosphere.

For 95 % of the bins within 60◦ S–60◦ N the fit has been

improved compared to the standard approach without solar

cycle. The altitude/latitude bin at 0–10◦ S, 17 km is shown as

an example (Fig. 7). In this particular case, the residual due

to the millennium drop is less pronounced than in the case

with the regression model using the harmonic representation

of the solar cycle effect, but it is still visible.

Both approaches reveal a strong relation between the wa-

ter vapour abundances and the solar cycle. The correlation is

phase-shifted in a sense that lowest water vapour abundances

are seen a couple of years after the solar maximum (see Fig. 7

as an example).
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Figure 6. The root mean square improvement of the fit residual with

respect to the standard approach gained by the inclusion of the so-

lar cycle approximated by the F10.7 proxy as described under Ap-

proach 2 in Sect. 4.2. White bins are positive values, i.e. deteriora-

tion of the fit.

The amplitudes of the solar component in the regression

model are shown in Fig. 8 for both the harmonic (top panel)

and the F10.7 (bottom panel) parametrization. While the am-

plitudes associated with the harmonic approach are larger,

the altitude/latitude distributions of the amplitudes associated

with each approach have the same structure. Largest effects

are seen around the tropical tropopause region, and smallest

in the southern mid-latitudinal middle stratosphere.

The propagation of the data errors through the regression

model leads to uncertainties of these amplitudes of gener-

ally less than 2 % within the tropical pipe and less than 5 %

outside. Fit residuals, however, are not compliant with χ2

statistics, indicating that the regression model, even with the

solar term included, is less than perfect and does not fully

describe the entire variation of stratospheric H2O. Analysis

of the fit residuals and consideration of resulting estimates of

correlated model errors suggests an uncertainty in the order

of 15 to 50 % over a larger part of the altitude/latitude range,

with highest and contiguous significance (15–25 % relative

error of the amplitude) in the tropical tropopause range. This

provides good confidence in the results.

The phase shift of the solar signal (Fig. 9) is an interest-

ing result in itself because it helps to determine where in

the atmosphere the solar-terrestrial processes controlling the

stratospheric H2O content might take place. The phase shift

α – which, for all altitude/latitude bins, represents a delay

of the negative response of water vapour to the original so-

lar cycle – is about 40 months at about 18 km altitude and

45 to 50 months at about 22 km altitude in the inner tropics.

This implies that a certain phase α which is seen at a certain

time at, e.g. 18 km altitude, is observed 5 to 10 months later

at 22 km altitude. We compare this with the temporally av-

eraged mean age of stratospheric air distribution (age(φ,z))

Figure 7. Top panel: fitted regression model with solar cycle ap-

proximated by the F10.7 proxy as described under Approach 2 in

Sect. 4.2. The blue curve is the fitted solar signal contribution with

the F10.7 proxy. The middle panel (blue curve) shows the origi-

nal solar cycle F10.7 parametrization in arbitrary units. In the lower

panel the residual time series between the measured data and the

fitted regression model is shown. The rms for this fit is 0.31 ppmv.

For further details, see Fig. 3.
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Figure 8. “Quasi-amplitudes” of fitted terms representing the solar

cycle in the regression, i.e. the halved differences between the max-

ima and minima along the time series of these contributions. Top

panel: harmonic parametrization; lower panel: F10.7 parametriza-

tion.

by Stiller et al. (2012b), which is a measure of the Brewer–

Dobson circulation. This data set, although for a shorter pe-

riod, is the only available global observational climatology

of age of air. Since the age of air changes only slowly (Stiller

et al., 2012b), we consider the temporal average for 2002–

2010 as approximately representative for the full period. The

increase of the age of air between 18 and 22 km also is 5 to

10 months, giving the following relation.
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Figure 9. The distribution of the phase shift between the solar max-

imum and negative water vapour response over latitude and alti-

tude. Positive phase shifts represent a delay of the response of water

vapour to the solar cycle.

α(φ,z)−α(0◦,18 km)≈ age(φ,z)− age(0◦,18 km) (1)

This suggests that the solar effect is not a local one but that

part of the phase shift might be caused by transport processes

via the upwelling branch of the Brewer–Dobson circulation

of a signal generated near the tropical tropopause. Further,

the fact that the phase shift is larger than the age of air in

the lowermost stratosphere suggests that the effect itself must

have an inherent time lag (inh.lag). It can be estimated from

the difference of the phase shift of the solar signal and the

age of stratospheric air, assuming that the solar perturbation

is transported from the tropical tropopause region into the

stratosphere by the stratospheric residual circulation:

inh.lag(φ,z)= α(φ,z)− age(φ,z). (2)

The inherent time lags as a function of latitude and alti-

tude are shown in Fig. 10. We find that for all points be-

low the triangle defined by the points (60◦ S, 15 km), (0◦,

23 km) and (60◦ N, 15 km) the inherent time lag is almost

constant and amounts to roughly 25 months (extrema are 15

and 30 months). A slight decrease of the inherent time lag

with altitude, particularly in the tropical pipe, can be ex-

plained as follows. It is well-known that the mean age of

stratospheric air overestimates the pure transit time of a sig-

nal (Birner and Bönisch, 2011) and that in the tropical pipe

the discrepancy between age of air and transit time increases

with altitude. Thus, the correction by age of air is too large

and increases with altitude.

For higher altitudes and latitudes, the phase shift shows a

different behaviour. After having reached a maximum in the

lower stratosphere (green/yellow belt in Fig. 9), the phase

shift becomes smaller again. Moreover the inherent time lag
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Figure 10. Inherent time lag of the solar signal in water vapour,

i.e. difference of the phase shift of the solar signal in water vapour

and the age of stratospheric air as derived in Stiller et al. (2012b).

Positive values represent delays of the solar signal in water vapour

larger than the stratospheric mean age of air.

is negative and decreases further with altitude and latitude.

This hints at different processes governing the solar cycle re-

sponse of water vapour at higher altitudes.

4.3 Implication for the linear trends and other

regression parameters

Inclusion of a solar cycle by either approach discussed in

Sect. 4.2 has improved the fit of the regression model to the

measured H2O time series. Inclusion of the solar component

has largely reduced the systematic residuals of the fit of the

time series. When the F10.7 proxy was used, even the mil-

lennium drop was – coincidentally or not – modelled much

better. Regardless of if a causal relation between solar activ-

ity and the lower stratospheric H2O distribution is claimed or

not, any missing descriptive term in an incomplete regression

model causes residuals which are aliased onto other param-

eters in the fit. In the case discussed here, inclusion of the

solar cycle terms leads to much more negative water vapour

trends and in some altitude/latitude bins even changes the

sign of the trend (Fig. 11). In the standard regression model

stratospheric water vapour abundances increase or decrease

by less than 0.2 ppmv decade−1 nearly everywhere. In par-

ticular, a contiguous increase in the lower stratosphere in the

order of 0.1–0.2 ppmv decade−1 is seen. When the solar cy-

cle is considered, stratospheric water vapour decreases ev-

erywhere, and stronger than by −0.1 ppmv decade−1 at most

latitudes and altitudes. This indicates that, even if one does

not believe the solar cycle effect in explanatory terms, it still

is important in descriptive terms in order to avoid artefacts

caused by the related systematic residuals. This means that

the related systematic residuals, whatever their cause may

be, can emulate artificial trend components. Systematic ef-
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Figure 11. Linear terms of the multivariate regression of water

vapour time series with and without the inclusion of a solar term

in the regression model. Top panel: standard approach without solar

term; lower panel: including F10.7 parametrization.

fects on the annual and semiannual cycles as well as QBO

and ENSO amplitudes are much less pronounced.

5 Discussion

The analysis of the merged MIPAS–HALOE time series by

multivariate linear regression, including a solar cycle proxy

as described above, suggests that a solar signal is imprinted

on the water vapour abundance entering the stratosphere at

the tropical tropopause, and this signal is then transported

to the middle stratosphere via the Brewer–Dobson circula-

tion. The signal vanishes in the middle stratosphere. The so-

lar signal in the water vapour time series is phase-shifted

anti-correlated to the solar cycle, i.e. lowest water vapour af-

ter solar maximum is found. The phase shift consists of two

components: the first component is an inherent time lag of

about 25 months; the second component results from trans-

port times in the stratosphere by the Brewer–Dobson circula-

tion as approximated by the mean age of air.

Two obvious candidates to explain a solar signal in lower

stratospheric water vapour are methane oxidation and the im-

port of water vapour through the tropical tropopause into the

stratosphere.

The photochemical oxidation of methane is an important

contribution to the stratospheric water vapour budget (le Tex-

ier et al., 1988). However, the efficiency of the conversion

increases with altitude, and this is opposite to the solar cy-

cle variation observed here (see Fig. 8). The variations of

methane in the tropical lower stratosphere are very small

(less than 0.1 ppmv, not shown here) and not sufficient to

explain the observed variation in lower stratospheric water

vapour.

The import of water vapour from the troposphere into the

stratosphere is to the first order controlled by the tropical

cold-point temperature which implies that any mechanism

leading to solar cycle influence on the tropical tropopause

temperatures could explain the solar cycle signal in water

vapour.

Different studies exist that analyse the influence of the so-

lar cycle onto the tropical tropopause temperature with dif-

ferent results: Krüger et al. (2008) investigated NH winters,

when the lowest temperatures and water vapour entry val-

ues are observed in the lower stratosphere. They used a tra-

jectory model fed with input from ECMWF. In a zonal av-

erage they found 0.2 K higher cold-point temperatures dur-

ing solar maximum as compared to solar minimum which

would contradict our findings. However, over the western

Pacific, where most of the air experiences its final dehydra-

tion (Fueglistaler et al., 2005), they found a stronger nega-

tive temperature anomaly in the order of 1 K for solar maxi-

mum. For solar minimum, a respective positive temperature

anomaly of 1 K was found.

To put these results into context of our observations, we

have estimated the temperature variation necessary to pro-

duce our observed solar-cycle-driven water vapour varia-

tions. Using the relation between temperature and satura-

tion vapour pressure, such 2 K variation corresponds to a

variation in water vapour of about 1 to 1.5 ppmv, assum-

ing long-term average temperature conditions for the trop-

ical cold-point tropopause (∼ 191 K). This would be more

than sufficient to explain the solar variation observed in wa-

ter vapour. However, for temperatures below 187 K, as typ-

ical for the NH winter season, a 2 K variation would result

in water vapour variations that cannot explain the observed

variation. In this estimation we explicitly assumed a constant

saturation level of 100 %, which may be not appropriate.

As a second approach to estimate the temperature varia-

tions needed to explain our observed water vapour variations,

a regression of observed water vapour variations at the trop-

ical tropopause (1H2O) and variations of approximate cold-

point temperatures (1T ), the latter derived from radio occul-

tation observations, were evaluated. This yields the following

linear relationship:

{1H2O}ppmv = 0.23 · {1T }K+ 0.01, (3)

where curly brackets indicate numerical values. According to

these data, the observed solar component of the water vapour

variation would require a peak-to-peak cold-point tempera-

ture variation of about 3 K, which is larger than the variations

found by Krüger et al. (2008).

In contrast to Krüger et al. (2008), Frame and Gray (2010)

reported higher temperatures during solar maximum right

above the tropical tropopause and lower temperatures right

below the tropopause. However, there was no obvious re-

sponse at the tropopause itself.

Chiodo et al. (2014) used Whole Atmosphere Community

Model (WACCM) 3.5 simulations from 1960–2004 to study

the solar cycle influence. The analysis indicated that there
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was a positive correlation between solar cycle and strato-

spheric temperature; however, large parts could be attributed

to the alignment of the solar cycle with Pinatubo and El Chi-

chon eruptions. They concluded that it is very difficult to un-

ambiguously assign the variability to the solar cycle. Typi-

cally they found a lag of 1 year between the lower strato-

spheric temperature response and the solar forcing (averaged

over 25◦ S–25◦ N). This is different from our results where

the time lag is much larger. Chiodo et al. (2014) could extract

a robust signal only above 10 hPa, while below 10 hPa, the

ambiguity between volcanic influence and solar cycle was

too pronounced.

Both the “top-down” solar influence based on solar heating

of the stratosphere and the “bottom-up” mechanism (based

on solar heating of the sea surface and dynamically coupled

air–sea interaction) strengthen the tropical convection and

produce an amplified sea surface temperature (SST), precip-

itation, and cloud response in the tropical Pacific to a rela-

tively small solar forcing (see Meehl et al., 2009; Meehl and

Arblaster, 2009). These authors found further that an east Pa-

cific sea surface temperature cooling during the solar maxi-

mum is followed by a sea surface temperature warming over

wide areas of the Pacific about 2 years later.

According to White et al. (1997) and in agreement with

Meehl et al. (2009) and Meehl and Arblaster (2009), glob-

ally averaged SST anomalies show highest correlations with

solar activity with a phase shift of 1–2 years. White and Liu

(2008) found that the eastern tropical Pacific warm phase of

the 11-year cycle lagged the peak solar forcing by 1–3 years.

All these results are in good agreement with the inherent lag

identified in the solar signal in the water vapour time series.

Assuming that the cause of the solar signal seen in water

vapour comes from the ocean, Deckert and Dameris (2008a,

b) provided an explanation of how the signal is transported

from the ocean to the lower stratosphere. Higher sea sur-

face temperatures amplify deep convection locally. The la-

tent heat release from the convection induces pressure per-

turbations which in turn manifest themselves in the exci-

tation of quasi-stationary planetary waves. These move up-

wards through the easterly winds, dissipate, but are still

strong enough to induce a strengthening of the upwelling.

Increased upwelling leads to lower tropopause temperatures

and reduced water vapour. Since enhanced sea surface tem-

peratures are found about 2 years after the solar maximum

(Meehl et al., 2009; Meehl and Arblaster, 2009), this would

explain the water vapour minimum found 2 years after the

solar maximum in our study. The cold Pacific during the

solar maximum would act towards reduction of upwelling,

leading to higher tropopause temperature and higher water

vapour concentrations during solar maximum. The process

described by Deckert and Dameris (2008a, b) happens dur-

ing summer (June to September in the Northern Hemisphere

and between December and March in the Southern Hemi-

sphere), i.e. not during the times when the Brewer–Dobson

circulation is strongest, and at a different season than that ad-

dressed by Krüger et al. (2008). This effect is discussed with

respect to climate change but their arguments could easily

be applied to solar-cycle-induced changes of the sea surface

temperature as well.

There is, however, some evidence that weakens the hy-

pothesis of solar-cycle-driven tropopause temperatures, caus-

ing the solar signal in lower stratospheric water vapour:

Fueglistaler et al. (2013) found a residuum similar to ours

between a combined HALOE and MLS time series and tra-

jectory calculations on the basis of several reanalysis data

sets. Assuming HALOE data and cold-point temperatures

to be correct, this seems to refute the hypothesis that the

only mechanism which connects the solar variability with the

lower stratospheric water vapour content is the variability of

cold-point temperatures with the solar cycle.

Regarding the water vapour trends, there was agreement

until recently that water vapour in the lower stratosphere has

increased over the previous decades (Oltmans et al., 2000;

Rosenlof et al., 2001; Hurst et al., 2011).

Only recently, Hegglin et al. (2014) analysed H2O trends

of data records obtained with various space-borne limb-

sounding instruments and found negative trends. Data merg-

ing was performed using the Canadian Middle Atmosphere

Model 30 (CMAM30) (Scinocca et al., 2008) as a transfer

standard. The different temporal coverage of their and our

analysis is a major obstacle for direct comparison. Never-

theless, they found negative trends of water vapour in the

lower stratosphere in the order of 10 % over 22 years which

is somewhat larger than our values, and they attributed this

change mainly to an intensification of the shallow branch of

the Brewer–Dobson circulation.

The analysis performed by Dessler et al. (2014) was

mainly based on the MLS time series and constructed wa-

ter vapour abundances applying a trajectory model on re-

analyses. They found that tropical lower stratospheric wa-

ter vapour anomalies can fully be described by a multivari-

ate linear regression including the troposphere temperature

at 500 hPa, a QBO proxy and a proxy of the Brewer–Dobson

circulation. With this parametrization no significant linear

trend remains.

The findings by Hegglin et al. (2014) and Dessler et al.

(2014) neither confirm nor refute our findings. The reasons

are these: first, we find it only natural that trends, which by

their nature are a descriptive rather than an explaining quan-

tity, are found to be different, depending on which explain-

ing fit parameters are used. Second, the solar cycle might

also act upon other atmospheric quantities, which in turn

are correlated with the variation of water vapour. In partic-

ular, solar influence on both the tropospheric temperature

and the Brewer–Dobson circulation was identified (see Gray

et al., 2010) which implies that the parametrization chosen

by Dessler et al. (2014) has implicitly included a possible

solar signal in water vapour.
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6 Conclusions

A parametric fit of a 20-year time series of lower strato-

spheric water vapour based on a merged MIPAS–HALOE

data set is improved by inclusion of a solar cycle term. The

water vapour data records within 60◦ S–60◦ N and 15 to

30 km are best described by including a solar cycle proxy, im-

plying a phase-shifted anti-correlation between water vapour

abundances and solar radiation (i.e. lowest water vapour after

solar maximum). Within the lower stratosphere, this phase

shift is composed of an almost constant inherent time lag

of about 25 months and a variable delay following approx-

imately the age of stratospheric air. Amplitudes of the so-

lar signal in the water vapour time series are largest near

the tropical tropopause (up to 0.35 ppmv) and decrease with

altitude and latitude. We propose as an explanation of the

behaviour of both the amplitudes and the phase shifts that

the solar signal is imprinted on the water vapour, entering

the stratosphere through the tropical tropopause, possibly re-

stricted to the western Pacific region and is, thus, a conse-

quence of cold-point temperatures influenced by the solar cy-

cle. The response of lower stratospheric water vapour to the

solar cycle suggests that tropopause temperatures relevant for

the dehydration of air are lowest about 2 years after solar

maximum. Unfortunately, the vertical resolution of conven-

tional satellite-borne temperature sounders available for the

time period under assessment is not sufficient for the infer-

ence of cold-point temperatures, and radio occultation data

have become available only from the year 2000 onwards.

Thus, this aspect of our hypothesis cannot be tested.

Inclusion of the solar cycle term in the multivariate lin-

ear regression of the water vapour time series has another

important consequence: the linear term, interpretable as a

trend over the 2 decades of observations, becomes consid-

erably more negative after inclusion of the solar cycle proxy

and in the lower stratosphere the “trend” even changes sign

from slightly positive without the solar proxy term to sig-

nificantly negative. Thus, including the solar cycle term as

an additional proxy of a driver that rules stratospheric water

vapour has the potential to help to resolve the water vapour

conundrum: increasing water vapour abundances in the trop-

ical and extra-tropical lowest stratosphere (Rosenlof et al.,

2001; Randel et al., 2006) seemed to be in contradiction

with observed constant or even slightly decreasing tropical

tropopause temperatures (Zhou et al., 2001). The negative

net trend derived in our study could help to solve this.

A robust causal1 attribution of the lower stratospheric wa-

ter vapour fluctuations to solar effects is admittedly a chal-

lenge because of the small temporal coverage of the time se-

ries, which includes less than two solar cycles. But at least

it can be said that in descriptive terms the lower strato-

spheric water vapour time series shows a signal which can

be well modelled by a solar cycle signal and whose disregard

can affect water vapour trend estimation. Consideration of

other H2O data sources beyond MIPAS and HALOE and the

search for a solar cycle signal in observed cold-point temper-

atures are suggested as obvious follow-up activities.
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